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About this document

Product registration services allow products to register with MVS™ when they are
running on a particular system. Other products can then use registration services
to determine what products are running on a particular system.

Product registration provides an additional function for optional products, or
elements, of z/OS. These optional products, which can be either products, product
features, or combinations of product and feature, can use registration services to
determine, based on a policy the customer sets, whether they are enabled to run on
a particular system.

This book describes how to use registration services.

Who should use this document
This book is for programmers who design and write, in assembler, C, or Java™

programs that use registration services. It requires an understanding of how to
work with MVS system interfaces.

How to use this document
This book is one of the set of programming books for MVS. This set describes how
to write programs in assembler language or high-level languages, such as C,
FORTRAN, and COBOL. For more information about the content of this set of
books, see z/OS Information Roadmap.

Note: If you call the services described in this book from assembler language
programs, you must use a high-level assembler.

Where to find more information
Where necessary, this book references information in other books, using shortened
versions of the book title. For complete titles, and order numbers of the books for
all products that are part of z/OS, see z/OS Information Roadmap.

What Java level support is necessary for product registration
The product registration Java support requires that the following Java level or
higher be installed:
v IBM® SDK for z/OS® Java 2 Technology Edition, Version 1.4 PTF UQ93743,

product number 5655-I56.

© Copyright IBM Corp. 1997, 2013 vii
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How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the Contact z/OS.
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 MVS Programming: Product Registration
SA38-0698-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at IBM support portal.

© Copyright IBM Corp. 1997, 2013 ix
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z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration, GA32-0889

v z/OS Planning for Installation, GA32-0890

v z/OS Summary of Message and Interface Changes, SA23-2300

v z/OS Introduction and Release Guide, GA32-0887

© Copyright IBM Corp. 1997, 2013 xi
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Chapter 1. Using Registration Services

Product registration provides a common mechanism for products to:
v Register (indicate that they are running) on a particular system
v Determine what products are registered (running) on a particular system

With z/OS, products, such as z/OS features, can use registration services to
determine if they are enabled to run on a particular system. z/OS MVS Product
Management describes product enablement, which requires that the product be
defined appropriately in the enablement policy for the system.

The IFAPRDxx parmlib member contains the enablement policy, which the
customer defines for a system.

Figure 1 shows how the product code, the enablement policy, and MVS registration
services fit together to determine whether a product is enabled.

As Figure 1 shows, the product code issues the register request to indicate that it is
running and check its enablement status. The customer policy in IFAPRDxx defines
enablement status for products. When MVS processes the register request, it
matches the product name definition in the request with the entries in the
enablement policy to determine if the product is enabled on the system, then
issues a return code to indicate enablement status. Based on the return code, the
product continues to run or ends its processing.

If you are interested in how to enable a product, see:
v z/OS MVS Product Management for information about product enablement and

reporting on registered products.
v z/OS MVS Initialization and Tuning Reference for an explanation of how to update

IFAPRDxx.
v z/OS Planning for Installation for a description of how to enable z/OS features.

This book, in contrast, describes how to use registration services. It is for the
product programmer who needs to know:
v How to use registration services to register a product. See “Registering a

Product” on page 2.

Product Code MVS Customer Policy

registers
product name

lists names of products

matches names

product
name

policy name

Figure 1. An Overview of Product Enablement

© Copyright IBM Corp. 1997, 2013 1



v How to use registration services to check product status — determine if a
product is registered or enabled, or both, on a particular system. See “Checking
Product Status” on page 3.

Registration services provide a standard mechanism for determining when a
product is running or enabled on a system. Thus, the services are useful for all
products with known dependencies on other IBM products or the products of
independent software vendors or solution providers.

Examples of using the services appear in Chapter 3, “Examples,” on page 35.

Registering a Product
To register a product, issue the Register service. See “Using the Register Service.”
When a product calls the Register service, MVS determines, based on the register
request and the enablement policy defined in IFAPRDxx, whether or not the
product is enabled to run on the system.

If the Register request type and the policy entry indicate that the product can run
on the system, MVS registers the product as one that is running. Other products
can then use the Query_Status and List_Status services to check whether your
product is running. The system and other products assume that a product that is
registered is a product that is running on a particular system.

Thus, it is important that, when your product finishes processing, it issue the
Deregister service to tell MVS that it is no longer running. See “Using the
Deregister Service” on page 3.

Using the Register Service
When a product issues the Register service, the system checks the enablement
policy in IFAPRDxx. If the check is successful, MVS issues a return code of 0 and
adds the product to its list of registered (running) products.

For the check to be successful, you need to select the type of Register request very
carefully, depending on what you want to do:
v To register your product without regard to the enablement policy, select

Ifaedreg_Type_Required. When it processes your request, the system does not
check the enablement policy. Use this register request when you are registering
only to allow other products:
– To determine if your product is running.
– To access information you provide through the Features parameter.

v To register your product and consider it enabled even if there is no entry in the
policy, select Ifaedreg_Type_Standard. This type of request is useful when your
product can be enabled without any user change to the policy in IFAPRDxx.
With the standard register request, you get return code 4 (indicating that the
product is disabled) only when there is a matching statement that explicitly
disables the product.

v To register your product and consider it disabled when there is no entry in the
policy, select Ifaedreg_Type_NotFoundDisabled. For the request to be
successful, there must be a matching statement in the policy that explicitly
enables the product. You get return code 4 when the product is explicitly
disabled or when there is no matching statement.
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The product definitions in the enablement policy can contain wildcard characters (?
and *), and MVS allows wildcard matching so that a single policy statement can
apply to multiple products.

Because of the interaction between the product definition in the register request,
the type of register request, and the contents of IFAPRDxx, make sure that your
product documentation provides the information users need to update IFAPRDxx,
as described in z/OS MVS Initialization and Tuning Reference.

The placement of the Register request in your product code is also important. Most
products and separately orderable features would invoke the Register service
during initialization. Products or features that have multiple entry points or that
allow branch entry must consider registering at each possible point of invocation.

If other products need information about your product, you can use the Features
parameter to pass the information. Callers of the Query_Status service can obtain
this information, but you need to define its contents and format to enable the
callers to interpret the information correctly.

See “Register Service (IFAEDREG)” on page 7 for a complete description of the
service, including the various types of register request.

Using the Deregister Service
While the system can automatically deregister a product during task or address
space termination, it is a good practice to issue the Deregister service when a
registered product completes its processing.

Issuing the Deregister service ensures that any status queries that other products
issue return correct results. The system considers a registered product to be a
running product. If your product stops running but does not deregister, any query
of its status will indicate that it is still running.

See “Deregister Service (IFAEDDRG)” on page 14 for a complete description of the
service.

Checking Product Status
There are two services you can use to check product status:
v Query_Status, described in “Query_Status Service (IFAEDSTA)” on page 16
v List_Status, described in “List_Status Service (IFAEDLIS)” on page 21

Which service you need depends on the information your product requires:
v To determine if a specific product is registered and obtain its enablement status

(enabled, disabled, or not known), issue the Query_Status service.
v To obtain information about the registration and enablement status of one or

more products, issue the List_Status service.
v To determine what entry in the enablement policy the system would use to

determine the enablement status of a particular product, issue the List_Status
service.

Both services return information in data areas mapped for the assembler language
programmer in mapping macro IFAEDIDF and for the C programmer in include
file IFAEDC.

Chapter 1. Using Registration Services 3



Before you issue either service, you need to know how any product you are
interested in was defined when it was registered.

If you are using Query_Status to request the status of a specific product, you might
need additional documentation from the product. When a product registers, it can
provide information for the system to pass to the caller of Query_Status. If you are
interested in a product that provides this additional information, you need to
understand the content and format of the information you will receive.
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Chapter 2. Coding Registration Services

There are four registration services:
v Register service — registers a product or feature with MVS
v Deregister service — deregisters a product, usually done when an element

completes processing.
v Query_Status service — checks the status of a specific product
v List_Status service — checks the status of one or more products

These callable services share common invocation characteristics and common
processing considerations.

Invoking the Services
The following information describes the environment required, restrictions, register
information, performance implications, and abend codes for the registration
services.

Environment

The environment for the callers are:

Minimum authorization:
Problem state and any PSW key

Dispatchable unit mode:
Task

Cross memory mode:
PASN=HASN=SASN

AMODE:
31-bit

ASC mode:
Primary

Interrupt Status:
Enabled for I/O and external interrupts

Locks:
No locks may be held.

Control parameters:
Control parameters must be in the primary address space.

Programming Requirements

v If you are coding in assembler, include mapping macro IFAEDIDF. It provides
return code equates for the various services and mappings for the output from
the Query_Status service and the List_Status service. For a description of
IFAEDIDF, see z/OS MVS Data Areas manuals in z/OS Internet Library at
http://www.ibm.com/systems/z/os/zos/bkserv/.

v If you are coding in C, include file IFAEDC provides data definitions for the
various services. For a description of IFAEDC, see “IFAEDC” on page 26.

© Copyright IBM Corp. 1997, 2013 5
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v If you are coding in Java, use the methods in the IFAEDJReg class. See
“Registering and deregistering a product using Java” on page 38 for more
information.

Restrictions

v The caller cannot have an established FRR.
v An unauthorized caller of the Register service cannot register if there are already

10 successful registrations (counting all products) made by unauthorized callers
from that address space.

v An unauthorized caller cannot deregister a product that was registered by an
authorized caller.

v An unauthorized caller cannot deregister a product that was registered from
another address space.

Input Register Information

Before issuing any registration service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of register on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance Implications

These services should not be used in a performance-sensitive environment.

