
z/OS

MVS Programming: Authorized Assembler
Services Reference, Volume 2 (EDT-IXG)
Version 2 Release 2

SA23-1373-04

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 1459.

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xxv

Tables xxvii

About this document xxix
Who should use this document xxix
How to use this document. xxix
z/OS information. xxix

How to send your comments to IBM xxxi
If you have a technical problem xxxi

Summary of changes xxxiii
Summary of changes for z/OS Version 2 Release
2 (V2R2), as updated December, 2015. xxxiii
Summary of changes for z/OS Version 2 Release
2 xxxiii
Summary of changes for z/OS Version 2 Release
1, as updated February 2015. xxxiv
z/OS Version 2 Release 1 summary of changes xxxv

Chapter 1. Using the services 1
Compatibility of MVS macros. 1
Addressing mode (AMODE) 2
Address space control (ASC) mode 3

ALET qualification 4
User parameters 4

Telling the system about the execution environment 6
Specifying a macro version number. 7

How to request a macro version using PLISTVER 7
Register use 8
Handling return codes and reason codes 9

Handling program errors 9
Handling environmental and system errors . . . 10

Using X-macros 11
Macro forms 12

Conventional list form macros 12
Alternative list form macros 13

Coding the macros 13
Continuation lines 16

Coding the callable services 16
Including equate (EQU) statements 17
Link-editing linkage-assist routines 17

Service summary 18

Chapter 2. EDTINFO — Obtain eligible
device table information 29
Description 29

Environment 29
Programming requirements 29
Restrictions 29
Input register information 30
Output register information 30
Performance implications 30

Syntax 30
Parameters 31
Return and reason codes 31
Example 32

EDTINFO - List form 32
Syntax 32
Parameters 33

EDTINFO - Execute form 33
Syntax 33
Parameters 34

EDTINFO - Modify form 34
Syntax 34
Parameters 35

Chapter 3. ENFREQ — Listen for
system events 37
Description 37

Environment 37
Programming requirements 37
Restrictions 37
Input register information 38
Output register information 38
Performance implications 38

LISTEN option 38
Syntax 38
Parameters 40
ENF event codes and meanings. 45
Return codes 62
Example 1 64
Example 2 65

DELETE option 66
Syntax 66
Parameters 66
Return and reason codes 67

ENFREQ ACTION=LISTEN - List form 67
Syntax 67
Parameters 69

ENFREQ ACTION=LISTEN - Execute form. . . . 69
Syntax 69
Parameters 70

ENFREQ ACTION=DELETE - List form 71
Syntax 71
Parameters 71

ENFREQ ACTION=DELETE - Execute form . . . 71
Syntax 71
Parameters 72

Chapter 4. ENQ — Request control of a
serially reusable resource 73
Description 73

Environment 74
Programming requirements 74
Restrictions 74
Input register information 74
Output register information 75

© Copyright IBM Corp. 1988, 2016 iii

Performance implications 75
Syntax 75
Parameters 77
ABEND codes 81
Return and reason codes 81
Example 1 86
Example 2 86

ENQ - List form 87
Syntax 87
Parameters 88

ENQ - Execute form 88
Syntax 89
Parameters 90

Chapter 5. ESPIE — Extended SPIE . . 91
Description 91

Environment 92
Programming requirements 92
Restrictions 92
Performance implications 92
ABEND codes 92

ESPIE SET option 92
Input register information 92
Output register information 92
Syntax 93
Parameters 93
Return and reason codes 95
Example 1 95
Example 2 95

ESPIE SET - List form 95
Syntax 95
Parameters 96
Example 96

ESPIE SET - Execute form 96
Syntax 96
Parameters 97
Example 97

ESPIE RESET option 97
Input register information 97
Output register information 97
Syntax 98
Parameters 98
Return and reason codes 98
Example 98

ESPIE TEST option 99
Input register information 99
Output register information 99
Syntax 99
Parameters 100
Return and reason codes 100
Example 100

Chapter 6. ESTAE and ESTAEX —
Specify task abnormal exit extended . 101
Description 101

Environment 102
Programming requirements. 102
Restrictions 102
Input register information 102
Output register information 102

Performance implications 103
Syntax. 103
Parameters 105
ABEND codes 109
Return and reason codes 109
Example 1 110
Example 2 110
Example 3 111
Example 4 111
Example 5 111

ESTAEX - Specify task abnormal exit extended . . 111
Environment. 111
Programming requirements 111
Restrictions 111
Syntax 112
Parameters 113
ABEND codes 113
Return and reason codes 113
Example 115

ESTAE and ESTAEX - List form 115
Syntax 115
Parameters 116

ESTAE or ESTAEX - Execute form 116
Syntax 117
Parameters 118

Chapter 7. ETCON — Connect entry
table 119
Description 119

Related macros 119
Environment 119
Programming requirements 119
Restrictions 119
Input register information 120
Output register information 120
Performance implications 120
Syntax. 120
Parameters 121
ABEND codes 122
Return codes 122
Examples 122

ETCON - List form 122
Syntax. 122
Parameters 123

ETCON - Execute form 123
Syntax. 123
Parameters 123

Chapter 8. ETCRE — Create entry
table 125
Description 125

Related macros 125
Environment 125
Programming requirements. 125
Restrictions 125
Input register information 125
Output register information 126
Performance implications 126
Syntax. 126
Parameters 127

iv z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ABEND codes 127
Return codes 127
Example 127

Chapter 9. ETDEF — Create an entry
table descriptor (ETD). 129
Description 129

Related macros 129
Environment 129
Programming requirements. 129
Restrictions 130
Register information 130
Performance implications 130
TYPE=INITIAL, TYPE=ENTRY, and
TYPE=FINAL parameters 130
Syntax. 130
Parameters 132
TYPE=SET parameter. 135
Syntax. 135
Parameters 137
ABEND codes 138
Return and reason codes 138
Example 138

Chapter 10. ETDES — Destroy entry
table 139
Description 139

Related macros 139
Environment 139
Programming requirements. 139
Restrictions 139
Input register information 139
Output register information 139
Performance implications 140
Syntax. 140
Parameters 140
ABEND codes 141
Return codes 141
Examples 141

ETDES - List form 141
Syntax. 141
Parameters 142

ETDES - Execute form 142
Syntax. 142
Parameters 143

Chapter 11. ETDIS — Disconnect entry
table 145
Description 145

Related macros 145
Environment 145
Programming requirements. 145
Restrictions 145
Input register information 145
Output register information 145
Performance implications 146
Syntax. 146
Parameters 146
ABEND codes 147
Return codes 147

Examples 147

Chapter 12. EVENTS — Wait for one
or more events to complete 149
Description 149

Environment 149
Programming requirements. 150
Restrictions 150
Input register information 150
Output register information 150
Performance implications 150
Syntax. 150
Parameters 151
ABEND codes 152
Return and reason codes 152
Example 1 153
Example 2 153

Chapter 13. EXTRACT — Extract TCB
information 155
Description 155

Environment 155
Programming requirements. 155
Restrictions 155
Performance implications 155
Syntax. 156
Parameters 156
ABEND codes 157
Return and reason codes 157
Example 1 158
Example 2 158
Example 3 158

EXTRACT - List form 158
Syntax. 158
Parameters 159

EXTRACT - Execute form 159
Syntax. 159
Parameters 160

Chapter 14. FESTAE — Fast extended
STAE 161
Description 161

Environment 161
Programming requirements. 161
Restrictions 161
Input register information 162
Output register information 162
Performance implications 162
Syntax. 162
Parameters 163
ABEND codes 164
Return codes 164
Example 165

Contents v

Chapter 15. FRACHECK — Check
user's authorization (for RACF
Release 1.8.1 or earlier) 167

Chapter 16. FREEMAIN — Free virtual
storage 169
Description 169

Environment 169
Programming requirements. 170
Restrictions 170
Input register information for SVC entry . . . 170
Output register information for SVC entry. . . 170
Input register information for BRANCH=YES 171
Output register information for BRANCH=YES 171
Input register information for
BRANCH=(YES,GLOBAL) 172
Output register information for
BRANCH=(YES,GLOBAL) 172
Performance implications 172
Syntax. 172
Parameters 173
ABEND codes 176
Return and reason codes 177
Example 1 177
Example 2 177
Example 3 177
Example 4 178
Example 5 178

FREEMAIN - List form 178
Parameters 179

FREEMAIN - Execute form 179
Parameters 180

Chapter 17. GETDSAB — Accessing
the DSAB chain 181
Description 181

Environment 181
Programming requirements. 181
Restrictions 181
Register information 182
Performance implications 182
Syntax. 182
Parameters 183
Return and reason codes 184
Example 1 185
Example 2 185
Example 3 185
Example 4 186

GETDSAB - List form 186
Syntax. 186
Parameters 186

GETDSAB - Execute form 187
Syntax. 187
Parameters 188

Chapter 18. GETMAIN — Allocate
virtual storage 189
Description 189

Environment 190

Programming requirements. 191
Restrictions 191
Input register information for SVC entry . . . 191
Output register information for SVC entry. . . 191
Input register information for BRANCH=YES 192
Output register information for BRANCH=YES 192
Input register information for
BRANCH=(YES,GLOBAL) 193
Output register information for
BRANCH=(YES,GLOBAL) 193
Performance implications 194
Syntax. 194
Parameters 196
ABEND codes 202
Return and reason codes 203
Example 1 205
Example 2 205
Example 3 205
Example 4 205
Example 5 205

Chapter 19. GQSCAN — Extract
information from global resource
serialization queue 207
Description 207

Environment 207
Programming requirements. 207
Restrictions 208
Input register information 208
Output register information 208
Performance implications 208
Syntax. 209
Parameters 210
ABEND codes 213
Return and reason codes 213

GQSCAN - List form 215
Parameters 217

GQSCAN - Execute form 217
Parameters 219

Chapter 20. GTRACE — GTF trace
recording 221
Description 221
GTRACE TEST 221

Environment 221
Programming requirements. 222
Restrictions 222
Input register information 222
Output register information 222
Performance implications 222
Syntax. 222
Parameters 223
ABEND codes 223
Return codes 223

GTRACE QUERY 223
Environment 223
Programming requirements. 224
Restrictions 224
Input register information 224
Output register information 224

vi z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

||

Performance implications 224
Syntax. 224
Parameters 224
ABEND codes 225
Return codes 225

GTRACE DATA 225
Environment 225
Programming requirements. 225
Restrictions 225
Input register information 225
Output register information 226
Performance implications 226
Syntax. 226
Parameters 226
ABEND codes 227
Return codes 227
Example 228

GTRACE DATA - List form. 228
Syntax. 228
Parameters 229

GTRACE DATA - Execute form 229
Syntax. 229
Parameters 230

Chapter 21. HISMT — HIS
multithreading service 231
Description 231

Environment 231
Programming requirements. 231
Input register information 232
Output register information 233
Performance implications 233
Syntax. 233
Parameters 234
ABEND codes 239
Return and reason codes 239
Example 241

Chapter 22. HISSERV macro —
HISSERV Service 245
Description 245

Environment 245
Programming Requirements 246
Restrictions 246
Input Register Information 246
Output Register Information 246
Performance Implications 247
Syntax. 247
Parameters 248
ABEND Codes 253
Return and Reason Codes 253
Example 257

Chapter 23. HSPSERV — Read from
and write to a Hiperspace 261
Description 261
Read and write services for standard hiperspaces 261

Environment 261
Programming requirements. 262
Restrictions 262

Input register information 262
Output register information 262
Performance implications 263
Syntax. 264
Parameters 265
ABEND codes 268
Return and reason codes 268

Read and write services for ESO hiperspaces . . . 268
Environment 268
Programming requirements. 269
Restrictions 269
Input register information 269
Output register information 269
Performance implications 269
Syntax. 270
Parameters 271
ABEND codes 274
Return and reason codes 274

HSPSERV - List form 275
Syntax. 275
Parameters 276

HSPSERV - Execute form 276
Syntax. 277
Parameters 278

HSPSERV - Modify form 278
Syntax. 278
Parameters 279

Chapter 24. IARBRVEA — Verify
virtual storage access (AR mode) . . 281
Description 281

Environment 281
Programming requirements. 281
Restrictions 281
Input register information 281
Output register information 281
Performance implications 282
Syntax. 282
Parameters 282
ABEND codes 282
Return and reason codes 282

Chapter 25. IARBRVER — Verify
virtual storage access (primary
address space) 285
Description 285

Environment 285
Programming requirements. 285
Restrictions 285
Input register information 285
Output register information 285
Performance implications 286
Syntax. 286
Parameters 286
ABEND codes 286
Return and reason codes 286

Contents vii

|
||
||
||
||
||
||
||
||
||
||
||
||

|
|
||
||
||
||
||
||
||
||
||
||
||
||

Chapter 26. IARCP64 — 64-bit cell
pool services 289
Description 289

Environment 289
Programming requirements. 290
Restrictions 290
Input register information 290
Output register information 290
Performance implications 291
Syntax. 292
Parameters 294
ABEND codes 303
Return and reason codes 303
Examples 304

Chapter 27. IARR2V — Convert a
central storage address to a virtual
storage address 307
Description 307

Environment 307
Programming requirements. 307
Restrictions 307
Input register information 307
Output register information 307
Performance implications 308
Syntax. 308
Parameters 309
ABEND codes 310
Return and reason codes 311
Example 1 311
Example 2 312
Example 3 312
Example 4 312

Chapter 28. IARST64 — 64-bit storage
services. 313
Description 313

Environment 313
Programming requirements. 314
Restrictions 314
Input register information 314
Output register information 314
Performance implications 315
Syntax. 315
Parameters 317
ABEND codes 321
Return and reason codes 325

Chapter 29. IARSUBSP — Create and
delete a subspace 329
Description 329

Environment 329
Programming requirements. 329
Restrictions 330
Input register information 330
Output register information 330
Performance implications 330
Syntax. 330
Parameters 331

ABEND codes 334
Return and reason codes 334
Example 336

IARSUBSP - List form 336
Parameters 337

IARSUBSP - Execute form 337

Chapter 30. IARVSERV — Request to
share virtual storage 339
Description 339

Environment 339
Programming requirements. 340
Restrictions 340
Input register information 340
Output register information 341
Performance implications 341
Syntax. 341
Parameters 342
ABEND codes 345
Return and reason codes 345
Example 1 347
Example 2 348
Example 3 348
Example 4 348
Example 5 348

IARVSERV—List form 348
IARVSERV - Execute form 349

Chapter 31. IARV64 — 64–bit virtual
storage allocation 351
Description 351
REQUEST=GETSTOR option of IARV64 353

Environment 353
Programming requirements. 354
Restrictions 354
Input register information 354
Output register information 354
Performance implications 354
Syntax. 354
Parameters 357

REQUEST=PAGEFIX option of IARV64. 369
Environment 369
Programming requirements. 370
Restrictions 370
Input register information 370
Output register information 370
Performance implications 370
Syntax. 371
Parameters 372

REQUEST=PAGEUNFIX option of IARV64 . . . 376
Environment 376
Programming requirements. 377
Restrictions 377
Input register information 377
Output register information 377
Performance implications 377
Syntax. 378
Parameters 379

REQUEST=PAGEOUT option of IARV64 382
Environment 382

viii z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Programming requirements. 383
Restrictions 383
Input register information 383
Output register information 383
Performance implications 383
Syntax. 383
Parameters 384

REQUEST=PAGEIN option of IARV64 388
Environment 388
Programming requirements. 388
Restrictions 388
Input register information 388
Output register information 388
Performance implications 389
Syntax. 389
Parameters 390

REQUEST=DISCARDDATA option of IARV64 . . 393
Environment 393
Programming requirements. 393
Restrictions 393
Input register information 393
Output register information 393
Performance implications 394
Syntax. 394
Parameters 395

REQUEST=CHANGEGUARD option of IARV64 399
Environment 399
Programming requirements. 399
Restrictions 400
Input register information 400
Output register information 400
Performance implications 400
Syntax. 400
Parameters 401

REQUEST=PROTECT option of IARV64 406
Environment 407
Programming requirements. 407
Restrictions 407
Input register information 407
Output register information 407
Performance implications 408
Syntax. 408
Parameters 409

REQUEST=UNPROTECT option of IARV64 . . . 413
Environment 413
Programming requirements. 414
Restrictions 414
Input register information 414
Output register information 414
Performance implications 414
Syntax. 414
Parameters 416

REQUEST=LIST option of IARV64 420
Environment 420
Programming requirements. 421
Restrictions 421
Input register information 421
Output register information 421
Performance implications 421
Syntax. 421
Parameters 423

REQUEST=DETACH option of IARV64. 431
Environment 431
Programming requirements. 431
Restrictions 431
Input register information 431
Output register information 431
Performance implications 432
Syntax. 432
Parameters 433

REQUEST=GETSHARED option of IARV64 . . . 440
Environment 440
Programming requirements. 440
Restrictions 440
Input register information 440
Output register information 440
Performance implications 441
Syntax. 441
Parameters 442

REQUEST=SHAREMEMOBJ option of IARV64 . . 447
Environment 447
Programming requirements. 447
Restrictions 447
Input register information 447
Output register information 448
Performance implications 448
Syntax. 448
Parameters 449

REQUEST=CHANGEACCESS option of IARV64 453
Environment 453
Programming requirements. 454
Restrictions 454
Input register information 454
Output register information 454
Performance implications 454
Syntax. 454
Parameters 455

REQUEST=GETCOMMON option of IARV64. . . 459
Environment 459
Programming requirements. 459
Restrictions 459
Input register information 460
Output register information 460
Performance implications 460
Syntax. 460
Parameters 463

REQUEST=COUNTPAGES option of IARV64. . . 473
Environment 473
Programming requirements. 473
Restrictions 473
Input register information 473
Output register information 474
Performance implications 474
Syntax. 474
Parameters 475

ABEND codes 479
Return and reason codes 479
Example 482

Operation: 482

Contents ix

Chapter 32. IAZXCTKN — Client token
compare service 485
Description 485

Environment 485
Programming requirements. 485
Restrictions 485
Input register information 485
Output register information 485
Performance implications 485
Syntax. 486
Parameters 486
ABEND codes 486
Return codes 486
Example 486

Chapter 33. IAZXJSAB — Obtain
information about a currently running
job 487
Description 487

Environment 487
Programming requirements. 487
Restrictions 488
Input register information 488
Output register information 488
Performance implications 488
Syntax. 488
Parameters 489
ABEND codes 491
Return codes 491
Example 492

Chapter 34. IEAARR — Establish an
associated recovery routine (ARR) . . 493
Description 493

Environment 493
Programming requirements. 493
Restrictions 493
Input register information 493
Output register information 493
Performance implications 494
Syntax. 494
Parameters 495
ABEND codes 498
Return codes 498
Example 498

Chapter 35. IEAFP — Floating point
services. 499
Description 499

Environment 499
Programming requirements. 499
Restrictions 499
Input register information 499
Output register information 499
Performance implications 500
Syntax. 500
Parameters 501
ABEND codes 501
Return and reason codes 502

Example 503

Chapter 36. IEALSQRY — Linkage
stack query 505
Description 505

Environment 505
Programming requirements. 506
Restrictions 506
Input register information 506
Output register information 506
Performance implications 506
Syntax. 507
ABEND codes 507
Return codes 507
Example 508

Chapter 37. IEAMETR — Query
external time reference status 509
Description 509

Environment 509
Programming requirements. 509
Restrictions 509
Input register information 509
Output register information 509
Performance implications 510
Syntax. 510
Parameters 510
Return codes 511

Chapter 38. IEAMRMF3 — Obtain
address space dispatchability data . . 513
Description 513

Environment 513
Programming requirements. 514
Restrictions 514
Register information 514
Performance implications 515
Syntax. 515
Parameters 515
Return codes 516
Example 516

Chapter 39. IEAMSCHD — Schedule
an SRB 521
Description 521

Environment 521
Programming requirements. 521
Restrictions 521
Input register information 522
Output register information 522
Performance implications 522
Syntax. 522
Parameters 525
ABEND codes 534
Return codes 534
Examples 535

x z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 40. IEAMSXMP — Safe
cross-memory post 539

Chapter 41. IEANTCR — Create a
name/token pair 551
Description 551

Environment 551
Programming requirements. 551
Restrictions 552
Input register information 552
Output register information 552
Performance implications 552
Syntax. 552
Parameters 553
ABEND codes 554
Return and reason codes 554
Example 555

Chapter 42. IEANTDL — Delete a
name/token pair 557
Description 557

Environment 557
Programming requirements. 557
Restrictions 558
Input register information 558
Output register information 558
Performance implications 558
Syntax. 558
Parameters 559
ABEND codes 559
Return and reason codes 559
Example 560

Chapter 43. IEANTRT — Retrieve the
token from a name/token pair 561
Description 561

Environment 561
Programming requirements. 561
Restrictions 562
Input register information 562
Output register information 562
Performance implications 563
Syntax. 563
Parameters 563
ABEND codes 564
Return codes 564
Example 1 564
Example 2 564

Chapter 44. IEANTRTR — Name/token
retrieve register interface 569
Description 569

Environment 569
Programming requirements. 569
Restrictions 569
Input register information 570
Output register information 570
Performance implications 570
Syntax. 570

Parameters 571
ABEND codes 572
Return codes 572
Example 1 573
Example 2 573

Chapter 45. IEAN4CR — Create a
name/token pair 575
Description 575

Environment 575
Programming requirements. 575
Restrictions 576
Input register information 576
Output register information 576
Performance implications 576
Syntax. 576
Parameters 577
ABEND codes 578
Return and reason codes 578

Chapter 46. IEAN4DL — Delete a
name/token pair 581
Description 581

Environment 581
Programming requirements. 581
Restrictions 582
Input register information 582
Output register information 582
Performance implications 582
Syntax. 582
Parameters 583
ABEND codes 583
Return and reason codes 583

Chapter 47. IEAN4RT — Retrieve the
token from a name/token pair 585
Description 585

Environment 585
Programming requirements. 585
Restrictions 586
Input register information 586
Output register information 586
Performance implications 587
Syntax. 587
Parameters 587
ABEND codes 588
Return codes 588

Chapter 48. IEARBUP — RB update
service 589
Description 589

Environment 589
Programming requirements. 589
Restrictions 589
Input register information 589
Output register information 589
Performance implications 590
Syntax. 590
Parameters 591

Contents xi

|
||

|
||
||
||
||
||
||
||
||
||

||
||
||
||
||

ABEND codes 594
Return and reason codes 594
Example 1 595
Example 2 596

Chapter 49. IEATDUMP — Transaction
dump request 597
Description 597

Environment 597
Programming requirements. 598
Restrictions 598
Input register information 598
Output register information 598
Performance implications 599
Syntax. 599
Parameters 601
ABEND codes 609
Return and reason codes 609
Examples 616

Chapter 50. IEATEDS - Timed event
data services 619
Description 619

Timed Event Data Report 619
Environment 621
Programming requirements. 621
Restrictions 621
Input register information 621
Output register information 621
Performance implications 622
Syntax. 622
Parameters 623
ABEND codes 627
Return and reason codes 627
Examples 629

Chapter 51. IEATXDC — Transactional
execution diagnostic controls 641
Description 641

Environment 641
Programming requirements. 641
Restrictions 641
Input register information 641
Output register information 641
Performance implications 642
Syntax. 642
Parameters 642
ABEND codes 643
Return codes 643
Examples 644

Chapter 52. IEAVAPE —
Allocate_Pause_Element 645
Description 645

Environment 645
Programming requirements. 645
Restrictions 645
Input register information 646
Output register information 646

Performance implications 646
Syntax. 646
Parameters 646
ABEND codes 647
Return codes 648

Chapter 53. IEAVAPE2 —
Allocate_Pause_Element 649
Description 649

Environment 649
Programming requirements. 649
Restrictions 650
Input register information 650
Output register information 650
Performance implications 650
Syntax. 651
Parameters 651
ABEND codes 654
Return codes 654

Chapter 54. IEAVDPE —
Deallocate_Pause_Element 657
Description 657

Environment 657
Programming requirements. 657
Restrictions 657
Input register information 657
Output register information 658
Performance implications 658
Syntax. 658
Parameters 658
ABEND codes 659
Return codes 659

Chapter 55. IEAVDPE2 —
Deallocate_Pause_Element 661
Description 661

Environment 661
Programming requirements. 661
Restrictions 661
Input register information 662
Output register information 662
Performance implications 662
Syntax. 662
Parameters 662
ABEND codes 663
Return codes 663

Chapter 56. IEAVPME2 — Pause
multiple elements service 667
Description 667

Environment 667
Programming requirements. 667
Restrictions 668
Input register information 668
Output register information 668
Performance implications 668
Syntax. 669
Parameters 669

xii z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
||
||
||
||
||
||
||
||
||
||

ABEND codes 671
Return codes 671

Chapter 57. IEAVPSE — Pause service 675
Description 675

Environment 675
Programming requirements. 675
Restrictions 675
Input register information 676
Output register information 676
Performance implications 676
Syntax. 676
Parameters 676
ABEND codes 678
Return codes 678

Chapter 58. IEAVPSE2 — Pause
service 681
Description 681

Environment 681
Programming requirements. 681
Restrictions 682
Input register information 682
Output register information 682
Performance implications 682
Syntax. 683
Parameters 683
ABEND codes 684
Return codes 684

Chapter 59. IEAVRLS — Release . . . 687
Description 687

Environment 687
Programming requirements. 687
Restrictions 687
Input register information 687
Output register information 688
Performance implications 688
Syntax. 688
Parameters 688
ABEND codes 689
Return codes 689

Chapter 60. IEAVRLS2 — Release. . . 693
Description 693

Environment 693
Programming requirements. 693
Restrictions 694
Input register information 694
Output register information 694
Performance implications 694
Syntax. 695
Parameters 695
ABEND codes 696
Return codes 696

Chapter 61. IEAVRPI —
Retrieve_Pause_Element_Information
service 699
Description 699

Environment 699
Programming requirements. 699
Restrictions 699
Input register information 700
Output register information 700
Performance implications 700
Syntax. 700
Parameters 700
ABEND codes 702
Return codes 702

Chapter 62. IEAVRPI2 —
Retrieve_Pause_Element_Information
service 705
Description 705

Environment 705
Programming requirements. 705
Restrictions 706
Input register information 706
Output register information 706
Performance implications 706
Syntax. 707
Parameters 707
ABEND codes 709
Return codes 709

Chapter 63. IEAVTPE —
Test_Pause_Element service 711
Description 711

Environment 711
Programming requirements 711
Restrictions 711
Input register information 711
Output register information 711
Performance implications 712
Syntax. 712
Parameters 712
ABEND codes 713
Return codes 713

Chapter 64. IEAVXFR — Transfer
service 715
Description 715

Environment 715
Programming requirements. 715
Restrictions 715
Input register information 715
Output register information 716
Performance implications 716
Syntax. 716
Parameters 716
ABEND codes 718
Return codes 718

Contents xiii

||
||

Chapter 65. IEAVXFR2 — Transfer
service 721
Description 721

Environment 721
Programming requirements. 721
Restrictions 721
Input register information 722
Output register information 722
Performance implications 722
Syntax. 723
Parameters 723
ABEND codes 725
Return codes 725

Chapter 66. IEA4APE —
Allocate_Pause_Element 727
Description 727

Environment 727
Programming requirements. 727
Restrictions 727
Input register information 728
Output register information 728
Performance implications 728
Syntax. 728
Parameters 728
ABEND codes 730
Return codes 730

Chapter 67. IEA4APE2 —
Allocate_Pause_Element 731
Description 731

Environment 731
Programming requirements. 731
Restrictions 732
Input register information 732
Output register information 732
Performance implications 732
Syntax. 733
Parameters 733
ABEND codes 736
Return codes 736

Chapter 68. IEA4DPE -
Deallocate_Pause_Element 739
Description 739

Environment 739
Programming requirements. 739
Restrictions 739
Input register information 739
Output register information 740
Performance implications 740
Syntax. 740
Parameters 740
ABEND codes 741
Return codes 741

Chapter 69. IEA4DPE2 —
Deallocate_Pause_Element 743
Description 743

Environment 743
Programming requirements. 743
Restrictions 743
Input register information 743
Output register information 744
Performance implications 744
Syntax. 744
Parameters 744
ABEND codes 745
Return codes 745

Chapter 70. IEA4PME2 — 64-bit pause
multiple elements service 747
Description 747

Environment 747
Programming requirements. 747
Restrictions 748
Input register information 748
Output register information 748
Performance implications 748
Syntax. 749
Parameters 749
ABEND codes 751
Return codes 751

Chapter 71. IEA4PSE — Pause service 755
Description 755

Environment 755
Programming requirements. 755
Restrictions 755
Input register information 756
Output register information 756
Performance implications 756
Syntax. 756
Parameters 756
ABEND codes 758
Return codes 758

Chapter 72. IEA4PSE2 — Pause
service 761
Description 761

Environment 761
Programming requirements. 761
Restrictions 762
Input register information 762
Output register information 762
Performance implications 762
Syntax. 762
Parameters 763
ABEND codes 764
Return codes 764

Chapter 73. IEA4RLS — Release . . . 767
Description 767

Environment 767
Programming requirements. 767
Restrictions 767
Input register information 767
Output register information 768
Performance implications 768

xiv z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
||
||
||
||
||
||
||
||
||
||
||
||

Syntax. 768
Parameters 768
ABEND codes 769
Return codes 769

Chapter 74. IEA4RLS2 — Release. . . 773
Description 773

Environment 773
Programming requirements. 773
Restrictions 774
Input register information 774
Output register information 774
Performance implications 774
Syntax. 774
Parameters 775
ABEND codes 776
Return codes 776

Chapter 75. IEA4RPI —
Retrieve_Pause_Element_Information
service 779
Description 779

Environment 779
Programming requirements. 779
Restrictions 779
Input register information 780
Output register information 780
Performance implications 780
Syntax. 780
Parameters 780
ABEND codes 782
Return codes 783

Chapter 76. IEA4RPI2 —
Retrieve_Pause_Element_Information
service 785
Description 785

Environment 785
Programming requirements. 785
Restrictions 786
Input register information 786
Output register information 786
Performance implications 786
Syntax. 786
Parameters 787
ABEND codes 789
Return codes 790

Chapter 77. IEA4TPE —
Test_Pause_Element service 793
Description 793

Environment 793
Programming requirements. 793
Restrictions 793
Input register information 793
Output register information 793
Performance implications 794
Syntax. 794
Parameters 794

ABEND codes 795
Return codes 795

Chapter 78. IEA4XFR — Transfer
service 797
Description 797

Environment 797
Programming requirements. 797
Restrictions 797
Input register information 797
Output register information 798
Performance implications 798
Syntax. 798
Parameters 798
ABEND codes 800
Return codes 800

Chapter 79. IEA4XFR2 — Transfer
service 805
Description 805

Environment 805
Programming requirements. 805
Restrictions 805
Input register information 806
Output register information 806
Performance implications 806
Syntax. 806
Parameters 807
ABEND codes 808
Return codes 808

Chapter 80. IEECMDS —
Query/remove attached commands . . 811
Description 811

Environment 811
Programming requirements 811
Restrictions 811
Input register information 811
Output register information 811
Performance implications 812
Syntax. 812
Parameters 813
ABEND codes 817
Return codes 817

Chapter 81. IEEQEMCS — Query
EMCS console 821
Description 821

Environment 821
Programming requirements. 821
Restrictions 821
Input register information 821
Output register information 821
Performance implications 822
Syntax. 822
Parameters 824
ABEND codes 830
Return and reason codes 830
Examples 833

Contents xv

Chapter 82. IEEVARYD — Vary one or
more devices online or offline 837
Description 837

Comparison to MGCRE macro 837
Environment 837
Programming requirements. 837
Restrictions 838
Input register information 838
Output register information 838
Performance implications 838
Syntax. 838
Parameters 839
ABEND codes 840
Return and reason codes 840
Examples 842
Example 1 842
Example 2 845

IEEVARYD - List form 847
IEEVARYD - Execute form 848

Chapter 83. IEFPPSCN — Scan the
program properties table 851
Description 851

Environment 851
Programming requirements. 851
Restrictions 851
Register information 851
Performance implications 852
Syntax. 852
Parameters 853
Return codes 854
Example 854

IEFPPSCN - List form 856
Syntax. 856
Parameters 856

IEFPPSCN - Execute form 856
Syntax. 857
Parameters 857

Chapter 84. IEFQMREQ — Invoke
SWA manager in move mode 859
Description 859

Environment 859
Programming requirements. 859
Restrictions 859
Input register information 859
Output register information 859
Syntax. 860
Parameters 860
ABEND codes 860
Return and reason codes 860

Chapter 85. IEFSJSYM — JCL symbol
service 863
Description 863

Environment 863
Programming requirements. 864
Restrictions 864
Input register information 864

Output register information 864
Performance implications 864

REQUEST= parameter of IEFSJSYM 865
Syntax. 865
Parameters 866

ABEND codes 868
Return and reason codes 868
Example 871

Chapter 86. IEFSSI — Dynamically
control a subsystem 873
Description 873

Environment 874
Programming requirements. 874
Restrictions 875
Input register information 875
Output register information 875
Performance implications 875
REQUEST=ADD parameter of IEFSSI 875
Syntax for REQUEST=ADD 876
Parameters for REQUEST=ADD 877
REQUEST=ACTIVATE parameter of IEFSSI . . 879
Syntax for REQUEST=ACTIVATE 879
Parameters for REQUEST=ACTIVATE 880
REQUEST=OPTIONS parameter of IEFSSI. . . 882
Syntax for REQUEST=OPTIONS 883
Parameters for REQUEST=OPTIONS 884
REQUEST=DEACTIVATE parameter of IEFSSI 887
Syntax for REQUEST=DEACTIVATE 887
Parameters for REQUEST=DEACTIVATE . . . 888
REQUEST=SWAP parameter of IEFSSI 889
Syntax for REQUEST=SWAP 890
Parameters for REQUEST=SWAP 891
REQUEST=PUT parameter of IEFSSI 893
Syntax for REQUEST=PUT 893
Parameters for REQUEST=PUT 894
REQUEST=GET parameter of IEFSSI 896
Syntax for REQUEST=GET 896
Parameters for REQUEST=GET 897
REQUEST=QUERY parameter of IEFSSI . . . 899
Syntax for REQUEST=QUERY 899
Parameters for REQUEST=QUERY 900
ABEND codes 902
Return and reason codes 902
Example 1 906
Example 2 907
Example 3 907
Example 4 907
Example 5 907
Example 6 907
Example 7 907
Example 8 908

Chapter 87. IEFSSVT — Create a
subsystem vector table 909
Description 909

Environment 910
Programming requirements. 910
Restrictions 910
Input register information 910

xvi z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Output register information 911
Performance implications 911
REQUEST=CREATE parameter of IEFSSVT . . 911
Syntax for REQUEST=CREATE 911
Parameters for REQUEST=CREATE 913
REQUEST=DISABLE parameter of IEFSSVT . . 915
Syntax for REQUEST=DISABLE 915
Parameters for REQUEST=DISABLE. 916
REQUEST=ENABLE parameter of IEFSSVT . . 918
Syntax for REQUEST=ENABLE 919
Parameters for REQUEST=ENABLE 920
REQUEST=EXCHANGE parameter of IEFSSVT 922
Syntax for REQUEST=EXCHANGE 922
Parameters for REQUEST=EXCHANGE . . . 923
ABEND codes 926
Return and reason codes 926
Examples 929
Example 1 929
Example 2 929
Example 3 929
Example 4 930

Chapter 88. IEFSSVTI — Associate
function routines with function codes . 931
Description 931

Environment 932
Programming requirements. 933
Restrictions 933
Input register information 933
Output register information 933
Performance implications 933
ABEND codes 933
Return and reason codes 933
Examples 934

TYPE=LIST parameter of IEFSSVTI 935
Syntax. 935
Parameters 936

TYPE=INITIAL parameter of IEFSSVTI 936
Syntax. 936
Parameters 936

TYPE=ENTRY parameter of IEFSSVTI 937
Syntax. 937
Parameters 938

TYPE=FINAL parameter of IEFSSVTI 939
Syntax. 939
Parameters 939

TYPE=SET parameter of IEFSSVTI 939
Syntax. 939
Parameters 940

TYPE=RESERVE parameter of IEFSSVTI 942
Syntax. 942
Parameters 943

TYPE=COPY parameter of IEFSSVTI 943
Syntax. 943
Parameters 944

Chapter 89. IFAQUERY — SMF
configuration query service 945
Description 945

Environment 945

Programming requirements. 945
Restrictions 945
Input register information 945
Output register information 945
Performance implications 946
Syntax. 946
Parameters 947
ABEND codes 948
Return and reason codes 948

Chapter 90. IOCINFO — Obtain MVS
I/O configuration information 951
Description 951

Environment 951
Programming requirements. 951
Restrictions 951
Input register information 951
Output register information 951
Performance implications 952
Syntax. 952
Parameters 953
ABEND codes 954
Return and reason codes 954

IOCINFO—List form 955
Syntax. 955
Parameters 956

IOCINFO - Execute form 956
Syntax. 956
Parameters 957

Chapter 91. IOSADMF — Transfer
hiperspace data 959
Description 959

Environment 959
Programming requirements. 959
Restrictions 959
Input register information 959
Output register information 959
Performance implications 960
Syntax. 960
Parameters 961
ABEND codes 963
Return and reason codes 963

IOSADMF - List form 967
Syntax. 967
Parameters 968

IOSADMF - Execute form 968
Syntax. 968
Parameters 969

Chapter 92. IOSCAPF — Obtain the
actual address of a captured UCB . . 971
Description 971

Environment 971
Programming requirements. 971
Restrictions 971
Input register information 971
Output register information 972
Performance implications 972
Syntax. 972

Contents xvii

Parameters 972
ABEND codes 973
Return and reason codes 973

Chapter 93. IOSCAPU — Capture,
release, or obtain the actual address
of a UCB 975
Description 975

Environment 975
Programming requirements. 976
Restrictions 976
Input register information 976
Output register information 976
Performance implications 977

Capture an UCB function 977
Syntax. 977
Parameters 978
ABEND codes 979
Return and reason codes 979
Example 980

IOSCAPU CAPTUCB - List form 980
Syntax. 980
Parameters 981

IOSCAPU CAPTUCB - Execute form 981
Syntax. 981
Parameters 982

Release a captured UCB function 982
Syntax. 982
Parameters 983
ABEND codes 984
Return and reason codes 984
Example 985

IOSCAPU UCAPTUCB - List form 985
Syntax. 985
Parameters 985

IOSCAPU UCAPTUCB - Execute form 986
Syntax. 986
Parameters 987

Translate captured to actual address function . . . 987
Syntax. 987
Parameters 988
ABEND codes 988
Return and reason codes 988
Example 989

IOSCAPU CAPTOACT - List form 989
Syntax. 989
Parameters 990

IOSCAPU CAPTOACT - Execute form 990
Syntax. 990
Parameters 991

Chapter 94. IOSCDR — Retrieve
configuration data records 993
Description 993

Environment 993
Programming requirements. 993
Restrictions 993
Input register information 994
Output register information 994
Performance implications 994

Syntax. 994
Parameter descriptions 995
Return codes 998
Example. 1000

Chapter 95. IOSCHPD — IOS CHPID
description service 1007
Description. 1007

Environment 1007
Programming requirements 1007
Restrictions. 1007
Input register information 1007
Output register information 1007
Performance implications 1008
Syntax 1008
Parameters 1009
ABEND codes 1012
Return and reason codes 1012

Chapter 96. IOSCMB — Locate the
channel measurement block (CMB) . 1015
Description. 1015

Environment 1015
Programming requirements 1015
Restrictions. 1015
Input register information 1015
Output register information 1015
Performance implications 1016
Syntax 1016
Parameters 1016
Return and reason codes 1017
Example. 1017

Chapter 97. IOSCMXA — Obtain
address of the UCB common
extension segment 1019
Description. 1019

Environment 1019
Programming requirements 1019
Restrictions. 1019
Input register information 1020
Output register information 1020
Performance implications 1020
Syntax 1020
Parameters 1021
ABEND codes 1021
Return and reason codes 1021

IOSCMXA - List form 1022
Syntax 1022
Parameters 1022

IOSCMXA - Execute form 1022
Syntax 1023
Parameters 1023

Chapter 98. IOSCMXR — Obtain
address of the UCB common
extension segment 1025
Description. 1025

Environment 1025

xviii z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Programming requirements 1025
Restrictions. 1025
Input register information 1025
Output register information 1026
Performance implications 1026
Syntax 1026
Parameters 1026
ABEND codes 1027
Return and reason codes 1027

Chapter 99. IOSCUINF — Control unit
information service 1029
Description. 1029

Environment 1029
Programming requirements 1029
Restrictions. 1029
Input register information 1029
Output register information 1029
Performance implications 1030
Syntax 1030
Parameters 1031
ABEND codes 1034
Return and reason codes 1034

Chapter 100. IOSCUMOD — IOS
control unit entry build service . . . 1035
Description. 1035

Programming requirements 1035
Restrictions. 1035
Performance implications 1035
Syntax 1035
Parameters 1036
ABEND codes 1037
Return and reason codes 1037

Chapter 101. IOSDCXR — Obtain
address of the device class
extension segment 1039
Description. 1039

Environment 1039
Programming requirements 1039
Restrictions. 1039
Input register information 1040
Output register information 1040
Performance implications 1040
Syntax 1040
Parameters 1041
ABEND codes 1041
Return and reason codes 1041

Chapter 102. IOSENQ — IOS ENQ
service. 1043
Description. 1043

Environment 1043
Programming requirements 1043
Restrictions. 1043
Input register information 1043
Output register information 1043
Performance implications 1044

Syntax 1044
Parameters 1045
ABEND codes 1047
Return and reason codes 1047

Chapter 103. IOSFBA — IOS fixed
block architecture service 1049
Description. 1049

Environment 1049
Programming requirements 1049
Restrictions. 1050
Input register information 1050
Output register information 1050
Performance implications 1050
Syntax 1050
Parameters 1051
ABEND codes 1064
Return and reason codes 1064

Chapter 104. IOSHXBLK — Request
to suspend and resume Basic
HyperSwap services 1067
Description. 1067

Environment 1067
Programming requirements 1067
Restrictions. 1067
Input register information 1067
Output register information 1067
Performance implications 1068
Syntax 1068
Parameters 1069
ABEND codes 1071
Return and reason codes 1071

Chapter 105. IOSINFO — Obtain the
subchannel number for a UCB . . . 1075
Description. 1075

Environment 1075
Input register information 1075
Output register information 1075
Syntax 1076
Parameters 1076
Return codes 1076
Example 1 1077
Example 2 1077
Example 3 1077

Chapter 106. IOSLOOK — Locate
unit control block 1079
Description. 1079

Syntax 1079
Parameters 1079
Return codes 1080
Example. 1080

Chapter 107. IOSODS — IOS offline
device service 1081
Description. 1081

Environment 1081

Contents xix

Programming requirements 1081
Restrictions. 1081
Input register information 1081
Output register information 1081
Performance implications 1082
Syntax 1082
Parameters 1083
ABEND codes 1084
Return codes 1084

IOSODS - List form 1085
Syntax 1085
Parameters 1085

IOSODS - Execute form 1086
Syntax 1086
Parameters 1087

Chapter 108. IOSPTHV — Validate I/O
paths 1089
Description. 1089

Environment 1089
Programming requirements 1089
Restrictions. 1089
Input register information 1090
Output register information 1090
Performance implications 1090
Syntax 1090
Parameter descriptions 1091
Return and reason codes 1093
Example. 1094

Chapter 109. IOSSCM — Storage
class memory information 1099
Description. 1099

Environment 1099
Programming requirements 1099
Restrictions. 1099
Input register information 1099
Output register information 1099
Performance implications 1100
Syntax 1100
Parameters 1100
ABEND codes 1103
Return and reason codes 1103

Chapter 110. IOSSPOF — Check for
single points of failure 1105
Description 1105

Environment 1105
Programming requirements 1105
Restrictions 1105
Input register information 1105
Output register information 1105
Performance implications 1106
Syntax 1106
Parameters 1108
ABEND codes 1114
Return codes 1114
Return and reason codes 1116

IOSSPOF - List form. 1116
Syntax 1116

Parameters 1117
IOSSPOF - Execute form 1117

Syntax 1117
Parameters 1118

Chapter 111. IOSUPFA — Obtain
address of the UCB prefix extension
segment 1119
Description 1119

Environment 1119
Programming requirements 1119
Restrictions 1119
Input register information 1119
Output register information 1119
Performance implications 1120
Syntax 1120
Parameters 1120
ABEND codes 1121
Return and reason codes 1121

IOSUPFA - List form 1121
Syntax 1121
Parameters 1121

IOSUPFA - Execute form 1122
Syntax 1122
Parameters 1122

Chapter 112. IOSUPFR — Obtain
address of the UCB prefix extension
segment 1123
Description 1123

Environment 1123
Programming requirements 1123
Restrictions 1123
Input register information 1123
Output register information 1124
Performance implications 1124
Syntax 1124
Parameters 1124
ABEND codes 1124
Return and reason codes 1125

Chapter 113. IOSVRYSW — Vary
switch service 1127
Description 1127

Environment 1127
Programming requirements 1127
Restrictions 1127
Input register information 1127
Output register information 1128
Performance implications 1128
Syntax 1128
Parameters 1129
ABEND codes 1130
Return and reason codes 1130
IOSVRYSW—List form 1131

Chapter 114. IOSWITCH — IOS
switch information service 1135
Description 1135

xx z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
||
||
||
||
||
||
||
||
||
||
||
||

Environment 1135
Programming requirements 1135
Restrictions 1135
Input register information 1135
Output register information 1135
Performance implications 1136
Syntax 1136
Parameters 1137
ABEND codes 1139
Return and reason codes 1139

Chapter 115. IOSZHPF — zHPF
channel program capabilities service. 1141
Description 1141

Environment 1141
Programming requirements 1141
Restrictions 1141
Input register information 1141
Output register information 1141
Performance implications 1142
Syntax 1142
Parameters 1142
ABEND codes 1143
Return and reason codes 1143

Chapter 116. IQPINFO — Obtain PCIe
information 1145
Description 1145

Environment 1145
Programming requirements 1145
Restrictions 1145
Input register information 1145
Output register information 1145
Performance implications 1146
Syntax 1146
Parameters 1147
Return codes 1149

Chapter 117. IRDFSD — FICON
switch data services 1151
Description 1151

Environment 1151
Programming requirements 1151
Restrictions 1151
Input register information 1151
Output register information 1151
Performance implications 1152
Syntax 1152
Parameters 1153
ABEND codes 1155
Return codes 1155
Reason codes 1156

Chapter 118. IRDFSDU — FICON
switch data update services 1157
Description 1157

Environment 1157
Programming requirements 1157
Restrictions 1157

Input register information 1157
Output register information 1157
Performance implications 1158
Syntax 1158
Parameters 1158
ABEND codes 1160
Return codes 1160
Reason codes 1161

Chapter 119. ISGADMIN — Global
resource serialization administration
service. 1163
Description 1163

Environment 1163
Programming requirements 1163
Restrictions 1163
Input register information 1164
Output register information 1164
Performance implications 1164
Syntax 1165
Parameters 1165
ABEND codes 1169
Return and reason codes 1169
Examples 1174

Chapter 120. ISGECA — GRS
enhanced contention analysis
service. 1177
Description 1177

Environment 1178
Programming requirements 1178
Restrictions 1178
Input register information 1179
Output register information 1179
Performance implications 1179
Syntax 1180
Parameters 1180
ABEND codes 1184
Return and reason codes 1184
Examples 1186

Chapter 121. ISGENQ — Global
resource serialization ENQ service. . 1187
Description 1187

Environment 1187
Programming requirements 1188
Restrictions 1188
Input register information 1188
Output register information 1188
Performance implications 1189
Syntax 1190
Parameters 1192
ABEND codes 1207
Return and reason codes 1207
Examples 1219

Chapter 122. ISGLCRT — Create a
latch set 1221
Description. 1221

Contents xxi

Environment 1221
Programming requirements 1221
Restrictions. 1222
Input register information 1222
Output register information 1222
Performance implications 1222
Syntax 1222
Parameters 1223
ABEND codes 1224
Return codes 1224
LATCHX31 - How to call AMODE 31 latch
devices 1225

Chapter 123. ISGLCR64 — Create a
latch set in 64-bit mode 1233
Description. 1233

Environment 1233
Programming requirements 1233
Restrictions. 1234
Input register information 1234
Output register information 1234
Performance implications 1234
Syntax 1234
Parameters 1235
ABEND codes 1236
Return codes 1236
LATCHX64 - How to call AMODE 64 latch
services 1237

Chapter 124. ISGLID — Identify a
latch set 1245
Description. 1245

Environment 1245
Programming requirements 1245
Restrictions. 1245
Input register information 1245
Output register information 1245
Performance implications 1246
Syntax 1246
Parameters 1246
ABEND codes 1247
Return codes 1247
Example. 1247

Chapter 125. ISGLID64 — Identify a
latch set in 64-bit mode 1249
Description. 1249

Environment 1249
Programming requirements 1249
Restrictions. 1249
Input register information 1249
Output register information 1249
Performance implications 1250
Syntax 1250
Parameters 1250
ABEND codes 1251
Return codes 1251
Example. 1251

Chapter 126. ISGLOBT — Obtain a
latch. 1253
Description. 1253

Environment 1253
Programming Requirements 1253
Restrictions. 1254
Input register information 1254
Output register information 1254
Performance implications 1254
Syntax 1255
Parameters 1255
ABEND codes 1257
Return codes 1257
Example. 1257

Chapter 127. ISGLOB64 — Obtain a
latch in 64-bit mode 1259
Description. 1259

Environment 1259
Programming requirements 1259
Restrictions. 1260
Input register information 1260
Output register information 1260
Performance implications 1260
Syntax 1261
Parameters 1261
ABEND codes 1263
Return codes 1263
Example. 1263

Chapter 128. ISGLPBA — Purge a
group of requestors from a group of
latch sets 1265
Description. 1265

Environment 1265
Programming requirements 1265
Restrictions. 1266
Input register information 1266
Output register information 1266
Performance implications 1266
Syntax 1266
Parameters 1267
ABEND codes 1268
Return codes 1268

Chapter 129. ISGLPB64 — Purge a
group of requestors from a group of
latch sets in 64-bit mode 1269
Description. 1269

Environment 1269
Programming requirements 1270
Restrictions. 1270
Input register information 1270
Output register information 1270
Performance implications 1270
Syntax 1271
Parameters 1271
ABEND codes 1272
Return codes 1272

xxii z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 130. ISGLPRG — Purge a
requestor from a latch set 1273
Description. 1273

Environment 1273
Programming requirements 1273
Restrictions. 1273
Input register information 1274
Output register information 1274
Performance implications 1274
Syntax 1274
Parameters 1274
ABEND codes 1275
Return codes 1275
Example. 1275

Chapter 131. ISGLPR64 — Purge a
requestor from a latch set in 64-bit
mode 1277
Description. 1277

Environment 1277
Programming requirements 1277
Restrictions. 1277
Input register information 1278
Output register information 1278
Performance implications 1278
Syntax 1278
Parameters 1279
ABEND codes 1279
Return codes 1279
Example. 1279

Chapter 132. ISGLREL — Release a
latch. 1281
Description. 1281

Environment 1281
Programming requirements 1281
Restrictions. 1282
Input register information 1282
Output register information 1282
Performance implications 1282
Syntax 1282
Parameters 1283
ABEND codes 1284
Return codes 1284
Example. 1285

Chapter 133. ISGLRE64 — Release a
latch in 64-bit mode 1287
Description. 1287

Environment 1287
Programming requirements 1287
Restrictions. 1288
Input register information 1288
Output register information 1288
Performance implications 1288
Syntax 1288
Parameters 1289
ABEND codes 1290
Return codes 1290

Example. 1291

Chapter 134. ISGQUERY — Global
resource serialization query service . 1293
Description. 1293

Environment 1293
Programming requirements 1293
Restrictions. 1294
Input register information 1294
Output register information 1294
Performance implications 1295
Syntax 1296
Parameters 1298
ABEND codes 1311
Return and reason codes 1311
Examples 1320

Chapter 135. ITTFMTB — Generate
component trace format table 1323
Description. 1323

Environment 1323
Programming requirements 1323
Restrictions. 1323
Register information. 1323
Performance implications 1323
Syntax 1323
Parameters 1325
Return and reason codes 1327

Chapter 136. ITTWRITE — Write a full
trace buffer to DASD or tape 1329
Description. 1329

Environment 1329
Programming requirements 1329
Restrictions. 1329
Register information. 1329
Performance implications 1330
Syntax 1330
Parameters 1331
ABEND codes 1332
Return and reason codes 1332
Example. 1333

ITTWRITE - List form 1333
Syntax 1333
Parameters 1334

ITTWRITE - Execute form 1334
Syntax 1334
Parameters 1335

Chapter 137. ITZXFILT — Transaction
trace filter exit 1337
Description. 1337

Environment 1337
Programming requirements 1337
Restrictions. 1337
Input register information 1337
Output register information 1337
Performance implications 1338
Syntax 1338

Contents xxiii

Parameters 1338
ABEND codes 1339
Return and reason codes 1339
Example. 1339

Chapter 138. IXGBRWSE —
Browse/read a log stream 1341
Description. 1341

Environment 1341
Programming requirements 1342
Restrictions. 1343
Input register information 1343
Output register information 1343
Performance implications 1344
REQUEST=START option of IXGBRWSE . . . 1344
Syntax for REQUEST=START. 1344
Parameters for REQUEST=START 1345
REQUEST=READCURSOR option of
IXGBRWSE. 1350
Syntax for REQUEST=READCURSOR 1350
Parameters for REQUEST=READCURSOR 1352
REQUEST=READBLOCK option of IXGBRWSE 1357
Syntax for REQUEST=READBLOCK 1357
Parameters for REQUEST=READBLOCK . . . 1359
REQUEST=RESET option of IXGBRWSE . . . 1364
Syntax for REQUEST=RESET. 1364
Parameters for REQUEST=RESET 1365
REQUEST=END option of IXGBRWSE . . . 1369
Syntax for REQUEST=END 1369
Parameters for REQUEST=END 1370
ABEND codes 1373
Return and reason codes 1373
Examples 1385

Chapter 139. IXGCONN —
Connect/disconnect to log stream . . 1389
Description. 1389

Environment 1389
Programming requirements 1390
Restrictions. 1390
Input register information 1391
Output register information 1391
Performance implications 1391
Syntax 1392
Parameters 1394
ABEND codes 1400
Return and reason codes 1400
Example 1 1412
Example 2 1413
Example 3 1413

Example 4 1413
Example 5 1414

Chapter 140. IXGDELET — Deleting
log data from a log stream 1415
Description. 1415

Environment 1415
Programming requirements 1415
Restrictions. 1416
Input register information 1416
Output register information 1416
Performance implications 1416
Syntax 1417
Parameters 1418
ABEND codes 1422
Return and reason codes 1422
Examples 1430

Chapter 141. IXGWRITE — Write log
data to a log stream 1433
Description. 1433

Environment 1433
Programming requirements 1434
Restrictions. 1434
Input register information 1434
Output register information 1435
Performance implications 1435
Syntax 1435
Parameters 1437
ABEND codes 1441
Return and reason codes 1441
Example 1 1452
Example 2 1452
Example 3 1453

Appendix. Accessibility 1455
Accessibility features 1455
Consult assistive technologies 1455
Keyboard navigation of the user interface . . . 1455
Dotted decimal syntax diagrams 1455

Notices 1459
Policy for unsupported hardware 1460
Minimum supported hardware 1461
Programming interface information 1461
Trademarks 1461

Index 1463

xxiv z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Figures

1. Sample User Parameter List for Callers in AR
Mode 5

2. Sample tabular syntax diagram for the TEST
macro 14

3. Continuation Coding 16
4. Return Code Area Used by ENQ 82
5. Characteristics and Restrictions for Standard

Hiperspaces 264

6. Characteristics and Restrictions for ESO
Hiperspaces 270

7. Sample (beginning portion) Timed Event Data
spreadsheet 636

8. Sample (second portion) Timed Event Data
spreadsheet 636

9. RANGLIST and NUMRANGE Parameters 962

© Copyright IBM Corp. 1988, 2016 xxv

xxvi z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Tables

1. Passing User Parameters in AR Mode 5
2. Execution environment characteristics and

corresponding SYSSTATE parameters and global
symbols 6

3. Service Summary 18
4. ENF macro event codes 46
5. Return Codes for the ENFREQ Macro 62
6. Return Codes for the ENQ Macro with the

RET=TEST Parameter 82
7. Return Codes for the ENQ Macro with the

RET=USE Parameter 83
8. Return Codes for the ENQ Macro with the

RET=CHNG Parameter 83
9. Return Codes for the ENQ Macro with the

RET=HAVE Parameter 84
10. Return Codes for the ENQ Macro with the

ECB Parameter 85
11. Return Codes for the ESPIE TEST Macro 100
12. Return and Reason Codes for the ESTAE

Macro 109
13. Return and Reason Codes for the ESTAEX

Macro 113
14. Return Code for the ETCON Macro 122
15. Return Code for the ETCRE Macro 127
16. Return Codes for the ETDES Macro 141
17. Return Code for the ETDIS Macro 147
18. Return Codes for the FESTAE Macro 164
19. Return Codes for the FREEMAIN Macro 177
20. Return Codes for the GETDSAB Macro 184
21. Return and Reason Codes for the GETDSAB

Macro 185
22. Return Codes for the GETMAIN Macro 203
23. Return codes for the GQSCAN macro 213
24. Return Codes for the GTRACE TEST Macro 223
25. Return Codes for the GTRACE DATA Macro 227
26. Return and reason codes for the HISMT

macro 239
27. Return and Reason Codes for the HISSERV

Macro 253
28. Return and Reason Codes for HSPSERV

SREAD and HSPSERV SWRITE 268
29. Return and Reason Codes for HSPSERV

CREAD and HSPSERV CWRITE 274
30. Return codes for the IARBRVEA service 282
31. Return codes for the IARBRVER service 286
32. Return and Reason Codes for the IARCP64

Macro 303
33. Return and Reason Codes for the IARR2V

Macro 311
34. Return and Reason Codes for the IARST64

Macro 326
35. Storage Attributes Required for Subspaces 333
36. Return and Reason Codes for the IARSUBSP

Macro 335
37. IARVSERV Permitted Storage Combinations 340

38. Return and Reason Codes for the IARVSERV
Macro 345

39. Return and Reason Codes for the IARV64
Macro 479

40. Return Codes for the IAZXCTKN Macro 486
41. Return and Reason Codes for the IAZXJSAB

Macro 491
42. Return and reason codes for the IEAFP macro 502
43. Return Codes for IEALSQRY 508
44. Return Codes for the IEAMETR Macro 511
45. Return Codes for the IEAMRMF3 Macro 516
46. Return Codes for the IEAMSCHD Macro 534
47. Return and reason codes for the IEAMSXMP

macro 547
48. Return Codes for the IEANTCR Macro 554
49. Return Codes for the IEANTDL Macro 560
50. Return Codes for the IEANTRT Macro 564
51. Return Codes for the IEANTRTR Macro 572
52. Return Codes for the IEAN4CR Macro 578
53. Return Codes for the IEAN4DL Macro 584
54. Return Codes for the IEAN4RT Macro 588
55. Return and Reason Codes for the IEARBUP

Macro 595
56. Return and Reason Codes for the IEATDUMP

Macro 609
57. Return and reason codes for the IEATEDS

macro 627
58. Return codes for the IEATXDC Macro 643
59. Authorization 647
60. Checkpoint/Restart Toleration - only

available when the CVTPAUS4 bit is set in
the CVT. 647

61. Authorization 651
62. Checkpoint/Restart Toleration - only

available when the CVTPAUS4 bit is set in
the CVT. 651

63. Linkage option 654
64. Linkages 671
65. Linkage variables 708
66. Untrusted attribute linkage variable 708
67. Authorization 729
68. Checkpoint/Restart Toleration - only

available when the CVTPAUS4 bit is set in
the CVT. 729

69. Authorization 733
70. Checkpoint/Restart Toleration - only

available when the CVTPAUS4 bit is set in
the CVT. 733

71. Linkage option 736
72. Linkages 751
73. Linkage variables 787
74. Untrusted attribute linkage variable 788
75. Return and Reason Codes for the IEEQEMCS

Macro 830
76. Return and Reason Codes for the IEEVARYD

Macro 840

© Copyright IBM Corp. 1988, 2016 xxvii

||
||

|
||

||

||

||

77. Return Codes for the IEFPPSCN Macro 854
78. Return Codes for the IEFQMREQ Macro 860
79. Reason Codes for the IEFQMREQ Macro 861
80. Return and reason codes for the IEFSJSYM

macro 868
81. Return and reason codes for the IEFSSI macro 903
82. Return and Reason Codes for the IEFSSVT

Macro 926
83. Return and Reason Codes for the IFAQUERY

Macro 949
84. Parameters Valid with IOSADMF Requests 961
85. Return and Reason Codes for the IOSADMF

Macro 963
86. Return and Reason Codes for the IOSCAPU

CAPTUCB Macro 979
87. Return and Reason Codes for the IOSCAPU

UCAPTUCB Macro 984
88. Return and Reason Codes for the IOSCAPU

CAPTOACT Macro 989
89. Return and reason codes for the IOSCHPD

macro. 1012
90. Return Codes for the IOSCMB Macro 1017
91. Return and Reason Codes for the IOSCUINF

Macro 1034
92. ABEND Codes for the IOSENQ Macro 1047
93. Return and Reason Codes for the IOSENQ

Macro 1048
94. Return and reason codes for the IOSFBA

macro. 1065
95. Return Codes for the IOSHXBLK Macro 1071
96. Return Codes for the IOSLOOK Macro 1080
97. Return and reason codes for the IOSSCM

macro. 1103
98. Return Codes for the IOSVRYSW Macro 1131
99. Return and reason codes for the IOSWITCH

macro. 1139
100. Return codes for the IQPINFO macro 1149

101. Return Codes for IRDFSD macro. 1155
102. Return and Reason Codes for IRDFSD macro 1156
103. Return Codes for IRDFSDU macro 1160
104. Return and Reason Codes for IRDFSD macro 1161
105. Return and Reason Codes for the

ISGADMIN Macro 1169
106. Return and Reason Codes for the ISGECA

Macro. 1184
107. Return and Reason Codes for the ISGENQ

Macro 1207
108. ISGLCRT Return Codes 1225
109. ISGLCR64 Return Codes 1236
110. ISGLID Return Codes 1247
111. ISGLID64 Return Codes 1251
112. ISGLOBT Return Codes. 1257
113. ISGLOBT64 Return Codes 1263
114. ISGLPBA Return Codes 1268
115. ISGLPB64 Return Codes 1272
116. ISGLPRG Return Codes. 1275
117. ISGLPRG Return Codes. 1279
118. ISGLREL Return Codes 1284
119. ISGLRE64 Return Codes 1290
120. Return and Reason Codes for the

ISGQUERY Macro 1312
121. Abend codes for the ITTWRITE Macro 1332
122. Return and Reason Codes for the ITTWRITE

Macro 1333
123. Return and Reason Codes for the ITZXFILT

Macro 1339
124. Return and Reason Codes for the

IXGBRWSE Macro 1374
125. Return and reason codes for the IXGCONN

macro. 1400
126. Return and Reason Codes for the IXGDELET

Macro 1423
127. Return and reason codes for the IXGWRITE

macro. 1441

xxviii z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
||

About this document

This document describes the authorized services that the MVS™ operating system
provides; that is, services available only to authorized programs. An authorized
program must meet one or more of the following requirements:
v Running in supervisor state
v Running under PSW key 0-7
v Running with APF-authorization.

Some of the services included in this document are not authorized, but are
included because they are of greater interest to the system programmer than to the
general applications programmer. The functions of these services are of such a
nature that their use should be limited to programmers who write authorized
programs. Services are also included if they have one or more authorized
parameters — parameters available only to authorized programs.

Programmers using assembler language can use the macros described in this
document to invoke the system services that they need. This document includes
the detailed information — such as the function, syntax, and parameters — needed
to code the macros.

This document is divided into four volumes. Volumes 1 through 4 present the
macro descriptions in alphabetic order.

Who should use this document
This document is for the programmer who is using assembler language to code a
system program. A system program is usually one that runs in supervisor state or
runs with PSW key 0-7 or runs with APF authorization.

The document assumes a knowledge of the computer, as described in Principles of
Operation, as well as an in-depth knowledge of assembler language programming.

System macros require High Level Assembler. Assembler language programming is
described in the following information:
v HLASM Programmer's Guide
v HLASM Language Reference

Using this information also requires you to be familiar with the operating system
and the services that programs running under it can invoke.

How to use this document
This document is one of the set of programming documents for MVS. This set
describes how to write programs in assembler language or high-level languages,
such as C, FORTRAN, and COBOL. For more information about the content of this
set of documents, see z/OS V2R2 Information Roadmap.

z/OS information
This information explains how z/OS references information in other documents
and on the web.

© Copyright IBM Corp. 1988, 2016 xxix

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS V2R2 Information Roadmap.

To find the complete z/OS® library, go to IBM Knowledge Center
(http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

xxx z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

How to send your comments to IBM

We appreciate your input on this documentation. Please provide us with any
feedback that you have, including comments on the clarity, accuracy, or
completeness of the information.

Use one of the following methods to send your comments:

Important: If your comment regards a technical problem, see instead “If you have
a technical problem.”
v Send an email to mhvrcfs@us.ibm.com.
v Send an email from the "Contact us" web page for z/OS (http://www.ibm.com/

systems/z/os/zos/webqs.html).

Include the following information:
v Your name and address
v Your email address
v Your phone or fax number
v The publication title and order number:

z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG
SA23-1373-04

v The topic and page number or URL of the specific information to which your
comment relates

v The text of your comment.

When you send comments to IBM®, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one or more of the following actions:
v Visit the IBM Support Portal (support.ibm.com).
v Contact your IBM service representative.
v Call IBM technical support.

© Copyright IBM Corp. 1988, 2016 xxxi

mailto:mhvrcfs@us.ibm.com
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://support.ibm.com/

xxxii z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 2 (V2R2), as updated
December, 2015

The following changes are made for z/OS Version 2 Release 2 (V2R2), as updated
December, 2015. In this revision, all technical changes for z/OS V2R2 are indicated
by a vertical line to the left of the change.

New
v IARV64 has a new SADMP parameter for REQUEST=GETSTOR,

REQUEST=GETSHARED, and REQUEST=GETCOMMON.
v The following callable services have been added:

– Chapter 56, “IEAVPME2 — Pause multiple elements service,” on page 667
– Chapter 70, “IEA4PME2 — 64-bit pause multiple elements service,” on page

747.
v IXGCONN and IXGWRITE have a new return code 08, reason code xxxx084E.

Changed
v IARCP64 REQUEST=FREE now accepts the INPUT_CPID parameter.
v Restrictions are updated for the following callable services:

– Chapter 52, “IEAVAPE — Allocate_Pause_Element,” on page 645
– Chapter 66, “IEA4APE — Allocate_Pause_Element,” on page 727
– Chapter 53, “IEAVAPE2 — Allocate_Pause_Element,” on page 649
– Chapter 67, “IEA4APE2 — Allocate_Pause_Element,” on page 731.

Summary of changes for z/OS Version 2 Release 2
The following information has been added, changed, or deleted in z/OS Version 2
Release 2 (V2R2).

New
v The MEMLIMIT=COND option has been added in “REQUEST=GETSTOR option

of IARV64” on page 353.
v The IARBRVEA callable service has been added in Chapter 24, “IARBRVEA —

Verify virtual storage access (AR mode),” on page 281.
v The IARBRVER callable service has been added in Chapter 25, “IARBRVER —

Verify virtual storage access (primary address space),” on page 285.
v The IARV64 service has the following new parameters:

– The PAGEFRAMESIZE parameter has been added in
“REQUEST=GETSHARED option of IARV64” on page 440.

– The GUARDSIZE, GUARDSIZE64, and GUARDLOC parameters have been
added in “REQUEST=GETCOMMON option of IARV64” on page 459

v The TRANSFER parameter has been added in Chapter 39, “IEAMSCHD —
Schedule an SRB,” on page 521.

© Copyright IBM Corp. 1988, 2016 xxxiii

v The IEANTRTR macro has been added in Chapter 44, “IEANTRTR —
Name/token retrieve register interface,” on page 569.

v The EVENTRTN parameter has been added in Chapter 86, “IEFSSI —
Dynamically control a subsystem,” on page 873.

v Return code X’00’ has a new reason code, X’02’, in Chapter 103, “IOSFBA —
IOS fixed block architecture service,” on page 1049.

v The BYPONLINEFENCE parameter has been added in Chapter 107, “IOSODS —
IOS offline device service,” on page 1081.

v The IOSSCM service has been added in Chapter 109, “IOSSCM — Storage class
memory information,” on page 1099.

Changed
v Updates have been made to the Restrictions topic in Chapter 17, “GETDSAB —

Accessing the DSAB chain,” on page 181.
v Updates have been made in “REQUEST=GETSTOR option of IARV64” on page

353.
v Modified event code 78 of ENF event codes and meanings to reference JES

instead of JES2. See “ENF event codes and meanings” on page 45.
v Information about the SYNCH parameter has been updated in Chapter 39,

“IEAMSCHD — Schedule an SRB,” on page 521.
v Information about the CHPID parameter and reason codes has been updated in

Chapter 95, “IOSCHPD — IOS CHPID description service,” on page 1007.

Deleted
v The FEATURE=CPMASK parameter has been removed from Chapter 39,

“IEAMSCHD — Schedule an SRB,” on page 521. The FEATURE=CPMASK
syntax is still accepted, but is ignored.

Summary of changes for z/OS Version 2 Release 1, as updated
February 2015

The following changes are made for z/OS Version 2 Release 1 (V2R1), as updated
February 2015.

New
v A new DACHMONC subtype for device monitoring has been added for ENF

signal type 33 in “ENF event codes and meanings” on page 45.
v A new HISMT service has been added in Chapter 21, “HISMT — HIS

multithreading service,” on page 231.
v The LOCALSYSAREA parameter is added in Chapter 26, “IARCP64 — 64-bit cell

pool services,” on page 289.
v The description of return code 4, reason code 0, has been added in Chapter 120,

“ISGECA — GRS enhanced contention analysis service,” on page 1177.

Changed
v Chapter 22, “HISSERV macro — HISSERV Service,” on page 245 is updated for

z/OS multithreading support.
v The IEAFP service is updated to modify the STOP parameter and to add the

STOPVECTOR and START parameters. Return and reason codes are updated
also. See Chapter 35, “IEAFP — Floating point services,” on page 499 for more
information.

xxxiv z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v Chapter 26, “IARCP64 — 64-bit cell pool services,” on page 289 is updated and
restructured to improve clarity.

v The descriptions of the CSA, LSQA, RGN, and SQA options of the SDATA
parameter have been updated in Chapter 49, “IEATDUMP — Transaction dump
request,” on page 597.

v Information about the parameters and the return and reason codes is updated in
Chapter 114, “IOSWITCH — IOS switch information service,” on page 1135.

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

Summary of changes xxxv

xxxvi z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 1. Using the services

Macros and callable services are programming interfaces that application programs
can use to access MVS system services. This chapter provides general information
and guidelines about how to use the macros and callable services accurately and
efficiently. For more specific and detailed information about coding a particular
macro or callable service, see the individual service description in this information.

Some of the topics covered in this chapter apply only to macros, some apply only
to callable services, and some apply to both. This chapter uses the word "services"
when referring to information that applies to both service types. When information
applies only to one type or the other, the particular service type is specified.

Note: z/OS macros do not code to restrictions that are imposed by the
COMPAT(CASE) HLASM option or its abbreviation CPAT(CASE). Therefore, you
cannot rely on using COMPAT(CASE) if you use z/OS macros.

The following table lists the topics covered in this chapter and whether the topic
applies to macros, callable services, or both:

Topic Service Type
“Compatibility of MVS macros” Macros
“Addressing mode (AMODE)” on page 2 Both
“Address space control (ASC) mode” on page 3 Both

“ALET qualification” on page 4 Both
“User parameters” on page 4 Macros

“Telling the system about the execution environment” on page 6 Macros
“Specifying a macro version number” on page 7 Macros
“Register use” on page 8 Both
“Handling return codes and reason codes” on page 9 Both

“Handling program errors” on page 9 Both
“Handling environmental and system errors” on page 10 Both

“Using X-macros” on page 11 Macros
“Macro forms” on page 12 Macros
“Coding the macros” on page 13 Macros
“Coding the callable services” on page 16 Callable Services

“Including equate (EQU) statements” on page 17 Callable Services
“Link-editing linkage-assist routines” on page 17 Callable Services

“Service summary” on page 18 Both

Compatibility of MVS macros
When IBM introduces a new version or a new release of an existing version, the
new version or release supports all MVS macros from previous versions and
releases. Programs assembled on an earlier level of MVS that issue macros will run
on later levels of MVS.

In most cases, the reverse is also true. When you assemble programs that issue
macros on a particular version and release of MVS, those programs can run on
earlier versions and releases of MVS, provided you request only those functions

© Copyright IBM Corp. 1988, 2016 1

that are supported by the earlier version and release. This is useful for installations
that write applications that might be assembled on one level of MVS, but run on a
different level.

As MVS supports new architectures, addressability changes. To take best
advantage of the new architectures, some macros have more than one possible
expansion. You are required to have the macro expand according to the
environment in which the program runs. This topic is described in this
introductory information.

The problem of compatibility is not the same as selecting a macro version through
the PLISTVER parameter to ensure the correct parameter list size for a macro. For
selecting a parameter list version number, see “Specifying a macro version
number” on page 7.

Addressing mode (AMODE)
A program can run in 24-bit, 31-bit, or 64-bit addressing mode. A program that
executes in 24-bit or 31-bit addressing mode can invoke most of the services
described in this information. A program that executes in 64-bit addressing mode
has a smaller group of services that it can invoke.

In general,
v A program running in 24-bit addressing mode cannot pass parameters or

parameter addresses that are higher than 16 megabytes. However, there are
exceptions. For example, a program running in 24-bit addressing mode can:
– Free storage above 16 megabytes using the FREEMAIN macro
– Allocate storage above 16 megabytes using the GETMAIN macro
– Use cell pool services for cell pools located in storage above 16 megabytes

using the CPOOL macro
– Use page services for storage locations above 16 megabytes using the PGSER

macro
v A program running in 24-bit or 31-bit addressing mode cannot pass parameter

addresses that are higher than 2 gigabytes, unless stated otherwise in the
individual service description.

v If a program running in 31-bit or 64-bit addressing mode issues a service,
parameters and parameter addresses can be above or below 16 megabytes,
unless otherwise stated in the individual service description.

Some macros can generate code that is appropriate for programs in either 64-bit
addressing mode or 24-bit or 31-bit addressing mode. These macros check a global
symbol set by the SYSSTATE macro. See “Telling the system about the execution
environment” on page 6 for more information.

When you call a callable service in 24-bit or 31-bit addressing mode, you must pass
31-bit addresses to the system service regardless of what addressing mode your
program is running in. If your program is running in 24-bit mode and you use a
callable service, you must set the high-order byte of parameter addresses to zeros.

You can invoke the following services in 64-bit addressing mode, subject to the
“SVC or PC” restrictions mentioned later in this topic, but you cannot pass
parameters and parameter addresses above 2 gigabytes: ABEND, ATTACHX,
CALLDISP, CHAP, CSVQUERY, DELETE, DEQ, DETACH, DOM, DSPSERV,
DYNALLOC, ENQ, ESPIE, ESTAEX, EXCP, FREEMAIN, GETMAIN, GTRACE,

2 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IARVSERV, IDENTIFY, IEAARR, LINKX, LOAD, MODESET, PGSER, POST,
RESERVE, SDUMPX, SETRP, STAX, STIMER, STIMERM, STORAGE, SYNCHX,
TIME, TIMEUSED, TTIMER, VRADATA, WAIT, WTO, WTOR, and XCTL.

There are many services that support 64-bit addressing mode and parameter
addresses above 2 gigabytes. Examples are IRAV64, IARST64, and ISGENQ. For
details on the supported addressing mode and parameter address ranges for any
specific service, see the following books:
v z/OS MVS Programming: Assembler Services Reference ABE-HSP

v z/OS MVS Programming: Assembler Services Reference IAR-XCT

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO

v z/OS MVS Programming: Sysplex Services Reference

Before invoking a service in 64-bit addressing mode, you must inform system
macros, by specifying SYSSTATE AMODE=64, that you are in 64-bit addressing
mode. You can invoke only those options that result in calling the system by an
SVC or PC in 64-bit addressing mode. You cannot invoke any option that results in
calling the system by a branch-entry in 64-bit addressing mode.

Unless explicitly stated otherwise, assume that a given service cannot be invoked
in 64-bit addressing mode and cannot accept parameters and parameter addresses
above 2 gigabytes. Such an explicit statement would include a specific reference to
64-bit addressing mode in the AMODE specification of a particular macro’s
environment section. By contrast, an AMODE specification of "Any" means that the
macro can be invoked in either 24-bit or 31-bit addressing mode; it does not mean
that the macro can be invoked in 64-bit addressing mode.

For information about 64-bit addressing mode and the 64-bit GPR, see z/OS MVS
Programming: Extended Addressability Guide.

Address space control (ASC) mode
A program can run in either primary ASC mode or access register (AR) ASC mode.
In primary mode, the processor uses the contents of general purpose registers
(GPRs) to resolve an address to a specific location. In AR mode, the processor uses
the contents of ARs as well as the contents of GPRs to resolve an address to a
specific location. See z/OS MVS Programming: Assembler Services Guidefor more
detailed information about AR mode.

Some macros can generate code that is appropriate for programs in either primary
mode or AR mode. These macros check a global symbol set by the SYSSTATE
macro. See “Telling the system about the execution environment” on page 6 for
more information. Table 3 on page 18 lists the macros that check the global symbol.

Some services can generate code that is appropriate for programs in primary mode
only. If you write a program in AR mode that invokes one or more services, check
the description in this information for each service your program issues. Unless the
description indicates that a service supports callers in AR mode, the service does
not support callers in AR mode. In this case, use the SAC instruction to change the
ASC mode of your program and issue the service in primary mode.

Chapter 1. Using the services 3

|
|
|
|
|

Whether the caller is in primary or AR ASC mode, the system uses ARs 0-1 and
14-15 as work registers across any service call.

ALET qualification
The address space where you can place parameters varies with the individual
service:
v You can place parameters in the primary address space in all service.
v You must place parameters in the primary address space in some services.
v You can place parameters in any address space in some services.

To identify where you can locate parameters in a service, read the individual
service description.

Programs in AR mode that pass parameters must use an access register and the
corresponding general purpose register together (for example, access register 1 and
general purpose register 1) to identify where the parameters are located. The access
register must contain an access list entry token (ALET) that identifies the address
space where the parameters reside. The general purpose register must identify the
location of the parameters within the address space.

The only ALETs that MVS services typically accept are:
v Zero (0), which specifies that the parameters are in the caller's primary address

space
v An ALET for a public entry on the caller's dispatchable unit access list (DU-AL)
v An ALET for a common area data space (CADS)

MVS services do not accept the following ALETs, and you cannot attempt to pass
them to a service:
v One (1), which signifies that the parameters are in the caller's secondary address

space
v An ALET that is on the caller's primary address space access list (PASN-AL) that

does not represent a CADS
v An ALET for a private entry on the PASN-AL or the DU-AL

Throughout, this information uses the term AR/GPR n to mean an access register
and its corresponding general purpose register. For example, to identify access
register 1 and general purpose register 1, this information uses AR/GPR 1.

User parameters
Some macros that you can issue in AR mode include control parameters, user
parameters, or both. Control parameters refer to the macro parameter list, and the
parameters whose addresses are in the parameter list. Control parameters control
the operation of the macro itself. User parameters are parameters that a user
provides to be passed through to a user routine. For example, the PARAM
parameter on the ATTACHX macro defines user parameters. The ATTACHX macro
passes these parameters to the routine that it attaches. All other parameters on the
ATTACHX macro are control parameters that control the operation of the
ATTACHX macro.

Note:

1. User parameters are sometimes referred to as problem program parameters.
2. Control parameters are sometimes referred to as system parameters or control

program parameters.

4 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

The macros shown in Table 1 allow a caller in AR mode to pass information in the
form of a parameter list (or parameter lists) to another routine. This table identifies
the parameter that receives the ALET-qualified address of the parameter list and
tells you where the target routine finds the ALET-qualified address.

Table 1. Passing User Parameters in AR Mode

Macro Parameter Location of User Parameter List Address

ATTACH/ATTACHX PARAM,VL=1 AR/GPR 1 contains the address of a list of
addresses. When either

v a 4-bytes-per-entry parameter list or

v an 8-bytes-per-entry parameter list with
PLIST8ARALETS=YES

is being used, this list also contains the ALETs
associated with those addresses. (See Figure 1
for the format of the 4-bytes-per-entry
parameter list when it contains ALETs.)

ESTAEX PARAM SDWAPARM contains the address of an 8-byte
area, which contains the address and ALET of
the parameter list.

When an AR mode caller who is using a 4-bytes-per-entry parameter list passes
ALET-qualified addresses to the called program through PARAM,VL=1 on the
ATTACH/ATTACHX macro, the system builds a list formatted as shown in
Figure 1. The addresses passed to the called program are at the beginning of the
list, and their associated ALETs follow the addresses. The last address in the list
has the high-order bit on to indicate the end of the list. For example, Figure 1
shows the format of a list where an AR mode issuer of ATTACHX who is using a
4-bytes-per-entry parameter list has coded the PARAM parameter as follows:

PARAM=(A,B,C),VL=1

When an AR mode caller who is using an 8-bytes-per-entry parameter list specifies
PLIST8ARALETS=YES, the system builds a parameter list with the 8-byte
addresses at the beginning of the list and their associated 4-byte ALETs following
the addresses.

For information about linkage conventions, see the chapter in z/OS MVS
Programming: Assembler Services Guide.

@

ALET

@A

@B

@C

GPR1
AR1

0

0

1

ALET A

ALET B

ALET C

Figure 1. Sample User Parameter List for Callers in AR Mode

Chapter 1. Using the services 5

Telling the system about the execution environment
To generate code that is correct for the environment in which the program runs,
some macros need to know one or more of the following characteristics about that
environment:
v The addressing mode (AMODE) at the time the macro is issued
v The ASC mode of the program at the time the macro is issued
v The architectural level in which the program runs

For macros that are sensitive to their environment, use the SYSSTATE macro to
define the environment. During the assembly stage, SYSSTATE sets one or more
global symbols. Later, in your source code, the macro checks the global symbols
and generates the correct code, which might mean avoiding using a
z/Architecture® instruction or an access register. Table 3 on page 18 lists MVS
macros and identifies macros that need to know the environmental characteristics.

IBM recommends you issue the SYSSTATE macro before you issue other macros.
Once a program has issued SYSSTATE, there is no need to reissue it, unless the
program switches from one AMODE to another or one ASC mode to another or
has code paths that are isolated according to architecture level or operating system
release. If you switch AMODE or ASC mode to a different architecture code path,
issue SYSSTATE immediately after the switch to indicate the new state. In general,
specify SYSSTATE ARCHLVL=2, and switch to SYSSTATE ARCHLVL=3 before
issuing macros in sections of code that only run when z/OS 2.1 capabilities are
available. If you do not issue the SYSSTATE macro, the system assumes the macro
is issued as follows:
v In AMODE other than 64-bit
v In primary ASC mode
v Usually, in ESA/390 architectural level (but may assume z/Architecture level

since all supported z/OS releases require z/Architecture level)

Table 2 describes the relevant characteristics, the corresponding parameters on the
SYSSTATE macro, and the global symbols the macro checks.

Table 2. Execution environment characteristics and corresponding SYSSTATE parameters
and global symbols

Characteristic Parameter on SYSSTATE Global symbol

AMODE of 64-bit, or either 24-bit or 31-bit AMODE64=YES or NO &SYSAM64

Primary or AR ASC mode ASCENV=P or AR &SYSASCE

Architectural level of z/Architecture ARCHLVL=0, 1, 2, 3 or OSREL &SYSALVL

Operating system release ZOSVvRr &SYSOSREL

You can issue the SYSSTATE macro with the TEST parameter in your own
user-written macro to allow your macros to generate code appropriate for their
execution environment.

Callable services do not check the global symbols described in this topic. To
determine whether a callable service is sensitive to the AMODE, ASC mode, or the
Architecture level, see the description of the individual callable service.

In early releases of MVS, the SPLEVEL macro performs a function similar to
SYSSTATE. The SPLEVEL macro identifies the level of the operating system, so
that you can tune a macro expansion based on that level. You can use this where

6 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|

|
|

|

|||

macro expansions change incompatibly. Because SPLEVEL applies to levels that the
system no longer supports, it is not described in this topic.

Specifying a macro version number
Often there is more than one version of a macro, differentiated by additional
parameters or new or expanded function. For example, version 1 of the IXGCONN
macro provides a connection to a log stream, while version 2 adds new parameters
in support of resource manager programs. This is different than using the
SPLEVEL macro to select a macro version level to solve problems of downward
compatibility.

You can request a specific version of a macro based on the parameters you need to
use in your application, but you should also be attuned to the storage constraints
of the program. The version of a macro might affect the length of the parameter
list generated when the macro is assembled, because when you add new
parameters to a macro, the parameter list must be large enough to fit them. The
size of the parameter list might grow from release to release of z/OS, perhaps
affecting the amount of storage your program needs.

How to request a macro version using PLISTVER
Many macros that have one or more versions supply the PLISTVER parameter. For
those that do, use the PLISTVER parameter to request a version of the macro.
PLISTVER is the only parameter allowed on the list form of a macro (MF), and it
determines which parameter list the system generates. PLISTVER is optional. If
you omit it, the system generates a parameter list for the lowest version that will
accommodate the parameters specified. This is the IMPLIED_VERSION default.
Note that on the list form, the default will cause the smallest parameter list to be
created.

You can also code a specific version number using plistver, or specify MAX:
v You can use plistver to code a decimal value corresponding to the version of the

macro you require. The decimal value you provide determines the amount of
storage allotted for the parameter list.

v You can use MAX to request that the system generate a parameter list for the
highest version number currently available. The amount of storage allotted for
the parameter list will depend on the level of the system on which the macro is
assembled.
IBM recommends, if your program can tolerate additional growth, that you
always specify PLISTVER=MAX on the list form of the macro. MAX ensures that
the list form parameter list is always long enough to hold whatever parameters
might be specified on the execute form when both forms are assembled using
the save level of the system.

Hints for using PLISTVER
There are some general considerations that you should keep in mind when
specifying the version of a macro with PLISTVER:
v If PLISTVER is omitted, the macro generates a parameter list of the lowest

version that allows all the parameters specified to be processed.
v If you code PLISTVER=n and then specify any version ‘n+1’ parameter, the

macro will not assemble.
v If you code PLISTVER=n and do not specify any version ‘n’ parameter, the

macro will generate a version ‘n’ parameter list.

Chapter 1. Using the services 7

v If you are using the standard form of the macro (MF=S), there is no reason you
need to code the PLISTVER parameter.

v Not all macros have the same version numbers. The version numbers need not
be contiguous.

The PLISTVER parameter appears in the syntax diagram and in the parameter
descriptions. Within each macro description, the PLISTVER parameter description
specifies the range of values and lists the parameters applicable for each version of
the macro.

Register use
Some services require that the caller place information in specific general purpose
registers (GPRs) or access registers (ARs) prior to issuing the service. If a service
has such a requirement, the “Input Register Information” topic for the service
provides that information. The topic lists only those registers that have a
requirement. If a register is not specified as having a requirement, then the caller
does not have to place any information in that register unless using it in register
notation for a particular parameter, or using it as a base register.

Once the caller issues the service, the system can change the contents of one or
more registers, and leave the contents of other registers unchanged. When control
returns to the caller, each register contains one of the following values or has the
following status:
v The register content is preserved and is the same as it was before the service

was issued.
v The register contains a value placed there by the system for the caller's use.

Examples of such values are return codes and tokens.
v The system used the register as a work register. Do not assume that the register

content is the same as it was before the service was issued.

Note that the system uses ARs 0, 1, 14, and 15 as work registers for every service,
regardless of whether the caller is in primary or AR address space control (ASC)
mode. The system does not use ARs 2 through 13 for any service.

For more information about linkage conventions for a calling program’s registers,
see the "Saving the calling program’s registers" topic in the "Linkage conventions"
chapter in z/OS MVS Programming: Assembler Services Guide.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Many macros require that the caller have a program base register and assembler
USING instruction in effect when issuing the macro; that is, the caller must have
program addressability. AR mode programs also require that the AR associated with
the caller's base GPR be set to zero. IBM recommends the following:
v When issuing a macro, the caller should always have program addressability in

effect.
v When establishing addressability, the caller should use only registers 2 through

12.

8 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|

Many macros can take advantage of relative branching when they are used with
the IEABRC macro or with SYSSTATE ARCHLVL=1 or SYSSTATE ARCHLVL=2, if
they are running on z/OS. If relative branching is used, the caller might then need
addressability only to the static data portion of the program, and not to the
executable code.

Handling return codes and reason codes
Most of the services described in this information provide return codes and reason
codes. Return and reason codes indicate the outcome of the service in one of the
following ways:
v Successful completion: you do not need to take any action.
v Successful or partially successful completion, with additional information

supplied: you should evaluate the additional information in light of your
particular program and determine if you need to take any action.

v Unsuccessful completion: some type of error has occurred, and you must take
some action to correct the error.

The errors that cause unsuccessful completion fall into three broad categories:

Program errors
Errors that your program causes: you can correct these.

Environmental errors
Errors not caused directly by your program; rather, your program's request
caused a limit to be exceeded, such as a storage limit, or the limit on the
size of a particular data set. You might or might not be able to correct
these.

System errors
Errors caused by the system: your program did nothing to cause the error,
and you probably cannot correct these.

In some cases, a return or reason code can result from some combination of these
errors.

The return and reason code descriptions for the services in this information
indicate whether the error is a program error, an environmental error, a system
error, or some combination. Whenever possible, the return and reason code
descriptions give you a specific action that you can take to fix the error.

IBM recommends that you read all the return and reason codes for each service
that your program issues. You can then design your program to handle as many
errors as possible. When designing your program, you should allow for the
possibility that future releases of MVS might add new return and reason codes to a
service that your program issues.

Handling program errors
The actions to take in the case of program errors are usually straightforward.
Typical examples of program errors are:
1. Breaking one of the rules of the service. For example:

v Passing parameters that are either in the wrong format or not valid
v Violating one of the environment requirements (addressing mode, locking

requirements, dispatchable unit mode, and so on)
v Providing insufficient storage for information to be returned by the system.

Chapter 1. Using the services 9

2. Causing errors related to the parameter list. For example:
v Coding an incorrect combination of parameters
v Coding one or more parameters on the service incorrectly
v Inadvertently overlaying an area of the parameter list storage
v Inadvertently destroying the pointer to the parameter list.

3. Requesting a service or function for which the calling program is not
authorized, or which is not available on the system on which the program is
running.

In each of the first two cases, you can correct your program. For completeness, the
return and reason code descriptions give you specific actions to perform, even
when it might seem obvious what the action should be.

In the third case, you might have to contact your system administrator or system
programmer to obtain the necessary authorization, or to request that the service or
function be made available on your system, and the return or reason code
description asks you to take that step.

Note: Generally, the system does not take dumps for errors that your program
causes when issuing a system service. If you require such a dump, then it is your
responsibility to request one in your recovery routine. See the topic on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide for
information about writing recovery routines.

Handling environmental and system errors
With environmental errors, often your first action should be to rerun your program
or retry the request one or more times. The following are examples of
environmental errors where rerunning your program or retrying the request is
appropriate:
v The request being made through the service exceeds some internal system limit.

Sometimes, rerunning your program or retrying the request results in successful
completion. If the problem persists, it might be an indication of a larger problem
requiring you to consult your system programmer, or possibly IBM support
personnel. Your system programmer might be able to tune the system or cancel
users so that the limit is no longer exceeded.

v The request exceeds an installation-defined limit. If the problem persists, the
action might be to contact your system programmer and request that a
specification in an installation exit or parmlib member be modified.

v The system cannot obtain storage, or some other resource, for your request. If
the problem persists, the action might be to check with the operator to see if
another user in the installation is causing the problem, or to see if the entire
installation is experiencing storage constraint problems.

You might be able to design your program to anticipate certain environmental
errors and handle them dynamically.

With system errors, as with environmental errors, often your first action should be
to rerun your program or retry the request one or more times. If the problem
persists, you might have to contact IBM support personnel.

Whenever possible for environmental and system errors, the return or reason code
description gives you either a specific action you can take, or a list of
recommended actions you can try.

10 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

For some errors, providing a specific action is not possible, because the action you
should take depends on your particular application, and on what is happening in
your installation. In those cases, the return or reason code description gives you
one or more possible causes of the error to help you to determine what action to
take.

Some system errors result in return and reason codes that are provided for IBM
diagnostic purposes only. In these cases, the return or reason code description asks
you to record the information and provide it to the appropriate IBM support
personnel.

Using X-macros
Some MVS services support callers in both primary and AR ASC mode. When the
caller is in AR mode, macros must generate larger parameter lists; the increased
size of the list reflects the addition of ALETs to qualify addresses, as described
under “ALET qualification” on page 4. For some MVS macros, two versions of a
particular macro are available: one for callers in primary mode and one for callers
in AR mode. The name of the macro for the AR mode caller is the same as the
name of the macro for primary mode callers, except the AR mode macro name
ends with an “X”. This information refers to these macros as X-macros.

The authorized X-macros are:
v ATTACHX
v ESTAEX
v SDUMPX
v SYNCHX

The only way these macros know that a caller is in AR mode is by checking the
global symbol that the SYSSTATE macro sets. Each of these macros (and
corresponding non-X-macro) checks the symbol. If SYSSTATE ASCENV=AR has
been issued, the macro issues code that is valid for callers in AR mode. If it has not
been issued, the macro generates code that is not valid for callers in AR mode.
When your program returns to primary mode, use the SYSSTATE ASCENV=P
macro to reset the global symbol.

IBM recommends that you use the X-macro regardless of whether your program is
running in primary or AR mode. However, you should consider the following
before deciding which macro to use:

The rules for using all X-macros, except ESTAEX, are:
v Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary
mode. Some parameters on the non-X-macros are not valid for callers in AR
mode. Check the macro descriptions for these exceptions.

v Callers in AR mode should issue the X-macros.
If a caller in AR mode issues the non-X-macro, the system substitutes the
X-macro and sends a message describing the substitution.

IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, or your program requires a branch
entry. In these cases, you should use ESTAE.

Chapter 1. Using the services 11

Macro forms
You can code most macros in three forms: standard, list, and execute. Some macros
also have a modify form. When you code a macro, you use the MF parameter to
select one of the forms. The list, execute and modify forms are for reenterable
programs that need to change values in the parameter list of the macro. The
standard form is for programs that are not reenterable, or for programs that do not
change values in the parameter list.

When a program wants to change values in the parameter list of a macro, it can
make the change dynamically.

However, using the standard form and changing the parameter list dynamically
might cause errors. For example, after storing a new value into the inline, standard
form of the parameter list, a reenterable program operating under a given task
might be interrupted by the system before the program can invoke the macro. In a
multiprogramming environment, another task can use the same reenterable
program, and that task might change the inline parameter list again before the first
task regains control. When the first task regains control, it invokes the macro.
However, the inline parameter list now has the wrong values.

Through the use of the different macro forms, a program that runs in a
multiprogramming environment can avoid errors related to reenterable programs.
The techniques required for using the macro forms, however, are different for some
macros, called alternative list form macros, than for most other macros. For the
alternative list form macros, the list form description notes that different
techniques are required and refers you to the information under “Alternative list
form macros” on page 13.

Conventional list form macros
With conventional list form macros, you can use the macro forms as follows:
1. Use the list form of the macro, which expands to the parameter list. Place the

list form in the section of your program where you keep non-executable data,
such as program constants. Do not code it in the instruction stream of your
program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
some virtual storage.

3. Code a move character instruction that moves the parameter list from its
non-executable position in your program into the virtual storage area that you
obtained.

4. For macros that have a modify form, you can code the modify form of the
macro to change the parameter list. Use the address parameter of the modify
form to reference the parameter list in the virtual storage area that you
obtained. Thus, the parameter list that you change is the one in the virtual
storage area obtained by the GETMAIN or STORAGE macro.

5. Invoke the macro by issuing the execute form of the macro. Use the address
parameter of the execute form to reference the parameter list in the virtual
storage area that you obtained.

With this technique, the parameter list is safe even if the first task is interrupted
and a second task intervenes. When the program runs under the second task, it
cannot access the parameter list in the virtual storage of the first task.

12 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Alternative list form macros
Certain macros, called alternative list form macros, require a somewhat different
technique for using the list form. With these macros, you do not move the area
defined by the list form into virtual storage that you have obtained; instead, you
place the area defined by the list form into a DSECT. Also, it is the list form, not
the execute form, that you use to specify the address parameter that identifies the
address of the storage for the parameter list. Note that no modify form is available
for these macros.

You can use the macro forms for the alternative list form macros as follows:
1. Use the list form of the macro to define an area of storage that the execute form

can use to store the parameters. As with other macros, do not code the list form
in the instruction stream of your program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
virtual storage for the list form expansion.

3. Place the area defined by the list form into a DSECT that maps a portion of the
virtual storage you obtained.

4. Invoke the macro by issuing the execute form of the macro. The address
parameter specified on the list form references the parameter list in the virtual
storage area that you obtained.

Coding the macros
In this information, each macro description includes a syntax diagram near the
beginning of the macro description. The diagram shows how to code the macro.
The syntax diagram does not explain the meanings of the parameters; the
meanings are explained in the parameter descriptions that follow the syntax
diagram. For most macros, the syntax diagrams are in a tabular format; however,
some newer macros might have syntax diagrams in the railroad track format.

The syntax tables assume that the standard begin, end, and continue columns are
used. Thus, column 1 is assumed as the begin column. To change the begin, end,
and continue columns, use the ICTL instruction to establish the coding format you
want to use. If you do not use ICTL, the assembler recognizes the standard
columns. To code the ICTL instruction, see HLASM Language Reference.

Figure 2 on page 14 shows a sample macro called TEST and summarizes all the
coding information that is available for it. The table is divided into three zones, A,
B, and C.

Chapter 1. Using the services 13

|
|

v Column one of the table contains zones A and B. Zone A begins at the left
margin; zone B is indented from the left margin by one or more blank spaces.
Column two of the table contains zone C.

v Zone A and zone B contain those parameters that are allowed for the macro.
Zone A contains those parameters that are required; zone B contains those
parameters that are optional.

v If a parameter appears on a single line in the diagram (that is, a line whose
preceding line and following line are both blank), as shown in A1 and B1, then
that is the only available choice for the particular parameter.

v If two or more parameters appear on adjacent lines (that is, with no intervening
blank lines), as shown in A2 and B2, the parameters on those lines are mutually
exclusive, that is, you can code any one of those parameters.

v A further distinction is made between mandatory and optional parameters. The
parameter descriptions that follow the syntax table clearly identify those
parameters which are optional.

v Zone C (which is the second column in the syntax table), provides additional
information about coding the macro.

When substitution of a variable is indicated in zone C, the following classifications
are used:

Variable
Classification

A B C

A1

A2

B1

B2

name name:

TEST

b One or more blanks must precede TEST.

b One or more blanks must follow TEST.

MATH
HIST
GEOG

,DATA=

,LNG=

symbol. Begin in column 1.name

data length data length: symbol or decimal digit, with a maximum value of 256.

,FMT=HEX
,FMT=DEC
,FMT=BIN

Default: FMT=HEX

,PASS=
Default: PASS=65

,grade grade: symbol, decimal digit, or register (1) or (2) - (12).

symbol, decimal digit, or register (1) or (2) - (12).

RX-type address, or register (2) - (12)data addr data addr:

value value:

Figure 2. Sample tabular syntax diagram for the TEST macro

14 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|

|
|

|
|

|

|

symbol
Any symbol valid in the assembler language. The symbol can be as long as
the supported maximum length of a name entry in the assembler you are
using.

Decimal digit
Any decimal digit up to and including the value indicated in the
parameter description. If both symbol and decimal digit are indicated, an
absolute expression is also allowed.

Register (2) - (12)
One of general purpose registers 2 through 12, specified within
parentheses, previously loaded with the right-adjusted value or address
indicated in the parameter description. You must set the unused high-order
bits to zero. You can designate the register symbolically or with an
absolute expression.

Register (0)
General purpose register 0, previously loaded with the right-adjusted value
or address indicated in the parameter description. You must set the unused
high-order bits to zero. Designate the register as (0) only.

Register (1)
General purpose register 1, previously loaded with the right-adjusted value
or address indicated in the parameter description. You must set the unused
high-order bits to zero. Designate the register as (1) only.

Register (15)
General purpose register 15, previously loaded with the right-adjusted
value or address indicated in the parameter description. You must set the
unused high-order bits to zero. Designate the register as (15) only.

RX-type address
Any address that is valid in an RX-type instruction (for example, LA).

RS-type address
Any address that is valid in an RS-type instruction (for example, STM).

RS-type name
Any name that is valid in an RS-type instruction (for example, STM).

A-type address
Any address that can be written in an A-type address constant.

Default
A value that is used in default of a specified value; that is, the value the
system assumes if the parameter is not coded.

Rules for parameters: Use the parameters to specify the services and options to
be performed, and write them according to the following rules:
v If the selected parameter is written in all capital letters (for example, MATH,

HIST, or FMT=HEX), code the parameter exactly as shown.
v If the selected parameter is written in italics (for example, grade), substitute the

indicated value, address, or name.
v If the selected parameter is a combination of capital letters and italics separated

by an equal sign (for example, DATA=data addr), code the capital letters and
equal sign as shown, and then make the indicated substitution for the italicized
portion.

v Read the table from top to bottom.
v Code commas and parentheses exactly as shown.

Chapter 1. Using the services 15

v Positional parameters (parameters without equal signs) appear first; you must
code them in the order shown. You may code keyword parameters (parameters
with equal signs) in any order.

v If you select a parameter, read the second column (zone C) before proceeding to
the next parameter. The second column often contains coding restrictions for the
parameter.

Continuation lines
You can continue the parameter field of a macro on one or more additional lines
according to the following rules:
v Enter a continuation character (not blank, and not part of the parameter coding)

in column 72 of the line.
v Continue the parameter field on the next line, starting in column 16. All columns

to the left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the
parameter field through column 71, with no blanks, and continue in column 16 of
the next line; or truncate the parameter field by a comma, where a comma
normally falls, with at least one blank before column 71, and then continue in
column 16 of the next line. Figure 3 shows an example of each method.

Coding the callable services
A callable service is a programming interface that uses the CALL macro to access
system services. To code a callable service, code the CALL macro followed by the
name of the callable service, and a parameter list; for example:

CALL service,(parameter list)

The syntax diagram for the sample callable service SCORE:

Syntax Description

CALL SCORE

,(test_type
,level
,data
,format_option
,return_code)

Considerations for coding callable services are:

NAME 1

NAME 2 OP2

OP1 OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERAND5,OPERAND6,OPX
ERAND7
OPERAND1,OPERAND2
OPERAND3,OPERAND4,
OPERAND5,OPERAND6,OPERAND7

THIS IS ONE WAY
THIS IS ANOTHER WAY X

X

1 1610 44 72

Figure 3. Continuation Coding

16 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|

v You must code all the parameters in the parameter list because parameters are
positional in a callable service interface. That is, the function of each parameter
is determined by its position with respect to the other parameters in the list.
Omitting a parameter, therefore, assigns the omitted parameter's function to the
next parameter in the list.

v You must place values explicitly into all input parameters, because callable
services do not set default values.

v You can use the list and execute forms of the CALL macro to preserve your
program's reentrancy.

Including equate (EQU) statements
IBM supplies sets of equate (EQU) statements for use with some callable services.
These statements, which you may optionally include in your source code, provide
constants for use in your program. IBM provides the statements as a programming
convenience to save you the trouble of coding the definitions yourself.

Note: Check the “Programming Requirements” section of the individual service
description to determine if the equate statements are available for the callable
service you are using. If the equate statements are available, that section will also
provide a list of the statements that are provided, along with a description of how
to include them in your program.

Link-editing linkage-assist routines
Linkage-assist routines provide the connection between your program and the
system services that your program requests. When using callable services, link-edit
the appropriate linkage-assist routines into your program module so that, during
execution, the linkage-assist routines can resolve the address of, and pass control
to, the requested system services. You can also dynamically link to linkage-assist
routines as an alternative to link-editing. For example, issue the LOAD macro for
the linkage-assist routine, then issue a CALL to the loaded addresses.

To invoke the linkage-editor or binder, code JCL as in the following example:

Note: Omitting NCAL from the linkedit parameters (as the example shows) and
specifying SYS1.CSSLIB in the //SYSLIB statement, as shown, causes the addresses
of all required linkage-assist routines to be automatically resolved. This statement
saves you the trouble of having to specify individual linkage-assist routines in
INCLUDE statements.

//userid JOB ’accounting-info’,’name’,CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4096K
//LINKSTEP EXEC PGM=HEWL,
// PARM=’LIST,LET,XREF,REFR,RENT’
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSN=userid.LOADLIB,DISP=OLD
//SYSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//OBJLIB DD DSN=userid.OBJLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD *

INCLUDE OBJLIB(userpgm)
ENTRY userpgm
NAME userpgm(R)

/*

Chapter 1. Using the services 17

Service summary
Table 3 lists services described in the following:
v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

For each service, the table indicates:
v Whether a program in AR ASC mode can issue the service
v Whether a program in cross memory mode can issue the service
v Whether the macro checks the SYSSTATE global macro variables
v Whether the macro can be issued in 64-bit addressing mode

Note:

1. A program running in primary ASC mode when PASN=HASN=SASN can issue
any of the services listed in the table.

2. Cross memory mode means that at least one of the following conditions is true:

PASN¬=SASN
The primary address space (PASN) and the secondary address space
(SASN) are different.

PASN¬=HASN
The primary address space (PASN) and the home address space
(HASN) are different.

SASN¬=HASN
The secondary address space (SASN) and the home address space
(HASN) are different.

For more information about functions that are available to programs in cross
memory mode, see z/OS MVS Programming: Extended Addressability Guide.

3. Callable services do not check the SYSSTATE or SPLEVEL global variables.

Table 3. Service Summary

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

ALESERV Yes Yes No No

ASCRE Yes Yes Yes No

ASDES Yes Yes Yes No

ASEXT Yes Yes No No

ATSET No Yes Yes No

ATTACH Yes (See note 1
on page 26)

No Yes No

ATTACHX Yes No Yes Yes

AXEXT No Yes Yes No

AXFRE No Yes Yes No

AXRES No Yes Yes No

AXREXX No Yes Yes Yes

AXSET No Yes Yes No

BPXEKDA Yes No Yes No

18 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

BPXESMF Yes No Yes No

CALLDISP No Yes No Yes

CALLRTM No Yes (See note 2
on page 26)

No No

CHANGKEY No Yes No No

CIRB No No No No

CMDAUTH No No No No

CNZMXURF No Yes No No

CNZTRKR No Yes No No

COFCREAT Yes Yes Yes No

COFDEFIN Yes Yes Yes No

COFIDENT Yes Yes Yes No

COFNOTIF Yes Yes Yes No

COFPURGE Yes Yes Yes No

COFREMOV Yes Yes Yes No

COFRETRI Yes Yes Yes No

COFSDONO No No Yes No

CONFCHG No No Yes No

CPF No No No No

CPOOL No Yes Yes No

CPUTIMER No Yes Yes No

CSRSI No Yes No No

CSRUNIC Yes Yes No No

CSVAPF Yes (See note 11
on page 26)

Yes (See note 12
on page 26)

Yes No

CSVDYNEX Yes (See note 13
on page 27)

Yes (See note 14
on page 27)

Yes No

CTRACE No No Yes No

CTRACECS Yes No Yes No

CTRACEWR Yes Yes Yes No

DATOFF Yes No No No

DEQ No Yes Yes Yes

DIV Yes No Yes No

DOM No No No Yes

DSPSERV Yes Yes Yes Yes

DYNALLOC No No No Yes

EDTINFO No Yes Yes Yes

ENFREQ No No No No

ENQ No Yes Yes Yes

Chapter 1. Using the services 19

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

ESPIE No No No Yes

ESTAE (See note
3 on page 26)

No No Yes No

ESTAEX Yes Yes Yes Yes

ETCON No Yes Yes No

ETCRE No Yes Yes No

ETDEF Yes Yes No No

ETDES No Yes Yes No

ETDIS No Yes Yes No

EVENTS No No No No

EXTRACT No No No No

FESTAE No No No No

FREEMAIN Yes (See note 4
on page 26)

Yes Yes Yes

GETDSAB No No Yes No

GETMAIN Yes (See note 4
on page 26)

Yes Yes Yes

GQSCAN No Yes No No

GTRACE No Yes No Yes

HSPSERV Yes Yes (See note 5
on page 26)

(See note 6 on
page 26)

No

IARCP64 Yes Yes Yes Yes

IARR2V Yes Yes No No

IARSUBSP Yes Yes Yes No

IARST64 Yes Yes Yes Yes

IARVSERV Yes Yes Yes No

IARV64 Yes Yes Yes Yes

IAZXCTKN Yes Yes Yes No

IAZXJSAB Yes Yes (See note 15
on page 27)

Yes No

IEAARR Yes Yes Yes Yes

IEAFP Yes Yes Yes No

IEALSQRY Yes Yes Yes No

IEAMETR Yes Yes Yes No

IEAMRMF3 No Yes No No

IEAMSCHD Yes Yes Yes No

IEANTCR Yes Yes N/A No

IEANTDL Yes Yes N/A No

IEANTRT Yes Yes N/A No

IEARBUP Yes Yes Yes No

20 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

IEATDUMP Yes No Yes No

IEATEDS Yes Yes Yes No

IEATXDC Yes Yes Yes Yes

IEAVAPE No Yes No No

IEAVAPE2 No Yes No No

IEAVDPE No Yes No No

IEAVDPE2 No Yes No No

IEAVPSE No Yes No No

IEAVPSE2 No Yes No No

IEAVRLS No Yes No No

IEAVRLS2 No Yes No No

IEAVRPI No Yes No No

IEAVRPI2 No Yes No No

IEAVTPE No Yes No No

IEAVXFR No Yes No No

IEAVXFR2 No Yes No No

IEA4APE No Yes No Yes

IEA4APE2 No Yes No Yes

IEA4DPE No Yes No Yes

IEA4DPE2 No Yes No Yes

IEA4PSE No Yes No Yes

IEA4PSE2 No Yes No Yes

IEA4RLS No Yes No Yes

IEA4RLS2 No Yes No Yes

IEA4RPI No Yes No Yes

IEA4RPI2 No Yes No Yes

IEA4TPE No Yes No Yes

IEA4XFR No Yes No Yes

IEA4XFR2 No Yes No Yes

IEECMDS Yes Yes Yes No

IEEQEMCS Yes Yes Yes No

IEEVARYD No No Yes No

IEFPPSCN No No Yes No

IEFQMREQ No No No No

IEFSSI Yes No No No

IEFSSVT Yes No No No

IEFSSVTI Yes Yes No No

IFAQUERY Yes Yes No No

Chapter 1. Using the services 21

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

IOCINFO Yes Yes No No

IOSADMF No No Yes No

IOSCAPF No Yes (See note 7
on page 26)

Yes No

IOSCAPU Yes Yes (See note 7
on page 26)

Yes No

IOSCDR No No Yes No

IOSCHPD Yes Yes Yes No

IOSCMXA No Yes (See note 7
on page 26)

Yes No

IOSCMXR No Yes (See note 7
on page 26)

Yes No

IOSDCXR No Yes (See note 7
on page 26)

Yes No

IOSENQ Yes Yes Yes No

IOSINFO No No No No

IOSLOOK No No No No

IOSPTHV No No Yes No

IOSSPOF No Yes Yes Yes

IOSUPFA No Yes Yes No

IOSUPFR No Yes Yes No

IOSVRYSW Yes Yes Yes No

IOSWITCH Yes Yes Yes No

IOSZHPF Yes Yes Yes No

IRDFSD Yes Yes Yes No

IRDFSDU Yes Yes Yes No

ISGADMIN Yes Yes Yes Yes

ISGECA Yes Yes Yes Yes

ISGENQ Yes Yes Yes Yes

ISGLCRT (See
note 16 on page
27)

No Yes N/A No

ISGLID (See
note 16 on page
27)

No Yes N/A Yes

ISGLOBT No Yes N/A No

ISGLREL No Yes N/A No

ISGLPRG No Yes N/A No

ISGQUERY Yes Yes Yes Yes

ITTFMTB No No No No

ITZXFILT No Yes Yes No

22 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

IWMCLSFY No Yes Yes No

IWMCONN No Yes Yes No

IWMDISC No Yes Yes No

IWMECQRY No Yes Yes No

IWMECREA No Yes Yes No

IWMEDELE No Yes Yes No

IWMMABNL No Yes No No

IWMMCHST No Yes No No

IWMMCREA No Yes Yes No

IWMMDELE No Yes Yes No

IWMMEXTR No Yes Yes No

IWMMINIT No Yes No No

IWMMNTFY No Yes Yes No

IWMMRELA No Yes Yes No

IWMMSWCH No Yes Yes No

IWMMXFER No Yes No No

IWMPQRY Yes Yes Yes No

IWMRCOLL Yes Yes Yes No

IWMRPT No Yes Yes No

IWMRQRY Yes Yes Yes No

IWMSRDRS No Yes Yes No

IWMSRSRG No Yes Yes No

IWMSRSRS No Yes Yes No

IWMWMCON No Yes Yes No

IWMWQRY Yes Yes Yes No

IWMWQWRK No Yes Yes No

IXCCREAT Yes Yes Yes No

IXCDELET Yes Yes Yes No

IXCJOIN Yes No Yes No

IXCLEAVE Yes No Yes No

IXCMG Yes Yes Yes No

IXCMOD Yes Yes Yes No

IXCMSGI Yes No Yes No

IXCMSGO Yes Yes Yes No

IXCQUERY Yes Yes Yes No

IXCQUIES Yes No Yes No

IXCSETUS Yes Yes Yes No

IXCTERM Yes Yes Yes No

Chapter 1. Using the services 23

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

IXGBRWSE Yes Yes Yes Yes

IXGCONN Yes Yes Yes Yes

IXGDELET Yes Yes Yes Yes

IXGWRITE Yes Yes Yes Yes

LLACOPY No No Yes No

LOAD Yes No No Yes

LOADWAIT No Yes Yes No

LOCASCB Yes Yes Yes No

LXFRE No Yes Yes No

LXRES No Yes Yes No

MCSOPER Yes No Yes No

MCSOPMSG Yes No Yes No

MGCR No No No No

MGCRE No No No No

MIHQUERY Yes No Yes No

MODESET No Yes No Yes

NIL Yes Yes Yes No

NMLDEF No No No No

NUCLKUP No No No No

OIL Yes Yes Yes No

OUTADD No No No No

OUTDEL No No No No

PCLINK No Yes No No

PGANY No No No No

PGFIX No Yes No No

PGFIXA No No No No

PGFREE No Yes No No

PGFREEA No No No No

PGSER Yes (See note 8
on page 26)

Yes (See note 8
on page 26)

No Yes

POST No Yes No Yes

PTRACE No Yes No No

PURGEDQ No No No No

QEDIT No No No No

RESERVE No No No Yes

RESMGR Yes Yes No No

RESUME No Yes No No

RISGNL No Yes No No

SCHEDIRB Yes No Yes No

24 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

SCHEDULE Yes Yes Yes No

SCHEDXIT No Yes No No

SDUMP Yes (See note 1
on page 26)

Yes (See note 9
on page 26)

Yes No

SDUMPX Yes Yes (See note 9
on page 26)

Yes Yes

SETFRR Yes Yes Yes No

SETLOCK Yes Yes Yes No

SETRP Yes Yes Yes Yes

SJFREQ No Yes No No

SPIE No No No No

SPOST No No No No

SRBSTAT No Yes No No

SRBTIMER No No No No

STATUS Yes Yes No No

STORAGE Yes Yes No Yes

SUSPEND No Yes No No

SVCUPDTE No No No No

SWAREQ No No No No

SWBTUREQ No No No No

SYMREC No Yes Yes No

SYNCH Yes (See note 1
on page 26)

No Yes No

SYNCHX Yes No Yes Yes

SYSEVENT No No No No

TCBTOKEN Yes Yes No No

TCTL No No No No

TESTAUTH No No No No

TIMEUSED Yes (See note 10
on page 26)

Yes No Yes

T6EXIT No No No No

UCBINFO Yes Yes Yes No

UCBLOOK Yes Yes Yes No

UCBPIN Yes Yes Yes No

UCBSCAN Yes Yes Yes No

VSMLIST No Yes Yes No

VSMLOC No Yes Yes No

VSMREGN No Yes No No

WAIT No Yes No Yes

WTL No No No No

Chapter 1. Using the services 25

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

WTO No No No Yes

WTOR No No No Yes

Notes:

1. Primary mode callers can use either macro in the following macro pairs:
v ATTACH or ATTACHX
v SDUMP or SDUMPX
v SYNCH or SYNCHX
IBM recommends that programs in AR ASC mode use the X-macros
(ATTACHX, SDUMPX, and SYNCHX). If, however, a program in AR mode
issues ATTACH, SDUMP, or SYNCH after issuing SYSSTATE ASCENV=AR,
the system substitutes the corresponding X-macro and issues a message telling
you that it made the substitution.

2. CALLRTM TYPE=MEMTERM can be issued in cross memory mode. For
CALLRTM TYPE=ABTERM, see the CALLRTM macro description.

3. The only programs that can use ESTAE are programs that are in primary
mode with (PASN=HASN=SASN).
IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, or your program requires a
branch entry. In these cases, you should use ESTAE.

4. IBM recommends that AR mode callers use the STORAGE macro instead of
using GETMAIN or FREEMAIN.

5. For HSPSERV SREAD and HSPSERV SWRITE, PASN=HASN=SASN for a
non-shared standard hiperspace for which an ALET is not used (that is, the
HSPALET parameter is omitted).

6. If you use the HSPALET parameter, the HSPSERV macro checks SYSSTATE.
7. If the input UCB is captured, the IOSCAPF, IOSCMXA, IOSCMXR, and

IOSDCXR macros can be issued in cross memory mode only if the UCB is
captured in the primary address space. IOSCAPU CAPTOACT without the
ASID parameter also can be issued in cross memory mode if the UCB was
captured in the primary address space. IOSCAPU CAPTUCB and IOSCAPU
UCAPTUCB cannot be issued in cross memory mode.

8. PGSER can be issued in AR ASC mode only if you specify BRANCH=Y.
PGSER can be issued in cross memory mode only if you specify BRANCH=Y
or BRANCH=SPECIAL.

9. Both SDUMP and SDUMPX can be issued in cross memory mode only if you
specify BRANCH=YES.

10. Only TIMEUSED LINKAGE=SYSTEM can be issued in AR ASC mode.
TIMEUSED LINKAGE=BRANCH cannot be issued in AR ASC mode.

11. For a QUERY request, CSVAPF can be issued only in primary mode. For all
other requests, CSVAPF can be issued in primary or AR mode.

12. For CSVAPF with the ADD, DELETE, and DYNFORMAT requests, PASN =
HASN = SASN. For CSVAPF with the QUERY, QUERYFORMAT, and LIST
requests, any PASN, any HASN, any SASN.

26 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

13. For a QUERY or a CALL request with FASTPATH=YES, CSVDYNEX can be
issued only in primary mode. For all other requests, CSVDYNEX can be
issued in primary or AR mode.

14. For CSVDYNEX CALL, RECOVER, and QUERY requests, any PASN, any
HASN, any SASN. For all other requests, PASN=HASN=SASN.

15. When the caller of the IAZXJSAB macro specifies the ASCB parameter, any
PASN, any HASN, any SASN; otherwise, PASN=HASN is required.

16. The 64 bit entry names are as follows:
v ISGLCR64
v ISGLID64
v ISGLOB64
v ISGLRE64
v ISGLPB64
v ISGLPR64

Chapter 1. Using the services 27

28 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 2. EDTINFO — Obtain eligible device table
information

Description
The EDTINFO macro enables you to obtain information from the eligible device
table (EDT) and to check your device specification against the information in the
EDT. See z/OS HCD Planning and z/OS MVS Programming: Assembler Services Guide
for further information about the EDT.

For callers only in supervisor state AND PSW key 0, the EDTINFO macro performs
the following function:
v Return EDT Latch Tables (RTNEDTLT)

Note: If the RTNEDTLT function is specified, no other EDTINFO functions can be
requested on the same invocation nor can the IOCTOKEN and EDTADDR
keywords be specified.

For a list of functions performed by the EDTINFO macro for both unauthorized
and authorized callers, see z/OS MVS Programming: Assembler Services Reference
ABE-HSP.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and any PSW key 0.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31- bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

Programming requirements
Callers requesting the RTNEDTLT function of the EDTINFO macro must be in
31-bit AMODE to reference the areas returned through the ELTPRI and ELTSEC
pointers.

Callers requesting the RTNEDTLT function of the EDTINFO macro are required to
free the storage returned through the ELTPRI and ELTSEC pointers.

Restrictions
Callers must be supervisor state and PSW key 0 in order to invoke the RTNEDTLT
function.

© Copyright IBM Corp. 1988, 2016 29

Input register information
Before issuing the EDTINFO macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code if GPR 15 contains a return code of 04 or 08; otherwise, used
as a work register by the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the EDTINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede EDTINFO.

EDTINFO

� One or more blanks must follow EDTINFO.

RTNEDTLT Note: If this function is specified, no other functions can be requested.

EDTINFO macro

30 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,ELTPRI=eltpri eltpri: RS-type address or register (2) - (12).

,ELTSEC=eltsec eltsec: RS-type address or register (2) - (12).

,RETCODE=retcode retcode: RX-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

RTNEDTLT
Specifies that the EDTINFO service should return both the primary and
secondary EDT Latch Tables.

,ELTPRI=eltpri
Specifies the fullword output field that will contain the address of the primary
EDT Latch Table. The area returned can be mapped by IEFDELT.

ELTSEC=eltsec
Specifies the fullword output field that will contain the address of the
secondary EDT Latch Table. The area returned can be mapped by IEFDELT.

,RETCODE=retcode
Specifies the fullword location where the system is to store the return code.
The return code is also in GPR 15.

,RSNCODE=rsncode
Specifies the fullword location where the system is to store the reason code.
The reason code is also in GPR 0.

Return and reason codes
When control returns from EDTINFO, GPR 15 (and retcode addr, if you coded
RETCODE) contains one of the following hexadecimal return codes:

Return Code Meaning

00 The requested function or functions were performed and no reason code
information has been returned.

04 The requested function or functions were performed and information has
been returned, as explained by the hexadecimal reason code that
accompanies this return code. The reason code is in GPR 0 (and in rsncode,
if you coded RSNCODE).

Reason Code
Meaning

04 Either the primary EDT Latch Table or the secondary EDT Latch
Table or both EDT Latch Tables contain no entries.

EDTINFO macro

Chapter 2. EDTINFO — Obtain eligible device table information 31

Return Code Meaning

08 There is data in the input parameter list that is not valid, as explained by
the hexadecimal reason code that accompanies this return code. The
reason code is in GPR 0 (and in rsncode, if you coded RSNCODE).

Reason Code
Meaning

01 The input unit name could not be found in the EDT.

02 The input device type could not be found in the EDT.

03 One or more of the input device numbers is invalid.

04 The caller did not provide sufficient storage for the returned
information.

05 The MAXELIG function requires a generic device type as input,
but the input specified does not represent a generic device type.

06 The caller did not request any functions.

07 The caller requested functions that are not valid

08 For a required input, the caller specified a value that is not valid.
For example, other functions were specified with a function that
requires no other function requests.

09 The caller was not in supervisor state and PSW key 0 for a
function that requires this environment.

10 Storage could not be obtained for the request.

18 An unexpected system error occurred.

Example
Obtain the EDT Latch Tables for both the primary and secondary EDTs.
EDTINFO RTNEDTLT,ELTPRI=PRI_ELT_PTR,ELTSEC=SEC_ELT_PTR

EDTINFO - List form
Use the list form of the EDTINFO macro together with the execute form for
applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses for storing the parameters.

Syntax
This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros.

The list form of the EDTINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede EDTINFO.

EDTINFO

EDTINFO macro

32 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

� One or more blanks must follow EDTINFO.

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the EDTINFO macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

EDTINFO - Execute form
Use the execute form of the EDTINFO macro together with the list form for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the EDTINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede EDTINFO.

EDTINFO

� One or more blanks must follow EDTINFO.

RTNEDTLT Note: If this function is specified, no other functions can be requested.

,ELTPRI=eltpri eltpri: RS-type address or register (2) - (12).

EDTINFO macro

Chapter 2. EDTINFO — Obtain eligible device table information 33

Syntax Description

,ELTSEC=eltsec eltsec: RS-type address or register (2) - (12).

,RETCODE=retcode retcode: RX-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

,MF=(E,list addr,NOCHECK)

Parameters
The parameters are explained under the standard form of the EDTINFO macro
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the EDTINFO macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

COMPLETE specifies that the system is to check for required parameters and
supply defaults for optional parameters that were not specified. NOCHECK
specifies that the system does not check for required parameters and does not
supply defaults for optional parameters that were not specified.

Note: When using the NOCHECK option, make sure that it is preceded by an
execute or modify form invocation that specifies or defaults to the COMPLETE
option. Otherwise, the parameter list might not be completely initialized.

EDTINFO - Modify form
Use the modify form of the EDTINFO macro to change parameters in the control
parameter list that the system created through the list form of the macro.

Syntax
The modify form of the EDTINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede EDTINFO.

EDTINFO

EDTINFO macro

34 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

� One or more blanks must follow EDTINFO.

RTNEDTLT Note: If this function is specified, no other functions can be requested.

,ELTPRI=eltpri eltpri: RS-type address or register (2) - (12).

,ELTSEC=eltsec eltsec: RS-type address or register (2) - (12).

,RETCODE=retcode retcode: RX-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RX-type address or register (2) - (12).

,MF=(M,list addr) list addr: RX-type address or register (2) - (12).

,MF=(M,list addr,COMPLETE) Default: COMPLETE

,MF=(M,list addr,NOCHECK)

Parameters
The parameters are explained under the standard form of the EDTINFO macro
with the following exceptions:

,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Specifies the modify form of the EDTINFO macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

COMPLETE specifies that the system is to check for required parameters and
supply defaults for optional parameters that were not specified. NOCHECK
specifies that the system does not check for required parameters and does not
supply defaults for optional parameters that were not specified.

Note: When using the NOCHECK option, make sure that it is preceded by an
execute or modify form invocation that specifies or defaults to the COMPLETE
option. Otherwise, the parameter list might not be completely initialized.

EDTINFO macro

Chapter 2. EDTINFO — Obtain eligible device table information 35

EDTINFO macro

36 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 3. ENFREQ — Listen for system events

Description
The ENFREQ macro enables an authorized program to:
v Register to be notified when an ENF-defined event occurs (ACTION=LISTEN),

or
v Delete registration for notification of an ENF-defined event (ACTION=DELETE).

To listen for an event, a program issues ENFREQ with the ACTION=LISTEN
parameter. When the event that the program is listening for occurs, control passes
to the listener user exit routine specified on the EXIT or SRBEXIT parameter. For a
list of the events for which a program can listen, see Table 4 on page 46.

To stop listening for an event, a program issues ENFREQ with the
ACTION=DELETE parameter to delete the listen request. When a program issues
ENFREQ with the ACTION=DELETE parameter, ENF either deletes the listen
request immediately if the listener user exit has completed, or waits until the
listener user exit completes. Because the listener user exit might not have
completed processing at the time the delete request is issued, you must not release
the listener user exit's storage or any resources that may be required by the exit.
ENF does not delete the user exit when it deletes a listen request. See “DELETE
option” on page 66 for the syntax of a delete request.

For guidance information about how to use the ENFREQ macro and code the
listener user exit routine, see z/OS MVS Programming: Authorized Assembler Services
Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
The caller of ENFREQ must do the following:
v Include the CVT, IEFENFCT, and IEFENFPM mapping macros. Specify the

DSECT=YES option with the CVT mapping macro.
v Declare a fullword and label it ENFPTR.

Restrictions
None.

© Copyright IBM Corp. 1988, 2016 37

Input register information
Before issuing the ENFREQ macro, the caller must ensure that the following GPRs
contain the specified information:

Register
Contents

13 Address of a standard 18-word save area.

Output register information
When control returns to the caller of the ENFREQ macro, the general purpose
registers (GPRs) contain:

Register
Contents

0 Unchanged

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller of the ENFREQ macro, the access registers (ARs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Reason code

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

LISTEN option

Syntax
The standard form of the ENFREQ macro for ACTION=LISTEN is written as
follows:

Syntax Description

name name: Symbol. Begin name in column 1.

ENFREQ macro

38 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

� One or more blanks must precede ENFREQ.

ENFREQ

� One or more blanks must follow ENFREQ.

ACTION=LISTEN

,CODE=event code event code: Decimal digit or symbol.

,DTOKEN=dtoken dtoken: RX-type address or address in register (2) - (12).

,DISABLE=NO Default: DISABLE=YES

,DISABLE=YES

,ESTBNME=estab name estab name: RX-type address or address in register (2) - (12).

,EXITNME=exitrtn name exitrtn name: RX-type address or address in register (2) - (12).

,MASEXIT=No Default: MASEXIT=NO

,MASEXIT=YES

,FLTRBLK=filter block addr filter block addr: RX-type address or address in register (2) – (12).

,QUAL=qualifier qualifier: RX-type address or address in register (2) - (12).

Default: QMASK=NONE

,BITQUAL=bitqual bitqual: name of a 32-byte field, hexadecimal numeric value (X'xxx'), or
address in register (2) - (12)

Default: 32 bytes of X'00'.

,BITCOMPARE=SUBSET Default: BITCOMPARE=SUBSET

,BITCOMPARE=INTERSECT

,BITCOMPARE=EQUAL

,SRBEXIT=exitrtn addr exitrtn addr: A-type address, or address in register (2) - (12).

,EXIT=exitrtn addr exitrtn addr: A-type address or address in register (2) - (12).

,PARM=parm addr parm addr: A-type address, or address in register (2) - (12).

,PARM=parm data parm data: a fullword of data

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 39

Syntax Description

,EOT=NO Default: EOT=NO.

,EOT=YES

,EOM=NO Default: EOM=NO.

,EOM=YES

,PLISTVER=2 Default: Version implied by keywords

,PLISTVER=3

,PLISTVER=MAX

,RELATED=(value) value: Any text.

,XSYS=NO Default: XSYS=NO.

,XSYS=YES

Parameters
The parameters are explained as follows:

ACTION=LISTEN
A required parameter that specifies that you want to listen for a specific system
event.

,CODE=event code
A required parameter that specifies the system event about which the caller
wants to be notified. The event code can be any of the decimal codes listed in
Table 4 on page 46.

,DTOKEN=dtoken
Specifies a 4-byte output field into which the event notification facility (ENF)
returns a token to identify the request. To explicitly delete the listen request in
the future, you must code this parameter.

,DISABLE=NO
,DISABLE=YES

Indicates if the listen exit should be disabled for future calls in the case where
ENF enters into recovery processing because of an abend or other error in the
listen exit. The default is DISABLE=YES.

,ESTBNME=estab name
Specifies the name of the establisher of the listener user exit routine. The name
can be 1 to 8 alphanumeric characters. This optional parameter can be helpful
for diagnostic purposes. If you specify ESTBNME, you must also specify
EXITNME.

,EXITNME=exitrtn name
Specifies the name of the listener user exit routine to receive control when the
requested event occurs. The name can be 1 to 8 alphanumeric characters. This
optional parameter can be helpful for diagnostic purposes. If you specify
EXITNME, you must also specify ESTBNME.

ENFREQ macro

40 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,MASEXIT=NO
,MASEXIT=YES

Specifies whether multiple address spaces can use the same listen exit.
MASEXIT=NO, the default, specifies that only one address space can use a
particular listen exit. MASEXIT=YES specifies that other address spaces can use
the same listen exit.

Note: If you specify the MASEXIT parameter, you cannot also specify the
SRBEXIT parameter.

,FLTRBLK=filter block addr
Specifies the address of an ENF Listener Filter block. This can only be specified
for ENF codes that support it. See Table 4 on page 46 for the ENF codes that
support filter blocks. The filter data is specific to the signal code. See the ENF
Codes And Meanings section of the z/OS MVS Programming: Authorized
Assembler Services Guide to find the macro mapping name which would contain
the filter block data. The storage containing the filter block data can be
released following the ENFREQ LISTEN request.

,QUAL=qualifier
Specifies a four-byte value. The four-byte value, called a qualifier, further
defines the event. The qualifiers that are valid depend on the system event for
which you are listening. Table 4 on page 46 lists the meaning of the valid
QUAL values for each event.

To use this keyword, set QUAL equal to a qualifier that is listed in Table 4 on
page 46 for your event code. The mapping macro that defines symbolics
possible for the qualifier also appears in Table 4 on page 46.

The listener user exit receives control only when a system event occurs that
matches the characteristics specified by the QMASK bytes of the hexadecimal
value. For example, if QMASK=BYTE1, the listener user exit routine receives
control when an event with characteristics described by the first byte in the
qualifier occurs. ENF ignores information in bytes 2 through 4 because
QMASK=BYTE1.

If your listen request also specifies the BITQUAL keyword, the listen exit
receives control only when the system event also matches the characteristics
described by the bit-mapped qualifier and bit-wise comparison operator you
specify. The system event is only delivered if your listen request also specifies
the FLTRBLK keyword. The listen exit receives control only when those filters
are also passed. See the BITQUAL and BITCOMPARE parameter descriptions.

,QMASK=qmask keywords
Specifies which bytes of the four-byte qualifier ENF uses to further define the
event. The listener user exit receives control only when a system event occurs
that matches the characteristics specified by the QMASK bytes of the QUAL
field.

To specify the bytes of the qualifier that ENF is to use, code any combination
of the following keywords separated by commas. If you specify ALL or NONE,
ENF ignores all other QMASK keywords. If you do not specify any QMASK
keywords, the default is NONE.

BYTE1
First byte

BYTE2
Second byte

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 41

BYTE3
Third byte

BYTE4
Fourth byte

ALL All four bytes

NONE
No bytes

,BITQUAL=bitqual
Specifies a 32-byte field, a hexadecimal constant, or a register containing the
address of a 32-byte field containing a bit-mapped qualifier that further defines
the event. The qualifiers that are valid depend on the system event for which
you are listening.

To use this keyword, set BITQUAL as described in Table 4 on page 46. The
figure also lists the mapping macro that defines symbolic values for the
qualifier, if any. If you do not specify BITQUAL, the system responds as if you
had provided a bit-mapped qualifier with all bits set to zero.

The listen exit receives control only when a system event occurs that matches
the characteristics specified by the bit-mapped qualifier and the comparison
operation specified by the BITCOMPARE parameter. For example, if
BITCOMPARE=INTERSECT, the listener user exit receives control when an
event with characteristics represented by any of the bits that are set to ‘1’ in
the bit-mapped qualifier occurs.

If your listen request also specifies the QUAL keyword, the listen exit receives
control only when the system event also matches the characteristics specified
by the QMASK bytes of the QUAL field. The system event is only delivered if
your listen request also specifies the FLTRBLK keyword. The listen exit
receives control only when those filters are also passed. See the description of
the QUAL and QMASK keywords in this information.

,BITCOMPARE=SUBSET
,BITCOMPARE=INTERSECT
,BITCOMPARE=EQUAL

Specifies the comparison operation ENF uses to interpret the bit-mapped
qualifier specified with the BITQUAL parameter. In the examples provided
with the following parameter descriptions, only 8 of the 256 bits in the
bit-mapped qualifier are shown.
v SUBSET, the default, specifies that ENF is to pass control to the listener user

exit when an event with characteristics represented by all of the bits that are
set to ‘1’ in the bit-mapped qualifier occurs.
For example, if BITQUAL=X'A0...' (B'10100000...') and
BITCOMPARE=SUBSET, ENF will pass control to the listener user exit for a
system event described by any of the following bit patterns:
– B'10100000...'
– B'11100000...'
– B'10111111...'

Note: The above list is not exhaustive.
In all these cases, the characteristics described by the BITQUAL parameter
are a subset of the event's characteristics. That is, every bit set to '1' in the
bit-mapped qualifier is also set to '1' in the bit pattern describing the system
event.

ENFREQ macro

42 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v INTERSECT specifies that ENF is to pass control to the listener user exit
when an event with characteristics represented by any of the bits that are set
to ‘1’ in the bit-mapped qualifier occurs.
For example, if BITQUAL=X'A0...' (B'10100000...') and
BITCOMPARE=INTERSECT, ENF will pass control to the listener user exit
for a system event described by any of the following bit patterns:
– B'10000000...'
– B'00100000...'
– B'10111111...'

Note: This list is not exhaustive.
In all these cases, the intersection of the characteristics described by the
BITQUAL parameter and the characteristics of the event is non-null. At least
one bit set to '1' in the bit-mapped qualifier is also set to '1' in the bit pattern
describing the system event.

v EQUAL specifies that ENF is to pass control to the listener user exit when
an event with characteristics exactly represented by the bit-mapped qualifier
occurs.
For example, if BITQUAL=X'A0...' (B'10100000...') and
BITCOMPARE=EQUAL, ENF will pass control to the listener user exit only
for a system event described by the bit pattern B'10100000...'. In this case, the
characteristics described by the BITQUAL parameter exactly match the
characteristics of the system event that has occurred, and the bit-mapped
qualifier exactly matches the bit pattern describing the system event.

To specify that ENF is not to consider the bit-mapped qualifier when
determining whether the listener user exit is to receive control, do one of the
following:
v Omit both the BITQUAL and the BITCOMPARE parameters, or
v Specify BITQUAL=0 and BITCOMPARE=SUBSET

,SRBEXIT=exitrtn addr
Specifies the address of a listener user exit routine that receives control when
the requested event occurs. The specified routine receives control in SRB mode
in the address space that issued the listen request. SRBEXIT is valid only with
certain event codes. The combination of EOM=NO and EOT=YES is not
allowed with SRBEXIT. Do not let EOM default to NO.

If you specify SRBEXIT, you cannot also specify EXIT. See 'Coding the Listener
User Exit Routine' in z/OS MVS Programming: Authorized Assembler Services
Guide for information about SRBEXIT environment.

,EXIT=exitrtn addr
Specifies the address of the listener user exit routine that receives control when
the requested system event occurs. If you want this listener user exit routine to
run in 31-bit mode, you must turn on the high order bit of the exit routine's
address; otherwise the exit gets control in 24-bit mode.

If you specify EXIT, you cannot also specify SRBEXIT. See Exit Routine
Environment in z/OS MVS Programming: Authorized Assembler Services Guide for
information about EXIT Environment.

,PARM=parm addr
Specifies the address of a parameter list that the ENF listener can use to pass
parameters to the listener user exit routine. This address is stored into the third
word of a six-word data structure pointed to by register 1 on entry to the
listener user exit routine.

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 43

The fifth word of the six-word data structure is the address of the area mapped
by the IEFENFSG macro. If the signal for which your listen exit is invoked
originated on another system, the area mapped IEFENFSG will identify the
target system. The sixth word of the data structure is reserved for possible
ALET-qualification of the address mapped by the IEFENFSG macro.

You can specify either PARM=parm addr or PARM=parm data.

,PARM=parm data
Specifies a fullword of data that is stored into the third word of a six-word
data structure pointed to by register 1 on entry to the listener user exit routine.
Use PARM to pass data to either a standard or an SRB listener user exit
routine.

The six-word data structure pointed to by register 1 on entry to the listener
user exit routine:
v Address of parameter list supplied by the system for this event code
v Fullword of zeros
v Fullword of data specified by the PARM parameter of the listen request that

established the listen exit
v Fullword of zeros
v Address of a parameter list mapped by the IEFENFSG macro
v Fullword of zeros

,EOT=YES
Specifies that, if the task that issued the listen request ends, ENF no longer
passes control to the listener user exit routine when the specified event occurs.
EOT=YES is valid only in TCB mode with EOM=YES.

,EOT=NO
Specifies that, if the task that issued the listen request ends, ENF continues to
pass control to the listener user exit routine when the specified event occurs.
EOT=NO is the default.

,EOM=YES
Specifies that, if the address space that issued the listen request ends, ENF no
longer passes control to the listener user exit routine when the specified event
occurs.

,EOM=NO
Specifies that, if the address space that issued the listen request ends, ENF
continues to pass control to the listener user exit routine when the specified
event occurs. EOM=NO is valid only in TCB mode with EOT=NO. EOT=NO is
the default. If you specify SRBEXIT, do not let EOM default to NO.

,XSYS=NO
,XSYS=YES

Specifies whether this listen exit is to receive signals originating from other
systems in the sysplex. XSYS=NO, the default, specifies that the listen exit is to
receive only signals originating from the local system. XSYS=YES specifies that
the listen exit is to receive signals from other systems in the sysplex as well
those originating locally. XSYS=YES is valid only for those event codes that are
defined to ENF (on the system where the listen request is established), as
capable of cross-system notification. For more information about listening for
system events, see z/OS MVS Programming: Authorized Assembler Services Guide.

,PLISTVER=2
,PLISTVER=3

ENFREQ macro

44 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,PLISTVER=MAX
Specifies the version of the parameter list to be generated by ENFREQ. Note
that MAX may be specified instead of a number, and the parameter list will be
of the largest size currently supported. This size may grow from release to
release (thus possibly affecting the amount of storage needed by your
program). If your program can tolerate this, IBM recommends that you always
specify MAX when creating the list form parameter list as that will ensure that
the list form parameter list is always long enough to hold whatever parameters
might be specified on the execute form. When PLISTVER is omitted, the
default is the lowest version which allows all of the parameters specified on
the invocation to be processed.

The parameter list field that identifies the version number of the macro is only
set when the standard or list form is used, or when PLISTVER is explicitly
specified. Be sure that the resulting parameter list version number covers all
the keys that you use.

The following listen request keywords require the version 3 (or higher)
parameter list:
v BITQUAL
v BITCOMPARE
v FLTRBLK
v MASEXIT
v XSYS

,RELATED=(value)
An optional parameter that specifies information used to self-document macros
by ‘relating’ functions or services to corresponding functions or services. The
format and contents of the information specified are at the discretion of the
user, and can be any values.

ENF event codes and meanings
The following characteristics vary depending on the event for which you are
listening.

Event code
Identifies the event

Qualifier
Further defines the specific event for which you would like to listen

Parameter list
Passes information about the event to the listener user exit

Exit type
Specifies the type of the listener user exit routine, which can be either EXIT
or SRBEXIT

Cross-system capable
Specifies whether the exit is to receive signals from other systems in the
sysplex

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 45

Table 4. ENF macro event codes

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

20 Notes:

1. The input save area and the
information area (registers 13 and 1)
point to areas above 16M. When
specifying ENFREQ
REQUEST=LISTEN, make sure that the
exit routine (EXIT keyword) gets
control in AMODE 31.

2. This exit only gets control in task
mode in ASID 1.

3. Event 20 "listen" exits should avoid
issuing dynamic allocation (SVC99)
calls.

The defined QUAL values are:

Qualifier Information type

x'80000004'
System information changed. Any
program using the data returned by
the CSRSI service should obtain the
updated data.

Mapped by SIV1V2V3
DSECT within macro
CSRSIIDF. This area
contains the current
information that would be
returned by the CSRSI
service when all data is
requested (a request type of
CSRSI_TYPE_
V1CPC_Machine plus
CSRSI_TYPE_
V2CPC_LPAR plus
CSRSI_TYPE_ V3CPC_VM),
with the exception of the
fields whose names begin
with “SI00PCCA”. If the
SI00PCCAxxx fields are
needed, the CSRSI service
can be called. The
SIV1V2V3 area is in 31-bit
storage.

EXIT / NO

23 The system or an operator varied a device
online.

An operator can vary a device online by
using the VARY command. For more
information about the VARY command,
see z/OS MVS System Commands.

Corresponds to the UCBTYP field in the UCB
data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:

First byte = UCBDVCLS
Second byte = UCBUNTYP
Third byte = UCBTBYT2
Fourth byte = UCBTBYT1

Mapped by IEFEVARY EXIT / NO

24 The system or an operator varied a device
offline.

An operator can vary a device offline by
using the VARY command. For more
information about the VARY command,
see z/OS MVS System Commands.

Corresponds to the UCBTYP field in the UCB
data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:

First byte = UCBDVCLS
Second byte = UCBUNTYP
Third byte = UCBTBYT2
Fourth byte = UCBTBYT1

Mapped by IEFEVARY EXIT / NO

25 The system or an operator unloaded a
DASD or tape volume.

An operator can unload a DASD volume
by issuing the VARY command. For more
information about the VARY command,
see z/OS MVS System Commands.

Corresponds to the UCBTYP field in the UCB
data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:

First byte = UCBDVCLS
Second byte = UCBUNTYP
Third byte = UCBTBYT2
Fourth byte = UCBTBYT1

Mapped by IEZEUNLD EXIT / NO

28 A dynamic device reconfiguration (DDR)
swap occurred.

A DDR swap moves or swaps a
demountable volume from a failed device
to another available device. For
information about the SWAP command,
which enables an operator to perform a
DDR swap, see z/OS MVS System
Commands.

None 8-byte parameter list. The
first four bytes contain the
address of the UCB for the
device that was the source
of the swap event. The
second four bytes contain
the address of the UCB for
the device that was the
target of the swap event.

EXIT / NO

29 The system or an operator placed a device
in pending offline status.

An operator can place a device in offline
status by issuing the VARY command. For
more information about this command,
see z/OS MVS System Commands.

Corresponds to the UCBTYP field in the UCB
data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:

First byte = UCBDVCLS
Second byte = UCBUNTYP
Third byte = UCBTBYT2
Fourth byte = UCBTBYT1

Mapped by IEFEVARY EXIT / NO

30 The system or an operator placed a
volume online so that it would be
available for system use.

An operator can place a volume online by
issuing the VARY command. For more
information about this command, see z/OS
MVS System Commands.

Corresponds to the UCBTYP field in the UCB
data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:

First byte = UCBDVCLS
Second byte = UCBUNTYP
Third byte = UCBTBYT2
Fourth byte = UCBTBYT1

Mapped by IEFEVARY EXIT / NO

ENFREQ macro

46 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

31 A configuration change that involves
deleting a device or deleting a path to a
device was requested or was rejected.

None Mapped by IOSDDCCD EXIT / NO

32 A configuration change was successful. None Mapped by IOSDDCCD EXIT / NO

33 One of the following changes to the
hardware configuration of a device
occurred:

v A device is added or deleted from the
hardware configuration definition or a
device is attached or detached with the
VM ATTACH or DETACH command.
The I/O subchannel corresponding to
the device's UCB is connected or
disconnected.

v A device is made available because the
channel path to the device is
reestablished.

v The description of a device is added,
deleted, or changed. The
self-description information is stored in
a configuration data record (CDR). A
change to a CDR is always a delete
followed by an add. Use timestamps to
determine the correct sequence.

v The HyperPAV mode of operation for a
logical control unit is changed.

v A change in state has occurred for a
PCIe device.

v A device requires monitoring.

BYTE 1 Device class (Byte 3 from UCBTYP)

BYTE 2 Reserved

BYTES 3-4
Qualifier number

Each qualifier number designates a type of
change, such as I/O subchannel change, device
available, a configuration data record (CDR)
change, or a HyperPav mode change. Along with
each qualifier number is a qualifier
number-dependent mapping in the IOSDDACH
mapping macro, which designates fields specific
to the type of change.

The following ENF signal 33 subtypes are issued
for PAV-alias devices:
v DACHIO
v DACHIORA
v DACHCCDR
v DACHPAV

For each of these subtypes, if the signal applies
to a device in the alternate subchannel set, the
issuer will fill in a new field in the DACH
subtype for the subchannel set identifier and
change the subtype according to the information
in z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/
zos/bkserv/).

ENF 33 is issued once for the logical control unit
when its HyperPav mode is changed. The
following ENF 33 subtype fields are updated to
uniquely identify this event:
v DACHDEVC='CU'
v DACHTRAN='TRAN'
v DACHQN=X'0008'
v DACH_TRAN_CU=control unit that is

changing
v DACH_TRAN_MODE=target mode of

operation

For specific field definitions, see the IOSDDACH
macro in z/OS MVS Data Areas in the z/OS
Internet library (http://www.ibm.com/systems/
z/os/zos/bkserv/).

The ENF signal 33 subtype DACHPCIE (X'0009')
is issued for the change in state of a PCIe device.
For this subtype, the following value is set in the
DACHTYPE field by the issuer of the signal:
DACHTYPEPCIE ('PCIE').

For this subtype, the DACHQN field is set to
X'0009' (PCIE device event).

Mapped by IOSDDACH EXIT / NO

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 47

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

33
(cont.)

For this subtype, the following data is supplied
in the DACHQUALD field by the issuer of the
signal:
v DACH_PCIE_PFID (4 bytes): The PFID of PCIe

device involved in the event.
v DACH_PCIE_DEVID (2 bytes): The device ID

of PCIe device involved in the event.
v DACH_PCIE_VENDID (2 bytes): The vendor

ID of PCIe device involved in the event.
v DACH_PCIE_EVENT (1 byte): The device

event code:
1 = The device is going online.
2 = The device is going offline.

ENF signal 33 subtype DACHMONC
(DACHTYPE = DACHMONC) is issued when a
change in device monitoring is requested. This
signal may be generated for secondary devices
monitored for HyperSwap® configurations for
which I/O operations may begin to be started.
This signal may also be received when devices
that were previously identified by ENF 33
subtype DACHMONC no longer require
monitoring.

Programs such as RMF™ may choose to monitor
this ENF 33 signal to know when to begin
collecting data for these devices which might
otherwise see only insignificant amounts of I/O
activity. For the DACHMONC subtype:

v For a device that requires monitoring, the
following fields are set:
DACH_IO_QUAL

Set to
DACH_IO_QUAL_MONC_ON

DACH_IO_DEVN
Device number

DACH_IO_SSID
Subchannel set identifier

DACH_IO_DTYP
Contents of the UCBTYP field from
the UCB

DACHUCBC
Device class

DACHQN
Either DACHIO or DACHIO_AS

Each device receives a separate signal to begin
monitoring. When monitoring is requested, the
UCBCMONR bit is set on in the UCB.

v When one or more devices no longer require
monitoring, a single ENF 33 DACHTYPE =
DACHMONC, DACHQN = DACHIO signal is
given with DACH_IO_QUAL =
DACH_IO_QUAL_MONC_OFF. This is
typically done after a HyperSwap occurs or
when a configuration is purged from the
HyperSwap manager. When this signal is
received, a UCBSCAN can be done to detect
devices for which the UCBCMONR bit is no
longer set on. DACH_IO_DEVN and
DACH_IO_SSID are not used for this signal.

ENFREQ macro

48 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

35 One of the following XES or XCF events
has occurred:

v New coupling facility resources have
become available on this system.
Requests to connect with IXLCONN
that previously failed might now
succeed because of this new coupling
facility resource.

v A specific structure has become
available for use. Requests to connect to
the structure with IXLCONN that
previously failed might now succeed
because of this new coupling facility
resource.

v A system has joined the sysplex. The
system name and ID are presented to
the user.

v A system has been partitioned from the
sysplex. The system name and ID are
presented to the user.

v A CF definition with a SITE specified
has been added or an existing CF SITE
specification has changed.

Note that the listener user exit routine for
event code 35 can run in SRB mode.

None Mapped by IXCYENF EXIT or
SRBEXIT /
NO

36 The system wrote a record to the logrec
data set or the logrec log stream. ENF
passes to the listener user exit routine a
parameter list containing the record
information.

For details about the contents of the
parameter list, see IFBENF36 in z/OS MVS
Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/
zos/bkserv/).

Additional considerations for listeners of
this code include the following:

v The mapping does not indicate whether
an IBM or non-IBM program caused the
record to be written to logrec.

v ENF does not suppress duplicate ENF
signals sent to the listener. The listener
must be aware of instances where a
program loop causes the same software
record to be recorded in logrec multiple
times, thus causing ENF to issue
duplicate signals.

v ENF does not filter software records
based on any criteria including ABEND
codes.

The specific logrec record type value is used as
the qualifier for each ENF event code 36 signal.
Note that no signal is issued for record types
X'9x'.

Mapped by IFBENF36 EXIT or
SRBEXIT /
NO

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 49

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

37 One of the following SMF
accounting-related events occurred:

v SMF was initialized

v SMF ended

v SMF INTVAL parameter changed

v SMF SYNCVAL parameter changed

v SMF interval expired

v SMF interval sync processing disabled

v SMF event driven interval occurred

For information about these
accounting-related events, see z/OS MVS
System Management Facilities (SMF).

ENF37Q00
SMF address space was initialized.

ENF37Q01
SMF address space ended.

ENF37Q02
SMF INTVAL parameter changed.

ENF37Q03
SMF SYNCVAL parameter changed.

ENF37Q04
SMF interval expired.

ENF37Q05
SMF interval sync processing
disabled.

ENF37Q06
SMF event driven interval occurred.

Mapped by IFAENF37 EXIT / NO

38 One of the following automatic restart
manager events occurred:

v A job or task started or was restarted,
and has registered or reregistered as an
element of the automatic restart
manager.

v An element notified the system that it is
ready to accept work.

v An element has deregistered with the
automatic restart manager.

v This system has acquired (or regained)
access to the automatic restart
management couple data set. Batch jobs
and started tasks may now register as
elements of the automatic restart
manager.

v An element has been deregistered with
the automatic restart manager.

None Mapped by IXCYAREN SRBEXIT /
NO

40 A JES2 subsystem either completed
initialization or ended normally. (Note
that ENF code 40 does not reflect
situations in which JES2 abends.)

ENF passes to the listener user exit
routine a parameter list that identifies the
JES2 subsystem. For details about the
contents of the parameter list, see
IEFENF40 in z/OS MVS Data Areas in the
z/OS Internet library (http://
www.ibm.com/systems/z/os/zos/
bkserv/).

ENF40_INIT
A JES completed initialization.

ENF40_TERM
A JES ended normally

Mapped by IEFENF40 EXIT / NO

ENFREQ macro

50 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

41 A workload management (WLM) event
occurred. The following qualifiers for ENF
code 41 are provided:

BYTE 1
1 Policy change was

initiated.
2 Policy change

completed.
3 Policy change

failed.

BYTE 2 Reserved.

BYTE 3
1 Workload activity

reporting failed and
has begun recovery.

2 Workload activity
reporting recovery
was successful.

3 Workload activity
reporting recovery
was not successful.

BYTE 4
1 WLM service

definition was
successfully
installed.

WLMENF11
A VARY WLM,POLICY command
was issued.

WLMENF12
A VARY WLM,POLICY command
completed.

WLMENF13
A VARY WLM,POLICY command
failed. The new policy could not be
activated on this system.

WLMENF31
WLM workload activity reporting
failed and has begun recovery.

WLMENF32
WLM workload activity reporting
recovery was successful.

WLMENF33
Workload activity reporting recovery
was unsuccessful.

WLMENF41
Service definition was successfully
installed.

Mapped by IWMRENF1 EXIT / NO

43 A new copy of workload management
sampled address space information is
available via IWMRQRY.

Event code 43 is issued at the end of
workload management's sampling interval
so a listener can synchronize its sampling
interval with workload management's
interval.

None Four byte parameter
containing the length of the
storage required to hold the
information. A listener can
pass this length to
IWMRQRY in the ANSLEN
parameter and save issuing
IWMRQRY to determine the
length.

EXIT / NO

44 A configuration change involving paths to
a coupling facility has occurred.

None Mapped by IXLYCFSE EXIT / NO

45 The SMSVSAM server address space has
been initialized or reinitialized after a
failure. Any subsystem that lost
connection to the service provider address
space can now reconnect.

None Mapped by IDAENF45 SRBEXIT /
NO

46 z/OS UNIX System Services has been
initialized or reinitialized.

None None EXIT / NO

47 DAE has detected that the threshold for
completed or suppressed dumps, related
to a particular symptom string, has been
reached.

None Mapped by ADYENF EXIT / NO

48 A status change has occurred within
system logger. The events issued by ENF
48 are issued to all systems in the sysplex.
For a description of using ENF event 48
for system logger, see z/OS MVS
Programming: Authorized Assembler Services
Guide. For a description of the events
mapped by the IXGENF macro, see z/OS
MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/
os/zos/bkserv/).

None Mapped by IXGENF SRBEXIT /
YES

49 The logrec output recording medium has
been changed by the SETLOGRC
command.

None IFBNTASM SRBEXIT /
NO

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 51

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

51 One of the following types of GRS
information:

v Resource contention information

v RNL change effects on user jobs

v GRS mode change information

Note that the listener user exit routine for
event code 51 can run in SRB mode.

Event code 51 can generate large numbers
of events in short periods of time. The
listener user exit routine for event code 51
must handle the volume of events. See
z/OS MVS Programming: Authorized
Assembler Services Guide for a description
of system services to avoid when writing
listener user exits.

Supports Filter Block (FLKBLOCK)
listners: Mapped by ISGYELF. The filter
block reason codes for EnfReq RC=X'68' is
in field ISGYELF_ReasonCode. The
mapping also includes constants for the
various values of the reason code.

The qualifier (QUAL parameter) has the
following format:

BYTE 1 Type of signal information:
x'01' Contention data
x'02' RNL changes
x'03' Mode changes

BYTE 2 Always x'00'.

BYTE 3 Varies with type of signal (value of
BYTE1):
x'00' Normal contention
x'01' Waitless contention

BYTE 4 Varies with type of signal (value of
BYTE1):
x'01' Local events
x'02' Global events
x'03' Recovery events

The defined QUAL values are:

Qualifier Information type

x'01000000'
All Normal resource contention
(excludes waitless)

x'01000001'
Normal Local resource contention

x'01000002'
Normal Global resource contention

x'01000003'
Normal Contention-related recovery
information

x'01000100'
All Waitless resource contention

x'01000101'
Waitless Local resource contention

x'01000102'
Waitless Global resource contention

x'02000001'
User job suspended because of RNL
change

x'02000002'
User job resumed following RNL
change

x'0300yyzz'
GRS mode changes:
yy Old mode
zz New mode

Values for yy and zz are those defined
in IHAECVT for the ECVTGMOD
field

Contention data: ISGE51CN

RNL data: ISGE51RN

Mode change data: None

EXIT or
SRBEXIT /
YES

52 A LNKLST set has been activated. A
LNKLST set can be activated at IPL
through a PROGxx LNKLST statement, or
through SET PROG=xx or SETPROG
LNKLST operator commands. For
information about PROGxx, see z/OS MVS
Initialization and Tuning Reference. For
commands, see z/OS MVS System
Commands.

None Mapped by CSVDLENF EXIT or
SRBEXIT /
NO

ENFREQ macro

52 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

53
v A Sysplex Timer (ETR) configuration

change occurred.

v A change to the local time offset
occurred.

None 8-byte parameter list

v Bytes 1 and 2 indicate a
configuration change to
the Sysplex Timer (ETR).

v Byte 3, if non-zero,
indicates a change to the
local time offset. Possible
values are:
0 Sysplex Timer

configuration
has changed.

1 Local time
offset has
changed.

2 Leap second
offset has
changed.

3 Both local
time offsets
have changed.

EXIT / NO

55 The system resource manager (SRM) has
detected a significant MVS image event,
which is being signalled. The qualifiers
and parameters further define the event.

ENF55QLF_REAL_SHORTAGE (X'80000000')
Too many fixed frames in storage;
issued when IRA400E occurs.

ENF55QLF_REAL_SHORTAGE_RELIEVED
(X'40000000')

Pageable storage shortage due to
excessive fixed storage relieved;
issued when IRA402I occurs.

ENF55QLF_REAL_WARNING (X'20000000')
Pageable storage warning that
indicates there are many fixed frames
in storage; issued when IRA405I
occurs.

ENF55QLF_AUX_CRITICAL_SHORTAGE
(X'08000000')

Too many slots allocated in the AUX
subsystem. It is a critical shortage and
is issued when IRA201E occurs.

ENF55QLF_AUX_SHORTAGE (X'04000000')
Too many slots allocated in the AUX
subsystem. It is issued when IRA200E
occurs.

ENF55QLF_AUX_SHORTAGE_RELIEVED
(X'02000000')

AUX Storage shortage due to
excessive slots relieved. It is issued
when IRA202I occurs.

ENF55QLF_AUX_WARNING (X'01000000')
AUX Storage usage warning that
indicates there are many slots
allocated in the AUX subsystem. It is
issued when IRA205I occurs.

ENF55QLF_SCM_HIGH_USAGE (X'00040000')
High usage of storage-class memory
(SCM). Issued when IRA250I occurs.

Mapped by IRAENF55 EXIT or
SRBEXIT /
NO

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 53

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

55
(cont.) ENF55QLF_SCM_HIGH_USAGE_RELIEVED

(X'00020000')
High usage of storage-class memory
(SCM) relieved. Issued when IRA252I
occurs.

ENF55QLF_AFQ_SHORTAGE (X'00008000')
Available frame queue shortage. Not
enough frames on the available frame
queue.

ENF55QLF_AFQ_SHORTAGE_RELIEVED
(X'00004000')

Available frame queue shortage
relieved.

ENF55QLF_PREF_SHORTAGE (X'00002000')
Preferred frame queue shortage. Not
enough frames on the preferred frame
queue.
Note: This preferred storage shortage
indicator is an informational
notification for applications that are
able to change their storage allocation
type. In case of a preferred storage
shortage, the application should
request non-preferred storage (if
possible) instead of preferred storage.
No action is taken by SRM to address
this shortage.

ENF55QLF_PREF_SHORTAGE_RELIEVED
(X'00001000')

Preferred frame queue shortage
relieved.

56 Workload management has changed an
attribute of a job. WLMENF56_QUAL_RESET

A job was reset using the RESET
system command or IWMRESET
macro.

WLMENF56_QUAL_ ENCLAVERESET
An enclave has been successfully reset
via the IWMERES service.

Mapped by IWMRENF2 EXIT / NO

57 The state of a workload management
scheduling environment has been altered. WLMENF57_NORMAL_ SCHENV_CHANGE

The state of a scheduling environment
has changed due to a
F WLM,RESOURCE command or
IWMSESET macro.

WLMENF57_RECOVERY_ SCHENV_CHANGE
The state of a scheduling environment
has changed due to workload
management recovery processing.

Mapped by IWMRENF57 EXIT / NO

ENFREQ macro

54 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

58 The state of a SYSOUT data set has
changed. The state of a SYSOUT data set
changes when it is either dynamically
allocated using the DALRTCTK text unit,
or when the SYSOUT application program
interface (SAPI) disposition bit is set.

For more information, see the “Listening
for Events” section of the “JES
Client/Server Print Interface” chapter in
z/OS JES Application Programming.

ENF58_Q_PURGE
The data set was purged.

ENF58_Q_SELECT
The data set was selected.

ENF58_Q_DESELECT_ PROCESSED
The data set was processed.

ENF58_Q_DESELECT_ NOT_PROCESSED
The data set is no longer selected,
disposition was not updated.

ENF58_Q_DESELECT_
NOT_PROCESSED_HELD

The data set is no longer selected,
disposition was not updated, and
data set is held.

ENF58_Q_DESELECT_ ERROR
An error resulting in a system level
hold occurred.

ENF58_Q_EOD_OK
End of data set notification occurred
— successful.

ENF58_Q_EOD_ERROR
End of data set notification occurred
— unsuccessful.

ENF58_Q_JOB_CHANGE
A job status change occurred.

ENF58_Q_TOKEN_ CHANGE
The client token has changed.

ENF58_Q_INSTANCE
Addition instance of data set created.

ENF58_Q_GRP_SELECT
Data set group select.

ENF58_Q_GRP_DESELECT
Data set group deselect.

Mapped by IAZENF58 EXIT / YES

60 A TRACE TT command has been
accepted.

ENF60_QUAL Mapped by ITZENF60 EXIT / NO

61 The capacity of the MVS image or CEC
has changed.

WLMENF61_CAPACITY_ CHANGE Mapped by IWMENF61 EXIT / NO

62 A RACF® SETROPTS RACLIST command
has affected in-storage profiles used for
authorization requests in a class
designated as SIGNAL=YES or
SIGNAL(YES) in the RACF class
descriptor table. The class affected is in
the parameter list in field
IRR_ENFCLASS.

The qualifier (QUAL) has the following format:

BYTE 1
X'80' SETROPTS RACLIST has

taken place.

BYTE 2
X'80' SETROPTS RACLIST

REFRESH has taken place.

BYTE 3
X'80' SETROPTS NORACLIST

has taken place.

Mapped by IRRPENFP in
SYS1.MACLIB.

EXIT or
SRBEXIT/
NO

63 A permanent error was detected on a
HyperSwap capable device.

None Mapped by IOSDE63R EXIT / NO

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 55

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

64 One of the following events occurred:

v The capacity of a storage volume has
changed.

v The VTOC or INDEX of a direct access
volume has been extended or moved to
a new location.

v The VTOC index of a storage volume
has been built. The index indicates a
direct access volume has changed from
an OS format VTOC (OSVTOC) to an
indexed format VTOC (IXVTOC).

v The content of the volume has changed
due to a full volume copy or restore
operation.

v DS8K recovery scenario occurs either on
primary or secondary PPRC disk
subsystem. DS8K signals z/OS on all
paths via the Storage Controller Health
Message attention status.

v One or more devices in the logical
subsystem has a PPRC state change.

v A full volume FlashCopy® relationship
has been established.

The qualifier (QUAL parameter) has the
following format:

BYTE 1 Type of signal information:
X'01' Volume event
X'02' LSS event

BYTE 2 Varies with event

BYTE 3 Always X'00'

BYTE 4 Varies with event

The defined QUAL values are:

Qualifier Information type

X'0100xxxx'
Volume events

X'01000001'
DASD volume capacity changed

X'01000002'
VTOC updated (moved or extended)

X'01000003'
VTOC index is built

X'01000010'
Volume transformed. This qualifier
indicates that the content of the
volume, including system data, such
as the VTOC, VTOC INDEX, and
VVDS, has changed, and the location
of these files may have changed.

X'02xxxxxx'
LSS event

X'02010001'
Storage controller health (LSS) event

X'02020001'
Summary (LSS) event - PPRC state
change

Mapped by IECENF64 EXIT / YES

ENFREQ macro

56 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|

|
|
|
|
|
|

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

65 System REXX event has occurred.
X'80000000'

The AXR address space has
initialized. AXREXX can be invoked.

X'40000000'
The AXR address space has
terminated. Subsequent AXREXX
invocations will be rejected.

X'20000000'
The AXR address space has reached
its threshold of ACTIVE+WAITING
AXREXX requests. No more requests
will be accepted until the number of
requests drops to an acceptable level.

X'10000000'
The number of ACTIVE+WAITING
AXREXX requests has dropped to an
acceptable level. AXREXX requests are
now being accepted.

X'08000000'
The number of ACTIVE+WAITING
AXREXX requests is high and is
nearing the level where subsequent
requests will be rejected.

X'04000000'
The number of extents in the
REXXLIB concatenation exceeds the
system limit. See z/OS DFSMS Using
Data Sets for details. If this condition
is detected during System REXX
initialization, System REXX
terminates; otherwise, no new
AXREXX requests will be accepted.

None EXIT/NO

67 One of the following IBM Health Checker
for z/OS events has occurred:

v IBM Health Checker for z/OS has
become available.

v IBM Health Checker for z/OS has
terminated and is not available.

The defined BITQUAL values are:

Qualifier Information type

X'80000000'
IBM Health Checker for z/OS is
available. Field
Enf067_BitQual_Available in the
HZSZENF mapping macro.

X'40000000'
IBM Health Checker for z/OS has
terminated and is not available. Field
Enf067_BitQual_NotAvailable in the
HZSZENF mapping macro.

Mapped by HZSZENF EXIT / NO

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 57

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

68 One of the following BCPii events has
occurred:

v A change in BCPii status has occurred.

v A hardware communication error has
occurred.

v A hardware event has occurred.

The defined QUAL values are:

Qualifier Information type

X'01000001'
BCPii is available.

X'01000002'
BCPii is not available.

X'020100yy'
A hardware communication error has
occurred and CPC events might have
been lost. yy denotes the type of error:
01 A temporary error, some

events might have been
lost.

02 A permanent error, no
more events are delivered.

03 Communication to the
CPC has been established
or re-established. Event
delivery from this CPC
will now commence or
re-commence.

X'03xx00yy'
A hardware event has occurred.

xx denotes the event source:
01 CPC
02 Image

yy denotes the event.

The defined BITQUAL values are:

Qualifier Information type

X'01nnnnnn'
N/A

X'0201nnnn'
Bytes 1-17 CPC name, padded with
hexadecimal zeros

X'0301nnnn'
Bytes 1-17, CPC name, padded with
hexadecimal zeros

X'0302nnnn'
Bytes 1-17, CPC name, padded
with hexadecimal zeros
Bytes 18-24, image name, padded
with hexadecimal zeros

Mapped by HWICIASM
and HWICIC

EXIT / NO

ENFREQ macro

58 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

68 One of the following BCPii events has
occurred:

v A change in BCPii status.

v A hardware communication error has
occurred.

v A hardware event has occurred.

Hardware Event Codes:

Code Description

'01' x A command response has been
received.

'02' x An object status change has occurred.

'03' x An object name change has occurred.

'04' x The activation profile of the object has
changed.

'05' x A new object was created.

'06' x An object was deleted.

'07' x An object entered or left an exception
state.

'08' x A Console application has started.

'09' x A Console application has ended.

'0A' x An operating system message has
been received.

'0B' x A hardware message has been
received.

'0C' x A hardware message has been
deleted.

'0D' x A capacity change event has been
received.

'0E' x A capacity record change has
occurred.

'0F' x A security event has been logged.

'10' x An image has entered a disabled wait
state.

'11' x A power change event has been
received.

Mapped by HWICIASM
and HWICIC

EXIT / NO

70 The state of a job (batch, STC or TSU)
owned by JES has changed. The job may
have been selected for processing,
completed processing, changed phase
(including changes to execution phase job
class), or been purged.

ENF70_SELECT
Job was selected.

ENF70_DESELECT
Job was processed.

ENF70_CHANGE
Job queued to new phase of
processing.

ENF70_PURGE
Job was purged.

Mapped by IAZENF70 EXIT / YES

71 A RACF command has affected a user's
group connections which may affect his or
her resource authorization.

The user affected is in the parameter list
in field IRR_ENF2USER.

The group affected is in the parameter list
in field IRR_ENF2GROUP.

Control flags that are used to provide
greater granularity for the listeners are in
the parameter list in field IRR_ENF2Flags.

The qualifier (QUAL) has the following format:

BYTE 1
X'80' CONNECT command
X'40' REMOVE command
X'20' ALTUSER REVOKE

command
X'10' DELUSER command
X'08' DELGROUP command

BYTES 2 - 4
Reserved

Mapped by IRRPENF2 (See
z/OS Security Server RACF
Data Areas)

EXIT or
SRBEXIT /
YES

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 59

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

72 Volume status information for SMS.

The listener user exit routine for event
code 72 can run in SRB mode.

Event code 72 can generate large numbers
of events in short periods of time. The
listener user exit routine for event code 72
must be able to handle the volume of
events.

The qualifier (QUAL) has the following format:

BYTE 1 Type of signal information:
X'01' Volume status

BYTE 2 Always X'00'

BYTES 3 - 4
Varies with event.

The defined QUAL values are:

Qualifier Information type

X'01000001'
ENF72_OVER_THRESHOLD_AM_Y.
Volume over threshold when storage
group is defined using AM=Y (Auto
Migrate, yes).

Volume Status information:
IGDE72VL

Mapped by IGDENV72

EXIT or
SRBEXIT /
YES

73 The SETLOAD xx, IEASYM command has
completed successfully. The local system's
symbol table has been updated.

None None EXIT/ NO

78 The state of a job (batch, STC or TSU)
owned by JES has changed. The job has
completed processing.

ENF78_JOB_NOTIFY Mapped by IAZENF78 EXIT/YES

ENFREQ macro

60 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

79 A RACF command has modified a profile
such that a user's authorization to the
resources it protects may be affected.

v The user affected is in the parameter
list in field IRR_ENF3_UserID.

v The class in which the modified profile
belongs is in the parameter list in field
IRR_ENF3_ClassName.

v The length of the affected profile name
is in the parameter list in field
IRR_ENF3_ProfName_Length.

v The name of the affected profile is in
the parameter list in field
IRR_ENF3_ProfName.

Control flags that are used to provide
greater granularity for the listeners are in
the parameter list in field
IRR_ENF3_Flags.

For the PERMIT RACF command
processor, there maybe additional
information regarding:

v The type of Conditional Access, a
numerical value that is in the parameter
list in field
IRR_ENF3_PERMIT_WHEN_Cond.

v The Conditional Access List Entry. The
length of the Conditional Access Name
and the Conditional Access Name itself
is in the parameter list in the fields:

IRR_ENF3_CACLName_Length
IRR_ENF3_CACLName

For the RDEFINE and RALTER RACF
command processors, there may be
additional information in the ADDMEM
and DELMEM lists. The number of
elements in the list, the length of the list,
and the offset to the list are in the
parameter list in the fields:

IRR_ENF3_ADDMEML_Member#
IRR_ENF3_DELMEML_Member#
IRR_ENF3_ADDMEML_Length
IRR_ENF3_DELMEML_Length
IRR_ENF3_ADDMEML_Offset
IRR_ENF3_DELMEML_Offset

The qualifier (IRR_ENF3_QualCode) has the
following format:

BYTE 1
X'80' PERMIT command
X'40' RDEFINE command
X'20' RALTER command
X'10' DELETE command

BYTES 2 - 4
Reserved

Mapped by IRRPENF3 (See
z/OS Security Server RACF
Data Areas)

EXIT or
SRBEXIT /
YES

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 61

Table 4. ENF macro event codes (continued)

Event
code Description Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

80 One of the following z/OS
Communication Server events has
occurred:

v The rpcbind server has initialized.

v The rpcbind server is stopping.

Notes:

1. ENF80_RPC DSECT maps the
RPCBIND event.

2. Use the ENF80_RPC_FLAGs to
determine if the rpcbind server is
initializing or ending.

3. When flag ENF80_RPCINIT is on, RPC
applications can register with
RPCBIND.

4. When flag ENF80_RPCTERM is on,
the rpcbind server is stopping.

5. ENF80_RPC DSECT includes the
jobname of the rpcbind server that
generated the event.

ENF80_RPC_EVENT Mapped by EZAENF80 SRBEXIT /
NO

Return codes
When ENFREQ macro returns control to your program, GPR 15 contains a return
code.

Table 5. Return Codes for the ENFREQ Macro

Hexadecimal Return
Code

Meaning and Action

00 Meaning: ENFREQ processing completed successfully.

Action: None

04 Meaning: Program error. An identical LISTEN request already exists. A
request is considered a duplicate if its QUAL, QMASK, EXIT, BITQUAL,
and BITCOMPARE parameter values are the same as those specified for an
existing request.

Action: None. The request is already established.

0C Meaning: Program error (invalid parameter list) The ENFREQ failed for
one of the following reasons:

v The length of the parameter list is incorrect.

v The specified ACTION code is not valid.

v The specified EVENT code is not valid.

v The caller specified ACTION=LISTEN, and the EXIT address is zero.

v The caller specified ACTION=DELETE, and the DTOKEN field is zero.

Action: After checking and correcting the program environment
parameters, retry the request. If the parameters are correct, check to see if
you inadvertently overlaid the control parameter list.

10 Meaning: System error. This return code is for IBM diagnostic purposes
only.

Action: Record the return code, and supply it to the appropriate IBM
support personnel.

ENFREQ macro

62 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 5. Return Codes for the ENFREQ Macro (continued)

Hexadecimal Return
Code

Meaning and Action

14 Meaning: Environmental error. Your program issued the ENFREQ macro
before the system initialized ENF.

Action: Retry the request. If the problem persists, record the return code
and supply it to the appropriate IBM support personnel.

18 Meaning: Environmental error. The system cannot obtain storage for your
request.

Action: Rerun your program one or more times. If the problem persists,
check with the operator to see if another user in the installation is causing
the problem, or if the entire installation is experiencing storage constraint
problems.

1C Meaning: Program error. The DTOKEN parameter does not represent any
LISTEN request that is currently active. ENF does not perform a DELETE.

Action: Verify that the DTOKEN on the DELETE request matches the
DTOKEN from the LISTEN request. Retry the DELETE request with the
correct DTOKEN.

20 Meaning: Program error. An abend occurred in the Listen Exit code.

Action: If a dump was produced for the abend, examine it and correct the
programming error.

3C Meaning: Program error. EOT=YES was specified on an ENFREQ listen
request while the issuer of the ENFREQ request was running in SRB mode.

Action: Either specify EOT=NO or delete the EOT keyword from the
ENFREQ macro invocation.

46 Meaning: Program error. The SRBEXIT keyword was specified on an
ENFREQ listen request for an event code that does not allow SRBEXIT.

Action: Verify that the listen request is for the correct event code. If so,
replace the SRBEXIT keyword with the EXIT keyword and ensure that the
listen exit resides in common storage.

48 Meaning: Program error. The EXIT keyword was specified on an ENFREQ
listen request for an event code that does not allow EXIT.

Action: Verify that the listen request is for the correct event code. If so,
replace the EXIT keyword with the SRBEXIT keyword.

4A Meaning: Program error. The keyword combination of EOT=YES and
EOM=NO was specified on an ENFREQ listen request. This combination is
incorrect.

Action: Change the EOM specification to YES or the EOT specification to
NO.

4C Meaning: Program error. EOM=NO and SRBEXIT were specified on an
ENFREQ listen request. This combination is incorrect.

Action: Change the EOM specification to YES or do not use SRBEXIT.

4E Meaning: Program error. An ENF request specified XSYS=YES for an event
code that does not support sysplex-wide notification.

Action: Verify that the ENF request is for the correct event code. If so,
specify XSYS=NO (or allow the XSYS parameter to default to XSYS=NO).

50 Meaning: System error. Sysplex-wide notification is not available, because
of a system initialization problem. ENF listeners will receive notifications
originating from only the system where the listen exit was established.

Action: Report the problem to the operator and the system programmer.
The cross-system signalling capability will remain unavailable until the next
system IPL.

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 63

Table 5. Return Codes for the ENFREQ Macro (continued)

Hexadecimal Return
Code

Meaning and Action

52 Meaning: Program error. Sysplex-wide notification services were requested
for an action type other than listen.

Action: Verify that your program is not overwriting the parameter list, and
that the execute form of the macro correctly addresses the parameter list.

54 Meaning: Program error. An ENF request specified invalid comparison
instructions for the bit-mapped qualifier.

Action: Verify that your program is not overwriting the parameter list, and
that the execute form of the macro correctly addresses the parameter list.

60 Meaning: Program error. An ENF request specified FLTRBLK for an event
code that does not support listener filter blocks.

Action: Verify that the ENF request is for the correct event code. If so, do
not specify FLTRBLK.

64 Meaning: Program error. An ENF request specified FLTRBLK. It was
specified for an event code that does support listener filter blocks, but the
block was not accessible by the owner of that particular event code.

Action: Ensure that the event-specific listener filter block occupies
accessible storage of sufficient length.

68 Meaning: Program error. An ENF request specified FLTRBLK. It was
specified for an event code that does support listener filter blocks, and the
block was accessible by the owner of that particular event code, but the
filter parameters are incorrect.

Action: Check the parameters specified in the FLTRBLK. If the
event-specific mapping includes a reason code, use its value to assist with
the problem determination.

Example 1
Set up and load into common storage the SMFLST00 listener user exit routine,
which gains control only if the qualifier equals ENF37Q00.

Note that the qualifiers are declared in the IFAENF37 mapping macro. The
ENFREQ macro specifies QMASK=ALL which requests that all four bytes of the
qualifier mask are used in the qualifier comparison.
* Load ENF Listen Exit (SMFLST00) into common storage and save address.
* SMFL00@ contains the address of the listener user exit routine that
* resides in common storage

.

.
ST R00,SMFL00@

*
* Issue LISTEN Request for SMF Event Code (Qualifier ENF37Q00)

L R02,SMFL00@
ENFREQ ACTION=LISTEN, -- Function +

CODE=ENFC37, -- Event Code +
EXIT=(R02), -- Exit Address +
QUAL=ENF37Q00, -- Qualifier Value +
QMASK=ALL, -- Qualifier Mask (Full Word) +
ESTBNME=THISMOD, -- Establisher Name +
EXITNME=SMFLST00, -- Exit Name +
DTOKEN=SMFL00T -- Returned Token Field

*
* Check the return code from ENFREQ - if not zero issue message
*
* - Local variables
DATAAREA DSECT

ENFREQ macro

64 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

SMFL00@ DS A
SMFL00T DS F
ENFPTR DS A
*
* - Local constants
SMFLSTEN CSECT

DS 0F
ENFC37 EQU 37
THISMOD DC CL8’SMFLSTEN’
SMFLST00 DC CL8’SMFLST00’
*
* - External control blocks

CVT DSECT=YES
IEFENFCT

SMFLSTEN CSECT
IFAENF37

DATAAREA DSECT
IEFENFPM

LENODATA EQU *-DATAAREA
*

Note that the IFAENF37 macro includes the following declarations:
&SYSECT CSECT Control Section for Constants
ENF37Q00 DC X’80000000’ SMF Active
ENF37Q01 DC X’40000000’ SMF Terminated

Example 2
Set up and load into storage the ENFLST01 listener user exit routine. This listener
user exit routine receives a parameter from the ENF listener when the specified
event occurs. The listener user exit runs in the address space of the listener and is
deleted when the address space that issued the listen request ends.
* Load ENF Listen Exit (ENFLST01) into storage and save address.
* ENFL01@ contains the address of the listener user exit routine.
*
* Issue LISTEN Request for Event Code 35

L R02,ENFL01@
ENFREQ ACTION=LISTEN, -- Function +

CODE=ENFC35, -- Event Code +
SRBEXIT=(R02), -- Exit Address +
PARM=LPARM, -- Parameter +
EOT=YES, -- End-of-task delete indicator +
EOM=YES, -- End-of-memory delete indicator +
ESTBNME=THISMOD, -- Establisher Name +
EXITNME=ENFLST01, -- Exit Name +
DTOKEN=ENFL01T -- Returned Token Field

*
* Check the return code from ENFREQ - if not zero issue message
*
* - Local variables
DATAAREA DSECT
ENFL01@ DS A
ENFL01T DS F
ENFPTR DS A
LPARM DS CL16
*
* - Local constants
ENFLSTEN CSECT

DS 0F
ENFC35 EQU 35
THISMOD DC CL8’ENFLSTEN’
ENFLST01 DC CL8’ENFLST01’
*
* - External control blocks

CVT DSECT=YES

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 65

IEFENFCT
ENFLSTEN CSECT

IXCYENF
DATAAREA DSECT

IEFENFPM
LENODATA EQU *-DATAAREA
*

DELETE option

Syntax
The standard form of the ENFREQ macro for ACTION=DELETE is written as
follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ENFREQ.

ENFREQ

� One or more blanks must follow ENFREQ.

ACTION=DELETE

,CODE=event code event code: Decimal digit.

,DTOKEN=dtoken dtoken: RX-type address or address in register (2) - (12).

,RELATED=(value) value: Any text.

Parameters
The parameters are explained as follows:

ACTION=DELETE
A required parameter that specifies that you want to delete an existing request
to listen for a specified event. When a program issues ENFREQ with the
ACTION=DELETE parameter, ENF either deletes the listen request
immediately if the listener user exit has completed, or waits until the listener
user exits completes. Because the listener user exit might not have completed
processing at the time the delete request is issued, do not release the listener
user exit's storage.

,CODE=event code
A required parameter that specifies the ENF event for which a program no
longer needs notification. The event code can be any of the decimal codes listed
in Table 4 on page 46.

ENFREQ macro

66 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,DTOKEN=dtoken
The required parameter that identifies the specific listen request you are
deleting. The system returned the token when you issued the
ACTION=LISTEN request.

,RELATED=(value)
An optional parameter that specifies information used to self-document macros
by ‘relating’ functions or services to corresponding functions or services. The
format and contents of the information specified are at the discretion of the
user, and can be any valid coding values.

Return and reason codes
For the return codes, in hexadecimal, from the ENFREQ macro see “Return codes”
on page 62.

On systems running z/OS V2R1 or higher, for return code of 0 or 28 (X'1C') from a
ACTION=DELETE request, a reason code is provided in access register 15:

0 The ACTION=DELETE request has completed. The listen exit is not
executing and will not be called again.

1 The ACTION=DELETE request is pending. The listen exit may be
executing or may be called again.

The reason code provides a way to determine when it is safe to free or reuse
storage containing the exit or used by the exit. Storage can be safely freed or
reused when the first ACTION=DELETE request provides return code 0 and
reason code 0, or after the first ACTION=DELETE request provides return code 0
and reason code 1, a subsequent ACTION=DELETE request provides return code
28 (X'1C) and reason code 0.

Because there is no way to determine when it is safe to free or reuse storage
containing the exit or used by the exit on systems running z/OS V1R13 or earlier,
such storage should never be freed or reused.

ENFREQ ACTION=LISTEN - List form
Use the list form of the ENFREQ macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
constructs a parameter list that the execute form of the macro can use or modify.

Syntax
The list form of the ENFREQ macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ENFREQ.

ENFREQ

� One or more blanks must follow ENFREQ.

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 67

Syntax Description

ACTION=LISTEN

,CODE=event code event code: Decimal digit.

,MASEXIT=No Default: MASEXIT=NO

,MASEXIT=YES

,FLTRBLK=filter block addr filter block addr: the address of the filter block

,QUAL=qualifier qualifier: A constant value

,QMASK=qmask keywords qmask keywords: BYTE1, BYTE2, BYTE3, BYTE4, ALL, NONE.

Default: QMASK=NONE

,BITQUAL=bitqual bitqual: name of a 32-byte field, hexadecimal numeric value (X'xxx'),

,BITCOMPARE=SUBSET Default: BITCOMPARE=SUBSET

,BITCOMPARE=INTERSECT

,BITCOMPARE=EQUAL

,SRBEXIT=exitrtn addr exitrtn addr: A-type address.

,EXIT=exitrtn addr exitrtn addr: A-type address.

,PARM=parm addr parm addr: A-type address.

,PARM=parm data parm data: a fullword of data

,EOT=NO Default: EOT=NO.

,EOT=YES

,EOM=NO Default: EOM=NO.

,EOM=YES

,PLISTVER=2 Default: Version implied by keywords

,PLISTVER=3

,PLISTVER=MAX

,RELATED=(value) value: Is any text.

,XSYS=NO Default: XSYS=NO.

,XSYS=YES

ENFREQ macro

68 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,MF=L

Parameters
The parameters are explained under the standard form of the ENFREQ macro with
ACTION=LISTEN, with the following exceptions:

,MF=L
Specifies the list form of the ENFREQ macro with ACTION=LISTEN.

ENFREQ ACTION=LISTEN - Execute form
Use the execute form of the ENFREQ macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
uses or modifies the parameter list that the list form built.

Syntax
The execute form of the ENFREQ macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ENFREQ.

ENFREQ

� One or more blanks must follow ENFREQ.

ACTION=LISTEN

,CODE=event code event code: Decimal digit.

,DTOKEN=dtoken addr dtoken addr: RX-type address or address in register (2) - (12).

,ESTBNME=estab name estab name: RX-type address or address in register (2) - (12).

,EXITNME=exitrtn name exitrtn name: RX-type address or address in register (2) - (12).

,FLTRBLK=filter block addr filter block addr: RX-type address or address in register (2) - (12).

,QUAL=qualifier qualifier: A four-byte value.

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 69

Syntax Description

,QMASK=qmask keywords qmask keywords: BYTE1, BYTE2, BYTE3, BYTE4, ALL, NONE.

Default: QMASK=NONE

,BITQUAL=bitqual bitqual: name of a 32-byte field, hexadecimal numeric value (X'xxx'), or
address in register (2) - (12).

,BITCOMPARE=SUBSET Default: BITCOMPARE=SUBSET

,BITCOMPARE=INTERSECT

,BITCOMPARE=EQUAL

,SRBEXIT=exitrtn addr exitrtn addr: A-type address, or address in register (2) - (12).

,EXIT=exitrtn addr exitrtn addr: A-type address or address in register (2) - (12).

,PARM=parm addr parm addr: A-type address, or address in register (2) - (12).

,PARM=parm data parm data: a fullword of data

,EOT=NO Default: EOT=NO.

,EOT=YES

,EOM=NO Default: EOM=YES.

,EOM=NO

,PLISTVER=2 Default: Version implied by keywords

,PLISTVER=3

,PLISTVER=MAX

,RELATED=(value) value: Is any text.

,XSYS=NO Default: XSYS=NO.

,XSYS=YES

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

Parameters
The parameters are explained under the standard form of the ENFREQ macro with
ACTION=LISTEN, with the following exceptions:

,MF=(E,list addr)
Specifies the execute form of the ENFREQ macro with ACTION=LISTEN.

list addr specifies the area that the system uses to store the parameters.

ENFREQ macro

70 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENFREQ ACTION=DELETE - List form
Use the list form of the ENFREQ macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
constructs a parameter list that the execute form of the macro can use or modify.

Syntax
The list form of the ENFREQ macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ENFREQ.

ENFREQ

� One or more blanks must follow ENFREQ.

ACTION=DELETE

,CODE=event code event code: Decimal digit.

,RELATED=(value) value: Any text.

,MF=L

Parameters
The parameters are explained under the standard form of the ENFREQ macro with
ACTION=DELETE, with the following exceptions:

,MF=L
Specifies the list form of the ENFREQ macro with ACTION=DELETE.

ENFREQ ACTION=DELETE - Execute form
Use the execute form of the ENFREQ macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
uses or modifies the parameter list that the list form built.

Syntax
The execute form of the ENFREQ macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

ENFREQ macro

Chapter 3. ENFREQ — Listen for system events 71

Syntax Description

� One or more blanks must precede ENFREQ.

ENFREQ

� One or more blanks must follow ENFREQ.

ACTION=DELETE

,CODE=event code event code: Decimal digit.

,DTOKEN=dtoken addr dtoken addr: RX-type address or address in register (2) - (12).

,RELATED=(value) value: Any text.

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

Parameters
The parameters are explained under the standard form of the ENFREQ macro with
ACTION=DELETE, with the following exceptions:

,MF=(E,list addr)
Specifies the execute form of the ENFREQ macro with ACTION=DELETE.

list addr specifies the area that the system uses to contain the parameters.

ENFREQ macro

72 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 4. ENQ — Request control of a serially reusable
resource

Description
ENQ assigns control of one or more serially reusable resources to a task. If any of
the resources are not available, the task might be placed in a wait condition until
all of the requested resources are available. Once control of a resource has been
assigned to a task, it remains with that task until one of the programs running
under that task issues a DEQ macro to release the resource or the task terminates.

You can request either shared or exclusive use of a resource. ENQ identifies the
resource by a pair of names, the qname and the rname, and a scope value. The
scope value determines what other tasks, address spaces, or systems can use the
resource. All programs that share the resource must use the qname, rname, and
scope value consistently.

Use ENQ with RET=TEST to determine the status of the resource. Return codes tell
whether the resource is immediately available or in use, and whether control has
been previously requested by the active task in another ENQ macro.

ENQ with the MASID and MTCB parameters allows a further conditional control
of a resource. One task, called the “issuing task” can issue an ENQ macro for a
resource specifying the ASID and TCB of another task, called the “matching task”.
MTCB and MASID parameters are specified with RET=HAVE, RET=TEST, or ECB
to provide additional return codes. If the issuing task does not receive control of
the resource, it may receive a return code indicating that the resource is controlled
by the matching task. Upon receiving this return code, the issuing task could use
the resource, if serialization between itself and the matching task has been
prearranged through a protocol.

Global resource serialization counts and limits the number of concurrent resource
requests from an address space. If an unconditional ENQ (an ENQ that uses the
RET=NONE option) causes the count of concurrent resource requests to exceed the
limit, the caller ends abnormally with a system code of X'538'. For more
information, see the topic on limiting concurrent requests for resources in z/OS
MVS Programming: Assembler Services Guide.

Unless you specify otherwise, when a global resource serialization complex is
initialized, global resource serialization searches the SYSTEM inclusion resource
name list (RNL) and the SYSTEMS exclusion RNL for every resource specified with
a scope of SYSTEM or SYSTEMS. A resource whose name appears on one of these
RNLs might have its scope changed from the scope that appears on the macro. To
prevent RNL processing, use the RNL=NO parameter. See z/OS MVS Planning:
Global Resource Serialization for additional information about RNL processing.

The ENQ macro is also described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP, with the exception of the SMC, ECB, TCB, MASID, and MTCB
parameters. For information on using the ENQ macro to serialize resources, see the
z/OS MVS Programming: Authorized Assembler Services Guide.

© Copyright IBM Corp. 1988, 2016 73

Environment
The requirements for callers of ENQ are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key. For the SMC, ECB, TCB,

MASID, and MTCB parameters or when the specified qname
is ADRDFRAG, ADRDSN, ARCENQG, BWODSN, SYSZ*,
SYSCTLG, SYSDSN, SYSIEA01, SYSIEECT, SYSIEFSD,
SYSIGGV1, SYSIGGV2, SYSPSWRD, SYSVSAM, or
SYSVTOC, the authorization must be one of the following:
v Supervisor state
v PSW key 0-7
v APF-authorized.

Dispatchable unit mode: Task
Cross memory mode: For LINKAGE=SVC: PASN=HASN=SASN

For LINKAGE=SYSTEM: Any PASN, Any HASN, Any
SASN

For LINKAGE=SYSTEM with SMC=STEP: PASN=HASN,
Any SASN

AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space.

Except for the TCB, all parameters can reside above 16
megabytes.

Programming requirements
None.

Restrictions
See "Avoiding Interlock" in z/OS MVS Programming: Assembler Services Guide to
ensure that you are following the protocols required to prevent the interlock.

Issuing two ENQ macros for the same resource without an intervening DEQ macro
causes the task to end abnormally, unless the second ENQ designates RET=TEST,
USE, CHNG, or HAVE. If the task ends, either normally or abnormally, while the
task still has control of any serially reusable resources, all requests made by this
task automatically have DEQ processing performed for them. If resource input
addresses are incorrect, the task abnormally ends.

The caller cannot have an EUT FRR established.

There are some considerations to be aware of when using enclaves for tasks that
serialize resources using the ENQ macro. For details, see “Using ENQ/DEQ or
Latch Manager Services With Enclaves” in z/OS MVS Programming: Workload
Management Services.

Input register information
Before issuing the ENQ macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

ENQ macro

74 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 One of the following:

v If you specify RET=TEST, RET=USE, RET=CHNG, RET=HAVE, or ECB:
If all return codes for the resources named in the ENQ macro are 0,
register 15 contains 0. If any of the return codes are not 0, register 15
contains the address of a storage area containing the return codes.

v Otherwise: Used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the ENQ macro is described as follows.

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede ENQ.

ENQ

� One or more blanks must follow ENQ.

(

qname addr qname addr: A-type address or register (2) - (12).

,

,rname addr rname addr: A-type address or register (2) - (12).

ENQ macro

Chapter 4. ENQ — Request control of a serially reusable resource 75

Syntax Description

, Default: E

,E

,S

,

,rname length rname length: symbol, decimal digit, or register (2) - (12).

Default: assembled length of rname

Note: Code rname length if rname addr is a register.

,

,STEP Default: STEP

,SYSTEM

,SYSTEMS

)

,RET=CHNG Default: RET=NONE

,RET=HAVE

,RET=TEST

,RET=USE

,RET=NONE

,SMC=NONE Default: SMC=NONE

,SMC=STEP

,ECB=ecb addr ecb addr: A-type address or register (2) - (12).

,TCB=tcb addr tcb addr: A-type address or register (2) - (12).

Note: Do not specify ECB with RET. You can specify ECB and TCB together.
If TCB is specified without ECB, you must specify RET=CHNG, TEST or
USE.

,MASID=matching-asid addr matching-asid addr: A-type address or register (2) - (12).

Note: MTCB is required with MASID. Do not specify SMC or TCB with
MASID.

,MTCB=matching-tcb addr matching-tcb addr: A-type address or register (2) - (12).

Note: MASID is required with MTCB.

,RNL=YES Default: RNL=YES

ENQ macro

76 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,RNL=NO

,RELATED=value value: any valid macro keyword specification.

,LINKAGE=SVC DEFAULT: LINKAGE=SVC

,LINKAGE=SYSTEM

Parameters
The parameters are explained as follows:

(Specifies the beginning of the resource description.

qname addr
Specifies the address of an 8-character name. The name can contain any valid
hexadecimal character. Every program issuing a request for a serially reusable
resource must use the same qname, rname, and scope to represent the resource.
Some names, such as those beginning with certain letter combinations (SYSZ
for example), are used to protect system resources by requiring that the issuing
program be in supervisor state, or system key, or APF-authorized. Authorized
programs should use a restricted qname (as described under Minimum
authorization in the Environment topic of this chapter) to prevent interference
from unauthorized programs.

Note: See z/OS MVS Diagnosis: Reference for a list of major and minor
ENQ/DEQ names and the resources that issue the ENQ/DEQ.

,
,rname addr

Specifies the address of the name used together with qname to represent a
single resource. The name must be from 1 to 255 bytes long, can be qualified,
and can contain any valid hexadecimal character.

,
,E
,S Specifies whether the request is for exclusive (E) or shared (S) control of the

resource. If the resource is modified while under control of the task, the
request must be for exclusive control; if the resource is not modified, the
request should be for shared control.

,
,rname length

Specifies the length of the rname. If this parameter is omitted, the system uses
the assembled length of the rname. To override the assembled length, specify
this parameter.

The value you can code depends on whether or not you also specify MASID
and MTCB:
v If you specify MASID and MTCB, you can code a value between 1 and 128.
v If you do not specify MASID and MTCB, you can code a value between 1

and 255.

In either case, you can specify 0, which means that the length of the rname
must be contained in the first byte at the rname addr.

ENQ macro

Chapter 4. ENQ — Request control of a serially reusable resource 77

,
,STEP
,SYSTEM
,SYSTEMS

Specifies the scope of the resource.

STEP specifies that the resource can be used only within an address space. If
STEP is specified, a request for the same qname and rname from a program in
another address space denotes a different resource.

SYSTEM specifies that the resource can be used by programs in more than one
address space.

SYSTEMS specifies that the resource can be shared between systems.

STEP, SYSTEM, and SYSTEMS are mutually exclusive and do not refer to the
same resource. If two macros specify the same qname and rname, but one
specifies STEP and the other specifies SYSTEM or SYSTEMS, they are treated
as requests for different resources.

) Specifies the end of the resource description.

Notes on specifying multiple resources on one ENQ request:
v Within a single set of parentheses, you can repeat the qname addr, rname addr,

type of control, rname length, and the scope until there is a maximum of 255
characters, including the parentheses.

v The following parameters apply to all the resources you specify on the request:
RET, SMC, ECB, TCB, MASID, MTCB, and RNL.

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

Specifies the type of request for the resources named on the ENQ request.

CHNG
The status of the resource specified is changed from shared to
exclusive control. When RET=CHNG is specified, the exclusive|shared
(E|S) parameter is overidden. This parameter ensures that the request
will be exclusive regardless of the other parameter.

HAVE Control of the resources is requested conditionally; that is, control is
requested only if a request has not been made previously for the same
task.

TEST The availability of the resources is to be tested, but control of the
resources is not requested.

USE control of the resources is to be assigned to the active task only if the
resources are immediately available. If any of the resources are not
available, the active task is not placed in a wait condition.

NONE
Control of all the resources is unconditionally requested.

See “Return and reason codes” on page 81 for an explanation of the return
codes for these requests.

,SMC=NONE
,SMC=STEP
,ECB=ecb addr

ENQ macro

78 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,TCB=tcb addr
Specifies optional parameters available to the system programmer:

SMC specifies that the set must-complete function is not to be used (NONE) or
that it is to set as non-dispatchable other tasks for the step until the requesting
task has completed its operations on the resource (STEP).

See z/OS MVS Programming: Authorized Assembler Services Guide for a
description of the set must-complete function.

Do not use SMC or RET with ECB.

When SMC=STEP is specified with RET=HAVE and the requesting task already
has control of the resource, the SMC function is turned on and the task
continues to control the resource.

SMC and TCB are mutually exclusive with the MASID parameter; therefore,
hexadecimal return codes 20, 24, 28, and 44 will not be given by an ENQ using
the SMC or TCB operands.

