
z/OS

MVS Program Management: User's Guide
and Reference
Version 2 Release 2

SA23-1393-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 235.

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1991, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this information xi
Required product knowledge xi
Required publications xi
Related publications xi
Referenced publications xii
Notational conventions xii
z/OS information xiii

Additional information xiv

How to send your comments to IBM . . xv
If you have a technical problem xv

Summary of changes in z/OS Version
2 Release 2 (V2R2) xvii
Summary of changes for z/OS Version 2 Release 1 xvii

Chapter 1. Introduction 1
z/OS Program Management components 1

The binder 2
The Program Management loader 4
The linkage editor 5
The batch loader 5

Using utilities for Program Management 6
IEBCOPY 6
IEHPROGM 6
IEHLIST 7
The Program Management transport utility . . . 7

Using service aids for Program Management . . . 7
AMBLIST 7
AMASPZAP 7

Program objects: Features and processing
characteristics 8

Program object structure 8
Program objects on DASD storage 9
Residence for and access to program objects . . . 9
Extensions to the PM loader to support program
objects 9
LLA and checkpoint/restart support for program
objects 10

Chapter 2. Creating programs from
source modules 11
Combining modules 11

Symbols 12
Sections 13
Classes 14
Common areas 14
Parts. 15
Pseudoregisters 15
Entry points 15

External symbols 16
Object and program module structure 17

External symbol dictionary 18
Relocation dictionary 19
Text 20
Identification data 20
Module attributes 20

Binder batch processing 21
Input and output 21
Creating a program module 21
Program object formats 24
Binding. 25
Creation of an executable program in virtual
storage 27

Addressing and residence modes 27
Addressing mode 27
Residence mode 28
AMODE and RMODE hierarchy 28
AMODE and RMODE combinations 29
AMODE and RMODE validation 29
AMODE and RMODE for overlay programs . . 30

Module reusability 30
Binder extensions supporting the Language
Environment 30

Compatibility with prelinker functions 30

Chapter 3. Starting the binder 33
Invoking the binder with JCL 33

Binder JCL example 33
EXEC statement 34
DD statements 35
Binder cataloged procedures. 41

Invoking the binder under TSO. 43
Invoking the binder from the z/OS UNIX Shell . . 44
Invoking the Binder from a program 44

Chapter 4. Defining input to the binder 45
Defining the primary input 46

Object modules, load modules and program
objects 46
Control statements 47
Modules and control statements 47

Secondary (included) input 48
Including sequential data sets 49
Including UNIX Files 50
Including library members 51
Including concatenated data sets 52

Resolving external references 53
Incremental autocall 54
Autocall with C370lib data sets 54
Autocall with archive libraries 55
Autocall matching for C370LIB and archive
libraries 56
Searching the link pack area 56
Dynamic symbol resolution 56

© Copyright IBM Corp. 1991, 2015 iii

Specifying automatic call libraries 57
Directing external references to a specific library 57
NCAL option: Negating the automatic library call 59
Renaming 59

Chapter 5. Editing data within a
program module 61
Editing conventions 61

Entry points 61
Placement of control statements 62
Identical old and new symbols 62

Changing external symbols 62
Using the CHANGE statement 62
Example of changing external symbols 63

Replacing sections 63
Automatic replacement 64
Using the REPLACE statement to replace sections
and named common areas 65

Deleting external symbols 66
Ordering sections or named common areas 67
Aligning sections or named common areas on page
boundaries 69

Chapter 6. Binder options reference . . 71
Specifying binder options. 72

Special rules for JCL EXEC statements 73
Special rules for options files 74

Binder options 74
AC: Authorization code option 78
ALIASES: ALIASES option 79
ALIGN2: 2KB page alignment option 79
AMODE: Addressing mode option 80
CALL: Automatic library call option 80
CASE: Case control option 81
COMPAT: Binder level option 81
COMPRESS: Compression option 83
DC: Downward compatible option 84
DCBS option 85
DYNAM: DYNAM option 85
EDIT: Edit option 86
EP: Entry point option. 86
EXITS: Specify exits to be taken option 87
EXTATTR: Specify extended attributes 87
FETCHOPT: Fetching mode option 88
FILL: Fill character option 89
GID: Specify group ID. 89
HOBSET: Set high order bit option 89
INFO: Info option 90
LET: Let execute option 90
LINECT: Line count option 90
LIST: Listing option. 90
LONGPARM: Long parameter option. 91
LISTPRIV: List unnamed sections option. . . . 92
MAP: Program module map option 92
MAXBLK: Maximum block size option 92
MODMAP: Module map option 93
MSGLEVEL: Message level option 93
NAME: NAME option. 93
OL: Only-loadable option. 93
OPTIONS: Options option 94

OVLY: Overlay option 94
PATHMODE: Set z/OS UNIX file access
attributes for SYSLMOD 95
PRINT: Diagnostic messages option 96
RES: Search link pack area option 96
REUS: Reusability options 96
RMODE: Residence mode option 97
SCTR: Scatter load option 99
SIGN: SIGN option 99
SIZE: Space specification option 99
SSI: System status index option 100
STORENX: Store not-executable module . . . 100
STRIPCL: Remove class option 101
STRIPSEC: Remove section option 101
SYMTRACE: Symbol resolution tracing. . . . 102
TERM: Alternate output option 103
TEST: Test option 103
TRAP: Error recovery. 104
UID: Specify user ID 104
UPCASE: UPCASE option 105
WKSPACE: Working space specification option 105
XCAL: Exclusive call option 106
XREF: Cross reference table option 106

Chapter 7. Binder control statement
reference 107
Binder syntax conventions 107

Syntax errors 109
Rules for comments 109
Placement information 109

ALIAS statement 109
Example 112

ALIGNT statement 112
Example 113

AUTOCALL statement 113
Example 114

CHANGE statement 114
Examples 115

ENTRY statement 116
Example 117

EXPAND statement 117
Example 118

IDENTIFY statement 118
Example 119

IMPORT statement 119
Example 121

INCLUDE statement 121
Example 1 123
Example 2 123

INSERT statement 124
Example 124

LIBRARY statement 125
Examples 127

MODE statement 128
Example 129

NAME statement 129
Example 130

ORDER statement 130
Example 131

OVERLAY statement 132
Example 133

iv z/OS V2R2 MVS Program Management: User's Guide and Reference

PAGE statement 133
Example 134

RENAME statement 134
Example 135

REPLACE statement 135
Example 137

SETCODE statement 137
Example 138

SETOPT statement. 138
SETSSI statement 138

Chapter 8. Interpreting binder listings 141
Header 141
Input event log 141
Private section list 142
Program module map 143

Simple module 144
The removed classes and sections report 148
Renamed-symbol cross-reference table 149
Cross-reference table 149
Imported and exported symbol table 151
Operation summary 152
The Long-symbol abbreviation table 155
Short mangled name report 155
Abbreviation/Demangled name report 156
DDname versus Pathname cross reference report 157
Binder service level report 157
The message summary report 157

Chapter 9. Binder serviceability aids 159
Binder output data sets 159

Binder output data sets and their contents. . . 159
The IEWDIAG data set 160
The IEWTRACE data set 160
The IEWDUMP data set 163
The IEWGOFF data set 165
The AMBLIST service aid 166
The IDCAMS printing utility 167
c89 and ld diagnosis 167
Serviceability aids for the Binder API interface 168

Appendix A. Using the linkage editor
and batch loader 171
Creating programs from source modules 171

AMODE and RMODE differences 171
Unsupported input module formats and
contents 171

Invoking the linkage editor and batch loader . . . 172
Invoking the linkage editor and batch loader
with JCL 172
Invoking the linkage editor from a program . . 173
Invoking the batch loader from a program . . 173
Invoking the linkage editor and batch loader
under TSO 175

Editing a control section 175
Replacing control sections 175
Deleting an external symbol 175

Control statement reference. 175
Continuing a statement 175
ALIAS statement 175

CHANGE statement 175
ENTRY statement 176
EXPAND statement 176
IDENTIFY statement 176
INCLUDE statement 176
LIBRARY statement 176
NAME statement 176
ORDER statement 176
REPLACE statement 176
Unsupported binder control statements. . . . 177

Processing and attribute options reference 177
Supported binder options 177
LIST: Listing control 177
MAP and XREF 178
Reusability 178
SIZE: Space specification 178
Not-Executable attribute 178
Incompatible processing and attribute options 178

Linkage editor requirements 179
Virtual storage requirements 179

Batch loader requirements 181
Interpreting linkage editor output 182

Diagnostic output 182
Output listing header. 183
Module disposition messages 183
Error/Warning messages 184
Sample diagnostic output 185
Optional output 185
Linkage editor return codes 187

Interpreting batch loader output 188
Batch loader return codes 189
Loader serviceability aids 191

Appendix B. Summary of Program
Management user considerations. . . 193
Migrating from the linkage editor to the binder 193

SMP/E precautions 193
Storage considerations using the binder . . . 194
Error handling in the binder 194
Changes and extensions in output using the
binder 195
Binder control statements and options 195
Binder processing differences from the linkage
editor 196
Other binder processing differences 197

Migrating from load modules to program objects 198
What should be converted to program objects? 199
Converting load modules to program objects 199
Compatibility of program object formats . . . 200
Utilities, components and products that support
program objects 200
PDSE program library directory access of
program objects 201

Migrating from the prelinker 201
The binder incorporates Language
Environment/370 prelinker functions 202
Support for DLL modules in dynamic link
libraries 204

Migrating from the prelinker and to DLLs. . . . 204
Migrating from the prelinker to Binder 204
Migration of applications to DLL support . . . 205

Contents v

Appendix C. Binder return codes . . . 207
IEWBLINK return and reason codes 207
IEWBLDGO return codes 207

Appendix D. Designing and specifying
overlay programs 209
Design of an overlay program 209

Single region overlay program. 210
Multiple region overlay program 217

Specification of an overlay program 218
Region origin 220
Control section positioning 221
Special options 223

Special considerations 224
Common areas 224
Automatic replacement 226
Storage requirements 226
Overlay communication 227

Appendix E. Accessibility 231
Accessibility features 231
Consult assistive technologies 231
Keyboard navigation of the user interface 231
Dotted decimal syntax diagrams 231

Notices 235
Policy for unsupported hardware. 236
Minimum supported hardware 237
Programming interface information 237
Trademarks 237

Glossary 239

Index 245

vi z/OS V2R2 MVS Program Management: User's Guide and Reference

Figures

1. Using Program Management components to
create and load programs 2

2. Preparing source modules for execution and
executing the program 12

3. Section/class/element/structure 14
4. External names and external references 17
5. Input and output for the binder. 21
6. A program object produced by the binder 22
7. Multiple segments 26
8. Use of the external symbol dictionary 26
9. Binder JCL example 34

10. Processing of one INCLUDE control statement 49
11. Processing of nested INCLUDE control

statements 49
12. Editing a module 61
13. Changing an external reference and an entry

point 63
14. Automatic replacement of sections 65
15. Replacing a section with the REPLACE control

statement 66
16. Deleting a section 67
17. Ordering sections 68
18. Aligning sections on page boundaries 69
19. Example of special rules for JCL EXEC

statements 74
20. Example of special rules for JCL EXEC

statements 74
21. Overlay structure for INSERT statement

example 125
22. Example of an output module for the ORDER

statement 132
23. Example of an overlay structure for the

OVERLAY statement 133
24. Example of an output module for the PAGE

statement 134
25. Sample binder input event log 142
26. Sample binder private section list report 142
27. Sample binder module map (Part 1 of 2) 145
28. Sample binder module map (Part 2 of 2) 146
29. Sample binder module map - Overlay (Part 1

of 2) 147

30. Sample binder module map - Overlay (Part 2
of 2) 148

31. Sample binder renamed-symbol
cross-reference 149

32. Sample binder cross-reference table 151
33. Sample binder imported and exported

symbols table 152
34. Sample binder save operation summary 154
35. Sample binder load operation summary 155
36. Sample binder long-symbol abbreviation table 155
37. Sample binder short mangled name report 156
38. Sample binder abbreviation/demangled

names report. 156
39. Message summary report (variable truncated) 158
40. Trace sample 162
41. EWDUMP sample – Workmod token area 165
42. Incompatible processing and attribute options 179
43. Diagnostic messages issued by the linkage

editor 185
44. Linkage editor module map and

cross-reference table 187
45. Batch loader module map 189
46. Invoking the prelinker 203
47. Prelinker elimination 204
48. Control section dependencies 211
49. Single-region overlay tree structure 211
50. Length of an overlay module 212
51. Segment origin and use of storage 213
52. Inclusive and exclusive segments 214
53. Inclusive and exclusive references. 215
54. Location of segment and entry tables in an

overlay module 216
55. Control sections used by several paths 217
56. Overlay tree for multiple-region program 218
57. Symbolic segment origin in single-region

program 220
58. Symbolic segment and region origin in

multiple-region program 220
59. Common areas before processing 225
60. Common areas after processing 226

© Copyright IBM Corp. 1991, 2015 vii

viii z/OS V2R2 MVS Program Management: User's Guide and Reference

Tables

1. Rules for binder symbols 12
2. Binder DDNAMES 36
3. SYSLIN data set DCB parameters 36
4. SYSPRINT and SYSLOUT DCB parameters 38
5. SYSDEFSD DCB parameters 40
6. INCLUDE and LIBRARY control statements

DCB parameters 41
7. Summary of processing and attribute options 75
8. Binder data sets and their contents 159
9. APPPTRT dump data 165

10. Filelist diagnostic entries. 168

11. Linkage editor capacities for minimal SIZE
values (96KB, 6KB). 179

12. Batch loader virtual storage requirements 182
13. Linkage editor return codes 188
14. Batch loader return codes 190
15. IEWBLINK return codes 207
16. IEWBLDGO return codes 207
17. Branch sequences for overlay programs 228
18. Use of the SEGLD macro instruction 229
19. Use of the SEGWT macro instruction 229

© Copyright IBM Corp. 1991, 2015 ix

x z/OS V2R2 MVS Program Management: User's Guide and Reference

About this information

This book is intended to help you learn about and use the end user interfaces
provided by the program management component of z/OS®. Program
management helps you create and execute programs on z/OS. IBM® recommends
that you use the program management binder to perform these functions. The
linkage editor, the batch loader, and the transport utility are older components of
program management that, while still supported by IBM, are no longer under
development.
v Chapters 1 through 5 of this book provide an overview of linking and editing

and are recommended reading for all users.
v Chapter 6 provides options that give you more control over the binding process.
v Chapter 7 provides reference material for the binder control statements.
v Chapter 8 provides reference material for interpreting binder output.
v Chapter 9 provides information about binder serviceability aids.
v Appendix A contains information about using the linkage editor and batch

loader.
v Appendix B provides a summary of considerations when migrating from the

Linkage Editor, load module format, and the Prelinker to Binder and its program
format.

v Appendix C provides information about Binder Return Codes.
v Appendix D contains information about Overlay Programs.
v Appendix E contains information on accessibility features in z/OS.
v Notices contains notices, programming information, and trademarks.

Required product knowledge
To use this book effectively in an MVS™ batch environment, you should be familiar
with MVS job control language.

Required publications
You should be familiar with the information presented in the following
publications:

Publication title Order number

z/OS MVS JCL Reference SA23-1385

z/OS MVS JCL User's Guide SA23-1386

Related publications
The following publications might be helpful:

Publication title Order number

z/OS MVS Program Management: Advanced Facilities SA23-1392

z/OS DFSMS Using Data Sets SC23-6855

z/OS MVS Diagnosis: Reference GA22-7588

© Copyright IBM Corp. 1991, 2015 xi

Referenced publications
Within the text, references are made to other z/OS books and books for related
products. The full titles and order numbers are listed in the following table:

Short title Publication title Order number

z/OS MVS Program
Management: Advanced
Facilities

z/OS MVS Program Management: Advanced
Facilities

SA23-1392

z/OS DFSMSdfp
Utilities

z/OS DFSMSdfp Utilities SC23-6864

z/OS MVS
Programming:
Assembler Services
Guide

z/OS MVS Programming: Assembler Services
Guide

SA23-1368

z/OS MVS
Programming:
Authorized Assembler
Services Guide

z/OS MVS Programming: Authorized Assembler
Services Guide

SA23-1371

z/OS MVS Diagnosis:
Tools and Service Aids

z/OS MVS Diagnosis: Tools and Service Aids GA32-0905

z/OS MVS JCL User's
Guide

z/OS MVS JCL User's Guide SA23-1386

z/OS MVS System
Messages, Vol 7
(IEB-IEE)

z/OS MVS System Messages, Vol 7 (IEB-IEE) SA38-0674

z/OS MVS System
Messages, Vol 8
(IEF-IGD)

z/OS MVS System Messages, Vol 8 (IEF-IGD) SA38-0675

z/OS XL C/C++
Programming Guide

z/OS XL C/C++ Programming Guide SC14-7315

z/OS XL C/C++ User's
Guide

z/OS XL C/C++ User's Guide SC14-7307

z/OS UNIX System
Services Command
Reference

z/OS UNIX System Services Command
Reference

SA23-2280

Notational conventions
A uniform notation describes the syntax of the control statements documented in
this publication. This notation is not part of the language; it is merely a way of
describing the syntax of the statements. The statement syntax definitions in this
book use the following conventions:

[] Brackets enclose an optional entry. You can, but need not, include the entry.
Examples are:
v [length]

v [MF=E]

| A vertical bar separates alternative entries. When shown inside brackets,
you can use one or none of the entries separated by the bar. Examples are:
v [REREAD | LEAVE]

v [length | 'S']

xii z/OS V2R2 MVS Program Management: User's Guide and Reference

{ } Braces enclose alternative entries. You must use one, and only one, of the
entries. Examples are:
v BFTEK={S | A}

v {K | D}

v {address | S | O}

Sometimes alternative entries are shown in a vertical stack of braces. An
example is:
MACRF={{(R[C | P])}

{(W[C | P | L])}
{(R[C],W[C])}}

In the preceding example, you must choose only one entry from the
vertical stack.

... An ellipsis indicates that the entry immediately preceding the ellipsis can
be repeated. For example:
v (dcbaddr,[(options)],. . .)

‘ ’ A ‘ ’ indicates that a blank (an empty space) must be present before the
next parameter.

UPPERCASE BOLDFACE
Uppercase boldface type indicates entries that you must code exactly as
shown. These entries consist of keywords and the following punctuation
symbols: commas, parentheses, and equal signs. Examples are:
v CLOSE , , , ,TYPE=T

v MACRF=(PL,PTC)

UNDERSCORED UPPERCASE BOLDFACE
Underscored uppercase boldface type indicates the default used if you do
not specify any of the alternatives. Examples are:
v [EROPT={ACC | SKP | ABE}]

v [BFALN={F | D}]

Lowercase Italic
Lowercase italic type indicates a value to be supplied by you, the user,
usually according to specifications and limits described for each parameter.
Examples are:
v number

v image-id

v count

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS V2R2 Information Roadmap.

To find the complete z/OS library, go to IBM Knowledge Center
(http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

About this information xiii

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

Additional information
You might also need the following information:

Short Title Used in This Document Title Order Number

SNA Sync Point Services Architecture Systems Network Architecture Sync Point Services
Architecture Reference

SC31-8134

xiv z/OS V2R2 MVS Program Management: User's Guide and Reference

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the Contact z/OS.

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R2 MVS Program Management: User's Guide and Reference
SA23-1393-01

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at IBM support portal.

© Copyright IBM Corp. 1991, 2015 xv

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/

xvi z/OS V2R2 MVS Program Management: User's Guide and Reference

Summary of changes in z/OS Version 2 Release 2 (V2R2)

The following changes are made to z/OS Version 2 Release 2 (V2R2).

Changed
v The ALIAS statement is updated for V2R2. See “ALIAS statement” on page 109

for more information.

Summary of changes for z/OS Version 2 Release 1
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS V2R2 Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS V2R2 Introduction and Release Guide

© Copyright IBM Corp. 1991, 2015 xvii

xviii z/OS V2R2 MVS Program Management: User's Guide and Reference

Chapter 1. Introduction

z/OS provides program management services that let you create, load, modify, list,
read, and copy executable programs. With the program management binder, you
can create executable modules in either of two formats and store them (depending
on the format) in PDS or PDSE libraries, or in z/OS UNIX files. The two types of
executable modules are load modules and program objects and may collectively be
referred to as 'program modules'. Of these two formats, program objects are the
newer. Program objects remove many of the restrictions of the load module format
and support new functionality. You can use the z/OS loader to load saved
program modules into virtual memory for execution. You can also use the program
management binder to build and execute a program in virtual storage in a single
step (with some restrictions).

z/OS continues to support the older linkage editor and batch loader programs.
However, the program management binder is a functional replacement for these
older programs and has many additional enhancements. Because subsequent
releases of z/OS might not support these components, IBM strongly recommends
you use the binder exclusively. In addition, the program management binder is a
functional replacement for the Language Environment® prelinker, although z/OS
continues to support the use of the prelinker as a separate intermediate step
between compilation and binding for the relevant language translators.

This topic contains an overview of the services provided by each program
management component. It also lists other z/OS programs that support program
management tasks.

z/OS Program Management components
Although program management components provide many services, they are used
primarily to convert object modules into executable programs, store them in
program libraries, and load them into virtual storage for execution.

You can use the program management binder and program management loader to
perform these tasks. These components can also be used in conjunction with the
linkage editor. A load module produced by the linkage editor can be accepted as
input by the binder or can be loaded into storage for execution by the program
management binder. The linkage editor can also process load modules produced
by the binder.

Figure 1 on page 2 shows how the program management components work
together and how each one is used to prepare an executable program.

© Copyright IBM Corp. 1991, 2015 1

The binder
The binder converts the output of language translators and compilers into an
executable program unit that can either be read directly into virtual storage for
execution or stored in a program library.

Binding program modules
You can use the binder to:
v Convert object or load modules, or program objects, into a program object and

store the program object in a partitioned data set extended (PDSE) program
library or in a z/OS UNIX file.

Batch
loader

Source
modules

Assembler
or compiler

Object
modules

Program
management

binder

Program object
in

PDSE
program library

or HFS file

Linkage
editor

Load module
in

PDS
program library

Program
management

loader

Program
in virtual storage

ready for execution

Figure 1. Using Program Management components to create and load programs

Introduction

2 z/OS V2R2 MVS Program Management: User's Guide and Reference

v Convert object or load modules, or program objects, into a load module and
store the load module in a partitioned data set (PDS) program library. This is
equivalent to what the linkage editor can do with object and load modules.

v Convert object or load modules, or program objects, into an executable program
in virtual storage and execute the program. This is equivalent to what the batch
loader can do with object and load modules.

The binder processes object modules, load modules and program objects,
link-editing or binding multiple modules into a single load module or program
object. Control statements specify how to combine the input into one or more load
modules or program objects with contiguous virtual storage addresses. Each object
module can be processed separately by the binder, so that only the modules that
have been modified need to be recompiled or reassembled. The binder can create
programs to be loaded into either 24-bit address or 31-bit address storage (for
example, RMODE=24 or RMODE=ANY) and programs that execute in 24-bit,
31-bit, or 64-bit addressing mode (including support for 8-byte address constants).
The binder can also create overlay load modules or program objects (see
Appendix D, “Designing and specifying overlay programs,” on page 209).
Programs can be stored in program libraries and later brought into virtual storage
by the program management loader.

The binder can also combine basic linking and loading services into a single job
step. It can read object modules, load modules and program objects from program
libraries into virtual storage, relocate the address constants, and pass control
directly to the program upon completion. When invoked in this way, the binder
does not store any of its output in program libraries after preparing it for
execution. Like the batch loader, you can use the binder for high-performance
loading of modules that do not need to be stored in a program library.

Enhancements to the binder
The binder also provides the following enhancements compared to the linkage
editor:
v Support for single and multi-segment program objects
v Support for object module format GOFF
v Easing or elimination of many linkage editor restrictions
v Application programming interface for binding programs
v Increased usability

Program objects: Depending on the library type specified by SYSLMOD, the
binder creates either program objects or load modules. Program objects include
and extend the functions of load modules. They are stored in partitioned data set
extended (PDSE) program libraries or z/OS UNIX files instead of partitioned data
set program libraries and have fewer restrictions than load modules. For example,
a program object can have a text size of up to 1 gigabyte, whereas the text size of a
load module is limited to 16 MB. The block size of a program object is also fixed,
eliminating the need to reblock when you copy programs between devices. You
can use IEBCOPY to convert between program objects and load modules, as
described in “Using utilities for Program Management” on page 6.

Program objects support an unlimited number of data classes, representing multiple
text classes, additional control information and user or compiler-specified data
known as ADATA. Program text, the instructions and data that constitute the
executable portion of the module, can be divided into class segments, each of
which can be loaded into separate storage locations. Associated Data (ADATA) is
information about the module that is created by the language translator but not

Introduction

Chapter 1. Introduction 3

required for linking, loading, or execution. Virtually any type of data that is
associated with a module or its constituent sections can be saved in a program
object. Some restrictions apply.

Object module support: The binder supports a modified extended object module
(XOBJ) and an object module format called generalized object file format (GOFF).
Both XOBJ and GOFF support long names and reentrant C modules. In addition,
GOFF format supports multipart modules, ADATA, and XPLINK enabled code.

Additionally, the binder supports C reentrant modules, dynamic linking, and
dynamic link libraries. All object module formats can be stored as sequential files,
as members of PDS or PDSE libraries or members of z/OS UNIX archive libraries.

Fewer restrictions: The binder and program objects ease or eliminate many
restrictions of the linkage editor and load modules. The linkage editor limited
aliases to 64 and external names to 32767. With the binder, the number of aliases
and external names for programs stored in a PDSE or z/OS UNIX file is limited
only by the space available to store them.

For program objects, external names (those entry points in one section that can be
referenced from another section or module or from the operating system) can be
up to 32767 bytes in length. Long names can be used for section names, external
labels and references, pseudoregisters and common areas, and (limited to 1024
bytes) aliases and alternate entry points for the module. Primary or member names
are still limited to eight bytes, however, as are member names appearing in JCL or
system macros. For z/OS UNIX-resident program objects, z/OS UNIX name length
restrictions apply.

Application Programming Interface: The binder also provides the ability for
programs to invoke the binder and request services individually. Binder services
can be invoked directly, allowing your programs to access, update, and print the
contents of load modules and program objects. For specific information on using
the binder application programming interface, see z/OS MVS Program Management:
Advanced Facilities.

Usability improvements: The binder provides other usability improvements over
the linkage editor and batch loader. Messages and diagnostics have been enhanced,
producing diagnostic output that is more detailed and easier to understand than
the output of the linkage editor. Binder listings are also improved, printing out
more complete information about the run that produced a module, including
enhancements to the module map and cross reference table and a summary of the
data sets used.

There have also been usability improvements (from the linkage editor) in the
binder processing options and attributes. A replaceable CSECT in the binder allows
the system programmer to establish default options and attributes for the system
or installation. In addition, a SETOPT binder control statement allows users to vary
attributes by module when the binder is creating multiple load modules or
program objects.

The Program Management loader
The program management loader increases the services of the program fetch
component by adding support for loading program objects. The program
management loader reads both program objects and load modules into virtual

Introduction

4 z/OS V2R2 MVS Program Management: User's Guide and Reference

storage and prepares them for execution. It relocates any address constants in the
program to point to the appropriate areas in virtual storage and supports 24-bit,
31-bit, and 64-bit addressing ranges.

All program objects loaded from a PDSE are page-mapped into virtual storage.
When loading program objects from a PDSE, the loader selects a loading mode
based on the module characteristics and parameters specified to the binder when
you created the program object. You can influence the mode with the binder
FETCHOPT parameter. The FETCHOPT parameter allows you to select whether
the program is completely preloaded and relocated before execution, or whether
pages of the program can be read into virtual storage and relocated only when
they are referenced during execution. (See “FETCHOPT: Fetching mode option” on
page 88 for more information on the FETCHOPT parameter.) z/OS UNIX System
Services are called to load a program object from a z/OS UNIX file.

The linkage editor
The linkage editor is a processing program that accepts object modules, load
modules, control statements, and options as input. It combines these modules,
according to the requirements defined by the control statements and options, into a
single output load module that can be stored in a partitioned data set program
library and loaded into storage for execution by the program management loader.
The linkage editor also provides other processing and service facilities, including
creating overlay programs, aiding program modification, and building and editing
system libraries. It supports addressing and residence mode attributes in both 24-
and 31-bit addressing ranges. It does not support program objects or the (GOFF)
object format.

All of the services of the linkage editor can be performed by the binder.

The batch loader
The batch loader combines the basic editing and loading services (that can also be
provided by the linkage editor and program fetch) into one job step. The batch
loader accepts object modules and load modules, and loads them into virtual
storage for execution. Unlike the binder and linkage editor, the batch loader does
not produce load modules that can be stored in program libraries. The batch loader
prepares the executable program in storage and passes control to it directly. The
batch loader cannot accept program objects, GOFF object modules, or control
statements as input.

The batch loader provides high performance link-loading of programs that require
only basic linking and loading, and can be used if the program only requires
listing control or other processing options. Because of its limited options and
ability to process a job in one job step, the batch loader only requires about half
the combined linking and loading time of the linkage editor and program fetch.

Batch loader processing is performed in a load step, which is equivalent to the
link-edit and go steps of the binder or linkage editor. The batch loader can be used
for both compile-load and load jobs. It can include modules from a call library
(SYSLIB), the link pack area (LPA), or both. The batch loader resolves external
references between program modules and deletes duplicate copies of program
modules. It also relocates all address constants so that control can be passed
directly to the assigned entry point in virtual storage.

Introduction

Chapter 1. Introduction 5

Like the other program management components, the batch loader supports
addressing and residence mode attributes in 24-bit and 31-bit bit addressing
ranges. The batch loader program is reenterable and therefore can reside in the
resident link pack area.

Except for the processing of in-storage object modules, all of the services of the
batch loader can be performed by the binder.

Using utilities for Program Management
z/OS provides utility programs to help you manipulate data and data sets. The
IEBCOPY, IEHPROGM, and IEHLIST utilities can be used to support program
management tasks as described in this section. Information on using these utilities
is found in z/OS DFSMSdfp Utilities.

z/OS UNIX System Services commands cp and mv and TSO commands OGET
and OPUT can be used to convert between program modules in a PDS or PDSE
and program objects in a z/OS UNIX file system. See z/OS UNIX System Services
Command Reference for more information.

IEBCOPY
You can use the IEBCOPY utility program to copy a program module from one
program library to another. IEBCOPY can also perform conversions between load
modules and program objects. IEBCOPY can be used to copy a program module
from a partitioned data set program library to a PDSE program library. IEBCOPY
converts the new copy into the format appropriate for the target program library.
However, you cannot convert a program object into a load module and store it in a
partitioned data set library if the program object exceeds the limitations of load
modules (for example, if its length is greater than 16 MB).

The control statement, COPYGRP, allows you to copy a program library member
(load module or program object) and all of its aliases, specifying only a single
name. Since member and alias names are still limited to eight bytes in IEBCOPY
control statements, COPYGRP is required for copying members with long alias
names.

You can also use the IEBCOPY utility to alter relocation dictionary (RLD) counts of
load modules in place, and to reblock load modules. You do not need to alter RLD
counts for program objects, or use the COPYMOD control statement to change the
block size of a program object library. The COPYMOD control statement reblocks
load modules to a block size best suited for the target device, reducing the time it
takes to load a program into virtual storage.

IEHPROGM
You can use the IEHPROGM utility or TSO commands to delete or rename load
modules, program objects, or their aliases. If the primary name of a PDSE member
is deleted or replaced, the associated aliases are deleted automatically. If the
primary name of a PDS member is deleted or replaced, the aliases are not deleted
automatically and continue to point to the original member. Aliases for a deleted
load module remain unless you specifically delete or replace them.

Introduction

6 z/OS V2R2 MVS Program Management: User's Guide and Reference

IEHLIST
You can use the IEHLIST utility or TSO commands to list entries in the directory of
one or more partitioned data sets or PDSE program libraries. IEHLIST can list up
to ten partitioned data sets or PDSE directories at a time in an edited or unedited
format.

The Program Management transport utility
The program management transport utility (IEWTPORT) provides a method for
accessing a program object on systems where program management services (that
is, the binder) is not installed. The program object is converted by IEWTPORT into
a nonexecutable format. The converted object is called a transportable program. The
transportable program can be transferred to other systems and processed by
programs that understand its internal structure. This structure is documented.

IEWTPORT also converts transportable programs into program object format.
Load, bind and execute operations are performed on program objects, not
transportable programs.

For information on how to invoke the transport utility and how to access a
transportable program, see z/OS MVS Program Management: Advanced Facilities.

Using service aids for Program Management
Service aids are programs designed to help you diagnose and repair failures in
system or application programs. The AMBLIST and AMASPZAP service aids can
be used to perform some program management tasks. Both AMBLIST and
AMASPZAP support program objects, long names up to 1024 bytes, and multiple
text classes. For details on using these programs, see z/OS MVS Diagnosis: Tools and
Service Aids.

z/OS MVS Diagnosis: Reference contains additional diagnostic information.

AMBLIST
The AMBLIST service aid prints formatted listings of modules to aid in problem
diagnosis.

AMBLIST can be used to provide listings showing:
1. The attributes of program modules
2. The contents of the various classes of data contained in a program module,

including SYM records, IDR records, external symbols (ESD entries), text,
relocation entries (RLD entries), and ADATA

3. A module map or cross reference for a program module
4. The aliases of a program module, including the attributes of the aliases.

Listings of the modified link pack area (MLPA), fixed link pack area (FLPA),
pageable link pack area (PLPA), and their extended areas in virtual storage can be
printed together or separately.

AMASPZAP
The AMASPZAP service aid, also called SPZAP or Superzap, dynamically updates
or dumps programs and data sets. You can use AMASPZAP to inspect and modify
instructions or data in any load module or program object in a program library, to
dump a load module or program object in a program library, or to update the

Introduction

Chapter 1. Introduction 7

system status index in the directory entry for any load module or program object.
Load modules can be updated in place; when a program object is updated using
AMASPZAP, a new copy of the program object is created.

Program objects: Features and processing characteristics
Program objects remove many of the limitations and restrictions inherent in the old
load module format. Following are some of the key features of program objects, as
well as considerations for their use.

Program object structure
Program objects have the following structural features:
v Program object design allows for the removal or increase of most size

restrictions, including maximum text size (now 1 gigabyte) and number of
control sections (now unlimited).

v Because program objects never have to reside in a PDS, they can take advantage
of PDSE library technology and its many advantages."

v The program object structure is generalized and extendable. It will continue to
change as required to support new functions.

v Program objects support long names (up to 32767 bytes).
v Program objects contain many of the same enhancements supported in the

Generalized Object File Format (GOFF), which is now being generated by the
High Level Assembler and a number of high level languages (as well as the
Binder itself). This includes support for C/C++ writeable static.

v Program objects contain multiple classes of text, distinguished by attributes that
control binding and loading characteristics and behavior. Classes are central to C
and DLL support.
– There are two types of classes: text (byte-stream) and nontext (record-like,

IDR, ADATA)
– The separate attributes assigned to each class include:

- LOAD: the class is brought into memory at the time the module is loaded
- DEFERRED LOAD: The class is prepared for loading, but not instantiated

until requested. (Deferred classes are most frequently used by LE for
loading multiple dynamically modifiable copies of data.)

- NOLOAD: The class is not loaded with the program, for example, it is
nontext.

- RMODE 24/ANY: Indicates placement of segments within virtual storage.
– A section is the smallest unit that can be manipulated by users (replaced,

deleted, ordered). The contribution to a class from a section is called an
element; a section may contribute elements to more than one class. Elements
(other than parts) may contain entry points.

– Classes are bound into independently loadable segments. A segment contains
classes with compatible attributes. A program object can have multiple
segments.

– The loading characteristics of the class (and segment) determine the
placement of the segment in virtual storage. Multisegment program objects
can be loaded into noncontiguous areas of virtual storage, for example, when
bound with the RMODE(SPLIT) option.

– Program objects contain a class of data specifically intended for users to save
associated or application data (ADATA). It is not loadable (NOLOAD). This
data can be source statements, debugging tables, user information, history

Introduction

8 z/OS V2R2 MVS Program Management: User's Guide and Reference

data, and documentation. It is accessible via the binder Application
Programming Interface defined in z/OS MVS Program Management: Advanced
Facilities.

Program objects on DASD storage
v Unlike the load module, whose format is documented and universally available,

the format of the program object is NOT externalized. The binder API should be
used to access program data.

v Consistent with all data in PDSEs, program objects are organized in 4KB blocks,
making them accessible by both the binder and loader via DIV (Data in Virtual)
access mechanisms. The minimum length of a program object is 4KB.

v When saving a program object in PM1 format, all uninitialized text in a program
object (for example, DS space in a program) is written to DASD as binary zeros.
DS space is not written to DASD for later program object formats.

v Program objects cannot be in scatter-load format.
v IEBCOPY load/unload functions will process program objects with NO change

to the format, that is, it remains the same as it is on DASD.

Residence for and access to program objects
The following describes the program object access modifications and restrictions:
v The program object can be accessed for input using the SAM access method,

though this is not recommended. While 4KB blocks will be presented to the user,
no description of these blocks will be available. (This access is provided
primarily for browse and compare services, where there is no need to interrogate
or understand the format of the data.)

v No user can access a PDSE program library directly for output. This function is
reserved exclusively for the binder. Services that perform output functions, for
example, AMASPZAP, must invoke the binder. Applications can use the binder
API to put data into a program object.

v Program objects must reside in either PDSEs or z/OS UNIX files. Data members
and program objects may NOT reside in the same PDSE. The PDSE type is
determined by the data type on issuance of the first STOW into an empty PDSE.

v There are no “dangling aliases” for program objects in PDSEs. When the
primary member name is deleted or replaced, the old aliases are deleted
automatically.

v The DCB RECFM field for PDSE program libraries must be specified the same as
it is now for PDS program libraries, for example, RECFM=U (undefined record
format). While this has no meaning in terms of the actual program object record
format, traditionally it has helped to identify program libraries. To promote
transparency and usability, this record format will continue to be required as one
of the program library indicators for PDSEs as well as PDS's.

Extensions to the PM loader to support program objects
Most of the loading functions are transparent to the user. The loader will know
whether the program being loaded is a load module or a program object by the
source data set type. If the program is being loaded from a PDS, it calls
IEWFETCH (now integrated as part of the loader) to do what it has always done.
If the program is being loaded from a PDSE, a new routine is called to bring in the
program using DIV. The loading is done using special loading techniques that can
be influenced by externalized options.

Introduction

Chapter 1. Introduction 9

Page mode loading
Program objects can be loaded in Page Mode.
v This mode is the default, unless any of the conditions described below under

Move Mode exist. Program objects are mapped into virtual storage. If the
program object is less than 96K the whole program is preloaded. When over 96K
the first 16 pages are preloaded; additional pages are brought in during
execution as they are referenced.

v Program objects can be cached in the PDSE hiperspace cache, so frequently
referenced pages will be found in cache.

v When the entire module is read in and relocated before execution begins, it is
referred to as Immediate Mode, a subset of Page Mode.
An option, FETCHOPT=PRIME, allows you to specify explicitly that the module
should be completely relocated before execution. This option only affects Page
Mode and forces Immediate Mode. It has the benefit that the loader can
immediately release all storage resources that would otherwise be used to
contain loader control information (and would usually be held until the module
is deleted). It has the disadvantage of bringing in the entire module when it
might not be necessary.

Note: Page mode loading is not supported for program objects loaded from z/OS
UNIX files.

Move mode loading
Program objects can also be loaded in Move Mode from either a PDSE or z/OS
UNIX file. This mode is used in those cases where page alignment of virtual
storage can not be guaranteed. The entire program is always loaded and relocated
before execution. The loader uses Move Mode when:
v A directed load has been requested (for example, the virtual storage address was

passed on the LOAD SVC).
v FETCHOPT=PACK was specified at Bind time, forcing Move Mode by

requesting that program objects be packed together in virtual storage rather than
each be aligned on a page boundary.

v The program object is in overlay format.
v The job step is running V=R.

LLA and checkpoint/restart support for program objects
v LLA (Library Lookaside) supports both the caching of PDSE program directories

and the caching of program objects (loaded from PDSEs), using the same
caching algorithms as for load modules. The interfaces to enable LLA are the
same as they are today for load modules.

v Programs can be Checkpointed and Restarted with program objects in the
address space if the PDSE is not open under the user's TCB, (for example, it is
OK if PDSEs are JOBLIB, STEPLIB or Linklist). In addition, there must be no
overlay program objects in the address space when a Checkpoint is issued.

Introduction

10 z/OS V2R2 MVS Program Management: User's Guide and Reference

Chapter 2. Creating programs from source modules

Program management components process the output of language translators and
compilers to produce an executable program unit.

A program can be divided into logical units that perform specific functions. Each
of these logical units of code is a module. Each module can be written in the
symbolic language that best suits its particular function, for example, assembler, C,
C++, COBOL, Fortran, or PL/I. Many modules can be bound or link-edited into a
single executable program unit. Object modules produced by several different
language translators can be merged to form a single program.

Note: This topic refers to binder processing and output. These concepts apply
equally to linkage editor and batch loader processing unless otherwise noted in
Appendix A, “Using the linkage editor and batch loader,” on page 171. The linkage
editor and batch loader cannot process program objects, extended object modules,
or GOFF object modules.

Combining modules
Each module of symbolic language code is first assembled or compiled by one of
the language translators. The input to a language translator is a source module. The
output from a language translator is an object module. Object modules are
relocatable modules of machine code that are not executable, and have one of
several formats:
v Traditional object modules (OBJ) produced by most IBM language products and

accepted by the binder, linkage editor, and batch loader.
v Extended object modules (XOBJ), for instance those processed by COBOL and

C/C++ compilers, are accepted by the Language Environment prelinker. The
binder also accepts XOBJ object files, eliminating the need for the Language
Environment prelinker.

v Generalized Object File Format (GOFF) object modules, for example those
created by the High Level Assembler and the IBM C/C++ compilers, are
accepted only by the binder. GOFF supports long external names up to 32767
bytes, multiple text classes, and embedded ADATA.

Before an object module can be executed, it must be processed by a program
management component into executable machine code. The batch loader and the
binder can produce executable code directly in virtual storage that executes and is
then discarded. The binder and the linkage editor can produce executable code that
can be stored in a program library. The binder can produce:
v A program object stored in a partitioned data set extended (PDSE) program

library
v A program object stored in a z/OS UNIX System Services (z/OS UNIX) file
v A load module stored in a partitioned data set (PDS) program library.

The linkage editor can only produce load modules stored in a PDS.

You can also use the IEBCOPY utility to convert load modules in a PDS into
program objects in a PDSE, or program objects in a PDSE into load modules in a
PDS. See “Using utilities for Program Management” on page 6.

© Copyright IBM Corp. 1991, 2015 11

Unix System Services commands cp and mv and TSO commands OGET and OPUT
can be used to convert between program modules in a PDS or PDSE and program
objects in a z/OS UNIX file system. See z/OS UNIX System Services Command
Reference for more information.

Program objects and load modules are units of executable machine code in a
format that can be loaded into virtual storage and relocated by the program
management loader. Collectively, program objects and load modules are referred to
as program modules. The PDSE and PDS data sets they reside in respectively, are
referred to as program libraries.

Figure 2 shows the steps required to create an executable program from source
modules. The binder API allows you to control specific binding operations. See
z/OS MVS Program Management: Advanced Facilities for more information about the
binder API.

Symbols
Table 1 summarizes the types of binder symbols you can define, their length, and
applicable usage notes.

Table 1. Rules for binder symbols

Symbol type

Maximum
Length (in
bytes) Additional information

External symbol in
PDS

8 Prelinker can be used to create truncated names

External symbol in
PO1

64 Longer names cause automatic promotion to a
higher level unless restricted by the COMPAT
option

External symbol in
PO2 and PO3

1024 Longer names cause automatic promotion to
PO4 unless restricted by the COMPAT option

External symbol in
PO4+

32767

Section name Same as the other external symbols defined
above

Class name 16 User-defined names should not exceed 14 bytes,
and must not begin with B_ or C_

Source
Modules

Object
Modules

Language
Translator

Program
Management

Binder

Program
Modules

Program
Management

Loader

Executable
Program

Figure 2. Preparing source modules for execution and executing the program

Creating programs from source modules

12 z/OS V2R2 MVS Program Management: User's Guide and Reference

Table 1. Rules for binder symbols (continued)

Symbol type

Maximum
Length (in
bytes) Additional information

Member name 8 Should be upper case alphanumeric. Does not
apply to UNIX files Binder allows 1024 for PDSE
but will generate an 8 byte member name for
system use if user-defined name exceeds 8
characters.

UNIX program name 255 Primary or alternate names. Includes file
extension, if any, but not path

Alias name in PDS 8 Should be upper case alphanumeric.

Alias name in PDSE 1024 64 in PO1

DDname 8 Upper case alphanumeric.

Data set name 44 Upper case alphanumeric plus periods.

Path name 1023 Must begin with / (for absolute path) or ./ (for
relative path)

Note:

1. Names must be composed of charactars with EBCDIC representations from
X'41' through X'FE' except that Shift-in and Shift-out (X'0E' and X'0F') may be
used to signal DBCS character ranges. This character set restriction means that
blanks may not be used within names, but any punctuation or national use
characters may be except for those noted above as being alphanumeric.

2. The binder treats upper and lower case letters as distinct with three exceptions:
a. Keywords in binder options, and binder commands, are converted to upper

case.
b. If the CASE=MIXED option is not specified, lower case letters in control

statement operand values and option values are converted to upper case
unless they are within single quotation marks. Since options are processed
in order of appearance, option data appearing prior to a CASE=MIXED
specification will be folded to uppercase.

c. If the UPCASE option is specified, certain symbols left unresolved at the
end of a bind are converted to uppercase for a final resolution attempt.

Sections
Every module is composed of one or more sections. A section is a named collection
of program object components, called elements, that you can manipulate (for
example, order or delete) by that section name during binding. Such manipulation
does not affect the integrity of the containing module. The section is a
generalization of the traditional object module control section (CSECT) concept.

Sections consist of one or more elements, each representing a separate class of data.
An element does not have a name and cannot be specified on binder control
statements. All elements of a section are edited as a unit. If a section is replaced,
ordered or aligned, all of its elements are replaced, ordered or aligned. The
element represents the cross section of module data identified by a section name
and class name.

Creating programs from source modules

Chapter 2. Creating programs from source modules 13

Classes
Every module is composed of multiple classes, each with its own function and
format. Some classes represent program text, the instructions and data that are
loaded into virtual storage during execution. Other classes, such as an external
symbol dictionary (ESD) and a relocation dictionary (RLD), are required for
binding and loading the program. Additional classes, such as IDR and ADATA,
provide descriptive information about the program module or its individual
sections and are of use primarily for maintenance and debugging.

Like sections, classes consist of elements. An element is defined by a class name and
a section name. Figure 3 illustrates a section/class/element structure.

See “Object and program module structure” on page 17 for the logical structure of
elements appearing as one or more classes in a module.

Each element in the class represents the contribution of a single section to that
class. The sequence of elements within the class is the same as the sequence of the
sections within the module, specified on either the ORDER control statement or the
ORDERS API function.

Classes are identified by class name. Unlike section names, which are assigned by
the source language programmer, class names are normally assigned by an IBM
compiler or binder. Class names are a maximum of 16 bytes in length.
Binder-defined class names begin with “B_”. Compiler-defined class names begin
with “C_”. User-defined class names should not use these prefixes and should be
no more than 14 characters long. Class names are not normally required on binder
control statements, but can appear in listings and diagnostics. Each separately
named class has a specified or an implied set of binding and loading attributes.

Note: The class concept is new with the binder, although several fixed classes
(ESD, RLD, TEXT, IDR and SYM) were implicit in the old binding products.

Common areas
A common area is a data-only section that can be shared by multiple sections within
the module. Common areas can have a name, and if unnamed a name consisting
of a single blank will be assumed. The only supported text class for common areas
is B_TEXT. If no identically-named CSECT is present, the storage allocated to the
COMMON is determined by the longest COMMON definition.

Common areas provide shared space in the module text for data, not instructions.
Common areas cannot have initial data values; however, if both a section (CSECT)
and common area of the same name are present in the module, the CSECT will
initialize the COMMON area. Note that such a CSECT must be at least as long as
the longest COMMON definition.

Common areas are normally located at the end (highest virtual address) of the
module, but can be relocated by specifying the common area name in the ORDER

Element Element Element

Element Element Element

Class X Class Y Class Z

Section A

Section B

Figure 3. Section/class/element/structure

Creating programs from source modules

14 z/OS V2R2 MVS Program Management: User's Guide and Reference

control statement. When creating a module in overlay format, if a common area is
referenced by sections in different paths then it will be moved to a segment higher
in the structure (closer to the root segment) that is common to both paths.

Parts
Certain text classes can be further subdivided into parts. Like common areas,
named parts can be shared between sections and are defined with the longest
length and most restrictive alignment of all contributing sections. Unlike common
areas, they must be defined in classes other than B_TEXT. Initializing data in parts
is supported for PO3 and later format program objects.

Parts and common areas cannot share the same storage. While both sharing
methods can coexist in the same program module, a single shared data area must
use one or the other. Older compilers will continue to use common areas for data
sharing, whereas newer compilers will utilize parts.

Note: Parts are not supported by either the linkage editor or batch loader
programs.

Pseudoregisters
External Dummy Sections, also called pseudoregisters, are varying sized units of
program storage that do not occupy space in the load module or program object.
External Dummy Sections are defined by compilers, or by the assembler using the
DXD instruction, and are shared among all sections in the module in the same way
that common areas are shared. The attributes of the single, mapped area represents
the cumulative length obtained by assigning each pseudoregister's longest length
and most restrictive alignment from all its definitions. Virtual storage for the
pseudoregister(s) is not provided in the program module, but is instead obtained
during execution, using the aggregate length of all pseudoregisters provided by the
linker. The concatenation of all uniquely named pseudoregisters is called the
pseudoregister vector.

All of the linking products (linkage editor, batch loader, and binder) support
pseudoregisters, although the implementations are different. The linkage editor and
batch loader process pseudoregisters separate from the other program elements
and identify them differently in messages and listings. The binder treats
pseudoregisters as parts in a “noload” class, B_PRV, and displays the PRV as it
would any other class. As a result, there is no separate “Pseudoregister” section in
the binder map.

Note: PRV contents are displayed as text class B_PRV. Even though B_PRV is listed
as a text class, no text is ever placed in B_PRV by the binder.

Entry points
An entry point in a program module is a location that is known by name to the
operating system and which can be referenced by or receive control from another
module. In PDS and PDSE libraries entry points are represented by directory
entries; entry points in z/OS UNIX files are each represented by a file name in the
z/OS UNIX directory structure.

There are five types of entry points in program modules:

Creating programs from source modules

Chapter 2. Creating programs from source modules 15

v Primary entry point. This is the point that receives control when the module is
invoked by its primary, or member, name. The primary name is the name that
was specified on the NAME control statement or the SYSLMOD dd-statement
when the module was created.

v Alternate entry point. Alternate entry points are locations, other than the
primary entry, which can receive control or be referenced from another module.
An alternate entry point is defined during binding by use of an ALIAS control
statement (or ADDAlias API function) that specifies the name of an external
label in the program.

v True alias. A true alias is another name associated with the primary entry point.
It is also defined with an ALIAS control statement, but is not an external label in
the module.

v Alternate primary. MVS places certain restrictions on the lengths of member
names and aliases. If you specify a name on the NAME control statement that
exceeds the 8-byte limitation for member names, the binder will generate an
8-byte primary name and store the specified name as a true alias. This alias is
referred to as the alternate primary and flagged in the directory entry. The
primary entry is also referred to as the generated primary.

The linkage editor does not support alternate primaries or any entry point name
longer than eight bytes.

The way entry points are represented in the system depends on the type of file in
which the module is stored:
v PDSE program libraries support all of the entry point types listed above as

directory entries. The primary or generated primary name becomes the member
name and is limited to eight bytes. Alternate entry points, true aliases and the
alternate primary are stored as aliases and are limited in length to 1024 bytes.

v Partitioned data set (PDS) program libraries support primary entry point,
alternate entry point and true alias names up to a maximum of eight bytes. The
primary entry point appears as the primary directory entry; aliases and alternate
entry points appear as alias directory entries. Alternate primaries are not
supported in a PDS.

v z/OS UNIX-resident program objects can contain primary names and true
aliases only. All names are limited to 255 bytes, not including the path name.
Alternate entry points and alternate primary entry points are not supported. As
far as UNIX System Services is concerned, there is no difference between
primary names and alias names.

External symbols
Sections can contain symbolic references to locations defined in the same or other
sections. These references are called external references. External references are
normally made by using an address constant (adcon). For program objects, the
binder supports adcons that are three, four, and eight bytes in length. A symbol
referred to by an external reference must be an external name, the name of an entry
point, or the name of a pseudoregister. In modules containing only a single text
class, the section (CSECT or common area) name is an implied entry point.

By matching an external reference with an external definition (sometimes called an
‘external label’), the binder resolves references between sections. External references
and external labels are called external symbols. External symbols are defined in one
section and can be referred to in the same section, or from other sections.

Note the following for using relative immediate references:

Creating programs from source modules

16 z/OS V2R2 MVS Program Management: User's Guide and Reference

v Two-byte relative immediate references are supported within a segment, but are
not supported across separate segments.

v Four-byte relative immediate references are supported except if either segment is
RMODE 64.

Figure 4 shows how external symbols provide connections between modules.

Object and program module structure
Object modules, load modules, and program objects share the same logical
structure consisting of:
v Control dictionaries, containing information to resolve symbolic cross-references

between sections and to relocate address constants. When a language translator
converts source modules into object modules, it generates a control dictionary
entry whenever it processes an external symbol, address constant, or section.
Most language translators produce two kinds of control dictionaries: an external
symbol dictionary (ESD) and a relocation dictionary (RLD).

v Text, containing the instructions and data of the program.
v Identification (IDR) data, containing program control and user-provided

information about the modules.
v Associated data (ADATA) for various uses.

Each of these structural elements appears as one or more classes in the module.

A description of the external symbol and relocation dictionaries follows.

External
Symbols

Section A Section A

Section CProgram
Management

Binder

Section B

Section B

Section C

Object
Module A

Program Module
Object AB

Object
Module B

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CALL B CALL B

CALL C1

CALL C1

ENTRY C1
ENTRY C1

External Names:

Section Entry Name
A
B
C
C

A
B
C
C1

External References:

From A to B
From B to C1

Figure 4. External names and external references

Creating programs from source modules

Chapter 2. Creating programs from source modules 17

External symbol dictionary
The external symbol dictionary (ESD) contains one entry for each external symbol
defined or referred to within a module. The dictionary contains an entry for each
external reference, entry name, named or unnamed control section, class, blank or
named common area, and part or pseudoregister (external dummy section). An
entry name or named control section can be referred to by any control section or
separately processed module. An unnamed control section cannot be referred to in
this way.

Each entry identifies a symbol or a symbolic reference and gives its location within
the module. Each entry in the ESD is classified as one of the following:

External reference
Symbol referenced in the module being processed that is defined as an external
name in another separately processed module. The ESD entry specifies the
symbol; the location is unknown.

Weak external reference*
External reference that is not resolved by automatic library calls unless an
ordinary external reference to the same symbol is found. The ESD entry
specifies the symbol; the location is unknown.

External label definition
Name that defines an entry point within a section. For load modules and
traditional (OBJ and XOBJ) object modules, an entry point defines an offset
within a control section. For program objects and GOFF modules, an entry
point defines an offset within an element (and each element is owned by a
section). A control section or element may have multiple entry points. The ESD
entry specifies the symbol, its location, the addressing mode, and identifies the
section or element containing the entry point.

Section definition
In load modules and CSECTs, the symbolic name of a control section. The ESD
entry specifies the symbol, the length of the control section, and its location as
an offset within the module or program object segment in which the section
appears. The location represents the origin, or the first byte, of the control
section. This ESD entry also specifies the CSECT addressing mode and
residence mode.

In Program Objects, a section is the symbolic name of a collection of elements
assigned to one or more classes.

Private code*
Unnamed section. The ESD entry specifies the section length, origin, and can
also specify the addressing mode and residence mode of the CSECT. The name
field contains blanks.

Blank or named common area*
A section used to reserve a virtual storage area that can be referenced by other
modules. The ESD entry specifies the name and length of the area. If there is
no name, the name field contains blanks.

Part reference
A reference to a named subdivision of module text that can be shared between
referencing sections. Parts might or might not occupy space in the loaded
module.

Pseudoregister*
A facility (corresponding to the external dummy section feature of High Level
Assembler) that can be used to write reenterable programs. A pseudoregister is

Creating programs from source modules

18 z/OS V2R2 MVS Program Management: User's Guide and Reference

part of a dynamically acquired storage area called a pseudoregister vector. The
pseudoregister can be of any size or data type. The space for such areas is not
reserved in the program module but is acquired during execution. The ESD
entry contains the name, length, alignment, and displacement of the
pseudoregister.

Element definition
Symbolic name of a class. The ESD entry specifies the attributes of the class.
Element definition is supported by GOFF and program objects only.

Note:

The binder requires fewer ESD record types than the linkage editor. Symbol types
followed by an asterisk represent variations of the preceding type as they appear
in binder listings, GOFF modules, and program objects.

Relocation dictionary
The relocation dictionary (RLD) contains an entry for each address constant that
must be modified before a module is executed or requires adjustment during the
binding process. The entry specifies both the address constant location within a
section and the external symbol used to compute the value of the address constant.
(The external symbol can be defined in an ESD entry in another section.)

The binder uses the RLD to adjust (relocate) the address constants for references to
other control sections or elements. The RLD is also used to readjust these address
constants after the program management loader reads a program object or load
module from a program library into virtual storage for execution.

An RLD entry can be one of the following types:

A-con
Non-branch RLD type; in assembler language, DC A(name). The corresponding
address constant may contain an offset. A-con's are normally used for
branching within a section or for addressing data.

Class address
This type of RLD is supported for PO2 and later format program objects. See
“Program object formats” on page 24 for additional information.

Class length
The length of the pseudoregister vector is supported in assembler language by
the CXD instruction. In program objects, the length of any class in assembler
language uses DC J(classname). For other text classes this RLD type is
supported for PO2 and later format program objects. See “Program object
formats” on page 24 for additional information.

Individual PR length
The length of the individual PR is supported in assembler language by the
DXD instruction. In program object, the length of individual PR in assembler
language uses DC J(myDXD), DC J(myDSECT) or DC J(myPart).

Loader token
An 8-byte constant which uniquely identifies a specific execution instance of
the program (PO3 and later program objects).

Q-con
Q-con type is an offset of the designated symbol from the start of its
containing class. In assembler, it is coded as DC Q(name). Q-cons are not
relocated during loading. Q-cons designating offsets in class B_PRV are

Creating programs from source modules

Chapter 2. Creating programs from source modules 19

|
|
|
|

supported for all format modules. For other classes, they are supported for
PO2 and later format program objects. See “Program object formats” on page
24 for additional information.

QY-con
QY-con type is an assembler notation that supports long-displacement type
instructions in which the displacement is held in discontiguous bytes (DL-DH).
This support is provided in the ZOSV1R10 variant of the PO5 format and later
formats. See “Program object formats” on page 24 for additional information.

R-con
R-con type is the address of the environment or associated data for a symbol.
R-con is supported for program objects in PO3 and later formats. See “Program
object formats” on page 24 for additional information.

RI-con
RI-con type is an instruction address relative halfword or fullword offset for
use with relative-immediate instructions. This support is provided in the
ZOSV1R7 variant of the PO4 format and later formats. See “Program object
formats” on page 24 for additional information.

V-con
V-con is a branch type; in assembler language, DC V(name). V-con's are
normally used for branching out of the control section.

Text
Text contains the instructions and the data belonging to the module. The multiclass
capability of the binder allows for more than one text class, each of which is
loaded into separate storage areas.

Identification data
Identification (IDR) data contains information about the module. The IDR data is
not used during program loading and execution. A listing of the IDR data for a
module can be obtained by executing the AMBLIST utility.
1. Link-edit or bind identification (IDRB)

IDRB data identifies the component that created the program module. IDRB
data is associated with the entire module never in individual sections.

2. Translator identification data (IDRL)
IDRL data is produced by the language translator and identifies the compiler or
assembler that produced the module or section and the date of compilation.

3. Zap identification data (IDRZ)
IDRZ data is created by AMASPZAP when it is executed against program
modules. It contains a maintenance identifier (such as PTF number) and the
date that the maintenance was applied.

4. User identification data (IDRU)
IDRU data is provided by the user on the IDENTIFY control statement for a
program module. It can contain any information pertinent to the associated
section. It is created at bind time using the IDENTIFY control statement. See
“IDENTIFY statement” on page 118 for more information.

Module attributes
The module attributes include the module entry point designation, module
reusability,and the module addressing and residence modes. The primary entry
point designation is stored in the END record of an object module. Module

Creating programs from source modules

20 z/OS V2R2 MVS Program Management: User's Guide and Reference

attributes for load modules are stored in the directory entry for the partitioned
data set member. Module attributes for program objects are stored in the PDSE
directory entry and embedded within the program object.

Binder batch processing
This section describes the input and output of the binder and how the binder
produces a program object or load module in batch mode.

Input and output
The binder accepts four major types of input:
1. Primary input defined by the SYSLIN DD statement.
2. Additional input specified with the INCLUDE control statement
3. Additional input incorporated by the program management binder from a call

library. This input can contain object modules and control statements, load
modules, or program objects.

4. Additional input specified as options in the PARM field of the JCL EXEC
statement.

Output of the program management binder is of the following types:
1. A program module placed in a program library as a named member, or a

program object placed in a z/OS UNIX file. Program objects are stored in PDSE
program libraries or z/OS UNIX files. Load modules are stored in partitioned
data set program libraries.

2. An executable module loaded into virtual storage.
3. Diagnostic and informational output produced as a sequential data set.

Figure 5 shows how object modules are combined to create a load module.

Creating a program module
A program module is composed of all input object modules and program modules
processed by the binder or linkage editor. The resultant control dictionaries are
collections of all the control dictionaries in the input modules. For load modules,
the control dictionaries are merged into a single composite external symbol dictionary

Primary
Input

User-Specified
Input

Automatic
Call
Library

Program
Management
Binder

Program
Module in
Program
Library
or HFS
File

Executable
Program in
Virtual
Storage

Diagnostic
Output

Figure 5. Input and output for the binder

Creating programs from source modules

Chapter 2. Creating programs from source modules 21

(CESD) and a single relocation dictionary (RLD). For program objects, the control
dictionaries are retained individually. Figure 6 shows how multiple input modules
are combined into a single program module.

The output module also contains the text from each input module. If the output is
a load module, it also contains an end-of-module indicator.

As the binder processes object and program modules, it assigns relative virtual
storage addresses to control sections and resolves references between control
sections.

Creating a load module
You can use the binder to create a load module in a PDS. The binder will produce
a load module if SYSLMOD is allocated to a PDS. The COMPAT setting has no
effect on the decision to produce a load module or a program object. Certain
program module contents cannot be saved in a load module and if you have used
such features, either the module will be saved with an error indication or you will
receive a severe error indicating that the module could not be saved at all.
Examples of such features are symbols longer than eight characters or the use of
multiple text classes. If you do not use any 64-bit features, then the load module
format is compatible across all releases of z/OS and between the binder and the
linkage editor. The linkage editor can process load modules produced by the
binder and and the binder can process load modules produced by the linkage
editor. A load module produced by the binder on z/OS can be loaded and
executed on any release of z/OS. However, this is not true if the load module has
any CSECTs or entry points marked as AMODE(64) or any eight-byte adcons. Such
a load module cannot be executed on a release prior to z/OS 1.3 and cannot be
processed by the linkage editor.