ABEND Codes

Callers of the registration services might encounter the following ABEND codes:

0C4 Meaning: The system cannot properly access a user-provided parameter.

B78 Meaning: The caller was not enabled for I/O and external interrupts.
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Register Service (IFAEDREG)
Use the Register service (IFAEDREG) to register a product with MVS. You can
register a product or a unique product/feature combination. When you register a
product with MVS, you indicate that the registered product is running on the
system.

The Register service returns information to the caller and also maintains
information that other callers can query to determine if products are registered
(running) and enabled on the system.

If the product is an optional z/OS element, feature, or element/feature
combination, MVS can also determine whether the element is enabled on this
system.

To determine enablement, the system matches the product identified in the call
against the policy statements in parmlib member IFAPRDxx.

It is possible, because of wildcard characters (? and *) in the policy statements, that
multiple policy statements might match the given input product. In that case, MVS
uses the "best" match to determine whether or not the product is enabled, using
the following rules:
1. An exact match is better than a wildcard match. There is no differentiation

between two wildcard matches.
2. The parameters are processed in the following order: Prodowner, ProdID,

Prodname, Featurename, Prodvers, Prodrel, and Prodmod. An exact match on a
parameter earlier in the list (such as Prodowner) is better than a match on a
parameter later in the list (such as Prodname).

3. If, after applying the first two rules, more than one match remains, MVS uses
the first match of those that remain.

If product code is neither in supervisor state nor running under a system key, it
cannot issue more than 10 register requests.

Syntax

CALL IFAEDREG, (Type
,Prodowner
,Prodname
,Featurename
,Prodvers
,Prodrel
,Prodmod
,ProdID
,Featureslen
,Features
,Prodtoken
,Returncode)

In C: the syntax is similar. You can use either of the following techniques to invoke
the service:
1. ifaedreg (Type,...Returncode);

Register Service (IFAEDREG)
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When you use this technique, you must link edit your program with a
linkage-assist routine (also called a stub) in SYS1.CSSLIB.

2. ifaedreg_byaddr (Type,...Returncode);

This second technique requires AMODE=31, and, before you issue the CALL,
you must verify that the IFAEDREG service is available (in the CVT, both
CVTOSEXT and CVTOS390 bits are set on).

In Assembler: Link edit your program with a linkage-assist routine (also called a
stub) in SYS1.CSSLIB unless you use either of the following techniques as an
alternative to CALL IFAEDREG:
1. LOAD EP=IFAEDREG

Save the entry point address
...
Put the saved entry point address into R15
Issue CALL (15),...

2. L 15,X’10’ Get CVT
L 15,X’8C’(,15) Get ECVT
L 15,X’1C0’(,15)
L 15,4(,15)
L 15,0(,15) Get address of IFAEDREG
CALL (15),(...)

Both of these techniques require AMODE=31. If you use the second technique,
before you issue the CALL, you must verify that the IFAEDDRG service is
available (in the CVT, both CVTOSEXT and CVTOS390 bits are set on).

In Java: Use the methods in the IFAEDJReg class. Prior to invoking your
application, the ifaedjreg.jar file must be available on the application's classpath
and the registration native library must be available on the application's libpath.
See “Registering and deregistering a product using Java” on page 38 for more
information.

Parameters
Type

Supplied parameter:
v Type: Integer
v Length: Full word

Type identifies the type of register request. The field must contain a value that
represents one or more of the possible types. You add the values to create the
full word. Do not specify a type more than once. The possible types, and their
meanings, are:

Ifaedreg_Type_Standard
The system is to register the product, check the enablement policy, and
issue a successful return code unless the product is explicitly disabled in
the policy. If the product is explicitly disabled, the system does not register
the product and does issue return code 4. If you want the service to issue
return code 4 (Ifaedreg_Disabled) when the product is not found in the
policy, specify Ifaedreg_Type_NotFoundDisabled.

Ifaedreg_Type_Required
The system is to register the product but not check the enablement policy.
Use this option when registering solely for status queries. Because the
system does not check the enablement policy, you cannot get return code 4
(Ifaedreg_Disabled).

Register Service (IFAEDREG)
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Ifaedreg_Type_NoReport
The system is to register the product but not report the product in the
software registration report or the response to a DISPLAY command
(unless the command specifies ALL). You might use this option when
registering solely for status queries. Because the system does not check the
enablement policy, you cannot get return code 4 (Ifaedreg_Disabled).

Ifaedreg_Type_LicensedUnderProd
The system is to register the product/feature combination, but the
product/feature combination cannot be ordered separately. The software
registration report will differentiate this type of registration from others; a
person looking at the report can easily tell that there is no need to check
the ordering information for this product/featurename combination.

Ifaedreg_Type_DisabledMessage
The system, if it finds the product to be disabled, is to issue message
IFA104I, described in z/OS MVS System Messages, Vol 8 (IEF-IGD). Thus, the
caller does not have to issue the message. The system issues message
IFA104I with no console ID specified, and with routing codes 10
(System/Error Maintenance) and 11 (Programmer Information).

Ifaedreg_Type_NotFoundDisabled
The system, if it does not find the product in the enablement policy, is to
treat the product as disabled rather than enabled. That is, if the product is
not found, the system does not register the product and does issue return
code 4 (Ifaedreg_Disabled). If you also specify
Ifaedreg_Type_DisabledMessage, the system issues message IFA104I. For a
description of this message, see z/OS MVS System Messages, Vol 8
(IEF-IGD).

,Prodowner
Supplied parameter:
v Type: EBCDIC
v Length: 16 bytes

Prodowner specifies the name of the product owner (vendor). IBM products,
for example, always use IBM CORP or IBM_CORP.

The characters can be upper-case or lower-case alphabetics, numerics, national
(@, #, $), underscore (_), slash (/), hyphen (-), and period (.). You can use
embedded blanks.

The system translates underscores to blanks for comparison and display, and it
performs all comparisons in upper case.

If the name is less than 16 bytes, left-justify the name in the field and pad it on
the right with EBCDIC blanks.

,Prodname
Supplied parameter:
v Type: EBCDIC
v Length: 16 bytes

Prodname specifies the name of the product.

The characters can be upper-case or lower-case alphabetics, numerics, national
(@, #, $), underscore (_), slash (/), hyphen (-), and period (.). You can use
embedded blanks.

The system translates underscores to blanks for comparison and display, and it
performs all comparisons in upper case.

Register Service (IFAEDREG)
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If the name is less than 16 bytes, left-justify the name in the field and pad it on
the right with EBCDIC blanks.

,Featurename
Supplied parameter:
v Type: EBCDIC
v Length: 16 bytes

Featurename specifies the name of the feature within the product or blanks if
there is no feature name.

The characters can be upper-case or lower-case alphabetics, numerics, national
(@, #, $), underscore (_), slash (/), hyphen (-), and period (.). You can use
embedded blanks.

The system translates underscores to blanks for comparison and display, and it
performs all comparisons in upper case.

If the name is less than 16 bytes, left-justify the name in the field and pad it on
the right with EBCDIC blanks.

,Prodvers
Supplied parameter:
v Type: EBCDIC
v Length: 2 bytes

Prodvers specifies the product version identification or blanks if there is no
version identification.

The characters can be upper-case or lower-case alphabetics and numerics. You
can use embedded blanks.

The system performs all comparisons in upper case.

If the version identification is less than 2 bytes, left-justify it in the field and
pad it on the right with EBCDIC blanks.

,Prodrel
Supplied parameter:
v Type: EBCDIC
v Length: 2 bytes

Prodrel specifies the product release identification or blanks if there is no
release identification.

The characters can be upper-case or lower-case alphabetics and numerics. You
can use embedded blanks.

The system performs all comparisons in upper case.

If the release identification is less than 2 bytes, left-justify it in the field and
pad it on the right with EBCDIC blanks.

,Prodmod
Supplied parameter:
v Type: EBCDIC
v Length: 2 bytes

Prodmod specifies the product modification level or blanks if there is no
modification level.

The characters can be upper-case or lower-case alphabetics and numerics. You
can use embedded blanks.

Register Service (IFAEDREG)
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The system performs all comparisons in upper case.

If the modification level is less than 2 bytes, left-justify it in the field and pad it
on the right with EBCDIC blanks.

,ProdID
Supplied parameter:
v Type: EBCDIC
v Length: 8 bytes

ProdID specifies the product identifier. IBM products, for example, use the
product's program number.

The characters can be upper-case or lower-case alphabetics, numerics, national
(@, #, $), underscore (_), slash (/), hyphen (-), and period (.). You can use
embedded blanks.

The system translates underscores to blanks for comparison and display, and it
performs all comparisons in upper case.

If the name is less than 8 bytes, left-justify the name in the field and pad it on
the right with EBCDIC blanks.

,Featureslen
Supplied parameter:
v Type: Integer
v Range: 0-1024
v Length: Full word

Featureslen specifies the length of the features parameter that follows.

,Features
Supplied parameter:
v Type: Character (EBCDIC recommended)
v Length: 1-1024 bytes

Features contains any information that you want the system to pass to the
caller of the Query_Status service. (Featureslen specifies the length of the
information.)

If you do not need to pass information to callers of the Query_Status service,
code 0 in the Featureslen parameter. The system then ignores the contents of
the Features parameter, but the service syntax requires that you supply a value.

If you do need to pass information to the callers of Query_Status, using
EBCDIC can simplify the parsing requirements for the caller, but you do need
to provide a mapping of the information for the caller to use. An alternate
approach is to set up self-defining features information (such as
feature1=value1,feature2=value2,...). This approach has the advantage of
simplicity, but does use more system (common) storage.