The return codes and status of the set must-complete function for the various
RET specifications are as follows:

RET Parameter Hexadecimal Code SMC Status

RET=CHNG 0 on

RET=CHNG 4 off

RET=CHNG 8 off

RET=CHNG 14 off

RET=HAVE 0 on

RET=HAVE 8 on

RET=HAVE 14 off

RET=HAVE 18 off

RET=TEST 0 off

RET=TEST 4 off

RET=TEST 8 off

RET=TEST 14 off

RET=USE 0 on

RET=USE 4 off

RET=USE 8 off

RET=USE 14 off

RET=USE 18 off

ECB specifies the address of an ECB, and conditionally requests all of the
resources named in the macro. If the return code for one or more requested
resources is hexadecimal 4 or 24 and the request is not nullified by a
corresponding DEQ, the ECB is posted when all the requested resources
(specifically, those that initially received a return code of 4 or 24) are assigned
to the requesting task.

If the ECB parameter is an A-type address, the address is the name of the
fullword that is used as an ECB. If the operand is a register, then the register
contains the address of the ECB.

ENQ macro

Chapter 4. ENQ — Request control of a serially reusable resource 79

Note: The ECB must reside in storage that is addressible from the caller's
home address space.

TCB specifies a register that points to a TCB or specifies the address of a
fullword on a fullword boundary that points to a TCB on whose behalf the
ENQ is to be done. If TCB is specified, one of the following must also be
specified:
v RET=TEST
v RET=USE
v RET=CHNG
v ECB

Note: The TCB resides in storage below 16 megabytes in the caller's address
space.

,MASID=matching-asid addr
Specifies the matching task (by defining a matching ASID) for the ENQ, if it is
used together with the MTCB parameter. MASID defines the ASID of a task
that may be using a resource desired by the caller. If the MASID parameter is
an A-type address, the address is the name of a fullword containing the ASID.
If the operand is a register, then the register contains the ASID.

,MTCB=matching-tcb addr
Specifies the matching task (by defining a matching TCB) for the ENQ, if used
together with the MASID parameter. MTCB defines the TCB of a task that may
be using a resource desired by the caller. If the MTCB parameter is an A-type
address, the address is the name of a fullword containing the TCB. If the
operand is a register, then the register contains the TCB.

If the task specified by the MASID and MTCB parameters is not using the
resource, global resource serialization gives control to the caller and returns a
return code indicating whether the resource can be used. If the task specified
by MASID and MTCB parameters is using the resource, global resource
serialization records a request for the resource, suspends the issuing task until
the resource is available, or optionally returns a return code indicating that an
ECB will be posted when the resource can be used.

The MASID and MTCB parameters are specified with RET=HAVE, RET=TEST,
or ECB parameters to elicit additional return codes that provide information
about the owner of the resource.

See the description of the rname length for information about specifying rname
length with MASID and MTCB.

,RNL=YES
,RNL=NO

Controls global resource serialization RNL processing, which can cause the
scope value of a resource to change. IBM recommends that you use the default,
RNL=YES, to allow global resource serialization to perform RNL processing.
Use RNL=NO when you are sure that you want the request to be processed
only by global resource serialization using only the specified scope. When
RNL=NO is specified the ENQ request will be ignored by alternative
serialization products. Refer to z/OS MVS Planning: Global Resource Serialization,
RNL Processing, for more information about the use of RNL=NO.

,RELATED=value
Specifies information used to self-document macros by ‘relating’ functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

ENQ macro

80 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,LINKAGE=SVC
,LINKAGE=SYSTEM

Specifies the type of linkage the caller is using to invoke the ENQ service.

For LINKAGE=SVC, the linkage is through an SVC instruction. This linkage is
valid only when the caller is in primary mode and the primary, home, and
secondary address spaces are the same.

For LINKAGE=SYSTEM, the linkage uses a non-SVC entry. This linkage is
valid in cross memory mode or in non-cross memory mode.
LINKAGE=SYSTEM is intended to be used by programs in cross memory
mode.
v If ECB= is specified, the ECB (not the address of the ECB) must be

addressable from the home address space.
v If TCB= is specified, then the specified TCB in the home address space is

associated with the resource; otherwise, the TCB in the home address space
making the request is associated with the resource.

The default is LINKAGE=SVC.

ABEND codes
For only unconditional requests, the caller might encounter abend code X'138' or
X'538'. For unconditional or conditional requests, the caller might encounter one of
the following abend codes:
v X'238'
v X'338'
v X'438'
v X'738'
v X'838'
v X'938'

See z/OS MVS System Codes for explanations and responses for these codes.

Return and reason codes
The system provides a return code only if you specify RET=TEST, RET=USE,
RET=CHNG, RET=HAVE, or ECB; otherwise, return of the task to the active
condition indicates that control of the resource has been assigned or was
previously assigned to the task. If all return codes for the resources named in the
ENQ macro are 0, register 15 contains 0. For nonzero return codes, register 15
contains the address of a storage area containing the return codes, as shown in
Figure 4 on page 82.

ENQ macro

Chapter 4. ENQ — Request control of a serially reusable resource 81

The return codes are placed in the parameter list resulting from the macro
expansion in the same sequence as the resource names in the ENQ macro.

The return codes for the ENQ macro with the RET=TEST parameter are described
in Table 6.

Table 6. Return Codes for the ENQ Macro with the RET=TEST Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The resource is immediately available.

Action: None required. However, you might take some action based on your
application.

4 Meaning: The resource is not immediately available.

Action: None required. However, you might take some action based on your
application.

8 Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: None required. However, you might take some action based on your
application.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of flag byte 1 in the parameter list that identifies the owned
resource. If bit 3 is off, the task has exclusive control; If bit 3 is on, the task has
shared control.

Address
Returned in
Register 15

Return
Codes

1
0

2 3 4

12

12

24

36

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

RC1

RC2

RC3

RCN

Figure 4. Return Code Area Used by ENQ

ENQ macro

82 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 6. Return Codes for the ENQ Macro with the RET=TEST Parameter (continued)

Hexadecimal
Return Code

Meaning and Action

14 Meaning: A previous request for control of the same resource has been made for
the same task. The task does not have control of the resource.

Action: None required. However, you might take some action based on your
application.

20 Meaning: The matching task (the task specified in the MASID and MTCB
parameters) owns the resource.

Action: None required. However, you might take some action based on your
application.

The return codes for the ENQ macro with the RET=USE parameter are described
in Table 7.

Table 7. Return Codes for the ENQ Macro with the RET=USE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The active task now has control of the resource.

Action: None.

4 Meaning: The resource is not immediately available.

Action: None required. However, you might take some action based on your
application.

8 Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: None required. However, you might take some action based on your
application.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of flag byte 1 in the parameter list that identifies the owned
resource. If bit 3 is off, the task has exclusive control; If bit 3 is on, the task has
shared control.

14 Meaning: A previous request for control of the same resource has been made for
the same task. The task does not have control of the resource.

Action: None required. However, you might take some action based on your
application.

18 Meaning: Environmental error. The limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless
some previous ENQ or RESERVE request caused the task to obtain control of the
resource.

Action: Retry the request one or more times. If the problem persists, consult
your system programmer, who might be able to tune the system so that the limit
is no longer exceeded.

The return codes for the ENQ macro with the RET=CHNG parameter are
described in Table 8.

Table 8. Return Codes for the ENQ Macro with the RET=CHNG Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The status of the resource has been changed to exclusive.

Action: None.

ENQ macro

Chapter 4. ENQ — Request control of a serially reusable resource 83

Table 8. Return Codes for the ENQ Macro with the RET=CHNG Parameter (continued)

Hexadecimal
Return Code

Meaning and Action

4 Meaning: The status of the resource cannot be changed to exclusive. Other tasks
share the resource.

Action: None required. However, you might take some action based on your
application.

8 Meaning: The status of the resource cannot be changed to exclusive. Either no
tasks have issued an ENQ request for the resource, or the task acquired the
resource through the MASID parameter.

Action: None required. However, you might take some action based on your
application.

14 Meaning: The status of the resource cannot be changed to exclusive. A previous
request for control of the same resource has been made for the same task. The
task does not have control of the resource.

Action: None required. However, you might take some action based on your
application.

The return codes for the ENQ macro with the RET=HAVE parameter are described
in Table 9.

Table 9. Return Codes for the ENQ Macro with the RET=HAVE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The active task now has control of the resource.

Action: None.

8 Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: None required. However, you might take some action based on your
application.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of flag byte 1 in the parameter list that identifies the owned
resource. If bit 3 is off, the task has exclusive control; If bit 3 is on, the task has
shared control.

14 Meaning: A previous request for control of the same resource has been made for
the same task but that request has not yet been satisfied (such as an ENQ with
RET=NONE which waits for the resource). The task does not have control of the
resource.

Action: None required. However, you might take some action based on your
application.

18 Meaning: Environmental error. The limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless
some previous ENQ or RESERVE request caused the task to obtain control of the
resource.

Action: Retry the request one or more times. If the problem persists, consult
your system programmer, who might be able to tune the system so that the limit
is no longer exceeded.

ENQ macro

84 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 9. Return Codes for the ENQ Macro with the RET=HAVE Parameter (continued)

Hexadecimal
Return Code

Meaning and Action

20 Meaning: The matching task (the task specified in the MASID and MTCB
parameters) owns the resource.

Action: The caller can use the resource, but it must ensure that the owning task
does not terminate while the caller is using the resource. If the caller requested
exclusive control, then this return code indicates that the matching task is the
only task that currently owns the resource. If the caller requested shared control
and the owning task requested shared control, this return code might indicate
that a previous task had requested exclusive control. The caller must issue a
DEQ macro to cancel this ENQ request.

28 Meaning: The caller cannot obtain exclusive control of the resource using the
ENQ macro with the MASID and MTCB parameters. The matching task's
involvement with other tasks precludes control by the caller.

Action: This task must not issue a DEQ macro to cancel the ENQ request.

44 Meaning: The caller is violating a restriction of using the ENQ macro with the
MASID and MTCB parameters in one or more of the following ways:

v Another task has already issued the ENQ macro for this resource specifying
the same values for the MASID and MTCB parameters

v The MASID and MTCB parameters specify a task that acquired control of the
resource by using the ENQ macro with the MASID and MTCB parameters

v The matching task requested ownership of the resource but has not yet been
granted ownership.

Action: Do not use the resource; the caller does not have control of it.

The return codes for the ENQ macro with the ECB parameter are described in
Table 10.

Table 10. Return Codes for the ENQ Macro with the ECB Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The active task now has control of the resource.

Action: Do not wait on the ECB; it will not be posted.

4 Meaning: The active task does not have control of the resource yet. The ECB
will be posted when the system assigns control to that task.

Action: Wait on the ECB if your program cannot continue processing without
control of the resource.

8 Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: Do not wait on the ECB; it will not be posted.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of flag byte 1 in the parameter list that identifies the owned
resource. If bit 3 is off, the task has exclusive control; If bit 3 is on, the task has
shared control.

14 Meaning: A previous request for control of the same resource has been made for
the same task. The task does not have control of the resource.

Action: Do not wait on the ECB; it will not be posted.

ENQ macro

Chapter 4. ENQ — Request control of a serially reusable resource 85

Table 10. Return Codes for the ENQ Macro with the ECB Parameter (continued)

Hexadecimal
Return Code

Meaning and Action

18 Meaning: Environmental error. The limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless
some previous ENQ or RESERVE request caused the task to obtain control of the
resource.

Action: Do not wait on the ECB; it will not be posted. Retry the request one or
more times. If the problem persists, consult your system programmer, who
might be able to tune the system so that the limit is no longer exceeded.

20 Meaning: The matching task (the task specified in the MASID and MTCB
parameters) owns the resource.

Action: Do not wait on the ECB; it will not be posted. The caller can use the
resource, but it must ensure that the owning task does not terminate while the
caller is using the resource. If the caller requested exclusive control, then this
return code indicates that the matching task is the only task that currently owns
the resource. If the caller requested shared control and the owning task
requested shared control, this return code might indicate that a previous task
had requested exclusive control. The caller must issue a DEQ macro to cancel
this ENQ request.

24 Meaning: The caller that specifies the ENQ macro with the MASID and MTCB
parameters will have exclusive control after the ECB is posted.

Action: Wait on the ECB. Once the ECB is posted, the caller may use the
resource, but must ensure that the matching task does not terminate while the
caller is using the resource. The caller must issue a DEQ macro to cancel the
ENQ request.

28 Meaning: The caller cannot obtain exclusive control of the resource using the
ENQ macro with the MASID and MTCB parameters. The matching task's
involvement with other tasks precludes control by the caller.

Action: Do not wait on the ECB; it will not be posted. The caller must not issue
a DEQ macro to cancel the ENQ request.

44 Meaning: The caller is violating a restriction of using the ENQ macro with the
MASID and MTCB parameters in one or more of the following ways:

v Another task has already issued the ENQ macro for this resource specifying
the same values for the MASID and MTCB parameters

v The MASID and MTCB parameters specify a task that acquired control of the
resource by using the ENQ macro with the MASID and MTCB parameters

v The matching task requested ownership of the resource but has not yet been
granted ownership.

Action: Do not wait on the ECB; it will not be posted. Do not use the resource;
the caller does not have control of it.

Example 1
Unconditionally request exclusive control of a serially reusable resource that is
known only within the address space (STEP), and set to non-dispatchable other
tasks for the step until the requesting task has completed its operations on the
resource.
ENQ (MAJOR1,MINOR1,E,8,STEP),SMC=STEP

Example 2
Conditionally request control of a resource that can be shared on behalf of another
task. The resource is known by more than one address space, and is only wanted if
immediately available.
ENQ (MAJOR2,MINOR2,S,4,SYSTEM),TCB=(R2),RET=USE

ENQ macro

86 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENQ - List form
Use the list form of ENQ to construct a control program parameter list. You can
specify any number of resources on ENQ, therefore, the number of qname, rname,
and scope combinations in the list form of the ENQ macro must be equal to the
maximum number of qname, rname, and scope combinations in any execute form of
the macro that refers to that list form.

Syntax
The list form of the ENQ macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede ENQ.

ENQ

� One or more blanks must follow ENQ.

(

qname addr qname addr: A-type address or register (2) - (12).

,

,rname addr rname addr: A-type address or register (2) - (12).

, Default: E

,E

,S

,

,rname length rname length: symbol or decimal digit.

Default: assembled length of rname

, Default: STEP

,STEP

,SYSTEM

,SYSTEMS

)

ENQ macro

Chapter 4. ENQ — Request control of a serially reusable resource 87

Syntax Description

,RET=CHNG Default: RET=NONE

,RET=HAVE

,RET=TEST

,RET=USE

,RET=NONE

,SMC=NONE Default: SMC=NONE

,SMC=STEP

,ECB=ecb addr ecb addr: A-type address.

,TCB=0 Note: ECB cannot be specified with RET.

Note: TCB or ECB must be specified on the list form if it is used on the
execute form. ECB and TCB can be specified together. If you specify TCB
without ECB, specify RET=CHNG, TEST or USE.

,MASID=0 Note: MTCB is required with MASID. Do not specify SMC or TCB with
MASID.

,MTCB=0 Note: MASID is required with MTCB.

,RNL=YES Default: RNL=YES

,RNL=NO

,RELATED=value value: any valid macro keyword specification.

,MF=L

Parameters
The parameters are explained under the standard form of the ENQ macro, with the
following exception:

,MF=L
Specifies the list form of the ENQ macro.

The list form of this macro generates a prefix followed by the parameter list,
however the label specified in MF=L does not include an offset prefix area. If
MASID, MTCB, TCB, or ECB is specified, these labels are offset; allowance must be
made for the parameter list prefix.

ENQ - Execute form
A remote control program parameter list is used in and can be modified by the
execute form of the ENQ macro. The parameter list must be generated by the list
form of ENQ.

ENQ macro

88 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax
The execute form of the ENQ macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede ENQ.

ENQ

� One or more blanks must follow ENQ.

(Note: (and) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired then (,), and all parameters
between (and) should not be specified. If something in the list is desired,
the (,), and all parameters in the list should be specified as indicated at the
left.

qname addr qname addr: RX-type address or register (2) - (12).

,

,rname addr rname addr: RX-type address or register (2) - (12).

,

,E

,S

,

,rname length rname length: symbol, decimal digit, or register (2) - (12).

,

,STEP

,SYSTEM

,SYSTEMS

) Note: See note opposite (above.

,RET=CHNG

,RET=HAVE

,RET=TEST

,RET=USE

,RET=NONE

,SMC=NONE ecb addr: RX-type address or register (2) - (12).

ENQ macro

Chapter 4. ENQ — Request control of a serially reusable resource 89

Syntax Description

,SMC=STEP tcb addr: RX-type address or register (2) - (12).

,ECB=ecb addr Note: ECB cannot be specified with RET above.

,TCB=tcb addr Note: ECB and TCB can be specified together. If you specify TCB without
ECB, then specify RET=CHNG, TEST, or USE.

,MASID=matching-asid addr matching-asid addr: RX-type address or register (2)-(12).

Note: MTCB is required with MASID. Do not specify SMC or TCB with
MASID.

,MTCB=matching-tcb addr matching-tcb addr: RX-type address or register (2)-(12).

Note: MASID is required with MTCB.

,RNL=YES

,RNL=NO

,RELATED=value value: any valid macro keyword specification.

,LINKAGE=SVC DEFAULT: LINKAGE=SVC

,LINKAGE=SYSTEM

,MF=(E,list addr) list addr: RX-type address or register (1) - (12).

Parameters
The parameters are explained under the standard form of the ENQ macro, with the
following exceptions:

,MF=(E,list addr)
Specifies the execute form of the ENQ macro.

list addr specifies the area that the system uses to contain the parameters.

Note: If ECB (or TCB) is specified in the execute form, ECB (or TCB=0) must be
specified in the list form. If MASID and MTCB are specified, MASID=0 and
MTCB=0 must be specified in the list form.

The list form of this macro generates a prefix followed by the parameter list,
however the label specified in MF=L does not include an offset prefix area. If
MASID, MTCB, TCB, or ECB is specified, these labels are offset; allowance must be
made for the parameter list prefix.

ENQ macro

90 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 5. ESPIE — Extended SPIE

Description
The ESPIE macro extends the function of the SPIE (specify program interruption
exits) macro to callers in 31-bit and 64-bit addressing mode. For additional
information concerning the relationship between the SPIE and the ESPIE macros,
see the information on program interruptions in z/OS MVS Programming: Assembler
Services Guide and z/OS MVS Programming: Authorized Assembler Services Guide.

The ESPIE macro performs the following functions using the options specified:
v Establishes an ESPIE environment (that is, identifies the interruption types that

are to cause entry to the ESPIE exit routine) by executing the SET option of the
ESPIE macro

v Deletes an ESPIE environment (that is, cancels the current SPIE/ESPIE
environment) by executing the RESET option of the ESPIE macro

v Determines the current SPIE/ESPIE environment by executing the TEST option
of the ESPIE macro.

The following description of the ESPIE macro also appears in z/OS MVS
Programming: Assembler Services Reference ABE-HSP, with the exception of
interruption type 17. This interruption type designates page faults, and its use is
restricted to programs that are APF-authorized or run in PSW key 0 - 7.

For information about programs in 64-bit addressing mode (AMODE 64), see z/OS
MVS Programming: Extended Addressability Guide.

The information documented under the following headings is provided separately
for each of the three options (SET, RESET, and TEST):
v "Input Register Information"
v "Output Register Information"
v "Syntax"
v "Parameters"
v "Return and Reason Codes"
v "Examples"

The information documented in the following topics applies to all three options of
the ESPIE macro (SET, RESET, and TEST):
v "Environment"
v "Programming Requirements"
v "Restrictions"
v "Performance Implications"
v "ABEND Codes"

© Copyright IBM Corp. 1988, 2016 91

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: To issue ESPIE without encountering an abnormal end,

callers must be in problem state, with a PSW key value that
is equal to the TCB assigned key, except when ESPIE RESET
is issued or ESPIE SET is issued with no interruption codes
specified (where key 0 supervisor state is allowed). To
specify page fault processing, the caller must be
APF-authorized.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

Performance implications
Programs that need to intercept only specific hardware program check
interruptions (such as arithmetic exceptions or data conversion exceptions) will
find ESPIE to be more efficient than establishing an ESTAE environment to screen
all abends for specific OCx abends.

ABEND codes
ESPIE might return with abend code X'46D'. See z/OS MVS System Codes for an
explanation and programmer responses.

ESPIE SET option

Input register information
Before issuing the SET option of the ESPIE macro, the caller does not have to place
any information into any register unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain the
following information:

Register
Contents

0 Used as a work register by the system

1 Token representing the previously active SPIE/ESPIE environment

2-13 Unchanged

ESPIE macro

92 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

14 Used as a work register by the system

15 Return code of 0

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Syntax
The standard form of the ESPIE macro with the SET option is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESPIE.

ESPIE

� One or more blanks must follow ESPIE.

SET

,exit addr exit addr: A-type address or register (2) - (12).

,(interruptions) interruptions: Decimal numbers 1 - 15 or 17 expressed as:

v single values: (2, 3, 4, 7, 8, 9, 10)

v ranges of values: ((2, 4), (7, 10))

v combinations: (2, 3, 4, (7, 10))

,PARAM=list addr list addr: A-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

SET
Indicates that an ESPIE environment is to be established.

ESPIE macro

Chapter 5. ESPIE — Extended SPIE 93

,exit addr
Specifies the address of the exit routine to be given control when program
interruptions of the type specified by interruptions occur. The exit routine will
receive control in the same addressing mode as the issuer of the ESPIE macro.

,(interruptions)
Indicates the interruption types that are being trapped. The interruption types
are:

Number
Interruption Type

1 Operation

2 Privileged operation

3 Execute

4 Protection

5 Addressing

6 Specification

7 Data

8 Fixed-point overflow (maskable)

9 Fixed-point divide

10 Decimal overflow (maskable)

11 Decimal divide

12 Exponent overflow

13 Exponent underflow (maskable)

14 Significance (maskable)

15 Floating-point divide

17 Page fault

These interruption types can be designated as one or more single numbers, as
one or more pairs of numbers (designating ranges of values), or as any
combination of the two forms. For example, (4,8) indicates interruption types 4
and 8; ((4,8)) indicates interruption types 4 through 8.

If a program interruption type is maskable, the corresponding program mask
bit in the PSW is set to 1. If a maskable interruption is not specified, the
corresponding bit in the PSW is set to 0. Interruption types not specified above
(except for type 17) are handled by the system. The system forces an abnormal
end with the program check as the completion code. If an ESTAE-type
recovery routine is also active, the SDWA indicates a system-forced abnormal
end. The registers at the time of the error are those of the system.

Note: For ESPIE and SPIE - If you are using vector instructions and an
interruption of 8, 12, 13, 14, or 15 occurs, your recovery routine can check the
exception extension code (the first byte of the two-byte interruption code in the
ESPIE or PIE) to determine whether the exception was a vector or scalar type
of exception.

,PARAM=list addr
Specifies the fullword address of a parameter list that is to be passed by the
caller to the exit routine.

ESPIE macro

94 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return and reason codes
None.

Example 1
Give control to an exit routine for interruption types 1 and 4. EXIT is the location
of the exit routine to be given control and PARMLIST is the location of the
user-parameter list to be used by the exit routine.
ESPIE SET,EXIT,(1,4),PARAM=PARMLIST

Example 2
Give control to the exit routine located at EXIT when a page fault occurs.
ESPIE SET,EXIT,(17)

ESPIE SET - List form
Use the list form of the ESPIE macro together with the execute form of the macro
for applications that require reentrant code. The list form of the macro defines an
area of storage, which the execute form of the macro uses to store the parameters.
The list form of ESPIE is valid only for ESPIE SET.

Syntax
The list form of the ESPIE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESPIE.

ESPIE

� One or more blanks must follow ESPIE.

SET

,exit addr exit addr: A-type address.

Note: This parameter must be specified on either the list or the execute form
of the macro.

,(interruptions) interruptions: Decimal number 1 - 15 or 17 expressed as:

v single values: (2, 3, 4, 7, 8, 9, 10)

v ranges of values: ((2, 4), (7, 10))

v combinations: (2, 3, 4, (7, 10))

,PARAM=list addr list addr: A-type address.

,MF=L

ESPIE macro

Chapter 5. ESPIE — Extended SPIE 95

Syntax Description

Parameters
The parameters are explained under the standard form of ESPIE SET with the
following exception:

,MF=L
Specifies the list form of the ESPIE macro.

Example
Build a nonexecutable problem program parameter list that will cause control to be
transferred to the exit routine, EXIT, for the interruption types specified in the
execute form of the macro. Provide the address of the user parameter list,
PARMLIST.
LIST1 ESPIE SET,EXIT,,PARAM=PARMLIST,MF=L

ESPIE SET - Execute form
Use the execute form of the ESPIE macro together with the list form of the macro
for applications that require reentrant code. The execute form of the macro stores
the parameters into the storage area defined by the list form. The execute form of
ESPIE is valid only for ESPIE SET.

Syntax
The execute form of the ESPIE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESPIE.

ESPIE

� One or more blanks must follow ESPIE.

SET

,exit addr exit addr: RX-type address or register (2) - (12).

Note: This parameter must be specified on either the list or the execute form
of the macro.

,(interruptions) interruptions: Decimal number 1 - 15 or 17 expressed as:

v single values: (2, 3, 4, 7, 8, 9, 10)

v ranges of values: ((2, 4), (7, 10))

v combinations: (2, 3, 4, (7, 10))

ESPIE macro

96 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,PARAM=list addr list addr: RX-type address or register (1) or (2) - (12).

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of ESPIE SET with the
following exception:

,MF=(E,ctrl addr)
Specifies the execute form of the ESPIE macro.

ctrl addr specifies the area that the system uses to store the parameters.

Example
Give control to a installation exit routine for interruption types 1, 4, 6, 7, and 8.
The exit routine address and the address of a user parameter list for the exit
routine are provided in a remote control program parameter list at LIST1.
ESPIE SET,,(1,4,(6,8)),MF=(E,LIST1)

ESPIE RESET option
The RESET option of the ESPIE routine cancels the active SPIE/ESPIE environment
and restores the SPIE/ESPIE environment specified by token.

Input register information
Before issuing the RESET option of the ESPIE macro, the caller does not have to
place any information into any register unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Used as a work register by the system

1 Token identifying the new active SPIE/ESPIE environment

2-13 Unchanged

14 Used as a work register by the system

15 Return code of 0

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

ESPIE macro

Chapter 5. ESPIE — Extended SPIE 97

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Syntax
The RESET option of the ESPIE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESPIE.

ESPIE

� One or more blanks must follow ESPIE.

RESET

,token token: RX-type address or register (1) or (2) - (12).

Parameters
The parameters are explained as follows:

RESET
Indicates that the current ESPIE environment is to be deleted and the
previously active SPIE/ESPIE environment specified by token is to be
reestablished.

,token
Specifies a fullword that contains a token representing the previously active
SPIE/ESPIE environment. This is the same token that ESPIE processing
returned to the caller when the ESPIE trap was established using the SET
option of the ESPIE macro.

If the token is zero, all SPIEs and ESPIEs are deleted.

Return and reason codes
None.

Example
Cancel the current SPIE/ESPIE environment and restore the SPIE/ESPIE
environment represented by the contents of TOKEN.
ESPIE RESET,TOKEN

ESPIE macro

98 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ESPIE TEST option
The TEST option of the ESPIE macro determines the active SPIE/ESPIE
environment and returns the information in a 4-byte parameter list.

Input register information
Before issuing the TEST option of the ESPIE macro, the caller does not have to
place any information into any register unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Used as a work register by the system

1-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Syntax
The TEST option of the ESPIE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESPIE.

ESPIE

� One or more blanks must follow ESPIE.

TEST

ESPIE macro

Chapter 5. ESPIE — Extended SPIE 99

Syntax Description

,parm addr parm addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained as follows:

TEST
Indicates a request for information concerning the active or current
SPIE/ESPIE environment. ESPIE processing returns this information to the
caller in a 4-word parameter list located at parm addr.

,parm addr
Specifies the address of a 4-word parameter list aligned on a fullword
boundary. The parameter list has the following form:

Word Content

0 31-bit address of the exit routine (For 24-bit routines, the high order bit
is set to 0. For 31-bit routines, the high order bit is set to 1.)

1 Address of the user-defined parameter list

2 Mask of program interruption types

3 Zero

Return and reason codes
ESPIE TEST returns status information about the current ESPIE environment in
GPR 15. When control returns from ESPIE TEST, GPR 15 contains one of the
following hexadecimal return codes.

Note: These return codes are informational; no actions are required.

Table 11. Return Codes for the ESPIE TEST Macro

Hexadecimal
Return Code

Meaning

00 Meaning: An ESPIE exit is active and the 4-word parameter list contains the
information specified in the description of the parm addr parameter.

04 Meaning: A SPIE exit is active. Word 1 of the parameter list described under
parm addr contains the address of the current PICA. Words 0, 2, and 3 of the
parameter list contain no relevant information.

08 Meaning: No SPIE or ESPIE is active. The contents of the 4-word parameter list
contain no relevant information.

Example
Identify the active SPIE/ESPIE environment. Return the information about the exit
routine in the 4-word parameter list, PARMLIST. Also return, in register 15, an
indication of whether a SPIE, ESPIE, or neither is active.
ESPIE TEST,PARMLIST

ESPIE macro

100 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit
extended

Description
The ESTAE macro provides recovery capability facilities. Issuing the ESTAE macro
allows the caller to intercept errors. Control is given to a caller-specified exit
routine (called a recovery routine) in which the caller can perform various tasks,
including diagnosing the cause of the error and specifying a retry address to avoid
abnormal ending.

ESTAE type considerations: The type of ESTAE routine, that is, ESTAE or ESTAEX
affects the AMODE of the recovery routine as follows. For recovery routines
defined through the:
v ESTAE macro, at the time of entry to the recovery routine, the AMODE will be

the same as at the time of invocation of the macro.
v ESTAEX macro, the AMODE will be the same as at the time of invocation of the

macro, unless the macro was invoked in AMODE 24 in which case the recovery
routine AMODE will be 31-bit.

v The AMODE at the retry point will be the same as the AMODE on entry to the
recovery routine.

Various mode considerations: Depending on address space, cross-memory (the
primary, secondary, and home address spaces are the same), and access register
(AR) modes, you need to select the proper ESTAE type as follows:
v If your program is to execute in 31-bit addressing mode, you must use the SP

Version 2 of the ESTAE macro or a later version.
v Callers that are in primary address space control (ASC) mode and not in

cross-memory mode can issue either ESTAE or ESTAEX.
v Callers that are in access register (AR) mode or in cross-memory mode must use

ESTAEX.
v IBM recommends that all callers use the ESTAEX macro, unless your program

and your recovery routine are in 24-bit addressing mode, in which case you
need to use ESTAE.

Depending on whether you code ESTAE or ESTAEX, the system passes the address
of the user-specified parameter list differently. The SDWAPARM field in the SDWA
contains either the address of the parameter list (ESTAE), or the address of a
doubleword that contains the address and ALET of the parameter list (ESTAEX).
When you run in AMODE 64 (as indicated by specifying AMODE64=YES through
the SYSSTATE macro) and invoke ESTAEX, your ESTAEX routine will get control
in AMODE 64. The 8-byte area pointed to by the SDWAPARM field will be the
8-byte address of the parameter area.

See the information on providing recovery in z/OS MVS Programming: Authorized
Assembler Services Guide for information about writing recovery routines.

The descriptions of ESTAE and ESTAEX are:

© Copyright IBM Corp. 1988, 2016 101

v The standard form of the ESTAE macro, which includes general information
about the ESTAE and ESTAEX macros, with some specific information about the
ESTAE macro. The syntax of the ESTAE macro is presented, and all ESTAE
parameters are explained.

v The standard form of the ESTAEX macro, which includes information specific to
the ESTAEX macro. The syntax of the ESTAEX macro is presented.

v The list form of the ESTAE and ESTAEX macros.
v The execute form of the ESTAE and ESTAEX macros.

Note: The ESTAE and ESTAEX macros have the same environment specifications,
register information, programming requirements, restrictions and limitations, and
performance implications described as follows, except where noted in the
explanation for ESTAEX.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key. To use the CANCEL,

BRANCH, KEY, TOKEN, or SPIEOVERRIDE parameters,
one of the following:

v Supervisor state

v PKM allowing key 0-7 (for BRANCH, key 0 only)

v APF-authorized
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
If the program is in AR mode, you must use ESTAEX rather than ESTAE; issue the
SYSSTATE macro with the ASCENV=AR parameter before you issue ESTAEX.
SYSSTATE ASCENV=AR tells the system to generate code appropriate for AR
mode.

Restrictions
For Branch-entry, IBM recommends that you have no EUT FRRs.

IBM recommends that you do not use the ESTAE or ESTAEX macro to deactivate
and no longer define a FESTAE recovery routine that was defined and activated by
a FESTAE macro.

Input register information
Before issuing the ESTAE macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

ESTAE and ESTAEX macros

102 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Register
Contents

0 Reason code if GPR 15 contains X'4'; otherwise, used as a work register by
the system

1 Used as a work register by the system

2 If you specify KEY=SAVE, used as a work register by the system;
otherwise, unchanged

3-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the ESTAE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESTAE.

ESTAE

� One or more blanks must follow ESTAE.

exit addr exit addr: A-type address, or register (2) - (12).

0

,CT Default: CT

,OV

ESTAE and ESTAEX macros

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 103

Syntax Description

,PARAM=list addr list addr: A-type address, or register (2) - (12).

,XCTL=NO Default: XCTL=NO

,XCTL=YES

,PURGE=NONE Default: PURGE=NONE

,PURGE=QUIESCE

,PURGE=HALT

,ASYNCH=YES Default: ASYNCH=YES

,ASYNCH=NO

,CANCEL=YES Default: CANCEL=YES

,CANCEL=NO

,TERM=NO Default: TERM=NO

,TERM=YES

,BRANCH=NO Default: BRANCH=NO

,BRANCH=YES,SVEAREA=save save addr: A-type address, or register (2) - (12) or (13).

addr

,KEY=SAVE storage key: Any numeral in the range 0-15.

,KEY=storage key

,RECORD=NO Default: RECORD=NO

,RECORD=YES

,TOKEN=token addr token addr: A-type address, or register (2) - (12).

,RELATED=value value: Any valid macro keyword specification.

,SDWALOC31=NO Default: SDWALOC31=NO

,SDWALOC31=YES

,SPIEOVERRIDE=NO Default: SPIEOVERRIDE=NO

,SPIEOVERRIDE=YES

ESTAE and ESTAEX macros

104 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Parameters
The parameters are explained as follows.

exit addr
0

Specifies the 31-bit address of an ESTAE recovery routine to be entered if the
task issuing this macro ends abnormally. If you specify 0, the most recent
ESTAE recovery routine is deactivated and no longer defined.

The ESTAEX exit always gets control in 31-bit mode, regardless of the mode in
which the macro was invoked.

,CT
,OV

Specifies that a new ESTAE recovery routine is to be defined and activated
(CT), or indicates that parameters passed in this ESTAE macro are to overlay
the data contained in the previous ESTAE routine (OV).

,PARAM=list addr
Specifies the 31-bit address of a user-defined list containing data to be used by
the ESTAE routine when it is scheduled for execution.

,XCTL=NO
,XCTL=YES

Specifies that the ESTAE recovery routine will be deactivated and no longer
defined (NO) or will remain activated and defined (YES) if this program issues
an XCTL macro.

,PURGE=NONE
,PURGE=QUIESCE
,PURGE=HALT

Specifies that all outstanding requests for I/O operations are not to be saved
when the ESTAE routine receives control (HALT), or that I/O processing is to
be allowed to continue normally when the ESTAE routine receives control
(NONE), or that all outstanding requests for I/O operations are to be saved
when the ESTAE routine receives control (QUIESCE). If QUIESCE is specified,
the user's retry routine can restore the outstanding I/O requests.

For PURGE=QUIESCE and PURGE=HALT, RTM requests that all I/O be
purged at the task level for the current task. Be aware that the purge request
involves all I/O started by the task, not just the I/O started by the program
that created this recovery routine. PURGE=QUIESCE must thus be used
carefully, as it may wait for I/O that was not started by the program that
created this recovery routine. Likewise, PURGE=HALT must be used carefully
as it may terminate I/O that was not started by the program that created this
recovery routine.

PURGE=NONE specifies that all control blocks affected by input/output
processing can continue to change during ESTAE routine processing. If you
specify PURGE=NONE and the error was an error in input/output processing,
recursion develops when an input/output interruption occurs, even if the
ESTAE routine is in progress. Thus, it will appear that the ESTAE routine failed
when, in reality, input/output processing caused the failure.

Note:

1. You need to understand PURGE processing before using this parameter. For
information about PURGE processing, see z/OS DFSMSdfp Advanced Services.

ESTAE and ESTAEX macros

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 105

2. When using PURGE, you need to consider any access-method ramifications.
See the appropriate DFP information for the particular access method you are
using to determine these ramifications.

3. The system performs the requested I/O processing only for the first
ESTAE-type recovery routine that gets control. Subsequent routines that get
control receive an indication of the I/O processing previously done, but no
additional processing is performed.

,ASYNCH=YES
,ASYNCH=NO

Specifies that asynchronous exit processing will be allowed (YES) or prohibited
(NO) while the user's ESTAE routine is running.

ASYNCH=YES must be coded if:
v Any supervisor services that require asynchronous interruptions to complete

their normal processing are going to be requested by the ESTAE routine.
v PURGE=QUIESCE is specified for any access method that requires

asynchronous interruptions to complete normal input/output processing.
v PURGE=NONE is specified and the ESTAE routine issues the CHECK macro

for any access method that requires asynchronous interruptions to complete
normal input/output processing.

Note: If ASYNCH=YES is specified and the error was an error in
asynchronous exit handling, recursion will develop when an asynchronous exit
handling was the cause of the failure.

,CANCEL=YES
,CANCEL=NO

Specifies whether you want to allow the recovery routine to be interrupted by
cancel or detach processing.

To allow a recovery routine to be interrupted, specify CANCEL=YES.

To prevent a recovery routine from being interrupted, specify CANCEL=NO. If
a cancel or detach is attempted against a recovery routine for which you have
specified CANCEL=NO, MVS defers cancel and detach processing until the
recovery routine returns control to the system.

Note:

1. If a recovery routine that runs under the CANCEL=NO option can be
called by an unauthorized program running under the same task, IBM
recommends that you specify ASYNCH=NO for each ESTAE(X) macro that
the recovery routine issues. This also includes any ESTAE(X) macros issued
by programs that the recovery routine calls.

2. If a recovery routine running under the CANCEL=NO option calls an
unauthorized program, cancel and detach processing is also deferred for
the called program.

,TERM=NO
,TERM=YES

Specifies that the ESTAE routine will be scheduled (YES) or will not be
scheduled (NO) in the following situations:
v System-initiated logoff
v Job step timer expiration
v Wait time limit for job step exceeded

ESTAE and ESTAEX macros

106 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v DETACH macro without the STAE=YES parameter issued from a
higher-level task (possibly by the system if the higher-level task encountered
an error)

v Operator cancel
v Error on a higher level task
v Error in the job step task when a nonjob step task issued the ABEND macro

with the STEP parameter.
v z/OS UNIX is canceled and the user's task is in a wait in the z/OS UNIX

kernel.

When the ESTAE routine is entered because of one of the preceding reasons,
retry is not permitted. If a dump is requested at the time the ABEND macro is
issued, it is taken before entry into the ESTAE routine.

Note: If DETACH was issued with the STAE parameter, the following occurs
for the task to be detached:
v All ESTAE routines are entered.
v The most recently activated STAE routine is entered.
v All STAI/ESTAI routines are entered unless one of the STAI routines issues

return code 16.

In these cases, entry to the routine occurs before dumping and retry is not
permitted.

,BRANCH=NO
,BRANCH=YES,SVEAREA=save addr

Specifies that an SVC entry to the ESTAE service routine is to be performed
(NO) or that a branch entry is to be performed (YES). The save area is a
72-byte area used to save the general registers. If the caller is not in key zero,
the KEY parameter must be specified.

BRANCH and SVEAREA are not valid on ESTAEX.

,KEY=SAVE
,KEY=storage key

Specifies that supervisor state users who are not in key zero can use the branch
entry interface to the ESTAE service routine.

If the user specifies KEY=SAVE, the macro saves the current PSW protection
key in register 2 and issues a set protection key instruction (SPKA) to change
to protection key zero. When the ESTAE service routine returns control, it
restores the original PSW key from register 2. Therefore, the user should save
register 2 before the macro expansion and restore it afterwards. Specifying
KEY=SAVE destroys the contents of register 2 during the macro expansion.

On the other hand, if the user knows the current PSW protection key, he may
specify it directly in the form KEY=(0-15) to eliminate saving and restoring the
original protection key. This procedure eliminates an IPK instruction and
prevents the use of register 2 in the macro expansion.

KEY is not valid on ESTAEX. KEY is optional and valid only with
BRANCH=YES,SVEAREA=save addr.

,RECORD=NO
,RECORD=YES

Specifies whether the system diagnostic work area (SDWA) is to be recorded in
SYS1.LOGREC. If you specify RECORD=YES, the system records the entire
SDWA (including the fixed length base, the variable length recording area, and
the recordable extensions) in SYS1.LOGREC when the associated ESTAE

ESTAE and ESTAEX macros

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 107

recovery routine returns control, unless the recovery routine indicates
otherwise by issuing the SETRP macro with RECORD=NO.

If you specify RECORD=NO, the system does not record the SDWA in
SYS1.LOGREC, unless the recovery routine indicates otherwise by issuing the
SETRP macro with RECORD=YES.

,TOKEN=token addr
Specifies that a four-byte token is to be associated with the ESTAE routine.
Unauthorized or accidental destruction of the ESTAE routine is prevented
because the ESTAE cannot be canceled or overlaid unless the same token is
specified.

With CT: ESTAE processing places the token created for this request in the
location specified by token addr as well as in the ESTAE parameter list.

With OV: ESTAE processing locates the specified ESTAE routine for the current
RB and replaces the routine information. If there are any newer ESTAE
routines for the RB, they are deactivated and no longer defined.

With a recovery routine address of 0: ESTAE processing locates the specified
ESTAE routine for the current RB and deactivates the routine. The routine is no
longer defined. Any newer ESTAE routines for the RB are deactivated and no
longer defined.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and content of the
information specified are at the discretion of the user, and may be any valid
coding values.

,SDWALOC31=NO
,SDWALOC31=YES

Specifies that the SDWA be in 31-bit storage (YES) or the default 24-bit storage
(NO). You must specify SDWALOC31=YES when the your program is running
in AMODE 31 and you are using 64-bit general purpose registers, because the
time-of-error 64-bit GPRs are only presented to routines with an SDWA in
31-bit storage. Only routines with an SDWA in 31-bit storage can retry while
setting those registers.

Note: The SDWALOC31= parameter applies to ESTAE only. (For ESTAEX, the
SDWA is always in 31-bit storage.)

,SPIEOVERRIDE=NO
,SPIEOVERRIDE=YES

SPIEOVERRIDE specifies that the ESTAEX recovery exit must receive control
for all program exceptions even if a SPIE or ESPIE exit is established.

While the recovery routine that requests this parameter is established, no SPIE
or ESPIE exit can receive control.

You can use this parameter to ensure that the ESTAEX recovery exit receives
control for all program exceptions that occur while running in Problem state.

The SPIEOVERRIDE parameter is not required for programs that run in
Supervisor state, run in cross-memory, or hold any lock, because SPIE and
ESPIE exits are not eligible to receive control in these environments.

SPIEOVERRIDE is not valid on ESTAE.

The default value is SPIEOVERRIDE=NO.

ESTAE and ESTAEX macros

108 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ABEND codes
None.

Return and reason codes
When control returns to the instruction following the ESTAE macro, GPR 15
contains one of the following return codes and GPR 0 contains one of the
following reason codes.

Table 12. Return and Reason Codes for the ESTAE Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: Successful completion of the ESTAE request.

Action: None.

04 00 Meaning: Program error. ESTAE OV was specified but
ESTAE CT was performed. No valid ESTAE recovery
routine existed.

04 04 Meaning: Program error. ESTAE OV was specified but
ESTAE CT was performed. The last ESTAE recovery
routine was not owned by the user's RB.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

04 08 Meaning: Program error. ESTAE OV was specified but
ESTAE CT was performed. The last ESTAE recovery
routine was not created at the current linkage stack level.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

04 0C Meaning: Program error. ESTAE OV was specified but
ESTAE CT was performed. The last recovery routine was
not an ESTAE recovery routine.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

0C None Meaning: Program error. A recovery routine address equal
to zero was specified, and either

v There are no recovery routines for this TCB,

v The most recent recovery routine is not owned by the
caller,

v The most recent recovery routine is not an ESTAE
recovery routine, or

v The ESTAE was created with the TOKEN parameter and
on a deactivate request, either

– The token was not specified or

– The token does not match.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

10 None Meaning: System error. An unexpected error was
encountered while this request was being processed.

Action: Rerun your program one or more times. If the
problem persists, record the return and reason codes and
supply them to the appropriate IBM support personnel.

14 None Meaning: Environmental error. ESTAE was unable to
obtain storage for a system data area.

Action: Free some storage and reissue the ESTAE macro.

ESTAE and ESTAEX macros

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 109

Table 12. Return and Reason Codes for the ESTAE Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

18 None Meaning: Program error. ESTAE OV request was invalid
for one of the following reasons:

v ESTAE OV with the TOKEN parameter was specified but

– No ESTAE recovery routine exists or

– The recovery routine is not an ESTAE recovery routine
created with the matching token value by the current
RB.

v ESTAE OV without the TOKEN parameter was specified
but the ESTAE recovery routine was created with the
TOKEN parameter.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

1C None Meaning: Program error. ESTAE was unable to access the
input parameter list.

Action: Make sure the parameter list is in the primary
address space and reissue the ESTAE macro.

20 None Meaning: Program error. XCTL=YES was rejected because
the linkage stack was not at the same level as it was when
the RB was created.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

24 None Meaning: Program error. A recovery routine address equal
to zero was specified, but it was rejected because no ESTAE
recovery routines were active for the current linkage stack
level.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

28 None Meaning: Program error. ESTAE OV was specified, but it
was rejected because no ESTAE recovery routines were
active for the current linkage stack level.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

30 None Meaning: Program error. Branch-entered ESTAE CT was
specified, but it was rejected because the caller has a
cross-memory environment.

Action: Use ESTAEX for programs that run in a
cross-memory environment.

Example 1
If an error occurs, pass control to the ESTAE routine specified by register 4, allow
asynchronous exit processing, do not allow special error processing, do not branch
enter, and default to CT and PURGE=NONE.
ESTAE (4),ASYNCH=YES,TERM=NO,BRANCH=NO

Example 2
If an error occurs, pass control to the ESTAE routine specified by register 4. The
address of the ESTAE parameter list is in register 2. Place the token associated with
this ESTAE routine in TOKENFLD.
ESTAE (4),PARAM=(2),TOKEN=TOKENFLD

ESTAE and ESTAEX macros

110 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Example 3
If an error occurs, pass control to the ESTAE routine labeled ADDR, allow
synchronous exit processing, halt I/O, allow special error processing, branch enter,
use the 72-byte save area at SADDR, and execute the execute form of the macro.
EXEC is the label of the ESTAE parameter list built by a list form of the macro
elsewhere in this program.
ESTAE ADDR,ASYNCH=YES,PURGE=HALT,TERM=YES,BRANCH=YES, X

SVEAREA=SADDR,MF=(E,EXEC)

Example 4
Request an overlay of the existing ESTAE recovery routine with the following
options: the address of the parameter list is at PLIST, I/O will be halted, no
asynchronous exits will be taken, ownership will be transferred to the new request
block resulting from any XCTL macros.
ESTAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

Example 5
Provide the pointer to the recovery code in the register called EXITPTR, place the
address of the ESTAE parameter list in register 9. Register 8 points to the area
where the ESTAE parameter list (created with the MF=L option) was moved.
ESTAE (EXITPTR),PARAM=(9),MF=(E,(8))

ESTAEX - Specify task abnormal exit extended

Note: The ESTAEX macro has the same environment specifications, register
information, programming requirements, restrictions and limitations, and
performance implications as the ESTAE macro, with the exceptions that follow.

Environment
The requirements for the caller of ESTAEX that are different from ESTAE are:

Environmental factor Requirement
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary or access register (AR)

Programming requirements
If the program is in AR mode:
v Issue the SYSSTATE macro with the ASCENV=AR parameter before you issue

ESTAEX. SYSSTATE ASCENV=AR tells the system to generate code appropriate
for AR mode.

v User parameters, specified on the PARAM parameter, can be located in any
address space.

Restrictions
The caller of ESTAEX cannot have an EUT FRR established.

The parameters on the standard form of the ESTAEX macro are the same as for the
standard form of the ESTAE macro, except BRANCH, SVEAREA, and KEY, which
are not valid for ESTAEX.

ESTAE and ESTAEX macros

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 111

Syntax
The standard form of the ESTAEX macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESTAEX.

ESTAEX

� One or more blanks must follow ESTAEX.

exit addr exit addr: A-type address, or register (2) - (12).

0

,CT Default: CT

,OV

,PARAM=list addr list addr: A-type address, or register (2) - (12).

,XCTL=NO Default: XCTL=NO

,XCTL=YES

,PURGE=NONE Default: PURGE=NONE

,PURGE=QUIESCE

,PURGE=HALT

,ASYNCH=YES Default: ASYNCH=YES

,ASYNCH=NO

,CANCEL=YES Default: CANCEL=YES

,CANCEL=NO

,TERM=NO Default: TERM=NO

,TERM=YES

,RECORD=NO Default: RECORD=NO

,RECORD=YES

,TOKEN=token addr token addr: A-type address, or register (2) - (12).

ESTAE and ESTAEX macros

112 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,RELATED=value value: Any valid macro keyword specification.

,SPIEOVERRIDE=NO Default: SPIEOVERRIDE=NO

,SPIEOVERRIDE=YES

Parameters
The parameters are explained under the syntax for the standard form of the ESTAE
macro.

ABEND codes
None.

Return and reason codes
When control returns to the instruction following the ESTAEX macro, the return
code in GPR 15 and the reason code in GPR 0 might be different from those for the
ESTAE macro. The following table lists the return and reason codes for ESTAEX.

Table 13. Return and Reason Codes for the ESTAEX Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: Successful completion of the ESTAEX request.

Action: None.

04 00 Meaning: Program error. ESTAEX OV was specified but
ESTAEX CT was performed. No valid ESTAE recovery
routine existed.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

04 04 Meaning: Program error. ESTAEX OV was specified but
ESTAEX CT was performed. The last ESTAE recovery
routine was not owned by the user's RB.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

04 08 Meaning: Program error. ESTAEX OV was specified but
ESTAEX CT was performed. The last ESTAE recovery
routine was not created at the current linkage stack level.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

04 0C Meaning: Program error. ESTAEX OV was specified but
ESTAEX CT was performed. The last recovery routine was
not an ESTAE recovery routine.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

08 None Meaning: Program error. The ESTAEX request was not
valid.

Action: Correct the request and either reissue the ESTAEX
macro or rerun your program, as appropriate.

ESTAE and ESTAEX macros

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 113

Table 13. Return and Reason Codes for the ESTAEX Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

0C None Meaning: Program error. A recovery routine address equal
to zero was specified, and either

v There are no recovery routines for this TCB,

v The most recent recovery routine is not owned by the
caller,

v The most recent recovery routine is not an ESTAE
recovery routine, or

v The ESTAE was created with the TOKEN parameter and
on a deactivate request, either

– The token was not specified or

– The token does not match.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

10 None Meaning: System error. An unexpected error was
encountered while this request was being processed.

Action: Rerun your program one or more times. If the
problem persists, record the return and reason codes and
supply them to the appropriate IBM support personnel.

14 None Meaning: Environmental error. ESTAEX was unable to
obtain storage for a system data area.

Action: Free some storage and reissue the ESTAEX macro.

18 None Meaning: Program error. ESTAEX OV was requested and
one of the following occurred:

v The TOKEN parameter was specified and the ESTAE
recovery routine is not owned by the current RB

v The TOKEN parameter was not specified but the ESTAE
recovery routine was created with the TOKEN
parameter.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

1C None Meaning: Program error. ESTAEX was unable to access the
input parameter list.

Action: Make sure the parameter list is contained in the
primary address space and reissue the ESTAEX macro.

20 None Meaning: Program error. XCTL=YES was rejected because
the linkage stack was not at the same level as it was when
the RB was created.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

24 None Meaning: Program error. A recovery routine address equal
to zero was specified, but it was rejected because no ESTAE
recovery routines were active for the current linkage stack
level.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

28 None Meaning: Program error. The caller was disabled.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

ESTAE and ESTAEX macros

114 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 13. Return and Reason Codes for the ESTAEX Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

2C None Meaning: Program error. The caller was locked.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

30 None Meaning: Program error. The caller had FRRs on the
current FRR stack.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

34 None Meaning: Program error. The caller was in SRB mode.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

Example
The following example show how to establish an ESTAEX recovery routine that
receives control for all abends, including CANCEL or DETACH abends, and
overrides any SPIE or ESPIE exit that is established:
ESTAEX addr,PARM=parmaddr,TERM=YES,SPIEOVERRIDE=YES

ESTAE and ESTAEX - List form
The list form of ESTAE or ESTAEX is used to construct a remote control parameter
list.

Syntax
The list form of ESTAE or ESTAEX is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESTAE or ESTAEX.

ESTAE

ESTAEX

� One or more blanks must follow ESTAE or ESTAEX.

exit addr exit addr: A-type address.

,PARAM=list addr list addr: A-type address.

,PURGE=NONE Default: PURGE=NONE

,PURGE=QUIESCE

,PURGE=HALT

ESTAE and ESTAEX macros

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 115

Syntax Description

,ASYNCH=YES Default: ASYNCH=YES

,ASYNCH=NO

,CANCEL=YES Default: CANCEL=YES

,CANCEL=NO

,TERM=NO Default: TERM=NO

,TERM=YES

,RECORD=NO Default: RECORD=NO

,RECORD=YES

,RELATED=value value: Any valid macro keyword specification.

,SDWALOC31=NO Default: SDWALOC31=NO

,SDWALOC31=YES Note: SDWALOC31 is supported only by ESTAE.

,SPIEOVERRIDE=NO Default: SPIEOVERRIDE=NO

,SPIEOVERRIDE=YES

,MF=L

Parameters
The parameters are explained under the standard form of the ESTAE or ESTAEX
macro with the following exception:

,MF=L
Specifies the list form of the ESTAE or ESTAEX macro.

ESTAE or ESTAEX - Execute form
A remote control parameter list is used in, and can be modified by, the execute
form of the ESTAE or ESTAEX macro. The control parameter list can be generated
by the list form of the ESTAE or ESTAEX macro. Any combination of exit addr,
PARAM, XCTL, PURGE, ASYNCH, TERM, RECORD, TOKEN, and
SPIEOVERRIDE can be specified to dynamically change the contents of the remote
ESTAE or ESTAEX parameter list. If the TOKEN parameter was previously
specified and is to be used again without change, TKNPASS=YES must be coded.
Any fields not specified on the macro remain as they were before the current
ESTAE or ESTAEX request was made.

Note: To ensure that the ESTAE or ESTAEX parameters are correct, the control
parameter list specified for the execute form of the ESTAE and ESTAEX macros
must be initialized from a list form of the macro.

ESTAE and ESTAEX macros

116 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax
The execute form of the ESTAE or ESTAEX macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESTAE or ESTAEX.

ESTAE

ESTAEX

� One or more blanks must follow ESTAE or ESTAEX.

exit addr exit addr: RX-type address, or register (2) - (12).

0

,CT

,OV

,PARAM=list addr list addr: RX-type address, or register (2) - (12).

,XCTL=NO

,XCTL=YES

,PURGE=NONE

,PURGE=QUIESCE

,PURGE=HALT

,ASYNCH=YES

,ASYNCH=NO

,CANCEL=YES Default: CANCEL=YES

,CANCEL=NO

,TERM=NO

,TERM=YES

,BRANCH=NO Note: BRANCH and SVEAREA are not valid on ESTAEX.

,BRANCH=YES,SVEAREA=save save addr: RX-type address, or register (2) - (12) or (13).

addr

,KEY=SAVE storage key: Any numeral in the range 0-15.

,KEY=storage key Note: KEY is not valid on ESTAEX.

ESTAE and ESTAEX macros

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 117

Syntax Description

,RECORD=NO

,RECORD=YES

,TOKEN=token addr token addr: RX-type address, or register (2) - (12).

,TKNPASS=NO Default: TKNPASS=NO

,TKNPASS=YES

,RELATED=value value: Any valid macro keyword specification.

,SDWALOC31=NO Default: SDWALOC31=NO

,SDWALOC31=YES Note: SDWALOC31 is supported only by ESTAE.

,SPIEOVERRIDE=NO Default: SPIEOVERRIDE=NO

,SPIEOVERRIDE=YES

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the ESTAE or ESTAEX
macro, with the following exceptions:

,TKNPASS=NO
,TKNPASS=YES

Specifies that a previously-specified token, indicated in the parameter list,
should be ignored (NO), or should remain part of the specification (YES).

,MF=(E,ctrl addr)
Specifies the execute form of the ESTAE or ESTAEX macro using a remote
control parameter list.

ESTAE and ESTAEX macros

118 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 7. ETCON — Connect entry table

Description
The ETCON macro connects one or more previously created entry tables to the
specified linkage table indexes in the current home address space. If an entry table
is connected to a system linkage index (an index reserved with the SYSTEM=YES
option of the LXRES macro), the entry table is connected to the linkage table of
every address space, both present and future.

The connection created by the ETCON macro remains in effect until one of the
following occurs:
v The ETDIS macro removes the connection.
v The entry table owner terminates.
v The address space to which the table is connected terminates unless the

connection was to a system linkage index.
v The system is re-IPLed.

Related macros
ETDEF, ETCRE, ETDES, and ETDIS

Environment
The requirements for callers of ETCON are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: The parameter list passed to the ETCON macro must be

addressable in primary mode at the time the macro is
issued.

Programming requirements
None.

Restrictions
The restrictions on the use of the ETCON macro are the following:
v If an entry table contains entries that cause address space switches, the entry

table owner must have PT and SSAR authorization to issue PT and SSAR
instructions to the home address space.

v An entry table can be connected only once to a single linkage table.
v The linkage index and the entry table being connected must be owned by the

same task (the cross memory resource owning task of the home address space).

© Copyright IBM Corp. 1988, 2016 119

Any violation of these restrictions causes the system to abnormally end the calling
program.

Input register information
The ETCON macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6
parameter:
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the ETCON
macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When using the standard form of ETCON, do not use register 2 as your program's
base register. The macro modifies register 2 and then uses a branch instruction.
Register 2 is restored by the time control returns to your program.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

Performance implications
None.

Syntax
The ETCON macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

ETCON macro

120 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

� One or more blanks must precede ETCON.

ETCON

� One or more blanks must follow ETCON.

TKLIST=addr addr: RX-type address or register (0) - (12).

,LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

,ELXLIST=elx list addr elx list addr: RX-type address or register (2) - (12).

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

TKLIST=addr
Specifies the address of a list of fullword tokens representing the entry tables
to be connected to the linkage table. The first entry in the list must be the
number of tokens that follow (from 1 to 32). The tokens are the values returned
in register 0 when the ETCRE macro is issued.

,LXLIST=addr
,ELXLIST=addr

lx list addr specifies the address of a list of linkage index (LX) values to which
the specified entry tables are to be connected. The list contains fullword
entries, the first of which must be the number of linkage index values that
follow (from 1 to 32). The number of linkage index values must be the same as
the number of tokens. The first entry table is connected to the first linkage
index; the second entry table is connected to the second linkage index, and so
on.

elx list addr specifies the address of an area that contains extended linkage
index (LX) values to which the specified entry tables are to be connected. The
first word in the area must be the number of extended LX values that follow
(from 1 to 32). Each subsequent eight bytes contains an extended LX value
which consists of a 4-byte sequence number followed by an LX value. The
number of extended linkage index values must be the same as the number of
tokens. The first entry table is connected to the first linkage index; the second
entry table is connected to the second linkage index, and so on. If the sequence
number in the entry is incorrect, the system issues abend X'052' with reason
code X'051B'.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid
coding values.

ETCON macro

Chapter 7. ETCON — Connect entry table 121

ABEND codes
052
053

See z/OS MVS System Codes for an explanation and programmer responses for
these codes.

Return codes
When ETCON macro returns control to your program, GPR 15 contains a return
code.

Table 14. Return Code for the ETCON Macro

Hexadecimal Return
Code

Meaning

00 Meaning: The specified connections were successfully made.

Action: None required.

Examples
For examples of the use of this and other cross memory macros, refer to the
chapter on cross memory communication in z/OS MVS Programming: Extended
Addressability Guide.

ETCON - List form
The list form of the ETCON macro constructs a nonexecutable parameter list. This
list, or a copy of it for reentrant programs, can be referred to by the execute form
of the macro.

Syntax
The list form of the ETCON macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ETCON.

ETCON

� One or more blanks must follow ETCON.

TKLIST=addr addr: A-type address.

,LXLIST=addr addr: A-type address.

,RELATED=value value: Any valid macro keyword specification.

ETCON macro

122 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,MF=L

Parameters
The parameters are explained under the standard form of the ETCON macro, with
the following exception:

,MF=L
Specifies the list form of the ETCON macro.

ETCON - Execute form
The execute form of the ETCON macro can refer to and modify a remote
parameter list created by the list form of the macro.

Syntax
The execute form of the ETCON macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ETCON.

ETCON

� One or more blanks must follow ETCON.

TKLIST=addr addr: RX-type address or register (0) - (12).

,LXLIST=addr addr: RX-type address or register (0) - (12).

,RELATED=value value: Any valid macro keyword specification.

,MF=(E,cntl addr) cntl addr: RX-type address or register (0) - (12).

Parameters
The parameters are explained under the standard form of the ETCON macro with
the following exception:

,MF=(E,cntl addr)
Specifies the execute form of the ETCON macro. This form uses a remote
parameter list.

ETCON macro

Chapter 7. ETCON — Connect entry table 123

ETCON macro

124 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 8. ETCRE — Create entry table

Description
The ETCRE macro builds a program-call entry table based upon descriptions of
each entry. A token representing the created entry table is returned to the
requestor. You must use this token in all subsequent references to the entry table.

Related macros
ETDEF, ETDES, ETCON, and ETDIS

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in primary address space

Programming requirements
Before issuing ETCRE, the caller must create the ETD parameter list that ETCRE
uses as input. The parameter list defines the names and characteristics of the
program call (PC) routines that the entry table will define. To create the parameter
list, the caller can issue the ETDEF macro or can code the data constants needed to
define the list. If data constants are coded, the caller can use mapping macro
IHAETD to map them.

The created entry table is owned by the cross memory resource ownership task in
the current home address space. When the cross memory resource ownership task
terminates, entry tables are disconnected and freed.

Note: Programs written before SP/Version 3, which use data constants to define
the parameter list (the resulting ETD was called a format 0 ETD) and which use
IHAETD to map the data area, will still work. For information about the format 0
ETD, see z/OS MVS Data Areas in the z/OS Internet library (http://
www.ibm.com/systems/z/os/zos/bkserv/).

Restrictions
None.

Input register information
The ETCRE macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6
parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the ETCRE

© Copyright IBM Corp. 1988, 2016 125

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 The 32-bit token associated with the new entry table

1 Used as a work register by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

Performance implications
None.

Syntax
The ETCRE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ETCRE.

ETCRE

� One or more blanks must follow ETCRE.

ENTRIES=addr addr: RX-type address or register (0) - (12).

,RELATED=value value: Any valid macro keyword specification.

ETCRE macro

126 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

Parameters
The parameters are explained as follows:

ENTRIES=addr
Specifies the address of the parameter list that defines the PC routines.

An entry index value that does not have a description results in an invalid
entry in the entry table. If the program name field in an ETD entry contains
zeros, an invalid entry is created for that entry index. A program call to an
invalid entry causes the caller to be abnormally terminated. The ETCRE caller
is abnormally terminated if any of the reserved fields are nonzero or if the
system cannot locate the specified program name.

,RELATED=value
Specifies information used to self-document macros by relating functions or
services to corresponding services performed elsewhere. The format and
contents of the information specified can be any valid coding values.

ABEND codes
052
053

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return codes
When ETCRE macro returns control to your program, GPR 15 contains a return
code.

Table 15. Return Code for the ETCRE Macro

Hexadecimal Return
Code

Meaning

00 Meaning: The entry table is successfully created.

Action: None required.

Example
Show the relationship between the ETCRE and the ETDEF macros. ETDEF builds
an entry table descriptor (ETD) that contains two ETD entries. The first entry,
associated with PROGRAM1, is for a PC routine that runs in supervisor state. The
second entry, associated with PROGRAM2, is for a PC routine that runs in problem
state.
*
* CREATE THE ENTRY TABLE
*

.

.
LA 2,ETSTART
ETCRE ENTRIES=(2)
.
.

*

ETCRE macro

Chapter 8. ETCRE — Create entry table 127

* DEFINE START OF ETD
*
ETSTART ETDEF TYPE=INITIAL START ETD
*
* DEFINE ENTRIES
*
ETEX2 ETDEF TYPE=ENTRY,PROGRAM=’PROGRAM1’,AKM=(0:15)

ETDEF TYPE=ENTRY,PROGRAM=’PROGRAM2’,AKM=(0:7)
*
* DEFINE END OF ETD
*

ETDEF TYPE=FINAL

ETCRE macro

128 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 9. ETDEF — Create an entry table descriptor (ETD)

Description
The ETDEF macro builds and modifies the parameter that the ETCRE macro uses
to build an entry table. The parameter, called the entry table descriptor (ETD),
consists of a header, followed by one or more entries, called ETD entries, each one
describing a PC routine. The address of the ETD is input to the ENTRIES
parameter on the ETCRE macro.

The TYPE parameter on the ETDEF macro determines which process the ETDEF
macro is to perform:
v ETDEF TYPE=INITIAL generates the header for the ETD. (Issue this macro once

for each ETD.)
v ETDEF TYPE=ENTRY generates one ETD entry. (You can issue this macro up to

256 times for each ETD.)
v ETDEF TYPE=FINAL terminates the ETD. (Issue this macro once for each ETD.)
v ETDEF TYPE=SET,ETEADR replaces the variable fields of an existing ETD entry.
v ETDEF TYPE=SET,HEADER changes the number of entries in an existing ETD

header.

Related macros
ETDES, ETCRE, ETCON, and ETDIS

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem or Supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN or PASN¬=HASN
AMODE: 24- or 31-bit
ASC mode: Primary
Serialization: Not applicable
Interrupt status: None
Locks: None
Control parameters: None

Programming requirements
You need to create an ETD at compile time through TYPE=INITIAL, TYPE=ENTRY,
and TYPE=FINAL parameters and initialize the information for the entries at
execution time through TYPE=SET,ETEADR. Therefore, ETDEF with the
TYPE=INITIAL, TYPE=ENTRY, and TYPE=FINAL parameters works like a list
form of the macro. However, unlike the execute form of a macro, which changes
only the values you specify, the TYPE=SET form of ETDEF completely replaces the
variable fields of an ETD entry, taking the default values for any parameters you
omit, and leaves constant fields as initialized. This information describes the two
forms separately.

© Copyright IBM Corp. 1988, 2016 129

Although ETDEF is the preferred programming interface, if you have an existing
ETD and you want to update the parameters (for example, change the user
parameter), you might choose to use the IHAETD mapping macro instead of
ETDEF. If you change an existing ETD, without using any of the function of
MVS/SP Version 3, you can use IHAETD with the format number of “0”. The
format of IHAETD is in z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/) under "ETD".

Note: When changing code to use ETDEF in place of the IHAETD mapping macro,
be sure to specify PC=BASIC so that the PC does not become a stacking PC. If you
want to change an existing PC routine to a stacking PC, be sure to change the PT
instruction in the PC routine to a PR.

Restrictions
None.

Register information
The ETDEF macro does not use any registers, except for those you use to specify
parameters.

Performance implications
None.

TYPE=INITIAL, TYPE=ENTRY, and TYPE=FINAL parameters
The ETDEF macro with the TYPE=INITIAL, TYPE=ENTRY, and TYPE=FINAL
options works like a list form of a macro.

Syntax
This form is described as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ETDEF.

ETDEF

� One or more blanks must follow ETDEF.

TYPE=INITIAL Valid Parameters: RELATED

TYPE=ENTRY Required Parameters: PROGRAM or ROUTINE, AKM

EKM, ARR, ASCMODE, EAX, EK, PARM1, PARM2, PC, PKM, SASN,
SSWITCH, STATE, RELATED, ASYNCH, CANCEL

TYPE=FINAL RELATED

,AKM=key-list key-list: List of keys or key ranges where a key is a number 0 - 15.

ETDEF macro

130 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

,ARR=arr arr: A-type address, or alphanumeric character string enclosed by single
quotation marks.

,ARRCOND=NO Default: ARRCOND=NO

,ARRCOND=YES Valid only when ARR is also coded.

,ASYNCH=YES Default: ASYNCH=YES

,ASYNCH=NO Valid only when ARR is also coded.

,CANCEL=YES Default: CANCEL=YES

,CANCEL=NO Valid only when ARR is also coded.

,ASCMODE=PRIMARY Default: ASCMODE=PRIMARY

,ASCMODE=AR

,EAX=eax-value eax-value: Half-word decimal digit.

,EK=entry-key entry-key: Decimal digit 0 - 15.

,EKM=key-list key-list: List of keys or key ranges where a key is a number 0 - 15.

Note: EKM is required with
PKM=REPLACE.

,PARM1=user-parm1 user-parm1: A-type address or string of up to 4 characters enclosed by single
quotation marks.

,PARM2=user-parm2 user-parm2: A-type address or string of up to 4 characters enclosed by single
quotation marks.

,PC=STACKING Default: PC=STACKING

,PC=BASIC

,PROGRAM=pgm-name pgm-name: String of up to 8 alphanumeric characters, optionally enclosed by
single quotation marks.

,ROUTINE=rtn-addr rtn-addr: A-type address.

,PKM=OR Default: PKM=OR

,PKM=REPLACE

,RAMODE=31 Default: RAMODE=31

ETDEF macro

Chapter 9. ETDEF — Create an entry table descriptor (ETD) 131

Syntax Description

,RAMODE=24

,RAMODE=64

,RELATED=value value: Any valid macro parameter specification.

,SASN=OLD Default: SASN=OLD

,SASN=NEW

,SSWITCH=NO Default: SSWITCH=NO

,SSWITCH=YES

,STATE=PROBLEM Default: STATE=PROBLEM

,STATE=SUPERVISOR

Parameters
The parameters are described as follows:

TYPE=INITIAL
Generates the header for the ETD.

TYPE=ENTRY
Generates an ETD entry. The system uses the defaults for any parameters you
do not specify on the ETDEF TYPE=ENTRY macro. When you later specify
ETDEF TYPE=SET, that macro initializes the entire ETD entry.

TYPE=FINAL
Specifies that the ETD is complete.

,AKM=key-list
Specifies a list of keys (0 through 15) or key ranges, optionally enclosed in
parentheses, that identifies the authorized keys in which a problem program
can use the PC routine. For example, AKM=(2,(3),5:8,(10:12),15) would
authorize keys 2, 3, 5, 6, 7, 8, 10, 11, 12, and 15.

,ARR=arr
Specifies the associated recovery routine (ARR) that receives control if the
stacking-PC routine abends. You can use the A-type address of the routine, or
the name of the routine (an alphanumeric character string) enclosed in single
quotation marks. If you use the name of the program, the program must be on
the active LPA queue (FLPA or MLPA) or be in the PLPA or nucleus. The
recovery routine will be entered in 31-bit mode. ARR is not valid with
PC=BASIC.

,ARRCOND=NO,ARRCOND=YES
Specifies whether or not the ARR is conditional.

ARRCOND=NO, indicates that the ARR is not conditional, which means that
the system follows the rules described in “Using ARRs” found in z/OS MVS
Programming: Authorized Assembler Services Guide with respect to recording in
LOGREC error recording if the ARR is skipped. ARRCOND=YES indicates that
no recording in LOGREC error recording is to occur if the ARR is skipped.

ETDEF macro

132 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Use ARRCOND=YES to avoid having to provide two PCs, one without an
ARR for use in an FRR environment, and one with an ARR for use when not
in an FRR environment.

ARRCOND is valid only with ARR.

,ASYNCH=YES
,ASYNCH=NO

Specifies whether or not the ARR can be interrupted by asynchronous exits.
ASYNCH=YES specifies that the ARR can be interrupted by asynchronous
exits. ASYNCH=NO specifies that the ARR cannot be interrupted by
asynchronous exits. ASYNCH=YES is the default. ASYNCH is valid only with
ARR.

,CANCEL=YES
,CANCEL=NO

Specifies whether or not the ARR can be interrupted by CANCEL/DETACH
processing. CANCEL=YES specifies that the ARR can be interrupted by
CANCEL/DETACH processing. CANCEL=NO specifies that the ARR cannot
be interrupted by CANCEL/DETACH processing. CANCEL=YES is the
default. CANCEL is valid only with ARR. To specify CANCEL=NO, one of the
following conditions must be true for the stacking PC routine protected by the
ARR:
v The stacking PC routine runs in supervisor state.
v The entry key for the stacking PC routine is a system key.
v The stacking PC routine runs with a system key valid for the entry key

mask that will either replace or be ORed with the PKM.

,ASCMODE=PRIMARY
,ASCMODE=AR

Specifies that the stacking PC routine will execute in primary ASC mode
(ASCMODE=PRIMARY) or in AR ASC mode (ASCMODE=AR).
ASCMODE=AR is not valid with PC=BASIC. ASCMODE=PRIMARY is the
default.

,EAX=eax-value
Specifies the extended authorization index (EAX) that the stacking PC routine
uses. Specify an EAX that is owned by the home address space of the issuer of
the ETCRE macro. An EAX of X'0000' means the PC routine is not
EAX-authorized. If EAX is not specified, the PC routine has the same EAX as
the issuer of the PC instruction. EAX is not valid with PC=BASIC.

,EK=entry-key
Specifies the PSW key (0 through 15) that the PC routine will run in. EK is not
valid with PC=BASIC. If you omit EK, the PC routine gets control in the key of
the caller.

,EKM=key-list
Specifies a list of keys (0 through 15) or key ranges, optionally enclosed in
parentheses, that identify the entry key mask (EKM). When the PC routine is
invoked, the keys specified identify either the additional keys that are to be
ORed into the PKM (if PKM=OR is also specified or taken as the default) or
the keys that should replace the PKM (if PKM=REPLACE is specified). EKM is
required when you specify PKM=REPLACE.

,PARM1=user-parm1
Specifies the address or character string to be placed in the first word of the
latent parameter area associated with this ETD entry.

ETDEF macro

Chapter 9. ETDEF — Create an entry table descriptor (ETD) 133

Addressability to the latent parameter area is through the current primary
address space. The latent parameter address is set in general register 4 as a
result of the PC instruction, although AR4 is unchanged by the PC instruction.
If the PC routine runs in AR mode, set the access register corresponding to the
latent parameter area to zero before the PC routine attempts to use it.

,PARM2=user-parm2
Specifies the address or character string to be placed in the second word of the
latent parameter area associated with this ETD entry.

Addressability to the latent parameter area is through the current primary
address space. The latent parameter address is set in general register 4 as a
result of the PC instruction, although AR4 is unchanged by the PC instruction.
If the PC routine runs in AR mode, set the access register corresponding to the
latent parameter area to zero before the PC routine attempts to use it.

,PC=STACKING
,PC=BASIC

Indicates that this is a stacking PC (STACKING) or not a stacking PC (BASIC).
Some parameters apply only to a stacking PC. STACKING is the default.

,PROGRAM=pgm-name
,ROUTINE=rtn-addr

Specifies the PC routine. When you specify PROGRAM, the PC routine must
be on the active LPA queue (FLPA or MLPA) or be in the PLPA or nucleus. The
same restriction applies also to ROUTINE, unless this is a space-switching PC
or the PC is to be used only in the address space that established it. In other
words, the PC routine for a space-switching PC can reside in the private area
of the address space in which it will run, but the ROUTINE parameter must be
used to specify it.

When you specify ROUTINE, you can indicate the AMODE of the PC routine
with the RAMODE parameter. When you specify PROGRAM, the system
locates the PC routine and determines its AMODE.

On TYPE=ENTRY or TYPE=SET,ETEADR, either PROGRAM or ROUTINE is
required.

,PKM=OR
,PKM=REPLACE

Indicates either that the entry key mask (EKM) is ORed with the PSW key
mask (PKM) or replaces the current PKM. PKM=REPLACE is not valid with
PC=BASIC. PKM=OR is the default.

,RAMODE=31
,RAMODE=24
,RAMODE=64

Specifies the AMODE of the routine specified on the ROUTINE parameter.
RAMODE is valid only with ROUTINE. If you specify PROGRAM rather than
ROUTINE, the system locates the routine and determines its AMODE.
RAMODE=31 is the default.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and may be any valid
coding values.

,SASN=OLD
,SASN=NEW

Specifies whether the stacking PC routine will execute with SASN equal to the

ETDEF macro

134 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

caller's PASN (SASN=OLD), or with SASN equal to the PASN of the stacking
PC routine (SASN=NEW). SASN=NEW is not valid with PC=BASIC.
SASN=OLD is the default.

,SSWITCH=NO
,SSWITCH=YES

Specifies whether or not the PC routine switches address spaces. If
SSWITCH=NO is specified, the PC does not switch address spaces. If
SSWITCH=YES is specified, the PC routine will execute in the address space of
the creator of the entry table with the authority of that address space.
SSWITCH=NO is the default.

,STATE=PROBLEM
,STATE=SUPERVISOR

Specifies which state the PC routine will receive control in either problem state
(PROBLEM) or supervisor state (SUPERVISOR). The default is
STATE=PROBLEM.

An example of using the ETDEF macro follows the description of the TYPE=SET
parameter.

TYPE=SET parameter
The ETDEF macro with the SET parameter works similarly to the execute form of a
macro with this important distinction: The TYPE=SET form totally replaces all
variables in an ETD entry and takes default values for all parameters you omit.
The normal execute form of a macro changes only the values you specify.

Constants and reserved fields that are initialized by other TYPE= forms are not
updated or changed. To create an entry table in a storage area that is not initialized
(for example, one just allocated through a GETMAIN request), you must first move
a complete entry table of the proper (or larger) size to that area. The formatted
table will provide the constants and indexes. Then, you can use ETDEF TYPE=SET
to change the required entry's variable parameters.

Syntax
The form of SET is described as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ETDEF.

ETDEF

� One or more blanks must follow ETDEF.

TYPE=SET,ETEADR=entry-addr Required Parameters: PROGRAM or ROUTINE, AKM

Valid Parameters: EKM, ARR, ASCMODE, EAX, EK, PARM1, PARM2, PC,
PKM, RAMODE, SASN, SSWITCH, STATE, RELATED, ASYNCH, CANCEL

entry-addr: RX-type address or register (1) - (15).

ETDEF macro

Chapter 9. ETDEF — Create an entry table descriptor (ETD) 135

Syntax Description

TYPE=SET,HEADER=header-addr Required Parameter: NUMETE

Valid Parameter: RELATED

header-addr: RX-type address or register (1) - (15).

,AKM=key-list key-list: List of keys or key ranges where a key is a decimal digit 0 - 15.

,ARR=arr arr: A-type address, register (2)-(12), or alphanumeric character string,
enclosed by single quotation marks.

,ARRCOND=NO Default: ARRCOND=NO

,ARRCOND=YES Valid only when ARR is also coded.

,ASYNCH=YES Default: ASYNCH=YES

,ASYNCH=NO Valid only when ARR is also coded.

,CANCEL=YES Default: CANCEL=YES Valid only when ARR is also coded.

,CANCEL=NO

,ASCMODE=PRIMARY Default: ASCMODE=PRIMARY

,ASCMODE=AR

,EAX=eax-value eax-value: Half-word decimal digit or register (2)-(12)

,EK=entry-key entry-key: Decimal digit 0 - 15.

,EKM=key-list key-list: List of keys or key ranges where a key is a decimal digit 0 -15.

Note: EKM is required with PKM=REPLACE.

,NUMETE=nbr-of-entries nbr-of-entries: 2-byte A-type address, decimal number, or register (2)-(12).

Note: NUMETE is required with HEADER.

,PARM1=user-parm1 user-parm1: A-type address, register (2)-(12), or string of up to 4 characters
enclosed by single quotation marks.

,PARM2=user-parm2 user-parm2: A-type address, register (2)-(12), or string of up to 4 characters
enclosed by single quotation marks.

,PC=STACKING Default: PC=STACKING

,PC=BASIC

ETDEF macro

136 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,PROGRAM=pgm-name pgm-name: String of up to 8 alphanumeric characters, optionally enclosed by
single quotation marks.

,ROUTINE=rtn-addr rtn-addr: A-type address or registers (2)-(12)

,PKM=OR Default: PKM=OR

,PKM=REPLACE

,RAMODE=31 Default: RAMODE=31

,RAMODE=24

,RAMODE=64

,RELATED=value value: Any valid macro parameter specification.

,SASN=OLD Default: SASN=OLD

,SASN=NEW

,SSWITCH=NO Default: SSWITCH=NO

,SSWITCH=YES

,STATE=PROBLEM Default: STATE=PROBLEM

,STATE=SUPERVISOR

Parameters
The parameters are described under the TYPE=INITIAL, TYPE=ENTRY, and
TYPE=FINAL options, with the following exceptions:

,ARRCOND=NO,ARRCOND=YES
Specifies whether or not the ARR is conditional.

ARRCOND=NO, which is the default, indicates that the ARR is not
conditional, which means that if the system skips the ARR because of an
incorrect environment, that fact is recorded in LOGREC error recording.
ARRCOND=YES indicates that if the system skips this ARR, that fact will not
be recorded in LOGREC error recording. Use ARRCOND=YES to avoid having
to provide two PCs, one without an ARR for use in an FRR environment, and
one with an ARR for use when not in an FRR environment.

ARRCOND is valid only with ARR.

,NUMETE=nbr-of-entries
Specifies the number of contiguous entries in the ETD. nbr-of-entries is a
decimal value from 1 to 256. NUMETE is required with the HEADER
parameter. Use it to specify the number of entries you will use. It does not
change the physical size of the table, but can be less than the initial size.

TYPE=SET,ETEADR=entry-addr
Specifies the address of the ETD entry. ETDEF TYPE=SET,ETEADR sets all the
variable fields in the ETD entry that you generated through ETDEF

ETDEF macro

Chapter 9. ETDEF — Create an entry table descriptor (ETD) 137

TYPE=ENTRY macro. ETDEF TYPE=SET,ETEADR will set the ETD entry to the
parameters you specify and to the defaults on all parameters you omit. That
is, the system uses the default value, not the existing value, for any parameter
that you omit.

TYPE=SET,HEADER=header-addr
Changes the size of the ETD. Use TYPE=SET,HEADER to decrease the size of
the ETD from the size you originally established on ETDEF TYPE=INITIAL.

ABEND codes
None.

Return and reason codes
None.

Example
Define an entry table that has three entries. The PC routine called PCPGM receives
control from a program with PSW key authorization of 8, the PC routine named
OTHERTN receives control from a program with PSW authorization keys of 0
through 15, and the third PC routine called PCRTN receives control in PSW
authorization key 0. The fourth ETDEF is there to show that the number of entries
can be changed with ETDEF SET. (Perhaps, because of some input parameter, only
a subset of all possible PC routines are set up. On another invocation of the
program, perhaps all entries would be used.) The entries use all defaults other than
those on the AKM parameter.
MYPGM CSECT

BALR 12,0
USING *,12
LOAD EP=PCPGM
LR 2,0
ETDEF TYPE=SET,HEADER=MYETDS,NUMETE=3
ETDEF TYPE=SET,ETEADR=FIRST,ROUTINE=(2),AKM=8
ETCRE ENTRIES=MYETDS
RETURN
.
.
.

* DATA DEFINITIONS FOR PROGRAM
.

MYETDS ETDEF TYPE=INITIAL
FIRST ETDEF TYPE=ENTRY,ROUTINE=0,AKM=8
SECOND ETDEF TYPE=ENTRY,PROGRAM=OTHERTN,AKM=0:15
THIRD ETDEF TYPE=ENTRY,ROUTINE=PCRTN,AKM=0
FOURTH ETDEF TYPE=ENTRY,ROUTINE=0,AKM=0

ETDEF TYPE=FINAL
*
*
PCRTN DS 0H

.

.
* PC ROUTINE CODE

.

.
END MYPGM

Note that the combination of TYPE=INITIAL, ENTRY, and FINAL is essentially the
list form of the macro and TYPE=SET is the execute form.

ETDEF macro

138 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 10. ETDES — Destroy entry table

Description
The ETDES macro is used to destroy a previously-created entry table.

Related macros
ETDEF, ETCRE, ETCON, and ETDIS

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in primary address space

Programming requirements
None.

Restrictions
An entry table can be destroyed only by the address space that owns it.

Input register information
The ETDES macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6
parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the ETDES
macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers

© Copyright IBM Corp. 1988, 2016 139

containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

Performance implications
None.

Syntax
The ETDES macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ETDES.

ETDES

� One or more blanks must follow ETDES.

TOKEN=addr addr: RX-type address or register (0) - (12).

,PURGE=NO Default: PURGE=NO

,PURGE=YES

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

TOKEN=addr
Specifies the address of the fullword token (returned by the ETCRE macro)
associated with the entry table to be destroyed.

,PURGE=NO
,PURGE=YES

Specifies whether (YES) or not (NO) the entry table is to be disconnected from
all linkage tables and then destroyed.

ETDES macro

140 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

At the time ETDES is issued, the entry table must not be connected to any
linkage tables unless PURGE=YES is coded. If any outstanding connections still
exist and PURGE=YES is not coded, the entry table is not destroyed and the
caller is abnormally terminated.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding services. The format and contents of the information
specified can be any valid coding values.

ABEND codes
052
053

See z/OS MVS System Codes for an explanation and programmer responses for
these codes.

Return codes
When ETDES macro returns control to your program, GPR 15 contains a return
code.

Table 16. Return Codes for the ETDES Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: The specified entry table was destroyed. There were no connections to
linkage indexes.

Action: None required.

04 Meaning: The specified entry table was destroyed. There were connections to
linkage indexes, PURGE=YES was specified, and the entry table was
disconnected.

Action: None required. However, you may take some action based upon your
application.

Examples
For examples of the use of this and other cross memory macros, refer to the
chapter on cross memory communication in z/OS MVS Programming: Extended
Addressability Guide.

ETDES - List form
The list form of the ETDES macro constructs a nonexecutable parameter list. The
execute form of the macro can refer to this parameter list, or a copy of it for
reentrant programs.

Syntax
The list form of the ETDES macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ETDES.

ETDES macro

Chapter 10. ETDES — Destroy entry table 141

Syntax Description

ETDES

� One or more blanks must follow ETDES.

TOKEN=addr addr: A-type address.

,PURGE=NO Default: PURGE=NO

,PURGE=YES

,RELATED=value value: Any valid macro keyword specification.

,MF=L

Parameters
The parameters are explained under the standard form of the ETDES macro with
the following exception:

,MF=L
Specifies the list form of the ETDES macro.

ETDES - Execute form
The execute form of the ETDES macro can refer to and modify a remote parameter
list created by the list form of the macro.

Syntax
The execute form of the ETDES macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ETDES.

ETDES

� One or more blanks must follow ETDES.

TOKEN=addr addr: RX-type address or register (0) - (12).

,PURGE=NO Default: PURGE=NO

,PURGE=YES

ETDES macro

142 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,RELATED=value value: Any valid macro keyword specification.

,MF=(E,cntl addr) cntl addr: RX-type address or register (0) - (12).

Parameters
The parameters are explained under the standard form of the ETDES macro with
the following exception:

,MF=(E,cntl addr)
Specifies the execute form of the ETDES macro. This form uses a remote
parameter list.

ETDES macro

Chapter 10. ETDES — Destroy entry table 143

ETDES macro

144 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 11. ETDIS — Disconnect entry table

Description
The ETDIS macro disconnects one or more entry tables from the home address
space's linkage table.

Related macros
ETDEF, ETCRE, ETCON, and ETDES

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in primary address space

Programming requirements
None.

Restrictions
An entry table, to be disconnected, must be connected to the home address space
of the ETDIS issuer.

Input register information
The ETDIS macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6
parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the ETDIS macro,
the caller does not have to place any information into any general purpose
register (GPR) unless using it in register notation for a particular parameter, or
using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were

© Copyright IBM Corp. 1988, 2016 145

before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

Performance implications
None.

Syntax
The ETDIS macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ETDIS.

ETDIS

� One or more blanks must follow ETDIS.

TKLIST=addr addr: RX-type address or register (0) - (12).

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

TKLIST=addr
Specifies the address of a list of 1 to 32 fullword tokens, returned by the
ETCRE macro, identifying the entry tables to be disconnected from the home
address space's linkage table. The first entry of the list must be a fullword
count of the number of tokens (1 to 32) in the list.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding services performed elsewhere. The format and
contents of the information specified can be any valid coding values.

ETDIS macro

146 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ABEND codes
052
053

See z/OS MVS System Codes for an explanation and programmer responses for
these codes.

Return codes
When ETDIS macro returns control to your program, GPR 15 contains a return
code.

Table 17. Return Code for the ETDIS Macro

Hexadecimal Return
Code

Meaning

00 Meaning: The entry table is successfully disconnected.

Examples
For examples of the use of this and other cross memory macros, refer to the
chapter on cross memory communication in z/OS MVS Programming: Extended
Addressability Guide.

ETDIS macro

Chapter 11. ETDIS — Disconnect entry table 147

148 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 12. EVENTS — Wait for one or more events to
complete

Description
The EVENTS macro is a functional specialization of the WAIT macro with the
ECBLIST parameter, with the advantages of notifying the program that events have
completed and the order in which they completed.

The macro performs the following functions:
v Creates and deletes EVENTS tables.
v Initializes and maintains a list of completed event control blocks.
v Provides for single or multiple ECB processing.

For a detailed explanation of how to use EVENTS to perform these functions, see
"Using the EVENTS macro" in z/OS MVS Programming: Assembler Services Reference
ABE-HSP.

The description of the EVENTS macro follows. The EVENTS macro is also
described in z/OS MVS Programming: Assembler Services Reference ABE-HSP with the
exception of the BRANCH=YES parameter.

Note: LOCAL lock means the local lock of the home address space.

Environment
The requirements for the caller are different for BRANCH=NO and BRANCH=YES.

If you specify BRANCH=NO, the requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

If you specify BRANCH=YES, the requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and key 0
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: Local lock must be held
Control parameters: Must be in the primary address space

© Copyright IBM Corp. 1988, 2016 149

|
|
|

Programming requirements
If you specify BRANCH=YES, you must include the CVT mapping macro.

Restrictions
None.

Input register information
Before issuing the EVENTS macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The EVENTS macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede EVENTS.

EVENTS

� One or more blanks must follow EVENTS.

ENTRIES=n n: Decimal digits 1-32767

ENTRIES=addr addr: Register (2) - (12).

EVENTS macro

150 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

ENTRIES=DEL,TABLE=tab addr tab addr: Symbol, RX-type address, or register (2) - (12).

TABLE=tab addr Note: If the ENTRIES parameter is specified as indicated in the first two
formats, no other parameters may be specified.

,ECB=ecb addr ecb addr: Symbol, RX-type address, or register (2) - (12).

,LAST=last addr last addr: Symbol, RX-type address, or register (2) - (12).

Note: If LAST is specified, WAIT must also be specified.

,WAIT=YES Note: Do not specify WAIT=YES when running in a disabled state.

,WAIT=NO

,BRANCH=NO Default: BRANCH=NO

,BRANCH=YES

Parameters
The parameters are explained below:

ENTRIES=n
ENTRIES=addr

Specifies either a register or a decimal number from 1 to 32,767 which specifies
the maximum number of completed ECB addresses that can be processed in an
EVENTS table concurrently.

Note: When this parameter is specified, no other parameter should be
specified.

ENTRIES=DEL,TABLE=tab addr
Specifies that the EVENTS table whose address is specified by TABLE=tab addr
is to be deleted. The user is responsible for deleting all of the tables he creates;
however, all existing tables are automatically freed at task termination.

Note:

1. When this parameter is specified, no other parameter should be specified.
2. TABLE resides in 24-bit addressable storage.

TABLE=tab addr
Specifies either a register number or the address of a word containing the
address of the EVENTS table associated with the request. The address specified
with the operand TABLE must be that of an EVENTS table created by this task.

Note: TABLE resides in 24-bit addressable storage.

,WAIT=NO
,WAIT=YES

Specifies whether or not to put the issuing program in a wait state when there
are no completed events in the EVENTS table (specified by the TABLE
parameter).

,ECB=ecb addr
Specifies either a register number or the address of a word containing the

EVENTS macro

Chapter 12. EVENTS — Wait for one or more events to complete 151

address of an event control block. The EVENTS macro should be used to
initialize any event-type ECB. To avoid the accidental destruction of bit settings
by a system service such as an access method, the ECB should be initialized
after the system service that will post the ECB has been initiated (thus making
the ECB eligible for posting) and before the EVENTS macro is issued to wait
on the EVENTS table.

Note:

1. Register 1 should not be specified for the ECB address.
2. This parameter may not be specified with the LAST parameter.
3. The ECB can reside above or below 16 megabytes.
4. If only ECB initialization is being requested, neither WAIT=NO nor

WAIT=YES should be specified, to prevent any unnecessary WAIT
processing from occurring.

,LAST=last addr
Specifies either a register number or the address of a word containing the
address of the last EVENT parameter list entry processed.

Note:

1. Do not specify Register 1 for the LAST address.
2. Do not specify this parameter with the ECB parameter.
3. The WAIT macro must also be specified.
4. LAST resides in 24-bit addressable storage.

,BRANCH=NO
,BRANCH=YES

Specifies that an SVC entry (BRANCH=NO) or a branch entry (BRANCH=YES)
is to be performed.

ABEND codes
The caller might encounter one of the following ABEND codes:
v 17A
v 17D
v 37A
v 37D
v 47A
v 47D
v 57D
v 67D
v 77D
v 87D

See z/OS MVS System Codes for explanations and responses for these codes.

Return and reason codes
None.

EVENTS macro

152 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Example 1
The following shows total processing through EVENTS.

EVENTS and ECB Initialization
EVENTS ENTRIES=1000

ST R1,TABADD

WRITE ECBA

LA R2,ECBA...

EVENTS TABLE=TABADD,ECB=(R2)

Parameter List Processing
EVENTS TABLE=TABADD,WAIT=YES

LR R3,R1 PARMLIST ADDR
B LOOP2 GO TO PROCESS ECB

LOOP1 EVENTS TABLE=TABADD,WAIT=YES,LAST=(R3)
LR R3,R1 SAVE POINTER

LOOP2 EQU * PROCESS COMPLETED EVENTS

TM 0(R3),X’80’ TEST FOR MORE EVENTS
BO LOOP1 IF NONE, GO WAIT
LA R3,4(,R3) GET NEXT ENTRY
B LOOP2 GO PROCESS NEXT ENTRY

Deleting EVENTS Table
EVENTS TABLE=TABADD,ENTRIES=DEL

TABADD DS F

Example 2
Processing One ECB at a Time.

EVENTS ENTRIES=10 CREATE EVENTS TABLE
ST R1,TABLE SAVE EVENTS TABLE

* ADDRESS
NEXTREC GET TPDATA,KEY GET KEY OF NEXT RECORD
* TO PROCESS

READ DECBRW,KU,,’S’,MF=E READ THE RECORD
LA R3,DECBRW POINT TO ECB
EVENTS TABLE=TABLE,ECB=(R3),WAIT=YES ADD ECB TO

* TABLE AND WAIT UNTIL
* IT IS POSTED
* PROCESS THE RECORD

WRITE DECBRW,K,MF=E WRITE OUT THE RECORD
LA R3,DECBRW POINT TO THE ECB
EVENTS TABLE=TABLE,ECB=(R3),WAIT=NO
B CKRETEST GO SEE IF IT’S POSTED

RETEST EVENTS TABLE=TABLE,WAIT=NO CHECK TO SEE IF ECB IS
* POSTED
CKRETEST LTR R1,R1 ANY ECBS POSTED?

BNZ NEXTREC BRANCH IF YES - NEXT
* RECORD

B RETEST ELSE KEEP CHECKING
TABLE DS A ADDRESS OF EVENTS TABLE

EVENTS macro

Chapter 12. EVENTS — Wait for one or more events to complete 153

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

EVENTS macro

154 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 13. EXTRACT — Extract TCB information

Description
The EXTRACT macro causes the system to provide information from specified
fields of the task control block or a subsidiary control block for either the active
task or one of its subtasks. The system places the information in an area that the
program provides. For a description of this area see “Providing an EXTRACT
Answer Area” in z/OS MVS Programming: Authorized Assembler Services Guide.
When EXTRACT is issued, its parameter list can reside in 24 or 31-bit addressable
storage.

To obtain the address of a TIOT entry, you can use either the GETDSAB macro or
the EXTRACT macro.

Your installation might have installed products that require the use of the
GETDSAB macro to obtain the address of the products' TIOT entries. If you plan to
use the EXTRACT macro, first check the documentation for the related product to
ensure that the product does not require the use of the GETDSAB macro.

Note:

1. For procedures for using GETDSAB to obtain the address of a TIOT entry and
the UCB address, see z/OS MVS Programming: Authorized Assembler Services
Guide.

2. If the EXTRACT macro is used to obtain the TIOT in order to find the UCB, it
is the user's responsibility to ensure that the TIOT contains the UCB address.
For procedures for finding the UCB address, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, and user key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

Performance implications
None.

© Copyright IBM Corp. 1988, 2016 155

Syntax
The standard form of the EXTRACT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede EXTRACT.

EXTRACT

� One or more blanks must follow EXTRACT.

answer addr answer addr: A-type address, or register (2) - (12).

,‘S’ Default: 'S'

,tcb addr tcb addr: A-type address, or register (2) - (12).

,FIELDS=(tcb info) tcb info: Any combination of the following, separated by commas:

ALL PRI

GRS CMC

FRS TIOT

AETX COMM

TSO PSB

TJID ASID

Parameters
The parameters are explained as follows:

answer addr
Specifies the address of the answer area to contain the requested information.
The area is one or more fullwords, starting on a fullword boundary. The
number of fullwords must be the same as the number of fields specified in the
FIELDS parameter, unless ALL is coded. If ALL is coded, seven fullwords are
required.

,'S'
,tcb addr

Specifies the address of a fullword on a fullword boundary containing the
address of a task control block for a subtask of the active task. If ‘S’ is coded or
is the default, no address is specified and the active task is assumed.

,FIELDS=(tcb info)
Specifies the task control block information requested:

EXTRACT macro

156 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ALL Requests information from the GRS, FRS, reserved, AETX, PRI, CMC,
and TIOT fields. (If ALL is specified, 7 words are required just for
ALL.)

GRS Is the address of the save area used by the system to save the general
purpose registers 0-15 when the task is not active.

FRS Is the address of the save area used by the system to save the floating
point registers 0, 2, 4, and 6 when the task is not active.

AETX Is the address of the end-of-task exit routine specified in the ETXR
parameter of the ATTACH (or ATTACHX) macro used to create the
task.

PRI Is the current limit (third byte) and dispatching (fourth byte) priorities
of the task. The two high-order bytes are set to zero.

CMC Is the task completion code. If the task is not complete, the field is set
to zero.

TIOT Is the address of the task input/output table.

COMM
Is the address of the command scheduler communications list. The list
consists of a pointer to the communications event control block and a
pointer to the command input buffer, and a token. (If a token exists,
the high-order bit of the token field is set to one). The token is used
only with internal START commands. See “Issuing an Internal START
or REPLY Command” in z/OS MVS Programming: Authorized Assembler
Services Guide.

TSO Is the address of a byte in which a high-order bit of 1 indicates a
TSO/E address space initiated from the LOGON command (that is, in
a foreground TSO/E session). A high-order bit of 0 indicates either
background TSO/E or a non-TSO/E address space.

PSB Is the address of the TSO/E protected step control block and is
returned:
v In a foreground TSO/E session (initiated through LOGON)
v In a background TSO/E session (initiated through the TSO/E TMP,

IKJEFT01).
v In a TSO/E environment initialized outside of the TSO/E TMP

(initiated through the IKJTSOEV service).

TJID Is the address space identifier (ASID) for a foreground TSO/E session
(initiated through LOGON), or zero for either background TSO/E or a
non-TSO/E address space.

ASID Is the address space identifier.

ABEND codes
The EXTRACT macro might abnormally terminate with one of the following abend
codes: X'128', X'228', and X'328'. See z/OS MVS System Codes for explanations and
programmer responses.

Return and reason codes
None.

EXTRACT macro

Chapter 13. EXTRACT — Extract TCB information 157

Example 1
Provide information from all the fields of the indicated TCB except ASID. WHERE
is the label of the answer area, ADDRESS is the label of a fullword that contains
the address of the subtask TCB for which information is to be extracted.
EXTRACT WHERE,ADDRESS,FIELDS=(ALL,TSO,COMM,PSB,TJID)

Example 2
Provide information from the current TCB, as above.
EXTRACT WHERE,’S’,FIELDS=(ALL,TSO,COMM,PSB,TJID)

Example 3
Provide information from the command scheduler communications list. ANSWER
is the label of the answer area and TCBADDR is the label of a fullword that
contains the address of the subtask TCB from which information is to be extracted.
EXTRACT ANSWER,TCBADDR,FIELDS=(COMM)

EXTRACT - List form
The list form of the EXTRACT macro is used to construct a remote control
program parameter list.

Syntax
The list form of the EXTRACT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede EXTRACT.

EXTRACT

� One or more blanks must follow EXTRACT.

answer addr answer addr: A-type address.

,‘S’ Default: 'S'

,tcb addr tcb addr: A-type address.

,FIELDS=(tcb info) tcb info: any combination of the following, separated by commas:

ALL PRI

GRS CMC

FRS TIOT

AETX COMM

TSO PSB

TJID ASID

EXTRACT macro

158 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,MF=L

Parameters
The parameters are explained under the standard form of the EXTRACT macro,
with the following exception:

,MF=L
Specifies the list form of the EXTRACT macro.

EXTRACT - Execute form
The execute form of the EXTRACT macro uses, and can modify, a remote control
program parameter list. If the FIELDS parameter, restricted in use, is coded in the
execute form, any TCB information specified in a previous FIELDS parameter is
canceled and must be respecified if required for this execution of the macro.

Syntax
The execute form of the EXTRACT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede EXTRACT.

EXTRACT

� One or more blanks must follow EXTRACT.

answer addr answer addr: RX-type address, or register (2) - (12).

,‘S’ tcb addr: RX-type address, or register (2) - (12).

,tcb addr

,FIELDS=(tcb info) tcb info: any combination of the following, separated by commas:

ALL PRI

GRS CMC

FRS TIOT

AETX COMM

TSO PSB

TJID ASID

EXTRACT macro

Chapter 13. EXTRACT — Extract TCB information 159

Syntax Description

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the EXTRACT macro,
with the following exception:

,MF=(E,ctrl addr)
Specifies the execute form of the EXTRACT macro using a remote control
program parameter list.

EXTRACT macro

160 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 14. FESTAE — Fast extended STAE

Description
The FESTAE macro allows an SVC to define and activate, or to deactivate and no
longer define, an ESTAE-type recovery routine with minimal overhead and no
locking requirements. The ESTAE-type recovery routine activated by FESTAE
receives control in the same sequence and under the same conditions as it would if
it were activated by the ESTAE macro. The FESTAE macro can be issued in cross
memory mode as long as the currently addressable address space is the home
address space. For more information, see z/OS MVS Programming: Authorized
Assembler Services Guide. To delete a FESTAE recovery routine that was established
by the FESTAE macro, use the FESTAE macro rather than macros such as ESTAE,
ESTAEX, or STAE.

The FESTAE macro expansion has no external linkage.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in the primary address space Except for the TCB,

all input parameters to this macro can reside in storage
above 16 megabytes if the issuer is executing in 31-bit
addressing mode.

Programming requirements
FESTAE users executing in 31-bit addressing mode must recompile using the
FESTAE macro expansion so that the exit routine gets control in 31-bit addressing
mode.

The caller must include the following mapping macros:
v IHAPSA
v IHARB
v IHASCB
v IKJTCB

Restrictions
v Only type 2, 3, or 4 SVC routines can use the FESTAE macro
v The FESTAE macro can be issued to create only one recovery routine within the

scope of the SVC routine. The ESTAEX macro or the ESTAE macro with the
BRANCH option must be used to create additional recovery routines.

© Copyright IBM Corp. 1988, 2016 161

Input register information
Before issuing the FESTAE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register. Register notation is required for the
following FESTAE macro parameters: EXITADR, WRKREG, RBADDR, TCBADDR,
and PARAM.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Unchanged

1-14 One of the following:
v If you specify 0,WRKREG=work reg addr, the register you specify (1-14) is

used as a work register by the system.
v If you specify EXITADR=exit addr, the register you specify (1-14) is used

as a work register by the system.
v Registers not specified for either work reg addr or exit addr are

unchanged.

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
Specification of the TCBADDR keyword results in more efficient code.

Syntax
The FESTAE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede FESTAE.

FESTAE

� One or more blanks must follow FESTAE.

EXITADR=exit addr exit addr: Register (1) - (14).

FESTAE macro

162 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

0,WRKREG=work reg work reg addr: Register (1) - (14).

,RBADDR=svrb addr svrb addr: Register (1) - (14).

,TCBADDR=tcb addr tcb addr: Register (1) - (14).

,PARAM=list addr list addr: Register (1) - (14).

,XCTL=NO Default: XCTL=NO

,XCTL=YES

,PURGE=NONE Default: PURGE=NONE

,PURGE=HALT

,PURGE=QUIESCE

,ASYNCH=YES Default: ASYNCH=YES

,ASYNCH=NO

,TERM=NO Default: TERM=NO

,TERM=YES

,RECORD=NO Default: RECORD=NO

,RECORD=YES

,ERRET=label label: Any valid assembler name.

,SDWALOC31=NO Default: SDWALOC31=NO

,SDWALOC31=YES

Parameters
The parameters are explained as follows:

EXITADR=exit addr
0,WRKREG=work reg

Specifies whether an ESTAE-type recovery routine is to be defined and
activated, or deactivated and no longer defined. EXITADR=exit addr specifies
the register that contains the address of an ESTAE-type recovery routine to be
entered if the task issuing FESTAE ends abnormally.

If you specify 0,WRKREG=work reg, the current ESTAE-type recovery routine is
deactivated and no longer defined if it was defined by the FESTAE macro. An
error occurs if the current ESTAE-type recovery routine was not created by
FESTAE. You do not have to initialize the register you specify for work reg; the
system uses it as a work register.

FESTAE macro

Chapter 14. FESTAE — Fast extended STAE 163

,RBADDR=svrb addr
Specifies a register that contains the address of the current SVRB prefix.
RBADDR must be specified if EXITADR has also been specified.

,TCBADDR=tcb addr
Specifies the register containing the current TCB address.

,PARAM=list addr
Specifies the register containing the address of a user-defined parameter list
that contains data to be used by the ESTAE routine. The routine receives this
address when it is scheduled for execution. The use of this parameter list is
optional, but the user should zero out any spurious data it might contain
whether or not he intends to use it. If the user does not select the PARAM
option, the routine receives instead the 24-byte parameter area in the SVRB. In
this case, the user must locate this SVRB parameter area and initialize it with
appropriate data.

,ERRET=label
Specifies a label within the CSECT issuing the FESTAE for which
addressability has been established. The FESTAE macro branches to this label if
it is returning a code other than zero. This option saves the user the
instructions necessary to check the return code. If the user does not specify the
ERRET option, control returns instead to the instruction immediately following
the FESTAE macro. The return code is in register 15.

All the other FESTAE parameters have the same meaning as their ESTAE
counterparts.

ABEND codes
None.

Return codes
When control is returned to the instruction following the FESTAE macro, GPR 15
contains one of the following return codes.

Table 18. Return Codes for the FESTAE Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: Successful completion of the FESTAE request.

Action None.

08 Meaning: Program error. A previous create has been issued with FESTAE for
this SVRB; the request has been ignored.

Action: None; do not reissue this macro.

0C Meaning: Program error. Cancel has been specified under one of the following
conditions:

v There is no exit for this TCB.

v The most recent exit is not owned by the caller.

v The most recent exit was not created by FESTAE.

Action: Ensure that the current recovery routine was established using the
FESTAE macro.

FESTAE macro

164 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Example
In case of an abnormal termination, execute the ESTAE routine specified by register
2, allow asynchronous processing, do not allow special error processing, default to
PURGE=NONE, and pass the parameter list pointed to by register 7 to the ESTAE
routine.
FESTAE EXITADR=(REG2),RBADDR=(REG3),TCBADDR=(REG6), X

PARAM=(REG7),ASYNCH=YES,TERM=NO

FESTAE macro

Chapter 14. FESTAE — Fast extended STAE 165

FESTAE macro

166 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 15. FRACHECK — Check user's authorization (for
RACF Release 1.8.1 or earlier)

See z/OS Security Server RACROUTE Macro Reference for a description of this macro.

© Copyright IBM Corp. 1988, 2016 167

168 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 16. FREEMAIN — Free virtual storage

Description
Use the FREEMAIN macro to free one or more areas of virtual storage. You can
also use the FREEMAIN macro to free an entire virtual storage subpool if it is
owned by the task under which your program is issuing the FREEMAIN. For more
information on releasing a subpool, see the chapter about virtual storage
management in z/OS MVS Programming: Assembler Services Guide.

You can also use the STORAGE macro to free storage, even if the storage was
obtained using the GETMAIN macro. Compared to FREEMAIN, STORAGE
provides an easier-to-use interface and has no restrictions or locking requirements.
See the chapter about virtual storage management in z/OS MVS Programming:
Authorized Assembler Services Guide for a comparison of FREEMAIN and STORAGE.

The FREEMAIN macro is also described in z/OS MVS Programming: Assembler
Services Reference ABE-HSP, with the exception of the BRANCH parameter.

The FREEMAIN macro provides two types of entry linkage: SVC entry and branch
entry. If you do not specify the BRANCH parameter, the FREEMAIN service
receives control through SVC entry. If you specify the BRANCH parameter, the
FREEMAIN service receives control through branch entry.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For subpools 0-127: problem state and PSW key 8-15. For

subpools 131 and 132, one or more of the following:
v Supervisor state
v PSW key 0-7
v APF-authorization.
v PSW key mask (PKM) that allows the calling program to

switch its PSW key to match the key of the storage to be
released.

For other subpools, one or more of the following:
v Supervisor state
v PSW key 0-7
v APF-authorized.

To issue a subpool release for subpool 0: PSW key 0. For
branch entry: supervisor state and PSW key 0.

Dispatchable unit mode: For SVC entry: task. For branch entry: task or SRB.
Cross memory mode: For SVC entry: PASN=HASN=SASN.

For branch entry: any PASN, any HASN, any SASN.

© Copyright IBM Corp. 1988, 2016 169

Environmental factor Requirement
AMODE: For SVC entry: 24- or 31- or 64-bit.

For branch entry: 24- or 31-bit.

v For RU, RC requests: The system treats all addresses and
values as 31-bit.

v For all other requests: If the calling program is in 31-bit
mode, the system treats all addresses and values, passed
to the FREEMAIN macro, as 31-bit. Otherwise, the system
treats addresses and values as 24-bit.

ASC mode: For BRANCH=(YES,GLOBAL), primary or access register
(AR). For all other requests, primary.

Callers in AR mode must use BRANCH=(YES,GLOBAL)
and can obtain only global (common) storage.

Interrupt status: For BRANCH=(YES,GLOBAL), disabled for I/O and
external interrupts. For all other requests, enabled for I/O
and external interrupts.

Locks: v For SVC entry, no locks may be held.

v For BRANCH=YES, your program must hold the local
lock for the currently addressable address space.

v For BRANCH=YES, when running in cross-memory
mode, your program must hold the CML lock for the
currently addressable address space.

v For BRANCH=(YES,GLOBAL), your program must be in
an MVS-recognized state of disablement, which can be
achieved by obtaining the CPU lock.

Control parameters: For LC, LU, L, VC, VU, V, EC, EU, E requests: control
parameters must be in the primary address space. For other
requests: control parameters are in registers.

Programming requirements
Before issuing the FREEMAIN macro in AR mode, issue SYSSTATE ASCENV=AR.

Restrictions
v Parameters passed to the FREEMAIN macro must not reside within the area

being freed. If this restriction is violated and the parameters are the last
allocated areas on a virtual page, the whole page is freed and FREEMAIN ends
abnormally with an X'0C4' abend code.

v The current task ends abnormally if the specified virtual storage area does not
start on a doubleword boundary or, for an unconditional request, if the specified
area or subpool is not owned by the task identified as the owner of the storage.

v For SVC entry, the caller cannot have an EUT FRR established.

Input register information for SVC entry
Before issuing the FREEMAIN macro without the BRANCH parameter (SVC
entry), the caller does not have to place any information into any register unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information for SVC entry
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

FREEMAIN macro

170 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

0-1 Used as work registers by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 For a conditional request, contains the return code. For an unconditional

request, used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Input register information for BRANCH=YES
Before issuing the FREEMAIN macro with BRANCH=YES, the caller must ensure
that the following GPRs contain the specified information:

Register
Contents

4 The address of the input TCB, if you are releasing private storage.

Set GPR 4 to 0 or the address of a TCB in the currently addressable
address space. Setting GPR 4 to 0 identifies the input TCB as the TCB that
owns the cross-memory resources for the currently addressable address
space (task whose TCB address is in ASCBXTCB).

For an explanation of the term input TCB, and to determine
system-assigned defaults for private storage ownership, see the topic about
selecting the right subpool for virtual storage requests in z/OS MVS
Programming: Authorized Assembler Services Guide.

7 The address of the ASCB for the currently addressable address space.

Output register information for BRANCH=YES
For RC, RU, VRC, and VRU requests: when control returns to the caller, GPRs
contain:

Register
Contents

0-1 Used as work registers by the system.
2 Unchanged.
3 Used as a work register by the system.
4-13 Unchanged.
14 Used as a work register by the system.
15 For a conditional request, contains the return code. For an unconditional

request, used as a work register by the system.

For all other requests: when control returns to the caller, GPRs contain:

Register
Contents

0-1 Used as work registers by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 For a conditional request, contains the return code. For an unconditional

request, used as a work register by the system.

When control returns to the caller, ARs contain:

FREEMAIN macro

Chapter 16. FREEMAIN — Free virtual storage 171

Register
Contents

0-1 Used as work registers by the system.
2-13 Unchanged.
14-15 Used as work registers by the system.

Input register information for BRANCH=(YES,GLOBAL)
Before issuing the FREEMAIN macro with BRANCH=(YES,GLOBAL), you are not
required to place any information into any register unless using it in register
notation for a particular parameter, or using it as a base register.

Output register information for BRANCH=(YES,GLOBAL)
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system.
2 Unchanged.
3-4 Used as work registers by the system.
5-13 Unchanged.
14 Used as a work register by the system.
15 For a conditional request, contains the return code. For an unconditional

request, used as a work register by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system.
2-13 Unchanged
14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the service returns control.

Performance implications
None.

Syntax
The standard form of the FREEMAIN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede FREEMAIN.

FREEMAIN

� One or more blanks must follow FREEMAIN.

FREEMAIN macro

172 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

LC,LA=length addr length addr: A-type address, or register (2) - (12).

LU,LA=length addr

L,LA=length addr

VC

VU

V

EC,LV=length value length value: symbol, decimal number, or register (2) - (12).

EU,LV=length value

E,LV=length value

RC,LV=length value If R, RC, or RU is specified, register (0) may also be used.

RC,SP=subpool nmbr subpool nmbr: symbol, decimal number 0-255, or register (2) - (12). If R is
specified, register (0) may also be used.
Note: For a subpool release (RC,SP or RU,SP, or R,SP), no other parameters
except RELATED and BRANCH=YES can be specified.

RU,LV=length value

RU,SP=subpool nmbr

R,LV=length value

R,SP=subpool nmbr

,A=addr addr: A-type address, or register (2) - (12). If R, RC, or RU is specified,
register (1) can also be used.

Note: If R, RC, or RU is specified, register (1) can also be specified.

,SP=subpool nmbr subpool nmbr: symbol, decimal number 0-255, or register (2) - (12).

Default: SP=0. If R is specified, register (0) may also be used.

,BRANCH=YES Note: BRANCH=(YES,GLOBAL) may be specified only with RC or RU.

,BRANCH=(YES,GLOBAL)

,KEY=number nmbr: decimal numbers 0-15, or register (2) - (12).

Note: KEY may be specified only with RC or RU.

,RELATED=value value: any valid assembler character string.

Parameters
The parameters are explained as follows:

LC,LA=length addr
LU,LA=length addr
L,LA=length addr

FREEMAIN macro

Chapter 16. FREEMAIN — Free virtual storage 173

VC
VU
V
EC,LV=length value
EU,LV=length value
E,LV=length value
RC,LV=length value
RC,SP=subpool nmbr
RU,LV=length value
RU,SP=subpool nmbr
R,LV=length value
R,SP=subpool nmbr

Specifies the type of FREEMAIN request:

LC, LU, and L indicate conditional (LC) and unconditional (LU and L) list
requests and specify release of one or more areas of virtual storage. The length
of each virtual storage area is indicated by the values in a list beginning at the
address specified in the LA parameter. The address of each of the virtual
storage areas must be provided in a corresponding list whose address is
specified in the A parameter. All virtual storage areas must start on a
doubleword boundary.

VC, VU, and V indicate conditional (VC) and unconditional (VU and V)
variable requests and specify release of single areas of virtual storage. The
address and length of the virtual storage area are provided at the address
specified in the A parameter.

EC, EU, and E indicate conditional (EC) and unconditional (EU and E) element
requests and specify release of single areas of virtual storage. The length of the
single virtual storage area is indicated in the LV parameter. The address of the
virtual storage area is provided at the address indicated in the A parameter.

RC, RU, and R indicate conditional (RC) and unconditional (RU and R) register
requests and specify either the release of all the storage in a subpool or the
release of a certain area in a subpool. For information on how to release all the
storage in a subpool, see the description for the SP parameter. If the release is
for a certain area in a subpool, the address of the virtual storage area is
indicated in the A parameter. The length of the area is indicated in the LV
parameter. The virtual storage area must start on a doubleword boundary.

Note:

1. For a conditional request, errors detected while processing a FREEMAIN
request with incorrect or inconsistent parameters cause the FREEMAIN
service to return to the caller with a non-zero return code. For all other
errors, the system abnormally ends the active task if the FREEMAIN
request cannot be successfully completed.
For an unconditional request, the system abnormally ends the active task if
the FREEMAIN request cannot be successfully completed.

2. If the address of the area to be freed is above 16 megabytes, you must use
RC or RU.

LA specifies the virtual storage address of one or more consecutive fullwords
starting on a fullword boundary. One word is required for each virtual storage
area to be released; the high-order bit in the last word must be set to 1 to
indicate the end of the list. Each word must contain the required length in the
low-order three bytes. The fullwords in this list must correspond with the
fullwords in the associated list specified in the A parameter. The words must
not be in the area to be released. If this rule is violated and if the words are the

FREEMAIN macro

174 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

last allocated items on a virtual page, the whole page is returned to storage
and the FREEMAIN abends with an X'0C4' abend code.

LV specifies the length, in bytes, of the virtual storage area being released. The
value should be a multiple of 8; if it is not, the control program uses the next
high multiple of 8.
v If you specify R,LV=(0) you cannot specify the SP parameter. You must

specify the subpool in register 0; the high-order byte must contain the
subpool number and the low-order three bytes must contain the length
unless you are requesting a subpool release. On a subpool release, the
low-order three bytes must contain zeros.

v If you specify R,LV using a symbol, decimal number, or register 2-12, you
can specify the SP parameter using registers 0 or 2-12.

,A=addr
Specifies the virtual storage address of one or more consecutive fullwords
starting on a fullword boundary.
v If E, EC, or EU is coded, one word is required, which contains the address of

the virtual storage area to be released.
v If V, VC, or VU is coded, two words are required; the first word contains the

address of the virtual storage area to be released, and the second word
contains the length of the area to be released.

v If L, LC, or LU is coded, one word is required for each virtual storage area
to be released; each word contains the address of one virtual storage area.

v If R, RC, or RU is coded, one word is required, which contains the address
of the virtual storage area to be released. If R, RC, or RU is coded and addr
specifies a register, register 1 through 12 can be used and must contain the
address of the virtual storage area to be released.

Do not specify a storage address of 0 with a storage length of 0. This
combination causes FREEMAIN to free the subpool specified with the SP
parameter, or subpool 0 if the SP parameter is omitted.

,SP=subpool nmbr
Specifies the subpool number of the virtual area to be released. Valid subpools
numbers are between 0 and 255. The SP parameter is optional and if omitted,
subpool 0 is assumed. If you specify a register, the subpool number must be in
bits 24-31 of the register, with bits 0-23 set to zero.

A request to release all the storage in a subpool is known as a subpool release.
To issue a subpool release, specify RC,SP or RU,SP or R,SP, and do not use the
A or the KEY parameter. The following subpools are valid on the SP parameter
for a subpool release: 0-127, 129-132, 203-204, 213-214, 223-224, 229-230, 233,
236-237, 240, 249, and 250-253. An attempt to issue a subpool release for any
other subpool causes an abend X'478' or X'40A'. For information about
subpools, see z/OS MVS Programming: Assembler Services Guide and z/OS MVS
Programming: Authorized Assembler Services Guide.

Note:

1. Callers executing in supervisor state and PSW key 0, who specify subpool
0, will free storage from subpool 252. Therefore, when requesting a dump
of this storage through the SDUMP macro, the caller must specify subpool
252 rather than subpool 0.

2. Requests for storage from subpools 240 and 250 are translated to subpool 0
storage requests.

,BRANCH=YES

FREEMAIN macro

Chapter 16. FREEMAIN — Free virtual storage 175

,BRANCH=(YES,GLOBAL)
Specifies that a branch entry is to be used.

BRANCH=YES allows both local (private area) and global (common area)
storage to be released. See “Input register information for BRANCH=YES” on
page 171 for specific information on input register requirements.

BRANCH=(YES,GLOBAL) allows only global storage to be released. With
BRANCH=(YES,GLOBAL), the SP parameter may designate only subpools
226-228, 231, 239, 241, 245, 247, or 248. BRANCH=(YES,GLOBAL) is valid only
with RC or RU.

,KEY=key number
Specifies the storage key in which the storage was obtained. The valid storage
keys are 0-15. If a register is specified, the storage key must be in bits 24-27 of
the register. KEY can be specified for the following subpools: 129-132, 227-231,
241, and 249. BRANCH is required with KEY for subpools 227-231, 241, and
249. BRANCH=(YES,GLOBAL) is not valid for subpools 129-132, 229-230, and
249.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services and can be any valid assembler
character string.

ABEND codes
Abend codes FREEMAIN might issue are listed below in hexadecimal. For detailed
abend code information, see z/OS MVS System Codes.
v 105
v 10A
v 178
v 205
v 20A
v 278
v 305
v 30A
v 378
v 40A
v 478
v 505
v 605
v 705
v 70A
v 778
v 805
v 80A
v 878
v 905
v 90A
v 978
v A05

FREEMAIN macro

176 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v A0A
v A78
v B05
v B0A
v B78
v D05
v D0A
v D78

Return and reason codes
When the FREEMAIN macro returns control to your program and you specified a
conditional request, GPR 15 contains one of the following hexadecimal return
codes:

Table 19. Return Codes for the FREEMAIN Macro

Return Code Meaning and Action

0 Meaning: Successful completion.

Action: None.

4 Meaning: Program error. Not all requested virtual storage was freed.

Action: Check your program for the following kinds of errors:

v The address of the storage area to be freed is not correct.

v The subpool you have specified does not match the subpool of the storage to
be freed.

v The key you have specified does not match the key of the storage to be freed.

v For private storage: the owning task identified by the input TCB is not correct
for the storage to be freed.

8 Meaning: Program error. No virtual storage was freed because part of the
storage area to be freed is fixed.

Action: Determine whether you have made one of the following errors. If so,
correct your program and rerun it:

v You passed an incorrect storage area address to the FREEMAIN macro.

v You attempted to free storage that is fixed.

Example 1
Free 400 bytes of storage from subpool 10. Register 1 contains the address of the
storage area. If the storage is not allocated to the current task, do not abnormally
terminate the caller.
FREEMAIN RC,LV=400,A=(1),SP=10

Example 2
Free all of subpool 3 (if any) that belongs to the current task. If the request is not
successful, abnormally terminate the caller.
FREEMAIN RU,SP=3

Example 3
Free from subpool 5, three areas of storage of 200, 800, and 32 bytes, previously
obtained using the list and execute forms of the GETMAIN macro. Storage area
addresses are in AREAADD. If any of the storage areas to be freed are not
allocated to the current task, abnormally terminate the caller.

FREEMAIN macro

Chapter 16. FREEMAIN — Free virtual storage 177

FREEMAIN LU,LA=LNTHLIST,A=AREAADD,SP=5
.
.
.

LNTHLIST DC F’200’,F’800’,X’80’,FL3’32’
AREAADD DS 3F

Example 4
Free 400 bytes of storage from default subpool 0 using branch entry. The address
of the storage area is in register 2. If the request is not successful, do not
abnormally terminate the caller.
FREEMAIN EC,LV=400,A=(2),BRANCH=YES

Example 5
Free 48 bytes of storage from subpool 231 using global branch entry. Register 5
contains the address of the storage area. Register 3 contains the storage key of the
storage to be released. If the request is unsuccessful, abnormally terminate the
caller.
FREEMAIN RU,LV=48,A=(5),SP=231,KEY=(3),BRANCH=(YES,GLOBAL)

FREEMAIN - List form
Use the list form of the FREEMAIN macro to construct a nonexecutable control
program parameter list.

The list form of the FREEMAIN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede FREEMAIN.

FREEMAIN

� One or more blanks must follow FREEMAIN.

LC

LU

L

VC

VU

V

EC

EU

E

,LA=length addr length addr: A-type address.

FREEMAIN macro

178 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,LV=length value length value: symbol or decimal number.

Note:

1. LA may only be specified with LC, LU, or L above.

2. LV may only be specified with EC, EU, or E above.

,A=addr addr: A-type address.

,SP=subpool nmbr subpool nmbr: symbol or decimal number.

,RELATED=value value: any valid assembler character string.

,MF=L

Parameters
The parameters are explained under the standard form of the FREEMAIN macro,
with the following exceptions:

,MF=L
Specifies the list form of the FREEMAIN macro.

FREEMAIN - Execute form
A remote control program parameter list is used in, and can be modified by, the
execute form of the FREEMAIN macro. The parameter list can be generated by the
list form of either a GETMAIN or a FREEMAIN.

The execute form of the FREEMAIN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede FREEMAIN.

FREEMAIN

� One or more blanks must follow FREEMAIN.

LC

LU

L

VC

VU

FREEMAIN macro

Chapter 16. FREEMAIN — Free virtual storage 179

Syntax Description

V

EC

EU

E

,LA=length addr length addr: RX-type address or register (2) - (12).

,LV=length value length value: symbol, decimal number, or register (2) - (12).

Note:

1. LA may only be specified with LC, LU, or L above.

2. LV may only be specified with EC, EU, or E above.

,A=addr addr: RX-type address, or register (2) - (12).

,SP=subpool nmbr subpool nmbr: symbol, decimal number, or register (0) or (2) - (12).

,BRANCH=YES

,RELATED=value value: any valid assembler character string.

,MF=(E,list addr) list addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the FREEMAIN macro,
with the following exceptions:

,MF=(E,list addr)
Specifies the execute form of the FREEMAIN macro using a remote control
program parameter list.

FREEMAIN macro

180 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 17. GETDSAB — Accessing the DSAB chain

Description
The GETDSAB macro returns a pointer to the data set association block (DSAB)
associated with a DD name.

Use the GETDSAB macro to:
v Retrieve the address of the first DSAB associated with a DD name, as specified

by:
– An input DD name
– An input device control block (DCB) address
– An input task control block (TCB) address.

v Scan the DSAB chain

See z/OS MVS Programming: Authorized Assembler Services Guide for procedures that
use the DSAB address returned by the GETDSAB macro to obtain the address of
the TIOT entry and the UCB address.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state or supervisor state, and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit addressing mode
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
To use GETDSAB, the caller must include the DSAB mapping macro (IHADSAB),
the CVT mapping macro (CVT), and the JESCT mapping macro (IEFJESCT).

The caller must provide or inherit serialization on the SYSZTIOT resource before
calling the GETDSAB macro and while using the output addresses of the macro.
The minimum required level of serialization is shared (SHR).

The GETDSAB service does not provide a recovery environment. Because the
service runs in task mode, the system uses any recovery environment that is
defined to the caller before invoking GETDSAB.

Restrictions
Use caution when running as a system user.

GETDSAB uses the current JSCB and not the active JSCB.

© Copyright IBM Corp. 1988, 2016 181

|

|

|

GETDSAB facilitates the process of finding a DSAB for an end user. In this case,
the end user runs with TCBJSCB pointing to the active JSCB.

System users who are in the window before or after the jobstep program is
attached run the risk of using the current JSCB, which might differ from the active
JSCB. System address spaces might have the same current and active JSCB address.

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

On input to the macro, register 13 must contain the address of an 18-word save
area.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code if GPR 15 contains 12; otherwise, used as a work register by
the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

Performance implications
There are no performance implications related to GETDSAB.

Syntax
The standard form of the GETDSAB macro follows.

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede GETDSAB.

GETDSAB

� One or more blanks must follow GETDSAB.

FIRST

NEXT

GETDSAB macro

182 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|

|
|
|

Syntax Description

DCBPTR=dcb addr dcb addr: RX-type address, or register (2) - (12).

DDNAME=dd addr dd addr: RX-type address, or register (2) - (12). This address specifies an
8-byte field which contains a DD name.

,DSABPTR=dsab addr dsab addr: RX-type address, or register (2) - (12).

,TCBPTR=tcb addr tcb addr: RX-type address, or register (2) - (12). Default: TCBPTR=0

,RETCODE=retcode addr retcode addr: RX-type address, or register (2) - (12) of fullword output
variable

,RSNCODE=rsn addr name: RX-type address, or register (2) - (12).

,LOC=BELOW Default = BELOW

,LOC=ANY

Parameters
The parameters are described as follows:

FIRST
NEXT
DCBPTR=dcb addr
DDNAME=dd addr

FIRST requests the first DSAB in the DSAB chain. The system uses the DSAB
chain associated with the TCB specified by the TCBPTR parameter, or, if none
is specified, by the current TCB.

NEXT requests the pointer to the next DSAB in the DSAB chain, following the
one pointed to by the initial value in DSABPTR.

DCBPTR=dcb addr specifies the name of a pointer that contains the address of a
fullword field. The fullword points to the DCB associated with a DD name.
The system retrieves the DSAB pointer associated with the DCB.

When DCBPTR points to an open DCB, DCBPTR and TCBPTR are mutually
exclusive.

Do not use the DCBPTR option for a DCB in a DCB OPEN exit, DCB ABEND
exit, data management ABEND installation exit or the DCB OPEN installation
exit.

When DCBPTR points to a closed DCB, the system selects the DSAB chain
associated with the TCB specified by TCBPTR parameter, or, if none is
specified, by the current TCB.

DDNAME=dd addr specifies a DD name associated with a DSAB. The system
puts the address of the DSAB associated with this DD name into the fullword
field specified by the DSABPTR parameter. The DSAB selected is that
associated with the TCB specified by the TCBPTR parameter, or, if none is
specified, by the current TCB. The dd addr is an 8-character, left-justified field,
with trailing blanks. The dd addr may not contain all blanks.

GETDSAB macro

Chapter 17. GETDSAB — Accessing the DSAB chain 183

,DSABPTR=dsab addr
Specifies the name of a required fullword field that will be set to the address of
the desired DSAB.

When used with the NEXT keyword, DSABPTR must contain the address of a
DSAB that was previously obtained by invoking GETDSAB with FIRST,
DCBPTR, or DDNAME. The system will replace this initial address with the
address of the next DSAB in the DSAB chain.

When used with the keywords FIRST, DCBPTR, or DDNAME, DSABPTR is an
output field only.

Upon output, DSABPTR contains the address of the specified DSAB if the
return code is zero. If the return code is not zero, DSABPTR contains 0.

,TCBPTR=tcb addr
Specifies the name of a pointer that contains the address of the TCB associated
with the task for which DSAB information is requested.

When DCBPTR points to an open DCB, DCBPTR and TCBPTR are mutually
exclusive.

The default, TCBPTR=0, requests the current TCB.

,RETCODE=retcode addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0.

LOC=BELOW
LOC=ANY

Specifies whether or not GETDSAB should limit where it searches to find the
DSAB corresponding to the input DDname.

LOC=BELOW, which is the default, searches only those DSABs residing below
the 16 MB line

LOC=ANY searches both below and above the 16 MB line.

Return and reason codes
When control returns from GETDSAB, GPR 15 (and retcode addr, if you coded
RETCODE) contains one of the following decimal return codes.

Table 20. Return Codes for the GETDSAB Macro

Decimal Return
Code

Meaning

00 Meaning: Successful completion

04 Meaning: Request failed. NEXT was specified when DSABPTR pointed to the
last DSAB in the DSAB chain.

08 Meaning: Request failed. The specified DSAB was not found.

12 Meaning: Request failed. Input values were in error or in conflict.

16 Meaning: Request failed. The GETDSAB function is not currently installed on
the system. Consult your system programmer.

When control returns from GETDSAB, GPR 0 (and rsncode addr, if you coded
RSNCODE) might contain one of the following decimal reason codes:

GETDSAB macro

184 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 21. Return and Reason Codes for the GETDSAB Macro

Decimal Return
Code

Decimal Reason
Code

Meaning

12 1200 Request failed because of input error. The DDNAME
specified or obtained was all blanks.

12 1210 Request failed because of input error. TCBPTR was
specified when DCBPTR points to an open DCB.

12 1220 Request failed because of input error. The DSAB pointed to
by DSABPTR is not valid.

12 1230 Request failed because of input error. The LOC=BELOW is
requested, but the DSAB chain contains DSABs from both
above and below the 16 MB line. Use LOC=ANY for this
DSAB chain.

Example 1
In this example, MYDSAB will contain the address of DSAB associated with the
DD named DD09.

MVC THEDD,=CL8’DD09’
GETDSAB DDNAME=THEDD,DSABPTR=MYDSAB
.
.
.

AUTO DSECT
THEDD DS CL8
MYDSAB DS AL4

Example 2
In this example, the first invocation of GETDSAB will set MYDSAB to the address
of the first DSAB in the DSAB chain. MYRC will contain the return code.

The second invocation of GETDSAB will replace the initial address in MYDSAB
with the address of the next DSAB in the DSAB chain.

GETDSAB FIRST,DSABPTR=MYDSAB,RETCODE=MYRC
.
.
.
GETDSAB NEXT,DSABPTR=MYDSAB
.
.
.

AUTO DSECT
MYDSAB DS AL4
MYRC DS F

This technique can be used to get the DSAB for the first DD in a concatenation and
then to step through the DSABs for all other DDs in the concatenation. It is the
user's responsibility to determine when the DSAB for the last DD in the
concatenation has been fetched, because a subsequent invocation of GETDSAB
NEXT will simply return the next DSAB on the chain (if one exists), even if it is for
a different DD statement.

Example 3
In this example, DCBPTR contains the address of a fullword pointer that points to
the DCB associated with a DD name. MYDSAB will contain the address of the
DSAB associated with the DCB. MYRSN will contain the reason code.

GETDSAB macro

Chapter 17. GETDSAB — Accessing the DSAB chain 185

GETDSAB DCBPTR=MYDCB,DSABPTR=MYDSAB,RSNCODE=MYRSN
.
.
.

AUTO DSECT
MYDSAB DS AL4
MYDCB DS AL4
MYRSN DS F

Example 4
If DCBPTR points to an open DCB, DCBPTR and TCBPTR are mutually exclusive.
The request will fail with return code 12. MYDSAB will contain 0.

If DCBPTR points to a closed DCB, the system will search the DSAB chain
associated with the TCB. MYDSAB will contain the address of the DSAB related to
the TCB specified by TCBPTR.

GETDSAB DCBPTR=MYDCB,DSABPTR=MYDSAB,TCBPTR=MYTCB
.
.
.

AUTO DSECT
MYDSAB DS AL4
MYDCB DS AL4
MYTCB DS F

GETDSAB - List form
Use the list form of the GETDSAB macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the GETDSAB macro follows.

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede GETDSAB.

GETDSAB

� One or more blanks must follow GETDSAB.

MF=(L,stor addr) stor addr: symbol.

MF=(L,stor addr,attr) attr: 1- to 60-character input string. Default: 0D

Parameters
The following parameters are the only ones you can specify using the list format:

GETDSAB macro

186 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

MF=L
Specifies the list form of the GETDSAB macro.

The stor addr parameter specifies the name of a required storage area for the
parameter list. This storage area will be generated as part of the macro
expansion and should not be separately defined by the user. Note also, that the
"stor addr" in the List and Execute forms of the macro must refer to the same
storage area.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

GETDSAB - Execute form
Use the execute form of the GETDSAB macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the GETDSAB macro follows.

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede GETDSAB.

GETDSAB

� One or more blanks must follow GETDSAB.

FIRST

NEXT

DCBPTR=dcb addr dcb addr: RX-type address, or register (2) - (12).

DDNAME=dd addr dd addr: RX-type address, or register (2) - (12).

,DSABPTR=dsab addr dsab addr: RX-type address, or register (2) - (12).

,TCBPTR=tcb addr tcb addr: RX-type address, or register (2) - (12). Default: TCBPTR=0

,RETCODE=retcode addr retcode addr: RX-type address, or register (2) - (12) of fullword output
variable

,RSNCODE=rsncode addr rsncode addr: RX-type address, or register (2) - (12).

,LOC=BELOW Default = BELOW

GETDSAB macro

Chapter 17. GETDSAB — Accessing the DSAB chain 187

Syntax Description

,LOC=ANY

MF=(E,stor addr) stor addr: RX-type address, or any register (1) - (12). If register 1 is specified,
its value may be changed by the macro invocation.

MF=(E,stor addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the GETDSAB macro,
with the following exception:

MF=(E,stor addr)
MF=(E,stor addr,COMPLETE)

Specifies the execute form of the macro.

The stor addr parameter specifies the name of a required storage area for the
parameter list.

The COMPLETE parameter specifies the degree of macro parameter syntax
checking. COMPLETE checks for required macro keywords and supplies
defaults for optional parameters that are not specified.

GETDSAB macro

188 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 18. GETMAIN — Allocate virtual storage

Description
Use the GETMAIN macro to request one or more areas of virtual storage.

Before obtaining storage, be sure to read the topic about selecting the right subpool
for virtual storage requests in z/OS MVS Programming: Authorized Assembler Services
Guide.

You can also use the STORAGE macro to obtain storage. Compared to GETMAIN,
STORAGE provides an easier-to-use interface and has fewer restrictions and
locking requirements. See the virtual storage management chapter in z/OS MVS
Programming: Authorized Assembler Services Guide for a comparison of GETMAIN
and STORAGE.

The GETMAIN macro is also described in z/OS MVS Programming: Assembler
Services Reference ABE-HSP, with the exception of the BRANCH and OWNER
parameters.

Note:

1. When you obtain storage, the system clears the requested storage to zeros if
you obtain either:
v 8192 bytes or more from a pageable, private storage subpool.
v 4096 bytes or more from a pageable, private storage subpool, with

BNDRY=PAGE specified.
In all other cases you must not assume that the storage is cleared to zeros.
The caller can specify CHECKZERO=YES to detect these and other cases
where the system clears the requested storage to zeros.

2. Do not allocate user key (8-15) storage in the common area because it can be
read or written by any program in any address space.

The GETMAIN macro provides two types of entry linkage: SVC entry and branch
entry. If you do not specify the BRANCH parameter, the GETMAIN service
receives control through SVC entry. If you specify the BRANCH parameter, the
GETMAIN service receives control through branch entry.

If you use GETMAIN to request real storage backing above 2 gigabytes, but your
system does not support 64-bit storage, your request will be treated as a request
for backing above 16 megabytes, even on earlier releases of z/OS that do not
support backing above 2 gigabytes. However, boundary requirements indicated by
the CONTBDY and STARTBDY parameters will be ignored by earlier releases of
z/OS.

© Copyright IBM Corp. 1988, 2016 189

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For subpools 0-127: problem state and PSW key 8-15.

For subpools 131 and 132, one or more of the following:
v Supervisor state
v PSW key 0-7
v APF-authorization.
v PSW key mask (PKM) that allows the calling program to

switch its PSW key to match the key of the storage to be
obtained.

For other subpools: one or more of the following:
v Supervisor state
v PSW key 0-7
v APF-authorization.

For branch entry: supervisor state and PSW key 0.
Dispatchable unit mode: For SVC entry: task.

For branch entry: task or SRB.
Cross memory mode: For SVC entry: PASN=HASN=SASN.

For branch entry: any PASN, any HASN, any SASN.
AMODE: For SVC entry: 24- or 31- or 64-bit.

For branch entry: 24- or 31-bit.

v For R, LC, LU, VC, VU, EC, or EU requests: If the calling
program is in 31-bit mode, the system treats all addresses
and values as 31-bit. Otherwise, the system treats
addresses and values as 24-bit.

v For RC, RU, VRC, and VRU requests: The system treats
all addresses and values as 31-bit.

ASC mode: For BRANCH=(YES,GLOBAL): primary or access register
(AR).

For all other requests: primary.

Callers in AR mode must use BRANCH=(YES,GLOBAL)
and can obtain only global (common) storage.

Interrupt status: For BRANCH=(YES,GLOBAL): disabled for I/O and
external interrupts.

For all other requests: enabled for I/O and external
interrupts.

Locks: v For SVC entry: no locks may be held.

v For BRANCH=YES: your program must hold the local
lock for the currently addressable address space. This
must be the address space from which the storage is to be
obtained.

v For BRANCH=YES, when running in cross-memory
mode: your program must hold the CML lock for the
currently addressable address space. This must be the
address space from which the storage is to be obtained.

v For BRANCH=(YES,GLOBAL): your program must be in
an z/OS-recognized state of disablement, which can be
attained by obtaining the CPU lock.

GETMAIN macro

190 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Environmental factor Requirement
Control parameters: For LC, LU, VC, VU, EC, EU requests: control parameters

must be in the primary address space.

For other requests: control parameters are in registers.

Programming requirements
Before issuing the GETMAIN macro in AR mode, issue SYSSTATE ASCENV=AR.

Restrictions
v For SVC entry, the caller cannot have an EUT FRR established.

Input register information for SVC entry
Before issuing the GETMAIN macro without the BRANCH parameter (SVC entry)
the caller does not have to place any information into any register unless using it
in register notation for a particular parameter, or using it as a base register.

Output register information for SVC entry
For LC, LU, VC, VU, EC, and EU requests: when control returns to the caller, the
general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Contains the return code.

For RC, RU, and R requests: when control returns to the caller the GPRs contain:

Register
Contents

0 Used as a work register by the system.
1 The address of the allocated storage when GETMAIN is successful;

otherwise, used as a work register by the system.

Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

2-13 Unchanged.
14 Used as a work register by the system.
15 Contains the return code.

For VRC and VRU requests: when control returns to the caller the GPRs contain:

Register
Contents

0 For a successful request, contains the length of the storage obtained.
Otherwise, used as a work register by the system.

1 The address of the allocated storage when GETMAIN is successful;
otherwise, used as a work register by the system.

Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

2-13 Unchanged.
14 Used as a work register by the system.

GETMAIN macro

Chapter 18. GETMAIN — Allocate virtual storage 191

15 Contains the return code.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Input register information for BRANCH=YES
Before issuing the GETMAIN macro with BRANCH=YES, the caller must ensure
that the following GPRs contain the specified information:

Register
Contents

4 The address of the input TCB, if you are obtaining private storage.

Set GPR 4 to 0 or the address of a TCB in the currently addressable
address space. Setting the GPR 4 to 0 identifies the input TCB as the TCB
that owns the cross-memory resources for the currently addressable
address space (task whose TCB address is in ASCBXTCB).

For an explanation of the term input TCB, and to determine
system-assigned defaults for private storage ownership, see the topic about
selecting the right subpool for virtual storage requests in z/OS MVS
Programming: Authorized Assembler Services Guide.

7 The address of the ASCB for the currently addressable address space.

Output register information for BRANCH=YES
For RC, RU, and R requests: when control returns to the caller, the GPRs contain:

Register
Contents

0 Used as a work register by the system.
1 The address of the allocated storage when GETMAIN is successful;

otherwise, used as a work register by the system.

Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

2 Unchanged
3 For R requests, unchanged. For RC and RU requests, used as a work

register by the system.
4-13 Unchanged.
14 Used as a work register by the system.
15 Contains the return code.

For VRC and VRU requests: when control returns to the caller, the GPRs contain:

Register
Contents

0 For a successful request, contains the length of the storage obtained.
Otherwise, used as a work register by the system. storage obtained.

1 The address of the allocated storage when GETMAIN is successful;
otherwise, used as a work register by the system.

Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

GETMAIN macro

192 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

2 Unchanged
3 Used as a work register by the system.
4-13 Unchanged.
14 Used as a work register by the system.
15 Contains the return code.

For EC, EU, LC, LU, VC, and VU requests: when control returns to the caller, the
GPRs contain:

Register
Contents

0-1 Used as work registers by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Contains the return code.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system.
2-13 Unchanged.
14-15 Used as work registers by the system.

Input register information for BRANCH=(YES,GLOBAL)
For RC, RU, VRC, and VRU requests (the only valid requests with
BRANCH=(YES,GLOBAL)): the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using
it as a base register.

Output register information for BRANCH=(YES,GLOBAL)
For RC and RU requests: when control returns to the caller, the GPRs contain:

Register
Contents

0 Used as a work register by the system.
1 The address of the allocated storage when GETMAIN is successful;

otherwise, used as a work register by the system.

Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

2 Unchanged
3-4 Used as work registers by the system.
5-13 Unchanged.
14 Used as a work register by the system.
15 Contains the return code.

For VRC and VRU requests: when control returns to the caller, the GPRs contain:

Register
Contents

0 For a successful request, contains the length of the storage obtained.
Otherwise, used as a work register by the system.

1 The address of the allocated storage when GETMAIN is successful;
otherwise, used as a work register by the system.

GETMAIN macro

Chapter 18. GETMAIN — Allocate virtual storage 193

Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

2 Unchanged.
3-4 Used as work registers by the system.
5-13 Unchanged.
14 Used as a work register by the system.
15 Contains the return code.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system.
2-13 Unchanged
14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the service returns control.

Performance implications
Repeatedly issuing the GETMAIN macro can slow down performance. If your
program requires many identically sized storage areas, use the CPOOL macro or
callable cell pool services for better performance.

Syntax
The standard form of the GETMAIN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede GETMAIN.

GETMAIN

� One or more blanks must follow GETMAIN.

LC,LA=length addr,A=addr length addr: A-type address, or register (2) - (12).

LU,LA=length addr,A=addr length value: symbol, decimal number, or register (2) - (12).

VC,LA=length addr,A=addr If RC or RU is specified, register (0)

VU,LA=length addr,A=addr may also be specified.

EC,LV=length value,A=addr addr: A-type address or register (2) - (12).

EU,LV=length value,A=addr Note: RC, RU, VRC, or VRU must be used for address greater than 16
megabytes.

RC,LV=length value

RU,LV=length value

R,LV=length value

GETMAIN macro

194 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

VRC,LV=(maximum length value,
minimum length value)

maximum length value: symbol, decimal number, or register (2) - (12).

VRU,LV=(maximum length value,
minimum length value)

minimum length value: symbol, decimal number, or register (2) - (12).

,SP=subpool nmbr subpool nmbr: symbol or decimal number 0-255; or register (2) - (12).

Default: SP=0
Note: Specify the subpool as follows:
v Use the SP parameter for LC, LU, VC, VU, EC, EU, RC, RU, VRC, and

VRU requests, and for R requests where LV does not indicate register 0.
v Use register 0 for R requests with LV=(0); do not code the SP parameter.

The low-order three bytes of register 0 must contain the length of the
requested storage, and the high-order byte must contain the subpool
number.

,BNDRY=DBLWD Default: BNDRY=DBLWD

,BNDRY=PAGE Note: This parameter may not be specified with R above.

,CONTBDY=containing_bdy containing_bdy: Decimal number 3-31 or register (2) - (12).
Note: CONTBDY may be specified only with RC or RU.

,STARTBDY=starting_bdy starting_bdy: Decimal number 3-31 or register (2) - (12).
Note: STARTBDY may be specified only with RC or RU.

,BRANCH=YES Note: BRANCH=(YES,GLOBAL) may be specified only with RC, RU, VRC,
or VRU.

,BRANCH=(YES,GLOBAL)

,KEY=key number key number: decimal numbers 0-15, or register (2) - (12).

Note: KEY may be specified only with RC, RU, VRC, or VRU.

,LOC=24 Note: This parameter can only be used with RC, RU, VRC, or VRU. On all
other forms, LOC=24 is used.

,LOC=(24,31)

,LOC=(24,64)

,LOC=31

,LOC=(31,31)

,LOC=(31,64)

,LOC=RES Default: LOC=RES

,LOC=(RES,31)

,LOC=(RES,64)

,LOC=EXPLICIT Note: You must specify the INADDR parameter with

,LOC=(EXPLICIT,24) EXPLICIT.

,LOC=(EXPLICIT,31)

GETMAIN macro

Chapter 18. GETMAIN — Allocate virtual storage 195

Syntax Description

,LOC=(EXPLICIT,64)

,INADDR=stor addr stor addr: RX-type address or register (1)-(12).
Note: This parameter can only be specified with LOC=EXPLICIT.

,OWNER=HOME Default: OWNER=HOME

,OWNER=PRIMARY

,OWNER=SECONDARY

,OWNER=SYSTEM

,CHECKZERO=YES Default: CHECKZERO=NO

,CHECKZERO=NO Note: CHECKZERO may be specified only with RC, RU, VRC, or VRU.

,RELATED=value value: Any valid assembler character string

Parameters
The parameters are explained as follows.

The first parameter of the GETMAIN macro is positional and is required. This
parameter describes the type or mode of the GETMAIN request. The first
parameter can be one of the following values:

LC,LA=length addr, A=addr
LU,LA=length addr, A=addr
VC,LA=length addr, A=addr
VU,LA=length addr, A=addr
EC,LV=length value, A=addr
EU,LV=length value, A=addr
RC,LV=length value
RU,LV=length value
R,LV=length value
VRC,LV=(maximum length value,minimum length value)
VRU,LV=(maximum length value,minimum length value)

LC and LU indicate conditional (LC) and unconditional (LU) list requests, and
specify requests for one or more areas of virtual storage. The length of each
virtual storage area is indicated by the values in a list beginning at the address
specified in the LA parameter. The address of each of the virtual storage areas
is returned in a list beginning at the address specified in the A parameter. No
virtual storage is allocated unless all of the requests in the list can be satisfied.

VC and VU indicate conditional (VC) and unconditional (VU) variable
requests, and specify requests for single areas of virtual storage. The length of
the single virtual storage area is between the two values at the address
specified in the LA parameter. The address and actual length of the allocated
virtual storage area are returned by the system at the address indicated in the
A parameter.

EC and EU indicate conditional (EC) and unconditional (EU) element requests,
and specify requests for single areas of virtual storage. The length of the single

GETMAIN macro

196 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

virtual storage area is indicated by the parameter, LV=length value. The address
of the allocated virtual storage area is returned at the address indicated in the
A parameter.

RU and R indicate unconditional register requests; RC indicates a conditional
register request. RC, RU, and R specify requests for single areas of virtual
storage. The length of the single virtual area is indicated by the parameter,
LV=length value. The address of the allocated virtual storage area is returned in
register 1.

VRC and VRU indicate variable register conditional (VRC) and unconditional
(VRU) requests for a single area of virtual storage. The length returned will be
between the maximum and minimum lengths specified by the parameter
LV=(maximum length value, minimum length value). The address of the allocated
virtual storage is returned in register 1 and the length in register 0.

Note:

1. A conditional request indicates that the active unit of work is not to be
abnormally terminated if there is insufficient contiguous virtual storage to
satisfy the request. A conditional request does not prevent all abnormal
terminations. For example, if the request has incorrect or inconsistent
parameters, the system abnormally terminates the active unit of work. An
unconditional request indicates that the active unit of work is to be
abnormally terminated whenever the request cannot complete successfully.

2. The LC, LU, VC, VU, EC, EU, and R requests can be used only to obtain
virtual storage with addresses below 16 megabytes. The RC, RU, VRC, and
VRU requests can be used to obtain virtual storage with addresses above 16
megabytes.

LA specifies the virtual storage address of consecutive fullwords starting on a
fullword boundary. Each fullword must contain the required length in the
low-order three bytes, with the high-order byte set to 0. The lengths should be
multiples of 8; if they are not, the system uses the next higher multiple of 8. If
VC or VU was coded, two words are required. The first word contains the
minimum length required, the second word contains the maximum length. If
LC or LU was coded, one word is required for each virtual storage area
requested; the high-order bit of the last word must be set to 1 to indicate the
end of the list. The list must not overlap the virtual storage area specified in
the A parameter.

LV=length value specifies the length, in bytes, of the requested virtual storage.
The number should be a multiple of 8; if it is not, the system uses the next
higher multiple of 8. If R is specified, LV=(0) may be coded; the low-order
three bytes of register 0 must contain the length, and the high-order byte must
contain the subpool number. LV=(maximum length value, minimum length value)
specifies the maximum and minimum values of the length of the storage
request.

The A parameter specifies the virtual storage address of consecutive fullwords,
starting on a fullword boundary. The system places the address of the virtual
storage area allocated in one or more words. If E was coded, one word is
required. If LC or LU was coded, one word is required for each entry in the
LA list. If VC or VU was coded, two words are required. The first word
contains the address of the virtual storage area, and the second word contains
the length actually allocated. The list must not overlap the virtual storage area
specified in the LA parameter.

GETMAIN macro

Chapter 18. GETMAIN — Allocate virtual storage 197

,SP=subpool nmbr
Specifies the number of the subpool from which the virtual storage area is to
be allocated. If you specify a register, the subpool number must be in bits 24-31
of the register, with bits 0-23 set to zero. Valid subpool numbers range from 0
to 255. See the topic about selecting the right subpool for virtual storage
requests in z/OS MVS Programming: Authorized Assembler Services Guide for
detailed guidance on subpool selection.

Note:
1. Callers running in supervisor state and key zero, who specify subpool 0,

will obtain storage from subpool 252. Therefore, when requesting a dump
of this storage using the SDUMP or SDUMPX macro, they must specify
subpool 252 rather than 0.

2. Requests for storage from subpools 240 and 250 are translated to subpool 0
storage requests.

,BNDRY=DBLWD
,BNDRY=PAGE

Specifies that alignment on a doubleword boundary (DBLWD) or alignment
with the start of a virtual page on a 4K boundary (PAGE) is required for the
start of a requested area.

If the request specifies one of the LSQA or SQA subpools, the system ignores
the BNDRY=PAGE keyword. Requests for storage from these subpools are then
fulfilled from a single page, unless the request is greater than a page. See the
virtual storage management chapter in z/OS MVS Programming: Authorized
Assembler Services Guide for a list of LSQA and SQA subpools.

,CONTBDY=containing_bdy
Specifies the boundary the obtained storage must be contained within. Specify
a power of 2 that represents the containing boundary. Supported values are
3-31. For example, CONTBDY=10 means the containing boundary is 2**10, or
1024 bytes. The containing boundary must be at least as large as the maximum
requested boundary. The obtained storage will not cross an address that is a
multiple of the requested boundary.

If a register is specified, the value must be in bits 24 - 31 of the register.
CONTBDY is valid only with RC or RU.

CONTBDY is not valid with LOC=EXPLICIT or BNDRY=PAGE.

CONTBDY applies to all subpools.

Generally, if you omit this parameter, there is no containing boundary.
However, if the GETMAIN is for SQA or LSQA, and is for less than 4 KB, and
STARTBDY is specified, the default of CONTBDY is 12, ensuring that the
GETMAIN stays within a 4 KB page boundary.

For GETMAIN macros that specify a CONTBDY parameter value that is larger
than 12, it is possible that the allocated area spans across a 4 KB page
boundary, even when the area is less than or equal to 4 KB and in an SQA or
LSQA subpool.

,STARTBDY=starting_bdy
Specifies the boundary the obtained storage must start on. Specify a power of 2
that represents the start boundary. Supported values are 3-31. For example,
STARTBDY=10 means the start boundary is 2**10, or 1024 bytes. The obtained
storage will begin on an address that is a multiple of the requested boundary.

If a register is specified, the value must be in bits 24-31 of the register.
STARTBDY is valid only with RC or RU.

GETMAIN macro

198 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

STARTBDY is not valid with LOC=EXPLICIT or BNDRY=PAGE.

STARTBDY applies to all subpools.

If you omit this parameter, the start boundary is 8 bytes (equivalent to
specifying STARTBDY=3).

,BRANCH=YES
,BRANCH=(YES,GLOBAL)

Specifies that a branch entry is to be used.

BRANCH=YES allows both local (private) and global (common) storage to be
allocated. See “Input register information for BRANCH=YES” on page 192 for
specific information on input register requirements.

BRANCH=(YES,GLOBAL) allows only global storage to be allocated. With
BRANCH=(YES,GLOBAL), the SP parameter may designate only subpools
226-228, 231, 239, 241, 245, 247, or 248. BRANCH=(YES,GLOBAL) is valid only
with RC, RU, VRC, or VRU.

,KEY=key number
Specifies the storage key in which the storage is to be obtained. The valid
storage keys are 0-15. If a register is specified, the storage key must be in bits
24-27 of the register. KEY is valid with RC, RU, VRC, or VRU, and applies to
subpools 129-132, 227-231, 241, and 249. If you specify KEY without specifying
RC, RU, VRC, or VRU, or use KEY for any other subpools, the system ignores
the KEY parameter. BRANCH is required with KEY for subpools 227-231, 241,
and 249. BRANCH=(YES,GLOBAL) is not valid for subpools 129-132, 229-230,
and 249. See the virtual storage management chapter in z/OS MVS
Programming: Authorized Assembler Services Guide for information about how the
system determines the storage key to assign to your storage request.

,LOC=24
,LOC=(24,31)
,LOC=(24,64)
,LOC=31
,LOC=(31,31)
,LOC=(31,64)
,LOC=RES
,LOC=(RES,31)
,LOC=(RES,64)
,LOC=EXPLICIT
,LOC=(EXPLICIT,24)
,LOC=(EXPLICIT,31)
,LOC=(EXPLICIT,64)

Specifies the location of virtual storage and central (also called real) storage.
This is especially helpful for callers with 24-bit dependencies. When LOC is
specified, central storage is allocated anywhere until the storage is fixed, (for
example, using the PGSER macro). You can specify the location of central
storage (after the storage is fixed) and virtual storage (whether or not the
storage is fixed) using the following LOC parameter values:

LOC=24 indicates that central and virtual storage are to be located below 16
megabytes.

Note:

1. Specifying LOC=BELOW is the same as specifying LOC=24. LOC=BELOW
is still supported, but IBM recommends using LOC=24 instead.

GETMAIN macro

Chapter 18. GETMAIN — Allocate virtual storage 199

2. LOC=24 should not be used to allocate disabled reference (DREF) storage.
If issued in AMODE24, an abend B78 will result. In AMODE31, the
LOC=24 parameter will be ignored, and the caller will be given an address
above 16 megabytes.

3. For GETMAINs from all SQA subpools, central storage will sometimes be
above 16 mg even when LOC=24 or LOC=BELOW is coded.

LOC=(24,31) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere below 2 gigabytes.

Note: Specifying LOC=(BELOW,ANY) is the same as specifying LOC=(24,31).
LOC=(BELOW,ANY) is still supported, but IBM recommends using
LOC=(24,31) instead.

LOC=(24,64) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere in 64-bit storage.

LOC=31 and LOC=(31,31) indicate that virtual and central storage can be
located anywhere below 2 gigabytes.

Note: Specifying LOC=ANY or LOC=(ANY,ANY) is the same as specifying
LOC =31 or LOC=(31,31). LOC=ANY and LOC=(ANY,ANY) are still
supported, but IBM recommends using LOC=31 or LOC=(31,31) instead.

LOC=(31,64) indicates that virtual storage is to be located below 2 gigabytes
and central storage can be located anywhere in 64-bit storage.

Note: When you specify LOC=31, the actual location of the virtual storage
(that is, whether it is above or below 16 megabytes) depends on the subpool
you specify on the SP parameter:
v Some subpools (for example, 203-204) are supported only above 16

megabytes. For these subpools, GETMAIN locates virtual storage above 16
megabytes. If you specify LOC=24 for one of these subpools, the system
abends your program.

All other subpools are supported both above and below 16 megabytes. For
these subpools, specifying LOC=31 causes GETMAIN to try to allocate virtual
storage above 16 megabytes. If the attempt fails, GETMAIN tries to allocate
virtual storage below 16 megabytes. If this attempt also fails, GETMAIN does
not allocate any storage.

All other subpools are supported both above and below 16 megabytes. For
these subpools, specifying LOC=31 causes GETMAIN to try to allocate virtual
storage above 16 megabytes. If the attempt fails, GETMAIN tries to allocate
virtual storage below 16 megabytes. If this attempt also fails, GETMAIN does
not allocate any storage.

When you use LOC=RES to allocate storage that can reside either above or
below 16 megabytes, LOC=RES indicates that the location of virtual and
central storage depends on the location of the caller. If the caller resides below
16 megabytes, virtual and central storage are to be located below 16
megabytes. If the caller resides above 16 megabytes, virtual and central storage
are to be located either above or below 16 megabytes.

LOC=(RES,31) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
to be located below 16 megabytes; if the caller resides above 16 megabytes,
virtual storage can be located anywhere below 2 gigabytes. In either case,
central storage can be located anywhere below 2 gigabytes.

GETMAIN macro

200 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Note: Specifying LOC=(RES,ANY) is the same as specifying LOC=(RES,31).
LOC=(RES,ANY) is still supported, but IBM recommends using LOC=(RES,31)
instead.

LOC=(RES,64) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
to be located below 16 megabytes; if the caller resides above 16 megabytes,
virtual storage can be located anywhere in 31-bit storage. In either case, central
storage can be located anywhere in 64-bit storage.

Note: If your program resides below 16 megabytes but runs with 31-bit
addressing mode, you can specify LOC=RES (as a default or explicitly) or
LOC=(RES,31) to obtain storage from a subpool supported only above 16
megabytes. Do not specify subpools supported only above 16 megabytes on
requests using LOC=RES or LOC=(RES,31) if your program resides below 16
megabytes and runs with 24-bit addressing.

LOC=EXPLICIT, LOC=(EXPLICIT,24), LOC=(EXPLICIT,31), or
LOC=(EXPLICIT,64) specify that the requested virtual storage is to be located
at the address specified with the INADDR parameter, which is required with
EXPLICIT. EXPLICIT is valid only for subpools 0-127, 129-132, 240, 250, 251,
and 252. You can use LOC=EXPLICIT only with RC or RU. You cannot specify
the BNDRY or OWNER parameters with EXPLICIT.

Note: Specifying LOC=(EXPLICIT,BELOW) is the same as specifying
LOC=(EXPLICIT,24). Specifying LOC=(EXPLICIT,ANY is the same as
specifying LOC=(EXPLICIT,31). The older specifications are still supported, but
IBM recommends using the newer specifications instead.

LOC=(EXPLICIT,31) indicates that virtual storage is to be located at the
address specified on the INADDR parameter, and central storage can be
located anywhere below 2 gigabytes.

LOC=(EXPLICIT,24) indicates that virtual storage is to be located at the
address specified on the INADDR parameter, and central storage is to be
located below 16 megabytes. The virtual storage address specified on the
INADDR parameter must be below 16 megabytes.

LOC=EXPLICIT and LOC=(EXPLICIT,64) indicate that virtual storage is to be
located at the address specified on the INADDR parameter, and central storage
can be located anywhere in 64-bit storage.

When you specify EXPLICIT on a request for storage from the same virtual
page as previously requested storage, you must request it in the same key,
subpool, and central storage area as on the previous storage request. For
example, if you request virtual storage backed with central storage below 16
megabytes, any subsequent requests for storage from that virtual page must be
specified as LOC=(EXPLICIT,24).

,INADDR=stor addr
Specifies the desired virtual address for the storage to be obtained. When you
specify INADDR, you must specify EXPLICIT on the LOC parameter.

Note:

1. The address specified on INADDR must be on a doubleword boundary.
2. Make sure that the virtual storage address specified on INADDR and the

central storage backing specified on the LOC=EXPLICIT parameter are a
valid combination. For example, if the address specified on INADDR is for

GETMAIN macro

Chapter 18. GETMAIN — Allocate virtual storage 201

virtual storage above 16 megabytes, specify LOC=EXPLICIT or
LOC=(EXPLICIT,ANY). Valid combinations include:
v Virtual above, central any
v Virtual any, central any
v Virtual below, central below
v Virtual below, central any

,OWNER=HOME
,OWNER=PRIMARY
,OWNER=SECONDARY
,OWNER=SYSTEM

Specifies the entity to which the system will assign ownership of requested
CSA, ECSA, SQA, and ESQA storage. The system uses this ownership
information to track the use of CSA, ECSA, SQA and ESQA storage. This
parameter can have one of the following values:
HOME

The home address space.
PRIMARY

The primary address space.
SECONDARY

The secondary address space.
SYSTEM

The system (the storage is not associated with an address space);
specify this value if you expect the requested storage to remain
allocated after termination of the job that obtained the storage.

The default value is OWNER=HOME. The system ignores the OWNER
parameter unless you specify a CSA, SQA, ECSA, or ESQA subpool on the SP
parameter. The OWNER parameter is valid only on the VC, VU, RC, RU, VRC,
and VRU types of GETMAIN requests.

Programs that issue the GETMAIN macro with the OWNER parameter can run
on any z/OS system.

,CHECKZERO=YES
,CHECKZERO=NO

Specifies whether or not the return code for a successful completion should
indicate if the system has cleared the requested storage to zeroes. When
CHECKZERO=NO is specified or defaulted, the return code for a successful
completion is 0. When CHECKZERO=YES is specified, the return code for a
successful completion is X'14' if the system has cleared the requested storage to
zeroes, and 0 if the system has not cleared the requested storage to zeroes.

There is no performance cost to specifying CHECKZERO=YES.

Programs that issue the GETMAIN macro with the CHECKZERO parameter
can run on any z/OS system. On a down-level system, CHECKZERO will be
ignored, and the return code for a successful completion (conditional or
unconditional) will be 0.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
assembler character string.

ABEND codes
Abend codes the GETMAIN macro might issue are listed below in hexadecimal.
For detailed abend code information, see z/OS MVS System Codes.

GETMAIN macro

202 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v 104
v 10A
v 178
v 204
v 20A
v 278
v 30A
v 378
v 40A
v 478
v 504
v 604
v 704
v 70A
v 778
v 804
v 80A
v 878
v 90A
v 978
v A0A
v A78
v B04
v B0A
v B78
v D04
v D0A
v D78

Return and reason codes
When the GETMAIN macro returns control to your program and you specified a
conditional request, GPR 15 contains one of the following hexadecimal return
codes:

Table 22. Return Codes for the GETMAIN Macro

Return Code Meaning and Action

0 Meaning: Successful completion. CHECKZERO=YES was not specified,
or the system has not cleared the requested storage to zeroes.

Action: None.

GETMAIN macro

Chapter 18. GETMAIN — Allocate virtual storage 203

Table 22. Return Codes for the GETMAIN Macro (continued)

Return Code Meaning and Action

4 If you did not specify EXPLICIT on the LOC parameter:

v Meaning: Environmental or system error. Virtual storage was not
obtained because insufficient storage is available.

v Action: If the request was for low private (local) storage, consult the
system programmer to see if you have exceeded an
installation-determined private storage limit.

If the request is for common (global) storage, your system is
probably experiencing a common storage shortage and your request
cannot be satisfied until the shortage is corrected.

If you specified EXPLICIT on the LOC parameter:

v Meaning: Program error. Virtual storage was not obtained because
part of the requested storage area is outside the bounds of the user
region.

v Action: Determine why your program is mistakenly requesting
storage outside the user region. If the request was for low private
(local) storage, consult the system programmer to see if you have
exceeded an installation-determined private storage limit.

8 Meaning: System error. Virtual storage was not obtained because the
system has insufficient central storage to back the request.

Action: Report the problem to the system programmer so the cause of
the problem can be determined and corrected.

C Meaning: System error. Virtual storage was not obtained because the
system cannot page in the page table associated with the storage to be
allocated.

Action: Report the problem to the system programmer so the cause of
the problem can be determined and corrected.

10 Meaning: Program error. Virtual storage was not obtained for one of
the following reasons: This reason code applies only to GETMAIN
requests with LOC=EXPLICIT specified.

v Part of the requested area is allocated already.

v Virtual storage was already allocated in the same page as this
request, but one of the following characteristics of the storage was
different:
– The subpool
– The key
– Central storage backing

Action: Determine why your program is attempting to obtain allocated
storage or why your program is attempting to obtain virtual storage
with different attributes from the same page of storage. Correct the
coding error.

14 Meaning: Successful completion. The system has cleared the requested
storage to zeroes. This return code occurs only when
CHECKZERO=YES is specified.

Action: None.

GETMAIN macro

204 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Example 1
Obtain 400 bytes of storage from subpool 10. If the storage is available, the address
will be returned in register 1 and register 15 will contain 0; if storage is not
available, register 15 will contain 4.
GETMAIN RC,LV=400,SP=10

Example 2
Obtain 48 bytes of storage from default subpool 0. If the storage is available, the
address will be stored in the word at AREAADDR; if the storage is not available,
the task will be abnormally terminated.

GETMAIN EU,LV=48,A=AREAADDR
.
.
.

AREAADDR DS F

Example 3
Obtain a minimum of 1024 bytes to a maximum of 4096 bytes of virtual storage
from default subpool 0 with virtual and central storage locations either above or
below 16 megabytes. If the storage is available, the starting address is to be
returned in register 1 and the length of the storage allocated is to be returned in
register 0; if the storage is not available, the caller is to be terminated.
GETMAIN VRU,LV=(4096,1024),LOC=ANY

Example 4
Obtain 248 bytes of storage from subpool 0 using branch entry. To obtain storage
from subpool 0, a supervisor state and PSW key 0 caller must specify subpool 240
or 250. If the storage cannot be obtained, the caller is abnormally terminated.
GETMAIN EU,LV=248,A=AREAADDR,BRANCH=YES,SP=250.

Example 5
Obtain 4096 bytes of storage from CSA subpool 231. Assign the storage area
storage key 2. Indicate that the system is to assign the storage to the primary
address space. If the storage cannot be obtained, do not abnormally terminate the
caller.
GETMAIN RC,LV=4096,SP=231,BRANCH=(YES,GLOBAL),BNDRY=PAGE,KEY=2,OWNER=PRIMARY

GETMAIN macro

Chapter 18. GETMAIN — Allocate virtual storage 205

GETMAIN macro

206 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 19. GQSCAN — Extract information from global
resource serialization queue

Description
Use the GQSCAN macro to obtain the status of resources and requestors of those
resources. The GQSCAN macro allows you to obtain resource information from the
system.

ISGQUERY is the IBM recommended replacement for the GQSCAN service.

The ISGRIB macro allows you to interpret the data that the GQSCAN service
routine returns to the user-specified area. The ISGRIB macro maps the resource
information block (RIB) and the resource information block extent (RIBE) as shown
in z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/
systems/z/os/zos/bkserv/.

There are two fields in the RIB that you can use to determine whether any RIBEs
were not returned:
v RIBTRIBE contains the total number of RIBEs associated with this RIB
v RIBNRIBE contains the total number of RIBEs returned by GQSCAN with this

RIB in the user-specified area indicated by the AREA parameter.

Global resource serialization counts and limits the number of outstanding global
resource serialization requests. A global resource serialization request is any ENQ,
RESERVE, or GQSCAN that causes an element to be inserted into a queue in the
global resource serialization request queue area. See “Limiting global resource
serialization requests” in “Chapter 4: Serialization” in z/OS MVS Programming:
Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key. For the SCOPE=GLOBAL

and SCOPE=LOCAL parameters, supervisor state.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
Any PASN, any HASN, any
SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space.

Programming requirements
To interpret the data that the GQSCAN service routine returns in the user-specified
area, you must include the ISGRIB mapping macro as a DSECT in your program.

© Copyright IBM Corp. 1988, 2016 207

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Restrictions
Unauthorized callers of GQSCAN need to be authorized through System
Authorization Facility (SAF) when Multi-level security (MLS) is active. If the caller
is not authorized, the request will fail.

When multilevel security support is active on the system, unauthorized callers of
ISGQUERY who specify REQINFO=QSCAN must have at least READ
authorization to the ISG.QSCANSERVICES.AUTHORIZATION resource in the
FACILITY class. You can activate the multilevel security support through the
SETROPTS MLACTIVE option in RACF. For general information about defining
profiles in the FACILITY class, see z/OS Security Server RACF Command Language
Reference and z/OS Security Server RACF Security Administrator's Guide. For
information about multilevel security, see z/OS Planning for Multilevel Security and
the Common Criteria.

Input register information
Before issuing the GQSCAN macro, the caller does not have to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Register 0 contains a fullword reason code if the return code in register 15
is X’0A’ or X’0C’. Otherwise, register 0 contains the following two
halfword values:
v The first (high-order) halfword contains the length of the fixed portion

of each RIB returned.
v The second (low-order) halfword contains the length of each RIBE

returned or reason code.
1 Contains the number of RIBs that were copied into the area provided
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
In general, the narrower the search parameters (particularly QNAME and
RNAME), the less time it takes. Using both a specific QNAME and a specific
RNAME gives better performance than using generic prefix.

GQSCAN macro

208 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|

The use of XSYS=YES (the default) might greatly degrade the performance of the
request. Use it only when required.

Polling for ENQ contention through GQSCAN or ISGQUERY is not recommended.
See the z/OS MVS Planning: Global Resource Serialization and z/OS MVS
Programming: Authorized Assembler Services Guide for more information about
monitoring contention through ENF 51.

When you specify SCOPE=GLOBAL, or SCOPE=LOCAL, the performance of
programs that issue ENQ, DEQ, or the RESERVE macro might be temporarily
degraded while the GQSCAN service is running.

Syntax
The standard form of the GQSCAN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede GQSCAN.

GQSCAN

� One or more blanks must follow GQSCAN.

AREA=(area addr,area size) area addr: A-type address or register (2) - (12).

area size: symbol, decimal digit, or register (2) - (12).
Note: AREA cannot be specified with QUIT=YES.

,REQLIM=value value: symbol, decimal digit, register (2) - (12), or the word MAX.

,REQLIM=MAX Default: REQLIM=MAX

,SCOPE=ALL Default: SCOPE=STEP

,SCOPE=STEP

,SCOPE=SYSTEM

,SCOPE=SYSTEMS

,SCOPE=LOCAL

,SCOPE=GLOBAL

,RESERVE=YES Default: All resources requested with RESERVE and all resources requested
with ENQ.

,RESERVE=NO

,RESNAME=(qname qname addr: RX-type address or register (2) - (12).

addr[,rname addr, rname addr: RX-type address or register (2) - (12).

GQSCAN macro

Chapter 19. GQSCAN — Extract information from global resource serialization queue 209

Syntax Description

rname length], rname length: decimal digit, or register (2) - (12).

Default: assembled length of rname.

[GENERIC|SPECIFIC],

qname length) Default: qname length of eight.

,SYSNAME=(sysname addr sysname addr: RX-type address or register (2) - (12).

[,asid value]) asid value: symbol, decimal digit, or register (2) - (12).
Note: Provide rname addr only when qname addr is used. Code rname length
if a register is specified for rname addr. Code an asid value only when the
sysname addr is used.

,QUIT=YES Default: QUIT=NO

,QUIT=NO Note: QUIT=YES is mutually exclusive with all parameters but TOKEN and
MF.

,REQCNT=value value: decimal digit or register (2) - (12).

Default: REQCNT=0

,OWNERCT=value,WAITCNT=

value value: decimal digit or register (2) - (12).

,OWNERCT=value value: decimal digit or register (2) - (12).

,WAITCNT=value value: decimal digit or register (2) - (12).

,TOKEN=addr addr: RX-type address or register (2) - (12).

,XSYS=YES Default: XSYS=YES

,XSYS=NO Note: XSYS=NO is mutually exclusive with TOKEN, QUIT=YES and
SYSNAME, when SYSNAME is not equal to zero or zero and the asid
value(0,asid value). In a global resource serialization ring complex,
XSYS=NO is ignored.

Parameters
The parameters are explained as follows:

AREA=(area addr,area size)
Specifies the location and size of the area where information extracted from the
global resource serialization resource queues is to be placed. The minimum size
is the amount needed to describe a single resource, which is the length of the
fixed portions of the RIB and the maximum size rname rounded up to a
fullword value. IBM recommends that you use a minimum of 1024 bytes as the
area size.

,REQLIM=value

GQSCAN macro

210 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,REQLIM=MAX
Specifies the maximum number of owners and waiters to be returned for each
individual resource within the specification of RESNAME, which can be any
value in the range 0 to 215−1. MAX specifies 215−1 (32767).

,SCOPE=ALL
,SCOPE=STEP
,SCOPE=SYSTEM
,SCOPE=SYSTEMS
,SCOPE=LOCAL
,SCOPE=GLOBAL

Specifies that you want information only for resources having the indicated
scope. STEP, SYSTEM, or SYSTEMS is the scope specified on the resource
request. If you specify SCOPE=ALL (meaning STEP, SYSTEM, and SYSTEMS),
the system returns information for all resources the system recognizes that
have the specified RESNAME, RESERVE, or SYSNAME characteristics. If you
specify SCOPE=LOCAL, information is returned about this system's resources
that are not being shared with other systems in the global resource serialization
complex. If you specify SCOPE=GLOBAL, information is returned about
resources that are being shared with other systems in the global resource
serialization complex. Remember that entries in the resource name lists can
cause the scope to change.

,RESERVE=YES
,RESERVE=NO

If you specify RESERVE=YES, information is only returned for the requestors
of the resource, that requested the resource with the RESERVE macro. If, for
example, the resource also had requestors with the ENQ macro, the ENQ
requestor's information would not be returned for the resource.

RESERVE=NO information is only returned for the requestors of the resource
that requested the resource with the ENQ macro. In other words, if the
resource also had requestors with the RESERVE macro, the RESERVE
requestor's information would not be returned for the resource.

,RESNAME=(qname addr[,rname addr,rname
length],[GENERIC|SPECIFIC],qname length)

RESNAME identifies an individual resource or group of resources that
GQSCAN will examine.

RESNAME with (rname) indicates the name of one resource.

The qname addr specifies the address of the 8-character major name of the
requested resource.

The rname addr specifies the virtual storage address of a 1 to 255-byte minor
name used with the major name to represent a single resource. Information
returned is for a single resource unless you specify SCOPE=ALL, in which case
it could be for three resources (STEP, SYSTEM, and SYSTEMS) or
SCOPE=LOCAL in which case it could be for two resources (STEP and
SYSTEM) if there is a matching name in each of these categories. If the name
specified by rname is defined by an EQU assembler instruction, the rname
length must be specified.

The rname length specifies the length of the minor name. If you use the register
form, specify length in the low-order (rightmost) byte. The length must match
the rname length specified on ENQ or RESERVE.

GQSCAN macro

Chapter 19. GQSCAN — Extract information from global resource serialization queue 211

GENERIC specifies that the rname of the requested resource must match but
only for the length specified. For example, an ENQ for SYS1.PROCLIB would
match the GQSCAN rname specified as SYS1 for an rname length of 4.

SPECIFIC specifies that the rname of the requested resource must exactly match
the GQSCAN rname.

Note: GENERIC and SPECIFIC are mutually exclusive.

The qname length specifies the number of characters in a resource qname that
must match the GQSCAN qname specified by RESNAME. You must specify a
qname length to request a GQSCAN for a generic qname. For example, an ENQ
with a qname of SYSDSN would match a GQSCAN specifying GENERIC with
a qname of SYSD and qname length of 4. Specify zero for the qname length (with
any qname) to request a generic GQSCAN matching any resource qname. If you
do not specify a qname length, GQSCAN uses the default of 8.

,SYSNAME=(sysname addr[,asid value])
Specify SYSNAME to tell GQSCAN to return information for resources
requested by tasks running on the MVS system specified in an 8-byte field
pointed to by the address in sysname address and the asid value, a 4-byte address
space identifier, right justified. Valid SYSNAMEs are specified in the IEASYSxx
parmlib member.

Information returned includes only those resources whose sysname addr and
asid value match the ones specified. SYSNAME=0 or SYSNAME=(0,asid value),
specifies that the system name is that of the system on which GQSCAN is
issued. The system issues return code X’0A’ with a reason code of X’0C’, if
SYSNAME≠0 or SYSNAME≠(0,asid value) is specified with XSYS=NO.

,QUIT=YES
,QUIT=NO

QUIT=NO indicates that you do not want to end the current global resource
serialization queue scan. QUIT=YES tells GQSCAN to stop processing the
current global resource serialization queue scan and release the storage
allocated to accumulate the information specified in the token.

If you specify QUIT=YES, you must specify the TOKEN parameter. If you
specify QUIT=YES without the TOKEN parameter, the system issues abend
X’09A’.

If you specify QUIT=YES without the TOKEN parameter, the system issues
return code X’0A’ with a reason code of X’34’. Specifying QUIT=YES with
TOKEN=0 will result in the system issuing return code X’0A’ with a reason
code of X’2C’.

If you specify QUIT=YES with a token that was previously obtained through
GQSCAN with SCOPE=LOCAL or SCOPE=GLOBAL, your program must be
in supervisor state when it issues GQSCAN with QUIT=YES.

If you specify QUIT=YES with XSYS=NO, the system issues return code X’0A’
with a reason code of X’0C’.

,REQCNT=rcount
Specifies that you want GQSCAN to return resource information only when
the total number of requesters (owners plus waiters) for an individual resource
is greater than or equal to rcount, which can be any value in the range 0 to
231−1.

,OWNERCT=ocount
Specifies that you want GQSCAN to return resource information only when

GQSCAN macro

212 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

the total number of owners for an individual resource is greater than or equal
to ocount, which can be any value in the range 0 to 231−1.

,WAITCNT=wcount
Specifies that you want GQSCAN to return resource information only when
the total number of waiters for an individual resource is greater than or equal
to wcount, which can be any value in the range 0 to 231−1.

OWNERCT=ocount,WAITCNT=wcount
Specifies that you want GQSCAN to return resource information only when
the total number of owners for an individual resource is greater than or equal
to ocount or when the total number of waiters for an individual resource is
greater than or equal to wcount.

,TOKEN=addr
Specifies the address of a fullword of storage that the GQSCAN service routine
can use to provide you with any remaining information in subsequent
invocations. If the token value is zero, the scan starts at the beginning of the
resource queue. If the token value is not zero, the scan resumes at the point
specified on TOKEN. Specify the same token value that GQSCAN returned on
its previous invocation to continue where processing left off on the previous
invocation.

When providing a non-zero token value, you must specify the same scope that
you specified on the GQSCAN request that returned the token.

,XSYS=YES
,XSYS=NO

Specifies whether GQSCAN should be propagated across systems in the global
resource serialization complex, to gather complex-wide information. This
parameter is ignored in a global resource serialization ring complex, and for
requests that only gather local data.

Specify XSYS=YES if the program requires complex-wide global resource
serialization information. The caller might be suspended while the information
is being gathered. Do not specify or default to XSYS=YES if this condition
cannot be tolerated.

Specify XSYS=NO if the program will accept global resource serialization
information from this system only. The RIBE data will contain information
about requestors from other other systems in the complex only if that
information is already available on the GQSCAN caller's system. Otherwise,
RIBE data will be provided only for requests from the GQSCAN caller's
system, and the counts in the RIB will reflect only those requests. This request
is always handled without placing the caller's dispatchable unit into a wait.

ABEND codes
See z/OS MVS System Codes for more information about the abend codes.

Return and reason codes
When GQSCAN returns control, register 15 contains one of the following return
codes:

Table 23. Return codes for the GQSCAN macro
Hexadecimal return
code

Meaning and action

00 Meaning: Queue scan processing is complete. Data is now in the area you specified. There
is no more data to return.
Action: Process the data.

GQSCAN macro

Chapter 19. GQSCAN — Extract information from global resource serialization queue 213

Table 23. Return codes for the GQSCAN macro (continued)
Hexadecimal return
code

Meaning and action

04 Meaning:
Action: Meaning: Queue scan processing is complete. No resources matched your request.

Action: Do not try to process any data; none exists.

08 Meaning: The area you specified was filled before queue scan processing completed.
Action: If you specified TOKEN, process the information in the area and issue GQSCAN
again, specifying the TOKEN returned to you. If you did not specify TOKEN, specify a
larger area or specify a TOKEN.

0A Meaning: The information you specified to GQSCAN is not valid.
Action: Take the action indicated by the following hexadecimal reason code found in
register 0.

Reason code
Meaning

04 The caller attempted to use GQSCAN before the global resource serialization
(GRS) address space was active.

08 The size of the reply area, specified by the AREA parameter, is too small to
contain a resource information block (RIB) of maximum size.

0C You specified mutually exclusive arguments (RESERVE=YES, RESERVE=NO,
RESNAME=, SYSNAME=, or XSYS=NO) to GQSCAN.

10 The caller was holding a local lock other than the GRS local lock when GQSCAN
was invoked.

14 One of the following conditions, in reference to the RESNAME parameter, was
detected by GQSCAN:
v The qname length was specified with a value greater than eight.
v The qname length value was specified without the qname addr value.
v The SPECIFIC parameter was specified with a rname length value of zero.
v The rname or rname length was specified without the qname addr value.

18 The asid value, for the SYSNAME parameter was specified without the sysname
addr value.

1C The REQCNT parameter was specified with either the OWNERCNT or
WAITCNT parameters.

20 The combination of values specified on the SCOPE parameter is not valid.

28 An element in GQSCAN's input parameter list was not in the caller's storage
protect key.

2C An invalid token was specified to GQSCAN.

30 The GQSCAN caller is not authorized to use the restricted interface
(SCOPE=LOCAL or GLOBAL).

34 QUIT=YES was specified without the TOKEN parameter.

38 The caller held a CMS lock other than CMSEQDQ when GQSCAN was invoked.

3C The caller held a lock that violated the environmental restrictions of a service
required by GQSCAN.

40 The caller invoked GQSCAN in the service request block (SRB) mode.

44 The value specified for the REQLIM parameter was not valid.

48 The value specified for the REQCNT parameter was not valid.

4C The value specified for the OWNERCT parameter was not valid.

50 The value specified for the WAITCNT parameter was not valid.

54 The GQSCAN token (TOKEN) is expired.

58 SETROPTS MLACTIVE is in effect, and the program is not authorized to issue
GQSCAN. Ensure the program is running authorized, or is associated with a
userid with at least READ access to the best fit FACILITY class resource profile
of the form ISG.QSCANSERVICES.AUTHORIZATION and that the FACILITY
class is SETROPTS RACLISTed.

GQSCAN macro

214 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

||

Table 23. Return codes for the GQSCAN macro (continued)
Hexadecimal return
code

Meaning and action

0C Meaning: System error. Queue scan encountered an abnormal situation while processing.
The information in your area is not meaningful. The reason code in register 0 contains one
of the following:

Reason code
Meaning

00 GQSCAN has sustained an unrecoverable error.

04 The GQSCAN caller attempted to resume a scan that was started when the
global resource serialization complex, which is now in star mode, was in ring
mode.

08 The GQSCAN service is not able to obtain storage to satisfy the request.

0C Sysplex processing of a SYSTEMS or GLOBAL request failed.

10 The GQSCAN service failed because the complex was migrating from a ring to a
star configuration.

14 The GQSCAN service failed because inconsistent data was returned from one or
more systems.

Action: Do not try to process any data; none exists. Retry the request one or more times.

10 Meaning: Program error. An incorrect SYSNAME was specified as input to queue scan. The
information in your area is not meaningful.
Action: Specify a valid SYSNAME on the call to GQSCAN.

14 Meaning: Environmental error. The area you specified was filled before queue scan
processing completed. Your request specified TOKEN, but the limit for the number of
concurrent resource requests (ENQ, RESERVE, or GQSCAN) has been reached. The
information in your area is valid but incomplete. The scan cannot be resumed.
Action: Retry the request one or more times. If the problem persists, consult your system
programmer, who might be able to tune the system so that the limit is no longer exceeded.

GQSCAN - List form
The list form of the GQSCAN macro is used to construct a non-executable
parameter list. This parameter list, or a copy of it for reentrant programs, can be
referred to by the execute form of the GQSCAN macro.

The list form of the GQSCAN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede GQSCAN.

GQSCAN

� One or more blanks must follow GQSCAN.

AREA=(area addr, area size) area addr: A-type address.

area size: symbol, decimal digit.

Note:

1. This parameter cannot be specified with QUIT=YES.

2. AREA is required on either the list or the execute form of the macro.

GQSCAN macro

Chapter 19. GQSCAN — Extract information from global resource serialization queue 215

Syntax Description

,REQLIM=value value: symbol, decimal digit or the word MAX.

,REQLIM=MAX Default: REQLIM=MAX

,SCOPE=ALL Default: SCOPE=STEP

,SCOPE=STEP

,SCOPE=SYSTEM

,SCOPE=SYSTEMS

,RESERVE=YES Default: All resources requested with RESERVE and all

,RESERVE=NO resources requested with ENQ.

,RESNAME=(qname qname addr: A-type address.

addr [,rname addr, rname addr: A-type address.

rname length], rname length: decimal digit.

[GENERIC|SPECIFIC], Default: assembled length of rname.

qname length) Default: qname length of eight.

,SYSNAME=(sysname addr sysname addr: A-type address.

[,asid value]) asid value: symbol, decimal digit.

Note: rname addr can be provided only when qname addr is used. rname
length must be provided if a register is specified for rname addr. An asid value
can be coded only when the sysname addr is used.

,QUIT=YES Default: QUIT=NO

,QUIT=NO Note: Only TOKEN and MF=L can be specified with QUIT=YES.

,REQCNT=value value: decimal digit.

Default: REQCNT=0

,OWNERCT=value,WAITCNT=

value value: decimal digit.

,OWNERCT=value value: decimal digit.

,WAITCNT=value value: decimal digit.

,TOKEN=addr addr: RX-type address.

,XSYS=YES Default: XSYS=YES

GQSCAN macro

216 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,XSYS=NO Note: XSYS=NO is mutually exclusive with TOKEN, QUIT=YES and
SYSNAME, when SYSNAME is not equal to zero or zero and the asid
value(0,asid value). In a global resource serialization ring complex,
XSYS=NO is ignored.

,MF=L

Parameters
The parameters are explained under the standard form of the GQSCAN macro
with the following exception:

,MF=L
Specifies the list form of the GQSCAN macro.

GQSCAN - Execute form
The execute form of the GQSCAN macro can refer to and modify a remote
parameter list built by the list form of the macro. There are no defaults for any of
the parameters in the execute form of the macro.

The execute form of the GQSCAN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede GQSCAN.

GQSCAN

� One or more blanks must follow GQSCAN.

AREA=(area addr,area size) area addr: RX-type address or register (2) - (12).

area size: symbol, decimal digit, or register (2) - (12).

Note:

1. AREA cannot be specified with QUIT=YES.

2. AREA is required on either the list or the execute form of the macro.

,REQLIM=value value: symbol, decimal digit, register (2) - (12), or the word MAX.

,REQLIM=MAX

,SCOPE=STEP Note: SCOPE=LOCAL and SCOPE=GLOBAL cannot be coded on the list
form of this macro.

,SCOPE=ALL

,SCOPE=SYSTEM

GQSCAN macro

Chapter 19. GQSCAN — Extract information from global resource serialization queue 217

Syntax Description

,SCOPE=SYSTEMS

,SCOPE=LOCAL

,SCOPE=GLOBAL

,RESERVE=YES

,RESERVE=NO

,RESNAME=(qname qname addr: RX-type address or register (2) - (12).

addr[,rname addr, rname addr: RX-type address or register (2) - (12).

rname length], rname length: decimal digit, register (2) - (12). Default: assembled length of
rname.

[GENERIC|SPECIFIC],

qname length)

,SYSNAME=(sysname addr sysname addr: RX-type address or register (2) - (12).

[,asid value] asid value: symbol, decimal digit, or register (2) - (12).

Note: rname addr can be provided only when qname addr is used. rname
length must be provided if a register is specified for rname addr. An asid value
can be coded only when the sysname addr is used.

,QUIT=YES Default: QUIT=NO

,QUIT=NO Note: Only TOKEN and MF=(E, parm list addr) can be specified with
QUIT=YES.

,REQCNT=value value: decimal digit or register (2) - (12).

Default: REQCNT=0

,OWNERCT=value,WAITCNT=
value

value: decimal digit.

,OWNERCT=value value: decimal digit.

,WAITCNT=value value: decimal digit.

,TOKEN=addr addr: RX-type address of register (2) - (12).

,XSYS=YES Default: XSYS=YES

,XSYS=NO Note: XSYS=NO is mutually exclusive with TOKEN, QUIT=YES and
SYSNAME, when SYSNAME is not equal to zero or zero and the asid
value(0,asid value). In a global resource serialization ring complex,
XSYS=NO is ignored.

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

GQSCAN macro

218 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Parameters
The parameters are explained under the standard form of the GQSCAN macro
with the following exception:

,MF=(E,list addr)
Specifies the execute form of the GQSCAN macro.

list addr specifies the area that the system uses to contain the parameters.

GQSCAN macro

Chapter 19. GQSCAN — Extract information from global resource serialization queue 219

GQSCAN macro

220 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 20. GTRACE — GTF trace recording

Description
Use the GTRACE macro to record system or application errors through the
generalized trace facility (GTF). The GTRACE macro provides three separate
functions, depending on the keyword specified:
v GTRACE TEST indicates whether the operator requested a specific user event.
v GTRACE QUERY indicates how much data GTF can store when a program

issues GTRACE DATA.
v GTRACE DATA generates GTF trace records for specific events.

Refer to z/OS MVS Diagnosis: Tools and Service Aids and z/OS V2R2 Problem
Management for information about using GTF.

The following description of the GTRACE macro is divided into three sections, one
for each function of the macro. The TEST and QUERY functions have only one
form each, while the DATA function has standard, list, and execute forms.

GTRACE TEST
The TEST function of the GTRACE macro indicates whether the operator requested
a particular user event in response to the USRP option. The system returns the test
result as a return code in register 15.

By issuing GTRACE TEST and checking the return code, you can determine
whether you need to subsequently issue GTRACE DATA to write the record. If the
return code indicates that tracing has been requested by USRP for the specified
user event, then issue GTRACE DATA.

Issuing GTRACE TEST before issuing GTRACE DATA is not necessary but you
might find it useful to do so if the processing of your code can benefit from
learning whether processing is active for the record type you want to record to the
generalized trace facility (GTF) before requesting to do that recording.

When the operator requests GTF prompting for specific event identifiers with the
USRP option and your program issues GTRACE DATA, the system records the
user trace record only when the event identifier specified on GTRACE DATA was
also requested with the USRP option. However, the TEST function is still
supported for compatibility with existing programs.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No requirement

© Copyright IBM Corp. 1988, 2016 221

Environmental factor Requirement
Control parameters: Must be in the primary address space and all data must

reside in primary address space.

Programming requirements
v Include the CVT and the MCHEAD mapping macros.
v When you code the CVT mapping macro, you must not specify PREFIX=YES.

Restrictions
None.

Input register information
Before issuing the GTRACE TEST macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Unchanged

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

Performance implications
None.

Syntax
The TEST function of the GTRACE macro is coded as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede GTRACE.

GTRACE

� One or more blanks must follow GTRACE.

TEST=YES

GTRACE macro

222 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,ID=id id: Symbol, decimal digit, or hexadecimal number.

Parameters
The parameters are explained as follows:

TEST=YES
Specifies the test function of the GTRACE macro.

,ID=id
Specifies the event ID for the user event that is to be tested. Decimal event IDs
0 through 1023 (X'3FF') are available for user events. You can specify the ID in
decimal or in hexadecimal. Use the expression X'id' to specify a hexadecimal
number.

ABEND codes
None.

Return codes
When GTRACE TEST macro returns control to your program, GPR 15 contains a
return code.

Table 24. Return Codes for the GTRACE TEST Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: Tracing has not been requested by USRP for the specified user event.

Action: Do not issue a GTRACE DATA request to create your trace record for
the specified user event ID.

04 Meaning: Tracing has been requested by USRP for the specified user event.

Action: You may issue a GTRACE DATA request to create your trace record for
the specified user event ID.

GTRACE QUERY
The QUERY function of the GTRACE macro determines how much data GTF will
accept, and returns the value in the variable or register specified with the
MAXLNG parameter. This function is useful when your program must run on
different levels of MVS that accept different amounts of trace data in GTRACE
DATA.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O or external interrupts

GTRACE macro

Chapter 20. GTRACE — GTF trace recording 223

Environmental factor Requirement
Locks: No requirement
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the GTRACE QUERY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-14 Unchanged

15 Zero

Performance implications
None.

Syntax
The QUERY function of the GTRACE macro is coded as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede GTRACE.

GTRACE

� One or more blanks must follow GTRACE.

QUERY

,MAXLNG=addr addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

GTRACE macro

224 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

QUERY
Specifies the query function of the GTRACE macro.

,MAXLNG=addr
Specifies the address in which the maximum amount of GTF data is returned.

ABEND codes
None.

Return codes
The return code from GTRACE QUERY is always zero.

GTRACE DATA
The DATA function of the GTRACE macro records system or problem program
data in the GTF trace buffers. GTRACE DATA can trace up to 8192 bytes of data.

Data is written only if you requested the event qualifier (through the USRP option)
when you started GTF. Therefore, you can issue the GTRACE DATA without
issuing a GTRACE TEST.

In earlier releases, GTRACE DATA writes the record to the GTF data set even if the
record's event ID (EID) is excluded from a USRP list in the GTF trace options.
Therefore, you need to issue a GTRACE TEST before you issue GTRACE DATA to
determine if data is to be collected for the event qualifier.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN; all data and parameters

must reside in the home address space.
AMODE: 24- or 31- or 64-bit. The caller must be in 31-bit mode for

GTRACE to record data above 16 megabytes.
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No requirement
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the GTRACE DATA macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

GTRACE macro

Chapter 20. GTRACE — GTF trace recording 225

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Unchanged

1 Used as a work register by the system

2-14 Unchanged

15 Return code

Performance implications
None.

Syntax
The standard form of the DATA function of the GTRACE macro is coded as
follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede GTRACE.

GTRACE

� One or more blanks must follow GTRACE.

DATA=addr addr: RX address or register (2) - (12).

DATA64=addr

,LNG=nbr nbr: Symbol, decimal number, hexadecimal number, or register (2) - (12).

,ID=id id: Symbol, decimal number, or hexadecimal number.

,FID=fidname fidname: Symbol, decimal number, hexadecimal number, or register (2) - (12).

,PAGEIN=NO Default: PAGEIN=NO

,PAGEIN=YES

Parameters
The parameters are explained as follows:

DATA=addr

GTRACE macro

226 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

DATA64=addr
Specifies the virtual storage address of the data that is to be recorded.

Note: DATA64 can be specified only when running in 64-bit address mode
(AMODE).

,LNG=nbr
Specifies the number of data bytes (1 through 8192) to be recorded from the
address specified by the DATA parameter. You can specify the number in
decimal or in hexadecimal. If the number is hexadecimal, use the expression
X'nbr' to specify the number.

Note: When you specify LNG, the trace record contains the number of bytes
that you specify plus 12 bytes, which is the size of the trace record header. The
header consists of a 4-byte ASCB address followed by an 8-byte jobname.
Thus, if you specify LNG=8192, the trace record has 8204 (8192+12) bytes.

,ID=id
Specifies the event ID that is to be recorded with the data bytes. Decimal event
ids 0 through 1023 (X'3FF') are available for user events. You can specify the ID
in decimal or in hexadecimal. Use the expression X'id' to specify a hexadecimal
number.

,FID=fidname
Specifies the format appendage that controls the formatting of this record.
Formatting occurs when the trace output is processed by GTF trace. The
format appendage name is formed by appending the 2-digit FID value to the
names AMDUSR, HMDUSR, and IMDUSR. Assign FID values as follows:

X'00' The record is to be dumped in hexadecimal.