Creating a program object
You can use the binder to create a program object in a PDSE program library.
PDSE program libraries differ in format from PDSE data libraries: Data members,
including object modules, and program objects cannot reside in the same library.
For the format and content of the PDSE directory entry, see z/OS MVS Program
Management: Advanced Facilities.

You can also use the binder to create a program object in a z/OS UNIX file. The
program object will have the same content as a program object in a PDSE. You can
copy a program object from a z/OS UNIX file to a PDSE without loss of
information or function. In most cases the same is true for a copy in the other
direction; see “Creating a program object in a z/OS UNIX file” on page 23.

Program
Management
Binder

Object Module A

Object Module B

Output Program
Object ABESD

TXT
RLD
IDR
END

ESD
TXT
RLD
IDR
END

ESD A
ESD B
TXT A
TXT B
RLD A
RLD B
IDR A
IDR B
IDR Linker

Figure 6. A program object produced by the binder

Creating programs from source modules

22 z/OS V2R2 MVS Program Management: User's Guide and Reference

Program objects stored in a PDSE library (or z/OS UNIX files) can consist of
multiple text classes. At load time, the program management loader will load each
text class above or below 16 MB, depending on attributes associated with that text
class. Specifying the RMODE(SPLIT) binder option will cause the module text in
B_TEXT to be separated into two classes, B_TEXT24 and B_TEXT31, for loading
below and above the line, respectively.

When load modules and old (non-GOFF) object modules are used as inputs to
create a program object, the binder converts the old format to the new format by
making the following changes:
v Control section names are changed to section names.
v The text of the control section is assigned to class B_TEXT, and an external label

entry with the control section's name is associated with the first byte of the
element defined by the section name and class B_TEXT, as noted above.

v Pseudoregister items are assigned to class B_PRV.

Multipart program objects: Under certain circumstances, the binder will create a
program object with multiple segments. When loading this type of module, each
segment has a different load point. The binder currently uses RMODE and time of
load (initial or deferred) of the classes as the criteria for splitting a module into
segments. If all input is from traditional object modules (not XOBJ or GOFF) or
load modules, a multipart module is created only if RMODE(SPLIT) is specified. If
using the assembler CATTR support to create user-defined text classes (supported
only in GOFF object format), or if GOFF or XOBJ object modules from a compiler
are part of the input, there can be text classes other than B_TEXT. The RMODE of
these additional text classes is used to assign each of these classes to a segment. In
addition, deferred load classes, such as C_WSA, are each placed in a separate
segment. There is no binder external to override this division into segments.
Certain restrictions apply to multipart modules.

If you use the capabilities of the High Level Assembler or the binder
RMODE(SPLIT) option to create multipart program objects, certain restrictions
apply.
v If the module is the target of a directed load (where the issuer of the LOAD is

providing the storage in which to load the module), the two class segments are
concatenated and loaded into storage as a single unit.

v All entry points (primary and alternate) must be defined in the same class.
v If parts of the program will reside above 16 MB, then you must ensure that the

entire module can execute with AMODE(31) or that linkage between sections on
opposite sides of the 16 MB line use BASSM or equivalent instructions to force
an AMODE switch when necessary.

v A binder option, HOBSET, will cause the high order bit on V-type address
constants to be set according to the addressing mode of the target.

v Overlay format is incompatible with multipart program objects.

If a multipart program object is subsequently loaded through a directed load or by
the binder, all text classes are loaded into consecutive storage locations according
to the minimum RMODE value for all loaded classes.

Creating a program object in a z/OS UNIX file
To place a program object in a z/OS UNIX file, specify the PATH parameter on the
SYSLMOD DD statement in a batch bind job. You can also use the binder

Creating programs from source modules

Chapter 2. Creating programs from source modules 23

application programming interface or the z/OS UNIX c89 or ld command. You can
use the following TSO commands to copy a program object between a PDSE to
and a z/OS UNIX file:
v OGET
v OGETX
v OPUT
v OPUTX

The following z/OS UNIX System Services commands will also allow you to copy
and move executables between a PDSE and z/OS UNIX files:
v cp
v mv

Additional information on this topic can be found in the following documents:
v For the binder API, see: z/OS MVS Program Management: Advanced Facilities

v For TSO commands and z/OS UNIX System Services commands, see: z/OS
UNIX System Services Command Reference

When specifying PATH in a batch bind job, you can provide either the complete
path name or a directory. If the PATH parameter designates a directory, you must
provide the file name on a NAME statement. The name on the NAME statement
must be no longer than 255 bytes.

You can also specify the PATHOPTS and PATHMODE parameters in the JCL. If you do
not, and the JCL designates a directory, the binder assigns attributes for the created
file that allow only the file owner to have read, write, and execute authority.

If you specify the PATH parameter for SYSLMOD, the save operation is always
processed as though you had specified REPLACE. Also, if you attempt to save a
program object to a z/OS UNIX file and do not provide a name through the
NAME control statement, the binder does not create a temporary name as it does
when you save to a partitioned data set or PDSE under the same circumstance.
Refer to the NAME statement in Chapter 7, “Binder control statement reference,”
on page 107 for a description of said condition.

You can provide an ALIAS control statement to designate the pathname to be used
for an alias. The binder appends the path information on the SYSLMOD DD
statement to each operand on the ALIAS control statement in order to form each
complete alias pathname.

Restrictions:

1. You can execute a program object that resides in a z/OS UNIX file either by
using z/OS UNIX commands or through the BPXBATCH facility. You cannot
execute such a program object from an MVS batch job using EXEC PGM=.

2. z/OS UNIX does not support alternate entry points. All aliases in z/OS UNIX
program objects are processed as though they were true aliases.

3. Overlay format modules are not supported in z/OS UNIX files.

Program object formats
There are five program object formats: PO1 through PO5. A program object in a
particular format can be executed and rebound on the release in which it was
introduced or on any subsequent release. All z/OS release support PO1, PO2, and
PO3. PO4 was introduced in z/OS V1R3 and PO5 was introduced in z/OS V1R8.

Creating programs from source modules

24 z/OS V2R2 MVS Program Management: User's Guide and Reference

The COMPAT option may be used to request that a program object be stored in a
particular format. For example, COMPAT(PM2) will cause the program object to be
stored in PO2 format.

Starting in z/OS V1R5, program object variants were introduced. A variant of a
particular program object format can be loaded and executed on earlier systems
supporting the main program object format, but may not be inspected or
reprocessed by a release prior to that in which the variant was introduced. Variants
are not specified as such on the COMPAT option but by specifying the z/OS
release (which should be the earliest release on which the module is required to be
processed by the binder). For example: specifying COMPAT=ZOSV1R11 will create
a module that can be rebound or accessed by utilities such as amblist or spzap on
z/OS V1R11 and later releases.

Each program object format that is introduced will support for features that were
not previously available and, except for overlay structure, each format will support
all features provided by earlier formats. By default, the binder will choose the
earliest format supporting all of the features being used. See “COMPAT: Binder
level option” on page 81 for more information.

Note: As was indicated earlier, the binder also continues to support the old load
module format. Note the difference in terminology. A load module is stored in a
standard partitioned data set in a format compatible with older operating systems.
A program object is stored in a PDSE (DSNTYPE=LIBRARY) or a z/OS UNIX file
in one of the formats listed above. The choice between load module and program
object for binder output is based solely on the output destination.

Binding

Assigning addresses
Each object or load module processed by the binder has an origin that was
assigned during assembly, compilation, or a previous execution of the binder or
linkage editor. When several modules, each with an independently assigned origin,
are to be processed by the binder, the sequence of the addresses is unpredictable.
Two input modules can even have the same origin.

Each input module can be made up of one or more sections. To produce an
executable program object or load module, the binder assigns relative virtual
storage addresses to each section.

The addresses in a program module are consecutive, but are all relative to base
zero. When a program is executed, the loading program prepares the module by
loading it at a specific virtual storage location and then increasing each address in
the program by this base address. Each address constant is also readjusted. This
final readjustment is known as relocation.

The preceding discussion describes linker actions in processing load modules.
When program objects are processed, the output may contain more than one
relocatable, loadable segment. In each segment, addresses are relocated during
binding relative to a zero base address for each segment; when the segments are
loaded, each address constant is relocated relative the the loading address of the
segment containing the referenced address. Figure 7 on page 26 illustrates how
multiple segments are created.

Creating programs from source modules

Chapter 2. Creating programs from source modules 25

Resolving external references
The binder resolves module references, matching symbol references to symbol
definitions by searching for the external symbol definition in the ESD of each input
module. Figure 8 shows the binder matching the external reference to B1 by
locating the definition for B1 in the ESD of Module B. In the same way, it matches
the external reference to A11 by locating the definition for A11 in the ESD of
Module A.

Note: External names, including section names and entry names, should be one to
32767 bytes in length. No leading or embedded blanks are allowed, nor are the
characters outside the range X'41' through X'FE' inclusive. However, the
hexadecimal codes X'0E' and X'0F' are recognized as the shift-in and shift-out codes
respectively for double-byte character set (DBCS) encoding. All other characters are
allowed in any position of the name. Use special characters with caution, because

Input Module A

Class x Class y

Separately
Relocatable
Segment

Separately
Relocatable
Segment

(Binder)
Input Module B

Test for class x

Test for class y

Text from A

Text from B

Text from A

Text from B

Test for class x

Test for class y

Figure 7. Multiple segments

Input Module A

ESD for A

Symbol Type Location

A1 Section Known
Name

A11 Entry Known
Name

B1 External Unknown
Reference

Section A1
.
.
.

ENTRY A11
.
.
.

CALL B1
.

Input Module B

ESD for B

Symbol Type Location

B1 Section Known
Name

A11 Entry Known
Name

Section B1
.
.
.

CALL A11
.
.
.

Figure 8. Use of the external symbol dictionary

Creating programs from source modules

26 z/OS V2R2 MVS Program Management: User's Guide and Reference

the compilers and assemblers that produce object modules often have a more
limited character set and other operating system components may not handle them
properly.

Creation of an executable program in virtual storage
The IEWBLDGO entry point of the binder prepares an executable program in
virtual storage and passes control to it directly. It combines binding and loading
functions into a single step, so it can be used for compile-load-and-go and
load-and-go jobs. IEWBLDGO cannot be used to produce a program module in a
partitioned data set or a PDSE.

IEWBLDGO cannot be used for programs containing deferred load classes (such as
C_WSA). Most XOBJ input to the binder will result in deferred load classes being
built.

Addressing and residence modes
A program module has a residence mode assigned to it, and each entry point and
alias has an addressing mode assigned to it. You can specify one or both of these
modes when creating a program module or you can allow the binder to assign
default values. For additional information see “AMODE and RMODE hierarchy”
on page 28. The addressing and residence modes must be compatible. The binder,
however, allows you to specify them as independent options and validates the
combination when the module is saved. See “AMODE and RMODE combinations”
on page 29 for information on how the binder resolves addressing and residence
modes.

AMODEs and RMODEs can be assigned at assembly or compilation time for
inclusion in an object module. AMODE and RMODE values provided to the binder
in the ESD data of an object module are retained in the ESD data of the program
module (except for overlay programs). Overriding the AMODE and RMODE
values in the ESD (see “AMODE and RMODE hierarchy” on page 28) sets the
values in the program library directory entry, but does not affect the ESD data.

A special, invalid combination of AMODE(ANY) RMODE(ANY), when appearing
in ESD records, is processed as AMODE(MIN). This setting is used by some
compilers when creating OBJ-format object modules that do not support
AMODE(MIN).

Addressing mode
You assign an addressing mode (AMODE) to indicate which hardware addressing
mode is active when the program executes. Addressing modes are:

24 indicates that 24-bit addressing must be in effect.

31 Indicates that 31-bit addressing must be in effect.

ANY Indicates that either 24-bit or 31-bit addressing can be in effect.

64 Indicates that 64-bit addressing can be in effect.

Note: AMODE ANY(64) is not supported.

MIN Requests that the binder assign an AMODE value to the program module.
The binder selects the most restrictive AMODE of all control sections in the
input to the program module. An AMODE value of 24 is the most
restrictive; an AMODE value of ANY is the least restrictive.

Creating programs from source modules

Chapter 2. Creating programs from source modules 27

An AMODE value is provided for each entry point into the program module. The
main program AMODE value is stored in the primary directory entry for the
program module. Each alias directory entry contains the AMODE value for both
the main entry point and the alias or alternate entry point.

Residence mode
You assign a residence mode (RMODE) to specify where the module must be
loaded in virtual storage. Program modules must be addressable using a 31-bit
address. They cannot be loaded beyond the 2GB bar or in a data space. Residence
modes are:

24 Indicates that the module must reside below the 16-MB virtual storage line
(within 24-bit addressable virtual storage).

ANY | 31
Indicates that the module might reside anywhere in virtual storage either
above or below the 16-MB virtual storage line. 31 is a synonym for ANY.

MIN Indicates that the binder chooses an RMODE as the minimum value based
on all the provided inputs. Specifying RMODE(MIN,COMPAT) has the
same effect as when the RMODE option is unspecified.

SPLIT Indicates that the module is split into 2 class segments, one to be loaded
below 16-MB and one to be loaded above the 16-MB virtual storage line.
For more information, see “RMODE: Residence mode option” on page 97.

The binder places the RMODE value in each directory entry applicable to that
program module. Note that only 24 and ANY can appear in the directory entries.

RMODE option and multi-text class modules
Beginning with z/OS V1R12, the binder RMODE option applies by default
to all initial load classes. This can be overridden to pre-z/OS V1R12
behavior by specifying the RMODE scope as COMPAT.

RMODE(64)
RMODE(64) is treated as RMODE(ANY) for module loading and execution,
with the exception of data class C_WSA64, which can be loaded above the
2-gigabyte bar. The map in the binder listing and ESD records obtained
from program objects through the binder API (for example, by the
AMBLIST service aid) will show the original RMODE.

Note: ESD records input to the binder may be marked as RMODE 64, but
RMODE(64) cannot be specified as a binder option.

AMODE and RMODE hierarchy
The binder uses the following hierarchy to determine the addressing and residence
modes of the program module output:
1. Values specified on the binder MODE control statement. See “MODE

statement” on page 128 for more information.
2. Values specified in the PARM field of the EXEC statement used to invoke the

binder. See “AMODE: Addressing mode option” on page 80 and “RMODE:
Residence mode option” on page 97 for more information.

3. For AMODE, value specified on the END record of a GOFF object module if
the entry point from the END record is used as the source of the primary entry
point. The specified AMODE will be used for the primary entry point and true
aliases.

Creating programs from source modules

28 z/OS V2R2 MVS Program Management: User's Guide and Reference

4. Values in the ESD data produced by the AMODE or RMODE assembler
statements or by the compiler

5. Default values of AMODE=24 and RMODE=24 when neither AMODE nor
RMODE have any specified or derivable values.

AMODE and RMODE combinations
If an AMODE or RMODE value is not specified on a MODE control statement or
in the PARM field of an EXEC statement, the binder derives a value based on
information in the ESD.

If RMODE is not specified or is specified as MIN, RMODE 24 is assigned if either:
v Any section in the module has an RMODE of 24 (note that resident LPA-resident

sections resulting from the use of the RES Loader option are not considered
when determining RMODE).

v An AMODE of 24 has been specified or defaulted.

Otherwise, the module is assigned an RMODE of ANY (31). Note that some
sections (for example, those resident in the LPA) are not considered when
determining RMODE.

If RMODE is specified (other than MIN or SPLIT), the RMODE is assigned to the
module.

If AMODE is not specified, each entry point and alias in the module is assigned
the AMODE of that entry point. If the entry point or alias does not correspond to a
defined symbol or the symbol does not specify an AMODE, the AMODE of the
control section containing the entry point or alias will be used.

If the AMODE of the section containing the entry point is AMODE(MIN) then the
entry point is assigned the most restrictive AMODE of all control sections in the
input to the program module. Note that the AMODE(MIN) can be in effect due to
the conversion of ESD values AMODE(ANY) RMODE(ANY) (see “Addressing and
residence modes” on page 27).

AMODE and RMODE validation
The binder validates the AMODE and RMODE combination according to the
following table:

RMODE=24 RMODE=ANY

AMODE=24 valid invalid
AMODE=31 valid valid
AMODE=ANY valid invalid
AMODE=64 valid valid

A combination of AMODE=ANY and RMODE=ANY is changed to AMODE=31
and RMODE=ANY unless AMODE=ANY has been directly specified on a control
statement or batch parameter. In this case, an error message is issued.

If AMODE is equal to 24 or ANY and RMODE=ANY has been directly specified as
a PARM field option or on a control statement, an error message is issued and
processing continues.

Creating programs from source modules

Chapter 2. Creating programs from source modules 29

AMODE and RMODE for overlay programs
All entry points in program modules built in overlay format are assigned an
AMODE of 24 and the program modules are assigned an RMODE of 24 regardless
of any other values you have specified. RMODE(SPLIT) is not supported for
overlay programs.

Module reusability
Reusability is a generic term describing the degree to which a module can be
shared, reused or replaced during execution. It incorporates the following
attributes:
v Nonreusable. The module is designed for single use only and must be refreshed

before it can be reused.
v Serially reusable. The module is designed to be reused and therefore must

contain the necessary logic to reset control variables and data areas at entry or
exit. A second task cannot enter the module until the first task has finished.

v Reenterable (reentrant). The module is designed for concurrent execution by
multiple tasks. If a reenterable module modifies its own data areas or other
shared resources in any way, appropriate serialization must be in place to
prevent interference between using tasks.

v Refreshable. All or part of the module can be replaced at any time, without
notice, by the operating system. Therefore, refreshable modules must not modify
themselves in any way.

Unlike AMODE, reusability is an attribute of the entire module, not any particular
entry point. It should be chosen based on the operational characteristics of the
module and not on the reusability status of individual control sections or data
classes.

The linkage editor processed the serially reusable (REUS), reenterable (RENT) and
refreshable (REFR) attributes as separate and independent options. The binder,
however, treats them as a single, multivalued attribute with an implied hierarchical
relationship: “refreshable” implies “reenterable” and “reenterable” implies “serially
reusable”. This might result in some confusion for prior linkage editor users who
are accustomed to specifying inconsistent combinations of these attributes, such as
“REFR,NORENT”. In such situations the binder selects the strongest reusability
attribute among those specified. In addition, unlike the linkage editor, the binder
honors any override of reusability specified in the PARM statement.

In order to eliminate such conflicts, specify only a single attribute from the set. Use
the keyword(value) form, such as REUS(RENT), rather than keyword-only
specifications, such as NORENT or REFR.

Binder extensions supporting the Language Environment

Compatibility with prelinker functions
The binder can directly process XOBJ modules in the format accepted by the IBM
Language Environment for MVS & VM prelinker, a utility used as an interim step
in the binding of many Language Environment-enabled programs. See z/OS
Language Environment Programming Guide for additional information.

Added capability in the binder allows for direct processing of XOBJ object
modules, obviating the need for the prelinker and simplifying the process for

Creating programs from source modules

30 z/OS V2R2 MVS Program Management: User's Guide and Reference

binding such programs. This provides for the creation of rebindable modules, since
the binder preserves sufficient information in the saved module to allow the
replacement of one or more compilation units.

The binder supports control statements that are functionally equivalent to those
offered by the prelinker. The following table shows the relationships between
binder and prelinker control statements.

Binder Prelinker

AUTOCALL LIBRARY with OE options

LIBRARY* LIBRARY with NOOE option

IMPORT IMPORT

RENAME RENAME

*The binder LIBRARY statement also accepts the same syntax used with the binder
AUTOCALL statement (that is, specification of only a library name). The difference
is that AUTOCALL is for incremental (immediate) autocall, while LIBRARY adds
to the libraries used for final autocall. This latter LIBRARY capability is unique to
the binder, it is not available with the Prelinker.

Note: Prelinker replacement is supported by the binder only for program objects
in PO3 (or later) format. It is not supported for output saved in a load module.

Each XOBJ module will be converted to one or more named or unnamed sections
in the program object. The input XOBJ text will be moved to specific binder text
classes. The recipe cards in the XOBJ that provide instructions for initializing
writable static will be converted into actual initialized text. The following table
shows the major classes generated during XOBJ conversion.

Input XOBJ Class in output program object

reentrant code C_CODE

writeable static C_WSA

text in csect STINIT C_@@STINIT

text in csect DLLI C_@@DLLI

text in csect PPA2 C_@@PPA2

The binder also creates a table for use by Language Environment runtime routines
in class B_LIT. If they are generated, these classes can be seen in the binder map
output for section IEWBLIT.

Binder support for DLLs
DLL support in MVS is provided by the z/OS Language Environment component.
Only programs that are Language Environment-enabled can serve as DLLs or use
DLL routines.

The DYNAM(DLL) option controls DLL processing. If DYNAM(DLL) is specified
the binder will:
v In some cases, create linkage descriptors in C_WSA
v Process IMPORT control statements

Creating programs from source modules

Chapter 2. Creating programs from source modules 31

v Build a table of information about imported and exported functions for the use
of Language Environment run-time routines. This will appear in the map as
class B_IMPEXP.

v Create a side file of IMPORT control statements, corresponding to functions and
data being exported by the module being built.

Note: The binder creates sections named IEWBLIT and IEWBCIE. Since this could
potentially cause conflict with user-created section names, avoid using section
names beginning with the characters IEWB.

For guidance on how to create DLLs and dynamic link libraries, see Building and
Using Dynamic Link Libraries (DLLs) in z/OS Language Environment Programming
Guide.

Creating programs from source modules

32 z/OS V2R2 MVS Program Management: User's Guide and Reference

Chapter 3. Starting the binder

You can invoke the binder as you would any other program: as a job step, a
subprogram or a subtask, and as a TSO or UNIX System Services command. You
can execute the binder as a job step by specifying it on an EXEC job control
statement in the JCL stream; you can execute it as a subprogram or subtask by
using the ATTACH, LINK, LOAD, or XCTL macros. You can execute it under TSO
with the LINK or LOADGO commands or in a UNIX environment with the c89 or
ld commands. This topic describes these methods of invoking the binder.

Note: This section refers to binder processing and output. These concepts apply
equally to linkage editor and batch loader processing unless otherwise noted in
Appendix A, “Using the linkage editor and batch loader,” on page 171. The linkage
editor and batch loader cannot process program objects.

Invoking the binder with JCL
You describe execution of the binder and the data sets used by the binder to the
system with job control language (JCL) statements.

This section summarizes those aspects of JCL that apply to the invocation of the
binder. The major topics covered are the EXEC statement, the DD statements, and
the cataloged procedures for the binder. You should be familiar with JCL as
described in z/OS MVS JCL User's Guide.

Binder JCL example
Figure 9 on page 34 contains an example of some JCL statements to invoke the
binder. You can tailor these statements for your own programming requirements.
These statements are similar to the linkage editor JCL statements. In fact, we
constructed the example by modifying a set of JCL statements originally used to
invoke the linkage editor.

If you need assistance with any of the statements or options, the EXEC statement
parameter options are described in Chapter 6, “Binder options reference,” on page
71 and the input control statements are described in Chapter 7, “Binder control
statement reference,” on page 107. The EXEC and DD statements are described in
the remainder of this topic.

© Copyright IBM Corp. 1991, 2015 33

EXEC statement
The EXEC statement is the first statement of every job step. For the binder job step,
you can specify:
v The program name of the binder
v Binder options passed to the binder program
v Region size requirements for the binder.

EXEC statement—PGM parameter
The PGM parameter on the EXEC statement names the program to be executed.
The binder is executed using these program names:

IEWBLINK
Binds a program module and stores it in a program library. Alternative
names for IEWBLINK are IEWL, LINKEDIT, HEWL, and HEWLH096.

IEWBLDGO
Binds a program module, loads it into virtual storage, and executes it.
Alternative names for IEWBLDGO are IEWLDRGO, LOADER, and
HEWLDRGO.

For example, the following EXEC statement invokes the binder:
//LKED EXEC PGM=IEWBLINK

EXEC statement—PARM field
The EXEC statement can pass various options to the binder using the PARM field.
These options perform the following types of services:
v Assigning module attributes that describe the characteristics of the output

program module
v Invoking special binder processing services (for example, exclusive call and

automatic call)

//LKED EXEC PGM=IEWL,PARM=’XREF,LIST’, IEWL is alias of IEWBLINK
// REGION=2M,COND=(5,LT,prior-step)
//*
//* Define secondary input
//*
//SYSLIB DD DSN=language.library,DISP=SHR optional
//PRIVLIB DD DSN=private.include.library,DISP=SHR optional
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) ignored
//*
//* Define output module library
//*
//SYSLMOD DD DSN=program.library,DISP=SHR required
//SYSPRINT DD SYSOUT=* required
//SYSTERM DD SYSOUT=* optional
//*
//* Define primary input
//*
//SYSLIN DD DSN=&&OBJECT,DISP=(MOD,PASS) required
// DD * In-stream control statements

INCLUDE PRIVLIB(membername)
ENTRY entname
NAME modname(R)

/*

Figure 9. Binder JCL example

Starting the binder

34 z/OS V2R2 MVS Program Management: User's Guide and Reference

v Defining the amount of storage to be used by the binder for processing and
output program library buffers

v Specifying the kind of output the binder is to produce.

These options can be coded in any order in the PARM field, or can be listed in a
data set and included using the OPTIONS keyword.

See Chapter 6, “Binder options reference,” on page 71 for information on
individual options.

Preparing the PARM field to invoke the loader: When you invoke the loader,
(PGM=IEWBLDGO), both the loader and the loaded program options are specified
in the PARM field. The PARM field has this syntax:

The loaded program options, if any, must be separated from the loader options by
a slash (/). If there are no loader options, the program options must begin with a
slash. The entire PARM field can be omitted if there are neither loader nor loaded
program options. Parameters must be enclosed in single quotation marks when
special characters (/ and =) are used.

EXEC statement—REGION parameter
The REGION parameter specifies the maximum amount of storage that can be
allocated to satisfy a request for storage made by the binder. You should normally
not need to specify this parameter if the installation default region size or system
procedures specify enough storage. The recommended minimum region size is 2
MB. While the amount of storage required by the binder is directly related to the
number of pieces being bound together (not necessarily the text size itself, but the
number of CSECTs, load modules, RLDs, etc. being combined), in most cases 2 MB
should be sufficient. The binder executes in 31 bit addressing mode so storage can
be obtained from above the line (if available). The recommended values for region
size are 2048 KB for program modules with a text size of 1024 KB or less, and
twice the text size for program modules with a text size greater than 1024 KB. The
binder usually requires a larger region size than the linkage editor. Unlike the
linkage editor, the binder does not use temporary disk data sets when virtual
storage is exhausted. In addition, the binder can build larger programs than the
linkage editor, and so might need more virtual storage.

DD statements
Every data set that the binder uses must be described with a DD statement. Each
DD statement must have a name, unless data sets are concatenated. The DD
statements for data sets the binder requires have preassigned names, those for
additional input data sets have names you assign, and those for concatenated data
sets (after the first) have no names. When you invoke the binder from another
program, you can allocate some or all of the binder's data sets using dynamic
allocation instead of JCL.

Note:

1. The binder supports all data sets allocated in the extended addressing space
(EAS) of an extended address volume (EAV).

2. The binder supports the following dynamic allocation (DYNALLOC or SVC 99)
options for all data sets: S99TIOEX(XTIOT), S99ACUCB(NOCAPTURE), and
S99DSABA(DSAB above the line).

,PARM='[loaderoptions][/programoptions]'

Starting the binder

Chapter 3. Starting the binder 35

Binder DD statements
The binder uses eight types of data sets. Some are required, and the DD statements
for all but two use the preassigned ddnames shown in Table 2. The following
descriptions give device and data set information for each binder data set.

Table 2. Binder DDNAMES

Data set ddname Required

Primary input data set SYSLIN Yes

Options data set any name Required when OPTIONS=ddname
coded in PARM field of EXEC
statement.

IEWPARMS No

Automatic call library SYSLIB Only if automatic library call is
used

Other include library or sequential
data set

any name Required when referenced on
INCLUDE statement

Diagnostic output data set SYSPRINT
SYSLOUT

SYSPRINT is required when using
the IEWBLINK entry point.

Output module library SYSLMOD Required when using the
IEWBLINK entry point.

Alternate output data set SYSTERM Only if the TERM option is
specified

Output data set for side file (import
records used during dynamic
binding)

SYSDEFSD No

SYSLIN DD statement: The SYSLIN DD statement is required. This statement
describes the primary input data set, which can be a sequential data set, a
partitioned data set member, a PDSE member, an in-stream data set, or a z/OS
UNIX file. If it is a z/OS UNIX file, you must specify the PATH parameter.

Each data set in the primary input must contain object modules and control
statements, load modules, or program objects. They cannot be mixed within a data
set except that control statements can appear before or after an object module in
the same data set. Data sets can be concatenated under the SYSLIN DD statement
to define the primary input. The binder does not support concatenation of z/OS
UNIX files.

“Defining the primary input” on page 46 contains information about input
requirements.

The data characteristics vary by data type and are shown in Table 3.

Table 3. SYSLIN data set DCB parameters. This table shows the logical record length, block
size, and record format.

LRECL BLKSIZE RECFM

80 80 F, FS, OBJ, XOBJ, control statements, and
GOFF

80 32720 (maximum size) FB, FBS OBJ, XOBJ, control statements, and
GOFF

84+ 32720 (maximum size) V, VB, GOFF object modules

Starting the binder

36 z/OS V2R2 MVS Program Management: User's Guide and Reference

Table 3. SYSLIN data set DCB parameters (continued). This table shows the logical record
length, block size, and record format.

LRECL BLKSIZE RECFM

n/a 32720 (maximum size) U, load modules

n/a 4096 U, program objects

Options data set: A DD statement defining an options data set is required if the
OPTIONS keyword has been included in the PARM field of the EXEC statement.
When the OPTIONS keyword is included, some or all of the processing and
attribute options are encoded in a data set instead of in the PARM field. See
“OPTIONS: Options option” on page 94 for information on how to code the
options data.

The options DD statement is coded using the same ddname as specified on the
OPTIONS keyword. The DSNAME parameter references an existing file containing
80-byte records. It can be a sequential data set, a member of a partitioned data set,
a z/OS UNIX file sequential data set, or a concatenation of sequential data sets.

IEWPARMS DD statement: The IEWPARMS DD statement is optional. The
DSNAME parameter on the IEWPARMS DD references to an existing file
containing 80-byte records. The data set can be a sequential data set, a member of
a partitioned data set, a z/OS UNIX file sequential data set, or a concatenation of
sequential data sets.

SYSLIB DD statement: The SYSLIB DD statement is required if your program
has external references that have not been resolved explicitly, unless you have
specified the NOCALL option. This DD statement describes the automatic call
library, which must reside on a direct access storage device. The data set must be a
library and you must not specify member names. You can concatenate any
combination of object module libraries and program libraries for the call library. If
object module libraries are used, the call library can also contain any control
statements other than INCLUDE, LIBRARY, and NAME. If this DD statement
specifies a z/OS UNIX file, you can specify either a z/OS UNIX archive library or
a PATH parameter that designates a directory.

The required data characteristics for object module libraries are the same as those
shown in Table 3 on page 36. For program libraries, a record format of U is
required. For partitioned data set program libraries, the maximum block size is
equal to the maximum for the device used, not the record read. For PDSE program
libraries, the block size is 4 KB. You do not specify a value.

The binder does not support z/OS UNIX files as part of a concatenation.

SYSPRINT and SYSLOUT DD statements: If you use IEWBLINK or an alias of
IEWBLINK, the SYSPRINT DD statement is required. If you use IEWBLDGO or
one of its aliases, you can include a SYSLOUT DD statement, but SYSLOUT is not
required. Both SYSPRINT and SYSLOUT describe the diagnostic output data set,
which can be a sequential data set assigned to a printer or to a temporary storage
device. If a temporary storage device is used, the data records contain an ANSI
control character as the first byte.

The usual specification for this data set is SYSOUT=*. The binder uses a logical
record length of 121 and a record format of FBA and allows the system to
determine an appropriate block size.

Starting the binder

Chapter 3. Starting the binder 37

Table 4 shows the data set requirements for SYSPRINT and SYSLOUT. Block size is
the only information that you can provide.

Table 4. SYSPRINT and SYSLOUT DCB parameters. This table shows the logical record
length, block size, and record format.

LRECL BLKSIZE RECFM

121 121 FA

121 32670 (maximum size) FBA

125 VA or VBA

SYSPRINT or SYSLOUT can also be assigned to a z/OS UNIX file. In this case,
FILEDATA=TEXT must also be specified.

SYSLMOD DD statement: The following SYSLMOD information applies only to
the batch interface of the binder:
v The SYSLMOD DD statement is required. It describes the output program

library, which must be a partitioned data set, a PDSE, or a z/OS UNIX file. If it
is a z/OS UNIX file, you must specify the PATH parameter. z/OS UNIX supports
the use of an alternate ddname for SYSLMOD.

v A member name can be specified on the SYSLMOD DD statement. If a member
name is specified, it is used only if a name was not specified on a NAME
control statement. This member name must conform to the rules for the name on
the NAME control statement (see “NAME statement” on page 129).

v If SYSLMOD is referenced by an INCLUDE statement, a member name on the
DD statement must be the name of an existing member.

Note: If you specify the PATH parameter on this DD statement, but do not
specify PATHOPTS or PATHMODE, the binder assigns attributes for the created file
that allow only the file owner to have read, write, and execute authority.

v When a NAME statement is not used and a member name is supplied on the
SYSLMOD DD statement, the behavior is to REPLACE (just as when using
NAME with (R), or SAVEW with REPLACE=YES).

The following SYSLMOD information applies to both the batch interface and the
Application Programming Interface of the binder:
v If the member replaces an identically named member in an existing library, the

disposition should be OLD or SHR.
v If the member is added to an existing library, the disposition should be MOD,

OLD, or SHR.
v If no library exists and the member is the first added to a new library, the

disposition should be NEW or MOD.
v If the member is added to an existing library that can be used concurrently by

other users in the system or in other systems sharing the library, the disposition
should be SHR.

v Programs which call the binder can specify a different DD name to replace
SYSLMOD. All references here to SYSLMOD also apply to that replacement
name.

v If SYSLMOD defines a NEW data set, do not specify the RLSE subparameter
because the binder closes the data set after saving each member.

v Do not specify the FREE=CLOSE parameter on the SYSLMOD dataset, whether
it is NEW or OLD.

Starting the binder

38 z/OS V2R2 MVS Program Management: User's Guide and Reference

v The binder writes data to a PDS or PDSE in RECFM=U format.
– If the data set is being created in this step without an explicit RECFM, or

already exists but has no record format, the binder will set its record format
to U.

– If the data set already has a record format other than U, the binder will not
write to it unless you provide an explicit override of RECFM=U.
- A PDSE cannot contain a mixture of program objects with other data, so an

explicit override of RECFM=U is likely to fail in that case.
- A PDS can contain a mixture of load modules with other data, but

overriding the data set record format may interfere with access to other
data in the PDS.

v The binder always assigns a block size of 4 KB to a program object. Procedures
used by the binder to assign block size to a load module are:
1. If the data set is new:

a. When the DCBS option is not specified
– When the data set is created without a block size, the block size is the

maximum supported by the access method for that device type.
– When the data set is created with a block size, the block size specified

on the DD statement is used if it is smaller than the maximum block
size supported by the device.

– Certain of the binder options can restrict the blocksize. The block size
is:
- 1KB if the DC option is specified,
- the value specified on the MAXBLK option,
- one-half the value specified for value2 on the SIZE option,

b. When the DCBS option is specified, the block size is the smaller of:
– The maximum block size for the device
– The value of the BLKSIZE parameter on the SYSLMOD DD statement
– The actual output buffer length.

c. The minimum block size is 256 bytes.
2. If the data set already exists:

– When the DCBS option is not specified, the larger of the existing block
size or 256 bytes is used.

– See “DCBS option” on page 85 for the block size determination when the
block size exists and the DCBS option is specified.

In the following example, the SYSLMOD DD statement specifies a permanent
partitioned data set library on an IBM 3390 direct access storage device:
//SYSLMOD DD DSNAME=USER.USERLIB(TAXES),DISP=NEW,UNIT=3390,...

The binder assigns a record format of U and a block size of 32760 bytes. However,
consider the following example:
//LKED EXEC PGM=IEWBLINK,PARM=’XREF,DCBS’...
//SYSLMOD DD DSNAME=USER.USERLIB(TAXES),DISP=SHR,UNIT=3390,
// DCB=BLKSIZE=8000

The binder still assigns a record format of U, but the block size is 8000 bytes rather
than 32760 bytes because of the use of the DCBS option.

Starting the binder

Chapter 3. Starting the binder 39

SYSTERM DD statement: The SYSTERM DD statement is optional. It defines a
data set for binder messages that supplements the SYSPRINT data set.

SYSTERM output is defined by including a SYSTERM DD statement and
specifying TERM in the PARM field of the EXEC statement. SYSTERM output
consists of messages that are written to both the SYSTERM and SYSPRINT data
sets.

The following example shows the SYSTERM DD statement used to specify the
system output unit:
//SYSTERM DD SYSOUT=A

The data set characteristics for SYSTERM (LRECL=80 and RECFM=FB) are
supplied by the binder. The block size can be any multiple of 80 bytes acceptable
to the hardware. If necessary, the binder modifies the data set characteristics of an
existing data set to enforce the LRECL and RECFM values. SYSTERM can also be
allocated to a z/OS UNIX file. In this case, FILEDATA=TEXT must also be
specified.

SYSDEFSD DD statement: When the DYNAM(DLL) option is used to build a
DLL module, a side file might be generated along with it. The side file is saved in
the data set represented by the SYSDEFSD ddname. The side file contains the
symbols from which other DLLs can import; that is, which symbols the DLL
“exports”. Consequently, a side file contains a collection of IMPORT control
statements that can be used by other DLLs in order to resolve their own external
references during dynamic linking.

SYSDEFSD can be a sequential data set, a z/OS UNIX file, a PDS, or a PDSE. If
your job binds multiple DLLs and SYSDEFSD represents a sequential data set or a
z/OS UNIX file, the side file records of a given DLL can overwrite or append to
the records of a previously saved side file, depending on the DISP or PATHOPTS
parameter of your side file ddname.

If SYSDEFSD is a PDS or a PDSE, the binder saves the side file as a member of the
indicated partitioned data set. The binder progresses through the following sources
until it determines the name to use for the side file:
1. The binder uses the member name specified in the JCL for the SYSDEFSD DD.

Note that in this case the side file is treated as a sequential file.
2. If no member was specified, the binder uses the name specified in the NAME

control statement for the saved DLL.
3. If there is no NAME control statement, the binder uses the name expressed in

the JCL SYSLMOD DD statement.

The SYSDEFSD DD statement is optional. However, when it is absent, the binder
issues a warning message if at bind time a module (DLL) generates export records
and the DYNAM(DLL) binder option has been specified. Note that the side file can
be referred to as the definition side deck by other products.

Table 5 shows the data set requirements for SYSDEFSD.

Table 5. SYSDEFSD DCB parameters. This table shows the logical record length, block size,
and record format.

LRECL BLKSIZE RECFM

80 32760 (maximum size) F,FB

Starting the binder

40 z/OS V2R2 MVS Program Management: User's Guide and Reference

Additional DD statements
Each ddname specified on an AUTOCALL, INCLUDE or LIBRARY control
statement must be defined with a DD statement. These DD statements describe
sequential data sets, partitioned data sets, PDSEs, or z/OS UNIX files. With the
exception of z/OS UNIX files, the DD statement may describe a concatenation of
object module libraries and program libraries.

You specify the ddnames along with any other necessary information. The
requirements for these data sets are shown in Table 6.

Table 6. INCLUDE and LIBRARY control statements DCB parameters. This table shows the
logical record length, block size, and record format.

Data set contents LRECL BLKSIZE RECFM

Object modules or control
statements

80 80 80 32760 (maximum) F, FS FB,
FBS

Load modules Ignored Maximum for device, or value
specified on the MAXBLK
option, whichever is smaller

U

Program objects Ignored 4096 U

Binder cataloged procedures
The MVS operating system allows you to store job control statements under a
unique member name in a procedure library. Such a series of statements is called a
cataloged procedure. These JCL statements can be recalled at any time to specify the
requirements for a job. To request this procedure, place an EXEC statement in the
input stream. This EXEC statement specifies the unique member name of the
desired procedure.

The specifications in a cataloged procedure can be temporarily overridden, and DD
statements can be added. The information that you alter is in effect only for the
duration of the job step; the cataloged procedures are not altered permanently. Any
additional DD statements that you supply must follow those that override existing
JCL statements in the same procedure step. For more information on using
cataloged procedures, see z/OS MVS JCL User's Guide.

Two binder cataloged procedures are provided: a single-step procedure that binds
the input and produces a program module (LKED procedure), and a two-step
procedure that binds the input, produces a program module, and executes that
module (LKEDG procedure). Many of the cataloged procedures provided for
language translators also contain binder steps. The EXEC and DD statement
specifications in these steps are similar to the specifications in the cataloged
procedures described in the following paragraphs.

LKED procedure
LKED is a single-step procedure that binds the input, produces a program module,
and passes the module to another step in the same job.
//LKED EXEC PGM=HEWLH096,PARM=’MSGLEVEL(4),XREF,LIST,LET,NCAL’,
// REGION=2M
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(GO),SPACE=(1024,(50,20,1)),
// UNIT=SYSDA,DISP=(MOD,PASS)

Statement description: A description of the statements in the procedure follows:

Starting the binder

Chapter 3. Starting the binder 41

EXEC
The PARM field specifies the NCAL option. If an automatic call library is used,
you must override the NCAL option and add a SYSLIB DD statement.

SYSPRINT
Specifies the SYSOUT class A, which is either a printer or a temporary storage
device. If a temporary storage device is used, ANSI control characters
accompany the data to be printed.

SYSLIN
The specification of DDNAME=SYSIN allows you to specify any input data as
long as it fulfills the requirements for binder input. You must define the input
data with a SYSIN DD statement. This data can be either in the input stream
or reside in one or more separate data sets.

If the data is in the input stream, use the following DD statement:
//LKED.SYSIN DD *

Place the SYSIN statement following all overriding DD statements for the
LKED catalog procedure. The object module decks and control statements
should follow the SYSIN statement, with a delimiter statement (/*) at the end
of the input.

If the data resides in separate data sets, use the following DD statement:
//LKED.SYSIN DD (parameters describing the input data set)

Place the SYSIN statement following all overriding DD statements for the
LKED catalog procedure. Several data sets can be concatenated as described in
Chapter 4, “Defining input to the binder,” on page 45.

SYSLMOD
Specifies a temporary data set and a general space allocation. The disposition
allows the next job step to execute the program module. If the module is to
reside permanently in a library, these general specifications must be
overridden.

Invoking the LKED procedure: To invoke the LKED procedure, code the
following EXEC statement:
//stepname EXEC LKED

The following example shows a sample JCL sequence for using the LKED
procedure in one step to bind object modules to produce a program module, then
execute the program module in a subsequent step.
//LESTEP EXEC LKED

(Overriding and additional DD statements for the LKED step)
//LKED.SYSIN DD *

(Object module decks and control statements)
//EXSTEP EXEC PGM=*.LESTEP.LKED.SYSLMOD

(DD statements and data for load module execution)

LESTEP invokes the LKED procedure and EXSTEP executes the program module
produced by LESTEP.

LKEDG procedure
LKEDG is a two-step procedure that binds the input, produces a program module,
and executes that module. The statements in this procedure are shown in the
following example. The two procedure steps are named LKED and GO. The
specifications in the statements in the LKED step are identical to the specifications
in the LKED procedure.

Starting the binder

42 z/OS V2R2 MVS Program Management: User's Guide and Reference

//LKED EXEC PGM=HEWLH096,PARM=’MSGLEVEL(4),XREF,LIST,NCAL’,
// REGION=2M
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(GO),SPACE=(1024,(50,20,1)),
// UNIT=SYSDA,DISP=(MOD,PASS)
//GO EXEC PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED)

GO Step
The EXEC statement specifies that the program to be executed is the program
module produced in the LKED step of this job. This module was stored in the
data set described on the SYSLMOD DD statement in that step. (If a NAME
statement was used to specify a member name other than that used on the
SYSLMOD statement, use the LKED procedure and provide your own GO
step.)

The condition parameter specifies that the execution step is bypassed if the
return code issued by the LKED step is greater than 4.

Invoking the LKEDG procedure: To invoke the LKEDG procedure, code the
following EXEC statement:
//stepname EXEC LKEDG

The following example shows a sample JCL sequence for using the LKEDG
procedure to bind object modules, produce a program module, and execute that
module.
//TWOSTEP EXEC LKEDG

(Overriding and additional DD statements for the LKED step)
//LKED.SYSIN DD *

(Object module decks or control statements, or both)
/*

(DD statements for the GO step)
//GO.SYSIN DD *

(Data for the GO step)
/*

Invoking the binder under TSO
You can invoke the binder under TSO (Time Sharing Option) with the LINK and
LOADGO commands. You may also be able to run it from an ISPF foreground
panel, and if you want to do all of the allocations yourself, you can use CALL.

The LINK command creates a program module and saves it in either a partitioned
data set or PDSE program library.

When using the LINK command to process binder control statements, you must
allocate any referenced ddnames before the LINK command is invoked. The binder
gives you the capability of including modules and control statements from the
automatic call library (SYSLIB) or including program modules from the module
output library (SYSLMOD). If you specify SYSLIB or SYSLMOD on an INCLUDE
statement but have not allocated data sets to those ddnames, the binder will
attempt to process the INCLUDE statement using the data sets indicated on the
LIB or LOAD parameters, respectively.

The LOADGO command creates and executes a program module. The module is
not saved in a program library. The LOADGO command invokes a prompter that
allows you to define any necessary data sets to the system; you can use LOADGO
operands to specify the loading options the job requires.

Starting the binder

Chapter 3. Starting the binder 43

To use the TSO CALL command, you first need to use ALLOCATE to set up file
names corresponding to the JCL DD statements described earlier in this topic.
Then, use the following command to invoke the binder:
CALL *(IEWL) ’options’

See z/OS TSO/E Command Reference for the procedures for using these commands.

Invoking the binder from the z/OS UNIX Shell
You can invoke the binder from the z/OS UNIX shell using the c89 and the ld
commands. See z/OS UNIX System Services Command Reference for more
information.

Invoking the Binder from a program
You can pass control to the binder from a program in one of two ways:
1. As a subprogram, with the execution of a CALL macro instruction (after the

execution of a LOAD macro instruction), a LINK macro instruction, or an XCTL
macro instruction.

2. As a subtask with the execution of the ATTACH macro instruction.

You can also request binder services through either of two application
programming interfaces. For additional information, see z/OS MVS Program
Management: Advanced Facilities.

Starting the binder

44 z/OS V2R2 MVS Program Management: User's Guide and Reference

Chapter 4. Defining input to the binder

Batch input to the binder consists of the primary input data set and additional data
sets. You define the primary input data set using job control statements. You can
include more modules by specifying additional control statements and by directing
the binder to use call libraries.

Input data sets can contain control statements, object modules of any type, load
modules and program objects. The following table shows the data set types in
which data can reside.

Sequential data
set

PDS member PDSE member z/OS UNIX file

Control
Statements

X X X X

Object Modules
(all types)

X X X X

Load Modules X

Program Objects X X

A single library member can contain only one program object or load module, but
any number of control statements and object modules in combination.

z/OS UNIX files can contain binder input of all types except load modules. You
specify z/OS UNIX either by coding the PATH parameter on your JCL or by
providing the path name on the INCLUDE or AUTOCALL control statements. See
Chapter 7, “Binder control statement reference,” on page 107 for more information.
Where sequential processing or archive file access is required, you must include
the full file name on the PATH parameter; otherwise, code only the directory name
for PATH, omitting the last level of qualification (file name). The file name will be
supplied by the binder, either from the INCLUDE statement or from the
unresolved reference during autocall.

In addition to the data set type, you must consider how the binder will access the
data set. Sequential access requires that a physical sequential data set be specified
or that a member name be specified with the library dsname. Partitioned access
requires that a partitioned data set, PDSE, z/OS UNIX archive file, or z/OS UNIX
directory be specified without an associated member or file name. Access
requirements depend on the time that the input is required:
v Primary input is accessed sequentially. Any library in the concatenation must

include a member name with the dsname or path.
v Secondary (included) input can be either sequential or partitioned. If partitioned,

the member name(s) must be specified on the INCLUDE control statement.
v Autocalled input must be partitioned.

The binder supports mixed concatenations of the above, with the following
exceptions:
v You must not mix data set types in a single concatenation. All concatenated data

sets must be either partitioned or sequential, not both. A PDS or PDSE member
is treated as a sequential data set

© Copyright IBM Corp. 1991, 2015 45

v The binder does not support z/OS UNIX files concatenated with other z/OS
UNIX files or data sets of any type.

Note: This topic refers to binder processing and input. These concepts apply
equally to linkage editor and batch loader processing unless noted otherwise in
Appendix A, “Using the linkage editor and batch loader,” on page 171. The linkage
editor and batch loader cannot process program objects, extended object modules,
GOFF modules, s or z/OS UNIX files.

Defining the primary input
The primary input, required for every binder job step, is defined on a DD
statement with the ddname SYSLIN. Primary input can be:
v A sequential data set
v A member of a partitioned data set (PDS)
v A member of a partitioned data set extended (PDSE)
v Concatenated sequential data sets, or members of partitioned data sets or PDSEs,

or a combination
v A z/OS UNIX file.

The primary data set can contain object modules, control statements, load modules
and program objects. All modules and control statements are processed
sequentially and their order determines the order of binder processing. The order
of the sections after processing, however, might not match the input sequence.

The following examples show the statements needed to define input to the binder.

Object modules, load modules and program objects
Primary input to the binder can be one or more object modules, load modules or
program objects. The modules are created and passed by a previous job step or
created in a separate job.

As a member of a partitioned data set or PDSE
You can use a module in a partitioned data set or PDSE as primary input to the
binder by specifying its data set name and member name on the SYSLIN DD
statement. In the following example, the member named TAXCOMP in the object
module library USER.LIBROUT is the primary input. USER.LIBROUT is a
cataloged data set:
//SYSLIN DD DSNAME=USER.LIBROUT(TAXCOMP),DISP=SHR

The library member is processed as if it were a sequential data set.

Members of partitioned data sets or PDSEs can be concatenated with other input
data sets, as follows:
//SYSLIN DD DSNAME=USER.OBJMOD,DISP=SHR,...
// DD DSNAME=USER.LIBROUT(TAXCOMP),DISP=SHR

Library member TAXCOMP is concatenated to data set USER.OBJMOD.

Passed from a previous job step
A module used as input can be passed from a previous job step to a binder job
step in the same job (for example, the output from the compiler is direct input to
the binder). In the following example, an object module that was created in a
previous job step (STEPA) is passed to the binder job step (STEPB):

Input into the binder

46 z/OS V2R2 MVS Program Management: User's Guide and Reference

//STEPA EXEC
//SYSGO DD DSNAME=&&OBJECT,DISP=(NEW,PASS),......
//STEPB EXEC
//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)

The temporary data set name &&OBJECT, used in both job steps, identifies the
object module as the output of the language processor on the SYSGO DD
statement, and as the primary input to the binder on the SYSLIN DD statement.

Created in a separate job
If the only input to the binder is an object module from a previous job, the SYSLIN
DD statement contains the information needed to locate the object module. For
example:
//SYSLIN DD DSNAME=USER.OBJMOD,DISP=(OLD,DELETE)

Control statements
The primary input data set can consist solely of control statements. When the
primary input is control statements, input modules are specified on INCLUDE
control statements (see “Secondary (included) input” on page 48). The control
statements can be either placed in the input stream or stored in a data set.

In the following example, the primary input consists of control statements in the
input stream:
//SYSLIN DD *

Binder Control Statements
/*

In the next example, the primary input consists of control statements stored in the
member INCLUDES in the data set USER.CTLSTMTS:
//SYSLIN DD DSNAME=USER.CTLSTMTS(INCLUDES),DISP=SHR,...

In either case, the control statements can be any of those described in Chapter 7,
“Binder control statement reference,” on page 107.

Modules and control statements
The primary input to the binder can contain modules and control statements. The
object modules and control statements can be in the same data set or in different
data sets, but cannot be mixed in the same data set with load modules or program
objects.

If the modules and statements are in the same data set, this data set is specified in
the SYSLIN DD statement. If the modules and statements are in different data sets,
the data sets are concatenated. The binder accepts concatenated object modules,
load modules and program objects as primary input. However, the binder does not
support z/OS UNIX files as part of a concatenation. The control statements can be
defined either in the input stream or as a separate data set.

Control statements in the input stream
Control statements can be placed in the input stream and concatenated to an object
module data set, as follows:
//SYSLIN DD DSNAME=&&OBJECT,...
// DD *

Binder Control Statements
/*

Input into the binder

Chapter 4. Defining input to the binder 47

Another method of handling control statements in the input stream is to use the
DDNAME parameter, as follows:
//SYSLIN DD DSNAME=&&OBJECT,...
// DD DDNAME=SYSIN

.

.

.
//SYSIN DD *

Binder Control Statements
/*

Note: The binder cataloged procedures use DDNAME=SYSIN for the SYSLIN DD
statement to specify the primary input data set required.

Control statements in a separate data set
A separate data set that contains control statements can be concatenated to a data
set that contains an object module. Control statements for a frequently used
procedure (for example, a series of INCLUDE statements) can be stored
permanently. In the following example, the members of data set USER.CTLSTMTS
contain binder control statements. One of the members is concatenated to data set
&&OBJECT.
//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE),...
// DD DSNAME=USER.CTLSTMTS(MEDIA),DISP=SHR,...

The control statements in the member named MEDIA of the data set
USER.CTLSTMTS are used to structure the resultant module.

Secondary (included) input
The INCLUDE control statement requests that the binder use additional data sets
as input. These can be any of the sequential data set types acceptable for primary
input.

In addition, INCLUDE can refer to private libraries rather than sequential files.
Concatenations must contain only libraries or sequential files (including library
members), not both.

The INCLUDE statement specifies the ddname of a DD statement that describes
the data set to be used as additional input. If the DD statement describes a library
(partitioned data set, PDSE, or z/OS UNIX directory) the INCLUDE statement also
contains the name of each member to be used. See “INCLUDE statement” on page
121 for the syntax of the INCLUDE statement.

When an INCLUDE control statement is encountered, the binder processes the
module or modules indicated. Figure 10 on page 49 shows the processing of an
INCLUDE statement. In the illustration, the primary input data set is a sequential
data set named OBJMOD that contains an INCLUDE statement. After processing
the included data set, the binder processes the next primary input item. The
arrows indicate the flow of processing.

If an included data set also contains an INCLUDE statement, that INCLUDE is
processed at the time it is encountered, effectively nesting includes. Any number of
nested INCLUDE statements are possible with the binder. Figure 10 on page 49
demonstrates the flow of processing for single INCLUDE statements. Note that the
binder returns to the Include module after processing the included module
whereas the linkage editor does not.

Input into the binder

48 z/OS V2R2 MVS Program Management: User's Guide and Reference

Figure 11 demonstrates the flow of processing for nested INCLUDE statements.

Including sequential data sets
Sequential data sets containing object modules or control statements, or both, can
be specified by an INCLUDE control statement. In the following example, an
INCLUDE statement specifies the ddnames of two sequential data sets to be used
as additional input:
//ACCOUNTS DD DSNAME=PROJECT.ACCTROUT,DISP=SHR,...
//INVENTRY DD DSNAME=PROJECT.INVENTRY,DISP=SHR,...
//SYSLIN DD DSNAME=PROJECT.QTREND,...
// DD *

INCLUDE ACCOUNTS,INVENTRY
/*

Each ddname could have been specified on a separate INCLUDE statement. Using
either method a DD statement must be specified for each ddname.

Primary Input
Data Set OBJMOD

Include OBJLIB (MODA)

Library OBJLIB
Member MODA

Figure 10. Processing of one INCLUDE control statement

Primary Input
Data Set SYSLIN

Include OBJMOD

Sequential
Data Set OBJMOD

Include OBJLIB
(MODA)

Library OBJLIB
Member MODA

Figure 11. Processing of nested INCLUDE control statements

Input into the binder

Chapter 4. Defining input to the binder 49

Another method of performing the preceding example is given in “Including
concatenated data sets” on page 52.

Including UNIX Files
z/OS UNIX files can be specified directly on an INCLUDE statement, or indirectly
through DD statements that in turn reference z/OS UNIX files. See “Example 2”
on page 123 for examples of both.

If you specify the UNIX file indirectly through a DD statement, you must specify
an absolute (beginning with "/").

When you specify the UNIX file indirectly, you may either put the whole path in
the DD statement and INCLUDE the DD name (such as in “Example A: Putting
the whole path in the DD statement”), or use a "member syntax" in the INCLUDE
statement (as in Examples B, C, and D).

Example A: Putting the whole path in the DD statement
In this example INPUT is the DD name for the file to be included. PATH= in this
case specifies a whole path which must be in quotation marks because it contains
lower case letters. INPUT is then used in the INCLUDE statement:
//INPUT DD PATH=’/u/userid/hello.o’,PATHDISP=(KEEP,KEEP)
//SYSLMOD DD DSN=USERID.PDSE.LOAD,DISP=SHR
//SYSLIN DD *

INCLUDE -IMPORTS,-ATTR,INPUT
NAME TEST(R)

/*

When you use "member syntax" in the INCLUDE statement, rather than putting
the whole path in the DD statement, you put a directory path in the DD statement,
and then in the INCLUDE statement you specify the file in the directory you want
included. In this case, there are three rules to remember. First, the PATH= in the
DD statement must point to a directory, not a file. As before, the path should be in
quotation marks if it contains lower case letters.

Secondly, you must put information needed to locate the file within the directory
in the INCLUDE statement.

Finally, if the information in the INCLUDE statement is lower or mixed case, it
must be quoted, unless CASE=MIXED is specified as an invocation option.
Examples B, C, and D show three ways to do this.

Example B: Putting a directory path in the DD statement and
filename in the INCLUDE statement
As in “Example A: Putting the whole path in the DD statement,” the same file,
hello.o is specified, but in this case, the DD name INPUT specifies what directory
it is in, and the file name is specified within parentheses in the INCLUDE
statement.
//INPUT DD PATH=’/u/userid/’,PATHDISP=(KEEP,KEEP)
//SYSLMOD DD DSN=USERID.PDSE.LOAD,DISP=SHR
//SYSLIN DD *

INCLUDE -IMPORTS,-ATTR,INPUT(’hello.o’)
NAME TEST(R)

/*

The INCLUDE "member" can also contain additional directory information. This
means you can specify a directory path in the DD statement, and then a
subdirectory and file stemming from that directory in the INCLUDE statement.

Input into the binder

50 z/OS V2R2 MVS Program Management: User's Guide and Reference

“Example C: Putting a directory path in the DD statement and a subdirectory path
in the INCLUDE statement” and “Example D: Putting a directory path in the DD
statement and using dot notation in the INCLUDE statement” illustrate this.

Example C: Putting a directory path in the DD statement and a
subdirectory path in the INCLUDE statement
In this example, hello.o is in a subdirectory, subdir. INPUT specifies the directory
that subdir is in, and the INCLUDE statement specifies the subdirectory and file
name. A second file, goodbye.o is also included that is in the main directory, not in
subdir.
//INPUT DD PATH=’/u/userid/’,PATHDISP=(KEEP,KEEP)
//SYSLMOD DD DSN=USERID.PDSE.LOAD,DISP=SHR
//SYSLIN DD *

INCLUDE -IMPORTS,-ATTR,INPUT(’subdir/hello.o’,’goodbye.o’)
NAME TEST(R)

/*

Example D: Putting a directory path in the DD statement and
using dot notation in the INCLUDE statement
As in “Example C: Putting a directory path in the DD statement and a
subdirectory path in the INCLUDE statement,” hello.o is a file in subdir, but now
DD statement INPUT specifies a directory path to sub2, which is a subdirectory
within subdir. The file goodnight.o is in sub2 and it is included by specifying its
file name in the INCLUDE statement. The file hello.o is in the parent directory
(subdir) to sub2. In this case UNIX dot notation must be used show that hello.o
can be found in sub2's parent directory. For more on dot notation, see z/OS V2R2.0
UNIX System Services User's Guide.
//INPUT DD PATH=’/u/userid/subdir/sub2/’,PATHDISP=(KEEP,KEEP)
//SYSLMOD DD DSN=USERID.PDSE.LOAD,DISP=SHR
//SYSLIN DD *

INCLUDE -IMPORTS,-ATTR,INPUT(’../hello.o’,’goodnight.o’)
NAME TEST(R)

/*

Including library members
DD statements referred to by an INCLUDE statement can define a library of files,
either by pointing to a PDS or PDSE, or by pointing to a UNIX directory. The
INCLUDE statement can then specify "members" of that library to be included. For
a PDS or PDSE the member names are looked up in the data set directories. For a
UNIX path the "members" listed in the INCLUDE statement are actually names of
file within the directory. There may also be subdirectory path information attached
to the file names.

Note that it is always possible to name a specific PDS or PDSE member, or UNIX
file name, on the DD statement, and show only the DD name on the INCLUDE
statement. From the binder perspective this is including sequential data.

See “Including UNIX Files” on page 50 for more information on including UNIX
files.

In the following example, one member name is specified on the INCLUDE
statement.

Input into the binder

Chapter 4. Defining input to the binder 51

//PAYROLL DD DSNAME=PROJECT.PAYROUTS,DISP=SHR,...
//SYSLIN DD DSNAME=&&CHECKS,DISP=(OLD,DELETE),...
// DD *

INCLUDE PAYROLL(FICA)
/*

If more than one member of a library is to be included, the INCLUDE statement
specifies all the members to be used from that library. The member names appear
in parentheses following the ddname of the library, and must not appear on the
DD statement.

In the following example, an INCLUDE statement specifies two members from
each of two libraries to be used as additional input:
//PAYROLL DD DSNAME=PROJECT.PAYROUTS,DISP=SHR,...
//ATTEND DD DSNAME=PROJECT.ATTROUTS,DISP=SHR,...
//SYSLIN DD *

INCLUDE PAYROLL(FICA,TAX),ATTEND(ABSENCE,OVERTIME)
/*

Each library could have been specified on a separate INCLUDE statement. Using
either method a DD statement must be specified for each ddname.

Including concatenated data sets
Several data sets can be designated as input with one INCLUDE statement that
specifies one ddname. Additional data sets are concatenated to the data set
described on the specified DD statement. There are two types of concatenation,
described separately below. With either type, you can concatenate data sets with
unlike characteristics, such as record format and record length.

Note however, that the binder does not support concatenation of z/OS UNIX files.

Sequential concatenation
This form of concatenation is used when the INCLUDE statement provides a
ddname but no member names. The concatenated data sets can be sequential files,
or they can be members of partitioned data sets with the member name included
in the DD statement. Each data set or member listed in the concatenation may
contain a load module, a program object, or any combination of control statements
and object modules.

In the following example, two sequential data sets are concatenated and then
specified as input with one INCLUDE statement:
//CONCAT DD DSNAME=PROJECT.ACCTROUT,DISP=SHR,...
// DD DSNAME=PROJECT.INVENTRY,DISP=SHR,...
//SYSLIN DD DSNAME=PROJECT.SALES,DISP=OLD,...
// DD *

INCLUDE CONCAT
/*

When the INCLUDE statement is recognized, the contents of the sequential data
sets PROJECT.ACCTROUT and PROJECT.INVENTRY are processed.

Library concatenation
This form of concatenation is used when the INCLUDE statement provides one or
more member names. The concatenated data sets must all be partitioned data sets
without any member name included in the DD statement. Each member referenced
by the INCLUDE statement may contain a load module, a program object, or any
combination of control statements and object modules.