If the product you are registering is already registered, the features information
you specify here will replace the features information provided on any
previous call, but only for the length provided on the previous call. For
example, if the previous call specified a Featureslen of 16, and this call
specifies 32, the system uses only the first 16 bytes of features information
from this call.

,Prodtoken
Returned parameter:
v Type: Character

Register Service (IFAEDREG)
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v Length: 8 bytes

Prodtoken contains the token the system returns to identify this particular
registration. Save this token to supply as input to the Deregister service.

,Returncode
Returned parameter:
v Type: Integer
v Length: Full word

Returncode contains the return code from the Register service.

Return Codes
When the Register service returns control to the caller, Returncode contains the
return code. To obtain the equates for the return codes:
v If you are coding in assembler, include mapping macro IFAEDIDF, described in

z/OS MVS Data Areas manuals in z/OS Internet Library at http://
www.ibm.com/systems/z/os/zos/bkserv/.

v If you are coding in C, use include file IFAEDC. See “IFAEDC” on page 26.

The following table describes the return codes, shown in decimal.

Return Code
(decimal) Equate Symbol Meaning and Action

00 Equate Symbol: IFAEDREG_SUCCESS

Meaning: The product/feature combination is enabled and is permitted
to execute. Note that, unless you request option
Ifaedreg_Type_NotFoundDisabled, you will get this return code when the
system does not find a policy statement that matches the product.

Action: Proceed with normal execution.

04 Equate Symbol: IFAEDREG_DISABLED

Meaning: The product/feature combination is not enabled; it is explicitly
disabled and is not permitted to execute. To get this return code when
the system does not find a policy statement that matches the product,
you must also request option Ifaedreg_Type_NotFoundDisabled.

Action:

1. Write the appropriate termination message to the terminal or log,
unless the operator message issued because you requested
Ifaedreg_Type_DisabledMessage provides enough information.

2. Set a return code to indicate termination for ‘not ordered or not
permitted to run’ condition.

3. Terminate requestor's use of program.

Register Service (IFAEDREG)
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Return Code
(decimal) Equate Symbol Meaning and Action

08 Equate Symbol: IFAEDREG_NOTAVAILABLE

Meaning: Environmental error: The Register service is not available on
this system.

Action:

v If this version of the program must execute on a system that provides
registration services:

1. Write the appropriate termination message to the terminal or log.

2. Set a return code to indicate termination because registration
services are not available on this system.

3. Terminate requestor's use of program.

v If this version of the program does not need to execute on a system
that provides registration services, take the actions appropriate for the
product/feature when you cannot determine if it is enabled.

12 Equate Symbol: IFAEDREG_LIMITEXCEEDED

Meaning: Environmental error: This request exceeds the limit of 10
register requests by an unauthorized caller in this address space.

Action: Use the Deregister service to remove unneeded registrations.

16 Equate Symbol: IFAEDREG_NOTTASKMODE

Meaning: User error: The service was not called in task mode.

Action: Avoid calling in this environment.

20 Equate Symbol: IFAEDREG_XM

Meaning: User error: The service was called in cross-memory mode but
requires PASN=HASN=SASN.

Action: Avoid calling in this environment.

24 Equate Symbol: IFAEDREG_BADFEATURESLEN

Meaning: User error: The Featureslen parameter was not in the range
0-1024.

Action: Correct the parameter.

28 Equate Symbol: IFAEDREG_NOSTORAGE

Meaning: Environmental error: The system could not obtain the storage
it needed to satisfy the request.

Action: Contact the system programmer.

32 Equate Symbol: IFAEDREG_BADTYPE

Meaning: User error: The type parameter did not specify a word formed
from any combination of Ifaedreg_Type_Standard,
Ifaedreg_Type_Required, Ifaedreg_Type_NoReport,
Ifaedreg_Type_LicensedUnderProd, Ifaedreg_Type_DisabledMessage, and
Ifaedreg_Type_NotFoundDisabled.

Action: Correct the parameter.

Register Service (IFAEDREG)
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Return Code
(decimal) Equate Symbol Meaning and Action

36 Equate Symbol: IFAEDREG_LOCKED

Meaning: User error: The service was called while holding a system lock.

Action: Avoid calling in this environment.

40 Equate Symbol: IFAEDREG_FRR

Meaning: User error: The service was called while having a functional
recovery routine (FRR) established.

Action: Avoid calling in this environment.

Deregister Service (IFAEDDRG)
Use the Deregister service (IFAEDDRG) to indicate that a registered product or
product/feature combination is ending its processing. When a product registers
with MVS, it indicates that it is running on the system. When it ends, the product
issues the Deregister service to indicate that it has finished processing.

A product that issues the Register service receives a token that identifies the
unique instance of the product. To deregister, the product calls the Deregister
service and supplies the token. Note that the system automatically deregisters the
product on termination of:
v The cross-memory resource owning task (TCB address in ASCBXTCB) that was

active when the register request was done
v The address space that was the home address space when the register request

was done.

If the product code is neither in supervisor state nor running under a system key,
there are limitations on the use of Deregister:
1. You cannot deregister a product that was registered by a caller in supervisor

state or running under a system key.
2. You can deregister only a product that was registered from your home address

space.

Syntax

CALL IFAEDDRG, (Prodtoken
,Returncode)

In C: the syntax is similar. You can use either of the following techniques to invoke
the service:

1. ifaeddrg (Type,...Returncode);

When you use this technique, you must link edit your program with a
linkage-assist routine (also called a stub) in SYS1.CSSLIB.

2. ifaeddrg_byaddr (Type,...Returncode);

Register Service (IFAEDREG)
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This second technique requires AMODE=31, and, before you issue the CALL,
you must verify that the IFAEDDRG service is available (in the CVT, both
CVTOSEXT and CVTOS390 bits are set on).

In Assembler: Link edit your program with a linkage-assist routine (also called a
stub) in SYS1.CSSLIB unless you use either of the following techniques as an
alternative to CALL IFAEDDRG:

1. LOAD EP=IFAEDDRG
Save the entry point address
...
Put the saved entry point address into R15
Issue CALL (15),...

2. L 15,X’10’ Get CVT
L 15,X’8C’(,15) Get ECVT
L 15,X’1C0’(,15)
L 15,4(,15)
L 15,4(,15) Get address of IFAEDDRG
CALL (15),(...)

Both of these techniques require AMODE=31. If you use the second technique,
before you issue the CALL, you must verify that the IFAEDDRG service is
available (in the CVT, both CVTOSEXT and CVTOS390 bits are set on).

In Java: Use the methods in the IFAEDJReg class. Prior to invoking your
application, the ifaedjreg.jar file must be available on the application's classpath
and the registration native library must be available on the application's libpath.
See “Registering and deregistering a product using Java” on page 38 for more
information.

Parameters
Prodtoken

Supplied parameter:
v Type: Character
v Length: 8 bytes

Prodtoken contains the token the system returned when the product issued the
Register service.

,Returncode
Returned parameter:
v Type: Integer
v Length: Full word

Returncode contains the return code from the Deregister service.

Return Codes
When the Deregister service returns control to the caller, Returncode contains the
return code. To obtain the equates for the return codes:
v If you are coding in assembler, include mapping macro IFAEDIDF, described in

z/OS MVS Data Areas manuals in z/OS Internet Library at http://
www.ibm.com/systems/z/os/zos/bkserv/.

v If you are coding in C, use the include file IFAEDC. See “IFAEDC” on page 26.

The following table describes the return codes, shown in decimal.

Deregister Service (IFAEDDRG)
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Return Code
(decimal) Equate Symbol Meaning and Action

00 Equate Symbol: IFAEDDRG_SUCCESS

Meaning: The product/feature combination has been deregistered.

Action: No action is required.

08 Equate Symbol: IFAEDDRG_NOTAVAILABLE

Meaning: Environmental error: The Deregister service is not available on
this system.

Action: Avoid calling the Deregister service on this system.

12 Equate Symbol: IFAEDDRG_NOTREGISTERED

Meaning: User error: The product identified by the Prodtoken parameter
was not registered.

Action: In Prodtoken. provide a correct product token, as returned by the
Register service.

16 Equate Symbol: IFAEDDRG_NOTTASKMODE

Meaning: User error: The service was not called in task mode.

Action: Avoid calling in this environment.

20 Equate Symbol: IFAEDDRG_XM

Meaning: User error: The service was called in cross-memory mode but
requires PASN=HASN=SASN.

Action: Avoid calling in this environment.

24 Equate Symbol: IFAEDDRG_NOTAUTH

Meaning: User error: A caller running in problem state tried to deregister
a product that had been registered by an authorized caller (a program
running in supervisor state or under a system key).

Action: Avoid trying to deregister a product registered by an authorized
caller.

36 Equate Symbol: IFAEDDRG_LOCKED

Meaning: User error: The service was called while holding a system lock.

Action: Avoid calling in this environment.

40 Equate Symbol: IFAEDDRG_FRR

Meaning: User error: The service was called while having a functional
recovery routine (FRR) established.

Action: Avoid calling in this environment.

Query_Status Service (IFAEDSTA)
Use the Query_Status service (IFAEDSTA) to request information about the
registration or enablement status of a particular product. The system will indicate,
through a combination of return code value and output area content:
v If the product is registered (running)
v If the product is enabled

Deregister Service (IFAEDDRG)
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When it searches for the product you identify, the system does not use wildcard
matching; there is no special treatment for a wildcard character (* or ?). You can,
however, indicate fields that are not important to your search, and the system will
try to find the best match it can for the parameters that you provide. If two
matches are equivalently good, and one of them contains a registration from the
current home address space, then that match is used.