X'01' to X'50'
The record contains user format identifiers.

Note: If you code FID without any fidname, or if you omit the FID parameter,
the system supplies a default fidname of zero.

,PAGEIN=NO
,PAGEIN=YES

Specifies that paged-out user data is to be processed (YES) or not to be
processed (NO). To ensure that all user data is traced, specify YES.

ABEND codes
None.

Return codes
When GTRACE DATA macro returns control to your program, GPR 15 contains a
return code.

Table 25. Return Codes for the GTRACE DATA Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: GTF is active. The data was recorded in GTF trace buffers.

Action: None.

04 Meaning: GTF is not active or not active for this particular event ID. No data
was recorded.

Action: None.

GTRACE macro

Chapter 20. GTRACE — GTF trace recording 227

Table 25. Return Codes for the GTRACE DATA Macro (continued)

Hexadecimal
Return Code

Meaning and Action

08 Meaning: Program error. The value of the LNG keyword is not valid. It must be
a number from 1 through 8192. No data was recorded.

Action: Reissue the macro, specifying a valid amount of trace data to be
recorded.

0C Meaning: Program error. The value of the DATA keyword is not valid. It does
not represent an area of storage that the calling program can refer to. No data
was recorded.

Action: Correct the problem and reissue the macro.

10 Meaning: Program error. The value of the FID keyword is not valid. It must be a
number from X'0' through X'FF'. No data was recorded.

Action: Correct the problem and reissue the macro.

18 Meaning: Environmental condition. All GTF buffers are full. No data was
recorded.

Action: None.

1C Meaning: Program error. The address of the parameter list for GTF is not valid.
The parameter list is not in storage that the caller can refer to, or its format is
not valid. No data was recorded.

Action: Correct the problem and reissue the macro.

20 Meaning: Program error. Some of the data to be recorded was paged out. No
data was recorded. This return code is not valid with PAGEIN=YES.

Action: Page-fix the storage containing the data to be recorded or modify the
macro invocation to specify the PAGEIN=YES option.

Example
Use GTRACE to record 200 bytes of user data plus 12 bytes for the trace record
header. The user data is found at symbolic address AREA. Use an event identifier
of 37. Use the formatting appendage named IMDUSR40 to control the formatting.
GTRACE DATA=AREA,LNG=200,ID=37,FID=X’40’

GTRACE DATA - List form
Use the list form of the GTRACE DATA macro together with the execute form of
the macro for applications that require reentrant code. The list form of the macro
defines an area of storage that the execute form of the macro uses to store the
parameters.

The list form of the GTRACE parameter list must reside below the bar.

Syntax
The list form of the DATA function of the GTRACE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede GTRACE.

GTRACE macro

228 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

GTRACE

� One or more blanks must follow GTRACE.

DATA=addr addr: A-type address or register (2) - (12).

DATA64=addr

,LNG=nbr nbr: Symbol, decimal number, hexadecimal number, or register (2) - (12).

,FID=fidname fidname: Symbol, decimal number, hexadecimal number, or register (2) - (12).

,MF=L

Parameters
The parameters are described under the standard form of the GTRACE DATA
macro, with the following exception:

,MF=L
Specifies the list form of the GTRACE DATA macro.

GTRACE DATA - Execute form
Use the execute form of the GTRACE DATA macro together with the list form of
the macro for applications that require reentrant code. The execute form of the
macro stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the DATA function of the GTRACE macro is written as
follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede GTRACE.

GTRACE

� One or more blanks must follow GTRACE.

DATA=addr addr: RX address or register (2) - (12).

DATA64=addr

GTRACE macro

Chapter 20. GTRACE — GTF trace recording 229

Syntax Description

,LNG=nbr nbr: Symbol, decimal number, hexadecimal number, or register (2) - (12).

,ID=id id: Symbol, decimal number, or hexadecimal number.

,FID=fidname fidname: Symbol, decimal number, hexadecimal number, or register (2) - (12).
Note: If you omit the FID parameter on the execute form of GTRACE, the
FID value defaults to zero. This default overlays the FID value that you
specify on the list form of GTRACE. If you want the system to obtain the
FID value from the remote problem-program parameter list, then you must
specify the FID parameter as a null value by coding FID= without any
fidname.

,PAGEIN=NO Default: PAGEIN=NO

,PAGEIN=YES

,MF=(E,parm list addr) parm list addr: A-type address or register (2) - (12).

Parameters
The parameters are described under the standard form of the GTRACE DATA
macro, with the following exception:

,MF=(E,parm list addr)
Specifies the execute form of the GTRACE DATA macro using a remote
problem-program parameter list.

GTRACE macro

230 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 21. HISMT — HIS multithreading service

Description
HISMT provides an interface to retrieve multithreading metrics at different
granularity levels between the caller's current and previous HISMT invocations.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state. PSW key 0.
Dispatchable unit mode: Task or SRB mode.
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 31-bit.
ASC mode: Primary.
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: Locks may be held.
Control parameters: Control parameters and the save area must be addressable

from the primary address space and must be in DREF/fixed
storage.

Programming requirements
There must be at least 1 second between HISMT invocations for the same interval
area.

The service can be invoked in any multithreading mode, including a
multithreading mode of 1. The multithreading mode of a processor class is the
number of active threads per core for a processor class. The multithreading mode
for each processor class can be set via the IEAOPTxx parmlib member.

The caller must include the HISYMT macro to get a mapping of the interval area
(INTVAREA) and constants for the return and reason codes.

HISMT exploiters may register as a listener for ENF 20 (System Information) and if
a primary or secondary CPU speeds have changed, invoke HISMT to end the
HISMT interval. The current CPU speeds are available in SI22V1PrimaryCPUSpeed
and SI22V1SecondaryCPUSpeed fields of the STSI (see macro CSRSIIDF). When the
core speed changes during the HISMT interval, HISMT will return a warning
reason code HisMT_kRsnWarn_ConfigChanged to inform users of questionable
HISMT metrics due to the core state changing during the interval. See field
HisMT_Hdr_Flags in the interval area header for what has changed.

The multithreading metrics requested through the HISMT service must be the
same on each call for the same interval area (INTVAREA). The size of the interval
area (INTVAREALEN) depends on the multithreading metrics requested, machine,
and configuration. To allocate a sufficiently large interval area, you must adhere to
the following protocol:
1. Obtaining sufficient storage:

© Copyright IBM Corp. 1988, 2016 231

a. As part of initialization, invoke the HISMT service with the requested
metrics and pass an interval area that is the minimum interval area length,
HisMT_Hdr_kLength. (See INTVAREA parameter for requirements on the
first call for a new interval area)

b. The service will likely complete with a return code HisMT_kRetWarn and
reason code HisMT_kRsnWarn_IntvAreaSmall.

c. Using the HisMT_Hdr_LengthRequired field in the interval area returned by
the HISMT service, allocate a new interval area that is at least
HisMT_Hdr_LengthRequired bytes long.

2. Making the first HISMT call with the new interval area:
a. Invoke the HISMT service with the same requested multithreading metrics

passing the newly allocated interval area that is at least
HisMT_Hdr_LengthRequired bytes long. (See INTVAREA parameter for
requirements on the first call for a new interval area)

b. The service will likely complete with a return code HisMT_kRetOk. The
first HISMT invocation for a new interval area marks the start of the first
HISMT interval. The requested HISMT metrics will not be returned in the
new interval area for the first call. Each metric will contain
HisMT_Entry_kNoData since the system is unable to calculate the metrics
on the very first call. (See Step 3 of the protocol below for instructions on
getting the requested HISMT metrics in the interval area)

3. Making a subsequent HISMT call with the previous interval area:
a. Invoke the HISMT service with the same requested multithreading metrics

passing the interval area from the previous invocation, unchanged.
b. The service will likely complete with a return code HisMT_kRetOk. This

invocation marks the end of the current HISMT interval and the start of the
next HISMT interval. The requested HISMT metrics will be returned in the
interval area for the current interval (the time between the previous HISMT
invocation and this HISMT invocation). The HISMT interval area has
descriptors for each requested metric that contain information on how to
locate and process each array of metric values. For all requested metrics,
these descriptors contain the offset to the first element in the array of metric
values, the number of elements in the array, and the size each value in the
metric array. See macro HISYMT for more information.

For example, with multithreading, to calculate how much single thread capacity an
MT=2 core of a particular processor class can deliver for the current workload over
an interval for this workload, calculate:
interval × Procclass Max Capacity Factor / HisMT_Entry_kMetricFactor

(Assembler programs can shift right by HisMT_Entry_kMetricShift bits for the
division.)

Input register information
Before issuing the HISMT macro, the caller must ensure that the following general
purpose register (GPR) contains the specified information.

GPR Contents

13 The address of a 144-byte F4SA format save area in the primary address
space

HISMT macro

232 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Before issuing the HISMT macro, the caller does not have to place any information
into any general purpose register (GPR) unless using it in register notation for a
particular parameter, or using it as a base register.

Before issuing the HISMT macro, the caller does not have to place any information
into any access register (AR).

Output register information
When control returns to the caller, the GPRs contain:

GPR Contents

0 Reason code if GPR15 is not 0

1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The HISMT macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede HISMT.

HISMT

� One or more blanks must follow HISMT.

INTVAREA=xintvarea

HISMT macro

Chapter 21. HISMT — HIS multithreading service 233

Syntax Description

,INTVAREALEN=xintvarealen

,AVGTDCLASS=NO Default: AVGTDCLASS=NO

,AVGTDCLASS=YES

,CAPCLASS=NO Default: CAPCLASS=NO

,CAPCLASS=YES

,COREBUSYTIME=NO Default: COREBUSYTIME=NO

,COREBUSYTIME=YES

,MAXCAPCLASS=NO Default: MAXCAPCLASS=NO

,MAXCAPCLASS=YES

,PRODCLASS=NO Default: PRODCLASS=NO

,PRODCLASS=YES

,PRODCORE=NO Default: PRODCORE=NO

,PRODCORE=YES

,RETCODE=retcode retcode: RS-type address or register (2) - (12) or (15), (GPR15),

,RSNCODE=rsncode rsncode: RS-type address or register (0) or (2) - (12), (00), (GPR

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

HISMT macro

234 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

name
An optional symbol, starting in column 1, that is the name on the HISMT
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

INTVAREA=xintvarea
is the name (RS-type), or address in register (2) - (12), of a required character
input/output that contains the interval area. It must be in DREF or fixed
storage. Note that the interval area must start and end on a double word
boundary. The size of the interval area depends on the MT metrics requested,
machine, and configuration. If this is the first HISMT request for a new
interval area, the first byte of the interval area must contain binary zeroes. If
this is a subsequent HISMT request, pass the interval area that was returned
by the previous HISMT invocation, unchanged. Macro HISYMT contains the
mapping of the interval area. The minimum amount of storage required for the
request is HisMT_Hdr_kLength. See “Programming requirements” on page 231
for the protocol for passing an interval area that is long enough to
accommodate the request.

,INTVAREALEN=xintvarealen
is the name (RS-type), or address in register (2) - (12), of a required fullword
input that contains the length of the provided interval area. The minimum
INTVAREALEN required for the request is HisMT_Hdr_kLength. Note that the
interval area length must be a multiple of 8 bytes.

,AVGTDCLASS=NO
,AVGTDCLASS=YES

Indicates whether Average Thread Density must be returned by processor class
granularity and can be located using HisMT_Hdr_AvgTDClass_Desc. Average
Thread Density is the average number of active threads for active cores
(dispatched to physical hardware) within a processor class. If the system
cannot calculate this value, the value will contain HisMT_Entry_kNoData. For
example, the AVGTDCLASS will contain HisMt_Entry_kNoData when there
are no cores defined in a processor class, when all cores are offline in a
processor class, when all cores in a processor class change ONLINE/OFFLINE
status during an HISMT interval or when no cores in a processor class were
dispatched to physical hardware.

The default is AVGTDCLASS=NO.

,AVGTDCLASS=NO
Average thread density is not needed for any processor class.

,AVGTDCLASS=YES
Average thread density is needed for each processor class.

,CAPCLASS=NO
,CAPCLASS=YES

Indicates whether multithreading capacity factor metrics must be returned by
processor class granularity and can be located using
HisMT_Hdr_CapClass_Desc. Each metric is calculated for the current
multithreading mode while the cores are dispatched to physical hardware. If
the system cannot calculate this metric, the metric will contain
HisMT_Entry_kNoData. For example, the CAPCLASS metric will contain
HisMt_Entry_kNoData when there are no cores defined in a processor class.

The multithreading capacity factor is a metric that represents a ratio of how
much work was accomplished at the current multithreading mode to the
amount of work (for the same workload) that could have been accomplished
while running with a multithreading mode of 1. For a multithreading mode of

HISMT macro

Chapter 21. HISMT — HIS multithreading service 235

1, a processor class will achieve a capacity factor ratio of 1.0 (100%) because
whenever cores are dispatched to physical hardware, they are executing as
much work as possible. For example, if the multithreading mode was greater
than 1 (100%) and the MT capacity factor was 1.3 (130%), it means for the
workload running, the cores were able to accomplish 1.3 times (or 130%) the
work than the processor class running with a multithreading mode of 1 would
have accomplished for the same workload.

The default is CAPCLASS=NO

,CAPCLASS=NO
Multithreading capacity factor metric is not needed for any processor class.

,CAPCLASS=YES
Multithreading capacity factor metric is needed for each processor class.

,COREBUSYTIME=NO
,COREBUSYTIME=YES

Indicates whether core busy time must be returned by core granularity and can
be located using HisMT_Hdr_CoreBusyTime_Desc.

Core busy time is the amount of time (in milliseconds) a logical core was
dispatched to a physical core over some interval. If the system cannot calculate
this value, the value will contain HisMT_Entry_kNoData. For example, the
COREBUSYTIME will contain HisMt_Entry_kNoData for an undefined core.

The default is COREBUSYTIME=NO

,COREBUSYTIME=NO
Core busy time is not needed for any core.

,COREBUSYTIME=YES
Core busy time is needed for each core.

,MAXCAPCLASS=NO
,MAXCAPCLASS=YES

Indicates whether multithreading maximum capacity factor metrics must be
returned by processor class granularity and can be located using
HisMT_Hdr_MaxCapClass_Desc. Each metric is calculated for the current
multithreading mode while the cores are dispatched to physical hardware. If
the system cannot calculate this metric, the metric will contain
HisMT_Entry_kNoData. For example, the MAXCAPCLASS metric will contain
HisMt_Entry_kNoData when there are no cores defined in a processor class.

Multithreading max capacity factor is a metric that represents a ratio of the
maximum amount of work that can be accomplished using all active threads at
the current multithreading mode to the amount of work (for the same
workload) that would have been accomplished while running with a
multithreading mode of 1. For a multithreading mode of 1, a processor class
will achieve a max capacity factor ratio of 1.0 (100%) because whenever cores
are dispatched to physical hardware, they are executing the maximum amount
of work as possible. For example, if the multithreading mode is greater than 1
and the multithreading max capacity factor was 1.4 (140%), it means that if the
processor class was able to achieve a productivity ratio of 1.0, then the
workload running would be able to accomplish 1.4 times (140%) the work a
processor class running with a multithreading mode of 1 would have
accomplished for the same workload.

The default is MAXCAPCLASS=NO

HISMT macro

236 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,MAXCAPCLASS=NO
Multithreading max capacity factor metric is not needed for any processor
class.

,MAXCAPCLASS=YES
Multithreading max capacity factor metric is needed for each processor
class.

,PRODCLASS=NO
,PRODCLASS=YES

Indicates whether multithreading productivity metrics must be returned by
processor class granularity and can be located using
HisMT_Hdr_ProdClass_Desc. Each metric is calculated for the current
multithreading mode while the cores are dispatched to physical hardware. If
the system cannot calculate this metric, the metric will contain
HisMT_Entry_kNoData. For example, the PRODCLASS metric will contain
HisMt_Entry_kNoData when there are no cores defined in a processor class.

Multithreading productivity is a metric that represents a ratio of how much
work was accomplished to the maximum amount of work that could have
been accomplished. For a multithreading mode of 1, a processor class will
achieve a productivity ratio of 1.0 (100%) because whenever cores are
dispatched to physical hardware, they are executing as much work as possible.
For example, if the multithreading mode is greater than 1 and the productivity
ratio is 0.93 (93%), it means the active threads on all cores accomplished 93%
of the work that could have been accomplished while dispatched to physical
hardware. Typically, when the multithreading productivity is less than 1.0
(<100%), it is because there were times when the cores were dispatched to
physical hardware and one or more threads on those cores were in a wait state
because they had no work to run.

The default is PRODCLASS=NO

,PRODCLASS=NO
Multithreading productivity metric is not needed for any processor class.

,PRODCLASS=YES
Multithreading productivity metric is needed for each processor class.

,PRODCORE=NO
,PRODCORE=YES

Indicates whether multithreading productivity metrics must be returned by
core granularity and can be located using HisMT_Hdr_ProdCore_Desc. Each
metric is calculated for the current multithreading mode while the cores are
dispatched to physical hardware. If the system cannot calculate this metric, the
metric will contain HisMT_Entry_kNoData. For example, the PRODCORE
metric will contain HisMt_Entry_kNoData for an undefined or offline core.

See the PRODCLASS keyword for information about multithreading
productivity.

The default is PRODCORE=NO

,PRODCORE=NO
Multithreading productivity metric is not needed for any core.

,PRODCORE=YES
Multithreading productivity metric is needed for each core.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from

HISMT macro

Chapter 21. HISMT — HIS multithreading service 237

GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12) or
(15), (GPR15), (REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2) -
(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
PLISTVER is the only key allowed on the list form of MF and determines
which parameter list is generated. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The

HISMT macro

238 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1) - (12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
When the HISMT macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro HISYSERV provides equate symbols for the return and reason codes. Note
carefully that bits 0 - 15 of the reason code may contain component diagnostic data
and must not be assumed to be 0.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 26. Return and reason codes for the HISMT macro

Return code Reason code Equate symbol, meaning, and action

0 – Equate Symbol: HisMT_kRetOk

Meaning: HISMT request successful.

Action: Processing continues.

4 – Equate Symbol: HisMT_kRetWarn

Meaning: Warning

Action: Refer to the action provided with the specific reason code.

HISMT macro

Chapter 21. HISMT — HIS multithreading service 239

Table 26. Return and reason codes for the HISMT macro (continued)

Return code Reason code Equate symbol, meaning, and action

4 xxxx0401 Equate Symbol: HisMT_kRsnWarn_IntvAreaSmall

Meaning: The interval area provided was large enough to hold
the minimum amount of data required for the request, but not
large enough to hold all of the data requested.

Action: Obtain a larger interval area using the
HisMT_Hdr_LengthRequired field returned in the request's
INTVAREA. Then call the service with the newly allocated
interval area. (See “Programming requirements” on page 231 for
the protocol for passing a new interval area that is at least
HisMT_Hdr_LengthRequired bytes long)

4 xxxx0402 Equate Symbol: HisMT_kRsnWarn_ConfigChanged

Meaning: The system configuration was changed during the
interval between the last HISMT call and the current HISMT call.
The metric values returned in the interval area is questionable
since the configuration was not consistent during the interval. See
field HisMT_Hdr_Flags in the interval area header for what has
changed.

Action: The metric values returned from this call can be ignored.

8 – Equate Symbol: HisMT_kRetUser

Meaning: HISMT request failed due to a user error.

Action: Refer to the action provided with the specific reason code

8 xxxx0801 Equate Symbol: HisMT_kRsnUser_InvVersion

Meaning: The version for the parameter list specified is not valid.

Action: Check for possible storage overlay.

8 xxxx0802 Equate Symbol: HisMT_kRsnUser_InconsistentIntvArea

Meaning: The HISMT call for this interval does not match the
previous HISMT call for the provided interval area.

Action: If this is the first invocation for this interval area, follow
the protocol described in “Programming requirements” on page
231 to provide an interval area. If this is a subsequent call to
HISMT for the interval area, make sure all subsequent calls to
HISMT with that interval area request the same MT metrics.

8 xxxx0803 Equate Symbol: HisMT_kRsnUser_IntvLenTooSmall

Meaning: The interval area is less than HisMT_Hdr_kLength
bytes.

Action: Ensure the interval area length and the storage provided
for the interval area is at least HisMT_Hdr_kLength bytes long.
(See “Programming requirements” on page 231 for the protocol
for obtaining big enough storage to contain the requested MT
metrics)

HISMT macro

240 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 26. Return and reason codes for the HISMT macro (continued)

Return code Reason code Equate symbol, meaning, and action

8 xxxx0804 Equate Symbol: HisMT_kRsnUser_UnknownDataInIntvArea

Meaning: The interval area for this HISMT call contains some
unexpected data. A storage overlay may have occurred.

Action: Issue HISMT request with a new interval area.

8 xxxx0805 Equate Symbol: HisMT_kRsnUser_IntvAreaNotAligned

Meaning: The interval area provided for this HISMT call is not on
a doubleword boundary.

Action: Make sure that the interval area is on a doubleword
boundary.

8 xxxx0806 Equate Symbol: HisMT_kRsnUser_IntvLenNot8ByteMultiple

Meaning: The interval area length provided for this HISMT call is
not a multiple of 8-bytes.

Action: Provide an interval area whose length is an 8-byte
multiple.

8 xxxx0807 Equate Symbol: HisMT_kRsnUser_UnknownEyeCatcher

Meaning: The eye catcher in the interval area for this HISMT call
is unexpected. A storage overlay may have occurred.

Action: Issue a HISMT request with a new interval area. The first
byte must contain binary zeroes.

10 – Equate Symbol: HisMT_kRetUnknown

Meaning: Unexpected failure.

Action: Refer to the action provided with the specific reason code.

10 xxxx1001 Equate Symbol: HisMT_kRsnUnknown_Unknown

Meaning: Unexpected failure. The state of the request is
unpredictable.

Action: Contact your system programmer.

Example
Operation

Requesting CAPCLASS, MAXCAPCLASS, PRODCLASS and PRODCORE metrics
with HISMT:
1. Invoke HISMT with the requested metrics and pass an interval area that is the

minimum interval area length, HisMT_Hdr_kLength.
2. Use the HisMT_Hdr_LengthRequired field in the interval area returned by the

HISMT service and, allocate a new interval area that is at least
HisMT_Hdr_LengthRequired bytes long.

3. Invoke HISMT for the first time with the requested metrics and pass the new
interval area with sufficient storage.

4. Invoke HISMT for a subsequent call with the same requested metrics and pass
the interval area from the previous invocation, unchanged. The requested
HISMT metrics will be returned in the interval area for the current interval.

HISMT macro

Chapter 21. HISMT — HIS multithreading service 241

The code is as follows:
**
* Invoke the HISMT service with the requested metrics and pass *
* an interval area that is the minimum interval area length, *
* HisMT_Hdr_kLength. *
* Note: *
* On the first call, the first byte of the interval area *
* (HisMT_Hdr_EyeCatcherFirstChar) must contain binary zeroes *
**

LA R8,LHisMT_Header
Using HisMT_Hdr,R8
MVI HisMT_Hdr_EyeCatcherFirstChar,X’00’
HISMT MF=(E,serviceList),INTVAREA=LHisMT_Header, X

INTVAREALEN=HisMT_Hdr_kLength, X
PRODCLASS=YES,PRODCORE=YES, X
MAXCAPCLASS=YES,CAPCLASS=YES, X
RETCODE=LRetCode,RSNCODE=LRsnCode

**
* Check return and reason code. *
* If HISMT requests a larger area, save required length. *
* Obtain new storage with required length (code not shown) *
**

LHI R2,HisMT_kRetWarn
L R3,LRetCode
CLR R2,R3
JNE INTVAREA_UNEXP
LHI R4,HisMT_kRsnWarn_IntvAreaSmall
L R5,LRsnCode
CLR R4,R5
JE INTVAREA_WARN

INTVAREA_UNEXP DS 0H
*
* Place code to handle unexpected return/reason codes here
*

INTVAREA_WARN DS 0H
L R7,HisMT_Hdr_LengthRequired

*
* Place code to obtain storage of length HISMT_HDR_LENGTHREQUIRED and
* save address in R8
*

**
* Invoke the HISMT service with the requested metrics and pass *
* an interval area that is the required interval area length, *
* HISMT_HDR_LENGTHREQUIRED. Save required interval area length *
* in LHisMT_INTVAREA_LEN *
* Note: *
* On the first call, the first byte of the interval area *
* (HisMT_Hdr_EyeCatcherFirstChar) must contain binary zeroes *
**

ST R7,LHisMT_INTVAREA_LEN
Using HisMT_Hdr,R8
MVI HisMT_Hdr_EyeCatcherFirstChar,X’00’

EVN_LOOP DS 0H
HISMT MF=(E,serviceList),INTVAREA=HisMT_Hdr, X

INTVAREALEN=LHisMT_INTVAREA_LEN, X
PRODCLASS=YES,PRODCORE=YES, X
MAXCAPCLASS=YES,CAPCLASS=YES, X
RETCODE=LRetCode,RSNCODE=LRsnCode

*
* Place code to check return/reason codes here

HISMT macro

242 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

*

**
* On a subsequent HISMT call, invoke the HISMT service *
* with the same requested MT metrics passing the interval area *
* from the previous invocation, unchanged. *
**
*
* For a subsequent HISMT call, place code to process the returned metrics
* for the current interval here
*

J EVN_LOOP

DynArea DSECT
LRetCode DS F
LRsnCode DS F
LHisMT_Header DS CL(HisMT_Hdr_kLength)
LHisMT_INTVAREA_LEN DS F

HISMT MF=(L,serviceList)

POP USING
HISYMT

HISMT macro

Chapter 21. HISMT — HIS multithreading service 243

HISMT macro

244 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 22. HISSERV macro — HISSERV Service

Description
HISSERV provides an interface to begin profiling and retrieve instrumentation data
from the system. There are currently two types of instrumentation data:

Events
Events are recorded at the CPU or core level. As events occur, they are
captured and recorded, to be queried at any interval determined by
software. Events are grouped into event types, which can be enabled and
disabled independently of each other.

Sampling
At predetermined intervals, a sample representing the current state of a
CPU is stored into a Sampling Data Buffer (SDBs). As SDBs are filled
software is notified allowing the software to process the full SDBs. The
SDBs are then cleared to be reused by the hardware. There are different
sampling types that can be enabled and disabled independently of each
other, however a profiler can only indicate its intention to receive sampling
data. The sampling frequency, as well as which sampling types are enabled
are determined by the service parameters specified on a F hisproc,SERVICE
command.

Specifically, with HISSERV you can do the following:
v Query for event info such as determining which events and event types are

available. (REQUEST=QUERY,TYPE=EVENT).
v Query for sampling info such as the sampling interval and which sampling

types are available. (REQUEST=QUERY,TYPE=SAMPLE).
v Query for statistics of whomever is currently profiling the system.

(REQUEST=QUERY,TYPE=PROFILERS).
v Begin profiling the system, indicating to the system the intention of collecting

one or more event types and/or sampling data. Requests that require a
PROFILETKN must first use this to identify itself as wanting to profile the
system. (REQUEST=PROFILE,ACTION=START)

v Stop profiling the system. The PROFILETKN is no longer useable and when the
last profiler stops profiling the system, any unnecessary resources are released.
(REQUEST=PROFILE,ACTION=STOP)

v Query for event data provided by the service. Requires a PROFILETKN.
(REQUEST=QUERY,TYPE=EVENTDATA).

The HISSERV service is only enabled when the HIS address space has been
initialized. The dynamic exit HIS.SERVSTAT can be used to be notified when the
service has been enabled or disabled.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0-7
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN

© Copyright IBM Corp. 1988, 2016 245

Environmental factor Requirement
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be holding any locks.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

The user-provided answer area (via the ANSAREA
parameter) has the same requirements and restrictions as the
control parameters.

The user-provided CPU or core bitmask (via the CPUMASK
parameter) has the same requirements and restrictions as the
control parameters.

Programming Requirements
The caller should include the HISYSERV macro to get equate symbols for the
return and reason codes.

The caller must include the HISYSERV macro to get a mapping of the output area
provided via the ANSAREA parameter for REQUEST=QUERY.

The caller must include the HISYEXIT macro to get a mapping of the parameter
area passed to the exit routine specified by the EXITRTN parameter for
REQUEST=PROFILE,ACTION=START requests.

The caller must include the HISYSMPX macro to get a mapping of the parameter
area passed to the exit routine specified by the EXITRTN parameter for
REQUEST=PROFILE,ACTION=START requests, when the profiler requests
sampling data (SAMPLE=YES).

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input Register Information
Before issuing the HISSERV macro, the caller does not have to place any
information into any general purpose register (GPR) unless using it in register
notation for a particular parameter, or using it as a base register.

Before issuing the HISSERV macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

1 Used as work registers by the system

HISSERV macro

246 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance Implications
None.

Syntax
The HISSERV macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede HISSERV.

HISSERV

� One or more blanks must follow HISSERV.

REQUEST=PROFILE

REQUEST=QUERY

,ACTION=START

,ACTION=STOP

,OUTPROFILETKN=outprofiletkn outprofiletkn: RS-type address or address in register (2) - (12)

,EVENT=event event: RS-type address or address in register (2) - (12)

,EVENT=NO_EVENT Default: EVENT=NO_EVENT

,SAMPLE=NO Default: SAMPLE=NO

HISSERV macro

Chapter 22. HISSERV macro — HISSERV Service 247

Syntax Description

,SAMPLE=YES

,NAME=name name: RS-type address or address in register (2) - (12)

,EXITRTN=exitrtn exitrtn: RS-type address or address in register (2) - (12)

,PROFILETKN=profiletkn profiletkn: RS-type address or address in register (2) - (12)

,ANSAREA=ansarea ansarea: RS-type address or address in register (2) - (12)

,ANSLEN=anslen anslen: RS-type address or address in register (2) - (12)

,TYPE=EVENTDATA

,TYPE=EVENT

,TYPE=SAMPLE

,TYPE=PROFILERS

,PROFILETKN=profiletkn profiletkn: RS-type address or address in register (2) - (12)

,CPUMASK=cpumask cpumask: RS-type address or address in register (2) - (12)

,CPUMASK=ALL Default: CPUMASK=ALL

,RETCODE=retcode retcode: RS-type address or register (2) - (12) or (15), (GPR15),

,RSNCODE=rsncode rsncode: RS-type address or register (0) or (2) - (12), (00), (GPR

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

HISSERV macro

248 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

name
An optional symbol, starting in column 1, that is the name on the HISSERV
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=PROFILE
REQUEST=QUERY

A required parameter, used to indicate the type of request.

REQUEST=PROFILE
indicates the intention to start or stop profiling the system.

REQUEST=QUERY
indicates to query the service.

,ACTION=START
,ACTION=STOP

When REQUEST=PROFILE is specified, a required parameter, used to indicate
the profiling action to take. Note that a PROFILE action cannot be requested
from within a profiler's exit routine, nor should it be requested from a work
unit holding a resource required by a profiler's exit routine.

,ACTION=START
indicates to start profiling the system.

,ACTION=STOP
indicates to stop profiling the system. When profiling for sampling data,
the exit routine specified by EXITRTN will receive a final sampling related
callback, with the HisSmpParmFlgs_Last flag on, for each CPU that is
currently sampling. Note this service call will not return until after the
EXITRTN has handled every CPU's final sampling callback. If no more
profilers are profiling the system, all resources associated with profiling
will be released.

,OUTPROFILETKN=outprofiletkn
When ACTION=START and REQUEST=PROFILE are specified, a required
output parameter, into which the unique profiler token to identify this profiler
will be returned. If this is the first profiler of the system, resources associated
with profiling will be obtained and held until the last profiler stops profiling
the system.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,EVENT=event
,EVENT=NO_EVENT

When ACTION=START and REQUEST=PROFILE are specified, an optional
input parameter, which should contain the event types to profile. When
querying the event data, only the event types specified when starting to
PROFILE the system will be returned. If the event types are not authorized at
the time of the PROFILE request the request will be remembered. Later if the
system becomes authorized for that event type, it will be returned in any
subsequent event data query. The storage is mapped by HisEvnTyp in macro
HISYSERV and must be a subset of the event type data returned in
HisEvn_ValidEvnTyp, which is returned in the
REQUEST=QUERY,TYPE=EVENT request. If EVENT=NO_EVENT or the
storage passed in is binary zeroes, the profiler will not be able to query for
event data. The default is NO_EVENT.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit
field.

HISSERV macro

Chapter 22. HISSERV macro — HISSERV Service 249

,SAMPLE=NO
,SAMPLE=YES

When ACTION=START and REQUEST=PROFILE are specified, an optional
parameter, which is used to determine whether to receive callbacks with
sampling data. When SAMPLE=YES, the exit routine defined in the EXITRTN
parameter will be called as Sampling Data Blocks (SDBs) become available If
sampling is not authorized at the time of the PROFILE request the request will
be remembered. Later if the system becomes authorized for sampling, it will
begin providing sampling data. The types of sampling entries returned by the
service is dependent on the configuration of the service by the SAMPTYPE
parameter from the most recent F HIS,SERVICE or F HIS,BEGIN command.
The default is SAMPLE=NO.

,SAMPLE=NO
Do not receive callbacks with sampling data.

,SAMPLE=YES
Receive callbacks with sampling data.

,NAME=name
When ACTION=START and REQUEST=PROFILE are specified, a required
input parameter, which should contain the unique name identifying this
profiler. The name should use EBCDIC characters from among the set of
alphanumerics. The NAME will be returned in any QUERY,TYPE=PROFILE
queries to identify this profiler. This name will also be displayed as output
from the D HIS command. The NAME specified should be one that easily
identifies the product requesting the profiling, for example the HIS supplied
profiler starts with "HIS". The service will not allow another name starting
with "HIS". The NAME must be unique for each profiler registered with the
service.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,EXITRTN=exitrtn
When ACTION=START and REQUEST=PROFILE are specified, a required
input parameter, which should contain the name of the exit routine that will be
called when the service needs to notify the profiler for some reason, such as
for sampling callbacks. The exit routine must reside in LPA, the LNKLST
LNKLST concatenation, or the nucleus. The interface to the exit routine is
described in macro HISYEXIT. The EXITRTN must be unique for each profiler
registered with the service.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,PROFILETKN=profiletkn
When ACTION=STOP and REQUEST=PROFILE are specified, a required input
parameter, which should contain the profiler's unique token received from this
profiler's REQUEST=PROFILE,ACTION=START request (parameter
OUTPROFILETKN.) The profiler's token will no longer be useable.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,ANSAREA=ansarea
When REQUEST=QUERY is specified, a required input parameter, which will
be used by the service to store information associated with the query request.
Macro HISYSERV contains mappings of the answer areas to provide, the size

HISSERV macro

250 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

of the area depends on the type of query being requested. The minimum
amount of storage required for the request to be successful and return a subset
of the data, is HisAns_kLength.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSLEN=anslen
When REQUEST=QUERY is specified, a required input parameter, which
should contain the length of the provided answer area. The length depends on
the query that is requested. The minimum ANSLEN required for the request to
be successful and return a subset of the data, is HisAns_kLength.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field, or specify a literal decimal value.

,TYPE=EVENTDATA
,TYPE=EVENT
,TYPE=SAMPLE
,TYPE=PROFILERS

When REQUEST=QUERY is specified, a required parameter, used to indicate
the type of query to process.

,TYPE=EVENTDATA
indicates to process a query event data request. ANSAREA should point to
storage that will be mapped by HisEvnData in macro HISYSERV. It is
possible for the amount of storage required to change between two
consecutive TYPE=EVENTDATA queries, depending on which event types
are currently authorized in the system and which CPUs or cores are
currently online.

,TYPE=EVENT
indicates to process a query event request. ANSAREA should point to
storage that will be mapped by HisEvn in macro HISYSERV.

,TYPE=SAMPLE
indicates to process a query sample request. ANSAREA should point to
storage that will be mapped by HisSmp in macro HISYSERV.

,TYPE=PROFILERS
indicates to process a query profiler info request. ANSAREA should point
to storage that will be mapped by HisProf in macro HISYSERV. It is
possible for the amount of storage required to change between two
consecutive TYPE=PROFILERS queries, depending on the current number
of profilers in the system.

,PROFILETKN=profiletkn
When TYPE=EVENTDATA and REQUEST=QUERY are specified, a required
input parameter, which should contain the profiler's unique token received
from this profilers's REQUEST=PROFILE,ACTION=START request (parameter
OUTPROFILETKN).

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,CPUMASK=cpumask
,CPUMASK=ALL

When TYPE=EVENTDATA and REQUEST=QUERY are specified, an optional
input parameter representing a bitmask of which CPUs and/or cores to query
event data. The bitmask should be ECVTMaxMPNumBytesInMask bytes long.
Bit 0 represents CPU 0's event data as well as core 0's event data to query, and

HISSERV macro

Chapter 22. HISSERV macro — HISSERV Service 251

so forth up to the bit position at CVTMAXMP. If requesting all CPUs and all
cores specify ALL, pass in a CPUMASK of binary ones, or omit the CPUMASK
parameter. The default is ALL.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

HISSERV macro

252 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND Codes
None.

Return and Reason Codes
When the HISSERV macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro HISYSERV provides equate symbols for the return and reason codes. Note
carefully that bits 0-15 of the reason code may contain component-diagnostic data
and must not be assumed to be 0.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 27. Return and Reason Codes for the HISSERV Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: Hisserv_kRetOk

Meaning: HISSERV request successful.

Action: Processing continues.

HISSERV macro

Chapter 22. HISSERV macro — HISSERV Service 253

Table 27. Return and Reason Codes for the HISSERV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 — Equate Symbol: Hisserv_kRetWarn

Meaning: Warning

Action: Refer to the action provided with the specific reason code.

4 xxxx0401 Equate Symbol: Hisserv_kRsnWarn_AnsAreaSmall

Meaning: For REQUEST=QUERY, the answer area provided was
large enough to hold the minimum amount of data required for
the request, but not large enough to hold all of the data requested.

Action: Obtain a larger answer area using the
HisAns_LengthRequire field returned in the request's ANSAREA.

8 — Equate Symbol: Hisserv_kRetUser

Meaning: HISSERV request failed due to a user error.

Action: Refer to the action provided with the specific reason code

8 xxxx0801 Equate Symbol: Hisserv_kRsnUser_BadParmArea

Meaning: Unable to access parameter area.

Action: Check for possible storage overlay.

8 xxxx0802 Equate Symbol: Hisserv_kRsnUser_BadParmAreaALET

Meaning: Bad parameter area ALET.

Action: Make sure that the ALET associated with the parameter
area is valid. The access register might not have been set up
correctly.

8 xxxx0803 Equate Symbol: Hisserv_kRsnUser_BadVersion

Meaning: Bad version for the parameter list was specified.

Action: Check for possible storage overlay.

8 xxxx0804 Equate Symbol: Hisserv_kRsnUser_SrbMode

Meaning: This function is only available in task mode.

Action: Use function in task mode.

8 xxxx0805 Equate Symbol: Hisserv_kRsnUser_NotEnabled

Meaning: This function is only available to enabled programs.

Action: Use function while enabled.

8 xxxx0806 Equate Symbol: Hisserv_kRsnUser_LocksHeld

Meaning: This function is only available to unlocked programs.

Action: Use function while unlocked.

8 xxxx0807 Equate Symbol: Hisserv_kRsnUser_CallerFRR

Meaning: This function is only available to programs that have
not established an FRR.

Action: Retry the request without an FRR established.

HISSERV macro

254 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 27. Return and Reason Codes for the HISSERV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0808 Equate Symbol: Hisserv_kRsnUser_BadRequest

Meaning: A Bad request was made to the service.

Action: Check for possible storage overlay.

8 xxxx0809 Equate Symbol: Hisserv_kRsnUser_BadProfTkn

Meaning: Token specified was not a valid token.

Action: Use a valid token provided by the
REQUEST=PROFILE,ACTION=START request.

8 xxxx080A Equate Symbol: Hisserv_kRsnUser_NameInUse

Meaning: The name requested is already in use.

Action: Provide a NAME that is unique to the service.

8 xxxx080B Equate Symbol: Hisserv_kRsnUser_InvName

Meaning: The name requested is invalid.

Action: Provide a valid NAME, it cannot begin with HIS.

8 xxxx080C Equate Symbol: Hisserv_kRsnUser_ExitRtnNotFound

Meaning: The exit routine specified wasn't found.

Action: Ensure the exit routine specified exists in LPA, the LNKLS
concatenation, or the nucleus.

8 xxxx080D Equate Symbol: Hisserv_kRsnUser_ExitRtnInUse

Meaning: The exit routine specified is already in use.

Action: A different exit routine must be provided.

8 xxxx080E Equate Symbol: Hisserv_kRsnUser_BadEvnTyp

Meaning: For REQUEST=PROFILE,ACTION=START requests, one
or more event types specified could not be properly configured
for because it is not allowed. Only event types returned in the
HisEvn_ValidEvnTyp field of a REQUEST=QUERY,TYPE=EVENT
request can be requested.

Action: Ensure the event types being requested are a subset of the
event types returned in the HisEvn_ValidEvnTyp field of a
REQUEST=QUERY,TYPE=EVENT request.

8 xxxx080F Equate Symbol: Hisserv_kRsnUser_BadProfReq

Meaning: A bad PROFILE request was made to the service.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: Hisserv_kRsnUser_BadProfStart

Meaning: For REQUEST=PROFILE,ACTION=START, a bad
request was made. At least one event type or sampling should be
requested when starting to profile the system.

Action: Request at least one event type or sampling.

HISSERV macro

Chapter 22. HISSERV macro — HISSERV Service 255

Table 27. Return and Reason Codes for the HISSERV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0811 Equate Symbol: Hisserv_kRsnUser_BadQuery

Meaning: For REQUEST=QUERY, a bad query was requested.

Action: Check for possible storage overlay.

8 xxxx0812 Equate Symbol: Hisserv_kRsnUser_BadAnsArea

Meaning: For REQUEST=QUERY, unable to access answer area.

Action: Provide a valid answer area.

8 xxxx0813 Equate Symbol: Hisserv_kRsnUser_BadAnsAreaALET

Meaning: Bad answer area ALET.

Action: Make sure that the ALET associated with the answer area
is valid. The access register might not have been set up correctly.

8 xxxx0814 Equate Symbol: Hisserv_kRsnUser_AnsLenTooSmall

Meaning: For REQUEST=QUERY, the answer area length is
incorrect.

Action: Ensure the answer area length and the storage provided
as the answer area is at least HisAns_kLength bytes long.

8 xxxx0815 Equate Symbol: Hisserv_kRsnUser_BadCpuMask

Meaning: For REQUEST=QUERY,TYPE=EVENTDATA requests,
unable to access the CPU mask.

Action: Provide a valid CPU mask.

8 xxxx0816 Equate Symbol: Hisserv_kRsnUser_BadCpuMaskALET

Meaning: Bad CPU mask ALET.

Action: Make sure that the ALET associated with the CPU mask is
valid. The access register might not have been set up correctly.

8 xxxx0817 Equate Symbol: Hisserv_kRsnUser_NoEvnTyp

Meaning: For REQUEST=QUERY,TYPE=EVENTDATA requests,
the profiler making the request is not profiling events.

Action: When registering with the system to profile, indicate the
intention to profile events using the EVENT= parameter.

8 xxxx0818 Equate Symbol: Hisserv_kRsnUser_InvProfChange

Meaning: A REQUEST=PROFILE request was made from a
profiler's exit routine.

Action: A REQUEST=PROFILE request cannot be made from a
profiler's exit routine.

C — Equate Symbol: Hisserv_kRetEnv

Meaning: Environmental error

Action: Refer to the action provided with the specific reason code.

HISSERV macro

256 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 27. Return and Reason Codes for the HISSERV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C01 Equate Symbol: Hisserv_kRsnEnv_NotAvailable

Meaning: Function is not available.

Action: This function is only available when the HIS address
space is running.

C xxxx0C02 Equate Symbol: Hisserv_kRsnEnv_NotReady

Meaning: Function is available but is not currently ready to
accept requests.

Action: Retry the request.

C xxxx0C03 Equate Symbol: Hisserv_kRsnEnv_NoStorage

Meaning: There was not enough storage in HIS private storage to
complete the request.

Action: Contact your system programmer.

10 — Equate Symbol: Hisserv_kRetUnk

Meaning: Unexpected failure.

Action: Refer to the action provided with the specific reason code.

10 xxxx1001 Equate Symbol: Hisserv_kRsnUnk_Unk

Meaning: Unexpected failure. The state of the request is
unpredictable.

Action: Contact your system programmer.

10 xxxx1002 Equate Symbol: Hisserv_kRsnUnk_QueryCpu

Meaning: For REQUEST=QUERY,TYPE=EVENTDATA, while
attempting to query a CPU's event data an unknown error
occurred.

Action: Contact your system programmer.

Example
Operation
1. Profile for all available event types, and sampling.
2. Query the event types on 1 minute intervals for an hour, ensuring all event

data is returned each query.
3. Process Sampling Data Blocks (SDBs) as they become available.
4. Stop profiling the system.

The code is as follows.

* Query Events to determine what can be enabled. *

HISSERV MF=(E,serviceList),REQUEST=QUERY, *
ANSAREA=EvnAnsArea,ANSLEN=EvnAnsLen, *
TYPE=EVENT,RETCODE=LRetCode, *
RSNCODE=LRsnCode

ICM R5,B’1111’,LRetCode
JZ EVNAREA_GOOD

HISSERV macro

Chapter 22. HISSERV macro — HISSERV Service 257

LA R4,Hisserv_kRetWarn
CLR R5,R4
JE EVNAREA_WARN

EVNAREA_BAD DS 0H
*
* Place code to check bad return/reason codes here
*
EVNAREA_WARN DS 0H

L R5,LRsnCode
NILH R5,0
CHI R5,Hisserv_kRsnWarn_AnsAreaSmall
JNE EVNAREA_BAD

*
* Place code to handle obtaining more storage for the
* ANSAREA, and repeat the request if necessary.
*
EVNAREA_GOOD DS 0H

LA R8,EvnAnsArea
Using HisEvn,R8

* Start profiling the system. Output from the previous *
* query is used as input to this query, specifically we *
* want to profile all valid event types. *

HISSERV MF=(E,serviceList),REQUEST=PROFILE, *
ACTION=START,OUTPROFILETKN=ProfToken, *
NAME=ProfName,EXITRTN=ExitMod,SAMPLE=YES, *
EVENT=HisEvn_ValidEvnTyp,RETCODE=LRetCode, *
RSNCODE=LRsnCode

*
* Place code to check return/reason codes here
*
* Place code to obtain storage of length HisEvnData_kLength,
* save address in R8, length in EvnDataAnsLen
*
EVN_LOOP DS 0H

* Query the current state of the events *

Using HisEvnData,R8
HISSERV MF=(E,serviceList),REQUEST=QUERY, *

TYPE=EVENTDATA,PROFILETKN=ProfToken, *
CPUMASK=ALL,ANSAREA=HisEvnData, *
ANSLEN=EvnDataAnsLen,RETCODE=LRetCode, *
RSNCODE=LRsnCode

ICM R5,B’1111’,LRetCode
JZ EVNDATAAREA_GOOD
LA R4,Hisserv_kRetWarn
CLR R5,R4
JE EVNDATAAREA_WARN

EVNDATAAREA_BAD DS 0H
*
* Place code to check bad return/reason codes here
*
EVNDATAAREA_WARN DS 0H

L R5,LRsnCode
NILH R5,0
CHI R5,Hisserv_kRsnWarn_AnsAreaSmall
JNE EVNAREA_BAD

*
* Place code to free storage of length EvnDataAnsLen, then
* obtain new storage of length HisEvnData_Length, save address
* in R8, length in EvnDataAnsLen
*

J EVN_LOOP
EVNDATAAREA_GOOD DS 0H
*

HISSERV macro

258 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

* Place code to process the returned events here.
*

L R5,EvnQueryVal
BCT R5,EVNDONE
ST R5,EvnQueryVal
STIMER WAIT,BINTVL=EvnIntv
J EVN_LOOP

EVNDONE DS 0H

* Stop profiling the system *

HISSERV MF=(E,serviceList),REQUEST=PROFILE, *
ACTION=STOP,PROFILETKN=ProfToken, *
RETCODE=LRetCode,RSNCODE=LRsnCode

*
* Place code to check return/reason codes here
*
EvnIntv DC F’6000’ One minute interval between *

event queries
ProfName DC CL8’SAMPLE01’ External name for profiler
ExitMod DC CL8’SAMPEXRT’ EXITRTN Name

HISYSERV Return code information and *
ANSAREA mappings.

DynArea DSECT
LRetCode DS F
LRsnCode DS F
ProfToken DC CL16’0’
EvnQueryVal DC F’60’ Query events 60 times
EvnAnsArea DS XL(HisEvn_Len+HisEvnCtr_Len)
EvnAnsLen DS AD(HisEvn_Len+HisEvnCtr_Len)
EvnDataAnsLen DS D

HISSERV MF=(L,serviceList)
*
*
* HISEXRTN CSECT, the EXITRTN located in LPA,LNKLIST or the
* nucleus.
*
HISEXRTN CSECT

Using HisExitParm,R1
CLI HisExitParm_Func,HisExitParmFunc_kStat
JNE CHECK_SMP
PUSH USING
USING HisStatParm,R1

*
* Place code to process any service actions
*

J DONE
POP USING

CHECK_SMP DS 0H
CLI HisExitParm_Func,HisExitParmFunc_kSmp
JNE DONE
PUSH USING
USING HisSmpParm,R1

*
* Place code to process the full SDBs
*

POP USING
DONE DS 0H

HISYEXIT
HISYSMPX

HISSERV macro

Chapter 22. HISSERV macro — HISSERV Service 259

HISSERV macro

260 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 23. HSPSERV — Read from and write to a Hiperspace

Description
HSPSERV transfers data between virtual storage areas in address spaces and
hiperspaces. It reads data from a hiperspace to an address space and it writes data
to a hiperspace from an address space.

A hiperspace can be either a standard hiperspace, of which there are two types,
shared and nonshared, or an ESO (expanded storage only) hiperspace:
v The nonshared standard hiperspace and the shared standard hiperspace are

backed with real storage and, if necessary, auxiliary storage. Through the buffer
area in the address space, your program can view or scroll through the
hiperspace. HSPSERV SWRITE and HSPSERV SREAD transfer data to and from
a standard hiperspace. You create a standard hiperspace through the
HSTYPE=SCROLL parameter on the DSPSERV macro. The description of
HSPSERV macro for standard hiperspaces begins on “Read and write services
for standard hiperspaces.”

v The ESO hiperspace is backed only with real storage. It is a high-speed buffer
area or cache for data that your program needs. HSPSERV CWRITE and
HSPSERV CREAD transfer data to and from an ESO hiperspace. You create an
ESO hiperspace through the HSTYPE=CACHE parameter on the DSPSERV
macro. The description of the HSPSERV macro for ESO hiperspaces begins on
“Read and write services for ESO hiperspaces” on page 268.

The STOKEN parameter identifies the specific hiperspace to be read from or
written to. The HSPALET parameter specifies an optional ALET for the hiperspace.
The RANGLIST parameter identifies one or more of the storage ranges in the
address space and the one or more storage ranges in the hiperspace. A storage
range consists of contiguous 4K byte blocks starting on a 4K byte boundary.

HSPSERV is also described in z/OS MVS Programming: Assembler Services Reference
ABE-HSP, with the exception of the parameters that are valid only for supervisor
state or PSW key 0 through 7 programs: CREAD, CWRITE, ADDRSP, and KEEP.
For more information about hiperspaces and data spaces see z/OS MVS
Programming: Extended Addressability Guide.

Read and write services for standard hiperspaces

Environment
The requirements for the caller who specifies SREAD and SWRITE are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN

Note: PASN=HASN=SASN is required for a nonshared
standard hiperspace for which an ALET is not used (that is,
the HSPALET parameter is omitted).

AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts

© Copyright IBM Corp. 1988, 2016 261

Environmental factor Requirement
Locks: No locks held
Control parameters: Must be in the caller's primary address space. If the caller's

PSW key is not zero, the PSW key must match the storage
key associated with the control parameters.

Programming requirements
v If you code the HSPALET parameter on the HSPSERV macro, you must first

code the SYSSTATE macro to indicate the ASC mode of your program.
v If you code the HSPALET parameter on the HSPSERV macro, you must provide

a 144-byte save area in the caller's primary address space.
v The range list must be addressable in the caller's primary address space.

Restrictions
If you code HSPALET, and you have an FRR recovery routine that gains control
while HSPSERV is executing, your recovery routine cannot attempt retry at the
time of error.

Input register information
Before issuing the HSPSERV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

However, if the caller specifies the HSPALET parameter:
v General purpose register (GPR) 13 must contain the address of a 144-byte save

area. The save area must be in the caller's primary address space.
v Access register (AR) 13 must contain 0, regardless of whether the caller is in

primary or AR address space control (ASC) mode.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

HSPSERV macro

262 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

The following figure describes the characteristics and restrictions for the use of
standard hiperspaces, the hiperspaces that allow your program to scroll through
large areas of data.

HSPSERV macro

Chapter 23. HSPSERV — Read from and write to a Hiperspace 263

Syntax
The standard form of the HSPSERV macro for standard hiperspaces is written as
follows:

Syntax Description

name name: Symbol. Begin name in column 1.

Must be on 4K boundry.
Can map a data-in-virtual object on permanent
storage.
For SWRITE requests, cannot have a DIV SAVE
current for the area of the hiperspace.
If an ALET is used, cannot have a DIV SAVE current
for any part of the hiperspace.

SWRITE

SREAD

Non-shared standard hiperspace:

For problem state and PSW key 8-F callers:
- If an ALET is not used, the aller’s TCB must own the hiperspace.
- If an ALET is used, any TCB in the caller’s home address space can own the hiperspace.
For superviosr state or PSW key 0-7 callers, any TCB in the caller’s home address space can
own the hiperspace.
If an ALET is used:
- The ALET must be used for a hiperspace on the caller’s DU-AL or PASN-AL.
- The cross memory mode can be any.
If an ALET is not used, the cross memory mode must be PASN=HASN.
For PSW key 0 callers, can have any storage key and can be fetch protected.
For PSW key 1-F callers requesting SWRITE or SREAD RELEASE=YES, must have matching
storage key.
For PSW key 1-F callers requesting SREAD RELEASE=NO, can have non-matching storage key
only if hiperspace is not fetch protected.

Problem state and PSW key 8-F callers must use an ALET.
Any task in the sytem can own the hiperspace. If the owning task is not in the caller’s home or primary
address space, the owner’s home address space must be non-swappable.
If an ALET is used, it must be for a hiperspace on the caller’s DU-AL or PASN-AL.
The cross memory mode can be any.
For PSW key 0 callers, can have any storage key and can be fetch protected.
For PSW keys 1-F callers requesting SWRITE or SREAD RELEASE=YES, must have matching
storage key.
For PSW key 1-F callers requesting SREAD RELEASE=NO, can have non-matching storage key only
if hiperspace is not fetch-protected.

Shared standard hiperspace:

Address Space

HSPSERV SWRITE...

Standard
Hiperspace

Area of standard hiperspace.

Must be in private subpool.
Must be within the home address space.
Must not be within a DREF subpool.
Can’t be page-fixed.
Must be on a 4K-byte boundary.
Can’t be part of a VIO window.
For PSW key 0 callers, can have any storage key.
For PSW key 1-F callers, must have a matching storage key with
one exception: for SWRITE callers, if the area is not
fetch-protected, it can have any storage key.

Area in address space:

HSPSERV SREAD...

Figure 5. Characteristics and Restrictions for Standard Hiperspaces

HSPSERV macro

264 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

� One or more blanks must precede HSPSERV.

HSPSERV

� One or more blanks must follow HSPSERV.

SREAD

SWRITE

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,HSPALET=alet-addr alet-addr: RX-type address or register (2) - (12).

,NUMRANGE=n n: Number from 1 to 50.

,NUMRANGE=num-addr num-addr: RX-type address or register (2) - (12). Default: NUMRANGE=1.

,RANGLIST=list-addr list-addr: RX-type address or register (2) - 12).

,RELEASE=NO Default: RELEASE=NO.

,RELEASE=YES

,RETCODE=ret-addr ret-addr: RX-type address or register (2) - (12).

,RSNCODE=rsn-addr rsn-addr: RX-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

SREAD
Requests that the system read data from a standard hiperspace to an address
space.

STOKEN and RANGLIST are required parameters on the SREAD request.
HSPALET, NUMRANGE, RELEASE, RSNCODE, and RETCODE are optional
parameters.

SWRITE
Requests that the system write data to a standard hiperspace from an address
space.

Note:

HSPSERV macro

Chapter 23. HSPSERV — Read from and write to a Hiperspace 265

1. When HSPSERV returns to the caller after the SWRITE operation, the
contents of the address space storage range are not preserved. You can use
the address space area again.

2. If the hiperspace maps a data-in-virtual object, do not issue an SWRITE
request while a DIV SAVE request is current.

STOKEN and RANGLIST are required parameters on the SWRITE request.
HSPALET, NUMRANGE, RETCODE, and RSNCODE are optional parameters.

,STOKEN=stoken-addr
Specifies the address of the eight-character variable that contains the STOKEN
for the standard hiperspace from which the data is to be read or into which the
data is to be written. Restrictions on standard hiperspaces are described in
Figure 5 on page 264.

,HSPALET=alet-addr
Specifies either the address of a fullword or a register that contains the ALET
for the hiperspace that is to be accessed. The ALET must be for a hiperspace
that is on the caller's DU-AL or PASN-AL.

The HSPALET parameter is optional except for the following case: If the caller
accesses a shared hiperspace, is in problem state and has PSW key 8 - F,
HSPALET is required.

Use of the HSPALET parameter requires that the caller provide a 144-byte save
area in the caller's primary address space. AR/GPR 13 must provide
addressability to this area regardless of the caller's ASC mode. GPR 13 must
contain the address of the area and AR 13 must contain 0.

If you code HSPALET, do not code RELEASE=YES.

If you code HSPALET, and you have an FRR recovery routine that gains
control while HSPSERV is executing, your recovery routine cannot attempt
retry at the time of error.

,NUMRANGE=n
,NUMRANGE=num-addr

Specifies the number of entries, from 1 to 50, or specifies a fullword that
identifies the number of entries in the range list (that the RANGLIST
parameter points to), or specifies a register containing the address of a
fullword containing the number of entries. The default is NUMRANGE=1.

If you omit NUMRANGE, HSPSERV reads or writes one entry in the range
list.

,RANGLIST=list-addr
Specifies a fullword that contains an address of a list of ranges (up to 50) that
the system is to read or write, or specifies a register that contains the address
of the fullword pointer to the range list. The range list consists of a number of
entries (specified by NUMRANGE) where each entry consists of three words as
follows:

First word
The starting virtual address in the address space into which the data is
to be read or from which the data is to be written.

Second word
The starting virtual address in the hiperspace from which the system is
to read or into which the system is to write.

HSPSERV macro

266 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Third word
The number of blocks the system is to read or write. Note that the
address is the block number followed by 12 binary zeros.

An example of how to code the RANGLIST parameter when NUMRANGE=3
is as follows:

Further restrictions on the areas in the address space and the hiperspace are
described in Figure 5 on page 264.

On return, only if the caller issued the HSPSERV macro with the HSPALET
parameter, the range list values might be different from the input values if the
system could not at first successfully complete the read or write operation. In
that case, the system changes the range list values, but does not restore the
input values when it finally returns control to the caller.

,RELEASE=NO
,RELEASE=YES

Specifies whether or not the system is to release the hiperspace pages after it
completes the SREAD operation. RELEASE is valid only with SREAD.

RELEASE=NO specifies that the system does not release the hiperspace pages
after it completes the SREAD operation. Unless a subsequent SWRITE request
changes the data, the same data will be available again on the next SREAD
request. RELEASE=NO is the default.

RELEASE=YES specifies that, after the SREAD request, the system is to release
the storage that backed the data in the hiperspace. If you code RELEASE=YES,
do not code HSPALET.

,RETCODE=ret-addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

,RSNCODE=rsn-addr
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0.

,MF=S
Specifies the standard form of the macro. This form generates code to place the
parameters into an inline parameter list and invoke the service.

NUMRANGE=3 ,RANGLIST=(5)

or

NUMRANGE=3, RANGLIST=RANGADDR

AddrSp Loc

AddrSp Loc

AddrSp Loc

Hiper Loc

Hiper Loc

Hiper Loc

Blocks

Blocks

Blocks

12 Bytes
Register 5

RANGADDR
(fullword)

HSPSERV macro

Chapter 23. HSPSERV — Read from and write to a Hiperspace 267

ABEND codes
HSPSERV might abnormally terminate with abend code X'01D'. See z/OS MVS
System Codes for an explanation of abend code X'01D'.

Return and reason codes
When control returns from HSPSERV SREAD or HSPSERV SWRITE, GPR 15 (and
ret-addr, if you coded RETCODE) contains one of the following hexadecimal return
codes. GPR 0 (and rsn-addr, if you coded RSNCODE) contains one of the following
hexadecimal reason codes.

Note: yy is X'09' for SREAD and X'0A' for SWRITE.

Table 28. Return and Reason Codes for HSPSERV SREAD and HSPSERV SWRITE

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 00 Meaning: HSPSERV completed successfully.

Action: None.

08 xxyy05xx Meaning: System error. The system rejects the
request. A hiperspace page is unavailable.

Action: Record the return and reason code and
supply it to the appropriate IBM support
personnel.

08 xxyy06xx Meaning: System error. The system rejects the
request. An address space page is unavailable.

Action: Record the return and reason code and
supply it to the appropriate IBM support
personnel.

0C xx006xx Meaning: System error. System failure because of
environmental problems.

Action: Record the return and reason code and
supply it to the appropriate IBM support
personnel.

Read and write services for ESO hiperspaces

Environment
The requirements for the caller who requests CREAD and CWRITE are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW key 0 - 7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any
Control parameters: The parameter list and range list must be in nonpageable,

non-DREF storage. If the caller specifies HSPALET and is
disabled, the save area must also be in nonpageable,
non-DREF storage. The parameter list and save area must all
be in the common area or in the private area of the caller's
primary address space.

HSPSERV macro

268 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Programming requirements
v If you code the HSPALET parameter on the HSPSERV macro, you must first

code the SYSSTATE macro to indicate the ASC mode of your program.
v If you code the HSPALET parameter on the HSPSERV macro, you must provide

a 144-byte save area in the caller's primary address space.
v The range list must be addressable in the caller's primary address space.

Restrictions
If you code HSPALET, and you have an FRR recovery routine that gains control
while HSPSERV is executing, your recovery routine cannot attempt retry at the
time of error.

Input register information
Before issuing the HSPSERV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

However, if the caller specifies the HSPALET parameter:
v General purpose register (GPR) 13 must contain the address of a 144-byte save

area. The save area must be in the caller's primary address space.
v Access register (AR) 13 must contain 0, regardless of whether the caller is in

primary or AR address space control (ASC) mode.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

HSPSERV macro

Chapter 23. HSPSERV — Read from and write to a Hiperspace 269

The following figure describes the characteristics and restrictions for the use of
ESO hiperspaces, the hiperspaces that act as a high-speed buffer or cache for data.

Syntax
The standard form of the HSPSERV macro for ESO hiperspaces follows.

CAUTION:
Code the parameters on the HSPSERV CREAD and HSPSERV CWRITE macros
very carefully. Read the requirements for the address space buffer and the
hiperspace, as listed in Figure 6. For performance reasons, the system does not
verify the location of the addresses you specify on these macros. Incorrect
coding can cause damage to the system.

Syntax Description

name name: Symbol. Begin name in column 1.

The ESO hiperspace:

CWRITE

CREAD

Owner can be any task in the caller’s home or primary address
space or in a on-swappable address space.
For PSW key 0 callers, can have any storage key.
For PSW key 1-F callers, with CWRITE requests, must have
matching storage key.
For PSW key 1-F callers with CREAD requests where storage
key does not match callers PSW key, must not be
fetch-protected.

Address Space
ESO
Hiperspace

HSPSERV CREAD...

HSPSERV CWRITE...

Area of ESO hiperspace:

Must be on a 4K boundary.
Area in address space:

Must be on a 4K-byte boundary.
Must be withing the home, primary or CSA.
Can’t be part of a VIO window.
Can’t map a data-in-virtual object.
For PSW key 0 callers, can have any storage key.
For PSW key 1-F callers on CREAD requests, must have a matching
storage key.
For PSW key 1-F callers on CWRITE requests, if the area does not have a
matching storage key, it must not be fetch-protected and KEEP=NO cannot
be specified.
Can be either fixed or not; however for CREAD requests, must not have a
PGSER FIX in progress.

Figure 6. Characteristics and Restrictions for ESO Hiperspaces

HSPSERV macro

270 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

� One or more blanks must precede HSPSERV.

HSPSERV

� One or more blanks must follow HSPSERV.

CREAD

CWRITE

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,HSPALET=alet-addr alet-addr: RX-type address or register (2) - (12).

,NUMRANGE=n n: A number from 1 to 50.

,NUMRANGE=num-addr num-addr: RX-type address or register (2) - (12). Default: NUMRANGE=1.

,RANGLIST=list-addr list-addr: RX-type address or register (2) - (12).

,ADDRSP=HOME Default: ADDRSP=HOME.

,ADDRSP=PRIMARY

,ADDRSP=COMMON

,KEEP=YES Default: KEEP=YES.

,KEEP=NO

,RETCODE=ret-addr ret-addr: RX-type address or register (2) - (12).

,RSNCODE=rsn-addr rsn-addr: RX-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

CREAD
Requests that the system read data from an ESO hiperspace

If all blocks requested to be read are available in the hiperspace, then the
system performs the read operation. However, if one or more of the blocks to
be read are no longer available in the hiperspace, then the system returns a
failing return code. (See return code 08.) In this case, the system does not tell
you which blocks it successfully reads, if any.

HSPSERV macro

Chapter 23. HSPSERV — Read from and write to a Hiperspace 271

STOKEN and RANGLIST are required parameters on the CREAD request.
ADDRSP, NUMRANGE, RSNCODE, and RETCODE are optional parameters.

CWRITE
Requests that the system write data to an ESO hiperspace. If the system cannot
write all the requested blocks to the hiperspace, then it doesn't write any and
rejects the request. (See return code 08.) In this case, the data in the specified
range in the hiperspace is unpredictable. Therefore, after an unsuccessful write,
do not issue another CREAD against the failing hiperspace range of virtual
storage until an intervening CWRITE is successful.

STOKEN and RANGLIST are required parameters on the CWRITE request.
ADDRSP, NUMRANGE, KEEP, RSNCODE, and RETCODE are optional
parameters.

,STOKEN=stoken-addr
Specifies the address of the 8-character variable that contains the STOKEN for
the ESO hiperspace from which the data is to be read or into which the data is
to be written. Restrictions on the hiperspace are described in Figure 6 on page
270.

,HSPALET=alet-addr
Specifies either the address of a fullword or a register that contains the ALET
for the hiperspace that is to be accessed. The ALET must be for a hiperspace
that is on the caller's DU-AL or PASN-AL.

Use of the HSPALET parameter requires that the caller provide a 144-byte save
area in the caller's primary address space or in the common area. If the caller is
disabled, the save area must be in nonpageable storage. AR/GPR 13 must
provide addressability to this area regardless of the caller's ASC mode. GPR 13
must contain the address of the area and AR 13 must contain 0.

If you code HSPALET, do not code RELEASE=YES.

If you code HSPALET and you have an FRR recovery routine that gains control
while HSPSERV is executing, your recovery routine cannot attempt retry at the
time of error.

,NUMRANGE=n
,NUMRANGE=num-addr

Specifies a fullword that identifies the number of entries in the range list (that
the RANGLIST parameter points to), or specifies a register containing the
address of a fullword containing the number of entries, or specifies the number
of entries, from 1 to 50. The default is NUMRANGE=1.

If you omit NUMRANGE, then HSPSERV reads or writes one virtual range.

,RANGLIST=list-addr
Specifies a fullword that contains the address of a parameter area in
nonpageable storage that contains a list of up to 50 ranges that the system is to
read or write, or specifies a register that contains the address of the fullword
pointer to the range list.

The range list consists of a number of entries (specified by NUMRANGE)
where each entry consists of three words as follows:

First word
The starting virtual address in the address space into which the data is
to be read or from which the data is to be written.

HSPSERV macro

272 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Second word
The starting virtual address in the hiperspace from which the system is
to read or into which the system is to write.

Third word
The number of blocks the system is to read or write.

An example of how to code the RANGLIST parameter when NUMRANGE=3
is as follows:

The one or more address space ranges on RANGLIST must be consistent with
the ADDRSP parameter. When you specify ADDRSP=COMMON, each address
space range described in the range list must reside entirely within CSA and
have no intersections with other common area subpools or the private area.
When you specify ADDRSP=HOME or ADDRSP=PRIMARY, each address
space range described in the range list must reside entirely within the private
area.

Restrictions on the areas in the address space and the hiperspace are described
in Figure 6 on page 270.

The range list must be in the common area or in the private area of the caller's
primary address space.

,ADDRSP=HOME
,ADDRSP=PRIMARY
,ADDRSP=COMMON

Specifies the location of the virtual storage range from which the system is to
read or into which the system is to write. The location can be the caller's home
address space (ADDRSP=HOME), the caller's primary address space
(ADDRSP=PRIMARY), or the CSA (ADDRSP=COMMON). The default is
ADDRSP=HOME.

,KEEP=YES
,KEEP=NO

Specifies whether or not the system preserves the source data in the virtual
storage of the address space after it completes the CWRITE request. KEEP is
valid only on the CWRITE request.

If you specify KEEP=YES, the data in the specified address space is unchanged
and available for reference. The default is KEEP=YES.

NUMRANGE=3 ,RANGLIST=(5)

or

NUMRANGE=3, RANGLIST=RANGADDR

AddrSp Loc

AddrSp Loc

AddrSp Loc

Hiper Loc

Hiper Loc

Hiper Loc

Blocks

Blocks

Blocks

12 Bytes
Register 5

RANGADDR
(fullword)

HSPSERV macro

Chapter 23. HSPSERV — Read from and write to a Hiperspace 273

If you specify KEEP=NO, the system might not preserve the data in the
address space. If your program will reuse the same virtual storage area after
the CWRITE request completes, use KEEP=NO.

,RETCODE=ret-addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

,RSNCODE=rsn-addr
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0.

,MF=S
Specifies the standard form of the macro. This form generates code to place the
parameters into an inline parameter list and invoke the macro service.

ABEND codes
HSPSERV might abnormally terminate with abend code X'01D'. See z/OS MVS
System Codes for an explanation of abend code X'01D'.

Return and reason codes
When control returns from HSPSERV CREAD or HSPSERV CWRITE, GPR 15 (and
ret-addr, if you coded RETCODE) contains one of the following hexadecimal return
codes. GPR 0 (and rsn-addr, if you coded RSNCODE) contains one of the following
hexadecimal reason codes.

Note: yy is X'07' for CREAD and X'08' for CWRITE.

Table 29. Return and Reason Codes for HSPSERV CREAD and HSPSERV CWRITE

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 00 Meaning: HSPSERV completed successfully.

Action: None.

08 xxyy01xx Meaning: Program error. The hiperspace data
you requested is not available (CREAD request).

Action: The data must be retrieved from its
permanent copy.

08 xxyy02xx Meaning: Program error. The system rejects the
request because an address space page is not
currently backed by real storage. You can repeat
the HSPSERV request after you reference one or
more pages, which causes the system to page the
storage in CWRITE request.

Action: Reference the page or pages that are not
in processor storage.

08 xxyy03xx Meaning: Environmental error. The system rejects
the request because the necessary real storage
frames are not currently available.

Action: Rerun your program one or more times
during a period of lower system usage. If the
problem persists, consult your system
programmer, who might be able to tune the
system so that more resources are available to
your program.

HSPSERV macro

274 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 29. Return and Reason Codes for HSPSERV CREAD and HSPSERV
CWRITE (continued)

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

08 xxyy04xx Meaning: Environmental error. The system rejects
the request because no frames are currently
available.

Action: Rerun your program one or more times
during a period of lower system usage. If the
problem persists, consult your system
programmer, who might be able to tune the
system so that more resources are available to
your program.

08 xxyy05xx Meaning: System error. The system rejects the
request because a hiperspace page is unavailable.

Action: Record the return and reason code and
supply it to the appropriate IBM support
personnel.

08 xxyy06xx Meaning: System error. The system rejects the
request because an address space page is
unavailable.

Action: Record the return and reason code and
supply it to the appropriate IBM support
personnel.

HSPSERV - List form
Use the list form of the HSPSERV macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the HSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede HSPSERV.

HSPSERV

� One or more blanks must follow HSPSERV.

PLISTVER=vernum vernum: Parameter list version 0 or 1

Default: Version that allows all specified parameters.

,MF=(L,list-addr) list-addr: Symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string. Default: 0D.

HSPSERV macro

Chapter 23. HSPSERV — Read from and write to a Hiperspace 275

Syntax Description

Parameters
Parameters for the list form of HSPSERV are as follows:

PLISTVER=vernum
Specifies the macro version associated with HSPSERV. PLISTVER is an optional
parameter that determines which parameter list the system generates. Specify 0
if you use parameters only from this group:
v ADDRSP
v CREAD
v CWRITE
v KEEP
v MF
v NUMRANGE
v PLISTVER
v RANGLIST
v RELEASE
v RETCODE
v RSNCODE
v SREAD
v STOKEN
v SWRITE

If you use the HSPALET parameter, specify 1.

If you do not specify PLISTVER, the default is to allow all of the parameters
you specify on the invocation to be processed.

,MF=(L,list-addr)
,MF=(L,list-addr,attr)

Specifies the list form of HSPSERV.

list-addr is the address of the storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

HSPSERV - Execute form
The execute form of the HSPSERV macro changes parameters in the control
parameter list that the system created through the list form of the macro and
performs the specified operation.

HSPSERV macro

276 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax
The execute form of the HSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede HSPSERV.

HSPSERV

� One or more blanks must follow HSPSERV.

SREAD

SWRITE

CREAD

CWRITE

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,HSPALET=alet-addr alet-addr: RX-type address or register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1.

,NUMRANGE=num-addr num-addr: RX-type address or register (2) - (12).

,RANGLIST=list-addr list-addr: RX-type address or register (2) - (12).

,RELEASE=NO Default: RELEASE=NO.

,RELEASE=YES

,ADDRSP=HOME Default: ADDRSP=HOME.

,ADDRSP=PRIMARY

,ADDRSP=COMMON

,KEEP=YES Default: KEEP=YES.

,KEEP=NO

,RETCODE=ret-addr ret-addr: RX-type address or register (2) - (12).

,RSNCODE=rsn-addr rsn-addr: RX-type address or register (2) - (12).

,MF=(E,list-addr,COMPLETE) list-addr: RX-type address or register (2) - (12).

HSPSERV macro

Chapter 23. HSPSERV — Read from and write to a Hiperspace 277

Syntax Description

,MF=(E,list-addr,NOCHECK) Default: COMPLETE.

Parameters
The parameters are explained under the standard form of the HSPSERV macro
with the following exceptions:

,MF=(E,list-addr,COMPLETE)
,MF=(E,list-addr,NOCHECK)

Specifies the execute form of the HSPSERV macro.

list-addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that you did not specify.

NOCHECK specifies that the system does not check for required parameters
and does not supply the optional parameters that you did not specify.

HSPSERV - Modify form
Use the modify form of the HSPSERV macro together with the list and execute
forms of the macro for service routines that need to provide different options
according to user-provided input. Use the list form to define a storage area; use the
modify form to set the appropriate options; then use the execute form to call the
service.

Syntax
The modify form of the HSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede HSPSERV.

HSPSERV

� One or more blanks must follow HSPSERV.

SREAD

SWRITE

CREAD

CWRITE

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,HSPALET=alet-addr alet-addr: RX-type address or register (2) - (12).

HSPSERV macro

278 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,NUMRANGE=1 Default: NUMRANGE=1.

,NUMRANGE=num-addr num-addr: RX-type address or register (2) - (12).

,RANGLIST=list-addr list-addr: RX-type address or register (2) - (12).

,RELEASE=NO Default: RELEASE=NO.

,RELEASE=YES

,ADDRSP=HOME Default: ADDRSP=HOME.

,ADDRSP=PRIMARY

,ADDRSP=COMMON

,KEEP=YES Default: KEEP=YES.

,KEEP=NO

,RETCODE=ret-addr ret-addr: RX-type address or register (2) - (12).

,RSNCODE=rsn-addr rsn-addr: RX-type address or register (2) - (12).

,MF=(E,list-addr,COMPLETE) list-addr: RX-type address or register (2) - (12).

,MF=(E,list-addr,NOCHECK) Default: COMPLETE.

Parameters
Parameters for the modify form of HSPSERV are described in the standard form of
the macro with the following exceptions:

,MF=(M,list-addr,COMPLETE)
,MF=(M,list-addr,NOCHECK)

Specifies the modify form of the HSPSERV macro.

list-addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that you did not specify.

NOCHECK specifies that the system does not check for required parameters
and does not supply the optional parameters that you did not specify.

HSPSERV macro

Chapter 23. HSPSERV — Read from and write to a Hiperspace 279

280 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 24. IARBRVEA — Verify virtual storage access (AR
mode)

Description
Call the IARBRVEA service as a replacement for the TPROT instruction to
determine whether a page of virtual storage can be accessed when the page to be
tested resides in ALET-qualified storage.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, any PSW key (The key is used to

determine storage access.)
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: AR
Interrupt status: Enabled or disabled
Locks: Any lock may be held.
Control parameters: GPR 1 contains the virtual address of the page to be tested.

AR 1 contains the ALET.

Programming requirements
v The IARBRVEA service is only available when the RCEOA46291APPLIED bit is

set (B’1’) in the RCE data area.
v The input virtual storage address in general purpose register (GPR) 1 and the

ALET in access register (AR) 1 may refer to any address space.
v Include the IHAPVT macro. PVTBRVEA contains the address of the entry point

of the routine.

Restrictions
None.

Input register information
Before calling the IARBRVEA service, the caller must ensure that the following
GPRs contain the specified information:

Register
Contents

1 Virtual address to be tested

15 Address of the entry point

Before calling the IARBRVEA service, the caller must ensure that AR 1 contains the
ALET.

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2016 281

|

|

|

|
|

|
|
|

|

|

|||
||
|
||
||
||
||
||
||
||
|
|

|

|
|

|
|

|
|

|

|

|

|
|

|
|

||

||

|
|

|

|

Register
Contents

0 Used as a work register by the system

1-14 Unchanged

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0 Used as a work register by the system

1-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the IARBRVEA call as shown in the syntax diagram.

Parameters
None.

ABEND codes
None.

Return and reason codes
When IARBRVEA returns control to your program, GPR 15 contains a return code.
Table 30 identifies return codes in hexadecimal, tells what each means, and
recommends an action to take.

Table 30. Return codes for the IARBRVEA service

Hexadecimal return
code

Meaning and action

00 Meaning: The caller has write access to the page and the page is not backed by
a freemained frame.

Action: None.

USING PSA,0
L 15,FLCCVT(0)
L 15,CVTPVTP-CVTMAP(15)
L 15,PVTEXTPT-PVT(15)
L 15,PVTBRVEA-PVTEXT(15)
BASR 14,15

IARBRVEA callable service

282 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|
|
|
|

|
|

||

||

||

|

|
|

||

||

||

|
|
|
|

|

|

|

|
||

|

|

|

|

|

|
|
|

||

|
|
|

||
|

|

Table 30. Return codes for the IARBRVEA service (continued)

Hexadecimal return
code

Meaning and action

01 Meaning: The caller has read access to the page and the page is not backed by a
freemained frame.

Action: None.

02 Meaning: The caller has no access to the page and the page is not backed by a
freemained frame.

Action: None.

03 Meaning: The page either cannot be translated or is backed by a freemained
frame.

Action: Use VSMLOC, VSMLIST, or IARQDUMP to determine the status of the
page.

IARBRVEA callable service

Chapter 24. IARBRVEA — Verify virtual storage access (AR mode) 283

|

|
|
|

||
|

|

||
|

|

||
|

|
|
|
|

284 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 25. IARBRVER — Verify virtual storage access
(primary address space)

Description
Call the IARBRVER service as a replacement for the TPROT instruction to
determine whether a page of virtual storage can be accessed when the page to be
tested resides in the primary address space.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, any PSW key (The key is used to

determine storage access.)
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled
Locks: Any lock may be held.
Control parameters: GPR 1 contains the virtual address of the page to be tested.

Programming requirements
v The IARBRVER service is only available when the RCEOA46291APPLIED bit is

set (B’1’) in the RCE data area.
v The input virtual storage address refers to the primary address space at the time

of invocation.
v Include the IHAPVT macro. PVTBRVER contains the address of the entry point

of the routine.

Restrictions
None.

Input register information
Before calling the IARBRVER service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

1 Virtual address to be tested

15 Address of the entry point

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Used as a work register by the system

© Copyright IBM Corp. 1988, 2016 285

|

|

|

|
|

|
|
|

|

|

|||
||
|
||
||
||
||
||
||
||
|

|

|
|

|
|

|
|

|

|

|

|
|

|
|

||

||

|

|

|
|

||

1-14 Unchanged

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0 Used as a work register by the system

1-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the IARBRVER call as shown in the syntax diagram.

Parameters
None.

ABEND codes
None.

Return and reason codes
When IARBRVER returns control to your program, GPR 15 contains a return code.
Table 31 identifies return codes in hexadecimal, tells what each means, and
recommends an action to take.

Table 31. Return codes for the IARBRVER service

Hexadecimal return
code

Meaning and action

00 Meaning: The caller has write access to the page and the page is not backed by
a freemained frame.

Action: None.

01 Meaning: The caller has read access to the page and the page is not backed by a
freemained frame.

Action: None.

USING PSA,0
L 15,FLCCVT(0)
L 15,CVTPVTP-CVTMAP(15)
L 15,PVTEXTPT-PVT(15)
L 15,PVTBRVER-PVTEXT(15)
BASR 14,15

IARBRVER callable service

286 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|
|
|
|

||

||

|

|
|

||

||

||

|
|
|
|

|

|

|

|
||

|

|

|

|

|

|
|
|

||

|
|
|

||
|

|

||
|

|

Table 31. Return codes for the IARBRVER service (continued)

Hexadecimal return
code

Meaning and action

02 Meaning: The caller has no access to the page and the page is not backed by a
freemained frame.

Action: None.

03 Meaning: The page either cannot be translated or is backed by a freemained
frame.

Action: Use VSMLOC, VSMLIST, or IARQDUMP to determine the status of the
page.

IARBRVER callable service

Chapter 25. IARBRVER — Verify virtual storage access (primary address space) 287

|

|
|
|

||
|

|

||
|

|
|
|

IARBRVER callable service

288 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 26. IARCP64 — 64-bit cell pool services

Description
Use IARCP64 to request 64-bit cell pool services.

With IARCP64, you can request to:
v Build a pool (REQUEST=BUILD).
v Obtain a cell from the pool (REQUEST=GET).
v Return a cell to the pool (REQUEST=FREE).
v Delete the pool (REQUEST=DELETE).

Note: There is diagnostic support for 64 bit cell pools in IPCS via the CBFORMAT
command. CBF cpid STR(IAXCPHD) formats the cell pool header, where cpid is the
cell pool identifier that was returned on IARCP64 REQUEST=BUILD. If you cannot
locate your cell pool identifier in the dump, simply browse storage starting at
X’100000000’ and issue a FIND on CPHD. There might be multiple cell pools, so you
must look at the cell contents to make sure you have the right pool. To see details
about all of the cells in the pool, use the EXIT option as follows: CBF cpid
STR(IAXCPHD) EXIT.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For IARCP64 REQUEST=BUILD, use of the

COMMON=YES, TYPE=DREF, TYPE=FIXED,
OWNINGTASK=RCT, MEMLIMIT=NO, or MOTKN
parameter or the Key00ToF0 parameter with a value other
than X’90’, require any of the following:

v Supervisor state

v PSW key 0-7

v APF authorized

All other options have a minimum authorization of Problem
state and PSW key 8-15. For IARCP64 REQUEST=GET,
FREE or DELETE, the caller must be able to modify the
storage for the cell pool. That means the caller must be in
key 0 or in the same key as the cell pool or the cell pool
must be in the public key (key 9). Supervisor state is
required for the TRACE=YES option. APF authorization has
no bearing on these services.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit
ASC mode: Primary or access register (AR)

© Copyright IBM Corp. 1988, 2016 289

|

Environmental factor Requirement
Interrupt status: For the BUILD and DELETE requests, enabled.

For the GET and FREE requests:

v The caller might be enabled or disabled for interrupts
when requesting cells that are from pools are defined as
COMMON=YES and TYPE=FIXED.

v For all other combinations of options, the caller must be
enabled for interrupts.

Locks: For the BUILD and DELETE requests, no locks may be held.

For the GET request, the following locks must be held by
the caller or must be obtainable by IARCP64:

v For requests with EXPAND=NO, the caller might hold
locks but is not required to hold any.

v For requests with COMMON=NO and EXPAND=YES, the
caller might hold the local lock (LOCAL or CML) of the
current primary address space.

v For requests with COMMON=YES and EXPAND=YES,
the locking restrictions for the caller are the same as for
IARV64 REQUEST=GETCOMMON.

For the FREE request, the caller might hold locks but is not
required to hold any.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
Specify SYSSTATE AMODE64=YES prior to invoking this macro.

Restrictions
None.

Input register information
Before issuing the IARCP64 macro, the caller does not have to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit GPRs contain:

For REQUEST=BUILD:

Register
Contents

0 Reason code in the low 32 bits if the return code is not 0. Otherwise, used
as a work register by the system.

1 Used as a work register by the system.

2-13 Unchanged.

14 Used as a work register by the system.

15 Return code in the low 32 bits.

For REQUEST=GET:

IARCP64 macro

290 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Register
Contents

0 Reason code in the low 32 bits if the return code is not 0. Otherwise, used
as a work register by the system.

1 The address of the obtained cell.

2-12 Unchanged if REGS=SAVE was specified, used as work registers by the
system if REGS=USE was specified.

13 Unchanged.

14 Used as a work register by the system.

15 Return code in the low 32 bits.

For REQUEST=FREE:

Register
Contents

0-1 Used as a work register by the system.

2-12 Unchanged if REGS=SAVE was specified, used as work registers by the
system if REGS=USE was specified.

13 Unchanged.

14-15 Used as a work register by the system.

For REQUEST=DELETE:

Register
Contents

0-1 Used as a work register by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

IARCP64 macro

Chapter 26. IARCP64 — 64-bit cell pool services 291

Syntax
The standard form of the IARCP64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARCP64.

IARCP64

� One or more blanks must follow IARCP64.

REQUEST=BUILD

REQUEST=GET

REQUEST=FREE

REQUEST=DELETE

,HEADER=header header: RS-type address or address in register (2) - (12)

,CELLSIZE=cellsize cellsize: RS-type address or address in register (2) - (12)

,OUTPUT_CPID=output_cpid output_cpid: RS-type address or address in register (2) - (12)

,COMMON=NO

,COMMON=YES

,OWNINGTASK=CURRENT

,OWNINGTASK=MOTHER

,OWNINGTASK=IPT

,OWNINGTASK=JOBSTEP

,OWNINGTASK=CMRO

,OWNINGTASK=RCT

,MEMLIMIT=YES Default: MEMLIMIT=YES

,MEMLIMIT=NO

,MOTKN=motkn motkn: RS-type address or address in register (2) - (12)

,MOTKN=NO_MOTKN Default: MOTKN=NO_MOTKN

,DUMP=LIKERGN

,DUMP=LIKELSQA

IARCP64 macro

292 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,DUMP=LIKECSA

,DUMP=LIKESQA

,DUMP=NO

,DUMPPRIO=dumpprio dumpprio: RS-type address or address in register (2) - (12)

,OWNER=HOME

,OWNER=PRIMARY

,OWNER=SECONDARY

,OWNER=SYSTEM

,OWNER=BYASID

,OWNINGASID=owningasid owningasid: RS-type address or address in register (2) - (12)

,FPROT=YES

,FPROT=NO

,TYPE=PAGEABLE

,TYPE=DREF

,TYPE=FIXED

,CALLERKEY=YES

,CALLERKEY=NO

,KEY00TOF0=key00tof0 key00tof0: RS-type address or address in register (2) - (12)

,TRAILER=COND

,TRAILER=YES

,TRAILER=NO

,FAILMODE=RC

,FAILMODE=ABEND

,LOCALSYSAREA=NO Default: LOCALSYSAREA=NO

,LOCALSYSAREA=YES

,INPUT_CPID=input_cpid input_cpid: RS-type address or address in register (2) - (12)

,CELLADDR=celladdr celladdr: RS-type address or address in register (2) - (12)

,EXPAND=YES

IARCP64 macro

Chapter 26. IARCP64 — 64-bit cell pool services 293

Syntax Description

,EXPAND=NO

,TRACE=YES

,TRACE=NO

,CELLNAME=cellname cellname: RS-type address or address in register (2) - (12)

,CELLADDR=celladdr celladdr: RS-type address or address in register (2) - (12)

,REGS=SAVE

,REGS=USE

,INPUT_CPID=input_cpid input_cpid: RS-type address or address in register (2) - (12)

,RETCODE=retcode retcode: RS-type address or register (2) - (12), (GPR15), (REG15), or (R15).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12), (GPR0), (GPR00), (REG0),
(REG00), or (R0).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARCP64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=BUILD
REQUEST=GET
REQUEST=FREE
REQUEST=DELETE

A required parameter that indicates the type of request.

IARCP64 macro

294 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

REQUEST=BUILD
Request to build the pool. The initial pool size is 1 MB. The CELLSIZE and
TRAILER specifications determine how many available cells are in the
pool.

REQUEST=GET
Request to obtain a cell from the pool.

REQUEST=FREE
Request to return a cell to the pool. Note that this request is unconditional
and will abnormally end in the event of a problem. No return and reason
codes are provided; therefore, do not specify the RETCODE and
RSNCODE parameters.

REQUEST=DELETE
Request to delete the pool. Note that this request is unconditional and will
abnormally end in the event of a problem. No return and reason codes are
provided; therefore, do not specify the RETCODE and RSNCODE
parameters.

Parameters for REQUEST=BUILD

The following parameters are valid when you specify REQUEST=BUILD:

,HEADER=header
A required input parameter that specifies information to be placed into the
pool header for potential diagnostic purposes. The information helps to
identify the requestor and the purpose for the pool.

To code: Specify the RS-type address, or address in register (2) - (12), of a
24-character field.

,CELLSIZE=cellsize
A required input parameter that indicates the size of a cell in the pool. The cell
size can be anywhere between 1 and (1M-8192)/2 or 520,192 bytes. Cell size is
rounded up to a quadword multiple for cell sizes less than a cache line. Cells
larger than a cache line are rounded up to a cache line multiple. Cells larger
than a page are rounded to start on a page boundary. The first cell in an extent
is always located on a page boundary. Specifying a cell size that is at least 4
bytes less than the size after rounding for boundary alignment makes room for
a trailer to be inserted. See TRAILER=YES below.

To code: Specify the RS-type address, or address in register (2) - (12), of a
fullword field, or specify a literal decimal value.

,OUTPUT_CPID=output_cpid
A required output parameter that is to contain the cell pool ID.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,COMMON=NO
,COMMON=YES

A required parameter that indicates if the pool is to reside in common storage.

,COMMON=NO
The pool is not to reside in common storage.

,COMMON=YES
The pool is to reside in common storage.

,OWNINGTASK=CURRENT

IARCP64 macro

Chapter 26. IARCP64 — 64-bit cell pool services 295

,OWNINGTASK=MOTHER
,OWNINGTASK=IPT
,OWNINGTASK=JOBSTEP
,OWNINGTASK=CMRO
,OWNINGTASK=RCT

A required parameter that indicates the task to be considered as the owner of
the cell pool. When this task ends, the cell pool is automatically deleted.

,OWNINGTASK=CURRENT
The current task is to be the owner. Do not specify this unless the program
is in task mode.

,OWNINGTASK=MOTHER
The mother task of the current task is to be the owner. If the current task is
the cross-memory resource owning task, the request will fail. Do not
specify this unless the program is in task mode.

,OWNINGTASK=IPT
The initial pthread task is to be the owner. If the current task or mother
task is not the IPT, then this will default to the current task as the owner.
Do not specify this unless the program is in task mode.

,OWNINGTASK=JOBSTEP
The jobstep task of the current task (the task with TCB address in field
TCBJSTCB of the current task's TCB) is to be the owner. Do not specify this
unless the program is in task mode.

,OWNINGTASK=CMRO
The cross-memory resource-owning task of the current primary address
space is to be the owner.

,OWNINGTASK=RCT
The region control task (RCT) of the current primary address space is to be
the owner.

,MEMLIMIT=YES
,MEMLIMIT=NO

An optional parameter that specifies whether the 64-bit private memory objects
created for this cell pool are to count towards the address space MEMLIMIT.
The default is MEMLIMIT=YES.

,MEMLIMIT=YES
The 64-bit private memory objects contribute towards the address space
MEMLIMIT.

,MEMLIMIT=NO
The 64-bit private memory objects are not counted against the address
space MEMLIMIT.

,MOTKN=motkn
,MOTKN=NO_MOTKN

An optional input parameter that identifies the memory object token to be
associated with the memory object. This is expected to be a memory object
token that is user-generated (as opposed to having been created by the system
with the OUTMOTKN parameter of IARV64 GETSTOR). The main reason to
specify your own MOTKN is to have the cell pool extents be associated with
other memory objects from a dumping perspective. WARNING: If you use this
MOTKN on other IARV64 REQUEST=GETSTOR calls, a call to IARCP64
REQUEST=DELETE will detach all memory objects allocated with this
MOTKN. Similarly, a call to IARV64 REQUEST=DETACH with this MOTKN
will result in detaching all extents of the cell pool, without deleting control

IARCP64 macro

296 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

information for the cell pool. Unpredictable behavior can result. The default is
NO_MOTKN which indicates that no memory object token is supplied to
associate this memory object with others.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,DUMP=LIKERGN
,DUMP=LIKELSQA
,DUMP=LIKECSA
,DUMP=LIKESQA
,DUMP=NO

A required parameter that indicates how to dump this pool.

When COMMON=NO is specified:

,DUMP=LIKERGN
Dump the pool according to the rules for RGN.

,DUMP=LIKELSQA
Dump the pool according to the rules for LSQA.

,DUMP=NO
Do not dump the pool based on the RGN and LSQA SDATA options.

When COMMON=YES is specified:

,DUMP=LIKECSA
Dump the pool according to the rules for CSA.

,DUMP=LIKESQA
Dump the pool according to the rules for SQA.

,DUMP=NO
Do not dump the pool based on the CSA and SQA SDATA options.

,DUMPPRIO=dumpprio
When DUMP=LIKERGN, COMMON=NO and REQUEST=BUILD are specified,
a required input parameter that contains the dump priority to be used when
dumping the pool. The value can be in the range 1-99 with 1 being the highest
priority. See the documentation for the GETSTOR option of the IARV64 macro
for a discussion on dump priorities.

To code: Specify the RS-type address, or address in register (2) - (12), of an
one-byte field.

,OWNER=HOME
,OWNER=PRIMARY
,OWNER=SECONDARY
,OWNER=SYSTEM
,OWNER=BYASID

When COMMON=YES is specified, a required parameter that designates the
owner of the storage.

,OWNER=HOME
The home address space is to be the owner.

,OWNER=PRIMARY
The primary address space is to be the owner.

,OWNER=SECONDARY
The secondary address space is to be the owner.

IARCP64 macro

Chapter 26. IARCP64 — 64-bit cell pool services 297

,OWNER=SYSTEM
The system is to be the owner. Use this only when there is no specific
address space which can be considered the owner.

,OWNER=BYASID
The owner is the ASID specified by the OwningASID parameter.

,OWNINGASID=owningasid
When OWNER=BYASID, COMMON=YES and REQUEST=BUILD are specified,
a required input parameter that specifies the ASID that is to be the owner. A
value of 0 is equivalent to having specified OWNER=SYSTEM.

To code: Specify the RS-type address, or address in register (2) - (12), of a
halfword field.

,FPROT=YES
,FPROT=NO

A required parameter that indicates whether the pool storage is to be
fetch-protected.

,FPROT=YES
The pool storage is to be fetch-protected.

,FPROT=NO
The pool storage is not to be fetch-protected.

,TYPE=PAGEABLE
,TYPE=DREF
,TYPE=FIXED

A required parameter that indicates the type of storage for the pool.

,TYPE=PAGEABLE
The pool storage is to be pageable.

,TYPE=DREF
The pool storage is to be disabled-reference (DREF).

,TYPE=FIXED
The pool storage is to be page-fixed.

,CALLERKEY=YES
,CALLERKEY=NO

A required parameter that indicates whether the pool storage is to be in the
key of the caller of the BUILD request.

,CALLERKEY=YES
The pool storage is to be in the key of the caller.

,CALLERKEY=NO
The pool storage is not to be in the key of the caller, but instead in the key
specified by the Key00ToF0 parameter.

,KEY00TOF0=key00tof0
When CALLERKEY=NO is specified, a required input parameter that indicates
the key for the pool storage. The value should be in the range X'00' to X'F0'
(i.e., the key 0-15 in the high 4 bits of the byte) for a caller that is key 0-7,
supervisor state, or APF-authorized. The value X'90' is the only accepted key
for a caller that is key 8-15, problem state, and not APF-authorized.

To code: Specify the RS-type address, or address in register (2) - (12), of an
one-byte field.

,TRAILER=COND
,TRAILER=YES

IARCP64 macro

298 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,TRAILER=NO
A required parameter that indicates whether the cell is to have a trailer area
after the user portion of the cell which is set on GET processing and checked
on FREE processing. Note that requesting a trailer can cause the cell size to be
increased to provide room for the trailer. This increase in size occurs before
rounding for boundary alignment. For example, requesting a cell size of 4096
and TRAILER=YES results in cells being 8192 bytes in length. If you do not
need the entire 4096 bytes, specify a cell size of 4092 bytes and now the trailer
fits in the same page.

,TRAILER=COND
The cell storage should have trailer processing in the following cases:
v When the service-rounded cell size has room for the trailer without

requiring a larger cell to be allocated.
v When system diagnostic controls requests trailers be appended to cells

obtained by IARCP64. If this results in trailer processing, it will work as
described for TRAILER=YES below.

Note that the system diagnostic control for trailers in IARCP64 cell pools is
examined at BUILD time only.

,TRAILER=YES
The cell storage is to have trailer processing. If the application writes past
the end of the specified cell size, it will overrun the trailer. On a FREE
request, this will be detected and cause an ABEND.

,TRAILER=NO
The cell storage is not to have trailer processing, even if requested via a
system diagnostic control.

,FAILMODE=RC
,FAILMODE=ABEND

A required parameter that indicates what to do if the request is not successful.

,FAILMODE=RC
The request should return with a failure return code when there are
insufficient memory resources to satisfy the request. All errors in parameter
specification or parameter access will result in the request abnormally
ending.

,FAILMODE=ABEND
The request should abnormally end when there are insufficient memory
resources to satisfy the request.

,LOCALSYSAREA=NO
,LOCALSYSAREA=YES

When COMMON=NO is specified, an optional parameter that specifies
whether this is an explicit allocation request for 64-bit virtual storage in the
local system area. This parameter can be used only by callers running in
supervisor state or with PSW key 0-7. The default is LOCALSYSAREA=NO.

,LOCALSYSAREA=NO
The request will not be satisfied from the local system area.

,LOCALSYSAREA=YES
The request is to be satisfied from the local system area. The storage
obtained with this keyword will not be copied during fork processing. The
use of local system area storage does not preclude checkpoint from
succeeding.

IARCP64 macro

Chapter 26. IARCP64 — 64-bit cell pool services 299

Parameters for REQUEST=GET

The following parameters are valid when you specify REQUEST=GET:

,INPUT_CPID=input_cpid
A required input parameter that contains the cell pool ID returned on the
successful BUILD request.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,CELLADDR=celladdr
An optional output parameter of the obtained cell. If CELLADDR is not
specified, the cell address is left in register 1.

To code: Specify the RS-type address, or address in register (2) - (12), of an
eight-byte pointer field.

,EXPAND=YES
,EXPAND=NO

A required parameter that indicates whether to attempt expanding the pool if
there is no available cell.

,EXPAND=YES
Indicates that an attempt to expand the pool should be made. Each
successful expansion results in a 1 MB increase in the pool size.

,EXPAND=NO
Indicates that no attempt to expand the pool should be made.

,TRACE=YES
,TRACE=NO

A required parameter that indicates whether the invocation is to be traced.
Note that tracing is available only to supervisor state callers.

,TRACE=YES
The entry is to be traced. If you are running in supervisor state, use this
option, unless performance needs dictate otherwise. Note that TRACE=YES
on GET also results in TRACE=YES on FREE, so if you use TRACE=YES,
ensure that the FREE request is in supervisor state.

,TRACE=NO
The entry is not to be traced. You must use this option if running in
problem state.

,FAILMODE=RC
,FAILMODE=ABEND

A required parameter that indicates what to do if the request is not successful.

,FAILMODE=RC
The request should return with a failure return code when there are
insufficient memory resources to satisfy the request. All errors in parameter
specification or parameter access will result in the request abnormally
ending.

,FAILMODE=ABEND
The request should abnormally end when there are insufficient memory
resources to satisfy the request.

,REGS=SAVE
,REGS=USE

A required parameter that indicates how to deal with the registers.

IARCP64 macro

300 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,REGS=SAVE
The request should save and preserve the contents of 64-bit GPRs 2 - 12,
starting at offset 40 in a 144-byte area pointed to by register 13.

,REGS=USE
The request may use registers 2 - 12.

Parameters for REQUEST=FREE

The following parameters are valid when you specify REQUEST=FREE:

,CELLNAME=cellname
,CELLADDR=celladdr

A required input parameter that identifies the cell to free.

,CELLNAME=cellname
The name of the cell to free.

To code: Specify the RS-type address, or address in register (2) - (12), of a
character field.

,CELLADDR=celladdr
The address of the cell to free.

To code: Specify the RS-type address, or address in register (2) - (12), of an
eight-byte pointer field.

,INPUT_CPID=input_cpid
An optional input parameter that contains the cell pool ID returned on the
BUILD request.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,REGS=SAVE
,REGS=USE

A required parameter that indicates how to deal with the registers.

,REGS=SAVE
The request should save and preserve the contents of 64-bit GPRs 2 - 12,
starting at offset 40 in a 144-byte area pointed to by register 13.

,REGS=USE
The request may use registers 2 - 12.

Parameters for REQUEST=DELETE

The following parameters are valid when you specify REQUEST=DELETE:

,INPUT_CPID=input_cpid
A required input parameter that contains the cell pool ID returned on the
BUILD request.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

Optional parameters

The following parameters are optional:

IARCP64 macro

Chapter 26. IARCP64 — 64-bit cell pool services 301

|
|
|

|
|

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify (GPR15), (REG15), or (R15), the value will be left in
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12),
(GPR15), (REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify (GPR0), (GPR00), (REG0), (REG00), or (R0), the value will
be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2) - (12),
(GPR0), (GPR00), (REG0), (REG00), or (R0).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, specify PLISTVER=MAX on the list form
of the macro. Specifying MAX ensures that the list-form parameter list is
always long enough to hold all the parameters you might specify on the
execute form, when both are assembled with the same level of the system. In
this way, MAX ensures that the parameter list does not overwrite nearby
storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The

IARCP64 macro

302 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
This parameter specifies that the system is to check for required
parameters and supply defaults for omitted optional parameters.

ABEND codes
The IARCP64 caller might receive abend code X'DC4'. For detailed abend code
information, see z/OS MVS System Codes.

Return and reason codes
When the IARCP64 macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro IAXSERVC provides equated symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equated symbol associated with each reason code.

Table 32. Return and Reason Codes for the IARCP64 Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Equate Symbol Meaning and Action

00 None Equate Symbol: IARCP64Rc_OK

Meaning: IARCP64 request successful.

Action: None required.

BUILD Meaning: Cell pool built Action: None required.

DELETE
Meaning: Cell Pool deleted and storage freed.
Action: None required.

GET Meaning: Cell from pool obtained. Action: None
required.

FREE Meaning: Cell returned to the pool. Action: None
required.

IARCP64 macro

Chapter 26. IARCP64 — 64-bit cell pool services 303

Table 32. Return and Reason Codes for the IARCP64 Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Equate Symbol Meaning and Action

04 None Equate Symbol: IARCP64Rc_Warn

Meaning: Warning

Action: Refer to the action provided with the specific
reason code.

04 xx0400xx Equate Symbol: IARCP64RsnGetOutOfCells

Meaning: The request to the IARCP64 GET service
specified EXPAND=NO and the current extent is out of
cells.

Action: Either change the request to specify EXPAND=YES
or write logic to deal with no cell being available.

08 None Equate Symbol: IARCP64Rc_Fail

Meaning: Service failed due to running out of resources.

Action: Refer to the action provided with the specific
reason code.

08 xx0401xx Equate Symbol: IARCP64RsnMemlimitExhausted

Meaning: The request to either the IARCP64 BUILD,
IARCP64 GET when the pool is being expanded or the
IARST64 GET when a new extent is required was not able
to obtain private storage due to the address space
MEMLIMIT.

Action: Either raise the MEMLIMIT of the address space or
determine if private storage is being consumed excessively
somewhere.

08 xx0402xx Equate Symbol: IARCP64Rsn64BitCommonExhausted

Meaning: The request to either the IARCP64 BUILD,
IARCP64 GET when the pool is being expanded or the
IARST64 GET when a new extent is required was not able
to obtain common storage due to there being insufficient 64
bit common storage to satisfy the request.

Action: For common storage, either raise the system limit
on common (HVCOMMON) or determine if common
storage is being consumed excessively somewhere.

Examples
1. Build a pool according to the following specifications:

v Cells 32-bytes long
v In private storage
v With an owning task of the current task
v Dumped similar to "RGN" processing
v Not fetch-protected
v Pageable storage
v In key 3
v Provide a diagnostic trailer. Note that requesting a diagnostic trailer causes

the cell size to internally be rounded up from 32 bytes to 48 bytes
v Provide return code if the request is not successful
The coding sample follows:

IARCP64 macro

304 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IARCP64 REQUEST=BUILD,HEADER=theHeader,
CELLSIZE=theCellsize,OUTPUT_CPID=theCPID,
COMMON=NO,OWNINGTASK=CURRENT,DUMP=LIKERGN,
FPROT=NO,TYPE=PAGEABLE,
CALLERKEY=NO,KEY00TOF0=theKEY,
TRAILER=YES,FAILMODE=RC,
RETCODE=LRETCODE,RSNCODE=LRSNCODE,
MF=(E,IARCP64L)

(Place code to check return/reason codes here.)

theHEADER DC CL24 Header for pool
theCellsize DC F’32’ 32-byte cells
Key00ToF0 DC X’30’ Key 3 (bits 0-3 of the byte)

IAXSERVC Return/Reason code information
DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F
theCPID DS D
IARCP64 MF=(L,IARCP64L)

2. Obtain a cell from the pool.
v Do not expand the pool if no cell is available
v Provide Return Code if the request is not successful
v Save and restore registers
The coding sample follows:

IARCP64 REQUEST=GET,INPUT_CPID=theCPID,
CELLADDR=theCellAddr,
EXPAND=NO,
FAILMODE=RC,
REGS=SAVE,
RETCODE=LRETCODE,RSNCODE=LRSNCODE,

(Place code to check return/reason codes here.)

IAXSERVC Return/Reason code information
DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F
theCPID DS D
theCellAddr DS D

3. Free a cell.
v Save and restore registers
The coding sample follows:

IARCP64 REQUEST=FREE,
CELLADDR=theCellAddr,
REGS=SAVE

IAXSERVC Return/Reason code information
DYNAREA DSECT
theCPID DS D
theCellAddr DS D

4. Delete the pool.
The coding sample follows:

IARCP64 REQUEST=DELETE,INPUT_CPID=theCPID,
MF=(E,IARCP64L)

IAXSERVC Return/Reason code information
DYNAREA DSECT
theCPID DS D
IARCP64 MF=(L,IARCP64L)

IARCP64 macro

Chapter 26. IARCP64 — 64-bit cell pool services 305

IARCP64 macro

306 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 27. IARR2V — Convert a central storage address to a
virtual storage address

Description
Use the IARR2V macro to convert a central storage address to a virtual storage
address. This conversion can be useful when you have the central storage address
from handling I/O or doing diagnostic support and need to know the
corresponding virtual address.

When the input storage address is a central storage address that backs a single
page, the system returns the ASID that indicates the address space that owns the
central storage, and the STOKEN that indicates the address space or data space
that uses the central storage. When a central storage address does not back any
page, or backs a read-only nucleus page, the system returns a non-zero return code
and reason code.

For more information on the use of the IARR2V macro, see z/OS MVS
Programming: Authorized Assembler Services Guide. IARR2V is also described in the
z/OS MVS Programming: Assembler Services Guide with the exception of the
LINKAGE parameter.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key. For the LINKAGE

parameter, supervisor state with any PSW key.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24-, 31- or 64-bit.
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold the local or CPU lock, but is not

required to hold any locks.
Control parameters: None.

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the IARR2V macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2016 307

Register
Contents

0 ASID if return code is 0 or 4; otherwise, reason code. The ASID value is
X'FFFF' if the returned virtual address represents common storage.

1 Virtual storage address if return code is 0 or 4; otherwise, used as a work
register by the system.

2-13 Unchanged.

14 Used as a work register by the system.

15 Return code.

When control returns to the caller, the ARs contain:

Register
Contents

0 First four bytes of STOKEN if return code is 0 or 4; otherwise, used as a
work register by the system.

1 Last four bytes of STOKEN if return code is 0 or 4; otherwise, used as a
work register by the system.

2-13 Unchanged.

14 Total shared view count if return code is 0 or 4; otherwise, used as a work
register by the system.

15 Valid shared view count if return code is 0 or 4; otherwise, used as a work
register by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the IARR2V macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARR2V.

IARR2V

� One or more blanks must follow IARR2V.

RSA=rsa_addr rsa_addr: RS-type address, or register (2) - (12).

RSA64=rsa_addr64 rsa_addr64: RS-type address, or register (2) - (12).

IARR2V macro

308 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,VSA=vsa_addr vsa_addr: RS-type address, or register (2) - (12).

,VSA64=vsa_addr64 vsa_addr64: RS-type address, or register (2) - (12).

,ASID=asid_addr asid_addr: RS-type address, or register (2) - (12).

,STOKEN=stoken_addr stoken_addr: RS-type address, or register (2) - (12).

,WORKREG=work_reg work_reg: RS-type address, or register (2) - (12).

,WORKREG=NONE Default: WORKREG=NONE

,NUMVIEW=view_addr view_addr: RS-type address, or register (2) - (12).

,NUMVALID=val_addr val_addr: RS-type address, or register (2) - (12).

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

,RETCODE=retcode retcode: RS-type address, or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address, or register (2) - (12).

Parameters
The parameters are explained as follows:

RSA=rsa_addr
Specifies the name (RS-type) or address (in register 2-12) of an input fullword
that contains the central storage address to be converted to a virtual storage
address. This keyword is used to provide a 31–bit real address. RSA and
RSA64 are mutually exclusive keywords. You must specify one or the other.

RSA64=rsa_addr64
Specifies the name (RS-type) or address (in register 2-12) of an input
double-word that contains the central storage address to be converted to a
virtual storage address. This keyword is used to provide a 64–bit real address.
RSA and RSA64 are mutually exclusive keywords. You must specify one or the
other. To use this keyword, the SYSTATE macro must be invoked specifying
ARCHLVL greater than 1.

,VSA=vsa_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional output
fullword that the system uses to return the virtual storage address that
corresponds to the input central storage address.

,VSA64=vsa_addr64
Specifies the name (RS-type) or address (in register 2-12) of an optional output
fullword that the system uses to return the 64–bit virtual storage address that

IARR2V macro

Chapter 27. IARR2V — Convert a central storage address to a virtual storage address 309

corresponds to the input central storage address. VSA and VSA64 are mutually
exclusive keywords. To use this keyword, the SYSTATE macro must be
invoked specifying ARCHLVL greater than 1.

,ASID=asid_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional output
fullword that the system uses to return the ASID of the address space
associated with the output virtual storage address. The system returns the
ASID in bits 16-31 of the fullword, and clears bits 1-15 to 0. If the input central
storage address backs a page that is shared through the use of the IARVSERV
macro, the system sets bit 0 to 1; otherwise, bit 0 contains 0.

,STOKEN=stoken_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional
8-character output field that the system uses to return the STOKEN for the
address space or data space associated with the output virtual storage address.

,WORKREG=work_reg
,WORKREG=NONE

Specifies whether the system is to return a page sharing view count. If you
want the system to return a page sharing view count, specify work-reg as a
digit from 2 through 12 that identifies a GPR/AR pair that the system can use
as work registers. WORKREG=work_reg is required if you code NUMVIEW or
NUMVALID.

WORKREG=NONE is the default and specifies that the system is not to return
the sharing count.

,NUMVIEW=view_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional output
fullword that the system uses to return the number of page sharing views
associated with the input central storage address. This number is non-zero only
if the system sets bit 0 of the ASID. NUMVIEW=view_addr is required with the
WORKREG=work_reg parameter.

,NUMVALID=val_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional output
fullword that the system uses to return the number of valid page sharing
views associated with the input central storage address. A valid page must be
currently defined in central storage. This number is non-zero only if the system
sets bit 0 of the asid_addr. NUMVALID=val_addr is required with the
WORKREG=work_reg parameter.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies whether the system is to use a program call (LINKAGE=SYSTEM) or
branch entry (LINKAGE=BRANCH). LINKAGE=SYSTEM is the default.

,RETCODE=retcode
Specifies the name (RS-type) or address (in register 2-12) of an optional output
fullword into which the system copies the return code from GPR 15.

,RSNCODE=rsncode
Specifies the name (RS-type) or address (in register 2-12) of an optional output
fullword into which the system copies the a reason code from GPR 0.

ABEND codes
None.

IARR2V macro

310 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return and reason codes
When the IARR2V macro returns control to your program, GPR 15 (and retcode if
you coded RETCODE) contains the return code. If the return code is not 0 or 4,
GPR 0 (and rsncode if you coded RSNCODE) contains the reason code.

Table 33. Return and Reason Codes for the IARR2V Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: The IARR2V request completed successfully. The
address returned in the VSA parameter represents an
address space page.

Action: None required.

04 None Meaning: The IARR2V request completed successfully. The
address returned in the VSA parameter represents a data
space page.

Action: None required.

08 xx0001xx Meaning: Program error. The IARR2V request was
unsuccessful because the input central storage address was
not within the bounds of central storage.

Action: Check your input central storage address and rerun
the program.

08 xx0002xx Meaning: Program error. The IARR2V request was
unsuccessful because the frame corresponding to the input
central storage address was not assigned to a page.

Action: Check your input central storage address and rerun
the program.

08 xx0003xx Meaning: Program error. The IARR2V request was
unsuccessful because the frame corresponding to the input
central storage address contains shared data, but no virtual
address for any accessible address space (either home,
primary, or secondary) corresponds to the frame.

Action: Check your input central storage address and rerun
the program.

08 xx0004xx Meaning: System error. The IARR2V request was
recursively invoked.

Action: Record the return code and reason code and
supply them to the appropriate IBM support personnel.

08 xx0005xx Meaning: Program error. The IARR2V request was
unsuccessful because the frame corresponding to the input
central storage address was assigned, but the data space
STOKEN could not be found.

Action: Check your input central storage address and rerun
the program.

08 xx0006xx Meaning: Program error. The IARR2V request was
unsuccessful because the virtual address is above 2G and
the caller did not specify VSA64.

Action: Specify VSA64 on the IARR2V invocation.

Example 1
Convert the central storage address in variable VSA and place the result in variable
VSAOUT.

IARR2V macro

Chapter 27. IARR2V — Convert a central storage address to a virtual storage address 311

LRA 1,VSA
LR 5,1

INVOKE1 IARR2V RSA=(5),VSA=VSAOUT
.
.

VSA DS F
VSAOUT DS F

Example 2
Same as Example 1, but return ASID in variable ASIDO.
INVOKE2 IARR2V RSA=(5),ASID=ASIDO

.

.
ASIDO DS F

Example 3
Same as Example 1, but return STOKEN in variable STOKO.
INVOKE3 IARR2V RSA=(5),STOKEN=STOKO

.

.
STOKO DS F

Example 4
Obtain the total and valid number of page sharing views associated with the input
address. WORKREG is required.
INVOKE4 IARR2V RSA=(5),WORKREG=(6),NUMVIEW=VIEWS,NUMVALID=VALS

.

.
VIEWS DS F
VALS DS F

IARR2V macro

312 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 28. IARST64 — 64-bit storage services

Description
Use IARST64 to request 64-bit Storage Services.

With IARST64, you can request services to:
v Obtain storage (REQUEST=GET)
v Return storage (REQUEST=FREE)

Note: There is diagnostic support for 64 bit cell pools, created by IARST64, in IPCS
via the CBFORMAT command. In order to locate the cell pool of interest you need
to follow the pointers from HP1, to HP2, to the CPHD. For common storage, the
HP1 is located in the ECVT. CBF ECVT formats the ECVT, then does a FIND on
HP1. Extract the address of the HP1 from the ECVT and CBF addrhp1
STR(IAXHP1) formats the HP1. Each entry in the HP1 represents an attribute set
(storage key, storage type(pageable, DREF, FIXED), and Fetch-Protection (ON or
OFF)). The output from this command contains CBF commands for any connected
HP2s. Select the CBF command of interest and run it to format the HP2. The HP2
consists of pointers to cell pool headers for different sizes. Choose the size of
interest and select the command that looks like this to format the cell pool header:
CBF addrchphd STR(IAXCPHD)

To see details about all of the cells in the pool, use the EXIT option as follows:
CBF addrcphd STR(IAXCPHD) EXIT

For private storage, the HP1 is anchored in the STCB. The quickest way to locate
the HP1 is to run the SUMMARY FORMAT command for the address space of
interest. Locate the TCB that owns the storage of interest and then scroll down to
the formatted STCB. The HP1 field contains the address of the HP1. From here, the
processing is the same as described for common storage above.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Use of the COMMON=YES, TYPE=DREF, TYPE=FIXED,

OWNINGTASK=RCT, or the Key00ToF0 parameter with a
value other than 9 requires the caller to be running in key
0-7. Use of MEMLIMIT=NO requires key 0-7 or supervisor
state. All other options have a minimum authorization of
problem state and PSW key 8-15.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: v The caller may be enabled or disabled for interrupts when

requesting storage that is defined as COMMON=YES and
TYPE=DREF or TYPE=FIXED.

v For all other parameter combinations, the caller must be
enabled for interrupts.

© Copyright IBM Corp. 1988, 2016 313

|

Environmental factor Requirement
Locks: For the GET request, the following locks may be held by the

caller or must be obtainable by IARST64:

v For requests with COMMON=NO, the locking restrictions
are the same as for IARV64 REQUEST=GETSTOR.

For the FREE request, the caller might hold locks but is not
required to hold any.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
None.

Restrictions
None.

Input register information
When REGS=SAVE is not used, the caller does not have to place any information
into any general purpose register (GPR) or access register (AR) unless using it in
register notation for a particular parameter, or using it as a base register.

Before issuing the IARST64 macro with REGS=SAVE, the caller must ensure that
the following GPR contains the specified information:

Register
Contents

13 Address of a 144-byte area within which the 88 bytes beginning at offset 40
may be modified.

Before issuing the IARST64 macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit GPRs contain:

For REQUEST=GET

Register
Contents

0 Reason code in the low 32 bits if the return code is not 0. Otherwise, used
as a work register by the system.

1 The address of the obtained storage.

2-12 Unchanged if REGS=SAVE was specified, used as work registers by the
system if REGS=USE was specified.

13 Unchanged.

14 Used as a work register by the system.

15 Return code in the low 32 bits.

For REQUEST=FREE

IARST64 macro

314 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Register
Contents

0-1 Used as a work register by the system.

2-12
v Unchanged, if REGS=SAVE was specified.
v Used as work registers by the system, if REGS=USE was specified.

13 Unchanged.

14-15 Used as a work register by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The IARST64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARST64.

IARST64

� One or more blanks must follow IARST64.

REQUEST=GET

REQUEST=FREE

,SIZE=size size: RS-type address or address in register (2) - (12)

,AREAADDR=areaaddr areaaddr: RS-type address or address in register (2) - (12)

,COMMON=NO

IARST64 macro

Chapter 28. IARST64 — 64-bit storage services 315

Syntax Description

,COMMON=YES

,OWNINGTASK=CURRENT

,OWNINGTASK=MOTHER

,OWNINGTASK=IPT

,OWNINGTASK=JOBSTEP

,OWNINGTASK=CMRO

,OWNINGTASK=RCT

,MEMLIMIT=YES Default: MEMLIMIT=YES

,MEMLIMIT=NO

,LOCALSYSAREA=NO Default: LOCALSYSAREA=NO

,LOCALSYSAREA=YES

,OWNER=HOME

,OWNER=PRIMARY

,OWNER=SECONDARY

,OWNER=SYSTEM

,OWNER=BYASID

,OWNINGASID=owningasid owningasid: RS-type address or address in register (2) - (12)

,FPROT=YES

,FPROT=NO

,TYPE=PAGEABLE

,TYPE=DREF

,TYPE=FIXED

,CALLERKEY=YES

,CALLERKEY=NO

,KEY00TOF0=key00tof0 key00tof0: RS-type address or address in register (2) - (12)

,FAILMODE=RC

,FAILMODE=ABEND

,REGS=SAVE

,REGS=USE

IARST64 macro

316 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,AREANAME=areaname areaname: RS-type address or address in register (2) - (12)

,AREAADDR=areaaddr areaaddr: RS-type address or address in register (2) - (12)

,REGS=SAVE

,REGS=USE

,RETCODE=retcode retcode: RS-type address or register (2) - (12), (GPR15), (REG15), or (R15).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12), (GPR0), (GPR00), (REG0),
(REG00), or (R0).

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARST64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=GET
REQUEST=FREE

A required parameter that indicates the type of request.

REQUEST=GET
This parameter gets storage.

REQUEST=FREE
This parameter returns storage.

Note:
This request is unconditional, and will abnormally end if there is a
problem. No return and reason codes are provided, so do not specify the
RETCODE and RSNCODE parameters.

,SIZE=size
When REQUEST=GET is specified, a required input parameter that indicates
the size of the storage to be obtained. The size can be anywhere between 1 and
128K bytes. The size is rounded up to a power of 2. So cell sizes are 64, 128,
256, 512, 1024, 2048, 4096, 8192, 16,384, 32,768, 65,536 and 131,072 bytes. The
smallest cell size that contains the request is used. If the requested size is at
least 4 bytes less than the rounded up cell size, a trailer will be added to check
for storage overruns. For storage that is larger than what IARCP64 supports,
consider using IARCP64 or IARV64 GETSTOR or GETCOMMON. Do not
specify a value exceeding 128K or incorrect results may ensue.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,AREAADDR=areaaddr
When REQUEST=GET is specified, an optional output parameter, of the
obtained storage. If AREAADDR is not specified, the cell address is left in
register 1.

IARST64 macro

Chapter 28. IARST64 — 64-bit storage services 317

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,COMMON=NO
,COMMON=YES

When REQUEST=GET is specified, a required parameter that indicates if the
pool is to reside in common storage.

,COMMON=NO
This parameter indicates that the pool is not to reside in common storage.

,COMMON=YES
This parameter indicates that the pool is to reside in common storage.

,OWNINGTASK=CURRENT
,OWNINGTASK=MOTHER
,OWNINGTASK=IPT
,OWNINGTASK=JOBSTEP
,OWNINGTASK=CMRO
,OWNINGTASK=RCT

When COMMON=NO and REQUEST=GET are specified, a required parameter
that indicates the task that is to be considered the owner.

,OWNINGTASK=CURRENT
This parameter indicates that the current task is to be the owner. Do not
specify this unless the program is in task mode.

,OWNINGTASK=MOTHER
This parameter indicates that the mother task of the current task is to be
the owner. If the current task is the cross-memory resource owning task,
the request will fail. Do not specify this unless the program is in task
mode.

,OWNINGTASK=IPT
This parameter indicates that the initial pthread task (subtask running
under Unix System Services) is to be the owner. If the current task or
mother task is not the IPT, then this will default to the current task as the
owner. Do not specify this unless the program is in task mode.

,OWNINGTASK=JOBSTEP
This parameter indicates that the jobstep task of the current task (the task
with TCB address in field TCBJSTCB of the current task's TCB) is to be the
owner. Do not specify this unless the program is in task mode.

,OWNINGTASK=CMRO
This parameter indicates that the cross-memory resource-owning task is to
be the owner.

,OWNINGTASK=RCT
This parameter indicates that the region control task (RCT) is to be the
owner. You must be key 0-7 to request this option.

,MEMLIMIT=YES
,MEMLIMIT=NO

When COMMON=NO and REQUEST=GET are specified, an optional
parameter that indicates whether MEMLIMIT applies if an additional 1M
segment is obtained to satisfy the request. The default is MEMLIMIT=YES.

,MEMLIMIT=YES
This parameter indicates that MEMLIMIT applies.

IARST64 macro

318 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,MEMLIMIT=NO
This parameter indicates that MEMLIMIT does not apply.

,LOCALSYSAREA=NO
,LOCALSYSAREA=YES

When Common=NO and request=GET are specified, an optional parameter
that specifies whether this is an explicit allocation request for 64-bit virtual
storage in the local system area. The LOCALSYSAREA parameter can be used
only by callers running in supervisor state or with a PSW key 0-7. THE
DEFAULT IS LOCALSYSAREA=NO.

,LOCALSYSAREA=NO
The request will not be satisfied from the local system area.

,LOCALSYSAREA=YES
The request is to be satisfied from the local system area. The storage
obtained with this keyword will not be copied during Fork processing. The
use of local system area storage does not preclude checkpoint or restart
from succeeding.

,OWNER=HOME
,OWNER=PRIMARY
,OWNER=SECONDARY
,OWNER=SYSTEM
,OWNER=BYASID

When COMMON=YES and REQUEST=GET are specified, a required parameter
that designates the owner of the storage.

,OWNER=HOME
This parameter indicates that the home address space is to be the owner.

,OWNER=PRIMARY
This parameter indicates that the primary address space is to be the owner.

,OWNER=SECONDARY
This parameter indicates that the secondary address space is to be the
owner.

,OWNER=SYSTEM
This parameter indicates that the system is to be the owner. Use this only
when there is no specific address space which can be considered the
owner.

,OWNER=BYASID
This parameter indicates that the owner is the ASID specified by the
OwningASID parameter.

,OWNINGASID=owningasid
When OWNER=BYASID, COMMON=YES and REQUEST=GET are specified, a
required input parameter that specifies the ASID that is to be the owner. A
value of 0 is equivalent to having specified OWNER=SYSTEM. Do not specify
a value exceeding 32767 or incorrect results may ensue.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value.

,FPROT=YES
,FPROT=NO

When REQUEST=GET is specified, a required parameter that indicates if the
pool storage is to be fetch-protected.

IARST64 macro

Chapter 28. IARST64 — 64-bit storage services 319

,FPROT=YES
This parameter indicates that the pool storage is to be fetch-protected.

,FPROT=NO
This parameter indicates that the pool storage is not to be fetch-protected.

,TYPE=PAGEABLE
,TYPE=DREF
,TYPE=FIXED

When REQUEST=GET is specified, a required parameter that indicates the type
of storage for the pool.

,TYPE=PAGEABLE
This parameter indicates that the pool storage is to be pageable.

,TYPE=DREF
This parameter indicates that the pool storage is to be disabled-reference
(DREF).

,TYPE=FIXED
This parameter indicates that the pool storage is to be page-fixed.

,CALLERKEY=YES
,CALLERKEY=NO

When REQUEST=GET is specified, a required parameter that indicates if the
pool storage is to be in the key of the caller of the GET request.

,CALLERKEY=YES
This parameter indicates that the pool storage is to be in the key of the
caller.

,CALLERKEY=NO
This parameter indicates that the pool storage is not to be in the key of the
caller, but instead in the key specified by the Key00ToF0 parameter.

,KEY00TOF0=key00tof0
When CALLERKEY=NO and REQUEST=GET are specified, a required input
parameter that indicates the key for the pool storage. The value should be in
the range x'00' to x'F0' (i.e., the key 0-15 in the high 4 bits of the byte) for a
caller that is key 0. For caller's in key 1-7, you can only request storage that is
the same as the CALLERKEY, so there is no reason to use this parameter
unless you request key x'90'. The value x'90' is the only accepted key for a
caller that is key 8-15. Be sure that the value is a multiple of 16 within the
required range or incorrect results may ensue.

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,FAILMODE=RC
,FAILMODE=ABEND

When REQUEST=GET is specified, a required parameter that indicates what to
do if the GET request is not successful due to out of memory in the requested
area conditions.

,FAILMODE=RC
This parameter returns with a failure return code.

Note: There will be cases for which an ABEND occurs regardless of the
specification of FAILMODE=RC.

,FAILMODE=ABEND
This parameter abnormally ends.

IARST64 macro

320 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,REGS=SAVE
,REGS=USE

When REQUEST=GET is specified, a required parameter that indicates how to
deal with the registers.

,REGS=SAVE
This parameter saves and preserves the contents of 64-bit GPRs 2 - 12
starting at offset 40 in a 144 byte area pointed to by register 13.

,REGS=USE
This parameter indicates that you may use registers 2 - 12.

,AREANAME=areaname
,AREAADDR=areaaddr

When REQUEST=FREE is specified, a required input parameter.

,AREANAME=areaname
A parameter that is the area to free.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,AREAADDR=areaaddr
A parameter that contains the address of the area to free.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,REGS=SAVE
,REGS=USE

When REQUEST=FREE is specified, a required parameter that indicates how to
deal with the registers.

,REGS=SAVE
This parameter saves and preserves the contents of 64-bit GPRs 2 - 12
starting at offset 40 in a 144 byte area pointed to by register 13.

,REGS=USE
This parameter indicates that you may use registers 2 - 12.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, or R15 (within or without parentheses), the
value will be left in GPR15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12),
(GPR15), (REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (0), (GPR0), (GPR00), (REG0), (REG00), or (R0).

ABEND codes
The IARST64 caller might receive abend code X'DC4'. For detailed abend code
information, see z/OS MVS System Codes.

IARST64 macro

Chapter 28. IARST64 — 64-bit storage services 321

In the following IARST64 abend reason codes, the bytes designated "xx" are for
diagnostic purposes and have no significance to the external interface. Equate
IARST64AbendRsncodeMask has been provided to let you build a mask to ignore
those bytes.

Hexadecimal Reason Code Equate Symbol Meaning and Action

xx0410xx Equate Symbol: IARST64AbendRsnCellAddrLow

Meaning: The storage address passed to the IARST64
FREE service is within a megabyte used for storage
pools, but the address is less than the address of the 1st
usable storage address.

Action: Correct the address passed to IARST64 FREE,
making sure it is the same address that was returned
from IARST64 GET.

xx0413xx Equate Symbol: IARST64AbendRsnCellNotInExtent

Meaning: The request was to the IARCP64 or IARST64
FREE service and the address of the storage passed in,
is not within the bounds of a cell pool.

Action: The address passed to IARST64
REQUEST=FREE must be the same as the address
obtained from IARST64 REQUEST=GET.

xx0419xx Equate Symbol: IARST64AbendRsnCellOverRun

Meaning: The request was to the IARCP64 or IARST64
FREE service and the trailer data at the end of the cell
was detected as being overrun. If the overrun is
sufficiently large, it will cause damage to the following
cell. The caller is abnormally ended so they can fix the
code to not use more storage than requested.

Action: Determine whether the storage has been
overrun or whether the trailer data was overlaid by
some other code. Fix the code so it only uses the
amount of storage requested.

xx041Axx Equate Symbol: IARST64AbendRsnCellNotInUse

Meaning: The request was to the IARCP64 or IARST64
FREE service and the address of the storage passed in,
is already in the freed state. This will happen when an
application frees the storage twice.

Action: Determine whether the current application is
freeing the storage twice or whether it is using a cell
that some other storage is freeing twice.

xx041Bxx Equate Symbol:
IARST64AbendRsnNotOnCellBoundary

Meaning: The request was to the IARCP64 or IARST64
FREE service and the address of the storage passed in
is not on a cell boundary in the cell pool from which
the GET request was satisfied.

Action: When freeing storage with IARST64
REQUEST=FREE, make sure to specify the address that
was returned by IARST64 REQUEST=GET.

IARST64 macro

322 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Hexadecimal Reason Code Equate Symbol Meaning and Action

xx041Cxx Equate Symbol: IARST64AbendRsnIARV64Error

Meaning: During processing of IARST64 GET, a call to
the IARV64 service for GETSTOR, GETCOMMON,
PAGEFIX or PROTECT failed. The failing return code
from IARV64 was placed in register 2 prior to the
abend. The failing reason code from IARV64 was
placed in register 3 prior to the abend.

Action: Examine the return and reason code as
documented under IARV64 to determine if the problem
is one that you can resolve.

xx0420xx Equate Symbol: IARST64AbendRsnCphaNotQueue

Meaning: The cell pool header authorized area was not
queued to the owning task as expected. This could
happen due to storage overlays or the caller bypassing
the IARST64 macro and PCing directly to the service
with incorrect input parameters.

Action: Make sure the application is using the IARST64
macro to request storage. If the problem persists, collect
a dump and contact IBM Service.

xx0425xx Equate Symbol: IARST64AbendRsnPoolNotInCallerKey

Meaning: The request to IARST64 GET was against a
storage pool that was not in the key of the caller.
Normally this will abend with an 0C4, but if the pool is
out of cells and is in storage that is not fetch-protected,
the pool expand routine verifies that the caller may
modify this storage pool.

Action: You must be in a key that has the ability to
modify the pool storage for the request to be processed.

xx0426xx Equate Symbol:
IARST64AbendRsnPrimaryExtentOverlaid

Meaning: The request to IARST64 or IARCP64 GET
was against a storage pool where the primary extent
control information has been overlaid.

Action: Collect a dump and report the problem to IBM.

xx0427xx Equate Symbol:
IARST64AbendRsnSecondaryExtentOverlaid

Meaning: The request to IARST64 or IARCP64 GET
was against a storage pool where the secondary extent
control information has been overlaid.

Action: Collect a dump and report the problem to IBM.

xx0428xx Equate Symbol: IARST64AbendRsnUnexpectedError

Meaning: During processing of IARST64 GET an
unexpected abend occurred. An SDUMP should have
been generated.

Action: Collect the dump and report the problem to
IBM.

IARST64 macro

Chapter 28. IARST64 — 64-bit storage services 323

Hexadecimal Reason Code Equate Symbol Meaning and Action

xx0511xx Equate Symbol: IARST64AbendRsnKeyGT7Common

Meaning: The request to IARST64 GET was for
common storage, but the requested or caller was
greater than key 7. You cannot allocate common storage
in key 8 or above.

Action: Correct the key passed to IARST64 GET or
change your request to get private storage.

xx0512xx Equate Symbol:
IARST64AbendRsnGetMotherFromCmro

Meaning: The request was to the IARST64 GET service
and specified OWNINGTASK(MOTHER), but the caller
is running on the CMRO task. You can't request the
mother task be the storage owner from the CMRO task.

Action: Either specify CMRO as the owner or specify
RCT if you want the storage to persist across
termination of the CMRO.

xx0514xx Equate Symbol: IARST64AbendRsnGetNotRctOrCmro

Meaning: The request was to the IARST64 GET service
for private storage and the caller was running in cross
memory mode or SRB mode. In these environments the
OWNINGTASK parameter must be set to RCT or
CMRO. Neither of these was specified, so the request is
failed.

Action: Specify the OWNINGTASK parameter as RCT
or CMRO.

xx0515xx Equate Symbol: IARST64AbendRsnGetCellSizeZero

Meaning: The request was to the IARST64 GET service
and specified a length of zero.

Action: Specify a length between 1 and 128K.

xx0516xx Equate Symbol: IARST64AbendRsnGetNotAuth

Meaning: The request was to the IARST64 GET service
and specified a parameter that requires the caller to be
running in key 0-7. The caller is not authorized to use
authorized options of COMMON, DREF, FIXED,
OWNINGTASK(RCT), CALLERKEY(NO) and
Key00ToF0 set to a system key.

Action: Either run the code in key 0-7 or do not use
authorized options.

xx0517xx Equate Symbol: IARST64AbendRsnGetCellSizeTooBig

Meaning: The request was to the IARST64 GET service
and specified a length greater than 128K.

Action: Specify a size between 1 and 128K. If larger
storage is needed, consider using IARCP64 or IARV64
GETSTOR or GETCOMMON.

IARST64 macro

324 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Hexadecimal Reason Code Equate Symbol Meaning and Action

xx0518xx Equate Symbol: IARST64AbendRsnGetKeyNot9

Meaning: The request was to the IARST64 GET service
and specified a CALLERKEY(NO) and a value for
Key00ToF0 that was not key 9 and the caller is not
authorized.

Action: The only key that an unauthorized user can
specify is key 9. Either request key 9 or change the
specification to CALLERKEY(YES).

xx0529xx Equate Symbol: IARST64AbendRsnGetSizeTooBig

Meaning: The call to the IARST64 GET service
specified a cell size larger than the maximum size
supported.

Action: Specify a size between 1 and 128K. If a larger
storage area is needed, consider using IARCP64 or
IARV64 REQUEST=GETSTOR or GETCOMMON.

xx052Axx Equate Symbol: IARST64AbendRsnValidationError

Meaning: The call to the IARST64 GET service detected
a validation error when locating the storage pool to be
used. Possible cause is storage overlay of the storage
pool control block in the caller's key.

Action: Collect a dump and report the problem to IBM.

xx052Bxx Equate Symbol:
IARST64AbendRsnMemLimitNoUnauth

Meaning: The call to the IARST64 GET service
requested MEMLIMIT=NO, but is running
unauthorized (key 8-15 and problem program state).

Action: Either specify MEMLIMIT=YES or call from an
authorized environment.

xx052Cxx Equate Symbol: IARST64AbendRsnCellLT4Gig

Meaning: The call to the IARCP64 or IARST64 FREE
service was passed a cell address less than 4 Gig, so it
can't possibly be a valid cell address in a 64 bit cell
pool.

Action: Only pass a storage address that was obtained
with IARCP64 or IARST64 GET.

xx052Dxx Equate Symbol:
IARST64AbendRsnLocalSysAreaYesUnauth

Meaning: The call to the IARST64 GET service
requested LOCALSYSAREA=YES, but is running
unauthorized (key 8-15 and problem program state).

Action: Either specify LOCALSYSAREA=NO or CALL
from an authorized environment.

Return and reason codes
When the IARST64 macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

IARST64 macro

Chapter 28. IARST64 — 64-bit storage services 325

Macro IAXSERVC provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code.

Table 34. Return and Reason Codes for the IARST64 Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Equate Symbol Meaning and Action

00 None Equate Symbol: IARST64Rc_OK

Meaning: IARST64 request successful.

Action: None required.

GET Meaning: storage obtained of requested size and
attributes Action: None required.

FREE Meaning: storage freed Action: None required.

08 None Equate Symbol: IARST64Rc_Fail

Meaning: Service failed due to running out of resources.

Action: Refer to the action provided with the specific reason
code.

08 xx0401xx Equate Symbol: IARST64RsnMemlimitExhausted

Meaning: The request to the IARST64 GET service was not
able to obtain storage due to address space limits.

Action: Either raise the MEMLIMIT of the address space or
determine if private storage is being consumed excessively
somewhere.

08 xx0402xx Equate Symbol: IARST64Rsn64BitCommon Exhausted

Meaning: The request to the IARST64 GET service was not
able to obtain storage due to system limits.

Action: For common storage, either raise the system limit on
common (HVCOMMON) or determine if common storage is
being consumed excessively somewhere.

08 xx0403xx Equate Symbol: IARST64RsnMemlimitZero

Meaning: The request to IARST64 GET was not able to obtain
private storage due to the address space MEMLIMIT being set
to zero.

Action: Either set the MEMLIMIT of the address space to a
non-zero value or if authorized, specify MEMLIMIT=NO on
the IARST64 GET call to tell the service to bypass the address
space MEMLIMIt.

Examples

Example 1: Obtain storage.

Operations:
v 32-byte area
v In private storage
v With an owning task of the current task
v Dumped similar to "LSQA" processing (triggered by DREF or FIXED)
v Fetch-protected
v DREF storage

IARST64 macro

326 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v In Key 7
v Provide Return Code if the request is not successful
v Save and restore registers

The code is as follows:

IARST64 REQUEST=GET,
AREAADDR=theAreaAddr,
SIZE=theAreaSize,
COMMON=NO,OWNINGTASK=CURRENT,
DUMP=LIKELSQA,FPROT=YES,TYPE=DREF,
CALLERKEY=NO,KEY00TOF0=theKEY,
FAILMODE=RC,
REGS=SAVE,
RETCODE=LRETCODE,RSNCODE=LRSNCODE,

(Place code to check return code or reason codes here.)
theAreaSize DC F‘32’
theKey DC X'70'
IAXSERVC
DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F
theAreaAddr DS D

Example 2: Free the storage.

Operation: Save and restore registers.

The code is as follows:

IARST64 REQUEST=FREE,
AREAADDR=theAreaAddr,
REGS=SAVE,

(There is no return code or reason code from
IARST64 REQUEST=FREE.)

IAXSERVC
DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F
theAreaAddr DS D

IARST64 macro

Chapter 28. IARST64 — 64-bit storage services 327

IARST64 macro

328 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 29. IARSUBSP — Create and delete a subspace

Description
Use the IARSUBSP macro to create and delete subspaces. A subspace is a section of
address space private area storage that you have set up to contain and protect a
program and its data. Subspaces provide isolation between multiple programs
running in a single address space by allowing a program that runs in the subspace
to reference only certain storage in the address space private area. For more
information about subspaces and how to use them, see z/OS MVS Programming:
Extended Addressability Guide.

Use the IARSUBSP macro to:
v Identify storage to be assigned to a subspace (IDENTIFY parameter)
v Create a subspace (CREATE parameter)
v Assign the identified storage to the created subspace (ASSIGN parameter)
v Disassociate the identified storage from the created subspace (UNASSIGN

parameter)
v Delete a subspace (DELETE parameter)
v Make the storage ineligible to be assigned to a subspace (UNIDENTIFY

parameter).

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For the ASSIGN and UNASSIGN parameters, problem state

with any PSW key.

For IDENTIFY, CREATE, DELETE, and UNIDENTIFY,
supervisor state or PSW key 0 - 7.

Dispatchable unit mode: For IDENTIFY, CREATE, DELETE, and UNIDENTIFY, task.

For ASSIGN and UNASSIGN, task or SRB.
Cross memory mode: For IDENTIFY, CREATE, DELETE, and UNIDENTIFY,

PASN=HASN=SASN.

For ASSIGN and UNASSIGN, PASN=HASN, any SASN.
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller cannot hold locks.
Control parameters: Control parameters must be in the primary address space.

Programming requirements
Before issuing IARSUBSP, the caller must obtain storage for the subspace by using
the STORAGE or GETMAIN macro. See the RANGLIST parameter description for
the required attributes of this storage. The caller must not release this storage until
after issuing IARSUBSP UNIDENTIFY.

© Copyright IBM Corp. 1988, 2016 329

Restrictions
None.

Input register information
Before issuing the IARSUBSP macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 A reason code, if GPR 15 contains a non-zero return code; otherwise, used
as a work register by the system.

1 Used as a work register by the system.

2 - 13 Unchanged.

14 Used as a work register by the system.

15 A return code.

When control returns to the caller, the ARs contain:

Register
Contents

0- 1 Used as a work register by the system.

2 - 13 Unchanged.

14 - 15 Used as a work register by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the IARSUBSP macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARSUBSP.

IARSUBSP

� One or more blanks must follow IARSUBSP.

IARSUBSP macro

330 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

Valid parameters (required parameters are underlined):

IDENTIFY RANGLIST,NUMRANGE

CREATE NAME,STOKEN,GENNAME,OUTNAME

ASSIGN RANGLIST,STOKEN,NUMRANGE

UNASSIGN RANGLIST,STOKEN,NUMRANGE

DELETE STOKEN

UNIDENTIFY RANGLIST,NUMRANGE

,RANGLIST=ranglist_addr RS-type address, or address in register (2) - (12).

,NUMRANGE=numrange_addr RS-type address, or address in register (2) - (12).

Default: 1 range

,NAME=name_addr RS-type address, or address in register (2) - (12).

,GENNAME=NO Default: GENNAME=NO

,GENNAME=COND

,GENNAME=YES

,OUTNAME=outname_addr RS-type address, or address in register (2) - (12).

,STOKEN=stoken_addr RS-type address, or address in register (2) - (12).

Parameters
The IDENTIFY, CREATE, ASSIGN, UNASSIGN, DELETE, and UNIDENTIFY
parameters designate the services of the IARSUBSP macro, and are mutually
exclusive.

The parameters are explained as follows:

IDENTIFY
Identifies the ranges of storage specified on the RANGLIST parameter as
eligible to be assigned to a subspace. When the IDENTIFY function
successfully completes, the storage specified on the RANGLIST parameter
cannot be referenced by a program running in a subspace until that storage is
assigned to that subspace.

When you issue the IARSUBSP macro with IDENTIFY, you must specify the
RANGLIST parameter. The NUMRANGE parameter is optional.

CREATE
Requests that the system create a subspace, and return an STOKEN by which a
program can identify the subspace.

IARSUBSP macro

Chapter 29. IARSUBSP — Create and delete a subspace 331

When you issue the IARSUBSP macro with CREATE, the NAME and STOKEN
parameters are required. The GENNAME and OUTNAME parameters are
optional.

ASSIGN
Requests that the system associate the range of storage specified on the
RANGLIST parameter with the subspace indicated by the STOKEN parameter.
When the range of storage has been assigned to the subspace, a program can
reference the storage by issuing the BSG instruction.

When you issue the IARSUBSP macro with ASSIGN, you must specify the
STOKEN and RANGLIST parameters. The NUMRANGE parameter is optional.

UNASSIGN
Requests that the system disassociate the storage identified by the RANGLIST
parameter from the subspace identified by the STOKEN parameter. When the
request is complete, the range of storage cannot be referenced by a program
running in a subspace.

When you issue the IARSUBSP macro with UNASSIGN, you must specify the
STOKEN and RANGLIST parameters. The NUMRANGE parameter is optional.

DELETE
Requests that the system delete the subspace indicated by the STOKEN
parameter. The subspace can be deleted only by the task that created it.

When you issue the IARSUBSP macro with DELETE, you must specify the
STOKEN parameter. Do not code any other parameters.

UNIDENTIFY
Identifies the ranges of storage specified on the RANGLIST parameter as
ineligible to be assigned to a subspace.

If a range of storage specified on the RANGLIST parameter is still assigned to
a subspace, the system will perform the UNASSIGN function before
performing the UNIDENTIFY function.

When you issue the IARSUBSP macro with the UNIDENTIFY parameter, you
must specify the RANGLIST parameter. The NUMRANGE parameter is
optional.

,RANGLIST=ranglist_addr
Specifies the address of a fullword input variable containing the address of the
range list. The range list is a list of 8-byte entries in contiguous storage that
indicate the ranges of storage to be:
v Made eligible or ineligible to be assigned to a subspace, when specified with

the IDENTIFY or UNIDENTIFY functions
v Associated with or disassociated from a subspace, when specified with the

ASSIGN or UNASSIGN functions.

Each entry in the range list is 2 fullwords long. The first fullword contains the
address of the beginning of the range of storage. The second fullword contains
the number of 4-kilobyte (4096 bytes) pages that comprise the range of storage.

When RANGLIST is specified with the IDENTIFY or UNIDENTIFY parameter,
the address in the first fullword must begin on a segment boundary. A
segment is 1 megabyte (1,048,576 bytes) long. The value of the second fullword
must be a multiple of 256.

IARSUBSP macro

332 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

When RANGLIST is specified with the ASSIGN or UNASSIGN parameters and
the storage specified is above 16 megabytes, the requirements for the range list
entries are the same as when RANGLIST is specified with IDENTIFY or
UNIDENTIFY.

When RANGLIST is specified with the ASSIGN or UNASSIGN parameters and
the storage specified is below 16 megabytes, the address in the first fullword
must begin on a page boundary. A page is 4096 bytes. The value of the second
fullword indicates the number of pages below 16 megabytes that are to be
assigned to a subspace.

Each storage range must reside in a single subpool.

Obtain your subspace storage by selecting a storage subpool with the storage
attributes that subspaces require. The chapter on virtual storage in z/OS MVS
Programming: Authorized Assembler Services Guide contains a table listing all
subpools and the storage attributes associated with them. The following are the
required and optional storage attributes for subspaces.

Table 35. Storage Attributes Required for Subspaces

Storage Attribute Requirement Comments

Location Private Subspace storage must be in high private or
low private storage.

Fetch Protection None Subspace storage can be fetch-protected, but
fetch-protection is not required.

Type Pageable Subspace storage must be pageable.

Owner Task or
job step

Subspace storage must be owned by the
task creating the subspace, or a task higher
in the task hierarchy.

Storage key None Subspace storage has no storage key
requirements.

RANGLIST is a required parameter when you specify the IDENTIFY,
UNIDENTIFY, ASSIGN, and UNASSIGN parameters.

,NUMRANGE=numrange_addr
Specifies the address of an optional fullword input variable that indicates the
number of ranges in the range list. The number of ranges must be a least 1 and
no more than 16. If you do not code NUMRANGE, the default number of
ranges is 1, and the range list is limited to one entry.

NUMRANGE is an optional parameter when you specify the IDENTIFY,
UNIDENTIFY, ASSIGN, or UNASSIGN parameters.

,NAME=name_addr
Specifies the address of the 8-byte variable or constant that contains the name
of the subspace.

Subspace names are from 1 to 8 bytes long. They can contain letters, numbers,
and @, #, and $, but they cannot contain embedded blanks. Names that are
fewer than 8 bytes must be left-justified and padded on the right with blanks.

Unless you specify GENNAME=YES, the subspace name must begin with a
letter or an @, #, or $ character. When you do not code GENNAME, or you
specify either GENNAME=NO or GENNAME=COND, the name cannot begin
with a number or be blank.

Subspace names must be unique within the home address space of the owning
task. No two subspaces can have the same name. To ensure that the names for

IARSUBSP macro

Chapter 29. IARSUBSP — Create and delete a subspace 333

your subspaces are unique, code the GENNAME parameter to have the system
generate a unique name. If you choose to let the system generate the subspace
names for you, you must still supply three characters for the system to use.

NAME is a required parameter when you specify the CREATE parameter.

,GENNAME=NO
,GENNAME=COND
,GENNAME=YES

Specifies whether you want the system to generate a name for the subspace to
ensure that all names are unique within the address space. The system
generates a name by adding a 5-character prefix to the first three characters of
the name you supply on the NAME parameter. For example, if you supply
‘XYZDATA’ on the NAME parameter, the name becomes 'cccccXYZ'. "ccccc" is
the 5-character string generated by the system, and XYZ comes from the name
you supplied on NAME.

The keywords that are valid for GENNAME and their meanings follow:

GENNAME=NO
The system does not generate a name. You must supply a name unique
within the address space. GENNAME=NO is the default.

GENNAME=COND
The system generates a unique name only if you supply a name that is
already being used. Otherwise, the system uses the name you supply.

GENNAME=YES
The system takes the name you supply on the NAME parameter and
makes it unique. When you specify GENNAME=YES, the name you
supply in the name parameter can begin with a numeric.

If you want the system to return the unique name it generates, use the
OUTNAME parameter.

GENNAME is an optional parameter when you specify the CREATE
parameter.

,OUTNAME=outname_addr
Specifies the address of the 8-byte variable into which the system returns the
subspace name it generated, if you specify GENNAME=YES or
GENNAME=COND. The OUTNAME parameter is optional when you specify
the CREATE parameter.

,STOKEN=stoken_addr
Specifies the address of the 8-byte STOKEN for the subspace. The system
returns an STOKEN value as output for a CREATE request. For other requests,
you supply this returned value as input. STOKEN is a required parameter for
the CREATE, ASSIGN, UNASSIGN, and DELETE requests.

ABEND codes
IARSUBSP might abnormally end with abend code X'3C6'. See z/OS MVS System
Codes for an explanation and programmer response.

Return and reason codes
When the IARSUBSP macro returns control to your program, GPR 15 contains one
of the following hexadecimal return codes. GPR 0 contains one of the following
hexadecimal reason codes.

IARSUBSP macro

334 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 36. Return and Reason Codes for the IARSUBSP Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: The IARSUBSP request completed successfully.

Action: None required.

04 xx0115xx Meaning: IARSUBSP IDENTIFY completed successfully,
but some ranges of storage had already been identified.

Action: None required. However, you might want to take
some action based on your application.

04 xx0315xx Meaning: IARSUBSP ASSIGN completed successfully, but
some of the storage specified on the RANGLIST parameter
already had been assigned to the subspace indicated by the
STOKEN parameter.

Action: None required. However, you might want to take
some action based on your application.

04 xx0415xx Meaning: IARSUBSP UNASSIGN completed successfully,
but one of the following conditions is true for some of the
storage specified on the RANGLIST parameter:

v Some storage already had been disassociated from the
subspace by a previous UNASSIGN request

v Some storage never had been assigned to a subspace.

Action: None required. However, you might want to take
some action based on your application.

04 xx0615xx Meaning: IARSUBSP UNIDENTIFY completed successfully,
but one of the following conditions is true for some of the
storage specified on the RANGLIST parameter:

v Some storage already had been made ineligible to be
assigned to the subspace by a previous UNIDENTIFY
request

v Some storage never had been made eligible to be
assigned to a subspace.

Action: None required. However, you might want to take
some action based on your application.

08 xx0212xx Meaning: Environmental error. IARSUBSP CREATE failed.
The system's set of generated names for subspaces has
been temporarily exhausted.

Action: Reissue IARSUBSP CREATE, specifying a unique
name on the NAME parameter and GENNAME=NO. Or,
issue IARSUBSP UNASSIGN and IARSUBSP DELETE for
any subspaces that are no longer required, and reissue the
CREATE request.

08 xx0213xx Meaning: Program error. IARSUBSP CREATE failed. The
name specified on the NAME parameter is not unique
within the address space.

Action: Change the name specified on the NAME
parameter to a unique name, or specify
GENNAME=COND or GENNAME=YES, and reissue the
request.

08 xxFF00xx Meaning: Environmental error. IARSUBSP failed. The
system does not support subspaces.

Action: Contact your system programmer to determine if
the subspace group facility can be made available.

IARSUBSP macro

Chapter 29. IARSUBSP — Create and delete a subspace 335

Table 36. Return and Reason Codes for the IARSUBSP Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

0C xx0114xx Meaning: Environmental error. IARSUBSP IDENTIFY
failed. The system cannot perform any subspace services
because of a shortage of resources.

Action: Reissue the request. If the problem persists, contact
your system programmer.

0C xx0214xx Meaning: Environmental error. IARSUBSP CREATE failed.
The system cannot perform any subspace services because
of a shortage of resources.

Action: Reissue the request. If the problem persists, contact
your system programmer.

0C xx0314xx Meaning: Environmental error. IARSUBSP ASSIGN failed.
The system cannot perform any subspace services because
of a shortage of resources.

Action: Reissue the request. If the problem persists, contact
your system programmer.

0C xx0411xx Meaning: System error. IARSUBSP UNASSIGN failed. One
or more pages of storage were not processed.

Action: Reissue the request. If the problem persists, record
the return and reason codes and supply them to the
appropriate IBM support personnel.

Example
For a complete example of creating, managing, and deleting subspaces, see the
chapter on subspaces in z/OS MVS Programming: Extended Addressability Guide.

IARSUBSP - List form
Use the list form of the IARSUBSP macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to contain the
parameters.

The list form of the IARSUBSP macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARSUBSP.

IARSUBSP

� One or more blanks must follow IARSUBSP.

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

IARSUBSP macro

336 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

Parameters
MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IARSUBSP macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

IARSUBSP - Execute form
Use the execute form of the IARSUBSP macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

The execute form of the IARSUBSP macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARSUBSP.

IARSUBSP

� One or more blanks must follow IARSUBSP.

Valid parameters (required parameters are underlined):

IDENTIFY RANGLIST,NUMRANGE

CREATE NAME,STOKEN,GENNAME,OUTNAME

ASSIGN RANGLIST,STOKEN,NUMRANGE

UNASSIGN RANGLIST,STOKEN,NUMRANGE

DELETE STOKEN

UNIDENTIFY RANGLIST,NUMRANGE

,RANGLIST=ranglist_addr RS-type address, or address in register (2) - (12).

,NUMRANGE=numrange_addr RS-type address, or address in register (2) - (12).

Default: 1 range

IARSUBSP macro

Chapter 29. IARSUBSP — Create and delete a subspace 337

Syntax Description

,NAME=name_addr RS-type address, or address in register (2) - (12).

,GENNAME=NO Default: GENNAME=NO

,GENNAME=COND

,GENNAME=YES

,OUTNAME=outname_addr RS-type address, or address in register (2) - (12).

,STOKEN=stoken_addr RS-type address, or address in register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

,MF=(E,list addr,NOCHECK)

The parameters are explained under the standard form of the IARSUBSP macro
with the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the IARSUBSP macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for
required parameters and supply defaults for omitted optional parameters.

NOCHECK specifies that the system is not to check for required parameters
and is not to supply defaults for omitted optional parameters.

IARSUBSP macro

338 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 30. IARVSERV — Request to share virtual storage

Description
Use the IARVSERV macro to define virtual storage areas to be shared by programs.
This sharing can reduce the amount of processor storage required and the I/O
necessary to support many applications that process large amounts of data. It also
provides a way for programs executing in 24 bit addressing mode to access data
residing above 16 megabytes.

Using IARVSERV allows programs to share data in virtual storage without the
central storage constraints and processor overhead of other methods of sharing
data. The type of storage access is controlled so that you can choose to allow read
only or writing to the shared data with several variations. The type of storage
access is called a view. Data to be shared is called the source. The source is the
original data or the virtual storage that contains the data to be shared. This data is
made accessible through an obtained storage area called the target. The source and
target form a sharing group.

Through the IARVSERV macro, you can:
v Request that a virtual storage area (source) be eligible to be shared through a

target view (SHARE parameter).
v Request that the source and targets no longer be shared (UNSHARE parameter).
v Request that the type of storage access to the data be changed.

See z/OS MVS Programming: Authorized Assembler Services Guide for more
information about sharing data through the use of the IARVSERV macro.
IARVSERV is also described in z/OS MVS Programming: Assembler Services Reference
ABE-HSP.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key that allows access to the

source, target, or both, depending on the value specified
through the TARGET_VIEW parameter. If the value
specified on the NUMRANGE parameter is greater that 16,
supervisor state or PSW key 0-7 is required. See z/OS MVS
Programming: Authorized Assembler Services Guide for
additional information.

Dispatchable unit mode: Task or SRB.
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 31- or 64-bit.
ASC mode: Primary or access register (AR).
Interrupt status: Enabled for I/O and external interrupts.
Locks: The caller may hold the local lock, but is not required to

hold any locks.
Control parameters: Control parameters must be in the primary address space.

© Copyright IBM Corp. 1988, 2016 339

Programming requirements
v You must specify a range list that is mapped by the IARVRL macro. This is done

using the RANGLIST parameter.
v If you specify more than 16 ranges, you must put the range list in fixed storage.
v The address space owing the source or targets must be swapped in when

IARVSERV is issued if either the source or target area is:
– in an address space other than the home address space of the caller, or
– in a data space owned by an address space other than the home address of

the caller.
The address space must remain swapped in until the IARVSERV macro has
completed.

v Before your program issues the IARVSERV macro, it must use the GETMAIN,
STORAGE, or DSPSERV macro to obtain storage for the source, target, or both.

v Attributes for storage depend on the subpool specified on the GETMAIN,
STORAGE, or DSPSERV macros. See z/OS MVS Programming: Authorized
Assembler Services Guide for information on virtual storage management and
subpool attributes. The following table shows the permitted combinations of
storage attributes supported for the source and target areas (with the exceptions
as noted in “Restrictions”).

Table 37. IARVSERV Permitted Storage Combinations

Source Area Target Area

Pageable Pageable

Fixed in non-swappable storage with central
storage below 16 megabytes

Any kind of storage

Fixed in non-swappable storage with central
storage above 16 megabytes

Any storage that does not require the
backing of central storage below 16
megabytes (if fixed)

Fixed in swappable storage Any kind of storage, provided that
TARGET_VIEW=UNIQUEWRITE parameter
is specified

Restrictions
The following restrictions apply:
v For the SHARE parameter, the source area must not contain pages in the nucleus

(read-only, extended read-only, read-write and extended read-write areas).
v For the SHARE parameter, the target area must not contain page-protected or

page-fixed pages.
v For the UNSHARE parameter, the sharing group must not contain page

protected-pages unless the RETAIN=YES parameteris specified. The sharing
group must also not contain any page-fixed pages.

v The TPROT instruction cannot be used to determine whether the invoker has
write access to views in a share group with unique-write views or to a
target-write view. The TPROT instruction will indicate that these views are
protected when the invoker has write access.

Input register information
Before issuing the IARVSERV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

IARVSERV macro

340 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 contains a non-zero return code; otherwise, used as
a work register by the system.

1 Used as a work register by the system.

2-13 Unchanged.

14 Used as a work register by the system.

15 Return code.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
Take care when using the RETAIN=YES parameter value. With RETAIN=YES,
storage is not returned to the system which reduces the amount available to the
system and other programs, thus potentially affecting system performance.

In order to expedite the return of all internal control blocks for the shared storage
back to the system, IBM recommends issuing IARVSERV UNSHARE against all
views for both source and target that are originally shared. For an example of how
to code the UNSHARE parameter, seez/OS MVS Programming: Assembler Services
Reference IAR-XCT

Syntax
The standard form of the IARVSERV macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARVSERV.

IARVSERV

� One or more blanks must follow IARVSERV.

IARVSERV macro

Chapter 30. IARVSERV — Request to share virtual storage 341

Syntax Description

SHARE

UNSHARE

CHANGEACCESS

,RANGLIST=ranglist_addr ranglist_addr: RS-type address, or register (2) - (12).

,NUMRANGE=numrange_addr numrange_addr: RS-type address, or register (2) - (12).

Default: 1 range

,TARGET_VIEW=READONLY

,TARGET_VIEW=SHAREDWRITE

,TARGET_VIEW=UNIQUEWRITE

,TARGET_VIEW=TARGETWRITE

,TARGET_VIEW=LIKESOURCE

,TARGET_VIEW=HIDDEN

,COPYNOW

,RETAIN=NO Default: RETAIN=NO

,RETAIN=YES

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 0

Parameters
The SHARE, UNSHARE, and CHANGEACCESS parameters designate the services
of the IARVSERV macro, and are mutually exclusive.

The parameters are explained as follows:

SHARE
Requests that the source be made shareable through the target to create a
sharing group. When you issue the IARVSERV macro with SHARE, you must
specify the RANGLIST and the TARGET_VIEW parameters. The NUMRANGE
parameter is optional.

UNSHARE
Requests that the specified virtual storage no longer be used to access shared
storage. When you issue the IARVSERV macro with UNSHARE, you must
specify the RANGLIST parameter. The NUMRANGE, and RETAIN parameters
are optional. Using the RETAIN parameter can allow the target area data to
remain available to other programs that can access the target area.

IARVSERV macro

342 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

CHANGEACCESS
Requests that the type of access to the specified virtual storage be changed.
When you issue the IARVSERV macro with CHANGEACCESS, you must
specify the RANGLIST and the TARGET_VIEW parameters. The NUMRANGE
parameter is optional.

,RANGLIST=ranglist_addr
Specifies the name (RS-type) or address (in register 2-12) of a required input
fullword that contains the address of the range list. The range list consists of a
number of entries (as specified by NUMRANGE) where each entry is 28 bytes
long. A mapping of each entry is provided through the mapping macro
IARVRL.

,NUMRANGE=numrange_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional
parameter that provides the number of entries in the supplied RANGLIST.
Only authorized programs can specify more that 16 entries in the range list. If
you do not specify NUMRANGE, the system assumes the range list contains
only one entry.

,TARGET_VIEW=READONLY
,TARGET_VIEW=SHAREDWRITE
,TARGET_VIEW=UNIQUEWRITE
,TARGET_VIEW=TARGETWRITE
,TARGET_VIEW=LIKESOURCE
,TARGET_VIEW=HIDDEN

Specifies the way you want to share storage when used on storage not already
part of a sharing group, or how you want to change or add storage access to
the sharing group for storage already shared.

The keywords that are valid for TARGET_VIEW and their meanings follow:

READONLY
Specifies that the target can be used only to read shared data. Any
attempt to alter shared data by writing into the target will cause a
program check.

SHAREDWRITE
Specifies that the target can be used to read or modify shared data.
When a program changes data in the target, the new data becomes
visible among all those programs that have READONLY and
SHAREDWRITE access to the source. Those programs with
UNIQUEWRITE access to the source will not see the changed data.

UNIQUEWRITE
Specifies that the target can be used to read shared data and to retain a
private copy of the shared data should the source or any target get
altered. When another user of the target modifies the data, the page in
the target containing the modified data becomes a private copy that is
unique to that user (with UNIQUEWRITE) and not accessible to any
other program.

TARGETWRITE
Specifies that the target can be used to read shared data and retain a
private copy of the shared data if this view of the shared data is
altered. When another user of the target area writes new data into the
target area, any page in the target area containing the new data
becomes a private copy that is unique and is not seen by to any other
user. The page is no longer a member of any sharing group. The

IARVSERV macro

Chapter 30. IARVSERV — Request to share virtual storage 343

original source data is unchanged. When a SHAREDWRITE view of
the data gets altered, the TARGETWRITE view will see those changes.

LIKESOURCE
Specifies that the view type for the new target area is to be the same as
the current view of the source. If the source is not currently shared, a
copy of the source is made to the new target as if COPYNOW had
been coded.

HIDDEN
Specifies that the data in the target area will be inaccessible until the
view type is changed to READONLY, SHAREDWRITE,
UNIQUEWRITE, or TARGETWRITE. Any attempt to access a hidden
target area will cause a program check.

,COPYNOW
Specifies whether the target should get a copy of the source data when using
UNIQUEWRITE or LIKESOURCE. You can use COPYNOW only when you
specify TARGET_VIEW=UNIQUEWRITE or TARGET_VIEW=LIKESOURCE.

,RETAIN=YES
,RETAIN=NO

Specifies whether a copy of the shared data is to be retained in the target after
the system finishes processing the UNSHARE request.

RETAIN=YES
Specifies that the target view should retain a copy of the shared data.
Using UNSHARE with RETAIN=YES requires the system to allocate
new resources to back the target area.

RETAIN=NO
Specifies that the contents of the target area are unpredictable. To
ensure zeroes, the user should issue a PGSER RELEASE or DSPSERV
RELEASE on the area after unsharing it. RETAIN=NO is the default.

Note: PGRLSE, PGSER RELEASE, PGSER FREE with RELEASE=Y, and
PGFREE RELEASE=Y may ignore some or all of the pages in the input
range and will not notify the caller if this was done.

Any pages in the input range that match any of the following
conditions will be skipped, and processing continues with the next
page in the range:
v Storage is not allocated or all pages in a segment have not yet been

referenced.
v Page is in PSA, SQA or LSQA.
v Page is V=R. Effectively, it's fixed.
v Page is in BLDL, (E)PLPA, or (E)MLPA.
v Page has a page fix in progress or a nonzero FIX count.
v Pages with COMMIT in progress or with DISASSOCIATE in

progress.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

IARVSERV macro

344 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code, specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

ABEND codes
IARVSERV might abnormally terminate with the abend code X'6C5'. See z/OS MVS
System Codes for an explanation and programmer response.

Return and reason codes
When the IARVSERV macro returns control to your program, GPR 15 contains the
return code. If the return code is not 0, GPR 0 contains the reason code.

Table 38. Return and Reason Codes for the IARVSERV Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: The IARVSERV request completed
successfully.

Action: None required.

04 xx0101xx Meaning IARVSERV SHARE completed successfully.
The processor does not support SHARE for
UNIQUEWRITE. A unique copy of the target was
made by the system.

Action: None required.

04 xx0102xx Meaning: IARVSERV SHARE completed
successfully. However, the system found a condition
that would lead to a storage requirement conflict for
sharing with UNIQUEWRITE. For example, the
source might be in non-pageable storage. A copy of
the target was made by the system to avoid this
conflict.

Action: None required. However, you might want to
correct the storage conflict.

IARVSERV macro

Chapter 30. IARVSERV — Request to share virtual storage 345

Table 38. Return and Reason Codes for the IARVSERV Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

04 xx0103xx Meaning: IARVSERV SHARE found that some
source pages were not obtained using the GETMAIN
or STORAGE macros, or the source and target keys
do not match and the request is for a
UNIQUEWRITE target view. If the corresponding
target pages were obtained using the GETMAIN or
STORAGE macro, then they have been made first
reference.

Action: This is not necessarily an error. If you think
you should not get this reason code, check program
to be sure GETMAIN or STORAGE is issued and
storage is of the same storage key for all source and
target storage prior to using IARVSERV.

04 xx0203xx Meaning: IARVSERV UNSHARE completed
successfully. However, the system has overridden
the RETAIN=NO option and kept a copy of the data
in the target.

Action: None required. However, you may want to
correct your use of DIV.

04 xx0204xx Meaning: IARVSERV UNSHARE completed
successfully. The system has overridden the
RETAIN=YES option because the shared data is
associated with a DIV object, and the target area is
not the original window mapped to the DIV object.
The data in the target is unpredictable.

Action: None required.

04 xx0205xx Meaning: IARVSERV UNSHARE completed
successfully. Some pages in the target area no longer
belong to any sharing group. This could be due to a
copy being created by UNIQUEWRITE, or a second
invocation of UNSHARE on the same view.

Action: None required.

04 xx0301xx Meaning: IARVSERV CHANGEACCESS completed
successfully. The processor does not support
CHANGEACCESS for UNIQUEWRITE, and a
unique copy of the target page was made.

Action: None required.

04 xx030Cxx Meaning: IARVSERV CHANGEACCESS completed
successfully. The system processed a
CHANGEACCESS request for UNIQUEWRITE or
TARGETWRITE for non-shared pages as a
SHAREDWRITE request.

Action: None required.

IARVSERV macro

346 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 38. Return and Reason Codes for the IARVSERV Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 xx0104xx Meaning: Environmental error. An unauthorized
user attempted to share more pages than allowed by
the installation (as defined through the installation
exit IEFUSI).

Action: Contact your system programmer to find out
your installation limit and reduce the number of
shared pages.

08 xx0105xx Meaning: Environmental error. IARVSERV SHARE
was requested with TARGETWRITE, but the SOP
hardware feature was not available.

Action: Contact your system programmer to find out
when the SOP feature might become available.

08 xx0305xx Meaning: Environmental error. IARVSERV
CHANGEACCESS was requested with
TARGETWRITE, but the SOP hardware feature was
not available.

Action: Contact your system programmer to find out
when the SOP feature may become available.

0C xx010Axx Meaning: Environmental error. IARVSERV SHARE
cannot complete the request because of a shortage of
resources.

Action: Retry the request one or more times to see if
resources become available. Contact the system
programmer to determine resources available to you.

0C xx013Cxx Meaning: System error. IARVSERV SHARE cannot
complete the request because a required page is
unavailable or lost.

Action: Check the paging data set for possible I/O
errors. Refer to X'028' abend description in z/OS
MVS System Codes for paging error advice.

0C xx020Bxx Meaning: System error. IARVSERV UNSHARE
cannot complete the request because of a required
page being unavailable or lost.

Action: Check the logrec data set for possible I/O
errors. Refer to X'028' abend description in z/OS
MVS System Codes for paging error advice.

0C xx030Bxx Meaning: System error. IARVSERV
CHANGEACCESS cannot complete the request
because of a required page being unavailable or lost.

Action: Check the logrec data set for possible I/O
errors. Refer to X'028' abend description in z/OS
MVS System Codes for paging error advice.

Example 1
Issue a request to share eight pages as read-only, and use a register to specify the
address of the range list.

IARVSERV macro

Chapter 30. IARVSERV — Request to share virtual storage 347

SERV1 IARVSERV SHARE,RANGLIST=(4),TARGET_VIEW=READONLY
*

IARVRL

Example 2
Issue UNSHARE for the pages in Example 1, and specify that the system is not to
retain the shared data.
SERV2 IARVSERV UNSHARE,RANGLIST=(4),RETAIN=NO
*

IARVRL

Example 3
Issue a request to share pages as read-only, and use an RS-type address to specify
the location of the range list address.
SERV3 IARVSERV SHARE,RANGLIST=VRLPTR,TARGET_VIEW=READONLY
*
VRLPTR DC A(MYVRL1)
MYVRL1 DS 7F

IARVRL

Example 4
Issue a request to share pages as target write.
SERV4 IARVSERV SHARE,RANGLIST=(5),TARGET_VIEW=TARGETWRITE
*

IARVRL

Example 5
Issue a request to change access for hidden.
SERV5 IARVSERV CHANGEACCESS,RANGLIST=(5),TARGET_VIEW=HIDDEN
*

IARVRL

IARVSERV—List form
Use the list form of the IARVSERV macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to contain the
parameters.

The list form of the IARVSERV macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARVSERV.

IARVSERV

� One or more blanks must follow IARVSERV.

,PLISTVER=IMPLIED_VERSION

IARVSERV macro

348 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 0

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

The parameters are explained under the standard form of the IARVSERV macro
with the following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IARVSERV macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

IARVSERV - Execute form
Use the execute form of the IARVSERV macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

The execute form of the IARVSERV macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARVSERV.

IARVSERV

� One or more blanks must follow IARVSERV.

SHARE

UNSHARE

CHANGEACCESS

,RANGLIST=ranglist_addr ranglist_addr: RS-type address, or address in register (2) - (12).

IARVSERV macro

Chapter 30. IARVSERV — Request to share virtual storage 349

Syntax Description

,NUMRANGE=numrange_addr numrange_addr: RS-type address, or address in register (2) - (12).

Default: 1 range

,TARGET_VIEW=READONLY

,TARGET_VIEW=SHAREDWRITE

,TARGET_VIEW=UNIQUEWRITE

,TARGET_VIEW=TARGETWRITE

,TARGET_VIEW=LIKESOURCE

,TARGET_VIEW=HIDDEN

,COPYNOW

,RETAIN=NO Default: RETAIN=NO

,RETAIN=YES

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 0

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

,MF=(E,list addr,NOCHECK)

The parameters are explained under the standard form of the IARVSERV macro
with the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the IARVSERV macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply defaults for omitted optional parameters.

NOCHECK specifies that the system is not to check for required parameters
and is not to supply defaults for omitted optional parameters.

IARVSERV macro

350 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 31. IARV64 — 64–bit virtual storage allocation

Description
The IARV64 macro allows a program to use the full range of virtual storage in an
address space that is supported by 64-bit addresses. The macro creates and frees
storage areas above the two-gigabyte address and manages the physical frames
behind the storage. Each storage area is a multiple of one megabyte in size and
begins on a megabyte boundary. You can think of the IARV64 macro as the
GETMAIN, FREEMAIN, PGSER, and STORAGE macro for virtual storage above
the two-gigabyte address.

The two-gigabyte address in the address space is marked by a virtual line called
the bar. The bar separates storage below the two-gigabyte address, called below the
bar, from storage above the two-gigabyte address, called above the bar. The area
above the bar is intended to be used for data only, not for executing programs.
Programs use the IARV64 macro to obtain storage above the bar in “chunks” of
virtual storage called memory objects. Your installation can set a limit on the use of
the address space above the bar for a single address space. The limit is called the
MEMLIMIT.

When you create a nonshared, non-2 GB memory object, you can specify a guard
area (not accessible) and a usable area. Subsequently, you can create alternate
guard areas or change all or some of a guard area into an accessible area, or vice
versa.

The following services are provided:

GETSTOR
Create a private memory object (in “REQUEST=GETSTOR option of
IARV64” on page 353)

PAGEFIX
Fix physical pages within one or more nonshared memory objects. (in
“REQUEST=PAGEFIX option of IARV64” on page 369)

PAGEUNFIX
Unfix physical pages within one or more nonshared memory objects. (in
“REQUEST=PAGEUNFIX option of IARV64” on page 376)

PAGEOUT
Notify the system that data within physical pages of one or more memory
objects will not be used in the near future. (in “REQUEST=PAGEOUT
option of IARV64” on page 382)

PAGEIN
Notify the system that data within physical pages of one or more memory
objects are needed in the near future. (in “REQUEST=PAGEIN option of
IARV64” on page 388)

DISCARDDATA
Discard data within physical pages of one or more memory objects. (in
“REQUEST=DISCARDDATA option of IARV64” on page 393)

CHANGEGUARD
Request that a specified range in a nonshared, non-2GB memory object be

© Copyright IBM Corp. 1988, 2016 351

changed from guard area to usable area or vice versa. (in
“REQUEST=CHANGEGUARD option of IARV64” on page 399)

PROTECT
Request that data within one or more memory objects be made read-only.
(in “REQUEST=PROTECT option of IARV64” on page 406)

UNPROTECT
Request that data within one or more memory objects be made modifiable.
(in “REQUEST=UNPROTECT option of IARV64” on page 413)

LIST Request a list of memory objects. (in “REQUEST=LIST option of IARV64”
on page 420)

DETACH
Free one or more memory objects. For a nonshared memory object, the
object is freed. For a shared memory object, the object is freed only when
the last shared user of that memory object issues the DETACH (this
includes a DETACH corresponding to the system attachment formed when
the object was created through GETSHARED). (in “REQUEST=DETACH
option of IARV64” on page 431)

GETSHARED
Create a memory object that can be shared across multiple address spaces.
(in “REQUEST=GETSHARED option of IARV64” on page 440)

SHAREMEMOBJ
Request that the specified address space be given access to one or more
specified shared memory objects. (in“REQUEST=SHAREMEMOBJ option
of IARV64” on page 447)

CHANGEACCESS
Request that a view type for segments within the specified shared memory
objects be changed. (in “REQUEST=CHANGEACCESS option of IARV64”
on page 453)

GETCOMMON
Create a 64-bit common memory object. (in “REQUEST=GETCOMMON
option of IARV64” on page 459)

COUNTPAGES
Count the number of 4K pages currently in use in real storage, on auxiliary
storage, and in both real storage and on auxiliary storage to back the input
high virtual storage ranges. (in “REQUEST=COUNTPAGES option of
IARV64” on page 473)

For guidance information about the use of 64–bit virtual storage allocation, see
z/OS MVS Programming: Extended Addressability Guide.

After the separate descriptions of each individual Request are the following topics
which apply to all of the Requests:
v The abend codes in “ABEND codes” on page 479,
v The return and reason codes in “Return and reason codes” on page 479, and
v Examples of using IARV64 in “Example” on page 482

Note: The examples apply to REQUEST=GETSTOR, PAGEFIX, PAGEUNFIX, and
DETACH.

Facts associated with these services:

IARV64 macro

352 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v A segment represents one megabyte of virtual storage starting on a megabyte
boundary.

v The storage returned by the GETSTOR, GETSHARED, or GETCOMMON
services is called a memory object.

v The storage returned by GETSHARED is referred to as a shared memory object.
v The storage returned by GETSTOR is referred to as a private memory object or a

system memory object.
v The storage returned by GETCOMMON is referred to as a common memory object.
v The limit of storage per address space allowed to be used above the bar is called

the MEMLIMIT. This is similar to the REGION parameter for storage below the
bar. The following categories of storage do not count against the MEMLIMIT:
– The guard area in a memory object
– The storage created by IARV64 GETSTOR with LOCALSYSAREA=YES
– Shared memory objects, such as storage created by IARV64 GETSHARED

REQUEST=GETSTOR option of IARV64
REQUEST=GETSTOR allows you to create a memory object. To avoid an abend for
exceeding MEMLIMIT, specify the COND=YES parameter.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15.

To use the PAGEFRAMESIZE parameter, a caller can be in
problem state with either one of the following
authorizations:

APF-authorized

Authorized for read to IARRSM.LRGPAGES
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN

Note: The problem state caller running in PSW key 8-15 can
use GETSTOR/DETACH only when the primary address
space is the home address space.

AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: v Enabled for I/O and external interrupts.

v Disabled for 64-bit common memory objects allocated
with TYPE=DREF.

v Disabled for TYPE=PAGEABLE and the storage is in the
first reference state.

Locks: A local lock may be held, subject to the following limitation:

When a local lock is held for a request (GETSTOR,
SHAREMEMOBJ, DETACH, CHANGEGUARD, or
DISCARDDATA) the lock must be for the address space
specified or set as the default by the input ALETVALUE.

Control parameters: Control parameters must be in the primary address space
and can reside both below and above the bar.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 353

|

Programming requirements
None

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax
The REQUEST=GETSTOR option of the IARV64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64 macro

354 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

IARV64

� One or more blanks must follow IARV64.

REQUEST=GETSTOR

,COND=NO Default: COND=NO

,COND=YES

,LOCALSYSAREA=NO Default: LOCALSYSAREA=NO

,LOCALSYSAREA=YES

,SEGMENTS='segments' segments: RS-type address or address in register (2) - (12).

,TYPE=DREF

,TYPE=PAGEABLE Default: TYPE=PAGEABLE when one of the following is
specified:

v PAGEFRAMESIZE=PAGEABLE1MEG

v PAGEFRAMESIZE=4K

v PAGEFRAMESIZE=MAX and the memory object is
backed with 4 KB-page frames.

When PAGEFRAMESIZE=DREF1MEG is specified, the
default value is TYPE=DREF. If
PAGEFRAMESIZE=1MEG or PAGEFRAMESIZE=MAX is
specified and the memory object is backed with 1
MB-page frames, the 1 MB-pages backing this memory
object are fixed.

,PAGEFRAMESIZE=4K Default: PAGEFRAMESIZE=4K

,PAGEFRAMESIZE=1MEG

,PAGEFRAMESIZE=MAX

,PAGEFRAMESIZE=PAGEABLE1MEG

,PAGEFRAMESIZE=DREF1MEG

,UNITS=units units: Size of the memory object, which is the number of
units specified by UNITSIZE.

,UNITSIZE=1M Specifies a 1 MB unit size.

,PAGEFRAMESIZE=4K|1M If UNITSIZE=1M is specified, a PAGEFRAMESIZE of 4K
or 1M must be specified. There is no default value.

,UNITSIZE=2G Specifies a 2 GB unit size.

,PAGEFRAMESIZE=4K|1M|2G If UNITSIZE=2G is specified, a PAGEFRAMESIZE of 4K,
1M or 2G must be specified. There is no default value.

,TYPE=FIXED

,TYPE=DREF

,TYPE=PAGEABLE

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 355

Syntax Description

,KEY=key key: RS-type address or address in register (2) - (12).

,KEY=CALLERKEY Default: KEY=CALLERKEY

,FPROT=YES Default: FPROT=YES

,FPROT=NO

,MEMLIMIT=YES Default: MEMLIMIT=YES

,MEMLIMIT=NO

,MEMLIMIT=COND

,SVCDUMPRGN=YES Default: SVCDUMPRGN=YES

,SVCDUMPRGN=NO

,DUMP=LIKERGN Default: DUMP=LIKERGN

,DUMPPRIORITY=99 Default: DUMPPRIORITY=99

,DUMPPRIORITY=dumppriority

,DUMP=LIKELSQA

,DUMP=NO

,DUMP=BYOPTIONVALUE

,OPTIONVALUE=option option: RS-type address or address in register (2) - (12).

,CONTROL=UNAUTH Default: CONTROL=UNAUTH

,CONTROL=AUTH

,MOTKNSOURCE=USER Default: MOTKNSOURCE=USER

,MOTKN=motkn Default: MOTKN

,MOTKNCREATOR=USER Default: MOTKNCREATOR=USER

,MOTKNCREATOR=SYSTEM

,USERTKN=NO_USERTKN Default: USERTKN=NO_USERTKN

,USERTKN=usertkn usertkn: RS-type address or address in register (2) - (12).

,MOTKNSOURCE=SYSTEM

,OUTMOTKN=outmotkn Outmotkn: RS-type address or address in register (2) -
(12).

,USERTKN=usertkn usertkn: RS-type address or address in register (2) - (12).

,USERTKN=NO_USERTKN Default: USERTKN=NO_USERTKN

,GUARDSIZE=guardsize guardsize: RS-type address or address in register (2) - (12).

,GUARDSIZE=0 Default: GUARDSIZE=0

,GUARDSIZE64=guardsize64 guardsize64: RS-type address or address in register (2) -
(12).

,GUARDSIZE64=0 Default: GUARDSIZE64=0

IARV64 macro

356 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

||

Syntax Description

,GUARDLOC=LOW Default: GUARDLOC=LOW

,GUARDLOC=HIGH

,TTOKEN=ttoken ttoken: RS-type address or address in register (2) - (12).

,TTOKEN=NO_TTOKEN Default: TTOKEN=NO_TTOKEN

,ALETVALUE=aletvalue aletvalue: RS-type address or address in register (2) - (12).

,ALETVALUE=0 Default: ALETVALUE=0

,ORIGIN=origin origin: RS-type address or address in register (2) - (12).

,DETACHFIXED=NO Default: DETACHFIXED=NO

,DETACHFIXED=YES

,SADMP=DEFAULT Default: SADMP=DEFAULT

,SADMP=YES

,SADMP=NO

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3, 4,5

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 357

||

||

||

REQUEST=GETSTOR
A required parameter. REQUEST=GETSTOR creates a private memory object if
LOCALSYSAREA=YES is not specified. If LOCALSYSAREA=YES is specified,
then a system memory object is returned. The storage obtained in the system
area using the LOCALSYSAREA keyword will not be copied during Fork
processing. The use of local system area storage does not preclude checkpoint
from succeeding. At completion, the memory object is created in the address
space you indicate.

,COND=NO
,COND=YES

An optional input parameter that specifies whether the request is
unconditional or conditional. If you code COND=YES and there is insufficient
storage to satisfy the request, instead of the request being abnormally ended,
the request will complete, but a return code will be set to indicate that the
request could not be completed successfully. In all cases, the request will be
abnormally ended for invalid requests, including violation of environmental
restrictions. The default is COND=NO.

,COND=NO
The request is unconditional. The request is abnormally ended when the
request cannot be satisfied.

,COND=YES
The request is conditional. The request is not abnormally ended for
resource unavailability.

,LOCALSYSAREA=NO
,LOCALSYSAREA=YES

An optional input parameter that specifies whether this is an explicit allocation
request for 64-bit virtual storage in local system area. The localsysarea
parameter can be used only by callers running in supervisor state or with a
PSW key 0-7. The default is LOCALSYSAREA= NO.

,LOCALSYSAREA=NO
The request will not be satisfied from the local system area.

,LOCALSYSAREA=YES
The request is to be satisfied from the local system area. The storage
obtained with this keyword will not be copied during Fork processing. The
use of local system area storage does not preclude checkpoint from
succeeding.

,KEY=key
,KEY=CALLERKEY

An optional input parameter that specifies the storage key to be assigned to
the memory object. The key must be in bits 0-3 of the specified byte. Bits 4-7
are ignored. The KEY parameter can be used only by callers running in
supervisor state or with a PSW key 0-7; with the following exception: a PSW
key 8 caller can specify a storage key of the memory object to be key 9.

If the key is not specified, the storage key of the memory object is the same as
the caller's PSW key. The default is CALLERKEY.

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

,FPROT=YES
,FPROT=NO

An optional input parameter that specifies whether the memory object should
be fetch-protected. The default is FPROT=YES.

IARV64 macro

358 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,FPROT=YES
The entire memory object is fetch-protected. A program must have a PSW
key that matches the storage key of the memory object (or have PSW key
0) to reference data in the memory object.

,FPROT=NO
The memory object is not fetch-protected.

,MEMLIMIT=YES
,MEMLIMIT=NO
,MEMLIMIT=COND

An optional input parameter that specified whether the allocation of the 64-bit
memory object is to count towards the address space MEMLIMIT. The default
is MEMLIMIT=YES.

,MEMLIMIT=YES
The 64-bit private memory object contributes towards the address space
MEMLIMIT.

,MEMLIMIT=NO
The 64-bit private memory object is not counted against the address space
MEMLIMIT. MEMLIMIT=NO is effective only when specified by
authorized callers in supervisor state or key 0-7. Requests for
MEMLIMIT=NO by unauthorized callers will result in a DC2 abend with
reason code 19.

,MEMLIMIT=COND
If the caller is running in supervisor state or key 0 - 7, treat as
MEMLIMIT=NO; otherwise, treat as MEMLIMIT=YES.

,SEGMENTS=segments

SEGMENTS and UNITS are mutually exclusive keys. This set is required; only
one key can be specified.

A required input parameter that specifies the size of the memory object
requested, in megabytes. This must be a nonzero value. The amount of storage
requested that is not in the guard state is charged against the MEMLIMIT for
the address space where the memory object is to be created.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field.

,PAGEFRAMESIZE=4K
,PAGEFRAMESIZE=1MEG
,PAGEFRAMESIZE=MAX
,PAGEFRAMESIZE=PAGEABLE1MEG
,PAGEFRAMESIZE=DREF1MEG

An optional input parameter that specifies the size of the page frames to back
the virtual storage mapped by the allocated memory object.

,PAGEFRAMESIZE=4K
The memory object is backed by 4 KB-page frames, if available. This is the
default value.

,PAGEFRAMESIZE=1MEG
The memory object is backed by 1 MB-page frames, if available.

,PAGEFRAMESIZE=MAX
The memory object is backed by the largest page frame size that is
supported and available. Otherwise, the object is backed by 4 KB-page
frames. 1 MB-page frames are backed at allocation and cannot be paged

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 359

|

|
|
|
|

|
|
|

out to AUX. 4 KB-page frames are backed at first reference and can be
paged out to AUX as long as TYPE=DREF is not specified.

,PAGEFRAMESIZE=PAGEABLE1MEG
The memory object is backed by pageable 1 MB-page frames at first
reference, unless none are available. If none are available, the object is
backed by 4 KB-page frames.

,PAGEFRAMESIZE=DREF1MEG
The memory object is backed by Dref 1 MB-page frames at first reference,
unless none are available. If none are available, the object is backed by 4
KB-page frames.

,TYPE=PAGEABLE
,TYPE=DREF

An optional input parameter that specifies the type of storage that is requested.
The default value is TYPE=PAGEABLE when one of the following parameters
is specified:
v PAGEFRAMESIZE=4K
v PAGEFRAMESIZE=PAGEABLE1MEG
v PAGEFRAMESIZE=MAX and the memory object is backed with 4 KB-page

frames.

The default value is TYPE=DREF when PAGEFRAMESIZE=DREF1MEG is
specified. If PAGEFRAMESIZE=1MEG or PAGEFRAMESIZE=MAX is specified
and the memory object is backed with 1 MB-page frames, the 1 MB-pages
backing this memory object are fixed.

Note:

1. When the memory object is backed by 4 KB-page frames, the 4 KB-pages
backing this memory object are pageable if TYPE=DREF is not specified, or
are fixed if TYPE=DREF is specified. The 4 KB-pages are backed at first
reference and can only be paged out to AUX if TYPE=DREF is not
specified.

2. When the memory object is backed by 1 MB-page frames as a result of
PAGEFRAMESIZE=PAGEABLE1MEG or PAGEFRAMESIZE=DREF1MEG
being specified, the 1 MB-pages backing this memory object are pageable if
PAGEABLE1MEG is specified or fixed if DREF1MEG is specified. Pageable
1 MB-pages are backed at first reference and can be paged out to AUX.
DREF 1 MB-pages are backed at first reference and are fixed—they cannot
be paged out to AUX.

3. When the memory object is backed by 1 MB-page frames because
PAGEFRAMESIZE=1MEG or PAGEFRAMSIZE=MAX has been specified,
the 1 MB-pages backing this memory object are fixed. Pages are backed at
allocation time and cannot be paged out to AUX.

,UNITS=units

UNITS and SEGMENTS are mutually exclusive keys. This set is required; only
one key can be specified.

A required input parameter that specifies the size of the memory object as a
number of units specified by the UNITSIZE parameter. This must be a nonzero
value. The amount of storage requested that is not in the guard state is
counted towards the MEMLIMIT for the address space where the memory
object will be created. UNITS belongs to a set of mutually exclusive keys. This
set is required; only one key can be specified.

IARV64 macro

360 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,TYPE=PAGEABLE
,TYPE=DREF
,TYPE=FIXED

A required input parameter that specifies the type of requested storage.

,TYPE=PAGEABLE
Pages backing this memory object are pageable. Pages are backed at
first reference and can be paged out to auxiliary storage. Virtual
address ranges within the memory object can be explicitly fixed after
allocation by using the IARV64 REQUEST=PAGEFIX request.
TYPE=PAGEABLE is not valid with PAGEFRAMESIZE=2G.

,TYPE=DREF
Pages are backed in real memory at first reference, unless DREF
storage is not available, in which case the program is ABENDed. Once
backed, pages belonging to memory objects of TYPE=DREF remain in
real storage and are never paged out to auxiliary storage. The memory
object can be referenced while running disabled. The DREF attribute
applies to the entire memory object. TYPE=DREF is not valid with
PAGEFRAMESIZE=2G.

,TYPE=FIXED
Pages are backed in real storage immediately, unless fixed storage is
not immediately available, in which case the request fails. Pages
belonging to memory objects of TYPE=FIXED remain in real storage
and are never be paged out to auxiliary storage. The memory object
can be referenced while running disabled. The FIXED attribute applies
to the entire memory object when it is allocated. TYPE=FIXED is not
valid with PAGEFRAMESIZE=4K.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field.

,UNITSIZE=1M
,UNITSIZE=2G

A required input parameter that specifies the size for the UNITS parameter:
either 1M or 2 GB.

,UNITSIZE=1M
Specifies that the memory object is in one-megabyte (1 MB) units. For
example, a request for UNITS=3 with UNITSIZE=1M is a request for three
megabytes of virtual storage starting on a 1 MB boundary. When
UNITSIZE=1M is specified, one of the following PAGEFRAMESIZE values
must also be specified:

PAGEFRAMESIZE=4K
PAGEFRAMESIZE=1M

A required input parameter that specifies the size of the page frames
used to back the virtual storage mapped by the allocated memory
object.

PAGEFRAMESIZE=4K
Specifies to back the memory object with 4 KB-page frames of the
specified TYPE, when TYPE=PAGEABLE or TYPE=DREF is
requested. TYPE=FIXED is not supported.

PAGEFRAMESIZE=1M
Specifies to back the memory object by one-megabyte (1 MB) page
frames of the specified TYPE. If 1 MB-page frames are not
supported or not available, the system attempts to back the

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 361

memory object at a smaller page frame size of the specified TYPE,
when TYPE=PAGEABLE or TYPE=DREF is requested. A
TYPE=FIXED request fails if there are no available pages in the
requested PAGEFRAMESIZE.

,UNITSIZE=2G
Specifies that the memory object is in two-gigabyte (2G) units. For
example, a request for UNITS=3 with UNITSIZE=2G is a request for six
gigabytes of virtual storage starting on a 2 GB boundary.

PAGEFRAMESIZE=4K|1M|2G
A required input parameter that specifies the size of the page frames
that back the virtual storage mapped by the allocated memory object.

PAGEFRAMESIZE=4K
Specifies to back the memory object by 4 KB-page frames of the
specified TYPE, when TYPE=PAGEABLE or TYPE=DREF is
requested. TYPE=FIXED is not supported with this value.

PAGEFRAMESIZE=1M
Specifies to back the memory object by one-megabyte (1 MB) page
frames of the specified TYPE. If 1 MB-page frames are not
supported or not available when TYPE=PAGEABLE or
TYPE=DREF is requested, the system attempts to back the memory
object using a smaller page frame size of the specified TYPE. A
TYPE=FIXED request fails if there are no available pages in the
requested PAGEFRAMESIZE.

PAGEFRAMESIZE=2G
Specifies to back the memory object by two-gigabyte (2 GB) FIXED
page frames. PAGEFRAMESIZE=2G is valid only when
TYPE=FIXED is specified. If 2 GB page frames are not supported
or not available, the request fails.

,SVCDUMPRGN=YES
,SVCDUMPRGN=NO

SVCDUMPRGN and DUMP are mutually exclusive keys. This set is optional;
only one key may be specified.

An optional input parameter that specifies whether the memory object should
be included in an SVC dump when region is requested. The default is
SVCDUMPRGN=YES.for TYPE=PAGEABLE. If neither the SVCDUMPRGN
keyword nor the DUMP keyword is specified the defaults that apply are as
described under the defaults for the DUMP keyword.

,SVCDUMPRGN=YES
The memory object should be included in an SVC dump when RGN is
specified on SDATA. This is equivalent to DUMP=LIKERGN.

,SVCDUMPRGN=NO
The memory object should not be included in an SVC dump when RGN is
specified on SDATA.

,DUMP=LIKERGN
,DUMP=LIKELSQA
,DUMP=NO
,DUMP=BYOPTIONVALUE

DUMP and SVCDUMPRGN are mutually exclusive keys. This set is optional;
only one key may be specified.

IARV64 macro

362 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

An optional input parameter that specifies whether the 64-bit private memory
object will be included in an SVC dump when RGN or LSQA is specified on
SDATA. When TYPE=PAGEABLE is specified on IARV64 GETSTOR the default
is DUMP=LIKERGN. When TYPE=DREF is specified on IARV64 GETSTOR the
default is DUMP=LIKELSQA. For memory objects backed with large pages the
default is DUMP=NO.

,DUMP=LIKERGN
The 64-bit private memory object is included in an SVC dump when RGN
is specified on SDATA.

,DUMPPRIORITY=99
,DUMPPRIORITY=dumppriority

An optional input parameter that specifies the dump priority of the
memory object. This must be a non-zero value in the range of 1 to 99,
with 1 being the highest priority and 99 being the lowest. The default
is DUMPPRIORITY=99.

,DUMPPRIORITY=99
The dump priority of the memory object is 99 which is the lowest
priority.

,DUMPPRIORITY=dumppriority
This parameter is the name (RS-type), or address in register (2)-(12), of
an optional byte input that specifies the dump priority of the memory
object. This must be a non-zero value in the range of 1 to 99, with 1
being the highest priority and 99 being the lowest.

,DUMP=LIKELSQA
The 64-bit private memory object is included in an SVC dump when LSQA
is specified on SDATA.

,DUMP=NO
The 64-bit private memory object is not included in an SVC dump when
either RGN or LSQA is specified on SDATA.

,DUMP=BYOPTIONVALUE
The 64-bit private memory object is dumped according to the option
specified by the OPTIONVALUE keyword.

,OPTIONVALUE=optionvalue
This parameter is the name of a required one-byte integer input that
contains one of the dump option values as specified by the bit
constants.

,CONTROL=UNAUTH
,CONTROL=AUTH

An optional input parameter that specifies when the memory object should be
eligible for the certain other services.

This is a permanent attribute of the memory object and cannot be altered by
other services. The default is CONTROL=UNAUTH.

CONTROL=UNAUTH
The memory object can be freed by an unauthorized caller that owns the
memory object. The memory object is NOT eligible for PAGEFIX.

CONTROL=AUTH
The memory object can be freed only by an authorized caller. The memory
object is eligible for PAGEFIX and PAGEUNFIX (note that PAGEFIX and
PAGEUNFIX still require an authorized caller). AUTH can be used only by
callers running in supervisor state or with PSW key 0-7.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 363

MOTKNSOURCE=USER
MOTKNSOURCE=SYSTEM

An optional input parameter that indicates who provided (or will provide) the
memory object token.

MOTKNSOURCE=USER

The user provides the memory object token.

The following is a set of mutually exclusive keys. This set is optional; only
one key may be specified.

MOTKN=motkn

This parameter belongs to a set of mutually exclusive keys. It is the
name of an optional doubleword integer input that identifies the user
token to be associated with the memory object. This can be used on a
later DETACH request to free all memory objects associated with this
value.
v To request a system-generated token, use:

IARV64 REQUEST(GETCOMMON) MOTKNSOURCE(SYSTEM) OUTMOTKN(mytoken)

v Use the returned token on subsequent IARV64 GETCOMMON
requests, in order to associate other memory objects with the same
token:
IARV64 REQUEST(GETCOMMON) MOTKNSOURCE(USER) MOTKN(mytoken)

v

To avoid inadvertent collisions in the values specified, the left word
(bits 0-31) of the user token must be binary zeros for a problem state
program. The system enforces this requirement. The right word (bits
32-63) should represent the virtual address of some storage related to
the caller, which could be a control block address, an entry point
address, and so on, which is used as an application choice.