Input into the binder

52 z/OS V2R2 MVS Program Management: User's Guide and Reference

Members from more than one library can be designated as input with one ddname
on an INCLUDE statement. In this case, all the members are listed on the
INCLUDE statement. The partitioned data sets or PDSEs are concatenated using
the ddname from the INCLUDE statement:
//CONCAT DD DSNAME=PROJECT.PAYROUTS,DISP=SHR,...
// DD DSNAME=PROJECT.ATTROUTS,DISP=SHR,...
//SYSLIN DD DSNAME=PROJECT.REPORT,DISP=OLD,...
// DD *

INCLUDE CONCAT(FICA,TAX,ABSENCE,OVERTIME)
/*

When the INCLUDE statement is read, the two libraries PROJECT.PAYROUTS and
PROJECT.ATTROUTS are searched for the four members and the members are
processed as input. Library directories are searched in the order of library
appearance in the JCL.

Resolving external references
You can request that the binder automatically search libraries to resolve external
references that were not resolved during primary and secondary input processing.
The binder can also process unresolved external references found in modules from
additional data sources.

Note: The following discussion of automatic library call services does not apply to
unresolved weak external references. They are left unresolved unless resolved to
external symbols defined by modules included in the process of resolving other
external references.

There are three ways to obtain automatic library call:
1. By providing AUTOCALL control statements. This is called incremental

autocall and is processed at the time the control statement is encountered,
using a source specified on the statement.

2. By providing LIBRARY control statements which specify sources to resolve
references. Processing for these statements is deferred until all primary and
secondary input sources have been exhausted.

3. By default if unresolved references remain at the end of the processing. The
SYSLIB DD is used for this autocall.

There are also two ways to suppress automatic library call processing:
1. By providing an NCAL (or NOCALL) invocation option. This suppresses all

automatic library call processing.
2. By providing LIBRARY control statements which specify names of external

references that should not be resolved by automatic library call.

When you have requested automatic library call, the binder searches the directory
of the automatic call library for an entry that matches the unresolved external
reference. When a match is found, the entire member is processed as input to the
binder.

Automatic library call can resolve an external reference when:
v The external reference is a member name or an alias of a module in the call

library, AND
v The external reference is defined as an external name in the external symbol

dictionary of a module contained in that member.

Input into the binder

Chapter 4. Defining input to the binder 53

If an unresolved external reference is a member name or an alias in the library, but
is not an external name in that member, the member is processed but the external
reference remains unresolved unless it is subsequently defined.

When resolving external references, the binder searches the call library defined on
the SYSLIB DD statement. The call library can contain program objects, load
modules, or object modules and control statements (except INCLUDE, LIBRARY,
and NAME).

Modules from libraries other than the SYSLIB call library can be searched by the
binder as directed by the LIBRARY control statement. The library specified in the
control statement is searched for member names that match specific external
references that are unresolved at the end of input processing. If any unresolved
references are found in the modules located by automatic library call, they are
resolved by another search of the library. Any external references not specified on a
LIBRARY control statement are resolved from the library defined on the SYSLIB
DD statement.

To prevent the binder from automatically searching call libraries, use either the
LIBRARY statement for selected unresolved external references, or the NCAL
option on the EXEC statement for all unresolved external references. See “Directing
external references to a specific library” on page 57 for a discussion of the
LIBRARY control statement and the NCAL option.

Attribute mismatches: At the end of input processing, the binder will diagnose
mismatches in the XPLINK attribute, 64-bit addressing mode, and the signature
fields between caller and callee. A mismatch is indicated by a severity code 8 error
message.

Incremental autocall
The autocall phase can be invoked multiple times. Incremental autocall can be
triggered at any point during primary or secondary input processing by the
AUTOCALL control statement (or equivalent API call).

The library name from the autocall request will be used in the same way as
SYSLIB is used in standard (final) autocall. The following functions of final autocall
will not take place during incremental autocall:
v Processing of LIBRARY control statements or SETL API requests
v RES processing (see section 4.3.1)
v C Renaming logic
v Invocation of the INTFVAL exit
v Determination of Imports and Exports
v Error messages relating to unresolved references.

Autocall with C370lib data sets
The binder supports autocall from both C370lib data sets and z/OS UNIX archive
libraries. A C370lib is created by the C/C++ Object Library Utility (C370LIB or
EDCLIB). It is an object module library that contains a special member named
@@DC370$ or @@DC390$. This special member is used as a replacement for the
system directory in the autocall process to perform matches on long symbol names.
In addition it preserves certain additional symbol attributes that cannot be saved in
a standard MVS object library directory entry. In some cases these attributes are

Input into the binder

54 z/OS V2R2 MVS Program Management: User's Guide and Reference

used by the binder to select among variant routines with matching names (see
“Autocall matching for C370LIB and archive libraries” on page 56.)

For each library in the SYSLIB concatenation containing the special member
@@DC370$ or @@DC390$, the names in the special member take precedence over
the regular directory entries for that library.

For example given a SYSLIB concatenation
PDSE
PDS1 (with @@DC370$ member)
PDS2

the actual search order would be:
PDSE directory names
names from @@DC370$ in PDS1
PDS1 directory names
PDS2 directory names

Note: @@DC370$ and @@DC390$ members are ignored during INCLUDE
processing. Only member or alias names in the PDS or PDSE directory can be used
to resolve member names listed on an INCLUDE statement.

Autocall with archive libraries
The binder also supports autocall from z/OS UNIX archive libraries. These archive
libraries may contain members that are object files -- in OBJ, XOBJ and GOFF
format and with special directory information similar to that contained in C370LIB
object libraries. They may also contain members which are side files (of IMPORT
control statements), or other files of control statements.

Archive libraries are created by the UNIX System Services ar command. Like
C370LIBs, they may contain attributes used by the binder to select among variant
routines with matching names (see “Autocall matching for C370LIB and archive
libraries” on page 56). Unlike C370LIBs, archives cannot be concatenated.

Note: Archive libraries cannot be used as the target for INCLUDE statements.

While the ar command is typically used to create archive libraries of object files, it
can also be used to create archive libraries of non-object files, or archive libraries
containing a combination of object files and non-object files. In addition to
processing archive library object file members during autocall, the binder can also
process certain non-object file archive library members. Those members must have
the following characteristics:
v Members that are side files (containing IMPORT control statements). To be

recognized, an IMPORT statement must be the very first statement in the file, in
the format produced by the binder when it writes to SYSDEFSD.

v Members that are files specifically identified as containing binder control
statements. To be recognized, the first statement must contain the string "*!" in
the first 2 columns, followed by the string "IEWBIND INCLUDE". These two
strings may be separated by blanks, but must be contained in a single statement.

For the binder to process these non-object files, one such file must be positioned as
the very first member of the archive library (excluding the symbol table member,
__.SYMDEF). The binder then processes that first member as if it had been

Input into the binder

Chapter 4. Defining input to the binder 55

explicitly included as binder input, and then includes any other such members that
it can recognize in that archive library. The following additional points should be
noted:
v This processing is performed only during autocall processing of an archive

library and only when there are still unresolved symbols.
v If the archive library also contains members that are object files, it is still

processed to attempt to resolve symbols using those object file members. If the
archive library contains neither object file members nor non-object file members
with the characteristics described here, the binder reports an error when
attempting to process that archive library.

v As is the case for object files, these non-object files must be composed of
statements that are exactly 80 bytes long, with no newline terminator.

v Processing of non-object files during autocall does not change the binder
precedence for resolving symbols. Just as when a side file is explicitly included,
the IMPORT information will only be used to resolve a symbol dynamically if it
is still unresolved after all static resolution is complete.

See z/OS UNIX System Services Command Reference for more information about
using the ar utility to create archive libraries and how to position members within
them.

Autocall matching for C370LIB and archive libraries
C370LIB data sets and archive libraries contain special directory information stored
by the EDCLIB procedure and ar command respectively. Recent versions of these
programs supply attribute information about the object files in the libraries, and
support multiple copies of the same program in a single library with variant
attribute informnation.

The binder uses some of the attribute information to choose among the variant
object files. In priority order, the binder will attempt to match a called program's
attributes with those declared by the caller based on:
1. 64-bit execution mode
2. Use of XPLINK linkage
3. Writable static

Searching the link pack area
When the binder is invoked for the loader function at entry IEWBLDGO, external
references can be resolved to module names in the system link pack area. The link
pack area is searched if the RES option is in effect. If you use the NORES option,
the binder suppresses the search.

When the RES option is in effect, the library search order is:
1. Special libraries defined by the LIBRARY control statement.
2. System link pack area.
3. Automatic call libraries defined by the SYSLIB DD statement.

Dynamic symbol resolution
After final autocall processing is complete, if the DYNAM(DLL) option is in effect,
the binder will attempt dynamic resolution of those symbols still unresolved.
Unresolved symbols are eligible for dynamic resolution if they have a scope of
import/export. Symbols on IMPORT control statements are treated as definitions,
and cause a matching unresolved symbol to be considered dynamically rather than

Input into the binder

56 z/OS V2R2 MVS Program Management: User's Guide and Reference

statically resolved. A dynamically resolved symbol causes an entry in the binder
class B_IMPEXP to be created. The binder does not issue unresolved symbol
messages for symbols that are to be dynamically resolved.

Specifying automatic call libraries
If automatic library call is requested, the call library must be a partitioned data set
or PDSE described by a DD statement with a ddname of SYSLIB. Details
concerning logical record lengths and record formats for SYSLIB libraries are given
in “SYSLIB DD statement” on page 37. Call libraries can be concatenated.

Call libraries
Most compilers have their own automatic call libraries, which can contain
input/output, data conversion, or other special routines needed to complete a
module. Other products provide assembler and compiler preprocessors that
generate calls to such routines in your program. You and your organization can
provide additional libraries. When an object module is created, the assembler or
compiler creates an external reference for these special routines. The appropriate
library must be defined when an object module produced by a particular
assembler or compiler is bound; the binder resolves the references from this library.

See the appropriate user's guide for the name of the call library.

In the following example, a Fortran object module created in STEPA is bound in
STEPB, and the Fortran automatic call library is used to resolve external references:
//STEPA EXEC
//SYSOBJ DD DSNAME=&&OBJMOD,DISP=(NEW,PASS),......
//STEPB EXEC
//SYSLIN DD DSNAME=&&OBJMOD,DISP=(OLD,DELETE)
//SYSLIB DD DSNAME=SYS1.VSF2FORT,DISP=SHR

Concatenation of call libraries
Call libraries from various sources can be concatenated. When concatenating
libraries to define input to the binder, you can combine libraries containing object
modules, load modules, program objects, and control statements.

If object modules from different system processors are to be bound to form one
program object or load module, the call library for each must be defined. This is
accomplished by concatenating the additional call libraries to the library defined
on the SYSLIB DD statement. In the following example, a Fortran object module
and a COBOL object module are to be bound. The two call libraries are
concatenated as follows:
//SYSLIB DD DSNAME=SYS1.VSF2FORT,DISP=SHR
// DD DSNAME=SYS1.COBLIB,DISP=SHR

Libraries typically are cataloged. No unit or volume information is needed.

Directing external references to a specific library
The LIBRARY control statement can be used to direct the binder to search a library
other than that specified in the SYSLIB DD statement. This method resolves only
external references listed on the LIBRARY statement, except that if the LIBRARY
statement points to a library without naming any specific symbols, that library can
be used to resolve any symbols not listed in other LIBRARY statements. All other
unresolved external references are resolved from the library in the SYSLIB DD
statement.

Input into the binder

Chapter 4. Defining input to the binder 57

The LIBRARY statement can also be used to specify external references that should
not be resolved from the automatic call library. The LIBRARY statement specifies
the duration of the unresolved condition: either during the current binder job step,
called restricted no-call; or during this or any subsequent binder job step, called
never-call.

Examples of each use of the LIBRARY statement follow. The syntax of the
LIBRARY statement is shown in “LIBRARY statement” on page 125.

Additional call libraries
If the additional libraries are intended to resolve specific references, the LIBRARY
statement must contain the ddname of a DD statement describing the library. The
LIBRARY statement also contains, in parentheses, the external references to be
resolved from the library; that is, the names of the members to be used from the
library. If the unresolved external reference is not a member name in the specified
library, no attempt is made to resolve it from SYSLIB or LPA, and the reference
remains unresolved unless subsequently defined.

For example, two modules (DATE and TIME) from a system call library have been
rewritten. The new modules are to be tested with the calling modules before they
replace the old modules. Because the binder would otherwise search the system
call library (which is needed for other modules), a LIBRARY statement is used, as
follows:
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//TESTLIB DD DSNAME=USER.TESTLIB,DISP=SHR,...
//SYSLIN DD DSNAME=PROJECT.ACCTROUT,...
// DD *

LIBRARY TESTLIB(DATE,TIME)
/*

Two external references, DATE and TIME, are resolved from the library described
on the TESTLIB DD statement. All other unresolved external references are
resolved from the library described on the SYSLIB DD statement.

Note: If a specified reference cannot be found in the designated library, it remains
unresolved. No attempt will be made to resolve it from SYSLIB.

Preventing external references from being resolved
You can use the LIBRARY statement to specify those external references in the
output module for which there is no library search during the current binder job
step. To do this, specify the external references in parentheses without specifying a
ddname. The references remain unresolved, but the binder can mark the module as
executable, depending upon the value specified for the LET option.

For example, a program contains references to two large modules that are called
from the automatic call library. One of the modules has been tested and corrected;
the other is tested in this job step. Rather than execute the tested module again, the
restricted no-call option is used to prevent automatic library call from processing
the module as follows:
// EXEC PGM=IEWBLINK,PARM=LET
//SYSLIB DD DSNAME=PROJECT.PVTPROG,DISP=SHR...
//SYSLIN DD DSNAME=&&PAYROL,...
// DD *

LIBRARY (OVERTIME)
/*

Input into the binder

58 z/OS V2R2 MVS Program Management: User's Guide and Reference

As a result, the external reference to OVERTIME is not resolved.

Never-call option
You can use the never-call option to specify external references that are not to be
resolved by automatic library call during this or any subsequent binder job step. To
do this, put an asterisk before the external references in parentheses. The references
remain unresolved but the binder marks the module as executable.

For example, a certain part of a program is never executed, but it contains an
external reference to a large module (CITYTAX) which is no longer used by this
program. The module is in a call library needed to resolve other references. Rather
than take up storage for a module that is never used, the never-call option is
specified, as follows:
// EXEC PGM=IEWBLINK,PARM=LET
//SYSLIB DD DSNAME=PROJECT.PVTPROG,DISP=SHR...
//SYSLIN DD DSNAME=PROJECT.TAXROUT,DISP=OLD,...
// DD *

LIBRARY *(CITYTAX)
/*

When program TAXROUT is bound, the external reference to CITYTAX is not
resolved. If the module is subsequently rebound, CITYTAX will remain unresolved
unless it is bound with another module that requires CITYTAX.

NCAL option: Negating the automatic library call
When the NCAL option is specified, no automatic library call occurs to resolve
external references that are unresolved after input processing. The NCAL option is
similar to the restricted no-call option on the LIBRARY statement, except that the
NCAL option negates automatic library call for all unresolved external references
and restricted no-call negates automatic library call for selected unresolved external
references. With NCAL, all external references that are unresolved after input
processing is finished remain unresolved. The module is or is not marked
executable depending on the value specified for the LET option.

The NCAL option is a special processing parameter that is specified on the EXEC
statement as described in “CALL: Automatic library call option” on page 80.

Renaming
Binder renaming logic occurs when all possible name resolution has been
performed on the original names. It allows the conversion of long mixed case
names from XOBJ or GOFF object modules to short uppercase names and will
redrive the autocall process. Renaming logic applies only to nonimported,
renameable function references that are still unresolved and consists of the
following:
1. The RENAME control statement allows users to control the renaming of

specific symbols, as they could with the prelinker.
2. Standard C/C++ library functions will be renamed to the names appearing in

the SCEELKED static bind library. The mappings are those defined by module
EDCRNLST. If the binder is not able to locate and load this module, an
informational message will be issued.

3. If UPCASE=YES is in effect, renaming will be performed approximately
according to the rules used by the prelinker.
See “UPCASE: UPCASE option” on page 105 for more information.

Input into the binder

Chapter 4. Defining input to the binder 59

Input into the binder

60 z/OS V2R2 MVS Program Management: User's Guide and Reference

Chapter 5. Editing data within a program module

The binder can perform editing services either automatically or as directed by you
with control statements. These editing capabilities allow you to modify programs
on a section basis, so you can modify a section within a module without having to
recompile the entire source program.

The editing capabilities let you modify either an entire section or external symbols
within a section. Sections can be deleted, replaced, or arranged in sequence;
external symbols can be deleted or changed. See “External symbols” on page 16 for
an explanation of external symbols.

Any editing service is requested in reference to an input module. The resulting
output program module reflects the request; no actual change, deletion, or
replacement is made to the input module. The requested alterations are used to
control binder processing, as shown in Figure 12.

Note: This topic refers to binder processing. These concepts apply equally to
linkage editor and batch loader processing unless noted otherwise in Appendix A,
“Using the linkage editor and batch loader,” on page 171. The linkage editor and
batch loader do not process program objects.

Editing conventions
When you request editing services, you should follow certain conventions to
ensure that the specified modification is processed correctly.

These conventions concern the following items:
v Entry points for the new module
v Placement of control statements
v Identical old and new symbols.

Entry points
Each time the binder reprocesses a program module, the entry point for the output
module must be specified in one of the following three ways (in an order of
precedence from the highest to the lowest):

CSECTA

CSECT1

CSECT2

CSECT3

CSECT1

CSECT2

CSECT3

//SYSLMOD DD DSN=PROJECT.NEWLIB(MODA1A2),...
//MODATWO DD DSN=MODA2,...
//SYSLIN DD DSN=MODA1,...
// DD *
ENTRY CSECT3
REPLACE CSECT2(CSECTA)
INCLUDE MODATWO

.

.

.

Input Modules JCL and Control Statements Output Program Module
MODA1 MODA1A2

MODA2

.

.

.

Figure 12. Editing a module. This example illustrates how the ENTRY and REPLACE
statements can be used to edit a program module.

© Copyright IBM Corp. 1991, 2015 61

v The ENTRY control statement or EP option specified on a SETOPT control
statement.

v An entry point specified as an EP option in the PARM field of an EXEC
statement or in a file processed as a result of the OPTIONS option in the PARM
field.

v Through an assembler- or compiler-produced END statement of an input object
module if one is present. If multiple entry point nominations are encountered,
the first one is used. The entry point specified on the END statement of one
object module can be defined in a different object module if it is specified as an
external reference in the first module.

If none of the above is present, the entry point defaults to either CEESTART if
DYNAM=DLL and CEESTART exists, or the first byte of the first control section in
the program. If the module contains multiple text classes and an entry point is not
specified, the results are not predictable.

The entry point assigned must be defined as an external name within the resulting
program object or load module.

Placement of control statements
Unless the -IMMED option is specified, the control statement (such as CHANGE or
REPLACE) used to specify an editing service must immediately precede either the
module to be modified or the INCLUDE statement that specifies the module. If an
INCLUDE statement specifies several modules, the CHANGE or REPLACE
statement applies only to the first module included. If the -IMMED option is
specified, the control statement must be placed somewhere following the module
to be modified or the INCLUDE statement that specifies the module.

Identical old and new symbols
The same symbol should not appear as both an old external symbol and a new
external symbol in one binder run. If a section is replaced by another section with
the same name, the binder handles this automatically (see “Automatic
replacement” on page 64 for more information).

Changing external symbols
You can change an external symbol to a new symbol while processing an input
module. External references and address constants within the module
automatically refer to the new symbol. External references from other modules to a
changed external symbol must be changed with separate control statements.

Both the old and the new symbols are specified on either a CHANGE control
statement or a REPLACE control statement. The use of the old symbol within the
module determines whether the new symbol becomes a section name, an entry
name, or an external reference.

Using the CHANGE statement
The CHANGE control statement changes a section name, a common section name,
an entry name, an external or weak external reference, or a pseudoregister.

The CHANGE statement must immediately precede either the input module that
contains the external symbol to be changed, or the INCLUDE statement that
specifies the input module. The scope of the CHANGE statement is the
immediately following module.

Editing sections

62 z/OS V2R2 MVS Program Management: User's Guide and Reference

If a CHANGE statement appears in a data set included from an automatic call
library and is not immediately followed by an object module in the same data set,
the request for the change is ignored.

See “CHANGE statement” on page 114 for the specific information on using the
CHANGE control statement.

Example of changing external symbols
In the following example, assume that SUBONE is defined as an external reference
in the input program module. A CHANGE statement is used to change the
external reference to NEWMOD as shown in Figure 13.

In the program module MAINROUT, every reference to SUBONE is changed to
NEWMOD. The INCLUDE statement specifies the ddname SYSLMOD, allowing
the library to be used both as the input and the output module library.

More than one change can be specified on the same control statement. If, in the
same example, the entry point is also to be changed, the two changes can be
specified at once (see Figure 13).

Because the main entry point name is changed from BEGIN to MAINEP, you must
use the ENTRY statement to change the library directory entry for the module to
reflect the new name of the entry point.

Replacing sections
An entire section can be replaced with a new section. Sections can be replaced
either automatically or with a REPLACE control statement. Automatic replacement
acts upon all input modules; the REPLACE statement acts only upon the module
that follows it.

Note:

1. Any CSECT identification records (IDR) associated with a particular section are
also replaced.

//SYSLMOD DD DSN=PROJECT.PVTLIB,...
//SYSLIN DD *

ENTRY MAINEP
CHANGE SUBONE(NEWMOD),BEGIN(MAINEP)
INCLUDE SYSLMOD(MAINROUT)
NAME MAINROUT(R)

/*

Input Modules JCL and Control Statements Output Program Module
MAINROUT MAINROUT

.

.

.

BEGIN ENTRY
.
.
.

CALL SUBONE
.
.
.

CALL SUBONE
.
.
.
.
.
.

CALL SUBONE
.
.
.

MAINEP ENTRY
.
.
.

CALL NEWMOD
.
.
.

CALL NEWMOD
.
.
.
.
.
.

CALL NEWMOD
.
.
.

Figure 13. Changing an external reference and an entry point

Editing sections

Chapter 5. Editing data within a program module 63

2. For assembler language programmers only: When some but not all sections of
a separately assembled module are to be replaced, the binder causes A-type
address constants that refer to a deleted symbol to be incorrectly resolved
unless the entry name is at the same displacement from the origin in both the
old and the new section. If all sections of a separately assembled module are
replaced, no restrictions apply.

Automatic replacement
Sections are automatically replaced if both the old and the new section have the
same name. The first of the identically named sections processed by the binder is
made a part of the output module. All subsequent sections with that name are
ignored; external references to identically named sections are resolved with respect
to the first one processed. Therefore, to cause automatic replacement, the new
section must have the same name as the section to be replaced, and must be
processed before the old section.

Attention: Automatic replacement applies to duplicate section names only. If
duplicate entry points exist in sections with different names, a REPLACE control
statement must be used to specify the entry point name.

Example 1: Object module with two sections
An object module contains two sections, READ and WRITE; member INOUT of
library PROJECT.PVTLIB also contains a section WRITE.
//SYSLMOD DD DSNAME=PROJECT.PVTLIB,DISP=OLD
//SYSLIN DD *

Object Deck for READ
Object Deck for WRITE

ENTRY READIN
INCLUDE SYSLMOD(INOUT)
NAME INOUT(R)

/*

The output module contains the new READ section, the replacement WRITE
section, and all remaining sections from INOUT.

Example 2: Large program module with many sections
A large module named PAYROLL, originally written in COBOL, contains many
sections. Two sections, FICA and STATETAX, were recompiled and passed to the
binder job step in the &&OBJECT data set. Then, by including the &&OBJECT data
set before the program module PAYROLL (a member of the program library
PROJECT.LIB001), the modified sections automatically replace the identically
named sections. See Figure 14 on page 65.

Editing sections

64 z/OS V2R2 MVS Program Management: User's Guide and Reference

The output module contains the modified FICA and STATETAX sections and the
rest of the sections from the old PAYROLL module. The main entry point is INIT1,
and the output module is placed in a library named PROJECT.LIB002. The COBOL
automatic call library is used to resolve any external references that might be
unresolved after the SYSLIN data sets are processed. The new module is named
PAYROLL because PAYROLL is specified as the member name on the SYSLMOD
DD statement and was not overidden by a NAME control statement.

Using the REPLACE statement to replace sections and named
common areas

The REPLACE statement is used to replace sections and named common areas
(also called common sections) by providing old and new section names. The name of
the old section appears first, followed by the name of the new section in
parentheses.

The scope of the REPLACE statement is the immediately following module, unless
the -IMMED option is used. The REPLACE statement must precede either the
input module that contains the section to be replaced, or the INCLUDE statement
that specifies the input module. The replacing section can be either before or after
the replaced section in the binder input. If a REPLACE statement appears in a data
set included from an automatic call library and is not immediately followed by an
object module in the same data set, the request is ignored.

.

.

.

.

.

.

//SYSLMOD DD DSN=PROJECT.LIB002(PAYROLL),...
//SYSLIB DD DSN=SYS1.VSCLLIB,DISP=SHR
//OLDLAOD DD DSN=PROJECT.LIB001,...
//SYSLIN DD DSN=&&OBJECT,DISP=(OLD,DELETE)
// DD *

INCLUDE OLDLOAD(PAYROLL)
ENTRY INIT1

/*

Input Modules JCL and Control Statements Output Program Module

&&OBJECT LIB002
(PAYROLL)

LIB001
(PAYROLL)

MAINROUT

OVERTIME

FICA
(old)

STATETAX
(old)

FEDTAX

ILLACC

VAKTION

FICA
(new)

STATETAX
(new)

FICA
(new)

STATETAX
(new)

MAINROUT

OVERTIME

FEDTAX

ILLACC

VAKTION

Figure 14. Automatic replacement of sections

Editing sections

Chapter 5. Editing data within a program module 65

If the -IMMED option is used with REPLACE, then the REPLACE operates against
any sections that have already been included as part of the current bind operation.
The module being built is searched immediately for a section name matching the
specified old section name.

An external reference to the old section (or area) from within the same input
module is resolved to the new section. An external reference to the old section
from any other module becomes an unresolved external reference unless one of the
following occurs:
v The external reference to the old section is changed to the new section with a

separate CHANGE control statement.
v The same entry name appears in the new section or in some other section in the

binder input.

In the following example, the REPLACE statement is used to replace one section
with another of a different name. Assume that the old section SEARCH is in
library member TBLESRCH, and that the new section BINSRCH is in the data set
&&OBJECT, which was passed from a previous step as shown in Figure 15.

The output module contains BINSRCH instead of SEARCH; any references to
SEARCH within the module refer to BINSRCH. Any external references to
SEARCH from other modules will not be resolved to BINSRCH.

See “REPLACE statement” on page 135 for more information on using the
REPLACE statement.

Deleting external symbols
The REPLACE statement can be used to delete an external symbol. The external
symbol can be a named section, a named common area, an entry point, a strong or
weak external reference, or a pseudoregister. The REPLACE statement must
immediately precede either the module in the input data set that contains the
external symbol to be deleted or the INCLUDE statement in the job stream that

//SYSLMOD DD DSNAME=USER.SRCHRTN,DISP=OLD
//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)
// DD *

ENTRY READIN
REPLACE SEARCH(BINSRCH)
INCLUDE SYSLMOD(TBLESRCH)
NAME TBLESRCH(R)

/*

Input Modules JCL and Control Statements Output Program Module

&&OBJECT

BINSRCH

TBLESRCH TBLESRCH

READIN ENTRY
.
.
.

CALL SEARCH
.
.
.

SEARCH

READIN ENTRY
.
.
.

CALL BINSRCH
.
.
.

BINSRCH

Figure 15. Replacing a section with the REPLACE control statement

Editing sections

66 z/OS V2R2 MVS Program Management: User's Guide and Reference

specifies the module. Only one symbol appears on the REPLACE statement; the
appropriate deletion is made depending on how the symbol is defined in the
module.

If the symbol is a section name, the entire section is deleted. The section name is
deleted from the external symbol dictionary only if no address constants refer to
the name from within the same input module. If an address constant does refer to
it, the section name is changed to an external reference. Any CSECT identification
data associated with that section is also deleted.

The preceding is also true of an entry name to be deleted. Any references to it
from within the input module cause the entry name to be changed to an external
reference.

For external references and pseudoregisters, the symbol is deleted only if no RLD
contains references to the ESD entry to be deleted.

These editor-supplied external references, unless resolved with other input
modules, cause the binder to attempt to resolve them from the automatic call
library. Also, the deletion of an external symbol in an input module might cause
external references from other input modules to be unresolved. Either condition
can cause the output module to be marked not executable.

If you delete a section that contains any unresolved external references, those
references are removed from the external symbol dictionary.

In the example shown in Figure 16, the section CODER is deleted. If no address
constants refer to CODER from other sections in the module, the section name is
also deleted. If address constants refer to CODER, the name is retained as an
external reference.

See “REPLACE statement” on page 135 for more information on using the
REPLACE statement.

Ordering sections or named common areas
The sequence of sections or named common areas in an output module can be
specified by using the ORDER control statement.

Normally, the order that sections are received during input processing are
preserved in the resulting module. Common areas are placed at the end. You can
change the section order by coding one or more ORDER control statements.

.

.

.
//SYSLMOD DD DSN=PROJECT.PVTLIB,DISP=OLD
//SYSLIN DD *

ENTRY START1
REPLACE CODER
INCLUDE SYSLMOD(CODEROUT)
NAME CODEROUT(R)

/*

Input Modules JCL and Control Statements Output Program Module
CODEROUT

ENCODE

CODER

DECODE

ENCODE

DECODE

CODEROUT

Figure 16. Deleting a section

Editing sections

Chapter 5. Editing data within a program module 67

Individual sections or named common areas are arranged in the output module
according to the sequence in which they appear on the ORDER control statement.
Multiple ORDER control statements can be used in a job step. The sequence of the
ORDER statements determines the sequence of the sections or named common
areas in the load module or program object.

Any sections or named common areas that are not specified on ORDER statements
appear last in the output load module in their original sequence. If a section or
named common area is changed by a CHANGE or REPLACE control statement,
the new name must be used on the ORDER statement.

In the following example, ORDER statements are used to specify the sequence of
five of the six sections in an output module. A REPLACE statement is used to
replace the old section, SESECTA, with the new section, CSECTA, from the data set
&&OBJECT, which was passed from a previous step. Assume that the sections to
be ordered are found in library member MAINROOT shown in Figure 17.

In the load module MAINROOT, the sections MAINEP, SEGMT1, SEG2, CSECTA,
and CSECTB are rearranged in the output load module according to the sequence
specified in the ORDER statements. A REPLACE statement is used to replace
section SESECTA with section CSECTA from data set &&OBJECT, which was
passed from a previous step. The ORDER statement refers to the new section
CSECTA. Section LASTEP appears after the other sections in the output module,
because it was not included in the ORDER statement operands. The order control
statement cannot be used to order parts.

Note that empty space is inserted in the module before CSECTB. This is done to
ensure page alignment for CSECTB as specified by the “(P)” operand on the
ORDER control statement (this is discussed in “Aligning sections or named
common areas on page boundaries” on page 69).

See “ORDER statement” on page 130 for specific information on using the ORDER
statement.

CSECTB

SESECTA

MAINEP

LASTEP

SEGNT1

SEG2

MAINEP

SEGMT1

SEG2

CSECTA

Empty space

CSECTB

LASTEP

//SYSLMOD DD DSNAME=PROJECT.PVTLIB,DISP=OLD
//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)
// DD *

ORDER MAINEP(P),SEGMT1,SEG2
REPLACE SESECTA(CSECTA)
ORDER CSECTA,CSECTB(P)
INCLUDE SYSLMOD(MAINROUT)
NAME MAINROUT(R)

/*

Input Modules JCL and Control Statements Output Program Module
&&OBJECT

CSECTA

MAINROOT

MAINROOT

0KB

4KB

Figure 17. Ordering sections

Editing sections

68 z/OS V2R2 MVS Program Management: User's Guide and Reference

Aligning sections or named common areas on page boundaries
You can use either the ORDER statement or the PAGE statement to place a section
or named common area on a page boundary. This allows you to operate with a
lower paging rate, making more efficient use of real storage.

The section or common area to be aligned is named on either the PAGE statement
or the ORDER statement with the P operand. If any sections in the module are to
be page aligned the module is loaded on a page boundary. For multitext class
program objects, a page-align request for a section will cause each text element
within the section to be aligned on a page boundary.

In the following example, the sections RAREUSE and MAINRT are aligned on
page boundaries by PAGE and ORDER control statements. Sections MAINRT,
CSECTA, and SESECT1 are sequenced by the ORDER control statement. Assume
that each section is 3KB in length as shown in Figure 18.

The binder places the sections MAINRT and RAREUSE on page boundaries.
Sections MAINRT, CSECTA, and SESECT1 are sequenced as specified in the
ORDER statement. RAREUSE, while placed on a page boundary, appears after the
sections specified in the ORDER statement because it was not specified on the
ORDER statement.

For more information on using these control statements, see “ORDER statement”
on page 130 and “PAGE statement” on page 133.

//SYSLMOD DD DSN=USER.PRGLIB,DISP=SHR
//SYSLIN DD *

PAGE RAREUSE
ORDER MAINRT(P),CSECTA,SESECT1
INCLUDE SYSLMOD(MAINROOT)
NAME MAINROOT(R)

/*

Input Modules JCL and Control Statements Output Program Module
MAINROOT

CSECTA

RAREUSE

SESECT1

BOTTOM

MAINRT

MAINRT

CSECTA

SESECT1

Empty space

RAREUSE

BOTTOM

MAINROOT
0KB

3KB

6KB

9KB

12KB

Figure 18. Aligning sections on page boundaries

Editing sections

Chapter 5. Editing data within a program module 69

70 z/OS V2R2 MVS Program Management: User's Guide and Reference

Chapter 6. Binder options reference

Guideline: This topic refers to binder processing. These concepts apply equally to
linkage editor and batch loader processing, unless noted otherwise in “Processing
and attribute options reference” on page 177. The linkage editor and batch loader
cannot process program objects.

This section describes the processing and attribute options that can be requested.
Binder options are specified in a number of ways. These are broadly classified as
interfaces that pass option strings and interfaces that have tailored option
capabilities.

The following interfaces pass option strings:
v The PARM field of the JCL EXEC statement
v The first parameter passed to

– IEWBLINK
– IEWBLOAD
– IEWBLODI or IEWBLDGO

when using CALL, LINK, ATTACH, or XCTL from another program
v An options file identified by the OPTIONS option
v An options file specified by the DD name IEWPARMS
v The SETOPT control statement
v Installation option defaults
v The PARMS parameter of the IEWBIND FUNC=STARTD or FUNC=SETO call.

The following interfaces have tailored option capabilities:
v Arguments passed to the TSO LINK or LOADGO commands
v Arguments passed to the z/OS UNIX System Services c++, c89, cc, or ld

commands
v The OPTIONS parameter of the IEWBIND FUNC=STARTD call
v The OPTION and OPTVAL parameters of the IEWBIND FUNC=SETO call.

Note: IEWBIND is fully documented in z/OS MVS Program Management: Advanced
Facilities

Many options have the possible values YES and NO. These options usually have
an associated option that begins with N or NO. For example, you can specify MAP
to produce a module map, and NOMAP to suppress production of a module map.
You can also specify the MAP option as MAP=YES or MAP(YES) and MAP=NO
or MAP(NO). Table 7 on page 75 shows the associated negative option if the
option's values are YES and NO.

The options you specify, through any means, when invoking the binder, always
override similar data from included modules. For example, if you specify
PARM=RENT, the resultant module is marked "reentrant" regardless of the
reusability of any included modules.

© Copyright IBM Corp. 1991, 2015 71

If more than one output module is produced by a single binder instance, the
options specified will apply to all output modules, unless overridden by a SETOPT
control statement, or IEWBIND FUNC=SETO call.

Specifying binder options
The content and usage of the options defined in this topic applies to all interfaces
listed above. For the syntax of the tailored option facilities, see the documentation
for each of those interfaces. The syntax discussed in the following subsection
applies only to the options listed as option strings.

There are special rules that apply only to JCL EXEC statements that are discussed
in “Special rules for JCL EXEC statements” on page 73.

The following rules apply to all option's strings:
v Each option has a two to eight character option name. The name can be entered

in upper, lower, or mixed case, but is always folded to upper case for
processing.

v Options are separated from each other by one or more blanks or commas, or any
combination of them.

v The same option may be specified more than once, or two alternative options
(such as CALL and NOCALL) can both be specified. In all cases, the last
specification encountered is used. No attempt is made to merge values from
multiple option name occurrences.

v Some options have an optional or required value associated with the name.
Where present, the option value must immediately follow the option name with
no intervening blanks or commas.
– Option values can be enclosed in parentheses or single quotation marks.
– The value is separated from the option name by a single equal sign, which

can be omitted if the value is enclosed in parentheses.
v There is no support for comments before, within, or following an option string.

The syntax of the PARM field is:

You can use single quotations marks, rather than parentheses, to enclose the
complete options string in the PARM field. You can use parentheses outside a
complete string that is delimited by single quotation marks, as in
PARM=('option,option'). You cannot use single quotation marks outside a complete
string that is delimited by parentheses. You can enclose values in parentheses.

Binder keywords are always converted to upper case. If you only specify one
option, it need not be enclosed in parentheses or single quotation marks.

PARM=(option[,option],...)

where option can be specified as

{{option}
{option(value[,value]...)}
{option=value}
{option=(value[,value]...)}}

Binder options reference

72 z/OS V2R2 MVS Program Management: User's Guide and Reference

The binder bridges the limitations imposed by the JCL interpreter by allowing
additional freedom in the format of the options string. While it makes every effort
to resolve explicit (and implied) syntactical and semantic combinations in the
options string, its success is very much dependent on the validity of the string
specification. Caution and adherence to the options syntax is recommended when
building the options string. Binder warning or error messages will identify any
problems detected while parsing the options string.

Options that would otherwise be set on the PARM field can also be specified in the
options file. This allows you to specify a set of binder options that might otherwise
exceed the MVS PARM string length limitation of 100 bytes. It also allows you to
create one or more binding profiles that can be included at bind time. Options are
processed in order, starting with the beginning of the parm string. When you
specify OPTIONS=ddname in the PARM field, the ddname is opened and the
options in that file are processed. Processing then continues with the option
following OPTIONS= in the parm string.

Special rules for JCL EXEC statements
Binder options are specified in the PARM field of the EXEC statement and must
adhere to the rules for JCL statements. Keep in mind that:
v Commas cannot be used within the PARM value unless it is enclosed in

parentheses or single quotation marks.
v Blanks and equal signs cannot be used within the value unless they are within a

string enclosed in quotation marks.
v Nested parentheses are allowed only as complete subparameters separated by

commas within a parenthesized value.

Because commas or blanks are required to specify more than one binder option,
the PARM string must be enclosed in either single quotation marks or parentheses
if multiple options are being passed to the binder.

Because parentheses or an equal sign must be adjacent to an option name to
specify an option value, single quotation marks must be used if options with
values are being passed to the binder.

One approach to these restrictions is to enclose the entire PARM= string in single
quotation marks. If this is done, the following additional JCL rules must be
honored:
v Any single quotation marks within the string (such as the quotation marks

typically needed for the PATH parameter) must be doubled.
v If the string is continued beyond the initial JCL record, provide data through

column 71 to ensure that there is not a single quotation mark in that column.
Next, continue the string in column 16 of the next record (with // in columns 1
and 2 and blanks in column 3 through 15).

Another approach to these restrictions is to enclose the entire PARM= string in
parentheses and separate the options by commas with no intervening blanks.
Individual options requiring an equal sign or parentheses are then enclosed in
single quotation marks, which the binder will remove. Using this approach, the
additional JCL rules are:
v If the string is continued beyond the initial JCL record, it can be broken after

any comma at or before column 71 and continued in any column from 4 through
16 of the next record (with // in columns 1 and 2).

Binder options reference

Chapter 6. Binder options reference 73

v If the break must occur within a quoted string, the same rule listed above must
be followed, data through column 71 with continuation in column 16.

Special rules for options files
The OPTIONS option can specify a DD name for a sequential file, which includes a
PDS member or concatenation of sequential files. These files must contain 80-byte
records. Only columns 1 through 72 are treated as containing options. Each record
is treated as a separate option string. There is no support for continuing individual
options from one record to another.

The options in the options file are processed at the time the OPTIONS option is
encountered, so think of it as inserted at the point in the options string where the
OPTIONS option is found.

DD name IEWPARMS is recognized as an option file with the same characteristics
except that no OPTIONS option is needed for IEWPARMS. IEWPARMS is
processed at the end of the primary option string.

Binder options
Table 7 on page 75 briefly describes all of the PARM options available to the
binder. For options with only yes and no values, the binder provides negative
options. You can either specify the negative option or set the primary option equal
to NO. These options are listed in parentheses beneath the primary option.
Descriptions are for the primary options. Table 7 on page 75 also lists the default
values for each option when using either IEWBLINK or IEWBLDGO.

Most options can be set on the PARM field of the EXEC statement or on the
SETOPT control statement. Options set from the PARM field are in effect for the
entire job step, whereas options set via control statements (MODE, SETCODE,
SETOPT, SETSSI) are in effect only for the module in process. Options set on
control statements override settings from the PARM field.

Certain options are designated as “environmental” options and can only be
specified on the PARM field (they cannot be specified in the options file).
Environmental options include:
v COMPAT
v EXITS
v LINECT
v MSGLEVEL
v OPTIONS
v PRINT

16↓ 71↓
//BIND EXEC PGM=IEWL,
// PARM=’linect=55,list(all),map,xref,options=optndd,wkspa
// ce=(400,10000)’

Figure 19. Example of special rules for JCL EXEC statements

16↓ 71↓
//BIND EXEC PGM=IEWL,
// PARM=(’linect=55’,’list(all)’,map,xref,
// ’options=optndd’,’wkspace=(400,10000)’)

Figure 20. Example of special rules for JCL EXEC statements

Binder options reference

74 z/OS V2R2 MVS Program Management: User's Guide and Reference

v SIZE
v TERM
v TRAP
v WKSPACE

The descriptions of all PARM options available to the binder are included in the
table below.

Table 7. Summary of processing and attribute options

Option Default values Description

AC 0 Assigns an authorization code to the output
module, which determines whether the
module can use restricted system services.

ALIASES NO ALIASES(ALL) allows you to mark external
symbols as aliases when binding a module.
The resultant aliases are nonexecutable.
They are simply used for symbol resolution.

ALIGN2
(NOALIGN2)

NO Specifies that a page specification causes the
text to be aligned on a 2 KB boundary
within the module. It has no effect on where
the module is loaded in virtual storage.

AMODE Default is the ESD
AMODE value.

Assigns an addressing mode (24, 31, 64, or
ANY) to the entry points in the output
program module. Specifying MIN causes the
AMODE to be set to the most restrictive
AMODE value of all control sections within
the module. See “AMODE and RMODE
combinations” on page 29 for a detailed
description.

CALL (NCAL,
NOCALL)

YES Causes the binder to search program
libraries to resolve external references
(automatic library call).

CASE UPPER Controls case sensitivity in names
encountered in modules, control ststements
and options.

COMPAT MIN Specifies the compatibility level of the
binder.

COMPRESS AUTO Allows you to force compression or prevent
generation of an object that could not be
reprocessed on a level of the system earlier
than z/OS version 1 release 7.

DC (NODC) NO Causes a maximum record size of 1024 bytes
to be used for the output module. (This
option is only valid when creating load
modules.)

DCBS (NODCBS) NO Allows you to specify the block size for the
SYSLMOD data set in the DCB parameter of
the SYSLMOD DD statement. (This option is
only valid when creating load modules.)

Binder options reference

Chapter 6. Binder options reference 75

Table 7. Summary of processing and attribute options (continued)

Option Default values Description

DYNAM NO Determines whether the resultant module is
enabled for dynamic binding. If enabled, the
module becomes a DLL module from which
other DLLs' imports can be resolved.
Similarly, it is also able to import symbols
from other DLLs.

EDIT (NE) YES Saves modules in a format that allows them
to be rebound.

EP no default Specifies the external name to be used as the
entry point of the loaded program.

EXITS no default Specifies (one or more) exits are to be taken
during binder processing.

EXTATTR no default Specifies extended attributes for SYSLMOD
when saved in a z/OS UNIX file.

FETCHOPT NOPACK NOPRIME Specifies how a program object should be
paged-mapped (loaded) into virtual storage
for execution.

FILL no default Specifies the character to be used to fill
uninitialized areas. FILL applies to program
objects only.

GID no default Specifies the group ID attribute to be set for
the SYSLMOD file.

HOBSET NO Specifies if the high order bit of each V-con
is to be set according to the AMODE of the
target entry point.

INFO NO Specifies that information about the compile
dates and PTF levels of sections within the
main binder module should be written to
SYSPRINT.

LET (NOLET) 4 Specifies a severity code; the output module
is marked as not executable if a severity
code higher than the level you specified is
found during processing.

LINECT 60 Specifies the number of lines to be included
on each page of binder output listings. The
minimum supported value is 24.

LIST (NOLIST) OFF Controls the information included in the
SYSPRINT or SYSLOUT data set.

LISTPRIV OFF Lists any unnamed sections.

LONGPARM
(NOLONGPARM)

NO Indicates whether an APF authorized
program can be passed a parameter longer
than 100 bytes from a batch style invocation.

MAP (NOMAP) NO Produces a module map.

MAXBLK no default Specifies the maximum size of a text record
in a load module. This can avoid reblocking
when copying to a different device type at a
later time. (This option is only valid when
creating load modules.)

Binder options reference

76 z/OS V2R2 MVS Program Management: User's Guide and Reference

Table 7. Summary of processing and attribute options (continued)

Option Default values Description

MODMAP NO Builds a map of the module contents in a
separate section as part of the module being
bound.

MSGLEVEL 0 Limits the messages displayed to a given
severity level and higher.

NAME **GO Specifies a name to be used to identify the
loaded program to the system.

OL (NOOL) NO Brings the module into virtual storage only
by using a LOAD macro.

OPTIONS no default Embeds a data set containing binder options
to be used during the current processing.

OVLY (NOOVLY) NO Places the output program module in an
overlay structure.

PATHMODE Default allows file
owner permission for
read, write, and
execute

Specifies pathmode to be used when saving
a module to a z/OS UNIX file.

PRINT (NOPRINT) YES Indicates that informational and diagnostic
messages are to be written to the SYSLOUT
data set for IEWBLDGO and SYSPRINT data
set for IEWBLINK.

RES (NORES) IEWBLDGO=YES
IEWBLINK=NO

Specifies whether or not the binder should
automatically search the link pack area
queue during automatic library call. For
IEWBLDGO the default is YES, and for
IEWBLINK the default is NO.

REUS NONE Specifies whether the output program
module will be refreshable, reenterable,
serially reusable or nonreusable.

RMODE Default is the ESD
RMODE value.

Assigns the residence mode (24, ANY(31),
SPLIT) to the output program module.
Specifying MIN causes the RMODE to be set
to the most restrictive RMODE value of all
control sections within the module segment.
See “AMODE and RMODE combinations”
on page 29 for a detailed description.

SCTR NO Builds control blocks needed by the system
nucleus. Load module only.

SIGN NO Builds a digital signature for a program
object.

SIZE no default Specifies the amount of virtual storage
available for binder processing and the
output module buffer. We do not
recommend use of this option with the
binder.

SSI no default Specifies hexadecimal information to be
placed in the system status index; also see
“SETSSI statement” on page 138.

STORENX
(NOSTORENX)

NO Allows the binder to replace an executable
copy of a program module with a
nonexecutable copy.

Binder options reference

Chapter 6. Binder options reference 77

Table 7. Summary of processing and attribute options (continued)

Option Default values Description

STRIPCL NO Allows the binder to remove unneeded
classes from a program object or load
module.

STRIPSEC NO Allows the binder to remove unneeded
sections from a program object or load
module.

SYMTRACE no default Request symbol resolution information to be
produced in SYSPRINT.

TERM (NOTERM) NO Copies the numbered binder error and
warning messages into a data set that has
been defined by a SYSTERM DD statement.

TEST (NOTEST) NO Specifies that the module is to contain
symbol tables in the format supported by
TSO TEST.

TRAP ON Controls the extent of error recovery from
program checks and abends, and the
techniques the binder uses for it. The
suboptions that can be specified are ON,
OFF and ABEND.

UID no default Specifies a user ID attribute to be set for the
SYSLMOD file.

UPCASE NO Indicates whether additional renaming is
done when symbols remain unresolved after
the binder's autocall process.

WKSPACE See “WKSPACE:
Working space
specification option”
on page 105.

Specifies the maximum amount of virtual
storage available for binder processing both
above and below the 16 MB line.

XCAL (NOXCAL) NO Controls whether valid exclusive references
between overlay segments should be treated
as a warning (severity 4) or error (severity 8)
condition.

XREF (NOXREF) NO Produces a cross-reference table of the
output module in the diagnostic output data
set.

AC: Authorization code option
You can assign an authorized program facility (APF) authorization code to an
output program module. It determines whether the module can use restricted
system services and resources.

Guideline: Use the EXTATTR option in additional to the AC option to set the APF
flag in a z/OS UNIX file. For example:
AC=1, EXTATTR=APF

You can assign an authorization code on the PARM field by using the AC
parameter as follows:

Binder options reference

78 z/OS V2R2 MVS Program Management: User's Guide and Reference

The authorization code n must be an integer between 0 and 255. The authorization
code assigned in the PARM field is overridden by an authorization code assigned
through the SETCODE control statement. If you do not assign an authorization
code, it is set to 0 in the output program module.

A nonzero authorization code has an effect only if the program resides in an
APF-authorized library defined by your system programmer. See z/OS MVS
Programming: Authorized Assembler Services Guide for more information on APF and
system integrity.

ALIASES: ALIASES option
The ALIASES option requests directory entries be created for defined symbols in a
module so that those names can be used to resolve references during autocall.
Because the aliases are only used for symbol resolution and are not executable,
they are called “hidden” aliases. You can code the ALIASES option in the PARM
field as follows:

Note:

1. Hidden aliases will not be created if NO is specified, or if the ALIASES option
value is defaulted. Note that the creation of hidden aliases is also dependent on
the processing level of the binder. Be sure that the COMPAT processing option
is at least PM3 for the ALIASES option to take effect.

2. This processing option is intended to enable standard system support for
symbol resolution similar to that provided by C370LIB object libraries.

3. The DESERV macro has a HIDE parameter that can be used by an application
program to control whether hidden aliases are returned on a GET_ALL request.
See the DESERV macro in z/OS DFSMS Macro Instructions for Data Sets

ALIGN2: 2KB page alignment option
When binder page-aligns sections of text, a 4KB page size is assumed. For
compatibility with older environments that used 2KB pages, if you are binding
program modules that will execute on hardware that supports 2KB pages (not
System/370 or System/390®), you can request 2KB page alignment by coding the
ALIGN2 option in the PARM field of the EXEC statement. There are advantages to
using 2KB alignment for modules that are executed on System/370 or System/390,
although the system loader loads the module on a 4KB page boundary regardless
of the ALIGN2 specification. Program data areas that are aligned are easier to read
in a SNAP or ABEND dump and performance-critical assembler routines might
perform better if they are aligned on 32-or 64-byte boundaries. ALIGN2 can give a
smaller module without sacrificing these advantages.

ALIGN2=NO is the default value and can be specified with the keyword
NOALIGN2.

AC=n

ALIASES={NO | ALL}

{ALIGN2 | ALIGN2=NO | NOALIGN2}

Binder options reference

Chapter 6. Binder options reference 79

AMODE: Addressing mode option
To assign the addressing mode for all the entry points into a program module (the
main entry point, its true aliases, and all the alternate entry points), you should
code the AMODE parameter as follows:

The addressing mode must be either 24, 31, 64, ANY, or MIN. When
AMODE=MIN is coded, the binder assigns one of the other four values to the
output module; it selects the most restrictive mode of all control sections within
the output module. See “Addressing and residence modes” on page 27 for more
information about AMODE and RMODE.

The addressing mode assigned in the PARM field is overridden by an addressing
mode assigned in the MODE control statement. However, the values in the PARM
field override the separate addressing modes found in the ESD data for the control
sections or private code where the entry points are located.

AMODE and RMODE values are specified independently, but the values are
checked for conflicts before output processing occurs. See “AMODE and RMODE
combinations” on page 29 for information on AMODE and RMODE compatibility
and the setting of default values.

The AMODE keyword can also be specified as AMOD.

CALL: Automatic library call option
During input processing AUTOCALL control statements instruct the binder to
resolve external references against a specified library.

At the end of input processing the binder performs final autocall, where libraries
specified on LIBRARY control statements and the SYSLIB DD are used to resolve
any remaining external references (while AUTOCALL and LIBRARY control
statements are optional, automatic library call requires that there is a SYSLIB DD,
otherwise a severity 8 error is issued). External references that are unresolved at
the end of final autocall are treated as severity 8 errors.

You can turn this processing off by coding the option NOCALL or NCAL in the
PARM field as follows:

When the no automatic library include option is specified, the binder does not
search any library members to resolve external references. Unresolved external
references will be treated as severity 4 errors. If this option is specified, you do not
need to use the LIBRARY statement to negate the automatic library call for selected
external references, and you do not need to supply a SYSLIB DD statement.

Unless the LET option is also specified, other errors might still cause the module to
be marked not executable.

Note: If autocall processing is disabled, references to modules in the C run-time
library will not be resolved. For example, if the SMP/E link-edit utility entry

AMODE={24 | 31 | 64 | ANY | MIN}

{NCAL | NOCALL}

Binder options reference

80 z/OS V2R2 MVS Program Management: User's Guide and Reference

PARM subentry is not left to use the default value and NCAL is not explicitly
listed in the specified value, the binder default of CALL=YES (or the binder
installation default) is used. This can cause frequent errors when using SMP/E to
install products that use the binder. See SMP/E for z/OS Reference for more
information about SMP/E utility entries and CALLLIBS.

CASE: Case control option
You can control the binder's sensitivity to case by coding the CASE option as
follows:

The case can be either UPPER or MIXED. When CASE=MIXED is specified,
v The binder distinguishes between upper and lower case letters, treating two

strings as different if their cases do not match exactly.
v The binder does not convert any lowercase letters in names encountered in input

modules, control statements, and binder options.

Binder keywords are always converted to upper case.

CASE=UPPER is the default value, causing conversion of all lower case letters to
upper case during binder processing.

COMPAT: Binder level option
The COMPAT option allows you to specify the compatibility level of the binder.
For instance, when binding a module you can specify LKED which will partially
alter the binder's behavior and its ultimate output as if you had invoked the
linkage editor. PM2 or PM3 would allow you to take advantage of the functions
supported by the newer version of program modules.

Awareness of the function provided by each option value allows you to anticipate
the behavior of your bound programs as you share them across systems that might
not support the same functionality. The functional differences are broadly
discussed below for each option value.

If the output is directed to a PDS, the output module is saved as a load module
regardless of the value of COMPAT. COMPAT(LKED) will alter some of the
processing.

If SYSLMOD is allocated to a PDSE or a z/OS UNIX file, the output is saved as a
program object in the format specified by the COMPAT option. If the user specified
a COMPAT value that does not support the contents of the module, binder will
issue a level 12 message and fail the bind.

CASE={UPPER | MIXED}

COMPAT={MIN | LKED | {CURRENT | CURR} | PM1 | PM2
| {PM3 | OSV2R8 | OSV2R9 | OSV2R10 | ZOSV1R1 | ZOSV1R2}
| {PM4 | ZOSV1R3 | ZOSV1R4} | {ZOSV1R5 | ZOSV1R6} | {ZOSV1R7}
| {PM5 | ZOSV1R8 | ZOSV1R9} | {ZOSV1R10 | ZOSV1R11 | ZOSV1R12}
| {ZOSV1R13| ZOSV2R1}

Binder options reference

Chapter 6. Binder options reference 81

CURRENT or CURR
Specifies that the output is to be as defined for the current level of the binder.
For the level of Program Management support described in this version of the
manual, CURRENT is the same as ZOSV2R1.

ZOSV2R1
COMPAT=ZOSV2R1 is the minimum level that supports preserving all
boundary alignments specifications coming from ESD records. ALIGNT can be
used to specify boundary alignments for both load modules and program
objects without requiring the use of COMPAT(ZOSV2R1).

ZOSV1R13
COMPAT=ZOSV1R13 is the minimum level that supports conditional
sequential RLDs.

ZOSV1R10 | ZOSV1R11| ZOSV1R12
COMPAT=ZOSV1R10 is the minimum level that supports saving the
timestamp from compiler IDRL records in program objects. It also supports the
RLD type corresponding to the assembler QY-con. The QY-con is a special form
of QCON representing the displacement in RXY type instructions.

PM5 | ZOSV1R8 | ZOSV1R9
COMPAT=PM5 is the minimum level that supports cross-segment references in
relative immediate instructions in program objects.

Caution: Programs bound with this option cannot be loaded, inspected, or
reprocessed on any MVS version prior to z/OS 1.8.

ZOSV1R7
COMPAT=ZOSV1R7 is the minimum level that supports relative/immediate
instructions across compile units or compression of non-program data.

ZOSV1R5 | ZOSVIR6
COMPAT=ZOSV1R5 is the minimum level that can be specified if RMODE 64
has been specified by a compiler for deferred load data segments.

PM4 | ZOSV1R3 | ZOSV1R4
COMPAT=PM4 is the minimum level that can be specified if any of the
following features are used:
v Input modules contain 8-byte adcons
v Any ESD record is AMODE 64
v Input contains symbol names longer than 1024, unless EDIT=NO
v A value of 64 is specified on the AMODE option or control statement

If COMPAT=PM4 and OVLY are both specified, COMPAT=PM4 is changed to
PM1. PM4 supports all PM3, PM2 and PM1 features.

PM3 | OSV2R8 | OSV2R9 | OSV2R10 | ZOSV1R1 | ZOSV1R2
In general, COMPAT=PM3 is the minimum level that can be specified if any of
the following features are used:
v Binding modules compiled using the XPLINK attribute
v DYNAM=DLL
v XOBJ format input to the binder without going through the Language

Environment prelinker, or rebinding modules containing input from such
sources

v Hidden aliases (from ALIASES control statement)
v Support for both deferred load classes and merge classes with initial text

(from GOFF format input modules or data buffers passed via the binder
API.)

Binder options reference

82 z/OS V2R2 MVS Program Management: User's Guide and Reference

v Language Environment-enabled programs

If COMPAT=PM3 and OVLY are both specified, COMPAT=PM3 is changed to
PM1.

PM3 supports all PM2 and PM1 features.

PM2
In general, COMPAT=PM2 is the minimum level that can be specified if any of
the following are used:
v User-defined classes passed in GOFF format input as well as certain other

information supported only in GOFF format
v Names (from input modules or created by control statements which cause

renaming) that are longer than 8 bytes.
v Use of RMODE=SPLIT

If OVLY is specified, COMPAT=PM2 is changed to PM1.

PM2 supports all PM1 features.

PM1
This is the minimum level which supports binder program objects. In addition
to old linkage editor load module features, program object features supported
here include:
v Device-independent record format
v Text length greater than 16 megabytes
v More than 32,767 external names

OVLY is supported, and will force PM1 to be used.

MIN
This is the default, and indicates that the binder should select the minimum
PM level that supports the features actually in use for the current bind.

LKED
Specifies that certain binder processing options are to work in a manner
compatible with the linkage editor. Specific processing affected by this
specification includes:
v AMODE/RMODE—Where conflicts exist between the AMODE or RMODE

of individual entry points or sections and the value specified in the AMODE
or RMODE option, the option specification will prevail. No warning
message will be issued and the return code remains unchanged.

v REUS—If a section is encountered in a module with a lower reusability than
that specified on the REUS option, the reusability of the module is
automatically downgraded. An information message is issued and the return
code remains unchanged.

This should not be thought of as a level below PM1. Since LKED does not tell
the binder what format to use when saving a program object, the binder will
behave according to MIN.

If COMPAT is not specified, the output format used by the binder will be the same
as if you had specified COMPAT=MIN.

COMPRESS: Compression option
Use this option to compress additional data that the binder stores with the
executable program. This has no effect on program size during execution, but can

Binder options reference

Chapter 6. Binder options reference 83

reduce the disk storage required to hold it. This option allows you to control
whether the binder will attempt compression. You might want to prohibit
compression in some cases.

If compression is specified with no value, it will be treated as COMPRESS=YES.

When you specify COMPRESS=YES, the binder attempts to compress the data,
unless compression is prohibited by the COMPAT setting. If COMPAT is defaulted
or set to MIN, the binder will treat it as if COMPAT=ZOSV1R7 is specified. If
COMPAT is specified as any lower value, the COMPRESS option is ignored and a
warning message is produced.

Specifying COMPRESS=YES will result in a warning unless COMPAT is specified
or can be defaulted to be at least zOSV1R7.

If AUTO is specified or defaulted to, compression will be done only if
COMPAT=zOSV1R7 or higher or some other characteristic of the program object
forces the equivalent program object level.

COMPRESS=AUTO is the default value. If the binder decides to attempt
compression when either COMPRESS=AUTO or COMPRESS=YES are specified, it
will determine if a savings of at least 4096 bytes of storage on DASD is produced.
If not, the data will be not be compressed and no error or warning message is
produced. However, informational message IEW2603I is produced for
COMPRESS=YES.

Note: For load modules (output to a PDS) the COMPRESS option is ignored, and
no error is produced.

DC: Downward compatible option
If you have a need to restrict the program library block size to 1024 bytes you can
specify that a maximum record size of 1024 bytes be used for the program library.

Specify the downward compatible attribute by coding DC in the PARM field.

DC affects only load module contents, not program objects.

Specifying the DC attribute sets the block size for the program library data set to
1024 bytes with the following exception. For an existing data set, if the current
block size is greater than 1024 bytes, the load module is written using a maximum
record size of 1024 bytes; the block size in the DSCB entry for the data set is not
changed.

DC=NO is the default value and can also be specified with the keyword NODC.

COMPRESS={YES | NO | AUTO}

{DC | DC=NO | NODC}

Binder options reference

84 z/OS V2R2 MVS Program Management: User's Guide and Reference

DCBS option
The DCBS option allows you to specify the block size for the SYSLMOD data set in
the DCB parameter of the SYSLMOD DD statement. If the DCBS option is
specified, the existing block size for the SYSLMOD data set can be overridden.

If the DCBS option is specified, but no block size value is provided in the
SYSLMOD DD statement, the binder uses the maximum record size for the device.
If the DCBS option is not specified, but a block size value is provided in the DCB
parameter of the SYSLMOD DD statement, the block size value is ignored.

The minimum block size for the SYSLMOD data set is 256 bytes. For an existing
data set, the minimum block size must be less than the block size in the DSCB.

The specified block size is used unless it exceeds the maximum record size for the
device or it is less than the minimum block size. In those cases, the maximum
record size or minimum block size is substituted, respectively. If DCBS is specified,
each CSECT starts a new block.

The following example shows the use of the DCBS option for an IBM 3380 Direct
Access Storage device:
//LKED EXEC PGM=IEWBLINK,PARM=’XREF,DCBS’
//SYSLMOD DD DSNAME=PROJECT.LOADMOD(TEST),DISP=(NEW,CATLG),
// DCB=(BLKSIZE=23440),...

As a result, the binder uses a 23440-byte block size for the program.

This option is only valid when processing load modules.

DCBS=NO is the default value and can also be specified with the keyword
NODCBS.

DYNAM: DYNAM option
If DYNAM(DLL) is enabled and the module contains exported symbols, the binder
will build the control structures enabling the output module to be used as a DLL.
The functions or variables exported by the DLL can be imported by DLL
applications. If DYNAM(DLL) is enabled, and the module contains symbols
eligible for dynamic resolution, and these symbols match symbols on IMPORT
control statements, then the binder will build the control structures enabling the
output module to execute as a DLL application. A DLL application can use
functions or variables exported by DLLs.