Syntax

CALL IFAEDSTA
(Prodowner
,Prodname
,Featurename
,ProdID
,Outputinfo
,Featureslen
,Features
,Returncode)

In C: the syntax is similar. You can use either of the following techniques to invoke
the service:

1. ifaedsta (Type,...Returncode);

When you use this technique, you must link edit your program with a
linkage-assist routine (also called a stub) in SYS1.CSSLIB.

2. ifaedsta_byaddr (Type,...Returncode);

This second technique requires AMODE=31, and, before you issue the CALL,
you must verify that the IFAEDSTA service is available (in the CVT, both
CVTOSEXT and CVTOS390 bits are set on).

In Assembler: Link edit your program with a linkage-assist routine (also called a
stub) in SYS1.CSSLIB unless you use either of the following techniques as an
alternative to CALL IFAEDSTA:

1. LOAD EP=IFAEDSTA
Save the entry point address
...
Put the saved entry point address into R15
Issue CALL (15),...

2. L 15,X’10’ Get CVT
L 15,X’8C’(,15) Get ECVT
L 15,X’1C0’(,15)
L 15,4(,15)
L 15,8(,15) Get address of IFAEDSTA
CALL (15),(...)

Both of these techniques require AMODE=31. If you use the second technique,
before you issue the CALL, you must verify that the IFAEDDRG service is
available (in the CVT, both CVTOSEXT and CVTOS390 bits are set on).

Note: This service is not available in Java.

Query_Status Service (IFAEDSTA)

Chapter 2. Coding Registration Services 17



Parameters
,Prodowner

Supplied parameter:
v Type: EBCDIC
v Length: 16 bytes

Specifies the name of the product owner you are searching for. IBM products
always use IBM CORP or IBM_CORP. If the product owner is not important to
your search, set the first character of the field to an EBCDIC blank or
hexadecimal zeroes.

The characters can be upper-case or lower-case alphabetics, numerics, national
(@, #, $), underscore (_), slash (/), hyphen (-), and period (.). You can use
embedded blanks.

The system translates underscores to blanks for comparison and display, and it
performs all comparisons in upper case.

If the name is less than 16 bytes, left-justify the name in the field and pad it on
the right with EBCDIC blanks.

,Prodname
Supplied parameter:
v Type: EBCDIC
v Length: 16 bytes

Specifies the name of the product you are searching for. If the product name is
not important to your search, set the first character of the field to EBCDIC
blank or hexadecimal zeroes.

The characters can be upper-case or lower-case alphabetics, numerics, national
(@, #, $), underscore (_), slash (/), hyphen (-), and period (.). You can use
embedded blanks.

The system translates underscores to blanks for comparison and display, and it
performs all comparisons in upper case.

If the name is less than 16 bytes, left-justify the name in the field and pad it on
the right with EBCDIC blanks.

,Featurename
Supplied parameter:
v Type: EBCDIC
v Length: 16 bytes

Specifies the name of the feature you are searching for. If the feature name is
not important to your search, set the first character of the field to EBCDIC
blank or hexadecimal zeroes.

The characters can be upper-case or lower-case alphabetics, numerics, national
(@, #, $), underscore (_), slash (/), hyphen (-), and period (.). You can use
embedded blanks.

The system translates underscores to blanks for comparison and display, and it
performs all comparisons in upper case.

If the name is less than 16 bytes, left-justify the name in the field and pad it on
the right with EBCDIC blanks.

,ProdID
Supplied parameter:

Query_Status Service (IFAEDSTA)
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v Type: EBCDIC
v Length: 8 bytes

ProdID specifies the product identifier you are searching for. IBM products use
the product's program number as the product identifier. If the product
identifier is not important to your search, set the first character of the field to
EBCDIC blank or hexadecimal zeroes.

The characters can be upper-case or lower-case alphabetics, numerics, national
(@, #, $), underscore (_), slash (/), hyphen (-), and period (.). You can use
embedded blanks.

The system translates underscores to blanks for comparison and display, and it
performs all comparisons in upper case.

If the name is less than 8 bytes, left-justify the name in the field and pad it on
the right with EBCDIC blanks.

,Outputinfo
Returned parameter:
v Type: Character
v Length: 16

Specifies an output area, mapped by DSECT EDOI (in mapping macro
IFAEDIDF) or structure EDOI (in C include file IFAEDC). If the return code is
0, this area contains information about the product you defined.

,Featureslen
Supplied parameter:
v Type: Integer
v Range: 0-1024
v Length: Full word

Featureslen specifies the length of the Features parameter that follows.

,Features
Returned parameter:
v Type: Character (EBCDIC recommended)
v Length: 1-1024 bytes

Features contains information provided by the caller of the Register service,
and you need documentation from that caller about the length, format, and use
of the information.

If the information is larger than the length you specify in Featureslen, the
system returns only the information that fits in the area you provide. In that
case, bit EdoiNotAllFeaturesReturned and field EdoiNeededFeaturesLen are set
in the outputinfo area. You can use the length to call the Query_Status service
again with an expanded area.

If you are not expecting any information from the caller of the Register service,
code 0 in the Featureslen parameter. This system will then ignore the Features
parameter, but the service syntax requires that you supply a value.

,Returncode
Returned parameter:
v Type: Integer
v Length: Full word

Returncode contains the return code from the Query_Status service.

Query_Status Service (IFAEDSTA)
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Return Codes
When the Query_Status service returns control to the caller, Returncode contains
the return code. To obtain the equates for the return codes:
v If you are coding in assembler, include mapping macro IFAEDIDF, described in

z/OS MVS Data Areas manuals in z/OS Internet Library at http://
www.ibm.com/systems/z/os/zos/bkserv/.

v If you are coding in C, use the include file IFAEDC. See “IFAEDC” on page 26.

The following table describes the return codes, shown in decimal.

Return Code
(decimal) Equate Symbol Meaning and Action

00 Equate Symbol: IFAEDSTA_SUCCESS

Meaning: The product/feature combination is known to be registered or
to be enabled or disabled.

Action: Check the outputinfo area for further information.

04 Equate Symbol: IFAEDSTA_NOTDEFINED

Meaning: The product/feature combination is not known to be
registered or to be enabled or disabled.

Action: Check that the operands are correct.

08 Equate Symbol: IFAEDSTA_NOTAVAILABLE

Meaning: Environmental error: The Status service is not available on this
system.

Action: Avoid calling the Status service on this system.

16 Equate Symbol: IFAEDSTA_NOTTASKMODE

Meaning: User error: The service was not called in task mode.

Action: Avoid calling in this environment.

20 Equate Symbol: IFAEDSTA_XM

Meaning: User error: The service was called in cross-memory mode but
requires HASN=PASN=SASN.

Action: Avoid calling in this environment.

36 Equate Symbol: IFAEDSTA_LOCKED

Meaning: User error: The service was called while holding a system lock.

Action: Avoid calling in this environment.

40 Equate Symbol: IFAEDSTA_FRR

Meaning: User error: The service was called while having a functional
recovery routine (FRR) established.

Action: Avoid calling in this environment.

Query_Status Service (IFAEDSTA)
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List_Status Service (IFAEDLIS)
Use the List_Status service (IFAEDLIS) to request information about the
registration and enablement of one or more products. The system returns
information about the products that match the product definition you supply.

You can also use the List_Status service to determine what, according to the
current policy, the enablement state would be for the product you define. You
might use this service to determine whether or not registering the product would
require a change to the enablement policy in IFAPRDxx.

The system returns the information in the answer area you specify on the
List_Status request:
v In assembler language, the answer area is mapped by DSECTs EDAAHDR and

EDAAE in mapping macro IFAEDIDF.
v In C language, the answer area is mapped by structures EDAAHDR and

EDAAE in include file IFAEDC.

EDAAHDR maps information about the request, including the number of entries
returned. EDAAE maps each returned entry.

Syntax

CALL IFAEDLIS, (Type
,Prodowner
,Prodname
,Featurename
,ProdID
,Anslen
,Ansarea
,Returncode)

In C: the syntax is similar. You can use either of the following techniques to invoke
the service:

1. ifaedlis (Type,...Returncode);

When you use this technique, you must link edit your program with a
linkage-assist routine (also called a stub) in SYS1.CSSLIB.

2. ifaedlis_byaddr (Type,...Returncode);

This second technique requires AMODE=31, and, before you issue the CALL,
you must verify that the IFAEDLIS service is available (in the CVT, both
CVTOSEXT and CVTOS390 bits are set on).

In Assembler: Link edit your program with a linkage-assist routine (also called a
stub) in SYS1.CSSLIB unless you use either of the following techniques as an
alternative to CALL IFAEDLIS:

1. LOAD EP=IFAEDLIS
Save the entry point address
...
Put the saved entry point address into R15
Issue CALL (15),...
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2. L 15,X’10’ Get CVT
L 15,X’8C’(,15) Get ECVT
L 15,X’1C0’(,15)
L 15,4(,15)
L 15,12(,15) Get address of IFAEDLIS
CALL (15),(...)

Both of these techniques require AMODE=31. If you use the second technique,
before you issue the CALL, you must verify that the IFAEDDRG service is
available (in the CVT, both CVTOSEXT and CVTOS390 bits are set on).

Note: This service is not available in Java.