The convention for supervisor state program is that the left word (bits
0-31) should represent an address of some storage related to the caller.
The system enforces the rule that the left word is nonzero for
supervisor state callers. The format for the right word (bits 32-63) is a
choice left to the caller.

If you specify no user token, the default is that no user token is
supplied to associate this memory object with others.

MOTKNCREATOR=USER
MOTKNCREATOR=SYSTEM

This parameter is an optional input parameter that indicates who
created the memory object token

MOTKNCREATOR=USER
The memory object token is user-created.

MOTKNCREATOR=SYSTEM
The memory object token is system-created.

USERTKN=usertkn
USERTKN=NO_USERTKN

This parameter belongs to a set of mutually exclusive keys. It is the
name of an optional doubleword integer input that is a synonym for
MOTKN. You can use either USERTKN or MOTKN interchangeably.

IARV64 macro

364 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

MOTKNSOURCE=SYSTEM
The system provides the memory object token.

OUTMOTKN=xoutmotkn
This parameter is the name of a required doubleword integer output
that identifies the user token to be associated with the memory object
to be created by the system.

,USERTKN=usertkn
,USERTKN=NO_USERTKN

An optional input parameter that identifies the user token to be associated
with the memory object. This can be used on a later DETACH request to free
all memory objects associated with this value.

To avoid inadvertent collisions in the values specified, the left word (bits 0-31)
of the user token must be binary zeros for a problem state program. The
system enforces this requirement. The right word (bits 32-63) should represent
the virtual address of some storage related to the caller, which could be a
control block address, an entry point address, and so on, which is used as an
application choice.

The convention for supervisor state program is that the left word (bits 0-31)
should represent an address of some storage related to the caller. The system
enforces the rule that the left word is nonzero for supervisor state callers. The
format for the right word (bits 32-63) is a choice left to the caller.

If you specify NO_USERTKN, the default is that no user token is supplied to
associate this memory object with others. The default is NO_USERTKN.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field.

,GUARDSIZE=guardsize
,GUARDSIZE=0

GUARDSIZE and GUARDSIZE64 are mutually exclusive keys. This set is
optional; only one key may be specified. A fullword integer input parameter
that indicates the number of megabytes of guard area to be created at the high
or low end of the memory object. Guard areas cannot be referenced and when
referenced will cause a program check. Guard area does not count against the
MEMLIMIT. A guard area can be reduced through CHANGEGUARD
CONVERT=FROMGUARD.

GUARDSIZE must not be larger than the size of the memory object. The
default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,GUARDSIZE64=guardsize64
,GUARDSIZE64=0

GUARDSIZE64 belongs to a set of mutually exclusive keys. This set is optional;
only one key may be specified. A doubleword integer input parameter that
indicates the number of megabytes of guard area to be created at the high or
low end of the memory object. Guard areas cannot be referenced and when
referenced will cause a program check. Guard area does not count against the
MEMLIMIT. A guard area can be reduced through CHANGEGUARD
CONVERT=FROMGUARD.

GUARDSIZE64 must not be larger than the size of the memory object. The
default is 0.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 365

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field.

,GUARDLOC=LOW
,GUARDLOC=HIGH

An optional input parameter that specifies whether the guard location is at the
low virtual end of the memory object or the high virtual end. The default is
GUARDLOC=LOW.

GUARDLOC=LOW
The guard areas are created starting from the origin of the memory object,
that is, from the low virtual end.

GUARDLOC=HIGH
The guard areas are created at the end of the memory object, that is, at the
high virtual end.

,TTOKEN=ttoken
,TTOKEN=NO_TTOKEN

An optional input parameter that identifies the task to assume ownership of
the memory object. The TTOKEN is returned by the TCBTOKEN macro.

If TTOKEN is specified, the task identified by the TTOKEN becomes the owner
of the memory object. If TTOKEN is not specified, the currently dispatched
task becomes the owner of the memory object. The task identified by the
TTOKEN must be in the address space specified or defaulted by the
ALETVALUE keyword.

The TTOKEN parameter must be used by an caller that is an SRB.

When the TTOKEN parameter is used by problem state program with PSW
key 8 - 15, the target task must represent the calling task OR the jobstep task
for the calling task OR the mother task. A caller cannot assign ownership to a
task above the jobstep task.

A memory object will be freed when its owning task terminates.

If the TTOKEN parameter is not specified, and the caller is a task (rather than
an SRB), the currently dispatched task will become the owner of the memory
object. An SRB will be abnormally ended if the TTOKEN parameter does not
specify a valid TTOKEN. The default is NO_TTOKEN.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16
character field.

,ALETVALUE=aletvalue
,ALETVALUE=0

An optional input parameter that indicates the ALET of the address space in
which the memory object is to be created.

The only supported values are 0 (primary) and 2 (home). The ALETVALUE
parameter can be used only by callers running in supervisor state or with PSW
key 0-7. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,ORIGIN=origin
A required output parameter that contains the lowest address of the memory
object. Note that when GUARDLOC=LOW is specified, the lowest address will
point to a guard area which will cause an ABEND if referenced. For
GUARDLOC=LOW the first usable area is the origin plus the size of the guard
area.

IARV64 macro

366 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

DETACHFIXED=NO
DETACHFIXED=YES

An optional input parameter that specifies whether the memory object can be
detached when it contains fixed pages at the time of the DETACH request. The
default value for DETACHFIXED is NO.

DETACHFIXED=NO
The memory object will not be detached if it has any fixed pages when it is
being detached.

DETACHFIXED=YES
The memory object will be detached even if some or all the pages of that
memory object are fixed.

,SADMP=DEFAULT
,SADMP=YES
,SADMP=NO

An optional keyword input that specifies whether the memory object is to be
captured in a stand-alone dump.

SADMP=DEFAULT
When PAGEFRAMESIZE is not 2G, the memory object should be captured
in a stand-alone dump.

When PAGEFRAMESIZE is 2G, the memory object should not be captured
in a stand-alone dump unless explicitly requested by the stand-alone dump
program.

SADMP=YES
The memory object should be captured in a stand-alone dump.

SADMP=NO
The memory object should not be captured in a stand-alone dump unless
explicitly requested by the stand-alone dump program.

Default: SADMP=DEFAULT

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 367

|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– GETSHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– GETCOMMON
– PAGEPROTECT
– PAGEUNPROTECT

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1 or 2.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant

IARV64 macro

368 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

Use the modify and execute forms in the following order:
v Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters,

including all required ones.
v Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to

change.
v Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

REQUEST=PAGEFIX option of IARV64
REQUEST=PAGEFIX allows you to fix physical pages within one or more
nonshared memory objects. It makes virtual storage areas, above the bar, reside in
central storage (also called real storage) and ineligible for page-out while the
address space specified by the ALETVALUE is swapped into central storage.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Can be used only by callers running in supervisor state or

with PSW key 0-7.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts. Enabled for I/O

and external interrupts. Enabled or disabled for 64-bit
common memory objects allocated with TYPE=DREF, or
TYPE=PAGEABLE and the storage is in the first reference
state.

Locks: A local lock may be held.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 369

Environmental factor Requirement
Control parameters: Control parameters must be in the primary address space

and can reside both above and below the bar.

Programming requirements
None

Restrictions
Pages that are fixed must be unfixed before the task owning the memory object
terminates. Otherwise the address space where the memory object resides is
terminated.

This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

IARV64 macro

370 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax
The REQUEST=PAGEFIX option of the IARV64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64

� One or more blanks must follow IARV64.

REQUEST=PAGEFIX

,LONG=YES Default: LONG=YES

,LONG=NO

,RANGLIST=ranglist ranglist: RS-type address or address in register (2) - (12).

,ALETVALUE=aletvalue aletvalue: RS-type address or address in register (2) - (12).

,ALETVALUE=0 Default: ALETVALUE=0

,NUMRANGE=numrange numrange: RS-type address or address in register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1

,COND=NO Default: COND=NO

,COND=YES

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3, 4, 5

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 371

Syntax Description

,MF=(E,list addr,COMPLETE)

Parameters
A required parameter. REQUEST=PAGEFIX specifies that the data within the
specified ranges be pagefixed.

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=PAGEFIX
A required parameter. REQUEST=PAGEFIX specifies that the data within the
specified ranges be pagefixed.

PAGEFIX can only be requested for 64-bit private memory objects that are
created using GETSTOR CONTROL=AUTH, and 64-bit common storage
memory objects. PAGEFIX cannot be requested for 64-bit shared memory
objects. 64-bit private or common storage memory objects backed by fixed 1
MB-page frames, or 64-bit private memory objects backed by fixed 2GB-page
frames will be ignored.

PAGEFIX cannot be requested for a private memory object that was created
using GETSTOR CONTROL=UNAUTH.

PAGEFIX cannot be requested for guard areas.

PAGEFIX specifies that the virtual storage areas are to reside in real storage
and are ineligible for page-out while the address space is swapped in. This
parameter does not prevent pages from being paged out when the entire
address space is swapped out of real storage.

PAGEFIXed pages may be backed anywhere in real storage.

A page is considered PAGEFIXed until the number of valid PAGEUNFIXes
issued for the page is equal to the number of valid PAGEFIXes previously
issued for that page.

While a page is PAGEFIXed, the memory object, allocated with
DETACHFIXED=NO, cannot be freed; if the system finds a PAGEFIXed area in
the memory object, it abnormally ends the DETACH caller.

While a page is PAGEFIXed, the memory object allocated with
DETACHFIXED=YES, can be freed successfully.

I/O can be done only to pages of memory objects that have been PAGEFIXed.

All I/O into virtual storage above the bar for an address space must be
associated with the address space, that is, the ASID in the IOSB must be the
ASID for the address space which owns the memory object. This is required so
that I/O for the address space will be automatically purged during
MEMTERM processing of the address space that owns the virtual storage
above the bar or during I/O quiesce processing in preparation for swapping
out the address space. The I/O must also be associated with the task which
owns the memory object or one of its siblings. This is required so that all I/O
is terminated and cleanup performed before the memory object is detached
during task termination.

IARV64 macro

372 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

A resource manager must be provided to handle outstanding I/O when the
task owning the memory object terminates. The resource manager must run
before RSM's task termination resource manager and must ensure that all I/O
into the virtual storage above the bar is complete and any fixed storage is
unfixed. This is required for both normal and abnormal task termination. For
example, this resource manager will be invoked through ABEND of the task
termination if any virtual storage above the bar owned by the task is
PAGEFIXED. This resource manager must ensure that all I/O into the memory
object is complete. This is required for both normal and abnormal task
termination.

PAGEFIX can be used only by callers running in supervisor state or with PSW
key 0-7.

,LONG=YES
,LONG=NO

An optional input parameter that specifies whether the expected duration of
the PAGEFIX is short or long. In general, a PAGEFIX is considered to be long if
the time can be measured in seconds. The default is LONG=YES.

,LONG=YES
The PAGEFIX is expected to be of a long duration.

,LONG=NO
The PAGEFIX is expected to be of a short duration.

,RANGLIST=ranglist
A required input parameter. The range list consists of a number of entries (as
specified by NUMRANGE) where each entry is 16 bytes long. A description of
the fields in each entry follows:

VSA
Specifies the starting address of the data to be acted on.

The address specified must be within a memory object returned by
GETSTOR CONTROL=AUTH or GETCOMMON.The value must always be
on a physical 4 KB-page boundary.

The length of this field is 8 bytes.

Note: If the starting address is backed by pageable 1 MB-page frames,
specify a value on a physical 1 MB-page boundary. Otherwise, demotion of
pageable 1 MB-page frames to pageable 4 KB-page frames could occur.

NUMPAGES
Contains the number of physical 4 KB-pages in the area.

The number of 4 KB-pages specified starting with the specified VSA must
lie within a single memory object.

The length of this field is 8 bytes.

Note: If the range includes addresses backed by pageable 1 MB-page
frames, specify a number of 4 KB-pages that is a multiple of 256.
Otherwise, demotion of pageable 1 MB-page frames to pageable 4 KB-page
frames could occur.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,ALETVALUE=aletvalue

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 373

,ALETVALUE=0
An optional input parameter that indicates the ALET of the address space in
which the storage is to be pagefixed. The ALETVALUE parameter is ignored
for 64-bit common memory objects.

The only supported values are 0 (primary) and 2 (home). The ALETVALUE
parameter can be used only by callers running in supervisor state or with PSW
key 0-7. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,NUMRANGE=numrange
,NUMRANGE=1

An optional input parameter that specifies the number of entries in the
supplied range list. The value specified must be no greater than 16. The default
is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,COND=NO
,COND=YES

An optional input parameter that specifies whether the request is
unconditional or conditional. If you code COND=YES and there is insufficient
storage to satisfy the request, instead of the request being abnormally ended
the request will complete but a return code will be set to indicate that the
request could not be completed successfully. In all cases the request will be
abnormally ended for invalid requests, including violation of environmental
restrictions. The default is COND=NO.

,COND=NO
The request is unconditional. The request is abnormally ended when the
request cannot be satisfied.

,COND=YES
The request is conditional. The request is not abnormally ended for
resource unavailability.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3, 4, 5

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

IARV64 macro

374 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– V64SHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE
– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN
– V64COMMON

v 3, supports both the following parameters and parameters from versions 0,
1, 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameter and parameters from versions 0, 1,
2, 3:
– DMAPAGETABLE

v 5, supports both the following parameters and parameters from versions 0,
1, 2, 3, 4:
– UNITS
– UNITSIZE

To code: Specify one of the following:

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 375

v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3, 4, or 5

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

REQUEST=PAGEUNFIX option of IARV64
Use REQUEST=PAGEUNFIX to unfix physical pages within one or more
nonshared or common memory objects.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Can be used only by callers running in supervisor state or

with PSW key 0-7.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts

IARV64 macro

376 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Environmental factor Requirement
Locks: A local lock may be held.
Control parameters: Control parameters must be in the primary address space

and can reside both below and above the bar.

Programming requirements
None

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 377

Syntax
The REQUEST=PAGEUNFIX option of the IARV64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64

� One or more blanks must follow IARV64.

REQUEST=PAGEUNFIX

,RANGLIST=ranglist ranglist: RS-type address or address in register (2) - (12).

,ALETVALUE=aletvalue aletvalue: RS-type address or address in register (2) - (12).

,ALETVALUE=0 Default: ALETVALUE=0

,NUMRANGE=numrange numrange: RS-type address or address in register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1

,COND=NO Default: COND=NO

,COND=YES

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3, 4, 5

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

IARV64 macro

378 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=PAGEUNFIX
A required parameter. REQUEST=PAGEUNFIX specifies that a range of storage
has no I/O in progress and will no longer be used for I/O or will no longer be
referenced disabled.

PAGEUNFIX can only be requested for 64-bit private memory objects that are
created using GETSTOR CONTROL=AUTH, and 64-bit common storage
memory objects. PAGEUNFIX cannot be requested for 64-bit shared memory
objects. 64-bit private or common storage memory objects backed by fixed 1
MB-page frames, or 64-bit private memory objects backed by fixed 2GB-page
frames will be ignored.

A page is considered PAGEFIXed until the number of valid PAGEUNFIXes
issued for the page is equal to the number of valid PAGEFIXes previously
issued for that page.

If a PAGEUNFIX is issued for a page that is not PAGEFIXed, the caller will be
abnormally ended.

The PAGEUNFIX keyword can be used only by callers running in supervisor
state or with PSW key 0-7.

,RANGLIST=ranglist
A required input parameter, of a range list. The range list consists of a number
of entries (as specified by NUMRANGE) where each entry is 16 bytes long. A
description of the fields in each entry follows:

VSA
denotes the starting address of the data to be acted on.

The address specified must be within a memory object returned by
GETSTOR CONTROL=AUTH.

The value must always be on a physical 4 KB-page boundary.

The length of this field is 8 bytes.

Note: If the starting address is backed by pageable 1 MB-page frames, the
number of 4 KB-pages specified must always be on a physical 1M-page
boundary.

NUMPAGES
Contains the number of physical 4 KB-pages in the area.

The number of 4 KB-pages specified starting with the specified VSA must
lie within a single memory object.

The length of this field is 8 bytes.

Note: If the range includes addresses backed by pageable 1 MB-page
frames, the number of 4 KB-pages specified must be a multiple of 256.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 379

,ALETVALUE=aletvalue
,ALETVALUE=0

An optional input parameter that indicates the ALET of the address space in
which the storage is to be unfixed.

The only supported values are 0 (primary) and 2 (home). ALETVALUE can be
used only by callers running in supervisor state or with PSW key 0-7. The
default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,NUMRANGE=numrange
,NUMRANGE=1

An optional input parameter that specifies the number of entries in the range
list. The value specified must be no greater than 16. The default is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,COND=NO
,COND=YES

This is an optional input parameter that specifies whether the request is
unconditional or conditional. If you code COND=YES and there are unfixed
pages in the range specified, instead of the request being abnormally ended,
the request will complete but a return code will be set to indicate that the
request was completed abnormally. In this case, the unfixed pages skipped and
all the fixed pages will be unfixed. In all cases, the request will be abnormally
ended for invalid requests including violations of environmental restrictions.
The DEFAULT value is NO.

COND=NO
The request is unconditional. The request is abnormally ended when the
request cannot be satisfied.

COND=YES
The request is conditional. The request is not abnormally ended for unfixed
pages in the range specified.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3, 4, 5

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

IARV64 macro

380 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– V64SHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE
– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN
– V64COMMON

v 3, supports both the following parameters and parameters from versions 0,
1, 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameter and parameters from versions 0, 1,
2, 3:
– DMAPAGETABLE

v 5, supports both the following parameters and parameters from versions 0,
1, 2, 3, 4:
– UNITS
– UNITSIZE

To code: Specify one of the following:

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 381

v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3, 4, or 5

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

REQUEST=PAGEOUT option of IARV64
REQUEST=PAGEOUT notifies the system that data within physical pages of one or
more memory objects will not be used in the near future.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: A local lock may be held.

IARV64 macro

382 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Environmental factor Requirement
Control parameters: Control parameters must be in the primary address space

and can reside both below and above the bar.

Programming requirements
None

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax
The REQUEST=PAGEOUT option of the IARV64 macro is written as follows:

Syntax Description

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 383

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64

� One or more blanks must follow IARV64.

REQUEST=PAGEOUT

,RANGLIST=ranglist ranglist: RS-type address or address in register (2) - (12).

,ALETVALUE=aletvalue aletvalue: RS-type address or address in register (2) - (12).

,ALETVALUE=0 Default: ALETVALUE=0

,NUMRANGE=numrange numrange: RS-type address or address in register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3, 4

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

IARV64 macro

384 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

REQUEST=PAGEOUT
A required parameter. REQUEST=PAGEOUT notifies the system that data
within the specified ranges will not be used in the near future, i.e. for time
measured in seconds (or longer), and are good candidates for paging.

Areas of the memory object that are PAGEFIXed or are in guard areas will not
be affected.

,RANGLIST=ranglist
A required input parameter. The range list consists of a number of entries (as
specified by NUMRANGE) where each entry is 16 bytes long. A description of
the fields in each entry follows:

VSA
denotes the starting address of the data to be acted on.

The address specified must be within a memory object created by
GETSTOR, GETSHARED, or GETCOMMON.

The value must always be on a physical 4 KB-page boundary.

The length of this field is 8 bytes.

Note: If the starting address is backed by pageable 1 MB-page frames, use
a value that is on a physical segment boundary. Otherwise, demotion of
pageable 1 MB-page frames to pageable 4 KB-page frames could occur.

NUMPAGES
Contains the number of physical 4 KB-pages in the area.

The number of 4 KB-pages specified starting with the specified VSA must
lie within a single memory object.

The length of this field is 8 bytes.

Note: If the range includes addresses backed by pageable 1 MB-page
frames, specify a number of 4 KB-pages in multiples of 256. Failure to do
so might result in the demotion of pageable 1 MB-page frames to pageable
4 KB-page frames.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,ALETVALUE=aletvalue
,ALETVALUE=0

An optional input parameter that indicates the ALET of the address space in
which the virtual storage is to be paged out.

The only supported values are 0 (primary) and 2 (home). The ALETVALUE
parameter can be used only by callers running in supervisor state or with PSW
key 0-7. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,NUMRANGE=numrange
,NUMRANGE=1

An optional input parameter that specifies the number of entries in the
supplied range list.

The value specified must be no greater than 16. The default is 1.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 385

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3, 4

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– V64SHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE

IARV64 macro

386 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN
– V64COMMON

v 3, supports both the following parameters and parameters from versions 0,
1, 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameter and parameters from versions 0, 1,
2, 3:
– DMAPAGETABLE

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3, 4

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 387

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

REQUEST=PAGEIN option of IARV64
REQUEST=PAGEIN notifies the system that data within physical pages of one or
more memory objects will be needed in the near future.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: A local lock may be held.
Control parameters: Control parameters must be in the primary address space

and can reside both below and above the bar.

Programming requirements
None

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

IARV64 macro

388 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax
The REQUEST=PAGEIN option of the IARV64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64

� One or more blanks must follow IARV64.

REQUEST=PAGEIN

,RANGLIST=ranglist ranglist: RS-type address or address in register (2) - (12).

,ALETVALUE=aletvalue aletvalue: RS-type address or address in register (2) - (12).

,ALETVALUE=0 Default: ALETVALUE=0

,NUMRANGE=numrange numrange: RS-type address or address in register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3, 4

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 389

Syntax Description

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=PAGEIN
A required parameter. REQUEST=PAGEIN notifies the system that data within
the specified ranges is needed in the near future and should be retrieved from
auxiliary storage, if possible. An attempt to PAGEIN a range which contains a
guard area will cause an ABEND.

,RANGLIST=ranglist
A required input parameter. The range list consists of a number of entries (as
specified by NUMRANGE) where each entry is 16 bytes long. A description of
the fields in each entry follows:

VSA
denotes the starting virtual address of the data to be acted on.

The virtual address specified must be within an allocated memory object
returned by GETSTOR, GETSHARED, or GETCOMMON.

The value must always be on a physical 4 KB-page boundary.

The length of this field is 8 bytes.

NUMPAGES

Contains the number of physical 4 KB-pages in the area.

The number of 4 KB-pages specified starting with the specified VSA must
lie within a single memory object.

The length of this field is 8 bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,ALETVALUE=aletvalue
,ALETVALUE=0

An optional input parameter that indicates the ALET of the space in which the
virtual storage is to be paged in.

The only supported values are 0 (primary address space) and 2 (home address
space). The ALETVALUE parameter may be used only by callers executing in
supervisor state or with a system (0-7) PSW key. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

IARV64 macro

390 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,NUMRANGE=numrange
,NUMRANGE=1

An optional input parameter that specifies the number of entries in the
supplied range list.

The value specified must be no greater than 16. The default is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3, 4

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– V64SHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 391

– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE
– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN
– V64COMMON

v 3, supports both the following parameters and parameters from versions 0,
1, 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameter and parameters from versions 0, 1,
2, 3:
– DMAPAGETABLE

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3, 4

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary

IARV64 macro

392 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

REQUEST=DISCARDDATA option of IARV64
REQUEST=DISCARDDATA allows you to discard data within physical pages of
one or more memory objects.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15.

The caller must be running in supervisor state or with PSW
key 0-7 or have a PSW key that matches the storage key of
the memory object to be cleared by DISCARDDATA.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: When a local lock is held for a request (GETSTOR,

SHAREMEMOBJ, DETACH, or DISCARDDATA) the lock
must be for the address space specified (or defaulted) by the
input ALETVALUE.

Control parameters: Control parameters must be in the primary address space
and can reside both below and above the bar.

Programming requirements
None

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 393

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax
The REQUEST=DISCARDDATA option of the IARV64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64

� One or more blanks must follow IARV64.

REQUEST=DISCARDDATA

,KEEPREAL=YES Default: KEEPREAL=YES

,KEEPREAL=NO

,CLEAR=YES Default: CLEAR=YES

,CLEAR=NO

,RANGLIST=ranglist ranglist: RS-type address or address in register (2) - (12).

,ALETVALUE=aletvalue aletvalue: RS-type address or address in register (2) - (12).

,ALETVALUE=0 Default: ALETVALUE=0

IARV64 macro

394 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,NUMRANGE=numrange numrange: RS-type address or address in register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3, 4

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=DISCARDDATA
A required parameter. REQUEST=DISCARDDATA discards the data within the
specified ranges.

For shared memory objects, the address space specified by the ALET or the
default must have access to the memory object before issuing the
DISCARDDATA (must have issued the IARV64 SHAREMEMOBJ prior to
issuing the request).

Areas of the memory object that are PAGEFIXed, or are guard areas in the
address space identified by the input ALET will not be discarded. If the
DISCARDDATA service finds a PAGEFIXed, hidden, read-only, or guard area
in the area to be discarded, the caller will be abnormally ended. However, any
prior pages processed will have data in an indeterminate state when
CLEAR=NO is used, and KEEPREAL=YES is also used or set as the default.

The caller must be in supervisor state or have PSW key 0-7 or have a PSW key
that matches the storage key of the memory object to be cleared.

,KEEPREAL=YES

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 395

,KEEPREAL=NO
An optional parameter that specifies whether the real frames backing the pages
to be discarded are to be freed or not. The default is KEEPREAL=YES.

,KEEPREAL=YES
The real frames backing the pages to be discarded are not to be freed
unless there is shortage in real storage.

,KEEPREAL=NO
The real frames backing the pages to be discarded are to be freed. In this
case, the CLEAR keyword value is ignored.

,CLEAR=YES
,CLEAR=NO

An optional parameter that specifies whether the data in the range should
become binary zeros. The default is CLEAR=YES.

,CLEAR=YES
The data will become binary zeros.

,CLEAR=NO
The data will be indeterminate.

,RANGLIST=ranglist
A required input parameter, of a range list. The range list consists of a number
of entries (as specified by NUMRANGE) where each entry is 16 bytes long. A
description of the fields in each entry follows:

VSA
Denotes the starting address of the data to be acted on.

The address specified must be within a memory object returned by
GETSTOR, GETSHARED, or GETCOMMON.

The value must always be on a physical 4 KB-page boundary.

The length of this field is 8 bytes.

Note: If the starting address is backed by pageable 1 MB-page frames,
specify a value on a physical segment boundary. Otherwise, demotion of
pageable 1 MB-page frames to pageable 4 KB-page frames could occur.

NUMPAGES
Contains the number of physical 4 KB-pages in the area.

The number of 4 KB-pages specified starting with the specified VSA must
lie within a single memory object.

The length of this field is 8 bytes.

Note: If the range includes addresses backed by pageable 1 MB-page
frames, specify a number of 4 KB-pages that is a multiple of 256.
Otherwise, demotion of pageable 1 MB-page frames to pageable 4 KB-page
frames could occur.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,ALETVALUE=aletvalue
,ALETVALUE=0

An optional input parameter that indicates the ALET of the address space
owning or with access to the memory object in which the virtual storage data
is to be discarded.

IARV64 macro

396 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

The only supported values are 0 (primary) and 2 (home). The ALETVALUE
parameter can be used only by callers running in supervisor state or with PSW
key 0-7. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,NUMRANGE=numrange
,NUMRANGE=1

An optional input parameter that specifies the number of entries in the
supplied range list.

The value specified must be no greater than 16. The default is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3, 4

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– V64SHARED

v 2, supports both the following parameters and parameters from version 0
and 1:

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 397

– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE
– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN
– V64COMMON

v 3, supports both the following parameters and parameters from versions 0,
1, 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameter and parameters from versions 0, 1,
2, 3:
– DMAPAGETABLE

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3, 4

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant

IARV64 macro

398 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

REQUEST=CHANGEGUARD option of IARV64
IARV64 REQUEST=CHANGEGUARD requests that a specified amount of a private
or common memory object be changed from the guard area to the usable area or
vice versa. To avoid an abend for exceeding the MEMLIMIT, specify the
COND=YES parameter.

IARV64 REQUEST=CHANGEGUARD only applies to 64-bit private or common
memory objects. If a 64-bit memory object backed by a 2G frame
(PAGEFRAMESIZE=2G) or a 64-bit shared memory object is specified on the
request, a DC2 abend with reason code X’xx0058xx’ is issued.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8 - 15.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN

Note: The problem state caller running in PSW key 8 - 15
can use CHANGEGUARD only when the primary address
space is the home address space.

AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: A local lock may be held, subject to the following limitation:

When a local lock is held for a CHANGEGUARD request,
the lock must be for the address space specified (or is set as
the default) by the input ALETVALUE.

Control parameters: Control parameters must be in the primary address space
and can reside both below and above the bar.

Programming requirements
None

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 399

|

|
|
|

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax
The REQUEST=CHANGEGUARD option of the IARV64 macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64

IARV64 macro

400 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

� One or more blanks must follow IARV64.

REQUEST=CHANGEGUARD

,CONVERT=TOGUARD

,CONVERT=FROMGUARD

,MEMOBJSTART=memobjstart memobjstart: RS-type address or address in register (2) - (12).

,CONVERTSTART=convertstart convertstart: RS-type address or address in register (2) - (12).

,CONVERTSIZE=convertsize convertsize: RS-type address or address in register (2) - (12).

,CONVERTSIZE64=convertsize64 convertsize64: RS-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3, 4

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=CHANGEGUARD
A required parameter. REQUEST=CHANGEGUARD changes the amount of
guard area in the specified memory object. It changes part of the memory
object from a guard area to a usable area, or vice versa.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 401

If the CHANGEGUARD service finds a PAGEFIXed area in the area to be
converted into a guard area, the caller will be abnormally ended. If a request is
made to guard a guard area or to unguard an area that is not guarded a return
code 04 will be issued.

If you code COND=YES and there is insufficient storage to satisfy the request,
instead of the request being abnormally ended, the request will complete, but a
return code will be set to indicate that the request could not be completed
successfully.

For a problem state program running in PSW key (8 - 15), the PSW key of the
caller must match the storage key of the memory object and the memory object
must be owned by one of the following:
v The calling task
v The job step task
v An ancestor task up through the job step task

,CONVERT=TOGUARD
,CONVERT=FROMGUARD

A required parameter that specifies whether to add or remove guard areas.

,CONVERT=TOGUARD
Convert the specified amount of usable areas to the guard areas. The data
in the converted areas will be released. This operation reduces the amount
of virtual storage that contributes toward the MEMLIMIT for the address
space identified by ALETVALUE. If CONVERTSTART is used then a guard
area is created from a usable area starting with the address specified
continuing for the number of segments specified by CONVERTSIZE. If
CONVERTSTART is not used when GUARDLOC=LOW was specified on
the GETSTOR request, the first usable virtual address space in the memory
object is increased. If CONVERTSTART is not used when
GUARDLOC=HIGH was specified on the GETSTOR request, the last
usable virtual address space in the memory object is decreased.

,CONVERT=FROMGUARD
Convert the specified amount of guard area to be usable area. Any
previously guarded pages that were converted as part of this request will
appear as pages of zeros. Any pages that were already within a usable area
will be unchanged. This operation increases the amount of area that
contributes toward the MEMLIMIT for the address space designated by
ALETVALUE.

If CONVERTSTART is used then a usable area is created from a guard area
starting with the address specified continuing for the number of segments
specified by CONVERTSIZE. If CONVERTSTART is not used when
GUARDLOC=LOW is specified, the first usable virtual address space in
the memory object is decreased. If CONVERTSTART is not used when
GUARDLOC=HIGH is specified, the last usable virtual address space in
the memory object is increased.

,MEMOBJSTART=memobjstart
MEMOBJSTART and CONVERTSTART are a set of mutually exclusive keys.
This set is required; only one keyword must be specified. An input parameter
that belongs to required a set of mutually exclusive keys. It is the name
(RS-type), or address in register (2) - (12), of an eight-byte input that contains
the address of the first byte in the memory object.

,CONVERTSTART=convertstart
CONVERSTART and MEMOBJSTART are a set of mutually exclusive keys.

IARV64 macro

402 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

This set is required; only one keyword must be specified. An input parameter
that belongs to a required set of mutually exclusive keys. CONVERTSTART
specifies the address to add a guard area (continuing to the virtual address
specified by adding the bytes defined in CONVERTSIZE to CONVERTSTART
minus one) when CONVERT(TOGUARD) is requested, and specifies the
address to remove from the guard area (continuing to the virtual address space
specified by adding the bytes defined by CONVERTSIZE to CONVERTSTART
minus one) when CONVERT(FROMGUARD) is requested.

Two contiguous guard areas will be consolidated into one contiguous guard
area whenever possible. For example, if the guard area that was defined when
the memory object was created is contiguous with a guard area created using
CONVERTSTART, then the two guard areas are combined into one.

CONVERTSTART is not permitted for high virtual common memory objects;
use MEMOBJSTART instead.

Specifying MEMOBJSTART will change the guard area only at the beginning or
the end of the memory object. Whether the guard area is at the beginning or
the end is specified by the GUARDLOC=[HIGH|LOW] parameter on the
IARV64 REQUEST=GETSTOR or REQUEST=GETCOMMON request.

IBM recommends that if CONVERTSTART is used to manage the guard areas
within a memory object that all REQUEST=CHANGEGUARD use
CONVERTSTART.

To code: Specify the RS-type address, or address in register (2) - (12), of an
eight-byte pointer field.

,CONVERTSIZE=convertsize
CONVERTSIZE and CONVERTSIZE64 are a set of mutually exclusive keys.
This set is required; only one key must be specified. A fullword integer input
parameter, that indicates the number of contiguous megabytes that should be
removed from the guard area (FROMGUARD) or that should be changed to
being part of the guard area (TOGUARD).

For CONVERT=TOGUARD and MEMOBJSTART, CONVERTSIZE or
CONVERTSIZE64 must not be larger than the number of usable pages in the
memory object to allow successful completion. For CONVERT=FROMGUARD,
CONVERTSIZE must not be larger than the number of remaining pages in the
default guard area of the memory object to allow successful completion.

To code: Specify the RS-type address, or address in register (2) - (12), of a
fullword field.

,CONVERTSIZE64=convertsize64
CONVERTSIZE64 and CONVERTSIZE are a set of mutually exclusive keys.
This set is required; only one key must be specified. A doubleword integer
input parameter, that indicates the number of contiguous megabytes that
should be removed from the guard area (FROMGUARD) or that should be
changed to being part of the guard area (TOGUARD).

For CONVERT=TOGUARD and MEMOBJSTART, CONVERTSIZE or
CONVERTSIZE64 must not be larger than the number of usable pages in the
memory object to allow successful completion. For CONVERT=FROMGUARD,
CONVERTSIZE must not be larger than the number of remaining pages in the
default guard area of the memory object to allow successful completion.

To code: Specify the RS-type address, or address in register (2) - (12), of a
doubleword field.

,COND=NO

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 403

|
|

|
|
|

,COND=YES
An optional input parameter that specifies whether the request is
unconditional or conditional. When you code COND=YES and there is
insufficient storage to satisfy the request, instead of the request being
abnormally ended the request will complete but a return code will be set to
indicate that the request could not be completed successfully. In all cases the
request will be abnormally ended for invalid requests, including violation of
environmental restrictions. The default is COND=NO.

,COND=NO
The request is unconditional. The request will be abnormally ended when
the request cannot be satisfied.

,COND=YES
The request is conditional. The request will not be abnormally ended when
a MEMLIMIT violation occurs.

,ALETVALUE=aletvalue
,ALETVALUE=0

An optional input parameter that indicates the ALET of the address space in
which the memory object resides.

The only supported values are 0 (primary) and 2 (home). The ALETVALUE
parameter can be used only by callers running in supervisor state or with PSW
key 0 - 7. The default is 0.

To code: Specify the RS-type address, or address in register (2) - (12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3, 4

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are

IARV64 macro

404 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– V64SHARED

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– V64SHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE
– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN
– V64COMMON

v 3, supports both the following parameters and parameters from versions 0,
1, 2:

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 405

– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameter and parameters from versions 0, 1,
2, 3:
– DMAPAGETABLE

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3, 4

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1) - (12).

,attr
An optional 1- to 60 character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

REQUEST=PROTECT option of IARV64
REQUEST=PROTECT requests that data within one or more memory objects be
made read-only.

IARV64 macro

406 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15.

The caller must have a PSW key of 0 or a PSW key that
matches the storage to be protected.

The caller must be running in supervisor state or with PSW
key 0-7 to use the ALETVALUE keyword.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts for 64-bit private.

Enabled or disabled for I/O and external interrupts for
64-bit common storage.

Locks: You may hold the local lock for the target address space. If
you hold the local lock, you may also hold the CMS lock.
For disabled callers, no spin locks higher than the RSM
locks can be held.

Control parameters: Control parameters must be in the primary address space
and can reside both below and above the bar.

Programming requirements
None

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 407

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax
The REQUEST=PROTECT option of the IARV64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64

� One or more blanks must follow IARV64.

REQUEST=PROTECT

,RANGLIST=ranglist ranglist: RS-type address or address in register (2) - (12).

,ALETVALUE=aletvalue aletvalue: RS-type address or address in register (2) - (12).

,ALETVALUE=0 Default: ALETVALUE=0

,NUMRANGE=numrange numrange: RS-type address or address in register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1

,AMOUNTSIZE=1MEG Default: AMOUNTSIZE=4K. AMOUNTSIZE=1MEG is the default when the
data to be acted on is from a fixed 1 MB-page frames request.
AMOUNTSIZE cannot be specified when the data to be acted on is from a
fixed 2 GB-page frames request.

,AMOUNTSIZE=4K

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

IARV64 macro

408 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,PLISTVER=0, 1, 2 , 3, 4, 5

,MF=S Default: MF=S

,MF=(L, list addr) list addr: RS-type address or register (1) - (12).

,MF=(L, list addr, attr)

,MF=(L ,list addr, 0D)

,MF=(E, list addr)

,MF=(E ,list addr, COMPLETE)

,MF=(M, list addr)

,MF=(M ,list addr, COMPLETE)

,MF=(M, list addr, NOCHECK)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=PROTECT
A required parameter. REQUEST=PROTECT specifies that a range of virtual
storage be made read-only.

Areas of the memory object that are in guard areas or hidden will not be
affected.

,RANGLIST=ranglist
A required input parameter. The range list consists of a number of entries (as
specified by NUMRANGE) where each entry is 16 bytes long. A description of
the fields in each entry follows:

VSA
Denotes the starting address of the data to be acted on.

The address specified must be within a created memory object returned by
GETSTOR or GETCOMMON.

The value must be on a segment (1M) boundary when either:
v PAGEFRAMESIZE=1MEG|1M is specified, or
v PAGEFRAMESIZE=MAX is specified and the address specified is backed

by fixed 1M page frames.

The value must be on a region (2G) boundary when PAGEFRAMESIZE=2G
is specified. Otherwise, the value must be on a page (4K) boundary.

Note: If the range includes addresses backed by pageable 1 MB-page
frames, specify a value on a physical segment boundary. Otherwise,
demotion of pageable 1 MB-page frames to pageable 4 KB-page frames
could occur.

The length of this field is 8 bytes.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 409

AMOUNT
Contains the number of 4K, 1M, or 2G pages to be acted on.

The number of 4K, 1M, or 2G pages specified starting with the specified
VSA must lie within a single memory object.

The length of this field is 8 bytes.

The amount contains the number of 1M pages to be acted on when the
specified VSA is backed by fixed large page frames (1M).

The amount contains the number of 2G pages to be acted on when the
specified VSA is backed by fixed 2G page frames (2G).

Note: If the range includes addresses backed by pageable 1M page frames,
specify a number of 4K pages in multiples of 256; otherwise, demotion of
pageable 1M page frames to pageable 4K page frames could occur.

,AMOUNTSIZE=4K
,AMOUNTSIZE=1MEG

An optional input parameter that specifies how the AMOUNT value specified
on the RANGLIST parameter is treated. The default value is
AMOUNTSIZE=4K.

When the data to be acted on is from a fixed 1M page frames request
(TYPE=FIXED and PAGEFRAMESIZE=1M is specified, or TYPE is not specified
and PAGEFRAMESIZE=1MEG is specified, or PAGEFRAMESIZE=MAX is
specified and the address specified is backed by fixed 1M page frames), the
default is AMOUNTSIZE=1MEG. Only AMOUNTSIZE=1MEG can be specified.

When the data to be acted on is from a fixed 2G page frames request
(TYPE=FIXED and PAGEFRAMESIZE=2G is specified), AMOUNTSIZE cannot
be specified. The AMOUNT value specified on the RANGLIST parameter is
treated as the number of 2G pages to be acted on.

4K The AMOUNT value specified on the RANGLIST parameter is the number
of 4K page frames to be acted on.

1MEG
The AMOUNT value specified on the RANGLIST parameter is the number
of 1M page frames to be acted on.

,ALETVALUE=aletvalue
,ALETVALUE=0

An optional input parameter that indicates the ALET of the address space in
which the virtual storage is to be protected.

The only supported values are 0 (primary) and 2 (home). The ALETVALUE
parameter can be used only by callers running in supervisor state or with PSW
key 0-7. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,NUMRANGE=numrange
,NUMRANGE=1

An optional input parameter that specifies the number of entries in the
supplied range list.

The value specified must be no greater than 16.

Default: 1

IARV64 macro

410 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3, 4, 5

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM suggests that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– GETSHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE
– ORDER
– OWNERASID

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 411

– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN
– V64COMMON

v 3, supports both the following parameters and parameters from versions 0,
1, 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameter and parameters from versions 0, 1,
2, 3:
– DMAPAGETABLE

v 5, supports both the following parameters and parameters from versions 0,
1, 2, 3, 4:
– UNITS
– UNITSIZE

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3, 4, or 5

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IARV64 macro

412 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IBM recommends that you use the modify and execute forms in the following
order:
v Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters,

including all required ones.
v Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to

change.
v Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

NOCHECK
This parameter specifies that the system is not to check for required
parameters and is not to supply defaults for omitted optional parameters.

REQUEST=UNPROTECT option of IARV64
REQUEST=UNPROTECT requests that data within one or more memory objects be
made modifiable.

The IARV64 REQUEST=UNPROTECT unprotects pages/segments within 64-Bit
Private or 64-Bit Common memory objects. 64-bit fixed 2 GB private memory
objects cannot be protected.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15.

The caller must have a PSW key of 0 or a PSW key that
matches the storage to be unprotected.

The caller must be running in supervisor state or with PSW
key 0-7 to use the ALETVALUE keyword.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts for 64-bit private.

Enabled or disabled for I/O and external interrupts for
64-bit common storage.

Locks: You may hold the local lock for the target address space. If
you hold the local lock, you may also hold the CMS lock.
For disabled callers no spin locks higher than the RSM locks
can be held.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 413

Environmental factor Requirement
Control parameters: Control parameters must be in the primary address space

and can reside both below and above the bar.

Programming requirements
None

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax
The REQUEST=UNPROTECT option of the IARV64 macro is written as follows:

Syntax Description

IARV64 macro

414 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64

� One or more blanks must follow IARV64.

REQUEST=UNPROTECT

,RANGLIST=ranglist ranglist: RS-type address or address in register (2) - (12).

,ALETVALUE=aletvalue aletvalue: RS-type address or address in register (2) - (12).

,ALETVALUE=0 Default: ALETVALUE=0

,NUMRANGE=numrange numrange: RS-type address or address in register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1

,AMOUNTSIZE=1MEG Default: AMOUNTSIZE=4K. AMOUNTSIZE=1MEG is the default when the
data to be acted on is from a fixed 1 MB-page frames request.
AMOUNTSIZE cannot be specified when the data to be acted on is from a
fixed 2 GB-page frames request.

,AMOUNTSIZE=4K

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3, 4, 5

,MF=S Default: MF=S

,MF=(L, list addr) list addr: RS-type address or register (1) - (12).

,MF=(L, list addr, attr)

,MF=(L, list addr, 0D)

,MF=(E, list addr)

,MF=(E, list addr, COMPLETE)

,MF=(M, list addr)

,MF=(M ,list addr, COMPLETE)

,MF=(M, list addr, NOCHECK)

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 415

Parameters
The parameters are explained as follows:

name
A required parameter. REQUEST=UNPROTECT specifies that a range of virtual
storage be made modifiable.

REQUEST=UNPROTECT
A required parameter. REQUEST=UNPROTECT specifies that a range of virtual
storage be made modifiable.

Areas of the memory object that are in guard areas or hidden will not be
affected.

,RANGLIST=ranglist
A required input parameter. The range list consists of a number of entries (as
specified by NUMRANGE) where each entry is 16 bytes long. A description of
the fields in each entry follows:

VSA
Denotes the starting address of the data to be acted on.

The address specified must be within a created memory object returned by
GETSTOR or GETCOMMON.

The value must be on a segment (1M) boundary when either:
v PAGEFRAMESIZE=1MEG|1M is specified, or
v PAGEFRAMESIZE=MAX is specified and the address specified is backed

by fixed 1M page frames.

The value must be on a region (2G) boundary when PAGEFRAMESIZE=2G
is specified. Otherwise, the value must be on a page (4K) boundary.

Note: If the range includes addresses backed by pageable 1 MB-page
frames, specify a value on a physical segment boundary. Otherwise,
demotion of pageable 1 MB-page frames to pageable 4 KB-page frames
could occur.

The length of this field is 8 bytes.

AMOUNT
Contains the number of 4K, 1M, or 2G pages to be acted on.

The number of 4K, 1M, or 2G pages specified starting with the specified
VSA must lie within a single memory object.

The length of this field is 8 bytes.

The amount contains the number of 1M pages to be acted on when the
specified VSA is backed by fixed large page frames (1M).

The amount contains the number of 2G pages to be acted on when the
specified VSA is backed by fixed 2G page frames (2G).

Note: If the range includes addresses backed by pageable 1M page frames,
specify a number of 4K pages in multiples of 256; otherwise, demotion of
pageable 1M page frames to pageable 4K page frames could occur.

,AMOUNTSIZE=4K

IARV64 macro

416 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,AMOUNTSIZE=1MEG
An optional input parameter that specifies how the AMOUNT value specified
on the RANGLIST parameter is treated. The default value is
AMOUNTSIZE=4K.

When the data to be acted on is from a fixed 1M page frames request
(TYPE=FIXED and PAGEFRAMESIZE=1M is specified, or TYPE is not specified
and PAGEFRAMESIZE=1MEG is specified, or PAGEFRAMESIZE=MAX is
specified and the address specified is backed by fixed 1M page frames), the
default is AMOUNTSIZE=1MEG. Only AMOUNTSIZE=1MEG can be specified.

When the data to be acted on is from a fixed 2G page frames request
(TYPE=FIXED and PAGEFRAMESIZE=2G is specified), AMOUNTSIZE cannot
be specified. The AMOUNT value specified on the RANGLIST parameter is
treated as the number of 2G pages to be acted on.

4K The AMOUNT value specified on the RANGLIST parameter is the number
of 4K page frames to be acted on.

1MEG
The AMOUNT value specified on the RANGLIST parameter is the number
of 1M page frames to be acted on.

,ALETVALUE=aletvalue
,ALETVALUE=0

An optional input parameter that indicates the ALET of the address space in
which the virtual storage is to be unprotected.

The only supported values are 0 (primary) and 2 (home). The ALETVALUE
parameter can be used only by callers running in supervisor state or with PSW
key 0-7. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,NUMRANGE=numrange
,NUMRANGE=1

An optional input parameter that specifies the number of entries in the
supplied range list.

The value specified must be no greater than 16. The default is 1.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3, 4, 5

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 417

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, you can always specify PLISTVER=MAX
on the list form of the macro. Specifying MAX ensures that the list-form
parameter list is always long enough to hold all the parameters you might
specify on the execute form, when both are assembled with the same level of
the system. In this way, MAX ensures that the parameter list does not
overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– V64SHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– GETCOMMON
– PAGEPROTECT
– PAGEUNPROTECT
– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE
– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN
– V64COMMON

v 3, supports both the following parameters and parameters from versions 0,
1, 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameter and parameters from versions 0, 1,
2, 3:

IARV64 macro

418 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

– DMAPAGETABLE
v 5, supports both the following parameters and parameters from versions 0,

1, 2, 3, 4:
– UNITS
– UNITSIZE

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3, 4, or 5

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

You can use the modify and execute forms in the following order:
v Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters,

including all required ones.
v Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to

change.
v Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 419

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

NOCHECK
This parameter specifies that the system is not to check for required
parameters and is not to supply defaults for omitted optional parameters.

REQUEST=LIST option of IARV64
REQUEST=LIST requests a list of objects be provided to the caller.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15.

The caller must be running in supervisor state or with PSW
key 0-7 to use the following parameters:
v GETSTOR

– KEY
– CONTROL=AUTH
– ALETVALUE
– PAGEFRAMESIZE=1M/MAX

v V64SHARED
v DETACH

– AFFINITY=SYSTEM
– OWNER=NO

v PAGEFIX
v PAGEUNFIX
v LIST
v SHAREMEMOBJ
v CHANGEACCESS

The caller must be running in supervisor state or with PSW
key 0-7 or have a PSW key that matches the storage key of
the memory object to be cleared by DISCARDDATA.

The caller must be running in supervisor state or with PSW
key 0-7 to DETACH a memory object owned by another
task.

Dispatchable unit mode: Task or SRB.
Cross memory mode: Any PASN, any HASN, any SASN.

Note: The problem state caller running in PSW key 8-15 can
use GETSTOR/DETACH only when the primary address
space is the home address space.

AMODE: 31- or 64-bit.
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: A local lock may be held, subject to the following limitation:

When a local lock is held for a requests (GETSTOR,
SHAREMEMOBJ, DETACH, or DISCARDDATA) for
non-shared memory objects, the lock must be for the
address space specified (or defaulted) by the input
ALETVALUE.

Control parameters: Control parameters must be in the primary address space
and can reside both below and above the bar.

IARV64 macro

420 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Programming requirements
None

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax
The REQUEST=LIST option of the IARV64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 421

Syntax Description

IARV64

� One or more blanks must follow IARV64.

REQUEST=LIST

,V64LISTPTR=v64listptr v64listptr: RS-type address or address in register (2) - (12).

,V64LISTLENGTH=v64listlength v64listlength: RS-type address or address in register (2) - (12).

,V64SHARED=NO Default: V64SHARED=NO

,V64SHARED=YES

,V64COMMON=NO Default: V64COMMON=NO

,V64COMMON=YES

,TRACKINFO=NO Default: TRACKINFO=NO

,TRACKINFO=YES

,V64SELECT=NO Default: V64SELECT=NO

,V64SELECT=YES

,USERTOKEN=usertoken Default: USERTOKEN=NO_USERTKN

,USERTOKEN=NO_USERTOKEN

,SVCDUMPRGN=YES Default: SVCDUMPRGN=YES

,SVCDUMPRGN=NO

,SVCDUMPRGN=ALL

,DUMP=ALL Default: DUMP=ALL

,DUMP=LIKECSA

,DUMP=LIKESQA

,DUMP=LIKERGN

,DUMPPROTOCOL=NO Default: DUMPPROTOCOL=NO

,ORDER=ASCENDING Default: ORDER=ASCENDING

,ORDER=DUMPPRIORITY

,DUMPPROTOCOL=YES

,OWNERCOM=ALL Default: OWNERCOM=ALL

,OWNERCOM=HOME

,OWNERCOM=PRIMARY

IARV64 macro

422 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,OWNERCOM=SYSTEM

,OWNERCOM=BYASID

,OWNERASID= ownerasid

,OWNERASID=ALL Default: OWNERASID=ALL

,PAGEFRAMESIZE=All Default: PAGEFRAMESIZE=All

,PAGEFRAMESIZE=4K

,PAGEFRAMESIZE=1MEG

,OWNERJOBNAME=ownerjobname ownerjobname: RS-type address or address in register (2) - (12).

,OWNERJOBNAME=All Default: OWNERJOBNAME=ALL

,ATTRIBUTE=DEFS Default: ATTRIBUTE=DEFS

,ATTRIBUTE=NOTOWNERGONE

,ATTRIBUTE=OWNERGONE

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3, 4, 5

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=LIST
A required parameter. REQUEST=LIST provides information about memory
objects.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 423

The information is returned in a work area that you specify, in a format
described in IAXV64WA. Information includes starting address, ending
address, storage key and flags indicating if the memory object is shared or if it
contains multiple guard areas.

The following information can be requested:
v Memory objects for the entire address space
v Memory objects in the entire address space that have been marked

SVCDUMPRGN=YES
v Memory objects in the entire address space that have a specific

SVCDUMPRGN attribute
v Memory objects in the entire address space that have a specific

PAGEFRAMESIZE attribute
v Shared memory objects for the entire system
v 64-bit common memory object for the entire system.

,V64LISTPTR=v64listptr
A required input parameter that contains the address that specifies the address
of the work area which contains the results of the list request. This work area
must be in fixed storage addressable from the address space for which the
LIST request is made, and must be initialized to zero by the caller.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,V64LISTLENGTH=v64listlength
A required input parameter that specifies the length of the work area which
contains the results of the list request. The work area must be at least 108 bytes
long when TRACKINFO=YES or 64 bytes long when TRACKINFO=NO.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,V64SHARED=NO
,V64SHARED=YES

An optional input parameter that specifies whether the list of memory objects
returned is for private memory objects, which the current primary space owns
as well as shared memory objects connected to the current primary address
space, or a list of all shared memory objects defined in the system through
GETSHARED. The default is V64SHARED=NO.

,V64SHARED=NO
The list of memory objects returned for the current primary address space
includes private memory objects that are defined for the private area
through an IARV64 GETSTOR and shared memory objects connected to the
current primary address space through an IARV64 SHAREMEMOBJ.

,V64SHARED=YES
The list is of shared memory objects defined for the system through
GETSHARED.

,V64COMMON=NO
,V64COMMON=YES

An optional parameter that specifies whether the list of memory object
returned is for the current primary address space, or a list of all 64-bit common
memory objects allocated in the system via an IARV64
REQUEST=GETCOMMON. The default is V64COMMON=NO.

IARV64 macro

424 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,V64COMMON=NO
The list of memory objects returned for the current primary address space
includes private memory objects (which are defined for the private area via
an IARV64 REQUEST=GETSTOR), shared memory objects (connected to
the current primary address space via an IARV64
REQUEST=SHAREMEMOBJ).

,V64COMMON=YES
The list of memory objects returned contains all 64-bit common memory
objects defined in the system via IARV64 REQUEST=GETCOMMON.

,V64SELECT=NO
,V64SELECT=YES

An optional parameter that specifies whether the list request is for all allocated
memory objects or for a subset of the allocated memory objects The default is
V64SELECT=NO.

,V64SELECT=NO
The request is for all allocated memory objects. No additional selection
criteria apply to the list of memory objects returned.

,V64SELECT=YES
The request is for a subset of the allocated memory objects. Only memory
objects that meet all the selection criteria is returned. If a selection criteria
keyword is not specified, its default will apply. If no memory object meets
the selection criteria, no object will be returned.

,TRACKINFO=NO
,TRACKINFO=YES

When V64COMMON=YES is specified, an optional parameter that specifies if
the common memory object tracking information should be returned. Default
is TRACKINFO=NO.

,TRACKINFO=NO
Common memory object tracking information will not be returned.

,TRACKINFO=YES
Common memory object tracking information will be returned. See
IAXV64WA for output format.

,USERTOKEN=NO_USERTKN
,USERTOKEN=xusertkn

When V64SELECT=YES is specified, an optional parameter that specifies
whether additional selection criteria based on user token is applied to the set
of memory object descriptions returned by the LIST request. The default is
NO_USERTKN.

,USERTOKEN=NO_USERTKN
The memory objects returned are not filtered based on USERTKN. All
memory objects, regardless of what the USERTKN specification was on the
IARV64 GETSTOR or IARV64 SHAREMEMOBJ request for
V64SHARED=NO or IARV64 GETSHARED request for V64SHARED=YES,
are included in the set of memory objects returned.

,USERTOKEN=xusertkn
When V64SHARED=NO is specified, memory objects in the current
primary address space that have a matching user token specified on the
IARV64 GETSTOR or IARV64 SHAREMEMOBJ request are included in the
set of memory objects returned. When V64SHARED=YES is specified,

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 425

shared memory objects defined in the system that have a matching user
token specified on the IARV64 GETSHARED request are included in the
set of memory objects returned.

,SVCDUMPRGN=YES
,SVCDUMPRGN=NO
,SVCDUMPRGN=ALL

When V64SELECT=YES is specified, an optional parameter that specifies
whether the memory object should be included within the set of memory
object descriptions returned by the LIST request. The default is
SVCDUMPRGN=YES. This keyword is ignored when V64SHARED=YES is
specified.

,SVCDUMPRGN=YES
The memory objects with the SVCDUMPRGN=YES attribute are included
in the set of memory objects returned.

,SVCDUMPRGN=NO
The memory objects with the SVCDUMPRGN=NO attribute are included
in the set of memory objects returned.

,SVCDUMPRGN=ALL
All memory objects are included in the set of memory objects returned
regardless if they have the SVCDUMPRGN=YES or SVCDUMPRGN=NO
attributes.

,DUMP=ALL
,DUMP=LIKECSA
,DUMP=LIKESQA
,DUMP=LIKERGN

,DUMPPROTOCOL=NO
,ORDER=ASCENDING
,ORDER=DUMPPRIORITY

,DUMPPROTOCOL=YES
When V64SELECT=YES is specified, an optional parameter that specifies
whether the memory object should be included within the set of memory
object descriptions returned by the LIST request.

,DUMP=ALL
All memory objects, (regardless of what the SVCDUMP specification was on
the IARV64 GETSTOR/GETCOMMON/SHAREMEMOBJ request) are
included in the set of memory objects returned.

,DUMP=LIKECSA
The 64-bit common memory objects that have the DUMP=LIKECSA attribute
specified or defaulted to on the IARV64 GETCOMMON request are included
in the set of memory objects returned.

,DUMP=LIKESQA
The 64-bit common memory objects that have the DUMP=LIKESQA attribute
specified or defaulted to on the IARV64 GETCOMMON request are included
in the set of memory objects returned.

,DUMP=LIKERGN
The 64-bit private or 64-bit shared memory objects that have the
DUMP=LIKERGN attribute specified or defaulted to on the IARV64
GETSTOR/SHAREMEMOBJ request are included in the set of memory objects
returned.

,DUMPPROTOCOL=NO

IARV64 macro

426 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,DUMPPROTOCOL=YES
An optional input parameter that specifies whether or not special selection
criteria should be applied to the set of memory object descriptions returned by
the LIST request. The DEFAULT is DUMPPROTOCOL=NO.

,DUMPPROTOCOL=NO
No additional selection criteria is applied.

,DUMPPROTOCOL=YES
When USERTOKEN=usertoken and SVCDUMPRGN=YES are specified,
memory objects are returned according to certain selection criteria.

,ORDER=ASCENDING
,ORDER=DUMPPRIORITY

When V64SELECT=YES and DUMPPROTOCOL=NO is specified, an optional
parameter that specifies the order in which the memory objects matching the
selection criteria on the LIST request will be returned. The default is
ORDER=ASCENDING.

,ORDER=ASCENDING
Memory objects that match the selection criteria are returned in ascending
start address order.

,ORDER=DUMPPRIORITY
Memory objects that match the selection criteria are returned in dump
priority order where memory objects with higher priority are listed before
memory objects with lower priority. Within a dump priority level, memory
objects will be listed based on ascending start address.
ORDER=DUMPPRIORITY cannot be specified with V64SHARED=YES.
ORDER=DUMPPRIORITY also can not be specified when
SVCDUMPRGN=NO is specified.

,OWNERCOM=ALL
,OWNERCOM=HOME
,OWNERCOM=PRIMARY
,OWNERCOM=SYSTEM
,OWNERCOM=BYASID

An optional keyword input that specifies the owning entity of the 64-bit
common memory objects to be included in the set returned.

,OWNERCOM=ALL
The 64-bit common memory objects belonging to all ASIDs are included in the
set returned.

,OWNERCOM=HOME
The 64-bit common memory objects belonging to the HOME asid are included
in the set returned.

,OWNERCOM=PRIMARY
The 64-bit common memory objects belonging to the PRIMARY asid are
included in the set returned.

,OWNERCOM=SYSTEM
The 64-bit common memory objects belonging to the SYSTEM (not associated
with an address space) are included in the set returned.

,OWNERCOM=BYASID
The 64-bit common memory objects belonging to a specific ASID are included
in the set returned.

,OWNERASID=ownerasid

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 427

,OWNERASID=ALL
The name of an optional halfword integer input specifying the owning
ASID of the 64-bit common memory objects to be included in the set
returned.

,PAGEFRAMESIZE=ALL
,PAGEFRAMESIZE=4K
,PAGEFRAMESIZE=1MEG

An optional input parameter that specifies which memory objects should be
included within the set of memory object descriptions returned by the LIST
request. The DEFAULT is PAGEFRAMESIZE=ALL

,PAGEFRAMESIZE=ALL
All memory objects are included in the set of memory objects returned
regardless of the page frame size.

,PAGEFRAMESIZE=4K
The memory objects which were backed by 4 KB frames are included in
the set of memory objects returned.

,PAGEFRAMESIZE=1MEG
The memory objects which were backed by 1MEG frames are included in
the set of memory objects returned.

,OWNERJOBNAME=ownerjobname
,OWNERJOBNAME=ALL

When V64SELECT=YES and V64COMMON=YES are specified, an optional
input parameter specifying the owning jobname of the 64-bit common memory
objects to be included in the set returned by the LIST request. The default is
ALL.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,ATTRIBUTE=DEFS
,ATTRIBUTE=NOTOWNERGONE
,ATTRIBUTE=OWNERGONE

When V64SELECT=YES is specified, an optional parameter that specifies which
memory objects should be included within the set of memory object
descriptions returned by the LIST request. The default is ATTRIBUTE=DEFS.

,ATTRIBUTE=DEFS
The following ATTRIBUTE options are used to determine which memory
objects should be included within the set of memory object descriptions
returned by the LIST request: NOTOWNERGONE, OWNERGONE.

,ATTRIBUTE=NOTOWNERGONE
Include memory objects where the owner has not ended.

,ATTRIBUTE=OWNERGONE
Include memory objects where the owner has ended.

One or more values may be specified for the ATTRIBUTE parameter. If more
than one value is specified, group the values within parentheses.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

IARV64 macro

428 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3, 4, 5g

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– V64SHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE
– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 429

– V64COMMON
v 3, supports both the following parameters and parameters from versions 0,

1, 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameter and parameters from versions 0, 1,
2, 3:
– DMAPAGETABLE

v 5, supports both the following parameters and parameters from versions 0,
1, 2, 3, 4:
– UNITS
– UNITSIZE

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3, 4, 5

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

IARV64 macro

430 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

REQUEST=DETACH option of IARV64
REQUEST=DETACH allows you to free one or more memory objects.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15.

The caller must be running in supervisor state or with PSW
key 0-7 to use the following parameters:

v AFFINITY=SYSTEM

v OWNER=NO
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN

Note: Note that problem state caller running in PSW key
8-15 can use DETACH only when the primary address space
is the home address space.

AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: A local lock may be held, subject to the following limitation:

When a local lock is held for a request for non-shared
memory objects, the lock must be for the address space
specified (or defaulted) by the input ALETVALUE.

Control parameters: Control parameters must be in the primary address space
and can reside both below and above the bar.

Programming requirements
None

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 431

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax
The REQUEST=DETACH option of the IARV64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64

� One or more blanks must follow IARV64.

REQUEST=DETACH

,MATCH=SINGLE Default: MATCH=SINGLE

,MATCH=MOTOKEN

,MATCH=USERTOKEN

,MEMOBJSTART=memobjstart memobjstart: RS-type address or address in register (2) - (12).

,MOTKN=motkn motkn: RS-type address or address in register (2) – (12).

,USERTKN=usertkn usertkn: RS-type address or address in register (2) - (12).

,USERTKN=NO_USERTKN Default: USERTKN=NO_USERTKN

,MOTKNCREATOR=USER Default: MOTKNCREATOR=USER

,MOTKNCREATOR=SYSTEM

IARV64 macro

432 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,AFFINITY=LOCAL Default: AFFINITY=LOCAL

,AFFINITY=SYSTEM

,OWNER=YES Default: OWNER=YES

,OWNER=NO

,TTOKEN=ttoken ttoken: RS-type address or address in register (2) - (12).

,TTOKEN=NO_TTOKEN Default: TTOKEN=NO_TTOKEN

,V64COMMON=NO Default: V64COMMON=NO

,V64COMMON=YES

,ALETVALUE=aletvalue aletvalue: RS-type address or address in register (2) - (12).

,ALETVALUE=0 Default: ALETVALUE=0

,COND=NO Default: COND=NO

,COND=YES

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3 or 4

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 433

REQUEST=DETACH
A required parameter. REQUEST=DETACH frees one or more memory objects.
Problem state programs running in PSW key (8-15) can use this function only
when the primary address space is the home address space, and can affect only
a memory object that is created using GETSTOR CONTROL=UNAUTH. If a
problem state program running in PSW key (8–15) tries to free a memory
object created with CONTROL=AUTH, the system does not free the memory
object and an ABEND will be issued.

A memory object can be affected by DETACH when MATCH=SINGLE is
specified without MOTKN/USERTKN. Other invocations of DETACH will
affect nonshared memory objects only when a matching user token is passed.

A shared memory object can be affected by DETACH only when a matching
user token is passed.

When DETACH MATCH=SINGLE AFFINITY=LOCAL USERTKN is specified
against a shared memory object, the shared interest will be removed from the
address space designated by ALETVALUE provided the usertoken passed still
represents current shared interest by the space.
1. If this address space has no further shared interest in the memory object,

then DETACH will also remove addressability for the address space
identified by the input ALETVALUE.

2. When the last address space has surrendered its use of a given shared
memory object and the system interest has been removed (through
DETACH AFFINITY=SYSTEM) the memory object will be freed.

When DETACH MATCH=USERTOKEN AFFINITY=LOCAL is specified and
the input user token matches the usertoken provided for a given memory
object created through GETSTOR MOTKN, that memory object is freed. If the
memory object was created through GETSHARED and the input user token
represents current shared interest by the address space, then that interest will
be removed. The same two observations as in the prior list apply.

When DETACH MATCH=USERTOKEN AFFINITY=SYSTEM is specified, only
shared memory objects are affected. When the input user token matches the
system interest, the system interest will be removed. If there is no remaining
local interest, then the shared memory object is freed.

All I/O into each memory object specified must be complete before the
DETACH is requested. If the DETACH service finds a PAGEFIXed page in the
memory object, the memory object will not be freed, but any prior pages will
have indeterminate data and the caller will be abnormally ended.

,MATCH=SINGLE
,MATCH=MOTOKEN
,MATCH=USERTOKEN

An optional parameter that indicates which memory objects are to be freed.
The default is MATCH=SINGLE.

,MATCH=SINGLE
Specifies that the input contains MEMOBJSTART for a single memory
object.

,MATCH=MOTOKEN
Specifies that the input contains a memory object token that was passed to
GETSTOR, GETSHARED or SHAREMEMOBJ. Memory objects not
associated with a memory object token are not affected. Such objects would
have to have been created using GETSTOR without MOTKN/USERTKN. If
MATCH=MOTOKEN or MATCH =USERTOKEN, COND=YES, and no

IARV64 macro

434 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

matching memory object token exists, the system returns a return code
instead of abnormally ending the caller.

For nonshared memory objects, all memory objects associated with this
memory object token are freed unless it is a problem state program with
PSW key 8-15 trying to free a memory object created with
CONTROL=AUTH.

For shared memory objects, when AFFINITY=LOCAL is given, the shared
interest in memory objects associated with this memory object token is to
be removed (for the ALET specified through ALETVALUE). If a given
shared memory object no longer has outstanding shared interest then it
will be freed.

For shared memory objects, when AFFINITY=SYSTEM is given, the system
interest in memory objects associated with this memory object token is to
be freed. If a specified shared memory object no longer has outstanding
shared interest then it will be freed.

If the system encounters an error in processing a qualifying memory object,
for example, an unexpected pagefixed page, then the processing ends. The
system does not process that page or any further pages or memory objects
and abnormally ends the caller.

,MATCH=USERTOKEN
This is a synonym for MATCH=MOTOKEN.

,MEMOBJSTART=memobjstart
When MATCH=SINGLE is specified, a required input parameter that contains
the address of the first byte in the memory object.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,MOTKN=motokn
A optional input parameter that identifies the memory object token to uniquely
identify the memory object, as previously passed to GETSTOR, GETSHARED
or SHAREMEMOBJ, or the token that was generated by the system on a
GETCOMMON or GETSTOR request.

Each shared memory object can be associated with multiple memory object
tokens. For AFFINITY=LOCAL, the shared interest in a shared memory object
associated with this memory object token is to be removed for the address
space. For AFFINITY=SYSTEM, the shared interest created by GETSHARED is
to be removed or the 64-bit common memory object is to be freed. For either
specification of AFFINITY, when a given shared memory object no longer has
outstanding shared interest, it is freed.

When the memory object is not associated with the input token value, it is not
processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field, or specify a literal decimal value.

,USERTKN=usertkn
,USERTKN=NO_USERTKN

A parameter that is similar to MOTKN. Unlike MOTKN, a USERTKN is always
presumed to be user-created. The default is NO_USERTKN. It is suggested that
you use MOTKN rather than USERTKN.
MOTKN=xxx,MOTKNCREATOR=USER is equivalent to USERTKN=xxx.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 435

The default can be used only for memory objects created by GETSTOR. When
the memory object is created by GETSHARED, it is necessary to specify the
memory object token to uniquely identify which shared interest is to be freed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field, or specify a literal decimal value.

,MOTKNCREATOR=USER
,MOTKNCREATOR=SYSTEM

When MOTKN=motokn is specified, an optional parameter that indicates who
created the memory object token.

,MOTKNCREATOR=USER
The memory object token is user-created.

,MOTKNCREATOR=SYSTEM
The memory object token is system-created.

The default is MOTKNCREATOR=USER.

,AFFINITY=LOCAL
,AFFINITY=SYSTEM

An optional input parameter that identifies whether local or system affinity for
the memory object will be affected. The default is AFFINITY=LOCAL.

,AFFINITY=LOCAL
Local affinity to the memory object is to be affected, the interest in the
memory object defined by the input ALETVALUE and memory object
token. Nonshared memory objects are affected by AFFINITY=LOCAL.

Shared memory objects for which an appropriate SHAREMEMOBJ has
been done by the address space defined by the input ALETVALUE will
also by affected by AFFINITY=LOCAL.

64-Bit Common memory objects are not affected by AFFINITY=LOCAL.

AFFINITY=SYSTEM
System affinity to the shared or 64-bit common memory object will be
affected.

AFFINITY=SYSTEM can be used only by callers running in supervisor
state of with PSW key 0–7.

,OWNER=YES
,OWNER=NO

When AFFINITY=LOCAL is specified, an optional keyword input that specifies
whether the system will check if the ttoken provided or the task of the caller
matches the ttoken associated with the memory object when it was created
(only relevant for memory objects created through GETSTOR not
GETSHARED). The default is OWNER=YES.

,OWNER=YES
The task which owns the memory object must match the current task or
the ttoken provided.

OWNER=NO
The task which is freeing the memory object does not have to be the owner
of the memory object. NO can be used only by programs running in
supervisor state or with PSW key 0-7.

,TTOKEN=ttoken

IARV64 macro

436 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,TTOKEN=NO_TTOKEN
When OWNER=YES and AFFINITY=LOCAL are specified, an optional input
parameter that identifies the task that owns the memory object. The TTOKEN
is returned by the TCBTOKEN macro.

If TTOKEN is not specified, the task issuing the DETACH request must be the
owner of the memory object.

The task identified by the TTOKEN must be in the address space specified or
defaulted by the ALETVALUE keyword.

When the TTOKEN parameter is used by problem state programs with PSW
key 8-15, the target task must represent the calling task OR the jobstep task for
the calling task OR the mother task. The mother task may not be given
however when the calling task is itself a jobstep task.

If the TTOKEN parameter is not specified, and the caller is a TCB, the
currently dispatched task must be the owner of the memory object. When
OWNER=YES is specified by an SRB, the caller will be abnormally ended if the
TTOKEN value is not supplied. The default is NO_TTOKEN.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,V64COMMON=NO
,V64COMMON=YES

When AFFINITY=SYSTEM is specified, an optional input parameter that
indicates whether this is memory object is a 64-bit common memory object.
The default is V64COMMON=NO.

,V64COMMON=NO
This is not a 64-bit common memory object.

,V64COMMON=YES
This is a 64-bit common memory object.

,ALETVALUE=aletvalue
,ALETVALUE=0

An optional input parameter that indicates the ALET of the address space of
the memory object to be freed.

The only supported values are 0 (primary) and 2 (home). The ALETVALUE
parameter can be used only by programs running in supervisor state or with
PSW key 0-7. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,COND=NO
,COND=YES

An optional keyword input that specifies whether the request is unconditional
or conditional. When you code COND=YES and there is insufficient storage to
satisfy the request, instead of the request being abnormally ended the request
will complete but a return code will be set to indicate that the request could
not be completed successfully. In all cases the request will be abnormally
ended for invalid requests, including violation of environmental restrictions.
The default is COND=NO.

,COND=NO
The request is unconditional. The request will be abnormally ended when
the request cannot be satisfied.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 437

,COND=YES
The request is conditional. The request will not be abnormally ended for
resource unavailability.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify register 15, the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
register (15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3 or 4

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– V64SHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT

IARV64 macro

438 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

– OPTIONVALUE
– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN
– V64COMMON

v 3, supports both the following parameters and parameters from versions 0,
1, 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameters and parameters from versions 0,
1, 2, 3:
– DMAPAGETABLE

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3 or 4

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 439

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

REQUEST=GETSHARED option of IARV64
REQUEST=GETSHARED creates a memory object that can be shared across
multiple address spaces.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: The caller must be running in supervisor state or with PSW

key 0-7 to use the following parameters:
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space

and can reside both below and above the bar.

Programming requirements
None

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

IARV64 macro

440 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax
The REQUEST=GETSHARED option of the IARV64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64

� One or more blanks must follow IARV64.

REQUEST=GETSHARED

,COND=NO Default: COND=NO

,COND=YES

,SEGMENTS=segments segments: RS-type address or address in register (2) - (12).

,PAGEFRAMESIZE=4K Default: PAGEFRAMESIZE=4K

,PAGEFRAMESIZE=PAGEABLE1MEG

,KEY=key key: RS-type address or address in register (2) - (12).

,KEY=CALLERKEY Default: KEY=CALLERKEY

,FPROT=YES Default: FPROT=YES

,FPROT=NO

,USERTKN=usertkn usertkn: RS-type address or address in register (2) - (12).

,CHANGEACCESS=LOCAL Default: CHANGEACCESS=LOCAL

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 441

Syntax Description

,CHANGEACCESS=GLOBAL

,ALETVALUE=aletvalue aletvalue: RS-type address or address in register (2) – (12).

,ALETVALUE=0 Default: ALETVALUE=0

,ORIGIN=origin origin: RS-type address or address in register (2) - (12).

,SADMP=DEFAULT Default: SADMP=DEFAULT

,SADMP=YES

,SADMP=NO

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3 or 4

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=GETSHARED
REQUEST=GETSHARED requests that a memory object be created. The
memory object is allowed to be shared upon return (through
SHAREMEMOBJ). Successful completion of this service creates system interest
in the memory object, which must be removed (through DETACH
AFFINITY=SYSTEM) before the memory object is freed. Addressability to the
memory object is not provided by GETSHARED. Instead, use SHAREMEMOBJ
to enable the virtual storage to be referenced. Initial access to the memory
object is read/write. A memory object created by GETSHARED is not eligible
for PAGEFIX or PAGEUNFIX.

IARV64 macro

442 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

||

||

||

|
|

,COND=NO
,COND=YES

An optional keyword input that specifies whether the request is unconditional
or conditional. When you code COND=YES and there is insufficient storage to
satisfy the request, instead of the request being abnormally ended the request
will complete but a return code will be set to indicate that the request could
not be completed successfully. In all cases the request will be abnormally
ended for invalid requests, including violation of environmental restrictions.
The default is COND=NO.

,COND=NO
The request is unconditional. The request will be abnormally ended when
the request cannot be satisfied.

,COND=YES
The request is conditional. The request will not be abnormally ended for
resource unavailability.

,SEGMENTS=segments
A required input parameter that specifies the size of storage requested in
megabytes. This must be a non-zero value.

The amount of storage requested is not charged against the MEMLIMIT.

To code: Specify the RS-type address, or address in register (2) - (12), of a
required doubleword field.

,PAGEFRAMESIZE=4K
,PAGEFRAMESIZE=PAGEABLE1MEG

An optional input parameter that specifies the size of the page frames used to
back the virtual storage mapped by the allocated memory object. The default is
PAGEFRAMESIZE=4K.

,PAGEFRAMESIZE=4K
The memory object should be backed by 4 kilobyte (4K) page frames.

,PAGEFRAMESIZE=PAGEABLE1MEG
The memory object should be backed by 1 megabyte page frames. If 1
megabyte page frames are not supported or not available, the system will
attempt to back the memory object with 4K page frames. Note that you
cannot specify CHANGEACCESS=LOCAL with this page frame size.

,KEY=key
,KEY=CALLERKEY

An optional input parameter that specifies the storage key to be assigned to
the memory object. The key must be in bits 0 - 3 of the specified byte. Bits 4 - 7
are ignored.

If the key is not specified, the storage key of the memory object is the same as
the caller's PSW key. The default is KEY=CALLERKEY.

To code: Specify the RS-type address, or address in register (2) - (12), of a
one-byte field.

,FPROT=YES
,FPROT=NO

An optional parameter that specifies whether the memory object should be
fetch protected. The default is FPROT=YES.

,FPROT=YES
The entire memory object will be fetch protected. A program must have a

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 443

PSW key that matches the storage key of the memory object (or have PSW
key 0) to reference data in the memory object.

,FPROT=NO
The memory object will not be fetch protected.

,USERTKN=usertkn
This parameter is the name (RS-type), or address in register (2) - (12), of a
required doubleword input that identifies the user token to be associated with
the shared memory object. This can be used on a later DETACH invocation to
affect all memory objects associated with this value. A single shared memory
object may be associated with multiple user tokens via GETSHARED and
SHAREMEMOBJ.

For authorized callers, bits 0 - 31 of the 64-bit user token must not all be zero;
for non-authorized callers, these bits must all be zero.

Note: The scope of a user token value is the entire z/OS image. It can be
associated with shared, common, or private memory objects.

,CHANGEACCESS=LOCAL
,CHANGEACCESS=GLOBAL

An optional parameter that specifies whether the subsequent
CHANGEACCESS requests are treated as local or global. The default is
CHANGEACCESS=LOCAL.

,CHANGEACCESS=LOCAL
The CHANGEACCESS for this memory object will have local scope.
Subsequent CHANGEACCESS requests will change access only for the
address space specified by CHANGEACCESS. Note that you cannot
specify PAGEFRAMESIZE=PAGEABLE1MEG with this scope.

,CHANGEACCESS=GLOBAL
The CHANGEACCESS for this memory object will have global scope.
Subsequent CHANGEACCESS requests will change access for all address
spaces sharing the memory object and any new address spaces that will
subsequently share it.

Note: Use of GLOBAL may reduce system resources needed to manage the
memory object and is encouraged when all spaces will be using the same
view.

,ALETVALUE=aletvalue
,ALETVALUE=0

This parameter is the name of an optional fullword integer input that indicates
the ALET of the address space which will be used to create the memory object.

The only supported values are 0 (primary) and 2 (home). The default value is
0.

,ORIGIN=origin
A required output parameter that contains the lowest address of the memory
object.

To code: Specify the RS-type address, or address in register (2) - (12), of an
eight-byte pointer field.

,SADMP=DEFAULT
,SADMP=YES

IARV64 macro

444 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|

|
|

|
|

,SADMP=NO
An optional keyword input that specifies whether the memory object is to be
captured in a stand-alone dump.

SADMP=DEFAULT
When PAGEFRAMESIZE is not 2G, the memory object should be captured
in a stand-alone dump.

When PAGEFRAMESIZE is 2G, the memory object should not be captured
in a stand-alone dump unless explicitly requested by the stand-alone dump
program.

SADMP=YES
The memory object should be captured in a stand-alone dump.

SADMP=NO
The memory object should not be captured in a stand-alone dump unless
explicitly requested by the stand-alone dump program.

Default: SADMP=DEFAULT

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3 or 4

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 445

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

– GUARDSIZE64
– V64SHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE
– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN
– V64COMMON

v 3, supports both the following parameters and parameters from versions 0,
1, 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameter and parameters from versions 0, 1,
2, 3:
– DMAPAGETABLE

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3 or 4

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

IARV64 macro

446 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1) - (12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

REQUEST=SHAREMEMOBJ option of IARV64
REQUEST=SHAREMEMOBJ requests that the address space be given access to one
or more specified shared memory objects.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: The caller must be running in supervisor state or with PSW

key 0-7.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: When a local lock is held for a request the lock must be for

the address space specified (or defaulted) by the input
ALETVALUE.

Control parameters: Control parameters must be in the primary address space
and can reside both below and above the bar.

Programming requirements
None.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 447

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax
The REQUEST=SHAREMEMOBJ option of the IARV64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64

� One or more blanks must follow IARV64.

REQUEST=SHAREMEMOBJ

,USERTKN=usertkn usertkn: RS-type address or address in register (2) - (12).

,RANGLIST=ranglist ranglist: RS-type address or address in register (2) - (12).

IARV64 macro

448 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,NUMRANGE=numrange numrange: RS-type address or address in register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1

,ALETVALUE=aletvalue aletvalue: RS-type address or address in register (2) - (12).

,ALETVALUE=0 Default: ALETVALUE=0

,SVCDUMPRGN=YES Default: SVCDUMPRGN=YES

,DUMPPRIORITY=dumppriority

,SVCDUMPRGN=NO

,COND=NO Default: COND=NO

,COND=YES

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3 or 4

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=SHAREMEMOBJ
REQUEST=SHAREMEMOBJ requests that the caller wants to be given shared
access to the specified memory object. The memory object specified must be a
SHARED memory object, such as the result of a GETSHARED invocation.

,USERTKN=usertkn
A required doubleword input parameter that identifies the user token to be

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 449

associated with the memory object. This can be used on a later DETACH
request to free all memory objects associated with this value.

To avoid inadvertent collisions in the values specified, the left word (bits 0-31)
should represent an address of some storage related to the caller. The system
enforces the rule that the left word is non-zero for authorized callers. The right
word should represent the virtual address of some storage related to the caller,
which could be a control block address, an entry point address, etc.; the choice
of which to use is made by the application.

Note: The scope of a user token value is the entire z/OS image. It can be
associated with shared, common, or private memory objects.

To code: Specify the RS-type address, or address in register (2)-(12), of a
required doubleword field that identifies the user token to be associated with
the shared memory object.

,RANGLIST=ranglist
A required input parameter. The range list consists of a number of entries (as
specified by NUMRANGE) where each entry is 16 bytes long. A description of
the fields in each entry follows:

VSA
VSA denotes the starting address of the data to be acted on. The virtual
address must be within a memory object returned by GETSHARED (not
GETSTOR or GETCOMMON).

The length of this field is 8 bytes.

RESERVED
Reserved for future use, must be in binary zeros.

The length of this field is 8 bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,NUMRANGE=numrange
,NUMRANGE=1

An optional input parameter that specifies the number of entries in the
supplied range list. The value specified must be no greater than 16. The default
is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,ALETVALUE=aletvalue
,ALETVALUE=0

An optional input parameter that indicates the ALET of the address space that
will be given access to the shared memory object.

The only supported values are 0 (primary) and 2 (home). The ALETVALUE
parameter can be used only by callers running in supervisor state or with PSW
key 0-7. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,SVCDUMPRGN=YES

IARV64 macro

450 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|

,SVCDUMPRGN=NO
An optional parameter that specifies whether the memory object should be
included in an SVC dump when region is requested. The default is
SVCDUMPRGN=YES.

,SVCDUMPRGN=YES
The memory object should be included in an SVC dump when RGN is
specified on SDATA.

,DUMPPRIORITY=dumppriority
The name of an optional one-byte integer input parameter that
specifies the dump priority of the memory object. This must be a
non-zero value in the range of 1-99, with 1 being the highest priority
and 99 being the lowest. The default value is 99.

,SVCDUMPRGN=NO
The memory object should not be included in an SVC dump when RGN is
specified on SDATA.

,COND=NO
,COND=YES

An optional keyword input that specifies whether the request is unconditional
or conditional. When you code COND=YES and there is insufficient storage to
satisfy the request, instead of the request being abnormally ended the request
will complete but a return code will be set to indicate that the request could
not be completed successfully. In all cases the request will be abnormally
ended for invalid requests, including violation of environmental restrictions.
The default is COND=NO.

,COND=NO
The request is unconditional. The request will be abnormally ended when
the request cannot be satisfied.

,COND=YES
The request is conditional. The request will not be abnormally ended for
resource unavailability.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3 or 4

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 451

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– V64SHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE
– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN
– V64COMMON

v 3, supports both the following parameters and parameters from versions 0,
1, 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameter and parameters from versions 0, 1,
2, 3:
– DMAPAGETABLE

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3 or 4

,MF=S

IARV64 macro

452 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

REQUEST=CHANGEACCESS option of IARV64
REQUEST=CHANGEACCESS requests that the view type for segments within the
specified 64-bit shared memory objects can be changed.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: The caller must be running in supervisor state or with PSW

key 0-7.
Dispatchable unit mode: Task or SRB.
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 31- or 64-bit.
ASC mode: Primary or access register (AR).
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space

and can reside both below and above the bar.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 453

Programming requirements
None.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax
The REQUEST=CHANGEACCESS option of the IARV64 macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64 macro

454 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

IARV64

� One or more blanks must follow IARV64.

REQUEST=CHANGEACCESS

,VIEW=READONLY Default: VIEW=READONLY

,VIEW=SHAREDWRITE

,VIEW=HIDDEN

,RANGLIST=ranglist ranglist: RS-type address or address in register (2) - (12).

,NUMRANGE=numrange numrange: RS-type address or address in register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1

,ALETVALUE=aletvalue aletvalue: RS-type address or address in register (2) - (12).

,ALETVALUE=0 Default: ALETVALUE=0

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3 or 4

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

IARV64 REQUEST=CHANGEACCESS requests that the view type for segments
within the specified 64-bit shared memory objects can be changed.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 455

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=CHANGEACCESS
REQUEST=CHANGEACCESS requests that the type of access to the specified
virtual storage be changed. For 64-bit shared memory objects the scope of the
change is determined by the choice of LOCAL versus GLOBAL on the IARV64
GETSHARED CHANGEACCESS keyword.

For 64-bit shared memory objects when CHANGEACCESS=LOCAL was
specified or defaulted on the REQUEST=GETSHARED, only the address space
specified by the ALET is affected.

For 64-bit shared memory objects when the CHANGEACCESS=GLOBAL is
specified, all address spaces currently sharing the memory object are affected.
Subsequent IARV64 SHAREMEMOBJ requests for this memory object will also
be affected by this CHANGEACCESS when CHANGEACCESS=GLOBAL is
specified (until the next CHANGEACCESS invocation).

The memory object specified must be a 64-bit shared memory object. For
example, it is the result of a GETSHARED invocation

CHANGEACCESS requests for memory objects that are
CHANGEACCESS=LOCAL require that the target space have interest in the
shared memory object. For example, a SHAREMEMOBJ for the target space
must have been done before the CHANGEACCESS request. Memory objects
with CHANGEACCESS=GLOBAL support CHANGEACCESS requests without
prior SHAREMEMOBJ requests.

,VIEW=READONLY
,VIEW=SHAREDWRITE
,VIEW=HIDDEN

A required input parameter that indicates the accessing mode on the area.

,VIEW=READONLY
This parameter specifies that the area can only be used to read data. Any
attempt to alter data by writing onto the area will result in a program
check.

,VIEW=SHAREDWRITE
This parameter specifies that the area can be used to read or update data.

,VIEW=HIDDEN
This parameter specifies that the data within the area cannot be accessed
until its view type is changed to READONLY or SHAREDWRITE. Any
attempt to access a hidden area will result in a program check.

,RANGLIST=ranglist
A required input parameter that contains the address of the ranglist. The range
list consists of a number of entries (as specified by NUMRANGE) where each
entry is 16 bytes long. Each range list entry contains the following fields:

VSA
VSA denotes the starting virtual address of the data to be acted on. The
virtual address specified must be within a memory object returned by
GETSHARED (not GETSTOR or GETCOMMON). The value must always
be on a segment boundary.

NUMSEGMENTS
NUMSEGMENTS contains the number of segments (megabytes) in the

IARV64 macro

456 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

area. The number of segments specified starting with the specified VSA
must lie within a single memory object. The length of this field is 8 bytes.
A value of 0 is valid for NUMSEGMENTS; it has no special meaning and
is treated literally.

To code: Specify the RS-type address, or address in register (2) - (12), of an
eight-byte pointer field.

,NUMRANGE=numrange
,NUMRANGE=1

An optional input parameter that specifies the number of entries in the
supplied range list.

The value specified must be no greater than 16. The default is 1.

To code: Specify the RS-type address, or address in register (2) - (12), of a
fullword field.

,ALETVALUE=aletvalue
,ALETVALUE=0

An optional input parameter that indicates the ALET of the address space
sharing a memory object that will change access to the memory object.

The only supported values are 0 (primary) and 2 (home).

To code: Specify the RS-type address, or address in register (2) - (12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3 or 4

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 457

|
|

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– V64SHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE
– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN
– V64COMMON

v 3, supports both the following parameters and parameters from versions 0,
1, 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameter and parameters from versions 0, 1,
2, 3:
– DMAPAGETABLE

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3 or 4

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

IARV64 macro

458 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

REQUEST=GETCOMMON option of IARV64
Use REQUEST=GETCOMMON to create a 64-bit common memory object.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: The caller must be running in supervisor state and with

PSW key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts Callers

that specify PAGEFRAMESIZE=1M or
PAGEFRAMESIZE=MAX must be enabled

Locks: For enabled callers no requirement. For disabled callers no
spin locks higher than the RSM locks can be held

Control parameters: Control parameters must be in the primary address space
and can reside both below and above the bar.

Programming requirements
None.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 459

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The REQUEST=GETCOMMON option of the IARV64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64

� One or more blanks must follow IARV64.

REQUEST=GETCOMMON

IARV64 macro

460 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,COND=NO Default: COND=NO

,COND=YES

,SEGMENTS=segments segments: RS-type address or address in register (2) - (12).

,PAGEFRAMESIZE=4K Default: PAGEFRAMESIZE=4K

,PAGEFRAMESIZE=1MEG

,PAGEFRAMESIZE=MAX

,PAGEFRAMESIZE=PAGEABLE1MEG

,PAGEFRAMESIZE=DREF1MEG

,TYPE=PAGEABLE Default: TYPE=PAGEABLE when one of the following is
specified:

v PAGEFRAMESIZE=PAGEABLE1MEG

v PAGEFRAMESIZE=4K

v PAGEFRAMESIZE=MAX and the memory object is
backed with 4 KB-page frames.

When PAGEFRAMESIZE=DREF1MEG is specified, the
default value is TYPE=DREF. If
PAGEFRAMESIZE=1MEG or PAGEFRAMESIZE=MAX is
specified and the memory object is backed with 1
MB-page frames, the 1 MB-pages backing this memory
object are fixed.

,TYPE=DREF

,UNITS=units units: Size of the memory object, which is the number of
units specified by UNITSIZE.

,UNITSIZE=1M Specifies a 1 MB unit size.

,PAGEFRAMESIZE=4K|1M If UNITSIZE=1M is specified, a PAGEFRAMESIZE of 4K
or 1M must be specified. There is no default value.

,TYPE=FIXED

,TYPE=DREF

,TYPE=PAGEABLE

,KEY=key key: RS-type address or address in register (2) - (12).

,KEY=CALLERKEY Default: KEY=CALLERKEY

,FPROT=YES Default: FPROT=YES

,FPROT=NO

,MOTKNSOURCE=USER Default: MOTKNSOURCE=USER

,MOTKN=motkn motkn: RS-type address or address in register (2) – (12).

,MOTKNSOURCE=SYSTEM

,OUTMOTKN=outmotkn outmotkn: RS-type address or address in register (2) –
(12).

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 461

Syntax Description

,OWNERCOM=HOME Default: OWNER=HOME

,OWNERCOM=PRIMARY

,OWNERCOM=SYSTEM

,OWNERCOM=BYASID

,OWNERASID=ownerasid

,OWNERASID=HOME

,GUARDSIZE=guardsize guardsize: RS-type address or address in register (2) - (12).

,GUARDSIZE=0 Default: GUARDSIZE=0

,GUARDSIZE64=guardsize64 guardsize64: RS-type address or address in register (2) -
(12).

,GUARDSIZE64=0 Default: GUARDSIZE64=0

,GUARDLOC=LOW Default: GUARDLOC=LOW

,GUARDLOC=HIGH

,DUMP=LIKECSA Default: DUMP=LIKECSA when TYPE=PAGEABLE

,DUMP=LIKESQA Default: DUMP=LIKESQA when TYPE=DREF

,DUMP=NO

,DUMP=BYOPTIONVALUE

,OPTIONVALUE=optionvalue option: RS-type address or address in register (2) - (12).

,ORIGIN=origin origin: RS-type address or address in register (2) - (12).

,DETACHFIXED=NO Default: DETACHFIXED=NO

,DETACHFIXED=YES

,SADMP=DEFAULT Default: SADMP=DEFAULT

,SADMP=YES

,SADMP=NO

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VER Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3, 4, 5

,MF=S Default: MF=S

,MF=(L,list addr) (L,list addr): RS-type address or register (1) - (12).

IARV64 macro

462 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

||

||

||

||
|

||

||

||

||

||

||

||

Syntax Description

,MF=(L,list addr,attr)

,MF=(L,list addr,OD)

,MF=(E,list addr)

,MF=(E,list addr,COMPETE)

Parameters
The REQUEST=GETCOMMON option of the IARV64 macro is written as follows:

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=GETCOMMON
A required parameter. REQUEST=GETCOMMON creates a 64-bit common
memory object.

,COND=NO
,COND=YES

An optional keyword input that specifies whether the request is unconditional
or conditional. When you code COND=YES and there is insufficient storage to
satisfy the request, instead of the request being abnormally ended, the request
will complete and a return code will be set to indicate that the request could
not be completed successfully. In all cases the request will be abnormally
ended for invalid requests, including violation of environmental restrictions.
The default is COND=NO.

,COND=NO
The request is unconditional. The request will be abnormally ended when
the request cannot be satisfied.

,COND=YES
The request is conditional. The request will not be abnormally ended for
resource unavailability.

,KEY=key
,KEY=CALLERKEY

An optional input parameter that specifies the storage key to be assigned to
the memory object. The key must be in bits 0-3 of the specified byte. Bits 4-7
are ignored. Only keys 0-7 can be specified.

If the key is not specified, the storage key of the memory object is the same as
the caller's PSW key. The default is CALLERKEY.

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

,FPROT=YES
,FPROT=NO

An optional keyword parameter that specifies whether the memory object
should be fetch protected. The default is FPROT=YES

,FPROT=YES
The entire memory object will be fetch protected. A program must have a
PSW key that matches the storage key of the memory object (or have PSW
key 0) to reference data in the memory object.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 463

,FPROT=NO
The memory object will not be fetch protected.

,MOTKNSOURCE=USER
,MOTKNSOURCE=SYSTEM

An optional input parameter that indicates the source of the memory object
token to be associated with this memory object. The default is USER.

,MOTKNSOURCE=USER
The user provides the memory object token.

,MOTKN=motkn
The name of an optional doubleword integer input that identifies the
token to be associated with the memory object. This must be a token
that was returned by the system on a previous GETCOMMON request
by the OUTMOTKN keyword. If you specify no user token, the default
is that no user token is supplied to associate this memory object with
others.

,MOTKNSOURCE=SYSTEM
The system provides the memory object token.

,OUTMOTKN=xoutmotkn
The name of a required doubleword integer output in which the
system returns the token associated with this memory object. This
token can be used on subsequent GETCOMMON requests as a
user-supplied token in order to associate other memory objects with
this token. This token can be used on subsequent DETACH requests in
order to free all the memory objects that have been associated with this
token.

Usage notes of the MOTKNSOURCE parameter on an IARV64
REQUEST(GETCOMMON) request:
v If you want a system-generated token to be returned, invoke:

IARV64 REQUEST=GETCOMMON,MOTKNSOURCE=SYSTEM,OUTMOTKN=mytoken

v If you want to use the returned token on subsequent IARV64
GETCOMMON requests in order to associate other memory objects with the
same token, invoke:
IARV64 REQUEST=GETCOMMON,MOTKNSOURCE=USER,MOTKN=mytoken

v If you want to use the returned token on a DETACH request in order to
detach all memory objects that are associated with that token, invoke:
IARV64 REQUEST=DETACH,MATCH=MOTOKEN,MOTKN=mytoken,

AFFINITY=SYSTEM,V64COMMON=YES

,SEGMENTS=segments

SEGMENTS and UNITS are mutually exclusive keys. This set is required; only
one key can be specified.

A required input parameter that specifies the size of the requested memory
object, in megabytes. This must be a nonzero value. The amount of storage
requested is not charged against the MEMLIMIT for the address space making
the request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field.

,PAGEFRAMESIZE=4K
,PAGEFRAMESIZE=1MEG
,PAGEFRAMESIZE=MAX

IARV64 macro

464 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|
|

,PAGEFRAMESIZE=DREF1MEG
,PAGEFRAMESIZE=PAGEABLE1MEG

An optional input parameter that specifies the size of the page frames to back
the virtual storage mapped by the allocated memory object.

,PAGEFRAMESIZE=4K
The memory object should be backed by 4 KB-page frames. The default
value is PAGEFRAMESIZE=4K.

,PAGEFRAMESIZE=1MEG
The memory object should be backed by 1 MB-page frames.

,PAGEFRAMESIZE=MAX
The memory object should be backed by the largest page frame size
supported but if the request cannot be backed by the largest frame size
due to the availability of large page frames, then the request will backed
by 4 KB-page frames. 1 megabyte page frames are backed at allocation
time and ca not be paged out to AUX. 4 KB-page frames are backed at first
reference and can be paged out to AUX if TYPE=DREF is not specified or
can not be paged out to AUX if TYPE=DREF is specified.

,PAGEFRAMESIZE=PAGEABLE1MEG
The memory object is backed by pageable 1 MB-page frames at first
reference, unless none are available. If none are available, the object is
backed by 4 KB-page frames.

,PAGEFRAMESIZE=DREF1MEG
The memory object is backed by pageable 1 MB-page frames at first
reference, unless none are available. If none are available, the object is
backed by 4 KB-page frames.

,TYPE=PAGEABLE
,TYPE=DREF

An optional input parameter that specifies the type of storage that is requested.
The default value is TYPE=PAGEABLE when one of the following parameters
is specified:
v PAGEFRAMESIZE=PAGEABLE1MEG
v PAGEFRAMESIZE=4K
v PAGEFRAMESIZE=MAX and the memory object is backed with 4 KB-page

frames.

The default value is TYPE=DREF when PAGEFRAMESIZE=DREF1MEG is
specified. If PAGEFRAMESIZE=1MEG or PAGEFRAMESIZE=MAX is specified
and the memory object is backed with 1 MB-page frames, the 1 MB-pages
backing this memory object are fixed.

Note:

1. When the memory object is backed by 4 KB-page frames, the 4 KB-pages
backing this memory object are pageable if TYPE=DREF is not specified;
the 4 KB-pages are fixed if TYPE=DREF is specified. The 4 KB-pages are
backed at first reference and can and can only be paged out to AUX if
TYPE=DREF is not specified.

2. When the memory object is backed by 1 MB-page frames as a result of
PAGEFRAMESIZE=PAGEABLE1MEG or PAGEFRAMESIZE=DREF1MEG
being specified, the 1 MB-pages backing this memory object are pageable if
PAGEABLE1MEG is specified or fixed if DREF1MEG is specified. Pageable

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 465

1 MB-pages are backed at first reference and can be paged out to AUX.
DREF 1 MB-pages are backed at first reference and are fixed—they cannot
be paged out to AUX.

3. When the memory object is backed by 1 MB-page frames because
PAGEFRAMESIZE=1MEG or PAGEFRAMSIZE=MAX has been specified,
the 1 MB-pages backing this memory object are fixed. Pages are backed at
allocation time and cannot be paged out to AUX.

,TYPE=PAGEABLE
Pages backing this memory object are pageable. Pages are backed at first
reference and can be paged out to AUX. virtual address ranges within the
memory object can be explicitly fixed after allocation by using the IARV64
REQUEST=PAGEFIX request.

,TYPE=DREF
The memory object is referenced while running disabled. Note that the
DREF attribute applies to the entire memory object. Pages are backed in
real at first reference. Pages belonging to memory objects with the
TYPE=DREF attribute remain in real and are never paged out to AUX.

,UNITS=units

UNITS and SEGMENTS are mutually exclusive keys. This set is required; only
one key can be specified.

A required input parameter that specifies the size of the memory object as a
number of units of the size specified by the UNITSIZE parameter. This must be
a nonzero value. The amount of storage requested is not charged against the
MEMLIMIT for the address space making the request.

,TYPE=PAGEABLE
,TYPE=DREF
,TYPE=FIXED

A required input parameter that specifies the type of requested storage.

,TYPE=PAGEABLE
Pages backing this memory object are pageable. Pages are backed at
first reference and can be paged out to auxiliary storage. Virtual
address ranges within the memory object can be explicitly fixed after
allocation by using the IARV64 REQUEST=PAGEFIX request.
TYPE=PAGEABLE is not valid with PAGEFRAMESIZE=2G.

,TYPE=DREF
Pages are backed in real memory at first reference, unless DREF
storage is not available, in which case the program is ABENDed. Once
backed, pages belonging to memory objects of TYPE=DREF remain in
real storage and are never paged out to auxiliary storage. The memory
object can be referenced while running disabled. The DREF attribute
applies to the entire memory object. TYPE=DREF is not valid with
PAGEFRAMESIZE=2G.

,TYPE=FIXED
Pages are backed in real storage immediately, unless fixed storage is
not immediately available, in which case the request fails. Pages
belonging to memory objects of TYPE=FIXED remain in real storage
and are never be paged out to auxiliary storage. The memory object
can be referenced while running disabled. The FIXED attribute applies
to the entire memory object when it is allocated. TYPE=FIXED is not
valid with PAGEFRAMESIZE=4K.

IARV64 macro

466 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|
|

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field.

,UNITSIZE=1M
,UNITSIZE=2G

A required input parameter that specifies the size for the UNITS parameter:
either 1 MB or 2 GB.

,UNITSIZE=1M
Specifies that the memory object is in 1 MB units. For example, a request
for UNITS=3 with UNITSIZE=1M is a request for three megabytes of
virtual storage starting on a 1 MB boundary. When UNITSIZE=1M is
specified, one of the following PAGEFRAMESIZE values must also be
specified:

PAGEFRAMESIZE=4K
PAGEFRAMESIZE=1M

A required input parameter that specifies the size of the page frames
used to back the virtual storage mapped by the allocated memory
object.

PAGEFRAMESIZE=4K
Specifies to back the memory object with 4 KB-page frames of the
specified TYPE, when TYPE=PAGEABLE or TYPE=DREF is
requested. TYPE=FIXED is not supported.

PAGEFRAMESIZE=1M
Specifies to back the memory object by one-megabyte (1 MB) page
frames of the specified TYPE. If 1 MB-page frames are not
supported or not available, the system attempts to back the
memory object at a smaller page frame size of the specified TYPE,
when TYPE=PAGEABLE or TYPE=DREF is requested. A
TYPE=FIXED request fails if there are no available pages in the
requested PAGEFRAMESIZE.

,UNITSIZE=2G
Specifies that the memory object is in two-gigabyte (2G) units. For
example, a request for UNITS=3 with UNITSIZE=2G is a request for six
gigabytes of virtual storage starting on a 2 GB boundary.

PAGEFRAMESIZE=4K|1M
A required input parameter that specifies the size of the page frames
that back the virtual storage mapped by the allocated memory object.

PAGEFRAMESIZE=4K
Specifies to back the memory object by 4 KB-page frames of the
specified TYPE, when TYPE=PAGEABLE or TYPE=DREF is
requested. TYPE=FIXED is not supported with this value.

PAGEFRAMESIZE=1M
Specifies to back the memory object by one-megabyte (1 MB) page
frames of the specified TYPE. If 1 MB-page frames are not
supported or not available when TYPE=PAGEABLE or
TYPE=DREF is requested, the system attempts to back the memory
object using a smaller page frame size of the specified TYPE. A
TYPE=FIXED request fails if there are no available pages in the
requested PAGEFRAMESIZE.

,OWNERCOM=HOME
,OWNERCOM=PRIMARY
,OWNERCOM=SYSTEM

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 467

,OWNERCOM=BYASID
An optional input parameter that specifies the entity to which the system will
assign ownership of the 64-bit common memory object. The system uses this
ownership information to track the use of 64-bit common storage for diagnostic
purposes. The default is OWNERCOM=HOME.

,OWNERCOM=HOME
The home address space will be assigned as the owner of the 64-bit
common memory object.

,OWNERCOM=PRIMARY
The primary address space will be assigned as the owner of the 64-bit
common memory object.

,OWNERCOM=SYSTEM
The system (the 64-bit common memory object is not associated with an
address space) will be assigned as the owner of the 64-bit memory object.

,OWNER=BYASID
The address space specified by OWNERASID will be assigned as the
owner of the 64-bit common memory object.

,OWNERASID=0
,OWNERASID=ownerasid

An optional input parameter that specifies the ASID of the address
space that will own the 64-bit common memory object for tracking
purposes. The default is OWNERASID=0.

OWNERASID=0
This parameter indicates that the system is assigned as the owner
of the 64-bit memory object.

OWNERASID=ownerasid
This is the name (RS-Type), or address in register (2)-(12), of an
optional halfword input that contains the address space identifier
(ASID) to be designated as the owner of the 64-bit common
memory object for storage tracking purposes.

,GUARDSIZE=guardsize
,GUARDSIZE=0

GUARDSIZE and GUARDSIZE64 are mutually exclusive keys. This set is
optional; only one key may be specified. A fullword integer input parameter
that indicates the number of megabytes of guard area to be created at the high
or low end of the memory object. Guard areas cannot be referenced and when
referenced will cause a program check. Guard area does not count against the
MEMLIMIT. Guard areas cannot be referenced and, if referenced, will cause a
program check.

A guard area can be reduced through CHANGEGUARD
CONVERT=FROMGUARD. GUARDSIZE must not be larger than the size of
the memory object.

GUARDSIZE must not be larger than the size of the memory object. The
default is 0.

Default: 0

To code: Specify the RS-type address, or address in register (2) - (12), of a
fullword field.

,GUARDSIZE64=guardsize64

IARV64 macro

468 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|

|
|
|
|
|
|
|

|
|
|

|
|

|

|
|

|

,GUARDSIZE64=0

GUARDSIZE64 belongs to a set of mutually exclusive keys. This set is optional;
only one key may be specified. A doubleword integer input parameter that
indicates the number of megabytes of guard area to be created at the high or
low end of the memory object. Guard areas cannot be referenced and, if
referenced, will cause a program check.

A guard area can be reduced through CHANGEGUARD
CONVERT=FROMGUARD. GUARDSIZE64 must not be larger than the size of
the memory object.

Default: 0

To code: Specify the RS-type address, or address in register (2) - (12), of a
doubleword field.

,GUARDLOC=LOW
,GUARDLOC=HIGH

An optional input parameter that specifies whether the guard location is at the
low virtual end of the memory object or the high virtual end.

,GUARDLOC=LOW
The guard areas are created starting from the origin of the memory object,
that is, from the low virtual end.

,GUARDLOC=HIGH
The guard areas are created at the end of the memory object, that is, at the
high virtual end.

Default: GUARDLOC=LOW

,DUMP=LIKECSA
,DUMP=LIKESQA
,DUMP=NO
,DUMP=BYOPTIONVALUE

An optional input parameter that specifies whether the 64-bit common
memory object is included in an SVC dump when CSA or SQA is specified on
SDATA. When TYPE=PAGEABLE is specified on IARV64 GETCOMMON the
default is DUMP=LIKECSA. When TYPE=DREF is specified on IARV64
GETCOMMON the default is DUMP=LIKESQA.

,DUMP=LIKECSA
The 64-bit common memory object is included in an SVC dump when CSA
is specified on SDATA.

,DUMP=LIKESQA
The 64-bit common memory object is included in an SVC dump when SQA
is specified on SDATA.

,DUMP=NO
The 64-bit common memory object is not included in an SVC dump when
either CSA or SQA is specified on SDATA.

DUMP=BYOPTIONVALUE
The 64-bit common memory object is dumped according to the option
specified by the OPTIONVALUE keyword.

,OPTIONVALUE=option
This parameter is the name (RS-Type), or address in register (2) - (12),
of a required one-byte integer input that contains one of the following:

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 469

|

|
|
|
|
|

|
|
|

|

|
|

|
|
|
|

|
|
|

|
|
|

|

v XMFCTRL_XDUMP_NO - (X’01’) — this is equivalent to
DUMP=NO

v XMFCTRL_XDUMP_LIKESQA - (X’02’) — this is equivalent to
DUMP=LIKESQA

v XMFCTRL_XDUMP_LIKECSA - (X’03’) — this is equivalent to
DUMP=LIKECSA

,DETACHFIXED=NO
,DETACHFIXED=YES

An optional input parameter that specifies whether the memory object can be
detached when it contains fixed pages at the time of the DETACH request. The
default value for DETACHFIXED is NO.

DETACHFIXED=NO
The memory object will not be detached if it has any fixed pages when it is
detached.

DETACHFIXED=YES
The memory object will be detached even if some or all the pages of the
memory object are fixed.

,ORIGIN=origin
A required output parameter that contains the lowest address of the memory
object.

Note: When GUARDLOC=LOW is specified, the lowest address will point to a
guard area which will cause an ABEND if referenced. For GUARDLOC=LOW
the first usable area is the origin plus the size of the guard area.

To code: Specify the RS-type address or address in register (2) - (12) of an
eight-byte pointer field.

,SADMP=DEFAULT
,SADMP=YES
,SADMP=NO

An optional keyword input that specifies whether the memory object is to be
captured in a stand-alone dump.

SADMP=DEFAULT
When PAGEFRAMESIZE is not 2G, the memory object should be captured
in a stand-alone dump.

When PAGEFRAMESIZE is 2G, the memory object should not be captured
in a stand-alone dump unless explicitly requested by the stand-alone dump
program.

SADMP=YES
The memory object should be captured in a stand-alone dump.

SADMP=NO
The memory object should not be captured in a stand-alone dump unless
explicitly requested by the stand-alone dump program.

Default: SADMP=DEFAULT

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field or register (2) - (12).

IARV64 macro

470 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3, 4, 5

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are::
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default

v MAX,if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM suggests that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– GETSHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– AMOUNTSIZE
– DETACHFIXED
– DOAUTHCHECKS
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE
– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– UNLOCKED
– USERTOKEN

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 471

– V64COMMON
v 3, supports both the following parameters and parameters from versions 0,

1, 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

v 4, supports both the following parameter and parameters from versions 0, 1,
2, 3:
– DMAPAGETABLE

v 5, supports both the following parameters and parameters from versions 0,
1, 2, 3, 4:
– UNITS
– UNITSIZE

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3, 4 or 5

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(M,list addr,)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following
order:
v Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters,

including all required ones.

IARV64 macro

472 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to
change.

v Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
This parameter specifies that the system is not to check for required
parameters and is not to supply defaults for omitted optional parameters.

REQUEST=COUNTPAGES option of IARV64
REQUEST=COUNTPAGES requests the count of the number of 4K pages currently
in use in real storage, on auxiliary storage, and in both real storage and on
auxiliary storage to back the input high virtual storage ranges.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or with PSW key 0-7.

The caller must be running in supervisor state or with PSW
key 0-7.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts.
Locks: A local lock may be held.
Control parameters: Control parameters must be in the primary address space

and can reside both below and above the bar.

Programming requirements
None

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See PLISTVER parameter description.

Input register information
Before issuing the IARV64 macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 473

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax
The REQUEST=COUNTPAGES option of the IARV64 macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IARV64.

IARV64

� One or more blanks must follow IARV64.

REQUEST=COUNTPAGES

,COND=NO Default: COND=NO

,COND=YES

,V64LISTPTR=v64listptr v64listptr: RS-type address or address in register (2) - (12).

IARV64 macro

474 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,V64LISTLENGTH=v64listlength v64listlength: RS-type address or address in register (2) - (12).

,RANGLIST=ranglist ranglist: RS-type address or address in register (2) - (12).

,NUMRANGE=numrange numrange: RS-type address or address in register (2) - (12). Default:
NUMRANGE=1

,ALETVALUE=aletvalue aletvalue: RS-type address or address in register (2) - (12).

Default: ALETVALUE=0

,UNLOCKED=NO Default: NO

,UNLOCKED=YES

,RETCODE=retcode retcode: RS-type address or register (2) - (12) or (15), (GPR15).

,RSNCODE=rsncode rsncode: RS-type address or register (0) or (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0, 1, 2, 3

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IARV64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=COUNTPAGES
A required parameter. REQUEST=COUNTPAGES requests the count of the
number of 4K pages currently in use in real storage, on auxiliary storage, and
in both real storage and on auxiliary storage to back the input high virtual
storage ranges. The counts are returned as grand totals for all pages within the
ranges requested. If a page is in real storage and on auxiliary storage, it will be

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 475

counted in real storage, on auxiliary storage, and in both real storage and on
auxiliary storage. See IAXV64WA for a description of the output area.

,COND=NO
,COND=YES

An optional parameter that specifies whether the request is unconditional or
conditional. In all cases, the request will be abnormally ended for invalid
requests, including violation of environmental restrictions. The default is
COND=NO.

,COND=NO
The request is unconditional. The request is abnormally ended when the
request cannot be satisfied.

,COND=YES
The request is conditional. The request is not abnormally ended for
resource unavailability.

,V64LISTPTR=v64listptr
A required input parameter that contains the address of the work area that will
contain the results of the COUNTPAGES request. The work area must be in
fixed storage addressable from the address space for which the request is made
and must be initialized to zero by the caller.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,V64LISTLENGTH=v64listlength
A required input parameter that specifies the length of the work area that
contains the results of the COUNTPAGES request. The work area must be at
least 64 bytes long.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,RANGLIST=ranglist
A required input parameter that contains the address of a range list. The range
list consists of a number of entries (as specified by NUMRANGE) where each
entry is 16 bytes long. A description of the fields in each entry is as follows:

VSA
Denotes the starting virtual address of the data to be acted on. The virtual
address must be on a page boundary and within a memory object returned
by GETSHARED, GETSTOR or GETCOMMON.

The length of this field is 8 bytes.

NUMPAGES
Contains the number of 4K pages to be acted on. The number of pages
specified, starting with the specified VSA, must lie within a single memory
object.

The length of this field is 8 bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a 8-byte
pointer field.

,NUMRANGE=numrange
,NUMRANGE=1

An optional input parameter that specifies the number of entries in the
supplied range list up to 16. The default is NUMRANGE=1.

IARV64 macro

476 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,ALETVALUE=aletvalue
,ALETVALUE=0

An optional input parameter that indicates the ALET of the address space that
will access the memory object.

The only supported values are 0 (primary) and 2 (home).

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,UNLOCKED=NO
,UNLOCKED=YES

An optional parameter that specifies whether the request is to be performed
without RSM serialization. This should only be used when the memory objects
to be counted will not be modified or detached and an exact count is not
needed. These counts will not be accurate because RSM processing can be
modifying frame allocations. The default is UNLOCKED=NO.
v UNLOCKED=NO: The request will use RSM serialization. This is the

recommended option.
v UNLOCKED=YES: The request will not hold RSM locks during processing.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12),
(15), (GPR15), (REG15), or (R15)

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), (REG0), (REG00), or (R0).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0, 1, 2, 3

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 477

assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– CONVERTSIZE64
– CONVERTSTART
– GUARDSIZE64
– V64SHARED

v 2, supports both the following parameters and parameters from version 0
and 1:
– AMOUNTSIZE
– DETACHFIXED
– DUMP
– DUMPPRIORITY
– DUMPPROTOCOL
– LOCALSYSAREA
– MEMLIMIT
– OPTIONVALUE
– ORDER
– OWNERASID
– OWNERCOM
– TYPE
– USERTOKEN
– V64COMMON

v 3, supports both the following parameters and parameters from version 0, 1
and 2:
– ATTRIBUTE
– OWNERJOBNAME
– TRACKINFO

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2 or 3.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The

IARV64 macro

478 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes
IARV64 might abnormally terminate with hexadecimal abend code DC2. See DC2
in z/OS MVS System Codes for an explanation and programmer response.

For specific abend examples and the causes, see Avoiding Shared Storage Abends
in z/OS MVS Programming: Extended Addressability Guide.

Return and reason codes
When the IARV64 macro returns control to your program GPR 15 (and retcode,
when you code RETCODE) contains a return code. When the value in GPR 15 is
not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes. IBM
support personnel may request the entire reason code, including the xx value.

Table 39. Return and Reason Codes for the IARV64 Macro

Return Code Reason Code Meaning and Action

00 — Meaning: Successful completion

Action: None required

02 — Meaning: Successful completion, with exception. For
a LIST request, IARV64 requests have been issued
since the previous call to LIST.

Action: Reissue the call if you need the information
pertaining to those recent IARV64 requests.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 479

Table 39. Return and Reason Codes for the IARV64 Macro (continued)

Return Code Reason Code Meaning and Action

04 — Meaning: Successful completion, with exception.

For a LIST request, there are additional memory
objects which were not returned on this call to LIST.

For a CHANGEGUARD request, one or more
segments in the memory object are already in the
requested state.

For a DETACH request, the memory oblect task
token does not match the TToken of the caller.

For GETSTOR, GETCOMMON request with
PAGEFRAMESIZE(MAX), no large frame was
available, PAGEFRAMESIZE(4K) was used.

Action: For a CHANGEGUARD request, if this is
unexpected, then ensure that the correct values for
CONVERTSIZE, CONVERTSIZE64, or
CONVERTSTART are specified. If it is already
known that some segments may be in the requested
state, then no action is required.

For a LIST request, issue the LIST call again to get
the additional information.

For GETSTOR, GETCOMMON request with
PAGEFRAMESIZE(MAX), no action is required, the
memory object was backed by a 4K page.

06 — Meaning: Successful completion, with exception. For
a LIST request, there are additional memory objects
which were not returned on this call to LIST and
IARV64 requests have been issued since the previous
call to LIST.

For a COUNTPAGES request, the counts are
incomplete because additional IARV64 requests have
been issued during COUNTPAGES processing.

Action: Issue the LIST or COUNTPAGES call again
to get the additional information.

IARV64 macro

480 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 39. Return and Reason Codes for the IARV64 Macro (continued)

Return Code Reason Code Meaning and Action

08 — Meaning: The request is rejected because of
non-system failure.

This reason code could be issued for a conditional
IARV64 request. In this case this reason code is the
same as the DC2 reason code issued from an
unconditional IARV64 request. See DC2 in z/OS
MVS System Codes for an explanation and
programmer response. Otherwise, if it is not there,
then it has one of the following meanings:

For a DETACH request, there were no memory
objects deleted because none matched the user token
provided.

For a LIST request, there were no memory objects
returned because no memory objects match the
selection criteria.

Action: For a DETACH request, make sure that the
user token was correct.

For a LIST request, no action is required.

For other requests, see DC2 in z/OS MVS System
Codes for an explanation and programmer response.

0C — Meaning: The request is rejected because of system
failure.

This reason code could be issued for a conditional
IARV64 request. In this case this reason code is the
same as the DC2 reason code issued from an
unconditional IARV64 request. See DC2 in z/OS
MVS System Codes for an explanation and
programmer response. Otherwise, if it is not there,
then it has the following meaning:

v For a GETSTOR request, there was insufficient
storage to build the control structure.

v For a COUNTPAGES request, there was an error
during UNLOCKED=YES processing that
indicates the page table structure has changed.

Action:

v For a GETSTOR request, free storage within
address space so control structures can be built.

v For a COUNTPAGES request, try the request
again.

v For all other requests, see DC2 in z/OS MVS
System Codes for an explanation and programmer
response.

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 481

Example

Operation:
1. Get 2 MB above the bar
2. Page-fix the first 1 MB of that storage
3. Page-unfix that first 1 MB
4. Free the storage

The code is as follows:
SYSSTATE AMODE64=YES

**
* Get storage above 2G *
**

IARV64 REQUEST=GETSTOR,SEGMENTS=NUMSEG, *
ORIGIN=OUTORG,RETCODE=LRETCODE, *
RSNCODE=LRSNCODE,CONTROL=AUTH, *
MF=(E,V64L)

*
* Place code to check return/reason codes here
*
*
* Build the Range List for Pagefix
*

LG 1,OUTORG
STG 1,RLSTART
LG 1,ONEMEG Number of pages in 1-meg
STG 1,RLEND
LA 1,RL
LLGTR 1,1
STG 1,RLADDR

**
* Page-fix that storage *
* Defaults to NUMRANGE=1. *
**
*

IARV64 REQUEST=PAGEFIX,RANGLIST=RLADDR, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,V64L)

*
* Place code to check return/reason codes here
*
**
* Page-unfix that storage *
* Defaults to NUMRANGE=1. *
**
*

IARV64 REQUEST=PAGEUNFIX,RANGLIST=RLADDR, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,V64L)

*
* Place code to check return/reason codes here
*
**
* Free the storage *
**

IARV64 REQUEST=DETACH,MEMOBJSTART=OUTORG *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,V64L)

*
* Place code to check return/reason codes here
*
NUMSEG DC AD(2)

IARV64 macro

482 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ONEMEG DC AD((1024*1024)/4096) Num of pages in a megabyte
DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F
OUTORG DS AD
RLADDR DS 0D Start of 16-byte range list
RLSTART DS AD Address of memory object
RLEND DS AD Number of pages

IARV64 MF=(L,V64L)

IARV64 macro

Chapter 31. IARV64 — 64–bit virtual storage allocation 483

IARV64 macro

484 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 32. IAZXCTKN — Client token compare service

Description
Use the IAZXCTKN macro to compare two client tokens. This service should be
used anytime client tokens have to be compared.

Environment

Environmental factor Requirement
Minimum authorization: Problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary

Secondary
Access register (AR)

Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None

Programming requirements
Include the IAZXCTKN mapping macro.

Restrictions
None.

Input register information
Before issuing the IAZXCTKN macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Destroyed

2-13 Unchanged

14 Destroyed

15 Return code

Performance implications
None.

© Copyright IBM Corp. 1988, 2016 485

Syntax
The IAZXCTKN macro is written as follows:

Syntax Description

CTOKENA=ctoken addr ctoken addr: RX-type address or address in register (2) - (13).

CTOKENB=ctoken addr ctoken addr: RX-type address or address in register (2) - (13).

Parameters
The IAZXCTKN parameters are explained as follows:

,CTOKENA=ctoken addr
Specifies the address of an 80-byte area containing one CTOKEN to be
compared.

,CTOKENB=ctoken addr
Specifies the address of an 80-byte area containing one CTOKEN to which
CTOKENA is to be compared.

ABEND codes
None.

Return codes
When IAZXCTKN macro returns control to your program. GPR 15 contains a
return code.

Table 40. Return Codes for the IAZXCTKN Macro

Hexadecimal
Return Code

Meaning

00 Meaning: CTOKENA and CTOKENB contain the same significant information.

04 Meaning: CTOKENA and CTOKENB contain different significant information
and CTOKENA's sort information is less than CTOKENB's sort information.

08 Meaning: CTOKENA and CTOKENB contain different significant information
and CTOKENB's sort information is less than CTOKENA's sort information.

12 Meaning: CTOKENA and CTOKENB contain different significant information
and at least one of these ctokens contains no sort information.

16 Meaning: CTOKENA and CTOKENB contain different significant information
but the sort information in the two ctokens is equal. This indicates a "collision"
of the two ctokens.

Example
IAZXCTKN CTOKENA=BILL,CTOKENB=SAM

IAZXCTKN macro

486 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 33. IAZXJSAB — Obtain information about a currently
running job

Description
Use the CREATE function with TYPE=SUBTASK to set or request job scheduler
information for the current task. When an application is doing work on behalf of
another work unit, the CREATE or UPDATE request identifies the work unit for
whom the work is being done. IAZXJSAB provides the following services:
v Create a JSAB.
v Read from a JSAB.
v Update a JSAB.
v Delete a JSAB.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: CREATE, DELETE and UPDATE: APF authorization,

supervisor state or system key

READ: Problem or supervisor state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: If the caller specifies the ASCB parameter, any PASN, any

HASN, any SASN; otherwise, PASN=HASN is required.
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None

Programming requirements
Include these mapping macros in your program: IAZJSAB, IHAASCB and
IHAASSB. If you do not code the ASCB parameter, also include these additional
mapping macros: IHAPSA, IKJTCB, and IHASTCB.

If you need more information about:

Mapping macro: Look in: Under the name:

IAZJSAB z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/)

JSAB

IHAASCB z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/)

ASCB

IHAASSB z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/)

ASSB

IHAPSA z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/)

PSA

IHASTCB z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/)

STCB

IKJTCB z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/)

TCB

© Copyright IBM Corp. 1988, 2016 487

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Restrictions
The following restrictions apply:
v You must not create an address space JSAB.
v You may only update or delete a JSAB that you have created.

Input register information
Before issuing the IAZXJSAB macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The IAZXJSAB macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IAZXJSAB macro.

IAZXJSAB

� One or more blanks must follow IAZXJSAB macro.

IAZXJSAB macro

488 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

CREATE
READ
UPDATE
DELETE

,TYPE=SUBTASK

Default: ADDRSP (Restricted use)

,ASCB=ascb addr ascb addr: RX-type address or register (2) - (12).

Default: The address of the ASCB for the caller's home address space.

,COMPID=compid addr compid addr: RS-type address or register (2) - (12).

,CODELEV=codelev addr codelev addr: RX-type address or register (2) - (12).

,WORKID=workid addr workid addr: RS-type address or register (2) - (12).

,JOBID=jobid addr jobid addr: RS-type address or register (2) - (12).

,JOBNAME=jobname addr jobname addr: RS-type address or register (2) - (12).

,PREFIX=prefix addr prefix addr: RS-type address or register (2) - (12).

,USERID=userid addr userid addr: RS-type address or register (2) - (12).

,EXECST=execst addr execst addr: RS-type address or register (2) - (12).

,XCFGPNM=xcfgpnm addr xcfgpnm addr: RS-type address or register (2) - (12).

,JESTAT=jestat addr jestat addr: RS-type address or register (2) - (12).

,JSABLVL=jsablvl addr jsablvl addr: RS-type address or register (2) - (12).

,JOBCORR=jobcorr addr jobcorr addr: RS-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

CREATE | READ | UPDATE | DELETE
Requests the type of IAZXJSAB function.

IAZXJSAB macro

Chapter 33. IAZXJSAB — Obtain information about a currently running job 489

,TYPE=SUBTASK
Specifies the type of JSAB to be created or deleted. TYPE is valid only for the
CREATE and DELETE services. You must code TYPE=SUBTASK, as the default
is TYPE=ADDRSP.

,ASCB=ascb addr
Specifies the address of an address space control block (ASCB).

ASCB is valid only for the READ and DELETE services. The default value is
the address of the ASCB that represents the caller's home address space.

,COMPID=compid addr
With the CREATE service, COMPID specifies the location of the 4-character
name of the subsystem that is creating the JSAB. With the READ service,
COMPID specifies the location where the system is to return the 4-character
name of the subsystem that created the JSAB. If JES2 or JES3 created the JSAB,
the identifier is the common name of the JES (such as JES2 or JES3) and not
the name of the JES2 or JES3 address space. If APPC/MVS created the JSAB,
the identifier is ASCH.

COMPID is required for the CREATE service and is optional for the READ
service. COMPID is not valid on the UPDATE and DELETE services.

,CODELEV=codelev addr
Specifies the code level of the creating component. Valid values are 0-255.

CODELEV is required for the CREATE service and is optional for the READ
service. CODELEV is not valid on the UPDATE and DELETE services.

,WORKID=workid addr
Specifies the location where the system is to return the 8-character work unit
identifier. The system returns identical information for the work unit ID and
job ID.

WORKID is not valid on the DELETE service and is optional on the CREATE,
READ, and UPDATE services.

,JOBID=jobid addr
Specifies the location where the system is to return the 8-character job
identifier. The system returns identical information for the work unit ID and
job ID.

JOBID is not valid on the DELETE service and is optional on the CREATE,
READ, and UPDATE services.

,JOBNAME=jobname addr
Specifies the location where the system is to return the 8-character job name.

JOBNAME is not valid on the DELETE service and is optional on the CREATE,
READ, and UPDATE services.

,PREFIX=prefix addr
Specifies the location where the system is to return the 8-character message
prefix. In a JES2 system, the prefix is the job ID. In a JES3 system, the prefix is
the job name.

PREFIX is not valid on the DELETE service and is optional on the CREATE,
READ, and UPDATE services.

,USERID=userid addr
Specifies the location where the system is to return the 8-character user ID.

USERID is not valid on the DELETE service and is optional on the CREATE,
READ, and UPDATE services.

IAZXJSAB macro

490 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,EXECST=execst addr
Specifies the location where the system is to return the 8-byte execution start
time, in time-of-day (TOD) clock format.

EXECST is not valid on the DELETE service.

,XCFGPNM=xcfgpnm addr
Specifies the location where the system is to return the 8-character XCF group
name of the subsystem that created the JSAB. The XCF group name is available
only if JES2 created the JSAB.

XCFGPNM is not valid on the DELETE service and is optional on the
CREATE, READ, and UPDATE services.

,JESTAT=jestat addr
Specifies the location where the system is to return the 8-byte JES status for the
address space.

For the meaning of values that can be returned to the specified address, see the
field JSABJSTA in the mapping macro IAZJSAB in z/OS MVS Data Areas in the
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

JES status only applies on the job level. Therefore, using the JESTAT keyword
forces the access to the address space level JSAB. JESTAT is not compatible
with TYPE(SUBTASK). For READ and UPDATE, JESTAT can only be used with
the JOBCORR keyword—JESTAT cannot be used together with any other job
attribute.

,JSABLVL=jsablvl addr
Specifies the location where the system is to return the 1-byte level of the JSAB
to be used for the READ request. If the value returned is 4, it indicates a
subtask level JSAB.

JSABLVL is valid only on the READ service.

,JOBCORR=jobcorr addr
Specifies the location where the system is to return the 64-character job
correlator field. Because JOBCORR only applies on the job level, using the
JOBCORR keyword forces the access to the address space level JSAB.
JOBCORR is not compatible with TYPE(SUBTASK). For READ and UPDATE,
JOBCORR can only be used with the JESTAT keyword—JOBCORR cannot be
used with any other job attribute.

JOBCORR is optional for CREATE, READ and UPDATE. JOBCORR is not valid
for DELETE.

ABEND codes
None.

Return codes
When IAZXJSAB macro returns control to your program, GPR 15 contains one of
the following hexadecimal return codes.

Table 41. Return and Reason Codes for the IAZXJSAB Macro

Return Code Meaning and Action

0 Meaning: Processing completed successfully.

Action: None.

IAZXJSAB macro

Chapter 33. IAZXJSAB — Obtain information about a currently running job 491

http://www.ibm.com/systems/z/os/zos/bkserv/

Table 41. Return and Reason Codes for the IAZXJSAB Macro (continued)

Return Code Meaning and Action

4 Meaning: Storage was not obtained or released for the JSAB. (CREATE and
DELETE only.)

Action: None.

8 Meaning: The JSAB was not found. No information was returned.

Action: None required; however, you might want to make sure the
specified ASCB address is correct.

12 Meaning: The requested field does not exist in the active JSAB.

Action: None.

Example
Obtain the job ID of the current address space.

IAZXJSAB READ,JOBID=MYJOBID
.
.
.

MYJOBID DS CL8

IAZXJSAB macro

492 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 34. IEAARR — Establish an associated recovery
routine (ARR)

Description
IEAARR allows you to request that the system establish an associated recovery
routine (ARR) while calling a target routine. In this case, the system performs the
stacking PC instruction, then give control to your routine (the target routine).
When the target routine returns control, the system issues the corresponding PR
instruction.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller is not required to hold any locks on entry. The

caller may hold the local, CMS, or CPU lock.
Control parameters: None.

Programming requirements
The caller must include the IHAECVT mapping macro.

Restrictions
IEAARR must not be issued while a functional recovery routine (FRR) is
established.

TARGETSTATE=PROB should only be issued by a caller currently running in
problem state. TARGETSTATE=SUP should only be issued by a caller currently
running in supervisor state.

Input register information
Before issuing the IEAARR macro, the caller does not have to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 The value placed in register 0 by the target routine prior to its returning to
the system.

© Copyright IBM Corp. 1988, 2016 493

1 The value placed in register 1 by the target routine prior to its returning to
the system.

2-13 Unchanged

14 Used as a work register by the system

15 The value placed in register 15 by the target routine prior to its returning
to the system.

When control returns to the caller, the ARs contain:

Register
Contents

0 The value placed in access register 0 by the target routine prior to its
returning to the system.

1 The value placed in access register 1 by the target routine prior to its
returning to the system.

2-13 Unchanged

14 Used as a work register by the system

15 The value placed in access register 15 by the target routine prior to its
returning to the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The IEAARR macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEAARR.

IEAARR

� One or more blanks must follow IEAARR.

ARRPTR=arrptr arrptr: RX-type address or address in register (2) - (12).

ARR=arr arr: RX-type address or address in register (2) - (12).

,DYNSTORAGE=AVAIL Default: DYNSTORAGE=AVAIL

,DYNSTORAGE=NOTAVAIL

IEAARR macro

494 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,ARRPARAMPTR=arrparamptr arrparamptr: RX-type address or address in register (2) - (12).

,ARRPARAMPTR64=arrparamptr64 arrparamptr64: RX-type address or address in register (2)-(12), of a 64-bit
pointer field.

,ARRPARAM=arrparamp arrparamp: RX-type address or address in register (2) - (12).

,ARRPARAM64=arrparam64 arrparam64: RX-type address or address in register (2) - (12).

,PARAMPTR=paramptr paramptr: RX-type address or address in register (2) - (12).

,PARAMPTR64=paramptr64 paramptr64: RX-type address or address in register (2)-(12), of a 64-bit
pointer field.

,PARAM=param param: RX-type address or address in register (2) - (12).

,PARAM64=param64 param64: RX-type address or address in register (2) - (12).

,TARGETPTR=targetptr targetptr: RX-type address or address in register (2) - (12).

,TARGET=target target: RX-type address or address in register (2) - (12).

,TARGETSTATE=PROB

,TARGETSTATE=SUP

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IEAARR
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

DYNSTORAGE=AVAIL
DYNSTORAGE=NOTAVAIL

An optional parameter that indicates whether this routine is sensitive to your
having dynamic storage. The default is DYNSTORAGE=AVAIL.

DYNSTORAGE=AVAIL
Indicates that you have dynamic storage available.

DYNSTORAGE=NOTAVAIL
Indicates that you do not have dynamic storage available. The
parameters are defined so that you can place each parameter value in a
register and in so doing avoid the need to place parameter values into
dynamic storage.

ARRPTR=arrptr
When DYNSTORAGE=AVAIL is in effect, a required input parameter that
contains the address of the associated recovery routine. This routine gets
control from RTM according to normal z/OS recovery protocols. As it is an
ARR, it will get control in AMODE 31.

To code: Specify the RX-type address, or address in register (2)-(12), of a
pointer field.

IEAARR macro

Chapter 34. IEAARR — Establish an associated recovery routine (ARR) 495

ARR=arr
When DYNSTORAGE=NOTAVAIL is specified, a required input parameter that
is the associated recovery routine. This routine gets control from RTM
according to normal z/OS recovery protocols. As it is an ARR, it will get
control in AMODE 31.

To code: Specify the RX-type address, or address in register (2)-(12), of the
associated recovery routine.

,ARRPARAMPTR=arrparamptr
When DYNSTORAGE=AVAIL is in effect and SYSSTATE AMODE64=YES is
not in effect, a required input parameter that contains the address of the
parameter area that is to be passed to the ARR upon error. The address is
placed in the first four bytes of the area pointed to by SDWAPARM and in
GPR 2. Note that the second four bytes of the area pointed to by SDWAPARM
will not contain interface information.

To code: Specify the RX-type address, or address in register (2)-(12), of a
pointer field.

,ARRPARAM=arrparam
When DYNSTORAGE=NOTAVAIL is specified and SYSSTATE AMODE64=YES
is not in effect, a required input parameter that is the parameter area that is to
be passed to the ARR upon error. The address is placed in the first four bytes
of the area pointed to by SDWAPARM and in GPR 2. Note that the second
four bytes of the area pointed to by SDWAPARM will not contain interface
information.

To code: Specify the RX-type address, or address in register (2)-(12), of the
parameter area.

,ARRPARAMPTR64=arrparamptr64
When DYNSTORAGE=AVAIL is in effect and SYSSTATE AMODE64=YES is in
effect, a required 8-byte input parameter that contains the address of the
parameter area that is to be passed to the ARR upon error. The address is
placed in the 8-byte area pointed by SDWAPARM and in the 64-bit GPR 2.

To code: Specify the RX-type address, or address in register (2)-(12), of a 64-bit
pointer field.

,ARRPARAM64=arrparam64
When DYNSTORAGE=NOTAVAIL is specified and SYSSTATE AMODE64=YES
is in effect, a required 8-byte input parameter that is the parameter area that is
to be passed to the ARR upon error. The address is placed in the 8-byte area
pointed by SDWAPARM and in the 64-bit GPR 2.

To code: Specify the RX-type address, or address in register (2)-(12), of the
parameter area.

,PARAMPTR=paramptr
When DYNSTORAGE=AVAIL is in effect and SYSSTATE AMODE64=YES is
not in effect, a required input parameter that contains the address of a
parameter that is to be passed to the target routine in GPR 1.

To code: Specify the RX-type address, or address in register (2)-(12), of a
pointer field.

,PARAM=param
When DYNSTORAGE=NOTAVAIL is specified and SYSSTATE AMODE64=YES
is not in effect. a required input parameter that is the parameter that is to be
passed to the target routine in GPR 1.

IEAARR macro

496 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

To code: Specify the RX-type address, or address in register (2)-(12), of the
parameter.

,PARAMPTR64=paramptr64
When DYNSTORAGE=AVAIL is in effect and SYSSTATE AMODE64=YES is in
effect, a required 8-byte input parameter that contains the address of the
parameter that is to be passed to the target routine in 64-bit GPR 1.

To code: Specify the RX-type address, or address in register (2)-(12), of a 64-bit
pointer field.

,PARAM64=param64
When DYNSTORAGE=NOTAVAIL is specified and SYSSTATE AMODE64=YES
is in effect, a required 8-byte input parameter that is to be passed to the target
routine in 64-bit GPR 1.

To code: Specify the RX-type address, or address in register (2)-(12), of the
parameter.

,TARGETPTR=targetptr
When DYNSTORAGE=AVAIL is in effect, a required input parameter that
contains the address of the routine to which the system is to branch after
establishing the ARR. The target routine will get control in the same key and
state as the IEAARR caller, in AMODE 31, with the following input registers:

General Purpose Registers:

Register
Contents

0 Not part of the intended interface

1 Address of parameter area provided by IEAARR caller

2-13 Unchanged from the IEAARR caller

14 Tne return address

15 The address of the target routine

Access Registers:

Register
Contents

0-1 Not part of the intended interface

2-13 Unchanged from the IEAARR caller

14 Not part of the intended interface

15 Not part of the intended interface

The target routine gets control with one more entry on the linkage stack than
existed when IEAARR was called. That linkage stack entry contains the caller's
registers 2-13 which can be extracted using the EREG instruction if needed.

The target routine need not save any registers, but is expected to return to the
address provided in GPR 14 on entry. The target routine can pass information
back to the caller of IEAARR by placing it in GPR/AR 0, 1, and/or 15. The
IEAARR caller will resume immediately after the IEAARR macro expansion.

The target routine gets control with its primary and secondary ASNs, which
are both the same as the primary ASN when IEAARR was invoked.

To code: Specify the RX-type address, or address in register (2)-(12), of a
pointer field.

IEAARR macro

Chapter 34. IEAARR — Establish an associated recovery routine (ARR) 497

,TARGET=target
When DYNSTORAGE=NOTAVAIL is specified. a required input parameter that
is the routine to which the system is to branch after establishing the ARR. The
target routine interface is identical to that described under the TARGETPTR
parameter.

To code: Specify the RX-type address, or address in register (2)-(12), of the
target routine.

,TARGETSTATE=PROB
,TARGETSTATE=SUP

A required parameter that indicates the requested PSW state of the target
routine.

,TARGETSTATE=PROB
indicates the target routine is to get control in problem state. This should
only be used by a caller currently in problem state.

,TARGETSTATE=SUP
indicates the target routine is to get control in supervisor state. This should
only be used by a caller currently in supervisor state.

ABEND codes
The caller may get the following abend code:

0C2-02
TARGETSTATE=SUP was requested by a caller currently running in
problems tate.

Return codes
None.

Example
Branch to the target routine pointed to by field TP, and establish as an ARR the
routine pointed to by field AP. Pass to the target area in register 1 the contents of
field PP. Make sure that the ARR will get access to the contents of field APP
(which ordinarily would contain the address of a parameter area). Make sure that
the target routine gets control in problem state (which implies that the caller of
IEARR should currently be running in problem state).

The code is as follows.
IEAARR TARGETPTR=TP,ARRPTR=AP,PARAMPTR=PP,

ARRPARAMPTR=APP,TARGETSTATE=PROB
...

IEAARR macro

498 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 35. IEAFP — Floating point services

Description
IEAFP allows you to request that, for your work unit, the system will stop saving
additional floating point status. This status consists of the additional floating point
registers (FPRs) 1, 3, 5, 7-15 and the floating point control (FPC) register. In
addition, the system will stop saving vector register status.

You would typically use this service only when you are a server task which
"subdispatches" unrelated units of work (that is, CICS transactions). To avoid
subsequent units of work being penalized by the floating point actions of previous
units of work, the additional FP status saving function of the operating system can
be turned off. When a unit of work actually begins to use FP, all appropriate status
saving will be resumed.

IEAFP allows you to request that the system stop saving vector register status,
while continuing to save additional floating point status.

IEAFP allows you to request that the system start saving vector register status.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller is not required to hold any locks on entry. The

caller may hold the local, CMS, or CPU lock.
Control parameters: None

Programming requirements
The caller can include the IHAFPRET mapping macro to get equate symbols for
the return and reason codes provided by the IEAFP macro.

Restrictions
IEAFP must not be issued from an asynchronous exit routine.

Input register information
Before issuing the IEAFP macro, the caller does not have to place any information
into any general purpose register (GPR) or access register (AR) unless using it in
register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2016 499

|
|

|
|

|

Register
Contents

0 Reason code, when GPR 15 is non-zero

1 Used as a work register by the system

2-13 Unchanged

14-15 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The IEAFP macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEAFP.

IEAFP

� One or more blanks must follow IEAFP.

STOP

STOPVECTOR

START

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

IEAFP macro

500 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

||

||

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IEAFP macro
invocation. The name must conform to the rules for an ordinary assembler
language symbol.

STOP
STOPVECTOR
START

A required input parameter that specifies the type of request.

STOP
Indicates to stop saving additional floating point status and vector register
status until such time as new operations require it.

STOPVECTOR
Indicates to stop saving vector register status while continuing the saving
of floating point status.

START
Indicates that the system is to start saving vector register status. This is
intended for use primarily by preemptible SRBs but may be used by a task.
A preemptible SRB that intends to use vector registers must use IEAFP
START before the first vector register use.

IEAFP START is not supported for tasks that have any of the following
characteristics:
v Are disabled for I/O or external interrupts
v Hold a lock other than the LOCAL lock (of the home address space)
v Have an EUT FRR

Do not issue IEAFP START under any of the following conditions:
v From a non-preemptible SRB
v From a task that is the initiator task or a sibling of that task or an

ancestor of that task
v While holding any system locks other than the LOCAL lock of the home

address space

The service will not succeed in the event that storage cannot be obtained.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

IEAFP macro

Chapter 35. IEAFP — Floating point services 501

|
|

|
|
|

|
|
|
|
|

|
|

|

|

|

|

|

|
|

|
|

|

Return and reason codes
When the IEAFP macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro IHAFPRET provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 42. Return and reason codes for the IEAFP macro

Return code Reason code Equate symbol, meaning, and action

0 — Equate symbol: IeafpRc_OK

Meaning: IEAFP request successful.

Action: None required.

8 — Equate symbol: IeafpRc_InvParm

Meaning: IEAFP request specifies parmeters that are not
valid.

Action: Refer to the action provided with the specific
reason code.

8 xxxx0801 Equate symbol: IeafpRsnBadFunction

Meaning: Incorrect value passed to target routine.

Action: Check for possible storage overlay.

C — Equate symbol: IeafpRc_Env

Meaning: Environmental error

Action: Refer to the action provided with the specific
reason code.

C xxxx0C01 Equate symbol: IeafpRsnFromAsynchExit

Meaning: IEAFP was issued from an asynchronous exit
routine.

Action: Avoid issuing IEAFP from an asynchronous exit
routine.

C xxxx0C02 Equate symbol: IeafpRsnFromNonPreemptibleSRB

Meaning: IEAFP START was issued from an SRB that was
a non-preemptible SRB.

Action: Avoid issuing IEAFP from a non-preemptible SRB.

C xxxx0C03 Equate symbol: IeafpRsnNotFromBITCB

Meaning: IEAFP START was issued from a task that was
not the jobstep program task nor a subtask of that task.

Action: When using IEAFP START from a task, do so only
from the jobstep program task or a subtask of that task.

IEAFP macro

502 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|||

|
|

|

|||

|
|

|
|

Table 42. Return and reason codes for the IEAFP macro (continued)

Return code Reason code Equate symbol, meaning, and action

C xxxx0C04 Equate symbol: IeafpRsnLocked

Meaning: IEAFP START was issued while holding a
system lock other than the LOCAL lock.

Action: Use IEAFP START only when holding no system
lock or when holding only the LOCAL lock.

C xxxx0C05 Equate symbol: IeafpRsnNoStorage

Meaning: Necessary system storage could not be obtained.

Action: Use IEAFP START at an earlier time in the jobstep.

Example
Operation:

1. Stop additional status saving.

The code is as follows:
IEAFP STOP

IEAFP macro

Chapter 35. IEAFP — Floating point services 503

|||

|
|

|
|

|||

|

|

IEAFP macro

504 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 36. IEALSQRY — Linkage stack query

Description
The linkage stack query macro IEALSQRY checks the level of the current entry on
the linkage stack relative to the level of the entry associated with the most recent
recovery routine. The output of the macro is a value (in the TOKEN parameter) a
recovery routine can use to ensure that a retry routine runs with the appropriate
linkage stack entry. If the return code is not zero, the value in TOKEN is not valid.

Your program is to pass the value in TOKEN to a recovery routine. When the
recovery routine gets control, it can place that value in the SDWA field
SDWALSLV. That action ensures that, when a retry routine gets control, it has the
correct linkage stack level. For information about how to use the value in TOKEN,
see the topic about the linkage stack at a retry routine in z/OS MVS Programming:
Authorized Assembler Services Guide.

The output of IEALSQRY depends upon the current environment and on the
recovery environment that exists:
v If FRRs exist, the value returned in TOKEN is the difference between the current

level of the linkage stack and the level of the stack at the time the FRR was
activated.

v If no FRRs exist, but the caller holds a lock or is in SRB mode, a return code of 8
is returned.

v If no FRRs exist, and the caller is unlocked and in task mode, and at least one
ESTAE-type recovery routine is in effect, the output depends on the most
recently activated routine:
– If it is a STAE, STAI, or FESTAE routine, a return code of 8 is returned.
– If it is an ARR, the value returned in TOKEN is the difference between the

current level of the linkage stack and the level of the stack at the time the
ARR was activated.

– If it is an ESTAE or ESTAEX for the current RB, the value returned is the
difference between the current level of the linkage stack and the level of the
stack at the time the ESTAE or ESTAEX was activated.

– If it is an ESTAI, the value returned is the difference between the current level
of the linkage stack and the level of the stack at the time the newest PRB that
is older than the oldest non-PRB was created (or simply the newest PRB if all
the RBs are PRBs).

v If no FRRs exist, and the caller is unlocked and in task mode, and no ESTAEXs,
ESTAEs, STAEs, or FESTAEs exist for this RB and no ESTAIs, STAIs, or ARRs in
effect, a return code of 8 is returned.

See z/OS MVS Programming: Authorized Assembler Services Guide for further
information about the use of the SDWALSLV field.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, PSW key 8-15

© Copyright IBM Corp. 1988, 2016 505

Environmental factor Requirement
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
Amode: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller can hold the local lock of the primary address

space and can additionally hold the CMS lock. The caller
can hold the CPU lock. No locks are required. If the primary
address space does not match the home address space, the
caller must not hold the local lock of the home address
space.

Control parameters: Control parameters must be in the primary address space.

Programming requirements
None.

Restrictions
Do not issue the IEALSQRY macro in a DIE routine.

Input register information
Before issuing the IEALSQRY macro, the caller does not have to place any
information into a general purpose register (GPR) or access register (AR).

Output register information
When control returns to the caller from IEALSQRY, the GPRs contain:

Register
Contents

0 Output token value, which is copied to the area specified by the TOKEN
parameter.

1 Used as a work register by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Return code.

When control returns to the caller from IEALSQRY, the access registers (ARs)
contain:

Register
Contents

0-1 Used as work registers by the system.
2-13 Unchanged.
14 and 15

Used as work registers by the system.

Performance implications
This macro should not be used in a performance-sensitive program.

IEALSQRY macro

506 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax
The standard form of the IEALSQRY macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEALSQRY.

IEALSQRY

� One or more blanks must follow IEALSQRY.

Valid parameters

TOKEN=token token: RS-type address or register (1) - (12).

Default: Leave token in GPR 0.

,RETCODE=retcode retcode: RS-type address, or register (2) - (12).

Default: No retcode processing.

The parameters are explained as follows:

TOKEN=token
Specifies a halfword area (or the address of the area in register (1)-(12)) where
the system places a value that indicates the difference between the number of
linkage stack entries present when the recovery routine was activated and the
number that are currently present. A recovery routine can place this value in
field SDWALSLV (in mapping macro IHASDWA) to ensure that the retry
routine runs with the proper level of the linkage stack. If you do not use
TOKEN, you can find the value in GPR 0.

RETCODE=retcode
Specifies a fullword output variable (or register (2)-(12)) into which the system
copies the return code GPR 15. If you do not use RETCODE, you can find the
return code in GPR 15.

ABEND codes
The IEALSQRY caller might receive abend code X'B78'. For detailed abend code
information, see z/OS MVS System Codes.

Return codes
When control returns to the caller, register 15 contains one of the following decimal
return codes (hexadecimal values are shown in parentheses):

IEALSQRY macro

Chapter 36. IEALSQRY — Linkage stack query 507

Table 43. Return Codes for IEALSQRY

Return Code Meaning and Action

0 (0) Meaning: Successful completion. A valid value is in the TOKEN
parameter.

Action: None required.

4 (4) Meaning: The system encountered a linkage stack entry that
violates the authorization or stacking-PC conditions that are
required for successful retry.

Action: Avoid using the token when retrying. You cannot retry to
the current linkage stack level.

8 (8) Meaning: No recovery routine of the proper type exists. If in a
state from which you cannot issue ESTAEX, no FRR exists. If in a
state from which you can issue ESTAEX, either no recovery routine
exists or the most recently activated recovery routine is STAE,
STAI, or FESTAE.

Action: Avoid using the token when retrying. You cannot retry to
the current linkage stack level.

12 (C) Meaning: You called IEALSQRY in a DIE routine.

Action: Do not use the IEALSQRY macro in a DIE routine.

16 (10) Meaning: System error.

Action: Report the problem to IBM. Avoid using the token when
retrying. You cannot retry to the current linkage stack level.

Example
Obtain the value that a recovery routine can place in SDWALSLV:

IEALSQRY TOKEN=MYTOKEN
.
.
MYTOKEN DS H Output TOKEN

IEALSQRY macro

508 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 37. IEAMETR — Query external time reference status

Description
IEAMETR can be used to query external time reference (ETR) status and
connection information for the current MVS image. This information is returned in
the output area specified by the OUTAREA keyword.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Any state or key
Dispatchable unit mode: Either Task, SRB, or DIE mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: Any lock may be held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the IEAMETR macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the IEAMETR macro, the caller does not have to place any
information into any AR unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

© Copyright IBM Corp. 1988, 2016 509

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The IEAMETR macro is written as follows:

Syntax Description

xlabel xlabel: Optional symbol. Begin xlabel in column 1. The name must conform
to the rules for an ordinary assembler language symbol. DEFAULT: No
name.

� One or more blanks must precede IEAMETR.

IEAMETR

� One or more blanks must follow IEAMETR.

OUTADDR=xoutaddr

,MF=S Default: S

,MF=(L,xmfctrl,xmfattr | 0D)

,MF=(E,xmfctrl,COMPLETE)

Parameters
The parameters are explained as follows:

OUTADDR=xoutaddr
A required input parameter that contains the address of the 24-byte output
area to receive the output. The area is mapped by macro IHAETRI.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,MF=S | L | E
Optional keyword input that specifies the macro form.

S Specifies the standard form of the macro. Generates code to put the
parameters into an in-line parameter list and invoke the desired service.
Full checking for required macro keys is done along with supplying
defaults for omitted optional parameters.

DEFAULT: S

IEAMETR macro

510 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

L Specifies the list form of the macro. Defines an area to be used for the
parameter list. Any other macro parameters are flagged as errors.

E Specifies the execute form of the macro. Generates code to put the
parameters into the parameter list specified by xmfctrl and provides syntax
checking with default setting.

,xmfctrl
Required input. It is the name of a storage for the parameter list.

,xmfattr | 0D
Optional 60 character input string that varies from 1 to 60 characters. It can
contain any value that is valid on an assembler DS pseudo-op. You can use
this parameter to force boundary alignment of the parameter list.

DEFAULT: 0D. 0D forces the parameter list to a doubleword boundary.

,xmfctrl
Required input. It is the name (RS-type), or address in register (1)-(12), of a
storage area for the parameter list.

,COMPLETE
Optional keyword input that specifies the degree of macro parameter syntax
checking.

DEFAULT: COMPLETE. Checking for required macro keys is done, and
defaults are supplied for omitted optional parameters.

Return codes
Table 44. Return Codes for the IEAMETR Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: ETR status and port data was successfully obtained.

Action: None.

04 Meaning: ETR status information is available, but port is not.

Action: None.

08 Meaning: No status or port data is available.

Action: None.

0C Meaning: The parameter list is not in the user's primary address space.

Action: Use a parameter list in the primary address space.

IEAMETR macro

Chapter 37. IEAMETR — Query external time reference status 511

IEAMETR macro

512 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 38. IEAMRMF3 — Obtain address space
dispatchability data

Description
The IEAMRMF3 macro provides information about the dispatchability of address
spaces. Use IEAMRMF3 to determine which address spaces are currently running
on a processor and which address spaces are waiting for a processor. To get
information about the dispatchability of enclaves, use the IWMRQRY macro.
IMWRQRY is described in z/OS MVS Programming: Workload Management Services.

The output you receive from this macro contains an array of elements, with each
element representing an address space. For each address space, the system
indicates that the address space is one of the following:
v Dispatchable and running on a processor
v Dispatchable and waiting to run on a processor
v Not dispatchable.

The number of elements you receive is the maximum number of address spaces in
the system.

Use the IEAMRMF3 macro for monitoring your system. Typically, a monitoring
program issues the macro repeatedly to obtain samples over a period of time. For
some invocations of the macro, the system might be unable to retrieve the data,
and the caller receives a return code of 4. However, this is generally a temporary
condition; if the caller was issuing the macro repeatedly, the caller should continue
to do so and should receive data on subsequent invocations. If the caller receives
return code 4 several times in succession, the caller should stop issuing the macro.
How many times the caller issues the macro after a return code of 4 is up to the
installation.

Under certain conditions, the system abnormally ends the caller of IEAMRMF3
with an X'0C4' abend code. The caller must supply its own recovery routine to
capture this abend code and retry.

Environment
Requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held, except the CPU lock if the caller is disabled

for I/O and external interrupts.
Control parameters: Must be in the primary address space

© Copyright IBM Corp. 1988, 2016 513

Programming requirements
The caller must obtain storage for the output returned by this macro. See the
OUTAREA parameter for further information.

Include the following mapping macros in the module that calculates the size of the
storage area for the output:
v IHADSD, which maps the DSD data area
v IHAASVT, which maps the ASVT data area
v CVT, which maps the CVT data area
v IHAPSA, which maps the PSA data area

If a separate module examines the data returned by IEAMRMF3, that module must
also include the IHADSD mapping macro.

For the mappings provided by the IHAASVT, CVT, IHADSD, and IHAPSA
mapping macros, see the information in z/OS MVS Data Areas in the z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Restrictions
None.

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the caller issued the macro. Therefore, if the caller depends on these
registers containing the same value before and after issuing the macro, the caller
must save these registers before issuing the macro and restore them after the
system returns control.

On entry to IEAMRMF3, general purpose register (GPR) 13 must contain the
address of a 72-byte standard save area. If the caller is disabled, the save area must
be pagefixed.

When control is returned to the calling program, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control is returned to the calling program, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

IEAMRMF3 macro

514 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Performance implications
None.

Syntax
The standard form of the IEAMRMF3 macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IEAMRMF3.

IEAMRMF3

� One or more blanks must follow IEAMRMF3.

OUTAREA=area name area name: Symbol.

Parameters
The parameter is explained as follows:

OUTAREA=area name
The required parameter that specifies the name of the area of storage to
contain the output from the macro. The output contains an array of elements;
each element represents an address space. The output is mapped by the
IHADSD mapping macro.

The caller must obtain storage for area name on a fullword boundary, in the
caller's primary address space. The caller is not required to initialize area name.
If the caller is disabled, area name must be pagefixed.

Before issuing IEAMRMF3, you need to determine the size of the output area
and obtain storage for it. To do so, use the following formula to determine the
length of an element:
(DSDRSVD - DSDELEM) + (length of DSDRSVD)

Then, use that value in the following formula to determine the total size of area
name:
(ASVTMAXU * length of an element) + (length of DSDFIXED)

ASVTMAXU is a field in the ASVT data area. DSDFIXED, DSDRSVD, and
DSDELEM are fields in the DSD data area.

For each element representing an address space, the following are true:
v If the DSDUSING bit in the DSD is on, the address space is dispatchable and

running on a processor.
v If the DSDWAIT bit in the DSD is on, the address space is dispatchable and

is waiting to run on a processor.
v If neither the DSDUSING bit nor the DSDWAIT bit in the DSD is on, then

either the address space is not dispatchable or the element does not
represent a valid address space.

IEAMRMF3 macro

Chapter 38. IEAMRMF3 — Obtain address space dispatchability data 515

Return codes
When control returns from IEAMRMF3, GPR 15 contains one of the following
return codes:

Table 45. Return Codes for the IEAMRMF3 Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: Data successfully collected.

Action: None.

04 Meaning: The system was not able to gather the data on this invocation of the
macro.

Action: Reissue the macro. If you receive return code 4 several times in
succession, you need to stop issuing the macro and inform your technical
support personnel.

Example
Issue the IEAMRMF3 macro to obtain address space dispatchability data. The caller
in this example is enabled for I/O and external interrupts, and is APF-authorized.

In this example, the caller issues IEAMRMF3 only once. If the return code from
IEAMRMF3 is zero, the caller loops through the elements to look at the data, and
does not issue the macro again. If the return code is not zero, the caller does not
make another attempt to obtain data. A more typical scenario would be to issue
the macro repeatedly if the return code is zero to obtain data over a period of time,
and to issue the macro again even if the return code is 4, hoping to obtain data on
a subsequent invocation. This example is intended only as an illustration of how to
issue the macro, and an illustration of one way you might look at the data
returned by the macro.
MONITOR CSECT
MONITOR AMODE 31
MONITOR RMODE ANY
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*

USING *,R15 Establish addressability
*

STM R14,R12,12(R13) Save registers in caller’s save
* area

DROP R15
LR R12,R15 Copy base register R12 because R15

* is volatile across interfaces used
* in this module
@PSTART EQU MONITOR

USING @PSTART,R12 Reestablish addressability using

IEAMRMF3 macro

516 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

* R12 as base register
**
*
* Invoke the IEAMRMF3 service to obtain address space
* dispatchability data.
*
**
*
* Change to key 0, supervisor state
*

MODESET KEY=ZERO,MODE=SUP
*
* Obtain storage for a register save area to pass to IEAMRMF3
*

LA R0,72
GETMAIN RU,LV=(R0)
LR R4,R13 Save the caller’s save area

* address
LR R13,R1 Get address of save area to

* pass to IEAMRMF3
*
* Calculate the size of the storage to obtain for the output from
* IEAMRMF3:
* (ASVTMAXU * length of an element) + (length of DSDFIXED)
*

USING PSA,0
L R2,FLCCVT Get pointer to the CVT from the

* PSA
L R9,CVTASVT-CVTMAP(,R2) Get pointer to the ASVT from

* the CVT
L R9,ASVTMAXU-ASVT(,R9) Get ASVTMAXU
LA R11,ELEMSIZE Get the length of an element
MR R8,R11 Multiply
LA R6,L’DSDFIXED Get the length of DSDFIXED
AR R9,R6 Add to get total

*
* Obtain storage for the DSD data area
*

GETMAIN RU,LV=(R9)
*
* Issue the IEAMRMF3 macro to return address space dispatchability data
* Note: Register 13 contains the address of the 72-byte save area to
* pass to IEAMRMF3.
*

LR R6,R1 Move address of storage that
* was just obtained into R6.
*

USING DSD,R6 Map the DSD on the storage area
* that was just obtained.
*

IEAMRMF3 OUTAREA=DSD Issue the IEAMRMF3 macro passing
* the DSD data area to be used for
* the output.
*

LTR R15,R15 Check return code from IEAMRMF3.
BNZ NODATA For a nonzero return code,

* do not attempt to look at data.
*
* Look at the elements that are filled in by using the DSDINDXF field
* to find the first element, and the DSDINDXN field to chain to
* the next element.
*

LH R11,DSDINDXF Get the index of the first entry
* that is filled in. If the value
* is x’FFFF’ then no entries are
* filled in.

L R7,DSDAPTR Get the address of the array

IEAMRMF3 macro

Chapter 38. IEAMRMF3 — Obtain address space dispatchability data 517

NEXTELEM DS 0H
CH R11,=X’FFFF’ If the index is x’FFFF’ then

* this is the last element that is
* filled in.

BE ALLDONE There are no more elements to
* process.

BCTR R11,0 Decrement the index by 1. The
* entry for ASID 1 is the first
* entry.

LA R2,ELEMSIZE Get the element size
MR R10,R2 Multiply the index by the

* element size.
AR R11,R7 Add the array pointer and the

* result to obtain the address of
* the entry that we want to look at

USING DSDELEM,R11
* . This area contains whatever code
* . the routine uses to look at the
* . required fields.
*

LH R11,DSDINDXN Obtain the index of the next
* entry to look at.

DROP R11
B NEXTELEM Go process the next element

*
NODATA DS 0H

LR R2,R15 Save the nonzero return code
* from IEAMRMF3 in R2. R15 is
* volatile across the interfaces.

B FREESTOR
ALLDONE DS 0H
*
* Set a return code of zero.
*

LA R2,0 Save the zero return code that
* this module sets in R2. R15 is
* volatile across the interfaces.
*
FREESTOR DS 0H
*
* Free the storage for the register save area passed to IEAMRMF3.
*

LA R0,72
FREEMAIN RU,LV=(R0),A=(13)

*
* Restore the caller’s save area address
*

LR R13,R4
*
* Free the storage for the DSD data area
*

FREEMAIN RU,LV=(R9),A=(6)
DROP R6 Drop addressability to the

* DSD data area.
*
* Change to problem state, not key 0
*

MODESET KEY=NZERO,MODE=PROB
*

LR R15,R2 Copy the return code to
* R15.

L R14,12(R13)
LM R0,R12,20(R13)
BR R14 Return to the caller
DROP R12

*
* Equate for length of an element:

IEAMRMF3 macro

518 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

*
ELEMSIZE EQU DSDRSVD-DSDELEM+L’DSDRSVD

EJECT
IHAASVT LIST=NO Mapping macro for the ASVT
EJECT
CVT DSECT=YES,LIST=NO Mapping macro for the CVT
EJECT
IHADSD LIST=YES Mapping macro for the DSD
EJECT
IHAPSA LIST=NO Mapping macro for the PSA
END MONITOR

IEAMRMF3 macro

Chapter 38. IEAMRMF3 — Obtain address space dispatchability data 519

IEAMRMF3 macro

520 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 39. IEAMSCHD — Schedule an SRB

Description
Use the IEAMSCHD macro to schedule a service request block (SRB) for
asynchronous execution. When you schedule an SRB, you can specify dispatching
priority and processor affinity. Preemptable SRBs
(PRIORITY=CLIENT,PRIORITY=ENCLAVE, or PRIORITY=PREEMPT) can also be
scheduled with a minor priority.

Optionally, the scheduling program can specify:
v A functional recovery routine (FRR)
v A resource manager termination routine (RMTR)

The scheduling program can specify an RMTR to be invoked by the PURGEDQ
service. The RMTR is responsible for cleaning up resources on behalf of an SRB
routine if it has been purged by PURGEDQ before it is dispatched.

IBM recommends using IEAMSCHD rather than the SCHEDULE macro. For
information about how to schedule an SRB, see z/OS MVS Programming: Authorized
Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: PSW key 0-7, or supervisor state with any PSW key.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any HASN, any PASN, any SASN
AMODE: 31-bit
ASC mode: Primary, or access register
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any. A

caller who specifies SYNCH=YES cannot hold any locks.
Control parameters: Control parameters must be in the primary address space.

Programming requirements
v If the caller specifies RMTRADDR, the resource manager termination routine

must reside in MVS common storage.
v If the caller specifies PRIORITY=ENCLAVE, the enclave token must have been

previously obtained through the IWMECREA macro.

Restrictions
v Address space resource managers cannot use the STOKEN parameter.
v If you issue IEAMSCHD from a set DIE routine, you cannot specify

PRIORITY=CURRENT, you cannot specify SYNCH=YES, and the DIE routine
must be running in supervisor state, with PSW key 0.

v If your program specifies SYNCH=YES and the scheduled SRB issues the
SRBSTAT SAVE macro or invokes any services that issue SRBSTAT SAVE, control
returns to your program immediately.

© Copyright IBM Corp. 1988, 2016 521

Input register information
Before issuing the IEAMSCHD macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the IEAMSCHD macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEAMSCHD macro.

IEAMSCHD

� One or more blanks must follow IEAMSCHD macro.

EPADDR=epaddr epaddr: RS-type address or register (2) - (12).

,ENV=HOME Default: HOME

IEAMSCHD macro

522 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,ENV=PRIMARY

,ENV=FULLXM

,ENV=STOKEN

,TARGETSTOKEN=targetstoken targetstoken: RS-type address or register (2) - (12).

,FEATURE=NONE Default: NONE

,FEATURE=CRYPTO

,PRIORITY=LOCAL Default: LOCAL

,PRIORITY=GLOBAL

,PRIORITY=CURRENT

,PRIORITY=PREEMPT

,PRIORITY=CLIENT

,PRIORITY=ENCLAVE

,MINORPRIORITY=ZERO Default: ZERO

,MINORPRIORITY=minorpriority minorpriority: RS-type address or register (2) - (12).

,SRBIDTOKEN=token token: 16-byte output area.

,CLIENTSTOKEN=clientstoken clientstoken: RS-type address or register (2) - (12).

,ENCLAVETOKEN=enclavetoken enclavetoken: RS-type address or register (2) - (12).

,PARM=ZERO Default: ZERO

,PARM=parm parm: RS-type address or register (2) - (12).

,FRRADDR=NOFRR Default: NOFRR

,FRRADDR=frraddr frraddr: RS-type address or register (2) - (12).

,SDWALOC31=NO Default: NO

,SDWALOC31=YES

,KEYVALUE=INVOKERKEY Default: INVOKERKEY

,KEYVALUE=keyvalue keyvalue: RS-type address or register (2) - (12).

,LLOCK=NO Default: NO

,LLOCK=YES

IEAMSCHD macro

Chapter 39. IEAMSCHD — Schedule an SRB 523

Syntax Description

,RMTRADDR=NORMTR Default: NORMTR

,RMTRADDR=rmtraddr rmtraddr: RS-type address or register (2) - (12).

,PURGESTOKEN=NOPSTOKEN Default: NOPSTOKEN

,PURGESTOKEN=purgestoken purgestoken: RS-type address or register (2) - (12).

,PTCBADDR=NOPTCB Default: NOPTCB

,PTCBADDR=ptcbaddr ptcbaddr: RS-type address or register (2) - (12).

,FLAGS=NO_FLAGS Default: NO_FLAGS

,FLAGS=flags flags: RS-type address or register (2) - (12).

,SYNCH=NO Default: NO

,SYNCH=YES

,SYNCHCOMPADDR=NOVALUE Default: NOVALUE

,SYNCHCOMPADDR=compaddr compaddr: RS-type address or register (2) - (12).

,SYNCHCODEADDR=codeaddr codeaddr: RS-type address or register (2) - (12).

,SYNCHRSNADDR=rsnaddr rsnaddr: RS-type address or register (2) - (12).

,TRANSFER=NO Default: NO

,TRANSFER=YES

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

,PLISTVER=3

,PLISTVER=4

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

IEAMSCHD macro

524 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

||

||

||

|

|

Syntax Description

Parameters
The parameters are explained as follows:

EPADDR=epaddr
Specifies the address of the SRB routine to be scheduled for asynchronous
execution.

Note: The SRB routine receives control in 31–bit addressing mode.

To code: Specify the name (RS-type), or address in register (2)-(12), of a
required 4-byte input parameter.

,ENV=HOME
,ENV=PRIMARY
,ENV=FULLXM
,ENV=STOKEN

Optional input parameter that specifies the addressing and cross memory
environment in which the SRB routine is to receive control.

HOME
Specifies that the SRB routine is to receive control in the current home
address space.

Default: HOME

PRIMARY
Specifies that the SRB routine is to receive control in the current primary
address space.

FULLXM
Specifies that the SRB routine is to receive:
v Control in the scheduling program's current cross memory environment
v A copy of the scheduling program's dispatchable unit-access list

(DU-AL). For details about how the system copies a DU-AL, see the
topic on access lists in z/OS MVS Extended Addressability Guide.

This provides the SRB routine with addressability to the same address
spaces and data spaces as the scheduling program.

STOKEN
Specifies that the SRB routine is to receive control in the address space
specified by TARGETSTOKEN=targetstoken. If the target stoken passed is
no longer valid, then the caller receives AC7 abend code with reason code
X'00080001'.

,TARGETSTOKEN=targetstoken
Specifies the space token (STOKEN) of the address space in which the SRB
routine is to receive control.

To code: Specify the name (RS-type), or address in register (2)-(12), of a
required 64-bit input parameter.

,PRIORITY=LOCAL
,PRIORITY=GLOBAL
,PRIORITY=CURRENT
,PRIORITY=PREEMPT

IEAMSCHD macro

Chapter 39. IEAMSCHD — Schedule an SRB 525

,PRIORITY=CLIENT
,PRIORITY=ENCLAVE

Optional input parameter that specifies the priority at which the SRB routine is
dispatched, and whether the SRB is to be preempted.

LOCAL
Schedules an SRB at a priority equal to that of the address space into
which it was scheduled. With a LOCAL priority, an SRB has a higher
priority than any task or preemptable SRB in that address space.

Default: LOCAL

GLOBAL
Schedules an SRB at a priority equal to the highest priority work in the
system, regardless of the address space into which it was scheduled. An
SRB scheduled with PRIORITY=GLOBAL is not preemptable.

CURRENT
Schedule an SRB at a priority equal to that of the scheduling work unit.

Task Mode Callers: For task mode callers, the SRB is always preemptable.
If the task has joined an enclave, the SRB routine inherits the enclave's
major priority and the task's minor priority. Otherwise, the SRB routine
inherits the major priority of the task's home address space and the minor
priority of the task. If the scheduling task and the scheduled SRB have
different home address spaces, then the scheduled SRB is also converted to
a client SRB.

Nonpreemptable SRB Mode Callers: For SRB mode callers that are not
preemptable, the scheduled SRB inherits the PRIORITY option used to
schedule the scheduling SRB routine:
v If PRIORITY=GLOBAL was used, the scheduled SRB will have a priority

as high as the highest priority in the system.
v If PRIORITY=LOCAL was used, the scheduled SRB will have a priority

that is higher than any task or preemptable SRB in the scheduled SRB's
home address space.

Preemptable SRB Mode Callers: For preemptable SRB mode callers, the
scheduled SRB is always preemptable. If the scheduling SRB was
scheduled into an enclave, the scheduled SRB inherits the enclave's major
priority and the scheduling SRB's minor priority. Otherwise, the scheduled
SRB inherits the major priority of the scheduling SRB's home address space
and the minor priority of the scheduling SRB. If the scheduling SRB and
the scheduled SRB have different home address spaces, then the scheduled
SRB is also converted to a client SRB.

PREEMPT
Schedules a preemptable SRB routine that inherits the major priority of the
target home address space (the home address space as specified on the
ENV parameter).

CLIENT
Schedules a preemptable SRB that inherits the major priority of the address
space named by the STOKEN specified on the CLIENTSTOKEN parameter.
The processor time used by this SRB is accumulated in the address space
specified by the clientstoken.

ENCLAVE
Schedules a preemptable RB into an enclave. The SRB inherits the major

IEAMSCHD macro

526 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

priority of the enclave specified on the ENCLAVETOKEN keyword. The
processor time used by this SRB is accumulated in the enclave specified by
the enclavetoken.

,MINORPRIORITY=ZERO
,MINORPRIORITY=minorpriority

Specifies the minor priority to assign to the SRB routine. SRB routines with
higher minor priority are dispatched before preemptable-class SRB routines
and before tasks with lower minor priority in the same address space. A minor
priority of X'00' is the lowest and X'FF' is the highest.

The minor priority parameter assigns the SRB routine a priority that is
comparable to a task's dispatching priority in the address space. The caller can
specify priorities for SRB routines so that they are dispatched before, with, or
after tasks in the address space.

Default: ZERO

To code: Specify the name (RS-type), or address in register (2)-(12), of an 8-bit
input parameter. MINORPRIORITY is optional for PRIORITY=PREEMPT,
PRIORITY=CLIENT, and PRIORITY=ENCLAVE.

,SRBIDTOKEN=token
Specifies the name of an optional 16-byte output area where a token is placed
to be used to fully identify the SRB to the system. The token is used to request
termination of a preemptable SRB via CALLRTM TYPE=SRBTERM. The
SRBIDTOKEN keyword may be used even if the program runs on a release for
which the support is not provided or on a release on which the support is not
installed. If the program is running on a release that supports SRBIDTOKEN,
the returned SRBIDTOKEN will have a non-zero value in the first eight bytes.

SRBIDTOKEN is optional for PRIORITY=PREEMPT, PRIORITY=CLIENT, and
PRIORITY=ENCLAVE.

,CLIENTSTOKEN=clientstoken
Specifies the space token (STOKEN) of the address space where the processor
time used by the SRB is to be accumulated. The SRB also inherits the major
priority of this address space. This parameter is a required input parameter for
PRIORITY=CLIENT.

To code: Specify the name (RS-type), or address in register (2)-(12), of a
required 64-bit parameter.

,ENCLAVETOKEN=enclavetoken
Specifies the enclave token representing the group of SRB routines. The enclave
token must be obtained prior to scheduling the SRB.

To code: Specify the name (RS-type), or address in register (2)-(12), of an
8-character input parameter. ENCLAVETOKEN=enclavetoken is required for
PRIORITY=ENCLAVE.

,FEATURE=NONE
,FEATURE=CRYPTO

Optional parameter that specifies affinity to specific processors.

NONE
Specifies that there is no affinity to specific processors.

CRYPTO
Specifies that the SRB routine must run on a processor that has an
Integrated Cryptographic Feature (ICRF) associated with it. When you
specify this parameter, the system assigns the correct processor affinity for

IEAMSCHD macro

Chapter 39. IEAMSCHD — Schedule an SRB 527

the SRB routine. Use FEATURE=CRYPTO only for SRB routines whose
exclusive purpose is to encrypt or decrypt data.

Default: NONE

LLOCK=NO
LLOCK=YES

Specifies whether the SRB is to receive control with the LOCAL lock held. The
LOCAL lock is the lock of the home address space.

Default: NO

,FRRADDR=NOFRR
,FRRADDR=frraddr

Specifies the name (RS-type), or address in register (2)-(12), of an optional 4
byte input that contains the address of the Functional Recovery Routine (FRR)
that is to be established prior to the SRB routine receiving control. The low bit
of this address should not be set on. If it is set on, that bit will not be treated
as part of the FRR address, but will be treated as indicating SDWALOC31=YES
and will override the specification, or default, of SDWALOC31=NO.

The FRR receives control in supervisor state, PSW key 0, primary ASC mode,
31-bit addressing mode, holding the same locks the SRB routine held at the
time of error. The FRR receives control with the same PASID, SASID, and
HASID as the SRB routine had on entry.

If you specify LLOCK=YES, then the FRR should release the LOCAL lock prior
to the completion of its processing.

Default: NOFRR. The SRB routine will receive control without its own FRR.

To code: Specify the name (RS-type), or address in register (2)-(12), of an
optional 4-byte input parameter.

SDWALOC31=NO
SDWALOC31=YES

Specifies whether the FRR specified by FRRADDR can tolerate an SDWA in
31-bit addressable storage. Considering that 31-bit storage is less likely to be
constrained than 24-bit storage and RTM skips FRRs for which it can not
obtain an SDWA, use SDWALOC31=YES whenever possible. SDWALOC31 is
valid only for FRRADDR.

Default: NO

,KEYVALUE=INVOKERKEY
,KEYVALUE=keyvalue

Specifies the name or address of an optional 8-bit input. Bits 0-3 contain the
PSW key in which the SRB is to receive control. Bits 4-7 are ignored. For
example, the byte required to specify PSW key 7 contains the value X'70', and
the byte required to specify PSW key 11 contains the value X'BO'.

Default: INVOKERKEY

If INVOKERKEY is not specified the SRB routine receives control with the
PSW key of the invoker of the IEAMSCHD macro.

To code: Specify the name (RS-type), or address in register (2)-(12), of an
optional 8-bit input parameter.

RMTRADDR=NORMTR
RMTRADDR=rmtraddr

Specifies the address of an SRB resource manager termination routine (RMTR).

IEAMSCHD macro

528 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

RMTRs are responsible for cleaning up resources on behalf of an SRB routine
that has been purged by the PURGEDQ service before the SRB is first
dispatched.

The RMTR must reside in the MVS common area because the address space
where the RMTR will get control is unpredictable at the time of the invocation
of the IEAMSCHD macro. It is called from the PURGEDQ service and will
receive control in task mode, supervisor state, PSW key 0, primary ASC mode,
and 31-bit AMODE. If bit 31 of the RMTRADDR is one, control is received
with the local lock held and control can return to the PURGEDQ service with
or without the local lock held, but must not hold any other locks upon return.
If bit 31 of the RMTRADDR is zero, control is received with no locks held and
control must be returned to the PURGEDQ service with no locks held. Bit 31 of
RMTRADDR is treated as zero when determining the RMTR address.

Default: NORMTR

To code: Specify the name (RS-type), or address in register (2)-(12), of an
optional 4-byte input parameter.

,PARM=ZERO
,PARM=parm

Specifies input to be loaded into register 1 when the SRB routine receives
control.

Default: ZERO

To code: Specify the name (RS-type), or address in register (2)-(12), of a
fullword input parameter.

,PURGESTOKEN=NOPSTOKEN
,PURGESTOKEN=purgestoken

Specifies the space token of an address space to be associated with this SRB
routine. During memory termination, all SRB routines that are scheduled into
the address space and have not received control are purged and control will be
given to each SRB routine's RMTR.

The address space represented by the purgestoken does not have to be the same
as the address space where the SRB routine will be dispatched.

Default: NOPSTOKEN

To code: Specify the name (RS-type), or address in register (2)-(12), of an
optional 64-bit input parameter.

,PTCBADDR=NOPTCB
,PTCBADDR=ptcbaddr

Specifies the address of the TCB to be related to the SRB routine. When a
SYNCH=NO SRB routine scheduled with a related task terminates abnormally
and the FRR for the SRB routine does not exist or percolates, the error is
percolated to the recovery routine of the related task. This is known as
SRB-to-task percolation.

If you specify PTCBADDR, then you must specify PURGESTOKEN.

Default: NOPTCB

To code: Specify the name (RS-type), or address in register (2)-(12), of an
optional 4-byte input parameter.

,FLAGS=NO_FLAGS

IEAMSCHD macro

Chapter 39. IEAMSCHD — Schedule an SRB 529

,FLAGS=flags
Specifies an optional 1-byte input/output field that provides information about
the scheduling of the SRB. The caller must zero this byte before invoking
IEAMSCHD.
v When bit 7 (the x'01' bit) is on, the SRB has been successfully scheduled.
v When bit 7 is off, but bit 6 (the x'02' bit) is on, the system had just begun the

final part of the scheduling of the SRB, but that did not complete
successfully; it is not known whether the SRB will or will not get control.

v When both bits 6 and 7 are off, the SRB was not successfully scheduled. This
will be an extremely rare circumstance.

These bit definitions are true whether control returns normally to the caller or
whether control passes to the caller's recovery. The byte must be in
disabled-reference or page-fixed storage.

Default: NO_FLAGS

To code: Specify the name (RS-type), or address in register (2)-(12), of an
optional 1-byte input output parameter.

,SYNCH=NO
,SYNCH=YES

Specifies whether or not the caller's work unit is to be suspended until the
scheduled SRB completes, is purged, or ends abnormally:

SYNCH=NO
The SRB is to be scheduled but not synchronized with the caller's work
unit.

SYNCH=YES
The SRB is to be scheduled and synchronized with the caller's work unit;
the caller's work unit is suspended until the SRB completes, is purged, or
ends abnormally. SRB to task percolation does not occur when the SRB is
scheduled with the SYNCH=YES option.

Default: NO

Note that when a task invokes IEAMSCHD with SYNCH=YES, SRB to Task
percolation is disabled because the task may use the SynchCompAddr,
SynchCodeAddr, and SynchRsnAddr parameters to be notified of SRB
ABENDs.

,SYNCHCOMPADDR=NOVALUE
,SYNCHCOMPADDR=compaddr

When you specify SYNCH=YES, you can specify this optional parameter,
which contains one of the following completion codes when the caller's work
unit resumes:

Code Meaning

0 SRB completed successfully.

8 SRB ended abnormally; there is an associated reason code.

12 SRB ended abnormally; there is no associated reason code.

16 PURGEDQ processing purged the SRB.

20 SRB state is undetermined. It was dispatched but did not complete. A
probable cause is address space termination or an error in the dynamic
address translation (DAT) process.

IEAMSCHD macro

530 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|
|

24 SRB was not scheduled; SYNCHCODEADDR contains the return code
from the SUSPEND service.

28 SRB was not scheduled; SYNCHCODEADDR contains the abend code
from the SUSPEND service.

Default: NOVALUE

To code: Specify the name (RS-type) of an optional 4-byte input area that
contains the address of the fullword that is to hold the data to be returned.
When you specify this parameter, you must also specify SYNCHCODEADDR
and SYNCHRSNADDR, which can provide additional information about the
completion code.

,SYNCHCODEADDR=codeaddr
When the caller's work unit resumes, contains information associated with the
completion code returned through SYNCHCOMPADDR. The completion codes
and the associated information are:

Code SYNCHCODEADDR Contents

0 Contents of GPR 15 when the SRB completed.

8 Abend code in the same format as field SDWAABCC in the SDWA.

12 Abend code in the same format as field SDWAABCC in the SDWA.

16 X'FFFFFFFF' (-1), indicating that there is no meaningful value to return.

20 X'FFFFFFFF' (-1), indicating that there is no meaningful value to return.

24 Return code from the SUSPEND service. The SRB was not scheduled
because this work unit could not be successfully suspended.

28 Abend code from the SUSPEND service. The SRB was not scheduled
because this work unit could not be successfully suspended.

For example, if SYNCHCOMPADDR contains a completion code of 8, then
SYNCHCODEADDR contains an abend code. (If the scheduled SRB exits with
the TCTL macro, SYNCHCODEADDR does not contain meaningful data; its
contents are unpredictable.)

To code: Specify the name (RS-type) of an optional 4-byte input area that
contains the address of the fullword that is to hold the data to be returned.

,SYNCHRSNADDR=rsnaddr
When the caller's work unit resumes, contains additional information
associated with the completion code returned through SYNCHCOMPADDR
and the information returned through SYNCHCODEADDR. The completion
codes and the associated information are:

Code SYNCHRSNADDR Contents

0 Contents of GPR 0 when the SRB completed.

8 Reason code associated with an abend code.

12 X'FFFFFFFF' (-1), indicating that there is no meaningful value to return.

16 X'FFFFFFFF' (-1), indicating that there is no meaningful value to return.

20 X'FFFFFFFF' (-1), indicating that there is no meaningful value to return.

24 X'FFFFFFFF' (-1), indicating that there is no meaningful value to return.

28 Reason code associated with the abend code issued during an
unsuccessful attempt to suspend the current work unit.

IEAMSCHD macro

Chapter 39. IEAMSCHD — Schedule an SRB 531

For example, if SYNCHCOMPADDR contains a completion code of 8, then
SYNCHCODEADDR contains an abend code, and SYNCHRSNADDR contains
the reason code associated with the abend code. (If the scheduled SRB exits
with the TCTL macro, SYNCHCODEADDR and SYNCHRSNADDR do not
contain meaningful data; the contents of both are unpredictable.)

To code: Specify the name (RS-type) of an optional 4-byte input area that
contains the address of the fullword that is to hold the data to be returned.

,TRANSFER=NO
,TRANSFER=YES

An optional input parameter for a task scheduler of an SRB to specify whether
the SRB can "take over" the current dispatch from the task (for instance, if the
SRB work is considered to have higher importance than the task).

TRANSFER=NO
Specifies that the SRB is to be dispatched normally.

TRANSFER=YES
Specifies that an attempt is to be made to transfer control to the SRB if the
requestor is running enabled and in task mode. If the transfer is successful,
the requestor will be re-dispatched immediately.

TRANSFER=YES is ignored for the following cases:
v A SYNCH=YES request.
v Running in SRB mode.
v The caller holds any locks.

Default: NO

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3
,PLISTVER=4

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all

IEAMSCHD macro

532 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|
|
|

|
|

|
|
|
|

|

|

|

|

|

|
|
|

the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 0, supports only the following parameters:
– CLIENTSTOKEN
– ENCLAVETOKEN
– ENV
– EPADDR
– FEATURE
– FRRADDR
– KEYVALUE
– LLOCK
– MINORPRIORITY
– PARM
– PLISTVER
– PRIORITY
– PTCBADDR
– PURGESTOKEN
– RMTRADDR
– TARGETSTOKEN
– TRANSFER

v 1, supports the following parameters, and parameters from version 0:
– SYNCH
– SYNCHCODEADDR
– SYNCHCOMPADDR
– SYNCHRSNADDR

v 2, supports version 2 parameters (of which there are currently none
documented), and parameters from any lower versions.

v 3, supports the following parameter, and parameters from any lower
versions:
– SRBIDTOKEN

v 4, supports the following parameter, and parameters from any lower
versions:
– FLAGS

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, 2, 3, or 4

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

IEAMSCHD macro

Chapter 39. IEAMSCHD — Schedule an SRB 533

|

|
|

|
|

|

|
|

|

|

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes
IEAMSCHD might abnormally end with system completion code AC7. See z/OS
MVS System Codes for an explanation and programmer responses for this code.

Return codes
When the IEAMSCHD macro returns control to your program, GPR 15 contains a
return code.

Table 46. Return Codes for the IEAMSCHD Macro

Hexadecimal
Return Code

Meaning

00 Meaning: Successful completion.

04 Meaning: Warning. The enclave token is not valid. The enclave token specified
on the ENCLAVETOKEN parameter has been reused for a new enclave. The SRB
was not scheduled.

08 Meaning: Program error. The client STOKEN address space has failed. The SRB
was not scheduled.

0C Meaning: Program error. The purge STOKEN address space has failed. The SRB
was not scheduled.

10 Meaning: Program error. The target STOKEN address space has failed. The SRB
was not scheduled.

1C Meaning: Program error. A SYNCH=YES SRB was not scheduled or did not
complete successfully. This is set only if the SYNCHCOMPADDR parameter is
used with an operand that is not NOVALUE and does not indicate that location
0 is to be where data is returned. The values returned on SYNCHCOMPADDR,
SYNCHCODEADDR, and SYNCHRSNADDR contain additional information.

IEAMSCHD macro

534 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Examples
Example 1

Schedule a local SRB routine to the current home address space. The SRB routine
will be entered in the same key as the scheduling program.
*
SCHED_SRB_RTN EQU *

IEAMSCHD EPADDR=EP_ADDR,ENV=HOME,PRIORITY=LOCAL
.
.
.

EP_ADDR DC A(SRB_ROUTINE) Address of Entry Point for SRB
*

Example 2

Schedule an SRB routine to the current primary address space which has the same
addressability and cross memory environment as the scheduling program and has
a GLOBAL priority. The SRB routine is to receive control in PSW Key 0.
*
SCHED_SRB_RTN EQU *

IEAMSCHD EPADDR=EP_ADDR,ENV=FULLXM, X
PRIORITY=GLOBAL, X
KEYVALUE=PSW_KEY_0

.

.

.
EP_ADDR DC A(SRB_ROUTINE) Address of Entry Point for SRB
PSW_KEY_0 DC X’00’ PSW Key 0
*

Example 3

Schedule an SRB routine at a priority that is the lowest in the enclave identified by
the token in ENCLAVE_TOKEN. The SRB routine is to receive control in the
current home address space with an FRR established and holding the local lock of
the current home address space. It is to run in the current home address space and
is to run in key 2. The SRB routine has a resource manager termination routine
whose entry point address is in RMTR_ADDR. The current task's recovery is to
receive control should the SRB routine's recovery percolate and the SRB routine
should be purged if the current task terminates. This example assumes that
ENCLAVE_TOKEN and PURGE_STOKEN were previously initialized.
*
SCHED_SRB_RTN EQU *

USING PSA,0 Base Prefixed Save Area
*

IEAMSCHD EPADDR=EP_ADDR,FRRADDR=FRR_ADDR, X
KEYVALUE=PSW_KEY_2,PRIORITY=ENCLAVE, X
ENCLAVETOKEN=ENCLAVE_TOKEN, X
MINORPRIORITY=MINOR_PRIORITY, X
RMTRADDR=RMTR_ADDR, X
PURGESTOKEN=PURGE_STOKEN, X
PTCBADDR=PSATOLD, X
LLOCK=YES,ENV=HOME

*
.
.
.

ENCLAVE_TOKEN DS D Enclave Token
PURGE_STOKEN DS D Purge-STOKEN
EP_ADDR DC A(SRB_ROUTINE) SRB Entry Point Address

IEAMSCHD macro

Chapter 39. IEAMSCHD — Schedule an SRB 535

FRR_ADDR DC A(FRR_ROUTINE) Address of FRR Routine
RMTR_ADDR DC A(RMTR_ROUTINE) RMTR Entry Point Address
MINOR_PRIORITY DC X’00’ Lowest Priority in Enclave
PSW_KEY_2 DC X’20’ PSW Key 2

TITLE ’PSA -- Prefix Save Area’
IHAPSA

Example 4

Schedule a LOCAL SRB routine into the address space whose STOKEN is stored in
THEIR_STOKEN. This example assumes that THEIR_TOKEN was previously
initialized.
*
SCHED_SRB_RTN EQU *

IEAMSCHD EPADDR=EP_ADDR,ENV=STOKEN, X
TARGETSTOKEN=THEIR_STOKEN, X
PRIORITY=LOCAL

*
.
.
.

THEIR_STOKEN DS D Space Token
EP_ADDR DC A(SRB_ROUTINE) SRB Entry Point Address

Note that in this example, the SRB routine is running in a different address space
from the scheduling code. To run an SRB routine in a different address space from
the scheduling code, the SRB must be either in a different program that is
accessible from the target address space, or in the common storage together with
the scheduling code.

Example 5

Schedule a preemptable SRB routine into the current home address space with a
minor priority that is just below the current task's dispatching priority.
*
SCHED_SRB_RTN EQU *
*

EXTRACT TCB_PRIORITY,’S’,FIELDS=(PRI)
*

SLR 3,3 Clear register
IC 3,DSP_PRIORITY Get Dispatching Priority
S 3,=F’1’ Lower priority by 1
BP SAVE_MINOR_PRIORITY
SLR 3,3 If tasks priority already lowest

* set minor priority to zero.
SAVE_MINOR_PRIORITY EQU *

STC 3,MINOR_PRIORITY Save Minor Priority
IEAMSCHD EPADDR=EP_ADDR X

PRIORITY=PREEMPT,ENV=HOME, X
MINORPRIORITY=MINOR_PRIORITY

*
.
.

EP_ADDR DC A(SRB_ROUTINE) Address of Entry Point for SRB
TCB_PRIORITY DS 0F Priority Field

DS H Place holder
DSP_PRIORITY DS B Current Dispatching Priority
MINOR_PRIORITY DS B Minor Priority for SRB Routine

IEAMSCHD macro

536 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Example 6

Schedule an SRB routine into the home address space, passing it the parameter list
pointed to by PARM_ADDR, and give the SRB routine affinity to online processors
with the Integrated Cryptographic Feature installed. The SRB routine is to inherit
the current work unit's major and minor priorities.
*
SCHED_SRB_RTN EQU *
*

IEAMSCHD EPADDR=EP_ADDR,PARM=PARM_ADDR, X
FEATURE=CRYPTO,ENV=HOME,PRIORITY=CURRENT

*
.
.
.

EP_ADDR DC A(SRB_ROUTINE) SRB Entry Point Address
PARM_ADDR DC A(PARM_LIST) Pointer to parameter list

Example 7

Schedule a synchronous LOCAL SRB routine into the address space whose
STOKEN is stored in THEIR_STOKEN. The invoker of IEAMSCHD will be
suspended until the SRB routine completes, abends, or is purged. This example
assumes that THEIR_TOKEN was previously initialized.
*
SCHED_SRB_RTN EQU *

IEAMSCHD EPADDR=EP_ADDR,ENV=STOKEN, X
TARGETSTOKEN=THEIR_STOKEN,PRIORITY=LOCAL, X
SYNCH=YES,SYNCHCOMPADDR=COMPCODE, X
SYNCHCODEADDR=ABENDCODE,SYNCHRSNADDR=REASONCODE

*
.
.
.

THEIR_STOKEN DS D Space Token
EP_ADDR DC A(SRB_ROUTINE) SRB Entry Point Address
COMPCODE DS F
ABENDCODE DS F
REASONCODE DS F

Note that in this example, the SRB routine is running in a different address space
from the scheduling code. To run an SRB routine in a different address space from
the scheduling code, the SRB routine must be either in a different program that is
accessible from the target address space, or in the common storage together with
the scheduling code.

IEAMSCHD macro

Chapter 39. IEAMSCHD — Schedule an SRB 537

538 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 40. IEAMSXMP — Safe cross-memory post

Description

The IEAMSXMP macro provides a safe cross-memory (XM) post protocol (in
contrast with the POST macro for which cross-memory POST is safe only in certain
cases). The safe XM post protocol
v Schedules an SRB with STOKEN to the target space, passing information to be

used to validate the target, such as a TCB Token (TTOKEN) identifying a target
TCB.

v The target SRB validates that the target TCB is valid, avoiding the POST if it is
not

v If the target TCB is valid, uses branch-entry non-cross-memory POST to POST
the ECB.

Environment

The requirements for the caller are:

Environmental Factor Requirement

Minimum authorization: Supervisor state. Any PSW key.
Dispatchable unit mode: Task or SRB.
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 31- or 64-bit.

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary.
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold any LOCAL lock, the CMS lock, and/or

the CPU lock but is not required to hold any.
Control parameters: Control parameters must be in the primary address space.

Control parameters above 2GB are allowed for AMODE 64
callers only. The WorkArea must be below 2GB.

Programming requirements

Make sure that field ECVTSXMP is non-zero before using this service. You may
assume that to be the case for any z/OS release after z/OS V2R2.

Include the IEAASM macro to get equate symbols for return and reason codes.

Restrictions

None.

© Copyright IBM Corp. 1988, 2016 539

|

|

|

|
|
|

|
|
|

|
|

|
|

|

|

|||
||
||
||
||
||

|
|
||
||
||
|
||

|
|
|

|

|
|

|

|

|

Input register information

Before issuing the IEAMSXMP macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the IEAMSXMP macro, the caller does not have to place any
information into any access register (AR).

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, when register 15 is not 0; otherwise, used as a work register
by the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

main diagram

��
name

IEAMSXMP ECB = ecb
, POSTCODE = 0

, POSTCODE = postcode
�

�
, STOKEN = FROM_TTOKEN

, TTOKENTYPE = ANY , TTOKEN = ttoken
, STOKEN = stoken

, TTOKENTYPE = FIRSTTASK , STOKEN = stoken

�

� , KEY0TO15 = key0to15 �

IEAMSXMP macro

540 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|

|
|
|

|
|

|

|

|
|

||
|

||

||

||

||

|

|
|

||

||

||

|
|
|
|

|

|

|

|

||
|

|
||
|

|
|||||||||||
|

||

�
, PURGEASID = NO_PURGEASID , PURGETCB = purgetcb
, PURGEASID = purgeasid

�

�
, EXITRTNPARMS = NO_EXITRTNPARMS

, EXITRTN = NO_EXIT
, EXITRTN = exitrtn , EXITRTNPARMS = exitrtnparms

�

�
, IRB = NO

, IRB = YES
, WORKAREA = workarea

, RETCODE = retcode
�

�
, RSNCODE = rsncode

, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 0

�

�
, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IEAMSXMP
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

ECB=ecb
A required input parameter, which identifies the ECB to post. The storage for
the ECB must be synchronized with the TTOKEN that is used. Unless posted,
the ECB storage must be valid (not freed) until termination of the task that is
represented by the TTOKEN.

If you are changing from using POST to using IEAMSXMP, you may be
introducing an incompatible storage persistence characteristic of the ECB
storage that was not enforced or documented prior to the usage of IEAMSXMP.
If the ECB to be posted is part of a documented interface, you will have to
document any new storage persistence requirement that was not previously
documented.

To code: Specify the RS-type address, or address in register (2) - (12), of a
fullword field, or specify a literal decimal value.

,EXITRTN=exitrtn
,EXITRTN=NO_EXIT

An optional input parameter that contains the address of an exit routine in
common storage which will execute in the following cases:
v When IRB=NO is in effect (or when IRB=YES was specified but TSO

authorized request processing is not active), and the TTOKEN is known to
be valid, within the scheduled SRB before the POST is issued:
– It will be in the target address space.
– It will be in SRB mode and will have the local lock. The exit routine must

not release the lock.

IEAMSXMP macro

Chapter 40. IEAMSXMP — Safe cross-memory post 541

|
|
|||||||||||||||||||||||||||||||||||
|

|
|||
|

|
||
|

|
|||
|

|
|||

|

|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|

|
|

– A system-set FRR will be in place.
– It must preserve registers 2 - 14.
– It can indicate if the POST should or should not proceed by a return code

in register 15:
- 0 indicates that the POST should proceed.
- 8 indicates that the POST should not proceed.

Do not use any other return code.
v When IRB=YES is in effect and TSO authorized request processing is active,

and the TTOKEN is known to be valid, within the IRB before the POST is
issued:
– It will be in the target address space.
– It will be in task mode and will have the local lock. The exit routine must

not release the lock.
– No FRR will be in place.
– It must preserve registers 2 - 14.
– It can indicate if the POST should or should not proceed by a return code

in register 15:
- 0 indicates that the POST should proceed.
- 8 indicates that the POST should not proceed.

Do not use any other return code.
v When the scheduled SRB determines that the TTOKEN is not valid.

– It will be in the target address space.
– It will be in SRB mode and will have the local lock. The exit routine must

not release the lock.
– A system-set FRR will be in place.
– It must preserve registers 2 - 14.
– It might, for example, free the ECB if that ECB is known still to exist.

v If the scheduled SRB is purgeDQ'd because of termination of the ASID
(identified by PurgeASID) and/or the task (identified by PurgeTCB) or
because of a user-issued purgeDQ.
– It may be in any address space.
– It will be in task mode.
– A system-set FRR will be in place.
– It will not hold any locks.
– It must preserve registers 2 - 14.