You can specify the DYNAM option in the PARM field as follows:

Note:

1. When DYNAM (DLL) is specified, a side file of IMPORT control statements
might be generated by the binder.

2. If you are using the batch interface of the binder, the IMPORT control
statements are saved in the data set specified in the SYSDEFSD ddname in

{DCBS | DCBS=NO | NODCBS}

DYNAM={DLL | NO}

Binder options reference

Chapter 6. Binder options reference 85

your JCL. See “SYSDEFSD DD statement” on page 40. If you are using the
binder API, the side file is saved in the data set represented by the SIDEFILE
specification of the files parameter of the STARTDialog API. For more
information, see z/OS MVS Program Management: Advanced Facilities.

3. A module linked with the DYNAM(DLL) option will be saved in a PO3 format
program object unless you specify a higher COMPAT option or other features
that force saving in an alternate format program object.

4. The DYNAM option disables the RES option.

EDIT: Edit option
To prevent a module from being reprocessed by the binder or linkage editor, you
can mark it as not-editable. To assign the not-editable attribute, code NE or
EDIT=NO in the PARM field.

EDIT is the default value.

If you use the not-editable attribute for a load module, you cannot request an
EXPAND operation on the output module. You can only use AMASPZAP 18
consecutive times.

If you use the not-editable attribute for a PM1 format program object, you cannot
use the EXPAND control statement.

If you use the not-editable attribute for a PM2 or higher format program object,
there are the following additional restrictions:
1. You cannot use the EXPAND control statement.
2. You cannot run AMASPZAP against it.
3. You cannot list the module with AMBLIST.
4. You canot process the module with the DLLRNAME utility.
5. You cannot copy the module to a PDS.
6. You cannot access the module using the binder API.
7. You cannot process the module with IEWTPORT or IEWBFDA.

A PM2 or higher format program object created with the not-editable option may
require much less space on DASD. The size of the loaded program and the time
taken to load the program will not change.

If you use the not-editable attribute when creating a program object which would
meet the limitations of PM3 or lower format, except that it contains symbols longer
than 1024 bytes, the object will be given execution attributes equivalent to a PM3
object. This will allow it to be executed on down-level systems. See the “COMPAT:
Binder level option” on page 81 for additional information.

EP: Entry point option
The EP option allows you to specify an external name to be used as the entry point
for the program. The EP option is overridden by the ENTRY control statement. You
can specify up to 1024 characters for the name but the JCL PARM field is limited to
100 characters and an OPTIONS data set is limited to 80 characters per option,
including the “EP=”.

{EDIT | NE | EDIT=NO}

Binder options reference

86 z/OS V2R2 MVS Program Management: User's Guide and Reference

Specify the EP option on the PARM statement as follows:

EXITS: Specify exits to be taken option
The EXITS option allows you to specify an exit(s) to be taken during binder
processing. For more information, see z/OS MVS Program Management: Advanced
Facilities.

where

exit
Specifies the user exit(s) to be selected. Choose one or more user exit names
from INTFVAL, MESSAGE, and SAVE.

module-name
Specifies the name of your loadable exit module

variable
Specifies an optional variable to be passed to your exit routine as follows:

For the INTFVAL exit you can specify an option string of up to 64 characters
(if the string is enclosed in quotation marks, the quotation marks are removed).

For the MESSAGE exit you can specify one numeric value that indicates the
minimum severity of the messages to be processed by the specified exit. For
example, specify 4 to suppress processing of informational messages.

EXTATTR: Specify extended attributes
The EXTATTR option allows you to set extended attributes for SYSLMOD when
saved in a z/OS UNIX file.

Four extended attributes can be set:
1. APF authorization
2. PGMCNTL
3. NOSHAREAS
4. SHRLIB

Where 'suboption' can be any of the following keywords:

APF | NOAPF | SHAREAS | NOSHAREAS | PGM | NOPGM | SHRLIB |
NOSHRLIB

Up to four suboptions can be given in a single EXTATTR specification. The last
valid specification for each of the four bits takes precedence. The defaults for the
files are ordinarily NOAPF, SHAREAS, NOPGM and NOSHRLIB. The binder will
not attempt to change the system settings for any attribute for which the user has
not specified a value.

EP=name

EXITS=(exit(module-name[,variable]),...)

EXTATTR={suboption | (suboption[,suboption]...)}

Binder options reference

Chapter 6. Binder options reference 87

APF
Causes the APF authorized flag for the SYSLMOD file to be set.

NOAPF
Will cause the flag to be set off.

PGM
Will cause the program-controlled flag for the SYSLMOD file to be set.

NOPGM
Will cause the flag to be set off.

SHAREAS
Will cause the NOSHAREAS attribute flag for the SYSLMOD file to be turned
off

NOSHAREAS
Means that the flag is set on

SHRLIB
Will cause the SHRLIB attribute for the SYSLMOD file to be turned on

NOSHRLIB
Will cause the SHRLIB attribute to be turned off

For further information on the extended attributes, refer to z/OS UNIX System
Services Command Reference.

FETCHOPT: Fetching mode option
The FETCHOPT option allows you to specify how a program object should be
paged-mapped (loaded) into virtual storage for execution. The syntax of the
FETCHOPT option is:

PACK | NOPACK
Allows you to specify whether the program object is page-mapped into virtual
storage on a page or double word boundary. Specifying PACK causes the
program object to be page-mapped into page-aligned virtual storage and then
moved to storage with double word alignment.

Specifying the NOPACK suboption of FETCHOPT will mark a program object
as eligible to be page-mapped into page-aligned virtual storage without a
secondary move. Other characteristics of the program, in conjunction with
loading algorithms designed to optimize performance or storage usage, may
prevent this loading method from actually being used.

PRIME | NOPRIME
Allows you to specify if the program object should be completely read into
virtual storage before execution. When PRIME is coded, all of the program
pages are read before program execution begins. When NOPRIME is coded,
program pages are not read until they are needed during execution.

You cannot specify the combination (PACK,NOPRIME). The default is
(NOPACK,NOPRIME).

This option is only valid when processing program objects.

FETCHOPT={(PACK,PRIME) | (NOPACK,PRIME) | (NOPACK,NOPRIME)}

Binder options reference

88 z/OS V2R2 MVS Program Management: User's Guide and Reference

When a program object is loaded from a z/OS UNIX file, it is not page-mapped.
NOPRIME is ignored and the entire program is read in before program execution
begins. Specifying the PACK option for a program object loaded from a z/OS
UNIX file results in doubleword alignment, but does not result in a secondary
move.

FILL: Fill character option
The FILL option lets you specify the character to be used to fill uninitialized areas
of the program object.

The value byte (two hexadecimal digits) is used to specify a byte value that is used
to fill uninitialized areas of the program object. All of the hexadecimal (X'00'-X'FF')
values are valid. For example, FILL=81 fills the area with X'81'.

The FILL option has no effect on storage added by the EXPAND statement. It also
has no effect on load modules and PM1-format program objects.

GID: Specify group ID
The GID option allows you to specify the Group ID attribute to be set for the
SYSLMOD file:

where

value
A string of up to 8 alphanumeric characters that represents a group name or
numeric z/OS UNIX group id. The characters will be folded to uppercase
unless 'value' is enclosed in quotation marks.

HOBSET: Set high order bit option
The HOBSET option allows you to specify if the high order bit in each four byte
V-type address constant is set according to the AMODE of the target symbol.

YES
Specifies the high order bit in each V-type address constant is set according to
the AMODE of the target entry point. For AMODE(31) or AMODE(ANY)
targets, the high order bit is set on (B'1'). If the target is marked AMODE(64),
the address constant will not be altered. For AMODE(24), the high order bit is
set off.

Note: This operation is completely reversible. On rebinding, V-cons from
included program objects revert to their original state, unless HOBSET is
specified again.

NO Specifies the high order bit in each V-type address constant is not to be set
according to the AMODE of the target entry point.

FILL={byte | NONE}

GID=value

HOBSET={NO | YES}

Binder options reference

Chapter 6. Binder options reference 89

NO is the default. The bit is set to off if HOBSET is not specified from any
source.

Note: A module or element loaded below 16 MB might need to operate with
AMODE(31) if it receives control from another module or element loaded above 16
MB. This allows it to access the caller's data areas.

INFO: Info option
When the INFO option is specified, the binder produces a report listing the PTF
level for all binder sections to which maintenance has been applied. This report
appears at the end of the binder SYSPRINT or SYSLOUT data set, prior to the
message summary report.

INFO=NO is the default value and can also be specified with the keyword
NOINFO.

LET: Let execute option
Ordinarily, the binder marks an output program module as nonexecutable when an
error with a severity level of 8 or higher is encountered. You can override this by
specifying a different severity level using the LET option. The binder then marks
the module as not-executable only if an error is encountered whose severity level is
higher than what you specified.

Specify the LET option by coding the PARM field as follows:

LET=4 is the default value. Coding the NOLET keyword will cause the binder to
mark the output module as nonexecutable when an error occurs with a severity
level of 4 or higher. If LET is specified without a value, LET(8) is assumed.

If LET=4 is specified, XCAL does not need to be specified.

LINECT: Line count option
The LINECT option lets you specify the number of lines to be included on each
page of binder output listings, including header lines and blank lines. The LINECT
option is coded in the PARM field as follows:

The value n can be any integer between 24 and 200, or 0. If you specify 0, there are
no page breaks in the output listing. The default value is LINECT=60.

LIST: Listing option
The LIST option allows you to control the type of information included in the
SYSPRINT or SYSLOUT data set. Consult Chapter 8, “Interpreting binder listings,”
on page 141 for an explanation and examples of the various kinds of information

{INFO | INFO=NO | NOINFO}

{LET={0 | 4 | 8 | 12} | NOLET}

LINECT={0 | 60 | n}

Binder options reference

90 z/OS V2R2 MVS Program Management: User's Guide and Reference

available. Code the LIST option in the PARM field as follows:

The LIST value can be one of the following:

ALL
Produces a listing of individual function calls, the load or save summary,
control statements, and messages. Messages IEW2308I and IEW2413I are issued
only if LIST=ALL.

SUMMARY
Produces a listing of the load or save summary (including processing options
and module attributes), control statements, and messages.

STMT
Produces a listing of control statements and binder messages.

NOIMPORT | NOIMP
Produces the same output as SUMMARY except IMPORT control statements
are not echoed in message IEW2322I.

OFF
Produces a listing that contains only binder messages.

LIST=SUMMARY is the default value. The keyword LIST is equivalent to
LIST=SUMMARY. NOLIST is equivalent to LIST=OFF.

LONGPARM: Long parameter option
The LONGPARM option indicates whether the program supports a parameter
longer than 100 bytes. This applies mainly to programs that are invoked using a
JCL EXEC statement or a z/OS UNIX EXECMVS callable service. LONGPARM or
LONGPARM=YES specifies that the program can accept a parameter string of
more than 100 bytes. In this case, an appropriate directory entry bit will be turned
on. The system checks for this attribute only when the program is being invoked
with a parameter string of more than 100 bytes and the program is APF
authorized. In this case, if the LONGPARM attribute is not set on, the system fails
the invocation.

Code the LONGPARM option as follows:

The LONGPARM value can be one of the following:

LONGPARM=YES
LONGPARM

Specifies that the program can accept a parameter string of more than 100
bytes.

LONGPARM=NO
NOLONGPARM

This is the default value. Specifies that the program can not accept a parameter
string of more than 100 bytes if it is APF authorized.

{LIST | LIST={ALL | SUMMARY | STMT | NOIMP[ORT] | OFF} | NOLIST}

{LONGPARM | LONGPARM=YES | LONGPARM=NO | NOLONGPARM}

Binder options reference

Chapter 6. Binder options reference 91

LISTPRIV: List unnamed sections option
The LISTPRIV option allows you to obtain a list of unnamed ('private code')
sections. Unnamed sections are sections that were input to the Binder with no
name (that is, the name consists of all blanks). The use of unnamed sections is not
recommended (They may cause code growth on rebinding and may create
maintenance problems.) LISTPRIV is useful as a tool in locating such sections in
your binds.

YES
If unnamed sections exist, a level 8 error message is generated, and a report
that lists all the unnamed sections and their origins is produced. If no
unnamed sections exist, LISTPRIV has no effect.

NO No diagnostics or special reports is generated for unnamed sections.

NO is the default.

INFORM
If unnamed sections exist, an informational message is generated, and a report
that lists all the unnamed sections and their origins is produced.

MAP: Program module map option
The binder allows you to request a program module map by coding MAP in the
PARM field as follows:

When the MAP option is specified, the binder produces a map of the program
module in the diagnostic data set SYSPRINT or SYSLOUT. In the case of an empty
module, no program module map will be generated. Figure 27 on page 145
contains an example of a program module map.

When a bind specifying the MAP option fails resulting in a not-executable (NX)
module, a program module map will be included in the binder listing.

MAP=NO is the default value and can also be specified with the keyword
NOMAP.

MAXBLK: Maximum block size option
You can specify the maximum size of a text block within a load module by coding
the MAXBLK option in the PARM field as follows:

The MAXBLK value n specifies the length of the text block in bytes and must be
an integer between 256 and 32760. This option allows you to ensure that a load
module can be copied to a device with a smaller track size without reblocking.

If you specify value2 on the SIZE option but do not specify a MAXBLK value,
MAXBLK will default to one-half of value2. If you do not specify either value,

LISTPRIV={NO | YES | INFORM}

{MAP | MAP=NO | NOMAP}

MAXBLK=n

Binder options reference

92 z/OS V2R2 MVS Program Management: User's Guide and Reference

MAXBLK defaults to the block size of the data set. If you code the DC option,
MAXBLK and SIZE are both overridden and MAXBLK is set to 1024 bytes.

We recommend that you allow the system to determine the block size for program
libraries. However, if you need to control the block size, we recommend that you
use the MAXBLK option instead of the SIZE option.

This option is only valid when binding load modules.

MODMAP: Module map option
You can build a map of the module contents in a separate section as part of the
module being bound by coding the MODMAP option in the PARM field as
follows:

NO The default value.

LOAD
builds the map in a loadable class. This is supported for both program objects
(all formats) and load modules.

NOLOAD
builds the map in a noload class. This is supported only for program objects.

MSGLEVEL: Message level option
The binder allows you to limit the messages displayed to only those of a specified
severity level and higher. You specify this level by coding the MSGLEVEL option
in the PARM field as follows:

The MSGLEVEL value is a message severity level. The default value is
MSGLEVEL=0.

NAME: NAME option
The NAME option allows you to specify a name to be used to identify a loaded
program to the system. You can specify the NAME option only when you are
using IEWBLDGO.

You specify the NAME option on the PARM statement as follows:

The maximum length for the name is 8 characters.

The default value for this option is **GO.

OL: Only-loadable option
The only-loadable option lets you specify that a module can only be brought into
virtual storage using a LOAD macro instruction.

MODMAP={NO | LOAD | NOLOAD}

MSGLEVEL={0 | 4 | 8 | 12}

NAME=name

Binder options reference

Chapter 6. Binder options reference 93

A module with the only-loadable attribute must be entered with a branch
instruction or a CALL macro instruction. If an attempt is made to enter the module
with a LINK, XCTL, or ATTACH macro instruction, the program making the
attempt is terminated abnormally by the control program. (See z/OS MVS
Programming: Assembler Services Guide for information on the LINK, XCTL, and
ATTACH macro instructions.)

You specify the only-loadable option in the PARM field as follows:

OL=NO is the default value and can also be specified with the keyword NOOL.

OPTIONS: Options option
Instead of providing all processing options in the PARM field, you can create a
data set containing the options. You specify the ddname of the data set by coding
the OPTIONS option in the PARM field as follows:

ddname identifies a sequential data set of blocked or unblocked 80-byte records.
Options are specified just as they are in the PARM field, separated by commas.
Option records cannot be continued. A blank outside of a quoted string ends
processing of options in that record.

The options data set can contain multiple records with individual parameter sets. It
cannot contain the OPTIONS option or any of the Environmental options (see
Table 7 on page 75. Blank records are ignored. See “Options data set” on page 37
for information on coding the DD statement that defines the options data set.

Tip: The options file does not replace the options string, but instead treats it as if
the file was inserted into the options string at the point where the OPTIONS
option appears.

OVLY: Overlay option
The OVLY option allows you to create a program module in overlay format. A
program with the overlay attribute is placed in an overlay structure as directed by
binder OVERLAY control statements. The program module cannot be refreshed,
reenterable, or serially reusable. AMODE(24) and RMODE(24) are the only valid
addressing and residence options.

If the overlay attribute is specified and no OVERLAY control statements are found
in the binder input, the attribute is ignored.

The overlay attribute must be specified for overlay processing. If this attribute is
omitted, the OVERLAY and INSERT statements are not considered valid, and the
module is not put into overlay structure.

You specify the overlay attribute by coding OVLY in the PARM field as follows:

{OL | OL=NO | NOOL}

OPTIONS=ddname

Binder options reference

94 z/OS V2R2 MVS Program Management: User's Guide and Reference

See Appendix D, “Designing and specifying overlay programs,” on page 209, for
information on the design and specification of an overlay structure.

OVLY=NO is the default value and can also be specified with the keyword
NOOVLY.

Note: The OVLY option overrides any specification of the COMPAT option. That
is, if you specify the options COMPAT (COMPAT=any value) and OVLY at the
same time, OVLY prevails and the module is saved in PM1 format if the
SYSLMOD data set is a PDSE. Otherwise it is saved as a load module in a PDS.
For more information on COMPAT, see “COMPAT: Binder level option” on page
81.

PATHMODE: Set z/OS UNIX file access attributes for
SYSLMOD

PATHMODE is used to set z/OS UNIX files attributes for SYSLMOD.

oct1,oct2,oct3,oct4
Where oct1 through oct4 are each are specified as an octal digit (0-7) separated
by commas. Each of these digits specifies execution values that override the
permission bits set by the PATHMODE parameter in the JCL for SYSLMOD.

The octal digit is interpreted as three bits (e.g. 5 is 101) and used as follows:

oct1

1.. Set user ID of process to user ID of file owner when the program is
executed

.1. Set group ID of process to group ID of file owner when the program is
executed

..1 Keep loaded executable in storage

oct2

1.. Owner permission to read file

.1. Owner permission to write file

..1 Owner permission to execute file

oct3

1.. Group permission to read file

.1. Group permission to write file

..1 Group permission to execute file

oct4

1.. Other permission to read file

.1. Other permission to write file

..1 Other permission to execute file

{OVLY | OVLY=NO | NOOVLY}

PATHMODE=oct1,oct2,oct3,oct4

Binder options reference

Chapter 6. Binder options reference 95

z/OS MVS JCL Reference and z/OS UNIX System Services Command Reference
have more information on PATHMODE file access attributes.

PRINT: Diagnostic messages option
Informational and diagnostic messages are normally written to the SYSLOUT or
SYSPRINT data sets. You can turn off this feature by coding NOPRINT in the
PARM field.
If NOPRINT is coded, the SYSLOUT and SYSPRINT data sets are not opened.

RES: Search link pack area option
During IEWBLDGO processing, the binder automatically searches the link pack
area queue before searching the SYSLIB data set. You can prevent this by coding
the NORES option in the PARM field.

NORES is the default for the bind and save entry point (IEWBLINK or its aliases).
RES is the default for the batch load entry points.

REUS: Reusability options
The REUS option allows you to specify how a program can be reused. (Reusability
means that the same copy of a program module can be used by more than one
task either concurrently or one after another.)

Note that the value of the REUS option always overrides the reusability of any
included load modules or program objects.

The syntax of the REUS option is as follows:

The reusability values are:

NONE
The module cannot be reused. A new copy must be brought into virtual
storage for each use. NONE is the default value.

SERIAL
The module is serially reusable. It can only be executed by one task at a time;
when one task has finished executing it another task can begin. A serially
reusable module can modify its own code, but when it is reexecuted it must
initialize itself or restore any instructions or data that have been altered.

RENT
The module is reenterable. It can be executed by more than one task at a time.
A task can begin executing it before a previous task has completed execution.
A reenterable module is ordinarily expected not to modify its own code. In
some cases, MVS protects the reentrant module's virtual storage so that it
cannot be modified except by a program running in key 0. These cases include

{PRINT | NOPRINT}

{RES | NORES}

REUS={NONE | SERIAL | RENT | REFR}

Binder options reference

96 z/OS V2R2 MVS Program Management: User's Guide and Reference

programs which the system treats as having been loaded from an authorized
library, and also programs running under UNIX unless a debugging
environment has been specified.

Reenterable modules are also serially reusable.

REFR
The module is refreshable. It can be replaced by a new copy during execution
without changing the sequence or results of processing. A refreshable module
cannot be modified during execution.

A module can only be refreshable if all the control sections within it are
refreshable. The refreshable attribute is negated if any input modules are not
refreshable. Refreshable modules are also reenterable and serially reusable.

The refreshable attribute can be specified for any nonmodifiable module.

If REFRPROT has been specified on the SETPROG command or in parmlib
member PROGxx, the module is protected from modification by placing it in
key 0, non-fetch protected storage, and page protecting the whole pages. Note
that debuggers, such as TSO TEST and UNIX debugging environments, will
override REFRPROT protection for particular TCBs so that they can modify
module storage in order to set breakpoints.

Alternatively, you can code a REUS option as a single keyword without a value
(REUS, NOREUS, RENT, NORENT, REFR, NOREFR). For example:

REUS used as a single keyword is equivalent to REUS=SERIAL. NOREUS used as
a single keyword is equivalent to REUS=NONE. This alternative form is supported
only for backward compatibility. The most restrictive positive specification is used
to set the reusability attribute. For example, specifying REFR has the same effect as
specifying REUS (REFR) and the module is marked as refreshable, reenterable, and
(serially) reusable.

If the PARM string contains both formats, the REUS(value) instance will override
any reusability options specified without values.

The binder only stores the attribute in the directory entry. It does not check
whether the module is actually reenterable or serially reusable. If the module is
incorrectly marked as reenterable or reusable, execution results are unpredictable;
for example, a protection exception might occur or the program might use another
task's data.

RMODE: Residence mode option
To assign the residence mode for all the entry points into a program module, you
can code the RMODE parameter as follows:

Or

//LKED EXEC PGM=IEWBLINK,PARM=’RENT,...’

RMODE=({MIN | 24 | ANY | 31 [, INITIAL | COMPAT]})

RMODE(SPLIT)

Binder options reference

Chapter 6. Binder options reference 97

The residence mode assigned in the PARM field is overridden by a residence mode
assigned in the MODE control statement, but overrides the accumulated residence
mode found in the ESD data for the control sections or private code in the input.

AMODE and RMODE values are specified independently, but checked for conflicts
before output processing occurs. See “AMODE and RMODE combinations” on
page 29 for information on AMODE and RMODE compatibility and the setting of
default values.

In addition to the residence mode value, you may optionally specify a scope. The
scope determines how the residence mode value is applied. The allowable scope
values are:

INITIAL
The residence mode value is applied to all initial load classes in all
segments.

When RMODE is specified, the default scope value is INITIAL.

COMPAT
The residence mode value is applied only to the initial load classes
comprising the first segment (the one that contains the main entry point).

When RMODE is unspecified, the default scope value is the same as
RMODE(MIN,COMPAT).

Note: The scope may not be specified with RMODE(SPLIT).

RMODE(SPLIT) specifies the program text (class B_TEXT) can be split into two
class segments according to the RMODE of each section. Rules for splitting the text
are:
v If RMODE(SPLIT) is specified, the B_TEXT class of each included module is

distributed between the two class segments according to the RMODE of each
section contained in the module.

v If RMODE(SPLIT) is not specified, either through the binder execution
parameter or a control statement, included text in classes B_TEXT, B_TEXT24
and B_TEXT31 are combined into B_TEXT class and loaded into memory using
the existing RMODE resolution rules.

v If the OVLY option is specified, RMODE is reset to 24 and the split module is
not produced.

v If RMODE(SPLIT) is specified, consider the HOBSET option. If you specify
HOBSET, the high order bit of each V-type address is set according to the
AMODE of the called entry point.

When an RMODE(SPLIT) module is loaded, the LOAD service returns a length of
zero. For additional information on multiple segment modules, see “Creating a
program object” on page 22. When you use LOAD, the CSVQUERY service should
be used with the OUTXTLST parameter to obtain information about the address
(load point) and length of each program segment. See CSVQUERY in z/OS MVS
Programming: Assembler Services Guide for more information.

The keyword RMODE can be specified as RMOD for options strings (such as
IEWL PARM or options files).

Binder options reference

98 z/OS V2R2 MVS Program Management: User's Guide and Reference

SCTR: Scatter load option
SCTR causes special control tables to be built in the output load module. This
information is used by the system when loading the nucleus. Otherwise the tables
are ignored. The option applies only when saving a load module.

The syntax of the SCTR option is as follows:

The default is NO.

SCTR or SCTR=YES must be specified when building a module that represents the
system nucleus.

SIGN: SIGN option
By specifying the SIGN option, you can build a digital signature for a program
object.

The syntax of the SIGN option is as follows:

The default is NO.

If SIGN or SIGN=YES is specified, the binder builds a digital signature in the
program object. The bound program object contains a signature information
structure that the loader (or other programs) can use to determine the signature
validity. This signature is used by the system only if the program object resides in
a PDSE. To build the signature, the binder must have access to an appropriate SAF
(RACF®) key ring or to a z/OS PKCS #11 token. For further information, see z/OS
Security Server RACF Security Administrator's Guide.

SIZE: Space specification option
The SIZE option allows you to specify the amount of space available for processing
load modules. You can specify the amount of virtual storage the binder can use
and the size of the load module buffers. If you specify SIZE when you bind
program objects, the value2 subparameter is ignored. Also, if you specify
WKSPACE, the first subparameter of WKSPACE overrides the first subparameter
of SIZE.

Note: We recommend that you do not use the SIZE option. Block size for load
modules should be specified with the MAXBLK option (see “MAXBLK: Maximum
block size option” on page 92), and workspace can be allocated with the
WKSPACE option (see “WKSPACE: Working space specification option” on page
105).

The syntax of the SIZE option is:

SCTR={NO | YES}

SIGN={NO | YES}

SIZE={value1[K] | ([value1[K],value2[K])}

Binder options reference

Chapter 6. Binder options reference 99

|
|
|
|
|

value1
Specifies the maximum number of bytes of available virtual storage. For the
binder, the minimum value is 16 KB (16384) and the maximum value is 16000
KB (16 MB).

value2
Specifies the number of bytes of storage to be allocated for the load module
buffer. For the binder, the minimum value is 512 and the maximum value is
65520 (approximately 64KB).

The binder only uses this value to determine the block size of the load module.
If MAXBLK is not specified, the block size is set to half of value2.

When coded in the PARM field, value1 and value2 parameters are enclosed in
parentheses. For example:

Both value1 and value2 can be expressed as integers specifying the number of bytes
of virtual storage or as nK, where “n” represents the number of 1KB (1024) of
virtual storage.

The binder provides default values for the SIZE option. The default values are
used if you do not specify any values, or if you specify one or more of the values
incorrectly. These defaults should be adequate for most binds, relieving you from
needing to specify the SIZE option.

SSI: System status index option
You can specify hexadecimal information to be placed in the system status index
by coding the SSI option in the PARM field as follows:

ssi-info is a hexadecimal value of exactly 8 digits. This is placed in the system
status index of the output module library directory entry.

If a SETSSI control statement has been coded, the value specified there overrides
any value set by this option.

STORENX: Store not-executable module
Specifies the conditions under which the binder is to store a non-executable
program module. The syntax of the STORENX option is as follows:

STORENX=YES
STORENX

When specified, a new module replaces an existing module of the same name
regardless of the executable status of either module. If the NAME statement is
provided, the replace option (R) must have been coded. STORENX=YES can
also be specified as STORENX.

STORENX=NOREPLACE
STORENX=NO

//LKED EXEC PGM=IEWBLINK,PARM=’SIZE=(2048K,32K),...’

SSI=ssi-info

STORENX={YES | NOREPLACE | NEVER}

Binder options reference

100 z/OS V2R2 MVS Program Management: User's Guide and Reference

NOSTORENX
Is the default value and specifies that the binder will not replace an executable
module in a program library with a not-executable version.
STORENX=NOREPLACE can also be specified as STORENX=NO or
NOSTORENX.

STORENX=NEVER
Specifies that the system will prevent the save of a non-executable module
even when no module with the same name previously existed in the target
library.

STRIPCL: Remove class option
The STRIPCL option allows you to remove unneeded classes from a program
object or load module. For a class to be eligible for removal, in addition to having
the "removable" attribute:
v It must not be a binder-owned class (those whose name start with "B_")
v It must not contain any RLD entries

STRIPCL=YES
Specifies that all classes with removable class attribute are to be removed. The
removable attribute may be specified in GOFF files passed to the binder, and is
preserved in the program object, associated with particular classes. The normal
usage of this is expected to be for classes composed of debug data.

If STRIPCL is specified without a value, it is treated as STRIPCL=YES.

STRIPCL=NO
Is the default value and specifies that classes with the removable class attribute
are to be retained.

STRIPSEC: Remove section option
The STRIPSEC option allows you to remove unneeded sections from a program
object or load module.

STRIPSEC=PRIV
Specifies that unreferenced unnamed sections are to be removed. Sections
removed by STRIPSEC=YES are always a superset of STRIPSEC=PRIV. See the
note below for more information concerning unreferenced sections.

STRIPSEC=YES
Specifies that unreferenced and unreferenced unnamed sections are to be
removed. Sections removed by STRIPSEC=PRIV are always a subset of
STRIPSEC=YES. See the note below for more information concerning
unreferenced sections.

If STRIPSEC is specified without a value, it is treated as STRIPSEC=YES.

STRIPSEC=NO
Is the default value and specifies that unreferenced sections are not to be
removed.

{STRIPCL=YES | NO}

STRIPSEC={PRIV|YES | NO}

Binder options reference

Chapter 6. Binder options reference 101

Note: For a section to be considered unreferenced, it must:
v Contain no symbols that are referenced by an ESD
v Contain neither an entry point nor an alias
v Contain no exported symbols
v Not be the target of a control statement

SYMTRACE: Symbol resolution tracing
The SYMTRACE option requests the binder to report some symbol resolution
information.

Code the SYMTRACE option as follows:

This option requests symbol resolution information to be produced in SYSPRINT.
Messages include:
v The traced symbol may be resolved dynamically (from a DLL):

– IMPORT information encountered: IEW2336I, IEW2337I.
– IMPORT used for resolution: IEW2423I, IEW2424I.

v The traced symbol is referenced in a section:
– Section comes from a data set or DDname: IEW2417I.
– Section comes from a z/OS UNIX archive member or file: IEW2418I.

v The traced symbol is defined in a section:
– Section comes from a data set or DDname: IEW2419I.
– Section comes from a z/OS UNIX archive member or file: IEW2420I.
If origination information is available, the above messages are accompanied by
one of these:
– Origination section comes from a data set or DDname: IEW2421I.
– Origination section comes from a z/OS UNIX archive member or file:

IEW2422I.
v The traced symbol is not yet resolved so will be searched for using AUTOCALL:

– Searching a data set or DDname: IEW2546I.
– Searching a z/OS UNIX archive library or directory: IEW2547I.

If the traced symbol is not found in all explicitly included modules and libraries,
no symbol trace message is issued.

When the binder is required to print a message containing a variable (symbol) with
a length greater than 1024 bytes, the message prints only the first 1024 bytes of the
variable (symbol). Refer to “The message summary report” on page 157 for this
limitation.

Note: By default, SYMTRACE is off. After it is turned on, you can turn it off again
by specifying SYMTRACE=".

If compilers have mangled symbol names, the mangled names should be used for
the SYMTRACE option.

As symbol resolution is case sensitive, to trace a case-sensitive symbol name, either
set the CASE option to MIXED or specify the symbol name in single-quotes.

{SYMTRACE=symbol | SYMTRACE(symbol)}

Binder options reference

102 z/OS V2R2 MVS Program Management: User's Guide and Reference

Modifying a symbol name by any of the following means does not have any affect
on the name of the symbol be traced:
1. Changed by a CHANGE or REPLACE control statement or corresponding

ALTERW API call; renamed by a RENAME control statement or corresponding
RENAME API call, or renamed according to other rules described in
“Renaming” on page 59.

2. Changed by the interface validation user exit, action code 4.

TERM: Alternate output option
You can request that the numbered error and warning messages be written to the
data set defined by a SYSTERM DD statement by coding TERM in the PARM
field.

When the TERM option is specified, a SYSTERM DD statement must be provided.
If it is not, the TERM option is ignored and messages are written only to the
SYSPRINT or SYSLOUT data set.

Output specified by the TERM option supplements printed diagnostic information.
When TERM is used, binder error/warning messages appear in both output data
sets.

TERM=NO is the default value and can also be specified with the keyword
NOTERM.

TEST: Test option
A program with the test attribute contains information about internal symbols in a
form that can be accessed with the TSO TEST command. Symbol tables to be used
by the TSO TEST command should be included in the input to the binder, which
will place them in the output module. If the test attribute is not specified, any
symbol tables in the input are ignored by the binder and are not placed in the
output module. If the test attribute is specified, and no symbol table input is
received, the output load module will not contain symbol tables to be used by the
TSO TEST command.

Specifying the TEST option is not useful unless you are going to use the TSO TEST
command on the program. The symbol tables in the program are ignored except
when using the TSO TEST command.

You assign the test attribute by coding TEST in the PARM field.

The TEST option is only valid for program modules that are stored in a program
library for later execution.

TEST=NO is the default option and can also be specified with the keyword
NOTEST.

{TERM | TERM=NO | NOTERM}

{TEST | TEST=NO | NOTEST}

Binder options reference

Chapter 6. Binder options reference 103

TRAP: Error recovery
Specifying the TRAP option lets you control error trapping.

This option can be specified only in the following ways:
v The PARM string when the binder is invoked from JCL.
v The first parameter in the parameter list passed when calling the binder from

another program (IEWBLINK, IEWBLOAD, IEWBLODI, IDWBLDGO).
v The IEWBIND API FUNC=STARTD OPTIONS= or PARMS= parameters.

ON
Causes the binder to establish both an ESTAE and an ESPIE exit. This will trap
all abends and program checks that occur while the binder is in control. A key
aspect is that parameter validation done by the binder API will return the
documented results even if some program in the binder calling sequence has a
program check exit.

ABEND
The binder will establish an ESTAE exit but not an ESPIE exit. This will trap all
abends, but program checks will be caught by the binder only if no program in
the binder calling sequence has an ESPIE exit.

Note:

1. Especially with the API interface, program checks may occur during binder
validation of its input. The binder will normally recover from those and
convert them into return codes. It will be unable to do that if
TRAP=ABEND was specified and some calling program has an ESPIE exit.

2. A Language Environment will normally include an ESPIE exit, so Language
Environment-enabled programs calling the binder should not use
TRAP=ABEND unless they are being debugged or have made special
provision for this situation.

3. Prior to z/OS 1.5 there was no TRAP option, but the binder behavior
matched what is now defined for TRAP=ABEND.

OFF
Prevents the binder from establishing any ESTAE or ESPIE exit. This will allow
callers of the binder to trap all abends and program checks.

Note: Many data set related ABENDs are passed directly by DFSMS to binder
routines doing I/O. These do not go through binder ESTAE processing and
will continue to be caught even with TRAP=OFF.

UID: Specify user ID
The UID option allows you to specify the User ID attribute to be set for the
SYSLMOD file:

where

{TRAP=ON | ABEND | OFF}

UID=value

Binder options reference

104 z/OS V2R2 MVS Program Management: User's Guide and Reference

value
A string of up to 8 alphanumeric characters that represents a user name (such
as TSO logon ID) or a numeric z/OS UNIX user id.

UPCASE: UPCASE option
This option indicates whether additional renaming should be done when symbols
remain unresolved. Unresolved function references that are marked as renameable
and are not imported are set to uppercase if they are eight characters or less in
length. Also, underscore (’_’) is mapped to ’@’ and names beginning with IBM,
CEE, or PLI have their respective prefixes changed to IB$, CE$, and PL$. After the
renaming process is complete, an attempt to resolve the symbols using the new
names is made. Traditional object modules do not support the renameable bit and
thus symbols originating from them are not affected by the UPCASE option.

The UPcase option provides binder function roughly equivalent to the prelinker
UPCASE option.

The UPCASE option can be specified in the PARM field as follows:

Note: UPCASE is supported only for format 3 or higher program objects. This is
expressed as COMPAT=PM3 or equivalent, or higher. But when COMPAT=MIN is
indicated, the binder does not force PM3 or higher simply to satisfy UPCASE=YES.

WKSPACE: Working space specification option
The WKSPACE option allows you to specify the amount of virtual storage
available to the binder during processing.

The syntax of the WKSPACE option is:

value1
The maximum amount of virtual storage below the 16 MB line, in units of
1KB, that is available for binder processing.

value2
The maximum amount of virtual storage above the 16 MB line, in units of 1KB,
that is available for binder processing.

For example:

If value1 is not specified and the SIZE option has been specified, value1 is set to
value1 as specified on the SIZE option. If the SIZE option is not specified, the
binder assumes that it can use all available virtual storage below 16 MB. We
recommend that you use the WKSPACE option with the MAXBLK option and in
place of the SIZE option.

If value2 of the WKSPACE option is not specified, the binder allocates workspace
from above 16 MB as needed until no more space is available.

{UPCASE | UPCASE=YES | UPCASE=NO | NOUPCASE}

WKSPACE=([value1][,value2])

//LKED EXEC PGM=IEWBLINK,PARM=’WKSPACE=(96,1024),...’

Binder options reference

Chapter 6. Binder options reference 105

Under normal circumstances, the binder can determine its own workspace
requirements. You should not need to specify the WKSPACE parameter unless you
have unusual virtual storage considerations.

We recommend a minimum of 96 KB below 16 MB and 2048 KB above 16 MB for
all binder processing.

XCAL: Exclusive call option
You use the XCAL option when valid exclusive references have been made
between segments of an overlay program. A warning message is issued for each
valid exclusive reference, but the binder marks the output module as executable.

See “References between segments” on page 213 for information about valid
exclusive references.

To specify the exclusive call option, code XCAL in the PARM field.

The OVLY attribute must also be specified when you use the XCAL option. For
example:

XCAL=NO is the default value and can also be specified with the keyword
NOXCAL.

XREF: Cross reference table option
You can request a cross-reference table of a program module by coding XREF in
the PARM field.

When the XREF option is specified, the binder produces a cross-reference table of
the program module in the SYSPRINT data set. In the case of an empty module,
no program module map will be generated. If you also need a module map, you
must request one using the MAP option. Figure 32 on page 151 contains an
example of a cross reference table.

When a bind specifying the XREF option fails resulting in a not-executable (NX)
module, a cross-reference table will be included in the binder listing.

XREF=NO is the default value and can also be specified with the keyword
NOXREF.

{XCAL | XCAL=NO | NOXCAL}

//LKED EXEC PGM=IEWBLINK,PARM=’XCAL,OVLY,...’

{XREF | XREF=NO | NOXREF}

Binder options reference

106 z/OS V2R2 MVS Program Management: User's Guide and Reference

Chapter 7. Binder control statement reference

You provide control statements to the binder to specify editing operations and
identify additional input. You can provide entry and module names and specify
the authorization code of a program module.

This topic summarizes the binder control statements. Statement descriptions are in
alphabetical order, and include the purpose, syntax, placement in the input stream,
and examples.

Before using these control statements, you should also be familiar with the syntax
and national conventions described in “Notational conventions” on page xii.

Note: This topic refers to binder processing. These concepts apply equally to
linkage editor and batch loader processing unless noted otherwise in Appendix A,
“Using the linkage editor and batch loader,” on page 171. The linkage editor and
batch loader cannot process program objects.

Binder syntax conventions
Each binder control statement specifies an operation and one or more operands.
Nothing must be written preceding the operation, which must begin in or after
column 2. The operation must be separated from the operand by one or more
blanks; blanks cannot be embedded within the operand field (see “Rules for
comments” on page 109).

Control statements are specified in 80-byte lines. A control statement can be
continued on as many lines as necessary. However, the control statement keyword
must be entirely on the first line and the operands must begin on the first line. A
control statement can be continued in one of the following ways:
1. Terminate an operand at a comma followed by a blank. The comma must be in

column 71 or earlier. Continuation lines can begin anywhere after column 1.
Any leading blanks are discarded.

2. If the operand field goes to column 71 (with no embedded blanks) and column
72 is nonblank, the next line is treated as a continuation line. As in 1, the
continuation line can begin anywhere after column 1 and any leading blanks
are discarded. Columns 73 through 80 of each line are reserved for sequence
numbers, which are not processed by the binder.

3. An operand enclosed in single quotation marks can be continued. The binder
searches as many records as necessary until it finds the ending quotation mark.
The full operand is reconstructed by concatenating the fragments starting with
column 2 of each line. In this case, the continuation of the operand must start
in column 2, or the operand is considered to have embedded blanks and is
truncated at the first blank. You can continue coding additional operands as
usual following the ending quotation mark. An example of this is:
123456789.123456789.123456789.123456789.123456789.123456789.123456789.12
INCLUDE ’/this/is/a/very/long/path/that/needs/to/be/split/across/two/l-
ines/input.o’,’./and/a/second/path/private.o’

Most binder control statements require various symbols or names to be specified as
operands. Unless otherwise noted, all such names and symbols must be 32767
bytes or less and consist of EBCDIC characters within the range of X'41' through

© Copyright IBM Corp. 1991, 2015 107

X'FE' plus the double-byte character set (DBCS) SO/SI control characters X'0E' and
X'0F'. It is strongly recommended that all such names consist of displayable
characters only and that they are enclosed by single quotation marks if they
contain other than upper case alphanumeric characters. DDnames, member names,
and alias names must conform to the JCL coding rules for those parameters.

You can enclose any symbol except binder-defined keywords with single quotation
marks. If you want to use commas or parentheses in a symbol in a control
statement, you must enclose that symbol in single quotation marks. A single
quotation mark embedded in a quoted string must be coded as two consecutive
quotation marks. Only complete symbols can be enclosed in single quotation
marks. Characters within quoted strings will not be folded to upper case,
regardless of the value of the CASE option. A quoted string with no closing
quotation mark continues in column 2 of the next line.

A number of metasymbols dealing with names and program symbols have been
used in the control statement syntax diagrams in this topic. These metasymbols
include the following:
v symbol, newsymbol. A user-assigned name with a maximum length of 32767 bytes

and consist only of characters from the binder's character set, described above.
v externalsymbol, external reference. Those symbols that are or will be defined in the

External Symbol Dictionary (ESD). These include entry names defined by a
Label Definition (LD), section names that are implied entry names, external
references (ER) and part references (PR), which are for part names or
pseudoregister (external dummy section) names.

v sectionname. Those symbols which name sections in the module. Section is a
generic term encompassing control sections, private code sections and common
areas. Blank common and private code sections cannot be named on binder
control statements.

v directoryname. Those symbols that appear or will appear in the directory of a
named library structure. Directory names include member names, aliases and
unqualified z/OS UNIX file names, and have length restrictions imposed by the
underlying file system.

File system Member name Alias name

PDS Library 8 8

PDSE Library 8 1024

z/OS UNIX Directory 255 255

v ddname. The name coded in the label field of a dd-statement. Ddnames are
limited to eight bytes.

v pathname. A z/OS UNIX pathname designating either a directory or a regular file
(depending on the control statement). It must begin with either "./" (meaning a
relative pathname) or "/" (meaning an absolute path name) and is limited to
1023 bytes in length. To prevent the pathname from being folded to uppercase,
you should either enclose the pathname in single quotation marks or specify the
binder CASE=MIXED option. z/OS pathnames are replaced in the binder listing
output by generated "ddnames" of the form "/nnnnnnn", where nnnnnnn is
numeric. The true pathname may be found in the DDname vs Pathname report.

You can include blank lines between control statements but not within a statement.
A blank line indicates an end to any statement.

Control statement reference

108 z/OS V2R2 MVS Program Management: User's Guide and Reference

For more information on syntax and notational conventions, see “Notational
conventions” on page xii.

Syntax errors
If a syntax error is detected while processing a control statement, the remainder of
the statement is skipped and not processed. However, any operands in the portion
of the statement preceding the error are processed.

Rules for comments
Placing an asterisk (*) in column 1 of a control statement causes the binder to treat
that line as a comment. The content of column 72 is ignored on a comment line.
You can include comment lines anywhere in the control statement input except
within a quoted string. You can also include comments on a control statement line;
anything at the end of a control statement line separated from the operands by one
or more blanks will be treated as a comment. Comments are not processed by the
binder but can be printed.

A line is also treated as a comment if the previous statement ends with a blank but
has a nonblank character in column 72.

Placement information
Binder control statements are placed before, between, or after object modules. They
can be grouped, but they cannot be placed within a module. However, specific
placement restrictions might be imposed by the nature of the services being
requested by the control statement. Any placement restrictions are noted.

If a function can be specified either on a control statement or as an option in the
PARM field of the EXEC statement, the control statement specification takes
precedence.

ALIAS statement
The ALIAS statement specifies one or more additional names for the primary entry
point, and can also specify names of alternate entry points.

Note: Alternate entry points are not supported for program objects that reside in
z/OS UNIX files. If a z/OS UNIX path name is specified, that name becomes a
true alias of the primary entry point.

The binder does not place a limit on the number of alias names that can be
specified on an ALIAS statement or on separate ALIAS statements for one library
member. These names are entered in the directory of the partitioned data set or
PDSE in addition to the member name. If the symbol specified as the alias has
appeared on an earlier ALIAS control statement, the new specification replaces the
earlier one.

Note: If the module contains multiple text classes, all entry points must be
defined in the same class.

The syntax of the ALIAS statement is:
ALIAS {directoryname[(externalsymbol)]}

{(SYMLINK, pathname)}
{(SYMPATH, pathname)}
[,...]

Control statement reference

Chapter 7. Binder control statement reference 109

directoryname
Specifies an alternate name for the program object or load module. The symbol
might or might not be the name of an external entry point within the program.

When the program is executed using the alias name, execution begins at the
entry point associated with the alias. The entry point is determined according
to the following rules:
1. If an externalsymbol is specified as an entry point (see below) for the alias,

execution begins at that entry point.
2. If the alias symbol matches an entry name within the program, execution

begins at that entry point.
3. If the alias symbol does not match an entry name within the program,

execution begins at the main entry point.

externalsymbol
Specifies the name of the entry point to be used when the program is executed
using the associated alias. If the external symbol is the name of an entry point
within the program, that name is used as the entry point for the alias. If the
external symbol is not an entry point name, but another external name such as
a pseudoregister or an unresolved external reference, the main entry point is
used as the entry point for the alias. If the symbol you specify is not defined in
the program, the alias is not created.

SYMLINK
A symbolic link is a z/OS UNIX file that contains the pathname for another
file or directory. Symbolic links can be links across mounted file systems.

SYMPATH
The contents of the path designated by a SYMLINK request are specified by
the next following SYMPATH request.

pathname
The pathname to or contained by a symbolic link. The pathname contained in
a symbolic link can be relative or absolute. If a symbolic link contains a
relative pathname, the pathname is relative to the directory containing the
symbolic link.

These entries can be repeated in any order. Alias entries can be divided up among
separate ALIAS statements as desired except that there must be at least one
SYMPATH specification following a given SYMLINK or group of SYMLINKs.

Placement: An ALIAS statement can be placed before, between, or after object
modules or other control statements. It must precede a NAME statement used to
specify the member name, if one is present.

Note:

1. In an overlay program, an external name specified by the ALIAS statement
must be in the root segment. In a multitext class program object, an alternate
entry point specified by an ALIAS statement must be defined in the same class
as the primary entry point.

2. When a program module in an MVS data set is reprocessed, all ALIAS
statements should be respecified so that the directory is updated. Otherwise,
for replaced load modules, the aliases remain in the directory and point to the
old library member. When a program object is replaced, the aliases are deleted.
When a program module in a z/OS UNIX file is reprocessed, the existing
aliases will be retained, whether or not the existing aliases are respecified on
ALIAS control statements.

Control statement reference

110 z/OS V2R2 MVS Program Management: User's Guide and Reference

3. Each alias name that is specified must be unique within the library. If the
specified alias name matches an existing member name within the library, the
alias will be rejected. If the specified alias name matches an existing alias name
in the library and the replace option (R) was not specified, the alias will be
rejected. If replace was specified, the new alias name will replace the existing
one.

4. To avoid name conflicts, delete obsolete alias names from the program library
directory.

5. You can execute a program object that resides in a z/OS UNIX file by
specifying an alias name. However, execution will always begin at the main
entry point. By using the binder call interface, it is possible to copy the
program module and its aliases to a partitioned data set or a PDSE. The alias
information that was saved in the program object will be used to create aliases
for the copied module as either true aliases or alternate entry points, in
accordance with the rules documented here.

6. The binder ALIAS control statement, or equivalent binder API call, is used to
specify an alias to a particular entry point (target symbol) in the executable.
However, for a module with multiple text classes, all the entry points must be
in the first class of the first segment (PO3 or higher support multiple loadable
text classes). Beginning with V2R2, if a user sets an alias to a symbol not in the
first class of the first segment (perhaps unintentionally), Program Management
reports this situation as described in the following:
a. For ALIAS A, if A matches the name of an external symbol, and that symbol

is not in the first class of the first segment, the alias A is made a true alias
(just as if there were no matching external symbol) and so is marked as
EXECUTABLE, and Program Management issues the informational message
IEW2619I.

b. For ALIAS A(TARGET), if TARGET matches the name of an external symbol
and that symbol is not in the first class of the first segment, the alias A is
made a true alias (just as if there were no matching external symbol) and so
is marked as NOT EXECUTABLE. The return code is minimally 4 and the
warning message IEW2652 is issued.

Symbolic link support

The SYMLINK and SYMPATH functions of the ALIAS control statement can be
used to establish an arbitrary number of symbolic links. The contents of the path
designated by a SYMLINK request are specified by the next following SYMPATH
request. The result of a SYMLINK/SYMPATH pair is the creation of a file whose:
1. pathname is the SYMLINK path concatenated to the SYSLMOD path
2. file type is 'symbolic link'
3. contents are given by SYMPATH.

A SYMPATH specification applies to all SYMLINK specifications that precede it,
back to the first previous SYMPATH.

Thus, in the following skeleton example:
ALIAS (SYMLINK,A1)
ALIAS (SYMLINK,A2)
ALIAS (SYMPATH,B1)
ALIAS (SYMLINK,A3)
ALIAS (SYMLINK,A4)
ALIAS (SYMLINK,A5)
ALIAS (SYMPATH,B2)
ALIAS (SYMLINK,A6)

Control statement reference

Chapter 7. Binder control statement reference 111

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

SYMPATH B1 is used for A1 and A2, SYMPATH B2 is used for A3 through A5, and
A6 is in error. Continuation rules and general syntactical rules are the same as
those for other Binder control statements and control statement operands. Length
limits for both the control statement and ADDA API call are 1024 for both
SYMLINK and SYMPATH.

If the GID or UID options are specified, the UID and GID values for SYSLMOD are
also used for the symbolic links.

Example
An output module, ROUT1, is assigned an alternate entry point, CODE1. CODE1
can also be invoked by an alias, CODE2. In addition, calling modules have been
written using both ROUT1 and ROUTONE to refer to the output module. Rather
than correct the calling modules, an alternate library member name is also
assigned.

ALIAS CODE1,CODE2(CODE1),ROUTONE
NAME ROUT1

Because CODE1 is an entry name in the output module, execution begins at the
point referred to when this name is used to call the module. The same entry point
will be selected when CODE2 is called, since CODE2 is an alias for the CODE1
entry point. The modules that call the output module with the name ROUTONE
now correctly refer to ROUT1 as its main entry point. The names CODE1, CODE2,
and ROUTONE appear in the library directory along with ROUT1.

ALIGNT statement
The ALIGNT statement specifies an alignment boundary to be used for the
specified section name.
ALIGNT boundary,sectionname

[(classname1[,classname2]...)]

boundary
Specifies the alignment boundary to be used for the specified section name.
The value may be any power of 2 between 1 and 4096; specifically, 1, 2, 4, 8,
16, 32, 64, 128, 256, 512, 1024, 2048, or 4096 are allowed.

The value 0 is also allowed, which causes the default alignment to be used.
This is the alignment that is used if no ALIGNT statement is specified.

sectionname
Specifies the name of the section to be aligned on the specified boundary.

classname
The names of the classes defined in sectionname, to be aligned on the specified
boundary. If not specified, all the class names (elements) in the specified
section are aligned, with the exception of merge classes.

Placement: An ALIGNT statement can be placed before, between, or after modules
or other control statements.

Note:

1. If a section is changed by a CHANGE or REPLACE control statement, and
boundary alignment is wanted, specify the new name on the ALIGNT
statement.

2. The section and classes named can appear in either the primary input or the
automatic call library, or both.

Control statement reference

112 z/OS V2R2 MVS Program Management: User's Guide and Reference

3. ALIGNT does not affect the alignment of pseudo-registers in the section. It only
affects the alignment of parts if their defining merge class name is specified. It
is applied to every part in the merge class in addition to the class itself.

4. ALIGNT is not affected by the ALIGN2 option.
5. If class names are specified, those classes will be aligned. A merge class name

may be listed. If the same section name is specified on more than one ALIGNT
statement that specifies class names, those class names are added to the list of
classes to be aligned.

6. If ALIGNT that specifies a section name with no class names is followed by
one or more ALIGNT statements that specify class names, any unspecified
classes in the section (excluding any merge classes) are aligned according to the
first ALIGNT that had no class names.

7. The alignment specification is not preserved if the module is rebound. ALIGNT
must be specified every time the module is bound.

8. Unlike ALIGNT, the PAGE control statement interacts with other methods of
specifying alignments. PAGE produces results like the ALIGNT 4096 (or
ALIGNT 2048 if the ALIGN2=YES option is specified). PAGE is equivalent to
using (P) on the ORDER control statement.

Consider the following example:
ALIGNT 32,MYDATA
ALIGNT 256,MYCODE(B_TEXT)
ALIGNT 256,MYCODE(C_CODE,MY_CLS)

This example demonstrates the use of aligning multiple classes of two different
sections. In one case, all classes (elements) are aligned. In the other, only certain
classes are specified.

Example
......

//BIND EXEC PGM=IEWBLINK,PARM=’LIST,MAP,COMPAT=CURR’
......
//SYSLIN DD *
ENTRY CSECT0
INCLUDE OBJLIB(OBJECT1)
ALIGNT 512,CSECT2(CS2_CLS23)
ALIGNT 00004096,CSECT2(C123456789012345)
ALIGNT 00000000,CSECT2(CS2_CLS26)
ALIGNT 01024,CSECT2(CS2_CLS2A,CS2_CLS2B,CS2_CLS2C,CS2_CLS2D)
ALIGNT 032,CSECT2(cs2_cls2a)
NAME TEMPA(R)
/*

AUTOCALL statement
The AUTOCALL control statement prompts the binder to perform incremental (or
immediate) autocall using only the given library as the search library to resolve
symbol references. See “Resolving external references” on page 53 for more
information on autocall.

The syntax of the AUTOCALL statement is:
AUTOCALL ddname | pathname

ddname
Specifies the name of a DD statement that describes a PDSE program object
library, a PDS library containing object modules or load modules, or a z/OS
UNIX directory or archive library file.

Control statement reference

Chapter 7. Binder control statement reference 113

pathname
Specifies the absolute or relative pathname for a z/OS UNIX directory or
archive library file. See “Binder syntax conventions” on page 107 for a
discussion of continuations and lower case letters.

Placement: The AUTOCALL control statement can be placed anywhere in the job
stream or input data set.

Note:

1. This statement can be specified at any time during primary and secondary
input to the binder. However, if there are any references left unresolved after
any number of AUTOCALL control statements, the binder does not diagnose
them.

2. If no autocall (NCAL or CALL=NO) is in effect, incremental autocall is not
performed. See Chapter 6, “Binder options reference,” on page 71 for
information on the CALL and NCAL option.

3. The AUTOCALL statement replaces one form of the LIBRARY statement which
was supported by the Language Environment prelinker but is not supported by
the binder. (See “Binder extensions supporting the Language Environment” on
page 30.)

4. No symbol renaming is done when the binder attempts to resolve references
during incremental autocall.

Example
The following example shows how the AUTOCALL statement is invoked to
immediately resolve references made available during a recent INCLUDE.
//OBJMOD DD DSNAME=PROJECT.TAXES,DISP=(OLD,DELETE),...
//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=OLD,...
//SYSLIB DD DSNAME=PROJECT.MAIN.LOADLIB,DISP=OLD,...
//SYSLIN DD *

INCLUDE OBJMOD
AUTOCALL LOADMOD...

/*

In the example, OBJMOD is included first, followed by an autocall request that
uses the LOADMOD module library to resolve references. At this point, no attempt
is made to resolve references using SYSLIB, and unresolved references are not
diagnosed. The binder waits until all input has been specified to do a final
autocall. At that time, it attempts to resolve any outstanding references by
searching SYSLIB. After final autocall, if any references remain unresolved, the
binder states them in its messages.

CHANGE statement
The CHANGE statement causes an external symbol to be replaced by the symbol
in parentheses following the external symbol. The external symbol to be changed
can be a control section name, a common area name, an entry name, an external
reference, or a pseudoregister. More than one such substitution can be specified in
one CHANGE statement. The syntax of the CHANGE statement is:
CHANGE [-IMMED,] externalsymbol(newsymbol)

[,externalsymbol(newsymbol)]...

-IMMED
Causes the target of the CHANGE control statement to be the sections already
included in the module being bound.

Control statement reference

114 z/OS V2R2 MVS Program Management: User's Guide and Reference

externalsymbol
The external symbol that is changed.

newsymbol
The name to which the external symbol is changed.

Placement: In the job stream or input data set, the CHANGE control statement
must be placed before either the module containing the external symbol to be
changed, or the INCLUDE control statement specifying the module. The scope of
the CHANGE statement is across the next object module, load module, or program
object. However if the -IMMED option is specified, the CHANGE control statement
should be placed anywhere after the module being changed, or the INCLUDE
statement specifying the module.

Note:

1. External references from other modules to a changed control section name or
entry name remain unresolved unless further action is taken.

2. If both the original name and the new name specified for the external symbol
are already defined in the output module, the new name is deleted from the
module before the original name is changed. If the new name defines a control
section, the original section with the same name will be deleted. The results
received from the binder under this condition vary from the results received
from the linkage editor.

3. When a REPLACE statement that deletes a control section is followed by a
CHANGE statement with the same control section name, the results are
unpredictable.

4. If a CHANGE statement without the -IMMED option is not followed by any
included module, the binder issues a diagnostic message and ignores the
change.

5. If a CHANGE statement appears in a module included from an automatic call
library, it will be ignored if it is not followed by a module from the same
member.

6. The -IMMED option is not allowed during autocall processing.
7. externalsymbol may be specified using the syntax $PRIVxxxxxx (where xxxxxx is

6 hexadecimal digits) to represent an unnamed symbol. To determine the
appropriate value to use, it is necessary to rebind the single module and
produce a MAP and/or XREF. The $PRIVxxxxxx symbol names from that
binder output can be used in CHANGE statements on the very next bind of the
single module. Names $PRIV000000 - $PRIV00000F are reserved by the Binder
and may not be used as externalsymbol.

Examples
Change Control Section Name: Example 1

Two control sections in different modules have the name TAXROUT. Because both
modules are to be bound together, one of the control section names must be
changed. The module to be changed is defined with a DD statement named
OBJMOD. The control section name could be changed as follows:
//OBJMOD DD DSNAME=PROJECT.TAXES,DISP=OLD,...
//SYSLIN DD *

CHANGE TAXROUT(STATETAX)
INCLUDE OBJMOD...

/*

Control statement reference

Chapter 7. Binder control statement reference 115

As a result, the name of control section TAXROUT in module TAXES is changed to
STATETAX.

Change Module References: Example 2

A program object or load module contains references to TAXROUT that must be
changed to STATETAX. This module is defined with a DD statement named
LOADMOD. The external references could be changed at the same time the control
section name is changed:
//OBJMOD DD DSNAME=PROJECT.TAXES,DISP=(OLD,DELETE),...
//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=OLD,...
//SYSLIN DD *

CHANGE TAXROUT(STATETAX)
INCLUDE OBJMOD
CHANGE TAXROUT(STATETAX)
INCLUDE LOADMOD(INVENTRY)...

/*

As a result, control section name TAXROUT in module TAXES and external
reference TAXROUT in module INVENTRY are both changed to STATETAX.

ENTRY statement
The ENTRY statement specifies the symbolic name of the first instruction to be
executed when the program is called by its module (member) name for execution
or by an alias that does not match an executable external symbol. An ENTRY
statement should be used whenever a module is reprocessed by the binder. The
syntax of the ENTRY statement is:
ENTRY externalsymbol

externalsymbol
Defined as either a control section name or an entry name in an input module.

Placement: An ENTRY statement can be placed before, between, or after object
modules or other control statements. It must precede the NAME statement for the
module, if one is present.

Note:

1. If you provide more than one ENTRY statement, the main entry point specified
on the last statement is used.

2. In an overlay program, the first instruction to be executed must be in the root
segment.

3. The external name specified must be a name associated with an instruction, not
data, if the module is executed.

4. The order of precedence for determining the entry point is (from highest to
lowest):
v The ENTRY control statement or EP option specified on a SETOPT control

statement
v An entry point specified as an EP option in the PARM field of an EXEC

statement or in a file processed as a result of the OPTIONS option in the
PARM field

v An entry point specified on an END statement of an object module

If none of the above is present, the entry point defaults to either CEESTART if
DYNAM=DLL and CEESTART exists, or the first byte of the first control

Control statement reference

116 z/OS V2R2 MVS Program Management: User's Guide and Reference

section in the program. If the module contains multiple text classes and an
entry point is not specified, the results are not predictable.

5. If the module contains multiple text classes, the primary and all alternate entry
points must be defined in the same class.

Example
In the following example, the main entry point is INIT1:
//LOADLIB DD DSNAME=PROJECT.LOADLIB,DISP=OLD
//SYSLIN DD *

ENTRY INIT1
INCLUDE LOADLIB(READ,WRITE)

/*

INIT1 must be either a control section name or an entry name in one of the
program objects or load modules named READ or WRITE.

EXPAND statement
The EXPAND statement lengthens control sections or named common areas by a
specified number of bytes. The syntax of the EXPAND statement is:
EXPAND sectionname(length[,classname])

[,sectionname(length[,classname])].

sectionname
Symbolic name of a common area or control section whose length is increased.

length
The decimal number of bytes to be added to the length of the section. The
length of the section can be expanded to reach the maximum text size of a
program object or load module. The maximum text size of a program object is
1 GB; the maximum text size of a load module is 16 MB. Binary zeros are used
to initialize an expanded control section.

classname
The name of the text class to be expanded. Classname is not valid when
COMPAT=LKED or COMPAT=PM1. Classname defaults to B_TEXT if it is not
specified.

A message indicates the number of bytes added to the control section and the
offset, relative to the start of the control section, where the expansion begins. The
effective length of the expansion is given in hexadecimal and can be greater than
the specified length if, after the specified expansion, padding bytes must be added
for alignment of the next control section or named common area.

Placement: An EXPAND statement can be placed before, between, or after other
control statements or object modules. However, the statement must follow the
module containing the control section or named common area to which it refers. If
the control section or named common area is entered as the result of an INCLUDE
statement, the EXPAND statement can appear anywhere between the INCLUDE
and NAME statements.

Note: EXPAND should be used with caution so as not to increase the length of a
program beyond its own design limitations. For example, if space is added to a
control section beyond the range of its base register addressability, that space is
unusable unless you make other changes to the program to allow it to address the
extra space.