Parameters
Type

Supplied parameter:
v Type: Integer
v Length: Full word

Identifies the type of list request. The field must contain a value that represents
a combination of one or more of the possible types. You add the values to
create the full word. Do not specify a type more than once. The possible types,
and their meanings, are:

Ifaedlis_Type_Registered
The system is to return data about any matching products that are
registered. The number of entries returned appears in field EdaahNumR in
the answer area. The address of the first entry appears in field
EdaahFirstRAddr. DSECT EDAAE maps each entry. If you specify * or ? in
the product definition, the system treats the character as a wildcard
character.

Ifaedlis_Type_State
The system is to return data about the current policy state (enabled or
disabled) of any matching products. The number of entries returned
appears in field EdaahNumS. The address of the first entry appears in field
EdaahFirstSAddr. DSECT EDAAE maps each entry. If you specify * or ? in
the product definition, the system treats the character as a wildcard
character.

Ifaedlis_Type_Status
The system is to return data about the enablement policy entry that would
apply if the specified product registered. If there is no matching entry, the
system sets Field EdaahStatusAddr in the answer area to 0; otherwise, it
contains the address of the entry (mapped by DSECT EDAAE).

Note: For this request type, the system does not use wildcard matching
when it searches the policy. If you specify * or ? in the product definition,
the system does not treat the character as a wildcard character. To indicate
that a field is not important, however, you can set the first character of the
field to an EBCDIC blank or hexadecimal zeroes.

Ifaedlis_Type_NoReport
Specify this request type to indicate the system is to return information
about all matching entries, including those that registered with
Ifaedreg_Type_NoReport.

List_Status Service (IFAEDLIS)
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,Prodowner
Supplied parameter:
v Type: EBCDIC
v Length: 16 bytes

Specifies the name of the product owner you are searching for. IBM products
always use IBM CORP or IBM_CORP.

The characters can be upper-case or lower-case alphabetics, numerics, national
(@, #, $), underscore (_), slash (/), hyphen (-), period (.), asterisk (*), or
question mark (?). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it
performs all comparisons in upper case.

If the request specifies Ifaedlis_Type_Registered or Ifaedlis _Type_State, the
system treats * and ? as wildcard characters; it uses wildcard matching. When
you specify Ifaedlis_Type_Status, the system does not use wildcard matching,
and * or ? receive no special treatment. If the product owner is not important
to your search, set the first character of the field to an EBCDIC blank or
hexadecimal zeroes.

If the name is less than 16 bytes, left-justify the name in the field and pad it on
the right with EBCDIC blanks.

,Prodname
Supplied parameter:
v Type: EBCDIC
v Length: 16 bytes

Specifies the name of the product you are searching for.

The characters can be upper-case or lower-case alphabetics, numerics, national
(@, #, $), underscore (_), slash (/), hyphen (-), period (.), asterisk (*), or
question mark (?). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it
performs all comparisons in upper case.

If the request specifies Ifaedlis_Type_Registered or Ifaedlis _Type_State, the
system treats * and ? as wildcard characters; it uses wildcard matching. When
you specify Ifaedlis_Type_Status, the system does not use wildcard matching,
and * or ? receive no special treatment. If the product name is not important to
your search, set the first character of the field to an EBCDIC blank or
hexadecimal zeroes.

If the name is less than 16 bytes, left-justify the name in the field and pad it on
the right with EBCDIC blanks.

,Featurename
Supplied parameter:
v Type: EBCDIC
v Length: 16 bytes

Specifies the name of the feature you are searching for.

The characters can be upper-case or lower-case alphabetics, numerics, national
(@, #, $), underscore (_), slash (/), hyphen (-), period (.), asterisk (*), or
question mark (?). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it
performs all comparisons in upper case.
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If the request specifies Ifaedlis_Type_Registered or Ifaedlis _Type_State, the
system treats * and ? as wildcard characters; it uses wildcard matching. When
you specify Ifaedlis_Type_Status, the system does not use wildcard matching,
and * or ? receive no special treatment. If the feature name is not important to
your search, set the first character of the field to an EBCDIC blank or
hexadecimal zeroes.

If the name is less than 16 bytes, left-justify the name in the field and pad it on
the right with EBCDIC blanks.

,ProdID
Supplied parameter:
v Type: EBCDIC
v Length: 8 bytes

ProdID specifies the product identifier you are searching for. IBM products, for
example, use the product's program number as the product identifier.

The characters can be upper-case or lower-case alphabetics, numerics, national
(@, #, $), underscore (_), slash (/), hyphen (-), period (.), asterisk (*), or
question mark (?). You can use embedded blanks.

The system translates underscores to blanks for comparison and display, and it
performs all comparisons in upper case.

If the request specifies Ifaedlis_Type_Registered or Ifaedlis _Type_State, the
system treats * and ? as wildcard characters; it uses wildcard matching. When
you specify Ifaedlis_Type_Status, the system does not use wildcard matching,
and * or ? receive no special treatment. If the product identifier is not
important to your search, set the first character of the field to an EBCDIC
blank or hexadecimal zeroes.

If the name is less than 8 bytes, left-justify the name in the field and pad it on
the right with EBCDIC blanks.

,Anslen
Supplied parameter:
v Type: Integer
v Minimum Value: 32
v Length: Full word

Specifies the length of the answer area parameter that follows. Specify a value
of at least 32, the length of the answer area header (DSECT EDAAHDR in
macro IFAEDIDF) that the system returns. Add 72 for each entry that you
expect the system to return.

,Ansarea
Returned parameter:
v Type: Character
v Length: Specified on Anslen parameter

The answer area where the system is to place information about the request
and the entries that match the product definition. The contents depend on the
type of the request:
v If you specified Ifaedlis_Type_Registered, the answer area consists of a

header area and a queue of 0 or more entries. The number of entries is in
EDAAHNUMR, and EDAAHFIRSTRADDR points to the first entry. If you
did not specify Ifaedlis_Type_Registered, both fields are 0.

List_Status Service (IFAEDLIS)
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v If you specified Ifaedlis_Type_State, the answer area consists of a header
area and a queue of 0 or more entries. The number of entries is in
EDAAHNUMS, and EDAAHFIRSTSADDR points to the first entry. If you
did not specify Ifaedlis_Type_State, both fields are 0.

v If you specified Ifaedlis_Type_Status, the answer area consists of a header
area and a single entry. EDAAHSTATUSADDR points to an entry that
defines the policy that would be used to determine whether the product is
enabled or disabled. The field is 0 if there is no matching policy entry, and it
is always 0 when you did not specify Ifaedlis_Type_Status.

If the returned information exceeds the length you specify in Anslen, the
system returns only the information that fits in the area you provided.
EDAAHTLEN indicates the total length of the information available to be
returned. If the length is longer than the length you specified in Anslen,
increase Anslen and issue the request again.

,Returncode
Returned parameter:
v Type: Integer
v Length: Full word

Returncode contains the return code from the List_Status service.

Return Codes
When the List_Status service returns control to the caller, Returncode contains the
return code. To obtain the equates for the return codes:
v If you are coding in assembler, include mapping macro IFAEDIDF, described in

z/OS MVS Data Areas manuals in z/OS Internet Library at http://
www.ibm.com/systems/z/os/zos/bkserv/.

v If you are coding in C, use the include file IFAEDC. See “IFAEDC” on page 26.

The following table describes the return codes, shown in decimal.

Return Code
(decimal) Equate Symbol Meaning and Action

00 Equate Symbol: IFAEDLIS_SUCCESS

Meaning: The system returned all the requested data.

Action: No action is required.

04 Equate Symbol: IFAEDLIS_NOTALLDATARETURNED

Meaning: The answer area was too small. Some of the requested data
was not returned.

Action: Provide a larger answer area and call the service again.

08 Equate Symbol: IFAEDLIS_NOTAVAILABLE

Meaning: Environmental error: The IFAEDLIS service is not available on
this system.

Action: Avoid calling the IFAEDLIS service on this system.

List_Status Service (IFAEDLIS)
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Return Code
(decimal) Equate Symbol Meaning and Action

12 Equate Symbol: IFAEDLIS_ANSAREATOOSMALL

Meaning: User error: The answer area length you provided was less than
the minimum needed, 32.

Action: Provide a larger answer area.

16 Equate Symbol: IFAEDSTA_NOTTASKMODE

Meaning: User error: The service was not called in task mode.

Action: Avoid calling in this environment.

20 Equate Symbol: IFAEDLIS_XM

Meaning: User error: The service was called in cross-memory mode but
requires PASN=HASN=SASN.

Action: Avoid calling in this environment.

32 Equate Symbol: IFAEDLIS_BADTYPE

Meaning: User error: The type parameter did not specify a word formed
from any combination of Ifaedlis_Type_Registered, Ifaedlis_Type_State,
Ifaedlis_Type_Status, and Ifaedlis_Type_Noreport.

Action: Correct the parameter.

36 Equate Symbol: IFAEDLIS_LOCKED

Meaning: User error: The service was called while holding a system lock.

Action: Avoid calling in this environment.

40 Equate Symbol: IFAEDLIS_FRR

Meaning: User error: The service was called while having a functional
recovery routine (FRR) established.

Action: Avoid calling in this environment.

IFAEDC
For the C programmer, include file IFAEDC provides equates for return codes and
data constants, such as Register service request types. To use IFAEDC, copy the file
from SYS1.SAMPLIB to the appropriate local C library. The contents of the file are
displayed in Figure 2 on page 27.