The exit routine is responsible for its own recovery. If the exit routine does not
return to the system, the ECB may not be posted.

The exit routine gets control in key 0 supervisor state, primary ASC mode,
primary = home = secondary, AMODE 31

Register contents on entry:

0 Type of call

0 Valid TTOKEN, IRB=NO

1 Valid TTOKEN, IRB=YES

2 TTOKEN is not valid

3 PurgeDQ

IEAMSXMP macro

542 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|

|

|
|

|

|

|

|
|
|

|

|
|

|

|

|
|

|

|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|

|

|
|

|
|

|

||

||

||

||

||

1 Address of a copy of the 16 bytes of data provided by the
EXITRTNPARMS parameter.

2-13 do not contain information for use by the exit routine

14 return address

15 address of exit routine

The default is NO_EXIT.

To code: Specify the RS-type address, or address in register (2) - (12), of a
pointer field.

,EXITRTNPARMS=exitrtnparms
,EXITRTNPARMS=NO_EXITRTNPARMS

When EXITRTN=exitrtn is specified, an optional input parameter, 16 bytes of
data to be passed to the exit routine. One use of this area could be to pass the
address of a storage area that the exit routine can use. The default is
NO_EXITRTNPARMS.

To code: Specify the RS-type address, or address in register (2) - (12), of a
16-character field.

,IRB=NO
,IRB=YES

An optional parameter that indicates if special IRB-related processing is to be
done. The default is IRB=NO.

,IRB=NO
indicates that no special IRB-related processing is to be done.

,IRB=YES
indicates that an IRB will be scheduled out of the scheduled SRB when
TSO authorized request processing is active. TSO allows authorized code
to manipulate key 8 storage and attempts to maintain integrity by marking
all unauthorized tasks as non-dispatchable. Scheduling the IRB to do the
post for this case ensures that the post does not affect the processing of
authorized code. The IRB will run under the task identified by the
TTOKEN keyword. When TCB authorized request processing is not active,
IRB=NO processing will be done.

If a user key (8-15) ECB is to be posted that your product or component
does not own for a target address space that your product or component
does not own, the IRB=YES option must be used to ensure that the post
operation is secure.

,KEY0TO15=key0to15
A required input parameter that identifies the key with which the POST is to
be done. Must be in the range 0-15 (not X'00' - X'F0').

To code: Specify the RS-type address, or address in register (2) - (12), of a
one-byte field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

IEAMSXMP macro

Chapter 40. IEAMSXMP — Safe cross-memory post 543

||
|

||

||

||

|

|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1) - (12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,POSTCODE=postcode

IEAMSXMP macro

544 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

,POSTCODE=0
An optional input parameter, which identifies the POST code to use. The POST
code is intended to be in the range 0 - 2**24-1. The default is 0.

To code: Specify the RS-type address, or address in register (2) - (12), of a
fullword field, or specify a literal decimal value.

,PURGEASID=purgeasid
,PURGEASID=NO_PURGEASID

An optional input parameter that identifies the purge ASID for the scheduled
SRB. If used, and the POST abends, the task in this address space identified by
the purgeTCB keyword will be abended. If not specified, or if a value of 0 is
provided, the target address space's ASID is used. The default is
NO_PURGEASID.

To code: Specify the RS-type address, or address in register (2) - (12), of a
halfword field, or specify a literal decimal value.

,PURGETCB=purgetcb
When PURGEASID=purgeasid is specified, a required input parameter that
identifies the purge TCB for the scheduled SRB. If a non-0 value is used and
the scheduled SRB abends, the purge TCB task will be abended.

To code: Specify the RS-type address, or address in register (2) - (12), of a
character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12) or
(15), (GPR15), (REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2) -
(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,STOKEN=stoken
,STOKEN=FROM_TTOKEN

When TTOKENTYPE=ANY is specified, an optional input parameter that is the
STOKEN for the target address space. Use this if you are providing a TTOKEN
of zeros. You can use this, but do not need to, if providing a TTOKEN
obtained via the TCBTOKEN service or from field STCBTTKN. You might have
gotten the STOKEN from field ASSBSTKN while running in the address space
or via LOCASCB STOKEN=. You must provide a valid STOKEN and not use
STOKEN=FROM_TTOKEN if using a TTOKEN of zeros. If you provide a valid
STOKEN with a valid TTOKEN, both must refer to the same address space.
The default is FROM_TTOKEN.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,STOKEN=stoken
When TTOKENTYPE=FIRSTTASK is specified, a required input parameter that
is the STOKEN for the target address space. You might have gotten this from
field ASSBSTKN while running in the address space or via LOCASCB
STOKEN=.

IEAMSXMP macro

Chapter 40. IEAMSXMP — Safe cross-memory post 545

|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,TTOKEN=ttoken
When TTOKENTYPE=ANY is specified, a required input parameter that is the
TTOKEN for the task to be validated. It might have been fetched using the
TCBTOKEN service. A value of zeros is treated the same as
TTOKENTYPE=FIRSTTASK and has the same requirements as
TTOKENTYPE=FIRSTTASK. The target space STOKEN will be derived from
the TTOKEN unless the STOKEN parameter is used and provides a non-zero
STOKEN.

The task must be active in order for the IEAMSXMP operation to succeed. The
rule of thumb is that the ECB must persist until it is posted or until the
persistence requirement of the poster is met. In general, the TTOKEN to use
can be determined as follows:
v If the target ECB is supplied by a task and it is expected that the target ECB

can only be posted up until the time that task terminates, then use the
current task's STCBTTKN for the TTOKEN.

v If the target ECB is supplied from a task that is part of the jobstep program
task tree (the current task's TCBBITCB bit is on) and it is expected that the
ECB can be posted up until the time the currently running job step ends,
then use the TTOKEN in STCBTTKN for the task with TCB address in field
ASCBXTCB.

v If it is expected that the target ECB can be posted up until the time that the
first task in the address space terminates, then specify a TTOKEN of
hexadecimal zeros or use the TTOKENTYPE=FIRSTTASK option. Provide
the STOKEN.

The poster "owns" the rule and should document that rule for the ECB-related
parameter of their interface. That rule might be one of the above choices or
might be something else. For example, there might be one rule for a request
from a task within the jobstep program task tree and a different rule for a
request from a task not within that task tree (which would typically be a
system task).

To code: Specify the RS-type address, or address in register (2) - (12), of a
16-character field.

,TTOKENTYPE=ANY
,TTOKENTYPE=FIRSTTASK

A required parameter that indicates the type of TCB Token (TTOKEN) to be
used for validation

,TTOKENTYPE=ANY
that indicates any TTOKEN, not a specific type

,TTOKENTYPE=FIRSTTASK
that indicates to use the TTOKEN of the first task for the address space
(this task will be the region control task for all address spaces other than
MASTER which has no RCT) and its address can be found in ASXBFTCB.
TTOKENTYPE=FIRSTTASK should usually be used only for a space that
always terminates when the jobstep program task terminates, unlike an
initiator space. It may also be used for compatibility purposes when
changing from POST to IEAMSXMP when you have to take into
consideration the existing use cases. Use of TTOKENTYPE=FIRSTTASK
requires use of STOKEN, and that STOKEN must have been fetched with
serialization against address space termination or must have been captured
while the target space is your home, primary, or secondary address space.

IEAMSXMP macro

546 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

Unless it has been posted, the ECB must not be freed (explicitly or by the
system) prior to the termination of the address space's first task (which
occurs only during memory termination). Thus the ECB storage must not
be owned by a subtask of that first task (since the system frees storage
owned by a task upon termination of that task).

,WORKAREA=workarea
A required input parameter, which identifies a 512-byte work area on a
doubleword boundary that is below 2G, addressable in the primary address
space, for use by the service. It can be in private storage. if the caller is not
enabled for external and I/O interrupts, the work area must be page-fixed. If
the caller is enabled for external and I/O interrupts, the work area need not be
page-fixed. The work area must have a storage key that accommodates a store
using the PSW key of the invoker of IEAMSXMP.

To code: Specify the RS-type address, or address in register (2) - (12), of a
512-character field.

ABEND codes

None.

Return and reason codes

When the IEAMSXMP macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro IEAASM provides equate symbols for the return and reason codes. It also
provides equate IEAMSXMPRsnCodeMask. That equate can be used to create a
word that should be ANDed with the reason code to isolate the non
component-diagnostic portion of of the reason code prior to doing a comparison.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 47. Return and reason codes for the IEAMSXMP macro

Return code Reason code
Equate symbol,
meaning and action

0 – Equate symbol: IEAMSXMPRc_OK

Meaning: The POSTing SRB has been successfully scheduled.

Action: None required

4 – Equate symbol: IEAMSXMPRc_Warn

Meaning: Warning

Action: Refer to the action under the individual reason code.

IEAMSXMP macro

Chapter 40. IEAMSXMP — Safe cross-memory post 547

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|

|

|

|

|

|
|

|
|
|
|

|
|
|

||

||
|
|

|||

|

|

|||

|

|

Table 47. Return and reason codes for the IEAMSXMP macro (continued)

Return code Reason code
Equate symbol,
meaning and action

4 xxxx0401 Equate symbol: IEAMSXMPRsn_TargetNotValid

Meaning: The system found that the target address space was not valid. The ECB
will not be posted.

Action: If it is expected that the target address space could be not valid, then no
action is required but you might be able to free the storage for the ECB. If it is
not expected, then provide a correct target address space.

8 – Equate symbol: IEAMSXMPRc_InvParm

Meaning: The IEAMSXMP invocation specified parameters that are not valid

Action: Refer to the action under the individual reason code.

8 xxxx0801 Equate symbol: IEAMSXMPRsn_BadParmlist

Meaning: Error accessing the parameter list

Action: Check for possible storage overlay

0C – Equate symbol: IEAMSXMPRc_Env

Meaning: Environmental Error

Action: None - no such reason codes currently exist.

10 – Equate symbol: IEAMSXMPRc_CompError

Meaning: Unexpected failure.

Action: Report the associated reason code to the system programmer to contact
IBM Service.

10 xxxx1001 Equate symbol: IEAMSXMPRsn_CompError

Meaning: Unexpected failure. The state of the request is unpredictable.

Action: Contact your system programmer.

Example

Post the ECB providing the validation TTOKEN. The target address space will be
determined from the TTOKEN.

The code is as follows:
* Code to avoid invoking IEAMSXMP if field
* ECVTSXMP is 0
...
* Code to put the address of the ECB into register n
...
* Invoke IEAMSXMP

IEAMSXMP ECB=(n),POSTCODE=pc, *
TTOKENTYPE=ANY,TTOKEN=tt, *
KEY0TO15=0, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
WORKAREA=wa,MF=(E,SXMPL)

* Here you would place code to process the return and
* reason codes.
...
DYNAREA DSECT

IEAMSXMP macro

548 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|

||
|
|

|||

|
|

|
|
|

|||

|

|

|||

|

|

|||

|

|

|||

|

|
|

|||

|

|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DS 0D
wa DS CL512
pc DS F
tt DS CL16
LRETCODE DS F
LRSNCODE DS F

IEAMSXMP MF=(L,SXMPL),PLISTVER=MAX

IEAMSXMP macro

Chapter 40. IEAMSXMP — Safe cross-memory post 549

|
|
|
|
|
|
|

IEAMSXMP macro

550 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 41. IEANTCR — Create a name/token pair

Description
Call the IEANTCR service to create a name/token pair.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, with any PSW key.

Note: Problem-state programs with PSW key 8 - 15 cannot
create system-level pairs.

Dispatchable unit mode: Task or SRB
Note: SRB-mode callers cannot create a task-level pair.

Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: The parameter list and all parameters must reside in the

caller's primary address space.

Programming requirements
Before you use name/token services, you can optionally include the IEANTASM
macro to invoke name/token services equate (EQU) statements. IEANTASM
provides the following constants for use in your program:
* Name/Token Level Constants
*
IEANT_TASK_LEVEL EQU 1
IEANT_HOME_LEVEL EQU 2
IEANT_PRIMARY_LEVEL EQU 3
IEANT_SYSTEM_LEVEL EQU 4
IEANT_TASKAUTH_LEVEL EQU 11
IEANT_HOMEAUTH_LEVEL EQU 12
IEANT_PRIMARYAUTH_LEVEL EQU 13
*
* Name/Token Persistence Constants
*
IEANT_NOPERSIST EQU 0
IEANT_PERSIST EQU 1
IEANT_NOCHECKPOINT EQU 0
IEANT_CHECKPOINTOK EQU 2
*
* Name/Token Return Code Constants
*
IEANT_OK EQU 0
IEANT_DUP_NAME EQU 4
IEANT_NOT_FOUND EQU 4
IEANT_24BITMODE EQU 8
IEANT_NOT_AUTH EQU 16
IEANT_SRB_MODE EQU 20
IEANT_LOCK_HELD EQU 24
IEANT_LEVEL_INVALID EQU 28

© Copyright IBM Corp. 1988, 2016 551

|

IEANT_NAME_INVALID EQU 32
IEANT_PERSIST_INVALID EQU 36
IEANT_AR_INVALID EQU 40
IEANT_UNEXPECTED_ERR EQU 64

Restrictions
Do not use the IEANTCR callable service in a RESMGR resource manager routine
unless one of the following is true:
v The name/token pair is a system-level persistent name/token pair.
v The resource manager is running for a daughter task of the task that owns the

name/token pair.
v The resource manager is running for the task that owns the name/token pair

and that resource manager was established for a specific address space and a
specific task.

Input register information
Before issuing the IEANTCR callable service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

IEANTCR callable service

552 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

CALL IEANTCR

,(level
,user_name
,user_token
,persist_option
,return_code)

Link edit your program with a linkage-assist routine (also called a stub) in
SYS1.CSSLIB unless you use one of the following techniques as an alternative to
CALL IEANTCR:
1. LOAD EP=IEANTCR

Save the entry point address
(...)
Put the saved entry point address into R15
CALL (15),(...)

2. L 15,X’10’
L 15,X’220’(15,0)
L 15,X’14’(15,0)
L 15,X’04’(15,0)
CALL (15),(...)

This second technique requires AMODE=31, and, before the CALL is issued,
verification that the IEANTCR service is supported by the system (in the CVT,
both the CVTOSEXT and the CVTOS390 bits are set on).

Parameters
The parameters are explained as follows:

level
Specifies a fullword that contains an integer indicating the level of the
name/token pair:

1 Task

2 Home address space

3 Primary address space

4 System.

,user_name
Specifies the 16-byte area containing the name of the name/token pair that the
user creates. The bytes of the name may have any value. The name may
contain blanks, integers, or addresses.

Names must be unique within a level. Here are some examples.
v Two task-level name/token pairs owned by the same task cannot have the

same name. However, two task-level name/token pairs owned by different
tasks can have the same name.

v Two home-address-space-level name/token pairs in the same address space
cannot have the same name. However, two home-address-space-level
name/token pairs in different address spaces can have the same name.

Because of these unique requirements you must avoid using the same names
that IBM uses for name/token pairs. Do not use the following names:
v Names that begin with A through I

IEANTCR callable service

Chapter 41. IEANTCR — Create a name/token pair 553

v Names that begin with X'00'.

,user_token
Specifies the 16-byte area containing the token of the name/token pair that the
user creates.

,persist_option
Specifies a fullword that contains an integer indicating if a system-level
name/token pair should persist after the creating address space's job step task
terminates or if Checkpoint/Restart can be issued if the program has this
task-level name/token pair. If a program has non-task-level name/token pairs
or has task-level name/token pairs that did not specify
IEANT_CHECKPOINTOK, the program cannot take a checkpoint.
v 0 - system-level pair will not persist and checkpoint is not permitted.
v 1 - system-level pair will persist.
v 2 - checkpoint is permitted.

Note: Only system-level name/token pairs can persist after the creating task
terminates. Only task-level name/token pairs can permit checkpoint.You must
specify 0 for all other levels.

,return_code
Specifies a fullword to contain the return code from the IEANTCR service.

ABEND codes
The caller might encounter abend X'AC7' with a reason code of either X'00030000'
or X'00030001'. See z/OS MVS System Codes for an explanation and responses for
these codes.

Return and reason codes
When IEANTCR returns control to your program, GPR 15 and return_code contain
a return code. The following table identifies return codes in hexadecimal and
decimal, tells what each means, and recommends an action that you need to take:

Table 48. Return Codes for the IEANTCR Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: The operation was successful.

Action: None.

04 Meaning: The user_name specified already exists.

Action: Choose a different user_name.

08 Meaning: The request is rejected because the caller is in 24-bit addressing mode.

Action: Change your program to 31-bit addressing mode.

10 Meaning: An unauthorized caller attempted to create a system-level name/token
pair.

Action: Check which level of name/token pair you are creating.

14 Meaning: An SRB-mode caller attempted to create a task-level name/token pair.

Action: Change your program to task mode or use a different level.

18 Meaning: The caller held locks.

Action: Release all locks before issuing IEANTCR.

IEANTCR callable service

554 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 48. Return Codes for the IEANTCR Macro (continued)

Hexadecimal
Return Code

Meaning and Action

1C Meaning: The caller specified an incorrect level.

Action: Respecify the correct level. Valid options are 1, 2, 3, or 4.

20 Meaning: The caller specified an incorrect user_name.

Action: Respecify the correct user_name.

24 Meaning: The caller specified an incorrect persist_option.

Action:

v For system-level name/token pairs, you must specify zero or one for the
persist_option.

v For task-level name/token pairs, you must specify zero or two for the
persist_option.

v For home or primary address space level name/token pairs, you must specify
zero for the persist_option.

28 Meaning: The caller was in AR ASC mode and AR1 was not zero.

Action: Change your program to primary mode or set AR1 to zero.

40 Meaning: A system error occurred while handling the request.

Action: Retry the request.

Example
Initialize the name/token fields, and create, retrieve, and delete a task-level
name/token pair.

TITLE ’NAME/TOKEN EXAMPLE PROGRAM’
NTIDSAMP CSECT
NTIDSAMP AMODE 31
NTIDSAMP RMODE ANY

BAKR R14,0 Save calling programs
* registers and return location

LR R12,R15 ESTABLISH BASE REG
USING NTIDSAMP,R12

* INITIALIZE THE NAME AND TOKEN FIELDS *

MVC NAME,=CL16’NTIDSAMP NAME ’ INITIALIZE NAME FIELD
MVC TOKEN,NAME FOR EXAMPLE, MAKE TOKEN THE

* SAME AS THE NAME

* TASK LEVEL CREATE EXAMPLE *

CALL IEANTCR,(LEVEL,NAME,TOKEN,PERSOPT,RETCODE)

CLC RETCODE,=F’0’ IS RETURN CODE 0?
BNE ABEND NO, GO ABEND
EJECT

* TASK LEVEL RETRIEVE EXAMPLE *

CALL IEANTRT,(LEVEL,NAME,TOKEN,RETCODE)

CLC RETCODE,=F’0’ IS RETURN CODE 0?
BNE ABEND NO, GO ABEND
EJECT

* TASK LEVEL DELETE EXAMPLE *

IEANTCR callable service

Chapter 41. IEANTCR — Create a name/token pair 555

CALL IEANTDL,(LEVEL,NAME,RETCODE)

CLC RETCODE,=F’0’ IS RETURN CODE 0?
BNE ABEND NO, GO ABEND
EJECT
SLR R15,R15 SET RETURN CODE OF ZERO

EXIT PR RETURN TO CALLER
EJECT

ABEND ABEND X’BAD’ ABEND IF NONZERO RETURN CODE
EJECT

* NAME/TOKEN VARIABLE DECLARES

IEANTASM
EJECT

* Constants and data areas *

LEVEL DC A(IEANT_TASK_LEVEL) Task level
NAME DS CL16 Name for name/token pair
TOKEN DS XL16 Token for name/token pair
PERSOPT DC A(IEANT_NOPERSIST) Persist option
RETCODE DS F Return code

* EQUATES

R1 EQU 1
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END NTIDSAMP

IEANTCR callable service

556 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 42. IEANTDL — Delete a name/token pair

Description
Call the IEANTDL service to delete a name/token pair.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key

Note: Problem-state programs with PSW key 8 - 15 cannot
delete:

v System-level pairs

v Name/token pairs created by supervisor-state or PSW key
0-7 programs.

Dispatchable unit mode: Task or SRB
Note: SRB-mode callers cannot delete a task-level pair.

Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: The parameter list and all parameters must reside in the

caller's primary address space.

Programming requirements
Before you use name/token services, you can optionally include the IEANTASM
macro to invoke name/token services equate (EQU) statements. IEANTASM
provides the following constants for use in your program:
* Name/Token Level Constants
*
IEANT_TASK_LEVEL EQU 1
IEANT_HOME_LEVEL EQU 2
IEANT_PRIMARY_LEVEL EQU 3
IEANT_SYSTEM_LEVEL EQU 4
IEANT_TASKAUTH_LEVEL EQU 11
IEANT_HOMEAUTH_LEVEL EQU 12
IEANT_PRIMARYAUTH_LEVEL EQU 13
*
* Name/Token Persistence Constants
*
IEANT_NOPERSIST EQU 0
IEANT_PERSIST EQU 1
*
* Name/Token Return Code Constants
*
IEANT_OK EQU 0
IEANT_DUP_NAME EQU 4
IEANT_NOT_FOUND EQU 4
IEANT_24BITMODE EQU 8
IEANT_NOT_AUTH EQU 16
IEANT_SRB_MODE EQU 20
IEANT_LOCK_HELD EQU 24
IEANT_LEVEL_INVALID EQU 28

© Copyright IBM Corp. 1988, 2016 557

IEANT_NAME_INVALID EQU 32
IEANT_PERSIST_INVALID EQU 36
IEANT_AR_INVALID EQU 40
IEANT_UNEXPECTED_ERR EQU 64

Restrictions
Do not use the IEANTDL callable service in a RESMGR resource manager routine
unless one of the following is true:
v The name/token pair is a system-level persistent name/token pair.
v The resource manager is running for a daughter task of the task that owns the

name/token pair.
v The resource manager is running for the task that owns the name/token pair

and that resource manager was established for a specific address space and a
specific task.

Input register information
Before issuing the IEANTDL callable service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

IEANTDL callable service

558 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

CALL IEANTDL
,(level
,user_name
,return_code)

Link edit your program with a linkage-assist routine (also called a stub) in
SYS1.CSSLIB unless you use one of the following techniques as an alternative to
CALL IEANTDL:
1. LOAD EP=IEANTDL

Save the entry point address
(...)
Put the saved entry point address into R15
CALL (15),(...)

2. L 15,X’10’
L 15,X’220’(15,0)
L 15,X’14’(15,0)
L 15,X’0C’(15,0)
CALL (15),(...)

This second technique requires AMODE=31, and, before the CALL is issued,
verification that the IEANTDL service is supported by the system (in the CVT, both
the CVTOSEXT and the CVTOS390 bits are set on).

Parameters
The parameters are explained as follows:

level
Specifies a fullword that contains an integer indicating the level of the
name/token pair you wish to delete:

1 Task

2 Home address space

3 Primary address space

4 System.

,user_name
Specifies the 16-byte area containing the name of the name/token pair to be
deleted.

,return_code
Specifies a fullword to contain the return code from the IEANTDL service.

ABEND codes
The caller might encounter abend X'AC7' with a reason code of either X'00030000'
or X'00030001'. See z/OS MVS System Codes for an explanation and responses for
these codes.

Return and reason codes
When IEANTDL returns control to your program, GPR 15 and return_code contain
a return code. The following table identifies return codes in hexadecimal, tells what
each means, and recommends an action that you need to take.

IEANTDL callable service

Chapter 42. IEANTDL — Delete a name/token pair 559

Table 49. Return Codes for the IEANTDL Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: The operation was successful.

Action: None.

04 Meaning: The request is rejected because the system could not find the
requested name/token pair.

Action: Check the user_name you specified.

08 Meaning: The request is rejected because the caller is in 24-bit addressing mode.

Action: Change your program to 31-bit addressing mode.

10 Meaning: An unauthorized caller attempted to delete a system-level pair or a
name/token pair that was created by an authorized program.

Action: Check which level of name/token pair you are deleting.

14 Meaning: An SRB-mode caller attempted to delete a task-level name/token pair.

Action: Change the program to task mode or check the value you set for the
level parameter.

18 Meaning: The caller held locks.

Action: Release all locks before issuing IEANTDL.

1C Meaning: The caller specified an incorrect level.

Action: Respecify the correct level. Valid options are 1, 2, 3, or 4.

20 Meaning: The caller specified an incorrect user_name.

Action: Respecify the correct user_name.

28 Meaning: The caller was in AR ASC mode and AR1 was not zero.

Action: Change your program to primary mode or set AR1 to zero.

40 Meaning: A system error occurred while handling the request.

Action: Retry the request.

Example
For a complete example of creating, retrieving, and deleting a task-level
name/token pair, see the IEANTCR callable service.

IEANTDL callable service

560 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 43. IEANTRT — Retrieve the token from a name/token
pair

Description
Call the IEANTRT service to retrieve the token from a name/token pair.

The IEANTRT callable service can also be used to obtain the name of the logrec
medium, either the name of the logrec data set or the name of the logrec log
stream.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task or SRB

Note: SRB-mode callers cannot retrieve a task-level pair.
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller can hold a local, CML, or CMS lock; however, no

locks are required.
Control parameters: The parameter list and all parameters must reside in the

caller's primary address space.

Programming requirements
Before you use name/token services, you can optionally include macro
IEANTASM to invoke name/token services equate (EQU) statements. IEANTASM
provides the following constants for use in your program:
* Name/Token Level Constants
*
IEANT_TASK_LEVEL EQU 1
IEANT_HOME_LEVEL EQU 2
IEANT_PRIMARY_LEVEL EQU 3
IEANT_SYSTEM_LEVEL EQU 4
IEANT_TASKAUTH_LEVEL EQU 11
IEANT_HOMEAUTH_LEVEL EQU 12
IEANT_PRIMARYAUTH_LEVEL EQU 13
*
* Name/Token Persistence Constants
*
IEANT_NOPERSIST EQU 0
IEANT_PERSIST EQU 1
*
* Name/Token Return Code Constants
*
IEANT_OK EQU 0
IEANT_DUP_NAME EQU 4
IEANT_NOT_FOUND EQU 4
IEANT_24BITMODE EQU 8
IEANT_NOT_AUTH EQU 16
IEANT_SRB_MODE EQU 20
IEANT_LOCK_HELD EQU 24

© Copyright IBM Corp. 1988, 2016 561

IEANT_LEVEL_INVALID EQU 28
IEANT_NAME_INVALID EQU 32
IEANT_PERSIST_INVALID EQU 36
IEANT_AR_INVALID EQU 40
IEANT_UNEXPECTED_ERR EQU 64

To obtain the name of the logrec data set or the name of the logrec log stream, you
can include the IFBNTASM macro, as well as the IEANTASM macro, in your
program. See “Example 2” on page 564 for the list of definitions IFBNTASM
provides.

Restrictions
v Do not use the IEANTRT callable service in a RESMGR resource manager

routine unless one of the following is true:
– The name/token pair is a system-level persistent name/token pair.
– The resource manager is running for a daughter task of the task that owns the

name/token pair.
– The resource manager is running for the task that owns the name/token pair

and that resource manager was established for a specific address space and a
specific task.

v Do not call the IEANTRT callable service with user_name and user_token
parameters being the same storage locations.

Input register information
Before issuing the IEANTRT callable service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

IEANTRT callable service

562 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL IEANTRT

,(level
,user_name
,user_token
,return_code)

Link edit your program with a linkage-assist routine (also called a stub) in
SYS1.CSSLIB unless you use one of the following techniques as an alternative to
CALL IEANTRT:
1. LOAD EP=IEANTRT

Save the entry point address
(...)
Put the saved entry point address into R15
CALL (15),(...)

2. L 15,X’10’
L 15,X’220’(15,0)
L 15,X’14’(15,0)
L 15,X’08’(15,0)
CALL (15),(...)

This second technique requires AMODE=31, and, before the CALL is issued,
verification that the IEANTRT service is supported by the system (in the CVT, both
the CVTOSEXT and the CVTOS390 bits are set on).

Parameters
The parameters are explained as follows:

level
Specifies a fullword that contains an integer indicating the level of the
name/token pair from which you want to retrieve the token:

1 Task

2 Home address space

3 Primary address space

4 System

11 Task with authorization check

12 Home address space with authorization check

13 Primary address space with authorization check.

Note: Levels 11, 12, and 13 indicate that the IEANTRT callable service should
determine if the name/token pair being retrieved was created by an authorized
program.

IEANTRT callable service

Chapter 43. IEANTRT — Retrieve the token from a name/token pair 563

,user_name
Specifies the 16-byte area containing the name of the requested name/token
pair.

,user_token
Specifies the 16-byte area to contain the token of the requested name/token
pair.

,return_code
Specifies a fullword to contain the return code from the IEANTRT service.

ABEND codes
None.

Return codes
When IEANTRT returns control to your program, GPR 15 and return_code contain a
return code. The following table identifies return codes in hexadecimal, tells what
each means, and recommends as action that you need to take.

Table 50. Return Codes for the IEANTRT Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: The operation was successful.

Action: None.

04 Meaning: The request is rejected because the system could not find the
requested name/token pair.

Action: Check the user_name you specified.

08 Meaning: The request is rejected because the caller is in 24-bit addressing mode.

Action: Change your program to 31-bit addressing mode.

10 Meaning: A request for a retrieval with authorization check attempted to
retrieve a name/token pair created by an unauthorized caller.

Action: If your program is authorized, you need to make sure that the
name/token pair you are retrieving was created by another authorized program.
You may choose to use the name/token pair if it was created by an
unauthorized program, but doing so might cause data integrity problems.

14 Meaning: An SRB-mode caller attempted to retrieve a task-level name/token
pair.

Action: Check which level of name/token pair you are retrieving.

1C Meaning: The caller specified an incorrect level.

Action: Respecify the correct level. Valid options are 1, 2, 3, 4, 11, 12, or 13.

40 Meaning: A system error occurred while handling the request.

Action: Retry the request.

Example 1
For a complete example of creating, retrieving, and deleting a task-level
name/token pair, see the IEANTRT callable service.

Example 2
Following is an example of using Name/Token services to obtain the name of the
logrec data set or logrec log stream. (Note that because the routine is not reentrant,

IEANTRT callable service

564 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

module IEANTRT is first loaded and then called.) IEANTRT returns a token that
contains a pointer to the name of the logrec data set or logrec log stream.

Before you use name/token services, you can optionally include macro IFBNTASM
which provides the following definitions for use in your program:
* IFBNTASM Parameters

IFBNT_DSNLOGREC DC CL16’DSNLOGREC ’ System level
* DSNLOGREC name
IFBNT_VERSION1 EQU X’01’ First version of IFBNT_TOKEN
IFBNT_VERSION2 EQU X’02’ Second version of IFBNT_TOKEN
IFBNT_LATEST_VERSION EQU X’02’ Latest version of IFBNT_TOKEN
*
IFBNT_TOKEN DSECT , Token area
IFBNT_LOGREC_NAME_PTR DS A Address of the LOGREC data
* set name area
IFBNT_VERSION DS X Version of IFBNT_LOGREC
IFBNT_RESV1 DS X Reserved for IBM
IFBNT_LENGTH DS XL2 Length of IFBNT_LOGREC area
IFBNT_RESV2 DS CL8 Reserved for IBM
*
IFBNT_LOGREC DSECT , Pointed to by
* IFBNT_LOGREC_NAME_PTR
IFBNT_LOGREC_NAME DS CL44 LOGREC data set name or
* no data set name string (see
* comments at end of mapping)
IFBNT_LOGREC_CURRENT DS XL1 Current Logrec recording
* medium
IFBNT_LOGREC_PREVIOUS DS XL1 Previous Logrec recording
* medium
IFBNT_LOGREC_LOGSTREAM DS CL26 Logrec log stream name,
* only filled in when
* IFBNT_USE_LOGSTREAM is
* the current medium
IFBNT_LOGREC_LEN EQU *-IFBNT_LOGREC Length of IFBNT_LOGREC
*
**
* The following values are used in the following fields:
* IFBNT_LOGREC_CURRENT
* IFBNT_LOGREC_PREVIOUS
**
IFBNT_USE_DATASET EQU X’01’ Logrec data set being used
IFBNT_USE_LOGSTREAM EQU X’02’ Logrec log stream being used
IFBNT_IGNORE_RECORDS EQU X’03’ Logrec recording is ignored
*
**
* If a Logrec data set was not defined during the IPL of the system
* then the following string will appear in field
* IFBNT_LOGREC_NAME = ’...NO.LOGREC.DATA.SET.DEFINED... ’
**

IFBNT_TOKEN provides a DSECT to map the returned token area.

IFBNT_LOGREC_NAME_PTR contains the address of the logrec data set name.

IFBNT_LOGREC provides a DSECT to map the logrec recording medium.

IFBNT_LOGREC_NAME contains the name of the installation-defined logrec data
set or no data set name, if the recording medium is other than a data set.

TITLE ’DSNLOGREC Name/Token Retrieve Example Routine’
IFBNTXMP AMODE 31
IFBNTXMP RMODE ANY
IFBNTXMP CSECT

BAKR R14,0 Save calling program’s

IEANTRT callable service

Chapter 43. IEANTRT — Retrieve the token from a name/token pair 565

* registers and return location
LR R12,R15 Establish base ref
USING IFBNTXMP,R12 Set addressability
MODID BRANCH=YES

* Initialize the NAME field

MVC NAME,IFBNT_DSNLOGREC Request DSNLOGREC name

* System level DSNLOGREC Retrieve example

LOAD EP=IEANTRT Get address of IEANTRT routine
LR R15,R0 Set address for Call
CALL (15),(LEVEL,NAME,TOKEN,RETCODE)

*
LA R15,IEANT_OK Get successful return code value
C R15,RETCODE Was TOKEN Returned?
BNE ABEND No, Go ABEND
EJECT

* Get the installation specified LOGREC data set name

LA R2,TOKEN Set pointer to TOKEN area
USING IFBNT_TOKEN,R2 Set addressability

* DSNLOGREC TOKEN area
L R2,IFBNT_LOGREC_NAME_PTR Get pointer to data set name
DROP R2 Free up register 2
USING IFBNT_LOGREC,R2 Set addressability to

* LOGREC data set name area

* If you are interested in obtaining the log stream name, reference
* IFBNT_LOGREC_LOGSTREAM instead of IFBNT_LOGREC_NAME here,
* using the MVC command to move the log stream name to your
* own program’s area.

MVC LOGRNAME,IFBNT_LOGREC_NAME Move LOGREC data set name
* to own area

DROP R2 Free up register 2
EXIT DS 0H Return point

SLR R15,R15 Set return code of zero
PR Return to caller
EJECT

ABEND ABEND X’BAD’ ABEND if non-zero return code
EJECT

* Local working storage declares

NAME DS CL16 Name for Name/Token pair
TOKEN DS XL16 Token for Name/Token Pair
RETCODE DS F Return code from IEANTRT
LOGRNAME DS CL44 Area for LOGREC data set name
*

* Constant and Equates

LEVEL DC A(IEANT_SYSTEM_LEVEL) SYSTEM LEVEL
R0 EQU 0
R1 EQU 1
R2 EQU 2
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

EJECT

* NAME/TOKEN SYSTEM LEVEL DSNLOGREC VARIABLE DECLARES

IEANTRT callable service

566 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IFBNTASM
EJECT

* NAME/TOKEN VARIABLE DECLARES

IEANTASM
END IFBNTXMP

IEANTRT callable service

Chapter 43. IEANTRT — Retrieve the token from a name/token pair 567

568 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 44. IEANTRTR — Name/token retrieve register
interface

Description
The IEANTRTR macro provides the name/token retrieve service in a way that
does not require the user to have storage prior to the call.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts
Locks: The caller can hold a local, CML, or CMS lock; however, no

locks are required.
Control parameters: Input and output parameters can, for AMODE 64 callers, be

above 2G. The NAME parameter is assumed to be within
the primary address space. The LEVEL and TOKEN
parameters can, for AR-mode callers, be in an
ALET-qualified space.

Programming requirements
Before you use name/token services, you can optionally include macro
IEANTASM which includes name/token service equates.

Restrictions
v Do not use the IEANTRTR service unless you know that you are running on a

release with z/OS V2R2 functions (as indicated by bit CVTZOS_V2R2 in the
CVT data area being on).

v Do not use the IEANTRTR callable service in a RESMGR resource manager
routine unless one of the following is true:
– The name/token pair is a system-level persistent name/token pair.
– The resource manager is running for a daughter task of the task that owns the

name/token pair.
– The resource manager is running for the task that owns the name/token pair

and that resource manager was established for a specific address space and a
specific task.

v Do not call the IEANTRTR callable service with user_name and user_token
parameters being the same storage locations.

© Copyright IBM Corp. 1988, 2016 569

|

|

|

|
|

|
|

|

|

|||
||
||
||
||

|
|
||

|
|
||
||
|
||
|
|
|
|
|

|

|
|

|

|
|
|

|
|

|

|
|

|
|
|

|
|

Input register information
Before issuing the IEANTRTR macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the IEANTRTR macro, the caller does not have to place any
information into any AR unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 When GR15=0, 64-bit GR0 contains bytes 0-7 of the token of the requested
name/token pair. Otherwise, used as a work register by the system.

1 When GR15=0, 64-bit GR1 contains bytes 8-15 of the token of the requested
name/token pair. Otherwise, used as a work register by the system.

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The IEANTRTR macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEANTRTR.

IEANTRTR

IEANRTR macro

570 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|

|
|
|

|
|
|

|

|

|
|

||
|

||
|

||

||

||

|

|
|

||

||

||

|
|
|
|

|

|

|

|

|||

||

||

||

||

||

||

Syntax Description

� One or more blanks must follow IEANTRTR.

LEVEL=level level: RX-type address or address in register (2) - (12)

,NAME=name name: RX-type address or address in register (2) - (12)

,TOKEN=token token RX-type address or address in register (2) - (12)

,RETCODE=retcode retcode: RS-type address or register (2) - (12) or (15), (GPR15), (REG15), or
(R15).

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IEANTRTR
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

LEVEL=level
A required input parameter that specifies the level of the name/token pair
from which you want to retrieve the token (each of these levels has a
corresponding equate in IEANTASM):

1 Task

Equate name: IEANT_TASK_LEVEL

2 Home address space

Equate name: IEANT_HOME_LEVEL

3 Primary address space

Equate name: IEANT_PRIMARY_LEVEL

4 System

Equate name: IEANT_SYSTEM_LEVEL

11 Task with authorization check

Equate name: IEANT_TASKAUTH_LEVEL

12 Home address space with authorization check

Equate name: IEANT_HOMEAUTH_LEVEL

13 Primary address space with authorization check.

Equate name: IEANT_PRIMARYAUTH_LEVEL

IEANRTR macro

Chapter 44. IEANTRTR — Name/token retrieve register interface 571

||

||

||

||

||

||

||

||

||

||

||
|

||
|

|

|

|
|
|
|

|
|
|
|

||

|

||

|

||

|

||

|

||

|

||

|

||

|

Note: Levels 11 (IEANT_TASKAUTH_LEVEL), 12
(IEANT_HOMEAUTH_LEVEL), and 13 (IEANT_PRIMARYAUTH_LEVEL)
indicate that the IEANTRTR callable service should determine if the
name/token pair being retrieved was created by an authorized program.

To code: Specify the RX-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,NAME=name
A required input parameter that specifies the name of the requested
name/token pair.

To code: Specify the RX-type address, or address in register (2)-(12), of a
16-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,TOKEN=token
An optional output parameter that is to contain the token of the requested
name/token pair. The token is also in 64-bit GRs 0 and 1.

To code: Specify the RX-type address, or address in register (2)-(12), of a
16-character field.

ABEND codes
None.

Return codes
When IEANTRTR returns control to your program, GPR 15 (and return_code, when
you specify RETCODE) contain a return code. The following table identifies return
codes in hexadecimal, tells what each means, and recommends as action that you
need to take.

Table 51. Return Codes for the IEANTRTR Macro

Hexadecimal
Return Code

Equate Symbol Meaning Action

00 IEANT_OK The operation was
successful.

None.

04 IEANT_NOT_FOUND The request is rejected
because the system
could not find the
requested name/token
pair.

Check the token
name you
specified.

IEANRTR macro

572 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|

|

|

|
|
|
|

||

|
|
|||

|||
|
|

|||
|
|
|
|

|
|
|

Table 51. Return Codes for the IEANTRTR Macro (continued)

Hexadecimal
Return Code

Equate Symbol Meaning Action

16 IEANT_NOT_AUTH A request for a retrieval
with authorization check
attempted to retrieve a
name/token pair created
by an unauthorized
caller.

If your program is
authorized, you
need to make sure
that the
name/token pair
you are retrieving
was created by
another authorized
program. You may
choose to use the
name/token pair if
it was created by
an unauthorized
program, but
doing so might
cause data
integrity problems.

20 IEANT_SRB_MODE An SRB-mode caller
attempted to retrieve a
task-level name/token
pair.

Check which level
of name/token
pair you are
retrieving.

28 IEANT_LEVEL_INVALID The caller specified an
incorrect level.

Specify the correct
level. Valid options
are 1, 2, 3, 4, 11,
12, or 13.

64 IEANT_UNEXPECTED_ERROR A system error occurred
while handling the
request.

Retry the request.

Example 1
Operation: Retrieve the token, but leave it in registers 0 and 1.

The code is as follows:

* Retrieve the task level token for MY_NAME *

IEANTRTR LEVEL=L,NAME=lName
LTR 15,15 Check retcode
JNZ Error

* Token in GR0,1 is valid
....

lName DC CL16’MY_NAME’
L DC A(IEANT_TASK_LEVEL)

IEANTASM ,

Example 2
Operation: Save the token into a variable.

The code is as follows:

* Retrieve the system level token for MY_SYSNAME and *
* save the token *

IEANTRTR LEVEL=L,NAME=lName,TOKEN=T
LTR 15,15 Check retcode
JNZ Error

* Token in T is valid

IEANRTR macro

Chapter 44. IEANTRTR — Name/token retrieve register interface 573

|

|
|
|||

|||
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||
|
|
|

|
|
|
|

|||
|
|
|
|
|

|||
|
|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|

....
lName DC CL16’MY_SYSNAME’
T DS CL16
L DC A(IEANT_SYSTEM_LEVEL)

IEANTASM ,

IEANRTR macro

574 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|
|
|

Chapter 45. IEAN4CR — Create a name/token pair

Description
Call the IEAN4CR service to create a name/token pair.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, with any PSW key.

Note: Problem-state programs with PSW key 8 - 15 cannot
create system-level pairs.

Dispatchable unit mode: Task or SRB
Note: SRB-mode callers cannot create a task-level pair.

Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: The parameter list and all parameters must reside in the

caller's primary address space.

Programming requirements
Before you use name/token services, you can optionally include the IEANTASM
macro to invoke name/token services equate (EQU) statements. IEANTASM
provides the following constants for use in your program:
* Name/Token Level Constants
*
IEANT_TASK_LEVEL EQU 1
IEANT_HOME_LEVEL EQU 2
IEANT_PRIMARY_LEVEL EQU 3
IEANT_SYSTEM_LEVEL EQU 4
IEANT_TASKAUTH_LEVEL EQU 11
IEANT_HOMEAUTH_LEVEL EQU 12
IEANT_PRIMARYAUTH_LEVEL EQU 13
*
* Name/Token Persistence Constants
*
IEANT_NOPERSIST EQU 0
IEANT_PERSIST EQU 1
IEANT_NOCHECKPOINT EQU 0
IEANT_CHECKPOINTOK EQU 2
*
* Name/Token Return Code Constants
*
IEANT_OK EQU 0
IEANT_DUP_NAME EQU 4
IEANT_NOT_FOUND EQU 4
IEANT_24BITMODE EQU 8
IEANT_NOT_AUTH EQU 16
IEANT_SRB_MODE EQU 20
IEANT_LOCK_HELD EQU 24
IEANT_LEVEL_INVALID EQU 28

© Copyright IBM Corp. 1988, 2016 575

IEANT_NAME_INVALID EQU 32
IEANT_PERSIST_INVALID EQU 36
IEANT_AR_INVALID EQU 40
IEANT_UNEXPECTED_ERR EQU 64

Restrictions
Do not use the IEAN4CR callable service in a RESMGR resource manager routine
unless one of the following is true:
v The name/token pair is a system-level persistent name/token pair.
v The resource manager is running for a daughter task of the task that owns the

name/token pair.
v The resource manager is running for the task that owns the name/token pair

and that resource manager was established for a specific address space and a
specific task.

Input register information
Before issuing the IEAN4CR callable service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

IEAN4CR callable service

576 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

SYSSTATE AMODE64=YES

CALL IEAN4CR

,(level
,user_name
,user_token
,persist_option
,return_code)

Link edit your program with a linkage-assist routine (also called a stub) in
SYS1.CSSLIB unless you use one of the following techniques as an alternative to
CALL IEAN4CR:
1. LOAD EP=IEAN4CR

Save the 8-byte entry point address with bit 63 changed to 0
(...)
Put the saved entry point address with bit 63 changed to 0 into 64-bit R15
CALL (15),(...)

2. LLGT 15,X’10’
L 15,X’220’(15,0)
L 15,X’14’(15,0)
L 15,X’7C’(15,0)
CALL (15),(...)

Both of these alternate techniques require verification that the IEAN4CR service is
available (in the CVT, bit CVTZOS_V1R11 is on indicating that the program is
running on z/OS V1R11 or a later release).

Parameters
The parameters are explained as follows:

level
Specifies a fullword that contains an integer indicating the level of the
name/token pair:

1 Task

2 Home address space

3 Primary address space

4 System.

,user_name
Specifies the 16-byte area containing the name of the name/token pair that the
user creates. The bytes of the name may have any value. The name may
contain blanks, integers, or addresses.

Names must be unique within a level. Here are some examples.
v Two task-level name/token pairs owned by the same task cannot have the

same name. However, two task-level name/token pairs owned by different
tasks can have the same name.

v Two home-address-space-level name/token pairs in the same address space
cannot have the same name. However, two home-address-space-level
name/token pairs in different address spaces can have the same name.

Because of these unique requirements you must avoid using the same names
that IBM uses for name/token pairs. Do not use the following names:

IEAN4CR callable service

Chapter 45. IEAN4CR — Create a name/token pair 577

v Names that begin with A through I
v Names that begin with X'00'.

,user_token
Specifies the 16-byte area containing the token of the name/token pair that the
user creates.

,persist_option
Specifies a fullword that contains an integer indicating if a system-level
name/token pair should persist after the creating address space's job step task
terminates or if Checkpoint/Restart can be issued if the program has this
task-level name/token pair. If a program has non-task-level name/token pairs
or has task-level name/token pairs that did not specify
IEANT_CHECKPOINTOK, the program cannot take a checkpoint.
v 0 - system-level pair will not persist and checkpoint is not permitted.
v 1 - system-level pair will persist.
v 2 - checkpoint is permitted.

Note: Only system-level name/token pairs can persist after the creating task
terminates. Only task-level name/token pairs can permit checkpoint.You must
specify 0 for all other levels.

,return_code
Specifies a fullword to contain the return code from the IEAN4CR service.

ABEND codes
The caller might encounter abend X'AC7' with a reason code of either X'00030000'
or X'00030001'. See z/OS MVS System Codes for an explanation and responses for
these codes.

Return and reason codes
When IEAN4CR returns control to your program, GPR 15 and return_code contain a
return code. The following table identifies return codes in hexadecimal and
decimal, tells what each means, and recommends an action that you need to take:

Table 52. Return Codes for the IEAN4CR Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: The operation was successful.

Action: None.

04 Meaning: The user_name specified already exists.

Action: Choose a different user_name.

08 Meaning: The request is rejected because the caller is in 24-bit addressing mode.

Action: Change your program to 64-bit addressing mode.

10 Meaning: An unauthorized caller attempted to create a system-level name/token
pair.

Action: Check which level of name/token pair you are creating.

14 Meaning: An SRB-mode caller attempted to create a task-level name/token pair.

Action: Change your program to task mode or use a different level.

18 Meaning: The caller held locks.

Action: Release all locks before issuing IEAN4CR.

IEAN4CR callable service

578 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 52. Return Codes for the IEAN4CR Macro (continued)

Hexadecimal
Return Code

Meaning and Action

1C Meaning: The caller specified an incorrect level.

Action: Respecify the correct level. Valid options are 1, 2, 3, or 4.

20 Meaning: The caller specified an incorrect user_name.

Action: Respecify the correct user_name.

24 Meaning: The caller specified an incorrect persist_option.

Action:

v For system-level name/token pairs, you must specify zero or one for the
persist_option.

v For task-level name/token pairs, you must specify zero or two for the
persist_option.

v For home or primary address space level name/token pairs, you must specify
zero for the persist_option.

28 Meaning: The caller was in AR ASC mode and AR1 was not zero.

Action: Change your program to primary mode or set AR1 to zero.

40 Meaning: A system error occurred while handling the request.

Action: Retry the request.

IEAN4CR callable service

Chapter 45. IEAN4CR — Create a name/token pair 579

IEAN4CR callable service

580 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 46. IEAN4DL — Delete a name/token pair

Description
Call the IEAN4DL service to delete a name/token pair.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key

Note: Problem-state programs with PSW key 8 - 15 cannot
delete:

v System-level pairs

v Name/token pairs created by supervisor-state or PSW key
0-7 programs.

Dispatchable unit mode: Task or SRB
Note: SRB-mode callers cannot delete a task-level pair.

Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: The parameter list and all parameters must reside in the

caller's primary address space.

Programming requirements
Before you use name/token services, you can optionally include the IEANTASM
macro to invoke name/token services equate (EQU) statements. IEANTASM
provides the following constants for use in your program:
* Name/Token Level Constants
*
IEANT_TASK_LEVEL EQU 1
IEANT_HOME_LEVEL EQU 2
IEANT_PRIMARY_LEVEL EQU 3
IEANT_SYSTEM_LEVEL EQU 4
IEANT_TASKAUTH_LEVEL EQU 11
IEANT_HOMEAUTH_LEVEL EQU 12
IEANT_PRIMARYAUTH_LEVEL EQU 13
*
* Name/Token Persistence Constants
*
IEANT_NOPERSIST EQU 0
IEANT_PERSIST EQU 1
*
* Name/Token Return Code Constants
*
IEANT_OK EQU 0
IEANT_DUP_NAME EQU 4
IEANT_NOT_FOUND EQU 4
IEANT_24BITMODE EQU 8
IEANT_NOT_AUTH EQU 16
IEANT_SRB_MODE EQU 20
IEANT_LOCK_HELD EQU 24
IEANT_LEVEL_INVALID EQU 28

© Copyright IBM Corp. 1988, 2016 581

IEANT_NAME_INVALID EQU 32
IEANT_PERSIST_INVALID EQU 36
IEANT_AR_INVALID EQU 40
IEANT_UNEXPECTED_ERR EQU 64

Restrictions
Do not use the IEAN4DL callable service in a RESMGR resource manager routine
unless one of the following is true:
v The name/token pair is a system-level persistent name/token pair.
v The resource manager is running for a daughter task of the task that owns the

name/token pair.
v The resource manager is running for the task that owns the name/token pair

and that resource manager was established for a specific address space and a
specific task.

Input register information
Before issuing the IEAN4DL callable service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

IEAN4DL callable service

582 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

SYSSTATE AMODE64=YES

CALL IEAN4DL
,(level
,user_name
,return_code)

Link edit your program with a linkage-assist routine (also called a stub) in
SYS1.CSSLIB unless you use one of the following techniques as an alternative to
CALL IEAN4DL:
1. LOAD EP=IEAN4DL

Save the 8-byte entry point address with bit 63 changed to 0
(...)
Put the saved entry point address with bit 63 changed to 0 into 64-bit R15
CALL (15),(...)

2. LLGT 15,X’10’
L 15,X’220’(15,0)
L 15,X’14’(15,0)
L 15,X’84’(15,0)
CALL (15),(...)

Both of these alternate techniques require verification that the IEAN4DL service is
available (in the CVT, bit CVTZOS_V1R11 is on indicating that the program is
running on z/OS V1R11 or a later release).

Parameters
The parameters are explained as follows:

level
Specifies a fullword that contains an integer indicating the level of the
name/token pair you wish to delete:

1 Task

2 Home address space

3 Primary address space

4 System.

,user_name
Specifies the 16-byte area containing the name of the name/token pair to be
deleted.

,return_code
Specifies a fullword to contain the return code from the IEAN4DL service.

ABEND codes
The caller might encounter abend X'AC7' with a reason code of either X'00030000'
or X'00030001'. See z/OS MVS System Codes for an explanation and responses for
these codes.

Return and reason codes
When IEAN4DL returns control to your program, GPR 15 and return_code contain a
return code. The following table identifies return codes in hexadecimal, tells what
each means, and recommends an action that you need to take.

IEAN4DL callable service

Chapter 46. IEAN4DL — Delete a name/token pair 583

Table 53. Return Codes for the IEAN4DL Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: The operation was successful.

Action: None.

04 Meaning: The request is rejected because the system could not find the
requested name/token pair.

Action: Check the user_name you specified.

08 Meaning: The request is rejected because the caller is in 24-bit addressing mode.

Action: Change your program to 64-bit addressing mode.

10 Meaning: An unauthorized caller attempted to delete a system-level pair or a
name/token pair that was created by an authorized program.

Action: Check which level of name/token pair you are deleting.

14 Meaning: An SRB-mode caller attempted to delete a task-level name/token pair.

Action: Change the program to task mode or check the value you set for the
level parameter.

18 Meaning: The caller held locks.

Action: Release all locks before issuing IEAN4DL.

1C Meaning: The caller specified an incorrect level.

Action: Respecify the correct level. Valid options are 1, 2, 3, or 4.

20 Meaning: The caller specified an incorrect user_name.

Action: Respecify the correct user_name.

28 Meaning: The caller was in AR ASC mode and AR1 was not zero.

Action: Change your program to primary mode or set AR1 to zero.

40 Meaning: A system error occurred while handling the request.

Action: Retry the request.

IEAN4DL callable service

584 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 47. IEAN4RT — Retrieve the token from a name/token
pair

Description
Call the IEAN4RT service to retrieve the token from a name/token pair.

The IEAN4RT callable service can also be used to obtain the name of the logrec
medium, either the name of the logrec data set or the name of the logrec log
stream.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task or SRB

Note: SRB-mode callers cannot retrieve a task-level pair.
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller can hold a local, CML, or CMS lock; however, no

locks are required.
Control parameters: The parameter list and all parameters must reside in the

caller's primary address space.

Programming requirements
Before you use name/token services, you can optionally include macro
IEANTASM to invoke name/token services equate (EQU) statements. IEANTASM
provides the following constants for use in your program:
* Name/Token Level Constants
*
IEANT_TASK_LEVEL EQU 1
IEANT_HOME_LEVEL EQU 2
IEANT_PRIMARY_LEVEL EQU 3
IEANT_SYSTEM_LEVEL EQU 4
IEANT_TASKAUTH_LEVEL EQU 11
IEANT_HOMEAUTH_LEVEL EQU 12
IEANT_PRIMARYAUTH_LEVEL EQU 13
*
* Name/Token Persistence Constants
*
IEANT_NOPERSIST EQU 0
IEANT_PERSIST EQU 1
*
* Name/Token Return Code Constants
*
IEANT_OK EQU 0
IEANT_DUP_NAME EQU 4
IEANT_NOT_FOUND EQU 4
IEANT_24BITMODE EQU 8
IEANT_NOT_AUTH EQU 16
IEANT_SRB_MODE EQU 20
IEANT_LOCK_HELD EQU 24

© Copyright IBM Corp. 1988, 2016 585

IEANT_LEVEL_INVALID EQU 28
IEANT_NAME_INVALID EQU 32
IEANT_PERSIST_INVALID EQU 36
IEANT_AR_INVALID EQU 40
IEANT_UNEXPECTED_ERR EQU 64

To obtain the name of the logrec data set or the name of the logrec log stream, you
can include the IFBNTASM macro, as well as the IEANTASM macro, in your
program. See “Example 2” on page 564 for the list of definitions IFBNTASM
provides.

Restrictions
v Do not use the IEAN4RT callable service in a RESMGR resource manager

routine unless one of the following is true:
– The name/token pair is a system-level persistent name/token pair.
– The resource manager is running for a daughter task of the task that owns the

name/token pair.
– The resource manager is running for the task that owns the name/token pair

and that resource manager was established for a specific address space and a
specific task.

v Do not call the IEAN4RT callable service with user_name and user_token
parameters being the same storage locations.

Input register information
Before issuing the IEAN4RT callable service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

IEAN4RT callable service

586 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

SYSSTATE AMODE64=YES

CALL IEAN4RT

,(level
,user_name
,user_token
,return_code)

Link edit your program with a linkage-assist routine (also called a stub) in
SYS1.CSSLIB unless you use one of the following techniques as an alternative to
CALL IEAN4RT:
1. LOAD EP=IEAN4RT

Save the 8-byte entry point address with bit 63 changed to 0
(...)
Put the saved entry point address with bit 63 changed to 0 into 64-bit R15
CALL (15),(...)

2. LLGT 15,X’10’
L 15,X’220’(15,0)
L 15,X’14’(15,0)
L 15,X’80’(15,0)
CALL (15),(...)

Both of these alternate techniques require verification that the IEAN4RT service is
available (in the CVT, bit CVTZOS_V1R11 is on indicating that the program is
running on z/OS V1R11 or a later release).

Parameters
The parameters are explained as follows:

level
Specifies a fullword that contains an integer indicating the level of the
name/token pair from which you want to retrieve the token:

1 Task

2 Home address space

3 Primary address space

4 System

11 Task with authorization check

12 Home address space with authorization check

13 Primary address space with authorization check.

Note: Levels 11, 12, and 13 indicate that the IEAN4RT callable service should
determine if the name/token pair being retrieved was created by an authorized
program.

IEAN4RT callable service

Chapter 47. IEAN4RT — Retrieve the token from a name/token pair 587

,user_name
Specifies the 16-byte area containing the name of the requested name/token
pair.

,user_token
Specifies the 16-byte area to contain the token of the requested name/token
pair.

,return_code
Specifies a fullword to contain the return code from the IEAN4RT service.

ABEND codes
None.

Return codes
When IEAN4RT returns control to your program, GPR 15 and return_code contain a
return code. The following table identifies return codes in hexadecimal, tells what
each means, and recommends as action that you need to take.

Table 54. Return Codes for the IEAN4RT Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: The operation was successful.

Action: None.

04 Meaning: The request is rejected because the system could not find the
requested name/token pair.

Action: Check the user_name you specified.

08 Meaning: The request is rejected because the caller is in 24-bit addressing mode.

Action: Change your program to 64-bit addressing mode.

10 Meaning: A request for a retrieval with authorization check attempted to
retrieve a name/token pair created by an unauthorized caller.

Action: If your program is authorized, you need to make sure that the
name/token pair you are retrieving was created by another authorized program.
You may choose to use the name/token pair if it was created by an
unauthorized program, but doing so might cause data integrity problems.

14 Meaning: An SRB-mode caller attempted to retrieve a task-level name/token
pair.

Action: Check which level of name/token pair you are retrieving.

1C Meaning: The caller specified an incorrect level.

Action: Respecify the correct level. Valid options are 1, 2, 3, 4, 11, 12, or 13.

40 Meaning: A system error occurred while handling the request.

Action: Retry the request.

IEAN4RT callable service

588 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 48. IEARBUP — RB update service

Description
IEARBUP allows you to request that the system update the instruction address in
the PSW copy in the RB.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks are required. The caller may hold a local lock, the

CMS lock or the CPU lock.
Control parameters: Control parameters must be in the primary address space.

Programming requirements
The caller must include the CVT and IHAECVT mapping macros.

Restrictions
If the caller holds the CPU lock, the parameter list must be in fixed or DREF
storage.

Input register information
Before issuing the IEARBUP macro, the caller does not have to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system.

© Copyright IBM Corp. 1988, 2016 589

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The IEARBUP macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEARBUP.

IEARBUP

� One or more blanks must follow IEARBUP.

WHICHRB=CURRENT

WHICHRB=PREV

WHICHRB=EXPLICIT

,RB=xrb

FUNCTION=UPDATE Default: FUNCTION=UPDATE

,PSWBYTE03=NO

,PSWBYTE03=YES

,ADDRTYPE=NO_CHANGE Default: ADDRTYPE=NO_CHANGE

,ADDRTYPE=INRBOPSWA

,ADDRTYPE=ACTUAL

,PSWADDR=pswaddr pswaddr: RS-type address or address in register (2) - (12)

,AMODE=UNCHANGED Default: AMODE=UNCHANGED

,AMODE=24

,AMODE=31

,AMODE=64

IEARBUP RB update service

590 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,ADDRTYPE=DELTA

,PSWDELTA=pswdelta pswdelta: RS-type address or address in register (2) - (12)

FUNCTION=EXTRACTPSW

,PSWG=xpswg

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IEARBUP
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

WHICHRB=
A required parameter that identifies the RB to be updated

WHICHRB=CURRENT
indicates to update the current RB.

WHICHRB=PREV
indicates to update the previous (older) RB.

WHICHRB=EXPLICIT
indicates to update the provided RB. The calling program must ensure that
there is proper serialization to keep the provided RB valid for the duration
of IEARBUP service processing.

RB=xrb
indicates the name (RS-type) or address in register (2)-(12) of a
required character input that identifies the RB to be updated

IEARBUP RB update service

Chapter 48. IEARBUP — RB update service 591

FUNCTION=
indicates an optional keyword input that identifies the function to be
performed

FUNCTION=UPDATE
indicates to update an RB

,PSWBYTE03=
A required parameter that indicates whether the user has updated the
first 4 bytes (bytes 0 to 3) of RBOPSW. If so, the system should use
those updated values.

,PSWBYTE03=NO
indicates that bytes 0 to 3 were not modified.

,PSWBYTE03=YES
indicates that bytes 0 to 3 were modified.

,ADDRTYPE=
An optional parameter that identifies the method by which the
instruction address in the PSW is provided. The default is
ADDRTYPE=NO_CHANGE.

,ADDRTYPE=NO_CHANGE
indicates that the instruction address has not been changed.

,ADDRTYPE=INRBOPSWA
indicates that the instruction address has been updated in
RBOPSWA, along with the one or more AMODE indicators.

,ADDRTYPE=ACTUAL
indicates that the instruction address is to be used as is.

,ADDRTYPE=DELTA
indicates that the value provided is a delta to the existing address.

,PSWDELTA=pswdelta
When ADDRTYPE=DELTA is specified, a required input
parameter that contains the delta to be added to the instruction
address in the PSW copy stored in the RB. The value is treated
as a signed quantity, so a value of X'FFFFFFFE' would be
treated as negative two, resulting in subtracting two from the
instruction address. The AMODE will remain unchanged.

To code: Specify the RS-type address, or address in register
(2)-(12), of a fullword field.

,PSWADDR=pswaddr
When ADDRTYPE=ACTUAL is specified, a required input parameter
that contains the address to be placed into the PSW stored in the RB.
The high 33 bits must be zero, unless the result is to be AMODE 64.

To code: Specify the RS-type address, or address in register (2)-(12), of
an 8-byte field.

,AMODE=
When ADDRTYPE=ACTUAL is specified, a required parameter that
identifies the resulting AMODE for the PSW

,AMODE=UNCHANGED
indicates not to change the AMODE.

,AMODE=24
indicates to set the AMODE to 24.

IEARBUP RB update service

592 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,AMODE=31
indicates to set the AMODE to 31.

,AMODE=64
indicates to set the AMODE to 64.

FUNCTION=EXTRACTPSW
indicates to extract the 128–bit PSW associated with this RB

PSWG=xpswg
indicates the name (RS-type) or address in register (2)-(12) of the
required 16–character output that is to contain the 128–bit
x/Architecture PSW.

Note: If running under ESA/390 architecture (ARCHLVL 1), the PSW
is the 128–bit z/Architecture analog of the 64–bit ESA/390 PSW.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=
An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:

,PLISTERVER=IMPLIED_VERSION
indicates the lowest version that allows all parameters specified on the
request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

,PLISTVER=MAX
indicates the parameter list will be the largest size currently possible. This
size might grow from release to release and affect the amount of storage
that your program needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures
that the parameter list does not overwrite nearby storage.

,PLISTVER=0
indicates that you want to use the currently available parameters.

,MF=
An optional input parameter that specifies the macro form.

,MF=S
Specifies the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service.
MF=S is the default.

IEARBUP RB update service

Chapter 48. IEARBUP — RB update service 593

,MF=L,list addr
Specifies the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list
form of the macro.

,list addr
The name (RS-type) or address in register (1)-(12) of the storage area
that contains the parameters.

,attr
An optional 1- to 60-byte input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the
parameter list to a word boundary, or 0D to force the parameter list to
a doubleword boundary. If you do not code attr, the system provides a
value of 0D.

,MF=E,list addr,COMPLETE
Specifies the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code.
The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name (RS-type) or address in register (1)-(12) of the storage area
that contains the parameters.

COMPLETE
Specifies that the system is to check for required parameters and
supply defaults for omitted optional parameters.

ABEND codes
The caller may get the following abend code:

0C2-02
The caller was not in supervisor state.

0C4-04
The caller was not in key 0.

Return and reason codes
When the IEARBUP macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro IEARBUPM provides equate symbols for the return and reason codes.

Table 55 on page 595 identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

IEARBUP RB update service

594 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 55. Return and Reason Codes for the IEARBUP Macro

Return Code Reason Code Equate Symbol, Meaning, and Action

0 — Equate Symbol: IearbupRc_OK

Meaning: Iearbup request successful.

8 — Equate Symbol: IearbupRc_InvParm

Meaning: Iearbup request specifies invalid parameters.

Action: Refer to the action provided with the specific reason
code.

8 xxxx0801 Equate Symbol: IearbupRsnBadVersion

Meaning: The version field in the parameter list is not valid.

Action: Check for possible storage overlay.

8 xxxx0802 Equate Symbol: IearbupRsnBadAMODEField

Meaning: The amode field in the parameter list is not valid.

Action: Check for possible storage overlay.

8 xxxx0803 Equate Symbol: IearbupRsnBadAddress

Meaning: The address provided is not valid.

Action: Only provide an instruction address that is less than
X'80000000'.

C — Equate Symbol: IearbupRc_Env

Meaning: Environmental error

Action: Refer to the action provided with the specific reason
code.

C xxxx0C01 Equate Symbol: IearbupRsnPrevRBNotFound

Meaning: RB=PREV was requested, but there is only one RB for
the current task.

Action: Use RB=CURRENT when there is only one RB.

C xxxx0C02 Equate Symbol: IearbupRsnBadAMODE

Meaning: AMODE=64 was specified but the architecture level is
not z/Architecture.

Action: Only request AMODE=64 when the architecture level is
z/Architecture.

Example 1

Operation
1. Update the instruction address in the PSW copy stored in the RB to the address

provided in field P.

The code is as follows:
IEARBUP ADDRTYPE=ACTUAL,PSWADDR=P,RETCODE=RC,MF=(E,MFL)

...
IEARBUP MF=(L,MFL)

P DS XL8
RC DS F

IEARBUP RB update service

Chapter 48. IEARBUP — RB update service 595

Example 2

Operation:
1. Decrement the instruction address in the PSW copy in the RB by 4

The code is as follows:
IEARBUP ADDRTYPE=DELTA,PSWDELTA=PD,RETCODE=RC,MF=(E,MFL)

...
IEARBUP MF=(L,MFL)

PD DC F’-4’
RC DS F

IEARBUP RB update service

596 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 49. IEATDUMP — Transaction dump request

Description
Transaction dump is a service used to request an unformatted dump of virtual
storage to a data set, similar to a SYSMDUMP. It is invoked with the IEATDUMP
assembler macro, which issues SVC 51. The service is available to both authorized
and unauthorized callers; however, not all functions are available to unauthorized
callers. If an unauthorized caller requests a transaction dump with authorized
keywords, the request will be rejected and message IEA820I will be issued
indicating this condition. The transaction dump can be written to one or more
automatically allocated data sets by specifying a data set name pattern, similar to
the pattern used for the operator DUMPDS NAME=parameter. Automatic
allocation reduces the exposure that a dump is truncated because of space
constraints, and is done using the generic allocation unit name of SYSALLDA.
When a dump is written, messages IEA822I or IEA827I are issued indicating
whether the dump is complete or partial.

When a transaction dump is written, a dump directory record describing the dump
may be written. The dump directory to be used is specified on the dump request
using the IDX keyword. If no dump directory is specified on the request, the
directory allocated to IPCSDDIR in the current job step will be used. If no dump
directory is specified and IPCSDDIR is not allocated, no record describing the
dump will be written.

Dump suppression occurs using symptoms available in the current SDWA or a
symptom string may be provided (via the SYMREC keyword). If a symptom string
is provided and an SDWA exists, the symptom string is used for suppression
purposes. Statistics for dump suppression are contained in the DAE data set and
are not differentiated from SYSMDUMPs. If a dump is requested but not taken
because it was suppressed, message IEA820I is issued indicating this condition.

Authorized users may specify the REMOTE keyword, on a transaction dump
invocation, to request that other address spaces on the current or other MVS
images (in the same sysplex) be dumped. When remote dumps are requested,
automatic allocation must also be used. Transaction dump uses an incident token
to associate this dump with other diagnostic information. Automatic allocation also
uses this incident token for symbol substitution in the data set name pattern. An
incident token may be generated using the IEAINTKN macro and provided on the
dump request using the INTOKEN keyword. If an incident token is not provided,
one will be generated and used internally. While an incident token may always be
specified, it may be especially important when remote dumps are requested.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15. Use of some keywords is

restricted to authorized callers (supervisor state, PSW key
0-7 or APF-authorized).

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit

© Copyright IBM Corp. 1988, 2016 597

Environmental factor Requirement
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not hold any locks.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

The caller-provided title, data set name, dump index name,
symptom record, incident token, remote area, problem
description area and storage list area all have the same
requirements and restrictions as the control parameters.

Programming requirements
None.

Restrictions
The caller may not have any FRRs established.

An IEATDUMP cannot succeed when another process within the task is exclusively
holding the SYSZTIOT enqueue. Instead, a SVC dump would probably occur.

Input register information
Before issuing the IEATDUMP macro, the caller does not have to place any
information into any general purpose register (GPR) unless using it in register
notation for a particular parameter, or using it as a base register.

Before issuing the IEATDUMP macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-14 Unchanged

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

IEATDUMP transaction dump

598 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Performance implications
None.

Syntax
The parameters DCB, DCBAD, and ASYNC=YES are no longer supported.

The IEATDUMP macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEATDUMP.

IEATDUMP

� One or more blanks must follow IEATDUMP.

DSNAD=dsnad dsnad: RS-type address or register (2) - (12).

DSN=dsn dsn: RS-type address or register (2) - (12).

DDNAME=ddname ddname: RS-type address or register (2) - (12).

,HDRAD=hdrad hdrad: RS-type address or register (2) - (12).

,HDR=hdr hdr: RS-type address or register (2) - (12).

,IDXAD=idxad idxad: RS-type address or register (2) - (12).

,IDX=idx idx: RS-type address or register (2) - (12).

,SYMRECAD=symrecad symrecad: RS-type address or register (2) - (12).

,SYMREC=symrec symrec: RS-type address or register (2) - (12).

,INTOKENAD=intokenad intokenad: RS-type address or register (2) - (12).

,INTOKEN=intoken intoken: RS-type address or register (2) - (12).

,REMOTEAD=remotead remotead: RS-type address or register (2) - (12).

,REMOTE=remote remote: RS-type address or register (2) - (12).

,PROBDESCAD=probdescad probdescad: RS-type address or register (2) - (12).

,PROBDESC=probdesc probdesc: RS-type address or register (2) - (12).

,LISTAD=listad listad: RS-type address or register (2) - (12).

,LIST=list list: RS-type address or register (2) - (12).

IEATDUMP transaction dump

Chapter 49. IEATDUMP — Transaction dump request 599

Syntax Description

,SUBPLSTAD=subplstad subplstad: RS-type address or register (2) - (12).

,SUBPLST=subplst subplst: RS-type address or register (2) - (12).

,DSPLISTAD=dsplistad dsplistad: RS-type address or register (2) - (12).

,DSPLIST=dsplist dsplist: RS-type address or register (2) - (12).

,SDATA=DEFS Default: SDATA=DEFS

,SDATA=ALLNUC

,SDATA=CSA

,SDATA=GRSQ

,SDATA=LPA

,SDATA=LSQA

,SDATA=NUC

,SDATA=RGN

,SDATA=SQA

,SDATA=SUM

,SDATA=SWA

,SDATA=TRT

,SDATA=PSA

,ASYNC=NO Default: ASYNC=NO

,ECBAD=ecbad ecbad: RS-type address or register (2) - (12).

,ECB=ecb ecb: RS-type address or register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=1

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

IEATDUMP transaction dump

600 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters
The parameters DCB, DCBAD, and ASYNC=YES are no longer supported, and are
removed from this information.

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IEATDUMP
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

DSNAD=dsnad
DSN=dsn
DDNAME=ddname

A required input parameter. The output dump data set should have the
attributes of RECFM=FB and LRECL=4160.

DSNAD=dsnad
A 4-byte field which contains the address of the area of the name pattern
used to create the data set that is to contain the dump. The format of the
area is described in the DSN field which follows.

To code: Specify the RS-type address, or address in register (2) - (12), of a
pointer field.

DSN=dsn
A 2- to 101-character input area that contains the name pattern used to
create the data set that is to contain the dump. The format of the area
begins with a single byte specifying the length of the name pattern, which
must not be greater than 100. The name pattern immediately follows that
byte. The name pattern has a series of attributes: it is similar to that used
by the operator DUMPDS NAME= parameter, except that &SEQ is not
supported, and there is no default name pattern available; the use of
system symbols is supported; and it must resolve to a valid data set name
which can be allocated from the caller's task. When used with the
REMOTE= parameter, the generated name must be unique for each
requested address space (&JOBNAME is one recommended addition to the
pattern to accomplish this).

In addition, IEATDUMP also recognizes the symbol &DS. (Dump Section)
on the end of the name pattern. When present, IEATDUMP allocates the
first data set for dumping, ending with “001”. If this runs out of disk space
or uses up all 16 extents before the dump is completed, dumping will be
continued to data sets with the same name, but ending in “002”,”003”, and
so on, until the entire dump is written. Each of these data sets are allocated
with a primary extent size of 500M and a secondary extent size of 500M,
but it is possible to change these values by providing ACS routines that are
driven by DFSMS.

Remember to combine all of the data sets into one data set by using IPCS
COPYDUMP, before using IPCS to view the diagnostic data.

IEATDUMP transaction dump

Chapter 49. IEATDUMP — Transaction dump request 601

To code: Specify the RS-type address, or address in register (2) - (12), of a
2- to 101-character field.

DDNAME=ddname
An 8-character input field that is the name of the DD representing the data
set that is to contain the dump. The DD must be allocated when
IEATDUMP is invoked. The system will open this DD.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,HDRAD=hdrad
,HDR=hdr

A required input parameter.

,HDRAD=hdrad
A 4-byte field which contains the address of a parameter of the dump title.
The format of the area is a single byte specifying the length of the title
followed by the title itself.

To code: Specify the RS-type address, or address in register (2) - (12), of a
pointer field.

,HDR=hdr
A 2- to 101-character input area that contains the dump title. The format of
the area is a single byte specifying the length of the title followed by the
title itself. The title has a maximum length of 100 characters.

To code: Specify the RS-type address, or address in register (2) - (12), of a
2- to 101-character field.

,IDXAD=idxad
,IDX=idx

An optional input parameter.

,IDXAD=idxad
A 4-byte field which contains the address of a parameter of an area that
contains the name of the dump index which is to contain information
about the dump after the dump is written. The format of the area is a
single byte specifying the length of the dump index data set name
followed by the name itself. The data set must be an existing IPCS dump
directory. The data set will be allocated from the caller's address space.

To code: Specify the RS-type address, or address in register (2) - (12), of a
pointer field.

,IDX=idx
A 2- to 45-character input area that contains the name of the dump index
which is to contain information about the dump after the dump is written.
The format of the area is a single byte specifying the length of the dump
index data set name followed by the name itself. The name of the dump
index data set has a maximum length of 44 characters. The data set must
be an existing IPCS dump directory. The data set will be allocated from the
caller's address space.

To code: Specify the RS-type address, or address in register (2) - (12), of a
2- to 45-character field.

,SYMRECAD=symrecad
,SYMREC=symrec

An optional input parameter.

IEATDUMP transaction dump

602 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,SYMRECAD=symrecad
A 4-byte field which contains the address of a parameter of a valid
symptom record for DAE to use for dump suppression. This area is built
using SYMRBLD and mapped by ADSR. This area has a maximum length
of 1900 bytes.

To code: Specify the RS-type address, or address in register (2) - (12), of a
pointer field.

,SYMREC=symrec
A parameter of a valid symptom record for DAE to use for dump
suppression. This area is built using SYMRBLD and mapped by ADSR.
This area has a maximum length of 1900 bytes.

To code: Specify the RS-type address, or address in register (2) - (12), of a
character field.

,INTOKENAD=intokenad
,INTOKEN=intoken

An optional input parameter.

,INTOKENAD=intokenad
A 4-byte field which contains the address of a parameter of a 32-byte area
that contains an incident token previously built by the IEAINTKN macro.

To code: Specify the RS-type address, or address in register (2) - (12), of a
pointer field.

,INTOKEN=intoken
A parameter of a 32-byte area that contains an incident token previously
built by the IEAINTKN macro.

To code: Specify the RS-type address, or address in register (2) - (12), of a
32-character field.

,REMOTEAD=remotead
,REMOTE=remote

An optional input parameter.

,REMOTEAD=remotead
A 4-byte field which contains the address of an area that identifies other
address spaces to be dumped. This keyword is restricted to authorized
callers. The format of the area is described in the REMOTE parameter
which follows.

To code: Specify the RS-type address, or address in register (2) - (12), of a
pointer field.

,REMOTE=remote
An optional character input area that can be a maximum of 1024 bytes
long, which identifies other address spaces to be dumped. This keyword is
restricted to authorized callers. The address spaces can be on the current
system and/or other systems in the sysplex. The area is mapped by the
IHASDRMT mapping macro. Through IHASDRMT, you can identify the
systems to be dumped and specify the content of the dumps on individual
systems. One can also specify that the following parameters on the
IEATDUMP macro be copied for the remote dumps requested: SDATA,
DSPLIST, and SUBPLST. The area consists of:
v A 4-byte header, which indicates the total length of the area. The length

must include the four bytes of the header.
v Contents entry. Each entry consists of:

IEATDUMP transaction dump

Chapter 49. IEATDUMP — Transaction dump request 603

ID A 2-byte field, whose value identifies the content type. The
values are declared by the constants with names beginning with
SDRMT_IDCON in the IHASDRMT mapping.

Length
A 2-byte field that gives the length of the contents portion. The
length must include the 2 bytes of this length field, plus the 2
bytes of the ID field.

Contents
A variable field that gives the contents identified in the ID field.
The contents you can specify are the system names, job names,
XCF group and member names, data space names, address space
identifiers, SDATA options, storage ranges, subpools, and keys.
Within the contents, the following items also support the use of
wildcards:
– System name
– Job name
– XCF group name
– XCF member name
– Data space name and its qualifying job name

See wildcard support under the description of the SDUMPX
macro.

To code: Specify the RS-type address, or address in register (2) - (12), of a
character field.

,PROBDESCAD=probdescad
,PROBDESC=probdesc

An optional input parameter.

,PROBDESCAD=probdescad
A 4-byte field which contains the address of a parameter of an area that
contains information describing the problem. This area has a maximum
length of 1024 bytes.

To code: Specify the RS-type address, or address in register (2) - (12), of a
pointer field.

,PROBDESC=probdesc
A parameter of an area that contains information describing the problem.
This area has a maximum length of 1024 bytes.

To code: Specify the RS-type address, or address in register (2) - (12), of a
character field.

,LISTAD=listad
,LIST=list

An optional input parameter.

,LISTAD=listad
A 4-byte field which contains the address of a parameter of a list of
starting and ending addresses of areas to be dumped. The high-order bit of
the last ending address is set to 1; the high-order bit of all other addresses
is 0. This area has a maximum length of 240 bytes.

To code: Specify the RS-type address, or address in register (2) - (12), of a
pointer field.

IEATDUMP transaction dump

604 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,LIST=list
A parameter of a list of starting and ending addresses of areas to be
dumped. The high-order bit of the last ending address is set to 1; the
high-order bit of all other addresses is 0. This area has a maximum length
of 240 bytes.

To code: Specify the RS-type address, or address in register (2) - (12), of a
character field.

,SUBPLSTAD=subplstad
,SUBPLST=subplst

An optional input parameter.

,SUBPLSTAD=subplstad
A 4-byte field which contains the address of a parameter of a list of
subpool numbers to be dumped. The first halfword is the number subpools
in the list and must be on a fullword boundary. Each entry is two bytes.

To code: Specify the RS-type address, or address in register (2) - (12), of a
pointer field.

,SUBPLST=subplst
A parameter of a list of subpool numbers to be dumped. The first halfword
is the number subpools in the list and must be on a fullword boundary.
Each entry is two bytes.

To code: Specify the RS-type address, or address in register (2) - (12), of a
character field.

,DSPLISTAD=dsplistad
,DSPLIST=dsplist

An optional input parameter.

,DSPLISTAD=dsplistad
A 4-byte field which contains the address of a parameter of a list of data
space storage to be dumped. The first word is the total size of the
DSPLIST. The next eight characters is the STOKEN of the data space to be
dumped. A full word indicates the number of ranges to be dumped for
that STOKEN. Then, 2 full words for each range, which are the starting
and ending addresses of the range. More than one STOKEN may be
specified per DSPLIST.

To code: Specify the RS-type address, or address in register (2) - (12), of a
pointer field.

,DSPLIST=dsplist
A parameter of a list of data space storage to be dumped. The first word is
the total size of the DSPLIST. The next eight characters is the STOKEN of
the data space to be dumped. A full word indicates the number of ranges
to be dumped for that STOKEN. Then, 2 full words for each range, which
are the staring and ending addresses of the range. More than one STOKEN
may be specified per DSPLIST.

To code: Specify the RS-type address, or address in register (2) - (12), of a
character field.

,SDATA=DEFS
,SDATA=ALLNUC
,SDATA=CSA
,SDATA=GRSQ
,SDATA=LPA
,SDATA=LSQA

IEATDUMP transaction dump

Chapter 49. IEATDUMP — Transaction dump request 605

,SDATA=NUC
,SDATA=RGN
,SDATA=SQA
,SDATA=SUM
,SDATA=SWA
,SDATA=TRT
,SDATA=PSA

An optional parameter that specifies what system data should be provided in
the transaction dump. No fetch-protected storage which is inaccessible in the
caller's key will be dumped. The default is SDATA=DEFS.

,SDATA=DEFS
The following SDATA options are included in the dump: LSQA, NUC,
PSA, RGN, SQA, SUM, SWA, and TRT.

,SDATA=ALLNUC
All of DAT-on nucleus, including page-protected areas, and all of the
DAT-off nucleus.

,SDATA=CSA
Common storage area and virtual storage for 64-bit addressable memory
objects created using one of the following services:
v IARV64 REQUEST=GETCOMMON,DUMP=LIKECSA
v IARCP64 COMMON=YES,DUMP=LIKECSA
v IARST64 COMMON=YES,TYPE=PAGEABLE

,SDATA=GRSQ
Global resource serialization (ENQ/DEQ/RESERVE) queues.

,SDATA=LPA
Link pack area for this job.

,SDATA=LSQA
Local system queue area and virtual storage for 64-bit addressable memory
objects created using one of the following services:
v IARV64 REQUEST=GETSTOR,DUMP=LIKELSQA
v IARCP64 COMMON=NO,DUMP=LIKELSQA
v IARST64 COMMON=NO

,SDATA=NUC
Non-page-protected areas of the DAT-on nucleus.

,SDATA=RGN
Entire private area and virtual storage for 64-bit addressable memory
objects created using one of the following services:
v IARV64 REQUEST=GETSTOR,DUMP=LIKERGN
v IARV64 REQUEST=GETSTOR,SVCDUMPRGN=YES
v IARCP64 COMMON=NO,DUMP=LIKERGN
v IARST64 COMMON=NO

,SDATA=SQA
System queue area and virtual storage for 64-bit addressable memory
objects created using one of the following services:
v IARV64 REQUEST=GETCOMMON,DUMP=LIKESQA
v IARCP64 COMMON=YES,DUMP=LIKESQA
v IARST64 COMMON=YES,TYPE=FIXED
v IARST64 COMMON=YES,TYPE=DREF

,SDATA=SUM
Requests the summary dump function.

IEATDUMP transaction dump

606 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,SDATA=SWA
Scheduler work area.

,SDATA=TRT
System trace data.

,SDATA=PSA
Prefixed save area.

One or more values may be specified for the SDATA parameter. If more than
one value is specified, group the values within parentheses.

,ASYNC=NO
An optional parameter that specifies whether the transaction dump should be
taken synchronously. The default is ASYNC=NO.

,ASYNC=NO
The transaction dump should be taken synchronously.

,ECBAD=ecbad
,ECB=ecb

An optional input parameter.

,ECBAD=ecbad
A 4-byte field which contains the address of a parameter of an ECB to be
posted when the entire dump has been written. This area must be on a
word boundary.

To code: Specify the RS-type address, or address in register (2) - (12), of a
pointer field.

,ECB=ecb
A parameter of an ECB to be posted when the entire dump has been
written. This area must be on a word boundary.

To code: Specify the RS-type address, or address in register (2) - (12), of a
4-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

IEATDUMP transaction dump

Chapter 49. IEATDUMP — Transaction dump request 607

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 1, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IEATDUMP in
the following order:
v Use IEATDUMP ...MF=(M,list-addr,COMPLETE) specifying appropriate

parameters, including all required ones.
v Use IEATDUMP ...MF=(M,list-addr,NOCHECK), specifying the parameters

that you want to change.
v Use IEATDUMP ...MF=(E,list-addr,NOCHECK), to execute the macro.

IEATDUMP transaction dump

608 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register
(1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
When the IEATDUMP macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains a reason code.

X'00000000'
A complete dump was written.

X'00000004'
A partial dump was written.

X'00000008'
No dump was written.

X'0000000C'
Internal processing error. No dump was written.

X'00000010'
Unexpected return code from IEAVAD00.

Table 56. Return and Reason Codes for the IEATDUMP Macro

Return Code Reason Code Meaning and Action

00000000 00000000 Meaning: A complete dump was written.

Action: None.

00000004 00000001 Meaning: The dump was truncated because the data set
was too small.

Action: Reissue IEATDUMP with a larger data set or use
the DSN|DSNAD parameter to allocate the dump data set
automatically.

00000004 00000002 Meaning: Contention detected when attempting to set
tasks in the address space non-dispatchable.

Action: Data in dump may be inconsistent. Reissue
IEATDUMP.

IEATDUMP transaction dump

Chapter 49. IEATDUMP — Transaction dump request 609

Table 56. Return and Reason Codes for the IEATDUMP Macro (continued)

Return Code Reason Code Meaning and Action

00000004 00000003 Meaning: Unable to add dump data set to dump index.

Action: Verify that the dump index specified on the IDX
parameter is correct and reissue IEATDUMP.

00000004 00000004 Meaning: Unable to allocate transaction dump data set.

Action: See allocation failure messages. Reissue
IEATDUMP.

00000004 00000006 Meaning: Maximum amount of dump sections reached
(999).

Action: Dump less memory, or use ACS routines to
increase the size of the data sets. Reissue IEATDUMP.

00000004 00000007 Meaning: The system has filled one of the range tables.

Action: Dump less memory. If the problem still exists,
contact the IBM Support Center.

00000004 00000008 Meaning: The data space used for the IEATDUMP has
been filled. No more then 2 gigabytes of data can be
collected.

Action: Do one of the following:

v Remove unnecessary dump options.

v Specify smaller memory ranges.

v Use the extended data set support by either:

– Preallocating a large capacity data set and use the
DDNAME parameter.

– Refer to the use of the &DS symbol for the DSN
parameter's data set name pattern.

00000008 00000001 Meaning: The address of the transaction dump parameter
list was zero.

Action: Ensure register 1 is non-zero when the transaction
dump is requested. Reissue IEATDUMP.

00000008 00000002 Meaning: The dump was suppressed by CHNGDUMP.

Action: Issue CHNGDUMP SET,SYSMDUMP or
CHNGDUMP RESET,SYSMDUMP. Reissue IEATDUMP.

00000008 00000003 Meaning: The dump was suppressed by SLIP.

Action: Delete SLIP trap with SLIP DEL command. Reissue
IEATDUMP.

00000008 00000004 Meaning: The ALET for the transaction dump parameter
list was not valid.

Action: Ensure that access register 1 has a valid ALET
when the transaction dump is requested. Reissue
IEATDUMP.

00000008 00000005 Meaning: The transaction dump parameter list was not
addressable.

Action: Ensure that the entire transaction dump parameter
list is addressable via register 1 (and access register 1 if
running in AR ASC mode) when the transaction dump is
requested. Reissue IEATDUMP.

IEATDUMP transaction dump

610 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 56. Return and Reason Codes for the IEATDUMP Macro (continued)

Return Code Reason Code Meaning and Action

00000008 00000006 Meaning: The transaction dump parameter list version
number was not valid.

Action: Ensure the transaction dump request was built
using the IEATDUMP macro for the system on which the
dump was requested. Reissue IEATDUMP.

00000008 00000007 Meaning: The length of the transaction dump parameter
list did not match the parameter list version number.

Action: Ensure the transaction dump request was built
using the IEATDUMP macro for the system on which the
dump was requested. Reissue IEATDUMP.

00000008 00000008 Meaning: No DDNAME, DSN(AD), or DSP_STOKEN was
specified.

Action: Reissue IEATDUMP with the DDNAME, DSN(AD)
or DSP_STOKEN keyword.

00000008 00000009 Meaning: Both DDNAME and DSN(AD) keywords were
specified.

Action: Reissue IEATDUMP with either the DDNAME or
DSN(AD) keyword.

00000008 0000000C Meaning: The ALET for the DSN(AD) keyword was not
valid.

Action: Ensure that the access register for the DSN(AD) has
a valid ALET when the transaction dump is requested.
Reissue IEATDUMP.

00000008 0000000D Meaning: The DSN(AD) was not addressable.

Action: Ensure that the entire DSN(AD) is addressable
using the specified address (and ALET if running in AR
ASC mode) when the transaction dump is requested.
Reissue IEATDUMP.

00000008 0000000E Meaning: No HDR(AD) keyword was specified.

Action: Reissue IEATDUMP with the HDR(AD) keyword.

00000008 0000000F Meaning: The ALET for the HDR(AD) keyword was not
valid.

Action: Ensure that the access register for the HDR(AD)
has a valid ALET when the transaction dump is requested.
Reissue IEATDUMP.

00000008 00000010 Meaning: The HDR(AD) was not addressable.

Action: Ensure that the entire HDR(AD) is addressable
using the specified address (and ALET if running in AR
ASC mode) when the transaction dump is requested.
Reissue IEATDUMP.

00000008 00000011 Meaning: The specified HDR(AD) was longer than 100
characters.

Action: Reissue IEATDUMP with a shorter header.

00000008 00000012 Meaning: The ALET for the IDX(AD) keyword was not
valid.

Action: Ensure that the access register for the IDX(AD) has
a valid ALET when the transaction dump is requested.
Reissue IEATDUMP.

IEATDUMP transaction dump

Chapter 49. IEATDUMP — Transaction dump request 611

Table 56. Return and Reason Codes for the IEATDUMP Macro (continued)

Return Code Reason Code Meaning and Action

00000008 00000013 Meaning: The IDX(AD) was not addressable.

Action: Ensure that the entire IDX(AD) is addressable
using the specified address (and ALET if running in AR
ASC mode) when the transaction dump is requested.
Reissue IEATDUMP.

00000008 00000014 Meaning: The IDX(AD) keyword did not specify a valid
data set name after symbol substitution.

Action: Reissue IEATDUMP with an IDX keyword that
resolves to a valid dump index data set name.

00000008 00000015 Meaning: The ALET for the SYMREC(AD) keyword was
not valid.

Action: Ensure that the access register for the
SYMREC(AD) has a valid ALET when the transaction
dump is requested. Reissue IEATDUMP.

00000008 00000016 Meaning: The SYMREC(AD) was not addressable.

Action: Ensure that the entire SYMREC(AD) is addressable
using the specified address (and ALET if running in AR
ASC mode) when the transaction dump is requested.
Reissue IEATDUMP.

00000008 00000017 Meaning: The specified SYMREC(AD) was not valid. Either
ADSRID not set to 'SR' or primary symptom string offset or
length not initialized.

Action: Reissue IEATDUMP with a valid symptom record.

00000008 00000018 Meaning: The ALET for the INTOKEN(AD) keyword was
not valid.

Action: Ensure that the access register for the
INTOKEN(AD) has a valid ALET when the transaction
dump is requested. Reissue IEATDUMP.

00000008 00000019 Meaning: The INTOKEN(AD) was not addressable.

Action: Ensure that the entire INTOKEN(AD) is
addressable using the specified address (and ALET if
running in AR ASC mode) when the transaction dump is
requested. Reissue IEATDUMP.

00000008 0000001A Meaning: The ALET for the REMOTE(AD) keyword was
not valid.

Action: Ensure that the access register for the
REMOTE(AD) has a valid ALET when the transaction
dump is requested. Reissue IEATDUMP.

00000008 0000001B Meaning: The REMOTE(AD) was not addressable.

Action: Ensure that the entire REMOTE(AD) is addressable
using the specified address (and ALET if running in AR
ASC mode) when the transaction dump is requested.
Reissue IEATDUMP.

00000008 0000001C Meaning: The specified REMOTE(AD) was not valid.

Action: Reissue IEATDUMP with a valid remote area.

00000008 0000001D Meaning: The ALET for the LIST(AD) keyword was not
valid.

Action: Ensure that the access register for the LIST(AD) has
a valid ALET when the transaction dump is requested.
Reissue IEATDUMP.

IEATDUMP transaction dump

612 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 56. Return and Reason Codes for the IEATDUMP Macro (continued)

Return Code Reason Code Meaning and Action

00000008 0000001E Meaning: The LIST(AD) was not addressable.

Action: Ensure that the entire LIST(AD) is addressable
using the specified address (and ALET if running in AR
ASC mode) when the transaction dump is requested.
Reissue IEATDUMP.

00000008 0000001F Meaning: The specified LIST(AD) was not valid. A range in
the storage list had a start address greater than its ending
address.

Action: Reissue IEATDUMP with a valid storage list.

00000008 00000020 Meaning: The dump was rejected because the caller's
authorization was insufficient for requested function(s).

Action: Verify authorization and requested functions.
Reissue IEATDUMP.

00000008 00000021 Meaning: The DSN(AD) keyword did not specify a valid
data set name after symbol substitution.

Action: Reissue IEATDUMP with a DSN keyword that
resolves to a valid dump data set name.

00000008 00000022 Meaning: The DSN(AD) keyword specified a data set name
that was too long.

Action: Reissue IEATDUMP with a DSN(AD) keyword that
resolves to a shorter dump data set name.

00000008 00000023 Meaning: The DSN(AD) keyword specified a data set name
that contained a bad symbol.

Action: Reissue IEATDUMP with a DSN(AD) keyword that
does not contain bad symbols.

00000008 00000024 Meaning: Unable to create data space to capture
transaction dump.

Action: Remedy cause of DSPSERV CREATE failure or
request transaction dump specifying DDNAME or
including the &DS. symbol in the DSN template.

00000008 00000025 Meaning: Unable to add transaction dump data space to
access list.

Action: Remedy cause of ALESERV ADD failure or request
transaction dump specifying DDNAME. Reissue
IEATDUMP.

00000008 00000026 Meaning: Unable to allocate transaction dump data set.

Action: Look at allocation failure messages. Reissue
IEATDUMP.

00000008 00000027 Meaning: The transaction dump was suppressed by DAE.

Action: If you do not wish transaction dumps to be
suppressed on an installation basis, issue the SET DAE=xx
console command specifying an ADYSETxx member that
does not specify SYSMDUMP(SUPPRESS).

If you do not wish transaction dumps to be suppressed on
an application basis, include the VRANODAE key in the
VRADATA of your recovery routine.

Reissue IEATDUMP.

IEATDUMP transaction dump

Chapter 49. IEATDUMP — Transaction dump request 613

Table 56. Return and Reason Codes for the IEATDUMP Macro (continued)

Return Code Reason Code Meaning and Action

00000008 00000028 Meaning: An error occurred writing the first record to the
data space or dump data set.

Action: Ensure the STOKEN and origin for the specified
data space are correctly specified. Ensure that the specified
DD is allocated when the transaction dump is requested.
Reissue IEATDUMP.

00000008 00000029 Meaning: The ALET for the PROBDESC(AD) keyword was
not valid.

Action: Ensure that the access register for the
PROBDESC(AD) has a valid ALET when the transaction
dump is requested. Reissue IEATDUMP.

00000008 0000002A Meaning: The PROBDESC(AD) was not addressable.

Action: Ensure that the entire PROBDESC(AD) is
addressable using the specified address (and ALET if
running in AR ASC mode) when the transaction dump is
requested. Reissue IEATDUMP.

00000008 0000002B Meaning: The specified PROBDESC(AD) was not valid.

Action: Reissue IEATDUMP with a valid problem
description area.

00000008 0000002C Meaning: The ALET for the SUBPLST(AD) keyword was
not valid.

Action: Ensure that the access register for the
SUBPLST(AD) has a valid ALET when the transaction
dump is requested. Reissue IEATDUMP.

00000008 0000002D Meaning: The SUBPLST(AD) was not addressable.

Action: Ensure that the entire SUBPLST(AD) is addressable
using the specified address (and ALET if running in AR
ASC mode) when the transaction dump is requested.
Reissue IEATDUMP.

00000008 0000002E Meaning: The specified SUBPLST(AD) was not valid. An
invalid subpool was specified.

Action: Reissue IEATDUMP with a valid subpool list.

00000008 0000002F Meaning: The ALET for the DSPLIST(AD) keyword was
not valid.

Action: Ensure that the access register for the DSPLIST(AD)
has a valid ALET when the transaction dump is requested.
Reissue IEATDUMP.

00000008 00000030 Meaning: The DSPLIST(AD) was not addressable.

Action: Ensure that the entire DSPLIST(AD) is addressable
using the specified address (and ALET if running in AR
ASC mode) when the transaction dump is requested.
Reissue IEATDUMP.

00000008 00000031 Meaning: The specified DSPLIST(AD) was not valid. An
invalid data space was specified.

Action: Reissue IEATDUMP with a valid data space list.

00000008 00000032 Meaning: The ALET for the ECB(AD) keyword was not
valid.

Action: Ensure that the access register for the ECB(AD) has
a valid ALET when the transaction dump is requested.
Reissue IEATDUMP.

IEATDUMP transaction dump

614 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 56. Return and Reason Codes for the IEATDUMP Macro (continued)

Return Code Reason Code Meaning and Action

00000008 00000033 Meaning: The ECB(AD) was not addressable.

Action: Ensure that the entire ECB(AD) is addressable
using the specified address (and ALET if running in AR
ASC mode) when the transaction dump is requested.

Reissue IEATDUMP.

00000008 00000034 Meaning: The specified ECB(AD) was not valid. The ECB
was not on a fullword boundary.

Action: Reissue IEATDUMP with an ECB.

00000008 00000035 Meaning: OPEN failed for the dump data set.

Action: Determine why OPEN failed and reissue
IEATDUMP.

00000008 00000036 Meaning: Dump data set has invalid block size.

Action: Correct the block size and reissue IEATDUMP.

00000008 00000037 Meaning: The DSP_RECORDS@ field was not accessible.

Action: Correct the problem and reissue IEATDUMP.

00000008 00000038 Meaning: The DCB parameter is not supported on
IEATDUMP.

Action: Remove the DCB parameter and reissue
IEATDUMP.

00000008 00000039 Meaning: The ASYNC=YES is not supported on
IEATDUMP.

Action: Change to ASYNC=NO and reissue IEATDUMP.

00000008 0000003A Meaning: The &DS. symbol was found in the midst of the
dump DSN name pattern.

Action: Place the &DS symbol at the end of the DSN name
pattern and reissue IEATDUMP.

00000008 0000003B Meaning: This IEATDUMP was not taken because another
dump was already running in the address space.

Action: None.

0000000C 00000001 Meaning: Unable to obtain storage for transaction dump
from subpool 230 below the line.

Action: Determine why storage is not available and reissue
IEATDUMP.

0000000C 00000002 Meaning: Unable to establish recovery environment for
transaction dump.

Action: Determine why ESTAEX failed and reissue
IEATDUMP.

0000000C 00000003 Meaning: Unable to obtain storage for transaction dump
from subpool 239 above the line.

Action: Determine why storage is not available and reissue
IEATDUMP.

0000000C 00000004 Meaning: Unable to obtain storage for transaction dump
from subpool 231 above the line.

Action: Determine why storage is not available and reissue
IEATDUMP.

IEATDUMP transaction dump

Chapter 49. IEATDUMP — Transaction dump request 615

Table 56. Return and Reason Codes for the IEATDUMP Macro (continued)

Return Code Reason Code Meaning and Action

0000000C 00000005 Meaning: Unable to obtain storage for transaction dump
from subpool 239 above the line.

Action: Determine why storage is not available and reissue
IEATDUMP.

0000000C 00000006 Meaning: Unable to obtain storage for transaction dump
from subpool 239 above the line.

Action: Determine why storage is not available and reissue
IEATDUMP.

0000000C 00000007 Meaning: Unable to obtain storage for transaction dump
from subpool 239 above the line.

Action: Determine why storage is not available and reissue
IEATDUMP.

0000000C 00000008 Meaning: Unable to obtain storage for transaction dump
from subpool 250 above the line.

Action: Determine why storage is not available and reissue
IEATDUMP.

0000000C 00000009 Meaning: Unable to obtain storage for transaction dump
from subpool 230 above the line.

Action: Determine why storage is not available and reissue
IEATDUMP.

0000000C 0000000A Meaning: Unable to obtain storage for transaction dump
from subpool 230 below the line.

Action: Determine why storage is not available and reissue
IEATDUMP.

0000000C 0000000B Meaning: Unable to obtain storage for transaction dump
from subpool 253 above the line.

Action: Determine why storage is not available and reissue
IEATDUMP.

0000000C 000000FF Meaning: IEAVTDMP's recovery received control. One
possible reason is that the SYSZTIOT enqueue is being held
exclusively by another process running under this task. It is
not possible for the IEATDUMP to successfully complete.

Action: The assistance of a system programmer is needed
for associated SVC dumps. In the case of a SYSZTIOT
enqueue, the problem is not in IEATDUMP processing. The
diagnosis of any issues requires data collection using SLIP
and/or SDUMPX, and not IEATDUMP.

00000010 xxxxxxxx Meaning: Unexpected return code from IEAVAD00. Return
code from IEAVAD00 returned as reason code.

Action: Inform the system programmer.

Examples
An example using DSN:

IEATDUMP DSN=DUMPDSN,HDR=DUMPTTL2
.
.
.

DUMPDSN DC AL1(E2-S2)
S2 DC C’HLQ.TDUMP.D&&YYMMDD..T&&HHMMSS..&&SYSNAME..&&JOBNAME.’

IEATDUMP transaction dump

616 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

E2 EQU *
DUMPTTL2 DC AL1(E3-S3)
S3 DC C’IEADUMP TO AUTOMATICALLY ALLOCATED DATA SET’
E3 EQU *

IEATDUMP transaction dump

Chapter 49. IEATDUMP — Transaction dump request 617

IEATDUMP transaction dump

618 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 50. IEATEDS - Timed event data services

Description
IEATEDS provides timed event data services.

IEATEDS allows the user to record events to a Timed Event Data Table to provide
information that will help determine flow and performance. Each event is time
stamped and includes data provided by the caller and additional data collected by
the service. A REXX exec is also provided to obtain a formatted report of the
events.

To use the timed event data service:
1. Invoke IEATEDS with REQUEST=REGISTER to obtain and initialize a Timed

Event Data Table. The size of the Timed Event Data Table is determined by the
MaxEvents argument. Note that the Timed Event Data Table will not wrap. The
REGISTER service will provide a Timed Event Data Token as output which will
identify the newly created Timed Event Data Table on subsequent IEATEDS
requests.

2. Invoke IEATEDS with REQUEST=RECORD, passing the Timed Event Data
Token and other arguments, including up to 16 bytes of user data. Several
RECORD requests may be made throughout the code to understand the flow
and performance. Once the maximum number of events has been recorded,
subsequent requests will be ignored.

3. Execute REXX exec IEAVFTED to output the Timed Event Data Report to a
data set. The Timed Event Data Report parameters are described below and the
format of the output is described in the IEATEDS macro example section. Note
that IEAVFTED does not clear the Timed Event Data Table. Thus, IEAVFTED
may be executed at any time to produce an up-to-date report containing all of
the events that have been recorded so far.

Timed Event Data Report
The IBM supplied IEAVFTED REXX exec is used to produce a Timed Event Data
Report in either a TSO or IPCS environment. When run under TSO, the user must
specify either a pre-allocated data set or a z/OS UNIX file in which to place the
report. The dataset option requires the user to allocate a data set with an LRECL of
512 and a RECFM of V or VB. The z/OS UNIX file option requires the TSO
environment to have an OMVS segment. When run under IPCS, the Timed Event
Data Report will normally be displayed within IPCS. An example is provided in
the IEATEDS example section that shows how to have IPCS place the Timed Event
Data Report into a pre-allocated data set.

The Timed Event Data Report will consist of two sections, the first section
consisting of human readable text, and the second section consisting of spreadsheet
data (unless the NOSS parameter, described below, is specified). Note that the IPL
Statistics Table (IPST) will also be placed into the Timed Event Data Report.

The IEAVFTED REXX exec is a compiled REXX program which requires the full
REXX compiler run-time libraries (at least REXX LIBR BASE MVS FMID HWJ9140)
installed before attempting to use IEAVFTED. Note that IEAVFTED will not work
with the REXX Alternate Runtime Library z/OS Base HWJ9143.

© Copyright IBM Corp. 1988, 2016 619

The IEAVFTED code resides in data set SYS1.SBLSCLI0. IEAVFTED must be run
from a data set with an LRECL of 80 and a RECFM of F or FB.

The following describes the required and optional parameters for IEAVFTED:
v DATASET('output_data_set') or DA('output_data_set') is used to specify the name

of the pre-allocated data set where the Timed Event Data Report will be written
when IEAVFTED is run under TSO. The name must be fully qualified and the
data set must have an LRECL of 512 with a RECFM of V or VB. Note that one
and only one of DATASET('output_data_set'), DA('output_data_set'), or PATH('z/OS
UNIX file') must be specified when IEAVFTED is run under TSO. Neither
DATASET('output_data_set') nor DA('output_data_set') is allowed when IEAVFTED
is run under IPCS (an example is provided in the IEATEDS macro example
section that shows how to have IPCS place the Timed Event Data Report into a
pre-allocated data set).

v PATH('z/OS UNIX file') is used to specify the name of a z/OS UNIX file where
the Timed Event Data Report will be written when IEAVFTED is run under TSO.
A z/OS UNIX file is created along with its directories with the authority options
of 770. Note that one and only one of PATH('z/OS UNIX file'),
DATASET('output_data_set'), or DA('output_data_set') must be specified when
IEAVFTED is run under TSO. PATH('z/OS UNIX file') is not allowed when
IEAVFTED is run under IPCS as IPCS does not directly support putting output
to a z/OS UNIX file.

v IPCSDA('input_data_set') is an optional specification that is used only with a
special IEAVFTED invocation that will convert the spreadsheet data into a
proper format in order to import it into a spreadsheet program. This is needed
for the case where the Timed Event Data Report was obtained under IPCS using
the example technique described in the IEATEDS macro example section. In that
example technique, the output data set needs to be pre-allocated with an LRECL
of 255 to satisfy IPCS, but in order to import the spreadsheet data into a
spreadsheet program, the spreadsheet data needs to be in a 512 character data
set or in a z/OS UNIX file. Invoking IEAVFTED with IPCSDA('input_data_set')
does not produce a new report, but instead extracts the spreadsheet data
contained in IPCSDA('input_data_set') and places it into the required data set as
specified by one and only one of DATASET('output_data_set'),
DA('output_data_set'), or PATH('z/OS UNIX file'). Parameters SS, NOSS,
Component(component_name), and Comp(component_name) are ignored when
IPCSDA is specified. Note that 'input_data_set' and 'output_data_set' must be
different data set names.

v Component(component_name) or Comp(component_name) is optional and is used
as a filter to obtain Timed Event Data Table information for a specific
component. Each Timed Event Data Table is created with the component name
specified as CompName on the IEATEDS REGISTER request. When
component(component_name) is specified, the Timed Event Data Report will
include Timed Event Data Table information only for those Timed Event Data
Tables with a matching component name. Note that if the component_name value
contains blanks, it must be enclosed within quotes. The component_name value is
not case sensitive and will be converted to uppercase. Also, Component(IPST)
can be used to obtain only the IPL Statistics Table. When neither Component()
nor Comp() is specified, all Timed Event Data Tables for all components are
included in the report. Note that Component() and Comp() are ignored when
IPCSDA is specified.

v SS(char) is optional and is used to specify the character delimiter for the
spreadsheet fields. The default character is a semicolon (;). Note that SS(char) is
ignored when NOSS or IPCSDA are specified.

IEATEDS macro

620 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v NOSS is optional and is used to cause the spreadsheet data to be omitted from
the Timed Event Data Report. Note that NOSS is ignored when IPCSDA is
specified.

v HELP or ? is optional and is used to get a description of IEAVFTED and its
parameters.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state. Any PSW key.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any primary, any home, and any secondary address space
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may hold a local lock, or a local lock and the

CMS lock.
Control parameters: Control parameters must be in the primary address space.

Programming requirements
The caller must include the IHAPSA, CVT, IHAECVT, and IHATEDS macros. Note
that the IHATEDS macro has equate symbols for the return and reason codes, and
for the length of the WorkArea.

Restrictions
None

Input register information
Before issuing the IEATEDS macro, the caller must ensure that general register 13
contains the address of a 216 byte save area. The save area must be in primary
storage in the first 2G of storage. The caller does not have to place any information
into any other general purpose register (GPR) unless using it in register notation
for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not zero

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

IEATEDS macro

Chapter 50. IEATEDS - Timed event data services 621

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None

Syntax

��
name

IEATEDS REQUEST = REGISTER parameters-1
REQUEST = RECORD parameters-2

�

� , WORKAREA = workarea
, RETCODE = retcode

�

�
, RSNCODE = rsncode

, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 0

�

�
, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

parameters-1

�� , COMPNAME = compname , MAXEVENTS = maxevents �

� , TEDTOKEN = tedtoken ��

parameters-2

�� , TEDTOKEN = tedtoken , EVENTTYPE = START
, EVENTTYPE = MID
, EVENTTYPE = END

�

� , EVENTTHREAD = eventthread , EVENTDESC = eventdesc �

� , MODNAME = modname , MODLEVEL = modlevel �

IEATEDS macro

622 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

�
, USERDATA = NO_USERDATA

, USERDATA = userdata
��

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IEATEDS
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,COMPNAME=compname
When REQUEST=REGISTER is specified, a required input parameter that
specifies the component name that is registering. A mixed case value is
supported.

To code: Specify the RS-type address, or address in register (2) - (12), of a
32-character field.

,EVENTDESC=eventdesc
When REQUEST=RECORD is specified, a required input parameter that is
used to describe the event. A mixed case value is supported.

To code: Specify the RS-type address, or address in register (2) - (12), of a
32-character field.

,EVENTTHREAD=eventthread
When REQUEST=RECORD is specified, a required input parameter that is
used to provide an association for a series of events consisting of a start event,
zero or more mid events, and an end event. This can be any character or hex
value that the component finds useful. Using a unique value for each series of
associated start, mid, and end events will help in understanding the flow and
timing of the events. The Timed Event Data Report will include both the hex
and the EBCDIC values for the thread. See the macro example section for more
information regarding the Timed Event Data Report.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,EVENTTYPE=START
,EVENTTYPE=MID
,EVENTTYPE=END

When REQUEST=RECORD is specified, a required parameter that indicates the
type of event to record.

,EVENTTYPE=START
The event is the start of a series of events.

,EVENTTYPE=MID
The event is one of a series of events. This mid event is matched to the
start event whose EventThread matches the EventThread provided on this
request.

,EVENTTYPE=END
The event is the last of a series of events. This end event is matched to the
start event whose EventThread matches the EventThread provided on this
request.

,MAXEVENTS=maxevents
When REQUEST=REGISTER is specified, a required input parameter that

IEATEDS macro

Chapter 50. IEATEDS - Timed event data services 623

specifies the maximum number of events that will be recorded. This value will
be used to determine the amount of storage to be allocated for the Timed
Event Data Table for recording the events. The Timed Event Data Table size
will be capped at 2M bytes, meaning that the value specified for MaxEvents
will be reduced as necessary to a value where the Timed Event Data Table will
be created within 2M bytes of storage. A return code and reason code will be
returned if the MaxEvents was reduced, unless some other more serious error
is returned.

Note also that all Timed Event Data Table storage is capped at 2G bytes, and
any attempt to REGISTER once the 2G limit is reached will be rejected with a
return code and reason code. No attempt will be made to reduce the
MaxEvents in order to build a Timed Event Data Table any smaller than 2M
just to get it to fit into the remaining storage that is near the 2G limit. Note
also that there may be additional system controls or environmental conditions
that limit this size to something smaller than 2G bytes.

The number of events that will fit into a 2M Timed Event Data Table is a
function of the size of each entry. Since the entry size could grow over time,
the number of events that will fit could be reduced in the future. This makes it
difficult to accurately state the maximum number of events a Timed Event
Data Table will hold, but a maximum of at least 2000 events is guaranteed.

Note that any attempt to record events beyond the resultant MaxEvents will
not be recorded, but will be counted as an overflow count to assist in
determining whether the number of RECORD requests should be decreased or
MaxEvents should be increased (if not already at or above the maximum for a
2M Timed Event Data Table). The overflow count, requested MaxEvents,
resultant MaxEvents, and the size of the resultant Timed Event Data Table can
be found in the Timed Event Data Report which is described in the macro
example section.

To code: Specify the RS-type address, or address in register (2) - (12), of a
fullword field, or specify a literal decimal value.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

IEATEDS macro

624 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,MODLEVEL=modlevel
When REQUEST=RECORD is specified, a required input parameter that
specifies the module level that is recording this event.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,MODNAME=modname
When REQUEST=RECORD is specified, a required input parameter that
specifies the module name that is recording this event.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

REQUEST=REGISTER
REQUEST=RECORD

A required parameter that indicates which service to perform.

IEATEDS macro

Chapter 50. IEATEDS - Timed event data services 625

REQUEST=REGISTER
Register the user for the timed event data service.

REQUEST=RECORD
Record the timed event data.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12) or
(15), (GPR15), (REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2) -
(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,TEDTOKEN=tedtoken
When REQUEST=REGISTER is specified, a required output parameter, whose
returned value must be provided as input on subsequent REQUEST=RECORD
calls.

To code: Specify the RS-type address, or address in register (2) - (12), of a
16-character field.

,TEDTOKEN=tedtoken
When REQUEST=RECORD is specified, a required input parameter that is
used to identify the timed event data collection to which this event shall be
placed. This must be the TedToken that was returned as output from the
Register request.

To code: Specify the RS-type address, or address in register (2) - (12), of a
16-character field.

,USERDATA=userdata
,USERDATA=NO_USERDATA

When REQUEST=RECORD is specified, an optional input parameter consisting
of a comma delimited list of one or more variable names with a combined
length (determined using L'varname for each variable) that does not exceed a
total of 16 bytes. UserData may be any data that the user finds helpful in
understanding the timed events. Note that the values must be simple items -
for example, using substringed references is not allowed. The default is
NO_USERDATA.

One or more values may be specified for the USERDATA parameter. If more
than one value is specified, group the values within parentheses.

To code: Specify the RS-type address of a character field.

,WORKAREA=workarea
A required input parameter that specifies a work area on a double word
boundary to be used by the timed event data service. The work area must be
of size IEATEDS_WorkAreaSize (in macro IHATEDS) and must reside within
the first 2 GB of primary storage in any key.

To code: Specify the RS-type address of a character field.

IEATEDS macro

626 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ABEND codes
0C2 Meaning: Privileged-operation exception. A problem state caller attempted

to use IEATEDS.

Action: Get into supervisor state before invoking the function, perhaps by
the MODESET macro.

Return and reason codes
When the IEATEDS macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro IHATEDS provides equate symbols for the return and reason codes. Note
that the return and reason codes described below are hexadecimal values.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code.

Table 57. Return and reason codes for the IEATEDS macro

Return code Reason code Equate symbol meaning and action

0 — Equate symbol: IEATEDSRc_OK

Meaning: IEATEDS request was successful.

Action: None required.

REGISTER
Meaning: The Timed Event Data Table was obtained and
initialized and is ready for events to be recorded.

Action: None required.

RECORD
Meaning: The event was placed into the Timed Event
Data Table.

Action: None required.

4 — Equate symbol: IEATEDSRc_Warn

Meaning: Warning

Action: Refer to the action provided with the specific reason code.

IEATEDS macro

Chapter 50. IEATEDS - Timed event data services 627

Table 57. Return and reason codes for the IEATEDS macro (continued)

Return code Reason code Equate symbol meaning and action

4 00000401 Equate symbol: IEATEDSRsn_TedTableFull

Meaning: An IEATEDS RECORD request was unable to place the
new entry into the caller's Timed Event Data Table because the
Timed Event Data Table is full. The Timed Event Data Table
overflow count has been incremented.

Action: Try increasing the value specified for MaxEvents on the
IEATEDS REGISTER request. Note, however, that there is a limit
of 2M bytes of storage for each Timed Event Data Table, and an
overall limit of 2G bytes of storage for all of the Timed Event Data
Tables in the system. You can execute the Timed Event Data
Report REXX exec to examine the overflow count to determine the
number of additional entries required to allow all of the RECORD
requests to succeed. The Timed Event Data Report will also show
the requested MaxEvents, the resultant MaxEvents, and the size of
the Timed Event Data Table. If the size of the Timed Event Data
Table is already at the 2M byte limit, try reducing the number of
IEATEDS RECORD requests.

4 00000402 Equate symbol: IEATEDSRsn_MaxEventsReduced

Meaning: An IEATEDS REGISTER request reduced the specified
MaxEvents to allow the Timed Event Data Table to be built within
the 2M-byte storage limit.

Action: Execute the Timed Event Data Report REXX exec and
examine the overflow count to determine whether the reduced
MaxEvents has resulted in some RECORD requests not being
recorded. If so, consider reducing the number of RECORD
requests to a value that is no greater than the reduced MaxEvents
(shown in the report as the resultant MaxEvents).

8 — Equate symbol: IEATEDSRc_InvParm

Meaning: IEATEDS request specified parameters that are not
valid.

Action: Refer to the action provided with the specific reason code.

8 00000801 Equate symbol: IEATEDSRsn_BadTedToken

Meaning: An IEATEDS RECORD request supplied a TedToken
value that was unable to locate a valid Timed Event Data Table.
The RECORD request was not completed.

Action: Ensure that the TedToken returned from the REGISTER
request is not corrupted and is provided on the subsequent
IEATEDS RECORD requests. Note that this error will also occur in
the case of a Timed Event Data Table being corrupted or the
storage becoming inaccessible. Execute the Timed Event Data
Report REXX exec (described in the macro example section) to see
whether the Timed Event Data Table in question was able to be
located. If so, then the problem is with the specified TedToken.

C — Equate symbol: IEATEDSRc_Env

Meaning: Environmental error

Action: Refer to the action provided with the specific reason code.

IEATEDS macro

628 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 57. Return and reason codes for the IEATEDS macro (continued)

Return code Reason code Equate symbol meaning and action

C 00000C01 Equate symbol: IEATEDSRsn_NoTedTableStorage

Meaning: An IEATEDS REGISTER request was unable to obtain
storage for the Timed Event Data Table.

Action: Ensure that the system has enough above the bar common
storage to satisfy a request for a Timed Event Data Table of the
size being requested. Note that the maximum size allowed for a
Timed Event Data Table is 2M bytes, and the maximum size for
all Timed Event Data Table storage to 2G bytes. Note also that
there may be additional system controls or environmental
conditions that limit this size to something smaller than 2G bytes.

C 00000C02 Equate symbol: IEATEDSRsn_NoTedVectorTableStorage

Meaning: An IEATEDS REGISTER request was unable to obtain
storage for a Timed Event Data Vector Table.

Action: Ensure that the system has enough above the bar common
storage to satisfy a request for a Timed Event Data Vector Table
which has a size of 4k.

10 — Equate symbol: IEATEDSRc_CompError

Meaning: Unexpected failure.

Action: Contact your system programmer.

10 00001001 Equate symbol: IEATEDSRsn_UnexpectedError

Meaning: An IEATEDS REGISTER or RECORD request had an
unexpected error. The REGISTER of RECORD request completion
status is unknown.

Action: The system programmer should gather any diagnostic
information that was produced and contact IBM support.

Examples
The following is an example of invoking IEATEDS to:
v Invoke IEATEDS to REGISTER
v Invoke IEATEDS to RECORD a Start event
v Invoke IEATEDS to RECORD a Mid event
v Invoke IEATEDS to RECORD an End event

The code is as follows.
TITLE ’Sample code to register/record Timed Event Data’

TEDSAMPL CSECT
TEDSAMPL AMODE 31
TEDSAMPL RMODE ANY
/ START OF SPECIFICATIONS *********************************
*
01 MODULE-NAME = TEDSAMPL
*
02 DESCRIPTIVE-NAME = Sample program to register and
* record Timed Event Data.
01 DISCLAIMER =
* This sample source is provided for tutorial purposes
* only. A complete handling of error conditions has not
* been shown or attempted, and this source has not been

IEATEDS macro

Chapter 50. IEATEDS - Timed event data services 629

* submitted to formal IBM testing. This source is
* distributed on an ’as is’ basis without any warranties
* either expressed or implied.
*
**** END OF SPECIFICATIONS *********************************/

EJECT
BAKR R14,0 Save on stack,return using r14
BASR 12,0
USING START,R12

START EQU *
MODID ,

* START OF CODE

STORAGE OBTAIN,LENGTH=DynAreaLen,Addr=(R1),COND=NO, *
LOC=ANY,SP=240

LR R13,R1
USING DynArea,R13

* Register for Timed Event Data Recording

IEATEDS Request=REGISTER, *
CompName==CL32’TheProduct’, *
MaxEvents==F’64’, *
TedToken=TedToken, *
WorkArea=TedWorkArea, *
RetCode=RetCode, *
RsnCode=RsnCode, *
MF=(E,MyTedPLD,COMPLETE)

*
* Place code to check return/reason codes here.
*

* Record Timed Event Data for Event Thread SAMPLE

LA R2,1
ST R2,DATA1
MVC DATA2(4),=CL4’ RCD’
IEATEDS Request=RECORD, *

EventType=START, *
EventThread==CL8’SAMPLE’, *
EventDesc==CL32’Timed Event Data sample’, *
UserData=(Data1,Data2), *
ModName==CL8’TEDSAMPL’, *
ModLevel==CL8’Level101’, *
TedToken=TedToken, *
WorkArea=TedWorkArea, *
RetCode=RetCode, *
RsnCode=RsnCode, *
MF=(E,MyTedPLD,COMPLETE)

*
* Place code to check return/reason codes here.
*

* Record Mid Timed Event Data

LA R2,2
ST R2,DATA1
MVC DATA2(4),=CL4’XYZ1’
MVC DATA3(6),=CL6’FUNC 1’
IEATEDS Request=RECORD, *

EventType=MID, *
EventThread==CL8’SAMPLE’, *
EventDesc==CL32’Before doing XYZ’, *
UserData=(Data1,Data2,Data3), *
ModName==CL8’TEDSAMPL’, *
ModLevel==CL8’Level101’, *

IEATEDS macro

630 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

TedToken=TedToken, *
WorkArea=TedWorkArea, *
RetCode=RetCode, *
RsnCode=RsnCode, *
MF=(E,MyTedPLD,COMPLETE)

*
* Place code to check return/reason codes here.
*

* Record Last Timed Event Data for this Thread

LA R2,3
ST R2,DATA1
MVC DATA2(4),=CL4’XYZ1’
MVC DATA3(6),=CL6’FUNC 2’
IEATEDS Request=RECORD, *

EventType=END, *
EventThread==CL8’SAMPLE’, *
EventDesc==CL32’After doing XYZ’, *
UserData=(Data1,Data2,Data3), *
ModName==CL8’TEDSAMPL’, *
ModLevel==CL8’Level101’, *
TedToken=TedToken, *
WorkArea=TedWorkArea, *
RetCode=RetCode, *
RsnCode=RsnCode, *
MF=(E,MyTedPLD,COMPLETE)

*
* Place code to check return/reason codes here.
*

* Free Dynamic Area and Return

LA R0,DynAreaLen Length of Dynamic Area
STORAGE RELEASE,LENGTH=(R0),ADDR=(R13),SP=240

PR

* Dynamic Area

DynArea DSECT
SaveArea DS XL216
TedToken DS XL16 Timed Event Data Token
Data1 DS F One word
Data2 DS CL4 Four bytes
Data3 DS CL6 Six Bytes
Data4 DS CL2 Two Bytes
RetCode DS F Return Code from Timed Event x

Data Service
RsnCode DS F Reason Code from Timed Event x

Data Service
DS 0D Align TedWorkArea on dbl word

TedWorkArea DS XL(IEATEDS_WORKAREASIZE)
IEATEDS MF=(L,MyTedPLD)

DynAreaLen EQU *-DynArea Length of DynArea
IHATEDS Constants and ret/rsn codes

* REGISTER EQUATES

SPACE 1
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6

IEATEDS macro

Chapter 50. IEATEDS - Timed event data services 631

R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

EJECT
**
* Mappings
**

CVT DSECT=YES
IHAPSA DSECT=YES
IHAECVT
END

Timed Event Data Report example invocations

Example invocations for TSO:: The following example invocation will produce a
Timed Event Data Report with all components with spreadsheet data with the
default spreadsheet delimiter of a semicolon. IBM may request that this data be
sent to IBM for analysis. Note that output_data_set must be the name of a
pre-allocated data set with an LRECL of 512 and a RECFM of V or VB.
IEAVFTED DA(’output_data_set’)

The following example invocation will produce a Timed Event Data Report for
component ABC with spreadsheet data and with a spreadsheet delimiter of a
question mark. Note that the component name is not case sensitive.
IEAVFTED DA(’output_data_set(member)’) COMPONENT(ABC) SS(?)

The following invocation will produce a Timed Event Data Report with all
components without the spreadsheet data:
IEAVFTED DA(’output_data_set’) NOSS

The following invocation will produce a Timed Event Data Report to a z/OS UNIX
file for component ABC with spreadsheet data: Note that the file name is case
sensitive, the directories need not exist and COMP is abbreviated for
COMPONENT.
IEAVFTED PATH(’/usr/ted_data/Performance_Data_For_System_XYZ’)

COMP(ABC)

The following example JCL will run the IEAVFTED REXX exec in the TSO
background. Note that the SYSEXEC data set must have an LRECL of 80 and a
RECFM of F or FB.
//IEAVFTED JOB ’123456,?’,
// ’name’,REGION=0M,
// MSGLEVEL=(1,1),CLASS=J,NOTIFY=name,
// MSGCLASS=H
//IEAVFTED EXEC PGM=IKJEFT01,ROLL=(NO,NO),DYNAMNBR=400,REGION=0M
//**
//* Notes:
//* - The REXX compiler run-time libraries must be installed.
//*
//* - The data set containing the IEAVFTED exec
//* (SYS1.SBLSCLI0) must have an LRECL of 80 and a RECFM of
//* F or FB.
//**
//SYSEXEC DD DISP=SHR,DSN=SYS1.SBLSCLI0
//SYSPRINT DD SYSOUT=*

IEATEDS macro

632 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
IEAVFTED DA(’output_data_set’)
/*

The following example JCL is a started procedure that will run the IEAVFTED
REXX exec in the TSO background. Required and optional parameters for
IEAVFTED are passed via the PARM keyword. See “Timed Event Data Report” on
page 619 for the descriptions for the required and optional IEAVFTED parameters.
//TEDRPT JOB MSGCLASS=A
//TEDRPT PROC PARM=’PATH(/usr/ted/ted_report)’
// EXEC PGM=IKJEFT01,
// PARM=’IEAVFTED &PARM’
//SYSEXEC DD DSN=SYS1.SBLSCLI0,DISP=SHR
//SYSPROC DD DSN=SYS1.PROCLIB,DISP=SHR
//SYSTSIN DD DUMMY
//SYSTSPRT DD SYSOUT=*
//SYSINT DD SYSOUT=(A,INTRDR),DCB=(LRECL=80,RECFM=FB)
// PEND
// EXEC TEDRPT

An example of a started procedure invocation using system symbolics as
parameters:
S TEDRPT,PARM=’PATH(/usr/&SYSPLEX/&SYSNAME/ted_from_12_1_2009)

COMP(ABC)’

An example of a started procedure invocation specifying a TSO dataset and having
NOSS (no spreadsheet data).
S TEDRPT,PARM=’da(console.mttr.output(sample)) noss’

Example IPCS invocations:: The following example will produce a Timed Event
Data Report with all components with spreadsheet data with a spreadsheet
delimiter of a semicolon (the default). The output will be put into a data set that
must be pre-allocated with an LRECL of 255 and a RECFM of V or VB. Note that
IPCS only supports a maximum of 255 characters for the data set, but if the
spreadsheet data needs to be imported into a spreadsheet program, then an
additional procedure (described below) must be performed to extract the
spreadsheet data from the 255 character data set and place it into either a
pre-allocated 512 character data set or a z/OS UNIX file. Note that no data will be
truncated or lost with the 255 character data set. The ALTLIB statement tells IPCS
where to find the IEAVFTED exec. Note that the data set containing IEAVFTED
(SYS1.SBLSCLI0) must have an LRECL of 80 and a RECFM of F or FB.
Create an output dsn (LRECL of 255, RECFM of V or VB)
TSO ALLOC F(IPCSPRNT) DA(dsn) SHR REUS
IP ALTLIB ACTIVATE APPL(EXEC) DA(’SYS1.SBLSCLI0’)
IP SETDEF PRINT NOTERM
IP IEAVFTED
IP CLOSE PRINT
IP SETDEF TERM NOPRINT
Data set dsn now contains the Timed Event Data Report

If the spreadsheet data needs to be imported into a spreadsheet program then one
of the following IEAVFTED invocations must be issued from TSO. In the first
example, the output_data_set must be pre-allocated with an LRECL of 512 and a
RECFM of V or VB. In the second example, the output will go to a z/OS UNIX
file. In both examples, the input_data_set is the 255 character data set from the
above procedure for IPCS. IEAVFTED will extract the spreadsheet data from
input_data_set, convert it into the proper format, and write it to the 512 character

IEATEDS macro

Chapter 50. IEATEDS - Timed event data services 633

output_data_set or to the z/OS UNIX file, either of which can then be downloaded
or FTP'd and imported into a spreadsheet program.
IEAVFTED IPCSDA(’input_data_set’) DA(’output_data_set’)

...or...
IEAVFTED IPCSDA(’input_data_set’) PATH(’z/OS UNIX file’)

Formatted Timed Event Data Report: The following example Timed Event Data
Report was obtained by running the example TEDSAMPL assembler program
described above, and then invoking IEAVFTED as follows:
IEAVFTED PATH(/usr/ted/example1) COMPONENT(’THEPRODUCT’)

* *
* IBM z/OS Timed Event Data Report *
* Level: HBB7770-V1.03 Report Date/Time: 15 Mar 2010 16:01:23 Component Filter: THEPRODUCT *
* Sysplex: PLEX1 System: SY1 FMID: HBB7770 z/OS V01R12M00 *
* Machine: 4381-FF639F30 Online Standard CPs: 6 zAAPs: 0 zIIPs: 0 *
* IPL Start Date/Time: 15 Mar 2010 15:02:06.364187 *
* *

* *
* Total Timed Event Data Table Storage: 00072A70 *
* *

* *
* Timed Event Data Table - Component: TheProduct Address: 000001EF80605000 *
* Table Size: 00002C60 Register Date/Time: 15 Mar 2010 15:51:39.783511 *
* Requested MaxEvents: 64 Resultant MaxEvents: 64 NumEvents: Current: 3 Overflow: 0 *
* *

EntryNum: 1 Event Type/Thread: Start/E2C1D4D7D3C54040/*SAMPLE * Event Date/Time: 15 Mar 2010 15:51:39.783516
Description: A sample of a TED entry
HASN: 0025 PASN: 0025 Jobname: MAINASID TCB: 005FF050 Module/Level/Offset: TEDSAMPL/Level101/000000D0
SRB/Task Time: 00000000002CFE00/000000000130A25C User Data: 00000001 40D9C3C4 00000000 00000000 *.... RCD........*
OUXBFCON: 00:00:00.334592 OUXBFDIS: 00:00:00.000000 OUXBFMNO: 00:00:00.052000 OUXBFWAIT: 00:00:00.134016
Deltas: IPL Start: 0 Days 00:49:33.419329 T.E.D. Registration: 0 Days 00:00:00.000005

Thread Start Event: 0 Days 00:00:00.000000 Thread Prior Event: 0 Days 00:00:00.000000

EntryNum: 2 Event Type/Thread: Mid /E2C1D4D7D3C54040/*SAMPLE * Event Date/Time: 15 Mar 2010 15:51:39.783521
Description: Before doing XYZ
HASN: 0025 PASN: 0025 Jobname: MAINASID TCB: 005FF050 Module/Level/Offset: TEDSAMPL/Level101/00000148
SRB/Task Time: 00000000002CFE00/000000000130A25C User Data: 00000002 E7E8E9F1 C6E4D5C3 40F10000 *....XYZ1FUNC 1..*
OUXBFCON: 00:00:00.334592 OUXBFDIS: 00:00:00.000000 OUXBFMNO: 00:00:00.052000 OUXBFWAIT: 00:00:00.134016
Deltas: IPL Start: 0 Days 00:49:33.419334 T.E.D. Registration: 0 Days 00:00:00.000010

Thread Start Event: 0 Days 00:00:00.000004 Thread Prior Event: 0 Days 00:00:00.000004

EntryNum: 3 Event Type/Thread: End /E2C1D4D7D3C54040/*SAMPLE * Event Date/Time: 15 Mar 2010 15:51:39.783525
Description: After doing XYZ
HASN: 0025 PASN: 0025 Jobname: MAINASID TCB: 005FF050 Module/Level/Offset: TEDSAMPL/Level101/000001C6
SRB/Task Time: 00000000002CFE00/000000000130A25C User Data: 00000003 E7E8E9F1 C6E4D5C3 40F20000 *....XYZ1FUNC 2..*
OUXBFCON: 00:00:00.334592 OUXBFDIS: 00:00:00.000000 OUXBFMNO: 00:00:00.052000 OUXBFWAIT: 00:00:00.134016
Deltas: IPL Start: 0 Days 00:49:33.419338 T.E.D. Registration: 0 Days 00:00:00.000014

Thread Start Event: 0 Days 00:00:00.000009 Thread Prior Event: 0 Days 00:00:00.000004

* *
* End Timed Event Data Table - Component: TheProduct *
* Number Events: Start: 1 Mid: 1 End: 1 *
* *

* *

IEATEDS macro

634 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

* Description of columns *
* Unique Id : If multiple reports are merged into a single spread sheet, this field can be used to uniquely *
* identify the source for the row of data. *
* Event Time : The time the event occurred. *
* Date : The date the event occurred. *
* Event Thread: Used to tie the related Start/Mid/End events together. This can be a hex or EBCDIC value. *
* Thread EBCDIC: If Event Thread is in hex, this data is translated to EBCDIC. Unprintable characters are *
* displayed as periods. The EBCDIC value is preceded and followed by an asterisk. *
* If the Event Thread is in EBCDIC, it is repeated in this column. *
* Type : The type of event. (e.g. Start, Mid, End, Register, Create). *
* Description : Text which describes the event. *
* Component : The component to which this event belongs. *
* Deltas *
* IPL Start : The amount of time that elapsed from the beginning of the IPL until the time of this event. *
* Thread Start Event: The amount of time that elapsed from the start event of the same Timed Event Data table *
* and same Event Thread until the time of this event. *
* T.E.D. Registration: The amount of time that elapsed from the time the component registered (created a Timed *
* Event Data table) until the time of this event. For the IPST data, this field will be blank. *
* Thread Prior Event: The amount of time that elapsed from the previous event of the same Timed Event Data/IPS *
* table and same Event Thread until the time of this event. *
* Jobname : The jobname of the address space that recorded this event. *
* HASN : The home address space ID that recorded this event. *
* PASN : The primary address space ID that recorded this event. *
* Module : The name of the module that recorded this event. *
* Level : The level of the module that recorded this event. For the IPST data, this field will be blank. *
* Offset : The offset within the module where the event was recorded. For the IPST data, this field will be *
* blank. *
* TCB@ : The TCB address that the module was running under when the event was recorded. For the IPST data, *
* this field will be blank. If the recording was done under an SRB, this field will be zero. *
* User1 : Data that the recording module wanted to record along with the event. *
* User2 : Data that the recording module wanted to record along with the event. *
* User3 : Data that the recording module wanted to record along with the event. *
* User4 : Data that the recording module wanted to record along with the event. *
* User EBCDIC : The four user data fields are displayed in EBCDIC. Unprintable characters are displayed as *
* periods. The data is preceded and followed by an asterisk. For the IPST data, this field will be *
* blank. *
* SRB : The SRB time for the home address space where this event was recorded. For the IPST data, this *
* field will be blank. *
* Task Time : The task time for the home address space where this event was recorded. For the IPST data, this *
* field will be blank. *
* OUXBFCON : The time from the OUXBFCON field which contains the accumulated I/O FICON connect time for the *
* address space. For the IPST data, this field will be blank. *
* OUXBFDIS : The time from the OUXBFDIS field which contains the accumulated I/O FICON disconnect time for the *
* address space. For the IPST data, this field will be blank. *
* OUXBFMNO : The time from the OUXBFMNO field which contains the FICON magic number - for every I/O interrupt *
* from a device attached to a FICON native CHPID, IOS will add one millisecond to this field. *
* For the IPST data, this field will be blank. *
* OUXBFWAIT : The time from the OUXBFWAIT field which contains the accumulated I/O FICON wait time for the *
* address space. This value includes pending time and control unit queue time. For the IPST data, *
* this field will be blank. *
* *
* You may notice that some of the delta values (IPL Start, Thread Start ...) may be off by 0.000001 seconds. This is *
* due to rounding effects. *
* *
* By default, a semicolon is used as a column separator so when importing the data into a spreadsheet program, the *
* data is placed in the correct columns. If any of the data contains a semicolon (or whatever the separator character *
* is), that semicolon will be replaced with a blank. *
* *
* When you import this data, remember to tell the program what the column separator character is so the data is *
* formatted correctly. *
* *

* *
* IBM z/OS Timed Event Data Report *
* Level: HBB7770-V1.03 Report Date/Time: 15 Mar 2010 16:01:23 Component Filter: THEPRODUCT *
* *
* The following is the same Timed Event Data/IPST as above but in a form that can be imported into a spreadsheet *
* program. To do so: *
* - Edit this data set (or a copy) and remove everything above the spreadsheet data (including these directions.) *
* - When you download or FTP the data set, specify ASCII or TEXT. *
* - Do NOT download as Binary. *
* - When importing into the spreadsheet program, indicate that the data is delimited with a delimiter character *
* of: ; *
* *
* Sorting by the ’Event Time’ column will put all the data into chronological order. *
* *

IEATEDS macro

Chapter 50. IEATEDS - Timed event data services 635

* Sorting by the ’Event Thread’ and the ’Event Time’ columns will group all the related events in chronological *
* order. Examining the ’Thread Prior Event Delta’ will help identify events that took a long time. *
* *

The formatted Timed Event Data Report will consist of:
v A header section for the start of the report.

Figure 7. Sample (beginning portion) Timed Event Data spreadsheet

Figure 8. Sample (second portion) Timed Event Data spreadsheet

IEATEDS macro

636 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v Timed Event Data Table sections with each Timed Event Data Table section
comprised of a header section, the Timed Event Data Table formatted
information, Timed Event Data Table formatted entries, and a trailer section.

v A header section for the IPST (IPL Statistics Table) followed by the formatted
IPST.

v The spreadsheet format of the IPST and Timed Event Data entries.

The following describes each of the formatted sections in more detail:

The header section for the start of the report contains the text "IBM z/OS Timed
Event Data Report" and the following fields:
v Level: The product and version of the Timed Event Data Report REXX exec

(IEAVFTED).
v Date/Time of Report: The local date and time when the report was run.
v Component Filter: The filter used to select which entries to format. If no filter

was specified, ALL is displayed.
v Sysplex: The name of the sysplex for the system from which the report was

obtained.
v System: Name of the system from which the report was obtained.
v FMID: The FMID of the system from which the report was obtained and the

z/OS release level.
v Machine: The model of the machine where the report was run.
v Online CPs: The number of online standard CPs, IBM zEnterprise® Application

Assist Processors (zAAPs) and IBM z Integrated Information Processors (zIIPs).
v IPL Start Date/Time: The local date and time when the IPL was started for the

system from which the report was obtained.
v Total Timed Event Data Table Storage: The total number of hexadecimal bytes of

storage that is currently in use for the Timed Event Data Tables.

The header section for a Timed Event Data Table includes the following fields:
v Component: The value specified for the COMPNAME keyword on the IEATEDS

REGISTER request.
v Address: The address in storage where the Timed Event Data Table resides.
v Table Size: Number of hexadecimal bytes allocated for the Timed Event Data

Table.
v Register Date/Time: The local date and time when the Timed Event Data Table

was registered with the IEATEDS REGISTER request.
v Requested MaxEvents: The maximum number of events originally specified on

the IEATEDS REGISTER request.
v Resultant MaxEvents: The maximum number of events for this Timed Event

Data Table that can be recorded with the IEATEDS RECORD request. This value
may be the requested value, or a reduced value that allowed the Timed Event
Data Table to be built within the 2M-byte storage limit.

v Current® NumEvents: The number of events that have been recorded thus far.
v Overflow NumEvents: The number of events that were not recorded because the

Timed Event Data Table is full.

Following the Timed Event Data Table formatted header section, the report
continues with zero or more formatted events that were recorded with IEATEDS
RECORD requests, with each request having the following fields:

IEATEDS macro

Chapter 50. IEATEDS - Timed event data services 637

v EntryNum: This will start with 1 for each Timed Event Data Table and will
increment for each event.

v Event Type/Thread: The type will be Start, Mid, or End as was specified for the
EVENTTYPE keyword on the IEATEDS RECORD request. For Timed Event Data
entries, the Thread, which is the value specified on the EVENTTREAD keyword
of the IEATEDS RECORD request, will follow as formatted hex and again as
formatted EBCDIC contained within asterisk borders. For IPST entries, the
thread will always be in EBCDIC.

v Event Date/Time: The local date and time that the event was recorded.
v "*** Incomplete Event ***" will be displayed if it is determined that the entry is

incomplete. In this case, the data for this event should be ignored.
v Description: The value specified for the DESCRIPTION keyword on the

IEATEDS RECORD request.
v HASN: The ASID (address space identity) for the home address space at the

time of IEATEDS RECORD request.
v PASN: The ASID (address space identity) for the primary address space at the

time of IEATEDS RECORD request.
v Jobname: The jobname for the home address space at the time of the IEATEDS

RECORD request.
v TCB: The TCB (Task Control Block) address at the time of IEATEDS RECORD

request (which will be zero when running as an SRB).
v Module/Level/Offset: The values specified on the MODNAME and

MODLEVEL keywords on the IEATEDS RECORD request, and the offset in the
module where the IEATEDS RECORD request was issued. Note that the offset is
calculated by obtaining the difference between the current location and SYSECT
which names the current control section but which might not necessarily be the
name of the module.

v SRB/Task Time: The SRB and task time values for the home address space at the
time of IEATEDS RECORD request.

v User Data: The value(s) specified for the USERDATA keyword on the IEATEDS
RECORD request, displayed as both printable hex and printable EBCDIC
enclosed in asterisk borders. Note that zeros are appended to the user data to
ensure that there are 16 bytes of data in the case where the specified user data
combined size is less than 16 bytes.

v OUXBFCON: The formatted time from OUXBFCON which contains the
accumulated I/O FICON® connect time for the address space.

v OUXBFDIS: The formatted time from OUXBFDIS which contains the
accumulated I/O FICON disconnect time for the address space.

v OUXBFMNO: The formatted time from OUXBFMNO which contains the FICON
magic number - for every I/O interrupt from a device attached to a FICON
native CHPID, IOS will add one millisecond to this field.

v OUXBFWAIT: The formatted time from OUXBFWAIT which contains the
accumulated I/O FICON wait time for the address space. This value includes
pending time and control unit queue time.

v IPL Start Delta: The elapsed time from the start of the IPL to the time of the
IEATEDS RECORD request for this event.

v Timed Event Data Registration Delta: The elapsed time from when the IEATEDS
REGISTER request was made to the time of the IEATEDS RECORD request for
this event.

IEATEDS macro

638 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v Thread Start Event Delta: The elapsed time from when the IEATEDS RECORD
request with an EVENTTYPE of START was made to the time of the IEATEDS
RECORD request for this event and this event has an EVENTTHREAD value
that matches the START event.

v Thread Prior Event Delta: The elapsed time from when the IEATEDS RECORD
request for the prior event in the same Timed Event Data Table with the same
Event Thread was made to the time of the IEATEDS RECORD request for this
event.

The trailer section for the Timed Event Data Table includes the following fields:
v Component: The value specified for the COMPONENT keyword on the

IEATEDS REGISTER request.
v Number of Events: The number of processed START, MID, and END events. The

number of start events and end events should normally match unless there were
incomplete entries or an overflow of entries.

Note that error messages may be issued if a storage access error occurs, in which
case the IPST, one of more Timed Event Data Tables, or Timed Event Data Table
entries may be missing from the report.

Other error messages may be issued for data set errors or processing errors.

The Timed Event Data Report REXX exec provides the following return codes:
v Return Code=d'00' - Report written successfully.
v Return Code=d'16' - Report was not completed. An error message will be output

to either the screen or within the report.

If you want to load the Timed Event Data Report into a spreadsheet program,
perform the following:
v If the Timed Event Data Report was placed into a 512 character data set or a

z/OS UNIX file, edit the data set (or a copy) to delete everything above the
spreadsheet data (including the directions).

v If the Timed Event Data Report was placed into a 255 character data set (i.e.,
obtained from a dump under IPCS), invoke IEAVFTED with the IPCSDA option
which will extract the spreadsheet data from the 255 character data set and place
it into either a pre-allocated 512 character data set or a z/OS UNIX file.

v When you download or FTP the data set, choose the download options of ASCII
or TEXT. Do not download as binary.

v When importing into the spreadsheet program, indicate that the data is
delimited with a delimiter of a semicolon (or the character that was specified
with the SS keyword when IEAVFTED was invoked to generate the Timed Event
Data Report).

v Sorting by the 'Event Time' column will put all the data into chronological order.
v Sorting by the 'Event Thread' and the 'Event Time' columns will group all the

related events in chronological order. Examining the 'Thread Prior Event Delta'
will help identify events that took a long time.

IEATEDS macro

Chapter 50. IEATEDS - Timed event data services 639

IEATEDS macro

640 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 51. IEATXDC — Transactional execution diagnostic
controls

Description
In support of the diagnostic controls of transactional execution, as defined in the
z/Architecture Principles of Operation, the following services are provided:

For the current task,
v Indicate the scope of the diagnostic controls.
v Set the diagnostic controls for "no abort".
v Set the diagnostic controls for "abort every".
v Set the diagnostic controls for "abort random".

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15. SCOPE=ALL requires

supervisor state; if a problem state caller indicates
SCOPE=ALL, it is treated as SCOPE=PROBLEM.

Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold any lock(s). No locks are required.
Control parameters: None.

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the IEATXDC macro, the caller does not have to place any
information into any general purpose register (GPR).

Before issuing the IEATXDC macro, the caller does not have to place any
information into any access register (AR).

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

© Copyright IBM Corp. 1988, 2016 641

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The IEATXDC macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEATXDC.

IEATXDC

� One or more blanks must follow IEATXDC.

SCOPE=PROBLEM

SCOPE=ALL

,OPERATION=NO_ABORT

,OPERATION=SET_EVERY

,OPERATION=SET_RANDOM

,RETCODE=retcode retcode: RS-type address or register (2) - (12) or (15), (GPR15), (REG15), or
(R15).

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IEATXDC
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

IEATXDC macro

642 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

SCOPE=PROBLEM
SCOPE=ALL

A required parameter that identifies the scope of the diagnostic controls.

SCOPE=PROBLEM
indicates that the diagnostic controls apply only for problem state
transactional execution.

SCOPE=ALL
indicates that the diagnostic controls apply both to problem state and
supervisor state transactional execution. If a problem state caller requests
SCOPE=ALL, however, it is treated as SCOPE=PROBLEM.

,OPERATION=NO_ABORT
,OPERATION=SET_EVERY
,OPERATION=SET_RANDOM

A required parameter that identifies the type of operation to perform.

,OPERATION=NO_ABORT
indicates to set the transactional diagnostic controls for this task so that the
system will not apply its SET_EVERY or SET_RANDOM rules.
Transactions themselves may still abort for all the defined architectural
reasons.

,OPERATION=SET_EVERY
indicates to set the transactional diagnostic controls for this task to request
abort of every nonconstrained transaction.

,OPERATION=SET_RANDOM
indicates to set the transactional diagnostic controls for this task to request
abort of random nonconstrained transactions.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

ABEND codes
None.

Return codes
When the IEATXDC macro returns control to your program, GPR 15 (and retcode,
when you code RETCODE) contains a return code.

The following table identifies the hexadecimal return and reason codes.

Table 58. Return codes for the IEATXDC Macro

Return Code Meaning and Action

0 Meaning: Successful completion. Diagnostic controls are set to the requested value

Action: None required.

4 Meaning: Warning. The machine does not support transactional execution. Diagnostic
controls are not set.

Action: Avoid calling IEATXDC when the machine does not support transactional
execution.

IEATXDC macro

Chapter 51. IEATXDC — Transactional execution diagnostic controls 643

Table 58. Return codes for the IEATXDC Macro (continued)

Return Code Meaning and Action

8 Meaning: Unexpected input.

Action: Check for possible storage overlay.

12 Meaning: Service called in SRB mode.

Action: Avoid using IEATXDC in SRB mode.

Examples
None.

IEATXDC macro

644 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 52. IEAVAPE — Allocate_Pause_Element

Description
Allocate_Pause_Element obtains a pause element token (PET), which uniquely
identifies a pause element. The PET is used as input to the following services:
v Pause
v Release
v Transfer
v Deallocate_Pause_Element

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: v For auth_level=IEA_UNAUTHORIZED: Task

v For auth_level=IEA_AUTHORIZED: Task or SRB
Cross memory mode: v For auth_level=IEA_UNAUTHORIZED:

PASN=HASN=SASN

v For auth_level=IEA_AUTHORIZED: Any PASN, any
HASN, any SASN

AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: v When supervisor state and PSW key 0: The local lock may

be held.

v When problem state, or not PSW key 0: No locks may be
held.

Control parameters: Must be in the primary address space and addressable by
the caller.

Programming requirements
Either link the calling program's object code with the linkable stub routine (IEACSS
from SYS1.CSSLIB), or load the calling program and then call the service. The
high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
When the calling program specifies auth_level=IEA_UNAUTHORIZED, the caller
must be in task mode and can only release another task in its home address space.
All pause element tokens (PETs) used when auth_level=IEA_UNAUTHORIZED
must have been obtained using an authorization level of IEA_UNAUTHORIZED.

© Copyright IBM Corp. 1988, 2016 645

Only 2040 unauthorized PETs may be allocated at any one time in an address
space.

Input register information
Before calling Allocate_Pause_Element, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Address of a 72-byte register save area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return Code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

CALL IEAVAPE
(return_code
,auth_level
,pause_element_token)

Parameters
The parameters are explained as follows:

IEAVAPE callable service

646 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Allocate_Pause_Element service.

,auth_level
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Represents one or more possible levels of the pause element being allocated.
The calling program can use the constants defined in IEAASM or IEAC, as
appropriate. The level desired results from adding the values of the required
types together. The authorization type is not optional.

For instance, the level to allocate authorized pause elements that are
checkpoint/restart tolerant is IEA_AUTHORIZED + IEA_CHECKPOINTOK, or
3.

The following levels are supported:

Table 59. Authorization

IEAASM and IEAC defined constants Value (hexadecimal) Meaning

IEA_UNAUTHORIZED 0 When using the allocated pause element through
other services, either auth_level
IEA_UNAUTHORIZED or IEA_AUTHORIZED can
be used.

IEA_AUTHORIZED 1 When using the allocated pause element through
other services, auth_level=IEA_AUTHORIZED will
be required. Caller must be both key 0 and
supervisor state.

Table 60. Checkpoint/Restart Toleration - only available when the CVTPAUS4 bit is set in the CVT.

IEAASM and IEAC defined constants Value (hexadecimal) Meaning

IEA_CHECKPOINTOK 2 The application can tolerate the pause elements' not
being restored upon a restart after a checkpoint.

Note: If the IEA_CHECKPOINTOK value is not added to the authorization
value, checkpoints cannot be taken when an allocated pause element exists.

,pause_element_token
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains the pause element token that identifies the pause element which you
can use to synchronize the processing of a task.

ABEND codes
None.

IEAVAPE callable service

Chapter 52. IEAVAPE — Allocate_Pause_Element 647

Return codes
When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

00 (0)

IEA_SUCCESS

Meaning: Successful completion.

Action: None.

24 (18)

IEA_LOCK_HELD

Meaning: Program error. If the auth_level indicates AUTHORIZED, locks other
than the local lock are held. If the auth_level indicates UNAUTHORIZED, locks
are held. The system rejects the service call.

Action: Check the calling program for a probable coding error. Correct the
program and rerun it.

36 (24)

IEA_UNSUPPORTED_MVS_RELEASE

Meaning: Environmental error. The system release does not support this
service. The system rejects the service call.

Action: Run the program on a system that supports the service.

40 (28)

IEA_PE_NOT_HOME

Meaning: Program error. The auth_level value specified in the call is not valid.
The system rejects the service call.

Action: Check the calling program for a probable coding error. Correct the
program and rerun it.

44 (2C)

IEA_XFER_TO_SELF

Meaning: Program error. The calling program is not in primary ASC mode,
which this service requires. The system rejects the service call.

Action: Check the calling program for a probable coding error. Correct the
program and rerun it.

48 (30)

IEA_XFER_FAILED

Meaning: Environmental error. The system could not obtain storage for a pause
element. The system rejects the service call.

Action: Retry the request later. If the problem persists, consult your system
programmer.

56 (38)

IEA_NO_PETS_AVAILABLE

Meaning: There are no pause element tokens available.

Action: Retry the request later.

4095 (FFF)

IEA_UNEXPECTED_ERROR

Meaning: This service routine encountered an unexpected error. The system
rejects this service request.

Action: Contact IBM support.

IEAVAPE callable service

648 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 53. IEAVAPE2 — Allocate_Pause_Element

Description
Allocate_Pause_Element obtains a pause element token (PET), which uniquely
identifies a pause element. The PET is used as input to the following services:
v Pause
v Release
v Transfer
v Deallocate_Pause_Element

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– Working with an IEA_AUTHORIZED pause element,
supervisor state and PSW key 0-7.

– Working with an IEA_UNAUTHORIZED pause
element, problem state and any PSW key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: Any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts.
Locks: v For LINKAGE=BRANCH: The local lock may be held.

v For LINKAGE=SVC: No locks may be held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the calling program's object code with the linkable stub routine (IEACSS
from SYS1.CSSLIB) or have the calling program LOAD and then CALL the service.
The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

© Copyright IBM Corp. 1988, 2016 649

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

Only 2040 unauthorized PETs may be allocated at any one time in an address
space.

Allocate_Pause_Element cannot be used by tasks that are higher in the task tree
than the cross memory resource owning task (the top, or first, job step task in the
address space).

Key 1-15 or problem state callers must specify linkage as IEA_LINKAGE_SVC and
pause_element_owner_stoken as binary zero.

Input register information
Before calling Allocate_Pause_Element, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Address of a 72-byte register save area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

IEAVAPE2 callable service

650 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|

|

Syntax

Syntax Description

CALL IEAVAPE2

,(return_code
,pause_element_auth_level
,pause_element_token
,pause_element_owner_stoken
,owner_termination_release_code
,linkage)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Allocate_Pause_Element service.

,pause_element_auth_level
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Represents one or more possible levels of the pause element being allocated.
The calling program can use the constants defined in IEAASM or IEAC, as
appropriate. The level desired results from adding the values of the required
types together. The authorization type is not optional.

For instance, the level to allocate authorized pause elements that are
checkpoint/restart tolerant is IEA_AUTHORIZED + IEA_CHECKPOINTOK, or
3.

The following levels are supported:

Table 61. Authorization

IEAASM and IEAC defined constants Value (hexadecimal) Meaning

IEA_UNAUTHORIZED 0 When using the allocated pause element through
other services, either pause_element_auth_level
IEA_UNAUTHORIZED or IEA_AUTHORIZED can
be used.

IEA_AUTHORIZED 1 When using the allocated pause element through
other services, pause_element_auth_level
=IEA_AUTHORIZED is required. Caller must be
both key 0 and supervisor state.

Table 62. Checkpoint/Restart Toleration - only available when the CVTPAUS4 bit is set in the CVT.

IEAASM and IEAC defined constants Value (hexadecimal) Meaning

IEA_CHECKPOINTOK 2 The application can tolerate the pause elements' not
being restored upon a restart after a checkpoint.

IEAVAPE2 callable service

Chapter 53. IEAVAPE2 — Allocate_Pause_Element 651

Note: If the IEA_CHECKPOINTOK value is not added to the authorization
value, checkpoints cannot be taken when an allocated pause element exists.

,pause_element_token
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains the pause element token that identifies a pause element which you
can use to synchronize the processing of a task or SRB.

,pause_element_owner_stoken
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 8 bytes

Specifies the space token (STOKEN) of the address space which is to be
considered the owner of the Pause Element being allocated. Specify one of the
following values:
v Binary zero: indicate the system should make the current primary address

space the owner of the Pause Element. This is the only value valid for key
8-15 problem state callers.

v A valid STOKEN, indicate the system should make the address space with
the matching STOKEN the owner for the pause element.

When the CMRO task (the first job step task) of an address space terminates,
the system will release and deallocate any pause elements owned by the
CMRO task's home address space. The table below describes exactly when the
system will release and/or deallocate a Pause Element:

Allocation Service version: Deallocation Rules

IEAVAPE The PE will be deallocated by the system
when one of the following events occurs:

v The PE was never used to pause a task or
SRB and the CMRO task for the space
which allocated it terminates.

v The PE is being used to pause a task or
SRB which is asynchronously terminated
via CALLRTM TYPE=ABTERM (for
example, cancel or detach) or a
PURGEDQ

v The CMRO task of the home address
space of the task or SRB which last used
the PE terminates and the PE is not being
used to pause an SRB.

The home address space of the task or SRB
which last used the PE terminates.

IEAVAPE2 callable service

652 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|
|
|

Allocation Service version: Deallocation Rules

IEAVAPE2 The PE will be deallocated by the system
when one of the following events occurs:

v The CMRO task of the address space
specified by pause_element_owner_stoken
terminates. If the PE is being used to
pause a DU when the CMRO task
terminates, the system will release the DU
using the owner_termination_release_code
before the PE is deallocated. Note that in
this case, the UPET returned will be 16
bytes of binary zeros, an invalid value.

v The PE is being used to pause a task or
SRB which is asynchronously terminated
via CALLRTM TYPE=ABTERM (for
example, cancel or detach) or a
PURGEDQ

v The PE is being used to pause a task or
SRB when the home address space of the
task or SRB is terminated

v The CMRO task of the address space
which owns the PE terminates and the PE
is not being used to pause an SRB.

The address space which owns the PE
terminates. Note: A PE is considered as
"being used to pause a task or SRB," when
the PE is not Reset or Prereleased.

,owner_termination_release_code
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Specifies the release code which will be returned to a paused DU if the system
deallocates the pause element while it is being used to pause a task or SRB,
due to the CMRO task of its owning address space terminating.

Note: If the system deallocates a PE due to its owner terminating while the PE
was not being used to pause a task or SRB, future attempts to use the PE will
fail with a return code indicating the PETOKEN was stale or the PE is in an
invalid state.

linkage
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how the Allocate_Pause_Element service routine is to be invoked. The
following options are supported:

IEAVAPE2 callable service

Chapter 53. IEAVAPE2 — Allocate_Pause_Element 653

|
|
|
|
|

Table 63. Linkage option

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_SVC 0 The Allocate_Pause_Element service routine will be
invoked via an SVC linkage. This option can be used
when in non-cross memory task mode, any key, and
either problem state or supervisor state.

IEA_LINKAGE_BRANCH 1 The Allocate_Pause_Element service routine will be
invoked via a branch instruction. The caller must be
in both key 0 and supervisor state. This option must
be selected when in SRB mode.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return code
in: Decimal
(Hex)

Equate Symbol Meaning and Action

00 (0) IEA_SUCCESS Meaning: Successful completion.

Action: None.

24 (18) IEA_LOCK_HELD Meaning: Program error. One or
more locks other than the local lock
are held. The system rejects the
service call.

Action: Check the calling program
for a probable coding error. Correct
the program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The
system release does not support this
service. The system rejects the service
call.

Action: Run the program on a
system that supports the service.

40 (28) IEA_INVALID_AUTHCODE Meaning: Program error. The
pause_element_auth_level value
specified in the call is not valid. The
system rejects the service call.

Action: Check the calling program
for a probable coding error. Correct
the program and rerun it.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling
program is not in primary ASC
mode, which this service requires.
The system rejects the service call.

Action: Check the calling program
for a probable coding error. Correct
the program and rerun it.

IEAVAPE2 callable service

654 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return code
in: Decimal
(Hex)

Equate Symbol Meaning and Action

48 (30) IEA_OUT_OF_STORAGE Meaning: Environmental error. The
system could not obtain storage for a
pause element. The system rejects the
service call.

Action: Retry the request later. If the
problem persists, consult your
system programmer.

56 (38) IEA_NO_PETS_AVAILABLE Meaning: There are no pause
element tokens available.

Action: Retry the request later.

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine
encountered an unexpected error.
The system rejects this service
request.

Action: Contact IBM support.

84 (54) IEA_INVALID_LINKAGE Meaning: Program error. The linkage
value specified is not valid. The
system rejects the service call

Action: Check the calling program
for a probable coding error. Correct
the program and rerun it.

88 (58) IEA_INVALID_OWNER_STOKEN Meaning: Program error. The stoken
specified for
pause_element_owner_stoken is not
valid.

Action: Obtain the correct stoken of
the target and reissue the call

96 (60) IEA_UNAUTH_NONZERO_OWNER_STOKEN Meaning: Program error. A key 8-15
problem state caller specified a
nonzero value for
pause_element_owner_stoken

Action: Check the calliing program
for a probable coding error. Correct
the program and rerun it.

100 (64) IEA_INVALID_AUTHLVL_AUTHCODE Meaning: The
pause_element_auth_level value
specified in the call is not valid. The
system rejects the service call.

Action: Check the calling program
for a probable coding error. Correct
the program and rerun it.

IEAVAPE2 callable service

Chapter 53. IEAVAPE2 — Allocate_Pause_Element 655

IEAVAPE2 callable service

656 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 54. IEAVDPE — Deallocate_Pause_Element

Description
Deallocate_Pause_Element frees a pause element that is no longer needed.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: v For auth_level=IEA_UNAUTHORIZED: Task

v For auth_level=IEA_AUTHORIZED: Task or SRB
Cross memory mode: v For auth_level=IEA_UNAUTHORIZED:

PASN=HASN=SASN

v For auth_level=IEA_AUTHORIZED: Any PASN, any
HASN, any SASN

AMODE: 31-bit addressing mode.
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts
Locks: v When supervisor state and PSW key 0: The local lock may

be held.

v When problem state, or not PSW key 0: No locks may be
held.

Control parameters: Must be in the primary address space and addressable by
the caller.

Programming requirements
Either link the calling program's object code with the linkable stub routine (IEACSS
from SYS1.CSSLIB), or load the calling program and then call the service. The
high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
When the calling program specifies auth_level=IEA_UNAUTHORIZED, the caller
must be in task mode and can only release another task in its home address space.
All pause element tokens (PETs) used when auth_level=IEA_UNAUTHORIZED
must have been obtained using an authorization level of IEA_UNAUTHORIZED.

Input register information
Before calling Deallocate_Pause_Element, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

© Copyright IBM Corp. 1988, 2016 657

1 Address of the parameter address list.

13 Address of a 72-byte register save area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL IEAVDPE
,(return_code
,auth_level
,pause_element_token)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Deallocate_Pause_Element service.

IEAVDPE callable service

658 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,auth_level
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the maximum authorization level of the pause element being
deallocated. IEAASM and IEAC define constants IEA_UNAUTHORIZED and
IEA_AUTHORIZED, which the calling program can use. The following levels
are supported:

Variable Value
(HEX)

Meaning

IEA_UNAUTHORIZED 0 This pause element being deallocated must have been
allocated with auth_level=IEA_UNAUTHORIZED.

IEA_AUTHORIZED 1 This pause element being deallocated must have been
allocated with auth_level=IEA_AUTHORIZED.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains the pause element token that identifies the pause element that is no
longer needed.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

00 (00)

IEA_SUCCESS

Meaning: Successful completion

Action: None.

04 (04) Meaning: Program error. The specified pause element token is not
valid. The system rejects the service call.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

08 (08)

IEA_PE_TOKEN_STALE

Meaning: The specified pause element token is stale; that is, it was
valid but has been used on the Pause or Transfer service. This service
requires the updated PET returned on Pause or Transfer.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

24 (18)

IEA_LOCK_HELD

Meaning: Program error. The caller is holding one or more locks; no
locks must be held. The system rejects the service call.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

IEAVDPE callable service

Chapter 54. IEAVDPE — Deallocate_Pause_Element 659

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

32 (20)

IEA_PE_BAD_STATE

Meaning: Program error. The pause element associated with the
specified pause element token is not valid or has already been
paused. A paused PE must be released before it is deallocated. This
return code also can indicate that the address space associated with
the pause element is ending or has ended and that the system freed
the pause element.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

36 (24)

IEA_UNSUPPORTED_MVS_RELEASE

Meaning: Environmental error. The system release does not support
this service. The system rejects the service call.

Action: Run the program on a system that supports the service.

40 (28)

IEA_INVALID_AUTHCODE

Meaning: Program error. The auth_level value specified in the call is
not valid. The system rejects the service call.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

44 (2C)

IEA_INVALID_MODE

Meaning: Program error. The calling program is not in primary ASC
mode, which this service requires. The system rejects the service call.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

60 (3C)

IEA_AUTH_TOKEN

Meaning: Program error. The caller specified
auth_level=UNAUTHORIZED, but the pause element token was
allocated with auth_level=AUTHORIZED. The system rejects the
service call.

Action: Program error. The specified pause element token is not
valid. The system rejects the service call.

64 (40)

IEA_PE_NOT_HOME

Meaning: Program error. The caller specified
auth_level=UNAUTHORIZED, but the pause element token was for
a pause element allocated to another address.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

4095 (FFF)

IEA_UNEXPECTED_ERROR

Meaning: This service routine encountered an unexpected error. The
system rejects this service request.

Action: Contact IBM support.

IEAVDPE callable service

660 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 55. IEAVDPE2 — Deallocate_Pause_Element

Description
Deallocate_Pause_Element frees a pause element that is no longer needed.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– Working with an IEA_AUTHORIZED pause element,
supervisor state and PSW key 0-7.

– Working with an IEA_UNAUTHORIZED pause
element, problem state and any PSW key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: Any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=HASN=SASN
AMODE: 31-bit addressing mode.
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: v For LINKAGE=BRANCH: The local lock may be held.

v For LINKAGE=SVC: No locks may be held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the object code of the calling program with the linkable stub routine
(IEACSS from SYS1.CSSLIB) or have the calling program LOAD and then CALL
the service. The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

Key 1-15 or problem state callers must specify linkage as IEA_LINKAGE_SVC.

© Copyright IBM Corp. 1988, 2016 661

Input register information
Before calling Deallocate_Pause_Element, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Address of a 72-byte register save area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL IEAVDPE2
,(return_code
,pause_element_token
,linkage)

Parameters
The parameters are explained as follows:

IEAVDPE2 callable service

662 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Deallocate_Pause_Element service.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains the pause element token that identifies the pause element that is no
longer needed.

linkage
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how the Deallocate_Pause_Element service routine is to be invoked.
The following options are supported:

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_SVC 0 The Deallocate_Pause_Element service routine
will be invoked by an SVC linkage. This
option can be used when in non-cross
memory task mode, in any key, and in either
problem state or supervisor state.

IEA_LINKAGE_BRANCH 1 The Deallocate_Pause_Element service routine
will be invoked by a branch instruction. The
caller must be in both key 0 and supervisor
state. This option must be selected when in
SRB mode.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return code
in: Decimal
(Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion

Action: None.

IEAVDPE2 callable service

Chapter 55. IEAVDPE2 — Deallocate_Pause_Element 663

Return code
in: Decimal
(Hex)

Equate symbol Meaning and Action

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified pause
element token is not valid. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element token
is stale; that is, it was valid but has been used
on the Pause or Transfer service. This service
requires the updated PET returned on Pause
or Transfer.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

24 (18) IEA_LOCK_HELD Meaning: Program error. One or more locks
other than the local lock are held. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

32 (20) IEA_PE_BAD_STATE Meaning: Program error. The pause element
associated with the specified pause element
token is invalid or has already been paused.
A paused PE must be released before it is
deallocated. This return code also can indicate
that the address space associated with the
pause element is ending or has ended and
that the system freed the pause element.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Run the program on a system that
supports the service.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling program
is not in primary ASC mode, which this
service requires. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

64 (40) IEA_PE_NOT_HOME Meaning: Program error. The pause element
token was for an unauthorized pause element
allocated to another address space.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

IEAVDPE2 callable service

664 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return code
in: Decimal
(Hex)

Equate symbol Meaning and Action

84 (54) IEA_INVALID_LINKAGE Meaning: Program error. The linkage value
specified is not valid. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine encountered an
unexpected error. The system rejects this
service request.

Action: Contact IBM support.

IEAVDPE2 callable service

Chapter 55. IEAVDPE2 — Deallocate_Pause_Element 665

666 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 56. IEAVPME2 — Pause multiple elements service

Description
IEAVPME2 is a callable service that can be used to pause on one or more pause
element tokens (PETs). When the specified number of pause elements (PEs)
represented by PETs has been released, you receive control back with the
following:
v A list of PETs that you can use to pause on again
v An indication of which PEs were released
v Their release codes.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– If any input PET was allocated as IEA_AUTHORIZED,
supervisor state and PSW key 0.

– If all input PETs were allocated as
IEA_UNAUTHORIZED, problem state and any PSW
key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=SASN=HASN
AMODE: 31-bit addressing mode.
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the calling program's object code with the linkable stub routine (IEACSS
from SYS1.CSSLIB), or load the calling program and then call the service. The
high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

© Copyright IBM Corp. 1988, 2016 667

|

|

|
|

|
|
|
|

|

|

|

|

|

|||
||
|

|

|
|

|
|
|
||

|
||
|

|
||
||
||
||
||
|
|

|

|
|
|

|||

||

||
|

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

Key 1-15 or problem state callers must specify linkage as IEA_LINKAGE_SVC.
IEA_LINKAGE_SVC is limited to pausing upon no more than 1000 PETs.

Pause cannot be used by tasks that are higher in the task tree than the cross
memory resource owning task (the EXEC PGM=xxx task).

Input register information
Before calling the Pause service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Note that register 13 is not required to contain any particular value. See the
workarea parameter description.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code.

Note that this service saves and restores full 64-bit GPRs.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
There is a maximum number of PETs which can be processed very quickly by
IEAVPME2 without doing additional GETMAINs and FREEMAINs. That number
is currently 16.

IEAVPME2 callable service

668 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|

|
|
|

|
|

|
|

|

|
|

|
|

||

||
|

|

|

|
|

||

||

||

||

|

|

|
|

||

||

||

|
|
|
|

|

|
|
|

Syntax

Syntax Description

CALL IEAVPME2

(return_code
,pause_element_token_list
,updated_pause_element_token_list
,release_code_list
,number_of_PETs_in_each_list
,number_of_PEs_to_release
,linkage
,workarea)

Link-edit your program with a linkage-assist routine (also called a stub) in
SYS1.CSSLIB unless you use one of the following techniques as an alternative to
CALL IEAVPME2:
1. LOAD EP=IEAVPME2

Save the entry point address...
Put the saved entry point address into R15
CALL (15),(...)

2. L 15,X’10’(0,0)
L 15,X’220’(15,0)
L 15,X’14’(15,0)
L 15,X’100’(15,0)
CALL (15),(...)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the highest return code from the Pause service (multiple return codes
are possible when more than one PET has been specified – seerelease_code_list).
When the low-order bit of the return code is on, release_code_list contains the
return codes for individual PETs rather than release codes.

Note that no pause has actually occurred if the return code is non-zero. In this
situation, any PETs which have been released remain released.

,pause_element_token_list
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes times the number of PEs you want to pause on

A list of the PETs identifying the PEs you want to pause on.
Number_of_PETs_in_each_list specifies how many PETs are in the list.

,updated_pause_element_token_list
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes times the number of PEs you want to pause on

IEAVPME2 callable service

Chapter 56. IEAVPME2 — Pause multiple elements service 669

|

|||

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|

|
|
|
|

|
|

|
|

|

|

|

|
|

|
|

|

|

|

If return_code is 0, a list of the PETs returned by Pause Multiple Elements. Each
entry corresponds to an entry in the pause_element_token_list. For each PE that
was released, the system puts an updated PET into this list. For PEs that are
not released, the entry contains the PET from the original
pause_element_token_list. These new PETs must be used in place of the PETs
specified in pause_element_token_list or pause_element_token on future calls to the
Pause, Release, Transfer, or Deallocate_Pause_Element service. The first byte of
each entry in release_code_list identifies which PEs were released.
Number_of_PETs_in_each_list specifies how many PETs are in the list.

If return_code is not 0, the PETs are not updated and this list is not returned.

If the paused workunit was released by the system (the release code is the
owner_termination_release_code specified on the IEAVAPE2 allocation), the PET
returned in that slot will be 16 bytes of binary zeros, an invalid value.

,release_code_list
Returned parameter
v Type: Fullword
v Character Set: N/A
v Length: 4 bytes times the number of PEs you want to pause on

Each entry corresponds to an entry in the pause_element_token_list.

If return_code is 0, the pause was successful and has been released. For each PE
that was Released, the system puts X'01' into the first byte and the release code
for that PET into the second through fourth bytes of the full-word entry for
that PET. For PEs which are not released, the entry contains binary zeroes.

If return_code is 5, 9, D, 21, 35, 3D, or 41, a problem was found with at least
one of the PETs specified in pause_element_token_listand the pause request did
not complete.

The individual return code for each PET is in the second through fourth bytes
of the release_code_list entry for that PET. Each PET with a return code of 0
would have been paused on if all the other PETs in the list had received return
codes of 0. If return_code contains any other value, the pause request did not
complete and release_code_list does not contain any meaningful information.If
return_code contains any other value, the pause request did not complete and
release_code_list does not contain any meaningful information.

Note: These return codes are the equivalent of return codes 4, 8, C, 20, 34, 3C,
and 40 for IEAVPSE2 (Pause single), with the addition of a low-order bit to
signify that the release_code_listcontains individual PET return codes.

,number_of_PETs_in_each_list
Supplied parameter

Number_of_PETs_in_each_list specifies how many entries are in release_code_list.
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

This number specifies how many PETs you want to Pause on. This number
also specifies the number of entries in pause_element_token_list,
updated_pause_element_token_list , and release_code_list. For SVC entry callers, the
maximum number that can be specified is 1000.

,number_of_PEs_to_release
Supplied parameter

IEAVPME2 callable service

670 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|

|

|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|

|

|

|

|
|
|
|

|
|

Number_of_PETs_in_each_list specifies how many entries are in release_code_list.
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

This number specifies how many PEs must be released before control is
returned back to the issuer of Pause Multiple Elements. This number must be
at least 1 and no more than number_of_PETs_in_each_list.

Note that if more PEs than this number were released before IEAVPME2 was
issued (pre-released), the number of updated PETs in
updated_pause_element_token_list will be the actual number released.

,linkage
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how the Pause service routine is to be invoked. The following options
are supported:

Table 64. Linkages

Variable Value Meaning

IEA_LINKAGE_SVC 0 The Pause service routine will be invoked by an SVC
linkage. This option can be used when in non-cross
memory task mode, in any key, and in either
problem state or supervisor state.

IEA_LINKAGE_BRANCH 1 The Pause service routine will be invoked by a
branch instruction. The caller must be in both key 0
and supervisor state. This option must be selected
when in SRB mode.

,workarea
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 216 bytes

Specifies a work area on a doubleword boundary in which the Pause service
routine will save information about the caller including the caller's registers.
This can be the same area that R13 points to if the first 216 bytes of that area
can be used as an F7SA savearea.

ABEND codes
None. However, note that you may receive a GETMAIN abend if this service is
unable to obtain storage needed to process the PETs.

Return codes
When IEAVPME2 returns control to your program, if GPR 15 contains 0, 5, 9, D,
21, 35, 3D, or 41, release_code_list contains information about the status of each PET
that was specified. If GPR 15 contains any other value, release_code_listdoes not
contain any meaningful information.

IEAVPME2 callable service

Chapter 56. IEAVPME2 — Pause multiple elements service 671

|

|

|

|

|
|
|

|
|
|

|
|

|

|

|

|
|

||

|||

|||
|
|
|

|||
|
|
|
|

|
|

|

|

|

|
|
|
|

|

|
|

|

|
|
|
|

Return code
in: Decimal
(Hex)

Equate Symbol Meaning and Action

00 (0) IEA_SUCCESS Meaning: Successful completion.

Action: None.

05 (05) IEA_PE_TOKEN_BAD Meaning:Program error. The specified pause
element token is not valid. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

09 (09) IEA_PE_TOKEN_STALE Meaning: The specified pause element token is
stale; that is, it was valid but has been used on
the Pause or Transfer service. This service
requires the updated PET returned on Pause or
Transfer.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

13 (0D) IEA_DUPLICATE PAUSE Meaning: The work unit has already been
paused using the specified pause element
token. The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

24 (18) IEA_LOCK_HELD Meaning: Program error. The caller is holding
one or more locks; no locks may be held. The
system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

33 (21) IEA_PE_BAD_STATE Meaning: Program error. The pause element
associated with the pause element token
specified in the call is not in a valid state. The
system rejects the service call.

Action: Check the calling program for a
probable coding error, such as attempting to
perform a pause or transfer using a pause
element token that has already been used to
pause or transfer by another unit of work.
Correct the program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_
RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Run the program on a system that
supports the service.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling program
is not in primary ASC mode, which this
service requires. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

IEAVPME2 callable service

672 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

||
|
|

||

|||

|

|||
|
|

|
|
|

|||
|
|
|
|

|
|
|

|||
|
|

|
|
|

|||
|
|

|
|
|

|||
|
|
|

|
|
|
|
|
|

||
|
|
|
|

|
|

|||
|
|
|

|
|
|

Return code
in: Decimal
(Hex)

Equate Symbol Meaning and Action

53 (35) IEA_ALREADY_SUSPENDED Meaning: The pause element was already
paused.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

61 (3D) IEA_AUTH_LEVEL_MISMATCH Meaning: Program error. The caller was in
problem state or key 8, but the pause element
token was allocated with
pause_element_auth_level=IEA_AUTHORIZED. The
system rejects the service call.

Action: Program error. The specified pause
element token is not valid. The system rejects
the service call.

65 (41) IEA_PE_NOT_HOME Meaning: Program error. The pause element
token was for a pause element allocated with
pause_element_auth_level=IEA_AUTHORIZED to
another address space.

Action: Check the calling program for a
probable coding error. Correct eht program
and rerun it.

76 (4C) IEA_ABENDED_47B Meaning: After an SRB received abend 47B, it
invoked IEAVPME2. It is not valid to invoke
IEAVPME2 after receiving abend 47B.

Action: Update the calling program to not
invoke IEAVPME2 after abend 47B.

80 (50) IEA_INSUSPEND_EXIT Meaning: The suspend exit specified on
SUSPEND with SPTOKEN of an SRB invoked
IEAVPME2. It is not valid to invoke
IEAVPME2 from a suspend exit.

Action: Update the calling program to not
invoke IEAVPSE from a suspend exit.

84 (54) IEA_INVALID_LINKAGE Meaning: Program error. The linkage value
specified is not valid. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

104(68) IEA_INVALID_NUMBER_OF_PETS Meaning: Program error. The number of PETs
specified for Pause Multiple was 0 or for SVC
entry users more than 1000. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

108(6C) IEA_INVALID_NUMBER_TO_
RELEASE

Meaning: Program error. The number of PEs
to release is 0 or greater than the number of
PETs specified for Pause Multiple. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

IEAVPME2 callable service

Chapter 56. IEAVPME2 — Pause multiple elements service 673

|
|
|

||

|||
|

|
|
|

|||
|
|
|
|

|
|
|

|||
|
|
|

|
|
|

|||
|
|

|
|

|||
|
|
|

|
|

|||
|
|

|
|
|

|||
|
|
|

|
|
|

||
|
|
|
|
|

|
|
|

Return code
in: Decimal
(Hex)

Equate Symbol Meaning and Action

4094(FFE) IEA_ERROR_PETS_INVALIDATED Meaning: Pause processing has encountered
an error and cannot complete the Pause
request. This input PETs have been
invalidated. This return code is only issued for
Pause Multiple requests.

Action: Do not return the PETs to the system
using the Deallocate Pause Elements services.
Note that new PEs must be obtained before
attempting to pause again.

4095(FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine encountered an
unexpected error. The system rejects this
service request.

Action: Contact IBM support.

IEAVPME2 callable service

674 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|

||

|||
|
|
|
|

|
|
|
|

|||
|
|

|
|

Chapter 57. IEAVPSE — Pause service

Description
Call Pause to make the current task nondispatchable. Once you pause a task, it
remains nondispatchable until a Release service specifying the same PET is called.
That is, the program issuing the Pause does not receive control back until after the
Release occurs.

If a Release service specifying the same PET is called before Pause, the system
returns control immediately to the calling program, and the task is not paused.

When you use Pause, it returns an updated PET; you use this updated PET to
either deallocate or reuse the PE.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: v When supervisor state and PSW key 0: Task or SRB.

v When problem state, or not PSW key 0: Task.
Cross memory mode: v For auth_level=IEA_UNAUTHORIZED:

PASN=HASN=SASN

v For auth_level=IEA_AUTHORIZED: Any PASN, any
HASN, any SASN

AMODE: 31-bit addressing mode.
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the calling program's object code with the linkable stub routine (IEACSS
from SYS1.CSSLIB), or load the calling program and then call the service. The
high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
When the calling program is running auth_level=IEA_UNAUTHORIZED, the caller
must be in task mode and can only pause another task in its home address space.
All pause element tokens (PETs) used when auth_level=IEA_UNAUTHORIZED
must have been obtained using an authorization level of IEA_UNAUTHORIZED.

© Copyright IBM Corp. 1988, 2016 675

|

Input register information
Before calling the Pause service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Address of a 72-byte register save area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

CALL IEAVPSE

,(return_code
,auth_level
,pause_element_token
,updated_pause_element_token
,release_code)

Parameters
The parameters are explained as follows:

return_code
Returned parameter

IEAVPSE callable service

676 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Pause service.

,auth_level
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the maximum level that the specified pause element was allocated
with. IEAASM and IEAC define constants IEA_UNAUTHORIZED and
IEA_AUTHORIZED, which the calling program can use. The following levels
are supported:

Variable Value
(HEX)

Meaning

IEA_UNAUTHORIZED 0 The pause element being paused must have been
allocated with auth_level=IEA_UNAUTHORIZED.

IEA_AUTHORIZED 1 The pause element being paused must have been
allocated with auth_level=IEA_AUTHORIZED.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

A pause element token that identifies the pause element being used to pause
the current task. You obtain the PET from the Allocate_Pause_Element service.

Once you use a PET in a call to the Pause service, you cannot reuse the PET on
a second call to Pause or on a call to Transfer. The Pause service returns a new
PET in updated_pause_element_token. The new PET now identifies the pause
element used to Pause the task; use the new PET the next time you make a
Pause request using the same Pause element.

,updated_pause_element_token
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

A new pause element token that identifies the pause element originally
identified by the PET specified in pause_element_token, which cannot be
reused after a successful call to Pause.

,release_code
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

The release code, specified by the issuer of the Release service. A Release that
specified this code released the task from its paused condition.

IEAVPSE callable service

Chapter 57. IEAVPSE — Pause service 677

ABEND codes

Abend Code Reason Code Description

AC7 001A0001 This is an internal error. Contact IBM
support.

Return codes
When the service returns control to your program, GPR 15 contains one of the
following return codes:

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

00 (00)

IEA_SUCCESS

Meaning: Successful completion.

Action: None

04 (04) Meaning: Program error. The specified pause element
token is not valid. The system rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

08 (08)

IEA_PE_TOKEN_STALE

Meaning: The specified pause element token is stale;
that is, it was valid but has been used on the Pause or
Transfer service. This service requires the updated PET
be returned on Pause or Transfer.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

12 (0C)

IEA_DUPLICATE_PAUSE

Meaning: The work unit has already been paused
using the specified pause element token. The system
rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

24 (18)

IEA_LOCK_HELD

Meaning: Program error. The caller is holding one or
more locks; no locks must be held. The system rejects
the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

32 (20)

IEA_PE_BAD_STATE

Meaning: Program error. The pause element associated
with the pause element token specified in the call is
not in a valid state. The system rejects the service call.

Action: Check the calling program for a probable
coding error, such as attempting to perform a Pause or
Transfer using a pause element token that has already
been used to Pause or Transfer by another unit of
work. Correct the program and rerun it.

36 (24)

IEA_UNSUPPORTED_MVS_RELEASE

Meaning: Environmental error. The system release
does not support this service. The system rejects the
service call.

Action: Run the program on a system that supports
the service.

40 (28)

IEA_INVALID_AUTHCODE

Meaning: Program error. The auth_level value
specified in the call is not valid. The system rejects the
service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

IEAVPSE callable service

678 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

44 (2C)

IEA_INVALID_MODE

Meaning: Program error. The calling program is not in
primary ASC mode, which this service requires. The
system rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

52 (34)

IEA_ALREADY_SUSPENDED

Meaning: The pause element was already paused.

Action: Check the calling program for a probable
coding error and correct the program and rerun it.

60 (3C)

IEA_AUTH_TOKEN

Meaning: Program error. The caller specified
auth_level=UNAUTHORIZED, but the pause element
token was allocated with auth_level=AUTHORIZED.
The system rejects the service call. rejects the service
call.

Action: Program error. The specified pause element
token is not valid. The system rejects the service call.

64 (40)

IEA_PE_NOT_HOME

Meaning: Program error. The caller specified
auth_level=UNAUTHORIZED, but the pause element
token was for a pause element allocated to another
address.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

4095 (FFF)

IEA_UNEXPECTED_ERROR

Meaning: This service routine encountered an
unexpected error. The system rejects this service
request.

Action: Contact IBM support.

IEAVPSE callable service

Chapter 57. IEAVPSE — Pause service 679

IEAVPSE callable service

680 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 58. IEAVPSE2 — Pause service

Description
Call Pause to make the current task or SRB nondispatchable. When you pause a
task or SRB, it remains nondispatchable until a Release or Transfer specifying the
same PET is called. That is, the program issuing the Pause does not receive control
back until after the Release or Transfer occurs. At that time, the returned
release_code will contain a value supplied by the associated Release or Transfer
request.

If a Release service specifying the same PET is called before Pause, the system
returns control immediately to the calling program, and the task or SRB is not
paused.

When you use Pause, it returns an updated PET; you use this updated PET to
either deallocate or reuse the PE.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– Working with an IEA_AUTHORIZED pause element,
supervisor state and PSW key 0-7.

– Working with an IEA_UNAUTHORIZED pause
element, problem state and any PSW key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: Any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=HASN=SASN
AMODE: 31-bit addressing mode.
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the object code of the calling program with the linkable stub routine
(IEACSS from SYS1.CSSLIB) or have the calling program LOAD and then CALL
the service. The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

© Copyright IBM Corp. 1988, 2016 681

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

Key 1-15 or problem state callers must specify linkage as IEA_LINKAGE_SVC.

Pause cannot be used by tasks that are higher in the task tree than the cross
memory resource owning task (the top, or first, job step task in the address space).

Input register information
Before calling the Pause service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Address of a 72-byte register save area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

IEAVPSE2 callable service

682 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax

Syntax Description

CALL IEAVPSE2

,(return_code
,pause_element_token
,updated_pause_element_token
,release_code
,linkage)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Pause service.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

A pause element token that identifies the pause element being used to pause
the current task or SRB. You obtain the PET from the Allocate_Pause_Element
service.

When you use a PET in a call to the Pause service, you cannot reuse the PET
on a second call to Pause or on a call to Transfer. The Pause service returns a
new PET in updated_pause_element_token. The new PET now identifies the
pause element used to pause the task or SRB; use the new PET the next time
you make a Pause request using the same Pause element.

,updated_pause_element_token
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

A new pause element token that identifies the pause element originally
identified by the PET specified in pause_element_token. This new PET must be
used in place of the PET specified in pause_element_token on future calls to
the Pause, Release, Transfer, or Deallocate_Pause_Element service. If the
paused workunit was released by the system (the release code is the
owner_termination_release_code specified on the IEAVAPE1 allocation), the
PET returned will be 16 bytes of binary zeros, an invalid value.

,release_code
Returned parameter
v Type: Character string
v Character Set: N/A

IEAVPSE2 callable service

Chapter 58. IEAVPSE2 — Pause service 683

v Length: 3 bytes
The release code, specified by the issuer of the Release service. A Release
that specified this code released the task or SRB from its paused condition.

linkage
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how the Pause service routine is to be invoked. The following options
are supported:

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_SVC 0 The Pause service routine will be invoked by
an SVC linkage. This option can be used
when in non-cross memory task mode, in any
key, and either problem state or supervisor
state.

IEA_LINKAGE_BRANCH 1 The Pause service routine will be invoked by
a branch instruction. The caller must be in
both key 0 and supervisor state. This option
must be selected when in SRB mode.

ABEND codes

Abend Code Reason Code Description

AC7 001A0001 This is an internal error.
Contact IBM support.

Return codes
When the service returns control to your program, GPR 15 contains one of the
following return codes:

Return code in:
Decimal (Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified pause element
token is not valid. The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element token is stale; that
is, it was valid but has been used on the Pause or Transfer
service. This service requires the updated PET returned on
Pause or Transfer.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

12 (0C) IEA_DUPLICATE_PAUSE Meaning: The work unit has already been paused using
the specified pause element token. The system rejects the
service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

IEAVPSE2 callable service

684 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return code in:
Decimal (Hex)

Equate symbol Meaning and Action

24 (18) IEA_LOCK_HELD Meaning: Program error. The caller is holding one or
more locks; no locks must be held. The system rejects the
service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

32 (20) IEA_PE_BAD_STATE Meaning: Program error. The pause element associated
with the pause element token specified in the call is not in
a valid state. The system rejects the service call.

Action: Check the calling program for a probable coding
error, such as attempting to perform a Pause or Transfer
using a pause element token that has already been used to
Pause or Transfer by another unit of work. Correct the
program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The system release does
not support this service. The system rejects the service
call.

Action: Run the program on a system that supports the
service.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling program is not in
primary ASC mode, which this service requires. The
system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

52 (34) IEA_ALREADY_SUSPENDED Meaning: The pause element was already paused.

Action: Check the calling program for a probable coding
error and correct the program and rerun it.

60 (3C) IEA_AUTH_TOKEN Meaning: Program error. The caller was in Problem state
or key 8, but the pause element token was allocated with
pause_element_auth_level=IEA_AUTHORIZED. The
system rejects the service call.

Action: Program error. The specified pause element token
is not valid. The system rejects the service call.

64 (40) IEA_PE_NOT_HOME Meaning: Program error. The pause element token was for
a pause element allocated with
pause_element_auth_level=IEA_UNAUTHORIZED to
another address space.

Action: Check the calling program for a probable coding
error and correct the program and rerun it.

76 (4C) IEA_ABENDED_47B Meaning: After an SRB received ABEND 47B, it invoked
IEAVPSE2. It is not valid to invoke IEAVPSE2 after
receiving ABEND 47B.

Action: Update the calling program to not invoke
IEAVPSE2 after ABEND 47B.

80 (50) IEA_IN_SUSPEND_EXIT Meaning:The suspend exit specified on SUSPEND with
SPTOKEN of an SRB invoked IEAVPSE2. It is not valid to
invoke IEAVPSE2 from a suspend exit.

Action: Update the calling program to not invoke
IEAVPSE2 from a suspend exit.

84 (54) IEA_INVALID_LINKAGE Meaning: Program error. The linkage value specified is
not valid. The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

IEAVPSE2 callable service

Chapter 58. IEAVPSE2 — Pause service 685

Return code in:
Decimal (Hex)

Equate symbol Meaning and Action

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine encountered an unexpected
error. The system rejects this service request.

Action: Contact IBM support.

IEAVPSE2 callable service

686 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 59. IEAVRLS — Release

Description
Call Release to remove a task that has been paused, or to keep a task from being
paused. Although a pause element can be used multiple times to pause a task, a
pause element token can be used to successfully pause and release a task only
once. Each time a pause element is used, the system generates a new PET to
identify the pause element. The system returns the new updated PET on calls to
the Pause and Transfer services.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: v When supervisor state and PSW key 0: Task or SRB.

v When problem state, or not PSW key 0: Task.
Cross memory mode: v For auth_level=IEA_UNAUTHORIZED:

PASN=HASN=SASN

v For auth_level=IEA_AUTHORIZED: Any PASN, any
HASN, any SASN

AMODE: 31-bit addressing mode.
ASC mode: Primary mode.
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: May hold the CPU, local or CMS lock.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the calling program's object code with the linkable stub routine (IEACSS
from SYS1.CSSLIB), or load the calling program and then call the service. The
high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
When the calling program specifies auth_level=IEA_UNAUTHORIZED, the caller
must be in task mode and can only release another task in its home address space.
All pause element tokens (PETs) used when auth_level=IEA_UNAUTHORIZED
must have been obtained using an authorization level of IEA_UNAUTHORIZED.

Input register information
Before calling the Release service, the caller must ensure that the following general
purpose (GPRs) contain the specified information:

© Copyright IBM Corp. 1988, 2016 687

Register
Contents

1 Address of the parameter address list.

13 Address of a 72-byte register save area.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

CALL IEAVRLS

,(return_code
,auth_level
,target_du_pause_element_token
,target_du_release_code)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

IEAVRLS callable service

688 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Contains the return from the Release service.

,auth_level
Supplied Parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the maximum authorization level that the specified pause element
was allocated with. IEAASM and IEAC define constants
IEA_UNAUTHORIZED and IEA_AUTHORIZED, which the calling program
can use. The following levels are supported:

Variable Value
(HEX)

Meaning

IEA_UNAUTHORIZED 0 The pause element being released must have been
allocated with auth_level=IEA_UNAUTHORIZED.

IEA_AUTHORIZED 1 The pause element being released must have been
allocated with auth_level=IEA_AUTHORIZED.

,target_du_pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains the pause element token that identifies the pause element used to
pause the task. If the PET identifies a pause element that has not been paused
(that is, the task has not been paused), the task will not be paused. However,
the value specified in target_du_release_code will be returned to the caller of
Pause.

,target_du_release_code
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Contains the release code returned to the caller of Pause or Transfer service
that used (or will use) the same PET to pause a task. If your program is not
using this code for communication, set this field to zero.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

00 (00)

IEA_SUCCESS

Meaning: Successful completion.

Action: None.

IEAVRLS callable service

Chapter 59. IEAVRLS — Release 689

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

04 (04)

IEA_PE_TOKEN_BAD

Meaning: The specified pause element token is not valid.
The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

08 (08)

IEA_PE_TOKEN_STALE

Meaning: The specified pause element token is stale; that
is, it was valid but has been used on the Pause or Transfer
service. This service requires the updated PET be returned
on Pause or Transfer.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

16 (10)

IEA_SLEEP_DISRUPTED

Meaning: RTM has terminated the task; no release is
necessary.

Action: None

20 (14)

IEA_SPACE_TERMINATING

Meaning: The address space that contains the task that is
terminating; no release is necessary.

Action: None

24 (18)

IEA_LOCK_HELD

Meaning: Program error. The caller is holding one o r
more locks; no locks must be held. The system rejects the
service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

32 (20)

IEA_PE_BAD_STATE

Meaning: Program error. The pause element associated
with the pause element token specified is invalid or has
already been prereleased.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

36 (24)

IEA_UNSUPPORTED_MVS_RELEASE

Meaning: Environmental error. The system release does
not support this service. The system rejects the service call.

Action: Run the program on a system that supports the
service.

40 (28)

IEA_INVALID_AUTHCODE

Meaning: Program error. The auth_level value specified in
the call is not valid. The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

44 (2C)

IEA_INVALID_MODE

Meaning: Program error. The calling program is not in
primary ASC mode, which this service requires. The
system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

60 (3C)

IEA_AUTH_TOKEN

Meaning: Program error. The caller specified
auth_level=UNAUTHORIZED, but the pause element
token was allocated with auth_level=AUTHORIZED. The
system rejects the service call.

Action: Program error. The specified pause element token
is not valid. The system rejects the service call.

IEAVRLS callable service

690 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

64 (40)

IEA_PE_NOT_HOME

Meaning: Program error. The caller specified
auth_level=UNAUTHORIZED, but the pause element
token was for a pause element allocated to another
address.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

4095 (FFF)

IEA_UNEXPECTED_ERROR

Meaning: This service routine encountered an unexpected
error. The system rejects this service request.

Action: Contact IBM support.

IEAVRLS callable service

Chapter 59. IEAVRLS — Release 691

IEAVRLS callable service

692 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 60. IEAVRLS2 — Release

Description
Call Release to remove a task or SRB that has been paused, or to keep a task or
SRB from being paused.

Although a pause element can be used multiple times to pause a task or SRB, a
pause element token can be used to successfully pause and release a task or SRB
only once. Each time a pause element is used, the system generates a new PET to
identify the pause element. The system returns the new updated PET on calls to
the Pause and Transfer services.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– Working with an IEA_AUTHORIZED pause element,
supervisor state and PSW key 0-7.

– Working with an IEA_UNAUTHORIZED pause
element, problem state and any PSW key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: Any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=HASN=SASN
AMODE: 31-bit addressing mode.
ASC mode: Primary mode.
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: v For LINKAGE=BRANCH: The CPU, CMS, or local locks

may be held.

v For LINKAGE=SVC: No locks may be held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the object code of the calling program with the linkable stub routine
(IEACSS from SYS1.CSSLIB) or have the calling program LOAD and then CALL
the service. The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

© Copyright IBM Corp. 1988, 2016 693

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

Key 1-15 or problem state callers must specify linkage as IEA_LINKAGE_SVC.

Release cannot be used by tasks that are higher in the task tree than the cross
memory resource owning task (the top, or first, job step task in the address space).

Input register information
Before calling the Release service, the caller must ensure that the following general
purpose (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Address of a 72-byte register save area.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

IEAVRLS2 callable service

694 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax

Syntax Description

CALL IEAVRLS2

,(return_code
,,target_du_pause_element_token
,target_du_release_code
,linkage)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return from the Release service.

,target_du_pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains the pause element token that identifies the pause element used to
pause a task or SRB. You obtain the PET from the Allocate_Pause_Element
service.

When you use a PET in a call to the Pause service, you cannot reuse the PET
on a second call to Pause or on a call to Transfer. The Pause service returns a
new PET in updated_pause_element_token. The new PET now identifies the
pause element used to pause the task or SRB; use the new PET the next time
you make a Pause request using the same Pause element.

,target_du_release_code
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Contains the release code returned to the caller of Pause or Transfer service
that used (or will use) the same PET to pause a task or SRB. If your program is
not using this code for communication, set this field to zero.

linkage
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how the Release service routine is to be invoked. The following
options are supported:

IEAVRLS2 callable service

Chapter 60. IEAVRLS2 — Release 695

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_SVC 0 The Release service routine will be invoked by
an SVC linkage. This option can be used
when in non-cross memory task mode, in any
key, and either problem state or supervisor
state.