Control statement reference

Chapter 7. Binder control statement reference 117

Example
In this example, EXPAND statements add a 250-byte patch area (initialized to
zeros) at the end of control section CSECT1 and increase the length of named
common area COM1 by 400 bytes.
//LKED EXEC PGM=IEWBLINK
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSNAME=PROJECT.PROGLIB,DISP=OLD
//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,PASS)
// DD *

EXPAND CSECT1(250)
EXPAND COM1(400)
NAME MOD1(R)

/*

IDENTIFY statement
The IDENTIFY statement specifies any data you supply be entered into the CSECT
identification records (IDR) for a particular control section. The statement can be
used either to supply descriptive data for a control section or to provide a means
of associating system-supplied data with executable code. The syntax of the
IDENTIFY statement is:
IDENTIFY sectionname(’data’)[,sectionname

(’data’)]...

sectionname
The symbolic name of the control section to be identified.

data
Specifies up to 80 EBCDIC characters of identifying information for program
objects, and up to 40 characters for load modules. You can supply any
information desired for identification purposes.

Placement: An IDENTIFY statement must follow the module containing the control
section to be identified or the INCLUDE statement specifying the module.

The syntax rules for the operand field are:
1. Blanks are not allowed between the CSECT name and the left parenthesis.
2. No blanks or characters are allowed between the left parenthesis and the

leading single quotation mark nor between the trailing single quotation mark
and the right parenthesis.

3. The data field consists of from 1 to 80 characters for program objects and 1 to
40 characters for load modules; therefore, a null entry must be represented,
minimally, by a single blank.

4. Blanks can appear between the leading single quotation mark and the trailing
single quotation mark. Each blank counts as 1 character toward the character
limit.

5. A single quotation mark between the leading quotation mark and the trailing
quotation mark is represented by 2 consecutive quotation marks. The pair of
quotation marks counts as 1 character toward the character limit.

6. The IDENTIFY statement can be continued. If you are using the binder, the data
characters end in column 71 and continue at column 2 on the next line.

7. If a leading quotation mark is found, all characters are read in until a trailing
quotation mark is found or the character limit is reached.

8. A blank following a comma that terminates an operand also terminates the
operand field for that record.

Control statement reference

118 z/OS V2R2 MVS Program Management: User's Guide and Reference

9. Double-byte character set (DBCS) characters can be included within the
descriptive data. DBCS characters must be delimited by the shift-out (X'0E') and
shift-in (X'0F') characters. The shift-out and shift-in characters and the delimited
DBCS characters count as one or two bytes, respectively, toward the total length
of the string.

You can provide more than one IDENTIFY statement for each control section name
when you are creating a program object. However, if you are creating a load
module, you can provide only one IDENTIFY statement. If you provide more than
one IDENTIFY statement per control section for load modules, the information on
only the last IDENTIFY statement is saved. The contents of each IDENTIFY
statement will be saved in a separate record in the program object.

Example
In this example, IDENTIFY statements are used to identify the source level of a
control section, a PTF application to a control section, and the functions of several
control sections.
//LKED EXEC PGM=IEWBLINK
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSNAME=PROJECT.LOADLIB,DISP=OLD
//OLDMOD DD DSNAME=PROJECT.OLD.LOADLIB,DISP=OLD
//PTFMOD DD DSNAME=PROJECT.PTF.OBJECT,DISP=OLD
//SYSLIN DD *

(input object deck for a control section named FORT)

IDENTIFY FORT(’LEVEL 03’)
INCLUDE PTFMOD(CSECT4)
IDENTIFY CSECT4(’PTF99999’)
INCLUDE OLDMOD(PROG1)
IDENTIFY CSECT1(’I/O ROUTINE’),

CSECT2(’SORT ROUTINE’),
CSECT3(’SCAN ROUTINE’)

/*

Execution of this example produces IDR records containing the following
identification data:
v The component ID of the binder that produced the program object or load

module, the binder version and modification level, and the date of the current
binder processing of the module. This information is provided automatically
irrespective of whether you specify an IDENTIFY statement.

v User-supplied data describing the functions of several control sections in the
module, as indicated on the IDENTIFY statements.

v If the language translator used supports IDR, the identification records produced
by the binder also contain the name of the translator that produced the object
module, its version and modification level, and the date of compilation.

The IDR records created by the binder can be referenced by using the LISTIDR
option of the service aid program AMBLIST. For instructions on how to use
AMBLIST, see z/OS MVS Diagnosis: Tools and Service Aids.

IMPORT statement
The IMPORT statement specifies an external symbol name to be imported and the
library member or z/OS UNIX file name where it can be found. An imported
symbol is one that is expected to be dynamically resolved. The syntax of the
IMPORT statement is:

Control statement reference

Chapter 7. Binder control statement reference 119

IMPORT {CODE | DATA | CODE64 | DATA64},
dllname,import_name[,offset]

{CODE | DATA | CODE64 | DATA64}
Mutually exclusive keywords that specify the type of symbol being imported.

If CODE or CODE64 is specified, the import_name must represent the name of
a code section or entry point. Specify CODE64 when using 64-bit addressing
mode or specify CODE for any other addressing mode.

If DATA or DATA64 is specified, the import_name must represent the name of a
variable or data type definition to be imported. Specify DATA64 when using
64-bit addressing mode or specify DATA for any other addressing mode.

dllname
The name of the DLL module that contains the import_name to be imported. If
it is a member of a PDS or PDSE, it must be a primary name or an alias. The
length is limted to eight bytes unless it is an alias name in a PDSE directory. In
that case, the limit is 1024 bytes. If it is a z/OS UNIX file, the file name is
limited to 255 bytes.

import_name
The symbol name to be imported. In programming terms, it represents a
function or method definition, or a variable or data type definition. This
distinction is made by specifying either CODE, CODE64, DATA, or DATA64.
The import_name can be up to 32767 bytes in length.

offset
Offset consists of up to 8 hexadecimal characters. The offset will be stored with
the DLL information for an imported function. This is primarily for the use of
Language Environment.

In order to continue a dllname or an import_name, code a nonblank character in
column 72. Either blanks or commas will be accepted as delimiters between
parameters.

Placement: The IMPORT statement can be placed before, between, or after object
modules or other control statements.

Note:

1. The DYNAM(DLL) binder option must be specified for IMPORT statements to
take effect (see Table 7 on page 75).

2. IMPORT statements are processed as they are received by the binder. However,
symbol resolution is not done against the imported symbols until the binder's
final autocall is finished.

3. A bind job for a DLL application should include an IMPORT control statement
for any DLLs that the application expects to use. Otherwise, if the DLL name is
unresolved at static bind time, it will not be accessible at run time.

4. Ensure that the dllname matches the actual name of the DLL. Otherwise, import
names will not be resolved.

5. Typically, a dynamic link library will have an associated side file of IMPORT
control statements, and you will include this side file when statically binding a
module that imports functions or variables from that library. However, you can
also edit the records in the side file or substitute your own IMPORT control
statements so that some symbols are imported from DLLs in a different library.

6. Modules with imported symbols can be saved only in PM3 or later format.

Control statement reference

120 z/OS V2R2 MVS Program Management: User's Guide and Reference

7. When you rebind a DLL, you must include the IMPORT statements.
Information from the IMPORT control statements is not retained from one bind
to another if the object is stored as a PO1, PO2, or PO3 format program objects.
If you rebind a PO4 or higher program object, the IMPORT information msaved
from the previous bind will be brought in, unless the -NOIMPORTS option is
specified.

8. Import control statements generated by the binder will contain quotation marks
around both the symbol name and the DLL name.

Example
IMPORT statements specify which symbols should be imported from a DLL
provider or providers:
// EXEC PGM=IEWL,PARM=’MAP,XREF,CASE=MIXED’
//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=SHR
//OBJECT1 DD PATH=’/sl/app1/pm3d3/dlla01’,PATHDISP=(KEEP,KEEP)
//SYSLIN DD *

IMPORT CODE TAXES97,Compute_97_Taxes_Schedule1
IMPORT CODE TAXES97,Compute_97_Taxes_Schedule2
IMPORT CODE64 TAXES03,Compute_03_Taxes_Schedule1
IMPORT CODE64 TAXES03,Compute_03_Taxes_Schedule2
IMPORT DATA REVENUE,TotalRevenue
IMPORT DATA64 REVENUE03,TotalRevenue03
INCLUDE OBJECT1...

/*

In the example above, two 31-bit addressable functions from member TAXES97,
two 64-bit addressable functions from member TAXES03, one 31-bit addressable
data variable from member REVENUE, and one 64-bit addressable data variable
from REVENUE03 are being imported. These members should be in a dynamic
link library, which can be found by the system search mechanisms at execution
time. For example, the dynamic link library containing these members could be
part of the STEPLIB concatenation.

INCLUDE statement
The INCLUDE statement specifies sequential data sets, library members, or z/OS
UNIX files that are to be sources of additional input for the binder. INCLUDE
statements are processed in the order in which they appear in the input. However,
the sequence of control sections within the output program object or load module
does not necessarily follow the order of the INCLUDE statements. If the order of
the CSECTs within the module is significant, you must specify the desired
sequence by using ORDER statements. The syntax of the INCLUDE statement is:
INCLUDE [{-ATTR, | -IMPORTS, | -ALIASES,

|-NOATTR, | -NOIMPORTS,
|-NOALIASES}...]
{ddname[(membername |
relative-path[,...])] | pathname}[,...]

Note: If options that contradict one another are specified, the last valid option
specified will be used. For example, if both -ATTR and -NOATTR are specified in
that order, the binder will honor the -NOATTR option.

-ATTR
Specifies that module attributes should be copied from the input module and
be applied to the module being built by the binder. The attributes which are
copied are: AC, AMODE, DC, OL, REUS, RMODE, SSI, TEST, entry point,
DYNAM, and MIGRATABLE.

Control statement reference

Chapter 7. Binder control statement reference 121

Note:

1. Attributes cannot be included if the input is an object module, or if there is
no member name on the INCLUDE control statement and the INCLUDE
designates a load module.

2. Attributes brought in for a given module specified with INCLUDE override
attributes copied in for previous modules.

3. Attributes override attributes requested by the Binder invocation
parameters, but not those set by control statements such as SETOPT or
MODE.

-IMPORTS
Specifies that dynamic resolution information (if any) will be copied from the
input module. This option is not required, as the INCLUDE statement will
always bring in any available dynamic resolution information unless it is
suppressed by -NOIMPORTS. This option is still supported for compatibility
reasons.

Such dynamic resolution information may exist for PO4 or above format
program objects. The dynamic resolution information for a symbol consists of
the symbol name, the CODE, CODE64, DATA, or DATA64 designation, and the
name of the DLL from which the symbol is to be dynamically resolved. This is
the same information as that provided on the IMPORT statement for the
symbol. If this information is available via INCLUDE, the IMPORT control
statement need not be input on a re-bind. If there is more than one entry for a
particular symbol being imported, no message will be issued and the first
occurrence will be retained.

-ALIASES
Specifies that the aliases of the input module be copied in and used as aliases
for the output module. Aliases can be included only if:
v the input is a program object in either a UNIX file or a PDSE (and regardless

of where the PDSE member name is)
v the input is a load module with the member name in the INCLUDE.

-NOATTR
Specifies that module attributes will not be copied from the input module. This
is the default.

-NOIMPORTS
Specifies that dynamic resolution information (if any) will not be copied from
the input module.

-NOALIASES
Specifies that the aliases of the input will not be copied from the input module.
This is the default.

ddname
The name of a DD statement that describes a sequential data set, a PDS, a
PDSE, or a z/OS UNIX file to be used as additional input to the binder. A DD
statement must be supplied for every ddname specified in an INCLUDE
statement. For a sequential data set, only ddname should be specified. For a
PDS or PDSE without a member qualification in the JCL, at least one member
name must also be specified. If only a single member is included, its member
name can be specified in the JCL rather than on the control statement.

When the source is a z/OS UNIX file, the DD statement must contain the full
or partial pathname of the file to be included. If a partial pathname is
provided it must be completed using a relative-path expression following the
ddname.

Control statement reference

122 z/OS V2R2 MVS Program Management: User's Guide and Reference

membername
The name of or an alias for a member of the PDS or PDSE library defined in
the specified DD statement.

pathname
The absolute or relative pathname for a z/OS UNIX file that can be up to 1023
bytes. Note that this is a direct specification for z/OS UNIX files. z/OS UNIX
files can also be specified indirectly with a DD statement (see above).
“Example 2” uses pathname. See “Binder syntax conventions” on page 107 for a
discussion of continuations and lower case letters.

relative-path
If the referenced DDNAME specifies a path, then relative-path will be
appended to that path name.

Placement: An INCLUDE statement can be placed before, between, or after object
modules or other control statements.

Note:

1. A NAME statement in any data set specified in an INCLUDE statement is
invalid; the NAME statement is ignored. All other control statements are
processed.

2. The INCLUDE statement is not allowed in a data set that is included from an
automatic call library.

3. When invoking the binder using the TSO link command, an INCLUDE
statement specifying a ddname of SYSLMOD will be allocated to the output
library, unless SYSLMOD has been specifically allocated to another library.

Example 1
An INCLUDE statement can specify two data sets to be the input to the binder:
//OBJMOD DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)
//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=SHR
//SYSLIN DD *

INCLUDE OBJMOD,LOADMOD(TESTMOD,READMOD)...
/*

Two separate INCLUDE statements could also have been used in this example:
INCLUDE OBJMOD
INCLUDE LOADMOD(TESTMOD,READMOD)

Example 2
INCLUDE statements can reference both MVS data sets and z/OS UNIX files to be
used as input to the binder. z/OS UNIX files can be specified directly on an
INCLUDE statement, or indirectly through DD statements that in turn reference
z/OS UNIX files:
//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=SHR
//OBJECT2 DD PATH=’/sl/app1/pm3d3/dlla02’,PATHDISP=(KEEP,KEEP)
//SYSLIN DD *

INCLUDE LOADMOD(TESTMOD,READMOD)
INCLUDE ’/ml/app1/pm3d3/dlla01’
INCLUDE OBJECT2...

/*

Control statement reference

Chapter 7. Binder control statement reference 123

INSERT statement
We do not recommend using the INSERT and OVERLAY statements for program
objects. The binder supports the overlay format for compatibility only. If you use
the OVERLAY statement, a program object will be created with a compatibility
level of PM1 and, therefore, will not make use of the binder enhancements
available in later releases. For more information on the use of the INSERT
statement, see Appendix D, “Designing and specifying overlay programs,” on page
209.

The INSERT statement repositions a section from its position in the input sequence
to a segment in an overlay structure. However, the sequence of sections within a
segment is not necessarily the order of the INSERT statements.

If a symbol specified in the operand field of an INSERT statement is not present in
the external symbol dictionary, it is entered as an external reference. If the
reference has not been resolved at the end of primary input processing, the binder
attempts to resolve it from the automatic call library. The syntax of the INSERT
statement is:
INSERT sectionname[,sectionname]...

sectionname
The name of the section to be repositioned. A particular section can appear
only once within a program object or load module.

Placement: The INSERT statement must be placed in the input sequence following
the OVERLAY statement that specifies the origin of the segment in which the
section is positioned. If the section is positioned in the root segment, the INSERT
statement must be placed before the first OVERLAY statement.

Note:

1. Sections that are positioned in a segment must contain all address constants to
be used during execution unless:
v The A-type address constants are located in a segment in the path.
v The V-type address constants used to pass control to another segment are

located in the path. If an exclusive reference is made, the V-type address
constant must be in a common segment.

v The V-type address constants used with the SEGLD and SEGWT macro
instructions are located in the segment.

2. Automatically called sections not specified on INSERT statements are added to
the root segment.

Example
The following INSERT (and OVERLAY) statements specify the overlay structure
shown in Figure 21 on page 125:
// EXEC PGM=IEWBLINK,PARM=’OVLY,XREF,LIST’

.

.

.
//SYSLIN DD *

INSERT CSA
INSERT CSB
OVERLAY ALPHA

Control statement reference

124 z/OS V2R2 MVS Program Management: User's Guide and Reference

INSERT CSC,CSD
OVERLAY ALPHA
INSERT CSE

/*

LIBRARY statement
The LIBRARY statement can be used to specify:
v Additional automatic call libraries that contain modules used to resolve external

references found in the program.
v Restricted no-call: External references that are not to be resolved by an automatic

library call during the current binder job step.
v Never-call: External references that are not to be resolved by an automatic

library call during this or any subsequent binder job step.

When LIBRARY statements identify additional libraries that can be used, the
following search order is applied during final autocall:
1. The library or libraries associated with the first LIBRARY specification are

searched. This may identify a z/OS UNIX directory, a z/OS UNIX archive, a
partitioned data set, or a concatenation of partitioned data sets.
v For a z/OS UNIX directory, the file names and links in the directory are

checked.
v For a z/OS UNIX archive or C370LIB PDS, all names that have been

cataloged by the ar command or Object Library Utility are checked.
v For other partitioned data sets, only the member names and aliases are

checked.
v If specific names are listed in the LIBRARY specification, only those names

can be used for resolution, otherwise any name can be used.
2. Libraries associated with other LIBRARY specifications are searched in the

order the specifications were provided within a LIBRARY statement and the
order in which the LIBRARY statements were provided.

3. The SYSLIB concatenation is searched.
4. If unresolved symbols remain, the search is restarted from step 1. It is repeated

until no symbols are resolved in a complete pass through all libraries.

The syntax of the LIBRARY statement is:

ALPHA

CSA

CSB

CSC

CSD

CSE

Figure 21. Overlay structure for INSERT statement example

Control statement reference

Chapter 7. Binder control statement reference 125

LIBRARY {{ddname(membername[,...])}
{ddname2}
{pathname}
{(externalreference[,...])}
{*(externalreference[,...])}},...

ddname
The name of a DD statement that defines a library from which the listed
symbols will be included during automatic library call.

membername
Usually, the name of or an alias for a member of the specified library. If the
DDNAME points to a UNIX archive, the names in parentheses can be any
external symbols indexed by the ar command. If the DDNAME points to a
C370LIB, the names in parentheses can be any external symbols defined by the
special C370LIB directory. Conversely, if member names are used for a C370LIB
the binder looks at the members only if there are unresolved symbols whose
name match the member name.

Here is an example. A C370LIB (DDname MYC3LIB) contains a member
named FOO within which there is an external entry FooSez, and that FooSez is
in the special C370LIB directory. Also, a program has an unresolved symbol
FooSez.
v If the LIBRARY statement says MYC3LIB(FOO), the symbol is not found.
v If it says MyC3LIB('FooSez'), it is resolved.
v If it says MYC3LIB(FOO) and the program also contains unresolved symbol

FOO, both are resolved.

Only those members specified are used to resolve references.

ddname2
The name of a DD statement that defines a library that may be used to resolve
references during automatic library call. The DD statement can point to a PDS,
PDSE, PDS/PDSE concatenation, z/OS UNIX directory, or z/OS UNIX archive
library.

pathname
The name of an z/OS UNIX archive library or directory that may be used to
resolve references during automatic library call. For a directory, the binder
looks for files or links whose name matches the symbol to be resolved.

(externalreference)
An external reference that can be unresolved after primary input processing.
The external reference is not to be resolved by automatic library call.

* Indicates never-call; the external reference should never be resolved from an
automatic call library. If the * (asterisk) is missing, the reference is left
unresolved during the current binder job step but can be resolved in a
subsequent step.

If all binder input modules containing references to a specific symbol were
bound with never-call, that symbol is not resolved by automatic library call
during this binder run. However, if one or more input modules do not indicate
a symbol as never-call, the binder attempts to resolve the symbol from the
automatic call library.

Placement: A LIBRARY statement can be placed before, between, or after object
modules or other control statements.

Note:

Control statement reference

126 z/OS V2R2 MVS Program Management: User's Guide and Reference

1. A member or external reference listed in a LIBRARY statement has no affect
except when a matching name appears as an unresolved reference in the
program.

2. For C370LIB or archives, the name may be any symbol listed in the archive or
special C370LIB directory.

3. For a non-C370LIB PDS or PDSE, the name must be a member name or alias to
be effective.

4. For a UNIX directory, the name must be a file name or alias to be effective.
5. If the NCAL option is specified, the LIBRARY statement has no effect.
6. Members included by automatic library call are placed in the root segment of

an overlay program, unless they are repositioned with an INSERT statement.
7. The LIBRARY control statement is not processed immediately. If the same

symbol appears on more than one LIBRARY statement, only the last occurrence
is used.

8. Specifying an external reference for restricted no-call or never-call by means of
the LIBRARY statement prevents the external reference from being resolved by
automatic inclusion of the necessary module from an automatic call library; it
does not prevent the external reference from being resolved if the module
necessary to resolve the reference is specifically included or is included as part
of an input module.

9. The LIBRARY statement is not allowed in a data set that is included from an
automatic call library.

Examples
Example 1

This example shows three uses of the LIBRARY statement:
// EXEC PGM=IEWBLINK,PARM=’LET,XREF,LIST’
//TESTLIB DD DSNAME=PROJECT.TESTLIB,DISP=SHR

.

.

.
//SYSLIN DD *

LIBRARY TESTLIB(DATE,TIME),(FICACOMP),*(STATETAX)
/*

As a result, members DATE and TIME from the additional library TESTLIB are
used to resolve external references. FICACOMP and STATETAX are not resolved;
however, because the references remain unresolved, the LET option must be
specified on the EXEC statement if the module is to be marked executable. In
addition, STATETAX will not be resolved in any subsequent reprocessing by the
binder.

Example 2

Here is a sequence of LIBRARY statements to help explain the statement's rules.

In the following example, foo and bar can be resolved from MYLIB, but nothing
else can be resolved from it:

LIBRARY MYLIB(foo)
LIBRARY MYLIB(bar)

* If we stop here both foo and bar can be resolved from MYLIB,
* but nothing else can be resolved from it.

LIBRARY MYLIB
* Now MYLIB can be used to resolve any symbols.

Control statement reference

Chapter 7. Binder control statement reference 127

LIBRARY (bar)
* "bar" can no longer be resolved from MYLIB or anywhere else.

LIBRARY MYLIB
* This doesn’t change anything. MYLIB can still be used to resolve
* any symbol other than "bar".

LIBRARY MYLIB(bar)
* "bar" can once again be resolved from MYLIB.

MODE statement
The MODE statement specifies the addressing mode and the residence mode for all
the entry points into the program module (the main entry point, its true aliases,
and all the alternate entry points). The syntax of the MODE statement is:
MODE modespec[,modespec]

modespec
One or both of the following:
v The designation of an addressing mode for the output program object or

load module by one of the following:
– AMODE(24)

– AMODE(31)

– AMODE(64)

– AMODE(ANY)

– AMODE(MIN)

Specifying AMODE(MIN) causes the most restrictive AMODE of all control
sections within the program module to be assigned.
See “AMODE: Addressing mode option” on page 80 for more information
about specifying AMODE.

v The designation of residence mode for the output program object or load
module by one of the following:
– RMODE(24[,INITIAL|COMPAT])

– RMODE(ANY|31[,INITIAL|COMPAT])

– RMODE(MIN,[INITIAL|COMPAT])

– RMODE(SPLIT)

See “RMODE: Residence mode option” on page 97 for more information
about specifying RMODE.

Placement: The MODE control statement can be placed before, between, or after
object modules or other control statements. It must precede the NAME statement
for the module, if one is present.

Note:

1. If more than one MODE control statement is encountered in the binding of a
program object or load module, the last valid AMODE and RMODE
specifications are used.

2. The binder treats AMODE and RMODE values independently until they are
required for output processing. At this time the combination of AMODE and
RMODE values for each entry point are checked for conflict. See “AMODE and
RMODE combinations” on page 29 for information on AMODE and RMODE
compatibility.

3. The addressing mode assigned by the MODE control statement overrides the
separate addressing modes found in the ESD data for the control sections
within which the entry points are located. The addressing mode assigned by

Control statement reference

128 z/OS V2R2 MVS Program Management: User's Guide and Reference

the MODE control statement overrides the addressing mode assigned by the
AMODE parameter in the PARM field of the EXEC statement. A specified
AMODE value applies to all entry points in the module, and is stored in all
generated directory entries.

4. The residence mode assigned by the MODE control statement overrides the
residence mode accumulated from the input control sections and private code.
The residence mode assigned by the MODE control statement also overrides
the residence mode assigned by the RMODE parameter in the PARM field of
the EXEC statement.
A specified RMODE value applies to the entire module for load modules and
single-segment program objects, unless the SCTR (scatter) option has been
specified. For multiple-segment program objects, the specified RMODE value
applies to all the segments containing initial load classes, unless the scope
value is specified as COMPAT. With COMPAT, the specified RMODE value is
applied only to the initial load segment containing the entry point(s); any other
initial load segments retain the RMODE value as determined by the binder. See
“Residence mode” on page 28 for details. In all cases, the RMODE will be
stored in all generated directory entries.

Example
In this example, an output module, NEWMOD, is created. It is given an alias of
TESTMOD, the residence mode for the module is ANY, and the addressing mode
for both the main entry point, NEWMOD, and the true alias, TESTMOD, is 31. The
addressing and residence modes allow the program to be loaded into 31-bit
addressable virtual storage.
//SYSLMOD DD DSN=USER.TESTPROG,DISP=OLD
//SYSLIN DD *

.

.

.
MODE AMODE(31),RMODE(ANY)
ALIAS TESTMOD
NAME NEWMOD

/*

NAME statement
The NAME statement specifies the name of the program module created from the
preceding input modules, and serves as a delimiter for input to the program
module. As a delimiter, the NAME statement allows you to create more than one
program module in one binder step. The NAME statement can also indicate that
the module replaces an identically named module in the output program library.
The syntax of the NAME statement is:
NAME membername[(R)]

membername
The name to be assigned to the program object or load module created from
the preceding input modules.

(R)
Indicates that this program module replaces an identically named module in
the output module library, and that any aliases specified on ALIAS statements
replace identically named aliases. If the module is not a replacement, (R) is
ignored.

Placement: The NAME statement is placed after the last input module or control
statement to be used for the output module.

Control statement reference

Chapter 7. Binder control statement reference 129

Note:

1. Any ALIAS statement must precede the NAME statement.
2. If you are binding a program object, only the aliases specified on ALIAS

statements are kept for the program object. Any other aliases for the replaced
program object are deleted from the directory of the program library. If you are
binding load modules, any aliases for the replaced load modules that are not
themselves replaced are kept and point to the old load module.

3. If a name is not specified either on the NAME statement or on the DD
statement for the SYSLMOD data set, and the SYSLMOD data set is a PDS or
PDSE, the binder will assign the name TEMPNAMn, using values 0-9 for n.
The binder will not save the module if the names TEMPNAM0 through
TEMPNAM9 are already in use. This assignment of temporary names does not
take place if the SYSLMOD data set is a z/OS UNIX file. Instead, the binder
issues an error message stating its inability to save the output module.

4. If the (R) value is not specified, and a member of the same name already exists
in the output module library, the binder will not replace the module or save it
under another name.

5. Normally, the binder does not replace an executable module with a
nonexecutable module even if the (R) value is specified. You can specify the
STORENX option to override this default action. See “STORENX: Store
not-executable module” on page 100 for a further description.

6. A NAME statement found in a data set other than the primary input data set is
invalid. The statement is ignored.

7. The IEWBLDGO binder entry point does not accept a NAME statement.
8. If you do not specify the (R) parameter when processing a z/OS UNIX file, the

binder issues an informational message.
9. When a NAME statement is not used and a member name is supplied on the

SYSLMOD DD statement, the behavior is to REPLACE (just as when using
NAME with (R), or SAVEW with REPLACE=YES).

Example
In this example, two output modules, RDMOD and WRTMOD, are produced by
the binder in one job step:
//SYSLMOD DD DSNAME=PROJECT.AUXMODS,DISP=SHR
//NEWMOD DD DSNAME=&&WRTMOD,DISP=OLD
//SYSLIN DD DSNAME=&&RDMOD,DISP=OLD
// DD *

NAME RDMOD(R)
INCLUDE NEWMOD
NAME WRTMOD(R)

/*

The first time modules RDMOD and WRTMOD are created in the module library
AUXMODS, the (R) option is ignored. When the same modules are rebound using
the same control statements, the (R) option results in a replacement of the old
modules.

ORDER statement
The ORDER statement indicates that the section is to be loaded on a page
boundary. The alignment will be on a 4 KB page unless the ALIGN2 option has
been specified. If this is a section with multiple text classes, all elements in the
section (with the exception of those elements in merge classes) will be aligned on a
page boundary.

Control statement reference

130 z/OS V2R2 MVS Program Management: User's Guide and Reference

The syntax of the ORDER statement is:
ORDER section name[(P)]

section name
The name of the section to be sequenced.

(P)
Indicates the starting address of the control section or named common area is
on a page boundary within the program object or load module. The control
sections or common areas are aligned on 4KB page boundaries, unless the
ALIGN2 option has been specified.

Placement: An ORDER statement can usually be placed before, between, or after
object modules or other control statements.

Note:

1. When multiple ORDER statements are used, their sequence further determines
the sequence of the control sections or named common areas in the output
module. If the same common area or control section is listed on more than one
ORDER statement, the binder uses the sequence stated on the last request.

2. The control sections and common areas named as operands can appear in
either the primary input or the automatic call library, or both.

3. If a control section or a named common area is changed by a CHANGE or
REPLACE control statement and sequencing is desired, specify the new name
on the ORDER statement.

Example
In the statements shown in Figure 22 on page 132, the control sections in the
module LDMOD are arranged by the binder according to the sequence specified
on ORDER statements. The page boundary alignments and the control section
sequence made as a result of these statements are shown in Figure 22 on page 132.
Assume each control section is less than 1KB in length.

Control statement reference

Chapter 7. Binder control statement reference 131

OVERLAY statement
We do not recommend using the INSERT and OVERLAY statements for program
objects. The binder supports the overlay format for compatibility only. For more
information on the use of the OVERLAY statement, see Appendix D, “Designing
and specifying overlay programs,” on page 209.

The OVERLAY statement indicates the beginning of an overlay segment and,
optionally, also of an overlay region. Because a segment or a region is not named,
you identify it by giving its origin (or load point) a symbolic name. This name is
then used on an OVERLAY statement to signify the start of a new segment
beginning at that origin. The syntax of the OVERLAY statement is:
OVERLAY symbol[(REGION)]

symbol
The symbolic name assigned to the origin of a segment. This symbol is not
related to external symbols in the module.

(REGION)
Specifies the origin of a new region, as well as a segment.

Placement: The OVERLAY statement must precede the first module of the next
segment, the INCLUDE statement specifying the first module of the segment, or
the INSERT statement specifying the control sections to be positioned in the
segment.

Note:

//SYSLMOD DD DSNAME=PROJECT.PROGLIB,DISP=SHR
//SYSLIN DD *

ORDER ROOTSEG(p),MAINSEG,SEG1,SEG2
ORDER SEG3(p),ENTRY1
CHANGE PART1(FSTPART)
ORDER FSTPART,SESECTA,SESECTB(P)
INCLUDE SYSLMOD(PRGMOD)
NAME PROGMOD(R)

/*

JCL and Control Statements Output Module

ROOTSEG

MAINSEG

SEG1

SEG2

Empty space

SEG3

ENTRY1

FSTPART

SESECTA

Empty Space

SESECTB

PRGMOD
0K

4K

8K

Figure 22. Example of an output module for the ORDER statement. The control section name
PART1 is changed by a CHANGE statement to FSTPART. The ORDER statement refers to
the control section by its new name.

Control statement reference

132 z/OS V2R2 MVS Program Management: User's Guide and Reference

1. The OVLY option must be specified on the EXEC statement when OVERLAY
statements are to be used.

2. The sequence of OVERLAY statements should reflect the order of the segments
in the overlay structure from top to bottom, left to right, and region by region.

3. No OVERLAY statement should precede the root segment.

Example
The following OVERLAY and INSERT statements specify the overlay structure in
Figure 23.
// EXEC PGM=IEWBLINK,PARM=’OVLY,XREF,LIST’...
//SYSLIN DD DSNAME=&&OBJ,...
// DD *

INSERT CSA
OVERLAY ONE
INSERT CSB
OVERLAY TWO
INSERT CSC
OVERLAY TWO
INSERT CSD
OVERLAY ONE
INSERT CSE,CSF
OVERLAY THREE(REGION)
INSERT CSH
OVERLAY THREE
INSERT CSI

/*

PAGE statement
The PAGE statement causes a section in a program object or load module to be
loaded on a 4K page boundary. If this is a section with multiple text classes, all
elements in the section (with the exception of those elements in merge classes) will
be aligned on a page boundary.

The syntax of the PAGE statement is:
PAGE sectionname...

section name
The name of the section to be aligned on a page boundary.

ONE

TWO

THREE

REGION 2

CSA

CSB

CSC CSD

CSE

CSF

CSH CSI

Figure 23. Example of an overlay structure for the OVERLAY statement

Control statement reference

Chapter 7. Binder control statement reference 133

Placement: The PAGE statement can be placed before, between, or after object
modules or other control statements.

Note:

1. If a section is changed by a CHANGE or REPLACE control statement, and
page alignment is wanted, specify the new name in the PAGE statement.

2. The sections named can appear in either the primary input or the automatic
call library, or both.

3. PAGE does not affect the alignment of parts or pseudo registers in the section.
4. If the ALIGN2 option has been specified, sections listed on the PAGE statement

will be aligned on 2 KB boundaries.

Example
In this example, the sections in the module PRGMOD are aligned on page
boundaries as specified in the following PAGE statement:
PAGE ALIGN,BNDRY4K,EIGHTK

The job control statements and binder control statements as well as the output
program object or load module are shown in Figure 24. Assume each control
section is 3KB in length.

RENAME statement
The RENAME statement allows for the renaming of specific symbols. An old
symbol name can be renamed to a new symbol name that can then be used to
resolve references when binding a module. The rename requests take place only
after the binder attempts to resolve the original names. The new names are then
used during the binder's final autocall in order to resolve any references previously
unresolved.

The syntax of the RENAME statement is:

//LKED EXEC PGM=IEWBLINK,PARM=,...
//SYSLMOD DD DSNAME=PROJECT.LOADLIB,DISP=SHR
//SYSLIN DD *

PAGE ALIGN,BNDRY4K,EIGHTK
INCLUDE SYSLMOD(PRGMOD)
NAME PROGMOD(R)

/*

JCL and Control Statements Output Module

ALIGN

Empty space

BNDRY4K

Empty space

EIGHTK

PRGMOD
0K

4K

8K

Figure 24. Example of an output module for the PAGE statement

Control statement reference

134 z/OS V2R2 MVS Program Management: User's Guide and Reference

RENAME oldname,newname

oldname
The symbol to be renamed. Its maximum length is 32767 bytes.

newname
The symbol name to which the oldname should be changed. Its maximum
length is 32767 bytes.

To continue either of the symbols on multiple lines, code a nonblank character in
column 72 of each line. Columns 73 to 80 of each line are ignored.

Placement: The RENAME statement can be placed before, between, or after object
modules or other control statements. They do not take effect, however, until an
AUTOCALL statement is processed, or, in the absence of AUTOCALL statements,
until after the binder's final autocall processing takes place.

Note:

1. The only immediate result of the RENAME control statement is that the rename
request is added to the binder's list of such requests. RENAME processing takes
place only after all possible references have been resolved with the names as
they were specified on input.

2. This statement is the functional equivalent of the prelinker's RENAME control
statement. It should be noted, however, that the SEARCH parameter of the
prelinker's statement is not supported by the binder.

3. RENAME will only affect symbols that are marked as renameable. Since
traditional object modules and load modules do not support the renameable
attribute, RENAME will have no effect on symbols originating from modules in
those formats. The renameable attribute is supported by GOFF, and it is also set
for XSD records with the “mapped” bit off (from XOBJ modules).

4. RENAME will have no effect on symbols originating from PR records
(pseudoregister or part references).

5. RENAME will have no effect on imported symbols.

Example
...
//TAXES DD PATH=’/sl/finance/app1/dlltxs’,PATHDISP=(KEEP,KEEP)
//SYSLIB DD DSNAME=PROJECT.OBJLIB,DISP=SHR
//SYSLIN DD *

INCLUDE TAXES
RENAME Compute_98_Taxes_Schedule2,Taxes98...

/*

REPLACE statement
The REPLACE statement is used to replace or delete external symbols. The external
symbol can name a section, an entry point, an external reference, or a
pseudoregister.

One section can be replaced with another. All references within the input module
to the old section are changed to the new section. Any external references to the
old section from other modules are unresolved unless changed.

A section can be deleted. The section name is deleted from the external symbol
dictionary. External references from other modules to a deleted section also remain

Control statement reference

Chapter 7. Binder control statement reference 135

unresolved. If there are references to any address within a deleted section, the
section name in changed to an external reference.

If the first symbol in the REPLACE statement refers to a symbol that is not a
section or common area, the results will be the same as if a CHANGE statement
were coded. The first symbol is replaced by the second symbol. The first symbol is
deleted when the second symbol is omitted.

The syntax of the REPLACE statement is:
REPLACE [-IMMED,]externalsymbol1[(externalsymbol2)]...

-IMMED
causes REPLACE to operate against the modules that have already been
included in the module being built rather than against the next input module .

externalsymbol1, externalsymbol2
Names an external symbol to be replaced or deleted. If you only specify
externalsymbol1, the external symbol is deleted. If you specify externalsymbol2 in
parentheses following externalsymbol1, externalsymbol1 is replaced by
externalsymbol2. You can delete or replace any number of external symbols with
one REPLACE statement.

Placement: The REPLACE statement must immediately precede either the module
containing the external symbol to be replaced or deleted, or the INCLUDE
statement specifying the module. The scope of the REPLACE statement is across
the immediately following program or object module.

Note:

1. If during automatic library call the replacement symbol is still undefined in the
module, the binder attempts to resolve the reference from SYSLIB.

2. When a section containing unresolved external references is deleted, the binder
removes these references from the ESDs.

3. When using the binder, if no INCLUDE statement follows the REPLACE
statement, the request is ignored.

4. If the REPLACE statement appears in a module included from a data set in an
automatic call library, it will be ignored if it is not followed by a module from
the same data set.

5. Restrictions apply whenever both CHANGE and REPLACE operations are
performed on the same included program or object module. You might need to
delete one of several sections and at the same time rename references to that
section (all within the scope of the same INCLUDE) to some other external
symbol. To change more than one entry name within the original section to a
single new external symbol, you must specifically include the section that
resolves the new external symbol, prior to the change operation.

6. When using a REPLACE statement to replace or delete a named common area,
the common area must be defined in the first program or object module
following the REPLACE statement.

7. When deleting an entry name, if there are any references to it within the same
input module, the entry name is changed to an external reference.

8. The -IMMED option is not allowed during autocall processing.
9. externalsymbol1 may be specified using the syntax $PRIVxxxxxx (where xxxxxx

is 6 hexadecimal digits) to represent an unnamed symbol. To determine the
appropriate value to use it, it is necessary to rebind the single module and
produce a MAP and/or XREF. The $PRIVxxxxxx symbol names from the binder

Control statement reference

136 z/OS V2R2 MVS Program Management: User's Guide and Reference

output can be used in REPLACE statements on the very next bind of the single
module. Names $PRIV000000 - $PRIV00000F are reserved by the Binder and
may not be used as externalsymbol1.

Example
In this example, assume that section INT7 is in member LOANCOMP and that
section INT8, which is to replace INT7, is in data set &&NEWINT. Also assume
that section PRIME in member LOANCOMP is deleted.
//NEWMOD DD DSNAME=&&NEWINT,DISP=(OLD,DELETE)
//OLDMOD DD DSNAME=PROJECT.PROGLIB,DISP=SHR
//SYSLIN DD *

ENTRY MAINENT
INCLUDE NEWMOD
REPLACE INT7(INT8),PRIME
INCLUDE OLDMOD(LOANCOMP)
NAME LOANCOMP(R)

/*

As a result, INT7 is removed from the input module described by the OLDMOD
DD statement, and INT8 replaces INT7. All references to INT7 in the input module
now refer to INT8. Any references to INT7 from other modules remain unresolved.
If there are no references to PRIME in LOANCOMP, section PRIME is deleted; the
section name is also deleted from the external symbol dictionary.

SETCODE statement
The SETCODE statement assigns a specified authorization code to the output load
module or program object. The authorization code is placed in the directory entry
for the output load module or program object.

The binder allows any numeric value between 0 and 255. The MVS Authorized
Program Facility (APF) determines that a module is authorized if the authorization
code has a value of 1. The module is unauthorized if the authorization code has
any other value. Refer to z/OS MVS Programming: Authorized Assembler Services
Guide for additional information on the APF.

The syntax of the SETCODE statement is:
SETCODE AC(authorizationcode)

authorizationcode
A decimal number from 0 to 255. Specifying AC() results in an authorization
code of zero.

Placement: A SETCODE statement can be placed before, between, or after object
modules or other control statements. It must precede the NAME statement for the
module, if one is present.

Note:

1. The authorization code assigned by the SETCODE statement overrides the
authorization code assigned by the AC parameter in the PARM field of the
EXEC statement.

2. If more than one SETCODE statement is encountered in the bind of a load
module or program object, the last valid authorization code assigned is used.

3. To provide APF authorization of a z/OS UNIX file you must set the
authorization code using SETCODE, but you must also set extended attributes
for the file using SETOPT.

Control statement reference

Chapter 7. Binder control statement reference 137

Example
In this example, an authorization code of 1 is assigned to the output module
MOD1.
//LKED EXEC PGM=IEWBLINK
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSNAME=SYS2.LINKLIB,DISP=OLD
//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,PASS)
// DD *

SETCODE AC(1)
NAME MOD1(R)

/*

SETOPT statement
The SETOPT statement allows you to set options at the module level, rather than
the job step level as in the binder batch parameter string. This allows you to set
module attributes when a number of modules are being bound separately in a
single MVS job step.

SETOPT accepts a string of parameter specifications as if it had been entered on
the PARM parameter of the EXEC JCL statement. The options you specify are valid
only until after the next NAME control statement is processed or until an
end-of-file condition is detected in SYSLIN.

The syntax of the SETOPT statement is:
SETOPT PARM(parm)

PARM(parm)
Accepts a string of parameter specifications as if it had been entered on the
PARM parameter of the EXEC JCL statement. It follows the same syntax rules
as the binder batch execution parameter string. The following batch options
cannot be set using the SETOPT control statement:
v COMPAT
v EXITS
v LINECT
v MSGLEVEL
v OPTIONS
v PRINT
v SIZE
v TERM
v TRAP
v WKSPACE

In addition, the single keyword form of REUS cannot be used with SETOPT.

See Chapter 6, “Binder options reference,” on page 71 for more information on
the options that can be specified in the PARM field of the EXEC statement.

SETSSI statement
The SETSSI statement specifies hexadecimal information to be placed in the system
status index of the directory entry for the output module. The syntax of the SETSSI
statement is:
SETSSI (ssi-info)

Control statement reference

138 z/OS V2R2 MVS Program Management: User's Guide and Reference

ssi-info
Represents 8 hexadecimal characters (0 through 9 and A through F) to be
placed in the 4-byte system status index of the output module library directory
entry.

Placement: The SETSSI statement can be placed before, between, or after object
modules or other control statements. If one is present, it must precede the NAME
statement for the module.

Note:

1. The SETSSI statement overrides any SSI option included in the PARM field of
the EXEC statement.

2. A SETSSI statement should be provided whenever an IBM-supplied program
module is reprocessed by the binder. If the statement is omitted, no system
status index information is present.

Control statement reference

Chapter 7. Binder control statement reference 139

Control statement reference

140 z/OS V2R2 MVS Program Management: User's Guide and Reference

Chapter 8. Interpreting binder listings

This appendix contains an overview of the binder output. This output is written to
SYSPRINT, SYSLOUT, or another ddname assigned to the PRINT file (using the
FILES parameter) on the STARTDialog call. Except where noted, all outputs apply
to both batch entry points (IEWBLINK and IEWBLDGO) and to both load modules
and program objects.

Linkage editor and batch loader outputs are described in “Interpreting linkage
editor output” on page 182 and “Interpreting batch loader output” on page 188.

The output data is divided into a number of categories, some that always appear
in the output listing and others that appear depending on the options selected. The
categories are:
v Header
v Input Event Log
v Private Section List
v Program Module Map
v Renamed Symbol Table
v Cross-Reference Table
v Imported and Exported Symbol Table
v Operation Summary
v Long-symbol Cross-Reference Table
v Short Mangled Name Report
v Abbreviation/Demangled Name Report
v DDname to pathname cross reference
v Message Summary Report
v Removed Classes and Sections Report

Header
The header is written at the beginning each section of the output. The header
contains information on the release and modification level and on how the binder
was invoked.
v Name, version, release, and modification level of the binder
v Time, day, and date of invocation
v Job name, step name, program name, and (if one has been used) procedure

name when invoked by use of a batch interface. When invoked via the
application programming interface, the binder prints the contents of the
CALLERID field from the STARTD call.

v Binder entry point name.

Input event log
The input event log is a chronological log of the events that took place during the
input phase of binder operation. Its presence is controlled by the LIST option. If
LIST(OFF) or NOLIST is specified, no input event log is generated. If LIST(STMT),
LIST, or LIST(SUMMARY) is specified, only input events pertaining to control

© Copyright IBM Corp. 1991, 2015 141

statements are logged. If LIST(NOIMP) is specified, messages pertaining to the
import control statement are suppressed, while those generated by other control
statements and binder calls continue to be logged. When processing DLLs that
contain a large number of IMPORT control statements in their side files, this option
helps to reduce the number of messages logged while still providing information
about other binder processing. If LIST(ALL) is specified, all input events are
logged (such as those initiated by binder function calls as well as those initiated by
control statements).

Figure 25 contains a sample input event log. The log can include:
v The list of processing options used in the binder invocation.
v Errors with the invocation parameter (binder or batch loader options)
v Line by line summary of functions performed during the input phase. Each bind

operation is treated separately: a control statement is printed, followed by a
summary of the function performed and the complete names of the objects
operated upon.

v Errors encountered during the input phase.

Note: In the binder, message IEW2308I replaces the previous message IEW2307I.

Private section list
Figure 26 contains a sample private section list report.

This report will appear immediately before the module map if LISTPRIV=YES was
specified as a binder option and if there are any unnamed sections.

z/OS V1 R5 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(TESTHIGH) STEP(BIND1) PGM= IEWL
IEW2278I B352 INVOCATION PARAMETERS - LIST(ALL),MAP,XREF,NCAL
IEW2322I 1220 1 INCLUDE MYLIB(PROGBCAD)
IEW2308I 1112 SECTION PROGBCAD HAS BEEN MERGED.
IEW2322I 1220 2 INCLUDE MYLIB(PROGBCDS)
IEW2308I 1112 SECTION PROGBCDS HAS BEEN MERGED.
IEW2322I 1220 3 INCLUDE MYLIB(PROGBCOV)
IEW2308I 1112 SECTION PROGBCOV HAS BEEN MERGED.
IEW2322I 1220 4 MODE AMODE(31),RMODE(ANY)
IEW2322I 1220 5 ENTRY PROGDCTL
IEW2322I 1220 6 ALIAS PROGIND
IEW2322I 1220 7 ALIAS PROGSTAK
IEW2322I 1220 8 NAME PROGIND0(R)
IEW2454W 9203 SYMBOL PROGXCLW UNRESOLVED. NO AUTOCALL (NCAL) SPECIFIED.
IEW2454W 9203 SYMBOL PROGXCWL UNRESOLVED. NO AUTOCALL (NCAL) SPECIFIED.

Figure 25. Sample binder input event log

*** U N N A M E D S E C T I O N ***

------- SOURCE -------
NAME DDNAME SEQ MEMBER

$PRIV000010 LIB1 01 BTEST10A

*** E N D O F U N N A M E D S E C T I O N S ***

Figure 26. Sample binder private section list report

Binder listings

142 z/OS V2R2 MVS Program Management: User's Guide and Reference

Program module map
A map of the program module is generated if the MAP option was specified for
the run. Figure 27 on page 145 and Figure 29 on page 147 contain sample program
module maps (one for a simple module and one for an overlay module). Each text
class is mapped showing each section or external label on a separate line and
INCLUDING information about the source of the section. A “SOURCE” column
indicates the data set (by ddname and concatenation sequence number) and
member from which each section was included. Map entries are sequenced by
module location within class or overlay segment.

The following describes the detailed line information included in the module map:
v SECTION OFFSET - The location of the section or label relative to the start of

the element (class section) in which it is defined. Section offset is printed only
for labels, not sections.

v CLASS OFFSET/MODULE OFFSET - The location of the section or label relative
to the start of the class or overlay segment.

v NAME - The name of the entity being mapped. An asterisk preceding the name
indicates that the section was included during the autocall phase.
Some section types do not have external names and are displayed as follows:
– $SEGTAB - Overlay segment table
– $ENTAB - Overlay segment entry table
– $PRIVxxxxxx - Private code where xxxxxx is a unique hexadecimal value

starting at X'000001'
– $BLANKCOM - Blank (unnamed) common

v TYPE - The label type of the entity being mapped:
– CSECT - Control section
– LABEL - External label
– COMMON - Named or unnamed common
– SEGTAB - Overlay segment table
– ENTAB - Overlay segment entry table

v LENGTH - The length in hexadecimal bytes of the section or segment. If TYPE is
LABEL, this field is blank.

v SOURCE - The ddname, concatenation sequence number, and optionally the
member name from which this section is included.

When reporting the source of a Section brought in from an archive file, the Binder
Map will be changed to list the name of the archive file member from which the
Section was included (in the column headed MEMBER). For symbols resolved via
the C370LIB directories, the member name listed will be the PDS/PDSE member
name, not the name of the symbol.

The last item in the module map is usually the data set summary. It contains one
entry for each combination of ddname and concatenation sequence number
referenced in the module map and displays the corresponding data set name.
These 8-byte pseudo ddnames are used in the module map and other reports in
order to improve the reports' readability. The data set summary cross-references
the pseudo ddnames to their corresponding z/OS UNIX file names. A pseudo
ddname is of the form '/000000n', where 'n' is a number that increases as new
z/OS UNIX files are processed by the binder.

Binder listings

Chapter 8. Interpreting binder listings 143

Data sets and libraries from which no members were included do not appear in
the data set summary.

If any symbols appear as references in the symbol table (ESD) of one or more input
modules, but are not the target of any references in the code, an unreferenced
symbol table will be printed. The symbols in this table will not appear in the
cross-reference listing but if they are unresolved, may result in error messages
being issued by the binder.

Simple module
The following figure illustrates a simple module, containing one text class
(B_TEXT) and the pseudoregister vector (B_PRV). Each text class begins with a
class header containing the class name, its length in bytes, and significant bind and
load attributes of the class:
v CAT indicates that the class is a concatenation of all participating sections.
v LOAD indicates that the class will be loaded when the module is loaded.
v RMODE=ANY indicates that this class can be placed above the 16 MB line.

All CAT-type text classes consist of sections (CSECTs) and labels.

The second class, B_PRV, represents the pseudoregister vector (PRV), if one is
present. It replaces the special PRV display that appeared in earlier releases of the
binder. Its attributes are:
v MRG indicates that the class consists of parts, which are merged by part name.
v NOLOAD means that the class will not be loaded with the module.

There are several differences between the MRG and CAT classes. Since all
pseudoregisters are located in the same section, section offset and class offset are
identical; only one is printed. The entity is PART rather than CSECT or LABEL,
each part representing a single pseudoregister or external data item. Finally,
SOURCE is not displayed, since all parts are created by the binder.

Binder listings

144 z/OS V2R2 MVS Program Management: User's Guide and Reference

z/OS V1 R5 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(PMSBC321) STEP(BIND2) PGM= IEWBLINK
IEW2278I B352 INVOCATION PARAMETERS - LIST(ALL),NCAL,LET,OVLY,MAP,XCAL

*** M O D U L E M A P ***

CLASS B_TEXT LENGTH = A20 ATTRIBUTES=CAT, LOAD, RMODE=ANY

OFFSET = 0 IN SEGMENT 001 ALIGN = DBLWORD

SECTION CLASS ------- SOURCE --------
OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

0 CEESTART CSECT 7C OBJ 01 C955A03

80 EDCINPL * CSECT 28 /0000001 01 EDCINPL

A8 STRCMP * CSECT 10 SYSLIB 02 STRCMP

B8 PRINTF * CSECT 10 SYSLIB 02 PRINTF

C8 EDC@@1FC * CSECT 10 SYSLIB 06 exit
0 C8 exit LABEL
0 C8 EDC#EXIT LABEL

D8 CEESG003 * CSECT 128 SYSLIB 06 exit

200 puts * CSECT 10 SYSLIB 06 puts

210 printf * CSECT 10 SYSLIB 06 printf

220 CEEROOTA * CSECT 1F8 SYSLIB 02 CEEROOTA

418 CEEBETBL * CSECT 28 SYSLIB 01 CEEBETBL

440 CEEBPUBT * CSECT 70 SYSLIB 02 CEEBPUBT

4B0 CEEBTRM * CSECT B0 SYSLIB 02 CEEBTRM

560 CEEBLLST * CSECT 60 SYSLIB 02 CEEBLLST
10 570 CEELLIST LABEL

5C0 CEEBINT * CSECT 8 SYSLIB 02 CEEBINT

5C8 CEEBPIRA * CSECT 280 SYSLIB 02 CEEINT
0 5C8 CEEINT LABEL
0 5C8 CEEBPIRB LABEL
0 5C8 CEEBPIRC LABEL

848 CEECPYRT * CSECT F0 SYSLIB 02 CEEINT

938 CEEARLU * CSECT B8 SYSLIB 02 CEEARLU

9F0 CEETGTFN * CSECT 10 SYSLIB 01 CEETGTFN

A00 CEETLOC * CSECT 20 SYSLIB 01 CEETLOC

Figure 27. Sample binder module map (Part 1 of 2)

Binder listings

Chapter 8. Interpreting binder listings 145

Figure 29 on page 147 shows an overlay format module map, containing three
overlay segments and a pseudoregister vector. Note that all text is contained in
class B_TEXT, a requirement of overlay programs.

CLASS B_PRV LENGTH= 18 ATTRIBUTES=MRG,NOLOAD

CLASS
OFFSET NAME TYPE LENGTH SECTION

0 GFLGA PART 1
1 GFLGE PART 1
2 GFLGC PART 1
3 GFLGC PART 1
4 COUNTF PART 2
8 MASTER PART 4
10 B_TOKEN PART 8

*** DATA SET SUMMARY ***

DDNAME CONCAT FILE IDENTIFICATION
OBJ 01 DFPFT.WORKLIB.OBJECT
/0000001 01 /DFPFT/APP1/EDCINPL
SYSLIB 01 DFPFT.WORKLIB.POSIX.RTL.UT2.SCEELKED
SYSLIB 02 DFPFT.WORKLIB.CEE.V1R7M0.SCEELKED
SYSLIB 06 A860059.SCEELKED.LONGNAME

*** SYMBOL REFERENCE NOT ASSOCIATED WITH ANY ADCON ***

TYPE SCOPE NAME
ER M WEAK
ER L DANGLER

*** E N D O F M O D U L E M A P ***

Figure 28. Sample binder module map (Part 2 of 2)

Binder listings

146 z/OS V2R2 MVS Program Management: User's Guide and Reference

z/OS V1 R5 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(TESTHIGH) STEP(BIND2) PGM= IEWBLINK
IEW2278I B352 INVOCATION PARAMETERS - LIST(ALL),NCAL,LET,OVLY,MAP,XCAL

*** M O D U L E M A P ***

CLASS: B_TEXT

LENGTH= 11848 ATTRIBUTES = CAT, LOAD, RMODE 24
OFFSET= 0 IN SEGMENT 001 ALIGN = DBLWORD

SEGMENT 001 REGION 001 LENGTH: A370 ATTRIBUTES: OVERLAY RMODE: 24

SECTION MODULE ------- SOURCE ------
OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

0 PROGBCAD CSECT 1868 MYLIB 1 PROGBCAD

1868 PROGBCDS CSECT 13E8 MYLIB 1 PROGBCDS

2C50 PROGBCOV CSECT 190 MYLIB 1 PROGBCOV

2DE0 PROGBIND CSECT C30 SYSLIB 1 PROGBIND

3A10 PROGBRAC CSECT 15D0 SYSLIB 2 PROGBRAC

83F8 PROGBUPA CSECT 1A20 SYSLIB 2 PROGBUPA

9E18 PROGPMMB CSECT 528 SYSLIB 2 PROGPMMB
424 A23C PROGPARB LABEL

A340 PROGCDEF CSECT 3F0 SYSLIB 1 PROGCDEF

SEGMENT 002 REGION 001 LENGTH: 32E0 ATTRIBUTES: OVERLAY RMODE: 24

SECTION MODULE ------- SOURCE ------
OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

0 PROGMX21 CSECT 868 SYSLIB 1 PROGBCAD

868 PROGGROV CSECT 3E8 SYSLIB 1 PROGBCDS

C50 PROGWYY CSECT 490 MYLIB 1 PROGBCOV

10E0 PROGR2D2 CSECT C30 MYLIB 1 PROGBIND

1D10 PROGC3PO CSECT 15D0 MYLIB 1 PROGBRAC

Figure 29. Sample binder module map - Overlay (Part 1 of 2)

Binder listings

Chapter 8. Interpreting binder listings 147

The removed classes and sections report
This report is printed when the STRIPSEC or STRIPCL option and the MAP option
are specified. It is printed at the end of the module map.
*** R E M O V E D C L A S S E S A N D S E C T I O N S ***

CLASS NAMES (ABBREV)
C_CDA

SECTION NAMES (ABBREV)
MYSECT
PGM2

*** E N D R E M O V E D C L A S S E S A N D S E C T I O N S ***

z/OS V1 R5 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(TESTHIGH) STEP(BIND2) PGM= IEWBLINK

SEGMENT 003 REGION 001 LENGTH: 3E38 ATTRIBUTES: OVERLAY RMODE: 24

SECTION MODULE ------- SOURCE ------
OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

0 OBI_WAN CSECT 720 MYLIB 1 PROGBCAD

720 JABBA CSECT 9A0 MYLIB 1 PROGBCDS

10C0 STARWARS CSECT 440 MYLIB 1 PROGBCOV
0 10C0 LUKE LABEL
4 10C4 LEAH LABEL
8 10C8 DARTH LABEL

1500 YODA CSECT 2030 MYLIB 1 PROGBIND

3530 CHEWBACA CSECT 904 MYLIB 1 PROGBRAC

CLASS: B_PRV LENGTH: D70 ATTRIBUTES: MRG, NOLOAD

CLASS
OFFSET NAME TYPE LENGTH

0 INFILE PART 4
4 OUTPUT1 PART 4
8 WORK1 PART D56

D60 SYSPRINT PART 4
D68 MESSAGEH PART 8

*** DATA SET SUMMARY ***

DDNAME CONCAT FILE IDENTIFIER

MYLIB 1 JONES.PROJECT6.LOADLIB
SYSLIB 1 DEPT77.OBJLIB

2 DEPT83.OBJLIB

*** E N D O F M O D U L E M A P ***

Figure 30. Sample binder module map - Overlay (Part 2 of 2)

Binder listings

148 z/OS V2R2 MVS Program Management: User's Guide and Reference

Renamed-symbol cross-reference table
The renamed-symbol cross-reference table is printed only if one or more names
were renamed for symbol resolution purposes. The table shows the correspondence
between the new (renamed) and the source symbols.

The binder normally processes symbols exactly as received from the compiler.
However, certain symbolic references generated by the C/C++ and other compilers
can be renamed by the binder if they contain long or mixed-case names
("L-names") and cannot be resolved by the L-name during autocall. During
renaming, the L-name reference is replaced by its equivalent short name. Such
replacements, whether resolved or not, will appear in the Renamed-Symbol Table.

Figure 31 depicts three renamed symbols, the last of which is differentiated as a
part or pseudoregister name.

Cross-reference table
A cross-reference table of the program module is provided if the XREF option was
specified for the run. The table does not depend upon nor does it automatically
generate a module map.

The table contains one entry for each address constant in the module. The left half
of the table describes the reference (address constant), showing module location,
section name, section offset, and address constant type. The right half of the table
describes the external symbol being referenced. Table entries appear in the same
sequence as the location of the address constants within the overlay segment.

Figure 32 on page 151 shows a sample cross-reference table. The columns contain
the following information:
v CLASS OFFSET - The offset of the address constant relative to the start of the

class.
v SECT/PART - The name of the section or part containing the address constant.
v SEG - The segment number if the module is in overlay format.
v RG - The region number if the module is in overlay format.
v ELEMENT OFFSET - The offset of the address constant relative to the start of

the section component of the class.
v TYPE - Address constant type. One of six types may appear:

*** RENAMED SYMBOL CROSS REFERENCE ***

RENAMED SYMBOL

SOURCE SYMBOL

function9_40__FPfPi
function9_xxxxxxxxx20xxxxxxxx30xxxxxxxx4__FPfPi

function2_31__sqrt
function2_xxxxxxxxx20xxxxxxxx3__sqrt

+function7_41__FPfPi
function7_xxxxxxxxx20xxxxxxxx30xxxxxxxx4__FPfPi

+ = PART OR PSEUDO REG
*** END OF RENAMED SYMBOL CROSS REFERENCE ***

Figure 31. Sample binder renamed-symbol cross-reference

Binder listings

Chapter 8. Interpreting binder listings 149

– V-CON - An adcon normally used for program branching
– A-CON - An adcon normally used for data reference
– Q-CON - An adcon that references a pseudoregister or other part by its offset

within the class
– C-LEN - An adcon that will receive the cumulative length of the

pseudoregister vector or other class.
– L TOKE - loader token: represents a unique instance of the module on DASD.
– R-CON - An adcon referencing the associated data (environment) of the target

symbol.
v SYMBOL - The external symbol being referenced.
v SECTION - The name of the section containing the referenced symbol. If the

symbol is unresolved or nonrelocatable, this field is set to one of the following:
– $NON-RELOCATABLE - The address constant contains a nonrelocatable

value, such as a pseudoregister offset or PRV length.
– $UNRESOLVED - The referenced symbol is unresolved.
– $UNRESOLVED(W) - The referenced symbol is an unresolved weak external

reference (WXTRN).
– $NEVER-CALL - The referenced symbol was identified as never-call.
– $IMPORTED - The referenced symbol was dynamically resolved.

v SEG - The number of the overlay segment containing the referenced symbol if
the module is in overlay format.

v RG - The number of the overlay region containing the referenced symbol if the
module is in overlay format.

v ELEMENT OFFSET - The offset of the referenced symbol relative to the start of
its containing element, identified by section and class names.

v CLASS NAME - The target class.

The cross reference table contains one segment for each text class containing
address constants. A separator line containing the class precedes the adcon listing.
Text classes that are not loaded with the module, such as B_PRV, will never contain
address constants and will not appear in this report.

Binder listings

150 z/OS V2R2 MVS Program Management: User's Guide and Reference

Imported and exported symbol table
The Imported and Exported Symbol Table is part of the Module Summary Report.
This table is printed if binder options XREF and DYNAM(DLL) are specified and
there are symbols to import or export.

The table shows the imported and exported symbols, whether they represent code
or data, and, for imported symbols, the name of the dynamic link library from
which the symbol was imported.

A sample table is shown in Figure 33 on page 152. All imported symbols are listed
first, followed by the exported symbols. Within each group, symbols are arranged
alphabetically. There are some differences between the two groups:
v The member name or z/OS UNIX file name for the IMPORT is derived from the

IMPORT control statement.
v The member name for EXPORT is always the same as the symbol name, and so

it is omitted.
v SYMBOL, DLL and MEMBER names longer than 16 bytes are abbreviated to

unique 16-byte replacements that are used in this and other tables. Figure 36 on
page 155 shows the correspondence between the long names and their
abbreviations.

v SOURCE: DDNAME, SEQ, and MEMBER indicates the source file, in the same
way as the Module Map. MEMBER is subject to Binder Long Symbol
Abbreviation rules/processing.

