
By: Galina Gorelik, Neil Shah
Published: February 25th, 2022
Read time: 10 minutes

BCPii - A RESTed development
A new z/OS BCPii API, HWIREST, is introduced for the IBM
z15. This API provides a simpler and more intuitive REST
programming model for applications to use to access many
previously unavailable attributes and instantly access future
attributes that may become available.

Hopefully you got the play on words… (from the sitcom “Arrested Development”). For
those programmers not familiar with BCPii, it provides a way for authorized applications
running on z/OS to programmatically interact with IBM Z hardware. The application can
query, change, and perform operational procedures, e.g., activating an LPAR, by using the
set of provided BCPii APIs. These APIs use internal communication paths between the
z/OS operating system and the hosting hardware, thus avoiding the IP network (intranet).

So, if you’re a z/OS systems programmer, what can you do with BCPii? Well, you can do
some neat things. How many times have you needed to get the attributes of an LPAR (i.e.,
number of CPs or amount of memory)? Prior to BCPii, this required logging on to the HMC,
going through the appropriate panels and updating an offline spreadsheet or document.
But, as most of us found out, sometimes a systems programmer updates the LPAR
configuration on the HMC and forgets to notify the document owner, leading to confusion
and possible problems! So, what is a z/OS systems programmer to do? BCPii to the
rescue!

However, as years and multiple new hardware releases have gone by, if you’re an existing
BCPii user, you may have noticed BCPii started lagging a bit (or a lot) behind the attributes
available on the SE/HMC GUI. Introducing HWIREST, the latest addition to the set of BCPii

APIs, which made its of cial debut in 2Q20211 on z15. If you fall into the existing group of
users, this new addition gives you the ability to access and update many new attributes,

including storage-class memory! It also gives TSO/E REXX and ISV REXX applications the
ability to issue commands previously not permitted for those environments, for example,
activate and load LPARs, and issue requests to the console.

HWIREST is a conduit that gives a z/OS application the ability to issue a core set of REST
APIs as defined in “Chapter 11: Core IBM Z resources”, of the IBM Z Hardware

Management Console Web Services API publication.

Let’s meet the new API

A PDF of the IBM Z Hardware Management Console Web Services API

publication can be found on Resource Link: www.ibm.com/servers/resourcelink
. Click Library on the navigation bar and then select your IBM Z server for a list
of publications that are related to your server.

https://www.ibm.com/servers/resourcelink

This single API is used to perform all forms of requests, from query through LPAR
activation, all the while using the internal communication path to the hardware.

HWIREST adheres to the same set of BCPii authorization requirements that are in place
for the existing APIs. So, if you already have a set of HWI.* FACILITY class profiles
defined, you can reuse them for your interaction with HWIREST. The main difference is the
identification that is associated with each resource, CPC, LPAR, CapRec, and others. The
existing APIs use the concept of a connection token to uniquely identify the resource after
a connection to that resource is established. The token contains the and
possibly an additional name value that is associated with the specific resource. That
information is then used to build the SAF profile to use for authorization of the request.
Unlike its siblings, HWIREST does not have a connection token. Instead, each resource’s
identity is formed by a combination of the URI and target name that is passed as input on
the request. That identity is then used to build the corresponding SAF profile.

You are probably thinking, “how do I obtain the URI and target name?” Numerous LIST
operations are available for each supported resource:

netid.nau

List CPC Objects - – GET /api/cpcs

NOTE: Each CPC entry returned will contain a location property; the entry
with the value local is your LOCAL CPC.

List Logical Partitions of CPC - – GET /api/cpcs/{cpc-id}/logical-partitions

NOTE: Each LPAR entry returned will contain a request-origin property; the
entry with the value true is your LOCAL LPAR.

List Group Profiles - – GET /api/cpcs/{cpc-id}/group-profiles

NOTE: Query a Group Profile’s “effective-*” properties to obtain real time
group capacity values.

List Image Activation Profiles - – GET /api/cpcs/{cpc-id}/image-activation-

profiles

List Capacity Records -
…and many
more

– GET /api/cpcs/{cpc-id}/capacity-records

Each LIST operation request returns various pieces of information for each entity,
including the object-uri (CPCs, LPARs, Profiles) or element-uri (Capacity Record) and
target-name.

For example, to obtain a list of CPCs you issue the List CPC Objects operation. That
operation returns an array of CPC entities, each of which includes the unique URI for that
CPC (value of the object-uri property), and the targeting information for that CPC (value of
the target-name property). Those two pieces of information form the CPC identity.