IEA_LINKAGE_BRANCH 1 The Release service routine will be invoked by
a branch instruction. The caller must be in
both key 0 and supervisor state. This option
must be selected when in SRB mode.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return code:
Decimal (Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None.

04 (04) IEA_PE_TOKEN_BAD Meaning: The specified pause element token is not valid.
The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element token is stale; that
is, it was valid but has been used on the Pause or Transfer
service. This service requires the updated PET returned on
Pause or Transfer.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

16 (10) IEA_SLEEP_DISRUPTED Meaning: RTM has terminated the task or SRB; no release
is necessary.

Action: None

20 (14) IEA_SPACE_TERMINATING Meaning: The address space that contains the task or SRB
is terminating; no release is necessary.

Action: None

24 (18) IEA_LOCK_HELD Meaning: Program error. The caller is holding one or more
locks; other than the local lock, CMS, or CPU lock, no locks
may be held. The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

32 (20) IEA_PE_BAD_STATE Meaning: Program error. The pause element associated
with the pause element token specified is invalid or has
already been prereleased.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The system release does not
support this service. The system rejects the service call.

Action: Run the program on a system that supports the
service.

IEAVRLS2 callable service

696 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return code:
Decimal (Hex)

Equate symbol Meaning and Action

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling program is not in
primary ASC mode, which this service requires. The
system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

60 (3C) IEA_AUTH_TOKEN Meaning: Program error. The caller was in Problem state or
key 8, but the pause element token was allocated with
pause_element_auth_level=IEA_AUTHORIZED. The
system rejects the service call.

Action: Program error. The specified pause element token
is not valid. The system rejects the service call.

64 (40) IEA_PE_NOT_HOME Meaning: Program error. The pause element token was for
a pause element allocated with
pause_element_auth_level=IEA_UNAUTHORIZED to
another address space.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

84 (54) IEA_INVALID_LINKAGE Meaning: Program error. The linkage value specified is not
valid. The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine encountered an unexpected
error. The system rejects this service request.

Action: Contact IBM support.

IEAVRLS2 callable service

Chapter 60. IEAVRLS2 — Release 697

IEAVRLS2 callable service

698 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 61. IEAVRPI — Retrieve_Pause_Element_Information
service

Description
Call Retrieve_Pause_Element_Information to get information about a pause
element. The information returned includes:
v Its authorization level
v The address space that currently owns it
v Its current state (Reset, Prereleased, Paused, or Released)
v If its state is Prereleased or Released, its Release Code

An authorized program can use Retrieve_Pause_Element_Information to test the
validity of a pause element passed by an unauthorized program. The authorized
program can do this to ensure that it does not perform any operation, such as
releasing the pause element, unless the unauthorized program is also able to
perform the same operation.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: v When supervisor state and PSW key 0: Task or SRB

v When problem state, or not PSW key 0: Task
Cross memory mode: v When supervisor state and PSW key 0: Any PASN, any

HASN, any SASN

v When problem state, or not PSW key 0:
PASN=HASN=SASN

AMODE: 31-bit addressing mode.
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the calling program's object code with the linkable stub routine (IEACSS
from SYS1.CSSLIB) or have the calling program LOAD and then CALL the service.
The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
None.

© Copyright IBM Corp. 1988, 2016 699

Input register information
Before calling the Retrieve_Pause_Element_Information service, the caller does not
need to place any information into any register, unless using it in register notation
for the parameters, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

CALL IEAVRPI

,(return_code
,auth_level
,pause_element_token
,authorization
,owner
,state
,release_code)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A

IEAVRPI callable service

700 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v Length: 4 bytes

Contains the return code from the Retrieve_Pause_Element_Information
service.

,auth_level
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the caller's authorization level. The following levels are supported:
IEAASM and IEAC define constants IEA_UNAUTHORIZED and
IEA_AUTHORIZED, which can be used by the calling program.

Variable Value (hexadecimal) Meaning

IEA_UNAUTHORIZED 0 The caller is not key 0 and supervisor state.

IEA_AUTHORIZED 1 The caller is both key 0 and supervisor state.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

A pause element token that identifies the pause element for which information
will be returned. You obtain the PET from the Allocate_Pause_Element service.

,authorization
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The authorization level of the creator of the pause element specified by the
input PET.

One of the following values:

IEAASM and IEAC defined constants Value (hexadecimal) Meaning

IEA_UNAUTHORIZED 0 The caller is not key 0 and supervisor
state.

IEA_AUTHORIZED 1 The caller is not key 0 and supervisor
state.

IEA_UNAUTHORIZED +
IEA_CHECKPOINTOK

2 Unauthorized PET that can tolerate the
pause elements' not being restored
upon a restart after a checkpoint.

IEA_AUTHORIZED +
IEA_CHECKPOINTOK

3 Authorized PET that can tolerate the
pause elements' not being restored
upon a restart after a checkpoint.

,owner
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 8 bytes

IEAVRPI callable service

Chapter 61. IEAVRPI — Retrieve_Pause_Element_Information service 701

The Stoken of the address space that currently owns the pause element
specified by the input PET.

,state
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The state of the pause element specified by the input PET.

Note: The value returned is the state at the time the service obtained it. The
state may have changed after it was obtained.

State Constant
Hexadecimal
(Decimal)

Meaning

IEAV_PET_PRERELEASED
1
(1)

The PE was released before any task or SRB was suspended
on it, and no task or SRB has attempted to pause it.

IEAV_PET_RESET
2
(2)

The PE is not being used to make any task or SRB
nondispatchable. If the PE is used in an attempt to pause
the current task or SRB, the task or SRB will be made
nondispatchable.

IEAV_PET_RELEASED
40
(64)

The task RB or SRB is currently dispatchable, but control
has not been returned to the task or SRB following a call to
the Pause or Transfer service.

A call to the Release or Transfer service has released the
task or SRB. In either case, control has not been returned to
the caller of the Pause or Transfer service. The system has
not transitioned the PE into the RESET state.

IEAV_PET_PAUSED
80
(128)

A task RB or SRB is currently nondispatchable. Its
dispatchability is controlled by the PE.

,release_code
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

The release code, specified by the issuer of the Release service. A Release that
specified this code released the task or SRB from its paused condition.

Note: The returned value is random if the state parameter is not
IEAV_PET_RELEASED or IEAV_PET_PRERELEASED.

ABEND codes
None.

Return codes
When the service returns control to your program, GPR 15 contains one of the
following return codes:

IEAVRPI callable service

702 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return code
in: Decimal
(Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified
pause element token is not valid. The
system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element
token is stale; that is, it was valid but has
been used on the Pause or Transfer
service. This service requires the updated
PET returned on Pause or Transfer.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

24 (18) IEA_LOCK_HELD Meaning: Program error. The caller is
holding one or more locks; no locks must
be held. The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The
system release does not support this
service. The system rejects the service call.

Action: Run the program on a system that
supports the service.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling
program is not in primary ASC mode,
which this service requires. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

60 (3C) IEA_AUTH_TOKEN Meaning: Program error. The caller
specified an unauthorized auth_level type,
but a pause element token allocated with
an authorized auth_level type was
encountered. The system rejects the
service call.

Action: Program error. The specified
pause element token is not valid. The
system rejects the service call.

64 (40) IEA_PE_NOT_HOME Meaning: Program error. The caller
specified an unauthorized auth_level type,
but a pause element token for a pause
element allocated to another address space
was specified.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

IEAVRPI callable service

Chapter 61. IEAVRPI — Retrieve_Pause_Element_Information service 703

Return code
in: Decimal
(Hex)

Equate symbol Meaning and Action

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine
encountered an unexpected error. The
system rejects this service request.

Action: Contact IBM support.

IEAVRPI callable service

704 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 62. IEAVRPI2 — Retrieve_Pause_Element_Information
service

Description
Call Retrieve_Pause_Element_Information to get information about a pause
element. The information returned includes:
v Its authorization level
v Its current state (Reset, Prereleased, Paused, or Released)
v If its state is Prereleased or Released, its Release Code
v The stoken of the owner of the pause element (See IEAVAPE —

Allocate_Pause_Element for details of ownership).
v The stoken of the home address space of the task or SRB which is paused by the

pause element.

An authorized program can use Retrieve_Pause_Element_Information to test the
validity of a pause element passed by an unauthorized program. The authorized
program may do this to ensure that it does not perform any operation, such as
releasing the pause element, unless the unauthorized program is also able to
perform the same operation.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– Working with an IEA_AUTHORIZED pause element,
supervisor state and PSW key 0-7.

– Working with an IEA_UNAUTHORIZED pause
element, problem state and any PSW key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: Any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=HASN=SASN
AMODE: 31-bit addressing mode.
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the calling program's object code with the linkable stub routine (IEACSS
from SYS1.CSSLIB) or have the calling program LOAD and then CALL the service.
The high-level language (HLL) definitions for the callable service are:

© Copyright IBM Corp. 1988, 2016 705

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Key 2-15 or problem state callers must specify linkage as IEA_LINKAGE_SVC.

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

Input register information
Before calling the Retrieve_Pause_Element_Information service, the caller must
ensure that the following general purpose registers (GPRs) contain the specified
information:

Register
Contents

1 Address of the parameter address list

13 Address of a 72-byte register save area

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

IEAVRPI2 callable service

706 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax

Syntax Description

CALL IEAVRPI2

,(return_code
,pause_element_auth_level
,pause_element_token
,linkage
,owner_stoken
,current_stoken
,state
,release_code)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Retrieve_Pause_Element_Information
service.

,pause_element_auth_level
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the authorization level with which the pause element specified by the
input PET was allocated. The following levels are supported:

Variable Value
(hexadecimal)

Meaning

IEA_PET_UNAUTHORIZED 0 The pause element was allocated with
pause_element_auth_level=IEA_UNAUTHORIZED.

IEA__PET_AUTHORIZED 1 The pause element was allocated with
pause_element_auth_level=IEA_AUTHORIZED.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

A pause element token that identifies the pause element for which information
will be returned. You obtain the PET from the Allocate_Pause_Element service.

linkage
Supplied parameter
v Type: Integer
v Character Set: N/A

IEAVRPI2 callable service

Chapter 62. IEAVRPI2 — Retrieve_Pause_Element_Information service 707

v Length: 4 bytes

The calling program can use the constants defined in IEAASM or IEAC, as
appropriate. Add the specified values together to achieve the desired results.
For example, to specify linkage branch and untrusted PET, specify
IEA_LINKAGE_BRANCH + IEA_UNTRUSTED_PET.

The following options are supported:

Table 65. Linkage variables

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_SVC 0 The
Retrieve_Pause_Element_Information
service routine will be invoked by an
SVC linkage. This option can be used
when in non-cross memory task mode,
in any key, and in either problem state
or supervisor state.

IEA_LINKAGE_BRANCH 1 The
Retrieve_Pause_Element_Information
service routine will be invoked by a
branch instruction. The caller must be
in both key 0 and supervisor state.
This option must be selected when in
SRB mode.

Table 66. Untrusted attribute linkage variable

Variable Value (hexadecimal) Meaning

IEA_UNTRUSTED_PET 2 The
Retrieve_Pause_Element_Information
service routine is to validate that the
input PET is allowed to be used by an
unauthorized program. An authorized
program should use this if it is
validating a PET provided to it by an
unauthorized caller.

,owner_stoken
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 8 bytes

Specifies the stoken of the address space that currently owns the pause element
specified by the input PET. The owner of a PE allocated by IEAVAPE2 is static
and specified on the IAVEAPE2 call. The owner of a PE allocated by IEAVAPE
is dynamic. See IEAVAPE — Allocate_Pause_Element for details.

,current_stoken
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 8 bytes

If the value returned in state is IEA_PET_PAUSED, The stoken of the home
address space of the task or SRB which is paused by the specified pause
element. If the value in state is not IEA_PET_PAUSED, the information
returned in this parameter is undefined.

IEAVRPI2 callable service

708 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,state
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The state of the pause element specified by the input PET.

Note: The value returned is the state at the time the service obtained it. The
state may have changed after it was obtained.

State Constant
Hexadecimal
(Decimal)

Meaning

IEAV_PET_PRERELEASED
1
(1)

The PE was released before any task or SRB was suspended
on it, and no task or SRB has attempted to pause it.

IEAV_PET_RESET
2
(2)

The PE is not being used to make any task or SRB
nondispatchable. If the PE is used in an attempt to pause
the current task or SRB, the task or SRB will be made
nondispatchable.

IEAV_PET_RELEASED
40
(64)

The task RB or SRB is currently dispatchable, but control
has not been returned to the task or SRB following a call to
the Pause or Transfer service.

A call to the Release or Transfer service has released the
task or SRB. In either case, control has not been returned to
the caller of the Pause or Transfer service. The system has
not transitioned the PE into the RESET state.

IEAV_PET_PAUSED
80
(128)

A task RB or SRB is currently nondispatchable. Its
dispatchability is controlled by the PE.

,release_code
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

The release code, specified by the issuer of the Release service. A Release that
specified this code released the task or SRB from its paused condition.

Note: The returned value is random if the state parameter is not
IEAV_PET_RELEASED or IEAV_PET_PRERELEASED.

ABEND codes
None.

Return codes
When the service returns control to your program, GPR 15 contains one of the
following return codes:

IEAVRPI2 callable service

Chapter 62. IEAVRPI2 — Retrieve_Pause_Element_Information service 709

Return code:
Decimal (Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified pause element
token is not valid. The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element token is stale; that
is, it was valid but has been used on the Pause or Transfer
service. This service requires the updated PET returned on
Pause or Transfer.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

24 (18) IEA_LOCK_HELD Meaning: Program error. The caller is holding one or more
locks; no locks must be held. The system rejects the service
call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The system release does not
support this service. The system rejects the service call.

Action: Run the program on a system that supports the
service.

40 (28) IEA_INVALID_AUTHCODE Meaning: Program error. The pause_element_auth_level
value specified in the call is not valid. The system rejects
the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling program is not in
primary ASC mode, which this service requires. The
system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

60 (3C) IEA_AUTH_LEVEL_MISMATCH Meaning: Program error. The caller was in Problem state or
key 8, or specified IEA_UNTRUSTED_PET, but the pause
element token was allocated with
pause_element_auth_level=IEA_AUTHORIZED. The
system rejects the service call.

Action: Program error. The specified pause element token
is not valid. The system rejects the service call.

84 (54) IEA_INVALID_LINKAGE Meaning: Program error. The linkage value specified is not
valid. The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine encountered an unexpected
error. The system rejects this service request.

Action: Contact IBM support.

IEAVRPI2 callable service

710 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 63. IEAVTPE — Test_Pause_Element service

Description
Call Test_Pause_Element to test a pause element and determine its state. If its state
is Prereleased or Released, the pause element's release code will also be returned.

To ensure minimal overhead when you use the service, Test_Pause_Element
establishes no recovery. You are responsible for supplying any needed recovery to
handle errors that occur due to invalid input pause element Tokens or call state
errors.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: v When supervisor state and PSW key 0: Task or SRB

v When problem state, or not PSW key 0: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit addressing mode.
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the calling program's object code with the linkable stub routine (IEACSS
from SYS1.CSSLIB) or have the calling program LOAD and then CALL the service.
The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
None.

Input register information
Before calling the Test_Pause_Element service, the caller does not have to place any
information into any register, unless using it in register notation for the
parameters, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

© Copyright IBM Corp. 1988, 2016 711

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

CALL IEAVTPE

,(return_code
,pause_element_token
,state
,release_code)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Test_Pause_Element service.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

A pause element token that identifies the pause element for which information
is to be returned. You obtain the PET from the Allocate_Pause_Element service.

,state
Returned parameter

IEAVTPE callable service

712 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The state of the pause element specified by the input PET.

Note: The value returned is the state at the time the service obtained it. The
state may have changed after it was obtained.

State Constant
Hexadecimal
(Decimal)

Meaning

IEAV_PET_PRERELEASED
1
(1)

The PE was released before any task or SRB was suspended
on it, and no task or SRB has attempted to pause it.

IEAV_PET_RESET
2
(2)

The PE is not being used to make any task or SRB
nondispatchable. If the PE is used in an attempt to pause
the current task or SRB, the task or SRB will be made
nondispatchable.

IEAV_PET_RELEASED
40
(64)

The task RB or SRB is currently dispatchable, but control
has not been returned to the task or SRB following a call to
the Pause or Transfer service.

A call to the Release or Transfer service has released the
task or SRB. In either case, control has not been returned to
the caller of the Pause or Transfer service. The system has
not transitioned the PE into the RESET state.

IEAV_PET_PAUSED
80
(128)

A task RB or SRB is currently nondispatchable. Its
dispatchability is controlled by the PE.

,release_code
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

The release code, specified by the issuer of the Release service. A Release
that specified this code released the task or SRB from its paused condition.

Note: The returned value is random if the state parameter is not
IEAV_PET_RELEASED or IEAV_PET_PRERELEASED.

ABEND codes
None.

Return codes
When the service returns control to your program, GPR 15 contains one of the
following return codes:

IEAVTPE callable service

Chapter 63. IEAVTPE — Test_Pause_Element service 713

Return code
in: Decimal
(Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified
pause element token is not valid. The
system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element
token is stale; that is, it was valid but has
been used on the Pause or Transfer
service. This service requires the updated
PET returned on Pause or Transfer.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

IEAVTPE callable service

714 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 64. IEAVXFR — Transfer service

Description
Call the Transfer service to release a paused task, and, when possible, give it
immediate control. This service can also, optionally, pause the task under which
the Transfer request is made. If the caller does not request that its task be paused,
the caller's task remains dispatchable.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: v When supervisor state and PSW key 0: Task or SRB.

v When problem state, or not PSW key 0: Task.
Cross memory mode: v For auth_level=IEA_UNAUTHORIZED:

PASN=HASN=SASN

v For auth_level=IEA_AUTHORIZED: Any PASN, any
HASN, any SASN

AMODE: 31-bit addressing mode.
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: When supervisor state and PSW key 0 and a

current_du_pause_element_token of 16 bytes of binary zeros
are specified, the local lock may be held. Otherwise, no
locks may be held.

Control parameters: Must be in the primary address space and addressable by
the caller.

Programming requirements
Either link the calling program's object code with the linkable stub routine (IEACSS
from SYS1.CSSLIB), or load the calling program and then call the service. The
high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
When the calling program specifies auth_level=IEA_UNAUTHORIZED, the caller
must be in task mode and can only transfer to another task in its home address
space. All pause element tokens (PETs) used when
auth_level=IEA_UNAUTHORIZED must have been obtained using an
authorization level of IEA_UNAUTHORIZED.

Input register information
Before calling the Transfer service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

© Copyright IBM Corp. 1988, 2016 715

Register
Contents

1 Address of the parameter address list.

13 Address of a 72-byte register save area.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

CALL IEAVXFR

,(return_code
,auth_level
,current_du_pause_element_token
,updated_pause_element_token
,current_du_release_code
,target_du_pause_element_token
,target_du_release_code)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer

IEAVXFR callable service

716 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Transfer service.

,auth_level
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the maximum authorization level of the pause element being
deallocated. IEAASM and IEAC define constants IEA_UNAUTHORIZED and
IEA_AUTHORIZED, which the calling program can use. The following levels
are supported:

Variable Value (HEX) Meaning

IEA_UNAUTHORIZED 0 The pause elements must have been
allocated with
auth_level=_UNAUTHORIZED.

IEA_AUTHORIZED 1 The pause elements must have been
allocated with auth_level=_AUTHORIZED.

,current_du_pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains a pause element token that identifies the pause element used to
pause the current task. Once a PET is used on a call to the Pause service, it
cannot be reused on a second call to Pause or as a
current_du_pause_element_token on Transfer. A new PET is returned to
updated_pause_element_token. The new PET now properly defines the pause
element and should be used the next time a pause, transfer, release, or
deallocate_pause_element request is made using the same pause element.

If the value specified is 16-bytes of binary zeros, the current task will not be
paused. The updated_pause_element_token and current_du_release_code will
be unpredictable.

CAUTION:
Do not specify the same PET for both current_du_pause_element_token and
target_pause_element_token.

,updated_pause_element_token
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains a new pause element token that identifies the pause element
originally identified by the PET specified in current_du_pause_element_token.
The PET originally specified in current_du_pause_element_token cannot be
reused after a successful call to Pause or Transfer.

If you set the current_du_pause_element_token to zeros, the contents of
updated_pause_element_token are unpredictable.

IEAVXFR callable service

Chapter 64. IEAVXFR — Transfer service 717

,current_du_release_code
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Contains the release code set by the issuer of the Release or Transfer service
that released the current task from its paused condition.

If you set the current_du_pause_element_token to zero, the contents are
unpredictable.

,target_du_pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains a pause element token that identifies the pause element to release the
target task. Any PET that specifies a pause element not currently being used to
pause a task is valid. When a PET for a previously released pause element is
used to try to pause a task, the task is not paused; however, the value specified
in target_du_release_code will still be returned to the caller of Pause or
Transfer.

If the task was paused and is now dispatchable, the task will immediately be
given control on the current processor.

CAUTION:
Do not use the same PET for both current_du_pause_element_token and
target_du_pause_element_token.

,target_du_release_code
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Contains the release code returned to the issuer of the Pause or Transfer
service that is used (or will use) the same PET to pause a task.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code
in: Decimal
(Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None

IEAVXFR callable service

718 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return Code
in: Decimal
(Hex)

Equate symbol Meaning and Action

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified
pause element token is not valid. The
system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element
token is stale; that is, it was valid but
has been used on the Pause or Transfer
service. This service requires the
updated PET returned on Pause or
Transfer.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

12 (0C) IEA_DUPLICATE_PAUSE Meaning: The work unit has already
been paused using the specified pause
element token. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

16 (10) IEA_SLEEP_DISRUPTED Meaning: RTM has terminated the task
or SRB; no release is necessary.

Action: None

20 (14) IEA_SPACE_TERMINATING Meaning: The address space that
contains the task or SRB is terminating;
no release is necessary.

Action: None

24 (18) IEA_LOCK_HELD Meaning: Program error. The caller is
holding one or more locks; no locks
must be held. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

32 (20) IEA_PE_BAD_STATE Meaning: Program error. The pause
element associated with the pause
element token specified in the call is not
in a valid state. The system rejects the
service call.

Action: Check the calling program for a
probable coding error, such as
attempting to perform a Pause or
Transfer using a pause element token
that has already been used to Pause or
Transfer by another unit of work.
Correct the program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The
system release does not support this
service. The system rejects the service
call.

Action: Run the program on a system
that supports the service.

IEAVXFR callable service

Chapter 64. IEAVXFR — Transfer service 719

Return Code
in: Decimal
(Hex)

Equate symbol Meaning and Action

40 (28) IEA_INVALID_AUTHCODE Meaning: Program error. The auth_level
value specified in the call is not valid.
The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling
program is not in primary ASC mode,
which this service requires. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

52 (34) IEA_ALREADY_SUSPENDED Meaning: The pause element was
already paused.

Action: Check the calling program for a
probable coding error and correct the
program and rerun it.

60 (3C) IEA_AUTH_TOKEN Meaning: Program error. The caller
specified auth_level=UNAUTHORIZED,
but the pause element token was
allocated with
auth_level=AUTHORIZED. The system
rejects the service call.

Action: Program error. The specified
pause element token is not valid. The
system rejects the service call.

64 (40) IEA_PE_NOT_HOME Meaning: Program error. The caller
specified auth_level=UNAUTHORIZED,
but the pause element token was for a
pause element allocated to another
address. Action: Check the calling
program for a probable coding error.
Correct the program and rerun it.

68 (44) IEA_XFER_TO_SELF Meaning: Program error. The specified
current_du_pause_element_token and
target_du_pause_element_token are the
same.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

72 (48) IEA_XFER_FAILED Meaning: The transfer failed, and the
current_du_pause_element_token is no
longer useable.

Action: Reissue the transfer request
using the
updated_du_pause_element_token.
Deallocate the
current_du_pause_element_token.

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine
encountered an unexpected error. The
system rejects this service request.

Action: Contact IBM support.

IEAVXFR callable service

720 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 65. IEAVXFR2 — Transfer service

Description
Call the Transfer service to release a paused task or SRB, and, when possible, give
it immediate control. This service can also, optionally, pause the task or SRB under
which the Transfer request is made. If the caller does not request that its task or
SRB be paused, the caller's task or SRB remains dispatchable.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– Working with an IEA_AUTHORIZED pause element,
supervisor state and PSW key 0-7.

– Working with an IEA_UNAUTHORIZED pause
element, problem state and any PSW key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: Any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=HASN=SASN
AMODE: 31-bit addressing mode.
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: If LINKAGE=BRANCH and a

current_du_pause_element_token of 16 bytes of binary zeros
is specified, the local lock may be held. Otherwise, no locks
may be held.

Control parameters: Must be in the primary address space and addressable by
the caller.

Programming requirements
Either link the object code of the calling program with the linkable stub routine
(IEACSS from SYS1.CSSLIB) or have the calling program LOAD and then CALL
the service. The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

© Copyright IBM Corp. 1988, 2016 721

Key 1-15 or problem state callers must specify linkage as IEA_LINKAGE_SVC.

Transfer cannot be used by tasks that are higher in the task tree than the cross
memory resource owning task (the top, or first, job step task in the address space).

Input register information
Before calling the Transfer service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Address of a 72-byte register save area.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

IEAVXFR2 callable service

722 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax

Syntax Description

CALL IEAVXFR2

,(return_code
,current_du_pause_element_token
,updated_pause_element_token
,current_du_release_code
,target_du_pause_element_token
,target_du_release_code
,linkage)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Transfer service.

,current_du_pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains a pause element token that identifies the pause element that is being
or will be used to pause a task or SRB. When a PET is used on a call to the
Pause service, it cannot be reused on a second call to Pause or as a
current_du_pause_element_token on Transfer. A new PET is returned to
update_pause_element_token. The new PET properly defines the pause
element and should be used the next time a pause, transfer, release, or
deallocate_pause_element request is made using the same pause element.

If the value specified is 16-bytes of binary zeros, the current task or SRB is not
paused. The updated_pause_element_token and current_du_release_code will
be unpredictable.

CAUTION:
Do not specify the same PET for both current_du_pause_element_token and
target_du_pause_element_token.

,updated_pause_element_token
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains a new pause element token that identifies the pause element
originally identified by the PET specified in current_du_pause_element_token.
The PET originally specified in current_du_pause_element_token cannot be
reused after a successful call to Pause or Transfer.

IEAVXFR2 callable service

Chapter 65. IEAVXFR2 — Transfer service 723

If you set the current_du_pause_element_token to zeros, the contents of
updated_pause_element_token are unpredictable.

,current_du_release_code
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Contains the release code set by the issuer of the Release or Transfer service
that released the current task or SRB from its paused condition.

If you set the current_du_pause_element_token to zero, the contents are
unpredictable.

,target_du_pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains a pause element token that identifies a pause element that is being or
will be used to pause a task or SRB. If the task or SRB is paused, it will be
released, and, if possible, be given control. If the task or SRB is not paused
using the specified pause element, it will not be paused when an attempt to
pause is made. In either case the task or SRB will be returned the value
specified in target_du_release_code.

CAUTION:
Do not use the same PET for both current_du_pause_element_token and
target_du_pause_element_token.

,target_du_release_code
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Contains the release code returned to the issuer of the Pause or Transfer
service used (or will use) the PET specified in target_du_pause_element_token
to pause a task or SRB.

linkage
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how the Transfer service routine is to be invoked. The following
options are supported:

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_SVC 0 The Transfer service routine will be invoked
by an SVC linkage. This option can be used
when in non-cross memory task mode, in any
key, and either problem state or supervisor
state.

IEAVXFR2 callable service

724 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_BRANCH 1 The Transfer service routine will be invoked
by a branch instruction. The caller must be in
both key 0 and supervisor state. This option
must be selected when in SRB mode.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Decimal (Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified pause element
token is not valid. The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element token is stale; that
is, it was valid but has been used on the Pause or Transfer
service. This service requires the updated PET returned on
Pause or Transfer.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

12 (0C) IEA_DUPLICATE_PAUSE Meaning: The work unit has already been paused using
the specified pause element token. The system rejects the
service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

16 (10) IEA_SLEEP_DISRUPTED Meaning: RTM has terminated the task or SRB; no release
is necessary.

Action: None

20 (14) IEA_SPACE_TERMINATING Meaning: The address space that contains the task or SRB
is terminating; no release is necessary.

Action: None

24 (18) IEA_LOCK_HELD Meaning: Program error. If a
current_du_pause_element_token of 16 bytes of binary
zeros is specified, one or more locks other than the local
lock are held. Otherwise, one or more locks are held. The
system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

IEAVXFR2 callable service

Chapter 65. IEAVXFR2 — Transfer service 725

Return Code in:
Decimal (Hex)

Equate symbol Meaning and Action

32 (20) IEA_PE_BAD_STATE Meaning: Program error. The pause element associated
with the pause element token specified in the call is not in
a valid state. The system rejects the service call.

Action: Check the calling program for a probable coding
error, such as attempting to perform a Pause or Transfer
using a pause element token that has already been used to
Pause or Transfer by another unit of work. Correct the
program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The system release does
not support this service. The system rejects the service call.

Action: Run the program on a system that supports the
service.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling program is not in
primary ASC mode, which this service requires. The
system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

52 (34) IEA_ALREADY_SUSPENDED Meaning: The pause element was already paused.

Action: Check the calling program for a probable coding
error and correct the program and rerun it.

60 (3C) IEA_AUTH_TOKEN Meaning: Program error. The caller was in Problem state
or key 8, but the pause element token was allocated with
pause_element_auth_level=IEA_AUTHORIZED. The
system rejects the service call.

Action: Program error. The specified pause element token
is not valid. The system rejects the service call.

64 (40) IEA_PE_NOT_HOME Meaning: Program error. The pause element token was for
a pause element allocated with
pause_element_auth_level=IEA_UNAUTHORIZED to
another address space.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

68 (44) IEA_XFER_TO_SELF Meaning: Program error. The specified
current_du_pause_element_token and
target_du_pause_element_token are the same.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

72 (48) IEA_XFER_FAILED Meaning: The transfer failed, and the
current_du_pause_element_token is no longer usable.

Action: Reissue the transfer request using the
updated_du_pause_element_token. Deallocate the
current_du_pause_element_token.

84 (54) IEA_INVALID_LINKAGE Meaning: Program error. The linkage value specified is not
valid. The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine encountered an unexpected
error. The system rejects this service request.

Action: Contact IBM support.

IEAVXFR2 callable service

726 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 66. IEA4APE — Allocate_Pause_Element

Description
Allocate_Pause_Element obtains a pause element token (PET), which uniquely
identifies a pause element. The PET is used as input to the following services:
v Pause
v Release
v Transfer
v Deallocate_Pause_Element

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task
Cross memory mode: v For auth_level=IEA_UNAUTHORIZED:

PASN=HASN=SASN

v For auth_level=IEA_AUTHORIZED: Any PASN, any
HASN, any SASN

AMODE: 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: v When supervisor state and PSW key 0: The local lock may

be held.

v When problem state, or not PSW key 0: No locks may be
held.

Control parameters: Must be in the primary address space and addressable by
the caller.

Programming requirements
Either link the object code of the calling program with the linkable stub routine
(IEA4CSS from SYS1.CSSLIB), or load the calling program and then call the
service. The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
When the calling program specifies auth_level=IEA_UNAUTHORIZED, the caller
must be in task mode and can only release another task in its home address space.
All pause element tokens (PETs) used when auth_level=IEA_UNAUTHORIZED
must have been obtained using an authorization level of IEA_UNAUTHORIZED.

Only 2040 unauthorized PETs may be allocated at any one time in an address
space.

© Copyright IBM Corp. 1988, 2016 727

|
|

Input register information
Before calling Allocate_Pause_Element, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Address of a 144-byte register save area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return Code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

SYSSTATE AMODE64=YES

CALL IEA4APE
,(return_code
,auth_level
,pause_element_token)

Parameters
The parameters are explained as follows:

return_code
Returned parameter

IEA4APE callable service

728 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Allocate_Pause_Element service.

,auth_level
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Represents one or more possible levels of the pause element being allocated.
The calling program can use the constants that are defined in IEAASM or
IEAC. The level needed is derived by adding the values of the required types
together. The authorization type is required.

For example, the level to allocate authorized pause elements that are
checkpoint- or restart-tolerant is IEA_AUTHORIZED + IEA_CHECKPOINTOK,
or 3.

The following levels are supported:

Table 67. Authorization

IEAASM and IEAC defined
constants

Value (hexadecimal) Meaning

IEA_UNAUTHORIZED 0 When using the allocated pause element
through other services, either auth_level
IEA_UNAUTHORIZED or
IEA_AUTHORIZED can be used.

IEA_AUTHORIZED 1 When using the allocated pause element
through other services,
auth_level=IEA_AUTHORIZED will be
required. Caller must be both key 0 and
supervisor state.

Table 68. Checkpoint/Restart Toleration - only available when the CVTPAUS4 bit is set in
the CVT.

IEAASM and IEAC defined
constants

Value (hexadecimal) Meaning

IEA_CHECKPOINTOK 2 The application can tolerate the pause
elements' not being restored upon a
restart after a checkpoint.

Note: If the IEA_CHECKPOINTOK value is not added to the authorization
value, checkpoints cannot be taken when an allocated pause element exists.

,pause_element_token
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains the pause element token that identifies the pause element that you
can use to synchronize the processing of a task.

IEA4APE callable service

Chapter 66. IEA4APE — Allocate_Pause_Element 729

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

00 (0)

IEA_SUCCESS

Meaning: Successful completion.

Action: None.

24 (18)

IEA_LOCK_HELD

Meaning: Program error. If the auth_level indicates
AUTHORIZED, locks other than the local lock are held. If
the auth_level indicates UNAUTHORIZED, locks are held.
The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

36 (24)

IEA_UNSUPPORTED_MVS_RELEASE

Meaning: Environmental error. The system release does not
support this service. The system rejects the service call.

Action: Run the program on a system that supports the
service.

40 (28)

IEA_PE_NOT_HOME

Meaning: Program error. The auth_level value specified in
the call is not valid. The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

44 (2C)

IEA_XFER_TO_SELF

Meaning: Program error. The calling program is not in
primary ASC mode, which this service requires. The
system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

48 (30)

IEA_XFER_FAILED

Meaning: Environmental error. The system could not
obtain storage for a pause element. The system rejects the
service call.

Action: Retry the request later. If the problem persists,
consult your system programmer.

56 (38)

IEA_NO_PETS_AVAILABLE

Meaning: There are no pause element tokens available.

Action: Retry the request later.

4095 (FFF)

IEA_UNEXPECTED_ERROR

Meaning: This service routine encountered an unexpected
error. The system rejects this service request.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

IEA4APE callable service

730 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 67. IEA4APE2 — Allocate_Pause_Element

Description
Allocate_Pause_Element obtains a pause element token (PET), which uniquely
identifies a pause element. The PET is used as input to the following services:
v Pause
v Release
v Transfer
v Deallocate_Pause_Element

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– Working with an IEA_AUTHORIZED pause element,
supervisor state and PSW key 0-7.

– Working with an IEA_UNAUTHORIZED pause
element, problem state and any PSW key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: Any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=HASN=SASN
AMODE: 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: v For LINKAGE=BRANCH: The local lock may be held.

v For LINKAGE=SVC: No locks may be held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the object code of the calling program with the linkable stub routine
(IEA4CSS from SYS1.CSSLIB) or load the calling program and then call the service.
The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

© Copyright IBM Corp. 1988, 2016 731

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

Only 2040 unauthorized PETs may be allocated at any one time in an address
space.

Allocate_Pause_Element cannot be used by tasks that are higher in the task tree
than the cross memory resource owning task (the top, or first, job step task in the
address space).

Input register information
Before calling Allocate_Pause_Element, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Address of a 144-byte register save area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

IEA4APE2 callable service

732 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|

|

Syntax

Syntax Description

SYSSTATE AMODE64=YES

CALL IEA4APE2

,(return_code
,pause_element_auth_level
,pause_element_token
,pause_element_owner_stoken
,owner_termination_release_code
,linkage)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Allocate_Pause_Element service.

,pause_element_auth_level
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Represents one or more possible levels of the pause element being allocated.
The calling program can use the constants defined in IEAASM or IEAC, as
appropriate. The level desired results from adding the values of the required
types together. The authorization type is not optional.

For instance, the level to allocate authorized pause elements that are
checkpoint/restart tolerant is IEA_AUTHORIZED + IEA_CHECKPOINTOK, or
3.

The following levels are supported:

Table 69. Authorization

IEAASM and IEAC defined constants Value (hexadecimal) Meaning

IEA_UNAUTHORIZED 0 When using the allocated pause element through
other services, either pause_element_auth_level
IEA_UNAUTHORIZED or IEA_AUTHORIZED can
be used.

IEA_AUTHORIZED 1 When using the allocated pause element through
other services, pause_element_auth_level
=IEA_AUTHORIZED is required. Caller must be
both key 0 and supervisor state.

Table 70. Checkpoint/Restart Toleration - only available when the CVTPAUS4 bit is set in the CVT.

IEAASM and IEAC defined constants Value (hexadecimal) Meaning

IEA_CHECKPOINTOK 2 The application can tolerate the pause elements' not
being restored upon a restart after a checkpoint.

IEA4APE2 callable service

Chapter 67. IEA4APE2 — Allocate_Pause_Element 733

Note: If the IEA_CHECKPOINTOK value is not added to the authorization
value, checkpoints cannot be taken when an allocated pause element exists.

,pause_element_token
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains the pause element token that identifies a pause element that you can
use to synchronize the processing of a task or SRB.

,pause_element_owner_stoken
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 8 bytes

Specifies the space token (STOKEN) of the address space which is to be
considered the owner of the Pause Element being allocated. Specify one of the
following values:
v Binary zero: indicate the system should make the current primary address

space the owner of the Pause Element. This is the only value valid for key
8-15 problem state callers.

v A valid STOKEN, indicate the system should make the address space with
the matching STOKEN the owner for the pause element.

When the CMRO task (the first job step task) of an address space terminates,
the system will release and deallocate any pause elements owned by the
CMRO task's home address space. The table below describes exactly when the
system will release and/or deallocate a Pause Element:

Allocation Service version: Deallocation Rules

IEA4APE The PE will be deallocated by the system
when one of the following events occurs:

v The PE was never used to pause a task or
SRB and the CMRO task for the space
which allocated it terminates.

v The PE is being used to pause a task or
SRB which is asynchronously terminated
via CALLRTM TYPE=ABTERM (for
example, cancel or detach) or a
PURGEDQ.

v The CMRO task of the home address
space of the task or SRB which last used
the PE terminates and the PE is not being
used to pause an SRB.

The home address space of the task or SRB
which last used the PE terminates

IEA4APE2 callable service

734 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|
|
|

Allocation Service version: Deallocation Rules

IEA4APE2 The PE will be deallocated by the system
when one of the following events occurs:

v The CMRO task of the address space
specified by pause_element_owner_stoken
terminates. If the PE is being used to
pause a DU when the CMRO task
terminates, the system will release the DU
using the owner_termination_release_code
before the PE is deallocated. Note that in
this case, the UPET returned will be 16
bytes of binary zeros, an invalid value.

v The PE is being used to pause a task or
SRB which is asynchronously terminated
via CALLRTM TYPE=ABTERM (for
example, cancel or detach) or a
PURGEDQ

v The PE is being used to pause a task or
SRB when the home address space of the
task or SRB is terminated

v The CMRO task of the home address
space of the task or SRB which last used
the PE terminates and the PE is not being
used to pause an SRB

The home address space of the task or SRB
which last used the PE terminates.Note: A
PE is considered as "being used to pause a
task or SRB," when the PE is not Reset or
Prereleased.

,owner_termination_release_code
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Specifies the release code which will be returned to a paused DU if the system
deallocates the pause element while it is being used to pause a task or SRB,
due to the CMRO task of its owning address space terminating.

Note: If the system deallocates a PE due to its owner terminating while the PE
was not being used to pause a task or SRB, future attempts to use the PE will
fail with a return code indicating the PETOKEN was stale or the PE is in an
invalid state.

linkage
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how the Allocate_Pause_Element service routine is to be invoked. The
following options are supported:

IEA4APE2 callable service

Chapter 67. IEA4APE2 — Allocate_Pause_Element 735

|
|
|
|
|

Table 71. Linkage option

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_SVC 0 The Allocate_Pause_Element service routine will be
invoked via an SVC linkage. This option can be used
when in non-cross memory task mode, any key, and
either problem state or supervisor state.

IEA_LINKAGE_BRANCH 1 The Allocate_Pause_Element service routine will be
invoked via a branch instruction. The caller must be
in both key 0 and supervisor state. This option must
be selected when in SRB mode.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and the
return_code parameter contain a hexadecimal return code.

Return code
in: Decimal
(Hex)

Equate Symbol Meaning and Action

00 (0) IEA_SUCCESS Meaning: Successful completion.

Action: None.

24 (18) IEA_LOCK_HELD Meaning: Program error. One or more
locks other than the local lock are held.
The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The
system release does not support this
service. The system rejects the service call.

Action: Run the program on a system that
supports the service.

40 (28) IEA_INVALID_AUTHCODE Meaning: Program error. The
pause_element_auth_level value specified
in the call is not valid. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling
program is not in primary ASC mode,
which this service requires. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

IEA4APE2 callable service

736 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return code
in: Decimal
(Hex)

Equate Symbol Meaning and Action

48 (30) IEA_OUT_OF_STORAGE Meaning: Environmental error. The
system could not obtain storage for a
pause element. The system rejects the
service call.

Action: Retry the request later. If the
problem persists, consult your system
programmer.

56 (38) IEA_NO_PETS_AVAILABLE Meaning: There are no pause element
tokens available.

Action: Try the request again later.

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine
encountered an unexpected error. The
system rejects this service request.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

IEA4APE2 callable service

Chapter 67. IEA4APE2 — Allocate_Pause_Element 737

IEA4APE2 callable service

738 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 68. IEA4DPE - Deallocate_Pause_Element

Description
Deallocate_Pause_Element frees a pause element that is no longer needed.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task
Cross memory mode: v For auth_level=IEA_UNAUTHORIZED:

PASN=HASN=SASN

v For auth_level=IEA_AUTHORIZED: Any PASN, any
HASN, any SASN

AMODE: 64-bit
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts
Locks: v When supervisor state and PSW key 0: The local lock may

be held.

v When problem state, or not PSW key 0: No locks may be
held.

Control parameters: Must be in the primary address space and addressable by
the caller.

Programming requirements
Either link the object code of the calling program with the linkable stub routine
(IEA4CSS from SYS1.CSSLIB), or load the calling program and then call the
service. The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
When the calling program specifies auth_level=IEA_UNAUTHORIZED, the caller
must be in task mode and can only release another task in its home address space.
All pause element tokens (PETs) used when auth_level=IEA_UNAUTHORIZED
must have been obtained using an authorization level of IEA_UNAUTHORIZED.

Input register information
Before calling Deallocate_Pause_Element, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

© Copyright IBM Corp. 1988, 2016 739

13 Address of a 144-byte register save area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

SYSSTATE AMODE64=YES

CALL IEA4DPE
,(return_code
,auth_level
,pause_element_token)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Deallocate_Pause_Element service.

IEA4DPE callable service

740 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,auth_level
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the maximum authorization level of the pause element being
deallocated. IEAASM and IEAC define constants IEA_UNAUTHORIZED and
IEA_AUTHORIZED, which the calling program can use. The following levels
are supported:

Variable Value
(HEX)

Meaning

IEA_UNAUTHORIZED 0 This pause element being deallocated must have
been allocated with
auth_level=IEA_UNAUTHORIZED.

IEA_AUTHORIZED 1 This pause element being deallocated must have
been allocated with
auth_level=IEA_AUTHORIZED.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains the pause element token that identifies the pause element that is no
longer needed.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

00 (00)

IEA_SUCCESS

Meaning: Successful completion.

Action: None.

04 (04) Meaning: Program error. The specified pause element
token is not valid. The system rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

08 (08)

IEA_PE_TOKEN_STALE

Meaning: The specified pause element token is stale;
that is, it was valid but has been used on the Pause or
Transfer service. This service requires the updated
PET be returned on Pause or Transfer.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

IEA4DPE callable service

Chapter 68. IEA4DPE - Deallocate_Pause_Element 741

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

24 (18)

IEA_LOCK_HELD

Meaning: Program error. The caller is holding one or
more locks; no locks must be held. The system rejects
the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

32 (20)

IEA_PE_BAD_STATE

Meaning: Program error. The pause element
associated with the specified pause element token
specified is invalid or has already been paused. A
paused PE must be released before it is deallocated.
This return code also can indicate that the address
space associated with the pause element is ending or
has ended and that the system freed the pause
element.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

36 (24)

IEA_UNSUPPORTED_MVS_RELEASE

Meaning: Environmental error. The system release
does not support this service. The system rejects the
service call.

Action: Run the program on a system that supports
the service.

40 (28)

IEA_INVALID_AUTHCODE

Meaning: Program error. The auth_level value
specified in the call is not valid. The system rejects the
service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

44 (2C)

IEA_INVALID_MODE

Meaning: Program error. The calling program is not
in primary ASC mode, which this service requires.
The system rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

60 (3C)

IEA_AUTH_TOKEN

Meaning: Program error. The caller specified
auth_level=UNAUTHORIZED, but the pause element
token was allocated with auth_level=AUTHORIZED.
The system rejects the service call.

Action: Program error. The specified pause element
token is not valid. The system rejects the service call.

64 (40)

IEA_PE_NOT_HOME

Meaning: Program error. The caller specified
auth_level=UNAUTHORIZED, but the pause element
token was for a pause element allocated to another
address.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

4095 (FFF)

IEA_UNEXPECTED_ERROR

Meaning: This service routine encountered an
unexpected error. The system rejects this service
request.

Action: Search problem reporting databases for a fix
for the problem. If no fix exists, contact the IBM
Support Center.

IEA4DPE callable service

742 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 69. IEA4DPE2 — Deallocate_Pause_Element

Description
Deallocate_Pause_Element frees a pause element that is no longer needed.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– Working with an IEA_AUTHORIZED pause element,
supervisor state and PSW key 0-7.

– Working with an IEA_UNAUTHORIZED pause
element, problem state and any PSW key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: Any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=HASN=SASN
AMODE: 64-bit
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts
Locks: v For LINKAGE=BRANCH: The local lock may be held.

v For LINKAGE=SVC: No locks may be held.
Control parameters: Must in the primary address space and addressable by the

caller.

Programming requirements
Either link the object code of the calling program with the linkable stub routine
(IEA4CSS from SYS1.CSSLIB) or load the calling program and then call the service.
The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

Input register information
Before calling Deallocate_Pause_Element, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

© Copyright IBM Corp. 1988, 2016 743

Register
Contents

1 Address of the parameter address list.

13 Address of a 144-byte register save area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

SYSSTATE AMODE64=YES

CALL IEA4DPE2
,(return_code
,pause_element_token
,linkage)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer

IEA4DPE2 callable service

744 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Deallocate_Pause_Element service.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains the pause element token that identifies the pause element that is no
longer needed.

linkage
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how the Deallocate_Pause_Element service routine is to be invoked.
The following options are supported:

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_SVC 0 The Deallocate_Pause_Element service routine
will be invoked by an SVC linkage. This
option can be used when in non-cross
memory task mode, in any key, and in either
problem state or supervisor state.

IEA_LINKAGE_BRANCH 1 The Deallocate_Pause_Element service routine
will be invoked by a branch instruction. The
caller must be in both key 0 and supervisor
state. This option must be selected when in
SRB mode.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and the
return_code parameter contain a hexadecimal return code.

Return code
in: Decimal
(Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion

Action: None.

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified
pause element token is not valid. The
system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

IEA4DPE2 callable service

Chapter 69. IEA4DPE2 — Deallocate_Pause_Element 745

Return code
in: Decimal
(Hex)

Equate symbol Meaning and Action

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element
token is stale; that is, it was valid but has
been used on the Pause or Transfer
service. This service requires the updated
PET returned on Pause or Transfer.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

24 (18) IEA_LOCK_HELD Meaning: Program error. One or more
locks other than the local lock are held.
The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

32 (20) IEA_PE_BAD_STATE Meaning: Program error. The pause
element associated with the specified
pause element token is invalid or has
already been paused. A paused PE must
be released before it is deallocated. This
return code also can indicate that the
address space associated with the pause
element is ending or has ended and that
the system freed the pause element.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The
system release does not support this
service. The system rejects the service call.

Action: Run the program on a system that
supports the service.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling
program is not in primary ASC mode,
which this service requires. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

64 (40) IEA_PE_NOT_HOME Meaning: Program error. The pause
element token was for an unauthorized
pause element allocated to another
address space.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine
encountered an unexpected error. The
system rejects this service request.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

IEA4DPE2 callable service

746 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 70. IEA4PME2 — 64-bit pause multiple elements
service

Description
IEA4PME2 is a callable service that can be used to pause on one or more pause
element tokens (PETs). It is entered in 64-bit mode and the addresses in the
parameter list are 64 bits long. When the specified number of pause elements (PEs)
represented by PETs has been released, you receive control back with the
following:
v A list of PETs that you can use to pause on again
v An indication of which PEs were released
v Their release codes.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– If any input PET was allocated as IEA_AUTHORIZED,
supervisor state and PSW key 0.

– If all input PETs were allocated as
IEA_UNAUTHORIZED, problem state and any PSW
key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=SASN=HASN
AMODE: 31-bit addressing mode.
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the calling program's object code with the linkable stub routine (IEACSS
from SYS1.CSSLIB), or load the calling program and then call the service. The
high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

© Copyright IBM Corp. 1988, 2016 747

|

|

|

|
|

|
|
|
|
|

|

|

|

|

|

|||
||
|

|

|
|

|
|
|
||

|
||
|

|
||
||
||
||
||
|
|

|

|
|
|

|||

||

||
|

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

Key 1-15 or problem state callers must specify linkage as IEA_LINKAGE_SVC.
IEA_LINKAGE_SVC is limited to pausing upon no more than 1000 PETs.

Pause cannot be used by tasks that are higher in the task tree than the cross
memory resource owning task (the EXEC PGM=xxx task).

Input register information
Before calling the Pause service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Note that register 13 is not required to contain any particular value. See the
workarea parameter description.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code.

Note that this service saves and restores full 64-bit GPRs.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
There is a maximum number of PETs which can be processed very quickly by
IEAVPME2 without doing additional GETMAINs and FREEMAINs. That number
is currently 16.

IEA4PME2 callable service

748 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|

|
|
|

|
|

|
|

|

|
|

|
|

||

||
|

|

|

|
|

||

||

||

||

|

|

|
|

||

||

||

|
|
|
|

|

|
|
|

Syntax

Syntax Description

CALL IEA4PME2

(return_code
,pause_element_token_list
,updated_pause_element_token_list
,release_code_list
,number_of_PETs_in_each_list
,number_of_PEs_to_release
,linkage
,workarea)

Link-edit your program with a linkage-assist routine (also called a stub) in
SYS1.CSSLIB unless you use one of the following techniques as an alternative to
CALL IEA4PME2:
1. LOAD EP=IEA4PME2

Save the 8-byte entry point address with bit 63 changed to 0 (...)
Put the saved entry point address with bit 63 changed to 0 into 64-bit R15
CALL (15),(...)

2. L 15,X’10’(0,0)
L 15,X’220’(15,0)
L 15,X’14’(15,0)
L 15,X’100’(15,0)
CALL (15),(...)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the highest return code from the Pause service (multiple return codes
are possible when more than one PET has been specified – seerelease_code_list).
When the low-order bit of the return code is on, release_code_list contains the
return codes for individual PETs rather than release codes.

Note that no pause has actually occurred if the return code is non-zero. In this
situation, any PETs which have been released remain released.

,pause_element_token_list
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes times the number of PEs you want to pause on

A list of the PETs identifying the PEs you want to pause on.
Number_of_PETs_in_each_list specifies how many PETs are in the list.

,updated_pause_element_token_list
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes times the number of PEs you want to pause on

IEA4PME2 callable service

Chapter 70. IEA4PME2 — 64-bit pause multiple elements service 749

|

|||

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|

|
|
|
|

|
|

|
|

|

|

|

|
|

|
|

|

|

|

If return_code is 0, a list of the PETs returned by Pause Multiple Elements. Each
entry corresponds to an entry in the pause_element_token_list. For each PE that
was released, the system puts an updated PET into this list. For PEs that are
not released, the entry contains the PET from the original
pause_element_token_list.

These new PETs must be used in place of the PETs specified in
pause_element_token_list or pause_element_token on future calls to the Pause,
Release, Transfer, or Deallocate_Pause_Element service. The first byte of each
entry in release_code_list identifies which PEs were released.
Number_of_PETs_in_each_listspecifies how many PETs are in the list.

If return_code is not 0, the PETs are not updated and this list is not returned.

If the paused workunit was released by the system (the release code is the
owner_termination_release_code specified on the IEAVAPE2 allocation), the PET
returned in that slot will be 16 bytes of binary zeros, an invalid value.

,release_code_list
Returned parameter
v Type: Fullword
v Character Set: N/A
v Length: 4 bytes times the number of PEs you want to pause on

Each entry corresponds to an entry in the pause_element_token_list.

If return_code is 0, the pause was successful and has been released. For each PE
that was Released, the system puts X'01' into the first byte and the release code
for that PET into the second through fourth bytes of the full-word entry for
that PET. For PEs which are not released, the entry contains binary zeroes.

If return_code is 5, 9, D, 21, 35, 3D, or 41, a problem was found with at least
one of the PETs specified in pause_element_token_listand the pause request did
not complete. The individual return code for each PET is in the second through
fourth bytes of the release_code_list entry for that PET. Each PET with a return
code of 0 would have been paused on if all the other PETs in the list had
received return codes of 0.If return_code contains any other value, the pause
request did not complete and release_code_list does not contain any meaningful
information.

Note: These return codes are the equivalent of return codes 4, 8, C, 20, 34, 3C,
and 40 for IEAVPSE2 (Pause single), with the addition of a low-order bit to
signify that the release_code_listcontains individual PET return codes.

,number_of_PETs_in_each_list
Supplied parameter

Number_of_PETs_in_each_list specifies how many entries are in release_code_list.
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

This number specifies how many PETs you want to Pause on. This number
also specifies the number of entries in pause_element_token_list,
updated_pause_element_token_list , and release_code_list. For SVC entry callers, the
maximum number that can be specified is 1000.

,number_of_PEs_to_release
Supplied parameter

IEA4PME2 callable service

750 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|

|

|

|

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|

|

|

|

|
|
|
|

|
|

Number_of_PETs_in_each_list specifies how many entries are in release_code_list.
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

This number specifies how many PEs must be released before control is
returned back to the issuer of Pause Multiple Elements. This number must be
at least 1 and no more than number_of_PETs_in_each_list.

Note that if more PEs than this number were released before IEAVPME2 was
issued (pre-released), the number of updated PETs in
updated_pause_element_token_list will be the actual number released.

,linkage
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how the Pause service routine is to be invoked. The following options
are supported:

Table 72. Linkages

Variable Value Meaning

IEA_LINKAGE_SVC 0 The Pause service routine will be invoked by an SVC
linkage. This option can be used when in non-cross
memory task mode, in any key, and in either
problem state or supervisor state.

IEA_LINKAGE_BRANCH 1 The Pause service routine will be invoked by a
branch instruction. The caller must be in both key 0
and supervisor state. This option must be selected
when in SRB mode.

,workarea
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 216 bytes

Specifies a work area on a doubleword boundary in which the Pause service
routine will save information about the caller including the caller's registers.
This can be the same area that R13 points to if the first 216 bytes of that area
can be used as an F7SA savearea.

ABEND codes
None. However, note that you may receive a GETMAIN abend if this service is
unable to obtain storage needed to process the PETs.

Return codes
When IEAVPME2 returns control to your program, if GPR 15 contains 0, 5, 9, D,
21, 35, 3D, or 41, release_code_list contains information about the status of each PET
that was specified. If GPR 15 contains any other value, release_code_listdoes not
contain any meaningful information.

IEA4PME2 callable service

Chapter 70. IEA4PME2 — 64-bit pause multiple elements service 751

|

|

|

|

|
|
|

|
|
|

|
|

|

|

|

|
|

||

|||

|||
|
|
|

|||
|
|
|
|

|
|

|

|

|

|
|
|
|

|

|
|

|

|
|
|
|

Return code
in: Decimal
(Hex)

Equate Symbol Meaning and Action

00 (0) IEA_SUCCESS Meaning: Successful completion.

Action: None.

05 (05) IEA_PE_TOKEN_BAD Meaning:Program error. The specified pause
element token is not valid. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

09 (09) IEA_PE_TOKEN_STALE Meaning: The specified pause element token is
stale; that is, it was valid but has been used on
the Pause or Transfer service. This service
requires the updated PET returned on Pause
or Transfer.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

13 (0D) IEA_DUPLICATE PAUSE Meaning: The work unit has already been
paused using the specified pause element
token. The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

24 (18) IEA_LOCK_HELD Meaning: Program error. The caller is holding
one or more locks; no locks may be held. The
system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

33 (21) IEA_PE_BAD_STATE Meaning: Program error. The pause element
associated with the pause element token
specified in the call is not in a valid state. The
system rejects the service call.

Action: Check the calling program for a
probable coding error, such as attempting to
perform a pause or transfer using a pause
element token that has already been used to
pause or transfer by another unit of work.
Correct the program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_
RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Run the program on a system that
supports the service.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling program
is not in primary ASC mode, which this
service requires. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

IEA4PME2 callable service

752 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

||
|
|

||

|||

|

|||
|
|

|
|
|

|||
|
|
|
|

|
|
|

|||
|
|

|
|
|

|||
|
|

|
|
|

|||
|
|
|

|
|
|
|
|
|

||
|
|
|
|

|
|

|||
|
|
|

|
|
|

Return code
in: Decimal
(Hex)

Equate Symbol Meaning and Action

53 (35) IEA_ALREADY_SUSPENDED Meaning: The pause element was already
paused.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

61 (3D) IEA_AUTH_LEVEL_MISMATCH Meaning: Program error. The caller was in
problem state or key 8, but the pause element
token was allocated with
pause_element_auth_level=IEA_AUTHORIZED. The
system rejects the service call.

Action: Program error. The specified pause
element token is not valid. The system rejects
the service call.

65 (41) IEA_PE_NOT_HOME Meaning: Program error. The pause element
token was for a pause element allocated with
pause_element_auth_level=IEA_AUTHORIZED to
another address space.

Action: Check the calling program for a
probable coding error. Correct eht program
and rerun it.

76 (4C) IEA_ABENDED_47B Meaning: After an SRB received abend 47B, it
invoked IEA4PSE2. It is not valid to invoke
IEA4PSE2 after receiving abend 47B.

Action: Update the calling program to not
invoke IEA4PSE2 after abend 47B.

80 (50) IEA_INSUSPEND_EXIT Meaning: The suspend exit specified on
SUSPEND with SPTOKEN of an SRB invoked
IEAVPSE. It is not valid to invoke IEA4PSE2
from a suspend exit.

Action: Update the calling program to not
invoke IEA4PSE2 from a suspend exit.

84 (54) IEA_INVALID_LINKAGE Meaning: Program error. The linkage value
specified is not valid. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

104(68) IEA_INVALID_NUMBER_OF_PETS Meaning: Program error. The number of PETs
specified for Pause Multiple was 0 or for SVC
entry users more than 1000. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

108(6C) IEA_INVALID_NUMBER_TO_
RELEASE

Meaning: Program error. The number of PEs
to release is 0 or greater than the number of
PETs specified for Pause Multiple. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

IEA4PME2 callable service

Chapter 70. IEA4PME2 — 64-bit pause multiple elements service 753

|
|
|

||

|||
|

|
|
|

|||
|
|
|
|

|
|
|

|||
|
|
|

|
|
|

|||
|
|

|
|

|||
|
|
|

|
|

|||
|
|

|
|
|

|||
|
|
|

|
|
|

||
|
|
|
|
|

|
|
|

Return code
in: Decimal
(Hex)

Equate Symbol Meaning and Action

4094(FFE) IEA_ERROR_PETS_INVALIDATED Meaning: Pause processing has encountered
an error and cannot complete the Pause
request. This input PETs have been
invalidated. This return code is only issued for
Pause Multiple requests.

Action: Do not return the PETs to the system
using the Deallocate Pause Elements services.
Note that new PEs must be obtained before
attempting to pause again.

4095(FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine encountered an
unexpected error. The system rejects this
service request.

Action: Contact IBM support.

IEA4PME2 callable service

754 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|
|

||

|||
|
|
|
|

|
|
|
|

|||
|
|

|
|

Chapter 71. IEA4PSE — Pause service

Description
Call IEA4PSE service to make the current task nondispatchable. After you pause a
task, it remains nondispatchable until a release service specifying the same PET is
called. That is, the program issuing the pause does not receive control back until
after the release occurs.

If a release service specifying the same PET is called before pause, the system
returns control immediately to the calling program, and the task is not paused.

When you use pause, it returns an updated PET. Use this updated PET to either
deallocate or reuse the PE.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: v When supervisor state and PSW key 0: Task or SRB.

v When problem state, or not PSW key 0: Task.
Cross memory mode: v For auth_level=IEA_UNAUTHORIZED:

PASN=HASN=SASN

v For auth_level=IEA_AUTHORIZED: Any PASN, any
HASN, any SASN

AMODE: 64-bit
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the object code of the calling program with the linkable stub routine
(IEA4CSS from SYS1.CSSLIB), or load the calling program and then call the
service. The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
When the calling program is running auth_level=IEA_UNAUTHORIZED, the caller
must be in task mode and can only pause another task in its home address space.
All pause element tokens (PETs) used when auth_level=IEA_UNAUTHORIZED
must have been obtained using an authorization level of IEA_UNAUTHORIZED.

© Copyright IBM Corp. 1988, 2016 755

|

Input register information
Before calling the Pause service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Address of a 144-byte register save area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

SYSSTATE AMODE64=YES

CALL IEA4PSE

,(return_code
,auth_level
,pause_element_token
,updated_pause_element_token
,release_code)

Parameters
The parameters are explained as follows:

IEA4PSE callable service

756 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Pause service.

,auth_level
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the maximum level that the specified pause element was allocated
with. IEAASM and IEAC define constants IEA_UNAUTHORIZED and
IEA_AUTHORIZED, which the calling program can use. The following levels
are supported:

Variable Value
(HEX)

Meaning

IEA_UNAUTHORIZED 0 The pause element being paused must have been
allocated with auth_level=IEA_UNAUTHORIZED.

IEA_AUTHORIZED 1 The pause element being paused must have been
allocated with auth_level=IEA_AUTHORIZED.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

A pause element token that identifies the pause element being used to pause
the current task. You can obtain the PET from the Allocate_Pause_Element
service.

When you use a PET in a call to the pause service, you cannot reuse the PET
on a second call to pause or on a call to transfer. The pause service returns a
new PET in updated_pause_element_token. The new PET now identifies the
pause element used to pause the task; use the new PET the next time when
you make a pause request using the same pause element.

,updated_pause_element_token
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

A new pause element token that identifies the pause element originally
identified by the PET specified in pause_element_token, which cannot be
reused after a successful call to Pause.

,release_code
Returned parameter
v Type: Character string
v Character Set: N/A

IEA4PSE callable service

Chapter 71. IEA4PSE — Pause service 757

v Length: 3 bytes

The release code, specified by the issuer of the Release service. A Release that
specified this code released the task from its paused condition.

ABEND codes

Abend Code Reason Code Description

AC7 001A0001 This is an internal error. Contact IBM
support.

Return codes
When the service returns control to your program, GPR 15 contains one of the
following return codes:

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

00 (00)

IEA_SUCCESS

Meaning: Successful completion.

Action: None.

04 (04) Meaning: Program error. The specified pause element
token is not valid. The system rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

08 (08)

IEA_PE_TOKEN_STALE

Meaning: The specified pause element token is stale;
that is, it was valid but has been used on the Pause or
Transfer service. This service requires the updated PET
be returned on Pause or Transfer.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

12 (0C)

IEA_DUPLICATE_PAUSE

Meaning: The work unit has already been paused
using the specified pause element token. The system
rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

24 (18)

IEA_LOCK_HELD

Meaning: Program error. The caller is holding one or
more locks; no locks must be held. The system rejects
the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

32 (20)

IEA_PE_BAD_STATE

Meaning: Program error. The pause element associated
with the pause element token specified in the call is
not in a valid state. The system rejects the service call.

Action: Check the calling program for a probable
coding error, such as attempting to perform a Pause or
Transfer using a pause element token that has already
been used to Pause or Transfer by another unit of
work. Correct the program and rerun it.

36 (24)

IEA_UNSUPPORTED_MVS_RELEASE

Meaning: Environmental error. The system release
does not support this service. The system rejects the
service call.

Action: Run the program on a system that supports
the service.

IEA4PSE callable service

758 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

40 (28)

IEA_INVALID_AUTHCODE

Meaning: Program error. The auth_level value
specified in the call is not valid. The system rejects the
service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

44 (2C)

IEA_INVALID_MODE

Meaning: Program error. The calling program is not in
primary ASC mode, which this service requires. The
system rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

52 (34)

IEA_ALREADY_SUSPENDED

Meaning: The pause element was already paused.

Action: Check the calling program for a probable
coding error and correct the program and rerun it.

60 (3C)

IEA_AUTH_TOKEN

Meaning: Program error. The caller specified
auth_level=UNAUTHORIZED, but the pause element
token was allocated with auth_level=AUTHORIZED.
The system rejects the service call.

Action: Program error. The specified pause element
token is not valid. The system rejects the service call.

64 (40)

IEA_PE_NOT_HOME

Meaning: Program error. The caller specified
auth_level=UNAUTHORIZED, but the pause element
token was for a pause element allocated to another
address.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

4095 (FFF)

IEA_UNEXPECTED_ERROR

Meaning: This service routine encountered an
unexpected error. The system rejects this service
request.

Action: Search problem reporting databases for a fix
for the problem. If no fix exists, contact the IBM
Support Center.

IEA4PSE callable service

Chapter 71. IEA4PSE — Pause service 759

IEA4PSE callable service

760 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 72. IEA4PSE2 — Pause service

Description
Call IEA4PSE2 service to make the current task or SRB nondispatchable. After you
pause a task or SRB, it remains nondispatchable until a release or transfer
specifying the same PET is called. That is, the program issuing the pause does not
receive control back until after the RELEASE or TRANSFER occurs. At that time,
the returned release_code contains a value supplied by the associated release or
transfer request.

If a release service specifying the same PET is called before pause, the system
returns control immediately to the calling program, and the task or SRB is not
paused.

When you use pause, it returns an updated PET. Use this updated PET to either
deallocate or reuse the PE.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– Working with an IEA_AUTHORIZED pause element,
supervisor state and PSW key 0-7.

– Working with an IEA_UNAUTHORIZED pause
element, problem state and any PSW key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: Any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=HASN=SASN
AMODE: 64-bit
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the object code of the calling program with the linkable stub routine
(IEA4CSS from SYS1.CSSLIB) or load the calling program and then call the service.
The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

© Copyright IBM Corp. 1988, 2016 761

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

Pause cannot be used by tasks that are higher in the task tree than the cross
memory resource owning task (the top, or first, job step task in the address space).

Input register information
Before calling the Pause service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Address of a 144-byte register save area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

SYSSTATE AMODE64=YES

IEA4PSE2 callable service

762 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

CALL IEA4PSE2

,(return_code
,pause_element_token
,updated_pause_element_token
,release_code
,linkage)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Pause service.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

A pause element token that identifies the pause element being used to pause
the current task or SRB. You obtain the PET from the Allocate_Pause_Element
service.

When you use a PET in a call to the pause service, you cannot reuse the PET
on a second call to pause or on a call to Transfer. The pause service returns a
new PET in updated_pause_element_token. The new PET now identifies the
pause element used to pause the task or SRB; use the new PET the next time
when you make a Pause request using the same pause element.

,updated_pause_element_token
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

A new pause element token that identifies the pause element originally
identified by the PET specified in pause_element_token. This new PET must be
used in place of the PET specified in pause_element_token on future calls to
the Pause, Release, Transfer, or Deallocate_Pause_Element service.

,release_code
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

The release code is specified by the issuer of the release service, which can
release the task or SRB of the paused condition.

IEA4PSE2 callable service

Chapter 72. IEA4PSE2 — Pause service 763

,linkage
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how the Pause service routine is to be invoked. The following options
are supported:

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_SVC 0 The Pause service routine will be invoked by
an SVC linkage. This option can be used
when in non-cross memory task mode, in any
key, and either problem state or supervisor
state.

IEA_LINKAGE_BRANCH 1 The Pause service routine will be invoked by
a branch instruction. The caller must be in
both key 0 and supervisor state. This option
must be selected when in SRB mode.

ABEND codes

Abend Code Reason Code Description

AC7 001A0001 This is an internal error.
Contact IBM support.

Return codes
When the service returns control to your program, GPR 15 contains one of the
following return codes:

Return code in:
Decimal (Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified pause element
token is not valid. The system rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element token is stale;
that is, it was valid but has been used on the Pause or
Transfer service. This service requires the updated
PET returned on Pause or Transfer.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

12 (0C) IEA_DUPLICATE_PAUSE Meaning: The work unit has already been paused
using the specified pause element token. The system
rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

IEA4PSE2 callable service

764 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return code in:
Decimal (Hex)

Equate symbol Meaning and Action

24 (18) IEA_LOCK_HELD Meaning: Program error. The caller is holding one or
more locks; no locks must be held. The system rejects
the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

32 (20) IEA_PE_BAD_STATE Meaning: Program error. The pause element
associated with the pause element token specified in
the call is not in a valid state. The system rejects the
service call.

Action: Check the calling program for a probable
coding error, such as attempting to perform a Pause or
Transfer using a pause element token that has already
been used to Pause or Transfer by another unit of
work. Correct the program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The system release
does not support this service. The system rejects the
service call.

Action: Run the program on a system that supports
the service.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling program is not in
primary ASC mode, which this service requires. The
system rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

52 (34) IEA_ALREADY_SUSPENDED Meaning: The pause element was already paused.

Action: Check the calling program for a probable
coding error and correct the program and rerun it.

60 (3C) IEA_AUTH_TOKEN Meaning: Program error. The caller was in Problem
state or key 8, but the pause element token was
allocated with
pause_element_auth_level=IEA_AUTHORIZED. The
system rejects the service call.

Action: Program error. The specified pause element
token is not valid. The system rejects the service call.

64 (40) IEA_PE_NOT_HOME Meaning: Program error. The pause element token
was for a pause element allocated with
pause_element_auth_level=IEA_UNAUTHORIZED to
another address space.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

76 (4C) IEA_ABENDED_47B Meaning: After an SRB received ABEND 47B, it
invoked IEA4PSE2. It is not valid to invoke IEA4PSE2
after receiving ABEND 47B.

Action: Update the calling program to not invoke
IEA4PSE2 after ABEND 47B.

80 (50) IEA_IN_SUSPEND_EXIT Meaning:The suspend exit specified on SUSPEND
with SPTOKEN of an SRB invoked IEA4PSE2. It is not
valid to invoke IEA4PSE2 from a suspend exit.

Action: Update the calling program to not invoke
IEA4PSE2 from a suspend exit.

IEA4PSE2 callable service

Chapter 72. IEA4PSE2 — Pause service 765

Return code in:
Decimal (Hex)

Equate symbol Meaning and Action

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine encountered an
unexpected error. The system rejects this service
request.

Action: Search problem reporting databases for a fix
for the problem. If no fix exists, contact the IBM
Support Center.

IEA4PSE2 callable service

766 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 73. IEA4RLS — Release

Description
Call IEA4RLS service to remove a task that has been paused, or to keep a task
from being paused. Although a pause element can be used multiple times to pause
a task, a pause element token can be used to successfully pause and release a task
only once. Each time a pause element is used, the system generates a new PET to
identify the pause element. The system returns the new updated PET on calls to
the pause and transfer services.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: v When supervisor state and PSW key 0: Task or SRB.

v When problem state, or not PSW key 0: Task.
Cross memory mode: v For auth_level=IEA_UNAUTHORIZED:

PASN=HASN=SASN

v For auth_level=IEA_AUTHORIZED: Any PASN, any
HASN, any SASN

AMODE: 64-bit
ASC mode: Primary mode.
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: May hold the CPU, local or CMS lock.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the calling program's object code with the linkable stub routine
(IEA4CSS from SYS1.CSSLIB), or load the calling program and then call the
service. The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
When the calling program specifies auth_level=IEA_UNAUTHORIZED, the caller
must be in task mode and can only release another task in its home address space.
All pause element tokens (PETs) used when auth_level=IEA_UNAUTHORIZED
must have been obtained using an authorization level of IEA_UNAUTHORIZED.

Input register information
Before calling the Release service, the caller must ensure that the following general
purpose (GPRs) contain the specified information:

© Copyright IBM Corp. 1988, 2016 767

Register
Contents

1 Address of the parameter address list.

13 Address of a 144-byte register save area.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

SYSSTATE AMODE64=YES

CALL IEA4RLS

,(return_code
,auth_level
,target_du_pause_element_token
,target_du_release_code)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A

IEA4RLS callable service

768 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v Length: 4 bytes

Contains the return from the Release service.

,auth_level
Supplied Parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the maximum authorization level that the specified pause element
was allocated with. The calling program can use constants
IEA_UNAUTHORIZED and IEA_AUTHORIZED, defined by IEAASM and
IEAC. The following levels are supported:

Variable Value
(HEX)

Meaning

IEA_UNAUTHORIZED 0 The pause element being released must have been
allocated with auth_level=IEA_UNAUTHORIZED.

IEA_AUTHORIZED 1 The pause element being released must have been
allocated with auth_level=IEA_AUTHORIZED.

,target_du_pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains the pause element token that identifies the pause element used to
pause the task. If the PET identifies a pause element that has not been paused,
the task is paused. However, the value specified in target_du_release_code is
returned to the caller of pause.

,target_du_release_code
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Contains the release code returned to the caller of pause or transfer service that
used or will use the same PET to pause a task. If your program is not using
this code for communication, set this field to zero.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and the
return_code parameter contain a hexadecimal return code.

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

00 (00)

IEA_SUCCESS

Meaning: Successful completion.

Action: None.

IEA4RLS callable service

Chapter 73. IEA4RLS — Release 769

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

04 (04)

IEA_PE_TOKEN_BAD

Meaning: The specified pause element token is not valid.
The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

08 (08)

IEA_PE_TOKEN_STALE

Meaning: The specified pause element token is stale; that
is, it was valid but has been used on the Pause or Transfer
service. This service requires the updated PET be returned
on Pause or Transfer.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

16 (10)

IEA_SLEEP_DISRUPTED

Meaning: RTM has ended the task; no release is necessary.

Action: None.

20 (14)

IEA_SPACE_TERMINATING

Meaning: The address space that contains the task is
terminating; no release is necessary.

Action: None.

24 (18)

IEA_LOCK_HELD

Meaning: Program error. The caller is holding one or more
locks; no locks must be held. The system rejects the service
call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

32 (20)

IEA_PE_BAD_STATE

Meaning: Program error. The pause element associated
with the pause element token specified is not valid or has
already been prereleased.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

36 (24)

IEA_UNSUPPORTED_MVS_RELEASE

Meaning: Environmental error. The system release does
not support this service. The system rejects the service call.

Action: Run the program on a system that supports the
service.

40 (28)

IEA_INVALID_AUTHCODE

Meaning: Program error. The auth_level value specified in
the call is not valid. The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

44 (2C)

IEA_INVALID_MODE

Meaning: Program error. The calling program is not in
primary ASC mode, which this service requires. The
system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

60 (3C)

IEA_AUTH_TOKEN

Meaning: Program error. The caller specified
auth_level=UNAUTHORIZED, but the pause element
token was allocated with auth_level=AUTHORIZED. The
system rejects the service call.

Action: Program error. The specified pause element token
is not valid. The system rejects the service call.

IEA4RLS callable service

770 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return code in:
Decimal (Hex)
Equate symbol

Meaning and Action

64 (40)

IEA_PE_NOT_HOME

Meaning: Program error. The caller specified
auth_level=UNAUTHORIZED, but the pause element
token was for a pause element allocated to another
address.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

4095 (FFF)

IEA_UNEXPECTED_ERROR

Meaning: This service routine encountered an unexpected
error. The system rejects this service request.

Action: Contact IBM support.

IEA4RLS callable service

Chapter 73. IEA4RLS — Release 771

IEA4RLS callable service

772 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 74. IEA4RLS2 — Release

Description
Call IEA4RLS2 service to remove a task or SRB that has been paused, or to keep a
task or SRB from being paused.

Although a pause element can be used multiple times to pause a task or SRB, a
pause element token can be used to successfully pause and release a task or SRB
only once. Each time a pause element is used, the system generates a new PET to
identify the pause element. The system returns the new updated PET on calls to
the pause and transfer services.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– Working with an IEA_AUTHORIZED pause element,
supervisor state and PSW key 0-7.

– Working with an IEA_UNAUTHORIZED pause
element, problem state and any PSW key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: Any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=HASN=SASN
AMODE: 64-bit
ASC mode: Primary mode.
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: v For LINKAGE=BRANCH: The CPU, CMS, or local locks

may be held.

v For LINKAGE=SVC: No locks may be held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the object code of the calling program with the linkable stub routine
(IEA4CSS from SYS1.CSSLIB) or load the calling program and then call the service.
The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

© Copyright IBM Corp. 1988, 2016 773

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

Release cannot be used by tasks that are higher in the task tree than the cross
memory resource owning task (the top, or first, job step task in the address space).

Input register information
Before calling the Release service, the caller must ensure that the following general
purpose (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Address of a 144-byte register save area.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

SYSSTATE AMODE64=YES

IEA4RLS2 callable service

774 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

CALL IEA4RLS2

,(return_code
,target_du_pause_element_token
,target_du_release_code
,linkage)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return from the Release service.

,target_du_pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains the pause element token that identifies the pause element used to
pause a task or SRB. If the PET identifies a pause element that has not been
paused, the task is paused. However, the value specified in
target_du_release_code is returned to the caller of pause.

,target_du_release_code
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Contains the release code returned to the caller of pause or transfer service that
used or will use the same PET to pause a task or SRB. If the program is not
using this code for communication, set this field to zero.

linkage
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how the Release service routine is to be invoked. The following
options are supported:

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_SVC 0 The Release service routine will be invoked by
an SVC linkage. This option can be used
when in non-cross memory task mode, in any
key, and either problem state or supervisor
state.

IEA4RLS2 callable service

Chapter 74. IEA4RLS2 — Release 775

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_BRANCH 1 The Release service routine will be invoked by
a branch instruction. The caller must be in
both key 0 and supervisor state. This option
must be selected when in SRB mode.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and the
return_code parameter contain a hexadecimal return code.

Return code in:
Decimal (Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None.

04 (04) IEA_PE_TOKEN_BAD Meaning: The specified pause element token is not
valid. The system rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element token is stale;
that is, it was valid but has been used on the Pause or
Transfer service. This service requires the updated
PET returned on Pause or Transfer.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

16 (10) IEA_SLEEP_DISRUPTED Meaning: RTM has terminated the task or SRB; no
release is necessary.

Action: None

20 (14) IEA_SPACE_TERMINATING Meaning: The address space that contains the task or
SRB is terminating; no release is necessary.

Action: None

24 (18) IEA_LOCK_HELD Meaning: Program error. The caller is holding one or
more locks; other than the local lock, CMS, or CPU
lock, no locks may be held. The system rejects the
service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

32 (20) IEA_PE_BAD_STATE Meaning: Program error. The pause element
associated with the pause element token specified is
invalid or has already been prereleased.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The system release
does not support this service. The system rejects the
service call.

Action: Run the program on a system that supports
the service.

IEA4RLS2 callable service

776 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return code in:
Decimal (Hex)

Equate symbol Meaning and Action

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling program is not in
primary ASC mode, which this service requires. The
system rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

60 (3C) IEA_AUTH_TOKEN Meaning: Program error. The caller was in Problem
state or key 8, but the pause element token was
allocated with
pause_element_auth_level=IEA_AUTHORIZED. The
system rejects the service call.

Action: Program error. The specified pause element
token is not valid. The system rejects the service call.

64 (40) IEA_PE_NOT_HOME Meaning: Program error. The pause element token
was for a pause element allocated with
pause_element_auth_level=IEA_UNAUTHORIZED to
another address space.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine encountered an
unexpected error. The system rejects this service
request.

Action: Search problem reporting databases for a fix
for the problem. If no fix exists, contact the IBM
Support Center.

IEA4RLS2 callable service

Chapter 74. IEA4RLS2 — Release 777

IEA4RLS2 callable service

778 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 75. IEA4RPI — Retrieve_Pause_Element_Information
service

Description
Call Retrieve_Pause_Element_Information to get information about a pause
element. The information returned includes:
v The authorization level of the pause element
v The address space that currently owns the pause element
v The current state (reset, prereleased, paused, or released) of the pause element
v If the state of the pause element is prereleased or released, the release code of

the pause element

An authorized program can use Retrieve_Pause_Element_Information to test the
validity of a pause element passed by an unauthorized program. The authorized
program can do this to ensure that it does not perform any operation, such as
releasing the pause element, unless the unauthorized program is also able to
perform the same operation.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: v When supervisor state and PSW key 0: Task or SRB.

v When problem state, or not PSW key 0: Task.
Cross memory mode: v When supervisor state and PSW key 0: Any PASN, any

HASN, any SASN

v When problem state, or not PSW key 0:
PASN=HASN=SASN

AMODE: 64-bit
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the object code of calling program with the linkable stub routine
(IEA4CSS from SYS1.CSSLIB), or load the calling program and then call the
service. The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
None.

© Copyright IBM Corp. 1988, 2016 779

Input register information
Before calling the Retrieve_Pause_Element_Information service, the caller does not
need to place any information into any register, unless using it in register notation
for the parameters, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

SYSSTATE AMODE64=YES

CALL IEA4RPI

,(return_code
,auth_level
,pause_element_token
,authorization
,owner
,state
,release_code)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer

IEA4RPI callable service

780 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Retrieve_Pause_Element_Information
service.

,auth_level
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the caller's authorization level. The following levels are supported:
IEAASM and IEAC define constants IEA_UNAUTHORIZED and
IEA_AUTHORIZED, which can be used by the calling program.

Variable Value (hexadecimal) Meaning

IEA_UNAUTHORIZED 0 The caller is not key 0 and supervisor state.

IEA_AUTHORIZED 1 The caller is both key 0 and supervisor state.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

A pause element token that identifies the pause element for which information
will be returned. You can obtain the PET from the Allocate_Pause_Element
service.

,authorization
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The authorization level of the creator of the pause element specified by the
input PET.

One of the following values:

IEAASM and IEAC defined constants Value (hexadecimal) Meaning

IEA_UNAUTHORIZED 0 The caller is not key 0 and supervisor
state.

IEA_AUTHORIZED 1 The caller is not key 0 and supervisor
state.

IEA_UNAUTHORIZED +
IEA_CHECKPOINTOK

2 Unauthorized PET that can tolerate the
pause elements' not being restored
upon a restart after a checkpoint.

IEA_AUTHORIZED +
IEA_CHECKPOINTOK

3 Authorized PET that can tolerate the
pause elements' not being restored
upon a restart after a checkpoint.

,owner
Returned parameter
v Type: Character string

IEA4RPI callable service

Chapter 75. IEA4RPI — Retrieve_Pause_Element_Information service 781

v Character Set: N/A
v Length: 8 bytes

The Stoken of the address space that currently owns the pause element
specified by the input PET.

,state
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The state of the pause element specified by the input PET.

Note: The value returned is the state at the time the service obtained it. The
state might have changed after it was obtained.

State Constant
Hexadecimal
(Decimal)

Meaning

IEA4_PET_PRERELEASED
1
(1)

The PE was released before any task or SRB was suspended
on it, and no task or SRB has attempted to pause it.

IEA4_PET_RESET
2
(2)

The PE is not being used to make any task or SRB
nondispatchable. If the PE is used in an attempt to pause
the current task or SRB, the task or SRB will be made
nondispatchable.

IEA4_PET_RELEASED
40
(64)

The task RB or SRB is currently dispatchable, but control
has not been returned to the task or SRB following a call to
the Pause or Transfer service.

A call to the Release or Transfer service has released the
task or SRB. In either case, control has not been returned to
the caller of the Pause or Transfer service. The system has
not transited the PE into the RESET state.

IEA4_PET_PAUSED
80
(128)

A task RB or SRB is currently nondispatchable. Its
dispatchability is controlled by the PE.

,release_code
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

The release code is specified by the issuer of the release service, which can
release the task or SRB from the paused condition.

Note: The returned value is random if the state parameter is not
IEA4_PET_RELEASED or IEA4_PET_PRERELEASED.

ABEND codes
None.

IEA4RPI callable service

782 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return codes
When the service returns control to your program, GPR 15 contains one of the
following return codes:

Return code
in: Decimal
(Hex)

Equate symbol
Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None.

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified pause
element token is not valid. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element token
is stale; that is, it was valid but has been used
on the Pause or Transfer service. This service
requires the updated PET returned on Pause
or Transfer.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

24 (18) IEA_LOCK_HELD Meaning: Program error. The caller is holding
one or more locks; no locks must be held. The
system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Run the program on a system that
supports the service.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling program
is not in primary ASC mode, which this
service requires. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

60 (3C) IEA_AUTH_TOKEN Meaning: Program error. The caller specified
an unauthorized auth_level type, but a pause
element token allocated with an authorized
auth_level type was encountered. The system
rejects the service call.

Action: Program error. The specified pause
element token is not valid. The system rejects
the service call.

64 (40) IEA_PE_NOT_HOME Meaning: Program error. The caller specified
an unauthorized auth_level type, but a pause
element token for a pause element allocated
to another address space was specified.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

IEA4RPI callable service

Chapter 75. IEA4RPI — Retrieve_Pause_Element_Information service 783

Return code
in: Decimal
(Hex)

Equate symbol
Meaning and Action

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine encountered an
unexpected error. The system rejects this
service request.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

IEA4RPI callable service

784 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 76. IEA4RPI2 — Retrieve_Pause_Element_Information
service

Description
Call Retrieve_Pause_Element_Information to get information about a pause
element. The information returned includes:
v The authorization level of the pause element
v The address space that currently owns the pause element
v The current state (reset, prereleased, paused, or released) of the pause element
v If the state of the pause element is prereleased or released, the release code of

the pause element

An authorized program can use Retrieve_Pause_Element_Information to test the
validity of a pause element passed by an unauthorized program. The authorized
program can do this to ensure that it does not perform any operation, such as
releasing the pause element, unless the unauthorized program is also able to
perform the same operation.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– Working with an IEA_AUTHORIZED pause element,
supervisor state and PSW key 0-7.

– Working with an IEA_UNAUTHORIZED pause
element, problem state and any PSW key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: Any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=HASN=SASN
AMODE: 64-bit
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the object code of calling program with the linkable stub routine
(IEA4CSS from SYS1.CSSLIB), or load the calling program and then call the
service. The high-level language (HLL) definitions for the callable service are:

© Copyright IBM Corp. 1988, 2016 785

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

Input register information
Before calling the Retrieve_Pause_Element_Information service, the caller does not
need to place any information into any register, unless using it in register notation
for the parameters, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

SYSSTATE AMODE64=YES

IEA4RPI2 callable service

786 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

CALL IEA4RPI2

,(return_code
,pause_element_token
,linkage
,owner
,current_stoken
,authorization
,state
,release_code)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Retrieve_Pause_Element_Information
service.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

A pause element token that identifies the pause element for which information
will be returned. You can obtain the PET from the Allocate_Pause_Element
service.

linkage
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The calling program can use the constants defined in IEAASM or IEAC, as
appropriate. Add the specified values together to achieve the desired results.
For example, to specify linkage branch and untrusted PET, specify
IEA_LINKAGE_BRANCH + IEA_UNTRUSTED_PET.

The following options are supported:

Table 73. Linkage variables

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_SVC 0 The
Retrieve_Pause_Element_Information
service routine will be invoked by an
SVC linkage. This option can be used
when in non-cross memory task mode,
in any key, and in either problem state
or supervisor state.

IEA4RPI2 callable service

Chapter 76. IEA4RPI2 — Retrieve_Pause_Element_Information service 787

Table 73. Linkage variables (continued)

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_BRANCH 1 The
Retrieve_Pause_Element_Information
service routine will be invoked by a
branch instruction. The caller must be
in both key 0 and supervisor state.
This option must be selected when in
SRB mode.

Table 74. Untrusted attribute linkage variable

Variable Value (hexadecimal) Meaning

IEA_UNTRUSTED_PET 2 The
Retrieve_Pause_Element_Information
service routine is to validate that the
input PET is allowed to be used by an
unauthorized program. An authorized
program should use this if it is
validating a PET provided to it by an
unauthorized caller.

,owner
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 8 bytes

The Stoken of the address space that currently owns the pause element
specified by the input PET.

,current_stoken
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 8 bytes

If the value returned in state is IEA_PET_PAUSED, The stoken of the home
address space of the task or SRB which is paused by the specified pause
element. If the value in state is not IEA_PET_PAUSED, the information
returned in this parameter is undefined.

,authorization
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The authorization level of the creator of the pause element specified by the
input PET.

One of the following values:

IEAASM and IEAC defined constants Value (hexadecimal) Meaning

IEA_UNAUTHORIZED 0 The caller is not key 0 and supervisor
state.

IEA_AUTHORIZED 1 The caller is not key 0 and supervisor
state.

IEA4RPI2 callable service

788 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IEAASM and IEAC defined constants Value (hexadecimal) Meaning

IEA_UNAUTHORIZED +
IEA_CHECKPOINTOK

2 Unauthorized PET that can tolerate the
pause elements' not being restored
upon a restart after a checkpoint.

IEA_AUTHORIZED +
IEA_CHECKPOINTOK

3 Authorized PET that can tolerate the
pause elements' not being restored
upon a restart after a checkpoint.

,state
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The state of the pause element specified by the input PET.

Note: The value returned is the state at the time the service obtained it. The
state might have changed after it was obtained.

State Constant
Hexadecimal
(Decimal)

Meaning

IEA4_PET_PRERELEASED
1
(1)

The PE was released before any task or SRB was suspended
on it, and no task or SRB has attempted to pause it.

IEA4_PET_RESET
2
(2)

The PE is not being used to make any task or SRB
nondispatchable. If the PE is used in an attempt to pause
the current task or SRB, the task or SRB will be made
nondispatchable.

IEA4_PET_RELEASED
40
(64)

The task RB or SRB is currently dispatchable, but control
has not been returned to the task or SRB following a call to
the Pause or Transfer service.

A call to the Release or Transfer service has released the
task or SRB. In either case, control has not been returned to
the caller of the Pause or Transfer service. The system has
not transited the PE into the RESET state.

IEA4_PET_PAUSED
80
(128)

A task RB or SRB is currently nondispatchable. Its
dispatchability is controlled by the PE.

,release_code
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

The release code is specified by the issuer of the release service, which can
release the task or SRB from the paused condition.

Note: The returned value is random if the state parameter is not
IEA4_PET_RELEASED or IEA4_PET_PRERELEASED.

ABEND codes
None.

IEA4RPI2 callable service

Chapter 76. IEA4RPI2 — Retrieve_Pause_Element_Information service 789

Return codes
When the service returns control to your program, GPR 15 contains one of the
following return codes:

Return code in:
Decimal (Hex)

Equate symbol
Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None.

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified pause element
token is not valid. The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element token is stale; that
is, it was valid but has been used on the Pause or Transfer
service. This service requires the updated PET returned on
Pause or Transfer.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

24 (18) IEA_LOCK_HELD Meaning: Program error. The caller is holding one or more
locks; no locks must be held. The system rejects the service
call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The system release does
not support this service. The system rejects the service call.

Action: Run the program on a system that supports the
service.

40 (28) IEA_INVALID_AUTHCODE Meaning: Program error. The pause_element_auth_level
value specified in the call is not valid. The system rejects
the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling program is not in
primary ASC mode, which this service requires. The
system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

60 (3C) IEA_AUTH_TOKEN Meaning:Program error. The caller was in Problem state or
key 8, or specified IEA_UNTRUSTED_PET, but the pause
element token was allocated with
pause_element_auth_level=IEA_AUTHORIZED. The
system rejects the service call.

Action: Program error. The specified pause element token
is not valid. The system rejects the service call.

64 (40) IEA_PE_NOT_HOME Meaning: Program error. The pause element token was for
a pause element allocated with
pause_element_auth_level=IEA_UNAUTHORIZED to
another address space.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

IEA4RPI2 callable service

790 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return code in:
Decimal (Hex)

Equate symbol
Meaning and Action

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine encountered an unexpected
error. The system rejects this service request.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

IEA4RPI2 callable service

Chapter 76. IEA4RPI2 — Retrieve_Pause_Element_Information service 791

IEA4RPI2 callable service

792 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 77. IEA4TPE — Test_Pause_Element service

Description
Call Test_Pause_Element to test a pause element and determine its state. If the
state is prereleased or released, the release code of the pause element also is
returned.

To ensure minimal overhead when you use the service, Test_Pause_Element
establishes no recovery. You are responsible for supplying any needed recovery to
handle errors that occur because of the incorrect input pause element tokens or call
state errors.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: v When supervisor state and PSW key 0: Task or SRB.

v When problem state, or not PSW key 0: Task.
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: Must be in the primary address space and addressable by

the caller.

Programming requirements
Either link the object code of the calling program with the linkable stub routine
(IEA4CSS from SYS1.CSSLIB), or load the calling program and then call the
service. The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
None.

Input register information
Before calling the Test_Pause_Element service, the caller does not have to place any
information into any register, unless using the input register in register notation for
the parameters, or using the input register as a base register.

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2016 793

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

SYSSTATE AMODE64=YES

CALL IEA4TPE

,(return_code
,pause_element_token
,state
,release_code)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Test_Pause_Element service.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

IEA4TPE callable service

794 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

A pause element token that identifies the pause element for which information
is to be returned. You can obtain the PET from the Allocate_Pause_Element
service.

,state
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The state of the pause element specified by the input PET.

Note: The value returned is the state at the time the service obtained it. The
state might have changed after it was obtained.

State Constant
Hexadecimal
(Decimal)

Meaning

IEA4_PET_PRERELEASED
1
(1)

The PE was released before any task or SRB was suspended
on it, and no task or SRB has attempted to pause it.

IEA4_PET_RESET
2
(2)

The PE is not being used to make any task or SRB
nondispatchable. If the PE is used in an attempt to pause
the current task or SRB, the task or SRB is made
nondispatchable.

IEA4_PET_RELEASED
40
(64)

The task RB or SRB is currently dispatchable, but control
has not been returned to the task or SRB following a call to
the Pause or Transfer service.

A call to the release or transfer service has released the task
or SRB. In either case, control has not been returned to the
caller of the pause or transfer service. The system has not
change the PE into the RESET state.

IEA4_PET_PAUSED
80
(128)

A task RB or SRB is currently nondispatchable. Its
dispatchability is controlled by the PE.

,release_code
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

The release code is specified by the issuer of the Release service, which
released the task or SRB from the paused condition.

Note: The returned value is random if the state parameter is not
IEA4_PET_RELEASED or IEA4_PET_PRERELEASED.

ABEND codes
None.

Return codes
When the service returns control to your program, GPR 15 contains one of the
following return codes:

IEA4TPE callable service

Chapter 77. IEA4TPE — Test_Pause_Element service 795

Return
code in:
Decimal
(Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None.

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified pause element
token is not valid. The system rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element token is stale; that
is, it was valid but has been used on the Pause or
Transfer service. This service requires the updated PET
returned on Pause or Transfer.

Action: Check the calling program for a probable coding
error. Correct the program and rerun it.

IEA4TPE callable service

796 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 78. IEA4XFR — Transfer service

Description
Call IEA4XFR service to release a paused task, and, when possible, give the task
immediate control. This service can also, optionally, pause the task under which
the transfer request is made. If the caller does not request that its task be paused,
the caller's task remains dispatchable.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: v When supervisor state and PSW key 0: Task or SRB.

v When problem state, or not PSW key 0: Task.
Cross memory mode: v For auth_level=IEA_UNAUTHORIZED:

PASN=HASN=SASN

v For auth_level=IEA_AUTHORIZED: Any PASN, any
HASN, any SASN

AMODE: 64-bit
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts.
Locks: When supervisor state and PSW key 0 and a

current_du_pause_element_token of 16 bytes of binary zeros
are specified, the local lock may be held. Otherwise, no
locks may be held.

Control parameters: Must be in the primary address space and addressable by
the caller.

Programming requirements
Either link the object code of the calling program with the linkable stub routine
(IEA4CSS from SYS1.CSSLIB), or load the calling program and then call the
service. The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
When the calling program specifies auth_level=IEA_UNAUTHORIZED, the caller
must be in task mode and can only transfer to another task in its home address
space. All pause element tokens (PETs) used when
auth_level=IEA_UNAUTHORIZED must have been obtained using an
authorization level of IEA_UNAUTHORIZED.

Input register information
Before calling the Transfer service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

© Copyright IBM Corp. 1988, 2016 797

Register
Contents

1 Address of the parameter address list.

13 Address of a 144-byte register save area.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

SYSSTATE AMODE64=YES

CALL IEA4XFR

,(return_code
,auth_level
,current_du_pause_element_token
,updated_pause_element_token
,current_du_release_code
,target_du_pause_element_token
,target_du_release_code)

Parameters
The parameters are explained as follows:

return_code
Returned parameter

IEA4XFR callable service

798 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the transfer service.

,auth_level
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the maximum authorization level of the pause element being
deallocated. The calling program can use constants IEA_UNAUTHORIZED
and IEA_AUTHORIZED, defined by IEAASM and IEAC. The following levels
are supported:

Variable Value (HEX) Meaning

IEA_UNAUTHORIZED 0 The pause elements must have been
allocated with
auth_level=_UNAUTHORIZED.

IEA_AUTHORIZED 1 The pause elements must have been
allocated with auth_level=_AUTHORIZED.

,current_du_pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains a pause element token that identifies the pause element used to
pause the current task. When a PET is used on a call to the pause service, it
cannot be reused on a second call to pause or as a
current_du_pause_element_token on transfer. A new PET is returned to
updated_pause_element_token. The new PET now properly defines the pause
element and should be used the next time when a pause, transfer, release, or
deallocate_pause_element request is using the same pause element.

If the value specified is 16-bytes of binary zeros, the current task will not be
paused. The updated_pause_element_token and current_du_release_code are
unpredictable.

CAUTION:
Do not specify the same PET for both current_du_pause_element_token and
target_pause_element_token.

,updated_pause_element_token
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains a new pause element token that identifies the pause element
originally identified by the PET specified in current_du_pause_element_token.
The PET originally specified in current_du_pause_element_token cannot be
reused after a successful call to pause or transfer service.

IEA4XFR callable service

Chapter 78. IEA4XFR — Transfer service 799

If you set the current_du_pause_element_token to zeros, the contents of
updated_pause_element_token are unpredictable.

,current_du_release_code
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Contains the release code set by the issuer of the release or transfer service that
released the current task from the paused condition.

If you set the current_du_pause_element_token to zero, the contents are
unpredictable.

,target_du_pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains a pause element token that identifies the pause element to release the
target task. Any PET that specifies a pause element not currently being used to
pause a task is valid. When a PET for a previously released pause element is
used to try to pause a task, the task is not paused; however, the value specified
in target_du_release_code will still be returned to the caller of pause or transfer
service.

If the task was paused and is now dispatchable, the task will immediately be
given control on the current processor.

CAUTION:
Do not use the same PET for both current_du_pause_element_token and
target_du_pause_element_token.

,target_du_release_code
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Contains the release code returned to the caller of the pause or transfer service
that used (or will use) the same PET to pause a task.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and the
return_code parameter contain a hexadecimal return code.

Return Code
in: Decimal
(Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None.

IEA4XFR callable service

800 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return Code
in: Decimal
(Hex)

Equate symbol Meaning and Action

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified
pause element token is not valid. The
system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element
token is stale; that is, it was valid but
has been used on the Pause or Transfer
service. This service requires the
updated PET returned on Pause or
Transfer.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

12 (0C) IEA_DUPLICATE_PAUSE Meaning: The work unit has already
been paused using the specified pause
element token. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

16 (10) IEA_SLEEP_DISRUPTED Meaning: RTM has terminated the task
or SRB; no release is necessary.

Action: None

20 (14) IEA_SPACE_TERMINATING Meaning: The address space that
contains the task or SRB is terminating;
no release is necessary.

Action: None

24 (18) IEA_LOCK_HELD Meaning: Program error. The caller is
holding one or more locks; no locks
must be held. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

32 (20) IEA_PE_BAD_STATE Meaning: Program error. The pause
element associated with the pause
element token specified in the call is not
in a valid state. The system rejects the
service call.

Action: Check the calling program for a
probable coding error, such as
attempting to perform a Pause or
Transfer using a pause element token
that has already been used to Pause or
Transfer by another unit of work.
Correct the program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The
system release does not support this
service. The system rejects the service
call.

Action: Run the program on a system
that supports the service.

IEA4XFR callable service

Chapter 78. IEA4XFR — Transfer service 801

Return Code
in: Decimal
(Hex)

Equate symbol Meaning and Action

40 (28) IEA_INVALID_AUTHCODE Meaning: Program error. The auth_level
value specified in the call is not valid.
The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling
program is not in primary ASC mode,
which this service requires. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

52 (34) IEA_ALREADY_SUSPENDED Meaning: The pause element was
already paused.

Action: Check the calling program for a
probable coding error and correct the
program and rerun it.

60 (3C) IEA_AUTH_TOKEN Meaning: Program error. The caller
specified auth_level=UNAUTHORIZED,
but the pause element token was
allocated with
auth_level=AUTHORIZED. The system
rejects the service call.

Action: Program error. The specified
pause element token is not valid. The
system rejects the service call.

64 (40) IEA_PE_NOT_HOME Meaning: Program error. The caller
specified auth_level=UNAUTHORIZED,
but the pause element token was for a
pause element allocated to another
address.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

68 (44) IEA_XFER_TO_SELF Meaning: Program error. The specified
current_du_pause_element_token and
target_du_pause_element_token are the
same.

Action: Check the calling program for a
probable coding error. Correct the
program and rerun it.

72 (48) IEA_XFER_FAILED Meaning: The transfer failed, and the
current_du_pause_element_token is no
longer useable.

Action: Reissue the transfer request
using the
updated_du_pause_element_token.
Deallocate the
current_du_pause_element_token.

IEA4XFR callable service

802 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return Code
in: Decimal
(Hex)

Equate symbol Meaning and Action

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine
encountered an unexpected error. The
system rejects this service request.

Action: Search problem reporting
databases for a fix for the problem. If no
fix exists, contact the IBM Support
Center.

IEA4XFR callable service

Chapter 78. IEA4XFR — Transfer service 803

IEA4XFR callable service

804 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 79. IEA4XFR2 — Transfer service

Description
Call IEA4XFR2 service to release a paused task or SRB, and, when possible, give
the task or SRB immediate control. This service can also, optionally, pause the task
or SRB under which the transfer request is made. If the caller does not request that
its task or SRB be paused, the caller's task or SRB remains dispatchable.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For LINKAGE=BRANCH, supervisor state and PSW key

0.

v For LINKAGE=SVC:

– Working with an IEA_AUTHORIZED pause element,
supervisor state and PSW key 0-7.

– Working with an IEA_UNAUTHORIZED pause
element, problem state and any PSW key.

Dispatchable unit mode: v For LINKAGE=BRANCH: Task or SRB

v For LINKAGE=SVC: Task
Cross memory mode: v For LINKAGE=BRANCH: Any PASN, any HASN, any

SASN

v For LINKAGE=SVC: PASN=HASN=SASN
AMODE: 64-bit
ASC mode: Primary mode.
Interrupt status: Enabled for I/O and external interrupts
Locks: If LINKAGE=BRANCH and a

current_du_pause_element_token of 16 bytes of binary zeros
is specified, the local lock may be held. Otherwise, no locks
may be held.

Control parameters: Must be in the primary address space and addressable by
the caller.

Programming requirements
Either link the calling program's object code with the linkable stub routine
(IEA4CSS from SYS1.CSSLIB) or load the calling program and then call the service.
The high-level language (HLL) definitions for the callable service are:

HLL Definition Description

IEAASM 390 Assembler declarations

IEAC C/390 and C++/390 declarations

Restrictions
Pause elements that are created with
pause_element_auth_level=IEA_UNAUTHORIZED may only be used by callers in
task mode and can only be released from a task in their home address space.

© Copyright IBM Corp. 1988, 2016 805

Transfer cannot be used by tasks that are higher in the task tree than the cross
memory resource owning task (the top, or first, job step task in the address space).

Input register information
Before calling the Transfer service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of the parameter address list.

13 Address of a 144-byte register save area.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Syntax Description

SYSSTATE AMODE64=YES

CALL IEA4XFR2

,(return_code
,current_du_pause_element_token
,updated_pause_element_token
,current_du_release_code
,target_du_pause_element_token
,target_du_release_code
,linkage)

IEA4XFR2 callable service

806 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Transfer service.

,current_du_pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains a pause element token that identifies the pause element that is being
or will be used to pause a task or SRB. When a PET is used on a call to the
pause service, it cannot be reused on a second call to pause or as a
current_du_pause_element_token on transfer. A new PET is returned to
update_pause_element_token. The new PET now properly defines the pause
element and should be used the next time when a pause, transfer, release, or
deallocate_pause_element request is using the same pause element.

If the value specified is 16-bytes of binary zeros, the current task or SRB will
not be paused. The updated_pause_element_token and
current_du_release_code are unpredictable.

CAUTION:
Do not specify the same PET for both current_du_pause_element_token and
target_pause_element_token.

,updated_pause_element_token
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains a new pause element token that identifies the pause element
originally identified by the PET specified in current_du_pause_element_token.
The PET originally specified in current_du_pause_element_token cannot be
reused after a successful call to Pause or Transfer.

If you set the current_du_pause_element_token to zeros, the contents of
updated_pause_element_token are unpredictable.

,current_du_release_code
Returned parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Contains the release code set by the issuer of the release or transfer service that
released the current task or SRB from the paused condition.

IEA4XFR2 callable service

Chapter 79. IEA4XFR2 — Transfer service 807

If you set the current_du_pause_element_token to zero, the contents are
unpredictable.

,target_du_pause_element_token
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 16 bytes

Contains a pause element token that identifies a pause element that is being or
will be used to pause a task or SRB. If the task or SRB is paused, it will be
released, and, if possible, be given control. If the task or SRB is not paused
using the specified pause element, it will not be paused when an attempt to
pause is made. In either case the task or SRB will be returned the value
specified in target_release_code.

CAUTION:
Do not use the same PET for both current_du_pause_element_token and
target_du_pause_element_token.

,target_du_release_code
Supplied parameter
v Type: Character string
v Character Set: N/A
v Length: 3 bytes

Contains the release code returned to the caller of the pause or transfer service
used (or will use) the PET specified in target_du_pause_element_token to
pause a task or SRB.

linkage
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how the Transfer service routine is to be invoked. The following
options are supported:

Variable Value (hexadecimal) Meaning

IEA_LINKAGE_SVC 0 The Transfer service routine will be invoked
by an SVC linkage. This option can be used
when in non-cross memory task mode, in any
key, and either problem state or supervisor
state.

IEA_LINKAGE_BRANCH 1 The Transfer service routine will be invoked
by a branch instruction. The caller must be in
both key 0 and supervisor state. This option
must be selected when in SRB mode.

ABEND codes
None.

Return codes
When the service returns control to the resource manager, GPR 15 and the
return_code parameter contain a hexadecimal return code.

IEA4XFR2 callable service

808 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return Code in:
Decimal (Hex)

Equate symbol Meaning and Action

00 (00) IEA_SUCCESS Meaning: Successful completion.

Action: None

04 (04) IEA_PE_TOKEN_BAD Meaning: Program error. The specified pause element
token is not valid. The system rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

08 (08) IEA_PE_TOKEN_STALE Meaning: The specified pause element token is stale;
that is, it was valid but has been used on the Pause or
Transfer service. This service requires the updated
PET returned on Pause or Transfer.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

12 (0C) IEA_DUPLICATE_PAUSE Meaning: The work unit has already been paused
using the specified pause element token. The system
rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

16 (10) IEA_SLEEP_DISRUPTED Meaning: RTM has terminated the task or SRB; no
release is necessary.

Action: None

20 (14) IEA_SPACE_TERMINATING Meaning: The address space that contains the task or
SRB is terminating; no release is necessary.

Action: None

24 (18) IEA_LOCK_HELD Meaning: Program error. If a
current_du_pause_element_token of 16 bytes of binary
zeros is specified, one or more locks other than the
local lock are held. Otherwise, one or more locks are
held. The system rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

32 (20) IEA_PE_BAD_STATE Meaning: Program error. The pause element
associated with the pause element token specified in
the call is not in a valid state. The system rejects the
service call.

Action: Check the calling program for a probable
coding error, such as attempting to perform a Pause or
Transfer using a pause element token that has already
been used to Pause or Transfer by another unit of
work. Correct the program and rerun it.

36 (24) IEA_UNSUPPORTED_MVS_RELEASE Meaning: Environmental error. The system release
does not support this service. The system rejects the
service call.

Action: Run the program on a system that supports
the service.

44 (2C) IEA_INVALID_MODE Meaning: Program error. The calling program is not in
primary ASC mode, which this service requires. The
system rejects the service call.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

IEA4XFR2 callable service

Chapter 79. IEA4XFR2 — Transfer service 809

Return Code in:
Decimal (Hex)

Equate symbol Meaning and Action

52 (34) IEA_ALREADY_SUSPENDED Meaning: The pause element was already paused.

Action: Check the calling program for a probable
coding error and correct the program and rerun it.

60 (3C) IEA_AUTH_TOKEN Meaning: Program error. The caller was in Problem
state or key 8, but the pause element token was
allocated with
pause_element_auth_level=IEA_AUTHORIZED. The
system rejects the service call.

Action: Program error. The specified pause element
token is not valid. The system rejects the service call.

64 (40) IEA_PE_NOT_HOME Meaning: Program error. The pause element token
was for a pause element allocated with
pause_element_auth_level=IEA_UNAUTHORIZED to
another address space.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

68 (44) IEA_XFER_TO_SELF Meaning: Program error. The specified
current_du_pause_element_token and
target_du_pause_element_token are the same.

Action: Check the calling program for a probable
coding error. Correct the program and rerun it.

72 (48) IEA_XFER_FAILED Meaning: The transfer failed, and the
current_du_pause_element_token is no longer usable.

Action: Reissue the transfer request using the
updated_du_pause_element_token. Deallocate the
current_du_pause_element_token.

4095 (FFF) IEA_UNEXPECTED_ERROR Meaning: This service routine encountered an
unexpected error. The system rejects this service
request.

Action: Search problem reporting databases for a fix
for the problem. If no fix exists, contact the IBM
Support Center.

IEA4XFR2 callable service

810 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 80. IEECMDS — Query/remove attached commands

Description
This macro provides the same function as the CMDS operator command. It can be
used to obtain information about MVS commands which are attached or waiting to
be attached in the *MASTER* or CONSOLE address spaces.

It can also be used to remove commands which are waiting. It cannot be used to
cancel commands which are already executing.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state. System PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit addressing mode.
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No Locks may be held.
Control parameters: Must be in the primary address space.

Programming requirements
The calling program may include mapping macro IEEZB889 which can be used to
map the information which is returned in the buffer specified as BUFFER.

Restrictions
The caller cannot be protected by an FRR.

Input register information
Before issuing the IEECMDS macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason Code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

© Copyright IBM Corp. 1988, 2016 811

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14–15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The IEECMDS macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IEECMDS.

IEECMDS

� One or more blanks must follow IEECMDS.

REQUEST=COUNT Default: REQUEST=COUNT

,REQUEST=INFO

,REQUEST=REMOVE

,BUFFER=buffer Required with REQUEST=INFO or REQUEST=REMOVE

buffer: RS-type address or address in register (2) - (12).

,BUFSIZE=bufsize Required with REQUEST=INFO or REQUEST=REMOVE

bufsize: RS-type address or address in register (2) - (12).

,CLASS=class class: RS-type address or address in register (2) - (12).

,CLASS=ANY_CLASS Default: CLASS=ANY_CLASS

,CMD=cmd cmd: RS-type address or address in register (2) - (12)

,CMD=ANY_CMD Default:CMD=ANY_CMD

,ID =id id: RS-type address or address in register (2) - (12)

IEECMDS macro

812 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,ID=ANY_ID Default:: ID=ANY_ID

,JOB=job job: RS-type address or address in register (2) - (12)

,JOB=ANY_JOB Default:: CMD=ANY_JOB

,COUNT=count count: RS-type address or address in register (2) - (12)

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=1

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addrNOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addrNOCHECK)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IEECMDS
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,REQUEST=COUNT
,REQUEST=INFO
,REQUEST=REMOVE

An optional parameter that indicates the type of request. The default is
REQUEST=COUNT.
v REQUEST=COUNT

– Return only the count of commands which meet the search criteria.
– This count is returned for all values of REQUEST, but if

REQUEST=COUNT, no other information is returned.
v REQUEST=INFO

IEECMDS macro

Chapter 80. IEECMDS — Query/remove attached commands 813

– Return information about commands meeting the search criteria.
– The count of matching commands is returned.
– The following information is returned for each command:

- command names
- id numbers
- "waiting or executing" status
- jobname and asid of the command issuer
- date/time of issue/execution

v REQUEST=REMOVE
v Remove commands from the "waiting for execution" status, if they meet the

search criteria.
v The count of matching commands is returned.
v The following information is returned for each removed command:

– command names
– id numbers
– "waiting or executing" status
– jobname and asid of the command issuer
– date/time of issue/execution

Message IEE065I is issued for each removed command. It is directed to the
console that issued the removed command.

,BUFFER=buffer
A required input parameter if REQUEST=INFO or REQUEST=REMOVE is
specified to contain the response.

To code:Specify the RS-type address of address in register (2)-(12), of a
character field.

,BUFSIZE=bufsize
A required input parameter if REQUEST=INFO or REQUEST=REMOVE is
specified to contain the size of the output storage buffer.

To code:Specify the RS-type address of address in register (2)-(12), of a
fullword field.

CLASS=class
CLASS=ANY_CLASS

An optional input parameter that indicates the class of commands to be
processed.

The currently defined classes are:
v Class M1 — commands which are attached to *MASTER*, and may be

essential to clearing a backlog of Class M2 commands.
v Class M2 — ordinary attached commands which run in the *MASTER*

address space.
v Class M3 — only for SEND commands which run in the *MASTER* address

space.
v Class C1 — commands which are attached in CONSOLE, and may be

essential to clearing a backlog of Class C2 commands.
v Class C2 — ordinary attached commands which run in the CONSOLE

address space.
v Class C3 — only for ROUTE commands which run in the CONSOLE

address space.

IEECMDS macro

814 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

The default is ANY_CLASS.

For detailed information about command classes, see the description of
command flooding in z/OS MVS System Commands.

To code:Specify the RS-type address or address in register (2)-(12) of a
4–character field.

CMD=cmd
CMD=ANY_CMD

An optional input parameter that indicates the name of command to be
processed.

The command name must be specified as the full name, not an abbreviation.
This is to conform with the command name returned during the previous
execution of the macro with REQUEST=INFO. The default is ANY_CMD.

To code:Specify the RS-type address or address in register (2)-(12) of an
8–character field.

ID=id
ID=ANY_ID

An optional input parameter that indicates the id number of the command that
had been returned on a previous CMDS INFO command. The default is
ANY_ID.

To code:Specify the RS-type address or address in register (2)-(12) of an
4–character field.

JOB=job
JOB=ANY_JOB

An optional input parameter that indicates the jobname of the job which
issued the commands. The default is ANY_CMD.

To code:Specify the RS-type address or address in register (2)-(12) of an
8–character field.

COUNT=count
An required input parameter that contains the address area that will contain
the number of commands meeting the specified criteria.

To code:Specify the RS-type address or address in register (2)-(12) of an pointer
field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:

IEECMDS macro

Chapter 80. IEECMDS — Query/remove attached commands 815

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 1, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

,list addr
The name of a storage area to contain the parameters. For MF=S MF=E
and MF=M, this can be an RS-type address or an address in register
(1)-(12).

IEECMDS macro

816 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

IBM recommends that you use the modify and execute forms of IEECMDS in
the following order:
1. Use IEECMDS...MF=(M,list-addr,COMPLETE) specifying appropriate

parameters, including all required ones.
2. Use IEECMDS...MF=(M,list-addr,NOCHECK) specifying the parameters that

you want to change.
3. Use IEECMDS...MF=(E,list-addr,NOCHECK) to execute the macro.

ABEND codes
None.

Return codes
Macro IEECMDS provides equate symbols for the return and reason codes.

When the IEECMDS macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes:

Hexadecimal
Return Code

Hexadecimal
Reason Code

Equate Symbol Meaning and Action

00 — Equate Symbol: CMDS_RC_OK

Meaning: Matching commands have been found. In the
case of a REQUEST type of INFO or REMOVE, the output
buffer was sufficient to hold all of the information for the
commands meeting the search criteria.

Action: None

04 — Equate Symbol: CMDS_RC_NOCMDS

Meaning: No commands meet the specified filters.

Action: None

08 — Equate Symbol: CMDS_RC_NOSTOR

Meaning: Insufficient return buffer storage to complete the
query operation.

Action: Refer to the action provided with the specific
reason code.

IEECMDS macro

Chapter 80. IEECMDS — Query/remove attached commands 817

Hexadecimal
Return Code

Hexadecimal
Reason Code

Equate Symbol Meaning and Action

08 04 Equate Symbol: CMDS_RS_SOMECMDS

Meaning: The output buffer is too small to contain all
requested information, but does contain the information for
one or more commands.

If REQUEST=REMOVE, the system has removed only the
commands for which information is returned.

Action: The count of matching commands has been
returned. Adjust the buffer size so that it is at least as large
as the count multiplied by the output size for each entry,
plus the length of the header, and issue the macro again.

The constant CMDS_HEADER_LENGTH represents the
amount of storage required for the buffer header.

The constant CMDS_ENTRY_LENGTH represents the
amount of storage required per command.

These constants are declared in mapping macro IEEZB889.

08 08 Equate Symbol: CMDS_RS_NOCMDS

Meaning: The output buffer is too small to contain the
information for even one command.

If REQUEST=REMOVE, the system has not removed any
commands.

Action: The count of matching commands has been
returned. Adjust the buffer size so that it is at least as large
as the count multiplied by the output size for each entry,
plus the length of the header, and issue the macro again.

The constant CMDS_HEADER_LENGTH represents the
amount of storage required for the buffer header.

The constant CMDS_ENTRY_LENGTH represents the
amount of storage required per command.

These constants are declared in mapping macro IEEZB889.

10 — Equate Symbol: CMDS_RC_INVPL

Meaning: Invalid parameter list.

Action: Refer to the action provided with the specific
reason code

10 04 Equate Symbol: CMDS_RS_INVACRN

Meaning: The acronym in the parameter list was invalid.

Action: Correct the acronym in the parameter list and issue
IEECMDS again.

10 08 Equate Symbol: CMDS_RS_INVADDR

Meaning: An output message is invalid. An ABEND
occurred while trying to access storage at an address
specified in the parameter list, possibly because that
storage is not accessible by the caller, or the storage does
not exist.

Action: Correct the invalid address in the parameter list
and issue IEECMDS again.

IEECMDS macro

818 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Hexadecimal
Return Code

Hexadecimal
Reason Code

Equate Symbol Meaning and Action

10 0C Equate Symbol: CMDS_RS_INVBUFFER

Meaning: The address or length of the buffer in the
parameter list was invalid.

Action: Correct the values of BUFFER or BUFSIZE or both
in the parameter list and issue IEECMDS again.

10 10 Equate Symbol: CMDS_RS_INVLGTH

Meaning: The length of the parameter list is invalid.

Action: Correct the length in the parameter list and issue
IEECMDS again.

10 14 Equate Symbol: CMDS_RS_INVVERS

Meaning: The version specified in the parameter list is
invalid.

Action: Correct the version in the parameter list and issue
IEECMDS again.

10 18 Equate Symbol: CMDS_RS_INVFUNC

Meaning: The REQUEST type specified in the parameter
list is not a valid REQUEST type.

Action: Correct the REQUEST type in the parameter list
and issue IEECMDS again.

10 1C Equate Symbol: CMDS_RS_INVCLASS

Meaning: The CLASS specified in the parameter list is not
a valid CLASS name.

Action: Correct the CLASS in the parameter list and issue
IEECMDS again.

10 20 Equate Symbol: CMDS_RS_INVID

Meaning: The ID specified in the parameter list is not a
valid value. The ID value must be a decimal number in
EBCDIC printable) characters.

Action: Correct the ID in the parameter list and issue
IEECMDS again.

40 — Equate Symbol: CMDS_RS_SYSERR

Meaning: System Error. This return code is for IBM
diagnostic purposes only.

Action: Record the return and reason codes and supply it
to the appropriate IBM support personnel.

40 04 Equate Symbol: CMDS_RS_SYSABEND

Meaning: An ABEND occurred during processing. This
reason code is for IBM diagnostic purposes only.

Action: Record the return and reason codes and supply it
to the appropriate IBM support personnel.

40 08 Equate Symbol: CMDS_RS_SYSERR

Meaning: An error occurred during processing. This reason
code is for IBM diagnostic purposes only.

Action: Record the return and reason codes and supply it
to the appropriate IBM support personnel.

IEECMDS macro

Chapter 80. IEECMDS — Query/remove attached commands 819

IEECMDS macro

820 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 81. IEEQEMCS — Query EMCS console

Description
This macro returns information about EMCS consoles in the system.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state. System PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

Programming requirements
The calling program may include mapping macro IEEZB887 which can be used to
map the information that is returned in the buffer addressed by BUFPTR.

The calling program may also optionally include macro IEEZB888, which contains
the declarations for the reason and return codes used by IEEQEMCS.

Restrictions
None.

Input register information
Before issuing the IEEQEMCS macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

© Copyright IBM Corp. 1988, 2016 821

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
If REQUEST=FULL is specified, the service must read the data space of each
console being reported on. Depending on the number of consoles, this can degrade
performance of the service.

Syntax
The IEEQEMCS macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEEQEMCS.

IEEQEMCS

� One or more blanks must follow IEEQEMCS.

REQUEST=COUNT Default: REQUEST=COUNT

REQUEST=SUMMARY

,BUFPTR=bufptr bufptr: RS-type address or address in register (2) - (12).

,BUFSIZE=bufsize bufsize: RS-type address or address in register (2) - (12).

,TOKEN=token token: RS-type address or address in register (2) - (12).

,RECSIZE=recsize recsize: RS-type address or address in register (2) - (12).

REQUEST=INFO

,BUFPTR=bufptr bufptr: RS-type address or address in register (2) - (12).

,BUFSIZE=bufsize bufsize: RS-type address or address in register (2) - (12).

,TOKEN=token token: RS-type address or address in register (2) - (12).

,RECSIZE=recsize recsize: RS-type address or address in register (2) - (12).

REQUEST=FULL

,BUFPTR=bufptr bufptr: RS-type address or address in register (2) - (12).

,BUFSIZE=bufsize bufsize: RS-type address or address in register (2) - (12).

,TOKEN=token token: RS-type address or address in register (2) - (12).

,RECSIZE=recsize recsize: RS-type address or address in register (2) - (12).

IEEQEMCS macro

822 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,STATUS=ACTIVE Default: STATUS=ACTIVE

,STATUS=INACTIVE

,STATUS=ALL

,STATUS=BACKLOG

,STATUS=ERR

,BKLG_NUM=bklg_num bklg_num: RS-type address or address in register (2) - (12).

Default: BKLG_NUM=10

,CN=cn cn: RS-type address or address in register (2) - (12).

,SYS=sys sys: RS-type address or address in register (2) - (12).

,KEY=key key: RS-type address or address in register (2) - (12).

,AUTH=ANY Default: AUTH=ANY

,AUTH=MASTER

,AUTH=SYS

,AUTH=IO

,AUTH=CONS

,AUTH=ALL

,AUTH=INFO

,AUTH=SYSONLY

,AUTH=IOONLY

,AUTH=CONSONLY

,AUTH=ALLONLY

,AUTH=INFOONLY

,ATTR=ANY Default: ATTR=ANY

,ATTR=YES

,ATTR=ROUT

,ATTR=HC

,ATTR=AUTO

,ATTR=AUTON

,ATTR=MN

,ATTR=INTIDS

,ATTR=UNKNIDS

,ATTR=NONE

,DOM=ANY Default: DOM=ANY

IEEQEMCS macro

Chapter 81. IEEQEMCS — Query EMCS console 823

Syntax Description

,DOM=YES

,DOM=NORMAL

,DOM=ALL

,DOM=NONE

,CONSCNT=conscnt conscnt: RS-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=1

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IEEQEMCS
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=COUNT
REQUEST=SUMMARY
REQUEST=INFO
REQUEST=FULL

An optional parameter that indicates the type of information request. The
default is REQUEST=COUNT.

IEEQEMCS macro

824 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

REQUEST=COUNT
Return only the number of EMCS consoles meeting the search criteria.

REQUEST=SUMMARY
Return the number and names of the consoles that meet the search criteria.

,BUFPTR=bufptr
An optional input parameter that contains the address of the storage
that the console display will be returned in. This field is only valid for
a SUMMARY, INFO, or FULL request.

To code: Specify the RS-type address, or address in register (2)-(12), of
a pointer field.

,BUFSIZE=bufsize
When BUFPTR=bufptr is specified, a required input parameter that
contains the size of the storage buffer. This field is only valid when
BUFPTR is specified.

To code: Specify the RS-type address, or address in register (2)-(12), of
a fullword field.

,TOKEN=token
An optional input parameter that returns the address of an 8-byte
token used to return additional EMCS console information on
subsequent calls if BUFSIZE is insufficient. This field is only valid for a
SUMMARY, INFO, or FULL request.

To code: Specify the RS-type address, or address in register (2)-(12), of
a pointer field.

,RECSIZE=recsize
When TOKEN is specified, RECSIZE is a required input parameter that
contains the address of a 4-byte output area that will contain the
recommended size of the output storage buffer if BUFSIZE is
insufficient. This size represents only enough storage to store
information about the one console represented by the TOKEN at the
time of this call to IEEQEMCS. The RECSIZE contains data only when
return code = is IEEQE_RC_NOSTOR.

To code: Specify the RS-type address, or address in register (2)-(12), of
a pointer field.

REQUEST=INFO
Return the number, names, and console data information, but no message
data space statistics for the consoles meeting the search criteria.

REQUEST=FULL
Return the number, names, console data information, and message data
space statistics for the consoles meeting the search criteria.

,STATUS=ACTIVE
,STATUS=INACTIVE
,STATUS=ALL
,STATUS=BACKLOG
,STATUS=ERR

An optional parameter that indicates the status of the EMCS consoles to be
returned. The default is STATUS=ACTIVE.

,STATUS=ACTIVE
Return only active consoles.

IEEQEMCS macro

Chapter 81. IEEQEMCS — Query EMCS console 825

,STATUS=INACTIVE
Return only inactive consoles.

,STATUS=ALL
Return both active and inactive consoles.

,STATUS=BACKLOG
Return consoles with unretrieved messages. The BKLG_NUM keyword can
specify the minimum number of unretrieved messages a console must have
to be returned.

,STATUS=ERR
Return only EMCS consoles in an error condition.

,BKLG_NUM=bklg_num
An optional input parameter that indicates the minimum number of
unretrieved messages a console must have for it to be returned on a
STATUS(BACKLOG) call.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,CN=cn
An optional input parameter that indicates a console name to search for. The
name include wildcard characters.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,SYS=sys
An optional input parameter that indicates the system name where the console
was last activated. The system name may include wildcarded characters.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,KEY=key
An optional input parameter that indicates the KEY that was used to activate
the console. The key name may include wildcard characters.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,AUTH=ANY
,AUTH=MASTER
,AUTH=SYS
,AUTH=IO
,AUTH=CONS
,AUTH=ALL
,AUTH=INFO
,AUTH=SYSONLY
,AUTH=IOONLY
,AUTH=CONSONLY
,AUTH=ALLONLY
,AUTH=INFOONLY

An optional parameter that indicates console command authority. The default
is AUTH=ANY.

,AUTH=ANY
Return consoles with any authority.

,AUTH=MASTER
Return consoles with MASTER authority only.

IEEQEMCS macro

826 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,AUTH=SYS
Return consoles with SYS authority or MASTER authority.

,AUTH=IO
Return consoles with IO authority or MASTER authority.

,AUTH=CONS
Return consoles with CONS authority or MASTER authority.

,AUTH=ALL
Return consoles with IO, SYS, and CONS authority, or MASTER authority.

,AUTH=INFO
Return consoles with INFO, IO, SYS, CONS, or MASTER authority.

,AUTH=SYSONLY
Return consoles with SYS authority only.

,AUTH=IOONLY
Return consoles with IO authority only.

,AUTH=CONSONLY
Return consoles with CONS authority only.

,AUTH=ALLONLY
Return consoles with IO, SYS, and CONS authority only.

,AUTH=INFOONLY
Return consoles with INFO authority only.

,ATTR=ANY
,ATTR=YES
,ATTR=ROUT
,ATTR=HC
,ATTR=AUTO
,ATTR=AUTON
,ATTR=MN
,ATTR=NONE
,ATTR=INTIDS
,ATTR=UNKNIDS

An optional parameter that indicates routing attributes of the console. The
default is ATTR=ANY.

,ATTR=ANY
Return consoles regardless of routing attributes.

,ATTR=YES
Return consoles that are receiving some type of undelivered messages.

,ATTR=ROUT
Return consoles receiving any routing codes.

,ATTR=HC
Return consoles receiving the hardcopy message set.

,ATTR=AUTO
Return consoles receiving AUTO(YES) messages.

,ATTR=AUTON
Return consoles not receiving AUTO(YES) messages.

,ATTR=MN
Return consoles receiving any type of MONITOR messages.

IEEQEMCS macro

Chapter 81. IEEQEMCS — Query EMCS console 827

,ATTR=NONE
Return consoles with no routing attributes.

,ATTR=INTIDS
Return consoles receiving messages directed to console id zero.

,ATTR=UNKNIDS
Return consoles receiving messages directed to "unknown" console ids,
such as consoles with one-byte id.

,DOM=ANY
,DOM=YES
,DOM=NORMAL
,DOM=ALL
,DOM=NONE

An optional parameter that indicates the DOM attribute of the consoles. The
default is DOM=ANY.

,DOM=ANY
Return consoles regardless of their DOM attribute.

,DOM=YES
Return consoles that are receiving DOMs (either DOM(NORMAL) or
DOM(NONE) consoles).

,DOM=NORMAL
Return consoles that are DOM(NORMAL) only.

,DOM=ALL
Return consoles that are DOM(ALL) only.

,DOM=NONE
Return consoles that are DOM(NONE) only.

,CONSCNT=conscnt
An optional input parameter that contains the address of a 4-byte output area
that will contain the number of consoles meeting the specified criteria. The
output area is only filled in for a COUNT request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,RETCODE=retcode
An optional parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:

IEEQEMCS macro

828 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
The largest size parameter list currently possible. This size might grow
from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures
that the parameter list does not overwrite nearby storage.

1 The currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

A required input parameter that specifies the macro form.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IEEQEMCS in
the following order:
v Use IEEQEMCS ...MF=(M,list-addr,COMPLETE) specifying appropriate

parameters, including all required ones.
v Use IEEQEMCS ...MF=(M,list-addr,NOCHECK), specifying the parameters

that you want to change.

IEEQEMCS macro

Chapter 81. IEEQEMCS — Query EMCS console 829

v Use IEEQEMCS ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=E and
MF=M, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
When the IEEQEMCS macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code.

Table 75. Return and Reason Codes for the IEEQEMCS Macro

Return Code Reason Code Equate Symbol
Meaning and Action

0 — Equate Symbol: IEEQE_RC_OK

Meaning: EMCS consoles have been found. In the case of a
REQUEST type of SUMMARY, INFO, or FULL, the output
buffer was large enough sufficient to hold all of the
information for the consoles meeting the search criteria.

Action: None required.

4 — Equate Symbol: IEEQE_RC_NOCONS

Meaning: No EMCS consoles meet the specified filters.

Action: None required.

8 — Equate Symbol: IEEQE_RC_NOSTOR

Meaning: Insufficient return buffer storage to complete the
query operation.

Action: Refer to the action provided with the specific
reason code.

IEEQEMCS macro

830 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 75. Return and Reason Codes for the IEEQEMCS Macro (continued)

Return Code Reason Code Equate Symbol
Meaning and Action

8 4 Equate Symbol: IEEQE_RS_TOKSZCONS

Meaning: A token and recommended buffer size have been
returned in TOKEN and RECSIZE. Also, some console
information has been returned in the output buffer.

Action: Process the information returned in the console
buffer, then issue IEEQEMCS again with the token that was
returned by this call to IEEQEMCS to obtain more console
information.

8 8 Equate Symbol: IEEQE_RS_TOKSZNOCONS

Meaning: A token and recommended buffer size have been
returned in TOKEN and RECSIZE. The output buffer is too
small to return any EMCS console information.

Action: Allocate a new buffer that is at least the size
returned in RECSIZE, and issue IEEQEMCS again with the
new buffer and the token returned on the previous
IEEQEMCS call. The recommended buffer size returned in
RECSIZE is sufficient to hold only one console. It may be
necessary to obtain a buffer larger than that to hold all of
the consoles returned by IEEQEMCS.

8 12 Equate Symbol: IEEQE_RS_NOTOKSZRET

Meaning: TOKEN and RECSIZE parameters were not
coded on the macro invocation, so IEEQEMCS could not
return a recommended buffer size to the caller. The buffer
size specified by BUFSIZE was not sufficient to hold all of
the consoles returned by IEEQEMCS.

Action: Issue IEEQEMCS again with the TOKEN and
RECSIZE parameters.

12 — Equate Symbol: IEEQE_RC_INVTOK

Meaning: Invalid token in parameter list.

Action: Issue IEEQEMCS again with a correct token or a
token of zeros.

16 — Equate Symbol: IEEQE_RC_INVPL

Meaning: Invalid parameter list.

Action: Refer to the action provided with the specific
reason code.

16 4 Equate Symbol: IEEQE_RS_INVACRN

Meaning: The eyecatcher (ECDM) in the parameter list was
invalid.

Action: Correct the eyecatcher (ECDM) in the parameter
list and issue IEEQEMCS again.

16 8 Equate Symbol: IEEQE_RS_INVADDR

Meaning: An output address is invalid. An ABEND
occurred while trying to access storage at an address
specified in the parameter list, possibly because that
storage is not accessible by the caller, or the storage does
not exist.

Action: Correct the address in the parameter list and issue
IEEQEMCS again.

IEEQEMCS macro

Chapter 81. IEEQEMCS — Query EMCS console 831

Table 75. Return and Reason Codes for the IEEQEMCS Macro (continued)

Return Code Reason Code Equate Symbol
Meaning and Action

16 12 Equate Symbol: IEEQE_RS_INVBUFSIZEADDR

Meaning: The BUFSIZE parameter was invalid.

Action: Correct the BUFSIZE parameter and issue
IEEQEMCS again.

16 16 Equate Symbol: IEEQE_RS_INVLGTH

Meaning: The length of the parameter list is invalid.

Action: Correct the length in the parameter list and issue
IEEQEMCS again.

16 20 Equate Symbol: IEEQE_RS_INVVERS

Meaning: The version specified in PLISTVER is invalid.

Action: Correct the version and issue IEEQEMCS again.

16 24 Equate Symbol: IEEQE_RS_INVFUNC

Meaning: The REQUEST type specified in the parameter
list is not a valid REQUEST type.

Action: Correct the REQUEST type in the parameter list
and issue IEEQEMCS again.

16 28 Equate Symbol: IEEQE_RS_INVSTAT

Meaning: The STATUS type specified in the parameter list
is not a valid STATUS type.

Action: Correct the STATUS type in the parameter list and
issue IEEQEMCS again.

16 32 Equate Symbol: IEEQE_RS_INVAUTH

Meaning: The command authority specified in the
parameter list is not a valid command authority type.

Action: Correct the AUTH value in the parameter list and
issue IEEQEMCS again.

16 36 Equate Symbol: IEEQE_RS_INVDOM

Meaning: The DOM attribute specified in the parameter
list is not a valid DOM attribute type.

Action: Correct the DOM attribute in the parameter list
and issue IEEQEMCS again.

16 40 Equate Symbol: IEEQE_RS_INCONSIST

Meaning: A set of parameters specified in the parameter
list conflict with each other.

Action: Correct the parameter list to avoid conflicting
parameters and issue IEEQEMCS again.

16 44 Equate Symbol: IEEQE_RS_INVATTR

Meaning: The routing attributes specified in the parameter
list are not valid routing attribute types.

Action: Correct the ATTR field in the parameter list and
issue IEEQEMCS again.

IEEQEMCS macro

832 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 75. Return and Reason Codes for the IEEQEMCS Macro (continued)

Return Code Reason Code Equate Symbol
Meaning and Action

64 — Equate Symbol: IEEQE_RC_SYSERR

Meaning: System Error. This return code is for IBM
diagnostic purposes only.

Action: Record the return and reason codes and supply
them to the appropriate IBM support personnel.

64 04 Equate Symbol: IEEQE_RS_SYSABEND

Meaning: An ABEND occurred during processing. This
reason code is for IBM diagnostic purposes only.

Action: Record the return and reason codes and supply
them to the appropriate IBM support personnel.

64 08 Equate Symbol: IEEQE_RS_SYSERR

Meaning: An error occurred during processing. This reason
code is for IBM diagnostic purposes only.

Action: Record the return and reason codes and supply it
to the appropriate IBM support personnel.

Examples
Example

Operation: This example requests FULL information about all consoles on system
SYS01 that are in an error condition.

.

.
* Initialize BUFSIZE and TOKEN

L REG9,INITSIZE
ST REG9,BUFSIZE
MVC TOKEN,INITTOKEN
Set up addresses for IEEQEMCS
LA REG9,TOKEN
ST REG9,TOKENPTR
LA REG9,RECSZ
ST REG9,RECSZPTR

* Get storage for output buffer
STORAGE OBTAIN,LENGTH=BUFSIZE,ADDR=BUFPTR,COND=NO,LOC=ANY

* Issue IEEQEMCS
DOQEMCS EQU *

IEEQEMCS REQUEST=FULL, Full info X
STATUS=ALL, Active or inactive consoles X
TOKEN=TOKENPTR, Token X
BUFPTR=BUFPTR, Buffer address X
BUFSIZE=BUFSIZE, Buffer size X
RECSIZE=RECSZPTR, Recommended size X
RETCODE=RETCODE, Return code X
RSNCODE=RSNCODE, Reason code X
MF=(E,PLIST,COMPLETE)

* Check return and reason codes from IEEQEMCS
LA REG14,IEEQE_RC_OK Check if all consoles have been
C REG14,RETCODE returned
BE ALLOK All consoles have been returned,

so process them
LA REG14,IEEQE_RC_NOCONS Check if no consoles have been
C REG14,RETCODE returned
BE DONE No consoles met the filter, so X

exit

IEEQEMCS macro

Chapter 81. IEEQEMCS — Query EMCS console 833

LA REG14,IEEQE_RC_NOSTOR Check if the storage buffer could
C REG14,RETCODE not hold all the consoles
BNE ERROR No, there was some kind of error
LA REG14,IEEQE_RS_TOKSZCONS
C REG14,RSNCODE
BE SOMEOK The buffer was too small to hold X

all the consoles meeting this X
filter, but IEEQEMCS put as many X
consoles as possible in the X
buffer. Process the consoles, X
and call IEEQEMCS again.

LA REG14,IEEQE_RS_TOKSZNOCONS
C REG14,RSNCODE
BE GETMORE The buffer was too small for X

even one console. Free the X
buffer, get more storage, and X
call IEEQEMCS again.

.

.

.
ALLOK EQU *
* Call PROCCONS to process the output buffer.

LA REG15,PROCCONS
BALR REG14,REG15

* There are no more consoles to process, so exit
XR REG15,REG15 Zero return code
B DONE

SOMEOK EQU *
* Call PROCCONS to process the consoles returned in
* the output buffer.

LA REG15,PROCCONS
BALR REG14,REG15

* There is more console information to be retrieved, so
* loop back to DOQEMCS.

B DOQEMCS
PROCCONS EQU *
* Process consoles, and return to caller.

ST REG14,RETADDR
L HDRREG,BUFPTR Load pointer to buffer in R2
USING ECDM_HDR,HDRREG This should be the ECDM header X

pointer
L SUMMREG,ECDM_HDR_SIZE Load the size of the header
AR SUMMREG,HDRREG Find the address of the summary X

block
LH REG15,ECDM_NENT Load number of entries
ST REG15,NUMCONS
USING ECDM_SUMM,SUMMREG
USING ECDM_INFO,INFOREG
USING ECDM_DSP,DSPREG
USING ECDM_CNSW,CNSWREG
USING ECDM_MSCP,MSCPREG

CONSLOOP LTR REG15,REG15 Is the number of entries zero?
BZ CONSDONE Yes, exit loop
L REG8,ECDM_SUMM_SIZE Put size of summ block in R10
L ENDREG,ECDM_SUMM_CONS_SIZE Put size of all blocks for X

this console in R11
AR REG8,SUMMREG Get address of end of the X

summary block in R8 (work reg)
AR ENDREG,SUMMREG Get address of the end of the X

console block in R11
BLKLOOP LR REG9,REG8 Copy work addr into R9

SR REG9,ENDREG Are we at the end of the block?
BZ DOCONS Yes, do the actual console X

processing
LA REG9,ECDM_TYPE_INFO Load the type of block in R9
CH REG9,0(REG8) Is this an info block?
BE INFOBLK Yes, branch to info block

IEEQEMCS macro

834 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

LA REG9,ECDM_TYPE_DSP Load the type of block in R9
CH REG9,0(REG8) Is this a DSP block?
BE DSPBLK Yes, branch to data space block
LA REG9,ECDM_TYPE_MSCP Load the type of block in R9
CH REG9,0(REG8) Is this an MSCOPE block?
BE MSCPBLK Yes, branch to MSCOPE block
B ERROR There was a bad type, so exit

INFOBLK LR INFOREG,REG8 Load INFO block addr into R4
A REG8,ECDM_INFO_SIZE Increment size of block
B BLKLOOP Find next block

DSPBLK LR DSPREG,REG8 Load DSP block addr into R5
A REG8,ECDM_DSP_SIZE Increment size of block
B BLKLOOP Find next block

MSCPBLK LR MSCPREG,REG8 Load MSCP block addr into R6
A REG8,ECDM_MSCP_SIZE Increment size of block
B BLKLOOP Find next block

DOCONS EQU * Console processing
* At this point, do any processing on this individual
* console that is necessary.

.

.

.
* Now, decrement the console count, and process the
* next console in the buffer (if there is one).

L REG15,NUMCONS
BCTR REG15,0 Decrement console count
ST REG15,NUMCONS
LR SUMMREG,REG8 Get address of next block in R3
B CONSLOOP process next block

CONSDONE L REG14,RETADDR
BR REG14
.
.
.

GETMORE EQU *
* There was not enough storage to complete the request, so
* get some more.
* First delete the old storage

STORAGE RELEASE,LENGTH=BUFSIZE,ADDR=BUFPTR
* Now, since IEEQEMCS returned a recommended storage
* size, move that amount into BUFSIZE, and obtain the
* storage buffer.

MVC BUFSIZE,RECSZ
STORAGE OBTAIN,LENGTH=BUFSIZE,ADDR=BUFPTR,COND=NO,LOC=ANY

* Loop to issue IEEQEMCS again
B DOQEMCS
.
.
.

ERROR EQU *
* Do any error handling here

.

.

.
DONE EQU *
* IEEQEMCS found no more consoles, so release the output
* buffer.

STORAGE RELEASE,LENGTH=BUFSIZE,ADDR=BUFPTR
* Now, continue on with other processing, etc.

.

.

.
* Declare constants and variables
BUFSIZE DS F
BUFPTR DS F
TOKENPTR DS F
RECSZPTR DS F

IEEQEMCS macro

Chapter 81. IEEQEMCS — Query EMCS console 835

TOKEN DS CL8
RECSZ DS F
RETCODE DS F
RSNCODE DS F
NUMCONS DS F
RETADDR DS F
INITSIZE DC XL4’300’
INITTOKEN DC XL8’0’
* IEEQEMCS parameter list

DS 0F
IEEQEMCS MF=(L,PLIST)

* IEEQEMCS return code equates
IEEZB888

* Include mapping of ECDM blocks
IEEZB887
END

IEEQEMCS macro

836 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 82. IEEVARYD — Vary one or more devices online or
offline

Description
IEEVARYD varies one or more devices online or offline on a single system, or
defines the automatically switchable attribute for a device that supports automatic
tape switching. It has the same effect as the VARY device or VARY AUTOSWITCH
operator command, but it provides return and reason codes to the calling program,
rather than issuing messages to a console.

See z/OS HCD Planning for more information about automatic tape switching, and
z/OS Planning for Installation for the devices that support automatic tape switching.

Comparison to MGCRE macro
The MGCRE macro also allows a program to issue the VARY command. (MGCRE
allows a program to issue any command.) However, MGCRE automatically checks
the SAF authority of the calling program. Also, MGCRE returns text responses to a
console specified by the calling program, whereas IEEVARYD provides a return
and reason code.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM keys 0-7
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space.

Programming requirements
v The caller must be in a non-swappable address space.
v The IEEVARYD macro does no authorization checking (SAF is not invoked). If

you require that the calling program's authority to perform a vary device
operation be checked, issue RACROUTE REQUEST=AUTH before issuing the
IEEVARYD macro.

v The calling program must perform any logging of information associated with
the operation, such as an entry in the system log (SYSLOG).

v You must include the IEEZB833 mapping macro and, if you specify the optional
RESULTS keyword, the IEEZB834 mapping macro.

v You can change the automatically switchable characteristic of a tape device only
if the device is offline.

© Copyright IBM Corp. 1988, 2016 837

v The VDEV_ENQS_HELD flag that allowed the calling program to hold the
SYSIEFSD.VARYDEV and SYSIEFSD.Q4 resources is no longer supported. The
ENQs must be released before invoking IEEVARYD or an abend 077- 003C will
result.

Restrictions
v The VDEV_ENQS_HELD flag that allowed the calling program to hold the

SYSIEFSD.VARYDEV and SYSIEFSD.Q4 resources is no longer supported.
v The ENQs must be released before invoking IEEVARYD or an abend 077- 003C

will result.

Input register information
Before issuing the IEEVARYD macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the IEEVARYD macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

IEEVARYD macro

838 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

� One or more blanks must precede IEEVARYD.

IEEVARYD

� One or more blanks must follow IEEVARYD.

OPERATION=operation parm operation parm: RS-type address or register (2) - (12).

,DEVICES=devices parm devices parm: RS-type address or register (2) - (12).

,NUMDEVS=num of devices num of devices: RS-type address or register (2) - (12).

,RESULTS=vary results vary results: RS-type address or register (2) - (12).

,RETCODE=return code return code: RS-type address or register (2) - (12).

,RSNCODE=reason code reason code: RS-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

OPERATION=operation parm
Specifies the address or name of a required 16-byte input area in which you
place the VARY device service portion of the initialized VDEV data area,
mapped by the IEEZB833 mapping macro. The VARY device service portion is
the VDEV control block.

,DEVICES=devices parm
Specifies the address or name of a required variable-length area in which you
place the IEEVARYD device array entries. Each device entry is mapped by the
VDEVARR DSECT of the IEEZB833 mapping macro.

,NUMDEVS=num of devices
Specifies the name or address of an optional fullword input area where you
specify the number of devices in the device array specified on the DEVICES
parameter.

The default is 1.

,RESULTS=vary results
Specifies the name or address of an optional array (mapped by the IEEZB834
macro) that contains results for the VARY operation on each device specified in
the DEVICES parameter.

,CALLERID=caller id
Specifies the name or address of an optional 8-character input area into which
you place the name of the caller associated with the VARY operation. If
CALLERID is specified, then MVS inserts the identifier into the one or more

IEEVARYD macro

Chapter 82. IEEVARYD — Vary one or more devices online or offline 839

messages that MVS issues to hardcopy, which indicate that a device was
brought online or taken offline. For example, if a program uses IEEVARYD to
VARY device 205 online and specifies XYZ as the CALLERID, MVS issues the
following message to hardcopy:
IEE302I 0205 ONLINE BY XYZ

If the program did not specify the caller ID, the message to hardcopy would
be:
IEE302I 0205 ONLINE

,RETCODE=return code
Specifies an optional fullword output area into which IEEVARYD will copy a
return code from GPR 15.

,RSNCODE=reason code
Specifies an optional fullword output area into which IEEVARYD will copy a
reason code from GPR 0.

ABEND codes
The IEEVARYD macro abnormally terminates with abend code 077- 003C if the
ENQs are not released before invoking IEEVARYD.

Return and reason codes
When IEEVARYD returns control to your program, GPR 15 contains a return code
and GPR 0 contains a reason code. If you specified the RETCODE or RSNCODE
parameters, those areas will also contain a return code and reason code,
respectively.

The following table identifies return code and reason code combinations, tells what
each means, and recommends an action that you need to take.

Table 76. Return and Reason Codes for the IEEVARYD Macro

Return Code Reason Code Meaning and Action

00 00 Meaning: Processing completed successfully.

Action: No action needed.

04 None. Meaning: The operation was performed against all
specified devices, but MVS set the VDRSARR_RETCODE
field in the IEEZB834 mapping macro to a non-zero value
for at least one device in the device array.

Action: In the RESULTS area, check the
VDRSARR_RETCODE values for each device to determine
the result of the operation on each device.

08 01 Meaning: Program error. MVS could not access the caller's
parameter list.

Action: Ensure that you have specified the correct
parameter list area on the execute form of the macro.

08 02 Meaning: Program error. MVS could not access the storage
area specified on the DEVICES parameter.

Action: Ensure that the DEVICES parameter correctly
specifies the name or address of storage that contains the
device array. The entire device array must reside in storage
that is accessible to the program invoking the IEEVARYD
macro.

IEEVARYD macro

840 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 76. Return and Reason Codes for the IEEVARYD Macro (continued)

Return Code Reason Code Meaning and Action

08 03 Meaning: Program error. MVS could not access the storage
area specified on the OPERATION parameter.

Action: Ensure that the OPERATION parameter correctly
specifies the name or address of storage that contains the
VDEV control block. The VDEV control block must reside
in storage that is accessible to the program invoking the
IEEVARYD macro.

08 04 Meaning: Program error. MVS could not access the storage
area specified on the RESULTS parameter.

Action: Ensure that the RESULTS parameter correctly
specifies the name or address of storage that contains the
device results array. The entire device results array must
reside in storage that can be updated by the program
invoking the IEEVARYD macro.

08 05 Meaning: Program error. The input parameter list includes
an invalid combination of VARY command keywords. For
example:

v Both ONLINE and OFFLINE

v Neither ONLINE nor OFFLINE

v Both OFFLINE and RESET

v AUTOSWITCH,ON or AUTOSWITCH,OFF with any
other parameters.

Action: Ensure that the OPERATION parameter identifies a
VDEV data area that specifies flags in the VDEV control
block that are valid according to guidelines of the VARY
command. For information about the VARY command, see
z/OS MVS System Commands.

08 06 Meaning: Program error. The input parameter list includes
an invalid combination of VARY COMMAND options. For
example:

v KEEP_OFFLINE with ONLINE

Action: Ensure that the OPERATION parameter identifies a
VDEV data area that specifies flags in the VDEV control
block that are valid according to guidelines of the VARY
command. For information about the VARY command, see
z/OS MVS System Commands.

08 07 Meaning: Program error. The NUMDEVS value is not
valid.

Action: Change NUMDEVS to a valid value. Valid values
are 1 to 65536.

0C 00 MVS was temporarily unable to process the requested
operation. The caller requested the
VDEV_DO_NOT_WAIT_FOR_ENQ option, and the
IEEVARYD service was unable to obtain the SYSIEFSD.Q4
resource in a reasonable amount of time. The operation
might be successful if retried at a later time.

0C 04 MVS was temporarily unable to process the requested
operation. The caller requested the
VDEV_DO_NOT_WAIT_FOR_ENQ option, and the
IEEVARYD service was unable to obtain the
SYSIEFSD.VARYDEV resource in a reasonable amount of
time. The operation might be successful if retried at a later
time.

IEEVARYD macro

Chapter 82. IEEVARYD — Vary one or more devices online or offline 841

Table 76. Return and Reason Codes for the IEEVARYD Macro (continued)

Return Code Reason Code Meaning and Action

10 None. Meaning: System error. Some devices were processed, and
some were not processed.

Action: Check the RESULTS area to determine which
devices were processed. Record this code and supply it to
IBM support personnel.

Examples
Example 1 shows how you define tape devices 200 and 300, both in a
varied-offline state, as automatically switchable. The second example then varies
the devices online.

Example 1
Use the IEEVARYD macro to define devices 200 and 300 as automatically
switchable. The example includes steps to:
1. Initialize the IEEVARYD input for the operation by setting the appropriate

keyword and option flags.
2. Initialize the IEEVARYD device array entries with the device number of each

device upon which the operation is to be performed.
3. Issue the execute form of the IEEVARYD, specifying the VARY device service

input, IEEVARYD device array, VARY device service results, and the
IEEVARYD parameter list which was defined when the list form of IEEVARYD
was issued.

4. Examine the return code returned in register 15 to determine the overall result
of the operation.

5. Use the IEEZB834 mapping macro to determine the results of the operation for
each device in the IEEVARYD device array.

6. Free the storage for the IEEVARYD input, IEEVARYD device array, and VARY
device service results.

*
* Issue the list form of the IEEVARYD to define the IEEVARYD macro
* parameter list.
*
* Include the IEEZB833 and IEEZB834 mapping macros in the program
* declarations.
*
* IEEZB833 maps the IEEVARYD input including the IEEVARYD device array
* (VDEVARR). IEEZB834 maps the VARY device service results.
*
* Obtain storage for the IEEVARYD input, and the VARY device service
* results. Obtain storage for an IEEVARYD device array for each
* device affected by a single invocation of IEEVARYD.
* (This example uses two IEEVARYD device arrays.)
* The address of the storage area is in R1.
*
* Initialize the IEEVARYD input:
*

LR R2,R1 Address of storage
LA R4,0 Set to zero for MVCL
LA R5,0 Set to zero for MVCL
MVCL R2,R4 Clear storage
USING VDEV,R2 Obtain addressability
L R0,CBID Load identifier
ST R0,VDEV_ID Initialize the identifier

IEEVARYD macro

842 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

MVI VDEV_VERSION,VDEV_VERN Initialize the version number
OI VDEV_KEYWORDS1,VDEV_AUTOSWITCH Initialize the operation

* to AUTOSWITCH
OI VDEV_KEYWORDS2,VDEV_ON Indicate to turn it ON
LA R0,VDEV_LENGTH Length of the IEEVARYD input
LR R4,R2 Address of the IEEVARYD input
ALR R4,R0 Address of storage immediately

* following the IEEVARYD input
LR R5,R4 Save address of the

* IEEVARYD device array
*
* Initialize the first IEEVARYD device array entry
*

USING VDEVARR,R4 Obtain addressability
LA R0,200
STH R0,VDEVARR_DEVN Initialize the device number (200)

*
* Initialize the second IEEVARYD device array entry
*

LA R0,VDEVARR_LENGTH Length of IEEVARYD device array entry
ALR R4,R0 Obtain addressability to next entry
LA R0,300
STH R0,VDEVARR_DEVN Initialize the device number (300)

* following the IEEVARYD input

*
* Get address of IEEVARYD Results
*

ALR R4,R0 Address of VDRSARR

*
* Issue the execute form of IEEVARYD to vary the devices online
*

IEEVARYD OPERATION=(R2),DEVICES=(R5),NUMDEVS=#DEVS, X
RESULTS=(R4),CALLERID=VDEVICES_ID,MF=(E,IEEVARYL)

*
* Determine if the operation was not performed because of an error in
* the parameters (Register 15 = 8)
*

LA R0,8
CR R15,R0
BE FREEVDEV If the parameters are in error, free

* the storage for the vary device array
* header and vary device array entries

USING VDRSARR,R4 Obtain addressability to RESULTS
LA R7,1 Initialize counter for loop

*
* Perform the following loop for each IEEVARYD device array entry to
* determine the results of the operation against each device
*
LOOP DS 0H

C R7,#DEVS All entries processed?
BH ENDLOOP
TM VDRSARR_OUTPUT_FLAGS1,VDRSARR_OUTPUT_VALID Determine if

* output was returned for the device
BZ ITERATE No output for the device, so iterate
L R9,VDRSARR_RETCODE Get return code for the device
LA R0,VDRSARR_ALREADY_OK Set register 0 to

* highest good return code
CR R9,R0 Determine if the operation was

* successful against the device
BH BADRETC

GOODRETC DS 0H The operation was successful against
* the device

B CHECKMSG

IEEVARYD macro

Chapter 82. IEEVARYD — Vary one or more devices online or offline 843

BADRETC DS 0H The operation was not successful
* against the device
CHECKMSG DS 0H Determine if a message was returned
* for the device

TM VDRSARR_OUTPUT_FLAGS1,VDRSARR_MSG_RETURNED
BZ NOMSG

MSG DS 0H A message was returned for the device
B ITERATE

NOMSG DS 0H A message was not returned for the
* device
ITERATE DS 0H Prepare for the next iteration

LA R0,1
ALR R7,R0 Increment loop counter
LA R0,VDRSARR_LENGTH Length of IEEVARYD device array entry
ALR R4,R0 Obtain addressability to next entry
B LOOP Iterate

ENDLOOP DS 0H End of loop
*
* Release the storage for the IEEVARYD input, two
* IEEVARYD device array entries, and IEEVARYD Results
*
FREEVDEV DS 0H

* *
* Declarations *
* *

CBID DC C’VDEV’ Control block identifier for the
* IEEVARYD input
VDEVICES_ID DC C’VDEVICES’ Caller identifier for the IEEVARYD
* Input
@DATA DS 0H
@DATD DSECT

DS 0F
#DEVS DS F

*
* Issue the list form of IEEVARYD to define the parameter list
*

IEEVARYD MF=(L,IEEVARYL)
@ENDDATD DS 0X
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

*
* Include IEEZB833 to define the IEEVARYD input (VDEV) and
* IEEVARYD device array entry (VDEVARR). Include IEEZB834
* to define the IEEVARYD Results (VDRSARR).
*

IEEVARYD macro

844 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IEEZB833
IEEZB834
END VDEVICES

Example 2
The following example illustrates how a program can use IEEVARYD to vary
devices 200 and 300 online. The example includes steps to:
1. Issue the list form of IEEVARYD to define the IEEVARYD macro parameter list.
2. Include the IEEZB833 and IEEZB834 mapping macros in the program.

IEEZB833 maps the IEEVARYD input including the IEEVARYD device array
(VDEVARR). IEEZB834 maps the VARY device service results.

3. Obtain storage for the IEEVARYD input, IEEVARYD device array, and VARY
device service results. An IEEVARYD device array entry is required for each
device affected by a single invocation of IEEVARYD.

4. Initialize the IEEVARYD input for the operation by setting the appropriate
keyword and option flags.

5. Initialize the IEEVARYD device array entries with the device number of each
device upon which the operation is to be performed.

6. Issue the execute form of IEEVARYD, specifying the VARY device service input,
IEEVARYD device array, VARY device service results, and the IEEVARYD
parameter list which was defined when the list form of IEEVARYD was issued.

7. Examine the return code returned in register 15 to determine the overall result
of the operation.

8. Use the IEEZB834 mapping macro to determine the results of the operation for
each device in the IEEVARYD device array.

9. Free the storage for the IEEVARYD input, IEEVARYD device array, and VARY
device service results.

*
* Obtain storage for the IEEVARYD input, two IEEVARYD device array
* Entries, and IEEVARYD Results
* The address of the storage area is in R1
*
* Initialize the IEEVARYD input
*

LR R2,R1 Address of storage
LA R4,0 Set to zero for MVCL
LA R5,0 Set to zero for MVCL
MVCL R2,R4 Clear storage
USING VDEV,R2 Obtain addressability
L R0,CBID Load identifier
ST R0,VDEV_ID Initialize the identifier
MVI VDEV_VERSION,VDEV_VERN Initialize the version number
OI VDEV_KEYWORDS1,VDEV_ONLINE Initialize the operation to

* ONLINE
LA R0,VDEV_LENGTH Length of the IEEVARYD input
LR R4,R2 Address of the IEEVARYD input
ALR R4,R0 Address of storage immediately

* following the IEEVARYD input
LR R5,R4 Save address of the

* IEEVARYD device array
*
* Initialize the first IEEVARYD device array entry
*

USING VDEVARR,R4 Obtain addressability
LA R0,200
STH R0,VDEVARR_DEVN Initialize the device number (200)

*

IEEVARYD macro

Chapter 82. IEEVARYD — Vary one or more devices online or offline 845

* Initialize the second IEEVARYD device array entry
*

LA R0,VDEVARR_LENGTH Length of IEEVARYD device array entry
ALR R4,R0 Obtain addressability to next entry
LA R0,300
STH R0,VDEVARR_DEVN Initialize the device number (300)

* following the IEEVARYD input

*
* Get address of IEEVARYD Results
*

ALR R4,R0 Address of VDRSARR

*
* Issue the execute form of IEEVARYD to vary the devices online
*

IEEVARYD OPERATION=(R2),DEVICES=(R5),NUMDEVS=#DEVS, X
RESULTS=(R4),CALLERID=VDEVICES_ID,MF=(E,IEEVARYL)

*
* Determine if the operation was not performed because of an error in
* the parameters (Register 15 = 8)
*

LA R0,8
CR R15,R0
BE FREEVDEV If the parameters are in error, free

* the storage for the vary device array
* header and vary device array entries

USING VDRSARR,R4 Obtain addressability to RESULTS
LA R7,1 Initialize counter for loop

*
* Perform the following loop for each IEEVARYD device array entry to
* determine the results of the operation against each device
*
LOOP DS 0H

C R7,#DEVS All entries processed?
BH ENDLOOP
TM VDRSARR_OUTPUT_FLAGS1,VDRSARR_OUTPUT_VALID Determine if

* output was returned for the device
BZ ITERATE No output for the device, so iterate
L R9,VDRSARR_RETCODE Get return code for the device
LA R0,VDRSARR_ONLINE_WITH_REST Set register 0 to

* VDRSARR_ONLINE_WITH_REST
CR R9,R0 Determine if the operation was

* successful against the device
* (VDRSARR_RETCODE <=
* VDRSARR_ONLINE_WITH_REST)

BH BADRETC
GOODRETC DS 0H The operation was successful against
* the device

B CHECKMSG
BADRETC DS 0H The operation was not successful
* against the device
CHECKMSG DS 0H Determine if a message was returned
* for the device

TM VDRSARR_OUTPUT_FLAGS1,VDRSARR_MSG_RETURNED
BZ NOMSG

MSG DS 0H A message was returned for the device
B ITERATE

NOMSG DS 0H A message was not returned for the
* device
ITERATE DS 0H Prepare for the next iteration

LA R0,1
ALR R7,R0 Increment loop counter
LA R0,VDRSARR_LENGTH Length of IEEVARYD device array entry
ALR R4,R0 Obtain addressability to next entry

IEEVARYD macro

846 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

B LOOP Iterate
ENDLOOP DS 0H End of loop
*
* Release the storage for the IEEVARYD input, two
* IEEVARYD device array entries, and IEEVARYD Results
*
FREEVDEV DS 0H

* *
* Declarations *
* *

CBID DC C’VDEV’ Control block identifier for the
* IEEVARYD input
VDEVICES_ID DC C’VDEVICES’ Caller identifier for the IEEVARYD
* Input
@DATA DS 0H
@DATD DSECT

DS 0F
#DEVS DS F

*
* Issue the list form of IEEVARYD to define the parameter list
*

IEEVARYD MF=(L,IEEVARYL)
@ENDDATD DS 0X
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

*
* Include IEEZB833 to define the IEEVARYD input (VDEV) and
* IEEVARYD device array entry (VDEVARR). Include IEEZB834
* to define the IEEVARYD Results (VDRSARR).
*

IEEZB833
IEEZB834
END VDEVICES

IEEVARYD - List form
Use the list form of the IEEVARYD macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

The list form of the IEEVARYD macro is written as follows:

IEEVARYD macro

Chapter 82. IEEVARYD — Vary one or more devices online or offline 847

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEEVARYD.

IEEVARYD

� One or more blanks must follow IEEVARYD.

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

The parameters are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IEEVARYD macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

IEEVARYD - Execute form
Use the execute form of the IEEVARYD macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

The execute form of the IEEVARYD macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEEVARYD.

IEEVARYD

� One or more blanks must follow IEEVARYD.

IEEVARYD macro

848 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

OPERATION=operation parm operation parm: RS-type address or register (2) - (12).

,DEVICES=devices parm devices parm: RS-type address or register (2) - (12).

,NUMDEVS=num of devices num of devices: RS-type address or register (2) - (12).

,RESULTS=vary results vary results: RS-type address or register (2) - (12).

,CALLERID=caller id caller id: RS-type address or register (2) - (12).

,RETCODE=return code return code: RS-type address or register (2) - (12).

,RSNCODE=reason code reason code: RS-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

The parameters are explained under the standard form of the IEEVARYD macro
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the IEEVARYD macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that are not specified.

IEEVARYD macro

Chapter 82. IEEVARYD — Vary one or more devices online or offline 849

IEEVARYD macro

850 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 83. IEFPPSCN — Scan the program properties table

Description
The IEFPPSCN macro provides a way to retrieve information, for report
generation, about programs that are listed in the program properties table (PPT).
IEFPPSCN allows the calling program to scan each entry in the PPT or to search
the PPT for a specific program.

The installation controls what programs are listed in the PPT. An installation can
specify a list of programs that require special attributes by using the SCHEDxx
parmlib member with the PPT statement. The system then creates entries for these
programs in the PPT. See z/OS MVS Initialization and Tuning Reference for
information about using the SCHEDxx parmlib member.

The contents of the PPT can be dynamically changed through the SET command.
Using the IEFPPSCN macro to retrieve information from the PPT prevents the
system from dynamically updating the PPT while you are scanning it. If you scan
the PPT without using IEFPPSCN, and the system updates the PPT while you are
scanning it, your program will abnormally end.

Environment
Requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
The calling program must include the following mapping macros:
v CVT
v IEFJESCT
v IEFZB610

Restrictions
None.

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the caller issued the macro. Therefore, if the caller depends on these

© Copyright IBM Corp. 1988, 2016 851

registers containing the same value before and after issuing the macro, the caller
must save these registers before issuing the macro and restore them after the
system returns control.

When control is returned to the calling program the GPRs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14 Used as a work register by the system.

15 Return code

Performance implications
None.

Syntax
The standard form of the IEFPPSCN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IEFPPSCN.

IEFPPSCN

� One or more blanks must follow IEFPPSCN.

REQUEST=RETRIEVE

REQUEST=NEXT

REQUEST=END

,PPTINFO=ppt_info ppt_info: RX-type address or register (2) - (12).

Required for REQUEST=RETRIEVE and REQUEST=NEXT. Not valid for
REQUEST=END.

,PROGRAM= program_name: RX-type address or register (2) - (12).

program_name

Required for REQUEST=RETRIEVE.

Not valid for REQUEST=NEXT or REQUEST=END.

,TOKEN=token token: RX-type address or register (2) - (12).

Required for REQUEST=NEXT and REQUEST=END.

Not valid for REQUEST=RETRIEVE.

IEFPPSCN macro

852 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,RETCODE=rc rc: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

REQUEST=RETRIEVE
REQUEST=NEXT
REQUEST=END

The required parameter that specifies what kind of request the caller is
making.

Specify REQUEST=RETRIEVE to request information about a specific program.
You must specify the name of the program on the PROGRAM parameter. You
must also specify the PPTINFO parameter. Do not specify the TOKEN
parameter.

If you want to scan all program entries sequentially, use the REQUEST=NEXT
parameter together with the REQUEST=END parameter. Each time you specify
REQUEST=NEXT, the system retrieves information about the next program
entry. The first time you specify REQUEST=NEXT, you must put zero in the
field you provide on the TOKEN parameter. On return to the caller, the system
places a value in this field. After the first call, when you specify
REQUEST=NEXT you must specify TOKEN and supply the value provided by
the system on the previous call. With REQUEST=NEXT, you must also specify
the PPTINFO parameter. Do not specify the PROGRAM parameter.

When control returns to the calling program with a return code of 4 in GPR 15,
you have reached the end of the table and must then specify REQUEST=END.
If you use REQUEST=NEXT and do not specify REQUEST=END, the system
might not free common storage that could have been freed.

When you specify REQUEST=END, you must also specify the TOKEN
parameter, supplying the value returned on the last REQUEST=NEXT. Do not
specify the PROGRAM or PPTINFO parameters.

,PPTINFO=ppt_info
Specifies the area provided by the caller to contain the requested program
information. The caller must provide this area as follows:
v The length of the area must be the length of the PPTENTRY field of the PPT

plus two bytes. The PPT is mapped by the IEFZB610 mapping macro. See
PPT in z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/) for the PPT mapping.

v Initialize the first two bytes of the area to the length of the PPTENTRY field.
v Define the length of the remainder of the area to be equal to the length of

the PPTENTRY field.

Upon return, the system places the length of the requested PPTENTRY in the
first two bytes of the area, and places the requested PPTENTRY itself in the
remainder of the area.

This area must have a storage key that matches the PSW key of the issuer of
IEFPPSCN. If the area provided is too small, the information is truncated.
PPTINFO is required for REQUEST=RETRIEVE and REQUEST=NEXT. Do not
specify PPTINFO with REQUEST=END.

IEFPPSCN macro

Chapter 83. IEFPPSCN — Scan the program properties table 853

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

,PROGRAM=program_name
Specifies the 8-character field containing the name of the program you want to
retrieve when you specify REQUEST=RETRIEVE. If the program name is less
than 8 characters, left justify the name and pad on the right with blanks.

Do not specify PROGRAM with REQUEST=NEXT or with REQUEST=END.

,TOKEN=token
Specifies the 4-byte field to contain the token that the system returns when you
specify REQUEST=NEXT. Set the value of the token to zero before the first call.
On subsequent calls made with REQUEST=NEXT or REQUEST=END, use the
value of the token returned by the system on the previous REQUEST=NEXT.

Do not specify TOKEN with REQUEST=RETRIEVE.

,RETCODE=rc
Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

Return codes
When control returns from IEFPPSCN, GPR 15 (and rc, if you coded RETCODE)
contains one of the following return codes:

Table 77. Return Codes for the IEFPPSCN Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: Program found.

Action: No action required.

04 Meaning: End of table.

Action: Issue IEFPPSCN with REQUEST=END.

08 Meaning: The program name you specified is not listed in the PPT, indicating
that the installation did not specify any special attributes for that program.

Action: No action required.

0C Meaning: The token passed was not the token created by this macro.

Action: Check that the application is coded to pass the correct token.

10 Meaning: Request not valid.

Action: Check that you did not change the expanded assembler code.

14 Meaning: System error. The system was not able to obtain the required storage.
Your program might issue a message indicating incomplete scanning of the PPT.

Action: Reissue the request. If the error persists, contact your IBM support
personnel.

Example
Sequentially scan the PPT and write the program name of each entry to the
console. In your own code, you might wish to format the non-EBCDIC portions of
the PPT entry for inclusion in the WTO.

The code in this example is nonreentrant. The caller is APF-authorized, and is
initially in problem state with PSW key 8. The caller changes to supervisor state
with PSW key 0 before issuing IEFPPSCN, and returns to problem state with PSW
key 8 on completion of processing.

Note: This example is in SYS1.SAMPLIB in the member SHOWPPT.

IEFPPSCN macro

854 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

TITLE ’SHOWPPT - Show all entries in Current PPT’
SHOWPPT CSECT Module entry point
SHOWPPT AMODE 31
SHOWPPT RMODE ANY
*
* Body of nonreentrant module which prints program names in the PPT
*

STM 14,12,12(13) Standard module linkage
LR 12,15
USING SHOWPPT,12
ST 13,SAVEAREA+4
LR 2,13
LA 13,SAVEAREA
ST 13,8(2)

*
MODESET MODE=SUP,KEY=ZERO Need supervisor state, key 0

*
* Set up for looking at PPT entries
*

LA 2,PPTENT Point to copy of PPT entry
USING PPTENTRY,2 Set up addressability
XC SCNTOKEN,SCNTOKEN Clear token

*
LOOP DS 0H Loop getting PPT entries

IEFPPSCN REQUEST=NEXT,TOKEN=SCNTOKEN,PPTINFO=PPTE
LTR 15,15 Check whether entry was returned
BNZ ENDLOOP
MVC TEXT2(8),PPTNAME Copy program name to message
WTO TEXT=ENTRYTXT
B LOOP Get next entry, if any

*
ENDLOOP DS 0H Finished with PPT

IEFPPSCN REQUEST=END,TOKEN=SCNTOKEN
MODESET MODE=PROB,KEY=NZERO Return to problem state

*
* Return to the calling program with the return code last passed by
* IEFPPSCN.
*

L 13,SAVEAREA+4 Return linkage
L 14,12(13)
LM 0,12,20(13)
BR 14

*
**** Local storage definitions ****
SCNTOKEN DC A(0) PPT scan token
PPTE DC AL2(L’PPTENTRY) Length of a PPT entry
PPTENT DS CL(L’PPTENTRY) PPT entry return area
SAVEAREA DC 18F’0’
*
* The following areas are used to print the program name within the
* PPT. Additional formatting is required to make all the
* information readable.
*
ENTRYTXT DS 0F Area for printing
TEXTL DC H’32’ Message length
TEXT1 DC C’SHOWPPT: Program Name = ’ Constant portion of message
TEXT2 DS CL8 Variable portion (program name)
*
* The following mapping macros are required for the IEFPPSCN macro.
*

CVT DSECT=YES
IEFJESCT
IEFZB610
END SHOWPPT End of SHOWPPT

IEFPPSCN macro

Chapter 83. IEFPPSCN — Scan the program properties table 855

IEFPPSCN - List form
Use the list form of the IEFPPSCN macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the IEFPPSCN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IEFPPSCN.

IEFPPSCN

� One or more blanks must follow IEFPPSCN.

,MF=(L,cntl) cntl: Symbol.

,MF=(L,cntl,attr) attr: 1- to 60-character input string.

,MF=(L,cntl,0D) Default: 0D.

Parameters
The parameters are explained under the standard form of the IEFPPSCN macro
with the following exception:

,MF=(L,cntl)
,MF=(L,cntl,attr)
,MF=(L,cntl,0D)

Specifies the list form of the macro.

cntl is the name of a storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

IEFPPSCN - Execute form
Use the execute form of the IEFPPSCN macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

IEFPPSCN macro

856 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax
The execute form of the IEFPPSCN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IEFPPSCN.

IEFPPSCN

� One or more blanks must follow IEFPPSCN.

REQUEST=RETRIEVE

REQUEST=NEXT

REQUEST=END

,PPTINFO=ppt_info ppt_info: RX-type address or register (2) - (12).

Required for REQUEST=RETRIEVE and REQUEST=NEXT.

Not valid for REQUEST=END.

,PROGRAM=program_name program_name: RX-type address or register (2) - (12).

Required for REQUEST=RETRIEVE.

Not valid for REQUEST=NEXT or REQUEST=END.

,TOKEN=token token: RX-type address or register (2) - (12).

Required for REQUEST=NEXT and REQUEST=END.

Not valid for REQUEST=RETRIEVE.

,RETCODE=rc rc: RX-type address or register (2) - (12).

,MF=(E,cntl) cntl: RX-type address or register (2) - (12).

,MF=(E,cntl,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the IEFPPSCN macro
with the following exception:

,MF=(E,cntl)
,MF=(E,cntl,COMPLETE)

Specifies the execute form of the macro.

cntl is the name of a storage area for the parameter list.

IEFPPSCN macro

Chapter 83. IEFPPSCN — Scan the program properties table 857

COMPLETE specifies that the system is to check the macro parameter syntax
and supply defaults on parameters that you do not use. COMPLETE is the
default.

IEFPPSCN macro

858 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 84. IEFQMREQ — Invoke SWA manager in move
mode

Description
Use this macro to read information from the SWA into a buffer that you provide,
or to write information from a buffer into the SWA. z/OS MVS Programming:
Authorized Assembler Services Guide describes how to use the IEFQMREQ macro.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the caller's primary address space

Programming requirements
The caller must include the following mapping macros:
v CVT
v IEFJESCT
v IEFQMIDS
v IEFQMNGR
v IEFZB506

Provide input to the IEFQMREQ macro through the external parameter area
(EPAM), mapped by IEFZB506, and the queue manager parameter area (QMPA),
mapped by IEFQMNGR.

Restrictions
None.

Input register information
On input to the macro, general purpose register (GPR) 1 must contain the address
of the QMPA, and GPR 13 must contain the address of a standard 18-word save
area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 When control returns from IEFQMREQ, unchanged.

© Copyright IBM Corp. 1988, 2016 859

When control does not return from IEFQMREQ, the address of a 16-byte
area containing:

Bytes 1-4
Address of the QMPA

Bytes 5-12
Not an intended programming interface; record this information
and provide it to the appropriate IBM support personnel.

Bytes 13-16
Address of the failing EPA

1 When control returns from IEFQMREQ, used as a work register by the
system.

When control does not return from IEFQMREQ, abend code 0B0.

2-14 Unchanged

15 Return code, when control returns from IEFQMREQ.

Reason code associated with the abend, when control does not return from
IEFQMREQ.

Syntax
The IEFQMREQ macro, which has no parameters, is written as follows:

Syntax Description

name name:

� One or more blanks must precede IEFQMREQ.

IEFQMREQ

� One or more blanks must follow IEFQMREQ.

Parameters
For information about initializing the parameter areas for IEFQMREQ, see z/OS
MVS Programming: Authorized Assembler Services Guide.

ABEND codes
The caller might encounter abend code X'0B0'

Return and reason codes
The hexadecimal return code is in GPR 15. When control returns from IEFQMREQ,
the return codes have the following meanings.

Table 78. Return Codes for the IEFQMREQ Macro

Hexadecimal
Return Code

Meaning

00 Meaning: The IEFQMREQ service was successful.

IEFQMREQ macro

860 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 78. Return Codes for the IEFQMREQ Macro (continued)

Hexadecimal
Return Code

Meaning

38 Meaning: The system could not obtain the storage necessary to carry out the
request.

When control does not return from IEFQMREQ, GPR 15 contains a hexadecimal
reason code associated with system abend code 0B0. The reason codes have the
following meanings.

Table 79. Reason Codes for the IEFQMREQ Macro

Hexadecimal Reason
Code

Meaning

04 Meaning: The function you requested was not valid.

08 Meaning: The SVA in the SWA prefix was not valid.

0C Meaning: You attempted to read a block that was not yet written.

10 Meaning: The length of an SWA block was not valid.

14 Meaning: The count field was not valid.

1C Meaning: The block ID was not valid.

24 Meaning: The SVA does not correspond to any virtual address.

IEFQMREQ macro

Chapter 84. IEFQMREQ — Invoke SWA manager in move mode 861

IEFQMREQ macro

862 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 85. IEFSJSYM — JCL symbol service

Description
The IEFSJSYM JCL symbol service provides JCL symbol information from the
submitted JCL to the program running under the submitted JCL. The JCL symbol
service performs the following functions:

REQUEST=GETALL
Returns all of the JCL symbols and values for the job step in the area
provided by the caller, and is mapped by the IEFSJSYD macro.

REQUEST=GETBYNAME
Returns symbol values for the symbol names provided by the caller by the
SymListArray parameter.

To be visible to the program, the symbols must have been either exported prior to
the job step or provided by the submitter. The symbols are returned without a
leading ampersand character (&).

The following information is described once at the beginning of the IEFSJSYM
macro description:
v Environment
v Programming requirements
v Restrictions
v Input register information
v Output register information
v Performance implications

Following the descriptions of the standard forms of all requests are:
v Abend codes
v Return and reason codes
v Examples

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary or Access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

© Copyright IBM Corp. 1988, 2016 863

Programming requirements
REQUEST=GETBYNAME

The caller must provide a list of valid symbol names. Invalid symbol
names or symbols that were not exported will have a null symbol value
and a symbol value length of zero. A return code of 4 will be returned to
indicate that not all symbols were processed successfully.

IEFSJSYD macro
To map data returned by an IEFSJSYM request.

Restrictions
This service cannot be used reliably until the job has begun execution. Invoking the
service before the first job step has started executing is not supported (for example,
in exits such as IEFUJI that are invoked before the first job step has started
executing).

When using the returned symbol values, the value of the symbol returned will be
the last value set prior to or within the current job step (EXEC PGM=statement).

Input register information
There are no input register requirements for issuing the IEFSJSYM macro.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as a work register by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

IEFSJSYM macro

864 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

REQUEST= parameter of IEFSJSYM
The IEFSJSYM macro with the REQUEST parameter produces a DSECT that maps
the format of the function routine input table.

Syntax
The syntax of the IEFSJSYM macro with REQUEST= is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSJSYM.

IEFSJSYM

� One or more blanks must follow IEFSJSYM.

REQUEST=GETALL Either REQUEST=GETALL or REQUEST=GETBYNAME is required.

REQUEST=GETBYNAME

,SYMLISTARRAY=symlistarray Required for REQUEST=GETBYNAME only.

,NUMENTRIES=numentries Required for REQUEST=GETBYNAME only.

,SYMBAREA=symbarea

,SYMBAREALEN=symbarealen

,DIAGDATA=diagdata

,RETCODE=retcode

,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION IMPLIED_VERSION is the default value.

,PLISTVER=MAX

,PLISTVER=0

,MF=S S is the default value.

,MF=(L,list addr,0D) 0D is the default value.

,MF=(L,list addr,attr)

,MF=(E,list addr,COMPLETE) COMPLETE is the default value.

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr,COMPLETE) COMPLETE is the default value.

,MF=(M,list addr,NOCHECK)

IEFSJSYM macro

Chapter 85. IEFSJSYM — JCL symbol service 865

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IEFSJSYM
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,DIAGDATA=diagdata
A required output parameter that specifies an area for service to return
additional information. To code this parameter, specify an RS-type address, or
address in register (2)-(12), of a 16-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default value.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter can be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IEFSJSYM in
the following order:
1. Use IEFSJSYM ...MF=(M,list-addr,COMPLETE) to specify appropriate

parameters, including all required parameters.
2. Use IEFSJSYM ... MF=(M,list-addr,NOCHECK) to specify the parameters

that you want to change.
3. Use IEFSJSYM ...MF=(E,list-addr,NOCHECK) to execute the macro.

,list addr
Specifies the name of a storage area to contain the parameters. For MF=S,
MF=E, and MF=M, this can be an RS-type address or an address in
register (1)-(12).

IEFSJSYM macro

866 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,attr
Specifies an optional 1-60 character input string which forces boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies for the system to check for required parameters, and to supply
default values for omitted optional parameters.

,NOCHECK
Specifies for the system to not check for required parameters, and to not
supply default values for omitted optional parameters.

,NUMENTRIES=numentries
A required input parameter for REQUEST=GETBYNAME that specifies
the number of entries in the CHAR(16) array pointed to by
SYMLISTARRAY. To code this parameter, specify an RS-type address or
address in register (2)-(12) of a halfword field, or specify a literal decimal
value.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

Specifies the version of the macro and determines which parameter list the
system generates. PLISTVER is an optional input parameter on all forms
of the macro, including the list form. When using this parameter, specify it
on all macro forms used for a request and with the same value on all of
the macro forms. To code this parameter, specify IMPLIED_VERSION,
MAX, or 0, as follows:

IMPLIED_VERSION
Specifies the lowest version that allows all of the specified
parameters to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

MAX Specifies to maximize the parameter list size. Because the
supported maximum size can grow from release to release, the
amount of storage that your program requires can also change. If
your system can tolerate a size change, IBM recommends that you
always specify PLISTVER=MAX on the list form of the macro.
Specifying MAX ensures that the list-form parameter list is always
long enough to hold all of the parameters that you might specify
on the execute form, when both are assembled with the same level
of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

0 Specifies to use the currently available parameters.

REQUEST=GETALL
REQUEST=GETBYNAME

A required parameter that specifies the JCL symbols to get. Use
REQUEST=GETALL to get all symbol values that were exported. Use
REQUEST=GETBYNAME to get specific named symbol values, given an
array of symbol names.

,RETCODE=retcode
An optional output parameter into which the return code is copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without

IEFSJSYM macro

Chapter 85. IEFSJSYM — JCL symbol service 867

parentheses), the value will be left in GPR 15. To code this parameter,
specify an RS-type address of a fullword field, or register (2)-(12) or (15),
(GPR15), (REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0. To code this
parameter, specify an RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), (REG0), (REG00), or (R0).

,SYMBAREALEN=symbarealen
A required input parameter that specifies the length of the SYMBAREA
that is provided by the caller. To code this parameter, specify an RS-type
address, or address in register (2)-(12) of a fullword field, or specify a
literal decimal value.

,SYMLISTARRAY=symlistarray
A required input parameter for REQUEST=GETBYNAME that contains an
array of up to 16 character entries, each of which contains a symbol name
for which the symbol value is to be returned. Symbol names must be
left-justified in the array entry, and if shorter than 16 characters, padded on
the right with blank spaces.

A wildcard character (asterisk (*) to match 0 or more characters in the
symbol name, or question mark (?) to match exactly one character) can
used to specify a generic symbol name. Symbol names should not contain
a leading ampersand character (&) or any special character other than a
wildcard character.

IEFSJSYM returns a null value (SYDESYMVALUELEN=0) for entries that
do not contain valid JCL symbol name; in addition, a return code of
IEFSJSYMRC_Warn and a reason code of
IEFSJSYMRsn_SymbolNameNotProcessed are set. To code this parameter,
specify an RS-type address, or address in register (2)-(12), of a character
field.

ABEND codes
None.

Return and reason codes
Table 80 contains return and reason codes, the equate symbols associated with each
reason code, and the meaning and suggested action for each return and reason
code.

Table 80. Return and reason codes for the IEFSJSYM macro

Return Code Decimal
(hex)

Reason Code Decimal
(hex)

Equate Symbol for Reason Code
Meaning and Action

00 (00) None. Equate Symbol: IEFSJSYMRC_Ok

Meaning: The requested function was successfully completed.

Action: None.

IEFSJSYM macro

868 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 80. Return and reason codes for the IEFSJSYM macro (continued)

Return Code Decimal
(hex)

Reason Code Decimal
(hex)

Equate Symbol for Reason Code
Meaning and Action

04 (04) None. Equate Symbol: IEFSJSYMRC_Warn

Meaning: The values of some of the requested symbols could not be
returned. Symbols without values are returned with null values and symbol
value lengths of 0.

Action: Refer to the action for the individual reason code.

04 (04) 04 (04) Equate Symbol: IEFSJSYMRsn_SymbolNameNotProcessed

Meaning: For a GETBYNAME request, the values of some of the requested
symbols could not be returned. This can occur if the symbol was not
exported by the calling JCL, if the symbol was not SET after being exported,
or if the symbol name input to IEFSJSYM did not follow JCL symbol name
conventions. This only occurs for specific symbol names in the array, and
not to symbol names that include wildcard characters. Symbols without
values are returned with null values and symbol value lengths of 0.

Action: Check the submitted JCL to ensure that an EXPORT was done for
the requested symbol and that the symbol was SET after the EXPORT
statement.

04 (04) 08 (008) Equate Symbol: IEFSJSYMRsn_InsSuffSymSpace

Meaning: Insufficient space to return all of the symbols and values
requested.

Action: Use the value returned in SYDALEN to obtain the storage required
to fit all of the returned symbols, values and control information.

08 (08) None. Equate Symbol: IEFSJSYMRC_ParmError

Meaning: Invalid input parameter.

Action: Refer to the action for the individual reason code.

08 (08) 08 (04) Equate Symbol: IEFSJSYMrsn_ParmlistAddrInvalid

Meaning: IEFSJSYM could not use the parameter list provided.

Action: Verify that the address of the parameter list is valid and resides in
virtual storage of the primary address space.

08 (08) 08 (08) Equate Symbol: IEFSJSYMrsn_SymbareaAddrInvalid

Meaning: IEFSJSYM could not use the output symbol area provided

Action: Verify that the address of the symbol area is valid and resides in
virtual storage of the primary address space.

08 (08) 08 (00C) Equate Symbol: IEFSJSYMrsn_SymbListAddrInvalid

Meaning: IEFSJSYM could not use the input symbol list provided.

Action: Verify that the address of the data area is valid and resides in
virtual storage of the primary address space.

08 08 08 (010) Equate Symbol: IEFSJSYMRsn_Mismatched_VersLen

Meaning: The length of the IEFSJSYM parameter list does not match the
version number supplied.

Action: Ensure that the parameter list that was built matches the specified
or default parameter list version.

IEFSJSYM macro

Chapter 85. IEFSJSYM — JCL symbol service 869

Table 80. Return and reason codes for the IEFSJSYM macro (continued)

Return Code Decimal
(hex)

Reason Code Decimal
(hex)

Equate Symbol for Reason Code
Meaning and Action

08 08 08 (014) Equate Symbol: IEFSJSYMRsn_Unsupported_version

Meaning: The version of the parameter list is not supported with this level
of the IEFSJSYM service.

Action: Correct the version and other parameters to match the system
where the job was run, or run the job on a system that supports this version
of IEFSJSYM.

08 (08) 08 (18) Equate Symbol: IEFSJSYMRsn_Unsupported_Function

Meaning: The request was for a function that is not supported with this
level of the IEFSJSYM service.

Action: Choose a function that is supported on this level of IEFSJSYM
service, or request this function on a system that supports it.

0C (0C) None. Equate Symbol: IEFSJSYMRC_EnvError

Meaning: Environmental Error

Action: Refer to the action for the individual reason code.

0C (0C) 0C (04) Equate Symbol: IEFSJSYMRsn_InsSuffHdSpace

Meaning: Insufficient space to return the header (SYDHDR) portion of the
data area.

Action: Refer to the mapping macro IEFSJSYD and pass an area at least as
large as the DSECT SYDHDR.

0C (0C) 0C (08) Equate Symbol: IEFSJSYMRsn_StorageNotObtained

Meaning: Failed to obtain above the bar storage via IARV64. The length of
the storage requested is based on the size of the caller's SYMBAREA and
SYMLISTARRAY size.

Action: Check the SYMBAREALEN specification. If SYMBAREALEN is
coded as an extremely large number, try reducing the SYMBAREALEN to a
size that is comparable to the number of symbols requested.

0C (0C) 0C (0C) Equate Symbol: IEFSJSYMRsn_IncorrectExecEnv

Meaning: A proper execution environment does not exist for the service.

Action: Verify that the program meets the requirements described
previously. The returned DIAGDATA value will contain information that
identifies the problem.

0C (0C) 0C (010) Equate Symbol: IEFSJSYMRsn_UnexpectedSjfResponse

Meaning: Underlying JCL services invoked by the service returned with a
unexpected return and reason codes. IEFSJSYM might have been invoked
before the job execution environment was established, or after the job
execution environment had ended.

Action: Verify that the program is running under a batch program
environment. The returned DIAGDATA value contains information, such as
the JCL service and return and reason codes, to diagnose the error.

10 (10) None. Equate Symbol: IEFSJSYMRC_IntError

Meaning: Unexpected internal error.

Action: Report the problem to the system programmer.

IEFSJSYM macro

870 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Example
SJSYM_RC DS F
SJSYM_RSN DS F
SJDIAG DS 4F
SYMBOLS DS 0D
S1 DC C’DSN ’
S2 DC C’VOL ’
S3 DC C’UNIT ’
SYMBOLAREA DS 64F

IEFSJSYM SYMLISTARRAY=SYMBOLS,NUMENTRIES=3,SYMBAREA=SYMBOLAREA,
SYMBAREALEN=256,DIAGDATA=SJDIAG

or
IEFSJSYM REQUEST=GETALL,SYMBAREA=SYMBOLAREA,SYMBAREALEN=256,

RETCODE=SJSYM_RC,RSNCODE=SJSYM_RSN,DIAGDATA=SJDIAG

IEFSJSYM macro

Chapter 85. IEFSJSYM — JCL symbol service 871

IEFSJSYM macro

872 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 86. IEFSSI — Dynamically control a subsystem

Description
Use the IEFSSI macro to dynamically control a subsystem in any of the following
ways:
v Adding and defining a subsystem to the system
v Activating a subsystem so that its function routines can process function

requests
v Defining a set of optional subsystem characteristics
v Deactivating a subsystem
v Swapping the current SSVT with a new SSVT
v Storing subsystem-defined data for a subsystem
v Retrieving subsystem-defined data for a subsystem that was previously stored

with the put request
v Query information for all subsystems defined to the SSI

The requests for the macro are:
v IEFSSI REQUEST=ADD, dynamically adds and defines a subsystem to the

system. See “REQUEST=ADD parameter of IEFSSI” on page 875 for the syntax
of this request.

v IEFSSI REQUEST=ACTIVATE, dynamically activates a subsystem so that its
function routines are available to process function requests. See
“REQUEST=ACTIVATE parameter of IEFSSI” on page 879 for the syntax of this
request.

v IEFSSI REQUEST=OPTIONS, which defines a set of optional subsystem
characteristics. See “REQUEST=OPTIONS parameter of IEFSSI” on page 882 for
the syntax of this request.

v IEFSSI REQUEST=DEACTIVATE, which deactivates a subsystem. See
“REQUEST=DEACTIVATE parameter of IEFSSI” on page 887 for the syntax of
this request.

v IEFSSI REQUEST=SWAP, which replaces the SSVT that is currently being used
to route function requests with a new one. See “REQUEST=SWAP parameter of
IEFSSI” on page 889 for the syntax of this request.

v IEFSSI REQUEST=PUT, which stores subsystem-defined data for the subsystem.
See “REQUEST=PUT parameter of IEFSSI” on page 893 for the syntax of this
request.

v IEFSSI REQUEST=GET, which retrieves subsystem-defined data previously
stored using the IEFSSI REQUEST=PUT service. See “REQUEST=GET parameter
of IEFSSI” on page 896 for the syntax of this request.

v IEFSSI REQUEST=QUERY, which obtains information about a currently defined
subsystem. See “REQUEST=QUERY parameter of IEFSSI” on page 899 for the
syntax of this request.

The IEFSSI macro (REQUEST=QUERY only) is also described in z/OS MVS
Programming: Assembler Services Reference ABE-HSP.

For ease of use, the standard form of the macro is shown for each IEFSSI request.
The requests are described on the following pages along with the:

© Copyright IBM Corp. 1988, 2016 873

v Standard form syntax diagram
v Description of the parameters

The following information is described once at the beginning of the IEFSSI macro
description:
v Environment
v Programming requirements
v Restrictions
v Input register information
v Output register information
v Performance implications

Following the descriptions of the standard forms of all requests are:
v Abend codes
v Return and reason codes
v Examples

The REQUEST=ADD, REQUEST=ACTIVATE, REQUEST=OPTIONS,
REQUEST=DEACTIVATE, REQUEST=SWAP, REQUEST=PUT, REQUEST=GET and
REQUEST=QUERY parameters, which designate the services of the IEFSSI macro,
are mutually exclusive. You can select only one.

For information about using dynamic subsystem services, see z/OS MVS Using the
Subsystem Interface. This topic also includes information about related macros
IEFSSVT and IEFSSVTI.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For the QUERY request, problem state with any PSW key.

The REQUEST=ADD, REQUEST=ACTIVATE,
REQUEST=OPTIONS, REQUEST=DEACTIVATE,
REQUEST=SWAP, REQUEST=PUT, and REQUEST=GET
parameters require one of the following:

v Supervisor state

v Any system PSW key

v PSW key mask (PKM) allowing key 0-7

v APF authorization
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24-bit or 31-bit
ASC mode: Primary or Access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

Programming requirements
v Include the CVT and IEFJESCT mapping macros in your program.
v Include the IEFJSRC mapping macro in your program. This macro defines the

dynamic SSI return and reason codes.

IEFSSI macro

874 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v For the REQUEST=QUERY parameter, the caller must include the IEFJSQRY
macro to map the REQUEST=QUERY output.

v For the REQUEST=ACTIVATE and REQUEST=SWAP parameters, the subsystem
must have created at least one SSI-managed vector table. An SSI-managed vector
table is a vector table created with the IEFSSVT REQUEST=CREATE macro.

Restrictions
The caller must not have established an EUT FRR.

Input register information
Before issuing the IEFSSI macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2 - 13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0 - 1 Used as a work register by the system.

2 - 13 Unchanged

14 - 15 Used as a work register by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

REQUEST=ADD parameter of IEFSSI
The IEFSSI macro with the ADD parameter dynamically adds and defines a
subsystem to the system.

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 875

Syntax for REQUEST=ADD
The syntax of the IEFSSI REQUEST=ADD macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSI.

IEFSSI

� One or more blanks must follow IEFSSI.

SUBNAME=subname subname: RS-type address or address in register (2) - (12).

,REQUEST=ADD

,CONSNAME=consname consname: RS-type address or address in register (2) - (12).

,CONSNAME=0 Default: CONSNAME=0

,INITRTN=initrtn initrtn: RS-type address or address in register (2) - (12).

,INITRTN=NO_INITRTN Default: INITRTN=NO_INITRTN

,INITPARM=initparm initparm: RS-type address or address in register (2) - (12).

,INITPARM=NO_INITPARM Default: INITPARM=NO_INITPARM

,INITPLEN=initplen initplen: RS-type address or address in register (2) - (12).

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12) of fullword output
variable

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12) of fullword output
variable

,COM=com com: comment string

,COM=NULL Default: COM=NULL

,MF=S Default: MF=S

,MF=(L,list addr)

IEFSSI macro

876 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters for REQUEST=ADD
The parameters are explained as follows:

SUBNAME=subname
A required parameter that specifies the field (or an address in a register)
containing the 4-character subsystem name.

This fullword field must be padded to the right with blanks or nulls if it is less
than 4 characters long.

When selecting subsystem names, note the following:
v If you specify a subsystem name with the characters '*' and '?', the DISPLAY

SSI command or the IEFSSI REQUEST=QUERY service specifying that
subsystem name may return information about subsystems other than this
one. The '*' and '?' are treated as wildcard characters for these services.

v If you specify a subsystem name of '!PRI', the DISPLAY SSI command or the
IEFSSI REQUEST=QUERY service specifying that subsystem name returns
information about the primary subsystem, even though there is a subsystem
named '!PRI'.

Note: If you need to start the subsystem, its name must meet the requirements
for the name of a started task. See z/OS MVS JCL Reference for more
information.

,REQUEST=ADD
A parameter that specifies that a subsystem is to be dynamically defined.

,CONSNAME=consname
,CONSNAME=0

An optional 8-character parameter that specifies the name (or an address in a
register) of a console to which any messages the SSI issues as part of the
initialization process are written. If an INITRTN parameter is specified, the
console name is passed to the routine named on INITRTN.

The default is 0. If the default parameter is used, the SSI issues messages to the
consoles that are receiving the INTIDS attribute.

,INITRTN=initrtn
,INITRTN=NO_INITRTN

An optional 8-character parameter that specifies the name (or an address in a
register) of a subsystem initialization routine.

A subsystem initialization routine name that is less than 8 characters long must
be padded to the right with blanks. The default is NO_INITRTN.

,INITPARM=initparm
,INITPARM=NO_INITPARM

An optional parameter that specifies the name (or address in a register) of a
parameter string that is passed to the subsystem initialization routine. This

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 877

parameter string can be up to 60 characters long. The INITPLEN parameter
specifies the actual length of the passed parameter.

The INITPARM parameter is applicable only if you specify the INITRTN
parameter.

,INITPLEN=initplen
A required parameter that contains the length of the parameter string to be
passed to the subsystem initialization routine. You must specify this 4-byte
parameter if you specify the INITPARM parameter.

INITPLEN can be from 1 to 60 characters long inclusive. If the length is greater
than 60, the subsystem is defined but the subsystem initialization routine is not
invoked.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
The largest size parameter list currently possible. This size might grow
from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

1 The currently available parameters.

To code: specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,RETCODE=retcode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the return code. The return code is copied
from general purpose register 15.

,RSNCODE=rsncode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the reason code. The reason code is copied
from general purpose register 0.