C R O S S - R E F E R E N C E T A B L E

TEXT CLASS = B_TEXT

--------------- R E F E R E N C E -------------------------- T A R G E T ---------------------
CLASS ELEMENT | ELEMENT
OFFSET SECT/PART (ABBREV) OFFSET TYPE | SYMBOL(ABBREV) SECTION (ABBREV) OFFSET CLASS NAME

|
48 SD1 48 A-CON | SD1 0 B-TEXT
C4 SD1 C4 V-CON | LD1 SDX A8 B_TEXT
126 SD1 126 Q-CON | GFLGA $NON-RELOCATABLE 0 B_PRV
18E SD1 18E Q-CON | B-TOKEN $NON-RELOCATABLE 10 B_PRV
1F6 SD1 1F6 Q-CON | GFLGC $NON-RELOCATABLE 2 B_PRV
25E SD1 25E Q-CON | MASTER $NON-RELOCATABLE 8 B_PRV
2C6 SD1 2C6 Q-CON | GFLGE $NON-RELOCATABLE 1 B_PRV
32E SD1 32E Q-CON | COUNTF $NON-RELOCATABLE 4 B_PRV
396 SD1 396 Q-CON | GFLGG $NON-RELOCATABLE 3 B_PRV
3FC SD1 3FC CXD | $NON-RELOCATABLE B_PRV
490 SD1 490 V-CON | SD2 SD2 0 B_TEXT
568 SD2 48 A-CON | SD2 0 B_TEXT
5E4 SD2 C4 V-CON | LD2 SDX AC B_TEXT
644 SD2 124 V-CON | LD3 $PRIVATE 0 B_TEXT
6A4 SD2 184 V-CON | LD4 $PRIVATE 4 B_TEXT
704 SD2 1E4 V-CON | CM1 CM1 0 B_TEXT
7B4 SD2 294 V-CON | CM1 CM1 0 B_TEXT
860 SDX 48 A-CON | SDX 0 B_TEXT

Figure 32. Sample binder cross-reference table

Binder listings

Chapter 8. Interpreting binder listings 151

Operation summary
The operation summary is generated at the conclusion of the each save or load
operation. The save operation summary is produced by entry point IEWBLINK;
the load operation summary by entry IEWBLDGO.

The save and load operation summaries are produced when LIST=ALL or
LIST=SUMMARY is specified and when meaningful information is available. For
example, if the load operation failed, no load summary is produced.

Figure 34 on page 154 and Figure 35 on page 155 contain sample save and load
operation summaries. The summaries contain information such as,
v Current processing options These are the binder options in force at the time the

module is bound.````````````````
v SAVE or LOAD information (as appropriate):

– Date and time of SAVE
– Name of output program library
– Volume serial or storage class of the output program library
– Name of member
– Program module attributes (specified and defaulted)

Note that certain module attributes are not specified as binder options but are
determined from the module itself:
- Compression
- Exceeds 16 MB
- Executable
- Migratable
These attributes provide additional information in the directory entry for later
use by the binder or loader.

– Status (executable/nonexecutable)
– Total virtual storage required to load the module
– Total disk space required to store the module
– Load point address of a loaded program module
– Entry point address of a loaded program module
– Name of a loaded program module if it has been identified to the system in

virtual storage.
v Entry point and alias summary:

– Main entry point name
– Alternate entry point and true alias names
– Addressing modes for main and alternate entry points
– Classname

*** I M P O R T E D A N D E X P O R T E D S Y M B O L S ***

------- SOURCE --------
IMPORT/EXPORT TYPE SYMBOL DLL DDNAME SEQ MEMBER
------------- ------ ---------------- ------------ -------- --- -------

EXPORT DATA hw
*** E N D O F I M P O R T E D A N D E X P O R T E D S Y M B O L SS ***

Figure 33. Sample binder imported and exported symbols table

Binder listings

152 z/OS V2R2 MVS Program Management: User's Guide and Reference

– Class offset
– Requested alias names that were not assigned
– Status for alternate entry points and aliases. The status value can be one of

the following:

ADDED
The name did not exist in the directory and has been added.

REASSIGNED
The alias existed in the program module and has been reused in the
replacement.

REMOVED
The alias existed in the replaced program module, but has not been
respecified in the replacement.

REJECTED
The name was too long to be saved in the directory or already existed
and could not be replaced according to the binder replacement rules.

STOLEN
The name existed as an alias to another module, but was reassigned
to the module being saved.

HIDDEN
The name was added as a result of the ALIASES(ALL) option.
AMODE is not listed for hidden aliases.

NOT EXEC
The alias was added, but it is not executable.

Binder listings

Chapter 8. Interpreting binder listings 153

|
|

*** O P E R A T I O N S U M M A R Y R E P O R T ***
z/OS V2 R1 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(TESTHIGH) STEP(BIND2) PGM= IEWBLINK
PROCESSING OPTIONS:

ALIASES NO
ALIGN2 NO
AMODE UNSPECIFIED
CALL YES
CASE UPPER
COMPAT UNSPECIFIED
COMPRESS AUTO
DCBS NO
DYNAM NO
EXITS: NONE
EXTATTR UNSPECIFIED
FILL NONE
GID UNSPECIFIED
HOBSET NO
INFO NO
LET 04
LINECT 060
LIST SUMMARY
LISTPRIV NO
LONGPARM NO
MAP YES
MAXBLK 032760
MODMAP NO
MSGLEVEL 00
OVLY NO
PRINT YES
RES NO
REUSABILITY UNSPECIFIED
RMODE UNSPECIFIED
SIGN NO
STORENX NOREPLACE
STRIPCL NO
STRIPSEC NO
SYMTRACE
TERM NO
TRAP ON
UID UNSPECIFIED
UPCASE NO
WKSPACE 000000K,000000K
XCAL NO
XREF YES
END OF OPTIONS

SAVE OPERATION SUMMARY:

MEMBER NAME TSTMOD
LOAD LIBRARY PMSBC321.LOADOVLY
PROGRAM TYPE PROGRAM OBJECT(FORMAT 3)
VOLUME SERIAL 1P0303
DISPOSITION REPLACED
TIME OF SAVE 04.25.32 JUL 31, 2013

SAVE MODULE ATTRIBUTES

AC 000
AMODE 31
COMPRESSION UNINITIALIZED TEXT
DC NO
EDITABLE YES
EXCEEDS 16 MB NO
EXECUTABLE YES
LONGPARM NO
MIGRATABLE NO
OL NO
OVLY NO
PACK,PRIME NO,NO
PAGE ALIGN NO
REFR NO
RENT NO
REUS NO
RMODE 24
SCTR NO
SSI
SYM GENERATED NO
TEST NO
XPLINK NO
MODULE SIZE (HEX) 00000100
DASD SIZE (HEX) 00003000

ENTRY POINT AND ALIAS SUMMARY:
NAME: ENTRY TYPE AMODE C_OFFSET ClASS NAME STATUS

TSTMOD MAIN_EP 31 00000000 B_TEXT
*** E N D O F O P E R A T I O N S U M M A R Y R E P O R T ***

Figure 34. Sample binder save operation summary

Binder listings

154 z/OS V2R2 MVS Program Management: User's Guide and Reference

The Long-symbol abbreviation table
The long-symbol abbreviation table shows the relationships between long symbols
and their abbreviations. A long symbol is longer than 16 bytes, and its abbreviation
is 16 bytes. The abbreviated symbols are used in several binder reports for better
readability.

Short mangled name report
The list of abbreviated names was expanded to display mangled names. This list
was designed to avoid the repetition of data and to keep the Mangled name
abbreviation and the DeMangled name together. This list is already sorted in
abbreviated name order.

A new list was added to account for the demangling of short names which
normally do not require an abbreviation, for example, names less than seventeen
bytes. Although there are probably few of these names, an accounting must be
made for them.

The changes were made to cause no listing changes if there are no Mangled names
to be displayed.

*** O P E R A T I O N S U M M A R Y R E P O R T ***
z/OS V1 R5 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(B422735W) STEP(BIND2) PGM= IEWBLINK

LOAD OPERATION SUMMARY:

LOADED NAME TEST
TIME OF LOAD 14.00.46 JUNE 30, 1997
LOAD PT VADDR(HEX) 00031000
ENTRY PT VADDR(HEX) 00031000

LOAD MODULE ATTRIBUTES:

AMODE 24
PAGE ALIGN NO
RMODE 24
MODULE SIZE (HEX) 00001400

*** E N D O F O P E R A T I O N S U M M A R Y R E P O R T ***

Figure 35. Sample binder load operation summary

*** L O N G S Y M B O L A B B R E V I A T I O N T A B L E ***

ABBREVIATION LONG SYMBOL

__ct__9Ex-lassFv := __ct__9ExpoClassFv
__dt__9Ex-lassFv := __dt__9ExpoClassFv
__sinit80-____Fv := __sinit80000000__dfpft_worklib_source_c_x955404e___Fv
__sterm80-____Fv := __sterm80000000__dfpft_worklib_source_c_x955404e___Fv
an_object-456789 := an_object0123456789012345678901234567890123456789

*** E N D O F L O N G - S Y M B O L A B B R E V I A T I O N T A B L E ***

Figure 36. Sample binder long-symbol abbreviation table

Binder listings

Chapter 8. Interpreting binder listings 155

Abbreviation/Demangled name report
The abbreviation report has been expanded to provide a cross reference to the
DeMangled names.

Note:

1. Demangled Names always are preceded with $$DEMANGLED$$.
2. "==" is always followed by the demangled name.
3. Continuation lines for demangled names are prefixed by "+".
4. The demangled name always follows the related abbreviated and mangled

names.
5. Reports are in alphabetical order by mangled Name / abbreviation.
6. Names which cannot be demangled are omitted from the list. No message is

provided.
7. There are two messages which may appear under the demangled name

heading, within the list:
v Unable to CONTINUE DEMANGLE = Abnormal Termination in the

Demangler. No further demangling is attempted. It also causes message
IEW2441I MANGLED NAMES EXIST- UNABLE TO ACCESS DEMANGLER
to be written following the report,

v Demangled Name greater than 16384 bytes = Very long demangled name
was encountered. The name is not printed.

******** S H O R T M A N G L E D N A M E S ******

MANGLED NAME DEMANGLED NAME

__javPshort == __javPshort

******** E N D S H O R T M A N G L E D N A M E S ****

Figure 37. Sample binder short mangled name report

** A B B R E V I A T I O N / D E M A N G L E D N A M E S **

ABBR/MANGLE NAME LONG SYMBOL

__addr_34-tring) := __addr_34_java/lang/IllegalArgumentExceptionI6_<
init>(L16_java/lang/ String)

__javCls1-ension := __javCls18_java/awt/Dimension
$$DEMANGLED$$ == java.awt.Dimension

__javCls1-nuItem := __javCls17_java/awt/MenuItem
$$DEMANGLED$$ == java.awt.MenuItem

__jav15_j-ame()V := __jav15_java/awt/Button9_buildName()V
$$DEMANGLED$$ == void java.awt.Button.buildName()

__jav15_j-ener)V := __jav15_java/awt/ButtonY17_addActionListener(L29
_java/awt/event/ActionListener)V

$$DEMANGLED$$ == synchronized void java.awt.Button.addActionListe
+ ner(java.awt.event.ActionListener)

__jav15_j-hics)V := __jav15_java/awt/Canvas5_paint(L17_java/awt/Grap
phics)V

$$DEMANGLED$$ == void java.awt.Canvas.paint(java.awt.Graphics)

*** E N D A B B R E V / D E M A N G L E D N A M E S ***

Figure 38. Sample binder abbreviation/demangled names report

Binder listings

156 z/OS V2R2 MVS Program Management: User's Guide and Reference

DDname versus Pathname cross reference report
The pathname to DDname table will be printed even if the binder map is not
printed. Since the constructed DDnames (such as '/0000003') are used in error
messages, if a map is not requested or if not map is produced because the save or
load does not complete, you have no way of determining which z/OS Unix files
has been referenced. This report allows you to make that correlation. The following
is an example of a DDname vs. pathname report.
++
| D D N A M E V S P A T H N A M E C R O S S R E F E R E N C E |
++

DDNAME PATHNAME
------ --
0000001 /PM64B301/dlla07

*** END OF DDNAME VS PATHNAME

Binder service level report
The Binder service level report is printed if the INFO option has been specified
and if any service (apar or PTF) has been applied to the binder module being
executed. The following is an example of the Binder service level Report:

*** START BINDER LEVEL INFORMATION ***
MODULE COMPILE DATE PTF LEVEL MODULE COMPILE DATE PTF LEVEL

IEWBACTL 06293 UA10162 IEWBBARN 06293 UA15580
IEWBBBIE 06293 UA20277 IEWBBCDS 06293 UA20277

The message summary report
The message summary report provides a table of unique message numbers issued
by the binder. Messages are separated by severity. Message numbers are counted
even if the message was suppressed by the message exit or the MSGLEVEL option.

You can use message numbers from this report to scan the Input Event Log for
messages of interest. This is particularly helpful when modules are batched and
listings are extensive.

When the Binder is required to print a message containing a variable (symbol)
whose length is greater than 1024 bytes, the message will print only the first 1020
bytes of the variable(symbol). When this occurs, the message will contain an
asterisk in the blank column immediately following the message number.
Additionally, a note will be printed immediately following the message summary
report indicating at least one message has had a variable (symbol) truncated.

Binder listings

Chapter 8. Interpreting binder listings 157

z/OS V1 R3 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(PM64B251) STEP(BIND1) PGM= IEWBLINK
IEW2322I 1220 811 INCLUDE DD1(PO2)
IEW2308I*1112 SECTION
4KLG_SD14KLG_SD1LONG_SD1LONG_SD1LONG_SD1LONG_50X01012345678901234567890
0123456789012345678901234567890123_50X030123456789012345678901234567890
012345678901234567890123_50X0501234567890123456789012345678901234567890
01234567890123_50X0701234567890123456789012345678901234567890123_50X080
0123_50X0901234567890123456789012345678901234567890123_50X1001234567890
01234567890123456789012345678901234567890123_50X12012345678901234567890
0123456789012345678901234567890123_50X140123456789012345678901234567890
012345678901234567890123_50X1601234567890123456789012345678901234567890
01234567890123_50X1801234567890123456789012345678901234567890123_50X190
0123_50X20012345678901234567890123 HAS BEEN MERGED.
- - - - - - - - - 1345 LINE(S) NOT DISPLAYED

MESSAGE SUMMARY REPORT

SEVERE MESSAGES (SEVERITY = 12)
NONE

ERROR MESSAGES (SEVERITY = 08)
2333

WARNING MESSAGES (SEVERITY = 04)
NONE

INFORMATIONAL MESSAGES (SEVERITY = 00)
2008 2013 2278 2308 2322

*** NOTE: ANY MESSAGE WITH AN ’*’ FOLLOWING
THE MESSAGE NUMBER MEANS A VARIABLE IN THAT
MESSAGE WAS TRUNCATED TO 1020 BYTES.

**** END OF MESSAGE SUMMARY REPORT ****

Figure 39. Message summary report (variable truncated)

158 z/OS V2R2 MVS Program Management: User's Guide and Reference

Chapter 9. Binder serviceability aids

There are several diagnosis aids that you can use to analyze and resolve problems
found while using the Program Management binder. These include:
v Binder output data sets
v The AMBLIST service aid
v The IDCAMS printing utility

This topic also explains how to diagnose information when invoking the binder
from the z/OS UNIX shell using the c89 command.

The complexity of the problem being analyzed dictates the number and
combinations of the above aids needed in order to solve the problem. The
following discusses each of the aids listed above.

Binder output data sets
The program management binder generates various output listings, which supply
you with diagnosis information at different levels of specificity. The data sets
containing this information can be specified in the JCL, at the time the binder is
invoked in batch mode, or in the STARTDialog API call, when the binder is
invoked interactively.

Table 8 shows the output data sets by DDNAME, and briefly explains the purpose
of their contents. A more specific description of each data set follows the table.

Binder output data sets and their contents
Table 8. Binder data sets and their contents

DD name Contents

SYSPRINT Depending on user-specified options, this data set may contain
binder processing messages, a data map of the program object or
load module, a cross-reference list depicting numerical offsets of
the elements within a class of binder data, and other
information.

IEWDIAG In the absence of SYSPRINT's allocation, this data set receives all
the messages that would have gone to SYSPRINT. This may be
the case if the binder is invoked interactively via its API.

IEWTRACE If specified, this data set contains tracing information as control
is passed from one binder module to another. Input data, output
data or both, as well as return codes, are echoed in most tracing
entries, making it easier to follow and diagnose binder
processing events.

IEWDUMP The information in this data set represents a snapshot of binder
data in its internal organization. When the information in the
above data sets is not sufficient to troubleshoot a problem, this
information becomes necessary. Data is directed to this data set
when there is an abnormal termination in the binder's
processing, or when a caller makes a request for a dump upon
entry to a specific binder module.

© Copyright IBM Corp. 1991, 2015 159

Table 8. Binder data sets and their contents (continued)

DD name Contents

IEWGOFF This data set contains the Generalized Object File Format (GOFF)
records produced by the binder when its input is Extended
Object (XOBJ) module records, which are generated by some
compilers. Once built in storage, the GOFF records are processed
and bound by the binder. If this data set is specified at the time
the binder is invoked, the produced GOFF records will be
echoed to it. Should the binder encounter any problems
processing the GOFF records, this data set may be useful in
diagnosing problems in the XOBJ-to-GOFF conversion process or
in the source XOBJ records.

The IEWDIAG data set
IEWDIAG contains the binder error messages. This is the same content that is
written to SYSTERM, except that all the messages are always written as though
MSGLEVEL=0 and LIST=ALL had been specified. In addition the first line in
IEWGOFF is a header line containing the binder name and release, as well as a
timestamp and date.

Allocating IEWDIAG
The IEWDIAG data set can be a sysout data set, a sequential data set, a member of
a partitioned data set, or a z/OS UNIX file. The data set attributes should be the
following:

DSORG=PS,RECFM=FB,LRECL=80

The following is a sample DD statement which could be used to
allocate IEWDIAG to a UNIX file :
//IEWDIAG DD PATH=’/u/mydir/mydiag’,PATHMODE=SIRWXU,
// PATHDISP=(KEEP,KEEP),PATHOPTS=(OCREAT,ORDWR)

The IEWTRACE data set

TRACE option
The binder TRACE option may be specified as:
TRACE=ALL|OFF|(start_ecode,[end_ecode])|subcomponent character(s)

By default, the option is set to TRACE=ALL. With this setting, all trace entries will
be written if the IEWTRACE DD is allocated. TRACE=OFF will suppress all
tracing.

The TRACE data set may become extremely large. It may be useful to specify that
only some of the trace entries be written out, by using selective trace. To do this,
code the trace option as:
TRACE(start_ecode,[end_ecode])

TRACE will be turned on when 'start_ecode' is seen (as if TRACE=ALL had been
specified at that point). If 'end_ecode' is specified, TRACE will be turned off when
'end_ecode' is seen (as if TRACE=OFF had been specified at that point).

To write out only some of the trace entries, you can also code the trace option as:
TRACE=’c[c]...’

Where 'c' is a single subcomponent character.

Binder serviceability

160 z/OS V2R2 MVS Program Management: User's Guide and Reference

TRACE will be selectively traced when 'subcomponent character' is seen. The
subcomponent character is the fifth character of the binder's module name. For
instance, specifying 'O' will trace module IEWBOGET and other O component
modules, and specifying 'X' will trace module IEWBXIOP and other X component
modules.

Interpreting the contents of IEWTRACE
The contents of this data set represent cumulative tracing entries issued by the
binder's modules during their processing sequence. Trace entries are produced at
entry to and exit from each module, as well as at other points deemed important
for diagnosis purposes. For instance, most binder modules produce trace entries
whenever they request a system service. This information proves useful to IBM
when servicing the binder.

All the entries in a trace data set are numbered, as can be seen in the sample trace
in Figure 40 on page 162. The numbers are normally sequential for each binder
dialog. However, when the binder API is being used, there might be one or more
entries beginning with sequence 0 at the point of each new service call before the
normal sequence resumes. Each entry begins with a sequence number and consists
of one or more lines. The four alpha characters following the sequence numbers
represent the last four letters in a binder's module name, all of which begin with
"IEWB". For instance, the module name in trace entry 0 is "IEWBOGET".
Horizontally, the next eight numeric (hexadecimal) digits represent internal codes
which signify the events taking place in a module (the coined term to refer to these
codes is "event codes", or "ecodes", for short). So, for example, the ecode in trace
entry 0 means "entry to module IEWBOGET", and the ecode in entry 1 means "exit
from IEWBOGET". In entry 1, the ecode at the far right means that the "processing
in IEWBOGET was successful." A complete list of ecodes and their definitions is
available to the organization servicing the binder, but a general guideline for
interpreting such ecodes is given below, under “Interpreting binder ecodes” on
page 162.

One or more lines in a trace entry provides all the pertinent diagnosis information
at the time the trace was issued. For instance, most module exit entries print the
return and reason codes returned to the calling module. In entry 9, module
IEWBXIOP exited (ecode D2A1A100) with a return code of 12, in comparison to
entry 10, where IEWBXR00 exited (ecode 409FA100) with a return code of 4.

Finally, the characters between the two parenthesis in each entry is an internal
time-stamp.

Binder serviceability

Chapter 9. Binder serviceability aids 161

Interpreting binder ecodes: Although supplying a complete list of binder ecodes
is beyond the scope of this document, providing a general guideline for reading
such ecodes is necessary and may prove useful when trying to diagnose a binder
problem.

An ecode is a fullword bit string in the hexadecimal format MMEEGGGG. The
three subfields are used as follows:
v MM - Module identifier (00-FF). It identifies the module in which the event took

place.
v EE - Event number within the module (00-FF).
v GGGG - Generic event code. This number varies as follows:

GGGG meaning

A0XX Module entry. XX is usually 00, but

if a module has multiple entry points,
it may be 01, 02, etc.

A1XX Module exit. XX is usually 00, but
if a module has multiple exit points,
it may be 01, 02, etc.

B000 Returned to caller, trace, etc

XXXX Message number of associated message

00000000 OGET B903A000 (13:33:48.223045)
0013 X

00000001 OGET B904A100 (13:33:48.223046) B900B000
00000002 SGET C400A000 (13:33:48.223049)

0000000316 D
00000003 SGET C402A100 (13:33:48.223050)

0000000316 D
00000000 X
000188D0 X

00000004 RCRE EA20A200 (13:33:48.223053)
ABCDEFGHIJKLMNOPQRSTUVWXYZ
T
00000000 X
00000000 X

00000005 RSDM ED00A000 (13:33:48.223056)
BRIO_PTR =
000188D0 X

00000006 RSDM ED21A200 (13:33:48.223056)
00000007 XR00 4090A000 (13:33:48.223058)
00000008 XIOP D2A0A000 (13:33:48.223061)

SYSPRINT
00000009 XIOP D2A1A100 (13:33:48.223062) D000B000
00000010 XR00 409FA100 (13:33:48.223063) 4000B000
00000011 RSDM ED22A601 (13:33:48.225296)
00000012 RSDM ED26A602 (13:33:48.225297)
00000013 RSDM ED23A200 (13:33:48.225297)
00000014 RSDM ED01A100 (13:33:48.225298)
00000015 RCRE EA21A200 (13:33:48.225298)
00000016 SGET C400A000 (13:33:48.225302)

0000000524 D
00000017 SGET C402A100 (13:33:48.225304)

0000000524 D
00000000 X
00018A10 X

00000018 CLCK F200A001 (13:33:48.225309)

Figure 40. Trace sample

Binder serviceability

162 z/OS V2R2 MVS Program Management: User's Guide and Reference

All modules have both an entry and an exit trace record, and the exit trace record
gives the return and reason codes. Most modules also trace calls for entry and
return to system services.

The following specific ecodes may be of help:
v FFA6B000

Contains a copy of a message to be issued (some of these messages might not
actually appear in SYSPRINT because of the MSGLEVEL setting).

v 0040XXXX-005CXXXX
Trace parameters passed on binder API calls.

v A200A001/A200A101
Trace additions of symbol names to the binder's Namelist. Contains the name, its
category code, and the assigned name list index.

v 8000A000
Traces the addition of an element index record to the binder's workmod. It
contains the pertaining class and section names.

There is normally a DEND entry at the end of the trace of a complete binder
execution. If it is not there, the trace was truncated due perhaps to a program
check in the binder. In this case, the trace would probably not be very useful as it
would not show the complete binder logic sequence.

If you know that the binder did not end normally, then backing up from the
DEND entry may show a binder terminal error message. For normal termination
you will see the IEW2008I message.

Allocating the IEWTRACE data set
This information is generated whenever the IEWTRACE ddname is specified in the
batch mode of the binder, or when the TRACE file name is specified in the FILES
parameter of the STARTDialog API call. In batch mode, this data set can be either
a SYSOUT data set, a sequential data set, or a member of a partitioned data set.
The DCB attributes for this data set should be:

DSORG=PS,RECFM=VB,LRECL=84

Note that RECFM can be VBA as well. BLKSIZE can be any multiple of 4 which is
equal to or larger than the LRECL, 84. IBM recommends omitting BLKSIZE so as
to take advantage of an optimal, system-determined block size.

IEWTRACE may be allocated to a z/OS UNIX file. Trace records are written to a
z/OS UNIX file as 80-byte records. Trace records that would have been longer than
80 bytes are truncated. Here is an example of allocating IEWTRACE to a z/OS
UNIX file:
//IEWTRACE DD PATH=’/u/mydir/mytrace’,PATHMODE=SIRWXU,
// PATHDISP=(KEEP,KEEP),PATHOPTS=(OCREAT,ORDWR)

The IEWDUMP data set
The information in this data set represents a snapshot of binder data in its internal
organization. When the information in the other diagnosis data sets is not enough
to identify a problem, this information becomes essential. For problems that occur
within the binder, IEWDUMP or SYSUDUMP is sufficient and easier to work with
than an IPCS format dump.

Binder serviceability

Chapter 9. Binder serviceability aids 163

Generating a dump in the binder
Data is directed to this data set when there is a terminal (abnormal) error in the
binder, when a caller makes a request for a dump upon entry to a specific binder
module, or when a program check or system abnormal termination occurs while in
the binder.

If SYSUDUMP or SYSABEND has been allocated, a SYSUDUMP will be taken if a
binder logic error or a program check or system abend occurs. If IEWDUMP has
been allocated, a dump which contains formatted binder control blocks and the
dataspace storage in use by the binder will be produced. (You would get both
dumps if SYSUDUMP and IEWDUMP were both allocated). Logic errors are
terminal and the binder job will terminate after taking the dump.

You can request that a formatted dump (IEWDUMP) be taken when a specific
non-terminating binder event code (ecode) is seen. In this case, binder execution
will continue after the dump. To request that a dump be taken on a specific
ECODE in batch mode, the following is a JCL example:
//LINK EXEC PGM=IEWBLINK,PARM=(’LET(8)’,XREF,
// ’DUMP=’’45082508’’’,MAP)

Interpreting the contents of IEWDUMP
The formatted portion will be at the end of the dump. For each workmod, the
workmod index records are shown, followed by Namelist entries.

Workmod data elements: Module data in the binder internal (workmod) format is
organized into units called elements. (Some older or obsolete binder
documentation may call these 'items' or even 'itemids'). An element is identified by
a section name and class name.

The formatted portion of the dump provides the information necessary to find the
data associated with each element in each workmod (see Figure 41 on page 165 for
an example). The data is formatted in a three-level hierarchy as follows:
v workmod
v section
v class

The first line output for each element prints:

APPPTR
The pointer to the first "append pointer" - that is, to the control block
describing the first block of contiguous data in the element.

CNT The append count (the total number of such contiguous blocks).

HIW “HI-WATER” - the highest record number in the element. For text, this is
the last byte of initialized text - it may be smaller than the total CSECT text
length.

LRECL
Length of one logical record

In the second line for each element, 20 bytes of attribute information are shown.
The first two fields give the offset of the data within the containing class and the
length, relative to records. (For text, the length of one record is one byte.)

Binder serviceability

164 z/OS V2R2 MVS Program Management: User's Guide and Reference

Finding the data in the dump: Go to address APPPTRT to find the data in an
element. The important fields are:

Table 9. APPPTRT dump data

Offset (HEX) Content

0 Next append control block

4 Starting offset of the data described by this block from the start of the
containing element

8 Count of logical records described by this block

C Data pointer - location of actual data

C Type of pointer (1 = virtual addr, 2 = dataspace)

10 Alet

14 Virtual address

Allocating the IEWDUMP data set
This information is generated whenever the IEWDUMP DDNAME name is
specified in the batch mode of the binder, or when the DUMP file name is
specified in the FILES parameter of the STARTDialog API call. This data set can be
either a SYSOUT data set, a sequential data set, a member of a partitioned data set,
or a TSO terminal.

DSORG=PS,RECFM=VB,LRECL=125

Note that the BLKSIZE can be equal to or larger than the LRECL, 125. IBM
recommends omitting BLKSIZE so as to take advantage of an optimal,
system-determined block size.

The IEWGOFF data set

Interpreting the contents of IEWGOFF
This data set contains the Generalized Object File Format (GOFF) records produced
by the binder when its input is Extended Object (XOBJ) module records, which are
produced by specifying the RENT option in the C/C++, OO Cobol, and other
compilers. Once built in storage, the GOFF records are processed and bound by the
binder. The records in this data set are merely a snapshot of the records produced
during a binder run. If the binder encounters any problem processing them, it may
be useful to look at the GOFF records in this data set so as to diagnose problems

z/OS PROGRAM MANAGEMENT DIAGNOSTICS

WORKMOD TOKEN: 0 21EDBFB0

SECTION: printf
CLASS: B_ESD

APPPTR: 21F23620 CNT: 1 HIW: 3 LRECL: 48
CLASS ATTRIBUTES: 0000008A 00000003 00480000 40100000 00000000

CLASS: B_IDRL
APPPTR: 21F25720 CNT: 1 HIW: 1 LRECL: 10
CLASS ATTRIBUTES: 00000007 00000001 00100000 40100000 00000000

CLASS: B_TEXT
APPPTR: 21F21D78 CNT: 1 HIW: A LRECL: 1
CLASS ATTRIBUTES: 000001E0 0000000A 00010303 00000001 00000000

Figure 41. EWDUMP sample – Workmod token area

Binder serviceability

Chapter 9. Binder serviceability aids 165

in the XOBJ-to-GOFF conversion process or in the source XOBJ records. For this
reason, the contents of this data set may be requested by the IBM organization
servicing the binder.

See GOFF records and their formats in z/OS MVS Program Management: Advanced
Facilities.

Allocating the IEWGOFF data set
If XOBJ records are passed to the binder as input and the IEWGOFF ddname is
specified in the JCL, GOFF records are written to the indicated data set. The
IEWGOFF data set can be either a sysout data set, a sequential data set, or a
member of a partitioned data set. It cannot be a z/OS UNIX file. The attributes of
the GOFF data set should be:

DSORG=PS,RECFM=VB,LRECL=2124

Note that the BLKSIZE can be a multiple of 4 equal to or larger than the LRECL,
2124. IBM recommends omitting BLKSIZE so as to take advantage of an optimal,
system-determined block size.

The AMBLIST service aid
AMBLIST is useful and even essential in many cases. However, there are a few
limitations that you should be aware of.
1. AMBLIST does not display all the internal control blocks of program objects.

Therefore, AMBLIST's output may not be sufficient to diagnose a problem
which requires knowledge of such information.

2. If there is anything wrong with the module (program object or load module),
AMBLIST may fail. Sometimes specifying OUTPUT=MODLIST in the AMBLIST
job will help in this situation, since the XREF portion of the output is highly
dependent on all the cross links between ESD and RLD being correct.

Here are three JCL examples for the invocation of AMBLIST:
//EXAMPLE1 EXEC PGM=AMBLIST,REGION=16M
//SYSPRINT DD SYSOUT=*
//LOADLIB1 DD DSN=APPS.PDSE,DISP=(SHR)
//SYSIN DD *

LISTLOAD DDN=LOADLIB1,MEMBER=(APP1)
/*
//EXAMPLE2 EXEC PGM=AMBLIST,REGION=16M
//SYSPRINT DD SYSOUT=*
//LOADLIB2 DD DSN=GAMES.PDSE,DISP=(SHR)
//SYSIN DD *

LISTLOAD DDN=LOADLIB2,MEMBER=(APP1),OUTPUT=MODLIST
/*
//EXAMPLE3 EXEC PGM=AMBLIST,REGION=16M
//SYSPRINT DD SYSOUT=*
//HFS1 DD PATH=’/u/userid/main’,PATHDISP=(KEEP,KEEP)
//SYSIN DD *

LISTLOAD DDN=HFS1,OUTPUT=MODLIST
/*

You can also invoke AMBLIST using the UNIX amblist command. Here are three
examples of invoking amblist from the UNIX shell:
echo " LISTLOAD MEMBER=(APP1)" | amblist "//’apps.pdse’" > APP1.both.amblist

echo " LISTLOAD MEMBER=APP1,OUTPUT=MODLIST" > amblist.ctl
amblist "//’apps.pdse’" > APP1.modlist.amblist < amblist.ctl

Binder serviceability

166 z/OS V2R2 MVS Program Management: User's Guide and Reference

amblist main | grep ’ENTRY POINT’ # where "main" is a program in the working
directory LISTLOAD OUTPUT=MODLIST # needs leading white space; output starts
as (each) control statement is entered ^D # EOF: in raw mode, type CTRL-D, in
OMVS ¢D, by default

For more information, see AMBLIST, in z/OS MVS Diagnosis: Tools and Service Aids.

The IDCAMS printing utility
You can use IDCAMS to print the contents of a program object in a z/OS UNIX
file, or the unformatted contents of a program object in an MVS data set.

An example of the IDCAMS JCL follows:
//DUMPMOD EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//INPUT2 DD DSN=PDSE1.APPS(APP1),DISP=SHR
//SYSIN DD *
PRINT INFILE(INPUT2)
/*

c89 and ld diagnosis

Step for obtaining diagnosis information when the binder is
invoked from c89:
About this task

Before you begin: You need to make sure the IEWDUMP and IEWTRACE data
sets are pre-allocated and cataloged. The lowest-level qualifier must be the same as
the DDNAMEs (IEWTRACE or IEWDUMP), and the remainder (prefix) must be
the same for both.

Rule: Both data sets must be pre-allocated even if only one of is used.

Perform the following step to obtain the diagnosis information.
v In the UNIX shell, export _C89_DEBUG_PREFIX=your_prefix, where

your_prefix is the prefix used on the names of the IEWDUMP and IEWTRACE
data sets. The c89 command will do the allocations (DISP=SHR) during the bind
step.

Guidelines: These guideline are designed to ease problem determination:
v For problem diagnosis, you should also use export _BPXK_JOBLOG=2 so that

any message appearing on the operator console is also written to stderr.
v In addition to IEWDUMP and IEWTRACE, use both the c89 -v and -V options to

capture stdout and stderr. This method makes the binder invocation parameters
and the binder output listing with error messages available for diagnosis.

v If you use the Cxx or C++ commands instead of c89, the environment variable
name much match the command name. For example, use
_CXX_DEBUG_PREFIX or _C++_DEBUG_PREFIX instead of
_C89_DEBUG_PREFIX.

Step for obtaining diagnosis information when the binder is
invoked from ld:
About this task

Before you begin: You need to make sure the IEWDUMP and IEWTRACE data
sets are pre-allocated and cataloged. You can use either or both data sets. There is
no restriction on the data set name.

Binder serviceability

Chapter 9. Binder serviceability aids 167

Perform the following step to obtain the diagnosis information.
v In the UNIX shell, export _LD_DEBUG_DUMP=dumpdsn,

_LD_DEBUG_TRACE=tracedsn or both. Dumpdsn and tracedsn are the names
of the IEWDUMP and IEWTRACE data sets. The ld command will do the
allocations (DISP=SHR) before invoking the binder.

Guidelines: These guidelines are designed to ease problem determination:
v For problem diagnosis, it is strongly advised that you also use export

_BPXK_JOBLOG=2 so that any message appearing on the operator console is
also written to stderr.

v In addition to IEWDUMP and IEWTRACE, use both the ld -v and -V options to
capture stdout and stderr. This method makes the binder invocation parameters
and the binder output listing with error messages available for diagnosis.

Serviceability aids for the Binder API interface
You do NOT need to specify the diagnostic file names in the STARTD file list if
you use the standard DDNAMES. For example, to obtain the binder trace dataset
you need only allocate IEWTRACE. However, if you wish to override the default
ddnames for these data sets, you can do so by coding filelist entries on STARTD.

Table 10. Filelist diagnostic entries.

FILE name Default ddname

DIAG IEWDIAG

DUMP IEWDUMP

GOFF IEWGOFF

TRACE IEWTRACE

To request a dump on a specific ecode using the binder interface, use the following
assembler example as a guide.
**
* START THE BINDER DIALOG *
**
STARTD IEWBIND FUNC=STARTD,RETCODE=RETCODE,RSNCODE=RSNCODE, X

DIALOG=DTOKEN,OPTIONS=OPTLIST,FILES=FILELIST
*
OPTLIST DS 0F

DC F’2’ NUMBER OF ENTRIES IN OPTIONS LIST
DC CL8’MSGLEVEL’,F’2’,A(MSGVALU)
DC CL8’DUMP ’,F’10’,A(ECODE) DUMP ON SPECIFIC ECODE

MSGVALU DC C’12’
ECODE DC C’’’2500A000’’’ ECODE FOR ENTRY TO
* BINDER MODULE IEWBFMOD
FILELIST DS 0F

DC F’1’ NUMBER OF ENTRIES IN FILES LIST
DC CL8’DUMP ’,F’8’,A(DDNAME) DUMP DATA SET REQUESTED

DDNAME DC C’IEWDUMP ’

You may write the DIAG or TRACE files to a z/OS UNIX file either by allocating
the ddname for the file to z/OS UNIX file or by specifying a z/OS UNIX path
name in place of the ddname in the STARTD filelist. The path name may be either
a relative or absolute path name and may be up to 1023 characters in length. It
must begin with either a '/' or './'. The DIAG and TRACE files will be written as
text files. Trace records will be truncated to 80 characters if written to a z/OS
UNIX file.

Binder serviceability

168 z/OS V2R2 MVS Program Management: User's Guide and Reference

If you are writing a BInder API program which may be executed in the UNIX
shell, we recommend that you pass the optional 'environ' parameter on the
STARTD call. This will allow users of the API program to override or add path
names or ddnames for the binder files using the external variables recognized by
the binder, or to pass additional binder options.

The following environment variables are supported for binder diagnostic files:

IEWBIND_DIAG
pathname or ddname to be used for IEWDIAG

IEWBIND_TRACE
pathname or ddname to be used for IEWTRACE

IEWBIND_DUMP
ddname to be used for IEWDUMP

IEWBIND_GOFF
ddname to be used for IEWGOFF

For more information about binder support for environment variables, refer to the
documentation under the binder STARTD API description. For example to obtain
an IEWDUMP for a speciifc binder ecode without altering the souce code for your
program, the binder DUMP option could be coded with the desired ecode as the
value for the IEWBIND_OPTIONS environment variable.

See z/OS MVS Program Management: Advanced Facilities for more information on the
binder API.

Binder serviceability

Chapter 9. Binder serviceability aids 169

170 z/OS V2R2 MVS Program Management: User's Guide and Reference

Appendix A. Using the linkage editor and batch loader

All of the services of the linkage editor and batch loader can be performed by the
program management binder. We recommend that you convert to exclusive use of
the binder. However, if you do need to use the linkage editor or batch loader, most
of the information in this document is applicable with a few differences. This
appendix describes those differences.

Creating programs from source modules

AMODE and RMODE differences
The differences in linkage editor processing of AMODE and RMODE values are:
v Values of MIN or 64 for AMODE are not supported.
v If only one value, either AMODE or RMODE, is specified on the MODE control

statement or on the AMODE and RMODE options, the other value is implied
according to the following table:

Value specified Value implied

AMODE=24 RMODE=24

AMODE=31 RMODE=24

AMODE=ANY RMODE=24

RMODE=24 see note below

RMODE=ANY AMODE=31

Note: If only an RMODE of 24 is specified, no overriding AMODE value is assigned.
Instead, the AMODE value in the ESD data for the main entry point, a true alias, or an
alternate entry point is used in generating its respective directory entry.

v When building an overlay format load module, the AMODE and RMODE values
in the ESD data of the output module are discarded and can be restored only by
including the object modules carrying those values.

v ESD records that specify AMODE(ANY) RMODE(ANY) are handled differently:
– If the entry point external symbol is marked AMODE ANY/RMODE ANY,

associated entry point attributes are assigned according to the following
hierarchy:
- If the load module contains one or more CSECTs marked AMODE 24, the

linkage editor assigns an AMODE of 24 to all entry points that have ESD
entries marked AMODE ANY/RMODE/ANY.

- If the load module has an RMODE of 24 and it contains no CSECTS
marked AMODE 24, the linkage editor assigns an AMODE of ANY to these
entry points.

- If the load module RMODE is ANY, the linkage editor assigns an AMODE
of 31 to these entry points.

Unsupported input module formats and contents
The linkage editor and batch loader do not support GOFF or XOBJ object module
formats, program objects, or object modules with 64-bit content, nor do they
support z/OS UNIX files. The batch loader does not accept control statement
input.

© Copyright IBM Corp. 1991, 2015 171

Invoking the linkage editor and batch loader
You can invoke the linkage editor and batch loader with JCL, under TSO, or
through a program.

Invoking the linkage editor and batch loader with JCL
The linkage editor and batch loader programs can be invoked on the PGM
parameter of the JCL EXEC statement.

The linkage editor is invoked using the program name HEWLKED. The linkage
editor can also be invoked by the following aliases: HEWLF064, IEWLF440,
IEWLF880, and IEWLF128. This program link-edits a load module and stores it in
a partitioned data set library.

The batch loader is invoked using the program name HEWLDIA. This program
link-edits a load module, loads it into virtual storage, and executes it.

SYSLIN data sets
The maximum block size of data sets defined in the SYSLIN definition is 3200
bytes. The linkage editor does not support load modules or program objects in the
primary input. The batch loader does not support program objects in the primary
input.

SYSPRINT and SYSLOUT data sets
The DCB parameters for SYSPRINT and SYSLOUT need not be specified. If they
are specified, they must be RECFM=FA or RECFM=FBA and LRECL=121, and the
BLKSIZE parameter is any multiple of 121 to a maximum of 4840 bytes.

See “Invoking the binder with JCL” on page 33 for information on using JCL.

SYSUT1 data set
In addition to the required data sets described in “Binder DD statements” on page
36, the linkage editor uses another data set to hold data records during processing.
The linkage editor places intermediate data in this data set when storage allocated
for input data or certain forms of out-of-sequence text is exhausted.

A SYSUT1 DD statement is required to describe this data set. It must be a
sequential data set assigned to a single direct access storage device. Space must be
allocated for this data set, but the data set characteristics are supplied by the
linkage editor.

Message IEW0294 will be issued if you specify more than one volume.

Included data sets
If an included data set contains another INCLUDE statement, the specified module
is processed but any data following the INCLUDE statement is not processed.

Concatenated data sets
All of the data sets in a concatenated list must have the same record characteristics
(format, record length). Concatenated data sets can have differing block sizes and
be in any order of blocksize.

All concatenated call libraries must be of the same type (object modules or load
modules). A call library cannot contain program objects.

Using linkage editor and loader

172 z/OS V2R2 MVS Program Management: User's Guide and Reference

Invoking the linkage editor from a program

Programming interface information

You can pass control to the linkage editor from a program using the LINK,
ATTACH, LOAD, CALL, and XCTL macros using either 24-bit or 31-bit addressing.
You must supply a save area address in register 13.

The linkage editor is invoked using the HEWLKED program name, or one of these
aliases: HEWLF064, IEWLF440, IEWLF880, or IEWLF128.

The use of these macros is identical to usage for the binder with the exception of
the ddname list passed as a parameter on LINK, ATTACH, CALL, and XCTL calls.

The sequence of the 8-byte entries in the ddname list for the linkage editor is as
follows:

Entry Alternate Name For:

1 SYSLIN

2 Member name (The name under which the output load module is stored in
the SYSLMOD data set. This entry is used if the name is not specified on
the SYSLMOD DD statement or if there is no NAME control statement.)

3 SYSLMOD

4 SYSLIB

5 Not applicable

6 SYSPRINT

7 Not applicable

8 SYSUT1

9-11 Not applicable

12 SYSTERM

Note:

1. The linkage editor supports all data sets allocated in the extended addressing
space (EAS) of an extended address volume (EAV).

2. The linkage editor does not support the following dynamic allocation
(DYNALLOC or SVC 99) options for any data sets: S99TIOEX(XTIOT),
S99ACUCB(NOCAPTURE), and S99DSABA(DSAB above the line).

When the linkage editor completes processing, a return code is returned in register
15 (see “Linkage editor return codes” on page 187 for a list of linkage editor return
codes).

End of programming interface information

Invoking the batch loader from a program

Programming interface information

You can pass control to the batch loader from a program using the LINK,

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 173

ATTACH, LOAD, CALL, and XCTL macros using either 24-bit or 31-bit addressing.
You must supply a save area address in register 13.

The batch loader can be invoked at three different entry points to perform the
following services:

HEWLDIA
Link-edits a load module, loads it into virtual storage, and executes it.

HEWLDI
Link-edits a load module, loads it into virtual storage, and identifies it.
HEWLDI returns the address of an 8-character module name in register 1.
This name can be used to invoke the loaded program using a LINK or
ATTACH macro.

HEWLD
Link-edits a load module and loads it into virtual storage, but does not
identify it. HEWLD returns the entry point of the loaded module in
register 0 (the high order bit is on for AMODE). Register 1 points to two
fullwords. The first points to the beginning of storage occupied by the
loaded program, and the second contains the length of the loaded
program.

The ATTACH, LINK, LOAD, and XCTL macros are described in z/OS MVS
Programming: Assembler Services Guide. The use of these macros is identical to usage
for the binder, with the exception of the ddname list passed as a parameter on
LINK, ATTACH, CALL, and XCTL calls.

The sequence of the 8-byte entries in the ddname list for the batch loader is as
follows:

Entry Alternate Name For:

1 SYSLIN

2 Not applicable

3 Not applicable

4 SYSLIB

5 Not applicable

6 SYSLOUT

7-11 Not applicable

12 SYSTERM

Note:

1. The batch loader does not support all data sets allocated in the extended
addressing space (EAS) of an extended address volume (EAV).

2. The batch loader does not support the following dynamic allocation
(DYNALLOC or SVC 99) options for any data sets: S99TIOEX(XTIOT),
S99ACUCB(NOCAPTURE), and S99DSABA(DSAB above the line).

The batch loader generates a return code when it completes its execution and
returns it in register 15. See “Batch loader return codes” on page 189 for more
information on batch loader return codes.

End of programming interface information

Using linkage editor and loader

174 z/OS V2R2 MVS Program Management: User's Guide and Reference

Invoking the linkage editor and batch loader under TSO
You also use the LINK command to invoke the linkage editor and the LOADGO
command to invoke the batch loader under TSO. If you specify the NOBINDER
option on either of these commands, the linkage editor or batch loader will be
invoked rather than the binder.

Editing a control section

Replacing control sections
A restriction applies when you request the linkage editor to perform both a
CHANGE and a REPLACE operation on the same included module. This situation
occurs when you delete one or more control sections and rename references to
symbols within a removed control section to some other external symbol all within
the scope of a single INCLUDE. When you change more than one entry name
within a removed control section to a single new external symbol, you must
specifically include the control section that resolves the new external symbol prior
to the CHANGE operation.

If a replaced control section contains unresolved external references and the
replacing control section does not, you must either specify the NCAL parameter,
use the REPLACE statement to delete the unresolved external references, or use the
LIBRARY statement to mark the references for restricted no-call or never-call.

Deleting an external symbol
If you use the linkage editor to delete a control section that contains any
unresolved external references, those references are NOT removed from the
external symbol dictionary.

If the input does not have an INCLUDE statement or object module after a
REPLACE statement that is to delete a CSECT, and there are external references to
be resolved from SYSLIB, the linkage editor causes the delete request to operate on
the first module from SYSLIB and deletes the control section.

Control statement reference

Continuing a statement
You indicate that a control statement line is continued onto the next line by placing
a non-blank character in column 72 of the line. The continued statement must
begin in column 16 of the next line.

ALIAS statement
No more than 64 alias names can be assigned to one load module. Note that the
SYMLINK and SYMPATH variants of the ALIAS statement are not supported.

CHANGE statement
If a CHANGE statement is not followed by any included module, the linkage
editor applies the change to the first module, if any, brought in during automatic
library call.

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 175

ENTRY statement
If you provide more than one ENTRY statement, the main entry point specified on
the last statement is used.

EXPAND statement
The EXPAND statement is placed immediately following the INCLUDE statement.
The maximum number of bytes that can be added to any indicated section is 4095.
Note that you may not specify a class name on the EXPAND statement.

IDENTIFY statement
An IDENTIFY statement can be continued. A whole operand must appear on a
single line, and at least one operand must appear on each line of a continued
statement.

Placement: The linkage editor requires that the IDENTIFY statement follow the
module containing the control section to be identified or the INCLUDE statement
specifying the module.

INCLUDE statement
Pathnames are not supported. -ATTR, -IMPORTS, -ALIASES and their negative
specifications are not supported.

LIBRARY statement
Pathnames are not supported. The form LIBRARY ddname is not supported.

NAME statement
If a name is not specified on a NAME statement, the name TEMPNAME will be
assigned to the module.

ORDER statement
If the same common area or control section is listed on more than one ORDER
statement, the linkage editor uses the sequence listed on the first statement. The
linkage editor ignores all subsequent occurrences of the name and the balance of
the ORDER statement on which the name appears except when the occurrence is
the last operand on one ORDER statement and the first operand on the next.

REPLACE statement
Placement: If the REPLACE statement is the last control statement in the SYSLIN
data set, and there are unresolved external references to be resolved from SYSLIB,
the linkage editor causes the REPLACE service to operate on the first module from
SYSLIB by an automatic library call.

When a control section containing unresolved external references is deleted, the
unresolved references remain in the CESD.

When some but not all control sections of a separately assembled module are to be
replaced, the linkage editor causes A-type address constants that refer to a deleted
symbol to be incorrectly resolved unless the entry name is at the same
displacement from the origin in both the old and the new control sections.

If no INCLUDE statement follows the REPLACE statement, one module might be
left out during automatic library call. Message IEW0132 is issued.

Using linkage editor and loader

176 z/OS V2R2 MVS Program Management: User's Guide and Reference

Unsupported binder control statements
The following binder control statements are not supported:
v AUTOCALL
v IMPORT
v RENAME
v SETOPT

Processing and attribute options reference
The options described in Chapter 6, “Binder options reference,” on page 71 also
apply to the linkage editor and batch loader except as noted here.

Supported binder options
The linkage editor and batch loader support the following binder options:
v AC
v ALIGN2
v AMODE
v CALL
v DC
v DCBS
v EP
v LET
v LIST
v LISTPRIV
v MAP
v NAME
v OL
v OVLY
v PATHMODE
v PRINT
v RES
v RMODE
v SCTR
v SIZE
v TERM
v TEST
v XCAL
v XREF

LIST: Listing control
Specify LIST or NOLIST. The form LIST=value is not supported by the linkage
editor and batch loader. When the LIST option is specified, the control statements
are listed in either the SYSPRINT, SYSLOUT, or SYSTERM data set.

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 177

MAP and XREF
When the XREF option is specified, the linkage editor produces a cross-reference
table of the output load module. The cross-reference table includes a module map;
therefore, both XREF and MAP need not be specified in the same job step.

Reusability
The form REUS(value) is not supported by the linkage editor. Use the single
keyword form REUS | NOREUS | RENT | NORENT | REFR | NOREFR to
code the reusability option. See “REUS: Reusability options” on page 96 for further
information on reusability attributes.

SIZE: Space specification
value1

For the linkage editor, the minimum value is 96KB (98304 bytes) and the
maximum value is 9999KB (approximately 10MB). All of this storage is below
the 16 MB line.

value2
The minimum value is the larger of 6KB (6144) or the length of the largest
input text record. The maximum value is the length of the output load module
plus 4096 bytes if the length of the output module is equal to or greater than
40KB.

The storage specified by value2 is part of the total allocation specified by
value1.

Not-Executable attribute
Unlike the binder, the linkage editor will replace an executable module with a
notexecutable version. All other conditions, such as the replace option on the
NAME statement and the LET option, must allow for storing of the module.

Incompatible processing and attribute options
Some processing and attribute options are incompatible: Some options cannot be
active at the same time with others. In Figure 42 on page 179, an X at an
intersection marks a pair of incompatible options. When both are specified, the
option that appears higher in the list is used. For example, if both OVLY and
RENT are specified, the module will be in an overlay structure but is not
reenterable.

Using linkage editor and loader

178 z/OS V2R2 MVS Program Management: User's Guide and Reference

Linkage editor requirements
This section describes the amount of virtual storage the linkage editor requires and
its record processing capacities.

Virtual storage requirements
The approximate minimum storage requirement and the capacity of the linkage
editor program are described in Table 11. To increase the capacity for processing
external symbol dictionary records, intermediate text records, relocation dictionary
records, and identification records, increase value1 or decrease value2 of the SIZE
option. Output text record length can be increased by increasing the SIZE option
values, but, in no case, can the record length ever exceed the track length for the
device or 32KB.

Table 11. Linkage editor capacities for minimal SIZE values (96KB, 6KB)

Function Capacity

Virtual storage allocated 96KB

Maximum number of entries in CESD 558

Maximum number of intermediate text records 372

OVLY

RENT

REUS

REFR

SCTR

AMODE

RMODE

TEST

XREF

MAP

NE

X

X

X

X

X

X

X

XXX

Figure 42. Incompatible processing and attribute options. Options not shown here can be
specified in any combination.

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 179

Table 11. Linkage editor capacities for minimal SIZE values (96KB, 6KB) (continued)

Function Capacity

Maximum number of RLD records (relocatable address
constants)

192

Maximum number of segments per program 255

Maximum number of overlay regions per program 4

Maximum blocking factor for input object modules (number
of 80-column card images per physical record)

5

Maximum blocking factor for SYSPRINT output (number of
121-character logical records per physical record)

5

Output text record length, for the devices supported by this
system

3KB (See Note)

Note: The maximum output text record length is achieved when value2 of the SIZE
parameter is at least twice the record length size.

The number of overlay segments and regions that can be processed is not affected
by increasing the available storage.

For the CESD, the number of entries allowed can be computed by subtracting,
from the maximum number given in Table 11 on page 179, one entry for each of
the following:
v A ddname specified in LIBRARY statements
v A ddname specified in INCLUDE statements
v An ALIAS statement
v A symbol in REPLACE or CHANGE statements that are in the largest group of

these statements preceding a single object module in the input to the linkage
editor

v The segment table (SEGTAB) in an overlay program
v An entry table (ENTAB) in an overlay program.

To compute the number of intermediate text records that will be produced during
processing of either program, add one record for each group of x bytes within each
control section, where x is the record size for the intermediate data set. The
minimum value for x is 1KB; a maximum is chosen depending on the amount of
storage available to the linkage editor and the devices allocated for the
intermediate and output data sets.

The number of intermediate text records that can be handled by a linkage editor
program is less than the maximums given in Table 11 on page 179 if the text of one
or more control sections is not in sequence by address in the input to the linkage
editor.

The total length of the data fields of the CSECT identification records associated
with a load module cannot exceed 32KB. To determine the number of bytes of
identification data contained in a particular load module, use the following
formula:

SIZE = 269 + 16A + 31B + 2C + I(n + 6)

where:

Using linkage editor and loader

180 z/OS V2R2 MVS Program Management: User's Guide and Reference

A = The number of compilations or assemblies by a processor supporting
CSECT identification that produced the object code for the module.

B = The number of preprocessor compiler compilations by a processor
supporting CSECT identification that produced the object code for the
module.

C = The number of control sections in the module with END statements that
contain identification data.

I = The number of control sections in the module that contain user-supplied
data supplied during link-editing by the optional IDENTIFY control
statement.

n = The average number of characters in the data specified by IDENTIFY
control statements.

Note:

1. The size computed by the formula includes space for recording up to 19
AMASPZAP modifications. When 75% of this space has been used, a new
251-byte record is created the next time the module is reprocessed by the
linkage editor.

2. To determine the approximate number of records involved, divide the
computed size of the identification data by 256.

Example: A module contains 100 control sections produced by 20 unique
compilations. Each control section is identified during link-editing by 8 characters
of user data specified by the IDENTIFY control statement. The size of the
identification data is computed as follows:

A = 20
I = 100
n = 8

269 + 320 + 1400 = 1989 bytes

If the optional user data specified on the IDENTIFY control statements is omitted,
the size can be reduced considerably as shown in the following computation:

269 + 320 = 589 bytes

The maximum number of downward calls made from a segment to other segments
lower in its path can never exceed 340. To compute the maximum number of
downward calls allowed, subtract 12 from the SYSLMOD record size, divide the
difference by 12. Examples of maximum downward calls are 84 for a SYSLMOD
record size of 1024 bytes and 340 for a SYSLMOD record size of 6144 bytes.

Batch loader requirements
The batch loader can require virtual storage space for the following items:
v Batch loader code
v Data management access methods
v Buffers and tables used by the batch loader (dynamic storage)
v Loaded program (dynamic storage).

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 181

Region size includes all four of these items; the SIZE option refers to the last two
items.

For the SIZE option, the minimum required virtual storage is 4KB plus the size of
the loaded program. This minimum requirement grows to accommodate the extra
table entries needed by the program being loaded. For example, Fortran requires at
least 3KB plus 4KB plus the size of the loaded program, and PL/I needs at least
8KB plus 4KB plus the size of the loaded program. Buffer number (BUFNO) and
block size (BLKSIZE) could also increase this minimum size. Table 12 shows the
appropriate storage requirements in bytes.

The maximum virtual storage that can be used is whatever virtual storage is
available.

All or part of the storage required is obtained from user storage.

Table 12. Batch loader virtual storage requirements. The table shows the consideration, the approximate virtual
storage requirements, and comments.

Consideration Approximate virtual storage requirements
(in bytes)

Comments

Data Management 6KB BSAM

Object Module Buffers
and DECBs

BUFNO × (BLKSIZE + 24) Concatenation of different BLKSIZE and
BUFNO must be considered. (Minimum
BUFNO=2)

Load Module Buffer
and DECBs

304

SYSTERM DCB
Buffers and DECBs

312 Allocated if TERM option is specified

SYSLOUT Buffers and
DECBs

BUFNO × (BLKSIZE + 24) Buffer size rounded up to integral number of
double words. (Minimum BUFNO=2)

Size of program being
loaded

Program size Program size is restricted only by available
virtual storage

Each external
relocation dictionary
entry

8

Each external symbol 20

Largest ESD number 4n (n is the largest number of ESDs in any
input module)

Allocated in increments of 32 entries

Fixed Loader Table
Size

1260 Subtract 88 if NOPRINT is specified

Condensed Symbol
Table

12n (n is the total number of control sections
and common areas in the loaded program)

Built only if you invoke the binder under
TSO, and space is available.

System Requirements 4000

Interpreting linkage editor output

Diagnostic output
Diagnostic information is written to the diagnostic output data set that is defined
by a SYSPRINT DD statement. The diagnostic report consists of a header and
linkage editor messages. There are two types of messages: module disposition,

Using linkage editor and loader

182 z/OS V2R2 MVS Program Management: User's Guide and Reference

which are described in “Module disposition messages,” and error/warning
messages, which are described in z/OS MVS System Messages, Vol 8 (IEF-IGD).

Output listing header
The output listing header includes:
v The time, day of the week, and date that the link-edit job was run.
v The job name you have specified and the job step name.
v The invocation parameters you have specified.
v The amount of working storage used and the output buffer size. These two

values are shown as:
– ACTUAL SIZE=(value1,value2)

where:

value1 =
The actual amount of working storage that the linkage editor used and
not the value you requested.

value2 =
The actual output buffer size and not the value you requested.

v The name of the SYSLMOD data set and its volume.

Invalid options and attributes are replaced by INVALID in the output listing
header. If incompatible attributes are specified, additional messages are generated.

Module disposition messages
Module disposition messages are generated for each load module produced. There
are two groups of messages. The first group of disposition messages describes the
handling of the load module. These messages are:
v member name ADDED AND HAS AMODE addressing mode

v member name REPLACED AND HAS AMODE addressing mode

v member name DID NOT PREVIOUSLY EXIST BUT WAS ADDED AND HAS
AMODE addressing mode

In this case, the replacement function was specified, but the member did not
exist in the data set; the module is added to the data set using the member
name given.

v alias name IS AN ALIAS AND HAS AMODE addressing mode

v MODULE HAS BEEN MARKED NOT EXECUTABLE.
v LOAD MODULE HAS RMODE residence mode

v AUTHORIZATION CODE IS authorization code.

The second group of module disposition messages is generated when reenterable
(RENT), reusable (REUS), or refreshable (REFR) linkage editor options have been
specified for the module. A message indicates whether the load module has been
marked reenterable or not reenterable, reusable or not reusable, refreshable or not
refreshable, depending on the option or options used.

The RENT/REUS/REFR message consists of MODULE HAS BEEN MARKED,
followed by the attributes assigned. The following messages are examples of some
possible combinations:
v MODULE HAS BEEN MARKED REFRESHABLE.

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 183

v MODULE HAS BEEN MARKED NOT REFRESHABLE.
v MODULE HAS BEEN MARKED REUSABLE AND NOT REFRESHABLE.
v MODULE HAS BEEN MARKED REUSABLE AND REFRESHABLE.

When an error causes the linkage editor to mark a module not executable, only the
MODULE HAS BEEN MARKED NOT EXECUTABLE message appears; no
attribute messages are generated.

Error/Warning messages
Certain conditions that are present when a module is being processed can cause
error or warning messages to be printed. These messages contain a message code
and message text. If an error is encountered during processing, the message code
for that error is printed with the applicable symbol or record in error. After
processing is completed, the diagnostic message associated with that code is
printed.

The error warning messages have the following format:

IEW0mms message text

where:

IEW0 Indicates a linkage editor message

mm Is the message number

s Is the severity code, and can be one of the following values:

1 Indicates a condition that might cause an error during execution of
the output module. A module map or cross-reference table is
produced if specified by you. The output module is marked
executable.

2 Indicates an error that could make execution of the output module
impossible. Processing continues. When possible, a module map or
a cross-reference table is produced if specified by you. The output
module is marked not executable, unless the LET option is
specified on the EXEC statement.

3 Indicates an error that will make execution of the output module
impossible. Processing continues. When possible, a module map or
a cross-reference table is produced if specified by you. The output
module is marked not executable.

4 Indicates an error condition from which no recovery is possible.
Processing terminates. The only output is diagnostic messages.

Note: A special severity code of zero is generated for each control statement
printed as a result of the LIST option. Severity zero does not indicate an error
warning condition.

The highest severity code encountered during processing is multiplied by 4 to
create a return code that is placed in register 15 at the end of processing. This
return code can be tested to determine whether processing is to continue.

message text contains combinations of the following:
v The message classification (either error or warning)
v Cause of error

Using linkage editor and loader

184 z/OS V2R2 MVS Program Management: User's Guide and Reference

v Identification of the symbol, segment number (when in overlay), or input item to
which the message applies

v Instructions to the programmer
v Action taken by the linkage editor.

z/OS MVS System Messages, Vol 8 (IEF-IGD) contains a complete list of the linkage
editor error and warning messages.

Sample diagnostic output
Figure 43 shows the format of the diagnostic output for the linkage editor. No
optional output was requested other than the list of control statements.

The figures on the left side of Figure 43 indicate the portion of the diagnostic
output being described.

A Is the output listing header. It contains a time and date stamp, invocation
parameters specified by you, storage and buffer sizes, and the name of the
SYSLMOD data set and its volume. In this example, MAINRUN and
LINKEDIT are the user-specified job name and step name, respectively.

B Is a list of control statements used (IEW0000) and the message codes
(IEW0461) for error/warning conditions discovered during processing. For
error/warning message codes, the symbol in error, if necessary, is also
listed (CCCCCCCC and BASEDUMP).

C Is a module disposition message indicating that the output module
(BBBBBBBB) has been added to the output module data set. The
addressing and residency modes and the module authorization code are
listed.