List_Status Service (IFAEDLIS)
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/*********************************************************************
* Type Definitions for User Specified Parameters *
*********************************************************************/

/* Type for TYPE operand of IFAEDREG */
typedef int IfaedType;

/* Type for Product Owner */
typedef char IfaedProdOwner??(16??);

/* Type for Product Name */
typedef char IfaedProdName??(16??);

/* Type for Feature Name */
typedef char IfaedFeatureName??(16??);

/* Type for Product Version */

#ifndef __IFAED

#define __IFAED

/*********************************************************************
* *
* Name: IFAEDC *
* *
* Descriptive Name: SMF Product enable/disable services C declares *
* */
/*01* PROPRIETARY STATEMENT= */
/***PROPRIETARY_STATEMENT********************************************/
/* */
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* THIS MACRO IS "RESTRICTED MATERIALS OF IBM" */
/* 5645-001 (C) COPYRIGHT IBM CORP. 1996 */
/* SEE COPYRIGHT INSTRUCTIONS */
/* */
/* STATUS= HBB6601 */
/* */
/***END_OF_PROPRIETARY_STATEMENT*************************************/
/* */
/*01* EXTERNAL CLASSIFICATION: GUPI */
/*01* END OF EXTERNAL CLASSIFICATION: */
/* */

/* Function: *
* IFAEDC defines types, related constants, and function *
* prototypes for the use of SMF Product enable/disable services *
* from the C language *
* *
* Usage: *
* #include <IFAEDC.H> *
* *
* Notes: *
* 1. This member should be copied from SAMPLIB to the *
* appropriate local C library. *
* *
* 2. The Product enable/disable services do not use a null *
* character to terminate strings. The services expect the *
* character operands to be a fixed-length type. *
* Use memcpy to move into and from these fields. *
* *
* Change Activity: *
*$L0=PRDEDSMF,HBB6601, 950601, PDXB: SMF Product enable/disable *
* *
*********************************************************************/

Figure 2. IFAEDC from SYS1.SAMPLIB

IFAEDC
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typedef char IfaedProdVers??(2??);

/* Type for Product Release */
typedef char IfaedProdRel??(2??);

/* Type for Product Modification level */
typedef char IfaedProdMod??(2??);

/* Type for Product ID */
typedef char IfaedProdID??(8??);

/* Type for Product Token */
typedef char IfaedProdToken??(8??);

/* Type for Features Length */
typedef int IfaedFeaturesLen;

/* Type for Return Code */
typedef int IfaedReturnCode;

/*********************************************************************
* Type Definitions for User Specified Parameters *
*********************************************************************/

/* Type for user supplied EDOI */
typedef struct ??<

struct ??<
int EdoiRegistered : 1; /* The product is registered */
int EdoiStatusNotDefined : 1; /* The product is not known to

be enabled or disabled */
int EdoiStatusEnabled : 1; /* The product is enabled */
int EdoiNotAllFeaturesReturned : 1; /* The featureslen

area was too small to hold the features
provided at registration time. Field
EdoiNeededFeaturesLen contains the size
provided at registration time. */

int Rsvd0 : 4; /* Reserved */
??> EdoiFlags ;

char Rsvd1??(3??); /* Reserved */
int EdoiNeededFeaturesLen; /* The featureslen size provided at

registration time */
struct ??<

IfaedProdVers EdoiProdVers; /* The version information
provided at registration time */

IfaedProdRel EdoiProdRel; /* The release information
provided at registration time */

IfaedProdMod EdoiProdMod; /* The mod level information
provided at registration time */

??> EdoiProdVersRelMod;
char Rsvd2??(2??); /* Reserved */

??> EDOI;

/* Type for user supplied EDAAHDR */
typedef struct ??<

int EdaahNumR; /* Number of EDAAE entries which
follow indicating registered entries. The first one
is pointed to by EdaahFirstRAddr. */

int EdaahNumS; /* Number of EDAAE entries which
follow indicating state entries. The first one
is pointed to by EdaahFirstSAddr. */

int EdaahTLen; /* Total length of answer area
needed to contain all the requested information.
This includes the area for the records
that were returned on this call. */

void *EdaahFirstRAddr; /* Address of first registered
entry EDAAE */

void *EdaahFirstSAddr; /* Address of first state entry
EDAAE */

IFAEDC
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void *EdaahStatusAddr; /* Address of the EDAAE that
represents the policy entry that would be used to
determine if the input product was enabled. 0 if
no such policy entry exists. */

char Rsvd1??(8??); /* Reserved */
??> EDAAHDR;

/* Type for user supplied EDAAE */
typedef struct ??<

void *EdaaeNextAddr; /* Address of next EDAAE. EdaahNumR
(for the registered queue) or EdaahNumS (for the
state queue) must be used to determine how far
along this chain to go. Not relevant for
EdaahStatusAddr. */

struct ??<
IfaedProdOwner EdaaeProdOwner; /* Product owner */
IfaedProdName EdaaeProdName; /* Product name */
IfaedFeatureName EdaaeFeatureName; /* Feature name */
IfaedProdVers EdaaeProdVers; /* Product version */
IfaedProdRel EdaaeProdRel; /* Product release */
IfaedProdMod EdaaeProdMod; /* Product mod level */
IfaedProdID EdaaeProdID; /* Product ID */

??> EdaaeInfo;
struct ??<

int EdaaeStatusNotDefined : 1; /* This will never be on for
entries on the state queue. If on, indicates that
the state information does not have an entry that
matches this product. */

int EdaaeStatusEnabled : 1; /* If on, indicates that the
product is considered to be enabled */

int EdaaeNoReport : 1; /* This will never be on for
entries on the state queue. If on, indicates that
the product registered with
Ifaedreg_Type_NoReport. */

int EdaaeLicensedUnderProd : 1; /* This will never be on for
entries on the state queue. If on, indicates that
the product registered with
Ifaedreg_Type_LicensedUnderProd. */

int Rsvd0 : 4; /* Reserved */
??> EdaaeFlags ;

char Rsvd1??(1??); /* Reserved */
int EdaaeNumInstances; /* Number of concurrent instances of

this registration. */
??> EDAAE;

/*********************************************************************
* Fixed Service Parameter and Return Code Defines *
*********************************************************************/

/* Product enable/disable Register Constants */
#define Ifaedreg_Type_Standard 0
#define Ifaedreg_Type_Required 2
#define Ifaedreg_Type_NoReport 4
#define Ifaedreg_Type_LicensedUnderProd 8
#define Ifaedreg_Type_DisabledMessage 16
#define Ifaedreg_Type_NotFoundDisabled 32
#define IFAEDREG_TYPE_STANDARD 0
#define IFAEDREG_TYPE_REQUIRED 2
#define IFAEDREG_TYPE_NOREPORT 4
#define IFAEDREG_TYPE_LICENSEDUNDERPROD 8
#define IFAEDREG_TYPE_DISABLEDMESSAGE 16
#define IFAEDREG_TYPE_NOTFOUNDDISABLED 32

/* Product enable/disable Register Return codes */
#define Ifaedreg_Success 0
#define Ifaedreg_Disabled 4
#define Ifaedreg_NotAvailable 8
#define Ifaedreg_LimitExceeded 12
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#define Ifaedreg_NotTaskMode 16
#define Ifaedreg_XM 20
#define Ifaedreg_BadFeaturesLen 24
#define Ifaedreg_NoStorage 28
#define Ifaedreg_BadType 32
#define Ifaedreg_Locked 36
#define Ifaedreg_FRR 40
#define IFAEDREG_SUCCESS 0
#define IFAEDREG_DISABLED 4
#define IFAEDREG_NOTAVAILABLE 8
#define IFAEDREG_LIMITEXCEEDED 12
#define IFAEDREG_NOTTASKMODE 16
#define IFAEDREG_XM 20
#define IFAEDREG_BADFEATURESLEN 24
#define IFAEDREG_NOSTORAGE 28
#define IFAEDREG_BADTYPE 32
#define IFAEDREG_LOCKED 36
#define IFAEDREG_FRR 40

/* Product enable/disable Deregister Return codes */
#define Ifaeddrg_Success 0
#define Ifaeddrg_NotAvailable 8
#define Ifaeddrg_NotRegistered 12
#define Ifaeddrg_NotTaskMode 16
#define Ifaeddrg_XM 20
#define Ifaeddrg_NotAuth 24
#define Ifaeddrg_Locked 36
#define Ifaeddrg_FRR 40
#define IFAEDDRG_SUCCESS 0
#define IFAEDDRG_NOTAVAILABLE 8
#define IFAEDDRG_NOTREGISTERED 12
#define IFAEDDRG_NOTTASKMODE 16
#define IFAEDDRG_XM 20
#define IFAEDDRG_NOTAUTH 24
#define IFAEDDRG_LOCKED 36
#define IFAEDDRG_FRR 40

/* Product enable/disable Status Return codes */
#define Ifaedsta_Success 0
#define Ifaedsta_NotDefined 4
#define Ifaedsta_NotAvailable 8
#define Ifaedsta_NotTaskMode 16
#define Ifaedsta_XM 20
#define Ifaedsta_Locked 36
#define Ifaedsta_FRR 40
#define IFAEDSTA_SUCCESS 0
#define IFAEDSTA_NOTDEFINED 4
#define IFAEDSTA_NOTAVAILABLE 8
#define IFAEDSTA_NOTTASKMODE 16
#define IFAEDSTA_XM 20
#define IFAEDSTA_LOCKED 36
#define IFAEDSTA_FRR 40

/* Product enable/disable List Constants */
#define Ifaedlis_Type_Registered 1
#define Ifaedlis_Type_State 2
#define Ifaedlis_Type_Status 4
#define Ifaedlis_Type_NoReport 8
#define IFAEDLIS_TYPE_REGISTERED 1
#define IFAEDLIS_TYPE_STATE 2
#define IFAEDLIS_TYPE_STATUS 4
#define IFAEDLIS_TYPE_NOREPORT 8