Your application builds on this data and/or reuses it for all subsequent requests that are
associated with that CPC.

One example of a subsequent request is to query storage-related properties on that CPC.
Specifically, you can query the total storage that is installed, the storage available for a
customer, and the total VFM storage. The first step is to find the corresponding CPC
properties names.
The CPC Data Model section in chapter 11 of the Hardware

Management Console Web Services API publication (Chapter 11 -> CPC object -> Data
Model) contains all the various properties available for a CPC. In the Data Model section,
scroll a bit to find the properties you are seeking, storage-total-installed, storage-
customer, and storage-vfm-total:

{
"name": "T115",
"se-version": "2.15.0",
"location": "local",
"object-uri": "/api/cpcs/6666666-2222-bbbb-aaaa-aaaaaa",
"target-name": "IBM390PS.T115”
}

Figure 1: CPC Data Model

The next step is to figure out the syntax of the GET CPC Properties operation (Chapter 11 -
> CPC object -> Get CPC Properties) that will be used to query those properties.

Figure 2: Get CPC Properties operation

The operation syntax (Figure 2) is broken down as follows:

When all the various pieces of information are combined, you can form the following
HWIREST request:

GET is the required HTTP method, you’ll use HWIREST’s equivalent HWI_REST_GET
constant.

–

is the URI for your CPC which you obtained by issuing the
initial LIST CPCs request ->

– /api/cpcs/{cpc-id}

"object-uri" = URI of CPC-> "/api/cpcs/6666666-

2222-bbbb-aaaa-aaaaaa"

properties and cached-acceptable are optional query parameters that you can append
to the CPC URI to lter what CPC properties are returned and the source of those
values. If the properties lter is omitted, all the properties that are defined in the CPC
Data Model are returned in the response for this request. In this case, let’s take
advantage of the properties lter to explicitly state we want only the values for storage-
total-installed, storage-customer, and storage-vfm-total returned to us in the
response body.

–

NOTE: For the best performance results always take advantage of the cached-
acceptable property if it is available.

In addition, you also need the targeting information for the CPC you are interacting
with; this is the other piece of information you obtained by issuing the initial LIST CPCs
request ->

–

"target-name": "IBM390PS.T115”

requestParm.httpMethod = HWI_REST_GET
requestParm.uri = ‘/api/cpcs/6666666-2222-bbbb-aaaa-aaaaaa?propert

If the request is successful, your response parm contains the following output:

Putting it all together into a picture, here is the request and response:

 storage-total-installed,storage-customer,storage
 total&cached-acceptable=true’

requestParm.targetName = ‘IBM390PS.T115’
requestParm.requestBody = <leave blank since this REST API doesn’t require

 request body>

NOTE: Do not add extra / characters at the end of the URI. The URI must be
exactly as shown in the documentation.

responseParm.responseDate = Wed, 06 May 2021 18:05:36 GMT
responseParm.requestId = Sxbbbbbb-5555-1111-00000.1f3 Rxc
responseParm.httpStatus = 200 (OK)
responseParm.responseBody =

 {
 "storage-vfm-total":0,
 "storage-customer":2883584,
 "storage-total-installed":3145728

 }

Figure 3: HWIREST request and response

One of the things you might have noticed in the previous example is that the response
content is always in JSON format. HWIREST uses JSON as the format for the request and
response data content. It supports both UTF-8 and IBM-1047-character encoding. In
case you are worried you must code up a JSON parser yourself, I would like to
shamelessly pitch and highly recommend the
z/OS client web enablement toolkit JSON Parser, which is built into the z/OS base, for all
your JSON parsing needs.

The other thing that you might have noticed is that there is nothing that resembles a
return code parameter that is typically found in a z/OS API. Don’t fret! HWIREST is staying
true to its RESTful nature; on success it returns an HTTP status value in the 200-299
range (Chapter 3. Invoking API operations -> HTTP status codes).

https://www.ibm.com/docs/en/zos/2.5.0?topic=toolkit-zos-json-parser

Figure 4: HTTP status codes

A value outside of that range indicates an error and additional information that will help
explain the error will be provided in the accompanying reason code and response body. In
addition to documenting HTTP status codes, Chapter 3 in Hardware Management Console

Web Services API publication is also where you’ll nd the error response bodies section
that defines the various elds included in the response body on error and descriptions of
the various reason codes you could encounter.