D Is the diagnostic message directory that contains the text of the error codes
listed in item B.

Optional output
In addition to error/warning and disposition messages, the linkage editor can
produce diagnostic output as requested by you. This optional output includes a
control statement listing, a module map, and a cross-reference table.

Control statement listing
If the LIST option is specified on the EXEC statement, a listing of all linkage editor
control statements is produced. For each control statement, the listing contains a
special message code, IEW0000, followed by the control statement. Item B in
Figure 43 contains an example of a control statement listing.

A z/OS V1 R3 LINKAGE EDITOR 16:52:40 MON JANUARY 28,2002
JOB MAINRUN STEP LINKEDIT
INVOCATION PARAMETERS - LET,NCAL,XREF,LIST
ACTUAL SIZE=(317440,86016)
OUTPUT DATA SET USER.LOADLIB IS ON VOLUME SYS086

B IEW0000 NAME BBBBBBBB(R)
IEW0461 CCCCCCCC
IEW0461 BASEDUMP

C ** BBBBBBBB ADDED AND HAS AMODE 24
** LOAD MODULE HAS RMODE 24
** AUTHORIZATION CODE IS 0.

DIAGNOSTIC MESSAGE DIRECTORY

D IEW0461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE, NCAL WAS SPECIFIED

Figure 43. Diagnostic messages issued by the linkage editor

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 185

Module map
If the MAP option is specified on the EXEC statement, a module map of the output
load module is produced. The module map shows all control sections in the output
module and all entry names in each control section. Named common areas are
listed as control sections.

For each control section, the module map indicates its origin (relative to zero) and
length in bytes (in hexadecimal notation). For each entry name in each control
section, the module map indicates the location where the name is defined. These
locations are also relative to zero.

If the module is not in an overlay structure, the control sections are arranged in
ascending order according to their origins. An entry name is listed with the control
section in which it is defined.

If the module is an overlay structure, the control sections are arranged by segment.
The segments are listed as they appear in the overlay structure, top to bottom, left
to right, and region by region. Within each segment, the control sections and their
corresponding entry names are listed in ascending order according to their
assigned origins. The number of the segment in which they appear is also listed.

In any module map, the following are identified by a dollar sign:
v Blank common area
v Private code (unnamed control section)
v For overlay programs, the segment table and each entry table.

When the load module processed by the linkage editor does not have an origin of
zero, the linkage editor generates a one-byte private code (unnamed control
section) as the first text record. This private code is deleted in any subsequent
reprocessing of the load module by the linkage editor.

Each control section that is obtained from a call library during automatic library
call is identified by an asterisk after the control section name.

At the end of the module map is the entry address, that is, the relative address of
the main entry point. The entry address is followed by the total length of the
module in bytes; in the case of an overlay module, the length is that of the longest
path. Pseudoregisters, if used, also appear at the end of the module map; the
name, length, and displacement of each pseudoregister are given.

Figure 44 on page 187 contains a module map and cross-reference listing with four
control sections. There are three named control sections (ABC00, ABCSUB1, and
ABCSUB2) and one unnamed control section (designated by $PRIVATE). Control
sections ABCSUB1 and ABCSUB2 were obtained from a call library. Control section
ABCSUB1 also has two additional entry points. The entry point for control section
ABCSUB2 is named ABCENT2.

Using linkage editor and loader

186 z/OS V2R2 MVS Program Management: User's Guide and Reference

Cross-reference table
If the XREF option is specified on the EXEC statement, a cross-reference table is
produced. The cross-reference table consists of a module map and a list of
cross-references for each control section. Each address constant that refers to a
symbol defined in another control section is listed with its assigned location, the
symbol referred to, and the name of the control section in which the symbol is
defined. When control sections are compiled together, and simple address
constants are used to refer from one control section to another (instead of using
external symbols and entry names), the control section name is listed as the symbol
referred to.

For overlay programs, this information is provided for each segment; the number
of the segment in which the symbol is defined is also provided.

If a symbol is unresolved after processing by the linkage editor, it is identified by
$UNRESOLVED in the list. However, if an unresolved symbol is marked by the
never-call function (as specified on a LIBRARY control statement), it is identified
by $NEVER-CALL. If an unresolved symbol is a weak external reference, it is
identified by $UNRESOLVED(W).

Figure 44 includes a cross-reference table of the address constants in program
ABC00.

Linkage editor return codes
Control is passed to the linkage editor as a job step when the linkage editor is
specified on an EXEC job control statement in the input stream. When the job step
is completed, the linkage editor passes a return code to the control program.

The return code reflects the highest severity code recorded in any iteration of the
linkage editor within that job step. The highest severity code encountered during
processing is multiplied by 4 to create the return code; this code is placed into
register 15 at the end of linkage editor processing. Table 13 on page 188 contains
the return codes, the corresponding severity code, and a description of each.

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

$PRIVATE 0 8
ABC00 08 1004
ABCSUB1* 100C DE

ABCSUB1 100C ABCSUB1A 1016 ABCHLP1 108E
ABCSUB2* 10E8 767

ABCENT2 10E8

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION
31F ABCSUB1 ABCSUB1 325 ABCSUB1A ABCSUB1
354 ABCENT2 ABCSUB2 360 ABCHLP1 ABCSUB1
364 ABCSUB1A ABCSUB1

ENTRY ADDRESS 08
TOTAL LENGTH 1850

Figure 44. Linkage editor module map and cross-reference table

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 187

Table 13. Linkage editor return codes. The table shows the return code, severity code, and
description.

Return code Severity
code

Description

0 0 Normal conclusion

4 1 Warning messages have been listed; execution should be
successful.

8 2 Error messages have been listed; execution might fail. The
module is marked not executable unless the LET option is
specified.

12 3 Severe errors have occurred; execution is impossible.

16 4 Terminal errors have occurred; the processing has terminated.

Interpreting batch loader output
The batch loader output consists of a collection of diagnostic and error messages
and an optional storage map of the loaded program. The output is produced in the
data set defined by the SYSLOUT DD and SYSTERM DD statements. If these
statements are omitted, no output is produced.

SYSLOUT output includes a heading, and the list of options and defaults requested
through the PARM field of the EXEC statement. The SIZE stated is the size
obtained, and not necessarily the size requested in the PARM field. Error messages
are written when the errors are detected. After processing is complete, an
explanation of the error is written. z/OS MVS System Messages, Vol 8 (IEF-IGD) lists
the batch loader error messages.

SYSTERM output includes only numbered warning and error messages. These
messages are written when the errors are detected. After processing is complete, an
explanation of each error is written.

The storage map includes the name and absolute address of each control section
and entry point defined in the loaded program. Each map entry marked with an
asterisk (*) comes from the data set specified on the SYSLIB DD statement. Two
asterisks (**) indicate the entry was found in the link pack area; three asterisks (***)
indicate the entry comes from text that was preloaded by a compiler. The TYPE
column indicates what each entry on the map is used for: SD=control section,
LR=label reference, and PR=pseudoregister.

The map is written as the input to the batch loader is processed, so all map entries
appear in the same sequence in which the input ESD items are defined. The total
size and storage extent of the loaded program are also included. For PL/I
programs, a list is written showing pseudoregisters with their addresses assigned
relative to zero. Figure 45 on page 189 shows an example of a module map. The
batch loader issues an informational message when the loaded program terminates
abnormally.

Using linkage editor and loader

188 z/OS V2R2 MVS Program Management: User's Guide and Reference

Batch loader return codes
The return code of a loader step is determined by the return codes resulting from
batch loader processing and from loaded program processing.

The return code indicates whether errors occurred during the execution of the
loader or of the loaded program. The return code can be tested through the COND
parameter of the JOB statement specified for this job or the COND parameter of
the EXEC statement specified in any succeeding job step (see z/OS MVS JCL User's
Guide). Table 14 on page 190 shows the return codes.

Note: Error diagnostics (SYSLOUT or SYSTERM data set, or both) for the loader
will show the severity of errors found by the loader.

NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR

SAMPL2B SD 161E0 SAMPL2BA SD 16EC8 IHEMAIN SD 17CF8 IHENTRY SD 17D00 IHESPRT SD 17D10
SYSIN SD 17D48 IHEVQC * SD 17D80 IHEVQCA * LR 17D80 IHEVQB * SD 17FD8 IHEVQBA* LT 17FD8
IHEDIA * SD 183C0 IHEDIAA * LR 183C0 IHEIAB * LR 183C2 IHEVPE * SD 18608 IHEVPEA* LR 18608
IHEVPA * SD 18870 IHEVPAA * LR 18870 IHEVFC * SD 189D0 IHEVFCA * LR 189D0 IHEVPC * SD 189F8
IHEVPCA * LR 189F8 IHEVFE * SD 18BE8 IHEVFEA * LR 18BE8 IHEVSC * SD 18C08 IHEVSCA* LR 18C08
IHEDNC * SD 18CB8 IHEDNCA * LR 18CB8 IHEDOA * SD 18F30 IHEDOAA * LR 18F30 IHEDOAB* LR 18F32
IHEDMA * SD 19010 IHEDMAA * LR 19010 IHEVFD * SD 19108 IHEVFDA * LR 19108 IHEVFA * SD 19160
IHEVFAA * LR 19160 IHEVPB * SD 19248 IHEVPBA * LR 19248 IHEXIS * SD 193F0 IHEXISO* LR 193F0
IHEIOB * SD 19488 IHEIOBA * LR 19488 IHEIOBB * LR 19490 IHEIOBC * LR 19498 IHEIOBD* LR 194A0
IHESARC * LR 1A9CB IHESADD * LR 1A9DE IHESAFF * LR 1AA18 IHEPRT * SD 1AB70 IHEPRTA* LR 1AB70
IHEBEGA * LR 1AE28 IHEERR * SD 1AE68 IHEERRD * LR 1AE68 IHEERRC * LR 1AE68 IHEERRB* LR 1AE7C
IHEERRA * LR 1AE68 IHEERRE * LR 1B4E2 IHEIOF * SD 1B580 IHEIOFR * LR 1B580 IHEIOFA* LR 1B582
IHEITAZ * LR 1B81E IHEITAX * LR 18B2A IHEITAA * LR 1B83E IHEDCNR * SD 1B680 IHEDCNA* LR 1B860
IHEDCNB * LR 1B862 IHEIOD * SD 1BA50 IHEIODG * LR 1BA50 IHEIODP * LR 1BA52 IHEIODT* LR 1BB4A
IHEVTB * SD 1BCF0 IHEVTBA * LR 1BCF0 IHEVQA * SD 1BD78 IHEVQAA * LR 1BD78

IHEQINV PR 00 IHEGERR PR 4 SAMPL2BB PR 8 SAMPL2BC PR C IHEQSPR PR 10
SYSIN PR 14 IHEQLSA PR 18 IHEQLWO PR 1C IHEQLW1 PR 20 IHEQLW2 PR 24
IHEQLW3 PR 28 IHEQLW4 PR 2C IHEQLWE PR 30 IHEQLCA PR 34 IHEQVDA PR 38
IHEQFVD PR 3C IHEQFCL PR 40 IHEQFOP PR 48 IHEQADC PR 4C IHEQXLV PR 50
IHEQEVT PR 58 IHEQSLA PR 60 IHEQSAR PR 64 IHEQLWF PR 68 IHEQRTC PR 6C
IHEQDFC PR 70

IEW1001 IHEUPBA
IEW1001 IHEUPAA
IEW1001 IHETERA
IEW1001 IHEM91C
IEW1001 IHEM91B
IEW1001 IHEM91A
IEW1001 IHEDDOD
IEW1001 IHEVPFA
IEW1001 IHEVPDA
IEW1001 IHEDBNA
IEW1001 IHEVSFA
IEW1001 IHEVSBA
IEW1001 IHEVCAA
IEW1001 IHEVSAA
IEW1001 IHEDNBA
IEW1001 IHEUPBB
IEW1001 IHEUPAB
IEW1001 IHEVSEB

TOTAL LENGTH 5068
ENTRY ADDRESS 17D00

IEW1001 WARNING – UNRESOLVED EXTERNAL REFERENCE (NOCALL SPECIFIED)

Figure 45. Batch loader module map

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 189

Table 14. Batch loader return codes. The table shows the code returned to the caller, the loader return code, the
program return code, and the description.

Code
returned to
caller

Loader
return code

Program
return code

Description

0 0 0 Program loaded successfully, and execution of the loaded program was
successful.

0 4 0 The batch loader found a condition that might cause an error during
execution, but no error occurred during execution of the loaded
program.

0 8(LET) 4 The batch loader found a condition that might cause an error during
execution, but no error occurred during execution of the loaded
program.

4 0 4 Program loaded successfully, and an error occurred during execution of
the loaded program.

4 4 4 The batch loader found a condition that might cause an error during
execution, and an error did occur during execution of the loaded
program.

4 8(LET) 4 The batch loader found a condition that might cause an error during
execution, and an error did occur during execution of the loaded
program.

8 0 8 Program loaded successfully, and an error occurred during execution of
the loaded program.

8 4 8 The batch loader found a condition that might cause an error during
execution, and an error did occur during execution of the loaded
program.

8 8(LET) 8 The batch loader found a condition that might cause an error during
execution, and an error did occur during execution of the loaded
program.

8 8 The batch loader found a condition that could make execution
impossible. The loaded program was not executed.

12 0 12 Program loaded successfully, and an error occurred during execution of
the loaded program.

12 4 12 The batch loader found a condition that might cause an error during
execution, and an error did occur during execution of the loaded
program.

12 8(LET) 12 The batch loader found a condition that might cause an error during
execution, and an error did occur during execution of the loaded
program.

12 12 The batch loader could not load the program successfully; execution
impossible.

16 0 16 Program loaded successfully, and the loaded program found a
terminating error.

16 4 16 The batch loader found a condition that might cause an error during
execution, and a terminating error was found during execution of the
loaded program.

16 8(LET) 16 The batch loader found a condition that might cause an error during
execution, and a terminating error was found during execution of the
loaded program.

16 16 The batch loader could not load program; execution impossible.

Using linkage editor and loader

190 z/OS V2R2 MVS Program Management: User's Guide and Reference

Loader serviceability aids
The following are serviceability aids provided in the loader:
v The control section, HEWLDDEF, contains the loader option default values. It is

resident in load module HEWLOADR.
v A storage dump will typically produce information on the nature of the error.

Register 11 will contain a pointer to HEWLDCOM, and register 12 will contain
the base register associated with the CSECT in control.

v All nine save areas are forward and backward chained. Lower-level save areas
will be printed. A hexadecimal “FF” in word 4 of the save area indicates that the
routine represented by the save area has returned control. At the entry point to
each module, register 13 contains the save area address and register 14 contains
the return address.

v Input/output control information is contained in the loader communication area.
This information consists of the DECB address, the buffer locations, the block
size, the logical record length, the blocking factor, the number of records left in
the buffer, the address of the current record, and the associated switches.

v Appropriate diagnostic messages are produced when an error has been detected.
The message has a specific number and, where appropriate, lists the data in
error. The message number and text are listed by HEWLLIBR at the end of
loading.

v The loader uses the SYNADAF macro to obtain information regarding
permanent I/O errors, and lists the information on the SYSLOUT data set.

In addition to the above, you may choose to use the AMBLIST service aid to print
the contents of the input object modules, load modules, or program objects. See
“The AMBLIST service aid” on page 166.

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 191

192 z/OS V2R2 MVS Program Management: User's Guide and Reference

Appendix B. Summary of Program Management user
considerations

Migrating from the linkage editor to the binder
The binder has replaced the linkage editor and batch loader programs as the
system default linker and linker-loader, respectively. Except as noted in this
section, the binder assumes all of the functions of the other two linking programs.
Invoking any of the common linkage editor or batch loader entry points, such as
IEWL, HEWL, LINK, and LOADER, will result in execution of the binder.

While the binder includes all of the functions of the linkage editor and batch
loader, it is not fully compatible with those programs. It was developed in
response to many customer, vendor and internal requirements requesting relief
from various restrictions and processing anomalies in the older programs. The
binder attempts to satisfy many of those requirements as well as provide a
consistent processing model. As a result it provides a set of externals, which is
similar but not identical to the linkage editor and batch loader externals.

The linkage editor and batch loader are also available in z/OS. There are no plans
to withdraw either of those programs at this time, but all users are encouraged to
begin using the binder as early as possible. In cases where the binder appears
unsuitable for a specific application, the older programs are unchanged and can be
invoked by entry names HEWLKED or HEWLF064 (linkage editor) or HEWLDIA
(batch loader). Note, however, that all future enhancements will be made to the
binder and loader exclusively. Other IBM products might have dependencies on
functions provided only by these components.

Installations that share DASD volumes between systems at different system levels
must ensure that the level of the binder being used matches the level of the system
it is running on. In addition, users must be sensitive to functional and format
differences in binder processing and output if sharing modules between different
releases of z/OS.

SMP/E precautions
When using the System Modification Program Extended (SMP/E) for software
installation, the system programmer should be aware of the following: In z/OS,
the binder is the default linker program invoked by SMP/E. Because the binder
handles some error conditions differently than did the linkage editor, it is possible
that certain error conditions might go unnoticed during the installation process.

Binder-detected errors that could cause the linked program to fail during execution
are reported with an error message and a return code 8 being passed back to
SMP/E. In cases where conflicting input might or might not represent an error, a
warning message and return 4 will be provided. Since SMP/E recommends that
users specify a maximum return code of 8 in the linkedit utility entry in the global
zone, conflicting or incomplete input to the binder might go undetected during
SMP/E APPLY processing. Because the binder's default action in these error
situations might be different from that of the linkage editor, the results of the
installation might be different with the binder. System programmers are strongly
encouraged to check all severity 8 error messages from the binder.

© Copyright IBM Corp. 1991, 2015 193

Storage considerations using the binder
The binder requires a larger region than does the linkage editor. This is because the
binder has relaxed most of the restrictions inherent in the linkage editor, replacing
fixed-length tables with open-ended lists that require more storage. In addition, the
binder does not use a DASD work file for spilling module data when processor
storage has been exhausted, as does the linkage editor. The SYSUT1 DD statement
is ignored. Instead, it uses primary or data space storage for all module data.
Because of the free-form design of the binder's internal data structures and the
number of controlling factors involved, it is not possible to accurately predict
binder storage requirements.

It is recommended that the binder be given a region of at least 2 MB, larger for
very large modules or modules consisting of a large number of CSECTs, external
names or address constants. Most binder working storage will be obtained from
above 16MB, if sufficient space is available in the extended private area.
Installations that restrict the extended region size default through use of the
IEFUSI installation exit might force the binder to obtain its storage from the private
area below 16MB. In such cases, the binder user might be forced to specify a very
large region size, such as 16M, in order to obtain sufficient storage in the extended
region.

Message IEW2971T can be issued for a very large module. The solution is for the
system programmer to change the behavior of the installation's IEFUSI exit. For
proper Binder operation when linking very large modules (especially C++ or Java™

modules) the exit should permit multi-megabyte data spaces. In exceptional
situations, such as when installing a large product using SMP/E, IEFUSI
algorithms could be temporarily modified to allow larger data spaces.

It is also recommended that binder users do not specify SIZE or WKSPACE as a
binder execution parameter, unless the binder will be co-resident with another
processing program. Either of these options will limit the amount of storage
available to the binder and, if insufficient, might cause the binder to fail with an
out-of-storage condition. The problem is aggravated if insufficient extended region
is available and all binder working storage is forced below 16MB.

Error handling in the binder
The binder is less tolerant of errors and inconsistencies in its input than was the
linkage editor. Error conditions were frequently ignored or overridden by the
linkage editor, which might or might not be what the user intended. Often such
errors and the resulting system action went unreported.

The binder attempts to diagnose all such error conditions and take a course of
action that is consistent with its general processing model. Input modules and
other files that are inaccessible or are in an incorrect format will generally be
omitted. Control statements and parameters containing invalid syntax or data will
also be discarded. All such errors will result in an error message and a return code
8. Conflicting and inconsistent specifications and data might result in either a
warning (severity 4) or error (severity 8) being issued, depending on the
seriousness of the condition and the likelihood of program failure during
execution.

As a result, the binder issues many more messages than did the linkage editor. The
binder contains nearly four times the number of unique error messages as did the
linkage editor and batch loader combined, in an effort to more accurately diagnose
error conditions.

Program Management user considerations

194 z/OS V2R2 MVS Program Management: User's Guide and Reference

Changes and extensions in output using the binder
The binder provides significant extensions in output, such as, error messages,
output listings, information included, for example:
v Messages are more numerous, accurate and informative. (In fact, users can

choose to use MSGLEVEL to suppress some messages.)
v Output listings provide information about the binding job, more alias

information, and operational and summary data.
v Output listings include the binder release level, processing options and program

attributes.
v Default for output listings is LIST=SUMMARY. This will cause the following

(more than for the linkage editor) to be printed:
– Target library (SYSLMOD) description
– Processing options
– Date/time of SAVE
– Module attributes (that are stored in directory)
– Entry points

v By specifying the MAP option, output listings will also include the source of
each CSECT in the module, specifically the ddname, member name,
concatenation number, and a cross-reference table of ddname to dsname.

If you do not want to receive all of this output, several options are available to
limit the amount of printed material produced during binder processing:
v The LIST option can be used to limit the volume of automatic printed output,

such as the echoing of control statements and the generation of the processing
summary report.

v Not specifying the MAP and XREF options will significantly reduce the amount
of printed output generated for those reports.

v Specifying MSGLEVEL will allow you to suppress messages below a certain
severity level.

v Specifying the suboption NOIMPort on the LIST option will suppress the
echoing of import statements for DLLs.

Note: Remember that limiting binder printed output in any of these ways might
hide problems in your module.

Binder control statements and options

Note: Certain processing differences must be considered when migrating from the
linkage editor to the binder. Subtle differences in the way control statements and
options are processed might affect the resultant load module or program object.
Differences between PDS and PDSE libraries might also affect the results. Some of
these differences are described below.

Several of the binder control statements and processing options have interrelated
functions. The binder attempts to process both in a consistent way, even though
the processing can deviate from that of the linkage editor. Toward this end, the
following rules are observed when processing data from all sources (included
modules, control statements, specified options or API function calls):
v Control statements always override the corresponding batch parameters. The

scope of the control statement is the module in process.

Program Management user considerations

Appendix B. Summary of Program Management user considerations 195

v Batch parameters, including those specified on the STARTDialog function call,
always override the input module, such as ESD data. The scope of the batch
parameters is the entire binder invocation or dialog.

v Module data always prevails over binder default values.
v If duplicate specifications are encountered, the most recent specification will

prevail. That is, the binder processes the last occurrence of control statements
and options. (The linkage editor processes the first or last depending on option.)
– When there are multiple ENTRY statements (there should not be), the binder

will process the last ENTRY statement whereas the linkage editor will process
the first ENTRY statement. This could result in execution errors if conflicting
ENTRY statements are present.

– Control statements and parameter strings are always processed in a
left-to-right sequence. Function calls are processed in the order received.

v Control statements and parameters containing invalid syntax, keywords or
values, will be discarded and reported as errors.

Binder processing differences from the linkage editor
The binder behavior might be different from the linkage editor in some significant
ways:
v The linkage editor ignored data it didn't recognize or couldn't process. The

binder also discards nonprocessable input, but diagnoses the error with a
message and nonzero return code.

v The linkage editor accepted the first ENTRY control statement encountered,
whereas the binder accepts the last. This could result in execution errors if the
multiple statements specify conflicting entry points.

v Unlike the linkage editor, explicit AMODE and RMODE specifications during
binder processing always override the corresponding attributes in the ESD of
included modules. A new MIN value has been provided for AMODE to allow
ESD influence over the results. RMODE(MIN) is the default and can not be
specified.
– AMODE and RMODE are treated as independent options until they are

needed during binder processing. The linkage editor processes them as a pair.
If only one of the pair is specified on either the parm string or a control
statement, the other will be set depending on the one specified. If neither
option is specified or both are specified, the binder will behave like the
linkage editor. If only one is specified, the results might be different.

– Many object modules, especially assembler programs and programs written
for older compilers, indicate AMODE(24) or RMODE(24) in their ESD records.
Overriding these values at bind time will produce warning messages
IEW2646I and IEW2651I, one per section in error. The linkage editor ignored
the condition but the binder assumes that a valid error condition might exist.
By specifying the binder option COMPAT=LKED (see below), you can force
the binder to suppress these messages and leave the return code unchanged.

v Reusability (REUS, RENT and REFR) is handled differently by the binder. While
the linkage editor processes the attributes independently, the binder stores them
as a single value. The binder assumes that reenterable programs are also serially
reusable, and the refreshable programs are also reenterable. This should not
cause any processing difficulties.
– The binder was designed to always accept an explicit override of a module

attribute, whereas the linkage editor sometimes does not. For example,
although the JCL can specify RENT in the parm list, when one CSECT being
bound into a load module is reusable and the rest are reentrant, the linkage

Program Management user considerations

196 z/OS V2R2 MVS Program Management: User's Guide and Reference

editor ignores the external parameter and assigns the module as reusable. The
binder will allow the explicit override of RENT on the JCL to take priority.

v Since the release of the binder, customer feedback indicated there has been some
dependence on the internals of the linkage editor processing in two areas:
module attribute defaulting and AMODE/RMODE consistency.
– Many job streams specify RENT with the expectation that the linkage editor

would look at all the pieces and assign the highest level reusability it could,
for example, the customer expected the linkage editor to override any
external parameters.

– Many programs in the field continue to be bound with inconsistent
AMODE/RMODE specifications that are known and ignored by the linkage
editor.

As a result, an option (COMPAT=LKED) was added to the binder. When this is
specified in the JCL the binder will behave like the linkage editor in the
following ways:
– The binder will ignore externally specified module reusability attributes if any

of the included load modules or program objects are of lesser reusability. A
summary message is produced to show that the overall reusability of the
module was downgraded.

– AMODE/RMODE conflict messages (IEW2646I, IEW2651I) will not be issued
by the binder when conditions such as AMODE ANY modules are combined
with AMODE 24 modules.

Note: It is essential that binder messages regarding reusability, AMODE and
RMODE be analyzed. The appropriate action in all such cases is to correct the
input, and perhaps to rebind the program if the attributes displayed in the
binder Processing Summary are incorrect.

v The batch loader (HEWLDIA) can be used to load an in-storage object module.
While this function is not supported by the binder, the binder will invoke the
batch loader transparently when this interface is invoked. Applications that
continue to use this interface cannot use any new functions provided by the
binder. This support is limited and provided for compatibility only.

Other binder processing differences
Some binder processes that differ from the linkage editor are not directly related to
binder input. These are affected by environmental differences, binder capacities
and possible error conditions detected during prior processing. In general, they are
not directly controllable by binder specifications and should be considered
unpredictable.
v The order of modules included during autocall processing is not specifiable by

the user and should therefore be considered unpredictable. Due to different
autocall algorithms in the two programs, the sequence of includes will be
different in the binder than it was in the linkage editor. If this sequence is
important, you should provide INCLUDE control statements in the input stream.
(Be aware that this only controls the order in which Csects are brought into
storage by the binder. It does NOT control the final order of the Csects in the
load module or program object. That is controlled by the ORDER control
statement.)

v The binder handles nested INCLUDEs differently. It does not ignore all text
following the nested INCLUDE as does the linkage editor.

v Specifying uninitialized space in your source program and assuming it will be
initialized might provide unpredictable results during execution. Both the binder
and the linkage editor fill part or all of such data areas with binary zeros, but

Program Management user considerations

Appendix B. Summary of Program Management user considerations 197

their algorithms are not the same. In addition, these algorithms are dependent
on a number of environmental factors such as the block size and the amount of
space remaining on a track.
– If the program is sensitive to the initial values stored in large data areas, the

programmer must ensure the storage is properly initialized, either at compile
time or at program initialization time.

– You can cause the binder to initialize all uninitialized areas in a PM2 or later
format program object by specifying the FILL option. FILL allows you to
initialize all uninitialized areas of the module and to specify the byte used for
initialization. FILL cannot be used for a PM1-format program object.

v The binder will not, by default, replace an executable program with a
nonexecutable program. This is a departure from linkage editor processing,
where the new module would replace an existing module of the same name
regardless of the executability of either module. You might cause the binder to
save a nonexecutable module by specifying the STORENX option in the binder's
PARM field.

v The binder will not save an alias or alternate entry point name if it is the
primary name of an existing member in the library. Like the linkage editor, if
replace (R) has been specified on the NAME control statement and the binder
discovers that the name is an alias of another member in the library, that alias
will be “stolen” for the new module (load module or program object). Unlike the
linkage editor, however, if the binder discovers that the alias name already exists
in the library as a primary (member) name, the alias will not be stored.

Note: This design alternative was chosen to prevent users from inadvertently
specifying as an alias the name of an existing module, thereby destroying the
existing module and possibly creating an unrecoverable situation in the library.

v The binder bypasses LLA when retrieving a directory entry from a PDSE or PDS
during INCLUDE processing. The linkage editor first tries to obtain its directory
entries from LLA. This means that if the module was modified and not refreshed
in LLA, the linkage editor would not get the latest version of the module to
process. The binder always gets the latest version by obtaining the directory
entry directly from the library directory on DASD.

v Unlike load modules, program objects cannot be zapped in place, that is, a new
program object is created in the PDSE and the old one is deleted (after all
connections to it are released). This means that LLA will continue to keep the
old connection and will not see the modification unless that program is
explicitly refreshed.

v Other binder improvements:
– There can be up to 10 temporary modules (TEMPNAM0, TEMPNAM1, ...).
– PDSEs and PDS's can be mixed in the concatenation. Unlike the linkage

editor, the binder supports SYSLIB and SYSLIN concatenation of object files
with program libraries (both PDS's and PDSEs).

– The binder allows mixed case input (190 character set) specified with the
option, CASE.

– Most of the binder resides above the-16 Mb line in ELPA. It runs in problem
program state, user key.

Migrating from load modules to program objects
This section contains information for migrating from load modules to program
objects.

Program Management user considerations

198 z/OS V2R2 MVS Program Management: User's Guide and Reference

What should be converted to program objects?
Following are considerations in determining whether or not to migrate to program
objects:
v The only system library which supports program objects is SYS1.LINKLIB (plus

all libraries in Linklist concatenation). SYS1.LPALIB, SYS1.NUCLEUS, and
SYS1.SVCLIB are opened and accessed during IPL before the PDSE support is
established and therefore can not be PDSEs.
– However, it is possible to put program objects into LPA using the Dynamic

LPA functions. This function opens the program libraries to be included
dynamically after the system has been initialized, thus allowing PDSE
participation. The program objects can be in any user-specified authorized
PDSE program library.

v Program objects have the same restrictions as do data members in PDSEs. They
cannot be accessed using EXCP, nor can there be any TTR calculations done
against them. Programs requiring this access should not be converted.

v Program objects will occupy more space on DASD than did their load module
counterparts. In load module format, large uninitialized areas of the program
were represented by gaps in the program text; in the PM1 program object format
those gaps are filled with binary zeros and written out to disk. However, gaps
are reinstated in program objects in PM2 format and later. They will still take
more space on DASD then load modules for several reasons. First, program
objects are formatted on 4K boundaries with the minimum size being 4K, and
the algorithm for compacting uninitialized space differs from that used by the
linkage editor. Also, additional information is saved in program objects to allow
faster loading, and to enable rebinding of C-type modules (formerly the
Language Environment prelinker discarded the rebinding information when
producing its output object module).

v If new program object features are exploited, such as a length greater than 16
megabytes, or more than 32767 external names, greater than 8-byte names,
multiple classes, multiparts, split-modes, or deferred classes, the program object
cannot be converted back to a load module.

v PDSE program libraries can take advantage of the PDSE cross-system sharing
support offered in z/OS.

v As discussed earlier, special attention must also be given to mixing specific
levels of the program object with different z/OS releases.

v Only program objects can reside in z/OS UNIX files. Load modules are not
supported.

Converting load modules to program objects
Once the environment has been established, program objects can be created. The
data class definitions for PDSEs and the JCL/catalog procedures can be used to
provide implicit migration. Various utilities can also be used to migrate modules
explicitly. These include:
v IEBCOPY: can copy either single programs or entire libraries between PDS's and

PDSEs. The binder is invoked to do the conversion.
v DFDSS: provides the means for migrating one or a collection of load libraries.

Conversion is only done on a COPY operation, not on a DUMP/RESTORE.
v Binder: can be invoked to rebind modules for the purpose of

migrating/converting them.
v OGETX can be used to copy load modules from a PDS library to z/OS UNIX

files.

Program Management user considerations

Appendix B. Summary of Program Management user considerations 199

Compatibility of program object formats
v Downward Compatibility: The default program object format is the earliest

which will support the function requested by the contents of the input modules
and the processing directives.

v Upward Compatibility: All earlier PM functions, interfaces, formats and user job
streams should work compatibly with the current release. There will be some
changes in report formats and messages, where changes are necessary for this
new function.

v Only PM1 format program objects support overlay format. The binder will
automatically produce a PM1 version of the program object if overlay is
requested and the SYSLMOD data set is a PDSE.

v During API processing for “intent access” the module will be saved in the same
format it had on input if followed by a copy operation. During API processing
for “intent bind” (and both libraries are PDSEs), the module will be saved in the
lowest format program object which will support the requested functions unless
overridden with the COMPAT option.

v If the user specifies a COMPAT value and attempts to use functions not
supported by that level, the save will fail with RC=12.

Utilities, components and products that support program
objects

The following is a partial list of components and products that support program
objects:
v Program objects are supported by the following DFSMS utilities/services:

– IEBCOPY
– IEBCOMPR
– IEHLIST
– IEHPROGM

v Program objects are not supported by the following DFSMS utilities:
– IEHMOVE
– IEBDG
– IEBGENER
– IEBPTPCH

v DFdss support includes:
– DUMP and RESTORE of PDSE Program Libraries, but without conversion, for

example, a dumped PDSE Program Library can not be restored to a PDS.
– COPY between PDSE and PDS Program Libraries. The binder will be invoked

automatically and each of the members will be converted.
v ISPF supports the copy of PDSE program libraries or members. The binder

options are supported transparently in background (option 5.7); the foreground
(option 4.7) invokes the TSO LOAD/GO Prompter which invokes the binder.

v TSO/E Test supports program objects in PM1 format or which have contents
compatible with PM1 format. Also, it can only obtain information from those
program objects for which the DCB used to load them from their program
libraries is accessible. This means that TSO/E Test can not be used to test
program objects that were loaded by LLA or loaded into LPA.

The following is a partial list of components and products that do not support
program objects:
v Program objects are not supported by the following DFSMS utilities:

Program Management user considerations

200 z/OS V2R2 MVS Program Management: User's Guide and Reference

– IEHMOVE
– IEBDG
– IEBGENER
– IEBPTPCH

PDSE program library directory access of program objects
There are some changes in the way that PDSE directories can be accessed for
program libraries. They include:
v PDSE program object directory entries have been extended. Information about

the type of member can be obtained via the directory entry, though not as
directly as ISITMGD. (Multiple tests continue to be required because the
program object indicator in a program directory entry is located in the same
place as the user data field for a data directory entry.)

v You can still use BLDL to access PDSE program directory entries. The format is
converted to the current format, with some modifications when the program
object exceeds 16 meg.

v The IHAPDS mapping, which maps the PDS directory entry information
returned by the BLDL macro, has changed in order to support program objects
and accommodate the >16-Meg program objects.
– There is a bit (PDS2LFMT) which indicates that the load module is a program

object and that the PDS2FTB3 flags are valid and contain additional
information.

– There is a bit (PDS2BIG) that indicates that the length field (PDS2STOR) does
not hold the module length and that the large load module extension exists.
The PDS2VSTR field in this extension contains the fullword load module
length in this case, and PDS2STOR contains a zero.

v A second directory service, DESERV, supports both PDS and PDSE libraries. You
can issue DESERV for either PDS or PDSE directory access, but you must pass
the DCB address. It does not default to a predefined search order, as does BLDL.
DESERV returns an SMDE that, for PDSE directories, contains more information
than is mapped by IHAPDS.

v You can still read PDSE Program Library directories using BSAM. The format of
each directory entry will be converted, as is done with BLDL.

v As with all PDSE, one cannot access PDSE Program Libraries using EXCP.
v Applications that need to know if a data set is a PDSE program library can issue

an external macro, ISITMGD, to get this information. The data set must be open
at the time. This macro is documented in z/OS DFSMS Macro Instructions for
Data Sets and also discussed in z/OS DFSMS Using Data Sets.

Migrating from the prelinker
Users presently using the prelinker-based (tactical) design can convert to the
binder-based (strategic) solution with minimal effort. Recompilation of existing
modules is unnecessary. Rebinding of existing support libraries, such as C370LIBs
and SCEELKED, into PDSE format is unnecessary.

The two DLL designs can coexist in the same system or complex without special
precautions. This will allow migration of applications to the new support, one at a
time.

Program Management user considerations

Appendix B. Summary of Program Management user considerations 201

The binder incorporates Language Environment/370 prelinker
functions

The binder incorporates the functions of the Language Environment/370 prelinker,
specifically the handling of long names and support for the C WSA (writable static
area) as a newly defined “deferred” class, thus removing the need for a separate
prelinker step when the target program library is either a PDSE or z/OS UNIX file.

Note: The C prelinker, also known as the C pre-link utility, is currently known as
the Language Environment/370 prelinker. They are all the same utility, which is
referred to herein as the prelinker.

Processing with the prelinker
The output from the C or C++ compiler is an extended object file (XOBJ). As
shown in Figure 46 on page 203, the prelinker then uses one or more of these XOBJ
object files as input together with the prelinker control statements (INCLUDE,
LIBRARY, and RENAME) to create a traditional object module. The prelinker
performs autocalls for unresolved references by including object modules from
PDS libraries, C370LIB libraries, or z/OS UNIX archive files.

Output from the prelinker is then fed into either the binder or linkage editor, both
of which use autocall to resolve any remaining references to non-C routines. The
linkage editor always creates a load module as output. The binder's output module
can be either a load module or program object, depending on whether the
SYSLMOD DD statement specifies a PDS or PDSE program library or a z/OS
UNIX file.

Processing without the prelinker
As before, the C/C++ compiler takes the source program and produces an XOBJ.
The binder has been extended to accept not only object modules (in all structures,
for example, traditional, XOBJ and GOFF), load modules, program objects and
z/OS UNIX files, as earlier, but also z/OS UNIX archive files and C370LIBs for
autocall functions. It also accepts all prelinker control statements. In addition, a C
renaming routine was added to the existing interface validation logic in the binder.
The result is that the prelinker step can be eliminated when SYSLMOD specifies a
PDSE program library because all the work previously performed by the prelinker
is now done by the binder. (This control flow is shown on Figure 47 on page 204.)

Eliminating the prelinker step has several advantages:
v Improved performance with the elimination of a job step
v Easier incorporation of new functions, released from the format restrictions

imposed by an intermediate data structure
v Rebindable module as output, for example, it is not necessary to return to object

files to rebind
v More efficient code distribution and servicing since single object files can be

shipped in PTFs rather than the fully bound C module.

Program Management user considerations

202 z/OS V2R2 MVS Program Management: User's Guide and Reference

C Pre-
Linker

Source
Program

C/C++
Compiler

XOBJ

OBJ

PDS OBJ

C370LIB

Archive

PDS OBJ

Loadmod

ProgObj

PDS, PDSE or
z/OS UNIX file
(if Binder)

Linkedit/
Binder

PO or
LoadMod

Control
Stmts

Call
Library

Call
Library

Figure 46. Invoking the prelinker. This diagram shows where the prelinker is invoked when
the binder 'prelinker' function is not used.

Program Management user considerations

Appendix B. Summary of Program Management user considerations 203

Support for DLL modules in dynamic link libraries
The binder supports dynamic linking via the use of DLLs. Dynamic linking
provides the ability to defer the binding of functions and variables until execution.
Binder generated DLLs are program objects with a special control structure to
which defines exported functions and data items. DLL-enabled applications can
access ("import") these functions and data items during execution. The creation of
DLLs and DLL clients requires a language translator that can generate the requisite
structures in an output XOBJ or GOFF object module.

Migrating from the prelinker and to DLLs

Migrating from the prelinker to Binder
Users must ensure that their JCL and the cataloged procedures they are invoking
are changed to eliminate the prelinker step.

Note: The c89 command in z/OS UNIX will bypass the prelinker and compilers
such as the IBM C/C++ compiler may provide new cataloged procedures that will
use the binder for prelinker functions.

Call
Library

Source
Program

C/C++
Compiler

XOBJ

a) C370LIB
b) PDS Obj
c) Loadmod
d) ProgObj
e) z/OS UNIX Archive
f) z/OS UNIX file

PDSE
Program
Library of z/OS UNIX file

Binder

Program
Object

Control
Stmts

Loader

Figure 47. Prelinker elimination. This is the optional control flow in the z/OS binder.

Program Management user considerations

204 z/OS V2R2 MVS Program Management: User's Guide and Reference

The following considerations apply if you are converting JCL yourself. It is
assumed that you have already performed any necessary conversion from the
linkage editor to the binder.
v The members of the SYSLIB concatenation used in the prelink step should be

concatenated before the SYSLIB members used in the bind step.
v Specify CASE(MIXED) as a binder option to preserve case sensitivity.
v The contents of the prelinker SYSIN can be used as the binder SYSLIN or

concatenated with it, or explicitly included by a binder INCLUDE control
statement.

v SYSLMOD must be allocated to a PDSE or an z/OS file.
v If SYSDEFSD was being used for the prelinker step, it should be added to the

bind step.
v If a DLL-enabled module is produced, DYNAM(DLL) must be specified. The

prelinker produced a DLL-enabled module if the input XOBJ was DLL-enabled.
The binder requires an explicit directive.

v If the prelinker UPCASE option was being used, it can be specified as a binder
option. However it might not be necessary since the binder provides better
support for long and mixed case names.

v Prelinker control statements, including RENAME and IMPORT, can be moved
from the prelink step to the bind step.

Restrictions and incompatibilities migrating from the prelinker
v You must continue to use the prelinker if your target library is a PDS.
v If the prelinker is used at all, all object modules requiring prelinking must be

processed together by the prelinker. In other words you cannot combine object
modules created by the prelinker or load modules/program objects containing
such together with XOBJ modules as input to a single bind.

v The prelinker allows names to be multiply defined, once for function names and
once for variable names. The binder will use the first occurrence of a given name
without regard to whether it is code or data.

v The binder does not support the version of the LIBRARY control statement that
was used by the prelinker to trigger automatic library call. The unsupported
version is the one whose syntax is “LIBRARY ddname”. This is being replaced
by the new binder AUTOCALL control statement.

v Code generated with the C/C++ compiler option IPA(NOLINK,NOOBJECT)
should not be given as input to the binder.

Migration of applications to DLL support
Migration of applications to DLLs require that the user:
v Identify those modules that will be dynamically linked
v Recompile the DLL modules with #pragma export or the EXPORTALL option (in

the C language)
v Bind those DLLs into the PDSE dynamic link library
v Remove the imported modules from the static bind library
v Rebind the application

Note: For guidance on how to create DLLs and dynamic link libraries, see z/OS
Language Environment Programming Guide.

Program Management user considerations

Appendix B. Summary of Program Management user considerations 205

Program Management user considerations

206 z/OS V2R2 MVS Program Management: User's Guide and Reference

Appendix C. Binder return codes

The binder can be executed either as a JCL job step through TSO, through a macro
call from another program, or through the binder application programming
interface. The return codes are interpreted differently based on how you are
executing the binder.

IEWBLINK return and reason codes
The meaning of the return codes when invoking the binder at entry point
IEWBLINK are described in Table 15.

Table 15. IEWBLINK return codes

Return
code

Batch execution description Application Programming Interface (API) description

0 Informational: the program
was saved and is executable.

Informational: the function was performed exactly as requested.

4 Warning: a warning condition
was noted but should have no
effect on the program module.
Processing continues with no
action required.

Warning: a warning condition was noted but should have no effect on the
requested function. Processing continues with no action required.

8 Error message: The binder
found an error in user data
and has taken an appropriate
default. The integrity of the
output module is assured but
might be incorrect or
incomplete. The program
module is saved and, if LET
or LET(8) were specified, it is
marked executable.

Error message: The binder found an error in user data and has taken an
appropriate default. The integrity of the output parameter data is assured,
but it might be null or incorrect.

12 Severe error message: the
error encountered has
prevented the process from
completing. The resulting
program module, if any,
should be considered
unusable.

Severe error message: the error encountered has prevented the process from
completing. The function was not performed, and output parameters (except
for return and reason codes) should not be used in any way.

16 Terminating error message:
processing is terminated
immediately.

Terminating error message: processing is terminated immediately. This
return code might be accompanied by an 0F4 abend.

IEWBLDGO return codes
Table 16 contains descriptions of the return codes from the binder link-load-and-go
entry point.

Table 16. IEWBLDGO return codes

Return code Description

0 The binder linked and loaded the program, and the program executed
successfully.

© Copyright IBM Corp. 1991, 2015 207

Table 16. IEWBLDGO return codes (continued)

Return code Description

12 A link error occurred whose severity is greater than that specified on the
LET option. The program is not loaded or executed.

16 The binder linked and loaded the program, but the program abended
during execution.

n The binder linked and loaded the program, but the program set other than
a zero return code in register 15. “n” is the program's return code.

Binder return codes

208 z/OS V2R2 MVS Program Management: User's Guide and Reference

Appendix D. Designing and specifying overlay programs

The use of overlay programs is not recommended. The information in this
appendix is provided for compatibility only. Overlay programs only support load
module and PM1. Therefore, any PM format later than PM1 is not supported.
Program objects specifying OVLY cause the binder to create either a load module
or a PM1 format program object, depending on the library type.

Ordinarily, when a program module produced by the binder is executed, all the
control sections of the module remain in virtual storage throughout execution. The
length of the module, therefore, is the sum of the lengths of all the control sections.
When virtual storage is not at a premium, this is the most efficient way to execute
a program. However, when a program approaches the limits of the available
virtual storage, you could consider using the overlay facilities of the binder.

In most cases, all that is needed to convert an ordinary program to an overlay
program is the addition of control statements to structure the module. You choose
the portions of the program that can be overlaid, and the system arranges to load
the required portions when needed during execution of the program.

When the binder overlay facility is requested, the program module is structured so
that, at execution time, certain control sections are loaded only when referenced.
When a reference is made from an executing control section to another, the system
determines whether the code required is already in virtual storage. If it is not, the
code is loaded dynamically and can overlay an unneeded part of the module
already in storage.

This appendix is divided into three sections that describe the design, specification,
and special considerations for overlay programs.

Note: This appendix refers to binder processing and output. These concepts also
apply to linkage editor processing, unless otherwise noted, with the exception that
the linkage editor cannot process program objects.

Design of an overlay program
The structure of an overlay module depends on the relationships among the
control sections within the module. Two control sections do not have to be in
storage at the same time to overlay each other. Such control sections are
independent; they do not reference each other either directly or indirectly.
Independent control sections can be assigned the same load addresses and are
loaded only when referenced. For example, control sections that handle error
conditions or unusual data can be used infrequently and need not occupy storage
unless in use.

Control sections are grouped into segments. A segment is the smallest functional
unit (one or more control sections) that can be loaded as one logical entity during
execution. The control sections required all the time are grouped into a special
segment called the root segment. This segment remains in storage throughout
execution of an overlay program.

When a particular segment is executed, any segments between it and the root
segment must also be in storage. This is a path. A reference from one segment to

© Copyright IBM Corp. 1991, 2015 209

another segment lower in a path is a downward reference; the segment contains a
reference to another segment farther from the root segment (see “Control section
dependency”). Conversely, a reference from one segment to another segment
higher in a path (closer to the root segment) is an upward reference.

A downward reference might cause overlay because the necessary segment might
not yet be in virtual storage. An upward reference does not cause overlay because
all segments between a segment and the root segment must be present in storage.

Several paths sometimes need the same control sections. This problem can be
solved by placing the control sections in another region. In an overlay structure, a
region is a contiguous area of virtual storage within which segments can be loaded
independently of paths in other regions. An overlay program can be designed in
single or multiple regions.

Single region overlay program
To design an overlay structure, you should select those control sections that receive
control at the beginning of execution plus those that should always remain in
storage; these control sections form the root segment. The rest of the structure is
developed by determining the dependencies of the remaining control sections and
how they can use the same virtual storage locations at different times during
execution.

The remainder of this section discusses control section dependency, segment
dependency, the length of the overlay program, segment origin, communication
between segments, and overlay processing.

Control section dependency
Control section dependency is determined by the requirements of a control section
for <references to> or <access to> a given <routine> of <entry point> in another
control section. A control section is dependent upon any control section from
which it receives control or that processes its data. For example, if control section C
receives control from control section B, C is dependent upon B. That is, both
control sections must be in storage before execution can continue beyond a given
point in the program.

Assume that a program contains seven control sections, CSA through CSG, and
exceeds the amount of storage available for its execution. Before the program is
rewritten, it is examined to see if it could be placed into an overlay structure.
Figure 48 on page 211 shows the groups of dependent control sections in the
program (the arrows indicate dependencies).

Overlay Programs

210 z/OS V2R2 MVS Program Management: User's Guide and Reference

Each dependent group is also a path. That is, if control section CSG is executed,
CSB and CSA must also be in storage. Because CSA and CSB are in each path, they
must be in the root segment. Control section CSC is in two groups and therefore is
a common segment in two different paths.

A better way to show the relationship between segments is with a tree structure. A
tree graphically shows how segments can use virtual storage at different times. It
does not imply the order of execution, although the root segment is the first to
receive control. Figure 49 shows the tree structure for the dependent groups shown
in Figure 48. The structure has five segments and is contained in one region.

Segment dependency
When a segment is in virtual storage, all segments in its path are also in virtual
storage. Each time a segment is loaded, all segments in its path are loaded if they

CSA

CSD

CSE

CSF

CSC

Dependent
Group 1

Dependent
Group 2

Dependent
Group 3

CSC CSG

CSA CSA

CSB CSB CSB

Figure 48. Control section dependencies

CSA

CSG

CSB

CSC Segment 2

Segment 3 Segment 4

Segment 5

Root
Segment 1

CSD

CSE

CSF

Figure 49. Single-region overlay tree structure

Overlay Programs

Appendix D. Designing and specifying overlay programs 211

are not already in virtual storage. In Figure 49 on page 211, when segment 3 is in
virtual storage, segments 1 and 2 are also in virtual storage. However, if segment 2
is in storage, this does not imply that segment 3 or 4 is in virtual storage because
neither segment is in the path of segment 2.

The position of the segments in an overlay tree structure does not imply the
sequence in which the segments are executed. A segment can be loaded and
overlaid as many times as the logic of the program requires. However, a segment
cannot overlay itself. If a segment is modified during execution, that modification
remains only until the segment is overlaid.

Length of an overlay program
For purposes of illustration, assume the control sections in the sample program
have the following lengths:

Control Section
Length (in bytes)

CSA 3000

CSB 2000

CSC 6000

CSD 4000

CSE 3000

CSF 6000

CSG 8000

If the program were not in overlay, it would require 32000 bytes of virtual storage.
In overlay, however, the program requires the amount of storage needed for the
longest path. In this structure, the longest path is formed by segments 1, 2, and 3,
because when they are all in storage they require 18000 bytes, as shown in
Figure 50.

Note: The length of the longest path is not the minimum requirement for an
overlay program. When a program is in overlay, certain tables are used, and their

CSA

CSG

CSB

CSC Segment 2
6000 bytes

Segment 5
8000 bytes

8000
bytes

3000
bytes

2000
bytes

6000
bytes

Root
Segment 1
5000 bytes

Segment 3
7000 bytes

Segment 4
6000 bytes

4000
bytes

3000
bytes

6000
bytes

CSD

CSE

CSF

Figure 50. Length of an overlay module

Overlay Programs

212 z/OS V2R2 MVS Program Management: User's Guide and Reference

storage requirements must also be considered. The storage required by these tables
is described in “Special considerations” on page 224.

Segment origin
The binder assigns the relocatable origin of the root segment (the origin of the
program) at 0. The relative origin of each segment is determined by 0 plus the
length of all segments in the path. For example, the origin of segments 3 and 4 is
equal to 0 plus 6000 (the length of segment 2) plus 5000 (the length of the root
segment), or 11000. The origins of all the segments are as follows:

Segment
Origin

1 0

2 5000

3 11000

4 11000

5 5000

The segment origin is also called the load point, because it is the relative location
where the segment is loaded.

Figure 51 shows the segment origin for each segment and the way storage is used
by the sample program. The vertical bars indicate segment origin; any two
segments with the same origin can use the same storage area. This figure also
shows that the longest path is that of segments 1, 2, and 3.

References between segments
Segments that can be in virtual storage simultaneously are considered inclusive.
Segments in the same region but not in the same path are considered exclusive;
they cannot be in virtual storage simultaneously. Figure 52 on page 214 shows the
inclusive and exclusive segments in the sample program.

Segment 3
7000 bytes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Segment 2
6000 bytes

Relative Storage Location (in 1000 byte increments

Segment 5
8000 bytes

Segment 4
6000 bytes

Root Segment 1
5000 bytes

Figure 51. Segment origin and use of storage

Overlay Programs

Appendix D. Designing and specifying overlay programs 213

Segments upon which two or more exclusive segments are dependent are called
common segments. A segment common to two other segments is part of the path of
each segment. In Figure 52, segment 2 is common to segments 3 and 4, but not to
segment 5.

An inclusive reference is a reference between inclusive segments, from a segment in
storage to an external symbol in a segment that does not cause overlay of the
calling segment. An exclusive reference is a reference between exclusive segments, a
reference from a segment in storage to an external symbol in a segment that causes
overlay of the calling segment.

Figure 53 on page 215 shows the difference between an inclusive reference and an
exclusive reference. The arrows indicate references between segments.

Inclusive references: Wherever possible, inclusive references should be used
instead of exclusive references. Inclusive references between segments are always
valid and do not require special options. When inclusive references are used, there
is also less chance for error in structuring the overlay program correctly.

Exclusive references: An exclusive reference is made when the external reference
in the requesting segment is to a symbol defined in a segment not in the path of
the requesting segment. Exclusive references are either valid or invalid.

An exclusive reference is valid only if there is also an inclusive reference to the
requested control section in a segment common to both the segment to be loaded
and the segment to be overlaid. The same symbol must be used in both the
common segment and the exclusive reference. In Figure 53 on page 215, a reference
from segment B to segment A is valid because there is an inclusive reference from
the common segment to segment A. (An entry table in the common segment
contains the address of segment A. The overlay does not destroy this table.)

Segment 5Segment 2

Root
Segment 1

Segment 3
Segment 4 Inclusive Segments

1, 2, and 3
1, 2, and 4
1 and 5

Exclusive Segments

2 and 5
3 and 4
3 and 5
4 and 5

Figure 52. Inclusive and exclusive segments

Overlay Programs

214 z/OS V2R2 MVS Program Management: User's Guide and Reference

In this same figure, a reference from segment A to segment B is invalid because
there is no reference from the common segment to segment B. A reference from
segment A to segment B can be made valid by including, in the common segment,
an external reference to the symbol used in the exclusive reference to segment B.

Another way to eliminate exclusive references is to arrange the program so that the
references that cause overlay are made in a higher segment. For example, you
could eliminate the exclusive reference shown in Figure 53 by writing a new
module to be placed in the common segment. The new module's only function
would be to reference segment B. The code in segment A could then be changed to
reference the new module instead of segment B. Control then would pass from
segment A to the common segment, where the overlay of segment A by segment B
would be initiated.

If either valid or invalid exclusive references appear in the program, the binder
considers them errors unless one of the special options is used. These options are
described later in this section (see “Special considerations” on page 224).

Note:

1. During the execution of a program written in a higher level language such as
Fortran, COBOL, or PL/I, an exclusive call results in abnormal termination of
the program if the requested segment attempts to return control directly to the
invoking segment that has been overlaid.

2. If a program written in COBOL includes a segment that contains a reference to
a COBOL class test or TRANSFORM table, the segment containing the table
must be in either the root segment or a segment higher in the same path than
the segment containing the reference to the table.

Overlay process
The overlay process is initiated when a control section in virtual storage references
a control section not in storage. The control program determines the segment that
the referenced control section is in and, if necessary, loads the segment. When a
segment is loaded, it overlays any segment in storage with the same relative
origin. Any segments in storage that are lower in the path of the overlaid segment
can also be overlaid. An exclusive reference can also cause segments higher in the
path to be overlaid. No overlay occurs if a control section in storage references a
control section in another segment already in storage.

Segment B

Inclusive
Reference

Common Segment

Segment A Exclusive
Reference

Figure 53. Inclusive and exclusive references

Overlay Programs

Appendix D. Designing and specifying overlay programs 215

The portion of the control program that determines when overlay is to occur is the
overlay supervisor that uses special tables to determine when overlay is necessary.
These tables are generated by the binder and are part of the output program
module. The special tables are the segment table and the entry table(s). Figure 54
shows the location of the segment and entry tables in the sample program.

Because the tables are present in every overlay module, their size must be
considered when planning the use of virtual storage. The storage requirements for
the tables are given in “Special considerations” on page 224. A detailed discussion
of the segment and entry tables follows.

Segment table: Each overlay program contains one segment table (SEGTAB); this
table is the first control section in the root segment. The segment table contains
information about the relationship of the segments and regions in the program.
During execution, the table also contains control information such as what
segments are in storage and which are being loaded.

Entry table: Each segment that is not the last segment in a path can contain one
entry table (ENTAB); when present, this table is the last control section in a
segment.

When overlay is required, an entry in the table is created for a symbol to which
control is passed, provided the symbol is used as an external reference in the
requesting segment, and the symbol is defined in another segment either lower in
the path of the requesting segment or in another region. An ENTAB entry is not
created for any symbol already present in an entry table closer to the root segment
(higher in the path), or for a symbol defined higher in the path. (A reference to a
symbol higher in the path does not have to go through the control program
because no overlay is required.)

If an external reference and the symbol it references are in segments not in the
same path but in the same region, an exclusive reference was made. If the
exclusive reference is valid, an ENTAB entry for the symbol is present in the

CSA

ENTAB

SEGTAB

CSB

Root Segment 1

ENTAB

CSGCSC
Segment 2

Segment 5

Segment 3 Segment 4

CSD

CSE

CSF

Figure 54. Location of segment and entry tables in an overlay module

Overlay Programs

216 z/OS V2R2 MVS Program Management: User's Guide and Reference

common segment. Because the common segment is higher in the path of the
requesting segment, no ENTAB entry is created in the requesting segment. When
the reference is executed, control passes through the ENTAB entry in the common
segment. That is, a branch to the location in the ENTAB entry causes the overlay
supervisor to be called to load the needed segments.

If the exclusive reference is invalid, no ENTAB entry is present in the common
segment. If the LET option is specified, an invalid exclusive reference causes
unpredictable results when the program is executed. Because no ENTAB entry
exists, control is passed directly to the relative address specified in the reference,
even though the requested segment cannot be in virtual storage.

Multiple region overlay program
If a control section is used by several segments, it is usually desirable to place that
control section in the root segment. However, the root segment can get so large
that the benefits of overlay are lost. If some of the control sections in the root
segment could overlay each other (except for the requirement that all segments in
a path must be in storage at the same time), the job might be a candidate for
multiple region structure. Multiple region structures can also be used to increase
segment loading efficiency: processing can continue in one region while the next
path to be executed is being loaded into another region.

With multiple regions, a segment has access to segments that are not in its path.
Within each region, the rules for single region overlay programs apply, but the
regions are independent of each other. A maximum of four regions can be used.

Figure 55 shows the relationship between the control sections in the sample
program and two new control sections: CSH and CSI. The two new control
sections are each used by two other control sections in different paths. Placing CSH
and CSI in the root segment makes the segment larger than necessary, because
CSH and CSI can overlay each other. The two control sections should not be
duplicated in two paths, because the binder automatically deletes the second pair
and an invalid exclusive reference might then result.

CSA

CSG

CSB

CSC

CSD

CSE

CSF

CSH
CSI

CSH
CSI

Figure 55. Control sections used by several paths

Overlay Programs

Appendix D. Designing and specifying overlay programs 217

If the two control sections are placed in another region, however, they can be in
virtual storage when needed, regardless of the path being executed in the first
region. Figure 56 shows all the control sections in a two-region structure. Either
path in region 2 can be in virtual storage regardless of the path being executed in
region 1. Segments in region 2 can cause segments in region 1 to be loaded
without being overlaid themselves.

The relative origin of a second region is determined by the length of the longest
path in the first region (18000 bytes). Region 2, therefore, begins at 0 plus 18000
bytes. The relative origin of a third region would be determined by the length of
the longest path in the first region plus the longest path in the second region.

The virtual storage required for the program is determined by adding the lengths
of the longest path in each region. In Figure 56, if CSH is 4000 bytes and CSI is
3000 bytes, the storage required is 22000 bytes, plus the storage required by the
special overlay tables.

Care should be exercised when choosing multiple regions. There might be some
system degradation caused by the overlay supervisor being unable to optimize
segment loading when multiple regions are used.

Specification of an overlay program
Once you have designed an overlay structure, the program must be placed into
that structure. You indicate to the binder the relative positions of the segments, the
regions, and the control sections in each segment. Positioning is accomplished as
follows:

Segments
Are positioned by OVERLAY statements. In addition, the overlay statement
provides a means to equate each load point with a unique symbolic name.
Each OVERLAY statement begins a new segment.

Regions
Are also positioned by OVERLAY statements. You specify the origin of the first
segment of the region, followed by the word REGION in parentheses.

CSA

CSG

CSB

CSC

CSH CSI
REGION 2

Segment 2

Segment 3

Segment 5

Root
Segment 1

CSD

CSE

CSF

Segment 6 Segment 7

Figure 56. Overlay tree for multiple-region program

Overlay Programs

218 z/OS V2R2 MVS Program Management: User's Guide and Reference

Control sections
Are positioned in the segment specified by the OVERLAY statement with
which they are associated in the input sequence. However, the sequence of the
control sections within a segment is not necessarily the order in which the
control sections are specified.

The input sequence of control statements and control sections should reflect the
sequence of the segments in the overlay structure from top to bottom, left to right,
and region by region. This sequence is illustrated in later examples.

In addition, several special options are used with overlay programs. These options
are specified on the EXEC statement for the binder job step and are described at
the end of this section.

Note: If a program module in overlay structure is reprocessed by the binder, the
OVERLAY statements and special options (such as OVLY) must be specified. If the
statements and options are not provided, the output program module will not be
in overlay structure.

The symbolic origin of every segment, other than the root segment, must be
specified with an OVERLAY statement. The first time a symbolic origin is
specified, a load point is created at the end of the previous segment. That load
point is logically assigned a relative address at the doubleword boundary that
follows the last byte in the preceding segment. Subsequent use of the same
symbolic origin indicates that the next segment is to have its origin at the same
load point.

In the sample single-region program, the symbolic origin names ONE and TWO
are assigned to the two necessary load points, as shown in Figure 56 on page 218.
Segments 2 and 5 are at load point ONE; segments 3 and 4 are at load point TWO.

The following sequence of OVERLAY statements results in the structure in
Figure 57 on page 220. (The control sections in each segment are indicated by
name.)
Control section CSA
Control section CSB

OVERLAY ONE
Control section CSC

OVERLAY TWO
Control section CSD
Control section CSE

OVERLAY TWO
Control section CSF

OVERLAY ONE
Control section CSG

Note: The sequence of OVERLAY statements reflects the order of segments in the
structure from top to bottom and left to right.

Overlay Programs

Appendix D. Designing and specifying overlay programs 219

Region origin
The symbolic origin of every region, other than the first, must be specified with an
OVERLAY statement. Once a new region is specified, a segment origin from a
previous region should not be specified.

In the sample multiple-region program, the symbolic origin THREE is assigned to
region 2, as shown in Figure 58. Segments 6 and 7 are at load point THREE.

If the following is added to the sequence for the single-region program, the
multiple-region structure is produced:

.

.

.