,COM=com
,COM=NULL

An optional parameter that specifies the character input that appears in the
block comment before the macro invocation. Use it to make comments about

IEFSSI macro

878 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

the macro invocation. The comment must be enclosed in quotation marks if it
contains any lower case characters. The default is NULL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Use MF=S to specify the standard form of the IEFSSI macro, which builds an
in-line parameter list and generates the macro invocation to transfer control to
the service.

Use MF=L to specify the list form of the IEFSSI macro. Use the list form
together with the execute form of the macro for applications that require
reentrant code. The list form defines an area of storage that the execute form
uses to store the parameters. No other parameters may be coded with the list
form of the macro.

Use MF=E together with the list form of the macro for applications that require
reentrant code. The execute form of the IEFSSI macro stores the parameters
into the storage area defined by the list form and generates the macro
invocation to transfer control to the service.

,list addr
A required parameter that specifies the name of a storage area for the
parameter list.

,attr
An optional 1- to 60-character input string that contains any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
An optional parameter that specifies that the system checks for required
parameters and supply defaults for omitted optional parameters. This is
the default parameter.

REQUEST=ACTIVATE parameter of IEFSSI
The IEFSSI macro with the ACTIVATE parameter dynamically activates a
subsystem so that its function routines are available to process function requests.

Syntax for REQUEST=ACTIVATE
The syntax of the IEFSSI REQUEST=ACTIVATE macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSI.

IEFSSI

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 879

Syntax Description

� One or more blanks must follow IEFSSI.

SUBNAME=subname subname: RS-type address or address in register (2) - (12).

,REQUEST=ACTIVATE

,INTOKEN=intoken intoken: RS-type address or address in register (2) - (12).

,INTOKEN=NO_INPUT_TOKEN Default: INTOKEN=NO_INPUT_TOKEN

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12) of fullword output
variable

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12) of fullword output
variable

,COM=com com: comment string

,COM=NULL Default: COM=NULL

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters for REQUEST=ACTIVATE
The parameters are explained as follows:

SUBNAME=subname
A required parameter that specifies the field (or an address in a register)
containing the 4-character subsystem name. It must be the name of a
subsystem that has been previously defined to the system using SSI services.

This field must be padded to the right with blanks or nulls if it is less than 4
characters long.

,REQUEST=ACTIVATE
A parameter that specifies a subsystem is to be dynamically activated so that
its function routines are available to process function requests. Before invoking
the IEFSSI macro and issuing the REQUEST=ACTIVATE parameter, the

IEFSSI macro

880 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

subsystem must be defined to the system, and you must ensure that an SSVT
has been built using the IEFSSVT macro with the REQUEST=CREATE
parameter.

The ACTIVATE request may also be used to reactivate a subsystem that has
been deactivated. To reactivate a subsystem, you can either use the same SSVT
as you used to deactivate the subsystem or you can use a new SSVT.

,INTOKEN=intoken
,INTOKEN=NO_INPUT_TOKEN

An optional 32-bit parameter that specifies the name (or an address in a
register) of an input token that represents the SSVT that is used when
activating the subsystem. The function routines associated with the SSVT are
made available for processing requests.

The token must be one that was returned by one of the following:
v IEFSSVT REQUEST=CREATE
v IEFSSI REQUEST=DEACTIVATE
v IEFSSI REQUEST=SWAP

If the INTOKEN parameter is omitted, an SSVT is chosen as follows:
v The most recently active SSI-managed vector table
v The last SSI-managed vector table created, if no SSI-managed vector table

has been activated

The default is NO_INPUT_TOKEN.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
The largest size parameter list currently possible. This size might grow
from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

1 The currently available parameters.

To code: specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 881

,RETCODE=retcode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the return code. The return code is copied
from general purpose register 15.

,RSNCODE=rsncode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the reason code. The reason code is copied
from general purpose register 0.

,COM=com
,COM=NULL

An optional parameter that specifies the character input that appears in the
block comment before the macro invocation. Use it to make comments about
the macro invocation. The comment must be enclosed in quotation marks if it
contains any lower case characters. The default is NULL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Use MF=S to specify the standard form of the IEFSSI macro, which builds an
in-line parameter list and generates the macro invocation to transfer control to
the service.

Use MF=L to specify the list form of the IEFSSI macro. Use the list form
together with the execute form of the macro for applications that require
reentrant code. The list form defines an area of storage that the execute form
uses to store the parameters. No other parameters may be coded with the list
form of the macro.

Use MF=E together with the list form of the macro for applications that require
reentrant code. The execute form of the IEFSSI macro stores the parameters
into the storage area defined by the list form and generates the macro
invocation to transfer control to the service.

,list addr
A required parameter that specifies the name of a storage area for the
parameter list.

,attr
An optional 1- to 60-character input string that contains any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
An optional parameter that specifies that the system checks for required
parameters and supply defaults for omitted optional parameters. This is
the default parameter.

REQUEST=OPTIONS parameter of IEFSSI
The IEFSSI macro with the OPTIONS parameter defines a set of optional
subsystem characteristics.

IEFSSI macro

882 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax for REQUEST=OPTIONS
The syntax of the IEFSSI REQUEST=OPTIONS macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSI.

IEFSSI

� One or more blanks must follow IEFSSI.

SUBNAME=subname subname: RS-type address or address in register (2) - (12) of fullword output
variable

,REQUEST=OPTIONS

,COMMAND=NO Default: COMMAND=NO

,COMMAND=YES

,REQDSUB=MSTR Default: REQDSUB=MSTR

,REQDSUB=PRI

,EVENTRTN=exitname exitname: 8-character module name

,EVENTRTN=NO_EVENTRTN Default: EVENTRTN=NO_EVENTRTN

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12) of fullword output
variable

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12) of fullword output
variable

,COM=com com: comment string

,COM=NULL Default: COM=NULL

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 883

||

||

Syntax Description

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters for REQUEST=OPTIONS
The parameters are explained as follows:

SUBNAME=subname
A required parameter that specifies the field (or an address in a register)
containing the 4-character subsystem name. It must be the name of a
subsystem that has been previously defined to the system using SSI services.

This field must be padded to the right with blanks or nulls if it is less than 4
characters long.

,REQUEST=OPTIONS
A parameter that specifies the definition of a set of optional subsystem
characteristics. You can set the following subsystem options using this macro:
v Whether the subsystem responds to SETSSI commands
v Whether you want the invoking subsystem to start under the MSTR or

primary subsystem

IEFSSI REQUEST=OPTIONS is the only way you can specify these optional
characteristics.

If you invoke the OPTIONS parameter multiple times for a single subsystem,
the most recent invocation determines the resulting characteristics. The defaults
listed for the COMMAND and REQDSUB parameters below apply to the first
invocation.

If a parameter is not specified on a subsequent invocation, the corresponding
subsystem characteristic retains the value that was assigned by the last
invocation that specified the parameter.

,COMMAND=NO
,COMMAND=YES

An optional parameter that specifies the whether the subsystem responds to
the following commands:
v SETSSI ACTIVATE
v SETSSI DEACTIVATE

The meanings are:

NO The subsystem does not allow SETSSI commands. NO is the default.

YES
The subsystem allows SETSSI commands.

You need to specify COMMAND=YES only if the subsystem can tolerate the
processing associated with each of the SETSSI commands listed above.

,REQDSUB=MSTR
,REQDSUB=PRI

An optional parameter that specifies whether a START subsystem command
causes the subsystem to start under either the MSTR subsystem or the primary
subsystem (JES).

IEFSSI macro

884 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

When the procedure name on the START command matches a defined
subsystem name, the procedure being started is recognized as a subsystem. If
the START command does not specify the SUB parameter, the subsystem is
started under the control of the subsystem identified by the REQDSUB
parameter.

The meanings are:

REQDSUB=MSTR
The subsystem specified does not require the services of the primary
subsystem and starts under the MSTR subsystem. MSTR is the default.

REQDSUB=PRI
The subsystem specified requires the services of the primary subsystem
and must start under its control. If a START subsystem command is issued
before the primary subsystem is available, the processing that the
subsystem was doing in response to the START command fails.

,EVENTRTN=exitname
,EVENTRTN=NO_EVENTRTN

An optional input parameter that specifies the name of the subsystem event
notification routine to get control whenever a subsystem event occurs.

EVENTRTN=exitname
Specifies the 8-character module name (exitname), left-justified and padded
on the right with blanks, if necessary.

EVENTRTN=NO_EVENTRTN
Indicates that there is no subsystem event notification routine. This will
disable the current subsystem event notification routine, if there is one.

Default: EVENTRTN=NO_EVENTRTN

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
The largest size parameter list currently possible. This size might grow
from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

1 The currently available parameters.

To code: specify in this input parameter one of the following:

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 885

|
|
|
|

|
|
|

|
|
|

|

v IMPLIED_VERSION
v MAX
v A decimal value of 1

,RETCODE=retcode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the return code. The return code is copied
from general purpose register 15.

,RSNCODE=rsncode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the reason code. The reason code is copied
from general purpose register 0.

,COM=com
,COM=NULL

An optional parameter that specifies the character input that appears in the
block comment before the macro invocation. Use it to make comments about
the macro invocation. The comment must be enclosed in quotation marks if it
contains any lower case characters. The default is NULL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Use MF=S to specify the standard form of the IEFSSI macro, which builds an
in-line parameter list and generates the macro invocation to transfer control to
the service.

Use MF=L to specify the list form of the IEFSSI macro. Use the list form
together with the execute form of the macro for applications that require
reentrant code. The list form defines an area of storage that the execute form
uses to store the parameters. No other parameters may be coded with the list
form of the macro.

Use MF=E together with the list form of the macro for applications that require
reentrant code. The execute form of the IEFSSI macro stores the parameters
into the storage area defined by the list form and generates the macro
invocation to transfer control to the service.

,list addr
A required parameter that specifies the name of a storage area for the
parameter list.

,attr
An optional 1- to 60-character input string that contains any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
An optional parameter that specifies that the system checks for required
parameters and supply defaults for omitted optional parameters. This is
the default parameter.

IEFSSI macro

886 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

REQUEST=DEACTIVATE parameter of IEFSSI
The IEFSSI macro with the DEACTIVATE parameter deactivates a subsystem.

Syntax for REQUEST=DEACTIVATE
The syntax of the IEFSSI REQUEST=DEACTIVATE macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSI.

IEFSSI

� One or more blanks must follow IEFSSI.

SUBNAME=subname subname: RS-type address or address in register (2) - (12).

,REQUEST=DEACTIVATE

,OUTTOKEN=outtoken outtoken: RS-type address or address in register (2) - (12).

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12) of fullword output
variable

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12) of fullword output
variable

,COM=com com: comment string

,COM=NULL Default: COM=NULL

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 887

Parameters for REQUEST=DEACTIVATE
The parameters are explained as follows:

SUBNAME=subname
A required parameter that specifies the field (or an address in a register)
containing the 4-character subsystem name. It must be the name of a
subsystem that has been previously defined to the system using SSI services.

This field must be padded to the right with blanks or nulls if it is less than 4
characters long.

,REQUEST=DEACTIVATE
A parameter that specifies that a subsystem is to be deactivated. This stops any
new function requests from being passed to the subsystem function routines.

A subsystem can be reactivated after being deactivated by using the same or a
different SSVT.

,OUTTOKEN=outtoken
An optional 32-bit parameter that specifies the name (or an address in a
register) of an output token. This is where the token that represents the
deactivated SSVT is returned.

This token may be used in a subsequent ACTIVATE request to reactivate the
subsystem using the same SSVT.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
The largest size parameter list currently possible. This size might grow
from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

1 The currently available parameters.

To code: specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

IEFSSI macro

888 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,RETCODE=retcode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the return code. The return code is copied
from general purpose register 15.

,RSNCODE=rsncode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the reason code. The reason code is copied
from general purpose register 0.

,COM=com
,COM=NULL

An optional parameter that specifies the character input that appears in the
block comment before the macro invocation. Use it to make comments about
the macro invocation. The comment must be enclosed in quotation marks if it
contains any lower case characters. The default is NULL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Use MF=S to specify the standard form of the IEFSSI macro, which builds an
in-line parameter list and generates the macro invocation to transfer control to
the service.

Use MF=L to specify the list form of the IEFSSI macro. Use the list form
together with the execute form of the macro for applications that require
reentrant code. The list form defines an area of storage that the execute form
uses to store the parameters. No other parameters may be coded with the list
form of the macro.

Use MF=E together with the list form of the macro for applications that require
reentrant code. The execute form of the IEFSSI macro stores the parameters
into the storage area defined by the list form and generates the macro
invocation to transfer control to the service.

,list addr
A required parameter that specifies the name of a storage area for the
parameter list.

,attr
An optional 1- to 60-character input string that contains any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
An optional parameter that specifies that the system checks for required
parameters and supply defaults for omitted optional parameters. This is
the default parameter.

REQUEST=SWAP parameter of IEFSSI
The IEFSSI macro with the SWAP parameter replaces the SSVT that is currently
being used to route function requests with a new one.

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 889

Syntax for REQUEST=SWAP
The syntax of the IEFSSI REQUEST=SWAP macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSI.

IEFSSI

� One or more blanks must follow IEFSSI.

SUBNAME=subname subname: RS-type address or address in register (2) - (12).

,REQUEST=SWAP

,INTOKEN=intoken intoken: RS-type address or address in register (2) - (12).

,INTOKEN=NO_INPUT_TOKEN Default: INTOKEN=NO_INPUT_TOKEN

,OUTTOKEN=outtoken outtoken: RS-type address or address in register (2) - (12).

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12) of fullword output
variable

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12) of fullword output
variable

,COM=com com: comment string

,COM=NULL Default: COM=NULL

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

IEFSSI macro

890 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Parameters for REQUEST=SWAP
The parameters are explained as follows:

SUBNAME=subname
A required parameter that specifies the field (or an address in a register)
containing the 4-character subsystem name. It must be the name of a
subsystem that has been previously defined to the system using SSI services.

This field must be padded to the right with blanks or nulls if it is less than 4
characters long.

,REQUEST=SWAP
A parameter that specifies the replacement of the SSVT currently being used to
route function requests with a new SSVT. The current SSVT is deactivated and
the new SSVT is (re)activated. The subsystem remains continuously active
during this process.

When you use a SWAP request to switch SSVTs, it is possible for you to use a
subsequent SWAP request to switch the SSVTs again, which restores the old
function routines.

A SWAP request that targets an inactive subsystem is treated as an ACTIVATE
request, but receives the IEFSSI_WARNING (4) return code.

,INTOKEN=intoken
,INTOKEN=NO_INPUT_TOKEN

An optional 32-bit parameter that specifies the name (or an address in a
register) of an input token that represents the SSVT that is used when
activating the subsystem. The function routines associated with the SSVT are
made available for processing requests.

The token must be one that was returned by either the:
v IEFSSVT REQUEST=CREATE
v IEFSSI REQUEST=DEACTIVATE
v IEFSSI REQUEST=SWAP

If the INTOKEN parameter is omitted, an SSVT is chosen as follows:
v The most recently active SSI-managed vector table
v The last SSI-managed vector table created, if no SSI-managed vector table

has been activated

The default is NO_INPUT_TOKEN.

,OUTTOKEN=outtoken
An optional 32-bit parameter that specifies the name (or an address in a
register) of an output token. This is where the token that represents the
deactivated SSVT is returned.

This token may be used in a subsequent SWAP request to reactivate the
subsystem using the same SSVT.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 891

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
The largest size parameter list currently possible. This size might grow
from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

1 The currently available parameters.

To code: specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,RETCODE=retcode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the return code. The return code is copied
from general purpose register 15.

,RSNCODE=rsncode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the reason code. The reason code is copied
from general purpose register 0.

,COM=com
,COM=NULL

An optional parameter that specifies the character input that appears in the
block comment before the macro invocation. Use it to make comments about
the macro invocation. The comment must be enclosed in quotation marks if it
contains any lower case characters. The default is NULL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Use MF=S to specify the standard form of the IEFSSI macro, which builds an
in-line parameter list and generates the macro invocation to transfer control to
the service.

Use MF=L to specify the list form of the IEFSSI macro. Use the list form
together with the execute form of the macro for applications that require
reentrant code. The list form defines an area of storage that the execute form
uses to store the parameters. No other parameters may be coded with the list
form of the macro.

Use MF=E together with the list form of the macro for applications that require
reentrant code. The execute form of the IEFSSI macro stores the parameters
into the storage area defined by the list form and generates the macro
invocation to transfer control to the service.

IEFSSI macro

892 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,list addr
A required parameter that specifies the name of a storage area for the
parameter list.

,attr
An optional 1- to 60-character input string that contains any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
An optional parameter that specifies that the system checks for required
parameters and supply defaults for omitted optional parameters. This is
the default parameter.

REQUEST=PUT parameter of IEFSSI
The IEFSSI macro with the PUT parameter stores subsystem-defined data for the
subsystem.

Syntax for REQUEST=PUT
The syntax of the IEFSSI REQUEST=PUT macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSI.

IEFSSI

� One or more blanks must follow IEFSSI.

SUBNAME=subname subname: RS-type address or address in register (2) - (12).

,REQUEST=PUT

,SUBDATA1=subdata1 subdata1: RS-type address or address in register (2) - (12). of a 4-character
input area

,SUBDATA2=subdata2 subdata2: RS-type address or address in register (2) - (12). of a 4-character
input area

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12) of fullword output
variable.

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 893

Syntax Description

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12) of fullword output
variable.

,COM=com com: comment string

,COM=NULL Default: COM=NULL

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters for REQUEST=PUT
The parameters are explained as follows:

SUBNAME=subname
A required parameter that specifies the field (or an address in a register)
containing the 4-character subsystem name. It must be the name of a
subsystem that has been previously defined to the system using SSI services.

This field must be padded to the right with blanks or nulls if it is less than 4
characters long.

,REQUEST=PUT
A parameter that specifies the storage of subsystem-defined data for the
subsystem. Two non-contiguous 4-byte fields are available for the subsystem
data. One of these fields is typically used to anchor subsystem specific control
blocks.

You must specify at least one of the following parameters:

SUBDATA1=subdata1
The name (or address in a register) of a 4-character input area that holds
the first 4-bytes of subsystem specific information.

SUBDATA2=subdata2
The name (or address in a register) of a 4-character input area that holds
the second 4-bytes of subsystem specific information.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

IEFSSI macro

894 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
The largest size parameter list currently possible. This size might grow
from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

1 The currently available parameters.

To code: specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,RETCODE=retcode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the return code. The return code is copied
from general purpose register 15.

,RSNCODE=rsncode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the reason code. The reason code is copied
from general purpose register 0.

,COM=com
,COM=NULL

An optional parameter that specifies the character input that appears in the
block comment before the macro invocation. Use it to make comments about
the macro invocation. The comment must be enclosed in quotation marks if it
contains any lower case characters. The default is NULL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Use MF=S to specify the standard form of the IEFSSI macro, which builds an
in-line parameter list and generates the macro invocation to transfer control to
the service.

Use MF=L to specify the list form of the IEFSSI macro. Use the list form
together with the execute form of the macro for applications that require
reentrant code. The list form defines an area of storage that the execute form
uses to store the parameters. No other parameters may be coded with the list
form of the macro.

Use MF=E together with the list form of the macro for applications that require
reentrant code. The execute form of the IEFSSI macro stores the parameters
into the storage area defined by the list form and generates the macro
invocation to transfer control to the service.

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 895

,list addr
A required parameter that specifies the name of a storage area for the
parameter list.

,attr
An optional 1- to 60-character input string that contains any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
An optional parameter that specifies that the system checks for required
parameters and supply defaults for omitted optional parameters. This is
the default parameter.

REQUEST=GET parameter of IEFSSI
The IEFSSI macro with the GET parameter retrieves subsystem-defined data
previously stored using the IEFSSI REQUEST=PUT request.

Syntax for REQUEST=GET
The syntax of the IEFSSI REQUEST=GET macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSI.

IEFSSI

� One or more blanks must follow IEFSSI.

SUBNAME=subname subname: RS-type address or address in register (2) - (12).

,REQUEST=GET

,SUBDATA1=subdata1 subdata1: RS-type address or address in register (2) - (12) of a 4-character
output area.

,SUBDATA2=subdata2 subdata2: RS-type address or address in register (2) - (12) of a 4-character
output area.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12) of fullword output
variable.

IEFSSI macro

896 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12) of fullword output
variable.

,COM=com com: comment string

,COM=NULL Default: COM=NULL

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters for REQUEST=GET
The parameters are explained as follows:

SUBNAME=subname
A required parameter that specifies the field (or an address in a register)
containing the 4-character subsystem name. It must be the name of a
subsystem that has been previously defined to the system using SSI services.

This field must be padded to the right with blanks or nulls if it is less than 4
characters long.

,REQUEST=GET
A parameter that specifies the retrieval of subsystem-defined data previously
stored using the IEFSSI REQUEST=PUT request. Two non-contiguous 4-byte
fields are available for the subsystem data.

You must specify at least one of the following parameters:

SUBDATA1=subdata1
The name (or address in a register) of a 4-character output area that holds
the first 4-bytes of subsystem specific information identified by the
SUBDATA1 parameter on a previous IEFSSI REQUEST=PUT request.

SUBDATA2=subdata2
The name (or address in a register) of a 4-character output area that holds
the second 4-bytes of subsystem specific information identified by the
SUBDATA2 parameter on a previous IEFSSI REQUEST=PUT request.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 897

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
The largest size parameter list currently possible. This size might grow
from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

1 The currently available parameters.

To code: specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,RETCODE=retcode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the return code. The return code is copied
from general purpose register 15.

,RSNCODE=rsncode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the reason code. The reason code is copied
from general purpose register 0.

,COM=com
,COM=NULL

An optional parameter that specifies the character input that appears in the
block comment before the macro invocation. Use it to make comments about
the macro invocation. The comment must be enclosed in quotation marks if it
contains any lower case characters. The default is NULL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Use MF=S to specify the standard form of the IEFSSI macro, which builds an
in-line parameter list and generates the macro invocation to transfer control to
the service.

Use MF=L to specify the list form of the IEFSSI macro. Use the list form
together with the execute form of the macro for applications that require
reentrant code. The list form defines an area of storage that the execute form
uses to store the parameters. No other parameters may be coded with the list
form of the macro.

Use MF=E together with the list form of the macro for applications that require
reentrant code. The execute form of the IEFSSI macro stores the parameters
into the storage area defined by the list form and generates the macro
invocation to transfer control to the service.

IEFSSI macro

898 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,list addr
A required parameter that specifies the name of a storage area for the
parameter list.

,attr
An optional 1- to 60-character input string that contains any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
An optional parameter that specifies that the system checks for required
parameters and supply defaults for omitted optional parameters. This is
the default parameter.

REQUEST=QUERY parameter of IEFSSI
The IEFSSI macro with the QUERY parameter requests information about
subsystems defined to the system.

Syntax for REQUEST=QUERY
The syntax of the IEFSSI REQUEST=QUERY macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSI.

IEFSSI

� One or more blanks must follow IEFSSI.

SUBNAME=subname subname: RS-type address or address in register (2) - (12).

,REQUEST=QUERY

,WORKAREA=workarea workarea: RS-type address or address in register (2) - (12) of an output area.

,WORKASP=workasp workasp: RS-type address or address in register (2) - (12) of an input area.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12). of fullword output
variable

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 899

Syntax Description

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12). of fullword output
variable

,COM=com com: comment string

,COM=NULL Default: COM=NULL

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters for REQUEST=QUERY
The parameters are explained as follows:

SUBNAME=subname
A required parameter that specifies the field (or an address in a register)
containing the 4-character subsystem name. It must be the name of a
subsystem that has been previously defined to the system using SSI services.

This field must be padded to the right with blanks or nulls if it is less than 4
characters long.

For the REQUEST=QUERY parameter, the subsystem name may contain the
wildcard characters '*' and '?' to request information about multiple
subsystems. The meanings for the wildcard characters are:

* Matches 0 or more characters.

Use a SUBNAME parameter value of '*' to indicate that information is to
be returned for all subsystems.

? Matches exactly 1 character

Use a SUBNAME parameter value of '!PRI' to indicate that information is to be
returned for the primary subsystem.

,REQUEST=QUERY
A parameter that specifies the request to obtain information about a currently
defined subsystem named in the SUBNAME parameter.

The output from IEFSSI REQUEST=QUERY is mapped by the IEFJSQRY macro.
Subsystems are listed in broadcast order, that is, the order in which they
receive broadcast SSI requests.

,WORKAREA=workarea
A required parameter that specifies a name (or register containing the address)
of a pointer output field that contains the address of the subsystem
information returned by the QUERY request.

The output area is mapped by the IEFJSQRY macro. The JQRYLEN field
contains the length of the output area.

IEFSSI macro

900 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,WORKASP=workasp
An optional parameter that specifies a name (or register containing the
address) of a one-byte input field that specifies the subpool that the SSI uses to
obtain a work area for the returned subsystem information. The caller is
responsible for freeing this work area.

IBM recommends that you use a job-related or task-related subpool. This
allows the system to free the associated storage when the job or task ends, if
the caller does not free the returned area.

If WORKASP is not specified, the caller's subpool zero is used. Storage for the
query information is obtained above 16 megabytes. AMODE 24 callers must
switch into AMODE 31 to address this storage. Unauthorized callers may
request storage only in the following unauthorized subpools:
v 0-127
v 131
v 132

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
The largest size parameter list currently possible. This size might grow
from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

1 The currently available parameters.

To code: specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,RETCODE=retcode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the return code. The return code is copied
from general purpose register 15.

,RSNCODE=rsncode
An optional 4-byte parameter that specifies the name of an output field (or a
register) where the system places the reason code. The reason code is copied
from general purpose register 0.

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 901

,COM=com
,COM=NULL

An optional parameter that specifies the character input that appears in the
block comment before the macro invocation. Use it to make comments about
the macro invocation. The comment must be enclosed in quotation marks if it
contains any lower case characters. The default is NULL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Use MF=S to specify the standard form of the IEFSSI macro, which builds an
in-line parameter list and generates the macro invocation to transfer control to
the service.

Use MF=L to specify the list form of the IEFSSI macro. Use the list form
together with the execute form of the macro for applications that require
reentrant code. The list form defines an area of storage that the execute form
uses to store the parameters. No other parameters may be coded with the list
form of the macro.

Use MF=E together with the list form of the macro for applications that require
reentrant code. The execute form of the IEFSSI macro stores the parameters
into the storage area defined by the list form and generates the macro
invocation to transfer control to the service.

,list addr
A required parameter that specifies the name of a storage area for the
parameter list.

,attr
An optional 1- to 60-character input string that contains any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
An optional parameter that specifies that the system checks for required
parameters and supply defaults for omitted optional parameters. This is
the default parameter.

ABEND codes
An invocation of the IEFSSI macro may result in an abend code X'8C5'. See z/OS
MVS System Codes for an explanation of this abend code.

Return and reason codes
When the IEFSSI macro returns control to your program, GPR 15 (and retcode, if
you coded RETCODE) contains a return code. When the value in GPR 15 is not 0,
GPR 0 (and rsncode if you coded RSNCODE) contains the reason code.

The IEFJSRC mapping macro provides equate symbols for the return and reason
codes. The equate symbols associated with each return code are:

Decimal (Hex)
Equate Symbols

IEFSSI macro

902 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

00 (00) IEFSSI_SUCCESS

04 (04) IEFSSI_WARNING

08 (08) IEFSSI_INVALID_PARAMETERS

12 (0C)
IEFSSI_REQUEST_FAIL

20 (14) IEFSSI_SYSTEM_ERROR

24 (18) IEFSSI_UNAVAILABLE

The following table contains return and reason codes, the equate symbols
associated with each reason code and the meaning and suggested action for each
return and reason code.

Table 81. Return and reason codes for the IEFSSI macro

Return code
decimal (hex)

Reason code
decimal (hex)

Meaning and action

00 (00) 00 (00) Equate symbol: IEFSSI_FUNCTIONS_COMPLETE

Meaning: The request completed successfully. The result
depends on the request:

v ADD — A subsystem has been added to the system

v ACTIVATE — A subsystem has been activated

v OPTIONS — A set of optional subsystem characteristics
has been defined

v DEACTIVATE — A subsystem has been deactivated

v SWAP — The current SSVT has been swapped with a
new SSVT

v PUT — Subsystem-defined data has been stored

v GET — Subsystem-defined data has been retrieved

v QUERY — Information for all subsystems defined to the
SSI has been queried

Action: None.

04 (04) 300 (12C) Equate symbol: IEFSSI_DEACT_INACTIVE

Meaning: The subsystem was already inactive. This is a
DEACTIVATE request error.

Action: None.

04 (04) 301 (12D) Equate symbol: IEFSSI_DEACT_OUT_VT_NOT_SSI

Meaning: The subsystem is deactivated, however a
previously active vector table was not SSI-managed.
OUTTOKEN value is 0. This is a DEACTIVATE request
error.

Action: None.

04 (04) 500 (1F4) Equate symbol: IEFSSI_SWAP_INACTIVE

Meaning: The subsystem was initially active. OUTTOKEN
value is 0. This is a SWAP request error.

Action: None.

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 903

Table 81. Return and reason codes for the IEFSSI macro (continued)

Return code
decimal (hex)

Reason code
decimal (hex)

Meaning and action

04 (04) 501 (1F5) Equate symbol: IEFSSI_SWAP_OUT_VT_NOT_SSI

Meaning: The swap is complete, however the previously
active vector table was not SSI-managed. OUTTOKEN
value is 0. This is a SWAP request error.

Action: None.

04 (04) 900 (384) Equate symbol: IEFSSI_QUERY_INCOMPLETE

Meaning: The data returned by the QUERY request may be
incomplete. This is a QUERY request error.

Action: Check the JQRY_INCOMPLETE flag for each
subsystem that was queried.

08 (08) 00 (000) Equate symbol: IEFSSI_SUBSYSTEM_UNKNOWN

Meaning: The subsystem is not defined to the SSI.

Action: Correct the subsystem name or define a subsystem
with either the IEFSSI macro or the SETSSI command.

08 (08) 04 (004) Equate symbol: IEFSSI_NON_DYNAMIC

Meaning: The subsystem is not dynamic.

Action: ReIPL the system and define the target subsystem
with either the IEFSSI macro, the SETSSI command, or the
keyword format IEFSSNxx parmlib member entry. Note
that once a subsystem has been defined, it cannot be
deleted or defined again as dynamic.

08 (08) 08 (008) Equate symbol: IEFSSI_BAD_VT_TOKEN

Meaning: The SSVT token does not correspond to a valid
SSVT table.

Action: Correct the token. The token must be one that was
returned by either the IEFSSVT REQUEST=CREATE macro,
the IEFSSI REQUEST=DEACTIVATE macro, or the IEFSSI
REQUEST=SWAP macro.

08 (08) 12 (00C) Equate symbol: IEFSSI_INVALID_NAME

Meaning: The subsystem name or the routine name
contains characters that are not valid.

Action: Correct the subsystem name by removing the
characters that are not valid.

08 (08) 16 (010) Equate symbol: IEFSSVT_INIT_PARMS

Meaning: The initialization routine parameter string is too
long.

Action: Correct the parameter string so that it is no longer
than 60 characters.

IEFSSI macro

904 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 81. Return and reason codes for the IEFSSI macro (continued)

Return code
decimal (hex)

Reason code
decimal (hex)

Meaning and action

12 (0C) 100 (064) Equate symbol: IEFSSI_DUPLICATE_SUBSYSTEM

Meaning: The subsystem already exists. This is an ADD
request error.

Action: Do not perform the ADD request if the existing
subsystem is one you want. If the existing subsystem is not
the one you want, select another name for the new
subsystem, which does not conflict with the name of any
existing subsystem name.

You can use the IEFSSI REQUEST=QUERY macro to find
all existing names.

12 (0C) 101 (065) Equate symbol: IEFSSI_INITRTN_NOT_FOUND

Meaning: A usable copy of this initialization routine could
not be found. This is an ADD request error. For example:

v The module was not found.

v The module was found, but was not APF-authorized.

Action: Correct the initialization routine name or make
sure it is present in either LINKLIB or LPALIB, and is APF
authorized.

12 (0C) 102 (066) Equate symbol: IEFSSI_INITRTN_ABEND

Meaning: The initialization routine ended abnormally. This
is an ADD request error.

Action: Check the dump produced by the abend and
correct the problem with the initialization routine.

12 (0C) 103 (067) Equate symbol: IEFSSI_ADD_STORAGE

Meaning: Unable to obtain storage for the subsystem
definition. This is an ADD request error.

Action: Check the current use of the system storage to
determine why storage was not available. Retry the request
later in case storage has become available.

12 (0C) 200 (0C8) Equate symbol: IEFSSI_SUBSYSTEM_ACTIVE

Meaning: The subsystem is already active. This is an
ACTIVATE request error.

Action: None.

12 (0C) 201 (0C9) Equate symbol: IEFSSI_ACT_NO_ELIGIBLE_VT

Meaning: The SSVT is not specified and a valid default is
not available. This is an ACTIVATE request error.

Action: Provide an SSI-managed SSVT using the IEFSSVT
REQUEST=CREATE macro.

12 (0C) 500 (1F4) Equate symbol: IEFSSI_SWAP_NO_ELIGIBLE_VT

Meaning: The SSVT is not specified and a valid default is
not available. This is a SWAP request error.

Action: Provide an SSI-managed SSVT using the IEFSSVT
REQUEST=CREATE macro.

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 905

Table 81. Return and reason codes for the IEFSSI macro (continued)

Return code
decimal (hex)

Reason code
decimal (hex)

Meaning and action

12 (0C) 502 (1F6) Equate symbol: IEFSSI_SWAP_ALREADY_ACTIVE

Meaning: The SSVT that is to be made active (specified by
the INTOKEN field) is already active. This is a SWAP
request error.

Action: None.

12 (0C) 600 (258) Equate symbol: IEFSSI_EVENTRTN_NOT_FOUND

Meaning: A usable copy of the event notification routine
could not be found. This is an OPTIONS request error. For
instance:

v The module was not found.

v The module was found, but was not APF-authorized.

Action: Correct the event notification routine name or
make sure it is present in either LINKLIB or LPALIB, and
is APF-authorized.

12 (0C) 900 (384) Equate symbol: IEFSSI_QUERY_STORAGE

Meaning: Unable to obtain storage for an output of the
QUERY request. This a QUERY request error.

Action: Check the current use of the system storage to
determine why storage was not available. Retry the request
later in case storage has become available.

20 (14) — Equate symbol: IEFSSI_SYSTEM_ERROR

Meaning: System error

Action: Investigate the following possible causes:

v Inability to obtain a system resource

v Abnormal task termination

Obtain the system dump, if any, and contact the IBM
support center.

24 (18) — Equate symbol: IEFSSI_UNAVAILABLE

Meaning: The IEFSSI macro has been invoked too early
during system initialization.

Action: Delay the invocation of the IEFSSI macro to a later
point in the IPL.

Example 1
Submit a request to add subsystem FRED, call the initialization routine and route
all initialization messages to the FREDCONS console

IEFSSI REQUEST=ADD,SUBNAME=SNAME,INITRTN=INITPGM, X
INITPARM=IPARMS,INITPLEN=5,CONSNAME=ICONSOLE, X
RETCODE=RETURN_CODE,RSNCODE=REASON_CODE...

SNAME DC CL4’FRED’
INITPGM DC CL8’FREDPGM ’
IPARMS DC CL60’HELLO’
ICONSOLE DC CL8’FREDCONS’

IEFSSI macro

906 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|||

|
|
|
|
|

|
|
|

...
WORKAREA DSECT 0F
RETURN_CODE DS F
REASON_CODE DS F
WORKLEN EQU *-WORKAREA

Example 2
Activate subsystem FRED using the SSVT identified by the SSVTTOK token.
Assume that the SSVTTOK token was returned by a previous invocation of the
IEFSSVT REQUEST=CREATE macro.

IEFSSI REQUEST=ACTIVATE,SUBNAME=SNAME,INTOKEN=SSVTTOK, X
RETCODE=RETURN_CODE,RSNCODE=REASON_CODE...

Example 3
Inform the system that the subsystem responds to SETSSI commands and requires
the services of the primary subsystem when starting. Also specify an event
notification routine to get control whenever a subsystem event occurs.

IEFSSI REQUEST=OPTIONS,SUBNAME=SNAME,COMMAND=YES,REQDSUB=PRI, X
EVENTRTN=EVENTPGM,RETCODE=RETURN_CODE,RSNCODE=REASON_CODE...

EVENTPGM DC CL8’EVNTPGM ’

Example 4
Deactivate a subsystem and return the token of the outgoing SSVT.

IEFSSI REQUEST=DEACTIVATE,SUBNAME=SNAME,OUTTOKEN=SSVTTOK, X
RETCODE=RETURN_CODE,RSNCODE=REASON_CODE

Example 5
Replace the current set of function routines being used by the subsystem with a
new set of function routines. NEWTOK is a token previously returned by the
IEFSSVT REQUEST=CREATE service. NEWTOK identifies the incoming SSVT.

IEFSSI REQUEST=SWAP,SUBNAME=SNAME,INTOKEN=NEWTOK, X
OUTTOKEN=OLDTOK, X
RETCODE=RETURN_CODE,RSNCODE=REASON_CODE

Example 6
Store the address of the FREDCB subsystem control block for later retrieval by the
subsystem function routines.

LA 5,FREDCB Get address of subsystem control block
ST 5,DATA1 Store address
LA 4,DATA1 Get address of field containing pointer
IEFSSI REQUEST=PUT,SUBNAME=SNAME,SUBDATA1=(4), X

RETCODE=RETURN_CODE,RSNCODE=REASON_CODE

Note: When using the register notation (4), the register contains the address of the
data to be stored, not the data itself. The data stored in this case is the address of
the FREDCB control block.

Example 7
Retrieve subsystem-defined data that was previously stored using the IEFSSI
REQUEST=PUT service and place the retrieved data at the location whose address
is contained in register 5.

IEFSSI macro

Chapter 86. IEFSSI — Dynamically control a subsystem 907

|
|

||||
|

IEFSSI REQUEST=GET,SUBNAME=SNAME,SUBDATA1=(5), X
RETCODE=RETURN_CODE,RSNCODE=REASON_CODE

Example 8
Obtain subsystem information for all subsystems whose name begins with 'JES'
and free the storage obtained by the SSI.

IEFSSI REQUEST=QUERY,SUBNAME=SNAME, X
WORKAREA=WAREA, X
RETCODE=RETURN_CODE,RSNCODE=REASON_CODE...

L R5,WAREA
USING JQRY_HEADER,R5
L R0,JQRYLEN
STORAGE RELEASE,LENGTH=(0),ADDR=(R5)...

SNAME DC CL4’JES*’
WAREA DS A

IEFJSQRY

IEFSSI macro

908 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 87. IEFSSVT — Create a subsystem vector table

Description
Use the IEFSSVT macro to:
v Create subsystem vector tables (SSVTs).
v Modify the subsystem response to function requests by:

– Disabling existing function codes
– Enabling new function codes
– Exchange function routines for a supported function code

The IEFSSVT macro allows users to specify function routines by address or name
rather than requiring the subsystem interface (SSI) to load the routines. This is
useful if the subsystem wants to load its function routines into global storage, but
does not want the routines to be deleted if the address space ends. In this case, the
subsystem can perform a load-to-address, rather than a standard load, and pass
the addresses to the IEFSSVT macro.

The requests for the macro are:
v IEFSSVT REQUEST=CREATE, which creates an SSVT. See in

“REQUEST=CREATE parameter of IEFSSVT” on page 911 for the syntax of this
request.

v IEFSSVT REQUEST=DISABLE, which disables supported function codes. See in
“REQUEST=DISABLE parameter of IEFSSVT” on page 915 for the syntax of this
request.

v IEFSSVT REQUEST=ENABLE, which enables additional function codes. See in
“REQUEST=ENABLE parameter of IEFSSVT” on page 918 for the syntax of this
request.

v IEFSSVT REQUEST=EXCHANGE, which replaces the function routine associated
with a supported function code with another function routine. See in
“REQUEST=EXCHANGE parameter of IEFSSVT” on page 922 for the syntax of
this request.

For ease of use, the standard form of the macro is shown for each IEFSSVT
request. The requests are described on the following pages along with the:
v Standard form syntax diagram
v Description of the parameters

The following information is described once at the beginning of the IEFSSVT
macro description:
v Environment
v Programming requirements
v Restrictions
v Input register information
v Output register information
v Performance implications

Following the descriptions of the standard forms of all requests are:
v Abend codes

© Copyright IBM Corp. 1988, 2016 909

v Return and reason codes
v Examples

The REQUEST=CREATE, REQUEST=DISABLE, REQUEST=ENABLE, and
REQUEST=EXCHANGE parameters are mutually exclusive. You can select only
one.

For information about using dynamic subsystem services, see z/OS MVS Using the
Subsystem Interface. This topic also includes information about related macros
IEFSSVTI and IEFSSI.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: One of the following:

v Supervisor state

v Any system key

v PSW key mask (PKM) allowing key 0-7

v APF authorization
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24-bit or 31-bit
ASC mode: Primary or Access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

Programming requirements
Before invoking IEFSSVT, you must invoke IEFSSVTI to build a table of function
routines and function codes as input to IEFSSVT.

Also:
v Include the CVT and IEFJESCT mapping macros in your program.
v Include the IEFJSRC mapping macro in your program. This macro defines the

dynamic SSI return and reason codes.

Restrictions
The services that IEFSSVT provides are available only to dynamic subsystems,
which are those subsystems that have been defined to the SSI in one of the
following ways:
v Processing the keyword format of the IEFSSNxx parmlib member during IPL
v Issuing the IEFSSI macro
v Issuing the SETSSI system command.

Input register information
Before issuing the IEFSSVT macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

IEFSSVT macro

910 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as a work register by the system.

2-13 Unchanged

14-15 Used as a work register by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

REQUEST=CREATE parameter of IEFSSVT
The IEFSSVT macro with the CREATE parameter builds the SSVT. An SSVT built
with the IEFSSVT REQUEST=CREATE is referred to as an SSI-managed vector
table. Only SSI-managed SSVTs can take advantage of the dynamic SSI services.
See z/OS MVS Using the Subsystem Interface for more information about dynamic
SSI services.

Syntax for REQUEST=CREATE
The syntax of the IEFSSVT REQUEST=CREATE macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSVT.

IEFSSVT

� One or more blanks must follow IEFSSVT.

IEFSSVT macro

Chapter 87. IEFSSVT — Create a subsystem vector table 911

Syntax Description

SUBNAME=subname

,REQUEST=CREATE

,SSVTDATA=ssvtdata ssvtdata: RS-type address

,OUTTOKEN=outtoken outtoken: RS-type address or address in register (2) - (12).

,SUBPOOL=subpool subpool:. RS-type address or address in register (2) - (12).

,SUBPOOL=241 Default: SUBPOOL=241

,MAXENTRIES=maxentries maxentries: RS-type address or address in register (2) - (12).

,LOADTOGLOBAL=NO Default: LOADTOGLOBAL=NO

,LOADTOGLOBAL=YES

,ERRFUNCT=errfunct errfunct: RS-type address or address in register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=plistver plistver: 1

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12) of fullword output
variable.

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12) of fullword output
variable.

,COM=com com: comment string

,COM=NULL Default: COM=NULL

,MF=S

,MF=(L,list addr list addr: symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string.

,MF=(L,list addr,0D) Default: 0D

,MF=(E,list addr) list addr: RS-type address or address in register (1) - (12) of a storage area.

,MF=(E,list addr,COMPLETE) Default: COMPLETE

,MF=(E,list addr,NOCHECK)

IEFSSVT macro

912 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Parameters for REQUEST=CREATE
The parameters are explained as follows:

SUBNAME=subname
A required 4-character parameter that specifies the field (or an address in a
register) containing the subsystem name. It must be the name of a subsystem
that has been previously defined to the system using dynamic SSI services. See
z/OS MVS Using the Subsystem Interface for more information about dynamic
SSI services.

This field must be padded to the right with blanks or nulls if it is less than 4
characters long.

,REQUEST=CREATE
A parameter that specifies an SSVT is to be built and initialized.

,SSVTDATA=ssvtdata
A required parameter that specifies the name of the function routine input
table that associates supported SSVT function codes with function routines.
Use the IEFSSVTI macro to build the table. Use this field to contain the name
specified by the IEFSSVTI SSVTDATA parameter.

,OUTTOKEN=outtoken
A required 32-bit parameter that specifies the name (or an address in a
register) of an output token used to identify the SSVT.

,SUBPOOL=subpool
,SUBPOOL=241

An optional byte parameter that specifies the name (or an address in a register)
of an input field that contains the subpool number in which the SSVT is to be
built. The subpool must represent common storage. The default is 241.

,MAXENTRIES=maxentries
A required halfword parameter that specifies the name (or an address in a
register) of an input field that defines the maximum number of function
routine entries that the SSVT can contain. The maximum number must be:
v Greater than or equal to 1 and less than or equal to 255
v Greater than or equal to the number of function routines defined in the

input table created with the IEFSSVTI macro.
v The maximum number of function routine entries the calling subsystem

requires for the SSVT.

Note: Consider that the value for MAXENTRIES should provide for additional
function routines that can be defined through the SET or EXCHANGE
parameters of the IEFSSVT service.

,LOADTOGLOBAL=NO
,LOADTOGLOBAL=YES

An optional parameter that specifies that the function routines are to be loaded
to global storage. Use this parameter when the function routines:
v Are specified by name in the function routine input table that the IEFSSVTI

macro created
v Do not reside in the link pack area.

This parameter is ignored if the input function routines are specified by
address.

The meanings are:

IEFSSVT macro

Chapter 87. IEFSSVT — Create a subsystem vector table 913

NO Indicates that a load-to-global is not necessary for the function routines. No
is the default.

YES
Indicates that a load-to-global is necessary for the function routines. The
SSI issues a LOAD for each named function routine with the following
parameters:
v EOM=YES
v LSEARCH=NO
v GLOBAL=(YES,P)

,ERRFUNCT=errfunct
An optional 8-character parameter that specifies the name (or an address in a
register) of an output field that receives the function routine name being
processed when an error occurred. Check this output field if you get return
code IEFSSVT_LOAD_ERROR (decimal 16) from the IEFSSVT macro.

PLISTVER=IMPLIED_VERSION
PLISTVER=MAX
PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
The largest size parameter list currently possible. This size might grow
from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

1 The currently available parameters.

To code: specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,RETCODE=retcode
An optional 4-byte parameter that specifies a name (or register) of an output
field where the system places the return code. The return code is copied from
general purpose register 15.

,RSNCODE=rsncode
An optional 4-byte parameter that specifies a name (or register) of an output
field where the system places the reason code. The reason code is copied from
general purpose register 0.

IEFSSVT macro

914 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,COM=com
,COM=NULL

An optional parameter that specifies the character input that appears in the
block comment before the macro invocation. Use it to make comments about
the macro invocation. The comment must be enclosed in quotation marks if it
contains any lower case characters. The default is NULL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Use MF=S to specify the standard form of the IEFSSVT macro, which builds an
in-line parameter list and generates the macro invocation to transfer control to
the service.

Use MF=L to specify the list form of the IEFSSVT macro. Use the list form
together with the execute form of the macro for applications that require
reentrant code. The list form defines an area of storage that the execute form
uses to store the parameters. No other parameters may be coded with the list
form of the macro.

Use the MF=E together with the list form of the macro for applications that
require reentrant code. The execute form of the IEFSSVT macro stores the
parameters into the storage area defined by the list form and generates the
macro invocation to transfer control to the service.

,list addr
A required parameter that specifies the name of a storage area for the
parameter list.

,attr
An optional 1-to 60-character input string that contains any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
An optional parameter that specifies that the system checks for required
parameters and supply defaults for omitted optional parameters. This is
the default parameter.

REQUEST=DISABLE parameter of IEFSSVT
The IEFSSVT macro with the DISABLE parameter disables supported function
codes.

Syntax for REQUEST=DISABLE
The syntax of the IEFSSVT REQUEST=DISABLE macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSVT.

IEFSSVT macro

Chapter 87. IEFSSVT — Create a subsystem vector table 915

Syntax Description

IEFSSVT

� One or more blanks must follow IEFSSVT.

SUBNAME=subname

,REQUEST=DISABLE

,SSVTDATA=ssvtdata ssvtdata: RS-type address

,INTOKEN=intoken intoken: RS-type address or address in register (2) - (12).

,INTOKEN=NULL Default: INTOKEN=NULL

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=plistver plistver: 1

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12) of fullword output
variable.

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12) of fullword output
variable.

,COM=com com: comment string

,COM=NULL Default: COM=NULL

,MF=S

,MF=(L,list addr list addr: symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string.

,MF=(L,list addr,0D) Default: 0D

,MF=(E,list addr) list addr: RS-type address or address in register (1) - (12) of a storage area.

,MF=(E,list addr,COMPLETE) Default: COMPLETE

,MF=(E,list addr,NOCHECK)

Parameters for REQUEST=DISABLE
The parameters are explained as follows:

SUBNAME=subname
A required parameter that specifies the field (or an address in a register)
containing the 4-character subsystem name. It must be the name of a
subsystem that has been previously defined to the system using SSI services.

IEFSSVT macro

916 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

This field must be padded to the right with blanks or nulls if it less than 4
characters long.

,REQUEST=DISABLE
A parameter that specifies that you want to disable function codes.

,SSVTDATA=ssvtdata
A required parameter that specifies the name of the function routine input
table that identifies the function codes that you want to disable. The IEFSSVTI
macro has built the table. This field contains the name specified by the
IEFSSVTI SSVTDATA parameter.

For the disable request, the system uses only the function code information.
The function routine names or addresses in the input table are ignored.

,INTOKEN=intoken
,INTOKEN=NULL

An optional 32-bit parameter that specifies the name (or an address in a
register) of an input token that represents the target SSVT (OUTTOKEN from
REQUEST=CREATE). The default is NULL.

PLISTVER=IMPLIED_VERSION
PLISTVER=MAX
PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
The largest size parameter list currently possible. This size might grow
from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

1 The currently available parameters.

To code: specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,RETCODE=retcode
An optional 4-byte parameter that specifies a name (or register) of an output
field where the system places the return code. The return code is copied from
general purpose register 15.

IEFSSVT macro

Chapter 87. IEFSSVT — Create a subsystem vector table 917

,RSNCODE=rsncode
An optional 4-byte parameter that specifies a name (or register) of an output
field where the system places the reason code. The reason code is copied from
general purpose register 0.

,COM=com
,COM=NULL

An optional parameter that specifies the character input that appears in the
block comment before the macro invocation. Use it to make comments about
the macro invocation. The comment must be enclosed in quotation marks if it
contains any lower case characters. The default is NULL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Use MF=S to specify the standard form of the IEFSSVT macro, which builds an
in-line parameter list and generates the macro invocation to transfer control to
the service.

Use MF=L to specify the list form of the IEFSSVT macro. Use the list form
together with the execute form of the macro for applications that require
reentrant code. The list form defines an area of storage that the execute form
uses to store the parameters. No other parameters may be coded with the list
form of the macro.

Use the MF=E together with the list form of the macro for applications that
require reentrant code. The execute form of the IEFSSVT macro stores the
parameters into the storage area defined by the list form and generates the
macro invocation to transfer control to the service.

,list addr
A required parameter that specifies the name of a storage area for the
parameter list.

,attr
An optional 1-to 60-character input string that contains any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
An optional parameter that specifies that the system checks for required
parameters and supply defaults for omitted optional parameters. This is
the default parameter.

REQUEST=ENABLE parameter of IEFSSVT
The IEFSSVT macro with the ENABLE parameter activates new function codes or
reactivates previously disabled function codes. You can enable new function codes
only if the SSVT has available function routine slots to contain any new function
routines. An ENABLE request may not need to specify new function routines, if
the routine that supports a new code is already supporting a previously enabled
code.

IEFSSVT macro

918 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax for REQUEST=ENABLE
The syntax of the IEFSSVT REQUEST=ENABLE macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSVT.

IEFSSVT

� One or more blanks must follow IEFSSVT.

SUBNAME=subname

,REQUEST=ENABLE

,SSVTDATA=ssvtdata ssvtdata: RS-type address

,INTOKEN=intoken intoken: RS-type address or address in register (2) - (12).

,INTOKEN=NULL Default: INTOKEN=NULL

,LOADTOGLOBAL=NO Default: LOADTOGLOBAL=NO

,LOADTOGLOBAL=YES

,ERRFUNCT=errfunct errfunct: RS-type address or address in register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=plistver plistver: 1

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12) of fullword output
variable.

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12) of fullword output
variable.

,COM=com com: comment string

,COM=NULL Default: COM=NULL

,MF=S

,MF=(L,list addr list addr: symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string.

IEFSSVT macro

Chapter 87. IEFSSVT — Create a subsystem vector table 919

Syntax Description

,MF=(L,list addr,0D) Default: 0D

,MF=(E,list addr) list addr: RS-type address or address in register (1) - (12) of a storage area.

,MF=(E,list addr,COMPLETE) Default: COMPLETE

,MF=(E,list addr,NOCHECK)

Parameters for REQUEST=ENABLE
The parameters are explained as follows:

SUBNAME=subname
A required parameter that specifies the field (or an address in a register)
containing the 4-character subsystem name. It must be the name of a
subsystem that has been previously defined to the system using SSI services.

This field must be padded to the right with blanks or nulls if it less than 4
characters long.

,REQUEST=ENABLE
A parameter that specifies that you want to enable the function codes specified
in the SSVTDATA parameter.

,SSVTDATA=ssvtdata
A required parameter that specifies the name of the function routine input
table that identifies the new function codes that the SSVT supports and their
related function routines. Use the IEFSSVTI macro to build the table. This field
contains the the name specified by the IEFSSVTI SSVTDATA parameter.

,INTOKEN=intoken
,INTOKEN=NULL

An optional 32-bit parameter that specifies the name (or an address in a
register) of an input token that represents the target SSVT. The default is
NULL.

,LOADTOGLOBAL=NO
,LOADTOGLOBAL=YES

An optional parameter that specifies that the function routines are to be loaded
to global storage. Use this parameter when the function routines:
v Are specified by name in the function routine input table that the IEFSSVTI

macro created
v Do not reside in the link pack area.

This parameter is ignored if the input function routines are specified by
address.

The meanings are:

NO Indicates that a load-to-global is not necessary for the function routines.
This is the default.

YES
Indicates that a load-to-global is necessary for the function routines. The
SSI issues a LOAD for the named function routine with the following
parameters:
v EOM=YES
v LSEARCH=NO

IEFSSVT macro

920 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v GLOBAL=(YES,P)

,ERRFUNCT=errfunct
An optional 8-character parameter that specifies the name (or an address in a
register) of an output field that receives the function routine name being
processed when an error occurred. Check this output field if you get return
code IEFSSVT_LOAD_ERROR (decimal 22) from the IEFSSVT macro.

PLISTVER=IMPLIED_VERSION
PLISTVER=MAX
PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
The largest size parameter list currently possible. This size might grow
from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

1 The currently available parameters.

To code: specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,RETCODE=retcode
An optional 4-byte parameter that specifies a name (or register) of an output
field where the system places the return code. The return code is copied from
general purpose register 15.

,RSNCODE=rsncode
An optional 4-byte parameter that specifies a name (or register) of an output
field where the system places the reason code. The reason code is copied from
general purpose register 0.

,COM=com
,COM=NULL

An optional parameter that specifies the character input that appears in the
block comment before the macro invocation. Use it to make comments about
the macro invocation. The comment must be enclosed in quotation marks if it
contains any lower case characters. The default is NULL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)

IEFSSVT macro

Chapter 87. IEFSSVT — Create a subsystem vector table 921

,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Use MF=S to specify the standard form of the IEFSSVT macro, which builds an
in-line parameter list and generates the macro invocation to transfer control to
the service.

Use MF=L to specify the list form of the IEFSSVT macro. Use the list form
together with the execute form of the macro for applications that require
reentrant code. The list form defines an area of storage that the execute form
uses to store the parameters. No other parameters may be coded with the list
form of the macro.

Use the MF=E together with the list form of the macro for applications that
require reentrant code. The execute form of the IEFSSVT macro stores the
parameters into the storage area defined by the list form and generates the
macro invocation to transfer control to the service.

,list addr
A required parameter that specifies the name of a storage area for the
parameter list.

,attr
An optional 1-to 60-character input string that contains any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
An optional parameter that specifies that the system checks for required
parameters and supply defaults for omitted optional parameters. This is
the default parameter.

REQUEST=EXCHANGE parameter of IEFSSVT
The IEFSSVT macro with the EXCHANGE parameter exchanges the function
routine that supports a function code with a different function routine.

Syntax for REQUEST=EXCHANGE
The syntax of the IEFSSVT REQUEST=EXCHANGE macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSVT.

IEFSSVT

� One or more blanks must follow IEFSSVT.

SUBNAME=subname

IEFSSVT macro

922 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,REQUEST=EXCHANGE

,SSVTDATA=ssvtdata ssvtdata: RS-type address

,INTOKEN=intoken intoken: RS-type address or address in register (2) - (12).

,INTOKEN=NULL Default: INTOKEN=NULL

,LOADTOGLOBAL=NO Default: LOADTOGLOBAL=NO

,LOADTOGLOBAL=YES

,ERRFUNCT=errfunct errfunct: RS-type address or address in register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=plistver plistver: 1

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12) of fullword output
variable.

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12) of fullword output
variable.

,COM=com com: comment string

,COM=NULL Default: COM=NULL

,MF=S

,MF=(L,list addr list addr: symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string.

,MF=(L,list addr,0D) Default: 0D

,MF=(E,list addr) list addr: RS-type address or address in register (1) - (12) of a storage area.

,MF=(E,list addr,COMPLETE) Default: COMPLETE

,MF=(E,list addr,NOCHECK)

Parameters for REQUEST=EXCHANGE
The parameters are explained as follows:

SUBNAME=subname
A required parameter that specifies the field (or an address in a register)
containing the 4-character subsystem name. It must be the name of a
subsystem that has been previously defined to the system using SSI services.

This field must be padded to the right with blanks or nulls if it less than 4
characters long.

IEFSSVT macro

Chapter 87. IEFSSVT — Create a subsystem vector table 923

,REQUEST=EXCHANGE
A parameter that specifies that you want to exchange existing function routines
with new function routines.

,SSVTDATA=ssvtdata
A required parameter that specifies the name of the function routine input
table that identifies the new function codes affected by the exchange and the
new function routines that support them. Use the IEFSSVTI macro to build the
table. This field contains the the name specified by the IEFSSVTI SSVTDATA
parameter.

,INTOKEN=intoken
,INTOKEN=NULL

An optional 32-bit parameter that specifies the name (or an address in a
register) of an input token that represents the target SSVT. The default is
NULL.

,LOADTOGLOBAL=NO
,LOADTOGLOBAL=YES

An optional parameter that specifies that the function routines are to be loaded
to global storage. Use this parameter when the function routines:
v Are specified by name in the function routine input table that the IEFSSVTI

macro created
v Do not reside in the link pack area.

This parameter is ignored if the input function routines are specified by
address.

NO Indicates that a load-to-global is not necessary for the function routines.
This is the default.

YES
Indicates that a load-to-global is necessary for the function routines. The
SSI issues a LOAD for the named function routine with the following
parameters:
v EOM=YES
v LSEARCH=NO
v GLOBAL=(YES,P)

,ERRFUNCT=errfunct
An optional 8-character parameter that specifies the name (or an address in a
register) of an output field that receives the function routine name being
processed when an error occurred. Check this output field if you get return
code IEFSSVT_LOAD_ERROR (decimal 22) from the IEFSSVT macro.

PLISTVER=IMPLIED_VERSION
PLISTVER=MAX
PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

IEFSSVT macro

924 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

MAX
The largest size parameter list currently possible. This size might grow
from release to release and affect the amount of storage that your program
needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

1 The currently available parameters.

To code: specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,RETCODE=retcode
An optional 4-byte parameter that specifies a name (or register) of an output
field where the system places the return code. The return code is copied from
general purpose register 15.

,RSNCODE=rsncode
An optional 4-byte parameter that specifies a name (or register) of an output
field where the system places the reason code. The reason code is copied from
general purpose register 0.

,COM=com
,COM=NULL

An optional parameter that specifies the character input that appears in the
block comment before the macro invocation. Use it to make comments about
the macro invocation. The comment must be enclosed in quotation marks if it
contains any lower case characters. The default is NULL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Use MF=S to specify the standard form of the IEFSSVT macro, which builds an
in-line parameter list and generates the macro invocation to transfer control to
the service.

Use MF=L to specify the list form of the IEFSSVT macro. Use the list form
together with the execute form of the macro for applications that require
reentrant code. The list form defines an area of storage that the execute form
uses to store the parameters. No other parameters may be coded with the list
form of the macro.

Use the MF=E together with the list form of the macro for applications that
require reentrant code. The execute form of the IEFSSVT macro stores the
parameters into the storage area defined by the list form and generates the
macro invocation to transfer control to the service.

,list addr
A required parameter that specifies the name of a storage area for the
parameter list.

IEFSSVT macro

Chapter 87. IEFSSVT — Create a subsystem vector table 925

,attr
An optional 1-to 60-character input string that contains any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
An optional parameter that specifies that the system checks for required
parameters and supply defaults for omitted optional parameters. This is
the default parameter.

ABEND codes
An invocation of the IEFSSVT macro may result in an abend code X'8C5'. See z/OS
MVS System Codes for an explanation of this abend code.

Return and reason codes
When the IEFSSVT macro returns control to your program, GPR 15 (and retcode, if
you coded RETCODE) contains a return code. When the value in GPR 15 is not 0,
GPR 0 (and rsncode if you coded RSNCODE) contains the reason code.

The IEFJSRC mapping macro provides equate symbols for the return and reason
codes. The equate symbols associated with each return code are:

Return Code Decimal
(Hex)

Equate Symbol for Return Code

00 (00) IEFSSVT_SUCCESS

04 (04) IEFSSVT_WARNING

08 (08) IEFSSVT_INVALID_PARAMETERS

12 (0C) IEFSSVT_REQUEST_FAIL

16 (010) IEFSSVT_LOAD_ERROR

20 (014) IEFSSVT_SYSTEM_ERROR

24 (018) IEFSSVT_UNAVAILABLE

The following table contains return and reason codes, the equate symbols
associated with each reason code, and the meaning and suggested action for each
return and reason code.

Table 82. Return and Reason Codes for the IEFSSVT Macro

Return Code
Decimal (hex)

Reason Code
Decimal (hex)

Equate Symbol for Reason Code
Meaning and Action

00 (00) 00 (00) Equate Symbol: IEFSSVT_FUNCTIONS_COMPLETE

Meaning: The request completed successfully. The result
depends on the request:

v CREATE — An SSVT is created.

v DISABLE — Supported function codes are disabled.

v ENABLE — Additional function codes are enabled.

v EXCHANGE — New function routines replace
supported function routines.

Action: None.

04 (04) 00 (00) Equate Symbol: None

IEFSSVT macro

926 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 82. Return and Reason Codes for the IEFSSVT Macro (continued)

Return Code
Decimal (hex)

Reason Code
Decimal (hex)

Equate Symbol for Reason Code
Meaning and Action

08 (08) 00 (00) Equate Symbol: IEFSSVT_SUBSYSTEM_UNKNOWN

Meaning: The subsystem was not defined to the SSI.

Action: None.

08 (08) 04 (004) Equate Symbol: IEFSSVT_NON_DYNAMIC

Meaning: The subsystem is not a dynamic subsystem.

Action: None.

08 (08) 08 (008) Equate Symbol: IEFSSVT_BAD_VT_TOKEN

Meaning: The SSVT token does not correspond to a valid
SSVT.

Action: None.

08 (08) 12 (00C) Equate Symbol: IEFSSVT_INVALID_NAME

Meaning: The subsystem name or the routine name
contains characters that are not valid.

Action: None.

08 (08) 16 (010) Equate Symbol: IEFSSVT_INVALID_FUNCTION_CODE

Meaning: The function code is outside the valid range.

Action: Correct the function code.

08 08 20 (014) Equate Symbol:
IEFSSVT_DUPLICATE_FUNCTION_CODE

Meaning: The function code appears more than once in the
function routine input table.

Action: Delete the duplicate specification.

08 08 24 (018) Equate Symbol: IEFSSVT_INVALID_FROUTINE

Meaning: The function routine name or address is null.

Action: If working with a function routine input table in
dynamic storage, use the IEFSSVTI SET function to identify
the function routine by name or address. If using a static
table, the function routine must be identified by name
using the IEFSSVTI ENTRY function.

08 08 28 (01C) Equate Symbol: IEFSSVT_NO_FCODES

Meaning: The function routine entry in the function
routine input table does not specify any function codes.

Action: Specify the function codes with either the IEFSSVTI
ENTRY or SET function.

12 (0C) 00 (00) Equate Symbol: None

12 (0C) 100 (064) Equate Symbol: IEFSSVT_MAX_VECTOR_TABLES

Meaning: The maximum number of SSVTs already exists
for the subsystem. This is a CREATE request error.

Action: Additional vector tables cannot be created during
the current IPL. Use the IEFSSVT ENABLE and DISABLE
services to modify the response of an existing vector table.

IEFSSVT macro

Chapter 87. IEFSSVT — Create a subsystem vector table 927

Table 82. Return and Reason Codes for the IEFSSVT Macro (continued)

Return Code
Decimal (hex)

Reason Code
Decimal (hex)

Equate Symbol for Reason Code
Meaning and Action

12 (0C) 101 (065) Equate Symbol: IEFSSVT_STORAGE

Meaning: Unable to obtain storage for an SSVT. This is a
CREATE request error.

Action: Review the use of system storage to determine why
sufficient storage was not available. Try the request again
later.

12 (0C) 102 (066) Equate Symbol: IEFSSVT_MAXENTRIES_TOO_SMALL

Meaning: The MAXENTRIES value is less than the number
of function routines in the function routine input table.
This is a CREATE request error.

Action: Correct the MAXENTRIES value. It must be at least
as large as the number of function routines represented in
the function routine input table.

12 (0C) 103 (067) Equate Symbol: IEFSSVT_MAXENTRIES_TOO_BIG

Meaning: The MAXENTRIES value is greater than the
maximum value (255). This is a CREATE request error.

Action: None.

12 (0C) 200 (0C8) Equate Symbol: IEFSSVT_ENABLE_NO_ELIGIBLE_VT

Meaning: The SSVT is not specified and a valid default is
not available. This is an ENABLE request error.

Action: Use the IEFSSVT CREATE function to create an
SSI-managed vector table.

12 (0C) 201 (0C9) Equate Symbol: IEFSSVT_ENABLE_MAX_ROUTINES

Meaning: The SSVT does not have available space for new
function routines. This is an ENABLE request error.

Action: If the subsystem has only one SSI-managed vector
table, use the IEFSSVT CREATE function to create a second
larger one, which responds to all required function codes.

If the subsystem already has two vector tables, the problem
cannot be corrected without re-IPLing the system, unless
some function codes can be disabled to make room for the
new required function routines.

12 (0C) 202 (0CA) Equate Symbol:
IEFSSVT_FUNCTION_ALREADY_ENABLED

Meaning: The subsystem already responds to one of the
function codes for which this request was submitted. This
an ENABLE request error.

Action: If you want to change the routine that supports the
function , use the IEFSSVT EXCHANGE function.

12 (0C) 300 (12C) Equate Symbol: IEFSSVT_DISABLE_NO_ELIGIBLE_VT

Meaning: The SSVT is not specified and a valid default is
not available. This an DISABLE request error.

Action: Create an SSI-managed SSVT using the IEFSSVT
CREATE function.

IEFSSVT macro

928 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 82. Return and Reason Codes for the IEFSSVT Macro (continued)

Return Code
Decimal (hex)

Reason Code
Decimal (hex)

Equate Symbol for Reason Code
Meaning and Action

12 (0C) 500 (1F4) Equate Symbol: IEFSSVT_EXCHANGE_NO_ELIGIBLE_VT

Meaning: The SSVT is not specified and a valid default is
not available. This an EXCHANGE request error.

Action: Create an SSI-managed SSVT using the IEFSSVT
CREATE function.

12 (0C) 501 (1F5) Equate Symbol: IEFSSVT_EXCHANGE_MAX_ROUTINES

Meaning: The SSVT does not have available space for new
function routines. This an EXCHANGE request error.

Action: If the subsystem has only one SSI-managed vector
table, use the IEFSSVT CREATE function to create a second
larger one, which responds to all required function codes.

If the subsystem already has two vector tables, the problem
cannot be corrected without re-IPLing the system, unless
some function codes can be disabled to make room for the
new required function routines.

Examples
For the following examples, assume that the function routine input tables have
already been built using the IEFSSVTI macro.

Example 1
Create an SSVT, reserving space for 5 function routines. The function routines
reside in LPA, so the LOADTOGLOBAL parameter is allowed to default to NO.

IEFSSVT REQUEST=CREATE,SUBNAME=SNAME,SSVTDATA=FROUTINE_TABLE, X
MAXENTRIES=5,OUTTOKEN=NEWTOKEN,ERRFUNCT=BADNAME, X
RETCODE=RETURN_CODE,RSNCODE=REASON_CODE...

SNAME DC CL4’FRED’...
WORKAREA DSECT 0F
NEWTOKEN DS CL4
BADNAME DS CL8
RETURN_CODE DS F
REASON_CODE DS F
WORKLEN EQU *-WORKAREA

Example 2
Enable an additional function code in the SSVT that was created in example 1. The
function routine input table ENABLE_TABLE describes only the new function code
and its associated function routine.
IEFSSVT REQUEST=ENABLE,SUBNAME=SNAME,SSVTDATA=ENABLE_TABLE, X

INTOKEN=NEWTOKEN,ERRFUNCT=BADNAME, X
RETCODE=RETURN_CODE,RSNCODE=REASON_CODE

Example 3
Disable one of the function codes currently supported by the SSVT created in
example 1. The function routine input table DISABLE_TABLE describes only the
function code to be disabled. It does not have to provide function routine
information.

IEFSSVT macro

Chapter 87. IEFSSVT — Create a subsystem vector table 929

IEFSSVT REQUEST=DISABLE,SUBNAME=SNAME,SSVTDATA=DISABLE_TABLE, X
INTOKEN=NEWTOKEN, X
RETCODE=RETURN_CODE,RSNCODE=REASON_CODE

Example 4
Change the function routine that responds to one of the function codes supported
by the SSVT in example 1. The function routine input table EXCHANGE_TABLE
identifies the function code and the new function routine.
IEFSSVT REQUEST=EXCHANGE,SUBNAME=SNAME,

SSVTDATA=EXCHANGE_TABLE, X
INTOKEN=NEWTOKEN,ERRFUNCT=BADNAME, X
RETCODE=RETURN_CODE,RSNCODE=REASON_CODE

IEFSSVT macro

930 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 88. IEFSSVTI — Associate function routines with
function codes

Description
Use the IEFSSVTI macro to create a table that relates function routines to the
function codes they support. This information is passed to the IEFSSVT macro as
input when creating or modifying an SSVT.

The IEFSSVTI macro:
v Creates a static function routine input table
v Reserves dynamic storage for a function routine input table
v Copies a static table to dynamic storage
v Modifies a function routine input table in dynamic storage

A static function routine input table is a table that does not change at program run
time and is used when all the information, such as the function routine names, are
known at compile time.

The IEFSSVTI macro does not attempt to verify that its caller is a dynamic
subsystem. IEFSSVTI can be used only with IEFSSVT.

Each function routine defined by the SET or ENTRY parameters of the IEFSSVTI
macro occupies a separate entry in the SSVT. The SSVT size is limited to the
number of entries specified by the MAXENTRIES parameter at the time when the
SSVT is created (IEFSSVT CREATE). As a result, IBM suggests economizing the use
of the slots by identifying only unique function routines for each SET or ENTRY
request of IEFSSVTI. In this way, if a function routine is common to several
function codes, a single call is made to IEFSSVTI to relate all of the function codes
to the function routine, rather than calling IEFSSVTI many times, relating the same
function routine to many function codes. For examples of relating multiple
function codes to a single function routine, see “Example 1” on page 934, which
identifies the LISTEN function routine related to two function codes, or see
“Example 2” on page 934, which identifies the VERSION function routine, related
to two function codes.

Note: The IEFSSVTI macro expands in-line and therefore does not impose
restrictions on authorization, dispatch mode, cross-memory mode, locks or control
parameters. The program using the table created by the IEFSSVTI macro is subject
to the restrictions of the IEFSSVT macro.

The types for the macro are:
v IEFSSVTI TYPE=LIST, which creates a DSECT that maps the format of the

function routine input table. See in “TYPE=LIST parameter of IEFSSVTI” on
page 935 for the syntax of this request.

v IEFSSVTI TYPE=INITIAL, which begins the definition of a static function routine
input table. See in “TYPE=INITIAL parameter of IEFSSVTI” on page 936 for the
syntax of this request.

v IEFSSVTI TYPE=ENTRY, which defines a function routine entry in a static input
table. See in “TYPE=ENTRY parameter of IEFSSVTI” on page 937 for the syntax
of this request.

© Copyright IBM Corp. 1988, 2016 931

v IEFSSVTI TYPE=FINAL, which ends the definition of a static function routine
input table. See in “TYPE=FINAL parameter of IEFSSVTI” on page 939 for the
syntax of this request.

v IEFSSVTI TYPE=SET, which modifies a function routine entry in an existing
input table. See in “TYPE=SET parameter of IEFSSVTI” on page 939 for the
syntax of this request.

v IEFSSVTI TYPE=RESERVE, which reserves storage for a function routine input
table. See in “TYPE=RESERVE parameter of IEFSSVTI” on page 942 for the
syntax of this request.

v IEFSSVTI TYPE=COPY, which copies a function routine input table. See in
“TYPE=COPY parameter of IEFSSVTI” on page 943 for the syntax of this
request.

For ease of use, the standard form of the macro is shown for each IEFSSVTI type.
The types are described on the following pages along with the:
v Standard form syntax diagram
v Description of the parameters

The following information is described once at the beginning of the IEFSSVTI
macro description:
v Environment
v Programming requirements
v Restrictions
v Input register information
v Output register information
v Performance implications

Following the descriptions of the standard forms of all requests are:
v Abend codes
v Return and reason codes
v Examples

The TYPE=LIST, TYPE=INITIAL, TYPE=ENTRY, TYPE=FINAL, TYPE=SET,
TYPE=RESERVE, and TYPE=COPY parameters are mutually exclusive. You can
select only one.

For information about using dynamic subsystem services, see z/OS MVS Using the
Subsystem Interface. This topic also includes information about the related macro
IEFSSI.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24-bit or 31-bit
ASC mode: Primary or Access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

IEFSSVTI macro

932 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Programming requirements
If the subsystem function routines are identified by address using the FUNCADDR
parameter, the invoking program must load the function routines by using the
LOAD macro, or obtain their addresses before invoking this macro.

Restrictions
The input table this macro creates:
v Can only be used with the IEFSSVT macro
v Cannot be used by the IEFJSVEC service to create SSVTs

The register form can be used to specify macro parameter variables only in
TYPE=SET invocations.

Input register information
Before issuing the IEFSSVTI macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as a work register by the system

2-13 Unchanged

14-15 Used as a work register by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-15 Unchanged

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

ABEND codes
None. The IEFSSVT macro indicates whether the IEFSSVTI macro processing was
successful, because you must use the IEFSSVTI macro with the IEFSSVT macro
when creating an SSVT.

Return and reason codes
None.

IEFSSVTI macro

Chapter 88. IEFSSVTI — Associate function routines with function codes 933

Examples
The following notes apply to the supplied examples:

Note:

1. A set of IEFSSVTI macro invocations, beginning with TYPE=INITIAL and
ending with TYPE=FINAL must contain some invocations specifying
FUNCNAME and some specifying FUNCADDR. The input table does not have
to identify all function routines the same way.

2. Usage scenarios
When you know all of the information at compile time, you can create a static
function routine input table using: TYPE=INITIAL, TYPE=ENTRY, and
TYPE=FINAL.
When you do not know all of the information at compile time, you can create a
dynamic function routine input table as follows:
v For reentrant programs: create a static function routine input table, reserve

storage for a dynamic table of the same size using TYPE=RESERVE, copy the
static table to the dynamic table using TYPE=COPY, and modify the dynamic
table using TYPE=SET.

v For non-reentrant programs: create a static table and modify it using
TYPE=SET, or copy a static table to dynamic storage and modify the
dynamic table using TYPE=SET.

Example 1
Build a static function routine input table, specifying the function routines by
name.
IEFSSVTI TYPE=INITIAL,SSVTDATA=MY_STAT_TABLE, +

TABLEN=STAT_TABLE_LENGTH
IEFSSVTI TYPE=ENTRY,FUNCNAME=LISTEN,NUMFCODES=2, +

FCODES=(SSOBWTO,SSOBWTL)
IEFSSVTI TYPE=ENTRY,FUNCNAME=VERSION,NUMFCODES=1, +

FCODES=SSOBSSVI
IEFSSVTI TYPE=FINAL

Example 2
Build a dynamic function routine input table, specifying function routines by
address. A static function routine input table is defined as a template and copied to
dynamic storage reserved by an IEFSSVTI TYPE=RESERVE invocation. The
dynamic function routine input table is completed using TYPE=SET invocation.
INITRTN CSECT...

* LOAD the function routines, store the entry point addresses,
* and DELETE.

LOAD EP=LISTEN
ST R0,LISTEN_ADDR
DELETE EP=LISTEN

*
LOAD EP=VERSION
ST R0,VERSION_ADDR
DELETE EP=VERSION

*

* Copy the static table to dynamic storage

IEFSSVTI TYPE=COPY,SSVTDATA=MY_DYN_TABLE, +
SOURCE=MY_TABLE

*

IEFSSVTI macro

934 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

**
* Set the function routine address information in the input
* table. Override the function codes supported for the first
* entry, so that only SSOBWTO is supported and not SSOBWTL.
**

IEFSSVTI TYPE=SET,SSVTDATA=MY_DYN_TABLE,SOURCE=MY_TABLE, +
ENTRYDATA=1,FUNCADDR=LISTEN_ADDR,FCODES=SSOBWTO

*
IEFSSVTI TYPE=SET,SSVTDATA=MY_DYN_TABLE,SOURCE=MY_TABLE, +

ENTRYDATA=2,FUNCADDR=VERSION_ADDR...
**
* Working storage
**
WORKAREA DSECT 0F
LISTEN_ADDR DS A Address of listen function +

routine
VERSION_ADDR DS A Address of version info function +

routine
**
* Reserve storage for dynamic function routine input table
**

IEFSSVTI TYPE=RESERVE,SSVTDATA=MY_DYN_TABLE, +
TABLEN=STAT_TABLE_LENGTH

*
WORKLEN EQU *-WORKAREA Length of work area
*

IEFSSVTI TYPE=LIST Generate table mappings
*
INITRTN CSECT
*
**
* Create static function routine input table
**

IEFSSVTI TYPE=INITIAL,SSVTDATA=MY_STAT_TABLE, +
TABLEN=STAT_TABLE_LENGTH

IEFSSVTI TYPE=ENTRY,NUMFCODES=2,FCODES=(SSOBWTO,SSOBWTL)
IEFSSVTI TYPE=ENTRY,NUMFCODES=1,FCODES=SSOBSSVI
IEFSSVTI TYPE=FINAL

*
END INITRTN

TYPE=LIST parameter of IEFSSVTI
The IEFSSVTI macro with the LIST parameter produces a DSECT that maps the
format of the function routine input table.

Syntax
The syntax of the IEFSSVTI macro with TYPE=LIST is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSVTI.

IEFSSVTI

� One or more blanks must follow IEFSSVTI.

IEFSSVTI macro

Chapter 88. IEFSSVTI — Associate function routines with function codes 935

Syntax Description

TYPE=LIST

Parameters
The parameters are explained as follows:

TYPE=LIST
A parameter that defines a DSECT that maps the format of the function routine
input table. A TYPE=LIST request is required if a TYPE=SET request or
TYPE=COPY request is used in the calling program.

TYPE=INITIAL parameter of IEFSSVTI
The IEFSSVTI macro with the INITIAL parameter begins the definition of a static
function routine input table.

Syntax
The syntax of the IEFSSVTI macro with TYPE=INITIAL is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSVTI.

IEFSSVTI

� One or more blanks must follow IEFSSVTI.

TYPE=INITIAL

,SSVTDATA=ssvtdata ssvtdata: RS-type address

,TABLEN=tablen ssvtdata: RS-type address

Parameters
The parameters are explained as follows:

TYPE=INITIAL
A parameter that begins a static function routine input table build request. This
TYPE=INITIAL request is the first request required to build the static function
routine input table. The order in which you invoke requests to build the static
function routine input table follows:
v TYPE=INITIAL

IEFSSVTI macro

936 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v TYPE=ENTRY
v TYPE=FINAL

,SSVTDATA=ssvtdata
A required parameter that specifies the name of the function routine input
table that you are building that relates supported SSVT function codes with
function routines. Use this name when referencing the function routine input
table and also on the SSVTDATA parameter of the IEFSSVT macro.

,TABLEN=tablen
A required parameter that specifies the name of a constant that the IEFSSVTI
macro generates to define the length of the storage required by the function
routine input table.

Use this parameter with a TYPE=RESERVE request to reserve dynamic storage
when copying the function routine input table for TYPE=SET request
modifications.

TYPE=ENTRY parameter of IEFSSVTI
The IEFSSVTI macro with the ENTRY parameter defines a function routine entry in
a static input table.

Syntax
The syntax of the IEFSSVTI macro with TYPE=ENTRY is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSVTI.

IEFSSVTI

� One or more blanks must follow IEFSSVTI.

TYPE=ENTRY

,FUNCNAME=funcname funcname: RS-type address or address in register (2) - (12).

,FUNCADDR=funcaddr funcaddr: RS-type address or address in register (2) - (12).

Default: none

,NUMFCODES=numfcodes numfcodes: RS-type address or address in register (2) - (12).

,FCODES=fcodes(,fcodes...) fcodes: RS-type address or address in register (2) - (12).

,FCODES=0 Default: FCODES=0

IEFSSVTI macro

Chapter 88. IEFSSVTI — Associate function routines with function codes 937

Parameters
The parameters are explained as follows:

TYPE=ENTRY
A parameter that defines a function routine entry in a static input table. A
static input table must contain at least one TYPE=ENTRY invocation. You must
specify a TYPE=INITIAL request prior to specifying this TYPE=ENTRY request.

,FUNCNAME=funcname
,FUNCADDR=funcaddr

An optional set of parameters. You can specify only one of the following:

FUNCNAME=funcname
The function routine name. This name can be no more than 8 characters
long, beginning with an alphabetic character or national (#, @, or $)
character. The remaining characters can be alphabetic, national or numeric.

This field must be left-justified and padded to the right with blanks.

For a TYPE=ENTRY request, if you omit FUNCNAME, you must provide
the function routine information about a subsequent TYPE=SET request.

FUNCADDR=funcaddr
A field that contains the address of the function routine. Specifying
FUNCADDR on a TYPE=ENTRY request, reserves storage in the function
routine input table for the function routine address.

You must provide the actual address in a subsequent TYPE=SET request.

When you specify FUNCADDR on a TYPE=SET request, you can use the
high-order bit to specify the function routine AMODE. Setting this bit
indicates that the routine receives control in AMODE 31. Clearing this bit
indicates that the routine receives control in AMODE 24. You can also use
the FUNCAMODE key to indicate the AMODE of a function routine.

,NUMFCODES=numfcodes
A required 2-byte parameter that defines the number of function codes
supported by the associated function routine. This input field contains a
decimal value that must be in the range of 1 to 255.

Use the NUMFCODES parameter to reserve storage for function code
information in a static function routine input table entry. You must specify a
number greater or equal to the number of function codes specified with the
FCODES parameter.

If you do not know the actual number of function codes associated with the
routine, specify the maximum number of function codes you expect, to reserve
enough storage. In this case, the FCODES parameter of a subsequent
TYPE=SET request provides the actual function code information.

,FCODES=fcodes(,fcodes...)
,FCODES=0

An optional parameter that specifies the function codes supported by the
associated function routine. This input field may contain either a value or a list
of values that must be in the range of 1 to 255. The values do not have to be
numbers, they can also be assembler equates.

The same function code value cannot appear more than once within a set of
IEFSSVTI invocations representing a function routine input table.

IEFSSVTI macro

938 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

For a TYPE=ENTRY request, if you do not specify the FCODES parameter, you
must provide the supported function codes on a subsequent TYPE=SET
request. The default is 0.

TYPE=FINAL parameter of IEFSSVTI
The IEFSSVTI macro with the FINAL parameter ends the definition of a static
function routine input table.

Syntax
The syntax of the IEFSSVTI macro with TYPE=FINAL is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSVTI.

IEFSSVTI

� One or more blanks must follow IEFSSVTI.

TYPE=FINAL

Parameters
The parameters are explained as follows:

TYPE=FINAL
A parameter that ends a static function routine input table build request. This
TYPE=FINAL request is the last request required to build the static function
routine input table.

TYPE=SET parameter of IEFSSVTI
The IEFSSVTI macro with the SET parameter modifies a function routine entry in
an existing input table.

Syntax
The syntax of the IEFSSVTI macro with TYPE=SET is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSVTI.

IEFSSVTI

IEFSSVTI macro

Chapter 88. IEFSSVTI — Associate function routines with function codes 939

Syntax Description

� One or more blanks must follow IEFSSVTI.

TYPE=SET

,SSVTDATA=ssvtdata ssvtdata: RS-type address

,SOURCE=source source: RS-type address or address in register (2) - (12).

,ENTRYDATA=entrydata entrydata: RS-type address or address in register (2) - (12).

,FUNCNAME=funcname funcname: RS-type address or address in register (2) - (12).

,FUNCADDR=funcaddr funcaddr: RS-type address or address in register (2) - (12).

Default: none

,FUNCAMODE=HOB Default: FUNCAMODE=HOB
Note: FUNCAMODE is valid with FUNCADDR.

,FUNCAMODE=31

,FUNCAMODE=24

,FCODES=fcodes(,fcodes...) fcodes: RS-type address or address in register (2) - (12).

,FCODES=0 Default: FCODES=0

Parameters
The parameters are explained as follows:

TYPE=SET
A parameter that modifies a function routine entry in an existing input table.
You can use TYPE=SET to modify either a table in dynamic storage, or a static
table in non-reentrant programs.

,SSVTDATA=ssvtdata
A required parameter that specifies the name of the function routine input
table to be modified. The name must match the name of a table specified on
the SSVTDATA parameter of the TYPE=INITIAL or TYPE=RESERVE IEFSSVTI
macro invocation.

,SOURCE=source
A required parameter that specifies the name of the original function routine
input table from which the table to be modified was copied.

The name must match the name of a function routine input table that you
specified in the SSVTDATA parameter on a TYPE=INITIAL invocation or a
TYPE=RESERVE invocation. This information is used with the ENTRYDATA
parameter to calculate the offset of the function routine input table you want to
modify.

IEFSSVTI macro

940 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

The SOURCE parameter and SSVTDATA parameter can refer to the same
function routine input table. For example, you may want to modify a static
function routine input table that was created by a set of TYPE=INITIAL and
TYPE=FINAL invocations, which can be done only in non-reentrant modules.

,ENTRYDATA=entrydata
A required 4-byte parameter that specifies the name (or address) of the index
of the function routine input table entry that you want to modify. This input
field may be either a constant, an assembler equate, or decimal value.

If the value of the ENTRYDATA parameter is greater than the number of
function routines in the source table, the target function routine input table
does not change. If this is the case, you will not receive a compile-time
warning message, because this situation is determined at run time.

,FUNCNAME=funcname
,FUNCADDR=funcaddr

An optional set of parameters. You can specify only one of the following:

FUNCNAME=funcname
The function routine name. This name can be no more than 8 characters
long, beginning with an alphabetic character or national (#, @, or, $)
character. The remaining characters can be alphabetic, national, or numeric.

This field must be left-justified and padded to the right with blanks.

For a TYPE=ENTRY request, if you omit FUNCNAME, you must provide
the function routine information about this request.

FUNCADDR=funcaddr
The pointer input that contains the address of the function routine.
Specifying FUNCADDR on a TYPE=ENTRY invocation, reserves storage in
the function routine input table for the function routine address.

If you specify FUNCADDR on this invocation, you can use the high-order
bit to specify the function routine AMODE. Setting this bit indicates that
the routine receives control in AMODE 31. Clearing this bit indicates that
the routine receives control in AMODE 24. You can also use the
FUNCAMODE key to indicate the AMODE of a function routine.

,FUNCAMODE=HOB
,FUNCAMODE=31
,FUNCAMODE=24

An optional input parameter that specifies the AMODE of a function routine
identified by the address. The SSI uses this information to determine the
AMODE in which the function routine receives control.

If you do not specify the FUNCAMODE parameter, the high-order bit of the
address specified with the FUNCADDR parameter indicates the AMODE of
the function routine. If the high-order bit is on, the function routine is treated
as AMODE 31.

FUNCAMODE=HOB specifies that the high-order bit of a function routine
address indicates the AMODE in which the function routine receives control.
HOB is the default.

FUNCAMODE=31 specifies that the function routine receives control in
AMODE 31.

FUNCAMODE=24 specifies that the function routine receives control in
AMODE 24.

,FCODES=fcodes(,fcodes...)

IEFSSVTI macro

Chapter 88. IEFSSVTI — Associate function routines with function codes 941

,FCODES=0
An optional byte parameter that specifies the function codes supported by the
associated function routine. This input field contains a decimal value that must
be in the range of 1 to 255.

The same function code value cannot appear more than once within a set of
IEFSSVTI invocations representing a function routine input table.

You must specify the FCODES parameter if the function code information was
not provided on the TYPE=ENTRY invocation that corresponds to the entry
being modified.

Function codes that you specify with the TYPE=SET invocation replace any
function codes specified on the original TYPE=ENTRY invocation. If you do
not specify the FCODES parameter the function code information in the entry
being modified is unchanged.

If you specify more function codes with the FCODES parameter than the
maximum number of function codes for which room was reserved in the table
entry being modified, the function code information in the target entry is
unchanged. The IEFSSVTI macro does not provide a warning.

The default is 0.

TYPE=RESERVE parameter of IEFSSVTI
The IEFSSVTI macro with the RESERVE parameter reserves dynamic storage for a
function routine input table.

Syntax
The syntax of the IEFSSVTI macro with TYPE=RESERVE is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSVTI.

IEFSSVTI

� One or more blanks must follow IEFSSVTI.

TYPE=RESERVE

,SSVTDATA=ssvtdata ssvtdata: RS-type address

,TABLEN=tablen tablen: RS-type address

,MAXFCODES=maxfcodes maxfcodes: RS-type address or address in register (2) - (12).

IEFSSVTI macro

942 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Parameters
The parameters are explained as follows:

TYPE=RESERVE
A parameter that reserves the amount of dynamic storage required to contain a
copy of a static function routine input table.

,SSVTDATA=ssvtdata
A required parameter that specifies the name of the function routine input
table that relates supported SSVT function codes with function routines. Use
this name when referencing the function routine input table and also on the
SSVTDATA parameter of the IEFSSVT macro.

,TABLEN=tablen
,MAXFCODES=maxfcodes

You must specify one of the following parameters:

TABLEN=tablen
A parameter that specifies the name of a constant, which contains the
length of storage required by the function routine input table. This should
be the name of a constant specified by the TABLEN parameter on a
previous TYPE=INITIAL invocation. Use this parameter when reserving
storage for a dynamic function routine input table that is to be copied from
another table.

MAXFCODES=maxfcodes
A parameter that specifies the maximum number of function codes that is
supported by the entire function routine input table. Use this key to
reserve space for a dynamic input table when the specific function routines
and function codes that are supported are not known at compile time.

TYPE=COPY parameter of IEFSSVTI
The IEFSSVTI macro with the COPY parameter copies a static function routine
input table to dynamic storage.

Syntax
The syntax of the IEFSSVTI macro with TYPE=COPY is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IEFSSVTI.

IEFSSVTI

� One or more blanks must follow IEFSSVTI.

TYPE=COPY

,SSVTDATA=ssvtdata ssvtdata: RS-type address

IEFSSVTI macro

Chapter 88. IEFSSVTI — Associate function routines with function codes 943

Syntax Description

,SOURCE=source source: RS-type address or address in register (2) - (12).

Parameters
The parameters are explained as follows:

TYPE=COPY
A parameter copies a static function routine input table to dynamic storage.

The TYPE=COPY invocation expands inline to copy the table identified by the
SOURCE parameter to the table identified by the SSVTDATA parameter. The
source table contains the information for the macro to calculate the length that
needs to be moved.

,SSVTDATA=ssvtdata
A required parameter that specifies the name of the target function routine
input table (the destination for the copy). This name must match the name of a
table specified by the SSVTDATA parameter on a TYPE=RESERVE invocation.

,SOURCE=source
A required parameter that specifies the name of the table to be copied. The
name must match the name of a table that was specified on the SSVTDATA
parameter on an TYPE=INITIAL invocation.

IEFSSVTI macro

944 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 89. IFAQUERY — SMF configuration query service

Description
The IFAQUERY service provides SMF configuration information to its caller. The
IFAQUERY service currently performs the following function:
v RETRIEVE STATUS - Return the status of SMF recording. Information about

SMF LOGSTREAMs is returned, including the SMF record types being written to
the log stream. When SMF is not recording, a non-zero return code is returned.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and system PSW key.
Dispatchable unit mode: Task mode
Cross Memory Mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space.

Programming requirements
None.

Restrictions
None.

Input register information
There are no input register requirements for issuing the IFAQUERY macro.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

© Copyright IBM Corp. 1988, 2016 945

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The standard form of the IFAQUERY macro is written as follows:

Syntax Description

name name: symbol. Begin name in column
1.

� One or more blanks must precede
IFAQUERY.

IFAQUERY

� One or more blanks must follow
IFAQUERY.

[,xlabel] An optional symbol, starting in
column 1, that is the name on the
IFAQUERY macro invocation.
DEFAULT: No name

RETRIEVE

,STATUS

,OUTAREA=outarea xoutarea: RS-type address or register
(2) - (12).

,OUTLEN=outlen outlen: RS-type address or register (2)
- (12).

[,DETAILS=LOGSTREAM] Default: ALL

[,RETCODE=retcode] retcode: RS-type address or register (2)
- (12).

[,RSNCODE=rsncode] rsncode: RS-type address or register (2)
- (12).

[,PLISTVER=plistver|IMPLIED_VERSION] Default: IMPLIED_VERSION

[,MF=S] Default: MF=S

[,MF=(L,mfctrl,mfattr, 0D)]

[,MF=(E,mfctrl,COMPLETE)]

IFAQUERY service

946 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Parameters
In the following set of mutually exclusive keywords, only one keyword must be
specified.

RETRIEVE
Retrieve SMF Recording information.

STATUS
Obtain information about the current log stream recording environment.

OUTAREA=outarea
A required character input/output specifying an area to contain the data being
returned by IFAQUERY. The answer area is defined by the IFAQUAA macro,
which consists of the QUAHDR and QUALSI structures. The IFAQUAA
mapping macro provides the format of the area. The area can be in the
primary address space or in an address space or data space that is addressable
through a public entry on the caller's DU-AL. Use the OUTLEN parameter to
specify the length of the area.

To code: Specify the RS-type address of a character field, or register (2) - (12)
(ASM only).

OUTLEN=outlen
A required fullword input parameter that contains the length of the area
provided to contain the data being returned by IFAQUERY.

To code: Specify the RS-type address of a fullword field, or register (2) - (12)
(ASM only).

End of the mutually exclusive keywords.

DETAILS=LOGSTREAM
An optional keyword input indicating the type of information that the SMF
query service should return.

DEFAULT: LOGSTREAM.

RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12)
(ASM only).

RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or address in register
(2) - (12) (ASM only).

PLISTVER=plistver|IMPLIED_VERSION
An optional byte input decimal value in the "0-0" range that specifies the
macro version. PLISTVER is the only parameter allowed on the list form of
MF. This parameter determines which parameter list the system generates.
PLISTVER is an optional input parameter on all forms of the macro, including
the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values can be:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

IFAQUERY service

Chapter 89. IFAQUERY — SMF configuration query service 947

v MAX, if you want the parameter list to be the largest size currently
supported. This size might grow from release to release and affect the
amount of storage that your program needs.
If you can tolerate the size change, IBM suggests that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 1, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v 1

,MF=S
,MF=(L,mfctrl,mfattr, 0D)
MF=(E,fctrl,COMPLETE

An optional keyword input that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
servIice. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,fctrl
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1) - (12).

mfattr
An optional 1- 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
The following table contains hexadecimal return and reason codes, the equate
symbols associated with each reason code, and the meaning for each return and
reason code.

IFAQUERY service

948 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 83. Return and Reason Codes for the IFAQUERY Macro

Return Code Reason Code Meaning and Action

00 None Explanation: IFAQUERY request successful.

04 Explanation: Warning. Refer to the action provided with the
specific reason code.

04 xxxxxx01 Explanation: OUTAREA is too small to contain all the requested
data. The results in the OUTAREA were truncated. QUAHLEN
specifies the amount of storage that is required to return a
complete result.

Action: Try the request again with a larger OUTAREA.

04 xxxxxx03 Explanation: DETAILS=LOGSTREAM was requested but no log
stream information exists. The QUAHDR is filled in appropriately.
No records are returned.

Action: None.

08 Explanation: Incorrect input parameter. Refer to the action
provided with the specific reason code.

08 xxxxxx01 Explanation: Caller was not running as a task.

Action: Move the invocation of IFAQUERY under a task.

08 xxxxxx02 Explanation: The input parmlist cannot be accessed.

Action: Check for one of the following possible errors:
v Program exception during access of parameter list.
v Parameter list has incorrect address.

08 xxxxxx03 Explanation: The QUAA area could not be accessed.

Action: Check for one of the following possible errors:
v Program exception during access of QUAA area.
v QUAA area has incorrect address.

08 xxxxxx05 Explanation: The OUTAREA length is too small for a QUAA
header.

Action: Increase the size of the OUTAREA. The length must be
greater than or equal to 16 bytes.

08 xxxxxx06 Explanation: QUAA has invalid ALET.

0C Explanation: Environmental error. Refer to the action provided
with the specific reason code.

0C xxxxxx01 Explanation: SMF recording is not active. No records are returned.

Action: None.

0C xxxxxx02 Explanation: Storage for local area was not obtained.

Action: None.

10 None Explanation: Unexpected error. The state of the request is
unpredictable.

IFAQUERY service

Chapter 89. IFAQUERY — SMF configuration query service 949

IFAQUERY service

950 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 90. IOCINFO — Obtain MVS I/O configuration
information

Description
Use the IOCINFO macro to obtain the following I/O configuration information:
v I/O configuration token
v Default channel subsystem identifier for the logical partition
v The maximum device measurement block index that is currently assigned
v The I/O facilities that are supported and enabled by the hardware and software.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, with any PSW key.

For LINKAGE=BRANCH, all of the following:

v Supervisor state with PSW key 0

v 31-bit addressing mode

v Primary ASC mode

v Parameter list and any data areas it points to must be in
fixed storage or, if the caller is disabled, in disabled
reference (DREF) storage

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- bit
ASC mode: Primary or access register (AR)
Interrupt Status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any
Control parameters: Must be in the primary address space or be in an

address/data space that is addressable through a public
entry on the caller's dispatchable unit access list (DU-AL).

Programming requirements
If in AR mode, specify SYSSTATE ASCENV=AR before invoking the macro.

Restrictions
None.

Input register information
Before issuing the IOCINFO macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

© Copyright IBM Corp. 1988, 2016 951

Register
Contents

0 Reason code if GPR 15 contains a return code of 08; otherwise, used as a
work register by the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The standard form of the IOCINFO macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOCINFO.

IOCINFO

� One or more blanks must follow IOCINFO.

IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,DCMINFO=xdcminfo xdcminfo: RS-type address or register (2) - (12).

,CSSID=cssid addr cssid addr: RX-type address or register (2) - (12).

,MAXMBI=maxmbi addr maxmbi addr: RS-type address or register (2) - (12).

,IOFACILITIES=iofc addr iofc addr: RX-type address or register (2) - (12).

,IODFINFO=xiodfinfo xiodfinfo: RS-type address or register (2) - (12).

IOCINFO macro

952 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,PLISTVER=xplistver

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

Parameters
The parameters are explained as follows:

IOCTOKEN=ioctoken addr
Specifies the address of a 48-character area where the system returns the
current MVS I/O configuration token.

,DCMINFO=xdcminfo
Specifies the address of an optional 32 character output area into which
IOCINFO is to return Dynamic Channel Path Management (DCM) information
which can be mapped by IOSDDCMI.

,CSSID=cssid addr
Specifies the address of a one byte output area where the system returns the
default channel subsystem ID for the logical partition.
v A return code of X'00', reason code of X'00' indicates that the program is

running on a processor that supports multiple channel subsystems.
v A return code of X'00', reason code X'01' indicates that the program is

running on a processor that does not support multiple channel subsystems,
and the CSS ID assigned is a zero.

,MAXMBI=maxmbi addr
Specifies the address of a halfword field where the system returns the
maximum device measurement block index that is currently assigned.

,IOFACILITIES=iofc addr
Specifies the address of a required 256-byte output area into which the
IOCINFO service returns the I/O facility information. This area is mapped by
mapping macro IOSDIOFC.

,IODFINFO=xiodfinfo
Specifies the address of an optional 128 character output area into which
IOCINFO is to return IODF information which is mapped by IOSDIODI.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that should be generated:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

IOCINFO macro

Chapter 90. IOCINFO — Obtain MVS I/O configuration information 953

,RETCODE=retcode addr
Specifies the fullword location where the system is to store the return code.
The return code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the fullword location where the system is to store the reason code.
The reason code is also in GPR 0.

,PLISTVER=xplistver
,PLISTVER=IMPLIED_VERSION

An optional byte input decimal value (with a value of 1) that specifies the
macro version. PLISTVER is the only key allowed on the list form of MF and
determines which parameter list is generated. Note that MAX may be specified
instead of a number, and the parameter list will be of the largest size currently
supported. This size may grow from release to release (thus possibly affecting
the amount of storage needed by your program). If your program can tolerate
this, IBM recommends that you always specify MAX when creating the list
form parameter list as that will ensure that the list form parameter list is
always long enough to hold whatever parameters might be specified on the
execute form.

The default is IMPLIED_VERSION. When PLISTVER is omitted, the default is
the lowest version which allows all of the parameters specified on the
invocation to be processed.

ABEND codes
None.

Return and reason codes
When the system returns control to the caller, GPR 15 (and retcode addr, if you
coded RETCODE) contains the return code. For return code X'08', the reason code
is in GPR 0 (and rsncode addr, if you coded RSNCODE).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 Meaning: Successful completion.

Action: None.

00 00 Meaning: Successful completion from a CSSID
parameter request. The program is running on a
processor that supports multiple channel
subsystems.

Action: None.

00 01 Meaning: Successful completion from a CSSID
parameter request. The program is running on a
processor that does not support multiple channel
subsystems and the CSS ID assigned is a zero.

Action: None.

08 01 Meaning: Program error. An ALET in the parameter
list is not valid. The caller might have inadvertently
written over an area in the parameter list.

Action: Check to see if your program inadvertently
overlaid the parameter list generated by the macro.

IOCINFO macro

954 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 02 Meaning: Program error. The system could not
access the caller's parameter list.

Action: Check to see if your program inadvertently
overlaid the parameter list generated by the macro.

08 05 Meaning: Program error. An error occurred when
the system referenced the user-supplied area
specified in the IOCTOKEN parameter.

Action: Check to see if your program correctly
specified the IOCTOKEN area.

08 09 Meaning: System error. This reason code is for IBM
diagnostic purposes only.

Action: Record the reason code and supply it to the
appropriate IBM support personnel.

08 0F Meaning: An error occurred referencing the
user-supplied area that is specified in the
IOFACILITIES parameter.

Action: Check to see if your program correctly
specified the IOFACILITIES area.

20 Meaning: System error. This return code is for IBM
diagnostic purposes only.

Action: Record the return code and supply it to the
appropriate IBM support personnel.

24 07 Meaning: Program error. The system does not
support the specified parameter.

Action: Check the parameters on the IOCINFO
macro to make sure they are valid on your release of
the system.

IOCINFO—List form
Use the list form of the IOCINFO macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to contain the
parameters.

Syntax
The list form of the IOCINFO macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOCINFO.

IOCINFO

IOCINFO macro

Chapter 90. IOCINFO — Obtain MVS I/O configuration information 955

Syntax Description

� One or more blanks must follow IOCINFO.

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr,attr) attr: 1- to 60- character input string

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the IOCINFO macro
with the following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IOCINFO macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

IOCINFO - Execute form
Use the execute form of the IOCINFO macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the IOCINFO macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOCINFO.

IOCINFO

� One or more blanks must follow IOCINFO.

IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,CSSID=cssid addr cssid addr: RS-type address or register (2) - (12).

IOCINFO macro

956 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,MAXMBI=maxmbi addr maxmbi addr: RS-type address or register (2) - (12).

,IOFACILITIES=iofc addr iofc addr: RS-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the IOCINFO macro
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the IOCINFO macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply defaults for omitted optional parameters.

IOCINFO macro

Chapter 90. IOCINFO — Obtain MVS I/O configuration information 957

IOCINFO macro

958 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 91. IOSADMF — Transfer hiperspace data

Description
The IOSADMF macro provides an interface for the movement of large amounts of
data between main and expanded storage.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or program key mask (PKM) allowing keys

0-7.
Dispatchable unit mode: Task or SRB mode for AREAD, AWRITE, and AQUERY

requests.
Task mode only for APURGE requests.

Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space.

Programming requirements
The caller's parameter list and range list must be in the primary address space.

Restrictions
For IOSADMF APURGE requests, the caller may not have an EUT FRR established.

Input register information
Before issuing the IOSADMF macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system.

2-14 Unchanged

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system.

© Copyright IBM Corp. 1988, 2016 959

2-13 Unchanged

14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
Using IOSADMF to move large amounts of data between central and expanded
storage is more efficient than synchronous methods of moving data.

Syntax
The standard form of the IOSADMF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSADMF.

IOSADMF

� One or more blanks must follow IOSADMF.

APURGE

AREAD

AWRITE

AQUERY

,ALET=alet-addr alet-addr: RX-type address or register (2) - (12).

,NUMRANGE=n n: Number from 1 to 125.

,NUMRANGE=num-addr num-addr: RX-type address or register (2) - (12).

Default: NUMRANGE=1.

,RANGLIST=list-addr list-addr: RX-type address or register (2) - (12).

,FAILBLKP=fail-addr fail-addr: RX-type address or register (2) - (12).

,CROSSOVER=cross-addr cross-addr: RX-type address or register (2) - (12).

,RETCODE=ret-addr ret-addr: RX-type address or register (2) - (12).

IOSADMF macro

960 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,RSNCODE=rsn-addr rsn-addr: RX-type address or register (2) - (12).

,MF=S

Table 84. Parameters Valid with IOSADMF Requests

Parameters APURGE AREAD AWRITE AQUERY

ALET required required required not valid

NUMRANGE not valid optional optional not valid

RANGLIST not valid required required not valid

FAILBLKP not valid optional optional not valid

CROSSOVER not valid not valid not valid optional

RETCODE optional optional optional optional

RSNCODE optional optional optional optional

MF optional optional optional optional

Parameters
The parameters are explained as follows:

APURGE
AREAD
AWRITE
AQUERY

Specifies the type of request, as follows: APURGE requests that the system
purge any active AREAD or AWRITE operation for the hiperspace represented
by the ALET.

AREAD requests that the system transfer data from a hiperspace to an address
space.

AWRITE requests that the system transfer data from an address space to a
hiperspace.

AQUERY requests that the system check to determine whether ADMF
(asynchronous data mover facility) is installed. If ADMF is installed, the
system returns a return code of 0. If ADMF is not installed, the system returns
a return code of 8 with a corresponding reason code.

,ALET=alet-addr
Specifies either the address of a fullword or a register that contains the ALET
associated with the hiperspace that is the target of an APURGE, AREAD, or
AWRITE request.

,NUMRANGE=n
,NUMRANGE=num-addr

Specifies the number of entries in the range list in one of the following
formats:
v A decimal digit from 1 through 125
v A fullword that contains the number of entries
v A register that contains the address of a fullword that contains the number

of entries.

IOSADMF macro

Chapter 91. IOSADMF — Transfer hiperspace data 961

The default is NUMRANGE=1.

,RANGLIST=list-addr
Specifies a fullword that contains the address of a list of ranges (up to 125), or
specifies a register that contains the address of the fullword pointer to the
range list. The list of ranges specifies one or more virtual storage ranges that
are to be moved. The range list consists of a number of entries (specified by
NUMRANGE), where each entry consists of three words:

First word
The starting virtual address in the address space into which the data is
to be read or from which data is to be written.

Second word
The starting virtual address in the hiperspace from which the system is
to read or into which the system is to read.

Third word
The number of blocks the system is to read from the hiperspace or
write from the address space.

For example, if your register and storage are set up as in Figure 9, you can
code the RANGLIST parameter and NUMRANGE parameter as follows:

The range list must be in the caller's primary address space.

,FAILBLKP=fail-addr
Specifies a fullword that contains the address of a range list entry, or specifies
a register that contains the address of the fullword pointer to a range list entry,
for which a failure occurred. The system returns this value only when you
code FAILBLKP and when the system can identify the failing range list entry.

When the system returns a return code 8 and fail-addr contains a non-zero
value, the entry identified by fail-addr is either partially processed, or not
processed and any subsequent range list entries are not processed. However,
any prior range list entries processed successfully.

fail-addr contains a non-zero value only when the failing range list is known.
The reason codes indicate when fail-addr is set.

,CROSSOVER=cross-addr
Specifies a fullword or register in which the system is to place the

NUMRANGE=3 ,RANGLIST=(5)

or

NUMRANGE=3, RANGLIST=RANGADDR

AddrSp Loc

AddrSp Loc

AddrSp Loc

Hiper Loc

Hiper Loc

Hiper Loc

Blocks

Blocks

Blocks

12 Bytes
Register 5

RANGADDR
(fullword)

Figure 9. RANGLIST and NUMRANGE Parameters

IOSADMF macro

962 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

system-implemented crossover value. If the number of pages requested to be
moved is greater than the CROSSOVER value, the system moves the data
asynchronously with the ADMF. If you invoke IOSADMF when the number of
pages is less than the crossover value, the system uses the move page facility
to move the data.

You can request this value to determine whether using the ADMF is warranted
for particular data movement.

,RETCODE=ret-addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

,RSNCODE=rsn-addr
Specifies the location where the system is to store the return code. The reason
code is also in GPR 0.

,MF=S
Specifies the standard form of the macro. This form generates code to place the
parameters into an inline parameter list and invoke the macro service.

ABEND codes
None.

Return and reason codes
When the IOSADMF macro returns control to the caller, GPR 15 (and ret-addr, if
you coded RETCODE) contains a return code and GPR 0 (and rsn-addr, if you
coded RSNCODE) contains a reason code.

The reason code consists of four bytes; the third byte contains a value that
indicates where the error occurred. The third byte contains X'01' when the error
occurred in an address space; it contains X'02' when the error occurred in a
hiperspace.

Table 85. Return and Reason Codes for the IOSADMF Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 — Meaning: The IOSADMF operation completed successfully.
For an AQUERY request, return code 0 indicates that the
ADMF is installed.

Action: None.

04 xx0101xx Meaning: System error. The IOSADMF operation failed
because of a communication error. The request was started,
but the system stopped the request because of an error
condition.

The failure occurred in the storage area whose address is in
the first word of the input range list entry. FAILBLKP
contains the address of the range list entry for which the
failure occurred.

Action: Either retry the operation using IOSADMF or use
the HSPSERV macro. If you still get the same error, record
the return and reason codes; contact hardware support.

IOSADMF macro

Chapter 91. IOSADMF — Transfer hiperspace data 963

Table 85. Return and Reason Codes for the IOSADMF Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

04 xx0202xx Meaning: System error. The IOSADMF operation failed
because of a communication error. The request was started,
but the system stopped the request because of an error
condition.

The failure occurred in the storage whose address is in the
second word of the input range list entry. FAILBLKP
contains the address of the range list entry for which the
failure occurred.

Action: Either retry the operation using IOSADMF or use
the HSPSERV macro. If you still get the same error, record
the return and reason codes; contact hardware support.

04 xx0301xx Meaning: Program error. A specified address identified an
area in an address space for which the caller is not
authorized. A protection exception was encountered.

The failure occurred in the storage area whose address is in
the first word of the input range list entry. FAILBLKP
contains the address range list entry for which the failure
occurred.

Action: Either specify the address of an address space that
the user has the authority to access, or obtain adequate
authority to use the specified address. Retry the operation
using IOSADMF or use the HSPSERV macro.

04 xx0501xx Meaning: Program error. An error occurred during address
translation. The request cannot be completed at the current
time because an address space page was not valid. Either
the address in the first word of the input range list entry
was not correct or identified an area that was not backed.

The failure occurred in the storage area whose address is in
the first word of the input range list entry. FAILBLKP
contains the range list entry for which the failure occurred.

Action: Either retry the operation using IOSADMF or use
the HSPSERV macro. Ensure that all the pages that are to
be used are page fixed.

04 xx0502xx Meaning: Program error. An error occurred during address
translation. The request cannot be completed at the current
time because a hiperspace page was not valid. Either the
hiperspace in the second word of the input range list entry
was not correct or identified an area that was reclaimed by
the system.

The failure occurred in the storage area whose address is in
the second word of the input range list entry. FAILBLKP
contains the address of a range list entry for which the
failure occurred.

Action: Use the HSPSERV macro to restore the hiperspace
page.

IOSADMF macro

964 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 85. Return and Reason Codes for the IOSADMF Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

04 xx0601xx Meaning: System error. An uncorrectable storage error
occurred at either the source or destination of the data
move.

The failure occurred in the storage area whose address is in
the first word of the input range list entry. FAILBLKP
contains the range list entry for which the failure occurred.

Action: Either retry the operation using IOSADMF or use
the HSPSERV macro. If you still get the same error, record
the return and reason codes; contact hardware support.

04 xx0702xx Meaning: System error. An uncorrectable storage error
occurred at either the source or destination of the data
move.

The failure occurred in the storage area whose address is in
the second word of the input range list entry. FAILBLKP
contains the range list entry for which the failure occurred.

Action: Either retry the operation using IOSADMF or use
the HSPSERV macro. If you still get the same error, record
the return and reason codes; contact hardware support.

04 xx0Cxxxx Meaning: System error. An uncorrectable storage error
occurred at either the source or destination of the data
move.

The system could not determine whether the error occurred
in the address space storage or the hiperspace storage.
FAILBLKP contains the range list entry for which the
failure occurred.

Action: Either retry the operation using IOSADMF or use
the HSPSERV macro. If you still get the same error, record
the return and reason codes; contact hardware support.

08 xx31xxxx Meaning: Environmental error. The ADMF is not installed
on the current system. The ADMF cannot be used until
both hardware and software are installed and the operating
system is IPLed.

Action: Retry the operation using the HSPSERV macro
instead of the IOSADMF macro.

08 xx32xxxx Meaning: System error. The asynchronous data mover
facility is not available. The system detected an
unrecoverable error.

Action: Use the HSPSERV macro instead of IOSADMF and
rerun the program. Record the return and reason codes;
contact hardware support.

08 xx34xxxx Meaning: Program error. The calling program does not
meet one or more of the environmental requirements for
using IOSADMF.

Action: Ensure that the IOSADMF macro is issued in the
required environment. See in “Environment” on page 959.

08 xx35xxx Meaning: Program error. Either no option (AWRITE,
AREAD, APURGE, or AQUERY) was specified on the
IOSADMF macro, or more than one option was specified.
This error can occur if the parameter list is overlaid.

Action: Make sure the IOSADMF macro invocation
specifies one option and rerun the program.

IOSADMF macro

Chapter 91. IOSADMF — Transfer hiperspace data 965

Table 85. Return and Reason Codes for the IOSADMF Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 xx36xxxx Meaning: Program error. The specified ALET is incorrect.
The ALET did not designate a hiperspace, or the ALET is
not on the caller's access list.

Action: Make sure the ALET is valid and rerun the
program.

08 xx37xxxx Meaning: Program error. The range count is not valid. The
NUMRANGE value specified is either less than 1 or greater
than 125.

Action: Specify a NUMRANGE value from 1 through 125
and rerun the program.

08 xx38xxxx Meaning: Program error. An input parameter list could not
be addressed, or an error occurred during a reference to a
range list entry. The RANGLIST parameter may be
specified incorrectly.

Action: Ensure RANGLIST is specified correctly, and
NUMRANGE is a valid value, and rerun the program.

08 xx39xxxx Meaning: Program error. An error occurred during the
processing of a RANGLIST entry address. FAILBLKP
contains the address of the failing entry.

Action: Ensure the following:

v The RANGLIST parameter is correctly specified

v The address on the RANGLIST parameter is correct

v The NUMRANGE value reflects the actual number of
NUMRANGE entries.

v The NUMRANGE value is from 1 though 125.

Rerun the program.

08 xx3Axxxx Meaning: System error. This return and reason code
combination is for IBM diagnostic purposes only.

Action: Record the return and reason codes and supply
them to the IBM Support Center.

08 xx3Bxxxx Meaning: Program error. The calling program does not
meet one or more of the environmental requirements for
using IOSADMF.

Action: Ensure IOSADMF is issued in the required
environment. See in “Environment” on page 959.

08 xx3Cxxxx Meaning: Program error. An incorrect version of the ADMF
was specified. The current version is 1. This error can occur
if the parameter list is overlaid.

Action: Contact your software support.

08 xx3Exxxx Meaning: Program error. The reserved fields in XFLAGS,
XRESERVED1, or XRESERVED2 are not zero. These fields
must be set to zero before the IOSADMF macro can be
invoked.

Action: See the IOSADMF macro expansion. Correct the
parameter list and rerun the program.

IOSADMF macro

966 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 85. Return and Reason Codes for the IOSADMF Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 xx40xxxx Meaning: Program error. The caller attempted to access a
hiperspace using the IOSADMF macro, but the hiperspace
is in the process of being deleted. The access request is
rejected.

Action: Specify the ALET of another hiperspace and reissue
the IOSADMF request.

08 xx41xxxx Meaning: System error. This return and reason code
combination is for IBM diagnostic purposes only.

Action: Record the return and reason codes and supply
them to the IBM Support Center.

0C xx51xxxx Meaning: System error. This return and reason code
combination is for IBM diagnostic purposes only.

Action: Record the return and reason codes and supply
them to the IBM Support Center.

0C xx52xxxx Meaning: System error. This return and reason code
combination is for IBM diagnostic purposes only.

Action: Record the return and reason codes and supply
them to the IBM Support Center.

0C xx53xxxx Meaning: System error. This return and reason code
combination is for IBM diagnostic purposes only.

Action: Record the return and reason codes and supply
them to the IBM Support Center.

IOSADMF - List form
Use the list form of the IOSADMF macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to contain the
parameters.

Syntax
The list form of the IOSADMF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSADMF.

IOSADMF

� One or more blanks must follow IOSADMF.

,MF=(L,list addr) list addr: symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string.

,MF=(L,list addr,0D) Default: 0D

IOSADMF macro

Chapter 91. IOSADMF — Transfer hiperspace data 967

Syntax Description

Parameters
The parameters are explained under the standard form of the SAMPLE macro with
the following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IOSADMF macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

IOSADMF - Execute form
Use the execute form of the IOSADMF macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the IOSADMF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSADMF.

IOSADMF

� One or more blanks must follow IOSADMF.

APURGE

AREAD

AWRITE

AQUERY

,ALET=alet-addr alet-addr: RX-type address or register (2) - (12).

,NUMRANGE=n n: Decimal digit from 1 to 125.

,NUMRANGE=num-addr num-addr: RX-type address or register (2) - (12).

IOSADMF macro

968 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

Default: NUMRANGE=1.

,RANGLIST=list-addr list-addr: RX-type address or register (2) - (12).

,FAILBLKP=fail-addr fail-addr: RX-type address or register (2) - (12).

,CROSSOVER=cross-addr cross-addr: RX-type address or register (2) - (12).

,RETCODE=ret-addr ret-addr: RX-type address or register (2) - (12).

,RSNCODE=rsn-addr rsn-addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the SAMPLE macro with
the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the IOSADMF macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that you did not specify.

IOSADMF macro

Chapter 91. IOSADMF — Transfer hiperspace data 969

IOSADMF macro

970 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 92. IOSCAPF — Obtain the actual address of a
captured UCB

Description
Use the IOSCAPF macro to obtain the actual address of a specified captured unit
control block (UCB) address. A captured UCB is a below 16 megabyte view of an
above 16 megabyte UCB. The IOSCAPU macro performs the same function and
provides input parameter validation, recovery, and environmental checking.
IOSCAPF provides an alternative for passing parameters (that is, in register 1
rather than in a parameter list). IOSCAPU enables you to specify the address of a
UCB in another address space. With IOSCAPF, the specified UCB must reside in
the current address space.

For information about accessing an above 16 megabyte UCB, see z/OS MVS
Programming: Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key for READ type calls;

Supervisor state and any PSW key for CREATE, UPDATE,
and DELETE calls.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

Programming requirements
The caller must pin the UCB or otherwise guarantee that the UCB will not be
deleted.

The caller must supply recovery to handle any unexpected errors, such as abends.

Restrictions
Only use IOSCAPF to translate a captured UCB address that was captured in your
primary address space.

Input register information
Before issuing the IOSCAPF macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of UCB common segment of the captured UCB

© Copyright IBM Corp. 1988, 2016 971

Before issuing the IOSCAPF macro, the caller does not have to place any
information into any access register (AR).

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Used as a work register by the system.

1 Address of the UCB common segment of the actual UCB

2-13 Unchanged

14-15 Used as work registers by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-15 Unchanged

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the IOSCAPF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCAPF.

IOSCAPF

� One or more blanks must follow IOSCAPF.

MF=(S) Default: S

Parameters
The parameters are explained as follows:

MF=(S)
Specifies the standard form of the macro. This parameter is optional.

IOSCAPF macro

972 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ABEND codes
None.

Return and reason codes
None.

IOSCAPF macro

Chapter 92. IOSCAPF — Obtain the actual address of a captured UCB 973

974 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 93. IOSCAPU — Capture, release, or obtain the actual
address of a UCB

Description
Use the IOSCAPU macro to access an above 16 megabyte unit control block (UCB)
with a 24-bit address. IOSCAPU creates a view into the actual above 16 megabyte
UCB in below 16 megabyte private storage, which is known as capturing the UCB.
An above 16 megabyte UCB is automatically captured at allocation and released at
deallocation. You can also use IOSCAPU to explicitly capture and release an above
16 megabyte UCB if necessary.

IOSCAPU enables you to perform the following functions:
v Capture an actual UCB into the private storage area of an address space and

receive the captured UCB address with the CAPTUCB option. You can also
capture the UCB into common storage.

v Release a captured UCB at a specific address with the UCAPTUCB option
v Receive the 31-bit above 16 megabyte actual address for a specified captured

address with the CAPTOACT option.

The environment, programming requirements, restrictions, input register
information, output register information, and performance implications generally
apply to all the functions. Any exceptions are noted. The syntax, return and reason
codes, abend codes, examples, and forms are described in a separate section for
each function. See “Capture an UCB function” on page 977, “Release a captured
UCB function” on page 982, and “Translate captured to actual address function” on
page 987.

Similar to IOSCAPU with the CAPTOACT option, the IOSCAPF macro obtains the
above 16 megabyte address of a captured UCB. IOSCAPF enables you to pass the
captured UCB address in register 1 rather than in a parameter list but does not
provide input parameter validation or recovery.

For information about accessing an above 16 megabyte UCB, see z/OS MVS
Programming: Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: CAPTUCB or UCAPTUCB option: problem state with PSW

key 0-7, or supervisor state

CAPTOACT option with ASID: problem state with PSW key
0-7, or supervisor state

CAPTOACT option without ASID: problem state and any
PSW key.

For any of the options with LINKAGE=BRANCH:
supervisor state with PSW key 0 is required.

Dispatchable unit mode: Task or SRB

© Copyright IBM Corp. 1988, 2016 975

Environmental factor Requirement
Cross memory mode: CAPTUCB or UCAPTUCB option: PASN=HASN=SASN

CAPTOACT option: any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or Access register (AR)
Interrupt status: CAPTUCB or UCAPTUCB option with CAPTCOM=NO:

enabled for I/O and external interrupts

CAPTUCB option with CAPTCOM=NEVER: enabled for
I/O interrupts.

CAPTUCB or UCAPTUCB option with CAPTCOM=YES:
enabled or disabled for I/O and external interrupts.

CAPTOACT option: enabled or disabled for I/O and
external interrupts.

Locks: CAPTUCB or UCAPTUCB option with CAPTCOM=NO: no
locks held.

CAPTUCB option with CAPTCOM=NEVER: no locks held.

CAPTUCB or UCAPTUCB option with CAPTCOM=YES: the
caller may hold locks, but is not required to hold any.

CAPTOACT option: the caller may hold locks, but is not
required to hold any.

Control parameters: If the caller of IOSCAPU with the CAPTOACT option is
disabled, the parameter list must be in nonpageable or
disabled reference (DREF) storage. This situation is also true
for a caller of IOSCAPU with the CAPTUCB or UCAPTUCB
option and the CAPTCOM=YES parameter.

Programming requirements
The caller must pin the UCB or otherwise guarantee that the UCB will not be
dynamically deleted.

Restrictions
Only use IOSCAPU CAPTOACT without ASID, to translate a captured UCB
address that was captured in your primary address space.

Input register information
Before issuing the IOSCAPU macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

IOSCAPU macro

976 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-15 Unchanged

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Capture an UCB function

Syntax
The standard form of the IOSCAPU macro with the CAPTUCB option is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCAPU.

IOSCAPU

� One or more blanks must follow IOSCAPU.

CAPTUCB

,UCBPTR=ucbptr ucbptr :RS-type or address in register (2) - (12).

,CAPTPTR=captptr captptr :RS-type or address in register (2) - (12).

,LASTING=NO Default: LASTING=NO

,LASTING=YES

,CAPTCOM=NO Default: CAPTCOM=NO

,CAPTCOM=YES

,CAPTCOM=NEVER

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

IOSCAPU macro

Chapter 93. IOSCAPU — Capture, release, or obtain the actual address of a UCB 977

Syntax Description

,LINKAGE=BRANCH

,RETCODE=retcode addr retcode addr : RS-type address or address in register (2) - (12) of fullword
output variable.

,RSNCODE=rsncode addr rsncode addr : RS-type address or address in register (2) - (12) of fullword
output variable.

Parameters
The parameters are explained as follows:

CAPTUCB
Specifies that you want to capture an actual UCB into the private storage area
of an address space. Capturing the UCB enables you to access the UCB with a
24-bit address.

,UCBPTR=ucbptr
Specifies a pointer that contains the address of the common segment of the
actual UCB that you want to capture.

,CAPTPTR=captptr
Specifies the pointer to contain the address of the common segment of the
captured UCB.

Note: CAPTPTR is a four byte field. If the caller specifies a field with a high
order byte for flags, those flags are overlaid when the macro specifies the
output pointer to the captured UCB.

,LASTING=YES
,LASTING=NO

Specifies whether the system should release the captured UCB automatically
during end of task termination.
v NO: Frees any captured UCBs during the end of job step task
v YES: Leaves any captured UCBs during the end of job step task

Note: If, and only if, LASTING=YES is specified when capturing a UCB,
LASTING=YES should be specified when releasing the same captured UCB.

,CAPTCOM=NO
,CAPTCOM=YES
,CAPTCOM=NEVER

Specifies whether the above 16 megabyte UCB should be captured into
common storage.
v NO: Capture the UCB into private storage of the current address space
v YES: Capture the UCB into common storage. This option is not

recommended because it uses common storage.
v NEVER: Unconditionally capture the UCB into private storage of the

current address space.

Note:

IOSCAPU macro

978 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Since there are reasons why a CAPTCOM=NO request may still cause a
UCB to be captured to common (i.e., If the UCB is already captured in
common), this keyword can be used to force IOS to capture the UCB to
private storage.

Specifying CAPTCOM=NEVER may cause duplicate UCB storage to be
allocated in the case where the UCB is already captured to common.

Since captures done in MASTERS address space will always be captured to
common storage, the CAPTCOM=NEVER specification will be ignored in
this case.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that should be generated:
v SYSTEM: Specifies a program call (PC)
v BRANCH: Specifies a branch entry

,RETCODE=retcode addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0.

ABEND codes
IOSCAPU might abnormally end with abend code X'2C6'. See z/OS MVS System
Codes for an explanation of abend code X'2C6'.

Return and reason codes
When the IOSCAPU macro returns control to your program, GPR 15 (and retcode if
you coded RETCODE) contains the return code. If the return code is not 0, GPR0
(and rsncode if you coded RSNCODE) contains the reason code.

Table 86. Return and Reason Codes for the IOSCAPU CAPTUCB Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: IOSCAPU completed successfully.

Action: None.

04 04 Meaning: Warning. The program attempted to capture a
below 16 megabyte UCB. The address of the actual UCB is
returned and a capture is not performed.

Action: None required if the program attempts to capture
any input UCB. Otherwise, check the address of the actual
UCB. Correct the error and rerun the program.

08 0C Meaning: Warning. The program attempted to capture a
UCB that was at a captured UCB address.

Action: None required if the program attempts to capture
any input UCB. Otherwise, check to see if your program
correctly specified the actual UCB address on the UCBPTR
parameter. Correct the error and rerun the program.

IOSCAPU macro

Chapter 93. IOSCAPU — Capture, release, or obtain the actual address of a UCB 979

Table 86. Return and Reason Codes for the IOSCAPU CAPTUCB Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 10 Meaning: Program error. The program attempted to use a
UCB address that is not a valid UCB.

Action: Check to see if your program correctly specified
the UCB address on the UCBPTR parameter. Correct the
error and rerun the program.

20 Meaning: System error. This return code is for IBM
diagnostic purposes only. Most likely, the system could not
obtain storage that it required.

Action: Record the return code and supply it to the
appropriate IBM support personnel.

Example
Capture a UCB at the address specified by UCBPTR and receive the captured UCB
address in CAPTURED.
IOS_CAPT IOSCAPU CAPTUCB, X

UCBPTR=UCBPTR, X

CAPTPTR=CAPTURED, X

LINKAGE=BRANCH, X

MF=(E,CAPTLIST)

IOSCAPU CAPTUCB - List form
Use the list form of the IOSCAPU macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to contain the
parameters.

Syntax
The list form of the IOSCAPU macro with the CAPTUCB option is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCAPU.

IOSCAPU

� One or more blanks must follow IOSCAPU.

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

IOSCAPU macro

980 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

Parameters
The parameters are explained under the standard form of the IOSCAPU macro
with the following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IOSCAPU macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of X'0D', which forces the parameter list to a
doubleword boundary.

IOSCAPU CAPTUCB - Execute form
Use the execute form of the IOSCAPU macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the IOSCAPU macro with the CAPTUCB option is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCAPU.

IOSCAPU

� One or more blanks must follow IOSCAPU.

CAPTUCB

,UCBPTR=ucbptr ucbptr :RS-type or address in register (2) - (12).

,CAPTPTR=captptr captptr :RS-type or address in register (2) - (12).

,LASTING=NO Default: LASTING=NO

,LASTING=YES

IOSCAPU macro

Chapter 93. IOSCAPU — Capture, release, or obtain the actual address of a UCB 981

Syntax Description

,CAPTCOM=NO Default: CAPTCOM=NO

,CAPTCOM=YES

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

,RETCODE=retcode addr retcode addr : RS-type address or address in register (2) - (12) of fullword
output variable.

,RSNCODE=rsncode addr rsncode addr : RS-type address or address in register (2) - (12) of fullword
output variable.

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

,MF=(E,list addr,NOCHECK)

Parameters
The parameters are explained under the standard form of the IOSCAPU macro
with the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the IOSCAPU macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply defaults for omitted optional parameters.

NOCHECK specifies that the system is not to check for required parameters
and is not to supply defaults for omitted optional parameters.

Release a captured UCB function

Syntax
The standard form of the IOSCAPU macro with the UCAPTUCB option is written
as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCAPU.

IOSCAPU

IOSCAPU macro

982 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

� One or more blanks must follow IOSCAPU.

UCAPTUCB

,CAPTPTR=captptr captptr :RS-type or address in register (2) - (12).

,LASTING=NO Default: LASTING=NO

,LASTING=YES

,CAPTCOM=NO Default: CAPTCOM=NO

,CAPTCOM=YES

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

,RETCODE=retcode addr retcode addr : RS-type address or address in register (2) - (12) of fullword
output variable.

,RSNCODE=rsncode addr rsncode addr : RS-type address or address in register (2) - (12) of fullword
output variable.

Parameters
The parameters are explained as follows:

UCAPTUCB
Specifies that you want a captured UCB released.

,CAPTPTR=captptr
Specifies the address of the common segment of the captured UCB that you
want released.

,CAPTCOM=NO
,CAPTCOM=YES

Specifies whether the above 16 megabyte UCB should be released from
common storage.
v NO: Release the UCB from private storage of the current address space
v YES: Release the UCB from common storage.

,LASTING=NO
This is NOT a UCAPTUCB associated with a previous CAPTUCB (where
LASTING=YES was specified).

,LASTING=YES
This is a UCAPTUCB associated with a previous CAPTUCB where
LASTING=YES was specified).

IOSCAPU macro

Chapter 93. IOSCAPU — Capture, release, or obtain the actual address of a UCB 983

Note: If, and only if, LASTING=YES is specified when capturing a UCB,
LASTING=YES should be specified when releasing the same captured UCB.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that should be generated:
v SYSTEM: Specifies a program call (PC)
v BRANCH: Specifies a branch entry

,RETCODE=retcode addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0.

ABEND codes
IOSCAPU might abnormally end with abend code X'2C6'. See z/OS MVS System
Codes for an explanation of abend code X'2C6'.

Return and reason codes
When the IOSCAPU macro returns control to your program, GPR 15 (and retcode if
you coded RETCODE) contains the return code. If the return code is not 0, GPR0
(and rsncode if you coded RSNCODE) contains the reason code.

Table 87. Return and Reason Codes for the IOSCAPU UCAPTUCB Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: IOSCAPU completed successfully.

Action: None.

04 08 Meaning: Warning. The program attempted to release an
actual below 16 megabyte UCB.

Action: None required if the program tries to release any
input UCB. Otherwise, check the address of the captured
UCB. Correct the error and rerun the program.

08 08 Meaning: Program error. The program attempted to release
a captured UCB and the captured UCB does not exist in
the address space.

Action: Check to see if your program correctly specified
the captured UCB address on the CAPTPTR parameter.
Correct the error and rerun the program.

08 10 Meaning: Program error. The program attempted to use a
UCB address that is not a valid UCB.

Action: Check to see if your program correctly specified
the UCB address on the UCBPTR or CAPTPTR parameter.
Correct the error and rerun the program.

08 18 Meaning: Warning. The program attempted to release an
actual above 16 megabyte UCB.

Action: None required if the program tries to release any
input UCB. Otherwise, check the address of the captured
UCB. Correct the error and rerun the program.

IOSCAPU macro

984 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 87. Return and Reason Codes for the IOSCAPU UCAPTUCB Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

20 Meaning: System error. This return code is for IBM
diagnostic purposes only. Most likely, the system could not
obtain storage that it required.

Action: Record the return code and supply it to the
appropriate IBM support personnel.

Example
Release the captured UCB at the address specified by CAPTURED.
IOS_UNCA IOSCAPU UCAPTUCB, X

CAPTPTR=CAPTURED, X

LINKAGE=BRANCH, X

MF=(E,CAPTLIST)

IOSCAPU UCAPTUCB - List form
Use the list form of the IOSCAPU macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to contain the
parameters.

Syntax
The list form of the IOSCAPU macro with the UCAPTUCB option is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCAPU.

IOSCAPU

� One or more blanks must follow IOSCAPU.

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the IOSCAPU macro
with the following exception:

MF=(L,list addr)

IOSCAPU macro

Chapter 93. IOSCAPU — Capture, release, or obtain the actual address of a UCB 985

MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IOSCAPU macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of X'0D', which forces the parameter list to a
doubleword boundary.

IOSCAPU UCAPTUCB - Execute form
Use the execute form of the IOSCAPU macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the IOSCAPU macro with the UCAPTUCB option is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCAPU.

IOSCAPU

� One or more blanks must follow IOSCAPU.

UCAPTUCB

,CAPTPTR=captptr captptr :RS-type or address in register (2) - (12).

,CAPTCOM=NO Default: CAPTCOM=NO

,CAPTCOM=YES

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

,RETCODE=retcode addr retcode addr : RS-type address or address in register (2) - (12) of fullword
output variable.

,RSNCODE=rsncode addr rsncode addr : RS-type address or address in register (2) - (12) of fullword
output variable.

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

IOSCAPU macro

986 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,MF=(E,list addr,NOCHECK)

Parameters
The parameters are explained under the standard form of the IOSCAPU macro
with the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the IOSCAPU macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply defaults for omitted optional parameters.

NOCHECK specifies that the system is not to check for required parameters
and is not to supply defaults for omitted optional parameters.

Translate captured to actual address function

Syntax
The standard form of the IOSCAPU macro with the CAPTOACT option is written
as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCAPU.

IOSCAPU

� One or more blanks must follow IOSCAPU.

CAPTOACT

,CAPTPTR=captptr captptr :RS-type or address in register (2) - (12).

,UCBPTR=ucbptr ucbptr :RS-type or address in register (2) - (12).

,ASID=CURRENT Default: ASID=CURRENT

,ASID=asid asid :RS-type or address in register (2) - (12).

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

IOSCAPU macro

Chapter 93. IOSCAPU — Capture, release, or obtain the actual address of a UCB 987

Syntax Description

,RETCODE=retcode addr retcode addr : RS-type address or address in register (2) - (12) of fullword
output variable.

,RSNCODE=rsncode addr rsncode addr : RS-type address or address in register (2) - (12) of fullword
output variable.

Parameters
The parameters are explained as follows:

CAPTOACT
Specifies that you want the actual UCB address for a captured UCB.

,CAPTPTR=captptr
Specifies the pointer to the address of the common segment of the captured
UCB.

,UCBPTR=ucbptr
Specifies a pointer to contain the address of the actual UCB common segment.

,ASID=CURRENT
,ASID=asid

Specifies the address space in which the captured UCB was originally
captured.
v CURRENT: Specifies the address space of the program
v asid: Specifies the name of another address space

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that should be generated:
v SYSTEM: Specifies a program call (PC)
v BRANCH: Specifies a branch entry

,RETCODE=retcode addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0.

ABEND codes
IOSCAPU might abnormally end with abend code X'2C6'. See z/OS MVS System
Codes for an explanation of abend code X'2C6'.

Return and reason codes
When the IOSCAPU macro returns control to your program, GPR 15 (and retcode if
you coded RETCODE) contains the return code. If the return code is not 0, GPR0
(and rsncode if you coded RSNCODE) contains the reason code.

IOSCAPU macro

988 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 88. Return and Reason Codes for the IOSCAPU CAPTOACT Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: IOSCAPU completed successfully.

Action: None.

04 0C Meaning: Warning. The program requested the actual
address of an actual UCB.

Action: None required if the program always attempts to
receive the actual UCB address for a UCB. Otherwise,
check the address of the captured UCB. Correct the error
and rerun the program.

08 04 Meaning: Program error. The program attempted to receive
the actual UCB address for a captured UCB and the
address space identifier specified for the captured UCB
does not exist or the address space was swapped out.

Action: Retry the request because the address space might
have been swapped in. Also, check to see if your program
correctly specified the address space of the captured UCB
on the ASID parameter. Correct the error and rerun the
program.

08 10 Meaning: Program error. The program attempted to use a
UCB address that is not a valid UCB.

Action: Check to see if your program correctly specified
the UCB address on the CAPTPTR parameter. Correct the
error and rerun the program.

20 Meaning: System error. This return code is for IBM
diagnostic purposes only. Most likely, the system could not
obtain storage that it required.

Action: Record the return code and supply it to the
appropriate IBM support personnel.

Example
Receive the actual UCB address (in ACTUAL) of the captured UCB address
specified by CAPTURED.
IOS_TRAN IOSCAPU CAPTOACT, X

UCBPTR=ACTUAL, X

CAPTPTR=CAPTURED, X

LINKAGE=BRANCH, X

MF=(E,CAPTLIST)

IOSCAPU CAPTOACT - List form
Use the list form of the IOSCAPU macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to contain the
parameters.

Syntax
The list form of the IOSCAPU macro with the CAPTOACT option is written as
follows:

IOSCAPU macro

Chapter 93. IOSCAPU — Capture, release, or obtain the actual address of a UCB 989

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCAPU.

IOSCAPU

� One or more blanks must follow IOSCAPU.

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the IOSCAPU macro
with the following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IOSCAPU macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of X'0D', which forces the parameter list to a
doubleword boundary.

IOSCAPU CAPTOACT - Execute form
Use the execute form of the IOSCAPU macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the IOSCAPU macro with the CAPTOACT option is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCAPU.

IOSCAPU

IOSCAPU macro

990 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

� One or more blanks must follow IOSCAPU.

CAPTOACT

,UCBPTR=ucbptr ucbptr :RS-type or address in register (2) - (12).

,CAPTPTR=captptr captptr :RS-type or address in register (2) - (12).

,ASID=CURRENT Default: ASID=CURRENT

,ASID=asid asid :RS-type or address in register (2) - (12).

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

,RETCODE=retcode addr retcode addr : RS-type address or address in register (2) - (12) of fullword
output variable.

,RSNCODE=rsncode addr rsncode addr : RS-type address or address in register (2) - (12) of fullword
output variable.

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

,MF=(E,list addr,NOCHECK)

Parameters
The parameters are explained under the standard form of the IOSCAPU macro
with the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the IOSCAPU macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply defaults for omitted optional parameters.

NOCHECK specifies that the system is not to check for required parameters
and is not to supply defaults for omitted optional parameters.

IOSCAPU macro

Chapter 93. IOSCAPU — Capture, release, or obtain the actual address of a UCB 991

IOSCAPU macro

992 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 94. IOSCDR — Retrieve configuration data records

Description
The IOSCDR macro enables authorized callers to retrieve device identification
information (such as the serial number and the model number) for an I/O device
located along a specific I/O path. This information can allow installation
management to do the following:
v Uniquely identify, across multiple systems, I/O hardware located along a

specific I/O path
v Following device installs, check device paths to ensure that cables are connected

to the proper device before bringing the device or path online
v Construct a map of an installation's configuration
v During problem diagnosis, ensure that all paths to a given device are reaching

the expected device.

The configuration data record (CDR) information that IOSCDR retrieves is mapped
by the mapping macro IHACDR.

The format of IHACDR is in z/OS MVS Data Areas, Vol 3 (IEFDORC-ISGYQCBP).
For more information about the contents of CDRs and information about the
contents of node descriptors (NDs), see ESA/390 Common I/O Device Commands.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum Authorization: For LINKAGE=LINK, supervisor state and any PSW key.

For LINKAGE=SYSTEM, any one or more of the following:

v Supervisor state

v PKM allowing key 0 – 7

v PSW key 0 – 7

v APF-authorized

v RACF authorization to the FACILITY class and the
IOSCDR entity

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space.

Programming requirements
Include the IHACDR mapping macro.

Restrictions
The caller can have no enabled, unlocked task (EUT) FRRs established.

© Copyright IBM Corp. 1988, 2016 993

Note that, when you issue IOSCDR, the service pins the device so that the device's
UCB and other related data structures are not dynamically deleted while IOSCDR
is retrieving the data. When IOSCDR completes, it unpins the device.

Input register information
Before issuing the IOSCDR macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller of the IOSCDR macro, the general purpose
registers (GPRs) contain:

Register
Contents

0 Reason code

1 Used as a work register by IOSCDR

2-13 Unchanged

14 Used as a work register by IOSCDR

15 Return code

When control returns to the caller of the IOSCDR macro, the access registers (ARs)
contain:

Register
Contents

0-15 Unchanged

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the IOSCDR macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCDR.

IOSCDR

� One or more blanks must follow IOSCDR.

IOSCDR macro

994 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

DEVN=device num device num: RX-type address or address in register (2) - (12).

,SCHSET=xschset xschset: RX-type address or register (2) - (12).

,CHPID=path id path id: RX-type address or address in register (2) - (12).

,CDRAREA=cdr area cdr area: RX-type address or address in register (2) - (12).

,CDRLEN=cdr length cdr length: RX-type address or address in register (2) - (12).

,CDRSIZE=cdr size cdr size: RX-type address or address in register (2) - (12).

,LINKAGE=SYSTEM Default: LINK

,LINKAGE=LINK

,NODE_DESCRIPTOR=node descriptor Optional input. It is the name (RS-type), or address in register (2)-(12), of
the 32 bytes of storage for one node descriptor to be returned by the service.
The node descriptor is associated with the control unit that is attached to the
specified path in the input mask.

,READ=NOIO

,READ=IO

,READ=COND

,STATUS=status status: RX-type address or address in register (2) - (12).

,TIME=time time: RX-type address or address in register (2) - (12).

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or address in register (2) - (12).

,WWPN=xwwpn xwwpn: RX-type address or address in register (2) - (12).

,RETCODE=return code return code: RX-type address or address in register (2) - (12).

,RSNCODE=reason code reason code: RX-type address or address in register (2) - (12).

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=parameter list version

Parameter descriptions
The parameters are explained as follows:

IOSCDR macro

Chapter 94. IOSCDR — Retrieve configuration data records 995

,DEVN=device num
Specifies the binary device number (0000 - FFFF) of a device for which
IOSCDR retrieves a CDR.

,SCHSET=xschset
,SCHSET=0

Specifies the name (RS-type), or address in register (2)-(12), of an optional byte
input that specifies a subchannel set for the CDR that is to be retrieved.
DEFAULT: 0.

,CHPID=path id
Specifies the channel path ID (00 - FF) of a specific path for which IOSCDR
retrieves a CDR. To determine the ID for a specific channel path, use the
UCBINFO PATHINFO macro or the DISPLAY MATRIX operator command.

,CDRAREA=cdr area
Specifies the name of the work area that receives a copy of the CDR for the
specified device and path. You must specify on the CDRLEN parameter the
length of the CDR area. The CDR area is mapped by IHACDR. See z/OS MVS
Data Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/
zos/bkserv/) for more information about IHACDR.

,CDRLEN=cdr length
Specifies the length of the CDR area. The maximum length of the CDR area is
65535 bytes. You can start with a length of 256 bytes. If the length you specify
is smaller than the CDR, IOSCDR returns only a partial CDR and the caller
receives return code X'04' and reason code X'04'. To ensure that IOSCDR
returned the entire CDR, verify that the value returned on CDRSIZE is less
than or equal to CDRLEN. Note that CDRSIZE is device dependent.

,CDRSIZE=cdr size
Specifies the area into which IOSCDR returns the actual size of the CDR for
the specified device and path. You can use this parameter for diagnostic
purposes to determine how large CDRLEN should be.

,LINKAGE=SYSTEM
,LINKAGE=LINK

Specifies the type of call that should be generated:
v SYSTEM: Specifies a Program Call (PC) that passes control to the service

routine. The caller does not have to be in supervisor state.
v LINK: Specifies a LINK macro call to pass control to the service routine.

This call is more direct but the caller must be in supervisor state.

,NODE_DESCRIPTOR=node descriptor area
Specifies the name of the work area that receives a copy of the node descriptor
for the specified device and path.

,READ=NOIO
,READ=IO
,READ=COND

Specifies that IOSCDR retrieves the CDR or ND in one of the following ways:
v NOIO—IOSCDR retrieves the last CDR or ND known to MVS for the

specified device and path. Note that this CDR or ND might not exist or
might not be current if the specified device is offline. If the specified device
is online, this option is fairly reliable and is quick because no I/O is
performed.

v IO—IOSCDR retrieves the CDR or ND for a specified device and path
directly from the specified device. Although this option is slower than
READ=NOIO, READ=IO provides more current information.

IOSCDR macro

996 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

v COND— If the specified device and path are online, IOSCDR retrieves the
last CDR or ND known to MVS for the specified device and path.
Otherwise, IOSCDR retrieves the CDR directly from the device. COND is the
best option to choose if you are interested in retrieving the most accurate
CDR or ND in the shortest time possible. Note that the READ parameter has
no effect on the way in which a WWPN is retrieved; only the last WWPN
known to MVS can be returned.

,STATUS=status
Specifies a one-byte field containing status information about successful
invocations of IOSCDR. The bit positions, represented in hexadecimal values,
are as follows:

Bit Status Meaning

0 on
off

CDR returned was read from the device.
CDR returned was the last CDR known to MVS.

1 on
off

Specified CHPID was logically online to the device.
Specified CHPID was logically offline to the device.

2 on
off

Specified device was online.
Specified device was offline.

3 - 7 — Reserved for IBM use.

,TIME=time
Specifies an 8-byte field containing the maximum amount of time, in seconds,
that IOSCDR can run before being purged. The default for the TIME parameter
is 5 seconds. You can use TIME when you specify READ=COND or READ=IO.
When you specify READ=NOIO, IOSCDR ignores the TIME parameter.

The time interval, whose address resides in virtual storage, is presented as
zoned decimal digits in the form:

HHMMSSth, where:

HH is hours (24-hour clock)

MM is minutes

SS is seconds

t is tenths of seconds

h is hundredths of seconds

IOSCDR runs until one of the following occurs:
v IOSCDR completes successfully or unsuccessfully
v The interval that you specify on the TIME=parameter expires
v The MIH interval for the device expires.

Note that the TIME parameter allows you to set an expiration time that is
specific to IOSCDR. The MIH interval, however, is used by other services
associated with the device. Using the TIME parameter allows you to set an
expiration time that is shorter than the MIH interval.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character area that contains the MVS I/O
configuration token that you supply to IOSCDR. You can obtain this token by
issuing the IOCINFO macro, which is described in z/OS MVS Programming:
Assembler Services Reference ABE-HSP. If the I/O configuration token that is

IOSCDR macro

Chapter 94. IOSCDR — Retrieve configuration data records 997

current when IOSCDR is invoked does not match the token whose address you
supply as input by ioctoken addr, you receive an error return code.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros,
IOSCDR sets IOCTOKEN to the current I/O configuration token.

For information about how you can use the configuration token to detect
configuration changes, see z/OS MVS Programming: Authorized Assembler
Services Guide.

,WWPN=xwwpn
Specifies the location where the system is to place the Worldwide Port Name
(WWPN) for the port on the control unit for the specified channel path. If the
WWPN is not available, zeroes will be returned.

,RETCODE=return code
Specifies the location or register where the system is to place the return code.
The system copies the return code into the location from register 15.

,RSNCODE=reason code
Specifies the location or register where the system is to place the reason code.
The system copies the reason code into the location from register 0.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=parameter list version

A decimal value in the "1-2" range that specifies the macro version. PLISTVER
determines which parameter list is generated. Note that MAX can be specified
instead of a number, and the parameter list will be the largest size currently
supported. This size might grow from release to release, thus possibly affecting
the amount of storage needed by your program. If your program can tolerate
this, IBM recommends that you always specify MAX when creating the list
form of the parameter list, as that will ensure that the list form parameter list
is always long enough to hold whatever parameters that might be specified on
the execute form.

The default is IMPLIED_VERSION. When PLISTVER is omitted, the default is
the lowest version that allows all of the parameters specified on the invocation
to be processed.

Return codes
Return and reason codes, in hexadecimal, from the IOSCDR macro are as follows:

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: IOSCDR processing completed
successfully. IOSCDR successfully retrieved the
CDR for the specified device and path.

Action: None

04 04 Meaning: IOSCDR cannot retrieve an entire CDR
because the CDR area specified was not large
enough to receive the CDR.

Action: The size of the CDR area is determined
by CDRLEN. If you do not know what length to
specify on CDRLEN, use the optional CDRSIZE
parameter. If you specified CDRSIZE, IOSCDR
returns the size that CDRAREA needs to be.
Retry the operation with a CDR area of the same
length as the length returned on CDRSIZE for the
failing operation.

IOSCDR macro

998 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

04 08 Meaning: IOSCDR cannot retrieve the CDR for
the specified device and path. If you specified
READ=IO, either a subchannel error or an I/O
error could be preventing IOSCDR from
retrieving the CDR. If you specified
READ=NOIO, a subchannel error could be
preventing IOSCDR from retrieving the CDR.

Action: Further investigation of the problem is
required. The D M=DEV command may provide
further diagnosis data. For example, a subchannel
error may have occurred because the device is
not available. Attempt to vary the path online to
produce further diagnosis data. See ESCON Error
Recovery Concepts and Procedures in an MVS
Environment for further problem diagnosis
information. If the problem persists, contact your
IBM service representative.

04 0C Meaning: IOSCDR cannot retrieve the CDR for
the specified device and path. I/O was attempted
to the device, but the time interval specified on
the TIME parameter expired before I/O
completed.

Action: Verify that the time interval was
sufficiently long. Note that the system issues this
return code only if the time expired before the
device's MIH interval. To determine the MIH
interval, use the 'D MIH' command or the
MIHQUERY macro.

04 10 Meaning: IOSCDR cannot retrieve the CDR for
the specified device and path because MVS does
not have a last known CDR to return.

Action: Use one of the following methods to
retrieve a CDR:

v Bring the device and path online. If a CDR is
available, the system will store it.

v Retrieve the CDR directly from the device, by
issuing the IOSCDR macro with the READ=IO
option.

04 14 Meaning: IOSCDR cannot retrieve the last known
CDR. IOSCDR did not attempt I/O.

Action: A system problem exists that prevents
any last known CDR from being retrieved. Retry
the operation. If the problem persists, contact
IBM Software Support.

08 04 Meaning: The specified device does not support
the channel control words (CCWs) used to obtain
configuration data records.

Action: None

08 08 Meaning: IOSCDR cannot retrieve the CDR
because the device number specified on the
DEVN parameter is not valid.

Action: Verify your program to ensure that the
correct device was passed and retry the
operation. If the device number is valid, use the
IOCTOKEN keyword to ensure that the device is
not dynamically changed or deleted.

IOSCDR macro

Chapter 94. IOSCDR — Retrieve configuration data records 999

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

08 0C Meaning: IOSCDR cannot retrieve the CDR
because the channel path id on the CHPID
parameter is not valid.

Action: Verify your program to ensure that the
correct CHPID was passed and retry the
operation. Use the IOCTOKEN keyword to
ensure that the CHPID for the device was not
dynamically changed or deleted.

08 10 Meaning: IOSCDR cannot retrieve the CDR
because the time specified on the TIME keyword
is not valid.

Action: Ensure that the time specified contains
valid zoned decimal digits that are in the proper
range.

08 14 Meaning: An incorrect CDR length was specified
on the CDRLEN keyword.

Action: Verify that CDRLEN is greater than 0
and does not exceed 65535 bytes, then retry the
operation.

08 20 Meaning: IOSCDR cannot retrieve the CDR
because the I/O configuration token that is
current when IOSCDR is invoked does not match
the token whose address is supplied as input by
IOCTOKEN. Note that this return code is only
valid for callers using the IOCTOKEN keyword.

Action: Ensure that the device number and
CHPID are still valid and retry the operation
passing a current IOCTOKEN.

08 24 Meaning: IOSCDR cannot retrieve the CDR
because the IOS address space is not yet
available.

Action: Retry the operation after the IOS address
space is available (master scheduler initialization
has completed).

08 28 Meaning: IOSCDR cannot establish an ESTAE.

Action: Ensure that there is sufficient private area
storage, then retry the operation.

08 2Cx Meaning: The value specified on the SCHSET
keyword is not valid.

Action: Supply the correct value on the SCHSET
keyword.

0C None Meaning: An unexpected error occurred.

Action: Record the return code and supply it to
the appropriate IBM support personnel.

Example
Assume you want to retrieve a configuration data record (CDR) to determine if the
manufacturer of a SYSRES volume is IBM.

Scan through all UCBs using the UCBSCAN macro, and put copies of the DASD
UCBs the program finds in a user-supplied work area called UCBSTOR. When the
program finds the SYSRES device, issue the UCBINFO macro to obtain information

IOSCDR macro

1000 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

about the device path and type of channel path for the specified UCB. Information,
such as the channel path ID and online status, will appear in the IOSDPATH data
area. The program looks through the channel path information until it finds an
online path, then issues the IOSCDR macro to retrieve the CDR containing
information about the manufacturer of the SYSRES volume.
...
* REGISTER ASSIGNMENTS *
...
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6 Dynamic area register
UCBPTR7 EQU 7 UCB Pointer
R8 EQU 8
R9 EQU 9 Module base register
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13 Pointer to standard save area
R14 EQU 14
R15 EQU 15

SPACE 3
TITLE ’IOSSCDRE - IOSCDR Sample Program’

...
* *
* Standard Entry Linkage *
* *
...

PRINT GEN
USING *,R9 Sets up base register

ENTRY STM R14,R12,12(R13) Save caller’s registers
LR R9,R15 Establish module base register
MODESET KEY=ZERO,MODE=SUP
LA R0,DYNSIZE Load length of dynamic area
STORAGE OBTAIN,LENGTH=((R0)),SP=233 Gets dynamic area
LR R6,R1 Gets dynamic area address
USING DYNAREA,R6 Sets up dynamic area
ST R13,SAVE+4 Save caller’s save area address
LA R15,SAVE Get this module’s save area address
ST R15,8(R13) Save this modules save area address

* in caller’s save area.
LR R13,R15 Set up addressability to this

* module’s save area.
B MAINLINE
DC CL8’IOSSCDRE’
DC CL8’&SYSDATE’
DC CL8’&SYSTIME’
TITLE ’IOSSCDRE - SCDRE mainline ’

...
* *
* MAINLINE *
* *
...
MAINLINE DS 0H
*

L 10,X’10’ Load CVT pointer
USING CVT,10
TM CVTDCB,CVTOSEXT Is the OSLEVEL extension present
BNO NO_IOSCDR No, pre-MVS/SP Version 3 system

*
TM CVTOSLV1,CVTH5510 Running on version HBB5510?
BNO NO_IOSCDR No, pre-HBB5510 system. IOSCDR

IOSCDR macro

Chapter 94. IOSCDR — Retrieve configuration data records 1001

* supported on HBB5510 and above
...
* *
* Set up addressability to a storage area called UCBSTOR into which *
* the UCBSCAN macro will return the UCBs of devices it locates. *
* *
...

LA UCBPTR7,UCBSTOR Get address of work area
USING UCB,UCBPTR7 Set up addressability

*
...
* *
* Clear the UCBSCAN work area. *
* *
...

LA R0,SCANWORK Set storage address
LA R1,100 Set storage length
SR R15,R15 Clear second operand
MVCL R0,R14 Clear the storage

...
* *
* Loop through all DASD UCBs looking for the SYSRES volume. *
* *
* Note: There must be a SYSRES volume, and hence it will be found *
* in the scan loop which follows. *
* *
...
SCANLOOP UCBSCAN COPY, X

WORKAREA=SCANWORK, X
UCBAREA=UCBSTOR, X
DEVCLASS=DASD, X
MF=(E,SCANLIST)

...
* *
* If UCBSCAN returned a UCB, check whether it is the SYSRES *
* volume. If it isn’t, continue checking more UCBs. If *
* the UCB represents the SYSRES device, end the loop. *
* *
...

LTR R15,R15 Test return code
BNZ EXIT_ERROR Exit if non-zero
TM UCBSTAT,UCBSYSR Test if SYSRES volume
BZ SCANLOOP Keep looping if not

*

...
* *
* Issue the UCBINFO macro to obtain path-related information. *
* UCBINFO returns this information in a field called PATHSTOR, *
* mapped by IOSDPATH. *
* *
* Note- Since the device whose path information is sought is the *
* SYSRES device, an online path is certain to be found. *
* No loop counter is used. *
...
*

UCBINFO PATHINFO, X
DEVN=UCBCHAN, X
PATHAREA=PATHSTOR, X
MF=(E,INFOLIST)

...
* *
* If UCBINFO cannot retrieve path-related information, that is, you *
* receive a non-zero return code, exit program. *
* *
...

LTR R15,R15 Test for 0 return code
BNZ EXIT_ERROR Exit if bad RC

IOSCDR macro

1002 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

...
* *
* Loop through the channel path ID array entries returned in *
* PATHSTOR to find the first online path. An online path *
* is represented by a flag in the array. *
* *
...

LA R10,PATHSTOR Address of PATHINFO data
USING PATH,R10 Set up addressability to

* path information.
SR R8,R8 CHPID array index register.

CHPID_LOOP IC R11,PATHBITS(R8) Get flags from array entry.
STC R11,PATHSAVE Save entry
TM PATHSAVE,X’04’ Test if the path is online
BO CHPID_EXIT If so, exit the loop
LA R8,L’PATHCHPIDARRAY(R8) Increment array index
B CHPID_LOOP

CHPID_EXIT LH R11,PATHCHPID(R8) Get the ID for the online
* channel path.

STC R11,CHPID Save the ID for the online
* channel path.
...
* *
* The program identifies an online channel path to the SYSRES *
* volume. *
* Issue the IOSCDR macro to request a configuration data *
* record (CDR) for the SYSRES volume whose binary number *
* you specify in the UCBCHAN field. IOSCDR returns the CDR *
* in a storage area called CDRSTOR, whose length you specify *
* on the CDRLEN parameter. *
* Specify the channel path ID (CHPID) of the online *
* path returned by the UCBINFO macro. Also specify *
* the IOSCDR READ=NOIO option to avoid performing *
* I/O operations to the SYSRES volume. The IOSCDR READ=NOIO *
* option will have a CDR to return if the device *
* supports the self-description channel control words (CCWs). *
* *
...

IOSCDR DEVN=UCBCHAN, X
CHPID=CHPID, X
READ=NOIO, X
CDRAREA=CDRSTOR, X
CDRLEN=CDRLEN, X
CDRSIZE=CDRSIZE, X
MF=(E,CDRLIST)

...
* *
* Check for a zero return code, indicating that IOSCDR completed *
* successfully. If it was not successful, examine the return *
* and reason codes to determine the cause. *
* *
* Note: A large CDRAREA was specified for the purposes of this *
* example to reduce the possibility of the CDRAREA being *
* too small to contain the returned CDR. It *
* is expected that in practical applications of the IOSCDR *
* service, users will obtain the CDRAREA by issuing the *
* GETMAIN macro. If the IOSCDR macro indicates *
* through return and reason codes that the *
* area passed was too small, issue the FREEMAIN macro to *
* release the storage, and obtain a larger area. Reissue *
* the IOSCDR macro. IOSCDR indicates the minimum size *
* for the CDRAREA through the CDRSIZE keyword. *
* *
...

LTR R15,R15 Test for 0 return code
BNZ EXIT_ERROR Exit if bad RC

...

IOSCDR macro

Chapter 94. IOSCDR — Retrieve configuration data records 1003

* *
* Scan the CDR, mapped by IHACDR, searching for the node element *
* descriptor (NED) for the SYSRES volume. The NEDTCU field *
* should indicate that this device is a control unit. *
* *
...

LA R10,CDRSTOR Set up addressability to the
* CDRAREA.

USING NED,R10
SR R8,R8 Clear NED index register.

CDR_LOOP TM NEDFLAGS,CDRFNED Check if the record represents an
* NED.

BNO CDR_ITERATE If not, try next record.
CLI NEDTYPE,NEDTCU Check if the NED represents a

* control unit.
BNE CDR_ITERATE If not, try next record.
B CDR_EXIT CU NED found.

CDR_ITERATE LA R8,32(R8) Increment index register.
LA R10,32(R10) Increment to next record in CDR.
CL R8,CDRSIZE Make sure that there are more

* records.
BL CDR_LOOP Iterate loop.
B EXIT_ERROR No CU NED found. Exit program

...
* *
* If the program finds the NED, check if IBM manufactured *
* the control unit by looking in the NEDMANUF field of the *
* returned CDR. Check if the control unit was manufactured *
* by IBM. Return a WTO to the user describing the result. *
* *
...

CDR_EXIT DS 0D
CLC NEDMANUF,=CL3’IBM’ Check if built by IBM
BNE NOT_IBM
B IS_IBM

IS_IBM DS 0D
WTO ’IOSSCDRE-CONTROL UNIT FOR SYSRES WAS BUILT BY IBM’, X

ROUTCDE=(11),DESC=(2)
B EXIT

NOT_IBM DS 0D
WTO ’IOSSCDRE-CONTROL UNIT FOR SYSRES WAS NOT BUILT BY IBM’,X

ROUTCDE=(11),DESC=(2)
*

B EXIT
...
* *
* Return a WTO to the user saying that the IOSCDR macro *
* is not available on the system executing this sample program. *
* *
...
NO_IOSCDR DS 0H

WTO ’IOSSCDRE - IOSCDR SUPPORTED IN HBB5510 AND HIGHER’, X
ROUTCDE=(11),DESC=(2)
B EXIT

...
* *
* Return a WTO to the user saying that the IOSCDR macro *
* encountered an error during execution of this sample program *
* *
...
EXIT_ERROR DS 0H

WTO ’IOSSCDRE - THE SAMPLE ENCOUNTERED AN ERROR’, X
ROUTCDE=(11),DESC=(2)

...
* *
* Clean up and exit. *
* *

IOSCDR macro

1004 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

...
EXIT DS 0H

L R13,SAVE+4 Reloads caller’s save
* area addr into 11

LA R0,DYNSIZE Loads dynamic area size
STORAGE RELEASE,SP=233,ADDR=(R6),LENGTH=(R0)
MODESET KEY=NZERO,MODE=PROB
LM R14,R12,12(R13) Loads return regs
BR R14 Returns to caller

*
*
..
* *
* Define constants *
* *
..
CDRLEN DC F’512’
..
* *
* DSECTs to map save areas and dynamic area *
* *
..
DYNSTART DS 0H
DYNAREA DSECT
* Save area
SAVE DS 18F

DS 0D Force doubleword alignment
SPACE 2

..
* *
* Issue the list forms of macros since the module is reentrant. *
* *
..
LIST_INFOSERV UCBINFO MF=(L,INFOLIST) List form of UCBINFO
INFOSERV_END DS 0D
PATHSTOR DS CL256 Storage for the PATHAREA
PATHSTOR_END DS 0D
LIST_CDRSERV IOSCDR MF=(L,CDRLIST) List form of IOSCDR
CDRSERV_END DS 0D
CDRSTOR DS CL512 Storage for the CDRAREA
CDRSTOR_END DS 0D
LIST_SCANSERV UCBSCAN MF=(L,SCANLIST) List form of UCBSCAN
SCANSERV_END DS 0D
SCANWORK DS CL100 Scan work area
SCANWORK_END DS 0D
UCBSTOR DS CL48 UCB copy storage
UCBSTOR_END DS 0D
..
* *
* Work variables and data structures local to this module *
* *
..
CDRSIZE DS F Actual size of CDR
CHPID DS C CHPID used for IOSCDR invocation
PATHSAVE DS C Work variable for CHPID array
* entries in the PATHAREA.
END_DYN DS 0D
DYNSIZE EQU *-DYNAREA Calculates Dynamic area
*
..
* *
* DSECTs *
* *
..
IOSSCDRE CSECT

TITLE ’IOSSCDRE - DSECT MAPPINGS’
EJECT

IOSCDR macro

Chapter 94. IOSCDR — Retrieve configuration data records 1005

CVT LIST=YES,DSECT=YES
*
UCB DSECT

IEFUCBOB
*
CDRAREA IHACDR DSECT=YES
*
PATHAREA IOSDPATH

END IOSSCDRE

IOSCDR macro

1006 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 95. IOSCHPD — IOS CHPID description service

Description
The IOSCHPD macro returns the acronym, description, attributes, and/or the
Worldwide Port Name (WWPN) of a channel path (CHP) or channel path type.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem or Supervisor state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR).
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: No locks may be held.
Control parameters: Must be in the primary address space or be in an

address/data space that is addressable through a public
entry on the callers dispatchable unit access list (DU-AL).

Programming requirements
None.

Restrictions
The parameter list must be in the caller's primary address space or be addressable
via the dispatchable unit access list.

The LINKAGE=BRANCH option is limited to callers which meet the following
criteria:
v Supervisor state and key 0
v 31-bit addressing mode
v Primary ASC mode
v Parameter list resides in fixed or DREF storage

Input register information
Before issuing the IOSCHPD macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
The contents of registers 14 through 1 are altered during processing.

When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

© Copyright IBM Corp. 1988, 2016 1007

1 Unpredictable (Used as a work register by the system)

2-13 Unchanged

14 Unpredictable (Used as a work register by the system)

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Unpredictable (Used as work registers by the system)

2-13 Unchanged

14-15 Unpredictable (Used as work registers by the system)

Performance implications
None.

Syntax
The IOSCHPD macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IOSCHPD.

IOSCHPD

� One or more blanks must follow IOSCHPD.

CHPID=chpid chpid: RS-type address or register (2) - (12).

,CHP_TYPE=chp_type chp_type: RS-type address or register (2) - (12).

,CHP_PARM=chp_parm chp_type: RS-type address or register (2) - (12).

,CHP_PARM=0 Default: 0

,ACRONYM=acronym acronym: RS-type address or register (2) - (12).

,DESC=desc desc: RS-type address or register (2) - (12).

,ATTR=attr attr: RS-type address or register (2) - (12).

,WWPN=wwpn wwpn: RS-type address or register (2) - (12).

,ND=xnd xnd: Optional 32-character output.

IOSCHPD macro

1008 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=1

,PLISTVER=2

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Note: To use the IOSCHPD macro, you need to specify the following parameters:
v Either CHPID or CHP_TYPE
v One or more parameters among ACRONYM, DESC, ATTR, and WWPN

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IOSCHPD
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

CHPID=chpid
An input parameter which specifies the CHPID number for which to retrieve
the attributes, acronym, description, and/or WWPN. This parameter is
mutually exclusive with the CHP_TYPE parameter.

If the CHPID is defined as a managed channel path, the description and
acronym returned will indicate that the channel path is managed. Otherwise, a
non-managed description and acronym will be returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field that contains a binary value in the range X’0000’ to X’00FF’.

CHP_TYPE=chp_type
An input parameter which specifies the channel path type for which to retrieve
the attributes, acronym, description, and/or WWPN. The channel path type
can be obtained by invoking the UCBINFO PATHINFO macro and mapping

IOSCHPD macro

Chapter 95. IOSCHPD — IOS CHPID description service 1009

|
|

|

the results with the IOSDPATH mapping macro. (The interface type is in the
field called PathIntType). This parameter is mutually exclusive with the CHPID
parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

CHP_PARM=chp_parm
CHP_PARM=0

An optional input parameter, used only with CHP_TYPE=chp_type parameter,
that specifies the channel path parameter. A value of 1 is the managed option
and 0 (the default) is the non-managed option. If 1 is specified, and if the CHP
type is managed, the description and acronym returned will indicate that the
CHP type is managed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

ATTR=attr
An optional parameter, used only with the CHPID parameter, that designates
the output area that is to receive the CHPID attributes. The attributes are
mapped by mapping macro IOSDCHPD.

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

,ACRONYM=acronym
An optional parameter that designates the output area that is to receive the
acronym.

To code: Specify the RS-type address, or address in register (2)-(12), of a
5-character field.

,DESC=desc
An optional parameter that designates the output area that is to receive the
description.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,WWPN=wwpn
An optional parameter, used only with the CHPID parameter, that designates
the output area that is to receive the Worldwide Port Name (WWPN). (If the
WWPN is not available, zeros will be returned.)

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,ND=xnd
An optional parameter that designates the output area that is to receive the
node descriptor for the channel.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

An optional parameter that indicates whether a branch-entry linkage should be
generated or a Program Call should be issued for the routine invocation. The
default is LINKAGE=SYSTEM.

,LINKAGE=SYSTEM
requests Program Call invocation.

,LINKAGE=BRANCH
requests branch-entry invocation. The LINKAGE=BRANCH option is

IOSCHPD macro

1010 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|

intended for performance-sensitive invokers or programs that require this
function during NIP before a PC can be issued. See RESTRICTIONS for the
restrictions on branch-entry invocation.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 1, which supports all parameters except those specifically referenced in
higher versions.

v 2, which supports ATTR and WWPN, in addition to those from version 1.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1 or 2

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

IOSCHPD macro

Chapter 95. IOSCHPD — IOS CHPID description service 1011

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
When the IOSCHPD macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) reason code.

The following table identifies the hexadecimal return and reason codes:

Table 89. Return and reason codes for the IOSCHPD macro

Hexadecimal
return code

Reason codes, meaning, and action

00 The requested information has been returned.

IOSCHPD macro

1012 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|

Table 89. Return and reason codes for the IOSCHPD macro (continued)

Hexadecimal
return code

Reason codes, meaning, and action

04 The requested information has not been returned. Unless indicated
differently in the following list of reason codes, all of the output areas
for the information to be returned have been set to zeros.

Reason code
Meaning

00 The system could not determine the CHP type from the input
CHPID.

01 The input CHPID is not configured.

02 The CHP type obtained from the input CHPID is not valid.

03 The input CHP type is invalid.

04 The input CHP_PARM is invalid.

05 The managed option (1) was specified for the CHP_PARM, but
the CHP type is one that does not support dynamic channel
path management. The default acronym and/or description is
returned.

07 The input CHPID value is invalid. The value must be in the
range X’0000’ to X’00FF’.

08 Error in caller's parameters.

Reason code
Meaning

01 The caller specified an invalid ALET.

02 An error occurred in accessing the caller's parameter list.

03 A keyword that is not allowed to be specified with CHP_TYPE
was specified; the keyword is only allowed when CHPID is
specified. For instance, ATTR may only be specified when
CHPID is specified.

0C Recovery was entered.

20 Recovery was entered.

IOSCHPD macro

Chapter 95. IOSCHPD — IOS CHPID description service 1013

|

||
|

|
|
|
|

IOSCHPD macro

1014 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 96. IOSCMB — Locate the channel measurement
block (CMB)

Description
The IOSCMB macro locates the channel measurement block (CMB) for a UCB and
returns the data in either a 32 byte CMB format or a 64 byte ECMB format. This
service eliminates the need for programs to know the format and location of the
CMB.

Environment

Environmental factor Requirement
Minimum authorization: Supervisor state, zero PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts. If the caller is

disabled, the parameter list (including any data areas
pointed to from the parameter list) must be in fixed or
DREF storage.

Locks: The caller is not required to hold any locks on entry.
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
If the invoker is disabled, the parameter list, which includes any data areas pointed
to by the parameter list, must reside in fixed or DREF storage.

Input register information
Before issuing the IOSCMB macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a 36–word save area

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

© Copyright IBM Corp. 1988, 2016 1015

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-15 Unchanged

Performance implications
None.

Syntax
The IOSCMB macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IOSCMB.

IOSCMB

� One or more blanks must follow IOSCMB.

GET Default: GET

,UCBPTR=ucbptr addr ucbptr addr: Symbol, RX-type address, or register (2) - (12).

,CMBAREA=cmbarea addr cmbarea addr: Symbol, RX-type address, or register (2) - (12).

,CMBLEN=64 Default: CMBLEN=64

,CMBLEN=32

Parameters
The parameters are explained below:

GET
Requests that the system locates the channel measurement block (CMB) for a
UCB and return the data in either the old CMB format or the new ECMB
format.

,UCBPTR ucbptr addr
Specifies a fullword containing the address of the UCB common segment
whose CMB is to be returned.

IOSCMB macro

1016 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,CMBAREAcmbarea addr
Specifies the address of a area to hold the the measurement block being
returned. The area can be either 32–bytes or 64–bytes, depending on what you
specify for CMBLEN.

,CMBLEN=64
,CMBLEN=32

Specifies whether the area pointed to by CMBAREA is:
v 64 bytes and the channel measurement block info is to be returned in ECMB

format, mapped by IRAECMB.
v 32 bytes and the channel measurement block information is to be returned in

CMB format, mapped by IRACMB

Return and reason codes
Table 90. Return Codes for the IOSCMB Macro

Hexadecimal
Return Code

Hexadecimal
ReasonCode

Meaning and Action

00 - - Meaning: Successful completion of the IOSCMB request.

Action None.

08 01 Meaning: The IOSCMB request could not complete. No CMB was
assigned for the device.

Action: None; do not reissue this macro.

Example
None.

IOSCMB macro

Chapter 96. IOSCMB — Locate the channel measurement block (CMB) 1017

1018 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 97. IOSCMXA — Obtain address of the UCB common
extension segment

Note: The UCBLOOK macro is the preferred programming interface.

Description
The IOSCMXA macro obtains the address of the UCB common extension segment.
To map the UCB common extension segment, use the UCBCMEXT DSECT of the
IEFUCBOB mapping macro.

Note: If you input a captured UCB address, you receive the address of the
captured UCB common extension segment.

The IOSCMXA macro provides faster performance than the UCBLOOK macro;
however, if the caller uses UCBLOOK to obtain several addresses in the same
invocation, UCBLOOK might provide better performance than an IOSCMXA macro
and an IOSUPFA macro. The UCBLOOK macro also validates input parameters
and provides recovery. However, UCBLOOK cannot be used to obtain a captured
UCB common extension address because UCBLOOK returns only actual UCB
addresses.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: The input parameter must be in the primary address space.

If the caller is disabled, the parameter list must reside in
fixed or disabled reference (DREF) storage.

Programming requirements
The caller must pass a valid captured or actual UCB address.

The caller must pin the UCB or otherwise guarantee that the UCB will not be
deleted. (If the caller issues a UCBLOOK macro with the PIN parameter to pin the
UCB, use the UCBLOOK UCBCXPTR parameter rather than the IOSCMXA macro.)

The caller must supply recovery to handle any unexpected errors, such as abends.

Restrictions
None.

© Copyright IBM Corp. 1988, 2016 1019

Input register information
Before issuing the IOSCMXA macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if the return code is 08

1 Used as a work register by the system

2-13 Unchanged

14 Return address

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as a work register by the system

2-13 Unchanged

14-15 Used as a work register by the system

Performance implications
None.

Syntax
The standard form of the IOSCMXA macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCMXA.

IOSCMXA

� One or more blanks must follow IOSCMXA.

UCBPTR=ucbptr addr ucbptr addr: RX-type address or register (2) - (12).

,UCBCXPTR=ucbcxptr addr ucbcxptr addr: RX-type address or register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

IOSCMXA macro

1020 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

UCBPTR=ucbptr addr
Specifies the address of a fullword field that contains the address of the UCB
common segment. This address must be for the UCB, and not for a copy of the
UCB.

,UCBCXPTR=ucbcxptr addr
Specifies the address of a fullword field in which the system returns the
address of the UCB common extension segment. Use the UCBCMEXT DSECT
of the IEFUCBOB mapping macro to map the UCB common extension
segment.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code:Specify the RS-type address of a fullword field, or register (2) — (12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is copied from GPR
0.

To code:Specify the RS-type address of a fullword field, or register (2) — (12).

ABEND codes
None.

Return and reason codes
When the IOSCMXA macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 Meaning: Successful completion.

Action: None.

08 03 Meaning: Program error. The UCB address
provided by the caller parameter does not
represent a valid UCB.

Action: Correct the UCB address and reissue the
macro.

IOSCMXA macro

Chapter 97. IOSCMXA — Obtain address of the UCB common extension segment 1021

IOSCMXA - List form
Use the list form of the IOSCMXA macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to contain the
parameters.

This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros.

Syntax
The list form of the IOSCMXA macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCMXA.

IOSCMXA

� One or more blanks must follow IOSCMXA.

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the IOSCMXA macro
with the following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IOSCMXA macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

IOSCMXA - Execute form
Use the execute form of the IOSCMXA macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

IOSCMXA macro

1022 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax
The execute form of the IOSCMXA macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCMXA.

IOSCMXA

� One or more blanks must follow IOSCMXA.

UCBPTR=ucbptr addr ucbptr addr: RX-type address or register (2) - (12).

,UCBCXPTR=ucbcxptr addr ucbcxptr addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the IOSCMXA macro
with the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the IOSCMXA macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply defaults for omitted optional parameters.

IOSCMXA macro

Chapter 97. IOSCMXA — Obtain address of the UCB common extension segment 1023

IOSCMXA macro

1024 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 98. IOSCMXR — Obtain address of the UCB common
extension segment

Description
Use the IOSCMXR macro to obtain the address of the unit control block (UCB)
common extension segment. To map the UCB common extension segment, use the
UCBCMEXT DSECT of the IEFUCBOB mapping macro.

Note: If you supply a captured UCB as input, you receive the address of the
captured UCB common extension segment.

UCBLOOK and IOSCMXA macros also provide this function. However, IOSCMXR
provides an alternative for passing parameters (that is, in general purpose register
(GPR) 1 rather than in a parameter list). Also, UCBLOOK returns only actual, not
captured, UCB addresses. For guidance about obtaining UCB information, see z/OS
MVS Programming: Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

Programming requirements
The caller must pass a valid captured or actual UCB address.

The caller must pin the UCB or otherwise guarantee that the UCB will not be
dynamically deleted.

The caller must supply recovery to handle any unexpected errors, such as abends.

Restrictions
If you input a captured UCB address, the UCB must be captured in the primary
address space.

Input register information
Before issuing the IOSCMXR macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of UCB common segment of the UCB

© Copyright IBM Corp. 1988, 2016 1025

Before issuing the IOSCMXR macro, the caller does not have to place any
information into any access register (AR).

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Used as a work register by the system.

1 Address of the UCB common extension

2-13 Unchanged

14-15 Used as work registers by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-15 Unchanged

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the IOSCMXR macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSCMXR.

IOSCMXR

� One or more blanks must follow IOSCMXR.

MF=(S) Default: S

Parameters
The parameters are explained as follows:

MF=(S)
Specifies the standard form of the macro. This parameter is optional.

IOSCMXR macro

1026 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ABEND codes
None.

Return and reason codes
None.

IOSCMXR macro

Chapter 98. IOSCMXR — Obtain address of the UCB common extension segment 1027

1028 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 99. IOSCUINF — Control unit information service

Description
The IOSCUINF macro provides data of the specific control unit according to
requests and also gives user the ability to reset high watermark measurements.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem or Supervisor state. Any PSW key.
Dispatchable unit mode: Task or SRB mode
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts

Programming requirements
None.

Restrictions
v Callers cannot hold any locks that prevent the IOSCUINF service from obtaining

the IOSYNCH lock.
v The LINKAGE=BRANCH option is limited to callers that meet all of the

following criteria:
– supervisor state key 0
– 31-bit addressing mode
– Primary ASC mode
– The parameter list resides in fixed or DREF storage

v No information is returned either by a control unit number specified for the CU
keyword or by a token NED specified for the TOKENNED keyword in the CTC
device.

Input register information
Before issuing the IOSCUINF macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
The contents of registers 14 through 1 are altered during processing.

When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

© Copyright IBM Corp. 1988, 2016 1029

2-13 Unchanged

14 Used as a work register by the system

15 Return code

Performance implications
None.

Syntax
The standard form of the IOSCUINF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column
1.

� One or more blanks must precede
IOSCUINF.

IOSCUINF

� One or more blanks must follow
IOSCUINF.

[,xlabel] An optional symbol, starting in
column 1, that is the name on the
IOSCUINF macro invocation.
DEFAULT: No name

CU=cu cu: The name (RS-type) of a halfword
input.

,TOKENNED=tokenned tokenned: RX-type address or register
(2) - (12).

,CLASS

[,CUCLASS=ALL|TAPE|COMM|DASD|DISP|UREC|CHAR] Default: ALL

,GROUP

[,CUGROUP=PAV|HYPERPAV] Default: PAV
Note: Specify only one of the above
keywords: CU, TOKENNED, CLASS,
or GROUP.

,OUTPUT_AREA=output_area output_area: RS-type address or
register (2) - (12).

[,RESET_MEASURES] Default: None

[,PATHINFO] Default: None

[,LINKAGE=SYSTEM|BRANCH] Default: SYSTEM

IOSCUINF macro

1030 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

[,RETCODE=retcode] retcode: RS-type address or register (2)
- (12).

[,RSNCODE=rsncode] rsncode: RS-type address or register (2)
- (12).

[,PLISTVER=plistver|IMPLIED_VERSION] Default: IMPLIED_VERSION

[,MF=S] Default: MF=S

[,MF=(L,mfctrl,mfattr, 0D)]

[,MF=(E,mfctrl,COMPLETE)]

Parameters
In the following set of mutually exclusive keywords, only one keyword must be
specified.

CU=cu
The name (RS-type) of a halfword input that contains the number of the
physical control unit that the data is to be retrieved from.

TOKENNED=tokenned
The name (RS-type) of a 32-character input of the token NED that is the
worldwide-unique identifier for the subsystem to which information is to be
returned.

CLASS
Indicates that a control unit class is specified.

CUCLASS=ALL|TAPE|COMM|DASD|DISP|UREC|CHAR
An optional keyword input that specifies a control unit class for which
the data is to be retrieved.

Default: ALL.

CUCLASS=ALL
Requests data for all control units in the I/O configuration
except for those in the CTC device class.

CUCLASS=TAPE
Requests data for TAPE device class.

CUCLASS=COMM
Requests data for communications device class.

CUCLASS=DASD
Requests data for DASD device class.

CUCLASS=DISP
Requests data for display device class.

CUCLASS=UREC
Requests data for unit record device class.

CUCLASS=CHAR
Requests data for character reader device class.

IOSCUINF macro

Chapter 99. IOSCUINF — Control unit information service 1031

GROUP
Indicates that a group is specified.

CUGROUP=PAV|HYPERPAV
An optional keyword input that specifies a control unit group for
which the data is to be retrieved.

DEFAULT: PAV.

CUGROUP=PAV
Requests data for parallel access volume (PAV) control units.

CUGROUP=HYPERPAV
Requests data for hyper parallel access volume (HYPERPAV)
control units.

End of the mutually exclusive keywords.

OUTPUT_AREA=output_area
A required pointer output that contains the address of the requested data. The
data is mapped by IOSDCUIN. The OUTPUT_AREA is obtained by the service
and must be released by the caller.

To code: Specify the RS-type address of a fullword field, or register (2) - (12)
(ASM only).

RESET_MEASURES
Indicates that the high watermarks are to be reset for those control units that
the data was collected for.

DEFAULT: NONE.

PATHINFO
Indicates that path information is to be returned for the control units for which
data was collected. The path information includes the CU number, the interface
id, the tag, the CHPID, the link address, and the WWPN for each path
attached to the control unit.

DEFAULT: NONE.

LINKAGE=SYSTEM|BRANCH
An optional keyword input that indicates whether a program call is issued or a
branch-entry linkage is generated for the routine invocation.

DEFAULT: SYSTEM.

LINKAGE=SYSTEM
Requests program call invocation.

LINKAGE=BRANCH
Requests branch-entry invocation. See “Restrictions” on page 1029 for
the restrictions on branch-entry invocation.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12)
(ASM only).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

IOSCUINF macro

1032 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

To code: Specify the RS-type address of a fullword field, or address in register
(2) - (12) (ASM only).

,PLISTVER=plistver|IMPLIED_VERSION
An optional byte input decimal value in the "1-1" range that specifies the
macro version. PLISTVER is the only parameter allowed on the list form of
MF. This parameter determines which parameter list the system generates.
PLISTVER is an optional input parameter on all forms of the macro, including
the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values can be:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM suggests that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 1, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v 1

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
MF=(E,list addr,COMPLETE

An optional keyword input that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
servIice. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1) - (12).

,attr
An optional 1- 60-character input string that you use to force boundary

IOSCUINF macro

Chapter 99. IOSCUINF — Control unit information service 1033

alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
The following table contains hexadecimal return and reason codes, the equate
symbols associated with each reason code, and the meaning for each return and
reason code.

Table 91. Return and Reason Codes for the IOSCUINF Macro

Return Code Reason Code Meaning and Action

00 None Explanation: IOSCUINF request successful.

04 None Explanation: Find no control units that match the requested
criteria.

08 xxxx0001 Explanation: Can not use this service in AR ASC mode.
Note: The OUTPUT_AREA was not returned by the service and
should not be released by the caller.

08 xxxx0002 Explanation: The selection code is not valid.
Note: The OUTPUT_AREA was not returned by the service and
should not be released by the caller.

20 None Explanation: An unexpected error occurred.
Note: The OUTPUT_AREA was not returned by the service and
should not be released by the caller.

IOSCUINF macro

1034 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 100. IOSCUMOD — IOS control unit entry build
service

Description
IOSCUMOD is a prototype module, to be used by manufacturers for creating an
IOSTnnn load module and for building the control unit model table.

Programming requirements
On the first invocation of the IOSCUMOD macro, it includes the parameters listed
below in the manufacturer's module.

Restrictions
None.

Performance implications
None.

Syntax
The IOSCUMOD macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IOSCUMOD.

IOSCUMOD

� One or more blanks must follow IOSCUMOD.

MANF=chpid manf: Symbol up to 3 characters long.

,DEVT=devt devt: Symbol up to 6 characters long.

,MODN=devt modn: Symbol up to 3 characters long.

,MASK1=mask1 mask1: 2-byte hex symbol.

,MASK2=mask2 mask2: 2-byte hex symbol.

,MASK3=mask3 mask3: 2-byte hex symbol.

© Copyright IBM Corp. 1988, 2016 1035

Syntax Description

,MASK4=mask4 mask4: 2-byte hex symbol.

,DCM_SUPPORTED=YES Default: YES

,DCM_SUPPORTED=NO

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IOSCUMOD
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

MANF=manf
Manufacturer ID that was provided with the node descriptor.

,DEVT=devt
Device type ID that was provided with the node descriptor. If a 4-character
device type is entered, the two leading fields will be set to blanks.

,MODN=modn
Model number ID that was provided with the node descriptor. If NULL, then
the model field will be set to all blanks. Othwerwise, leading zeroes must be
coded.

,MASK1=mask1
,MASK2=mask2
,MASK3=mask3
,MASK4=mask4

Hex equivalent of the masks defined. 4 hex digits must be provided.

The tag field of the node descriptor uniquely identifies the power/service
boundaries of most control units. Although this is true in most cases, it is not
architected that way, and different control units represent this information in
different ways.

In order to be able to interpret a control units tag, each control unit will
provide four 2-byte masks.

Each 2 byte mask will be ANDed against the tag field of the control unit's
Node Descriptor to extract a unique indicator of the different service boundary
in the control unit. The first (high order) mask will indicate the most
significant single point of failure to avoid (For example, Cluster), the second
mask will indicate the most significant single failure to avoid (e.g. I/O bay),
and so on until the fourth mask.

There is no requirement for the masks to represent specific components of the
control (e.g. Cluster vs. I/O Bay vs. Port card). The only requirement is that
the masks are ordered from the most significant point of failure to least. If not
all four masks are significant, they should be set to binary zeros and must be
the last mask(s) of the four.

,DCM_SUPPORTED=YES
,DCM_SUPPORTED=NO

Indicates that the control unit does or does not support dynamic channel path
management. Control units which support ESCON interfaces and are
completely non-synchronous should be capable of being supported by DCM.

IOSCUMOD macro

1036 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Control units which transfer data synchronously from the media, or remain
connected to the channel while waiting for data to transfer between the media
and the cache (or channel), are not supported. The default is YES.

ABEND codes
None.

Return and reason codes
None.

System macros require High Level Assembler. Assembler language programming is
described in the following information:
v HLASM Programmer's Guide
v HLASM Language Reference

Using this information also requires you to be familiar with the operating system
and the services that programs running under it can invoke.

IOSCUMOD macro

Chapter 100. IOSCUMOD — IOS control unit entry build service 1037

1038 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 101. IOSDCXR — Obtain address of the device class
extension segment

Description
Use the IOSDCXR macro to obtain the address of the unit control block (UCB)
device class extension segment. For example, the DASD device class extension
segment is mapped by the IECDDCE macro and the tape device class extension
segment is mapped by the IECUCBCX macro.

Note: If you supply a captured UCB as input, you receive the address of the
captured UCB device class extension segment except under either of the following
conditions:
v The unit information module (UIM) indicates that the device class extension

segment can reside above 16 megabytes independent of the rest of the UCB.
v The UIM indicates that a single device class extension segment can be shared by

multiple UCBs.

In these cases, you receive the address of the actual, not captured, UCB device
class extension segment.

Other macros provide addresses to other UCB segments. For example, UCBLOOK,
IOSCMXA, and IOSCMXR provide the address of the UCB common extension
segment. For guidance about obtaining UCB information, see z/OS MVS
Programming: Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: None.

Programming requirements
The caller must pass a valid captured or actual UCB address.

The caller must pin the UCB or otherwise guarantee that the UCB will not be
dynamically deleted.

The caller must supply recovery to handle any unexpected errors, such as abends.

Restrictions
If you input a captured UCB address, the UCB must be captured in the primary
address space.

© Copyright IBM Corp. 1988, 2016 1039

Input register information
Before issuing the IOSDCXR macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of UCB common segment

Before issuing the IOSDCXR macro, the caller does not have to place any
information into any access register (AR).

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Used as a work register by the system.

1 Address of the UCB device class extension segment if the UCB has a
device class extension segment. Zero if the UCB does not have a device
class extension segment.

2-13 Unchanged

14-15 Used as work registers by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-15 Unchanged

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the IOSDCXR macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSDCXR.

IOSDCXR

� One or more blanks must follow IOSDCXR.

IOSDCXR macro

1040 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

MF=(S) Default: S

Parameters
The parameters are explained as follows:

MF=(S)
Specifies the standard form of the macro. This parameter is optional.

ABEND codes
None.

Return and reason codes
None.

IOSDCXR macro

Chapter 101. IOSDCXR — Obtain address of the device class extension segment 1041

1042 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 102. IOSENQ — IOS ENQ service

Description
IOSENQ allows you to perform ENQs and DEQs on certain I/O Supervisor (IOS)
resources. Currently, the following functions can be serialized:
v Dynamic channel path management
v Dynamic I/O processing

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state. Zero PSW key.
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks may be held.
Control parameters: Must be in the primary address space.

Programming requirements
The caller should include the IOSDENQ macro to get equate symbols for the
return and reason codes.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

The caller must not have a pending ENQ for the same resource managed by this
service.

Input register information
Before issuing the IOSENQ macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
The contents of registers 14 through 1 are altered during processing.

When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

1 Unpredictable (Used as a work register by the system)

2-13 Unchanged

14 Unpredictable (Used as a work register by the system)

© Copyright IBM Corp. 1988, 2016 1043

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Unpredictable (Used as work registers by the system)

2-13 Unchanged

14-15 Unpredictable (Used as work registers by the system)

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The IOSENQ macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IOSENQ.

IOSENQ

� One or more blanks must follow IOSENQ.

RESOURCE=DYNCHPID

,REQUEST=ENQ

,STATE=SHARED

,STATE=EXCLUSIVE

,COND=NO

,COND=YES

,WAITTIME=waittime Required choice with REQUEST=ENQ,COND=YES.

,WAITTIME=SYSTEM_DEFINED Default: SYSTEM_DEFINED.

,REQUEST=DEQ

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

IOSENQ macro

1044 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=1

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IOSENQ
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

RESOURCE=DYNCHPID
RESOURCE=NOT_SUPPORTED

A required input parameter. Indicates that this request will deal with the
dynamic channel path management ENQ resource.

,REQUEST=ENQ
,REQUEST=DEQ

A required input parameter.

,REQUEST=ENQ
Indicates that the request is to perform an ENQ operation.

STATE=SHARED
STATE=EXCLUSIVE

A required input parameter if REQUEST=ENQ is specified.

STATE=SHARED
Indicates that the ENQ should be obtained in shared state.

STATE=EXCLUSIVE
Indicates that the ENQ should be obtained in exclusive state.

COND=NO
COND=YES

A required input parameter if REQUEST=ENQ is specified.

COND=NO
Indicates that this is not a conditional ENQ. Control will only be
returned to the caller when the ENQ is held.

COND=YES
Indicates that this is a conditional ENQ. If the ENQ cannot be
obtained within the given length of time, processing is ended, and
a return code indicating this situation is provided to the caller.

IOSENQ macro

Chapter 102. IOSENQ — IOS ENQ service 1045

,WAITTIME=waittime
,WAITTIME=SYSTEM_DEFINED

A required input parameter if REQUEST=ENQ,COND=YES is
specified.

,WAITTIME=waittime
The name (RS-type), or address in register (2)-(12), of a fullword
input that specifies the maximum time in hundredths of seconds
that the system is to wait for the ENQ to be obtained. A value of 0,
or omitting this parameter, results in the system using a
pre-determined wait time. The value is treated as a 32-bit unsigned
number.

,WAITTIME=SYSTEM_DEFINED
The pre-determined default time in hundredths of seconds that the
system is to wait for the ENQ to be obtained.

,REQUEST=DEQ
Indicates that the request is to perform a DEQ operation. A warning return
code will result if the ENQ is not held.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 1, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

IOSENQ macro

1046 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes
The caller may get the following abend codes:

Table 92. ABEND Codes for the IOSENQ Macro

ABEND Code Meaning and Action

0C4-4 Meaning: Your program was not in supervisor state with PSW key 0.

Action: Call IOSENQ only when in supervisor state with PSW key 0.

B78-8 Meaning: Your program was in problem state with PSW key 8-15.

Action: Call IOSENQ only when in supervisor state with PSW key 0.

Return and reason codes
Macro IOSDENQ provides equate symbols for the return and reason codes.

When the IOSENQ macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

IOSENQ macro

Chapter 102. IOSENQ — IOS ENQ service 1047

The following table identifies the hexadecimal return and reason codes:

Table 93. Return and Reason Codes for the IOSENQ Macro

Hexadecimal
Return Code

Reason Codes, Meaning and Action

00 Equate Symbol: IOSENQRc_OK

ENQ The ENQ is held.

DEQ The DEQ is held.

04 Equate Symbol: IOSENQRc_Warn

Reason Code
Meaning/Action

01 Equate Symbol: IOSENQRsnEnqAlreadyHeld

Meaning: For ENQ, this task already holds the ENQ. It could be held
either in shared or exclusive state.

Action: Avoid using the IOSENQ REQUEST=ENQ function when you
already hold the requested ENQ.

02 Equate Symbol: IOSENQRsnEnqNotHeld

Meaning: DEQ was requested but the caller did not have the ENQ.

Action: None required.

08 Equate Symbol: IOSENQRc_InvParm

Reason Code
Meaning/Action

01 Equate Symbol: IOSENQRsnBadRequest

Meaning: An incorrect request was specified.

Action: Check for storage overlays.

02 Equate Symbol: IOSENQRsnBadResource

Meaning: An incorrect resource was requested.

Action: Check for storage overlays.

0C Equate Symbol: IOSENQRc_Env

Reason Code
Meaning/Action

01 Equate Symbol: IOSENQRsnCouldNotGetENQ

Meaning: On a conditional ENQ request, the ENQ could not be
obtained within the specified time period.

Action: Specify a longer time period, or request the ENQ
unconditionally.

IOSENQ macro

1048 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 103. IOSFBA — IOS fixed block architecture service

Description
IOSFBA is used to manage (allocate and unallocate) and perform I/O (read and
write) to allocated fixed block architecture (FBA) devices. IOSFBA has the
following functions:

ALLOCATE
Allocates one or more FBA devices to be used with the READ or WRITE
IOSFBA service.

QUERY
Provides information about the requested devices. The caller provides a list
of device numbers for which the service returns device attributes.

READ Initiates read operations for one or more devices as described in the
supplied device I/O list.

WRITE
Initiates write operations for one or more devices as described in the
supplied device I/O list.

ERASE
Initiates erase operations for a contiguous area for one or more devices as
described in the supplied device I/O list.

CLEANUP
Cleans up resources associated with an I/O token.

UNALLOCATE
Unallocates one or more FBA devices that were previously allocated with
this service.

Note: Mapping macros for the IOS fixed block architecture services are contained
in IOSDFBA.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, PSW Key 0.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks may be held.
Control parameters:

Programming requirements
None.

© Copyright IBM Corp. 1988, 2016 1049

Restrictions
The invoker must have SAF authorization to facility 'IOSFBA'. Specifically, the
invoker must have UPDATE authority to facility class 'IOSFBA'.

Input register information
Before issuing the IOSFBA macro, the caller must ensure that general register 13
contains the address of a 72 byte save area (for AMODE(31) callers) or 216 byte
save area (for AMODE(64) callers). The save area must be in primary storage in the
first 2GB of storage. The caller does not have to place any information into any
other general purpose register (GPR) unless using it in register notation for a
particular parameter or using it as a base register.

Output register information
The contents of registers 14 through 1 are altered during processing.

When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Unpredictable (Used as a work register by the system)

2-13 Unchanged

14 Unpredictable (Used as a work register by the system)

15 Return code

Performance implications
None.