Now for a few words about the HWIREST parameters, two to be exact, one for the content
of request (input) and one that contains the result of the request (output).

The request parameter is broken down into various elds that correspond to content in
the Hardware Management Console Web Services API, though the names might vary
slightly.

Request parameter fields Equivalent content in the HMC Web Services APIRequest parameter fields Equivalent content in the HMC Web Services API

httpMethod HTTP method for the REST API operation

uri URI for the REST API operation

targetName X-API-Target-Name request header

requestBody Request body contents for the REST API operation

clientCorrelator X-Client-Correlator request header

encoding Value of the charset used to encode all the input and output

requestTimeout Amount of time the SE is given to carry out the request before
giving up

The response parameter is broken down in a similar fashion; its various elds correspond
to content in the Hardware Management Console Web Services API.

Request parameter fields Equivalent content in the HMC Web Services API

responseDate Date response header

requestId X-Request-Id response header

location Location response header

responseBody Response body contents for the REST API operation

httpStatus HTTP Status Code

reasonCode Reason

You might have noticed a bit of a trend by now. The MVS Programming: Callable Services

for High-Level Languages publication helps you understand the syntax of HWIREST, but

after you learn how to interact with this API, you might never need to return to it again
because all the content is in the Hardware Management Console Web Services API.

The full list of supported REST API operations through HWIREST can be found in
“Appendix A: Base Control Program internal interface (BCPii)” in Hardware Management

Console Web Services API. In addition to the information in Appendix A, each supported
operation includes the verbiage: “This operation is supported using the BCPii interface.”

Figure 5: How to tell if an operation is supported using the BCPii interface

Now you’re thinking, okay but what about the various attributes, in the Data Model and in
the operation descriptions. The attribute is supported unless there is an explicit note in
the description that states: “This property is only returned when the web services
interface was used for the request.”

Figure 6: How to tell if a property is not supported in BCPii

How do you know which API is applicable to HWIREST in the Hardware

Management Console Web Services API section?

Before you try out the new API, let’s talk about asynchronous requests (have I mentioned
you can issue these out of TSO/E REXX and ISV REXX environments?). Some REST API
operations, such as Activate Logical Partition, are asynchronous (Chapter 11 -> Logical
Partition -> Activate Logical Partition):

Figure 7: Asynchronous results

The response body that is returned contains a job URI. That job URI is associated with the
asynchronous job processing operation (Chapter 7 -> Asynchronous job processing):

Staying in sync with async

Figure 8: Query Job Status operation

Your application uses HWIREST to poll that JOB URI to determine the result of the
asynchronous request.

Figure 9: Issuing an asynchronous request

Have we got some samples for you! You can nd them at:
https://github.com/IBM/zOS-BCPii. One of the samples, RXAUDIT1, goes to the CPC and
lists attributes, number of general-purpose CPs, zIIPs, storage, etc., for all LPARs. It then
stores the results, which are in .csv format, in a z/OS data set member. You can then
import the content into Microsoft™ Excel or another application of your choice.

Figure 10: Data obtained using the RXAUDIT1 sample

Samples!

https://github.com/IBM/zOS-BCPii

z/OS BCPii is excited to introduce you to its newest member, HWIREST API. This API
provides a new REST-like interface for applications to use to access many previously
unavailable attributes and allows TSO/E REXX and ISV REXX applications the ability to
issue commands previously not permitted for those environments. In addition, as
rmware updates are applied that introduce new attributes to currently supported
resources, you no longer have to wait for z/OS to make its corresponding APAR available.
In most cases, you can access the new attributes instantaneously!

Galina Gorelik is the product owner of z/OS BCPii and z/OS client web enablement toolkit.

Neil Shah is an IBM z/OS Systems Programmer.

Anne Romanowski contributed to the editorial review of this article.

Image created by Izzi Cain.

1. HWIREST is available for BCPii on z/OS 2.4 with APAR OA60351 and is included in the
base of later z/OS releases. An enhancement to HWIREST that allows access in TSO/E
and ISV REXX environments to previously restricted REST API operations was made
available in z/OS 2.4 and z/OS 2.5 with APAR OA61976. It is also included in the base
of later releases. HWIREST requires a z15, SE 2.15.0 with MCL P46598.370, Bundle
S38 or higher, and HMC 2.15.0 with MCL P46686.001, Bundle H25 or higher.↩

In Summary

About the authors