Segment 3 Segment 4

Segment 5Segment 2

Root
Segment 1

ONE

TWO

Figure 57. Symbolic segment origin in single-region program

Segment 5Segment 2

Root
Segment 1

ONE

REGION 1

REGION 2
THREE

TWO

Segment 4

Segment 6 Segment 7

Segment 3

Figure 58. Symbolic segment and region origin in multiple-region program

Overlay Programs

220 z/OS V2R2 MVS Program Management: User's Guide and Reference

OVERLAY THREE(REGION)
Control section CSH

OVERLAY THREE
Control section CSI

Control section positioning
After each OVERLAY statement, the control sections for that segment must be
specified. The control sections for a segment can be specified in one of three ways:
1. By placing the object decks for each segment after the appropriate OVERLAY

statement
2. By using INCLUDE control statements for the modules containing the control

sections for the segment
3. By using INSERT control statements to reposition a control section from its

position in the input stream to a particular segment.

Any control sections that precede the first OVERLAY statement are placed in the
root segment; they can be repositioned with an INSERT statement. Control sections
from the automatic call library are also placed in the root segment. The INSERT
statement can be used to place these control sections in another specific segment.
Common areas in an overlay program are described in “Special considerations” on
page 224.

An example of each of the three methods of positioning control sections follows.
Each example results in the structure for the single-region sample program. An
example is also given of repositioning control sections from the automatic call
library.

Using object decks
The primary input data set for this example contains an ENTRY statement and
seven object decks, separated by OVERLAY statements:
//LKED EXEC PGM=IEWBLINK,PARM=’OVLY’

.

.

.
//SYSLIN DD *

ENTRY BEGIN
Object deck for CSA
Object deck for CSB

OVERLAY ONE
Object deck for CSC

OVERLAY TWO
Object deck for CSD
Object deck for CSE

OVERLAY TWO
Object deck for CSF

OVERLAY ONE
Object deck for CSG

The EXEC statement illustrates that the OVLY parameter must be specified for
every overlay program to be processed by the binder.

Using INCLUDE statements
The primary input data set for this example contains a series of control statements.
The INCLUDE statements in the primary input data set direct the binder to library
members that contain the control sections of the program.
//LKED EXEC PGM=IEWBLINK,PARM=’OVLY’

.

.

Overlay Programs

Appendix D. Designing and specifying overlay programs 221

.
//MODLIB DD DSNAME=USER.OBJLIB,DISP=OLD
//SYSLIN DD *

ENTRY BEGIN
INCLUDE MODLIB(CSA,CSB)
OVERLAY ONE
INCLUDE MODLIB(CSC)
OVERLAY TWO
INCLUDE MODLIB(CSD,CSE)
OVERLAY TWO
INCLUDE MODLIB(CSF)
OVERLAY ONE
INCLUDE MODLIB(CSG)

In this example, the control sections of the program are not part of the primary
input data set, but are represented in the primary input by the INCLUDE
statements. When an INCLUDE statement is processed, the appropriate control
section is retrieved from the library and processed.

Using INSERT statements
When INSERT statements are used, the INSERT and OVERLAY statements can
either follow or precede all the input modules. However, the order of the control
sections in a segment is not necessarily the same as the order of the INSERT
statements for each segment. An example of each is given, as well as an example
of repositioning automatically called control sections.

Following all input: The control statements can follow all the input modules, as
shown in the following example:
//LKED EXEC PGM=IEWBLINK,PARM=’OVLY’

.

.

.
//SYSLIN DD DSNAME=USER.OBJECT,DISP=OLD
// DD *

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG

The primary input data set contains the object modules for the control sections,
and the input stream is concatenated to it.

Preceding all input: The control statements can also precede all input modules, as
shown in the following example:
//LKED EXEC PGM=IEWBLINK,PARM=’OVLY’
//MODULES DD DSNAME=USER.OBJSEQ,DISP=OLD

.

.

.
//SYSLIN DD *

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE

Overlay Programs

222 z/OS V2R2 MVS Program Management: User's Guide and Reference

OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG
INCLUDE MODULES

The primary input data set contains all the control statements for the overlay
structure and an INCLUDE statement. The data set specified by the INCLUDE
statement contains all the object modules for the structure, and is a sequential data
set.

Repositioning automatically called control sections: The INSERT statement can
also be used to move automatically called control sections from the root segment to
the desired segment. This is helpful when control sections from the automatic call
library are used in only one segment. By moving such control sections, the root
segment will contain only those control sections used by more than one segment.

When a program is written in a higher level language, special control sections are
called from the automatic call library. Assume that the sample program is written
in COBOL and that two control sections (ILBOVTR0 and ILBOSCH0) are called
automatically from SYS1.COBLIB. Ordinarily, these control sections are placed in
the root segment. However, INSERT statements are used in the following example
to place these control sections in segments other than the root segment.
//LKED EXEC PGM=IEWBLINK,PARM=’OVLY’
//MODLIB DD DSNAME=USER.OBJLIB,DISP=OLD
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR

.

.

.
//SYSLIN DD *

ENTRY BEGIN
INCLUDE MODLIB(CSA,CSB)
OVERLAY ONE
INCLUDE MODLIB(CSC)

OVERLAY TWO
INCLUDE MODLIB(CSD,CSE)
INSERT ILBOVTR0
OVERLAY TWO
INCLUDE MODLIB(CSF)
INSERT ILBOSCH0
OVERLAY ONE
INCLUDE MODLIB(CSG)

As a result, segments 3 and 4 contain ILBOVTR0 and ILBOSCH0 respectively.

This example also combines two ways of specifying the control sections for a
segment.

Special options
The binder provides three special job step options (OVLY, LET, and XCAL) for the
overlay program. These options are specified on the EXEC statement for the binder
job step. They must be specified each time a program module in overlay structure
is reprocessed by the binder.

OVLY option
The OVLY option must be specified for every overlay program. If the option is
omitted, all the OVERLAY and INSERT statements are considered invalid, and the
output module is not an overlay structure. If, in addition, the LET option is not
specified, the output module is marked not executable.

Overlay Programs

Appendix D. Designing and specifying overlay programs 223

LET option
The LET option allows marking the output module executable even though certain
error conditions were found during binder processing. When LET is specified, any
exclusive reference (valid or invalid) is accepted. At execution time, a valid
exclusive reference is executed correctly; an invalid exclusive reference usually
causes unpredictable results.

Also with the LET option, unresolved external references do not prevent the
module from being marked executable. This could be helpful when part of a large
program is ready for testing; the segments to be tested might contain references to
segments not yet coded. If LET is specified, the program can be executed to test
those parts that are finished (as long as the references to the absent segments are
not executed). If the LET option is not specified, these unresolved references cause
the module to be marked not executable.

XCAL option
With the XCAL option, a valid exclusive call is not considered an error, and the
program module is marked executable. However, unless the LET option is
specified, other errors could cause the module to be marked not executable. In this
case, the XCAL option is not required.

AMODE and RMODE options
If the OVLY option is specified, the AMODE and RMODE options are ignored, and
a diagnostic message is issued to that effect. Overlay programs are assigned as
RMODE=24 and AMODE=24.

Special considerations
This section discusses several special considerations that affect overlay programs.
These considerations include the handling of common areas, automatic
replacement of control sections, special storage requirements, and overlay
communication.

Common areas
When common areas (blank or named) are encountered in an overlay program, the
common areas are collected as described previously (that is, the largest blank or
identically named common area is used). The final location of the common area in
the output module depends on whether INSERT statements were used to structure
the program.

If INSERT statements are used to structure the overlay program, a named common
area should either be part of the input stream in the segment to which it belongs
or it should be placed there with an INSERT statement.

Because INSERT statements cannot be used for blank common areas, a blank
common area should always be part of the input stream in the segment to which it
belongs.

If INSERT statements are not used, and the control sections for each segment are
placed or included between OVERLAY statements, the binder “promotes” the
common area automatically. The common area is placed in the common segment of
the paths that contain references to it so that the common area is in storage when
needed. The position of the promoted area in relation to other control sections
within the common segment is unpredictable.

Overlay Programs

224 z/OS V2R2 MVS Program Management: User's Guide and Reference

If a common area is encountered in a module from the automatic call library,
automatic promotion places the common area in the root segment. In the case of a
named common area, this can be overridden by use of the INSERT statement.

Assume that the sample program is written in Fortran and common areas are
present as shown in Figure 59. Further assume that the overlay program is
structured with INCLUDE statements between the OVERLAY statements so that
automatic promotion occurs.

Segments 2 and 5 contain blank common areas. Segments 3 and 4 contain named
common area A. Segments 4 and 5 contain named common area B. During binder
processing, the blank common areas are collected and the larger area is promoted
to the root segment (the first common segment in the two paths). The common
areas named A are collected and the larger area is promoted to segment 2. The
common areas named B are collected and promoted to the root segment. Figure 60
on page 226 shows the location of the common areas after processing by the
binder.

CSA

CSG

CSB

CSC

CSD

CSE

CSF

Blank Common A Blank Common B

Named Common B

Named Common BNamed Common A Named Common A

Segment 2

Segment 3 Segment 4

Segment 5

Root
Segment 1

Figure 59. Common areas before processing

Overlay Programs

Appendix D. Designing and specifying overlay programs 225

Automatic replacement
When identically named control sections appear in the modules of an overlay
structure, the second and any subsequent control sections with that name are
ignored. This occurs whether the modules are in segments in the same path or in
exclusive segments. Resolution of external references might therefore cause invalid
exclusive references. Invalid exclusive references cause the binder to mark the
output module not executable unless the exclusive call (XCAL) option is specified
on the EXEC statement (see “XCAL: Exclusive call option” on page 106).

Storage requirements
The virtual storage requirements for an overlay program include the items placed
in the program by the binder.

The items that the binder places in an overlay program are the segment table,
entry tables, and other control information. Their size must be included in the
minimum requirements for an overlay program, along with the storage required by
the longest path and any control sections from the automatic call library.

Every overlay program has one segment table in the root segment. The storage
requirements are:

Length of SEGTAB = (4n + 24) bytes

Where n is the number of segments in the program.

Some segments will have an entry table. The requirements of the entry tables in
the segments in the longest path must be added to the storage requirements for the
program. The requirements for an entry table are:

Length of ENTAB = 12(x + 1) bytes

CSA

CSB

Blank Common

Named Common B

Root
Segment 1

CSGCSC

CSD

CSE

CSF

Named Common A

Segment 2

Segment 3

Segment 4

Segment 5

Figure 60. Common areas after processing

Overlay Programs

226 z/OS V2R2 MVS Program Management: User's Guide and Reference

Where x is the number of entries in the table.

Finally, a NOTE list is required to execute an overlay program. The storage
requirements are:

Length of NOTELST = (4n + 8) bytes

Where n is the number of segments in the program.

Overlay communication
Several ways of communicating between segments of an overlay program are
discussed in this section. A higher level or assembler language program can use a
CALL statement or a CALL macro instruction, respectively, to cause control to be
passed to a symbol defined in another segment. The CALL can cause the segment
to be loaded if it is not already present in storage. An assembler language program
can also use three additional ways to communicate between segments:
1. A branch instruction that causes a segment to be loaded and control to be

passed to a symbol defined in that segment.
2. A segment load (SEGLD) macro instruction, which requests loading of a

segment. Processing continues in the requesting segment while the requested
segment is being loaded.

3. A segment load and wait (SEGWT) macro instruction, which requests loading
of a segment. Processing continues in the requesting segment only after the
requested segment is loaded.

Any of the four methods can be used to make inclusive references. Only the CALL
and branch can be used to make exclusive references. Do not use the SEGLD or the
SEGWT macro instructions to make exclusive references. Both imply that
processing is to continue in the requesting segment. An exclusive reference leads to
erroneous results when the program is executed.

CALL statement or CALL macro instruction
A CALL statement or a CALL macro instruction refers to an external name in the
segment where control is passed. The external name must be defined as an
external reference in the requesting segment. In assembler language, the name
must be defined as a 4-byte V-type address constant. The high-order bit is reserved
for use by the control program and must not be altered during execution of the
program.

When a CALL is used, the requested segment and any segments in its path are
loaded if they are not part of the path already in virtual storage. After the segment
is loaded, control is passed to the requested segment at the location specified by
the external name.

A CALL between inclusive segments is always valid. A return can be made to the
requesting segment by another source language statement, such as RETURN. A
CALL between exclusive segments is valid if the conditions for a valid exclusive
reference are met; a return from the requested segment can be made only by
another exclusive reference, because the requesting segment has been overlaid.

Branch instruction
Any of the branching conventions shown in Table 17 on page 228 can be used to
request loading and branching to a segment. As a result, the requested segment
and any segments in its path are loaded if they are not part of the path already in

Overlay Programs

Appendix D. Designing and specifying overlay programs 227

virtual storage. Control is then passed to the requested segment at the location
specified by the address constant placed in general register 15.

Table 17. Branch sequences for overlay programs

Example Name1 Operation Operand2,3

1 L
BALR

R15,=V(name)
Rn,R15

2

...
ADCON

L
BALR

DC

R15,ADCON
Rn,R15

V(name)

3 L
BAL

R15,=V(name)
Rn,0(0,R15)4

4 L
BAL

R15,=V(name)
Rn,0(R15)5

56 L
BCR

R15,=V(name)
15,R15

66 L
BC

R15,=V(name)
15,0(0,R15)4

76 L
BC

R15,=V(name)
15,0(R15)5

Notes:

1. When the name field is blank, specification of a name is optional.

2. R15 must hold a 4-byte address constant that is the address of an entry name or a
control section name in the requested segment. The address constant must be loaded
into the standard entry point register, register 15.

3. Rn is any other register and is used to hold the return address. This register is usually
register 14.

4. This can also be written so that the index register is loaded with the address constant;
the other fields must be zero.

5. In this format, the base register must be loaded with the address constant; the
displacement must be zero.

6. This example is an unconditional branch; other conditions are also allowed.

The address constant must be a 4-byte V-type address constant. The high-order
byte is reserved for use by the control program and must not be altered during
execution of the program. The BAS and BASR instructions cannot be used.

A branch between inclusive segments is always valid. A return can be made using
the address stored in Rn. A branch between exclusive segments is valid if the
conditions for a valid exclusive reference are met; a return can be made only by
another exclusive reference.

Segment load (SEGLD) macro instruction
The Segment Load macro instruction provides overlap between segment loading
and processing within the requesting segment. As a result of using any of the
examples in Table 18 on page 229, the loading of the requested segment and any
segments in its path is initiated when they are not part of the path already in
virtual storage. Processing then resumes at the next sequential instruction in the
requesting segment while the segment or segments are being loaded. Control can
be passed to the requested segment with either a CALL or a branch, as shown in
Examples 1 and 2, respectively. A SEGWT instruction can be used to ensure that

Overlay Programs

228 z/OS V2R2 MVS Program Management: User's Guide and Reference

the data in the control section specified by the external name is in virtual storage
before processing resumes, as shown in Example 3.

Table 18. Use of the SEGLD macro instruction

Example Name1 Operation Operand2,3

1 SEGLD
CALL

external name
external name

2 SEGLD
branch

external name
external name

3 SEGLD
SEGWT
L

external name
external name
Rn,=V(name)

Notes:

1. When the name field is blank, specification of a name is optional.

2. External name is an entry name or a control section name in the requested segment.

3. Rn is any other register and is used to hold the return address. This register is usually
register 14.

The external name specified in the SEGLD macro instruction is defined with a
4-byte V-type address constant. The high-order bit is reserved for use by the
control program and must not be altered during execution of the program.

Segment wait (SEGWT) macro instruction
The SEGWT macro is used to stop processing in the requesting segment until the
requested segment is in virtual storage.

As a result of using any of the examples in Table 19, no further processing takes
place until the requested segment and all segments in its path are loaded when not
already in virtual storage. Processing resumes at the next sequential instruction in
the requesting segment after the requested segment has been loaded.

Table 19. Use of the SEGWT macro instruction

Example Name1 Operation Operand2, 3

1

ADCON

SEGLD
SEGWT
L
branch
DC

external name
external name
Rn,ADCON

V(name)

2 SEGWT
L

external name
Rn,=V(name)

Notes:

1. When the name field is blank, specification of a name is optional.

2. External name is an entry name or a control section name in the requested statement.

3. Rn is any other register and is used to hold the return address. This register is usually
register 14.

If the SEGWT and SEGLD macro instructions are used together, overlap occurs
between processing and segment loading. Use of the SEGWT macro instruction
serves as a check to see that the necessary information is in storage when it is
finally needed (see Example 1 in Table 19). In Example 2 in Table 19, no overlap is

Overlay Programs

Appendix D. Designing and specifying overlay programs 229

provided. The SEGWT macro instruction initiates loading, and processing is
stopped in the requesting segment until the requested segment is in virtual
storage.

The external name specified in the SEGWT macro instruction must be defined with
a 4-byte V-type address constant. The high-order bit is reserved for use by the
control program and must not be altered during execution of the program.

If the contents of a virtual storage location in the requested segment are to be
processed, the entry name of the location must be referred to by an A-type address
constant.

Overlay Programs

230 z/OS V2R2 MVS Program Management: User's Guide and Reference

Appendix E. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the Contact z/OS or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number

© Copyright IBM Corp. 1991, 2015 231

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html

(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In the example, if you include the FILE

232 z/OS V2R2 MVS Program Management: User's Guide and Reference

keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix E. Accessibility 233

234 z/OS V2R2 MVS Program Management: User's Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1991, 2015 235

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

236 z/OS V2R2 MVS Program Management: User's Guide and Reference

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: http://www.ibm.com/

software/support/systemsz/lifecycle/
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This book primarily documents information that is NOT intended to be used as
Programming Interfaces of z/OS.

This book also documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of z/OS. This information is
identified where it occurs, either by an introductory statement to a topic or section
or by the following marking:

Programming interface information

End of programming interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available at "Copyright and trademark
information".

Notices 237

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

238 z/OS V2R2 MVS Program Management: User's Guide and Reference

Glossary

This glossary defines technical terms and
abbreviations used in program management
documentation. If you do not find the term you
are looking for, refer to the index of the
appropriate z/OS manual or view Glossary of
Computing Terms, located at:
http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from:
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies can be
purchased from the American National
Standards Institute, 1430 Broadway, New York,
New York 10018.

v The Information Technology Vocabulary,
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1).

adata Associated data. A collective term
referring to the set of nontext,
nonbinder-defined data classes stored in
the program object. ADATA is used by
the language and binder products to save
intermediate data that can be of later use
by utilities, debugging routines, etc.
ADATA is not required for execution or
rebinding.

A-con A-type constant, an address

adcon Address constant; a collective term for a
field containing an address, a length, or
an offset.

alias An alternate name for a member of a
partitioned data set or PDSE.

alternate entry point
A load module or program object alias for
which the entry point is not the primary
entry point. Other program attributes can
differ within a defined alias from those of
the primary entry point.

AMODE (addressing mode)
The attribute of a program module that
identifies whether the program entry

point can receive control in 24-bit
addressing mode, 31-bit addressing mode,
or either.

attributes
See program module attributes.

automatic library call
The process by which the binder resolves
external reference by including additional
members from the automatic call library.

bind To combine one or more control sections
or program modules into a single
program module, resolving references
between them, or to assign virtual storage
addresses to external symbols.

binder application programming interface
The set of binder entry points that allow a
calling program to request specific
binding and editing services individually.

binder batch interface
The set of binder entry points that allow
it to perform binding and loading
services.

binder dialog
A sequence of calls to the binder
application programming interface to
accomplish a specific task.

binder processing intent
The intended use of a binder workmod,
specified at the time the workmod is
created. The ACCESS processing intent
indicates that the workmod will be used
to copy or access program module data
and that no binding will be requested.
The BIND processing intent indicates that
the workmod will be used to collect and
edit program module data, and then
bound and either saved or loaded into
virtual storage for execution.

class A cross section of program module data
that is consistent in format and class.

Coded Character Set Identifier (CCSID)
A 16-bit number that identifies a specific
encoding scheme identifier, character set
identifiers, code page identifiers, and

© Copyright IBM Corp. 1991, 2015 239

http://www.ibm.com/software/globalization/terminology/

additional coding required information.
The CCSID uniquely identifies the coded
graphic character representation used.

common area
A control section used to reserve a virtual
storage area that can be referred to by
other modules.

common section
Another term for common area.

CSECT (control section)
The part of a program specified by the
programmer to be an indivisible
relocatable unit.

DFSMSdfp
A DFSMS base element of z/OS, that
provides functions for storage
management, data management, program
management, device management, and
distributed data access.

DFSMS
An IBM z/OS licensed program that
provides storage, data, and device
management functions. DFSMS consists of
DFSMSdfp, DFSMSdss, DFSMShsm, and
DFSMSrmm.

dialog See binder dialog.

dialog token
A doubleword token used as an identifier
for a specific binder dialog.

directory entry
A logical record in a program library
directory that contains a member or alias
name, a pointer to that member, and
attributes of that member.

dynamic link library
A file containing executable code and data
bound to a program at load time or run
time. The code and data in a dynamic
link library can be shared by several
applications simultaneously.

element
See workmod element.

entry point
The address or label of the first
instruction executed on entering a
computer program. A computer program
can have a number of different entry

points. The primary entry point is also
called the main entry point.

exclusive reference
A call from a section in one overlay path
to one in a different path. Because an
exclusive call causes the calling section to
be overlaid, return to the calling section is
not possible.

exclusive segments
Segments in the same region of an
overlay program that are not in the same
path. Exclusive segments cannot be in
virtual storage simultaneously.

external name
A name that can be referred to by any
control section or separately assembled or
compiled module; that is, a name that is
defined in another module.

external reference
A reference to a symbol defined as an
external name in another program or
module.

external symbol
A control section name, entry point,
common area name, part name,
pseudoregister, or external reference that
is defined or referred to in a particular
module.

IEWFETCH
See program fetch.

inclusive reference
A call from a segment in storage to an
external symbol in a segment in the same
path. An inclusive call does not cause
overlay of the calling segment.

inclusive segments
Segments in the same region of an
overlay program that are in the same
path. Inclusive segments can be in virtual
storage simultaneously.

intent See binder processing intent.

J-con An adcon containing a length.

load module
An executable program stored in a
partitioned data set program library. A

240 z/OS V2R2 MVS Program Management: User's Guide and Reference

load module cannot be stored in a PDSE
or z/OS UNIX file. See also program object.

loader token
An 8-byte token passed to the Program
Loader to request loading of a specified
deferred-load class, such as C_WSA..

mangled name
An external name, such as a function or
variable name, which has been encoded
during compilation to include type and
scope information.

merge class
A text class containing only named Parts.
Only the first instance of a Part is
retained, but all other instances with the
same name are checked to verify that they
have the same length and alignment.

module map
A listing of a program module showing
the length and module offset of each
section.

name space
The set of all possible names composed of
characters from the binder's character set,
within which no duplicates are allowed.
All external symbols have an assigned
name space during binder processing and
within program objects. The following
name space values are defined:
1. normal external names
2. pseudo register names
3. parts (usually external data items such

as data items in C writable static).

object module
A collection of one or more compilation
units produced by an assembler, compiler,
or other language translator and used as
input to the binder or linkage editor.

overlay entry table
A special section created by the binder or
linkage editor at the end of an overlay
segment that allows branching into an
overlay segment in a different path.

overlay path
All of the segments in an overlay
structure between a given segment and
the root segment.

overlay program
A program module format for which
some control sections occupy the same
virtual storage addresses as others. The
sections are organized into overlay
segments, which are brought into storage
as needed during execution and then
overlaid by other segments when no
longer needed.

overlay region
In an overlay structure, a contiguous area
of virtual storage where segments can be
loaded independently of paths in other
regions. Only one path within a regions
can be in virtual storage at any given
time.

overlay segment
The smallest unit of an overlay program
that can be separately loaded by the
overlay supervisor. An overlay segment
consists of one or more sections and is
always loaded at the same offset relative
to the start of the program module.

overlay segment table
A table located at the beginning of the
root segment of an overlay program that
describes the segments of the program.

page-map
A technique for loading program objects
into virtual storage. The pages of a
program object are brought into central
storage when a page fault occurs.

part A named subdivision of an merge class,
used to describe a pseudoregister or
external data item. Parts can be shared by
all sections in the bound program object.

partitioned data set (PDS)
A data set on direct access storage that
contains a directory followed by
contiguous partitions, called members.
Each partition can contain an executable
load module or a sequential data file. A
PDS cannot contain a program object (see
“load module” on page 240 and “program
object” on page 242).

partitioned data set extended (PDSE)
A system-managed data set that is
functionally similar to a PDS but contains
an index over scattered members, so is
self-reorganizing. A PDSE can contain
either executable program objects or

Glossary 241

sequential data files, but cannot contain a
mixture of the two types. A PDSE cannot
contain a load module (see “load
module” on page 240 and “program
object”).

permanent data set
A user-named data set that is normally
retained for longer than the duration of a
job or interactive session. Contrast with
temporary data set.

primary name
The name contained in the primary
directory entry for a library member, used
for creating, copying, and deleting the
member. A library member always has
one primary name and zero or more
aliases.

processing intent
See binder processing intent.

program fetch (IEWFETCH)
A program that prepares programs for
execution by loading them at specific
storage locations and readjusting each
relocatable address constant.

program library
A partitioned data set or PDSE that
always contains named members.

program management
The task of preparing programs for
execution, storing the programs, load
modules, or program objects in program
libraries, and executing them on the
operating system.

program management binder
See binder.

program module
The output of the binder. A collective
term for program object and load module.

program module attributes
The characteristics of a program module
that are stored in the program module
directory entry, and are used to control
the loading, rebinding, and other
processing of the module.

program object
All or part of a computer program in a
form suitable for loading into virtual
storage for execution. Program objects are
stored in PDSE program libraries or z/OS
UNIX files and have a number of
functional enhancements over traditional

load modules. Program objects are
produced by the binder.

pseudoregister
An external dummy section used to
provide global addressability to
dynamically allocated control blocks, data
areas, and other resources.

Q-con Q-type address constant; an offset.

reenterable
The reusability attribute that allows a
program to be used concurrently by more
than one task. A reenterable module can
modify its own data or other shared
resources, if appropriate serialization is in
place to prevent interference between
using tasks. See reusability.

refreshable
The reusability attribute that allows a
program to be replaced (refreshed) with a
new copy without affecting its operation.
A refreshable module cannot be modified
by itself or any other module during
execution. See reusability.

reusability
The attribute of a module or section that
indicates the extent to which it can be
reused or shared by multiple tasks within
the address space. See refreshable,
reenterable, and serially reusable.

RMODE (residence mode)
The attribute of a program module that
identifies where in virtual storage the
module is to reside (above or below 16
MB).

root segment
The first segment of an overlay program.
This segment remains in virtual storage at
all times during the execution of the
program

section
A generic name given to the smallest unit
of a program which can be individually
manipulated during building. Sections are
named by the programmer, and can be
moved, replaced, or deleted during
link-editing or binding.

242 z/OS V2R2 MVS Program Management: User's Guide and Reference

segment
See overlay segment. Class segment is a
continuous unit of text in a multiple part
program object, consisting of one or more
text classes, which can be separately
loaded by the program loader under
control of assigned loader attributes.

serially reusable
The reusability attribute that allows a
program to be executed by more than one
task in sequence. A serially reusable
module cannot be entered by a new task
until the previous task has exited. See
reusability.

Storage Management Subsystem (SMS)
A DFSMS facility used to automate and
centralize the management of storage.
Using SMS, a storage administrator
describes data allocation characteristics,
performance and availability goals,
backup and retention requirements, and
storage requirements to the system
through data class, storage class,
management class, storage group, and
ACS routine definitions.

system data
The data sets required by MVS or its
subsystems for initialization and control.

system status index (SSI)
A field in the directory entry of a
program module which can be used to
record current maintenance status.

temporary data set
An uncataloged data set whose name
begins with & or &&, that is normally
used only for the duration of a job or
interactive session. Contrast with
permanent data set.

text The classes of module data representing
the instructions and data of the program.
Locations in text classes may be the target
of adcons; locations in non-text classes
may not.

transportable program
A program object that has been converted
into a nonexecutable form for transfer to
other systems.

true alias
A program alias for which the entry point
is the same as the primary entry point.

UFS See UNIX file system.

UNIX file system
A section of the UNIX file tree that is
physically contained on a single device or
disk partition and that can be separately
mounted, dismounted, and administered.
Also see hierarchical file system.

V-con V-type constant, containing an address.

workmod
A logical data structure in binder working
storage used to assemble or otherwise
operate on a program module.

workmod element
A subdivision of workmod data that is
identified by a section and class name.
The element is the normal unit of data
transfer in binder GET and PUT data
calls. See CSECT.

workmod token
A doubleword token used to identify a
specific workmod in binder storage.

Glossary 243

244 z/OS V2R2 MVS Program Management: User's Guide and Reference

Index

Special characters
$PRIVATE 143, 186
**GO 93

A
A-con

definition 239
abbreviation/demangled name

report 156
AC option

purpose 78
syntax 78

access intent
definition 239

accessibility 231
contact IBM 231
features 231

adata 239
adcon

relocating 25
setting high order bit 89
using 16

adcon (address constant)
definition 239

alias
definition 239
deleting 6
description 109
linkage editor maximum 175
specifying 109

ALIAS statement
example 112
linkage editor differences 175
purpose 109
syntax 109

ALIASES option
coding 79
purpose 79
syntax 79

ALIGN2 option
purpose 79
syntax 79

aligning sections
2KB boundary 79
4KB boundary

with ORDER statement 69, 130
with PAGE statement 133

alignment
description 112
specifying 112

ALIGNT statement
example 113
purpose 112
syntax 112

alternate entry point
definition 239
specifying 109
specifying AMODE 128

AMASPZAP
operations on program modules 7

AMBLIST
additional information 167
example 166
JCL 166
listing program and object

modules 7
using for diagnosis 166

AMODE (addressing mode)
default value 28
definition 239
description 27
for overlay programs 30, 224
hierarchy 28
linkage editor differences 171
purpose 80
specifying 80, 128
syntax 80
valid with RMODE 29
validation 29
values 27

APF 78
archive libraries 55
assigning authorization codes 137
assigning load module block size

by binder 39
with DC option 84
with DCBS option 85
with MAXBLK option 92

assigning SSI data 138
assistive technologies 231
ATTACH macro

invoking from batch loader 173
linkage editor 173

authorization code 78, 137
assigning 78

authorized program facility
code, assigning 78

autocall 54, 55, 56
AUTOCALL

description 113
requesting 113

AUTOCALL statement
example 114
purpose 113
syntax 113

autocall, incremental 54
automatic library call

defining SYSLIB 37, 57
definition 239
resolving external references 53
suppressing 58, 80
using LIBRARY statement 57, 125
using NCAL option 80

B
batch loader

data set requirements 172
ddname list 174

batch loader (continued)
description 5
differences from binder 171
incompatible options 178
interpreting output 188
invoking

from a program 173
in batch 172
under TSO 175

names 172
storage requirements 181
supported binder options 177
virtual storage requirements 181

bind
definition 239

bind intent
definition 239

binder
diagnosis 159
serviceability 159

binder (program management binder)
description 2
input and output

sources 21, 46
invoking

from a program 44
in batch 33
under TSO 43

JCL example 33
loading programs 27
program modules 2
program names 34
specifying options 71
specifying virtual storage size 35

binder application programming interface
definition 239

binder batch interface
definition 239
invoking 33

binder dialog
definition 239

binder fill character
specifying 89

binder options 71
AC option 78
ALIASES 79
ALIGN2 79
AMODE 80
CALL 80
CASE 81
COMPAT 81
compatibility level 81
COMPRESS 83
DC 84
DCBS 85
DYNAM 85
EDIT 86
environmental 74
EP 86
EXITS 87
EXTATTR 87

© Copyright IBM Corp. 1991, 2015 245

binder options (continued)
FETCHOPT 88
FILL 89
GID 89
HOBSET 89
including from a data set 94
INFO 90
LET 90
LINECT 90
LIST 90
LISTPRIV 92
LONGPARM 91
MAP 92
MAXBLK 92
MODMAP 93
MSGLEVEL 93
NAME 93
negative 74
OL 93
OPTIONS 94
OVLY 94
PARM 74
PATHMODE 95
primary 74
PRINT 96
RES 96
REUS 96
RMODE 97
SCTR 99
SIGN 99
SIZE 99
specifying 74
SSI 100
STORENX 100
STRIPCL 101
STRIPSEC 101
summary 75
SYMTRACE 102
syntax conventions 72
TERM 103
TEST 103
TRAP 104
UID 104
UPCASE 105
WKSPACE 105
XCAL 106
XREF 106

binder output
building a map of module

contents 93
controlling content 90, 92
controlling message display 93
interpreting 141
requesting cross-reference table 106
requesting module map 92
sending messages to SYSTERM 103
specifying lines per page 90
suppressing SYSLOUT 96

binder processing intent
definition 239

Binder service level report 157
boundary

specifying alignment 112
branch instruction

in overlay programs 227

C
C370lib data sets 54
c89

diagnosis 167
guidelines for diagnosis 167

call library
for linkage editor and batch

loader 172
CALL macro

in overlay programs 227
CALL option

purpose 80
syntax 80

CALL statement
in overlay programs 227

CASE option
purpose 81
syntax 81

cataloged procedure 41
CESD (composite external symbol

dictionary)
description 21

CHANGE statement
example 63, 115
linkage editor differences 175
purpose 62
syntax 114

changing external symbols 62, 114
checkpoint support 10
class

definition 239
classes 14

parts, of text classes 15
coded character set identifier

definition 239
coding JCL 33
combing modules 11
comment rules 109
common area 14

aligning
example 69
with ORDER statement 69, 130
with PAGE statement 133

blank or named 18
changing 114
definition 240
deleting 66
description 18
encoding the name 26
in overlay programs 224
inserting 124
ordering 67, 130
replacing 65

common section
definition 240

communicating between overlay
segments 227

COMPAT option
default 82
purpose 81
syntax 81

compatibility
downward 84

compatibility level 81
COMPRESS option

purpose 83
compression 83

concatenated data set 172
contact

z/OS 231
continuing a statement

binder 107
linkage editor 175

control section
editing 175
replacing 175

control statement
continuing

binder 107
linkage editor 175

Language Environment 30
placement 62, 109
precedence 109
primary input 47
purpose 107
reference 107
separate data set 48
syntax conventions 107

controlling message display 93
converting program modules 6
COPYGRP

and long names 6
copying program modules 6
creating executable programs 11, 21

diagram 2, 12
creating overlay programs 94, 124, 132,

209
cross-reference report

ddname versus pathname 157
cross-reference table

example 149
binder 150
linkage editor 187

interpreting 149
renamed symbol 149
requesting 106

CSECT (control section)
aligning

with ORDER statement 130
with PAGE statement 133

automatic replacement
in overlay programs 226

changing 114
definition 240
deleting 135
dependency 210
encoding 26
encoding name 26
inserting 124
ordering 130
overview 13
positioning in overlay programs 221
replacing

with REPLACE statement 135
CSECT (section)

aligning
example 69
with ORDER statement 69

automatic replacement 64
deleting 66

example 67
editing 61
ordering 67

example 68

246 z/OS V2R2 MVS Program Management: User's Guide and Reference

CSECT (section) (continued)
replacing

description 63
example 64, 66
with REPLACE statement 65

D
data set

additional includes 41
automatic library call 37
call library 57
cataloged procedure 42
concatenated

binder 52
linkage editor and batch

loader 172
diagnosis 159
diagnosis output 159
diagnostic 182
diagnostic output 37
included for linkage editor and batch

loader 172
primary input 36

defining 45
primary output 38
required 36
side file output 40
terminal diagnostic output 40

DBCS (double byte character set)
shift-in and shift-out codes 26

DC option
purpose 84
syntax 84

DCBS option
purpose 39, 85
syntax 85

DD statement
allocating under TSO 43
cataloged procedure 42
coding for batch 33
description 35
required 36

ddname list
for batch loader 174
for linkage editor 173

ddname vs. pathname report 157
deleting external symbols

description 66
differences with linkage editor 175
with REPLACE statement 135

deleting program modules and aliases 6
deleting sections 135
DFSMS/MVS

definition 240
DFSMSdfp

definition 240
diagnosis

binder 159
c89 command 167
capturing error messages 167
ecode 162
IEWDUMP data set 167
IEWTRACE 161
IEWTRACE data set 167
invocation parameters 167
ld 167

diagnosis (continued)
ld command 167
output listing 167
UNIX shell 167

diagnosis aid
AMBLIST 166
data set contents 159
dump generation 164
IDCAMS 167
IEWDUMP 163
IEWDUMP data set 165
IEWGOFF 165
workmod 164

diagnostic
linkage editor 182
output 182

diagnostic aids
AMASPZAP 7
AMBLIST 7
binder messages 96
error messages 184
loader serviceability 191
sample output 185

dialog token
definition 240

directory entry
contents 21
definition 240

DLL
binder support for 31

downward compatibility 84
dump data

generation 164
interpreting 164
locating 165

dumping program modules 7
DYNAM option

purpose 85
syntax 85

dynamic link library
binder support for 31
definition 240

E
ecode

diagnosis 162
example 163
interpreting 162
request 168

EDIT option
purpose 86
syntax 86

element
definition 240

element definition 19
entry name

changing 114
deleting duplicate 64
encoding 26
specifying 116

entry point
definition 240
deleting 66, 135
precedence 116
replacing 135
specifying 61, 86, 116

entry point (continued)
specifying AMODE 28

with AMODE option 80
with MODE statement 128

ENTRY statement
example 117
linkage editor differences 176
purpose 116
syntax 116

EP option
purpose 86
syntax 86

ESD (external symbol dictionary)
description 18
program modules 21

exclusive call
authorizing 106, 224

exclusive reference
definition 240
description 214

exclusive segment
definition 240
description 213

EXEC statement
coding in batch 34
PARM field 34, 35
PGM parameter 34
REGION parameter 35
specifying with JCL 35

executing overlay programs 215
EXITS, binder option

purpose 87
specifying 87
syntax 87

EXPAND statement
example 118
linkage editor differences 176
purpose 117
syntax 117

expanding sections 117, 176
with not-editable attribute 86

EXTATTR binder option
purpose 87
specifying 87
syntax 87

external label
description 18

external name
definition 240
encoding 26
using 16

external reference
changing 114
definition 240
deleting 66, 135
description 18
replacing 135
resolving 16, 26, 53
suppressing resolution 58

external symbol
changing 62, 114

example 63
creating hidden aliases 79
definition 240
deleting 66, 135, 175
description 16
duplicate 62

Index 247

external symbol (continued)
importing 119
renaming 134
replacing 135
warning on delete 64

F
FETCHOPT option

default 88
description 5
purpose 88
syntax 88

FILL option
default 89
purpose 89
syntax 89

G
GID 89
GOFF (generalized object file format)

binder support 11
data set 165
diagnosis help 165
IEWGOFF 165
record formats 165

H
hidden alias

definition 79
displaying 79

high order bit 89
HOBSET option

default 90
purpose 89
syntax 89

I
IDCAMS

JCL example 167
printing utility 167
z/OS UNIX file 167

IDENTIFY statement
example 119
linkage editor differences 176
purpose 118
syntax 118

IDR (identification record)
DBCS encoding 119
listing 119
replacing 63
size limitation 118
specifying 118
types of records 20

IEBCOPY
alter RLD 6
operations on program modules 6

IEHLIST 7
IEHPROGM 6
IEWDIAG

for diagnosis 160

IEWDUMP
allocation 165
contents 164
diagnosis 163
example 164
explanation 164

IEWGOFF
allocation 166
data set 165
diagnosis 165
interpreting 165

IEWPARMS DD statement
coding in batch 37
description 37

IEWTPORT (transport utility) 7
description 7

IEWTRACE
allocation 163
for diagnosis 160
interpreting 161
sample 162

immediate mode 10
IMPORT statement 119

example 121
syntax 119

imported and exported symbol table
interpreting 151
suppressing 90

importing symbols 119
INCLUDE statement 121

coding DD statement 41
creating overlay programs 221
example 123
linkage editor differences 172
processing nested 48
purpose 48
syntax 121

including input 48
including modules 121
inclusive reference

definition 240
description 214

inclusive segment
definition 240
description 213

incremental autocall 54
specifying 113

INFO option
purpose 90
syntax 90

input event log
description 141
example 142

INSERT statement
creating overlay programs 222
example 124
purpose 124
syntax 124

inserting sections 124
inspecting program modules 7
interpreting output

batch loader 188
binder 141
linkage editor 182

invoking binder cataloged procedure
LKED procedure 41
LKEDG procedure 42

invoking the batch loader
from a program 173
in batch 172
under TSO 175

invoking the binder
from a program 44
in batch 33
under TSO 43

invoking the linkage editor
from a program 173
in batch 172
under TSO 175

J
J-con

definition 240
JCL (job control language)

AMBLIST example 166
coding

binder 33
example 33
EXEC statement 34
IDCAMS example 167
PARM field 34, 35
passing modules 46

K
keyboard

navigation 231
PF keys 231
shortcut keys 231

L
ld

for diagnosis 167
guidelines for diagnosis 167

LET option
creating overlay programs 224
purpose 90
syntax 90

LIBRARY statement
coding DD statement 41
example 58
examples 127
purpose 57
syntax 125

LINECT option
default 90
purpose 90
syntax 90

LINK command 43
LINK macro

invoking from batch loader 173
linkage editor 173

link pack area
listing 7
search 96
searching 54
suppressing search 96

linkage editor
data set requirements 172
ddname list 173
description 5

248 z/OS V2R2 MVS Program Management: User's Guide and Reference

linkage editor (continued)
diagnostic aids 171
differences from binder 171
incompatible options 178
interpreting output 182
invoking

in batch 172
under TSO 175

invoking from a program 173
names 172
supported binder options 177
virtual storage requirements 179

LIST option
default 91
purpose 90
syntax 90

listing IDR data 119
listing program and object modules 7
listing program library directories 7
LISTPRIV option

default 92
INFORM 92
purpose 92
syntax 92

LLA (Library Lookaside) 10
LOAD macro

invoking from batch loader 173
linkage editor 173

load module
assigning block size 39, 85, 92
definition 240
description 11
disposition messages 183
downward compatibility 84
error messages 184
size limitation 117
structure 17

loader
diagnostic aids 171
serviceability aids 191

loader (program management loader)
description 4
relationship with program fetch 4

loader token
definition 241

LOADGO command 43
loading programs 27

diagram 2
syntax of PARM field 35
with the batch loader 171
with the binder 34

long-symbol abbreviation table
description 155

LONGPARM option
default 91
purpose 91
syntax 91

M
mangled name

definition 241
MAP option

linkage editor differences 178
purpose 92
syntax 92

marking program modules
executable 90

matching for C370LIB and archive
libraries 56

MAXBLK option
purpose 92
syntax 92

merge class
definition 241

message summary report 157
messages

batch loader 188
linkage editor 182
load module 184

migration
linkage editor to binder 193

mixed case 81
MODE statement

example 129
purpose 128
syntax 128

MODMAP option
purpose 93
syntax 93

module
description 11
editing 61
passing from prior job 47
passing from prior job step 46

module map
definition 241
example 144

batch loader 188
linkage editor 186

interpreting 143
requesting 92

move mode 10
MSGLEVEL option

default 93
purpose 93
syntax 93

N
NAME option

default 93
purpose 93
syntax 93

name space
definition 241

NAME statement
example 130
linkage editor differences 176
purpose 129
syntax 129

name, long restriction 6
naming program modules 93, 129
navigation

keyboard 231
NCAL option

definition 59
syntax 80

never-call option
definition 59
specifying 80, 125
with LIBRARY statement 59

not-editable attribute 86

Notices 235

O
object module

as primary input 46
definition 241
description 11
including 121
structure 17

OL option
purpose 93
syntax 93

only-loadable attribute 93
operation summary

description 152
example 153

OPT (set options)
control statement, binder 138
description 138

options data set 94
coding in batch 37
description 37

OPTIONS option
purpose 94
syntax 94

options supported by linkage editor 177
options, setting, SETOPT 138
ORDER statement

example 68, 69, 131
linkage editor differences 176
purpose 67, 69
syntax 130

ordering sections
example 67
with linkage editor 176
with ORDER statement 130

output data set
contents 159
diagnosis 159
diagnostic 182

output header
description 141
listing 183

overlay entry table
contents 216
definition 241

overlay path
definition 241
description 209

overlay program
AMODE and RMODE attributes 224
communicating between

segments 227
creating 132, 218
definition 241
designing 209
executing 215
INSERT statement 124
inserting sections 124
length 212
multiple region 217
OVERLAY statement 132
OVLY option 94
single region 210
special considerations 224
virtual storage requirements 226

Index 249

overlay region
assigning an origin 132, 220
definition 241
description 210

overlay segment
assigning an origin 132, 213
definition 241
dependency 211
description 209
determining 210

overlay segment table
definition 216, 241

OVERLAY statement
creating overlay programs 218
example 133
purpose 132
syntax 132

OVLY option
purpose 94
syntax 94

P
page alignment

2KB boundary 79
4KB boundary

with ORDER statement 69, 130
with PAGE statement 133

page mode loading 10
PAGE statement

example 69, 134
purpose 69
syntax 133

page-map
definition 241
specifying options 88

PARM field
cataloged procedure 42
precedence 109
specifying binder options 71
syntax conventions 72
syntax for loading 35

part
definition 241

part reference
description 18
sharing between sections 18

partitioned data set (PDS)
definition 241

partitioned data set extended (PDSE)
definition 241

parts, of text classes 15
PATHMODE option

purpose 95
syntax 95

PDS (partitioned data set)
containing primary input 46

PDSE (partitioned data set extended)
containing primary input 46

performing incremental autocall 113
permanent data set

definition 242
primary input

contents 46
primary name

definition 242

PRINT option
purpose 96
syntax 96

private code 92
description 18

private section list example 142
program fetch

definition 242
relationship with program

management loader 4
program library

as automatic call library 57
as primary input 46
as primary output 34
definition 242

program management
components 1
definition 242
diagnostic aids 171
services 1

program module
addresses 25
AMODE and RMODE attributes 27
as primary input 46
as primary output 34
assigning addresses 25
assigning authorization code 78, 137
assigning SSI data 138
attributes 20
contents 21
definition 242
description 11
dumping 7
example 143, 144
including 121
inspecting 7
map 143
marking executable 90
setting options, SETOPT 138
specifying a name 93, 129
specifying RMODE 97, 128
updating SSI data 7

program module attribute
definition 242
not-editable 86
not-executable 90, 100, 178
only-loadable 93
reusability 96

specifying for linkage editor 178
where stored 20, 28

program object
access 9
creating in z/OS UNIX file 23
DASD storage 9
definition 242
description 3, 11, 81
restrictions 9
size limitation 117
structure 17
structure overview 8

pseudoregister
changing 114
definition 242
deleting 66, 135
description 18
encoding the name 26
replacing 135

R
reenterable attribute

definition 242
description 96
specifying 96

refreshable attribute
definition 242
description 97
specifying 97

relocation
definition 25

removed classes and sections report 148
RENAME statement

example 135
renamed-symbol cross reference

table 149
renaming 59
renaming external symbols

syntax 134
renaming program modules and

aliases 6
renaming symbols 134
REPLACE statement

example 66, 67, 137
linkage editor differences 175, 176
purpose 65, 66
syntax 135

replacing external symbols 135
replacing IDR data 63
replacing sections

description 63, 65
linkage editor differences 175
with REPLACE statement 135

reprocessing 86
RES option

purpose 96
syntax 96

resolving external references
description 26, 53, 59
with LIBRARY statement 125

restart support 10
restricted no-call option

definition 58
specifying 125
with LIBRARY statement 58

restriction
executing program objects in z/OS

UNIX file 24
return codes

batch loader 189
binder 207
IEWBLDGO 207
IEWBLINK 207
linkage editor 187

REUS option
linkage editor differences 178
purpose 96
syntax 96

reusability attribute
definition 242
description 96
specifying 96

RLD (relocation dictionary)
description 19

RMODE
specifying 97

250 z/OS V2R2 MVS Program Management: User's Guide and Reference

RMODE (residence mode)
default value 28
definition 242
description 27
for overlay programs 30, 224
hierarchy 28
linkage editor differences 171
specifying 128
valid with RMODE 29
validation 29
values 28

RMODE option
purpose 97
syntax 97

root segment
definition 242
description 209

S
scatter load option 99
SCTR option

purpose 99
syntax 99

secondary input
INCLUDE type 48

section 13
definition 18, 242

section/class/element structure
diagram 14

SEGLD macro
in overlay programs 228

SEGWT macro
in overlay programs 229

sending comments to IBM xv
serially reusable attribute

definition 243
description 96
specifying 96

service aids 7
SETCODE statement

example 138
precedence 137
purpose 137
syntax 137

SETOPT statement
purpose 138
syntax 138

SETSSI statement
precedence 139
purpose 138
syntax 138

setting
high order bit 89

short mangled name report 155
shortcut keys 231
SIGN option

purpose 99
syntax 99

simple module
example 144

SIZE option
batch loader 182
purpose 99
syntax 99
values for linkage editor 178

source module
creating programs 171
description 11

specifying
binder fill character 89
binder group id 89
binder high order bit setting 89
binder level 81
binder load options 88
binder message display 93
binder options in a data set 94
binder output 90, 93
binder output content 92
binder page-map options 88
EXTATTR 87
information type 90
lines per page 90
map of module contents 93
output content 90
private code 92
reusability attributes 96
RMODE 97
virtual storage size with SIZE 99

specifying aliases and alternate entry
points 109

specifying alignment boundary 112
specifying AMODE

description 27
with AMODE option 80
with MODE statement 128

specifying binder input
in batch mode 45

specifying binder options
on EXEC statement PARM field 34,

71
specifying binder output

cross-reference table 106
module map 92

specifying call libraries 57, 125
specifying control statements 47
specifying entry points 86, 116
specifying exit 87
specifying IDR data 118
specifying linkage editor options 177
specifying reusability attributes 178
specifying RMODE 28, 128
specifying upper or mixed case 81
specifying virtual storage size

batch loader 181
binder 35, 99, 105
linkage editor 179
with REGION parameter 35
with SIZE option 99
with WKSPACE option 105

SSI (system status index)
assigning 100, 138
data 100
definition 243
description 138
purpose 100
syntax 100
updating 7

storage management subsystem (SMS)
definition 243

storage requirements
batch loader 181
binder 35

storage requirements (continued)
linkage editor 179

STORENX option
purpose 100
syntax 100

storing not-executable modules 100
STRIPCL option

purpose 101
syntax 101

STRIPSEC option
purpose 101
syntax 101

summary of changes xvii
Summary of changes xvii
suppressing external reference

resolution 58, 80, 125
suppressing IMPORT listing 90
symbols 12
SYMTRACE option

purpose 102
syntax 102

syntax
conventions 107
errors 109

SYSDEFSD DD statement
coding in batch 40
description 40

SYSLIB DD statement
coding in batch 37
description 37
purpose 57
under TSO 43

SYSLIN DD statement
cataloged procedure 42
coding in batch 36
description 36
linkage editor and batch loader

requirements 172
primary input 46

SYSLMOD
set z/OS UNIX file attributes 95

SYSLMOD DD statement
block size 85
cataloged procedure 42
coding in batch 38
description 38
under TSO 43

SYSLOUT DD statement
batch loader requirement 172
coding in batch 37
description 37
suppressing output 96

SYSPRINT DD statement
cataloged procedure 42
coding in batch 37
description 37
linkage editor requirement 172

system data
definition 243

SYSTERM DD statement
coding in batch 40
coding TERM option 103
description 40

SYSUT1 DD statement
coding for linkage editor 172
ignored by the binder 34

Index 251

T
tasks

c89 diagnosis
step 167

ld diagnosis
step 167

TEMPNAME 176
TEMPNAMn 130
temporary data set

definition 243
specifying in JCL 47

TERM option
purpose 103
syntax 103

TEST option
purpose 103
syntax 103

text
description 20

trademarks 237
transform table in COBOL overlay

program 215
transportable program

definition 243
TRAP option

purpose 104
syntax 104

true alias
definition 243
specifying AMODE 128

TSO (time sharing option)
batch loader 175
enabling for TEST command 103
INCLUDE statement 123
invoke linkage editor 175
LINK command 43
LOADGO command 43

U
UFS

definition 243
UNIX file system

definition 243
unsupported input module formats 171
unsupprted binder control

statements 177
UPCASE option

pupose 105
syntax 105

updating SSI data 7
upper case 81
user exit, specifying 87
user interface

ISPF 231
TSO/E 231

utilities (program management utilities)
IEBCOPY 6
overview 6

utility
IEWTPORT (transport utility) 7

V
V-con

definition 243

W
weak external reference

deleting 66
unresolved 53

WKSPACE option
purpose 105
syntax 105

workmod
data elements 164
definition 243

workmod element
definition 243

workmod token
definition 243

X
XCAL option

creating overlay programs 224
purpose 106
syntax 106

XCTL macro
invoking from batch loader 173
linkage editor 173

XREF option
linkage editor differences 177, 178
purpose 106
syntax 106

Z
z/OS UNIX

creating program object in 23
set file attributes 95

252 z/OS V2R2 MVS Program Management: User's Guide and Reference

����

Product Number: 5650-ZOS

Printed in USA

SA23-1393-01

	Contents
	Figures
	Tables
	About this information
	Required product knowledge
	Required publications
	Related publications
	Referenced publications
	Notational conventions
	z/OS information
	Additional information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes in z/OS Version 2 Release 2 (V2R2)
	Summary of changes for z/OS Version 2 Release 1

	Chapter 1. Introduction
	z/OS Program Management components
	The binder
	Binding program modules
	Enhancements to the binder

	The Program Management loader
	The linkage editor
	The batch loader

	Using utilities for Program Management
	IEBCOPY
	IEHPROGM
	IEHLIST
	The Program Management transport utility

	Using service aids for Program Management
	AMBLIST
	AMASPZAP

	Program objects: Features and processing characteristics
	Program object structure
	Program objects on DASD storage
	Residence for and access to program objects
	Extensions to the PM loader to support program objects
	Page mode loading
	Move mode loading

	LLA and checkpoint/restart support for program objects

	Chapter 2. Creating programs from source modules
	Combining modules
	Symbols
	Sections
	Classes
	Common areas
	Parts
	Pseudoregisters
	Entry points
	External symbols

	Object and program module structure
	External symbol dictionary
	Relocation dictionary
	Text
	Identification data
	Module attributes

	Binder batch processing
	Input and output
	Creating a program module
	Creating a load module
	Creating a program object
	Creating a program object in a z/OS UNIX file

	Program object formats
	Binding
	Assigning addresses
	Resolving external references

	Creation of an executable program in virtual storage

	Addressing and residence modes
	Addressing mode
	Residence mode
	AMODE and RMODE hierarchy
	AMODE and RMODE combinations
	AMODE and RMODE validation
	AMODE and RMODE for overlay programs

	Module reusability
	Binder extensions supporting the Language Environment
	Compatibility with prelinker functions
	Binder support for DLLs

	Chapter 3. Starting the binder
	Invoking the binder with JCL
	Binder JCL example
	EXEC statement
	EXEC statement—PGM parameter
	EXEC statement—PARM field
	EXEC statement—REGION parameter

	DD statements
	Binder DD statements
	Additional DD statements

	Binder cataloged procedures
	LKED procedure
	LKEDG procedure

	Invoking the binder under TSO
	Invoking the binder from the z/OS UNIX Shell
	Invoking the Binder from a program

	Chapter 4. Defining input to the binder
	Defining the primary input
	Object modules, load modules and program objects
	As a member of a partitioned data set or PDSE
	Passed from a previous job step
	Created in a separate job

	Control statements
	Modules and control statements
	Control statements in the input stream
	Control statements in a separate data set

	Secondary (included) input
	Including sequential data sets
	Including UNIX Files
	Example A: Putting the whole path in the DD statement
	Example B: Putting a directory path in the DD statement and filename in the INCLUDE statement
	Example C: Putting a directory path in the DD statement and a subdirectory path in the INCLUDE statement
	Example D: Putting a directory path in the DD statement and using dot notation in the INCLUDE statement

	Including library members
	Including concatenated data sets
	Sequential concatenation
	Library concatenation

	Resolving external references
	Incremental autocall
	Autocall with C370lib data sets
	Autocall with archive libraries
	Autocall matching for C370LIB and archive libraries
	Searching the link pack area
	Dynamic symbol resolution
	Specifying automatic call libraries
	Call libraries
	Concatenation of call libraries

	Directing external references to a specific library
	Additional call libraries
	Preventing external references from being resolved
	Never-call option

	NCAL option: Negating the automatic library call
	Renaming

	Chapter 5. Editing data within a program module
	Editing conventions
	Entry points
	Placement of control statements
	Identical old and new symbols

	Changing external symbols
	Using the CHANGE statement
	Example of changing external symbols

	Replacing sections
	Automatic replacement
	Example 1: Object module with two sections
	Example 2: Large program module with many sections

	Using the REPLACE statement to replace sections and named common areas

	Deleting external symbols
	Ordering sections or named common areas
	Aligning sections or named common areas on page boundaries

	Chapter 6. Binder options reference
	Specifying binder options
	Special rules for JCL EXEC statements
	Special rules for options files

	Binder options
	AC: Authorization code option
	ALIASES: ALIASES option
	ALIGN2: 2KB page alignment option
	AMODE: Addressing mode option
	CALL: Automatic library call option
	CASE: Case control option
	COMPAT: Binder level option
	COMPRESS: Compression option
	DC: Downward compatible option
	DCBS option
	DYNAM: DYNAM option
	EDIT: Edit option
	EP: Entry point option
	EXITS: Specify exits to be taken option
	EXTATTR: Specify extended attributes
	FETCHOPT: Fetching mode option
	FILL: Fill character option
	GID: Specify group ID
	HOBSET: Set high order bit option
	INFO: Info option
	LET: Let execute option
	LINECT: Line count option
	LIST: Listing option
	LONGPARM: Long parameter option
	LISTPRIV: List unnamed sections option
	MAP: Program module map option
	MAXBLK: Maximum block size option
	MODMAP: Module map option
	MSGLEVEL: Message level option
	NAME: NAME option
	OL: Only-loadable option
	OPTIONS: Options option
	OVLY: Overlay option
	PATHMODE: Set z/OS UNIX file access attributes for SYSLMOD
	PRINT: Diagnostic messages option
	RES: Search link pack area option
	REUS: Reusability options
	RMODE: Residence mode option
	SCTR: Scatter load option
	SIGN: SIGN option
	SIZE: Space specification option
	SSI: System status index option
	STORENX: Store not-executable module
	STRIPCL: Remove class option
	STRIPSEC: Remove section option
	SYMTRACE: Symbol resolution tracing
	TERM: Alternate output option
	TEST: Test option
	TRAP: Error recovery
	UID: Specify user ID
	UPCASE: UPCASE option
	WKSPACE: Working space specification option
	XCAL: Exclusive call option
	XREF: Cross reference table option

	Chapter 7. Binder control statement reference
	Binder syntax conventions
	Syntax errors
	Rules for comments
	Placement information

	ALIAS statement
	Example

	ALIGNT statement
	Example

	AUTOCALL statement
	Example

	CHANGE statement
	Examples

	ENTRY statement
	Example

	EXPAND statement
	Example

	IDENTIFY statement
	Example

	IMPORT statement
	Example

	INCLUDE statement
	Example 1
	Example 2

	INSERT statement
	Example

	LIBRARY statement
	Examples

	MODE statement
	Example

	NAME statement
	Example

	ORDER statement
	Example

	OVERLAY statement
	Example

	PAGE statement
	Example

	RENAME statement
	Example

	REPLACE statement
	Example

	SETCODE statement
	Example

	SETOPT statement
	SETSSI statement

	Chapter 8. Interpreting binder listings
	Header
	Input event log
	Private section list
	Program module map
	Simple module

	The removed classes and sections report
	Renamed-symbol cross-reference table
	Cross-reference table
	Imported and exported symbol table
	Operation summary
	The Long-symbol abbreviation table
	Short mangled name report
	Abbreviation/Demangled name report
	DDname versus Pathname cross reference report
	Binder service level report
	The message summary report

	Chapter 9. Binder serviceability aids
	Binder output data sets
	Binder output data sets and their contents
	The IEWDIAG data set
	Allocating IEWDIAG

	The IEWTRACE data set
	TRACE option
	Interpreting the contents of IEWTRACE
	Allocating the IEWTRACE data set

	The IEWDUMP data set
	Generating a dump in the binder
	Interpreting the contents of IEWDUMP
	Allocating the IEWDUMP data set

	The IEWGOFF data set
	Interpreting the contents of IEWGOFF
	Allocating the IEWGOFF data set

	The AMBLIST service aid
	The IDCAMS printing utility
	c89 and ld diagnosis
	Step for obtaining diagnosis information when the binder is invoked from c89:
	Step for obtaining diagnosis information when the binder is invoked from ld:

	Serviceability aids for the Binder API interface

	Appendix A. Using the linkage editor and batch loader
	Creating programs from source modules
	AMODE and RMODE differences
	Unsupported input module formats and contents

	Invoking the linkage editor and batch loader
	Invoking the linkage editor and batch loader with JCL
	SYSLIN data sets
	SYSPRINT and SYSLOUT data sets
	SYSUT1 data set
	Included data sets
	Concatenated data sets

	Invoking the linkage editor from a program
	Invoking the batch loader from a program
	Invoking the linkage editor and batch loader under TSO

	Editing a control section
	Replacing control sections
	Deleting an external symbol

	Control statement reference
	Continuing a statement
	ALIAS statement
	CHANGE statement
	ENTRY statement
	EXPAND statement
	IDENTIFY statement
	INCLUDE statement
	LIBRARY statement
	NAME statement
	ORDER statement
	REPLACE statement
	Unsupported binder control statements

	Processing and attribute options reference
	Supported binder options
	LIST: Listing control
	MAP and XREF
	Reusability
	SIZE: Space specification
	Not-Executable attribute
	Incompatible processing and attribute options

	Linkage editor requirements
	Virtual storage requirements

	Batch loader requirements
	Interpreting linkage editor output
	Diagnostic output
	Output listing header
	Module disposition messages
	Error/Warning messages
	Sample diagnostic output
	Optional output
	Control statement listing
	Module map
	Cross-reference table

	Linkage editor return codes

	Interpreting batch loader output
	Batch loader return codes
	Loader serviceability aids

	Appendix B. Summary of Program Management user considerations
	Migrating from the linkage editor to the binder
	SMP/E precautions
	Storage considerations using the binder
	Error handling in the binder
	Changes and extensions in output using the binder
	Binder control statements and options
	Binder processing differences from the linkage editor
	Other binder processing differences

	Migrating from load modules to program objects
	What should be converted to program objects?
	Converting load modules to program objects
	Compatibility of program object formats
	Utilities, components and products that support program objects
	PDSE program library directory access of program objects

	Migrating from the prelinker
	The binder incorporates Language Environment/370 prelinker functions
	Processing with the prelinker
	Processing without the prelinker

	Support for DLL modules in dynamic link libraries

	Migrating from the prelinker and to DLLs
	Migrating from the prelinker to Binder
	Restrictions and incompatibilities migrating from the prelinker

	Migration of applications to DLL support

	Appendix C. Binder return codes
	IEWBLINK return and reason codes
	IEWBLDGO return codes

	Appendix D. Designing and specifying overlay programs
	Design of an overlay program
	Single region overlay program
	Control section dependency
	Segment dependency
	Length of an overlay program
	Segment origin
	References between segments
	Overlay process

	Multiple region overlay program

	Specification of an overlay program
	Region origin
	Control section positioning
	Using object decks
	Using INCLUDE statements
	Using INSERT statements

	Special options
	OVLY option
	LET option
	XCAL option
	AMODE and RMODE options

	Special considerations
	Common areas
	Automatic replacement
	Storage requirements
	Overlay communication
	CALL statement or CALL macro instruction
	Branch instruction
	Segment load (SEGLD) macro instruction
	Segment wait (SEGWT) macro instruction

	Appendix E. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