/* Product enable/disable List Return codes */
#define Ifaedlis_Success 0
#define Ifaedlis_NotAllDataReturned 4
#define Ifaedlis_NotAvailable 8
#define Ifaedlis_AnsAreaTooSmall 12
#define Ifaedlis_NotTaskMode 16
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#define Ifaedlis_XM 20
#define Ifaedlis_BadType 32
#define Ifaedlis_Locked 36
#define Ifaedlis_FRR 40
#define IFAEDLIS_SUCCESS 0
#define IFAEDLIS_NOTALLDATARETURNED 4
#define IFAEDLIS_NOTAVAILABLE 8
#define IFAEDLIS_ANSAREATOOSMALL 12
#define IFAEDLIS_NOTTASKMODE 16
#define IFAEDLIS_XM 20
#define IFAEDLIS_BADTYPE 32
#define IFAEDLIS_LOCKED 36
#define IFAEDLIS_FRR 40

/*********************************************************************
* Function Prototypes for Service Routines *
*********************************************************************/

#ifdef __cplusplus
extern "OS" ??<

#else
#pragma linkage(ifaedreg_calltype,OS)
#pragma linkage(ifaeddrg_calltype,OS)
#pragma linkage(ifaedsta_calltype,OS)
#pragma linkage(ifaedlis_calltype,OS)

#endif
typedef void ifaedreg_calltype(

IfaedType __TYPE, /* Input - request type */
IfaedProdOwner __PRODOWNER, /* Input - product owner */
IfaedProdName __PRODNAME, /* Input - product name */
IfaedFeatureName __FEATURENAME, /* Input - feature name */
IfaedProdVers __PRODVERS, /* Input - product version */
IfaedProdRel __PRODREL, /* Input - product release */
IfaedProdMod __PRODMOD, /* Input - product modification */
IfaedProdID __PRODID, /* Input - product ID */
IfaedFeaturesLen __FEATURESLEN, /* Input - length of features */
void *__FEATURES, /* Input - features area */
IfaedProdToken *__PRODTOKEN, /* Output - product token */
IfaedReturnCode *__RC); /* Output - return code */

typedef void ifaeddrg_calltype(
IfaedProdToken __PRODTOKEN, /* Input - product token */
IfaedReturnCode *__RC); /* Output - return code */

typedef void ifaedsta_calltype(
IfaedProdOwner __PRODOWNER, /* Input - product owner */
IfaedProdName __PRODNAME, /* Input - product name */
IfaedFeatureName __FEATURENAME, /* Input - feature name */
IfaedProdID __PRODID, /* Input - product ID */
EDOI *__EDOI, /* Output - output information */
IfaedFeaturesLen __FEATURESLEN, /* Input - length of features */
void *__FEATURES, /* Output - features area */
IfaedReturnCode *__RC); /* Output - return code */

typedef void ifaedlis_calltype(
IfaedType __TYPE, /* Input - request type */
IfaedProdOwner __PRODOWNER, /* Input - product owner */
IfaedProdName __PRODNAME, /* Input - product name */
IfaedFeatureName __FEATURENAME, /* Input - feature name */
IfaedProdID __PRODID, /* Input - product ID */
int __ANSLEN, /* Input - length of answer area */
void *__ANSAREA, /* Output - answer area */
IfaedReturnCode *__RC); /* Output - return code */

extern ifaedreg_calltype ifaedreg;
extern ifaeddrg_calltype ifaeddrg;
extern ifaedsta_calltype ifaedsta;
extern ifaedlis_calltype ifaedlis;
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#ifdef __cplusplus
??>

#endif

struct IFAED_PREDVT ??<
ifaedreg_calltype* ifaed_regaddr;
ifaeddrg_calltype* ifaed_drgaddr;
ifaedsta_calltype* ifaed_staaddr;
ifaedlis_calltype* ifaed_lisaddr;

??>;

struct IFAED_PRED ??<
unsigned char ifaed_pred_filler1 ??(4??);
struct IFAED_PREDVT * ifaed_predvt;

??>;

#ifndef __cplusplus
#define ifaedreg_byaddr(Type, Owner, Name, Fname, Vers, Rel, Mod, \

Id, Flen, Fptr , Tptr, Rcptr) \
??< \
struct IFAED_PSA* ifaed_pagezero = 0; \

ifaed_pagezero->ifaed_cvt->ifaed_cvtecvt->ifaed_ecvtpred-> \
ifaed_predvt->ifaed_regaddr \
(Type,Owner,Name,Fname,Vers,Rel,Mod,Id,Flen,Fptr, \
Tptr,Rcptr); \

??>;
#define ifaeddrg_byaddr(Token, Rcptr) \
??< \
struct IFAED_PSA* ifaed_pagezero = 0; \

ifaed_pagezero->ifaed_cvt->ifaed_cvtecvt->ifaed_ecvtpred-> \
ifaed_predvt->ifaed_drgaddr \
(Token,Rcptr); \

??>;
#define ifaedsta_byaddr(Owner, Name, Fname, Id, Eptr, Flen, \

Fptr, Rcptr) \
??< \
struct IFAED_PSA* ifaed_pagezero = 0; \

ifaed_pagezero->ifaed_cvt->ifaed_cvtecvt->ifaed_ecvtpred-> \
ifaed_predvt->ifaed_staaddr \
(Owner,Name,Fname,Id,Eptr,Flen,Fptr,Rcptr); \

??>;
#define ifaedlis_byaddr(Type, Owner, Name, Fname, Id, Alen, \

Aptr, Rcptr) \
??< \
struct IFAED_PSA* ifaed_pagezero = 0; \

ifaed_pagezero->ifaed_cvt->ifaed_cvtecvt->ifaed_ecvtpred-> \
ifaed_predvt->ifaed_lisaddr \
(Type,Owner,Name,Fname,Id,Alen,Aptr,Rcptr); \

??>;
#endif

struct IFAED_ECVT ??<
unsigned char ifaed_ecvt_filler1 ??(448??);
struct IFAED_PRED * ifaed_ecvtpred; /*

product enable/disable block */
unsigned char ifaed_ecvt_filler2 ??(24??);
unsigned char ifaed_ecvtpseq ??( 4??); /* product sequence number */
IfaedProdOwner ifaed_ecvtpown; /* product owner */
IfaedProdName ifaed_ecvtpnam; /* product name */
IfaedProdVers ifaed_ecvtpver; /* product version */
IfaedProdRel ifaed_ecvtprel; /* product release */
IfaedProdMod ifaed_ecvtpmod; /* product mod level */
unsigned char ifaed_ecvt_filler3 ??(26??);

??>;

struct IFAED_CVT ??<
unsigned char ifaed_cvt_filler1 ??(116??);
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struct ??<
int ifaed_cvtdcb_rsvd1 : 4; /* Not needed */
int ifaed_cvtosext : 1; /* If on, indicates that the

CVTOSLVL fields are valid */
int ifaed_cvtdcb_rsvd2 : 3; /* Not needed */

??> ifaed_cvtdcb;
unsigned char ifaed_cvt_filler2 ??(23??);
struct IFAED_ECVT * ifaed_cvtecvt;
unsigned char ifaed_cvt_filler3 ??(1120??);
unsigned char ifaed_cvtoslv0;
struct ??<

int ifaed_cvtoslv1_rsvd1 : 6; /* Not needed */
int ifaed_cvtprded : 1; /* If on, indicates that the

product enable/disable services are available */
int ifaed_cvtoslv1_rsvd2 : 1; /* Not needed */

??> ifaed_cvtoslv1;
unsigned char ifaed_cvt_filler4 ??(14??);

??>;

struct IFAED_PSA ??<
char ifaed_psa_filler??(16??);
struct IFAED_CVT* ifaed_cvt;

??>;

/* End of SMF Product Enable/Disable Services Header */

#endif
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Chapter 3. Examples

The following examples show possible uses of the registration services. The
examples are written in assembler and Java.

Detailed information about the services appears in Chapter 2, “Coding Registration
Services,” on page 5.

Registering a product, checking the status of another product, then
deregistering the first product using assembler

Figure 3 shows code that registers a product, checks the status of another product,
then deregisters the first product and uses the MF parameter of the CALL macro to
generate reentrant code.

***********************************************************************
* Deregister the product *
***********************************************************************

CALL IFAEDDRG,(PRODTOKEN,RETCODE),MF=(E,PL)
*

PUBEX1 CSECT
PUBEX1 AMODE 31
PUBEX1 RMODE ANY

STM 14,12,12(13)
LR 12,15
USING PUBEX1,12
GETMAIN RU,LV=DYNAREALEN
LR 14,1
ST 13,4(,14)
ST 14,8(,13)
LR 13,14
USING DYNAREA,13

DYNAREA DSECT
SAVEAREA DS CL72
PUBEX1 CSECT
EXAMPLE1 DS 0H
***********************************************************************
* Register a product *
***********************************************************************

CALL IFAEDREG,(RTYPE,ROWNER,RNAME, *
RFEATURENAME,RVERSION,RRELEASE, *
RMOD,RID,RFEATURESLEN,RFEATURES,PRODTOKEN,RETCODE), *
MF=(E,PL)

*
* Place code to check return code here
*
***********************************************************************
* Check the status of another product *
***********************************************************************

CALL IFAEDSTA,(SOWNER,SNAME,SFEATURENAME, *
SID,SOUTPUTINFO,
SFEATURESLEN,SFEATURES,RETCODE),MF=(E,PL)

*
* Place code to check return code here
*

Figure 3. Example 1 — Using IFAEDREG, IFAEDSTA and IFAEDDRG
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* Place code to check return code here
*

B ENDEXAMPLE
*
* Values for REGISTER
*
RTYPE DC AL4(IFAEDREG_TYPE_STANDARD)
ROWNER DC CL16’VENDOR X’
RNAME DC CL16’Y_PROD1 ’
RFEATURENAME DC CL16’ ’
RID DC CL8’1234-567’
RVERSION DC CL2’01’
RRELEASE DC CL2’01’
RMOD DC CL2’00’
RFEATURESLEN DC AL4(L’RFEATURES)
RFEATURES DC C’FEATURE1,FEATURE2OPT=2’
*
* Values for STATUS
*
SOWNER DC CL16’VENDOR Y’
SNAME DC CL16’Y_PROD2 ’
SFEATURENAME DC CL16’ ’
SID DC CL8’8888-888’
SFEATURESLEN DC AL4(L’SFEATURES)

IFAEDIDF , Return code information
DYNAREA DSECT
RETCODE DS F
PRODTOKEN DS CL8
SOUTPUTINFO DS CL16
SFEATURES DS CL1024
PL CALL ,(,,,,,,,,,,,),MF=L Call parm list for 12 parameters
DYNAREALEN EQU *-DYNAREA
PUBEX1 CSECT
ENDEXAMPLE DS 0H

LR 1,13 Dynamic area address
L 13,4(,13) Previous save area address
FREEMAIN RU,A=(1),LV=DYNAREALEN
LM 14,12,12(13)
SLR 15,15
BR 14
END PUBEX1

Obtaining a list of information about products that are registered using
assembler

Figure 4 on page 37 shows code that obtains a list of information about products
that are registered, including information about their enablement state and uses the
MF parameter of the CALL macro to generate reentrant code..
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***********************************************************************
* *
* Process information in answer area when RC=0 *
* *
***********************************************************************

USING EDAAHDR,4 EDAAHDR DSECT
*
* Process registered entry information
*

L 5,EDAAHNUMR Find how many EDAAE registered entries
LTR 5,5 Are there any entries
BZ LAB4 No, check state entries
L 6,EDAAHFIRSTRADDR Get first entry
USING EDAAE,6 EDAAE DSECT

LAB5 DS 0H EDAAE loop
*
* Put code to process information contained in EDAAE here
*

L 6,EDAAENEXTADDR Get next EDAAE
BCT 5,LAB5 Continue while there are more
DROP 6

*

PUBEX2 CSECT
PUBEX2 AMODE 31
PUBEX2 RMODE ANY

STM 14,12,12(13)
LR 12,15
USING PUBEX2,12
GETMAIN RU,LV=DYNAREALEN
LR 14,1
ST 13,4(,14)
ST 14,8(,13)
LR 13,14
USING DYNAREA,13

DYNAREA DSECT
SAVEAREA DS CL72
PUBEX2 CSECT
EXAMPLE3 DS 0H
* Following is an assembler example of getting registration and
* state information about all of the products

L 2,=AL4(INITEDAA) Initial answer area size
ST 2,SIZEEDAA Save it
GETMAIN RU,LV=(2) Allocate the answer area
ST 1,EDAA@ Save address of answer area

LAB1 DS 0H
L 4,EDAA@ Address of answer area
CALL IFAEDLIS,(REQ_INFO, *

ALL_OWNER,ALL_NAME,ALL_FN,ALL_ID, *
SIZEEDAA,(4),LRETCODE),MF=(E,PL)

CLC LRETCODE(4),=AL4(IFAEDLIS_NOTALLDATARETURNED) Warning?
BNE LAB2 No, request successful or error

* Yes, not enough room
LR 3,2 Save current size
L 2,EDAAHTLEN-EDAAHDR(4) Get required size
FREEMAIN RU,A=(4),LV=(3) Release old area
ST 2,SIZEEDAA Save it
GETMAIN RU,LV=(2) Allocate new area
ST 1,EDAA@ Save address of answer area
B LAB1 Retry List operation

LAB2 DS 0H
CLC LRETCODE(4),=AL4(IFAEDLIS_SUCCESS) Success?
BNE LAB3 No, error

Figure 4. Example 2 — Using IFAEDLIS
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* Process state entry information
*
LAB4 DS 0H EDAAE loop

L 5,EDAAHNUMS Find how many EDAAE state entries
LTR 5,5 Are there any entries
BZ LAB10 No, done
L 6,EDAAHFIRSTSADDR Get first entry
USING EDAAE,6 EDAAE DSECT

LAB6 DS 0H EDAAE loop
*
* Put code to process information contained in EDAAE here
*

L 6,EDAAENEXTADDR Get next EDAAE
DROP 6
BCT 5,LAB6 Continue while there are more
B LAB4 Skip error case

LAB3 DS 0H Error return
*
* Process error case
*
LAB10 DS 0H Common path

L 2,SIZEEDAA Get size of area
L 4,EDAA@ Get address of area
FREEMAIN RU,A=(4),LV=(2) Release area
B ENDEXAMPLE

INITEDAA EQU 4096 Initial size of answer area
DYNAREA DSECT
EDAA@ DS A Address of answer area
SIZEEDAA DS F Size of answer area
TEMPSIZE DS F Temporary
LRETCODE DS F Return code
PL CALL ,(,,,,,,,),MF=L Call parameter list for 8 parameters
PUBEX2 CSECT
REQ_INFO DC A(IFAEDLIS_TYPE_REGISTERED+IFAEDLIS_TYPE_STATE)
ALL_OWNER DC CL16’*’ Match all product owners
ALL_NAME DC CL16’*’ Match all product names
ALL_FN DC CL16’*’ Match all feature names
ALL_ID DC CL8’*’ Match all product IDs

IFAEDIDF , Service equates
DYNAREA DSECT
DYNAREALEN EQU *-DYNAREA
PUBEX2 CSECT
ENDEXAMPLE DS 0H

LR 1,13 Dynamic area address
L 13,4(,13) Previous save area address
FREEMAIN RU,A=(1),LV=DYNAREALEN
LM 14,12,12(13)
SLR 15,15
BR 14
END PUBEX2

Registering and deregistering a product using Java
The IFAEDJReg class provides access to the z/OS product registration and
deregistration services through Java. The IFAEDJReg class allows Java programs to
use the product registration services by wrapping the system IFAEDREG (register)
and IFAEDDRG (deregister) callable services.

A product is identified through various parameters such as product name, product
owner, and feature name. These fields are set in the IFAEDJReg object and then the
register method can be called.

Examples
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After a successful registration, a registration token (also referred to as a product
token) is returned by the system. This token is used by the deregister method to
deregister the product.

The registration or deregistration return code provided by the system is returned
by the methods.

The product registration Java support requires that the following Java level or
higher be installed:
v IBM SDK for z/OS Java 2 Technology Edition, Version 1.4 PTF UQ93743,

product number 5655-I56

To run an application that uses the product registration Java classes, you must add
the jar file containing the product registration classes to your path, and add the
native library to your libpath.

Note in the examples below, the default installation paths are shown. If you have
changed the default by adding a path prefix, modify the commands accordingly.

Add the /usr/include/java_classes/ifaedjreg.jar file to your application classpath.
In the z/OS UNIX System Services shell, this can be done with the command:
export CLASSPATH=/usr/include/java_classes/ifaedjreg.jar:$CLASSPATH

Add the path to the native library /usr/lib/java_runtime/libifaedjreg.so to your
library path (LIBPATH). In the z/OS Unix System Services shell, this can be done
with the command:
export LIBPATH=/usr/lib/java_runtime:$LIBPATH

The documentation for the using the methods in the Java classes is contained in
the Javadoc for the IFAEDJReg class. The Java doc is installed to
/usr/include/java_classes/ifadjregDoc.jar by default.

All of the Javadoc files for product registration have been included in the jar. To
view the Javadoc, it is necessary to download the jar file in binary to your
workstation, unjar the file to make the individual files accessible, and then use
your browser to open the index.html file.

Example: Registering a product using Java

The product name "TESTPROD" with product owner "IBM" and product number
9999-999 is to be registered. If the product is disabled, the program will exit.
Registration is done using the system service IFAEDREG.
IFAEDJReg reg = new IFAEDJReg();
reg.setRegisterType(IFAEDJReg.IFAEDREG_TYPE_STANDARD + IFAEDJReg.IFAEDREG_TYPE_NOTFOUNDDISABLED);
reg.setProductName("TESTPROD");
reg.setProductOwner("IBM");
reg.setProductID("9999-999");
int rc = reg.register(); // Invoke registration service
if (rc != IFAEDJReg.IFAEDREG_SUCCESS) {
System.out.println("TESTPROD registration failed due to the return code from IFAEDJReg, rc="+rc);
System.exit(1);

}

Example: Deregistering a product using Java

A previously registered product is to be deregistered. The same object that was
used during registration is used for the deregistration. Deregistration is done using
the system service IFAEDDRG.

Examples
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nt rc = reg.deregister(); // Invoke deregistration service
if (rc != IFAEDJReg.IFAEDDRG_SUCCESS) {
System.out.println("TESTPROD deregistration failed due to the return code from IFAEDJReg, rc="+rc);
System.exit(2);

}

Examples
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Appendix A. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
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exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 \* FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* \* FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!
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(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.
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Appendix B. Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.
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IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted
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for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: http://www.ibm.com/

software/support/systemsz/lifecycle/
v For information about currently-supported IBM hardware, contact your IBM

representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).
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