Syntax
The IOSFBA macro is written as follows:

main diagram

��
name

� IOSFBA � �

� ALLOCATE parameters-1
QUERY , DEVLISTPTR = devlistptr , DEVDESCPTR = devdescptr

, DEVLISTPTR64 = devlistptr64 , DEVDESCPTR64 = devdescptr64
READ parameters-2
WRITE parameters-3
ERASE , DEVDESCPTR = devdescptr

, DEVDESCPTR64 = devdescptr64
CLEANUP , IOTOKEN = iotoken
UNALLOCATE , DEVDESCPTR = devdescptr

, DEVDESCPTR64 = devdescptr64

�

�
, RETCODE = retcode , RSNCODE = rsncode

, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 1

�

IOSFBA macro

1050 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

�
, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)
, NOCHECK

��

parameters-1

��
, ACCESS = SINGLE

, ACCESS = READ
, ACCESS = WRITE
, ACCESS = ANY

, DEVLISTPTR = devlistptr
, DEVLISTPTR64 = devlistptr64

�

� , DEVDESCPTR = devdescptr
, DEVDESCPTR64 = devdescptr64

�

�
, DEVCOUNT = 1

, MINDEVCOUNT = 0
, DEVCOUNT = devcount

, MINDEVCOUNT = mindevcount

��

parameters-2

�� , DEVIOLISTPTR = deviolistptr
, DEVIOLISTPTR64 = deviolistptr64

, ECB = NONE

, ECB = ecb
�

�
, RESERVED , REUSECP = NO

, IOTOKEN = NONE
, IOTOKEN = iotoken , REUSECP = YES

��

parameters-3

�� , DEVIOLISTPTR = deviolistptr
, DEVIOLISTPTR64 = deviolistptr64

, ECB = NONE

, ECB = ecb
�

�
, RESERVED , REUSECP = NO

, IOTOKEN = NONE
, IOTOKEN = iotoken , REUSECP = YES

��

Parameters
The parameters are explained as follows:

IOSFBA macro

Chapter 103. IOSFBA — IOS fixed block architecture service 1051

name
An optional symbol, starting in column 1, that is the name on the IOSFBA
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ACCESS=SINGLE
,ACCESS=READ
,ACCESS=WRITE
,ACCESS=ANY

When ALLOCATE is specified, ACCESS is an optional parameter that indicates
the type of allocation that should be performed. The default is
ACCESS=SINGLE.

,ACCESS=SINGLE
The FBA device is allocated for use by a single z/OS system. Note that one
or more distributed systems can access this device in addition to the single
z/OS system. Access from distributed systems is controlled through the
use of LUN masking or using the persistent reserve from the distributed
side.

,ACCESS=READ
The FBA device is allocated for READ only on the system where this
request is received. This device can also be allocated on another z/OS
system by requesting ACCESS=WRITE. Note that one or more distributed
systems can access this device in addition to the pair of z/OS systems that
performed the z/OS allocations. Access from distributed systems is
controlled through the use of LUN masking or using the persistent reserve
from the distributed side.

,ACCESS=WRITE
The FBA device is allocated for WRITE only on the system where this
request is received. This device can also be allocated on another z/OS
system by requesting ACCESS=READ. Note that one or more distributed
systems can access this device in addition to the pair of z/OS systems that
performed the z/OS allocations. Access from distributed systems is
controlled through the use of LUN masking or using the persistent reserve
from the distributed side.

,ACCESS=ANY
The FBA device is allocated once on each z/OS system. Note that one or
more distributed systems can access this device in addition to the z/OS
systems that performed the z/OS allocations. Access from distributed
systems is controlled through the use of LUN masking or using the
persistent reserve from the distributed side.

ALLOCATE
A required input parameter that allocates the devices as specified in the device
list (FBADL DSECT in the IOSDFBA macro). This request, if successful,
allocates the requested number of devices within a sysplex for the caller's use.

To code: Specify a value.

,CLEANUP
A required input parameter that cleans up resources for the input IOTOKEN.
During IOSFBA READ or IOSFBA WRITE invocations, one or more IOTOKEN
areas may have been used to allow for efficiency. IOSFBA CLEANUP must be
invoked once for each IOTOKEN that was used during processing.

To code: Specify a value.

,DEVCOUNT=devcount

IOSFBA macro

1052 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,DEVCOUNT=1
When ALLOCATE is specified, DEVCOUNT is an optional input parameter
that contains the number of devices that should be allocated from the devices
specified in the device list (FBADL) addressed by the DEVLISTPTR or
DEVLISTPTR64 parameter. DEVCOUNT indicates the maximum number of
devices to allocate. DEVCOUNT should be less than or equal to the number of
devices specified in the device list. The default is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

,DEVDESCPTR=devdescptr
When ALLOCATE is specified, DEVDESCPTR is a required output parameter
of the output device descriptor area mapped by the FBADDL (defined in the
IOSDFBA macro).

The device descriptor area contains the addresses of a device descriptor entry
for each device successfully allocated. The device descriptor entry contains
specific device information discovered by the ALLOCATE service. The device
descriptor entry is mapped by the FBADDE (defined in the IOSDFBA macro).
The device descriptor entry is required input for the IOSFBA READ and
IOSFBA WRITE services.

When using the IOSFBA READ or IOSFBA WRITE services, the device
descriptor entry is required input for each device that is read from or written
to. Refer to the DEVIOLISTPTR or DEVIOLISTPTR64 parameter for the
IOSFBA READ and/or IOSFBA WRITE service for more information.

The device descriptor address is an input parameter for the IOSFBA
UNALLOCATE service. The UNALLOCATE service unallocates the devices
contained in the device descriptor area.

The caller is responsible for freeing or releasing this storage after the devices
have been UNALLOCATED. The subpool and length of the storage are
contained in the device descriptor area. The device descriptor area must be
freed using either STORAGE RELEASE or FREEMAIN macro invocation.

Note: The DEVDESCPTR parameter is allowed only when not in AMODE 64
as indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,DEVDESCPTR=devdescptr
When QUERY is specified, DEVDESCPTR is a required output parameter of
the output device descriptor area mapped by the FBADDL (defined in the
IOSDFBA macro).

The device descriptor area contains the addresses of a device descriptor entry
for each device successfully queried. The device descriptor entry contains
specific device information discovered by the QUERY service. The device
descriptor entry is mapped by the FBADDE (defined in the IOSDFBA macro).

The caller is responsible for freeing or releasing this storage after the devices
have been queried. The subpool and length of the storage are contained in the
device descriptor area. The device descriptor area must be freed using either
STORAGE RELEASE or FREEMAIN macro invocation.

Note: The DEVDESCPTR parameter is allowed only when not in AMODE 64
as indicated by the SYSSTATE macro.

IOSFBA macro

Chapter 103. IOSFBA — IOS fixed block architecture service 1053

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,DEVDESCPTR=devdescptr
When ERASE is specified, DEVDESCPTR is a required input parameter of the
input device descriptor area mapped by the FBADDL (defined in the IOSDFBA
macro). The device descriptor area is obtained by the IOSFBA ALLOCATE
service.

The device descriptor area contains the addresses of the device descriptor entry
for each device to be unallocated. The device descriptor entry contains specific
device information discovered by the ALLOCATE service. The device
descriptor entry is mapped by the FBADDE (defined in the IOSDFBA macro).

The status of the erase request for each device is obtained by checking the
FBADDL_EraseFailed and FBADDL_NoEraseAttempted indicators in the
FBADDL for each device. If FBADDL_EraseFailed is indicated, the
FBADDE_COD and FBADDE_RCOD fields contain information about the I/O
failure.

Note: The DEVDESCPTR parameter is allowed only when not in AMODE 64
as indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,DEVDESCPTR=devdescptr
When UNALLOCATE is specified, DEVDESCPTR is a required input
parameter of the input device descriptor area mapped by the FBADDL
(defined in the IOSDFBA macro). The device descriptor area is obtained by the
IOSFBA ALLOCATE service.

The UNALLOCATE service unallocates the devices contained in the device
descriptor area, specifically each of the device descriptor entries.

The device descriptor area contains the addresses of the device descriptor entry
for each device to be unallocated. The device descriptor entry contains specific
device information discovered by the ALLOCATE service. The device
descriptor entry is mapped by the FBADDE (defined in the IOSDFBA macro).

The status of the unallocation request for each device is obtained by checking
the return code and reason code contained in the device descriptor entry
(FBADDE). The return code and reason code contain the dynamic allocation
(SVC 99) return and reason code or an IOSFBA service return and reason code.

The caller is responsible for freeing or releasing this storage after the devices
have been UNALLOCATED. The subpool and length of the storage are
contained in the device descriptor area. The device descriptor area must be
freed using either STORAGE RELEASE or FREEMAIN macro invocation.

Note: The DEVDESCPTR parameter is allowed only when not in AMODE 64
as indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,DEVDESCPTR64=devdescptr64
When ALLOCATE is specified, DEVDESCPTR64 is a required output
parameter of the output device descriptor area mapped by the FBADDL
(defined in the IOSDFBA macro).

IOSFBA macro

1054 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

The device descriptor area contains the addresses of a device descriptor entry
for each device successfully allocated. The device descriptor entry contains
specific device information discovered during by the ALLOCATE service. The
device descriptor entry is mapped by the FBADDE (defined in the IOSDFBA
macro). The device descriptor entry is required input for the IOSFBA READ
and IOSFBA WRITE services.

When using the IOSFBA READ or IOSFBA WRITE services, the device
descriptor entry is required input for each device that is read from or written
to. Refer to the DEVIOLIST parameter for the IOSFBA READ and/or IOSFBA
WRITE service for more information.

The device descriptor address is an input parameter for the IOSFBA
UNALLOCATE service. The UNALLOCATE service unallocates the devices
contained in the device descriptor area.

The caller is responsible for freeing or releasing this storage after the devices
have been UNALLOCATED. The storage area must be freed using the IARST64
service.

Note: The DEVDESCPTR64 parameter is allowed only when in AMODE 64 as
indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,DEVDESCPTR64=devdescptr64
When QUERY is specified, DEVDESCPTR64 is a required output parameter of
the output device descriptor area mapped by the FBADDL (defined in the
IOSDFBA macro).

The device descriptor area contains the addresses of a device descriptor entry
for each device successfully queried. The device descriptor entry contains
specific device information discovered by the QUERY service. The device
descriptor entry is mapped by the FBADDE (defined in the IOSDFBA macro).

The caller is responsible for freeing or releasing this storage after the devices
have been queried. The subpool and length of the storage are contained in the
device descriptor area. The device descriptor area must be freed using either
STORAGE RELEASE or FREEMAIN macro invocation.

Note: The DEVDESCPTR64 parameter is allowed only when in AMODE 64 as
indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,DEVDESCPTR64=devdescptr64
When ERASE is specified, DEVDESCPTR64 is a required input parameter of
the input device descriptor area mapped by the FBADDL (defined in the
IOSDFBA macro). The device descriptor area is obtained by the IOSFBA
ALLOCATE service.

The UNALLOCATE service unallocates the devices contained in the device
descriptor area, specifically each of the device descriptor entries.

The device descriptor area contains the addresses of the device descriptor entry
for each device to be unallocated. The device descriptor entry contains specific
device information discovered by the ALLOCATE service. The device
descriptor entry is mapped by the FBADDE (defined in the IOSDFBA macro).

IOSFBA macro

Chapter 103. IOSFBA — IOS fixed block architecture service 1055

The status of the erase request for each device is obtained by checking the
FBADDL_EraseFailed and FBADDL_NoEraseAttempted indicators in the
FBADDL for each device. If FBADDL_EraseFailed is indicated, the
FBADDE_COD and FBADDE_RCOD fields contain information about the I/O
failure.

Note: The DEVDESCPTR64 parameter is allowed only when in AMODE 64 as
indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,DEVDESCPTR64=devdescptr64
When UNALLOCATE is specified, DEVDESCPTR64 is a required input
parameter of the input device descriptor area mapped by the FBADDL
(defined in the IOSDFBA macro). The device descriptor area is obtained by the
IOSFBA ALLOCATE service.

The UNALLOCATE service unallocates the devices contained in the device
descriptor area - specifically each of the device descriptor entry.

The device descriptor area contains the addresses of the device descriptor entry
for each device to be unallocated. The device descriptor entry contains specific
device information discovered by the ALLOCATE service. The device
descriptor entry is mapped by the FBADDE (defined in the IOSDFBA macro).

The status of the unallocation request for each device is obtained by checking
the return code and reason code contained in the device descriptor entry
(FBADDE). The return code and reason code contain the dynamic allocation
(SVC 99) return and reason code or an IOSFBA service return and reason code.

The caller is responsible for freeing or releasing this storage after the devices
have been UNALLOCATED. The device descriptor area must be freed using
the IARST64 service.

Note: The DEVDESCPTR64 parameter is allowed only when in AMODE 64 as
indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,DEVIOLISTPTR=deviolistptr
When READ is specified, DEVIOLISTPTR is a required input parameter of the
input device I/O list mapped by the FBADIOL (defined in the IOSDFBA
macro). The device I/O list specifies the number of devices that will participate
in the IOSFBA READ service. Additionally, the device I/O list contains a
pointer to the device I/O entry for each device (mapped by the FBADIOE,
defined in the IOSDFBA macro).

The device I/O entry includes the address of the device descriptor entry (that
was returned as part of the device descriptor area by the IOSFBA ALLOCATE
service), a count of extent entries, the addresses of each extent entry (mapped
by the FBAEE, defined in the IOSDFBA macro), and if required by the caller,
the address of a status block or area (mapped by the FBAST, defined in the
IOSDFBA macro). For a complete description, see the IOSDFBA macro.

The extent entry defines the parameters of the READ I/O operation for a given
device. It defines the starting block number on the device, the number of
blocks to transfer, and the storage address or addresses to place the
information read from the FBA device.

IOSFBA macro

1056 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

The status block provides the caller with status information for the I/O to each
device. A status block should be obtained and initialized to zeroes by the caller
for each device that will participate in the IOSFBA READ service.

For AMODE(31) callers, the storage area must be addressable in AMODE(31).

Note: The DEVIOLISTPTR parameter is allowed only when not in AMODE 64
as indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,DEVIOLISTPTR=deviolistptr
When WRITE is specified, DEVIOLISTPTR is a required input parameter of the
input device I/O list mapped by the FBADIOL (defined in the IOSDFBA
macro). The device I/O list specifies the number of devices that will participate
in the IOSFBA READ service. Additionally, the device I/O list contains a
device I/O entry for each device (mapped by the FBADIOE, defined in the
IOSDFBA macro).

The device I/O entry includes the address of the device descriptor entry (that
was returned as part of the device descriptor area by the IOSFBA ALLOCATE
service), a count of extent entries, the addresses of each extent entry (mapped
by the FBAEE, defined in the IOSDFBA macro), and if required by the caller,
the address of a status block or area (mapped by the FBAST, defined in the
IOSDFBA macro). For a complete description, see the IOSDFBA macro.

The extent entry defines the parameters of the WRITE I/O operation for a
given device. It defines the starting block number on the device, the number of
blocks to transfer, and the storage address or addresses to place the
information read from the FBA device.

The status block provides the caller with status information for the I/O to each
device. A status block should be obtained and initialized to zeroes by the caller
for each device that will participate in the IOSFBA WRITE service.

For AMODE(31) callers, the storage area must be addressable in AMODE(31).

Note: The DEVIOLISTPTR parameter is allowed only when not in AMODE 64
as indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,DEVIOLISTPTR64=deviolistptr64
When READ is specified, DEVIOLISTPTR64 is a required input parameter of
the input device I/O list mapped by the FBADIOL (defined in the IOSDFBA
macro). The device I/O list specifies the number of devices that will participate
in the IOSFBA READ service. Additionally, the device I/O list contains a
device I/O entry for each device (mapped by the FBADIOE, defined in the
IOSDFBA macro).

The device I/O entry includes the address of the device descriptor entry (that
was returned as part of the device descriptor area by the IOSFBA ALLOCATE
service), a count of extent entries, the addresses of each extent entry (mapped
by the FBAEE, defined in the IOSDFBA macro), and if required by the caller,
the address of a status block or area (mapped by the FBAST, defined in the
IOSDFBA macro). For a complete description, see the IOSDFBA macro.

IOSFBA macro

Chapter 103. IOSFBA — IOS fixed block architecture service 1057

The extent entry defines the parameters of the READ I/O operation for a given
device. It defines the starting block number on the device, the number of
blocks to transfer, and the storage address or addresses to place the
information read from the FBA device.

The status block provides the caller with status information for the I/O to each
device. A status block should be obtained and initialized to zeroes by the caller
for each device that will participate in the IOSFBA READ service.

Note: The DEVIOLISTPTR64 parameter is allowed only when in AMODE 64
as indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,DEVIOLISTPTR64=deviolistptr64
When WRITE is specified, DEVIOLISTPTR64 is a required input parameter of
the input device I/O list mapped by the FBADIOL (defined in the IOSDFBA
macro). The device I/O list specifies the number of devices that will participate
in the IOSFBA READ service. Additionally, the device I/O list contains a
device I/O entry for each device (mapped by the FBADIOE, defined in the
IOSDFBA macro).

The device I/O entry includes the address of the device descriptor entry (that
was returned as part of the device descriptor area by the IOSFBA ALLOCATE
service), a count of extent entries, the addresses of each extent entry (mapped
by the FBAEE, defined in the IOSDFBA macro), and if required by the caller,
the address of a status block or area (mapped by the FBAST, defined in the
IOSDFBA macro). For a complete description, see the IOSDFBA macro.

The extent entry defines the parameters of the WRITE I/O operation for a
given device. It defines the starting block number on the device, the number of
blocks to transfer, and the storage address or addresses to place the
information read from the FBA device.

The status block provides the caller with status information for the I/O to each
device. A status block should be obtained and initialized to zeroes by the caller
for each device that will participate in the IOSFBA WRITE service.

Note: The DEVIOLISTPTR64 parameter is allowed only when in AMODE 64
as indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,DEVLISTPTR=devlistptr
When ALLOCATE is specified, DEVLISTPTR is a required input parameter of
the input device list mapped by the FBADL (defined in the IOSDFBA macro).
The FBADL specifies the number of devices, the device numbers, and others to
allocate. (Refer to the FBADL for specific information.)

For AMODE(31) callers, the storage area must be addressable in AMODE(31).

Note: The DEVLISPTR parameter is allowed only when not in AMODE 64 as
indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,DEVLISTPTR=devlistptr
When QUERY is specified, DEVLISTPTR is a required input parameter of the

IOSFBA macro

1058 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

input device list mapped by the FBADL (defined in the IOSDFBA macro). The
FBADL specifies the number of devices, the device numbers, and others to
allocate. (Refer to the FBADL for specific information.)

For AMODE(31) callers, the storage area must be addressable in AMODE(31).

Note: The DEVLISPTR parameter is allowed only when not in AMODE 64 as
indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,DEVLISTPTR64=devlistptr64
When ALLOCATE is specified, DEVLISTPTR64 is a required input parameter
of the input device list mapped by the FBADL (defined in the IOSDFBA
macro). The FBADL specifies the number of devices, the device numbers, and
others to allocate. (Refer to the FBADL for specific information.)

Note: The DEVLISTPTR64 parameter is allowed only when in AMODE 64 as
indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,DEVLISTPTR64=devlistptr64
When QUERY is specified, DEVLISTPTR64 is a required input parameter of the
input device list mapped by the FBADL (defined in the IOSDFBA macro). The
FBADL specifies the number of devices, the device numbers, and others to
allocate. (Refer to the FBADL for specific information.)

Note: The DEVLISTPTR64 parameter is allowed only when in AMODE 64 as
indicated by the SYSSTATE macro.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,ECB=ecb
,ECB=NONE

When READ is specified, ECB is an optional input parameter that contains the
address that points to an optional ECB that is posted when all read operations
are complete. If an ECB is not specified, control returns to the invoker when all
read operations have completed. The default is NONE.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,ECB=ecb
,ECB=NONE

When WRITE is specified, ECB is an optional input parameter that contains the
address that points to an optional ECB that is posted when all write operations
are complete. If an ECB is not specified, control returns to the invoker when all
write operations have completed. The default is NONE.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,ERASE
A required input parameter that erases a contiguous area of the device or
devices as specified in the device list mapped by the FBADL DSECT (defined
in the IOSDFBA macro). Erase writes null characters (X'00').

To code: Specify a value.

IOSFBA macro

Chapter 103. IOSFBA — IOS fixed block architecture service 1059

,IOTOKEN=iotoken
,IOTOKEN=NONE

When READ is specified, IOTOKEN is an optional input parameter that
contains the address that points to an optional 32-byte area used by the
IOSFBA service to store addresses and lengths of storage areas that can be
reused in order to avoid system overhead of obtaining these resources on each
call.

The invokers of IOSFBA can use as many unique 32-byte IOTOKEN areas as
desired. When IOTOKEN is used,
v The area specified by the IOTOKEN should be initially cleared by the calling

program before the first usage of the IOTOKEN area.
v Each IOTOKEN is used to represent storage areas for the life of an I/O

request. The caller should not reuse an IOTOKEN until the I/Os initiated for
it have completed. For synchronous callers, the IOTOKEN can be
immediately reused. For asynchronous callers (when an ECB is provided),
the caller must not reuse an IOTOKEN until the ECB has been posted.

v IOSFBA CLEANUP must be invoked for each IOTOKEN that was used to
ensure that task related storage is released.

The default is NONE.

To code: Specify the RS-type address of a pointer field.

,IOTOKEN=iotoken
,IOTOKEN=NONE

When WRITE is specified, IOTOKEN is an optional input parameter that
contains the address that points to an optional 32-byte area that is used by the
IOSFBA service to store addresses and lengths of storage areas that can be
reused in order to avoid system overhead of obtaining these resources on each
call.

The invokers of IOSFBA can use as many unique 32-byte IOTOKEN areas as
desired. When IOTOKEN is used,
v The area specified by the IOTOKEN should be initially cleared by the calling

program before the first usage of the IOTOKEN area.
v Each IOTOKEN is used to represent storage areas for the life of an I/O

request. The caller should not reuse an IOTOKEN until the I/Os initiated for
it have completed. For synchronous callers, the IOTOKEN can be
immediately reused. For asynchronous callers (when an ECB is provided),
the caller must not reuse an IOTOKEN until the ECB has been posted.

v IOSFBA CLEANUP must be invoked for each IOTOKEN that was used to
ensure that task related storage is released.

The default is NONE.

To code: Specify the RS-type address of a pointer field.

,IOTOKEN=iotoken
When CLEANUP is specified, IOTOKEN is a required input parameter that
contains the address that points to a 32-byte area that is used by the IOSFBA
service to store addresses and lengths of storage areas that can be reused in
order to avoid system overhead of obtaining these resources on each call.

To code: Specify the RS-type address of a pointer field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)

IOSFBA macro

1060 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this is an RS-type address or an address in register (1)-(12).

,attr
An optional 1 to 60 character input string used to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

,MINDEVCOUNT=mindevcount
,MINDEVCOUNT=0

When ALLOCATE is specified, MINDEVCOUNT is an optional input
parameter that indicates the minimum number of devices that must be
allocated to fulfill this allocate request. The devices are specified in the device
list (FBADL) addressed by the DEVLISTPTR or DEVLISTPTR64 parameter.
This number should be less than or equal to the number specified in
DEVCOUNT.

If the caller requests DEVCOUNT=x and MINDEVCOUNT=y, the IOSFBA
service attempts to allocate the requested number of devices (as specified by
the DEVCOUNT=x parameter). If 'x' devices are not available to be allocated,
IOSFBA ALLOCATE service attempts to allocate as many devices that are
available. The ALLOCATE request is considered successful if at least 'y' devices
are allocated (as specified by the MINDEVCOUNT=y parameter). The
ALLOCATE request is considered unsuccessful if 'y' devices (as specified by
the MINDEVCOUNT=y parameter) are not allocated and a return code is set
indicating the ALLOCATE request failed since the minimum number of
devices could not be allocated.

IOSFBA macro

Chapter 103. IOSFBA — IOS fixed block architecture service 1061

The count or number of devices that have been allocated is contained in the
device descriptor area (mapped by the FBADDL).

If this keyword is omitted or specified as 0, the MINDEVCOUNT is assumed
to be the value specified on the DEVCOUNT keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
one-byte field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, the lowest version that allows all parameters specified

on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, always specify PLISTVER=MAX on the
list form of the macro. Specifying MAX ensures that the list-form parameter
list is always long enough to hold all the parameters you might specify on
the execute form, when both are assembled with the same level of the
system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

v 1, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,QUERY
A required input parameter, queries information about a list of devices.
Information is returned for each device in the list of devices identified in the
DEVLIST keyword.

To code: Specify a value.

,READ
A required input parameter, reads information from one or more FBA devices
as specified by the device I/O list (DEVIOLIST parameter).

To code: Specify a value.

,RESERVED
When READ is specified, RESERVED is an optional input parameter indicating
that the device or devices for this READ operation may be serialized by
persistent reserve from a distributed client. When this keyword is specified,
z/OS I/O operations are permitted to the devices while the persistent reserve
is held. This keyword should only be used when the invoking program is
coordinating I/O activity between z/OS and the distributed client that owns
the persistent reserve. The default is NONE.

To code: Specify a value.

IOSFBA macro

1062 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,RESERVED
When WRITE is specified, RESERVED is an optional input parameter that
indicates that the device or devices for this WRITE operation may be serialized
by persistent reserve from a distributed client. When this keyword is specified,
z/OS I/O operations are permitted to the devices while the persistent reserve
is held. This keyword should only be used when the invoking program is
coordinating I/O activity between z/OS and the distributed client that owns
the persistent reserve. The default is NONE.

To code: Specify a value.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value is left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,REUSECP=NO
,REUSECP=YES

When IOTOKEN=iotoken and READ are specified, REUSECP is an optional
parameter indicating that the channel program for this operation is exactly the
same as the previous channel program. On the first READ request, this
keyword is ignored. On subsequent requests, this keyword indicates whether
the exact same storage buffers and blocks on the disks are involved in the I/O
operations. The exact same channel program is used to perform the I/O. Using
this REUSECP=YES may provide some performance advantage since analyzing
the extents and storage buffers is not required. The default is REUSECP=NO.

,REUSECP=NO
Indicates that the channel program may vary from invocation to invocation
and should be rebuilt on each IOSFBA request.

,REUSECP=YES
Indicates that the channel program does not vary from invocation to
invocation and that IOSFBA is instructed to start the previously built
channel program without modification if one has been previously built. If
no prior channel program was executed for the input IOTOKEN, a new
one is built and saved for the next invocation. When REUSECP=YES is
specified,
v You must use storage that is fixed for life of the IOTOKEN. Channel

programs are not rebuilt to obtain the latest real storage address.
v You must make the address space non-swappable for the life of the

IOTOKEN.

If either of these conditions cannot be met, you must not use
REUSECP=YES.

,REUSECP=NO
,REUSECP=YES

When IOTOKEN=iotoken and WRITE are specified, REUSECP is an optional
parameter that indicates that the channel program for this operation is exactly
the same as the previous channel program. On the first WRITE request, this
keyword is ignored. On subsequent requests, this keyword indicates whether
the exact same storage buffers and blocks on the disks are involved in the I/O
operations. The exact same channel program is used to perform the I/O. Using
this REUSECP=YES may provide some performance advantage since analyzing
the extents and storage buffers is not required. The default is REUSECP=NO.

IOSFBA macro

Chapter 103. IOSFBA — IOS fixed block architecture service 1063

,REUSECP=NO
Indicates that the channel program may vary from invocation to invocation
and should be rebuilt on each IOSFBA request.

,REUSECP=YES
Indicates that the channel program does not vary from invocation to
invocation and that IOSFBA is instructed to start the previously built
channel program without modification if one has been previously built. If
no prior channel program was executed for the input IOTOKEN, a new
one is built and saved for the next invocation. When REUSECP=YES is
specified,
v You must use storage that is fixed for life of the IOTOKEN. Channel

programs are not rebuilt to obtain the latest real storage address.
v You must make the address space non-swappable for the life of the

IOTOKEN.

If either of these conditions cannot be met, you must not use
REUSECP=YES.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value is left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,UNALLOCATE
A required input parameter that unallocates the devices as specified in the
device list mapped by the FBADL DSECT (defined in the IOSDFBA macro).

To code: Specify a value.

,WRITE
A required input parameter that writes information to one or more FBA
devices as specified by the device I/O list (DEVIOLIST parameter).

To code: Specify a value.

ABEND codes
None.

Return and reason codes
When the IOSFBA macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes:

IOSFBA macro

1064 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 94. Return and reason codes for the IOSFBA macro

Return code Meaning and action

X'00' Successful operation.

Reason Code
Meaning/Action

X'00' The operation was successful.

X'01' (ALLOCATE) The requested number of devices (DEVCOUNT) was not
available. However, FBADDL_COUNT contains the number of devices
actually allocated for this request, which is greater than or equal to the
minimum number of devices required (MINDEVCOUNT).

X'02' (READ, WRITE) The caller requested that the channel program be reused but
failed to pass a valid IOTOKEN, so it is not possible to reuse the channel
program.

X'04' Warning error.

Reason Code
Meaning/Action

X'01' (QUERY) Information for one or more devices could not be obtained.

X'02' (UNALLOCATE) One or more devices in the DEVLIST could not be
unallocated.

X'08' Error in the caller's parameters.

Reason Code
Meaning/Action

X'01' IOSFBA abended during parameter validation.

X'02' (ALLOCATE) MINDEVCOUNT is greater than DEVCOUNT.

X'03' (ALLOCATE, QUERY) The device list is not properly built.

X'04' (READ, WRITE) The number of blocks identified in the READ or WRITE
request does not properly equate with the amount of I/O buffers provided.

X'05' (READ, WRITE) The requested extents to be READ or WRITTEN are not
within the acceptable range of extents available on the device.

X'06' An invalid function was specified for the IOSFBA invocation.

X'07' (UNALLOCATE, ERASE) The device descriptor list is not properly built.

X'08' (UNALLOCATE, READ, WRITE, ERASE) The device descriptor entry is not
properly built.

X'09' (UNALLOCATE, READ, WRITE, ERASE) The UCB specified in the device
descriptor entry is not allocated.

X'0B' (READ, WRITE) The buffers specified are not properly sized with the
physical block size of the device. Buffer sizes must be multiples of the
physical block size of the device.

X'0C' (READ, WRITE) The device I/O list is not properly built.

X'0D' (READ, WRITE) The device I/O entry is not properly built.

X'0E' (READ, WRITE) The extent entry is not properly built.

X'0F' (READ, WRITE) REUSECP=YES was specified, but the address space is
swappable. The address space must be non-swappable when REUSEP=YES is
specified.

IOSFBA macro

Chapter 103. IOSFBA — IOS fixed block architecture service 1065

||
|
|

Table 94. Return and reason codes for the IOSFBA macro (continued)

Return code Meaning and action

X'0C' Environmental error.

Reason Code
Meaning/Action

X'01' (ALLOCATE) Not enough devices were available to satisfy the requested
allocation. Devices must be online, usable, and not already allocated in order
to be allocated by this service.

X'02' (ALLOCATE) Not enough devices provided I/O responses that enabled
IOSFBA to validate that they were usable, so IOSFBA was not able to satisfy
the requested allocation. Devices must be online, usable, not already
allocated, and must properly respond to I/O commands that query device
information in order to be allocated by this service.

X'03' (ALLOCATE, READ, WRITE) IOSFBA detected a serialization problem with
one of the devices being allocated. A SYMREC record was written. Consider
varying the device offline and investigate prior device usage before
attempting to use the identified device again.

X'04' IOSFBA service is not available.

X'05' IOSFBA detected that the caller is not in task mode. IOSFBA must be
invoked in task mode.

X'06' IOSFBA detected that the caller is not enabled for I/O interrupts.

X'10' The READ or WRITE operation was not successful.

Check the status blocks for information on the failed I/Os. Note that this return code
is only valid for synchronous READ and WRITE operations. Asynchronous READ
and WRITE operations are notified by a post code of X'10'.

X'14' The invoker is not authorized to use this programming service.

Reason Code
Meaning/Action

X'01' The invoker must be in PSW key 0-7 and in supervisor state.

IOSFBA macro

1066 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 104. IOSHXBLK — Request to suspend and resume
Basic HyperSwap services

Description
The IOSHXBLK macro is used by authorized applications to request Basic
HyperSwap to temporarily suspend its activities. The macro should subsequently
be used to allow Basic HyperSwap to resume its activities.

Note that obtaining and holding the block of Basic HyperSwap for a long period of
time may cause one of Basic HyperSwap tasks to issue diagnostic abend 2E0.

Environment
The requirements for the caller of IOSHXBLK are:

Environmental factor Requirement
Minimum authorization: Supervisor state. Any key.
Dispatchable unit mode: Task mode
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may not hold any lock.
Control parameters: Control parameters must be in the primary address space.

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the IOSHXBLK macro, the caller does not have to place any
information into any registers unless using it in register notation for a particular
parameter or using it as a base register.

Register
Contents

0 Undefined

1 Used by the service

2-13 Undefined

14-15 Used by the service

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

© Copyright IBM Corp. 1988, 2016 1067

0 Used as a work register by the system

1 Unpredictable

2-13 Unchanged

14 Used as a work register by the system

15 Return code

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The IOSHXBLK macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSHXBLK.

IOSHXBLK

� One or more blanks must follow IOSHXBLK.

BLOCK Suspend Basic HyperSwap activities.

,NAMEPTR=nameptr nameptr: RS-type address or address in register (2) - (12)

,TOKENPTR=tokenptr tokenptr: RS-type address or address in register (2) - (12)

UNBLOCK Resume Basic HyperSwap activities.

,NAMEPTR=nameptr nameptr: RS-type address or address in register (2) - (12)

,TOKENPTR=tokenptr tokenptr: RS-type address or address in register (2) - (12)

,FORCE=NO Default: FORCE=NO

,FORCE=YES

TESTBLOCK Test whether all systems in the SYSPLEX support programmatic blocking.

IOSHXBLK macro

1068 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=plistver

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

,MF=S Default: MF=S

,MF=(L,mfctrl,mfattr,0D)

,MF=(E,mfctrl,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IOSHXBLK
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol. The default is no name.

BLOCK, UNBLOCK and TESTBLOCK are mutually exclusive keys. This set is
required, but only one key may be specified.

BLOCK
Suspend Basic HyperSwap activities.

,NAMEPTR=nameptr
The name (RS-type), or address in register (2)-(12), of a required 4-byte
input that contains the address of a 8-character area that contains the name
of the application issuing the BLOCK request.

,TOKENPTR=tokenptr
The name (RS-type), or address in register (2)-(12), of a required 4-byte
input that contains the address of a 8-byte area that contains a token
uniquely identifying this instance of a BLOCK request.

UNBLOCK
Resume Basic HyperSwap activities.

,NAMEPTR=nameptr
The name (RS-type), or address in register (2)-(12), of a required 4-byte
input that contains the address of a 8-character area that contains the name
of the application issuing the UNBLOCK request. If this name does not
match the name of the application for which Basic HyperSwap is currently
blocked, the UNBLOCK request will be rejected.

,TOKENPTR=tokenptr
The name (RS-type), or address in register (2)-(12), of a required 4-byte
input that contains the address of a 8-byte area that contains the token
specified on the previous BLOCK request. If this token does not match the
token specified on the BLOCK request for which Basic HyperSwap is
currently blocked or if FORCE=YES is not specified on this UNBLOCK
request, the request will be rejected.

IOSHXBLK macro

Chapter 104. IOSHXBLK — Request to suspend and resume Basic HyperSwap services 1069

,FORCE=YES
,FORCE=NO

An optional keyword input that specifies whether to allow unblock if the
token value on an UNBLOCK request does not match the token value on
the BLOCK request for which Basic HyperSwap is currently blocked. The
default is NO.

,FORCE=YES
Even though the token specified on this request does not match the
token specified on the BLOCK request for which Basic HyperSwap is
currently blocked, honor this UNBLOCK request as long as the name
specified on this request matches the name specified on the BLOCK
request for which Basic HyperSwap is currently blocked.

,FORCE=NO
Do not unblock unless name and token specified on this UNBLOCK
request match the name and token specified on the BLOCK request for
which Basic HyperSwap is currently blocked.

TESTBLOCK
Test whether all systems in the SYSPLEX support programmatic blocking.

End of mutually exclusive required keys.

,RETCODE=retcode
The name (RS-type) of an optional full-word output variable, or register
(2)-(12) or (15), into which the return code is to be copied from GPR 15. If you
specify 15, GPR15, REG15, or R15 (within or without parentheses), the value
will be left in GPR 15.

,RSNCODE=rsncode
The name (RS-type) of an optional full-word output variable, or register
(2)-(12), into which the reason code is to be copied from GPR 0. If you specify
0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or without parentheses), the
value will be left in GPR 0.

,PLISTVER=plistver
,PLISTVER=IMPLIED_VERSION

An optional byte input decimal value in the "1-1" range that specifies the
macro version. PLISTVER is the only key allowed on the list form of MF and
determines which parameter list is generated. Note that MAX may be specified
instead of a number, and the parameter list will be of the largest size currently
supported. This size may grow from release to release (thus possibly affecting
the amount of storage needed by your program). If your program can tolerate
this, IBM recommends that you always specify MAX when creating the list
form parameter list as that will ensure that the list form parameter list is
always long enough to hold whatever parameters might be specified on the
execute form.

The default is IMPLIED_VERSION. When PLISTVER is omitted, the default is
the lowest version which allows all of the parameters specified on the
invocation to be processed.

,MF=S
,MF=(L,mfctrl, mfattr | 0D)
,MF=(E,mfctrl,COMPLETE)

An optional keyword input which specifies the macro form. The default is S.

,MF=S
Specifies the standard form of the macro. The 'S' form generates code to

IOSHXBLK macro

1070 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

put the parameters into an in-line parameter list and invoke the desired
service. Full checking for required macro keys is done along with
supplying defaults for omitted optional parameters.

,MF=(L,mfctrl ,mfattr | 0D)
Specifies the list form of the macro. The 'L' form defines an area to be used
for the parameter list. Only the PLISTVER key may be specified on the
invocation. All other macro parameters are flagged as errors. If PLISTVER
is not specified, the original parameter list definition is used.

,mfctrl
A required input. It is the name of a storage area for the parameter list.

,mfattr | 0D
An optional 60-character input string that varies from 1 to 60
characters. Use it to force boundary alignment of the parameter list.
Use only 0F or 0D. The default is 0D, which forces the parameter list to
a doubleword boundary.

,MF=(E,mfctrl,COMPLETE)
Specifies the execute form of the macro. The 'E' form generates code to put
the parameters into the parameter list specified by mfctrl and provides full
syntax checking with default setting.

,mfctrl
A required input. It is the name (RS-type), or address in register
(1)-(12), of a storage area for the parameter list.

,COMPLETE
An optional keyword input which specifies the degree of macro
parameter syntax checking. The default is COMPLETE.

Checking for required macro keys is done and defaults are supplied for
omitted optional parameters.

ABEND codes
None.

Return and reason codes
When the IOSHXBLK macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes:

Table 95. Return Codes for the IOSHXBLK Macro

Hexadecimal
return code

Reason codes, meaning and action

00 Basic HyperSwap services have successfully completed the requested
action. For TESTBLOCK requests, all systems support programmatic
blocking.

IOSHXBLK macro

Chapter 104. IOSHXBLK — Request to suspend and resume Basic HyperSwap services 1071

Table 95. Return Codes for the IOSHXBLK Macro (continued)

Hexadecimal
return code

Reason codes, meaning and action

04 Basic HyperSwap services did not complete the requested action. For
TESTBLOCK requests, at least one system does not support
programmatic blocking.

Reason code
Meaning/Action

00 Basic HyperSwap services not started.

01 Basic HyperSwap services initialization incomplete.

41 HyperSwap in progress.

42 Basic HyperSwap services are temporarily busy.

43 Basic HyperSwap blocking services are in unknown state due
to a system error. Unblock with Force option is required to
clear this condition.

44 IOSHXBLK service timed out waiting for Basic HyperSwap
blocking services to complete the request. Unblock with Force
option may be required before retrying the request.

08 Basic HyperSwap services did not accept the request.

Reason code
Meaning/Action

01 Invalid function code.

02 Caller is not in task mode.

03 Caller is not in supervisor state.

04 Caller is not in primary ASC mode.

05 Caller is not enabled for I/O and external interrupts.

06 Caller is holding lock(s).

07 System resources unavailable to copy request.

08 Internal function code mismatch.

09 Routing of request in SYSPLEX failed.

0A System service error occurred while processing the request.

0B Blocking not supported by Basic HyperSwap master system.

0C Blocking not supported by one or more Basic HyperSwap
member systems.

0D HyperSwap API services address space is not active on one or
more Basic HyperSwap member systems.

IOSHXBLK macro

1072 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 95. Return Codes for the IOSHXBLK Macro (continued)

Hexadecimal
return code

Reason codes, meaning and action

0C Programming error.

Reason code
Meaning/Action

01 BLOCK request while already blocked. The name pointed to
by NAMEPTR on the BLOCK request is the same as the name
of the application currently blocking Basic HyperSwap.

02 BLOCK request while already blocked. The name pointed to
by NAMEPTR on the BLOCK request is different from the
name of the application currently blocking Basic HyperSwap.

03 UNBLOCK request while not blocked.

04 Name or token specified on an UNBLOCK request did not
match name or token specified on the BLOCK request that is
currently blocking Basic HyperSwap.

05 Not a BLOCK, UNBLOCK or TESTBLOCK request.

10 Environmental error.

Reason code
Meaning/Action

00 Caller not authorized or invocation environment wrong.

01 Unable to establish a recovery environment.

02 System resources unavailable for the request.

03 ALESERV service failed for the request.

20 System abend occurred while processing request.

IOSHXBLK macro

Chapter 104. IOSHXBLK — Request to suspend and resume Basic HyperSwap services 1073

IOSHXBLK macro

1074 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 105. IOSINFO — Obtain the subchannel number for a
UCB

Description
The IOSINFO macro obtains the subchannel number for a specified unit control
block (UCB). The macro returns the subsystem identification word (SID), which
identifies the subchannel number of the UCB, in a user-specified location. The SID
is a fullword value whose first halfword contains X‘0001’ and ending halfword
contains the subchannel number.

Environment
The issuer of IOSINFO must be executing:
v In 31-bit addressing mode
v In either task mode or SRB mode
v Locked or unlocked

Additionally, the issuing program must include the CVT and IHAPSA mapping
macros. All addresses must be 31-bit addresses and the issuing program must pass
a below 16 megabyte actual or captured UCB.

Input register information
Before entry to this macro, register 13 must contain the address of a standard
18-word save area.

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the GPRs contain:

Register
Contents

0 Used as a work register by the macro

1 Contains the SID if the return code in register 15 is 0; otherwise, used as a
work register by the macro.

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

© Copyright IBM Corp. 1988, 2016 1075

Syntax
The IOSINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IOSINFO.

IOSINFO

� One or more blanks must follow IOSINFO.

FUNCTN=SUBCHNO

,UCB=ucb addr ucb addr: A-type address or register (0) - (15).

,OUTPUT=output addr output addr: A-type address or register (0) - (14).

,RTNCODE=retcde addr retcde addr: A-type address or register (0) - (15).

Parameters
The parameters are explained as follows:

FUNCTN=SUBCHNO
Specifies that a subchannel number is to be obtained.

,UCB=ucb addr
Specifies the address of a fullword on a fullword boundary containing the
address of a unit control block (UCB).

,OUTPUT=output addr
Specifies the address of a fullword on a fullword boundary that will contain
the subsystem identification word (SID) upon completion.

The SID is a fullword value that identifies the subchannel. The first halfword is
X‘0001’, and the last halfword contains the subchannel number.

The output address must reside in 31-bit addressable storage.

,RTNCODE=retcde addr
Specifies the location where the system is to store the return code. The return
code is also in general purpose register (GPR) 15. The specified storage
location must be a fullword on a fullword boundary.

The return code address must reside in 31-bit addressable storage.

Return codes
When control returns from IOSINFO, GPR 15 (and retcde addr, if you coded
RTNCODE) contains one of the following return codes:

IOSINFO macro

1076 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Hexadecimal Code Meaning

00 The address specified on the OUTPUT parameter contains the
SID.*

04 The UCB was disassociated from the subchannel at the time of the
IOSINFO service routine invocation.

* In some cases, the subchannel number in the SID might not be valid. Any
disassociation of the UCB and the subchannel means the subchannel number in the
SID is not valid. If the UCB is disassociated from the subchannel after the
IOSINFO service routine invocation, no notification can be given.

Example 1
Obtain the subchannel number for a UCB whose address is in register 1. Specify
the SID output to be placed in register 2 and the return code to be placed in
register 3.
IOSINFO FUNCTN=SUBCHNO,UCB=(1),OUTPUT=(2),RTNCODE=(3)

Example 2
Obtain the subchannel number for a UCB whose address is in location ADDR.
Specify the SID output to be placed in location ADDX and the return code to be
placed in register 3.
IOSINFO FUNCTN=SUBCHNO,UCB=ADDR,OUTPUT=ADDX,RTNCODE=(3)

Example 3
Obtain the subchannel number for a UCB whose address is in register 2. Specify
the SID output to be placed in register 3 and the return code to be placed in
location ADDR.
IOSINFO FUNCTN=SUBCHNO,UCB=(2),OUTPUT=(3),RTNCODE=ADDR

IOSINFO macro

Chapter 105. IOSINFO — Obtain the subchannel number for a UCB 1077

IOSINFO macro

1078 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 106. IOSLOOK — Locate unit control block

Programming note: The IOSLOOK macro is a deprecated programming interface.
Use the UCBLOOK macro instead.

Description
The IOSLOOK macro locates the unit control block (UCB) associated with a device
number. To use IOSLOOK, you must be executing in supervisor state. Register 13
must point to a 16-word save area where the macro stores registers 0 through 15 at
offset 0. You must also include a DSECT for both the CVT (using the CVT
mapping macro) and the IOCOM (using the IECDIOCM mapping macro).

Syntax
The IOSLOOK macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IOSLOOK.

IOSLOOK

� One or more blanks must follow IOSLOOK.

DEV=(reg) reg: Register (0) - (12), (14), (15).

Default: DEV=(6).

,UCB=(reg) reg: Register (0) - (12).

Default: UCB=(7).

Parameters
The parameters are explained as follows:

DEV=(reg)
Specifies a general purpose register, symbolic or absolute, that contains the
hexadecimal device number, right justified. If this parameter is omitted,
register 6 is assumed.

,UCB=(reg)
Specifies a general purpose register, symbolic or absolute, that will be used to
return the address of the UCB common segment. If this parameter is omitted,
register 7 is assumed. If the UCB address cannot be found, then the contents of
this register are unpredictable.

© Copyright IBM Corp. 1988, 2016 1079

Note: The UCB must reside in 24-bit addressable storage.

Return codes
When IOSLOOK macro returns control to your program, GPR 15 contains a return
code.

Table 96. Return Codes for the IOSLOOK Macro

Hexadecimal
Return Code

Meaning

00 Meaning: UCB address was found.

04 Meaning: Device number was invalid or no UCB exists.

Example
Find the UCB address for device 250. Register 2 contains the value X’00000250’.
The UCB address is to be returned in register 5 and UCBPTR is equated to 5.
IOSLOOK DEV=(2),UCB=(UCBPTR)

IOSLOOK macro

1080 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 107. IOSODS — IOS offline device service

Description
The IOS Offline Device Service macro provides the interface for authorized code to
mark a device offline and in use by a system component.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and key 0.
Dispatchable unit mode: Task mode.
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: None

Programming requirements
None.

Restrictions
v The caller may not hold any locks.
v The caller is required to pin the UCB for the device before invoking the IOSODS

macro service. Pinning the UCB will insure that the proper identification of the
user of the device will be displayed if the installation should try the dynamically
delete it.

v Issuers of the IOSODS macro service must provide recovery and resource
termination managers to insure that the device is freed for use by other
applications in case of an unexpected failure or cancellation of the address space.

Input register information
None.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1–14 Unchanged

15 Return code

.

When control returns to the caller, the ARs contain:

© Copyright IBM Corp. 1988, 2016 1081

Register
Contents

0-15 Unchanged

Performance implications
None.

Syntax
The standard form of the IOSODS macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSODS.

IOSODS

� One or more blanks must follow IOSODS.

ON Default: None.

[,BYPONLINEFENCE] Requests to bypass the fence that prevents a device from successfully
transitioning into the IOSODS ON state.
Default: None.

[,WLMPAVSUSPEND] This function is disabled.

OFF Default: None.

[,WLMPAVRESTORE] This function is disabled.

,DEVN=devn devn: RS-type name or address in register (2) - (12).

[,DEVNCHAR=devnchar] devnchar: RS-type address or register (2) - (12).

[SCHSET=schset|0] Default: 0

[,LDEVNCHAR=ldevnchar] ldevnchar: RS-type address or register (2) - (12).

[,RETCODE=retcode] retcode: RS-type name or register (2) - (12).

[,RSNCODE=rsncode] rsncode: RS-type name or register (2) - (12).

IOSODS macro

1082 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

||
|
|

Syntax Description

[,PLISTVER={plistver | MAX |
IMPLIED_VERSION}]

Default: IMPLIED_VERSION

Parameters
The parameters are explained as follows:

The following is a set of mutually exclusive keywords. This set is required; only
one keyword must be specified.

ON Keyword that indicates the input device number is to be marked as offline and
in use by a system component.

,BYPONLINEFENCE
Optional keyword that indicates that the device should be allowed to have
dynamic pathing established, even if the device is fenced for VARY
establishing dynamic pathing. When this keyword is specified, z/OS I/O
operations will be permitted to bypass a fence, if established, that would
have prevented the device from having dynamic pathing established.
Invokers of this service should understand why a device may have been
fenced for dynamic pathing, and understand why it is okay to bypass this
type of fence before using this keyword.

Default: None.

,WLMPAVSUSPEND
Optional keyword that indicates that the Work Load Manager dynamic
alias tuning capability for the device (if applicable) will be suspended.
Note that it is up to the user to restore this capability through an IOSODS
OFF request with the WLMPavRestore keyword specified. This function is
currently disabled.

Default: None.

OFF
Keyword that indicates the input device number is no longer to be marked as
offline and in use by a system component.

,WLMPAVRESTORE
Optional keyword that indicates that the Work Load Manager dynamic
alias tuning capability for the device (if applicable) will be restored. Note
that it is up to the user to restore this capability through an IOSODS ON
request with the WLMPavSuspend keyword specified. This function is
currently disabled.

Default: None.

This ends the of set of mutually exclusive required keywords.

,DEVN=devn
The name (RS-type), or address in register (2) - (12), of a required halfword
input that specifies the device number in binary of the device that is to be
operated on.

,DEVNCHAR=devnchar
The name (RS-type), or address in register (2) - (12), of an optional byte input
that specifies the device number in EBCDIC, of the device that is to be
operated on.

IOSODS macro

Chapter 107. IOSODS — IOS offline device service 1083

|
|
|
|
|
|
|
|
|

|

,SCHSET=schset|0
The name (RS-type), or address in register (2) - (12), of an optional byte input
that specifies the subchannel set of the device. The default is 0.

,LDEVNCHAR=ldevnchar
The name (RS-type), or address in register (2) - (12), of a 5-character input that
specifies the logical device number, in EBCDIC, of the device whose UCB
address is to be obtained.

Note: A logical device number is represented by a 1-digit subchannel set id
followed by the 4-digit device number, sdddd.

,RETCODE=retcode
The name (RS-type), or register (2) - (12), of an optional fullword output into
which the return code is to be copied from GPR 15.

,RSNCODE=rsncode
The name (RS-type), or register (2) - (12), of an optional fullword output into
which the reason code is to be copied from GPR 0.

,PLISTVER=plistver | MAX | IMPLIED_VERSION
is an optional byte input decimal value in the "1–1" range that specifies the
macro version. PLISTVER is the only key allowed on the list form of MF and
determines which parameter list is generated. Note that MAX may be specified
instead of a number and will cause the parameter list to be of the largest size
currently supported. This size may grow from release to release (thus possibly
affecting the amount of storage needed by your program). If your program can
tolerate this, IBM recommends that you always specify MAX when creating the
list form parameter list as this will ensure that the list form parameter list is
always long enough to hold whatever parameters might be specified on the
execute form.

Default: IMPLIED_VERSION. When PLISTVER is omitted, the default is the
lowest version which allows all of the parameters specified on the invocation
to be processed.

ABEND codes
None.

Return codes
Return and reason codes, in hexadecimal, from the IOSODS macro are as follows:

Hexadecimal return
code

Hexadecimal reason
code

Meaning

00 None The requested function executed successfully.

08 01 The requested function failed because the input
device number was not found.

08 02 A request to allocate an offline device was made,
but it is already in use by a system component
(ON function).

08 03 A request to unallocate a device was made, but
the device is not currently in use (OFF function).

08 04 IOS Path Validation failed (ON function).

08 05 IOS Dynamic Pathing function failed (OFF
function).

08 06 Allocation service to set UCBNALOC failed (ON
function).

IOSODS macro

1084 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Hexadecimal return
code

Hexadecimal reason
code

Meaning

20 None An unexpected error occurred. The recovery
routine recovered and returned control to the
caller.

IOSODS - List form
Use the list form of the IOSODS macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage that the execute form uses to contain the parameters.

Syntax
The list form of the IOSODS macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSODS.

IOSODS

� One or more blanks must follow IOSODS.

[,PLISTVER={xplistver | MAX |
IMPLIED_VERSION}]

Default: IMPLIED_VERSION

[,MF=(L,xmfctrl{,xmfattr|0D})] xmfctrl: RS-type name or address in register (2) - (12).

xmfattr: Any text up to 60 characters.Default: 0D

Parameters
The parameters are explained under the standard form of the IOSODS macro, with
the following exception:

,MF=(L,xmfctrl{,xmfattr|0D})
L specifies the list form of the macro. The list form defines an area to be used
for the parameter list. Only the PLISTVER key may be specified on the
invocation. All other macro parameters are flagged as errors. If PLISTVER is
not specified, the original parameter list definition is used.

,xmfctrl
This required input is the RS-type name, or address in register (1) - (12), of
a storage area for the parameter list.

,xmfattr|0D
This is an optional 60 character input string which is used to force
boundary alignment of the parameter list. Use only 0F or 0D.

Default: 0D which forces the parameter list to a doubleword boundary.

IOSODS macro

Chapter 107. IOSODS — IOS offline device service 1085

IOSODS - Execute form
Use the execute form of the IOSODS macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the IOSODS macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSODS.

IOSODS

� One or more blanks must follow IOSODS.

ON Default: None.

[,BYPONLINEFENCE] Requests to bypass the fence that prevents a device from successfully
transitioning into the IOSODS ON state.
Default: None.

[,WLMPAVSUSPEND] This function is disabled.

OFF Default: None.

[,WLMPAVRESTORE] This function is disabled.

,DEVN=devn devn: RS-type name or address in register (2) - (12).

[,RETCODE=retcode] retcode: RS-type name or register (2) - (12).

[,RSNCODE=rsncode] rsncode: RS-type name or register (2) - (12).

[,PLISTVER={xplistver | MAX |
IMPLIED_VERSION}]

Default: IMPLIED_VERSION

[,MF=(E,xmfctrl[,COMPLETE])] xmfctrl: RS-type name or address in register (2) - (12).

Default: COMPLETE

IOSODS macro

1086 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

||
|
|

Parameters
The parameters are explained under the standard form of the IOSODS macro, with
the following exception:

,MF=(E,xmfctrl[,COMPLETE])
E specifies the execute form of the macro. The execute form generates code to
put the parameters into the parameter list specified by xmfctrl and provides
full syntax checking with default setting.

,xmfctrl
This required input is the RS-type name, or address in register (1) - (12), of
a storage area for the parameter list.

,COMPLETE
An optional keyword which specifies the degree of macro parameter
syntax checking. When complete checking is enabled, required parameters
are checked and defaults are supplied for omitted optional parameters.

Default: COMPLETE

IOSODS macro

Chapter 107. IOSODS — IOS offline device service 1087

IOSODS macro

1088 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 108. IOSPTHV — Validate I/O paths

Description
The IOSPTHV macro enables authorized callers to validate the physical
connectivity and availability of a channel path to a device. A path is considered
available if an I/O operation can be initiated down a path, and the device can be
selected. Validation does not guarantee that the device and path are error free. The
IOSPTHV function depends on the availability of the IOS Address Space (IOSAS).
IOSAS is started after Master Scheduler Initialization (MSI), and may be
unavailable for periods of time during recovery. The issuer of the IOSPTHV macro
must be able to handle the return/reason code indicating that the IOSAS is not
active.

IOSPTHV is similar to UCBINFO PATHINFO and the VARY command, but there
are important differences. UCBINFO returns status based on UCB indicators that
might be outdated. Unlike the VARY command, IOSPTHV does not change UCB
path status indicators or dynamically vary paths online or offline. IOSPTHV only
tests physical connectivity. Examples of when you might validate a path include:
v To verify the current availability of a specific path to a specific device and

present any path-related errors to a user.
v As a first step in diagnosing path-related problems.
v After installing a device, to verify channel to device connectivity before issuing a

VARY command for the device.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum Authorization: Supervisor state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

Programming requirements
None.

Restrictions
Do not have any enabled, unlocked task (EUT) FRRs established. If issued during
IPL before the IOSAS (IOS address space) has initialized, MSI must have
completed and WAIT=YES must be specified on the IOSPTHV macro.

If you attempt to validate a path to an active teleprocessing device (device types
2701, 2702, and 2703) or to an OSA or CTC device in use by VTAM with a long
running I/O active, you will receive an error return and reason code.

© Copyright IBM Corp. 1988, 2016 1089

Input register information
Before issuing the IOSPTHV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller of the IOSPTHV macro, the access registers
(ARs) contain:

Register
Contents

0-15 Unchanged

Some callers depend on register contents remaining the same before and after
invoking a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance implications
None.

Syntax
The standard form of the IOSPTHV macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSPTHV.

IOSPTHV

� One or more blanks must follow IOSPTHV.

,DEVN=device number device number: RX-type address or address in register (2) - (12).

,CHPID=path id path id: RX-type address or address in register (2) - (12).

IOSPTHV macro

1090 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,MSGBUF=msgbuf addr msgbuf addr: RX-type address or address in register (2) - (12).

Default: none

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or address in register (2) - (12).

Default: none

,TIME=time time: RX-type address or address in register (2) - (12).

Default: 5 seconds

,RETCODE=return code return code: RX-type address or address in register (2) - (12).

,RSNCODE=return code reason code: RX-type address or address in register (2) - (12).

,WAIT=NO Default: NO

,WAIT=YES

Parameter descriptions
The parameters are explained as follows:

,DEVN=device number
Specifies the device's binary device number (0000 - FFFF). IOSPTHV checks the
availability of the path you specify on the CHPID parameter to the device you
specify on DEVN. IOSPTHV pins the device so that the device's UCB and
other related data structures are not dynamically deleted while IOSPTHV is
validating the path. When IOSPTHV completes processing, it unpins the
device.

,CHPID=path id
Specifies the ID (00 - FF) of the channel path that IOSPTHV validates for
physical availability. To determine the ID for a specific channel path connected
to the device specified on DEVN, use the UCBINFO PATHINFO macro or the
DISPLAY MATRIX operator command.

,MSGBUF=msgbuf addr
Specifies the address of a 71-character area into which IOSPTHV is to place
diagnosis information. IOSPTHV uses this buffer only if the return code is
X'04' and the reason code is X'04'. This information consists of the same
message that is issued by the VARY command for comparable errors. This
message is the last message that MVS would have issued if a VARY PATH
command had been issued and a similar error had been encountered.
IOSPTHV does not issue a message to the operator console.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character area that contains the MVS I/O
configuration token that you supply to IOSPTHV. You can obtain this token by
issuing the IOCINFO macro, which is described in z/OS MVS Programming:
Assembler Services Reference ABE-HSP. If the I/O configuration token that is
current when IOSPTHV is invoked does not match the token you supply, you
are notified through a return code.

IOSPTHV macro

Chapter 108. IOSPTHV — Validate I/O paths 1091

If you set the input IOCTOKEN to binary zeros, IOSPTHV sets IOCTOKEN to
the current I/O configuration token.

For information about how you can use the configuration token to detect
configuration changes, see z/OS MVS Programming: Authorized Assembler
Services Guide.

,WAIT=NO
,WAIT=YES

Is an optional keyword input that indicates to allow the request to wait for the
IOS address space (IOSAS) to initialize or restart (if terminated) before
continuing. WAIT=NO is the default.

WAIT=NO: Only process if the IOS address space has been initialized and not
terminated.

WAIT=YES: Allows the request to wait for the IOSAS space to initialize as long
as MSI has completed. Allows the request to wait for the IOS address space to
reinitialize if terminated. The user of this keyword must ensure that no no
resources are held that can cause the IOSAS not to initialize.

,TIME=time
Specifies an 8-byte field containing the maximum amount of time, in seconds,
that IOSPTHV can run before being purged. The default for the TIME
parameter is 5 seconds.

The time interval, whose address resides in virtual storage, is presented as
zoned decimal digits of the form:

HHMMSSth, where:

HH is hours (24-hour clock)

MM is minutes

SS is seconds

t is tenths of seconds

h is hundredths of seconds

IOSPTHV runs until one of the following occurs:
v IOSPTHV completes successfully or unsuccessfully
v The interval that you specify on the TIME=parameter expires
v The MIH interval for the device expires.

Note that the TIME parameter allows you to set an expiration time that is
specific to IOSPTHV. The MIH interval, however, is used by other services
associated with the device. Using the TIME parameter allows you to set an
expiration time that is shorter than the MIH interval or the time that it takes
the IOSPTHV macro to complete successfully.

,RETCODE=rc
Specifies the location or register where the system is to place the return code.
The system copies the return code into the location from register 15.

,RSNCODE=rsncode
Specifies the location or register where the system is to place the reason code.
The system copies the reason code into the location from register 0.

IOSPTHV macro

1092 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return and reason codes
Return codes, in hexadecimal, from the IOSPTHV macro are as follows:

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: IOSPTHV processing completed
successfully. IOSPTHV successfully validated the
specified path. The path is physically available.

Action: None

04 04 Meaning: IOSPTHV did not successfully validate
the specified path because the path was not
physically available.

Action: You need to investigate the problem
further. Trying to vary the path online may
produce further diagnosis data.

04 08 Meaning: User-specified time interval on the
TIME keyword expired before the I/O
completed.

Action: Verify that the time interval was long
enough. Note that this return code is issued only
if the time expired before the MIH interval. You
can use the D MIH command or the MIHQUERY
macro to determine the MIH interval for the
device.

08 04 Meaning: IOSPTHV did not successfully validate
the specified path because the device number
specified on the DEVN keyword is not valid.

Action: Ensure that you specified the device
number correctly and retry the operation. Use the
IOCTOKEN keyword to ensure that the UCB for
that device number was not dynamically changed
or deleted.

08 08 Meaning: IOSPTHV did not successfully validate
the specified path because the path specified on
the CHPID keyword is not valid.

Action: Verify your program to ensure that the
correct CHPID was passed and retry the
operation. Use the IOCTOKEN keyword to
ensure that the CHPID for the device was not
dynamically changed or deleted.

08 0C Meaning: IOSPTHV did not successfully validate
the specified path because the time specified on
the TIME keyword was not valid.

Action: Ensure that the time specified contains
valid zoned decimal digits in the proper range.

08 20 Meaning: IOSPTHV did not successfully validate
the specified path because the UCB definition for
the device represented by the look-up argument
(device number) has changed and is no longer
consistent with the UCB definition represented
by the input I/O configuration token. (This
return code is only valid for callers using the
IOCTOKEN keyword.)

Action: Ensure that the device number and
CHPID are still valid and retry the operation
passing a current IOCTOKEN.

IOSPTHV macro

Chapter 108. IOSPTHV — Validate I/O paths 1093

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

08 24 Meaning: Processing cannot be performed before
the IOS address space (IOSAS) has initialized
(unless MSI has has completed and the
WAIT=YES keyword was specified).

Action: Retry the operation later in the IPL, after
the IOSAS has been initialized, or after MSI by
using the WAIT=YES keyword.

08 28 Meaning: IOSPTHV did not successfully validate
the specified path because an ESTAE
environment could not be established.

Action: Ensure that sufficient private area storage
exists and retry the operation.

0C None Meaning: An unexpected error occurred.

Action: Record the return code and supply it to
the appropriate IBM support personnel.

Example
Determine if a channel path to the SYSRES device is available without changing
the online/offline status of the path. Scan through all UCBs, using the UCBSCAN
macro, and put copies of the DASD UCBs the program finds in a user-supplied
work area called UCBSTOR. When the program finds the SYSRES device, issue the
UCBINFO macro to obtain information about the device path and type of channel
path for the specified UCB. Information, such as the channel path ID and online
status, will appear in the IOSDPATH data area. The program looks through the
channel path information until it finds an online path. Issue the IOSPTHV macro
to test whether the online path is available.
IOSSPTHV CSECT
IOSSPTHV AMODE 31 31-BIT ADDRESSING MODE
IOSSPTHV RMODE ANY Rmode any

SPACE 1
...
* REGISTER ASSIGNMENTS *
...
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6 Dynamic area register
UCBPTR7 EQU 7 UCB Pointer
R8 EQU 8
R9 EQU 9 Module base register
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13 Pointer to standard save area
R14 EQU 14
R15 EQU 15

SPACE 3
TITLE ’IOSSPTHV - IOSPTHV Sample Program’

...
* *
* Standard Entry Linkage *
* *
...

PRINT GEN

IOSPTHV macro

1094 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

USING *,R9 Sets up base register
ENTRY STM R14,R12,12(R13) Save caller’s registers

LR R9,R15 Establish module base register
MODESET KEY=ZERO,MODE=SUP
LA R0,DYNSIZE Load length of dynamic area
STORAGE OBTAIN,LENGTH=((R0)),SP=233 Gets dynamic area
LR R6,R1 Gets dynamic area address
USING DYNAREA,R6 Sets up dynamic area
ST R13,SAVE+4 Save caller’s save area address
LA R15,SAVE Get this module’s save area address
ST R15,8(R13) Save this modules save area address

* in caller’s save area.
LR R13,R15 Set up addressability to this

* module’s save area.
B MAINLINE
DC CL8’IOSSPTHV’
DC CL8’&SYSDATE’
DC CL8’&SYSTIME’
TITLE ’IOSSPTHV - SPTHV mainline ’

...
* *
* MAINLINE *
* *
...
MAINLINE DS 0H
*

L 10,X’10’ Load CVT pointer
USING CVT,10
TM CVTDCB,CVTOSEXT Is the OSLEVEL extension present
BNO NO_IOSPTHV No, pre-MVS/SP Version 3 system

*
TM CVTOSLV1,CVTH5510 Running on version HBB5510?
BNO NO_IOSPTHV No, pre-HBB5510 system. IOSPTHV

* supported on HBB5510 and above
...
* *
* Set up addressability to a storage area called UCBSTOR into which *
* the UCBSCAN macro will return the UCBs of devices it locates. *
* *
...

LA UCBPTR7,UCBSTOR Get address of work area
USING UCB,UCBPTR7 Set up addressability

*
...
* *
* Clear the UCBSCAN work area. *
* *
...

LA R0,SCANWORK Set storage address
LA R1,100 Set storage length
SR R15,R15 Clear second operand
MVCL R0,R14 Clear the storage

*
...
* *
* Loop through all DASD UCBs looking for the SYSRES volume. *
* *
* Note: There must be a SYSRES volume, and hence it will be found *
* in the scan loop which follows. *
* *
...
SCANLOOP UCBSCAN COPY, X

WORKAREA=SCANWORK, X
UCBAREA=UCBSTOR, X
DEVCLASS=DASD, X
MF=(E,SCANLIST)

...

IOSPTHV macro

Chapter 108. IOSPTHV — Validate I/O paths 1095

* *
* If UCBSCAN returned a UCB, check whether the UCB represents *
* the SYSRES volume. If it isn’t, continue checking more UCBs. If *
* the UCB represents the SYSRES device, end the loop. *
* *
...

LTR R15,R15 Test return code
BNZ EXIT_ERROR Exit if non-zero
TM UCBSTAT,UCBSYSR Test if SYSRES volume
BZ SCANLOOP Keep looping if not

*
...
* *
* Issue the UCBINFO macro to obtain path-related information. *
* UCBINFO returns this information in a field called PATHSTOR, *
* mapped by IOSDPATH. *
* *
* Note- Since the device whose path information is sought is the *
* SYSRES device, an online path is certain to be found. *
* No loop counter is used. *
* *
...
*

UCBINFO PATHINFO, X
DEVN=UCBCHAN, X
PATHAREA=PATHSTOR, X
MF=(E,INFOLIST)

...
* *
* If UCBINFO cannot retrieve path-related information, that is, you *
* receive a non-zero return code, exit program. *
* *
...

LTR R15,R15 Test for 0 return code
BNZ EXIT_ERROR Exit if bad RC

...
* *
* Loop through the channel path ID array entries returned in *
* PATHSTOR to find the first online path. An online path *
* is represented by a flag in the array. *
* *
...

LA R10,PATHSTOR Address of PATHINFO data
USING PATH,R10 Set up addressability to

* path information.
SR R8,R8 CHPID array index register.

CHPID_LOOP IC R11,PATHBITS(R8) Get flags from array entry.
STC R11,PATHSAVE Save entry
TM PATHSAVE,X’04’ Test if the path is online
BO CHPID_EXIT If so, exit the loop
LA R8,L’PATHCHPIDARRAY(R8) Increment array index
B CHPID_LOOP

CHPID_EXIT LH R11,PATHCHPID(R8) Get the ID for the online
* channel path.

STC R11,CHPID Save the ID for the online
* channel path.
...
* *
* Test the availability of the first online path to the SYSRES *
* volume by issuing the IOSPTHV macro. Supply the channel *
* path ID of the online path on the CHPID parameter. *
* *
* Note: Although the logical path mask (LPM) indicated that *
* the path was logically online to the device, it is *
* possible that the path is not operational. IOSPTHV *
* performs an I/O operation down the path to *
* determine if a non-operational condition exits. *

IOSPTHV macro

1096 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

* *
...

IOSPTHV DEVN=UCBCHAN, X
CHPID=CHPID, X
MF=(E,PTHVLIST)

...
* *
* A zero return code indicates an operational path to *
* the specified device. A non-zero return code indicates *
* a non-operational path. In the latter case, examine the *
* return and reason code to determine the cause. *
* *
...

LTR R15,R15
BZ PATH_OK
B PATH_NOK

PATH_OK DS 0D
WTO ’IOSSPTHV-FIRST ONLINE PATH TO SYSRES VALIDATED’, X

ROUTCDE=(11),DESC=(2)
B EXIT

PATH_NOK DS 0D
WTO ’IOSSPTHV-FIRST ONLINE PATH TO SYSRES NOT VALIDATED’, X

ROUTCDE=(11),DESC=(2)
*

B EXIT
...
* *
* Return a message to tell the user that the *
* IOSPTHV macro is not available on the system executing *
* this sample program. *
* *
...
NO_IOSPTHV DS 0H

WTO ’IOSSPTHV - IOSPTHV SUPPORTED IN HBB5510 AND HIGHER’, X
ROUTCDE=(11),DESC=(2)
B EXIT

...
* *
* Return a message to the user alerting the user to an error *
* encountered during execution of this sample program. *
* *
...
EXIT_ERROR DS 0H

WTO ’IOSSPTHV - THE SAMPLE ENCOUNTERED AN ERROR’, X
ROUTCDE=(11),DESC=(2)

...
* *
* Clean up and exit. *
* *
...
EXIT DS 0H

L R13,SAVE+4 Reloads caller’s save
* area addr into 11

LA R0,DYNSIZE Loads dynamic area size
STORAGE RELEASE,SP=233,ADDR=(R6),LENGTH=(R0)
MODESET KEY=NZERO,MODE=PROB
LM R14,R12,12(R13) Loads return regs
BR R14 Returns to caller

*
*
..
* *
* DSECTs to map save areas and dynamic area *
* *

IOSPTHV macro

Chapter 108. IOSPTHV — Validate I/O paths 1097

..
DYNSTART DS 0H
DYNAREA DSECT
* Save area

SAVE DS 18F
DS 0D Force doubleword alignment
SPACE 2

..
* *
* List forms of macros. The list and execute forms of these macros *
* are used because this module is reentrant. *
* *
..
LIST_INFOSERV UCBINFO MF=(L,INFOLIST) List form of UCBINFO
INFOSERV_END DS 0D
PATHSTOR DS CL256 Storage for the PATHAREA
PATHSTOR_END DS 0D
LIST_PTHVSERV IOSPTHV MF=(L,PTHVLIST) List form of IOSPTHV
PTHVSERV_END DS 0D
LIST_SCANSERV UCBSCAN MF=(L,SCANLIST) List form of UCBSCAN
SCANSERV_END DS 0D
SCANWORK DS CL100 Scan work area
SCANWORK_END DS 0D
UCBSTOR DS CL48 UCB copy storage
UCBSTOR_END DS 0D
..
* *
* Work variables and data structures local to this module *
* *
..
CHPID DS C CHPID used for IOSCDR invocation
PATHSAVE DS C Work variable for CHPID array
* entries in the PATHAREA.
END_DYN DS 0D
DYNSIZE EQU *-DYNAREA Calculates Dynamic area
*
..
* *
* DSECTs *
* *
..
IOSSPTHV CSECT

TITLE ’IOSSPTHV - DSECT MAPPINGS’
EJECT
CVT LIST=YES,DSECT=YES

*
UCB DSECT

IEFUCBOB
*
PATHAREA IOSDPATH

END IOSSPTHV

IOSPTHV macro

1098 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 109. IOSSCM — Storage class memory information

Description
The IOSSCM macro retrieves storage class memory (SCM) related information,
such as the number of SCM resources and performance statistics.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For LINKAGE=SYSTEM, problem state and any PSW key. For

LINKAGE=BRANCH, supervisor state and key zero.
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: None
Control parameters: Control parameters must be in the primary address space.

For LINKAGE=BRANCH, the parameter list (including any data
areas pointed to by the parameter list) must reside in fixed
or DREF storage.

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the IOSSCM macro, the caller does not have to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

© Copyright IBM Corp. 1988, 2016 1099

|

|

|
|

|
|

|

|

|||
||
|
||
||
||

|
|
||
||
||
||
|
|
|
|

|

|

|

|

|

|
|
|

|

|

|
|

||

||

||

||

||

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IOSSCM
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

CONFIGINFO
DEVINFO

Specifies the type of SCM information to be returned.

CONFIGINFO
Requests that SCM configuration information be returned. SCM
configuration information includes the number of SCM resource parts and
the size of an SCM measurement block.

��
name

� IOSSCM � CONFIGINFO
DEVINFO

, INFOAREA = infoareaptr �

� , INFOAREALEN = infoarealen
0

, OUTVERSION = version
SYSTEM

, LINKAGE = BRANCH

�

�
, RETCODE = retcode , RSNCODE = rsncode

, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 1

�

�
, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

IOSSCM macro

1100 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|||||||||||||||||||||||||||||||||
|

|
|||
|

|
||
|

|
|||

|
|

|

|
|

||

||

||

|
|
|
|

|

|

|

||

|

|

|
|
|
|

|
|
|

|
|
|
|

DEVINFO
Requests that SCM device (subchannel) information be returned. SCM
device information includes I/O statistics for requests that were issued to
each SCM device. Note that the SCM device or subchannel is not
associated with a specific Flash Express feature pair; any SCM device can
be used to perform I/O to any Flash Express feature pair.

,INFOAREA=infoareaptr
On a CONFIGINFO request, infoareaptr specifies the name (RS-type), or address in
register (2) - (12), of a required 8-byte input that contains the address of an
area which is to receive the configuration information. The area must be
addressable in the primary address space. The returned INFOAREA data is
mapped by the IOSDSCCI macro.

On a DEVINFO request, infoareaptr specifies the name (RS-type), or address in
register (2) - (12), of a required 8-byte input that contains the address of an
area which is to receive the device information. The area must be addressable
in the primary address space. The returned INFOAREA data is mapped by the
IOSDSCDI macro.

,INFOAREALEN=infoarealen
On a CONFIGINFO request, infoarealen specifies the name (RS-type), or address in
register (2) - (12), of a required 4-byte input/output area that contains the
length of the configuration information area. If the information area is not
large enough to contain all of the data for the requested output version,
IOSSCM returns a program error and this field will be updated with the
required length.

On a DEVINFO request, infoarealen specifies the name (RS-type), or address in
register (2) - (12), of a required 4-byte input/output area that contains the
length of the device information area. The area must be large enough to
contain the returned information for each SCM device or subchannel. You can
issue a IOSSCM CONFIGINFO request to obtain the number of SCM devices or
subchannels. If the information area is not large enough to contain all of the
data for the requested output version, IOSSCM returns a program error and
this field will be updated with the required length.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Optional keyword input that indicates how the service is to be invoked.
SYSTEM

Indicates that a program call (PC) is to be issued. This is the default.
BRANCH

Indicates that a branch-entry linkage is to be generated. See “Environment”
on page 1099 for the restrictions on the branch-entry invocation.

Default: SYSTEM

,OUTVERSION=0
,OUTVERSION=version

The name (RS-type), or address in register (2) - (12), of an optional 1-byte input
that specifies the output version of the output information to be returned. The
output version controls the size and format of the returned information. If you
specify an output version that is higher than the highest supported version, the
highest supported version is used. The INFOAREA output (mapped by the
IOSDSCCI or IOSDSCDI macro) contains the version of the returned
information.

Note: Currently, version 0 is the only supported value.

IOSSCM macro

Chapter 109. IOSSCM — Storage class memory information 1101

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

Default: 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2) -
(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an optional
input parameter on all forms of the macro, including the list form. When using
PLISTVER, specify it on all macro forms used for a request and with the same
value on all of the macro forms. The values are:
IMPLIED_VERSION

The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
Specifies that you want the parameter list to be the largest size currently
possible. This size might grow from release to release and affect the
amount of storage that your program needs.

If your program can tolerate the size change, IBM recommends that you
always specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

1 Supports all parameters except those specifically referenced in higher
versions.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The

IOSSCM macro

1102 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|

|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
||
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.
,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E,
this can be an RS-type address or an address in register (1) - (12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
When the IOSSCM macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Table 97 identifies the hexadecimal return and reason codes.

Table 97. Return and reason codes for the IOSSCM macro

Return code Reason code Meaning and action

00 – Meaning: The IOSSCM macro completed successfully.

Action: None.

04 01 Meaning: Warning. The requested output version (OUTVERSION) is
not supported. The information area was updated based on the
highest supported output version.

Action: Examine the output version field in the information area
to determine the format of the data that was returned.

08 01 Meaning: Program error. An error occurred when the system
attempted to reference the area specified by the INFOAREA
parameter.

Action: Correct the address specified on the INFOAREA parameter
and reissue the macro.

08 02 Meaning: Program error. The system could not access the caller’s
parameter list.

Action: Check to see if your program inadvertently overlaid the
parameter list generated by the macro.

IOSSCM macro

Chapter 109. IOSSCM — Storage class memory information 1103

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|
|

|

||

|||

|||

|

|||
|
|

|
|

|||
|
|

|
|

|||
|

|
|

Table 97. Return and reason codes for the IOSSCM macro (continued)

Return code Reason code Meaning and action

08 03 Meaning: Program error. The output area specified by the
INFOAREA parameter is not large enough to hold the requested
information. The INFOAREALEN field has been updated with the
required storage length.

Action: Obtain storage for the output information area based on
the returned INFOAREALEN value and reissue the macro.

0C 01 Meaning: Environmental error. Storage class memory is not
supported on this CPC.

Action: None.

0C 02 Meaning: Environmental error. The IOSSCM service is not
available.

Action: None.

0C 03 Meaning: Environmental error. IOSSCM detected that the caller is
not in Primary ASC mode.

Action: None.

0C 04 Meaning: Environmental error. IOSSCM detected that the caller is
not enabled for I/O interrupts.

Action: None.

20 – Meaning: System error. An unexpected error occurred.

Action: Contact IBM Support.

IOSSCM macro

1104 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|

|||

|||
|
|
|

|
|

|||
|

|

|||
|

|

|||
|

|

|||
|

|

|||

|
|

Chapter 110. IOSSPOF — Check for single points of failure

Description
The IOSSPOF macro is used to check for I/O configuration redundancy of DASD
devices or pairs of DASD devices. To do this IOSSPOF verifies that there are
redundant hardware components such that given failure of a hardware component
the availability of the device would be unaffected.

Environment
The requirements for the caller of IOSSPOF are:

Environmental factor Requirement
Dispatchable unit mode: Task mode.
Minimum authorization: Problem state. Any PSW key.
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary
Interrupt status: The caller must be enabled for I/O and external interrupts.
Locks: The caller may not hold any locks.
Control parameters: Control parameters must be in the primary address space.

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the IOSSPOF macro, the caller does not have to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if the return code is not 0. Otherwise, used as a work register
by the system.

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

© Copyright IBM Corp. 1988, 2016 1105

|

.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the IOSSPOF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column
1.

� One or more blanks must precede
IOSSPOF.

IOSSPOF

� One or more blanks must follow
IOSSPOF.

[,xlabel] An optional symbol, starting in
column 1, that is the name on the
IOSSPOF macro invocation. The name
must conform to the rules for an
ordinary assembler language symbol.

DEFAULT: No name.

PERFORM_CHECK

,DEVN1=xdevn1 xdevn1: RS-type address or register (2)
- (12).

[,SCHSET1=xschset1] xschset1: RS-type address or register
(2) - (12).

[,DSN1=xdsn1] xdsn1: RS-type address or register (2) -
(12).

IOSSPOF macro

1106 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

[,DEVN2=xdevn2] xdevn2: RS-type address or register (2)
- (12).

[,SCHSET2=xschset2] xschset2: RS-type address or register
(2) - (12).

[,DSN2=xdsn2] xdsn2: RS-type address or register (2) -
(12).

,VOLSER1=xvolser1 xvolser1: RS-type address or register
(2) - (12).

[,DSN1=xdsn1] xdsn1: RS-type address or register (2) -
(12).

[,VOLSER2=xvolser2] xvolser2: RS-type address or register
(2) - (12).

[,DSN2=xdsn2] xdsn2: RS-type address or register (2) -
(12).

,DEVLIST=xdevlist xdevlist: RS-type address or register
(2) - (12).

,DEVCOUNT=xdevcount xdevcount: RS-type address or register
(2) - (12).

[,DSNLIST=xdsnlist] xdsnlist: RS-type address or register
(2) - (12).

,VOLLIST=xvollist xvollist: RS-type address or register (2)
- (12).

,VOLCOUNT=xvolcount xvolcount: RS-type address or register
(2) - (12).

[,DSNLIST=xdsnlist] xdsnlist: RS-type address or register
(2) - (12).

[,SPOFAREA=xspofarea] xspofarea: RS-type address or register
(2) - (12).

[,HCMSG=NO] Default: NO

[,HCMSG=YES]

[HANDLE=xhandle] xvolser2: RS-type address or register
(2) - (12).

[,WTO=NO] Default: NO

[,WTO=YES]

[,IND_CHECKS=YES] Default: YES

[,IND_CHECKS=NO]

[,IND_CHECKS=ONLY]

[,SWITCH_CHECKS=YES] Default: YES

[,SWITCH_CHECKS=NO]

IOSSPOF macro

Chapter 110. IOSSPOF — Check for single points of failure 1107

Syntax Description

[,CU_CHECKS=YES] Default: YES

[,CU_CHECKS=NO]

[,RETCODE=retcode] retcode: RS-type address or register (2)
- (12).

[,RSNCODE=rsncode] rsncode: RS-type address or register (2)
- (12).

[,PLISTVER=plistver|IMPLIED_VERSION] Default: IMPLIED_VERSION

[,MF=S] Default: MF=S

[,MF=(L,xmfctrl,xmfattr, 0D)]

[,MF=(M,xmfctrl,COMPLETE|NOCHECK)]

[,MF=(E,xmfctrl,COMPLETE|NOCHECK)]

Parameters
The parameters are explained as follows:

,PERFORM_CHECK
Perform single point of failure checks. The following is a set of mutually
exclusive keys. This set is required; only one key must be specified.

,DEVN1=xdevn1
Belongs to a set of mutually exclusive keys. It is the name (RS-type), or
address in register (2)-(12), of a halfword input containing the device
number of a device to check for single points of failure.

,SCHSET1=xschset1
This is the name (RS-type), or address in register (2)-(12), of an optional
byte input that contains the subchannel set of the device associated with
the device number in DEVN1.

Default: 0 (Subchannel set zero).

,DSN1=xdsn1
This is the name (RS-type), or address in register (2)-(12), of an optional
44-character input that contains a data set name or a description of the
dataset associated with device specified in DEVN1. The keyword is only
used for message generation.

Default: * No dataset will be displayed in any outputed messages.

,DEVN2=xdevn2
This is the name (RS-type), or address in register (2)-(12), of an optional
halfword input that contains a device number of a device used to verify
hardware isolation between the devices specified with DEVN1 and this
device.

Default: * Pair checking will not be done.

IOSSPOF macro

1108 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,SCHSET2=xschset2
This is the name (RS-type), or address in register (2)-(12), of an
optional byte input that contains the subchannel set of the device
associated with the device number in DEVN2.

Default: 0 (Subchannel set zero).

,DSN2=xdsn2
This the name (RS-type), or address in register (2)-(12), of an optional
44-character input that contains a data set name or a description of the
dataset associated with device specified in DEVN2. The keyword is
only used for message generation.

Default: * No dataset will be displayed in any outputed messages.

,VOLSER1=xvolser1
Belongs to a set of mutually exclusive keys. It is the name (RS-type), or
address in register (2)-(12), of a 6-character input that contains the VOLSER
of the device to check for a single point of failure.

,DSN1=xdsn1
This is the name (RS-type), or address in register (2)-(12), of an optional
44-character input that contains a data set name associated with volume
specified in VOLSER1. This keyword is only used for message generation.

Default: *

,VOLSER2=xvolser2
It is the name (RS-type), or address in register (2)-(12), of a 6-character
input that contains a VOLSER of a volume used to verify hardware
isolation between the volumes specified with VOLSER1 and this volume.

Default: *

,DSN2=xdsn2
This is the name (RS-type), or address in register (2)-(12), of an
optional 44-character input that contains a data set name associated
with volume specified in VOLSER2. This keyword is used for only
message generation.

Default: *

,DEVLIST=xdevlist
It is the name (RS-type), or address in register (2)-(12), of a one-byte input
that contains the address to an array of fullwords with byte 1 containing
zero, byte 2 containing the subchannel set of the device and bytes
containing the subchannel set of the device and bytes and 3 and 4
containing the device number of the device to be checked. For example,
0001DE61 represents a device in subchannel set one with a device number
of DE61.

Note: Only individual device checks are performed when DEVLIST is
specified.

,DEVCOUNT=xdevcount
This is the name (RS-type), or address in register (2)-(12), of a fullword
input that contains the number of devices in the DEVLIST array.

End of group of keys.

,DSNLIST=xdsnlist
This is the name (RS-type), or address in register (2)-(12), of an optional

IOSSPOF macro

Chapter 110. IOSSPOF — Check for single points of failure 1109

4-byte input that contains the address of an array of CL44 elements that
contain the dataset names of the devices that correspond to the DEVLIST
parameter. This keyword is used for message generation only.

Default: *

,VOLLIST=xvollist
This is the name (RS-type), or address in register (2)-(12), of a one-byte
input that contains the address an array of CL6 elements containing the
VOLSERs of devices to check for single points of failure.

,VOLCOUNT=xvolcount
This is the name (RS-type), or address in register (2)-(12), of a fullword
input containing the number of devices in the VOLLIST array.

End of group of keys.

,DSNLIST=xdsnlist
This is the name (RS-type), or address in register (2)-(12), of an optional
4-byte input that contains the address of an array of CL44 elements
containing the dataset names of the devices that correspond to the
VOLLIST paramemter. This information is used for only message
generation.

Default: *

This ends the of set of mutually exclusive required keywords.

,SPOFAREA=xspofarea
This is the name (RS-type), or address in register (2)-(12), of an optional 4-byte
output that will contain the address that contains the data requested. The data
is mapped by IOSDSPOF, and is only valid if the service ended with a 4 or 8
return code. The SPOFAREA is obtained by the service and must be released
by the caller using the length and subpool specified in the SPOFAREA. The
SPOFAREA may be returned in a subpool that is not associated with the
issuing task and thus, the caller must not assume the storage is automatically
released when the task ends. If the caller is in a PSW key other than key 0-7
when the IOSSPOF service is invoked, the caller must ensure the SPOFAREA
storage is accessed while in a PSW key equal to the key of the calling task.

,HCMSG=NO|YES
This is an optional keyword input that specifies whether or not health checker
messages should be issued automatically with this service. HCMSG=YES
without a HANDLE is only valid when running under IBM Health Checker for
z/OS.

Default: NO.

,HCMSG=NO
Indicates that health checker messages should not be issued.

,HCMSG=YES
Indicates that health checker messages should be issued through
HZSFMSG. HCMSG is only valid when the IOSSPOF service is called from
a Health Check running under control of the IBM Health Checker for
z/OS.

Default: NO

,HANDLE=xhandle
This is the name (RS-type), or address in register (2)-(12), of an optional
16-character input that specifies a handle (token) that identifies the check.

IOSSPOF macro

1110 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

This handle is returned through the HANDLE parameter of the
HZSADDCK macro for a REMOTE=YES check. HANDLE is required when
the service is called from a remote check and is ignored when the service is
called from a local check. If IBM Health Checker for z/OS is not running
at the time of invocation, then a return code of X'10' with a reason code of
'02' will be returned.

Default: * Health checker messages will be issued as a REMOTE=NO call.

,WTO=NO|YES
This is an optional keyword input that specifies whether or not WTOs of
IOSPFxxxI messages will be issued for this service.

Default: NO.

,WTO=NO
Indicates that WTOs will not be issued for this service.

,WTO=YES
Indicates that WTOs will be issued for this service. The IOSPFxxxI
messages will be issued with a ROUTCDE=11.

,IND_CHECKS=YES|NO|ONLY
This is an optional keyword input that specifies whether or not single points of
failure for individual devices should be checked. For example, checks that are
not comparing two devices for mutual single points of failure should be done.
This keyword is ignored if a single device is specified. The specific device
checks like the following are preformed if YES is specified.
v Check to see if a device has only one path available.
v Check to see if the paths of the device share internal hardware subchannel

components.

Default: YES.

,IND_CHECKS=YES
Indicates that individual device checks should be made. That is, all
checks should be made.

,IND_CHECKS=NO
Indicates that individual device checks should not be made or only
pair checks should be made.

,IND_CHECKS=ONLY
Indicates that only individual device checks should be made or no pair
checks should be made.

,SWITCH_CHECKS=YES|NO
This is an optional keyword input that specifies whether or not to check for
switch related single points of failure. It applies to individual and pairs checks.
The following specific device checks are performed if YES is specified:
v Check if all online CHPIDs are connected to the same switch.
v Check if all devices are connected to the same switch.

Default: YES.

,SWITCH_CHECKS=YES
Indicates that switch related checks should be made.

,SWITCH_CHECK=NO
Indicates that switch related checks should not be made.

IOSSPOF macro

Chapter 110. IOSSPOF — Check for single points of failure 1111

,CU_CHECKS=YES|NO
This is an optional keyword input specifies whether or not to check for control
unit related single points of failure. It applies to individual and pair checks.
The following specific device checks are performed if YES is specified:
v Check if all devices are in the same DASD logical subsystem (LSS).
v Check if all devices are in the same physical control unit.
v Check if all devices are sharing the same set of control unit interfaces.

This keyword is ignored if a single device is specified. That is, DEVN1 is
specified without DEVN2 or VOLSER1 is specified without VOLSER2.

Default: YES.

,CU_CHECKS=YES
Indicates that control unit related checks should be made.

,CU_CHECKS=NO
Indicates that control unit related checks should not be made.

,RETCODE=retcode
The name (RS-type) of an optional fullword output variable, or register (2)-(12)
or (15), into which the return code is to be copied from GPR 15. If you specify
15, GPR15, REG15, or R15 (within or without parentheses), the value will be
left in GPR15.

,RSNCODE=xrsncode
The name (RS-type) of an optional fullword output variable into which the
reason code is to be copied from GPR 0. If you specify 0, 00, GPR00, REG0,
REG00, or R0 (within or without parentheses), the value will be left in GPR 0.

,PLISTVER=plistver | MAX | IMPLIED_VERSION
Is an optional byte input decimal value in the "1–1" range that specifies the
macro version. PLISTVER is the only key allowed on the list form of MF and
determines which parameter list is generated. Note that MAX may be specified
instead of a number and will cause the parameter list to be of the largest size
currently supported. This size may grow from release to release (thus possibly
affecting the amount of storage needed by your program). If your program can
tolerate this, IBM recommends that you always specify MAX when creating the
list form parameter list as this will ensure that the list form parameter list is
always long enough to hold whatever parameters might be specified on the
execute form.

Default: IMPLIED_VERSION. When PLISTVER is omitted, the default is the
lowest version which allows all of the parameters specified on the invocation
to be processed.

,MF=S|L|M|E
An optional keyword input that specifies the macro form.

Default: S.

,MF=S Specify the standard form of the macro. The "S" form builds an inline
parameter list and generates the macro invocation to transfer control to
the service. Full checking for required macro keys is done along with
supplying defaults for omitted optional parameters.

,MF=(L,xmfctrl,xmfattr, 0D)
Specifies the list form of the macro. The "L" form defines an storage
area for the parameter list. Only the PLISTVER key can be specified on

IOSSPOF macro

1112 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

the invocation. All other macro parameters are flagged as errors. If
PLISTVER is not specified, the original parameter list definition is
used.

xmfctrl
A required input. It is the name of a storage area for the
parameter list.

xmfattr
An optional 60-character input string that varies from 1 to 60
characters. Use it to force boundary alignment of the parameter
list. Use only 0F or 0D. The default is 0D, which forces the
parameter list to a doubleword boundary.

,MF=(M,xmfctrl,COMPLETE|NOCHECK)
Specifies the modify form of the macro. The "M" form generates code
to put the parameters into the parameter list specified by xmfctrl.

xmfctrl
A required input. It is the name (RS-type), or address in
register (1)-(12), of a storage area for the parameter list.

,COMPLETE|NOCHECK
An optional keyword input that specifies the degree of macro
parameter syntax checking.

Default: COMPLETE.

,COMPLETE
Specifies that the system is to check for required
parameters and supply defaults for omitted optional
parameters.

,NOCHECK
Checking for required macro keys is not done or defaults
are not supplied for omitted optional parameters.

,MF=(E,xmfctrl,COMPLETE|NOCHECK
Specifies the execute form of the macro. The "E" form generates code to
put the parameters into the parameter list specified by xmfctrl and
invoke the desired service.

xmfctrl
A required input. It is the name (RS-type), or address in
register (1)-(12), of a storage area for the parameter list.

,[COMPLETE|NOCHECK]
An optional keyword input that specifies the degree of macro
parameter syntax checking.

Default: COMPLETE.

,COMPLETE
Specifies that the system is to check for required
parameters and supply defaults for omitted optional
parameters.

,NOCHECK
Checking for required macro keys is not done or defaults
are not supplied for omitted optional parameters.

IOSSPOF macro

Chapter 110. IOSSPOF — Check for single points of failure 1113

ABEND codes
None.

Return codes
Return codes, in hexadecimal, from the IOSSPOF macro are as follows:

Hexadecimal Return
Code

Equate Symbol Meaning and Action

00 Equate Symbol: SPOF_RC_Ok

Meaning: No single points of failure detected.

Action: None.

04 Equate Symbol: SPOF_RC_SomeChecksFailed

Meaning: The service couldn't perform all checks specified, but no single points
of failure were detected.

Action: Some checks may fail due to switch devices not being online at the
time of the check. All switch devices must be online to determine if control unit
interfaces are single point of failure free.

08 Equate Symbol: SPOF_RC_SPOFFound

Meaning: Single points of failure were detected.

Action: Refer to IOSPFxxxI message for action.

Hex Reason Code
Meaning/Action

00 Equate Symbol: SPOF_RSN_AllDevicesFound

Meaning: While a single point of failure was discovered all devices
were found.

01 Equate Symbol: SPOF_RSN_DeviceNotFound

Meaning: Single points of failure were detected, and one or more of
the devices specified are not found.

IOSSPOF macro

1114 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Hexadecimal Return
Code

Equate Symbol Meaning and Action

0C Equate Symbol: SPOF_RC_ProgramError

Meaning: Program error.

Action: None.

Hex Reason Code
Meaning/Action

01 Equate Symbol: SPOF_RSN_InvalidParmListVers

Meaning: It was discovered that the macro was invoked with an
invalid parameter list.

Action: Specify a valid parameter list version.

02 Equate Symbol: SPOF_RSN_InvalidCount

Meaning: The number of devices specified via the DEVCOUNT
parameter or volume serial numbers via the VOLCOUNT parameter
is invalid.

Action: Change DEVCOUNT or VOLCOUNT to be less than 65536
and greater than zero.

03 Equate Symbol: SPOF_RSN_ImproperModes

Meaning: IOSSPOF was invoked in an improper mode.

Action: See environment specification for what modes IOSSPOF can
be invoked and only invoke in supported modes.

04 Equate Symbol: SPOF_RSN_ImproperDevlistEntry

Meaning: A device in the device list did not match the format
'000sdddd' where '000s' is the subchannel set and 'dddd' is the device
number.

Action: Adjust DEVLIST parameter to match the format.

05 Equate Symbol: SPOF_RSN_BadParmListAccess

Meaning: Abend accessing parameter list.

Action: Verify that the parameters can be accessed by invokers key.

10 Equate Symbol: SPOF_RC_EnvironError

Meaning: Environmental error.

Action: None.

Hex Reason Code
Meaning/Action

01 Equate Symbol: SPOF_RSN_IOSSPOFNotAvail

Meaning: The IOSSPOF service is not available at this time.

Action: Wait until the IOSAS address space is available.

02 Equate Symbol: SPOF_RSN_HlthChkerNotAvail

Meaning: The Health Checker environment isn't available and is
available if HCMSG=YES and HANDLE is specified.

Action: Start the Health Checker if HCMSG=YES is required.

20 Equate Symbol: SPOF_RC_SystemError

Meaning: System error.

Action: None.

IOSSPOF macro

Chapter 110. IOSSPOF — Check for single points of failure 1115

Return and reason codes
Macro IOSDSPOF provides equate symbols for the return and reason codes.

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning

00 00 Always set.

04 00 Always set.

08 00 Single points of failure were detected, all devices
are found.

08 01 Single points of failure were detected, and one or
more of the devices specified are not found.

0C 01 Incorrect parameter list version.

0C 02 The number of devices specified through the
DEVCOUNT parameter or volume serial numbers
specified through the VOLCOUNT parameter is
incorrect.

0C 03 The caller is in an improper mode when invoked.

0C 04 A device in the device list does not match the
format '000sdddd' where '000s' is subchannel set
and 'dddd' is the device number.

0C 05 Abend accessing parameter list.

10 01 The IOSSPOF service is not available at this time.

10 02 The Health Checker service is not available at this
time.

20 00 Always set.

IOSSPOF - List form
Use the list form of the IOSSPOF macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage that the execute form uses to contain the parameters.

Syntax
The list form of the IOSSPOF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSSPOF.

IOSSPOF

� One or more blanks must follow IOSSPOF.

[,PLISTVER={xplistver | MAX |
IMPLIED_VERSION}]

Default: IMPLIED_VERSION

IOSSPOF macro

1116 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,MF=(L,xmfctrl,xmfattr, 0D), xmfctrl: RS-type name or address in register (2)–(12).

xmfattr: Any text up to 60 characters.Default: 0D

Parameters
The parameters are explained under the standard form of the IOSSPOF macro,
with the following exception:

,MF=(L,xmfctrl{,xmfattr|0D})
L specifies the list form of the macro. The "L" form defines an area to be used
for the parameter list. Only the PLISTVER key may be specified on the
invocation. All other macro parameters are flagged as errors. If PLISTVER is
not specified, the original parameter list definition is used.

,xmfctrl
This required input is the RS-type name, or address in register (1)–(12), of
a storage area for the parameter list.

,xmfattr|0D
This is an optional 60 character input string which is used to force
boundary alignment of the parameter list. Use only 0F or 0D.

The default is 0D, which forces the parameter list to a doubleword
boundary.

IOSSPOF - Execute form
Use the execute form of the IOSSPOF macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the IOSSPOF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSSPOF.

IOSSPOF

� One or more blanks must follow IOSSPOF.

[,PLISTVER={xplistver | MAX |
IMPLIED_VERSION}]

Default: IMPLIED_VERSION

,MF=(L,xmfctrl,xmfattr, 0D), xmfctrl: RS-type name or address in register (2)–(12).

xmfattr: Any text up to 60 characters.Default: 0D

IOSSPOF macro

Chapter 110. IOSSPOF — Check for single points of failure 1117

Syntax Description

Parameters
The parameters are explained under the standard form of the IOSSPOF macro,
with the following exception:

,MF=(E,xmfctrl{,COMPLETE})
E specifies the execute form of the macro. The "E" form generates code to put
the parameters into the parameter list specified by xmfctrl and provides full
syntax checking with default setting.

,xmfctrl
This required input is the RS-type name, or address in register (1)–(12), of
a storage area for the parameter list.

,COMPLETE
An optional keyword which specifies the degree of macro parameter
syntax checking. When complete checking is enabled, required parameters
are checked and defaults are supplied for omitted optional parameters.

Default: COMPLETE

IOSSPOF macro

1118 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 111. IOSUPFA — Obtain address of the UCB prefix
extension segment

Note: The UCBLOOK macro is the preferred programming interface.

Description
The IOSUPFA macro obtains the address of the UCB prefix extension segment. To
map the UCB prefix extension segment, use the IOSDUPFX mapping macro.

The IOSUPFA macro provides faster performance than the UCBLOOK macro;
however, if the caller uses UCBLOOK to obtain several addresses in the same
invocation, UCBLOOK might provide better performance than an IOSUPFA macro
and an IOSCMXA macro. The UCBLOOK macro also validates input parameters
and provides recovery.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: The input parameter must be in the primary address space.

If the caller is disabled, the parameter list must reside in
fixed or disabled reference (DREF) storage.

Programming requirements
The caller must pass a valid captured or actual UCB address.

The caller must pin the UCB or otherwise guarantee that the UCB will not be
deleted. (If the caller issues a UCBLOOK macro with the PIN parameter to pin the
UCB, use the UCBLOOK UCBPXPTR parameter rather than the IOSUPFA macro.)

The caller must supply recovery to handle any unexpected errors, such as abends.

Restrictions
None.

Input register information
Before issuing the IOSUPFA macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2016 1119

Register
Contents

0-1 Used as a work register by the system

2-13 Unchanged

14 Return address

15 Used as a work register by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as a work register by the system

2-13 Unchanged

14-15 Used as a work register by the system

Performance implications
None.

Syntax
The standard form of the IOSUPFA macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSUPFA.

IOSUPFA

� One or more blanks must follow IOSUPFA.

UCBPTR=ucbptr addr ucbptr addr: RX-type address or register (2) - (12).

,UCBPADDR=ucbpaddr addr ucbpaddr addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

UCBPTR=ucbptr addr
Specifies the address of a fullword field that contains the address of the UCB
common segment. This address must not be associated with a copy of the
UCB.

,UCBPADDR=ucbpaddr addr
Specifies the address of a fullword field in which the system returns the

IOSUPFA macro

1120 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

address of the UCB prefix extension segment. Use the IOSDUPFX mapping
macro to map the UCB prefix extension segment.

ABEND codes
None.

Return and reason codes
None.

IOSUPFA - List form
Use the list form of the IOSUPFA macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to contain the
parameters.

This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros.

Syntax
The list form of the IOSUPFA macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSUPFA.

IOSUPFA

� One or more blanks must follow IOSUPFA.

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the IOSUPFA macro with
the following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IOSUPFA macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to

IOSUPFA macro

Chapter 111. IOSUPFA — Obtain address of the UCB prefix extension segment 1121

force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

IOSUPFA - Execute form
Use the execute form of the IOSUPFA macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the IOSUPFA macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSUPFA.

IOSUPFA

� One or more blanks must follow IOSUPFA.

UCBPTR=ucbptr addr ucbptr addr: RX-type address or register (2) - (12).

,UCBPADDR=ucbpaddr addr ucbpaddr addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the IOSUPFA macro with
the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the IOSUPFA macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply defaults for omitted optional parameters.

IOSUPFA macro

1122 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 112. IOSUPFR — Obtain address of the UCB prefix
extension segment

Description
Use the IOSUPFR macro to obtain the address of the UCB prefix extension
segment. To map the UCB prefix extension segment, use the IOSDUPFX mapping
macro.

UCBLOOK and IOSUPFA macros also provide this function. However, IOSUPFR
provides an alternative for passing parameters (that is, in general purpose register
(GPR) 1 rather than in a parameter list). For guidance about obtaining UCB
information, see z/OS MVS Programming: Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None

Programming requirements
The caller must pass a valid captured or actual UCB address.

The caller must pin the UCB or otherwise guarantee that the UCB will not be
dynamically deleted.

The caller must supply recovery to handle any unexpected errors, such as abends.

Restrictions
None.

Input register information
Before issuing the IOSUPFR macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

1 Address of UCB common segment

Before issuing the IOSUPFR macro, the caller does not have to place any
information into any access register (AR).

© Copyright IBM Corp. 1988, 2016 1123

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Used as a work register by the system.

1 Address of the UCB prefix extension

2-13 Unchanged

14-15 Used as work registers by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-15 Unchanged

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the IOSUPFR macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSUPFR.

IOSUPFR

� One or more blanks must follow IOSUPFR.

MF=(S) Default: S

Parameters
The parameters are explained as follows:

MF=(S)
Specifies the standard form of the macro. This parameter is optional.

ABEND codes
None.

IOSUPFR macro

1124 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return and reason codes
None.

IOSUPFR macro

Chapter 112. IOSUPFR — Obtain address of the UCB prefix extension segment 1125

1126 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 113. IOSVRYSW — Vary switch service

Description
IOSVRYSW provides an interface to the VARY SWITCH process to configure a
switch port online or offline to Dynamic Channel Path Management (DCM).
Invoking this interface for a switch port also causes the specific managed device
paths to be varied online or offline. An online request causes the managed channel
paths to become eligible to DCM. An offline request causes the managed channel
paths to be removed from the control units connected to the managed channel path
IDs (CHPIDs) at the specified ports. This command affects only managed device
paths. Non-managed paths must be varied online or offline separately.

Note: VARY SWITCH command performs the same function when it is issued
from a console. For more information, see Placing a Switch Port Online or Offline
in z/OS MVS System Commands.

Macro IOSDVSAP maps each element of the array of resource elements that is
passed to the VARY SWITCH programming interface. Each element is created by a
separate IOSVRYSW BUILD invocation and represents a vary switch port online,
offline, or offline and unconditional request.

Note: The caller is responsible for obtaining the right amount of storage for the
array of resource elements before the first IOSVRYSW BUILD request.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, or PSW key 0-7, or APF-authorized
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
Programs invoking this interface must include mapping macro IOSDVSAP.

Restrictions
None.

Input register information
Before issuing the IOSVRYSW macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Register
Contents

© Copyright IBM Corp. 1988, 2016 1127

0 Undefined

1 Used by the service

2-13 Undefined

14-15 Used by the service

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code (valid for TYPE=INVOKE, unpredictable otherwise)

1 Unpredictable

2-13 Unchanged

14 Unpredictable

15 Return code (valid for TYPE=INVOKE, unpredictable otherwise)

When control returns to the caller, the ARs contain:

Register
Contents

0-15 Unchanged

Performance implications
None.

Syntax
The standard form of the IOSVRYSW macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IOSVRYSW.

IOSVRYSW

� One or more blanks must follow IOSVRYSW.

TYPE=BUILD

,REQUEST=ONLINE Default: ONLINE

,REQUEST=OFFLINE

,OPTION=UNCOND Default: NONE

IOSUPFR macro

1128 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,SWITCHDEV=switchdev switchdev: RS-type name, or address in register (2)-(12).

,PORTADDR=portaddr portaddr: RS-type name, or address in register (2)-(12).

INVOKE

,DATAADDR=dataaddr dataaddr: RS-type name, or address in register (2)-(12).

,DATANUM=datanum datanum: RS-type name, or address in register (2)-(12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12). Can only be specified with an
INVOKE request.

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12). Can only be specified with an
INVOKE request.

,MF=(E,list addr) list addr: RS-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained as follows:

TYPE=BUILD
Specifies a required keyword input which indicates that the macro is being
invoked to construct vary switch parameters.

REQUEST=ONLINE
REQUEST=OFFLINE

Specifies an optional keyword input which indicates the type of request to
process.
v ONLINE: The request is to configure a switch port online to Dynamic

Channel Path Management. The default is ONLINE.
v OFFLINE: The request is to configure a switch port offline to Dynamic

Channel Path Management.

OPTION=UNCOND
Specifies an optional keyword input which indicates an additional option
to be processed along with an OFFLINE request.

UNCOND: This option is used to specify an UNCOND request on the
VARY PATH commands invoked as a result of the VARY SWITCH request.
Adding the UNCOND keyword to a VARY PATH,OFFLINE command
results in the system taking offline the last path to devices that are online
but unallocated.

IOSUPFR macro

Chapter 113. IOSVRYSW — Vary switch service 1129

SWITCHDEV=switchdev
Specifies an RS-type name, or address in register (2)-(12), of a required
halfword input which indicates the switch device number to be affected.

PORTADDR=portaddr
Specifies an RS-type name, or address in register (2)-(12), of a required byte
input which indicates the port address to be affected.

TYPE=INVOKE
Specifies a required keyword input which indicates to perform the requested
Vary Switch function built by one or multiple IOSVRYSW BUILD requests.

DATAADDR=dataaddr
Specifies an RS-type name, or address in register (2)-(12), of a required 4
byte input that contains the address to the array of resource elements to be
processed. Each element is created by an IOSVRYSW BUILD invocation
and is mapped by mapping macro IOSDVSAP.

DATANUM=datanum
Specifies an RS-type name, or address in register (2)-(12), of a required
fullword input that contains the number of elements in the array of
resource elements to be processed.

RETCODE=retcode
Specifies an RS-type name of an optional fullword output variable, or register
(2)-(12), into which the return code is to be copied from GPR 15.

Note: This keyword can only be specified with an INVOKE request.

RSNCODE=rsncode
Specifies an RS-type name of an optional fullword output variable, or register
(2)-(12), into which the reason code is to be copied from GPR 0.

Note: This keyword can only be specified with an INVOKE request.

MF=(E,list addr)
MF=(E,list addr,COMPLETE)

Specifies the execute form of the IOSVRYSW macro.

list addr
Specifies the area that the system uses to contain the parameters.

COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters. COMPLETE is the default.

ABEND codes
None.

Return and reason codes

Note: There are no return or reason codes for TYPE=BUILD.

When the system returns control to the caller, GPR 15 (and retcode, when you code
RETCODE) contains a return code.

The following table identifies the hexadecimal return codes:

IOSUPFR macro

1130 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 98. Return Codes for the IOSVRYSW Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: Successful completion.

Action: None required.

10 Meaning: An unexpected error occurred in vary switch processing.

Action: Verify the configuration in effect and resubmit the request. If the request
fails again for the same reason, search problem reporting data bases for a fix for
the problem. If no fix exists, contact the IBM Support Center.

FF04 Meaning: Storage passed on the DATAADDR was not accessible by the service.

Action: Verify that accessible storage is being passed.

FF08 Meaning: The attempt to queue a work element to the IOS address space failed.
Request is currently not able to be performed.

Action: Search problem reporting data bases for a fix for the problem. If no fix
exists, contact the IBM Support Center.

FF0C Meaning: VSAP data is readable but not valid.

Action: Verify that the correct data is being passed.

FF10 Meaning: Caller is not in a valid environment to invoke the IOSVRYSW API.

Action: Insure that the caller is running in the correct environment.

FF14 Meaning: Module IOSVVSWF suffered a catastrophic error. Function could not
be processed.

Action: Search problem reporting data bases for a fix for the problem. If no fix
exists, contact the IBM Support Center.

FF18 Meaning: Module IOSVVSWF could not establish a recovery environment.

Action: Resubmit the request. If the request fails again for the same reason,
search problem reporting data bases for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Hexadecimale Reason Codes: None.

IOSVRYSW—List form
Use the list form of the IOSVRYSW macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to contain the
parameters.

Syntax
The list form of the IOSVRYSW macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IOSVRYSW.

IOSVRYSW

IOSUPFR macro

Chapter 113. IOSVRYSW — Vary switch service 1131

Syntax Description

� One or more blanks must follow IOSVRYSW.

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IOSVRYSW macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

Examples
An example of issuing three IOSVRYSW TYPE=BUILD and an IOSVRYSW
TYPE=INVOKE invocations to process three switch ports.

Initial Setup:
v Define the list form of the macro
v Obtain storage for the array of resource elements (See mapping macro

IOSDVSAP in z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/))

v Establish addressability to the area
v Clear the area
v Set up a pointer, pointing to the beginning of the area
v Base VSAP_RESOURCE structure on the pointer that points to the beginning of

this area.
v For EACH port to be altered (for each request), issue IOSVRYSW TYPE=BUILD:

– IOSVRYSW TYPE=BUILD,
REQUEST=ONLINE,
SWITCHDEV=switch
PORTADDR=port_address

– Advance the pointer by length of VSAP_RESOURCE to the next slot in the
array

– IOSVRYSW TYPE=BUILD,
REQUEST=ONLINE,
SWITCHDEV=switch
PORTADDR=port_address

– Advance the pointer by length of VSAP_RESOURCE to the next slot in the
array

IOSUPFR macro

1132 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

– IOSVRYSW TYPE=BUILD,
REQUEST=ONLINE,
SWITCHDEV=switch
PORTADDR=port_address

– Issue IOSVRYSW TYPE=INVOKE to process the requests, passing in the
pointer to the array of resource elements and the number of elements to the
processing module.

– IOSVRYSW TYPE=INVOKE,
DATAADDR=pointer to the array of resource elements,
DATANUM=number of elements to be processed

(ports to be altered),
RETCODE=RETURN_CODE,
RSNCODE=REASON_CODE,
MF=(E, IOSVRYSW_LIST)

IOSUPFR macro

Chapter 113. IOSVRYSW — Vary switch service 1133

IOSUPFR macro

1134 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 114. IOSWITCH — IOS switch information service

Description
IOSWITCH provides a service which callers outside the IOS address space can use
to obtain physical topology information about a specific switch and its ports.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem or Supervisor state. Any PSW key.
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks may be held.
Control parameters: Must be in the primary address space.

Programming requirements
None.

Restrictions
The invoker must not hold any locks which would prevent this service from
obtaining the IOSYNCH lock. The service must not be invoked until after the IOS
space-switching PC table has been established.

Input register information
Before issuing the IOSWITCH macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
The contents of registers 14 through 1 are altered during processing.

When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

1 Unpredictable (Used as a work register by the system)

2-13 Unchanged

14 Unpredictable (Used as a work register by the system)

15 Return code

When control returns to the caller, the ARs contain:

© Copyright IBM Corp. 1988, 2016 1135

Register
Contents

0-1 Unpredictable (Used as work registers by the system)

2-13 Unchanged

14-15 Unpredictable (Used as work registers by the system)

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The IOSWITCH macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IOSWITCH.

IOSWITCH

� One or more blanks must follow IOSWITCH.

SWITCH=switch switch: Symbol up to 4 characters long.

,SWITCHAREA=switcharea switcharea: RS-type address or address in register (2) - (12).

,SWITCHLEN=switchlen switchlen: RS-type address or address in register (2) - (12).

,SUBPOOL=subpool subpool: RS-type address or address in register (2) - (12).

,OFFLINE

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=1

IOSWITCH macro

1136 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IOSWITCH
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

SWITCH=switch
A required 4-character input parameter containing the switch device number.

SWITCHAREA=switcharea
A required 4-byte output parameter that will receive the address of the switch
data area. The storage for this data must be released by the caller. This data is
mapped by IOSDSWTD.

SWITCHLEN=switchlen
A required fullword output parameter that will receive the length, in bytes, of
the switch data area.

SUBPOOL=subpool
The name (RS-type), or address in register (2) - (12), of a required halfword
input parameter that identifies the subpool to be used for obtaining storage for
the switch data area.

See the list of subpool characteristics in z/OS MVS Programming: Authorized
Assembler Services Guide for information about authorization requirements for
specific subpools.

When the calling program is unauthorized, storage is obtained in the specified
subpool, provided that the caller is permitted to use that subpool. Storage will
be obtained in the caller’s key; however, the resulting key will be set according
to the rules for the specified subpool, as documented in z/OS MVS
Programming: Assembler Services Guide. Valid subpools are: 0 - 127, 131, and 132.

When the calling program is authorized, storage is obtained in key 0. Valid
subpools are: 226, 227, 228, 231, 239, 241, 245, 247, and 248.

OFFLINE
An optional keyword that indicates that data will be returned for the switch
device even if the device is offline. Note that if the device is in fact offline, the
data may be outdated.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

IOSWITCH macro

Chapter 114. IOSWITCH — IOS switch information service 1137

|
|
|

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 1, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

IOSWITCH macro

1138 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
When the IOSWITCH macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes:

Table 99. Return and reason codes for the IOSWITCH macro

Hexadecimal return
code

Reason codes, meaning and action

00 IOSWITCH completed successfully.

04 Warning.

Reason code
Meaning/action

01 Meaning: The switch device provided by the caller is offline. No data
is returned.

Action: To obtain data for the offline switch, use the OFFLINE
keyword.

02 Meaning: The IOSWITCH service is not enabled at this time. No data
is returned.

Action: Try the service again at a later time.

03 Meaning: The switch table is not available. No data is returned.

Action: Check dynamic channel path management status, as it pertains
to the switch table availability.

IOSWITCH macro

Chapter 114. IOSWITCH — IOS switch information service 1139

Table 99. Return and reason codes for the IOSWITCH macro (continued)

Hexadecimal return
code

Reason codes, meaning and action

08 Program error.

Reason code
Meaning/action

01 Meaning: An authorized calling program specified an unauthorized
subpool or an unsupported authorized subpool.

Action: Correct the subpool and reissue the IOSWITCH macro.
Authorized programs are restricted to subpools 226, 227, 228, 231, 239,
241, 245, 247, and 248.

For a list of subpool characteristics, see z/OS MVS Programming:
Authorized Assembler Services Guide.

02 Meaning: The switch device number provided by the caller is not in
the switch table.

Action: Correct the switch device number and reissue the IOSWITCH
macro.

03 Meaning: Program error. An error occurred in accessing the caller's
parameter list.

Action: Ensure that the storage area for the parameter list is
addressable in the caller's primary address space using the key of the
caller.

04 Meaning: An unauthorized calling program specified an authorized
subpool or an unsupported unauthorized subpool.

Action: Correct the subpool and reissue the IOSWITCH macro.
Unauthorized programs are restricted to subpools 0 - 127, 131, and
132.

For a list of subpool characteristics, see z/OS MVS Programming:
Assembler Services Guide.

20 System error. An unexpected error occurred.

IOSWITCH macro

1140 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|
|

|
|

Chapter 115. IOSZHPF — zHPF channel program capabilities
service

Description
The IOSZHPF macro provides information about the zHPF capabilities of a device
from the operating system, processor, channel, and device point of view. The
information returned is mapped by IOSDZHPF and reflects the minimum
capability of all of the online channels for a device. For example, if a device has
two online channels and one channel supports a new function and the other does
not, that function will not be reported.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem or supervisor state. Any PSW key.
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 31- bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: If the caller is disabled, the parameter list must reside in

fixed or disabled reference (DREF) storage.

Programming requirements
Users of this macro must make sure that the UCB will not be deleted. The
application must pin the UCB, or make sure that the environment it is executing
in, will not allow the UCB to be deleted.

This service will not have any recovery. The user must supply recovery to handle
any unexpected errors.

Restrictions
None.

Input register information
Before issuing the IOSZHPF macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a 144 byte save area

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

© Copyright IBM Corp. 1988, 2016 1141

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

Performance implications
None.

Syntax
The standard form of the IOSZHPF macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IOSZHPF.

IOSZHPF

� One or more blanks must follow IOSZHPF.

INFOAREA=infoarea infoarea: RX-type address or register (2) - (12).

,UCBPTR=ucbptr ucbptr: RX-type address or register (2) - (12).

,DEVINFO=NO Default: NO

,DEVINFO=YES

,LINKAGE=BRANCH

,RETCODE=xretcode xretcode: RX-type address or register (2) - (12).

,RSNCODE=xrsncode xrsncode: RX-type address or register (2) - (12).

,PLISTVER={xplistver | MAX |
IMPLIED_VERSION}

Default: PLISTVER=IMPLIED_VERSION

Parameters
The parameters are explained as follows:

IOSZHPF macro

1142 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

name
An optional symbol, starting in column 1, that is the name on the IOSZHPF
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

INFOAREA=infoarea
The name (RS-type), or address in register (2)-(12), of a required 32 character
input into which IOSZHPF is to return the zHPF channel program information.
This area is mapped by IOSDZHPF.

,UCBPTR=ucbptr
The name (RS-type), or address in register (2)-(12), of a required 4 byte input
that contains the address of the UCB (common segment address mapped by
IEFUCBOB) whose zHPF information is to be obtained.

,DEVINFO=NO
,DEVINFO=YES

Specifies whether the device-related zHPF capabilities should be returned.

NO The device-related zHPF capabilities should not be returned. NO is the
default.

YES
The device-related zHPF capabilities should be returned.

,LINKAGE=BRANCH
An optional keyword input that indicates that branch-entry linkage should be
issued for the routine invocation.

,RETCODE=xretcode
The name (RS-type), or register (2)-(12), of an optional fullword output into
which the return code is to be copied from GPR 15.

,RSNCODE=xrsncode
The name (RS-type), or register (2)-(12), of an optional fullword output into
which the reason code is to be copied from GPR 0.

,PLISTVER=xplistver | MAX | IMPLIED_VERSION
An optional byte input decimal value in the "1-1" range that specifies the
macro version. PLISTVER is the only key allowed on the list form of MF and
determines which parameter list is generated. Note that MAX may be specified
instead of a number and will cause the parameter list to be of the largest size
currently supported. This size may grow from release to release (thus possibly
affecting the amount of storage needed by your program). If your program can
tolerate this, IBM recommends that you always specify MAX when creating the
list form parameter list as this will ensure that the list form parameter list is
always long enough to hold whatever parameters might be specified on the
execute form.

Default: IMPLIED_VERSION. When PLISTVER is omitted, the default is the
lowest version which allows all of the parameters specified on the invocation
to be processed.

ABEND codes
None.

Return and reason codes
When the IOSZHPF macro returns control to your program:
v GPR 15 (and xretcode when you code RETCODE) contains a return code.

IOSZHPF macro

Chapter 115. IOSZHPF — zHPF channel program capabilities service 1143

v When the value in GPR 15 is not zero, GPR 0 (and xrsncode when you code
RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes:

Return Code Meaning

00 Successful completion

04 Warning

Reason Code
Meaning

01 zHPF is disabled for the device.

08 Program error

Reason Code
Meaning

01 The UCB address provided by the caller does not represent a
valid UCB.

IOSZHPF macro

1144 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 116. IQPINFO — Obtain PCIe information

Description
The IQPINFO macro provides PCIe-related information, including any performance
statistics.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in the primary address space.

Programming requirements
None.

Restrictions
Be aware that, with the IBM z13™ enhancement of the IQPINFO service, it is
possible that the required buffer length can change depending on the device (such
as RoCE or zEDC devices) because different devices each return their specialized
data. Therefore, callers of the IQPINFO service must be prepared that the required
length that is returned in the PERFDATALEN parameter might not be valid for all
devices.

Input register information
Before issuing the ENQ macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller of the IQPINFO macro, the general purpose
registers (GPRs) contain:

Register
Contents

0 Unchanged

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

© Copyright IBM Corp. 1988, 2016 1145

|
|
|
|
|
|

When control returns to the caller of the IQPINFO macro, the access registers
(ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service and restore them
after the system returns control.

Performance implications
None.

Syntax
The IQPINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IQPINFO.

IQPINFO

� One or more blanks must follow IQPINFO.

PERFDATA

,FCNINDEX=xfcnindex xfcnindex: RS-type address or address in register (2) - (12).

,PERFDATAPTR=xperfdataptr xperfdataptr: RS-type address or address in register (2) - (12).

,PERFDATALEN=xperfdatalen xperfdatalen: RS-type address or address in register (2) - (12).

,LINKAGE=BRANCH Default: BRANCH

,RETCODE=xretcode xretcode: RS-type address or address in register (2) - (12) or (15).

,RSNCODE=xrsncode xrsncode: RS-type address.

,PLISTVER=xplistver

IQPINFO macro

1146 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

,MF=S Default: MF=S

,MF=(L,xmfctrl,xmfattr | 0D)

,MF=(E,xmfctrl,COMPLETE)

Parameters
The parameters are explained as follows:

PERFDATA
Obtains PCIe-related performance information.

,FCNINDEX=xfcnindex
Specifies the RS-type address or address in register (2) - (12) of a required
fullword input of PCIe function index to start the search from. The IQPINFO
service returns performance data for the next function in the PCIe function
table after the supplied index value.

If an allocated PCIe function is found in the table after the supplied PCIe
function index, the XFCNINDEX field is set to the index of the PCIe function
upon which the performance data is returned. If an allocated PCIe function is
not found after the supplied index, the XFCNINDEX field is set to 0. To get
information for all allocated PCIe functions, this service should be called
continuously starting with a 0 function index until a 0 function index is
returned.

,PERFDATAPTR=xperfdataptr
Specifies the RS-type address or address in register (2) - (12) of a required
8-byte input that contains the address of an area which is to receive the
performance data. This area must be addressable in the primary address space.
This area is mapped by the IQPYPERF mapping macro.

,PERFDATALEN=xperfdatalen
Specifies the RS-type address or address in register (2) - (12) of a required
fullword input that contains the length of the area to receive the performance
data. If the supplied length is not large enough to contain the data to be
returned, the supplied xperfdatalen field is set to the length required to fit all of
the data to be returned.

,LINKAGE=BRANCH
An optional keyword input that indicates the linkage that should be generated
for the routine invocation. The default is LINKAGE=BRANCH.

LINKAGE=BRANCH requests branch-entry invocation.

,RETCODE=xretcode
The name (RS-type) of an optional full-word output variable, or register
(2)-(12) or (15), into which the return code is to be copied from GPR 15. If you
specify 15, GPR15, REG15, or R15 (within or without parentheses), the value
will be left in GPR 15.

,RSNCODE=xrsncode
The name (RS-type) of an optional fullword output variable into which the

IQPINFO macro

Chapter 116. IQPINFO — Obtain PCIe information 1147

reason code is to be copied from GPR 0. If you specify 0, 00, GPR0, GPR00,
REG0, REG00, or R0 (within or without parentheses), the value will be left in
GPR 0.

,PLISTVER=xplistver
,PLISTVER=IMPLIED_VERSION

An optional byte input decimal value (with a value of 1) that specifies the
macro version. PLISTVER is the only key allowed on the list form of MF and
determines which parameter list is generated. Note that MAX may be specified
instead of a number, and the parameter list will be of the largest size currently
supported. This size may grow from release to release (thus possibly affecting
the amount of storage needed by your program). If your program can tolerate
this, IBM recommends that you always specify MAX when creating the list
form parameter list as that will ensure that the list form parameter list is
always long enough to hold whatever parameters might be specified on the
execute form.

The default is IMPLIED_VERSION. When PLISTVER is omitted, the default is
the lowest version which allows all of the parameters specified on the
invocation to be processed.

,MF=S
,MF=(L,xmfctrl,xmfattr | 0D)
,MF=(E,xmfctrl,COMPLETE)

An optional keyword input which specifies the macro form. The default is S.

,MF=S
Specifies the standard form of the macro. The 'S' form generates code to
put the parameters into an in-line parameter list and invoke the desired
service. Full checking for required macro keys is done along with
supplying defaults for omitted optional parameters.

,MF=(L,xmfctrl,xmfattr | 0D)
Specifies the list form of the macro. The 'L' form defines an area to be used
for the parameter list. Only the PLISTVER key may be specified on the
invocation. All other macro parameters are flagged as errors. If PLISTVER
is not specified, the original parameter list definition is used.

,xmfctrl
A required input. It is the name of a storage area for the parameter list.

,xmfattr | 0D
An optional 60-character input string that varies from 1 to 60
characters. Use it to force boundary alignment of the parameter list.
Use only 0F or 0D. The default is 0D, which forces the parameter list to
a doubleword boundary.

,MF=(E,xmfctrl,COMPLETE)
Specifies the execute form of the macro. The 'E' form generates code to put
the parameters into the parameter list specified by xmfctrl and provides
full syntax checking with default setting.

,xmfctrl
A required input. It is the name (RS-type) or address in register (1) -
(12) of a storage area for the parameter list.

,COMPLETE
An optional keyword input which specifies the degree of macro
parameter syntax checking. The default is COMPLETE.

IQPINFO macro

1148 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Return codes
Table 100. Return codes for the IQPINFO macro

Hexadecimal return
code

Meaning and action

00 Meaning: The requested function was successfully executed.

Action: None.

08 Meaning: The supplied data area that receives the output from the
IQPINFO macro is not large enough to hold all of the data to be returned.
The supplied length field is set to contain the size of the area that is
required to fit all of the data to be returned.

Action: Increase the size of the supplied data area to be at least the size
that is returned in the PERFDATALEN parameter and retry the IQPINFO
request.

0C Meaning: Caller is not authorized to use the IQPINFO macro.

Action: The caller of IQPINFO must have proper authorization (supervisor
state and running with PSW key 0).

10 Meaning: Unexpected error occurred during IQPINFO processing.

Action: Retry the IQPINFO request. If the problem persists, record the
return codes and supply them to the appropriate IBM support personnel.

14 Meaning: The requested IQPINFO PLISTVER number is incorrect.

Action: Specify the correct PLISTVER number in the invocation of the
IQPINFO macro. If PLISTVER(MAX) is specified, the parameter list will be
of the largest size currently supported.

18 Meaning: The supplied data area address is not on a doubleword
boundary.

Action: Provide a data area with an address that is on a 8 byte boundary
(that is, the last 3 bits of the address must be 0).

20 Meaning: The IQPINFO service is not available. PCIE services have not
been enabled on the current system.

Action: Report the problem to the system programmer.

IQPINFO macro

Chapter 116. IQPINFO — Obtain PCIe information 1149

IQPINFO macro

1150 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 117. IRDFSD — FICON switch data services

Description
The FICON Switch Data macro service is used to obtain statistical counters from
FICON switch devices.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem or Supervisor state or any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit addressing mode.
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held.
Control parameters: Control parameters must be in the primary address space.

Programming requirements
None

Restrictions
v No locks can be held
v Must not be in an environment that would prevent EXCP from being issued
v Must be authorized

Input register information
Register

Contents

0–15 Undefined

Before issuing the IRDFSD macro, the caller does not have to place any
information into any register unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason Code

1 Used as a work register by the system.

2-13 Restored

14 Used as a work register by the system.

15 Return code

© Copyright IBM Corp. 1988, 2016 1151

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The IRDFSD macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IRDFSD.

IRDFSD

� One or more blanks must follow IRDFSD.

DEVICE=ALL Default: DEVICE=ALL

DEVICE=SINGLE

,DEVICENUMBER=devicenumber Required with DEVICE=SINGLE

,COUNTERS=DEFAULT Default: COUNTERS=DEFAULT

COUNTERS=ALL

COUNTERS=LIST

,COUNTERLIST=counterlist Required with COUNTER=LIST

SUBPOOL=0 Default: SUBPOOL=0

SUBPOOL=subpool

FSDADDRESS=fsdaddress

FSDLENGTH=fsdlength

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=1

IRDFSD macro

1152 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,MF=S Default: MF=S

,MF=(L,mfctrl) list addr: RS-type address or register (1) - (12).

,MF=(L,)

,MF=(L,r,0D)

,MF=(E,)

,MF=(E,)

,MF=(E,)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IRDFSD
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,DEVICE=ALL
,DEVICE=SINGLE

An optional parameter that indicates the one or more devices for which
statistics should be returned.

DEVICE=ALL
Return statistics for all devices.

DEVICE=SINGLE
Return statistics for a single device.

DEVICENUMBER=devicenumber
A required input parameter if DEVICE=SINGLE is specified. It identifies
the device number of the FICON switch device to be interrogated.

To code: Specify the RS-type address or address in register (2)-(12), of a 4 byte
field.

,COUNTERS=DEFAULT
,COUNTERS=ALL
COUNTERS=LIST

An optional parameter that indicates the set of counters to be returned.

COUNTERS=DEFAULT
Specifies that the default set of counters is to be returned.

COUNTERS=ALL
Specifies that all supported counters should be returned.

COUNTERS=LIST
Specifies that the list of counters to be returned has been supplied.

COUNTERLIST=counterlist
A required input parameter if COUNTER=LIST is specified. It contains the
address that specifies a list of Statistical Counter Control Words to return.

To code: Specify the RS-type address or address in register (2)-(12), of a 4 byte
field.

IRDFSD macro

Chapter 117. IRDFSD — FICON switch data services 1153

The number of Control Words cannot exceed 60.

See the IHAFSD macro for further information about the definition of the
statistical counter list (SCCW) and the counters available.

,SUBPOOL=0
Subpool=subpoolSyntax

A optional input parameter that specifies the subpool to be used to obtain the
storage for the FICON Switch Dat (FSD). The default is 0.

To code: Specify the RS-type address or address in register (2)-(12) of the 1
byte field containing the subpool.

The returned information is mapped in macro IHAFSD.

,FSDADDRESS=fsdaddress
A required input parameter which contains the address of the storage mapped
in IHAFSD.

The mapping macro IHAFSD can be found in SYS1.MODGEN.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,FSDLENGTH=fsdlength
A required input parameter which contains the length of the storage mapped
in IHAFSD.

To code: Specify the RS-type address of a 4-byte field, or register (2)-(12).

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM suggests that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 1, if you use the currently available parameters.

IRDFSD macro

1154 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,MF=S
,MF=(L,mfctrl)
,MF=(L,mfctrl,mfattr)
,MF=(L,mfctrl,0D)
,MF=(E,mfctrl)
,MF=(E,mfctrl,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. The list form defines an area
of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. The execute form of the
macro stores the parameters into the storage area defined by xmfctrl and
provides full syntax checking with the default setting.

,xmfctrl
This is a required keyword that specifies a storage area for the parameter
list. This can be an RS-type address or an address in register (1)-(12).

,xmfattr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes
None.

Return codes
When the IRDFSD macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

The following table identifies the hexadecimal return codes:

Table 101. Return Codes for IRDFSD macro

Hexadecimal Return
Code

Meaning

00 Meaning: Successful completion. Data returned for all FICON switches.

04 Meaning: No FICON switch devices found. No FSD area was obtained.

08 Meaning: I/O errors occurred. Some switches did not return data.

IRDFSD macro

Chapter 117. IRDFSD — FICON switch data services 1155

Table 101. Return Codes for IRDFSD macro (continued)

Hexadecimal Return
Code

Meaning

0C Meaning: I/O errors occurred. No data obtained for any devices.

10 Meaning: Unexpected error.

Reason codes
The following table identifies the hexadecimal return and reason codes:

Table 102. Return and Reason Codes for IRDFSD macro

Hexadecimal
Return Code

Return Code Meaning

00000001 04 Required module unavailable. The request could not be
processed.

00000002 04 The server task is not active. The request could not be
processed.

00000024 04 FICON switch statistics disabled.

00000003 08 Caller is not APF authorized.

00000008 08 IRDVFSD does not recognize the request type.

00000021 08 Specified device is not a FICON switch.

00000022 08 Specified device is not online.

00000023 08 IOSVFSD does not recognize the request type.

00000004 0C Recovery could not be established.

00000005 0C POST failed.

00000006 0C Recovery was entered.

00000025 0C I/O error.

00000026 0C UCBSCAN failure.

00000027 0C UCBLOOK failure.

00000028 0C Server task recovery entered.

IRDFSD macro

1156 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 118. IRDFSDU — FICON switch data update services

Description
The FICON Switch Data macro update service is used to update statistical counters
from FICON switch devices.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem or Supervisor state or any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit addressing mode.
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held.
Control parameters: Control parameters must be in the primary address space.

Programming requirements
None

Restrictions
v No locks may be held
v Must not be in an environment that would prevent EXCP from being issued
v Must be authorized

Input register information
Register

Contents

0–15 Undefined

Before issuing the IRDFSDU macro, the caller does not have to place any
information into any register unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason Code

1 Used as a work register by the system.

2-13 Restored

14 Used as a work register by the system.

15 Return code

© Copyright IBM Corp. 1988, 2016 1157

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The IRDFSDU macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede IRDFSDU.

IRDFSDU

� One or more blanks must follow IRDFSDU.

,TOLERANCE=tolerance toleranceRS-type address or address in register (2) — (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=1

,MF=S Default: MF=S

,MF=(L,mfctrl)

,MF=(L,mfctrl,mfattr)

,MF=(L,mfctrl,0D)

,MF=(E,mfctrl)

,MF=(E,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IRDFSDU
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

IRDFSDU macro

1158 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,TOLERANCE=tolerance
A required input parameter which contains the input tolerance for up-to-date
test of last update performed.

To code:Specify the RS-type address or address in register (2)-(12), of an 8 byte
field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 1, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,MF=S
,MF=(L,mfctrl)
,MF=(L,mfctrl,mfattr)
,MF=(L,mfctdrl,0D)
,MF=(E,mfctrl)
,MF=(E,mfctrl,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

IRDFSDU macro

Chapter 118. IRDFSDU — FICON switch data update services 1159

Use MF=L to specify the list form of the macro. The list form defines an area
of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. The execute form of the
macro stores the parameters into the storage area defined by mfctrl and
provides full syntax checking with the default setting.

,mfctrl
This is a required keyword that specifies a storage area for the parameter
list. This can be an RS-type address or an address in register (1)-(12).

,mfattr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code mfattr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes
None.

Return codes
When the IRDFSDU macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes:

Table 103. Return Codes for IRDFSDU macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 Meaning: Successful completion. Data updated for all
FICON switches.

04 2 Warning

Meaning: The server task is not available

04 24 Environmental Error

Meaning: FICON switch statistics disabled

08 1 Meaning: The subpool provided by the caller is not in
common storage.

08 2 Meaning: The switch device provided by the caller is not
in the Switch Table.

20 1 Meaning: An ESTAE could not be established.

IRDFSDU macro

1160 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Reason codes
The following table identifies the hexadecimal return and reason codes:

Table 104. Return and Reason Codes for IRDFSD macro

Hexadecimal
Return Code

Return Code Meaning

00000001 04 Required module was not found. The request could not be
processed.

00000002 04 The server task is unavailable. The request could not be
processed.

00000024 04 FICON switch statistics disabled.

00000003 08 Caller is not APF authorized.

00000008 08 IRDVFSD does not recognize the request type.

00000023 08 IOSVFSD does not recognize the request type.

00000004 0C Recovery could not be established.

00000005 0C POST failed.

00000006 0C Recovery was entered.

00000025 0C I/O error.

00000026 0C UCBSCAN failure.

00000027 0C UCBLOOK failure.

00000028 0C Server task recovery entered.

IRDFSDU macro

Chapter 118. IRDFSDU — FICON switch data update services 1161

IRDFSDU macro

1162 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 119. ISGADMIN — Global resource serialization
administration service

Description
Interface for Global Resource Serialization Administration

The GRS Administration service routine is given control from the ISGADMIN
macro to:
v Change maximum ENQ limits for a specific address space.
v Move an ENQ waiter to a different position in the request queue and to

optionally change its control type from exclusive to shared.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: The caller must be authorized, although any one of the

following attributes is sufficient:

v Supervisor State

v Key 0-7

v APF-authorized
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN Note: The updated ENQ

limit is updated for the home address space.
AMODE: 31- or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

The control parameters must be in the same key as the
caller.

Programming requirements
The caller must include the ISGYCON macro to get the return and reason codes.

Restrictions
The caller must not have functional recovery routines (FRRs)

This macro supports multiple versions. Some keywords are unique to certain
versions. See the PLISTVER parameter description.

© Copyright IBM Corp. 1988, 2016 1163

Input register information
Before issuing the ISGADMIN macro, the caller does not have to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

ISGADMIN macro

1164 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the ISGADMIN
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,BEFOREREQUESTER=beforerequester
When TOTHEEND=NO and REQUEST=MOVEWAITER are specified, a
required input parameter that is an ENQToken identifying the ENQ request
that the MovingWaiter request precedes.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,MAXTYPE=AUTHORIZED
,MAXTYPE=UNAUTHORIZED

When REQUEST=SETENQMAX is specified, a required parameter.

Note:

main diagram

��
name

b ISGADMIN b �

� REQUEST = SETENQMAX , MAXTYPE = AUTHORIZED , MAXVALUE = maxvalue
, MAXTYPE = UNAUTHORIZED

REQUEST = RESETENQMAX , MAXTYPE = AUTHORIZED
, MAXTYPE = UNAUTHORIZED

REQUEST = MOVEWAITER parameters-1

�

�
, RETCODE = retcode , RSNCODE = rsncode

, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 1
, PLISTVER = 2

�

�
, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

Note:

parameters-1

�� , MOVINGWAITER = movingwaiter
, NEWCONTROL = EXCLUSIVE

, NEWCONTROL = SHARED
�

�
, TOTHEEND = NO

, BEFOREREQUESTER = beforerequester
, TOTHEEND = YES

��

ISGADMIN macro

Chapter 119. ISGADMIN — Global resource serialization administration service 1165

,MAXTYPE=AUTHORIZED
Indicates a request to update the maximum ENQ limit for authorized
requesters.

,MAXTYPE=UNAUTHORIZED
Indicates a request to update the maximum ENQ limit for unauthorized
requesters.

,MAXTYPE=AUTHORIZED
,MAXTYPE=UNAUTHORIZED

When REQUEST=RESETENQMAX is specified, a required parameter.

,MAXTYPE=AUTHORIZED
Indicates a request to reset the maximum ENQ limit for authorized
requesters.

,MAXTYPE=UNAUTHORIZED
Indicates a request to reset the maximum ENQ limit for unauthorized
requesters.

,MAXVALUE=maxvalue
When REQUEST=SETENQMAX is specified, a required input parameter that is
the requested value of the new maximum ENQ limit. The specified value must
be greater than or equal to the absolute minimum described in ISGYCON, and
up to 2?1-1 (2147483647).

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

ISGADMIN macro

1166 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,MOVINGWAITER=movingwaiter
When REQUEST=MOVEWAITER is specified, a required input parameter that
is an ENQToken identifying the ENQ waiter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,NEWCONTROL=EXCLUSIVE
,NEWCONTROL=SHARED

When REQUEST=MOVEWAITER is specified, an optional parameter. The
default is NEWCONTROL=EXCLUSIVE.

,NEWCONTROL=EXCLUSIVE
Indicates that the requester represented by the MovingWaiter ENQToken
should have its control remain Exclusive.

,NEWCONTROL=SHARED
Indicates that the request represented by the MovingWaiter ENQToken
should have its control become Shared.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 1, which supports all parameters except those specifically referenced in
higher versions.

v 2, which supports both the following parameters and those from version 1:
– BEFOREREQUESTER
– MOVINGWAITER
– NEWCONTROL
– TOTHEEND

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX

ISGADMIN macro

Chapter 119. ISGADMIN — Global resource serialization administration service 1167

v A decimal value of 1, or 2

REQUEST=SETENQMAX
REQUEST=RESETENQMAX
REQUEST=MOVEWAITER

A required parameter that indicates the type of ISGADMIN request.

REQUEST=SETENQMAX
Indicates a request to change the ENQ maximum for the home address
space.

REQUEST=RESETENQMAX
Indicates a request to reset the ENQ maximum for the home address space
back to the system default.

REQUEST=MOVEWAITER
Indicates a request to move an ENQ waiter to a different position in the
request queue and to optionally change its control type through the
NEWCONTROL keyword.

This request requires a version 2 parameter list.

Note: This function is intended to only be used by third party serialization
products. Its misuse can result in deadlocks, incorrect serialization or loss
of data integrity. The MOVEWAITER, TOTHEEND, and
BEFOREREQUESTER keywords specify which requester should be moved
and where to move it. The waiter will only be moved under the following
conditions:
v The MOVINGWAITER:

– Has a requested disposition of Exclusive
– Is not currently an owner of the resource
– Cannot result in any new owners as a result of the move
– Must be waiting for the same resource as the BEFOREREQUESTER (if

specified)
v The resource is NOT global or STEP in scope. Note that in GRS=NONE

mode, the final scope can be SYSTEMS or SYSTEM. When in other GRS
modes the scope must be SYSTEM.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,TOTHEEND=NO
,TOTHEEND=YES

When REQUEST=MOVEWAITER is specified, an optional parameter. The
default is TOTHEEND=NO.

ISGADMIN macro

1168 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,TOTHEEND=NO
Indicates that the requester represented by the MovingWaiter ENQToken
should be moved to a position specified through the BEFOREREQUESTER
keyword.

,TOTHEEND=YES
Indicates that the request represented by the MovingWaiter ENQToken
should be moved to the end of the request queue.

ABEND codes
None

Return and reason codes
When the ISGADMIN macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro ISGYCON provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 105. Return and Reason Codes for the ISGADMIN Macro

Return Code Reason Code Equate Symbol Meaning and Action

00 — Equate Symbol: ISGADMINRc_OK

Meaning: ISGADMIN request successful.

Action: None required.

04 — Equate Symbol: ISGADMINRc_Warn

Meaning: Warning

Action: Refer to action under the individual reason code.

04 xxxx0401 Equate Symbol: ISGADMINRsn_ENQMaxValueLow

Meaning: For REQUEST=SETENQMAX. The specified maximum
is less than or equal to the current system-wide maximum. This
space-specific maximum has been set but has no immediate effect.

Action: Ensure the specified MaxValue is accurate. If not, reissue
the ISGADMIN service with a higher value.

04 xxxx0402 Equate Symbol: ISGADMINRsn_ResetENQMaxIgnored

Meaning: For REQUEST=RESETENQMAX. The home address
space did not have a specific maximum for that type of requester.

Action: Ensure that the reset was desired, and issued for the
appropriate requester type, authorized or unauthorized. Reissue
the service with the correct requester type if appropriate.

08 — Equate Symbol: ISGADMINRc_ParmError

Meaning: ISGADMIN request specified parameters in error.

Action: Refer to action under the individual reason code.

ISGADMIN macro

Chapter 119. ISGADMIN — Global resource serialization administration service 1169

Table 105. Return and Reason Codes for the ISGADMIN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0801 Equate Symbol: ISGADMINRsn_BadPlistAddress

Meaning: Unable to access parameter list.

Action: Check that the parameter list is addressable. If in
AR-mode, check that the ALET of the parameter list is correct.
Note that if this macro is issued in AR-mode, SYSSTATE
ASCENV=AR must be issued before this macro. Ensure that the
storage is in the same key as the caller.

08 xxxx0802 Equate Symbol: ISGADMINRsn_BadPlistALET

Meaning: Bad parameter list ALET. The ALET is neither zero nor
is it associated with a valid public entry on the caller's
Dispatchable Unit Access List (DU-AL), nor a valid entry for a
common area data space.

Action: Make sure that the ALET of the parameter list is valid. Its
access register may not have been set up properly.

08 xxxx0803 Equate Symbol: ISGADMINRsn_BadPlistVersion

Meaning: Bad parameter list version number. The ISGADMIN
parameter list version is greater than the version supported by
GRS on the current system or the ISGADMIN parameter list
version is lower than the minimum required for parameters that
were specified.

Action: Check for possible storage overlay of the parameter list.
Retry the request with the correct version number. Verify that
your program was assembled with the correct macro library for
the release of MVS on which your program is running.

08 xxxx0804 Equate Symbol: ISGADMINRsn_ReservedFieldNotNull

Meaning: A reserved field in the parameter list is non-zero.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0805 Equate Symbol: ISGADMINRsn_BadRequest

Meaning: Bad REQUEST parameter.

Action: IBM suggests that the ISGADMIN macro is used when
invoking the ISGADMIN service.

08 xxxx0806 Equate Symbol: ISGADMINRsn_ENQMaxValueTooLow

Meaning: For REQUEST=SETENQMAX. The specified maximum
is less than the smallest allowable maximum.

Action: Check the smallest allowable maximum in macro
ISGYCON. Reissue the ISGADMIN service with a higher value.

08 xxxx0807 Equate Symbol: ISGADMINRsn_BadMovingWaiterAddress

Meaning: For REQUEST=MOVEWAITER. Unable to access the
MovingWaiter ENQToken.

Action: Make sure that the MovingWaiter ENQToken is
addressable. If in AR-mode, this field is accessed through its
address and ALET, check that both these values are correct.
Ensure that the storage is in the same key as the caller.

ISGADMIN macro

1170 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 105. Return and Reason Codes for the ISGADMIN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0808 Equate Symbol: ISGADMINRsn_BadMovingWaiterAlet

Meaning: For REQUEST=MOVEWAITER. Bad MovingWaiter
ENQToken ALET. The ALET is neither zero nor is it associated
with a valid public entry on the caller's Dispatchable Unit Access
List (DU-AL), nor a valid entry for a common area data space.

Action: Make sure that the ALET of the MovingWaiter ENQToken
is valid. Its access register may not have been set up properly.

08 xxxx0809 Equate Symbol: ISGADMINRsn_BadMovingWaiter

Meaning: For REQUEST=MOVEWAITER. The specified
MovingWaiter ENQToken does not represent an ENQ on the
current system.

Action: Make sure that the specified MovingWaiter ENQToken is
from a previous request that has not been subsequently released.

08 xxxx080A Equate Symbol: ISGADMINRsn_BadBeforeRequesterAddress

Meaning: For REQUEST=MOVEWAITER. Unable to access the
BeforeRequester ENQToken.

Action: Make sure that the BeforeRequester ENQToken is
addressable. If in AR-mode, this field is accessed through its
address and ALET, check that both these values are correct.
Ensure that the storage is in the same key as the caller.

08 xxxx080B Equate Symbol: ISGADMINRsn_BadBeforeRequesterAlet

Meaning: For REQUEST=MOVEWAITER. Bad BeforeRequester
ENQToken The ALET is neither zero nor is it associated with a
valid public entry on the caller's Dispatchable Unit Access List
(DU-AL), nor a valid entry for a common area data space.

Action: Make sure that the ALET of the BeforeRequester
ENQToken is valid. Its access register may not have been set up
properly.

08 xxxx080C Equate Symbol: ISGADMINRsn_BadBeforeRequester

Meaning: For REQUEST=MOVEWAITER. The specified
BeforeRequester ENQToken does not represent an ENQ on the
current system.

Action: Make sure that the specified BeforeRequester ENQToken
is from a previous request that has not been subsequently
released.

08 xxxx080D Equate Symbol: ISGADMINRsn_SameRequester

Meaning: For REQUEST=MOVEWAITER. The same ENQToken
was specified for both MovingWaiter and BeforeRequester.

Action: Make sure that the ENQTokens are distinct.

ISGADMIN macro

Chapter 119. ISGADMIN — Global resource serialization administration service 1171

Table 105. Return and Reason Codes for the ISGADMIN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx080E Equate Symbol: ISGADMINRsn_InconsistentResource

Meaning: For REQUEST=MOVEWAITER. The specified
MovingWaiter and BeforeRequester ENQTokens do not represent
ENQ requests for the same resource.

Action: Make sure that the ENQTokens specified are against the
same resource.

08 xxxx080F Equate Symbol: ISGADMINRsn_BadScope

Meaning: For REQUEST=MOVEWAITER. The resource associated
with the specified MovingWaiter and BeforeRequester ENQTokens
is not a valid local resource. The resource cannot be a global or a
STEP resource. Note that in GRS=NONE mode, an acceptable
local resource can have a final scope of SYSTEMS or SYSTEM.
When in other GRS modes, the final scope can only be SYSTEM.

Action: Make sure that the ENQTokens specified are against a
valid local resource.

08 xxxx0810 Equate Symbol: ISGADMINRsn_BadControl

Meaning: For REQUEST=MOVEWAITER. The specified
MovingWaiter ENQToken represents a requester of shared control.

Action: Make sure that the MovingWaiter ENQToken represents a
requester of exclusive control.

08 xxxx0811 Equate Symbol: ISGADMINRsn_CannotMoveOwner

Meaning: For REQUEST=MOVEWAITER. The specified
MovingWaiter ENQToken represents a requester that owns the
resource.

Action: Make sure that the MovingWaiter ENQToken specified is
for a waiting requester.

08 xxxx0812 Equate Symbol: ISGADMINRsn_AlreadyBeforeRequester

Meaning: For REQUEST=MOVEWAITER, TOTHEEND=NO,
BEFOREREQUESTER=. The specified MovingWaiter ENQToken
represents a requester that is already queued just before the
requester represented by the BeforeRequester ENQToken. The
control was not changed.

Action: Make sure that the MovingWaiter and BeforeRequester
ENQTokens represent the correct requesters and that the queue is
as expected.

08 xxxx0813 Equate Symbol: ISGADMINRsn_CannotMoveBeforeOwner

Meaning: For REQUEST=MOVEWAITER. If granted, the requester
represented by the MovingWaiter ENQToken would have become
the owner of the resource because it would precede an owner.

Action: Make sure that the BeforeRequester ENQToken represents
a waiting requester.

ISGADMIN macro

1172 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 105. Return and Reason Codes for the ISGADMIN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0814 Equate Symbol: ISGADMINRsn_CannotMoveAfterSharedOwner

Meaning: For REQUEST=MOVEWAITER,
NEWCONTROL=SHARED. If granted, the requester represented
by the MovingWaiter ENQToken would have become the owner
of the resource because it would immediately follow a shared
owner.

Action: Make sure that the BeforeRequester ENQToken represents
the requester that the moving waiter should precede.

08 xxxx0815 Equate Symbol: ISGADMINRsn_CannotMakeAnotherOwner

Meaning: For REQUEST=MOVEWAITER. If granted, one or more
requesters queued after the one represented by the MovingWaiter
ENQToken would have become the owner of the resource.

Action: Make sure that the MOVEWAITER request would not
make any other waiting requesters the owner of the resource.

08 xxxx0816 Equate Symbol: ISGADMINRsn_AlreadyLastRequester

Meaning: For REQUEST=MOVEWAITER, TOTHEEND=YES. The
requester represented by the MovingWaiter ENQToken is already
at the end of the request queue.

Action: Make sure that the MovingWaiter ENQToken represents a
requester at the correct position and that the request queue is as
expected.

08 xxxx0817 Equate Symbol: ISGADMINRsn_CannotMoveMasidUser

Meaning: For REQUEST=MOVEWAITER. The MovingWaiter
ENQToken represents a MASID user.

Action: Make sure that the MovingWatier ENQToken does not
represent a MASID user.

08 xxxx0818 Equate Symbol: ISGADMINRsn_MasidControlConflict

Meaning: For REQUEST=MOVEWAITER,
NEWCONTROL=SHARED. The requester represented by the
MovingWaiter ENQToken would create a bad MASID
environment since a shared owner of the resource is a
convert-to-exclusive MASID target.

Action: Make sure that the requester represented by the
MovingWaiter ENQToken would not need to move in the midst of
a MASID convert-to-exclusive environment or that the moved
requester could maintain a control of Exclusive.

0C — Equate Symbol: ISGADMINRc_EnvError

Meaning: ISGADMIN request has an environment error.

Action: Refer to action under the individual reason code.

0C xxxx0C01 Equate Symbol: ISGADMINRsn_NotAuthorized

Meaning: An unauthorized caller invoked the ISGADMIN service.

Action: An ISGADMIN caller must be authorized.

ISGADMIN macro

Chapter 119. ISGADMIN — Global resource serialization administration service 1173

Table 105. Return and Reason Codes for the ISGADMIN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

0C xxxx0C02 Equate Symbol: ISGADMINRsn_FRRHeld

Meaning: The caller issued ISGADMIN when an FRR was
established.

Action: Avoid issuing ISGADMIN when using functional recovery
routines.

0C xxxx0C03 Equate Symbol: ISGADMINRsn_LockHeld

Meaning: A lock was held upon entry. No locks may be held
when calling ISGADMIN.

Action: Avoid using ISGADMIN when locks are held.

0C xxxx0C04 Equate Symbol: ISGADMINRsn_SrbMode

Meaning: SRB mode.

Action: SRB mode is not supported.

0C xxxx0C05 Equate Symbol: ISGADMINRsn_NotEnabled

Meaning: Not Enabled.

Action: Avoid using ISGADMIN when not enabled.

0C xxxx0C06 Equate Symbol: ISGADMINRsn_QueueDamage1

Meaning: The GRS resource queue structure for the target
resource is damaged. Further processing against the queue is not
allowed.

Action: Prevent any further processing against the target resource.

0C xxxx0C07 Equate Symbol: ISGADMINRsn_QueueDamage2

Meaning: The GRS resource queue structure for the target
resource is damaged. Further processing against the queue is not
allowed.

Action: Prevent any further processing against the target resource.

10 — Equate Symbol: ISGADMINRc_CompError

Meaning: Component Error

Action: Contact the IBM Support Center. Provide the reason code
which contains diagnostic data.

Examples
* ***
* Set the unauthorized ENQ maximum for the home address space
* ***

ISGADMIN REQUEST=SETENQMAX, X
MAXTYPE=UNAUTHORIZED,MAXVALUE=MYVALUE, X
RETCODE=MYRC,RSNCODE=MYRSN

* ***
* Reset the unauthorized ENQ maximum of the home address space
* ***

ISGADMIN macro

1174 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ISGADMIN REQUEST=RESETENQMAX, X
MAXTYPE=UNAUTHORIZED, X
RETCODE=MYRC,RSNCODE=MYRSN

* ***
* Move an ENQ Waiter
* ***

ISGADMIN REQUEST=MOVEWAITER, X
MOVINGWAITER=mywaiterENQToken, X
TOTHEEND=NO, X

BEFOREREQUESTER=mybeforerequesterENQToken, X
RETCODE=MYRC,RSNCODE=MYRSN

For more information about global resource serialization, see z/OS MVS Planning:
Global Resource Serialization.

ISGADMIN macro

Chapter 119. ISGADMIN — Global resource serialization administration service 1175

1176 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 120. ISGECA — GRS enhanced contention analysis
service

Description
Use the ISGECA service to obtain waiter and blocker information for global
resource serialization (GRS) component managed resources. GRS resource
waiter/blocker information can be obtained for a specific system within the current
sysplex, or for all the systems operating in the current sysplex.

A GRS resource is considered relevant to an ISGECA request if that resource
currently has waiters and blockers associated with it. For a given relevant GRS
resource, ISGECA returns the following types of information:

Waiter The longest waiting unit of work for that resource, and the top (longest)
blocking unit of work for that waiter. Further general information about
the resource and the numbers of resource owners and waiters is also
reported.

Blocker
The longest blocking unit of work for that resource. Further general
information about the resource and the numbers of resource owners and
waiters is also reported.

ISGECA returns information for as many relevant GRS resources as is specified by
the COUNT parameter. All reported resource information is collected into a virtual
storage buffer specified by the RIBOUT parameter. Reported information is
formatted according to RIB and RIBE DSECTs, available from syslib member
ISGRIB. See WAITER and BLOCKER descriptions under the “REQUEST=WAITER”
on page 1182 parameter for the specific RIBOUT buffer area format. For precise
descriptions of resource, waiter and blocker information reported, see "RIB
Heading Information" in z/OS MVS Data Areas in the z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

ISGECA reports on relevant resources as they are encountered in the system's GRS
resource management data infrastructure. The order of reported resources in the
RIBOUT area is unpredictable, and implies no suggestion of one resource having
greater waiter/blocker considerations than any other reported on resource.

The ISGECA service might be unable to report any waiter or blocker information
for some sysplex systems, in some invocation cases, for a variety of reasons. In the
event that this occurs, ISGECA reports the system names of systems not included
in the report, and the reason for not including those systems, in the NOTINCL
output area. The description for parameter NOTINCL explains the output area
format and reason codes associated with it.

Note: The 476-byte (or X'1DC') parameter list constructed by ISGECA and passed
to its service routine MUST reside in common area subpool 231. This requirement
has significant implications on the use of the various macro format (MF) options.
For more information about this parameter list requirement, see “Programming
requirements” on page 1178.

© Copyright IBM Corp. 1988, 2016 1177

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state. Zero PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary, Secondary, access register (AR), or Home
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

Programming requirements
1. The parameter list constructed by ISGECA and passed to its service routine

MUST reside in common area subpool 231. This has the following implications:
v For assembler standard format invocations (i.e., MF=(S)), the invoking

program code must reside in subpool 231, as an inline parameter list is
generated.

v For PL/X standard format invocations (i.e., MF(S)), the invoker's dynamic
area must reside in subpool 231, as a dynamic area declare for the parameter
list is generated.

v Similarly, for list format invocations (i.e., MF=(L,xxx)), if the resulting
declared parameter list resides in the program's dynamic storage area, then
this storage must be obtained from subpool 231.
If the resulting list format parameter list declare is a PL/X based construct,
then the program may substantiate the based construct via an allocated
subpool 231 address for subsequent execute format (i.e., MF=(E,xxx))
invocations.

v For execute format invocations (i.e., MF=(E,xxx)), the specified parameter list
must reside in common area subpool 231.

The parameter list must be 476 (or X'1DC') bytes in length.
2. PL/X invokers must include syslib members CVT and ISGGVT.
3. Include syslib member ISGRIB for RIB and RIBE DSECT mappings. These

DSECTs precisely describe formatted areas in the RIBOUT area.
4. ISGECA service return and reason codes can be retrieved from the ISGECA

parameter list area, as an alternative to coding the RETCODE and RSNCODE
parameters. These results appear in the parameter list as follows:
v Return code: 2-byte value at offset 60 (or X'3C').
v Reason code: 2-byte value at offset 62 (or X'3E').

5. The ISGECA service requires a specific system service or release level to
function successfully. The ISGECA macro expansion performs before any other
tests and calling the service routine, verifying the system has this function
enabled.

Restrictions
None

ISGECA macro

1178 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Input register information
Before issuing the ISGECA macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the ISGECA macro, the caller does not have to place any
information into any access register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Unchanged

1 Unpredictable

2-13 Unchanged

14 Unpredictable

15 Unchanged

When control returns to the caller, the ARs contain:

Register
Contents

0 Unchanged

1 Unpredictable

2-13 Unchanged

14 Unpredictable

15 Unchanged

Performance implications
None.

ISGECA macro

Chapter 120. ISGECA — GRS enhanced contention analysis service 1179

Syntax

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the ISGECA
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,COUNT=count
A required input parameter describing the maximum number of relevant
resources to be reported on by this ISGECA invocation. The maximum value
that can be specified with the COUNT parameter is 99.

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Note:

main diagram

��
name

b ISGECA b REQUEST = WAITER
REQUEST = BLOCKER

�

� , SCOPE = SYSTEM , SYSNAME = sysname
, SCOPE = SYSTEMS

, COUNT = count �

� , RIBOUT = ribout , RIBOUTLN = riboutln
, RIBOUTCT = riboutct

�

� , NOTINCL = notincl
, NOTINCCT = notincct , RETCODE = retcode

�

�
, RSNCODE = rsncode

, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 0

�

�
, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

ISGECA macro

1180 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOTINCCT=notincct
An optional output parameter, to contain the number of systems reported in
the NOTINCL area. Alternatively, this number of NOTINCL entries can be
obtained from the 2-byte parameter list field at offset 58 (or X'3A').

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field.

,NOTINCL=notincl
A required input parameter that contains the address of a virtual storage
output area to contain the list of systems for which RIBs and RIBEs are not
included in the RIBOUT area. The NOTINCL area must begin on a
doubleword boundary, and must reside within common storage subpool 231.

The length of the NOTINCL area, in bytes, must, minimally, be the number of
systems currently executing in the sysplex multiplied by 10 (or X'0A'). The
format of the NOTINCL area is as follows:
+---------------------------+
System name	Reason Code
System name	Reason Code
System name	Reason Code
+---------------------------+

Each system name and reason code pair potentially reflects a system not
included in waiter/blocker data returned in the RIBOUT area. The number of
systems reported on in the NOTINCL area is returned in the NOTINCCT
output parameter value.

Each NOTINCL system name field is an 8-byte field, and each reason code
entry is a 2-byte field. Reason codes for the NOTINCL area are independent of
ISGECA service invocation reason codes, and are only meaningful when the
ISGECA return code is 4 or less. The NOTINCL reason codes and meanings are
as follows:

Hex Reason Code
Meaning

ISGECA macro

Chapter 120. ISGECA — GRS enhanced contention analysis service 1181

0000 Ignore this NOTINCL area entry, including the system name value
specified.

0001 The system described by the system name field is cannot process the
ISGECA service.

0002 The system described by the system name field was not found to be
participating in the current sysplex.

0003 The system described by the system name field did not respond to an
XCF request to gather ISGECA report information.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

REQUEST=WAITER
REQUEST=BLOCKER

A required parameter that indicates the type of ISGECA request.

REQUEST=WAITER
When you specify WAITER, the longest waiters and top blockers for each
relevant resource are returned. For REQUEST=WAITER, the RIBOUT buffer
area is formatted as follows:
+-------------------+
RIB	RIBE	RIBE
RIB	RIBE	RIBE
RIB	RIBE	RIBE
+-------------------+

The number of RIBs collected in the RIBOUT area is returned in the
RIBOUTCT parameter variable. Each RIB/RIBE/RIBE trio reports on the
following:

ISGECA macro

1182 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v The RIB describes general information about the resource, including the
QNAME, minor name and the numbers of waiters and blockers.

v The first RIBE describes the top blocking unit of work for this resource.
v The second RIBE describes the longest waiting unit of work for this

resource.

REQUEST=BLOCKER
When you specify BLOCKER, the top blockers for each relevant resource is
returned. For REQUEST=BLOCKER, the RIBOUT buffer area is formatted
as follows:
+------------+
RIB	RIBE
RIB	RIBE
RIB	RIBE
+------------+

The number of RIBs collected in the RIBOUT area is returned in the
RIBOUTCT parameter variable. Each RIB/RIBE pair reports on the
following items:
v The RIB describes general information about the resource, including the

QNAME, minor name and the numbers of waiters and blockers.
v The RIBE describes the top blocking unit of work for this resource.

,RETCODE=retcode
An optional output parameter that will contain the return code.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,RIBOUT=ribout
A required input parameter that contains the address of the virtual storage
output area for this request. The RIBOUT area must reside in the invoker's
primary address space, and contains the ISGECA report of RIBs and RIBEs for
the request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,RIBOUTCT=riboutct
An optional output parameter, to contain the number of RIBs collected in the
RIBOUT area. Alternatively, this number of RIBs can be obtained from the
2-byte parameter list field at offset 56 (or X'38').

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field.

,RIBOUTLN=riboutln
A required input parameter describing the length, in bytes, of the RIBOUT
virtual storage area.

The length of the RIBOUT area must be large enough to accomodate the
maximum size ISGECA report for the request, and therefore must be of a
magnitude that facilitates the COUNT parameter value and RIB/RIBE DSECT
mapping sizes. Depending on the ISGECA request type, this relationship
between these parameter values and DSECT sizes can be expressed as follows:

Waiter:
RIBOUTLN parameter value must equal or exceed the COUNT
parameter value multiplied by 392 (or X'188').

ISGECA macro

Chapter 120. ISGECA — GRS enhanced contention analysis service 1183

Blocker:
RIBOUTLN parameter value must equal or exceed the COUNT
parameter value multiplied by 344 (or X'158').

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,RSNCODE=rsncode
An optional output parameter that will contain the reason code.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,SCOPE=SYSTEM
,SCOPE=SYSTEMS

A required parameter that indicates the request scope.

,SCOPE=SYSTEM
ISGECA is to only report on blockers and, potentially, waiters currently
executing on a specific system within the current GRS complex.

,SCOPE=SYSTEMS
ISGECA is to report on blockers and, potentially, waiters across all of the
systems in the current sysplex complex.

,SYSNAME=sysname
When SCOPE=SYSTEM is specified, a required input parameter string
containing the system name of the single system on which ISGECA is to
report.

SYSNAME is required when you specify SCOPE=SYSTEM. SYSNAME is not
valid for SCOPE=SYSTEMS.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND codes
None.

Return and reason codes
When the ISGECA macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes. IBM
support personnel may request the entire reason code, including the xxxx value.

Table 106. Return and Reason Codes for the ISGECA Macro

Return Code Reason Code Meaning and Action

00 – Successful completion. The RIBOUT virtual storage area contains
the waiter or blocker output report, and the NOTINCL virtual
storage area describes system names and reason codes for systems
not reported on in the RIBOUT area.

04 – Request completed with exceptional circumstances.

ISGECA macro

1184 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 106. Return and Reason Codes for the ISGECA Macro (continued)

Return Code Reason Code Meaning and Action

04 xxxx0000 Meaning: The ISGECA service could not communicate with some
systems in the sysplex, so the returned data is incomplete. This
implies that such systems are non-responsive, such as when a
system has been reset but has not been removed from the sysplex.

Action: No suggested program action.

04 xxxx0001 Meaning: Not all systems in the current GRS complex that are
relevant to the ISGECA request are participating in the current
sysplex.

Action: No suggested program action. The RIBOUT virtual
storage area contains the waiter or blocker output report, and the
NOTINCL virtual storage area describes system names and reason
codes for systems not reported on in the RIBOUT area.

08 – Request failed.

08 xxxx0000 Meaning: A GRS internal error occurred and the request could not
be completed.

Action: No suggested program action.

08 xxxx0001 Meaning: The ISGECA service routine was unable to obtain
storage necessary to process the request.

Action: Consider reducing the COUNT and RIBOUTLN
parameter values to decrease the total number of resources to be
reported, and re-invoke ISGECA. Alternatively, if this was a
SCOPE(SYSTEMS) request, consider re-inovking ISGECA with
SCOPE(SYSTEM) to, potentially, reduce the total number of
resources to be reported.

08 xxxx0003 Meaning: A GRS internal error occurred and the request could not
be completed.

Action: No suggested program action.

08 xxxx0004 Meaning: The sysplex is in the process of migrating to GRS STAR
mode, and therefore cannot process the request at this time.

Action: Iteratively retry the ISGECA invocation, waiting a few
seconds between attempts.

08 xxxx00FD Meaning: The maximum number of relevant resources to be
reported on, as specified by parameter COUNT, exceeds the
service maximum value of 99.

Action: Correct the COUNT parameter value and reinvoke
ISGECA.

08 xxxx00FE Meaning: The RIBOUT length specified in parameter RIBOUTLN
was not large enough to process the number of resource requests
specified by parameter COUNT.

Action: Correct the RIBOUTLN or COUNT parameter values and
reinvoke ISGECA.

08 xxxx00FF Meaning: ISGECA is an unsupported service on this system.

Action: No suggested program action. The system needs a service
or release level upgrade before ISGECA can be successfully
invoked.

ISGECA macro

Chapter 120. ISGECA — GRS enhanced contention analysis service 1185

Examples
The following examples do not show, but presume, the existence of appropriate
assembler continuation characters in column 72. The examples also presume an
appropriate assembler storage declaration for each instance of a named symbol
ISGECA parameter.

The first example depicts an invocation of ISGECA to collect waiter data for a
specific sysplex system, whose 8-character system name is stored at program
location MYSYSNAME:

XR 2,2 Clear reg 2
LHI 2,476 ISGECA parm list length into R2
STORAGE OBTAIN,LENGTH=(2),ADDR=(3),SP=231,COND=NO
GETWAIT ISGECA REQUEST=WAITER,SCOPE=SYSTEM,

SYSNAME=MYSYSNAME,RIBOUT=OUTAREA@,
RIBOUTLN=MYOUTAREALEN,RIBOUTCT=MYRIBCT,
COUNT=MYCOUNT,NOTINCL=NOTINCLAREA@,
NOTINCCT=MYNOTCT,RETCODE=MYRETCODE,
RSNCODE=MYRSNCODE,PLISTVER=MAX,
MF=(E,(3))

For the above, subpool 231 storage is obtained and then passed through the MF=
parameter for the ISGECA service routine parameter list.

Upon return from the service routine, the virtual storage area specified by
OUTAREA@ contains the waiter report RIBs and RIBEs for up to MYCOUNT
number of resources; while the virtual storage area specified by NOTINCLAREA@
contains the associated list of systems (with reasons) that are not included in the
RIBOUT area report. The precise number of RIBs returned in the OUTAREA@ area
is returned in the MYRIBCT program variable.

This second example depicts an invocation of ISGECA to collect blocker data for all
the systems in the current sysplex:

GETBLOCK ISGECA REQUEST=BLOCKER,SCOPE=SYSTEMS,
RIBOUT=OUTAREA@,RIBOUTLN=MYOUTAREALEN,
RIBOUTCT=MYRIBCT,COUNT=MYCOUNT,
NOTINCL=NOTINCLAREA@,NOTINCCT=MYNOTCT,
RETCODE=MYRETCODE,RSNCODE=MYRSNCODE,
PLISTVER=MAX,MF=S

Parameter usage and results for this example are analogous to the previous
example. In this case, upon return from the ISGECA service routine, the virtual
storage area specified by OUTAREA@ contains the blocker report RIBs and RIBEs.
Note that the program itself must reside in common area subpool 231, because the
ISGECA invocation is using the standard macro format.

ISGECA macro

1186 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 121. ISGENQ — Global resource serialization ENQ
service

Description
Interface for Global Resource Serialization ENQ OBTAIN and RELEASE requests.

The GRS ENQ service routine is given control from the ISGENQ macro to:
v Obtain a single or multiple ENQs with or without associated device reserves.
v Change a single or multiple existing ENQs.
v Release a single or multiple ENQs.
v Test an obtain request.

This service is intended to replace ENQ, DEQ, and RESERVE.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state. Any PSW key

To use OWNINGTTOKEN, ENQMAX, or when the specified
QNAME is one of the authorized QNAMEs, authorization
must be one of the following: Supervisor state, PSW key 0-7,
or APF authorized.

Note: When an authorized caller issues an OBTAIN request
with an unauthorized QNAME, if COND=YES, the request
is granted, but a warning return code and the reason
ISGENQRsn_UnprotectedQName are given. This is to warn
that an unauthorized caller may block the ENQ, or even
release the ENQ if running under the owning task. If
COND=NO, authorized callers cannot obtain an ENQ on an
unprotected resource.

The authorized QNAMES are:
ADRDFRAG
ADRDSN
ARCENQG
BWODSN
SYSCTLG
SYSDSN
SYSIEA01
SYSIEECT
SYSIEFSD
SYSIGGV1
SYSIGGV2
SYSPSWRD
SYSVSAM
SYSVTOC
SYSZ*

Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN Note: The resulting ENQ

is associated with the owning task in the home address
space.

© Copyright IBM Corp. 1988, 2016 1187

Environmental factor Requirement
AMODE: 31- or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary or access register (AR)

If in access register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

The control parameters must be in the same key as the
caller.

The ECB specified must be in the caller's home address
space or in common.

The TCB of the owning task (the current task or specified by
OWNINGTTOKEN) must be in the caller's home address
space.

If a captured UCB address is specified, the captured UCB
must be in the caller's home address space.

Programming requirements
The caller must include the ISGYCON macro to get the return and reason codes.

The caller must include the ISGYENQ macro to get the mappings for the
ISGYENQAA, ISGYENQRES, ISGYENQTOKEN, and ISGYENQRETURN tables.

See "Avoiding Interlock" in z/OS MVS Programming: Assembler Services Guide to
ensure that you are following the required protocols to prevent the interlock.

Restrictions
The caller must not have functional recovery routines (FRRs).

This macro supports multiple versions. Some keywords are unique to certain
versions. See the “,PLISTVER=IMPLIED_VERSION” on page 1198 parameter
description.

Input register information
Before issuing the ISGENQ macro, the caller does not have to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

ISGENQ macro

1188 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1189

Syntax

main diagram

��
name

b ISGENQ b REQUEST = OBTAIN parameters-1
REQUEST = CHANGE parameters-2
REQUEST = RELEASE parameters-3

, COND = NO

, COND = YES
�

�
, RETCODE = retcode , RSNCODE = rsncode

, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 1
, PLISTVER = 2

�

�
, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

parameters-1

��
, TEST = NO

parameters-4
, ANSLEN = NO_ANSLEN , OWNINGTTOKEN = CURRENT_TASK

, TEST = YES
, ANSAREA = ansarea , ANSLEN = anslen , OWNINGTTOKEN = owningttoken

�

�
, RESLIST = NO

parameters-5
, RESLIST = YES parameters-6

��

parameters-2

��
, RESLIST = NO

, ENQTOKEN = enqtoken
, RESLIST = YES , NUMRES = numres , ENQTOKENTBL = enqtokentbl

, RETURNTABLE = returntable

�

�
, OWNINGTTOKEN = CURRENT_TASK

, OWNINGTTOKEN = owningttoken
, CONTROL = EXCLUSIVE
, CONTROL = SHARED

��

parameters-3

��
, RESLIST = NO

, ENQTOKEN = enqtoken
, RESLIST = YES , NUMRES = numres , ENQTOKENTBL = enqtokentbl

, RETURNTABLE = returntable

�

�
, OWNINGTTOKEN = CURRENT_TASK

, OWNINGTTOKEN = owningttoken
��

ISGENQ macro

1190 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

parameters-4

��
, CONTENTIONACT = WAIT , WAITTYPE = SUSPEND

, OWNINGTTOKEN = CURRENT_TASK
, WAITTYPE = ECB , ECB@ = ecb@

, OWNINGTTOKEN = owningttoken
, OWNINGTTOKEN = CURRENT_TASK , ENQMAX = YES

, CONTENTIONACT = FAIL
, OWNINGTTOKEN = owningttoken , ENQMAX = NO

�

�
, USERDATA = NO_USERDATA

, USERDATA = userdata
��

parameters-5

�� , QNAME = qname , RNAME = rname , RNAMELEN = rnamelen �

� , CONTROL = EXCLUSIVE
, CONTROL = SHARED
, CONTROL = VALUE , CONTROLVAL = controlval

�

�
, RESERVEVOLUME = NO , RNL = YES

, SCOPE = STEP
, SCOPE = SYSTEM , RNL = NO
, SCOPE = SYSTEMS
, SCOPE = SYSPLEX
, SCOPE = VALUE , SCOPEVAL = scopeval

, SYNCHRES = SYSTEM
, RESERVEVOLUME = YES , UCB@ = ucb@

, SYNCHRES = YES
, SYNCHRES = NO

�

� , ENQTOKEN = enqtoken ��

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1191

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the ISGENQ
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ANSAREA=ansarea
When TEST=YES and REQUEST=OBTAIN are specified, an optional output
parameter, which contains the returned information. The area is a list of
records mapped by ISGYENQAA in the ISGYENQ macro. For RESLIST=YES,
the records are in the same order as the requests in the RESTABLE. ANSLEN is
required if ANSAREA is specified.

Note: The answer area is returned only when RC=0 or RC=4.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ENQMAX=YES
,ENQMAX=NO

When TEST=NO and REQUEST=OBTAIN are specified, an optional parameter
that indicates whether ENQMAX checking should be done. This keyword tells

parameters-6

�� , NUMRES = numres , RESTABLE = restable , ENQTOKENTBL = enqtokentbl �

�
, RETURNTABLE = returntable

, QNAME = DO_NOT_OVERRIDE

, QNAME = qname
�

�
, RNAME = DO_NOT_OVERRIDE

, RNAME = rname

, RNAMELEN = DO_NOT_OVERRIDE

, RNAMELEN = rnamelen
�

�
, CONTROL = DO_NOT_OVERRIDE

, CONTROL = EXCLUSIVE
, CONTROL = SHARED

, SCOPE = DO_NOT_OVERRIDE

, SCOPE = STEP
, SCOPE = SYSTEM
, SCOPE = SYSTEMS
, SCOPE = SYSPLEX

�

�
, RNL = DO_NOT_OVERRIDE

, RNL = YES
, RNL = NO

, UCB@ = DO_NOT_OVERRIDE

, UCB@ = ucb@
�

�
, SYNCHRES = DO_NOT_OVERRIDE

, SYNCHRES = SYSTEM
, SYNCHRES = YES
, SYNCHRES = NO

��

ISGENQ macro

1192 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

global resource serialization whether a check is to be made to see if the limit
for the number of concurrent resource requests has been exceeded. The default
is ENQMAX=YES.

,ENQMAX=YES
Indicates ENQMAX checking should be done. IBM suggests that you use
the default, ENQMAX=YES, to allow global resource serialization to
perform this processing.

,ENQMAX=NO
Indicates that ENQMAX checking should not be used. Use ENQMAX=NO
when you have a system-critical ENQ request that should be honored
regardless of the concurrent number of resource requests made from the
home address space.

Note: ENQMAX=NO can only be specified by an authorized requester
and therefore can only override the maximum for authorized requesters.

See z/OS MVS Planning: Global Resource Serialization for more information.

,ANSLEN=anslen
,ANSLEN=NO_ANSLEN

When TEST=YES and REQUEST=OBTAIN are specified, an optional input
parameter that is the length of the answer area provided. The answer area
should be large enough to hold a ISGYENQAA record and an RNAME for
each request (specified by NUMRES, or one if RESLIST=NO). The maximum
size area needed to contain one RNAME is 256 bytes. ANSAREA is required if
ANSLEN is specified. The default is NO_ANSLEN.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,COND=NO
,COND=YES

An optional parameter that indicates how the request is handled for
unsuccessful processing. The default is COND=NO.

,COND=NO
Indicates that if the request is not successful, then ISGENQ should ABEND
the caller. COND=NO is mutually exclusive with RETCODE, RSNCODE,
RETURNTABLE, WAITTYPE=ECB, and with TEST=YES.

,COND=YES
Indicates that ISGENQ should always return to the caller and indicate via
return and reason codes whether the request was successful. If COND=YES
is specified, RETCODE and RSNCODE (and RETURNTABLE, if
RESLIST=YES) are required keywords.

Note: When COND=YES, ISGENQ tries to provide return and reason codes
for the errors occurred during the process, though in some cases abends
might be issued.

,CONTENTIONACT=WAIT
,CONTENTIONACT=FAIL

When TEST=NO and REQUEST=OBTAIN are specified, an optional parameter
that indicates the action that should be taken if there is contention for the
requested resource.

Note that a reserve request (where UCB@ is specified) that is not converted to
only a global ENQ (Systems) will consist of an ENQ resource and a hardware
reserve. For more information on reserve processing, see the description of the

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1193

“,SYNCHRES=SYSTEM” on page 1204 keyword for more information on
reserve processing. The default is CONTENTIONACT=WAIT.

,CONTENTIONACT=WAIT
Indicates that the caller waits until the ENQ resource is available and, if
applicable, the synchronous reserve I/O (see SYNCHRES) is complete.

,CONTENTIONACT=FAIL
Indicates that if contention for the ENQ resource exists to cancel the ENQ
obtain request and return to the caller.

Notes:
v See CONTENTIONACT=WAIT with ECB@ as a means of timing the

overall request.
v For a reserve request (where UCB@ is specified), the ENQ resource is

always obtained first. As such, CONTENTIONACT=FAIL indicates to
cancel the entire request when there is contention on the ENQ resource.
However, it does not apply to contention on the hardware reserve. See
CONTENTIONACT=WAIT with WAITTYPE=ECB for information on
how to manage or time hardware reserve contention.

,CONTROL=EXCLUSIVE
,CONTROL=SHARED
,CONTROL=VALUE

When RESLIST=NO and REQUEST=OBTAIN are specified, a required
parameter that is the control type of the ENQ to be obtained. If the resource is
modified while under control of the task, the request must be for exclusive
control. If the resource is not modified, the request should be for shared
control.

,CONTROL=EXCLUSIVE
Indicates that the request is for exclusive control of the resource.

,CONTROL=SHARED
Indicates that the request is for shared control of the resource.

,CONTROL=VALUE
the user provides a value, through the CONTROLVAL keyword, indicating
the requested control.

,CONTROL=DO_NOT_OVERRIDE
,CONTROL=EXCLUSIVE
,CONTROL=SHARED

When RESLIST=YES and REQUEST=OBTAIN are specified, an optional
parameter that is the type of control to be used for all resources specified in
the resource table. This overrides any control specified in the resource table. If
the resource is modified while under control of the task, the request must be
for exclusive control. If the resource is not modified, the request should be for
shared control. The default is CONTROL=DO_NOT_OVERRIDE.

,CONTROL=DO_NOT_OVERRIDE
Indicates that the control specified in the resource table should be used.

,CONTROL=EXCLUSIVE
Indicates that all requests are for exclusive control of the resources.

,CONTROL=SHARED
Indicates that all requests are for shared control of the resources.

,CONTROL=EXCLUSIVE

ISGENQ macro

1194 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,CONTROL=SHARED
When RESLIST=NO and REQUEST=CHANGE are specified, control is an
optional keyword input that is the control type to which the ENQ is to be
changed. If the resource is modified under control of the task the request must
be for exclusive control. If the resource is not modified, the request should be
for shared control. When RESLIST=YES is specified, all resources in the list will
be changed to the specified scope. The default is CONTROL=EXCLUSIVE.

,CONTROL=EXCLUSIVE
Indicates that the request is to change to exclusive control of the resource.

,CONTROL=SHARED
Indicates that the request is to change to shared control of the resource.

,CONTROLVAL=controlval
When CONTROL=VALUE, RESLIST=NO and REQUEST=OBTAIN are
specified, a required input parameter that contains a value indicating the
desired control. The value provided must be equivalent to the constants
provided in the ISGYENQ macro indicating the control. (See the
ISGYENQ_kControl constants in the ISGYENQ macro for more information.)

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,ECB@=ecb@
When WAITTYPE=ECB, CONTENTIONACT=WAIT, TEST=NO and
REQUEST=OBTAIN are specified, a required input parameter that contains the
address of the ECB to be posted when the requested resource(s) is/are
obtained.

The ECB must be in one of the following locations:
v the home address space of the caller.
v common space.
v for unauthorized requesters, in the same storage key as the requester.

When the ISGENQ service returns to the caller, the return and reason codes
specify for each resource whether the task has been given control of the
resource or needs to wait for the ECB to be posted.

When the ECB is posted, it contains a return/reason code pair. Bits 8-23
contain the low-order halfword of the reason code and bits 24-31 contain the
low-order byte of the return code. For a RESLIST=NO request, the ECB
contains the return and reason code for the request. For a RESLIST=YES
request, the ECB contains an overall return code.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,ENQTOKEN=enqtoken
When RESLIST=NO and REQUEST=OBTAIN are specified, a required output
parameter that is a token that uniquely identifies the ENQ. The ENQTOKEN is
used on subsequent REQUEST=RELEASE or CHANGE invocations to release
or change the ENQ request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,ENQTOKEN=enqtoken
When RESLIST=NO and REQUEST=CHANGE are specified, a required input
parameter that is an ENQ Token of the ENQ to be changed.

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1195

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,ENQTOKEN=enqtoken
When RESLIST=NO and REQUEST=RELEASE are specified, a required input
parameter that is an ENQ Token of the ENQ to be released.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,ENQTOKENTBL=enqtokentbl
When RESLIST=YES and REQUEST=OBTAIN are specified, a required output
parameter that is a table of ENQ tokens. Mapped by ISGYENQToken in the
ISGYENQ macro. To easily release any ENQs obtained by a
REQUEST=OBTAIN use the same ENQToken table as input to a
REQUEST=RELEASE.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ENQTOKENTBL=enqtokentbl
When RESLIST=YES and REQUEST=CHANGE are specified, a required input
parameter that is a table of ENQ Tokens. Mapped by ISGYENQToken in the
ISGYENQ macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ENQTOKENTBL=enqtokentbl
When RESLIST=YES and REQUEST=RELEASE are specified, a required input
parameter that is a table of ENQ Tokens. Mapped by ISGYENQToken in the
ISGYENQ macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

ISGENQ macro

1196 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NUMRES=numres
When RESLIST=YES and REQUEST=OBTAIN are specified, a required input
parameter that is the number of resource entries in the resource table. The
specified value can be in the range of 1 to 2?6-1 (65535).

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value.

,NUMRES=numres
When RESLIST=YES and REQUEST=CHANGE are specified, a required input
parameter that is the number of ENQ tokens in the ENQ token table. The
specified value can be in the range of 1 to 2?6-1 (65535).

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value.

,NUMRES=numres
When RESLIST=YES and REQUEST=RELEASE are specified, a required input
parameter that is the number of ENQ tokens in the ENQ Token Table. The
specified value can be in the range of 1 to 2?6-1 (65535).

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value.

,OWNINGTTOKEN=owningttoken
,OWNINGTTOKEN=CURRENT_TASK

When WAITTYPE=ECB, CONTENTIONACT=WAIT, TEST=NO and
REQUEST=OBTAIN are specified, an optional input parameter that is the task
token (TToken) of the task on whose behalf the ENQ is to be obtained. The
TToken must specify a task in the caller's home address space.

Note: Mutually exclusive with RESERVEVOLUME=YES. The default is
CURRENT_TASK.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,OWNINGTTOKEN=owningttoken
,OWNINGTTOKEN=CURRENT_TASK

When CONTENTIONACT=FAIL, TEST=NO and REQUEST=OBTAIN are
specified, an optional input parameter that is the task token (TToken) of the
task on whose behalf the ENQ is to be obtained. The TToken must specify a
task in the caller's home address space.

Note: Mutually exclusive with RESERVEVOLUME=YES. The default is
CURRENT_TASK.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1197

,OWNINGTTOKEN=owningttoken
,OWNINGTTOKEN=CURRENT_TASK

When TEST=YES and REQUEST=OBTAIN are specified, an optional input
parameter that is the task token (TToken) of the task on whose behalf the test
request is to be performed. The TToken must specify a task in the caller's home
address space.

Note: Mutually exclusive with RESERVEVOLUME=YES. The default is
CURRENT_TASK.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,OWNINGTTOKEN=owningttoken
,OWNINGTTOKEN=CURRENT_TASK

When REQUEST=CHANGE is specified, an optional input parameter that is
the task token (TToken) of the task that owns the ENQ that is to be changed.
The TToken must specify a task in the caller's home address space. The default
is CURRENT_TASK.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,OWNINGTTOKEN=owningttoken
,OWNINGTTOKEN=CURRENT_TASK

When REQUEST=RELEASE is specified, an optional input parameter that is
the task token (TToken) of the task that owns the ENQs that are to be released.
The TToken must specify a task in the caller's home address space. The default
is CURRENT_TASK.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 1, which supports all parameters except those specifically referenced in
higher versions.

v 2, which supports both the following parameters and those from version 1:
USERDATA

ISGENQ macro

1198 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1, or 2

,QNAME=qname
When RESLIST=NO and REQUEST=OBTAIN are specified, a required input
parameter that is the QNAME of the resource. The QNAME can contain any
character from X'00' to X'FF'. However, a unique readable value that identifies
the functional area or a high level of what is being serialized is preferred.
Every program issuing a request for a serially reusable resource must use the
same QNAME, RNAME, and Scope to represent the resource. Some names,
such as those beginning with certain letter combinations (SYSZ for example),
are used to protect system resources by requiring that the issuing program be
in supervisor state, or system key, or APF-authorized. Authorized programs
must use a restricted QNAME (as described under Minimum authorization in
the Environment section for this service) to prevent interference from
unauthorized programs.

For a list of QNAME (also known as major name) and RNAME (also known as
minor name) ENQ or DEQ names and the resources that issue the ENQ or
DEQ, see z/OS MVS Diagnosis: Reference.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,QNAME=qname
,QNAME=DO_NOT_OVERRIDE

When RESLIST=YES and REQUEST=OBTAIN are specified, an optional input
parameter that is a common QNAME to be used for all resources in the
resource table. This overrides any QNAMEs specified in the resource table. The
QNAME can contain any character from X'00' to X'FF'. However, a unique
readable value that identifies the functional area or a high level of what is
being serialized is preferred. Every program issuing a request for a serially
reusable resource must use the same QNAME, RNAME, and Scope to
represent the resource. Some names, such as those beginning with certain letter
combinations (SYSZ for example), are used to protect system resources by
requiring that the issuing program be in supervisor state, or system key, or
APF-authorized. Authorized programs must use a restricted QNAME (as
described under Minimum authorization in the Environment section for this
service) to prevent interference from unauthorized programs.

For a list of QNAME (also known as major name) and RNAME (also known as
minor name) ENQ or DEQ names and the resources that issue the ENQ or
DEQ, see z/OS MVS Diagnosis: Reference.

The default is DO_NOT_OVERRIDE.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

REQUEST=OBTAIN
REQUEST=CHANGE
REQUEST=RELEASE

A required parameter that indicates the type of ISGENQ request.

REQUEST=OBTAIN
Indicates a request to obtain an ENQ for a resource.

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1199

REQUEST=CHANGE
Indicates a request to change the status an ENQ from shared to exclusive
control.

REQUEST=RELEASE
Indicates a request to release (dequeue) the ENQ for a resource.

,RESERVEVOLUME=NO
,RESERVEVOLUME=YES

When RESLIST=NO and REQUEST=OBTAIN are specified, an optional
parameter. The default is RESERVEVOLUME=NO.

,RESERVEVOLUME=NO
Indicates to issue a normal ENQ obtain and not a reserve.

,RESERVEVOLUME=YES
Indicates that after the ENQ resource is obtained that a reserve for the
given device (shared DASD) is to be issued.

Note: RESERVEVOLUME=YES is mutually exclusive with
OWNINGTTOKEN.

,RESLIST=NO
,RESLIST=YES

When REQUEST=OBTAIN is specified, an optional parameter, The default is
RESLIST=NO.

,RESLIST=NO
Indicates to obtain an ENQ for a single resource.

,RESLIST=YES
Indicates to obtain ENQs for multiple resources specified in a resource
table. Specifying multiple requests in a list ensures that they are processed
atomically with respect to other ISGENQ requests. However, the order in
which the requests are processed is unpredictable. Each request is treated
as a separate request, and if COND=YES is specified, then the return code
for each request should be checked.

Note: An easy way to release a list of ENQs is to use the output
ENQTOKEN table from the OBTAIN request as input to a RELEASE
request.

,RESLIST=NO
,RESLIST=YES

When REQUEST=CHANGE is specified, an optional parameter, The default is
RESLIST=NO.

,RESLIST=NO
Indicates to change the control of a single ENQ.

,RESLIST=YES
Indicates to change the control for multiple ENQs.

,RESLIST=NO
,RESLIST=YES

When REQUEST=RELEASE is specified, an optional parameter, The default is
RESLIST=NO.

,RESLIST=NO
Indicates to single ENQ RELEASE request.

,RESLIST=YES
Indicates to change the disposition for multiple ENQs.

ISGENQ macro

1200 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Note: A easy way to release a list of ENQs is to use the output
ENQTOKEN table from the OBTAIN request as input to a RELEASE
request.

,RESTABLE=restable
When RESLIST=YES and REQUEST=OBTAIN are specified, a required input
parameter that is a table specifying multiple ENQ requests. The resource table
is mapped by ISGYENQRes in the ISGYENQ macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,RETURNTABLE=returntable
When RESLIST=YES and REQUEST=OBTAIN are specified, an optional output
parameter that is a table that contains the return and reason codes. Mapped by
ISGYENQReturn in the ISGYENQ macro. The return table is only valid when
ISGENQRsn_NonZeroReturnCodes is returned in the RSNCODE. Mutually
exclusive with COND=NO.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RETURNTABLE=returntable
When RESLIST=YES and REQUEST=CHANGE are specified, an optional
output parameter that is a table that contains the return and reason codes.
Mapped by ISGYENQReturn in the ISGYENQ macro. The return table is only
valid when ISGENQRsn_NonZeroReturnCodes is returned in the RSNCODE.
Mutually exclusive with COND=NO.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RETURNTABLE=returntable
When RESLIST=YES and REQUEST=RELEASE are specified, an optional
output parameter that is a table that contains the return and reason codes.
Mapped by ISGYENQReturn in the ISGYENQ macro. The return table is only
valid when ISGENQRsn_NonZeroReturnCodes is returned in the RSNCODE.
Mutually exclusive with COND=NO.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RNAME=rname
When RESLIST=NO and REQUEST=OBTAIN are specified, a required input
parameter that is the RNAME for the resource. The RNAME must be from 1 to
255 bytes long, and can contain any hexadecimal character from X'00' to X'FF'.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RNAME=rname
,RNAME=DO_NOT_OVERRIDE

When RESLIST=YES and REQUEST=OBTAIN are specified, an optional input
parameter that is the common RNAME to be used for all resources in the

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1201

resource table. This overrides any RNAMEs specified in the resource table. The
RNAME must be from 1 to 255 bytes long, and can contain any hexadecimal
character from X'00' to X'FF'. The default is DO_NOT_OVERRIDE.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RNAMELEN=rnamelen
When RESLIST=NO and REQUEST=OBTAIN are specified, a required input
parameter that is the length of the given RNAME. The specified length can be
in the range of 1 to 255.

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,RNAMELEN=rnamelen
,RNAMELEN=DO_NOT_OVERRIDE

When RESLIST=YES and REQUEST=OBTAIN are specified, an optional input
parameter that is a common length to be used for all RNAMEs in the resource
table, or if a common RNAME is specified, it is the length of the common
RNAME. The specified length can be in the range of 1 to 255. This overrides
any RNAMEs lengths specified in the resource table. The default is
DO_NOT_OVERRIDE.

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,RNL=YES
,RNL=NO

When RESERVEVOLUME=NO, RESLIST=NO and REQUEST=OBTAIN are
specified, an optional parameter that indicates whether the scope can be
changed by global resource serialization resource name list (RNL) processing
or the dynamic exits. The default is RNL=YES.

,RNL=YES
Indicates that global resource serialization RNL processing should be used,
which can cause the scope of a resource to change. IBM suggests that you
use the default, RNL=YES, to allow global resource serialization to perform
RNL processing.

,RNL=NO
Indicates that global resource serialization RNL processing should not be
used. The scope of the resource is not changed by the RNLs nor any
dynamic exits. Use RNL=NO when you are sure that you want the request
to be processed only by global resource serialization using only the
specified scope. When RNL=NO is specified, the ENQ request can be
ignored by alternative serialization products.

,RNL=DO_NOT_OVERRIDE
,RNL=YES
,RNL=NO

When RESLIST=YES and REQUEST=OBTAIN are specified, an optional
parameter that indicates whether the scope can be changed by global resource
serialization resource name list (RNL) processing or the dynamic exits. This
overrides any RNL processing specified in the resource table. The default is
RNL=DO_NOT_OVERRIDE.

,RNL=DO_NOT_OVERRIDE
Indicates that the RNL specifications in the resource table should be used.

ISGENQ macro

1202 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,RNL=YES
Indicates that global resource serialization RNL processing should be used,
which can cause the scope of a resource to change. IBM suggests that you
use the default, RNL=YES, to allow global resource serialization to perform
RNL processing.

,RNL=NO
Indicates that global resource serialization RNL processing should not be
used. The scope of the resource cannot be changed by the RNLs or any
dynamic exits. Use RNL=NO when you are sure that you want the request
to be processed only by global resource serialization using only the
specified scope. When RNL=NO is specified, the ENQ request is ignored
by alternative serialization products.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,SCOPE=STEP
,SCOPE=SYSTEM
,SCOPE=SYSTEMS
,SCOPE=SYSPLEX
,SCOPE=VALUE

When RESERVEVOLUME=NO, RESLIST=NO and REQUEST=OBTAIN are
specified, a required parameter that is the scope of the resource.

,SCOPE=STEP
Indicates that the resource is serialized only within an address space. If
STEP is specified, a request for the same QNAME and RNAME from a
program in another address space denotes a different resource.

,SCOPE=SYSTEM
Indicates that the resource is serialized across all address spaces in a
system.

,SCOPE=SYSTEMS
Indicates that the resource is serialized across all systems in a GRS Star or
GRS Ring complex.

,SCOPE=SYSPLEX
Indicates that the resource is serialized across all systems in a GRS Star
sysplex or GRS ring. (Same as scope SYSTEMS.)

,SCOPE=VALUE
the user provides a value, through the SCOPEVAL keyword, indicating the
requested scope.

,SCOPE=DO_NOT_OVERRIDE
,SCOPE=STEP
,SCOPE=SYSTEM
,SCOPE=SYSTEMS
,SCOPE=SYSPLEX

When RESLIST=YES and REQUEST=OBTAIN are specified, an optional
parameter that is the scope to be used for all resources in the resource table.
This overrides any scopes specified in the resource table. The default is
SCOPE=DO_NOT_OVERRIDE.

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1203

,SCOPE=DO_NOT_OVERRIDE
Indicates that the scope specified in the resource table should be used.

,SCOPE=STEP
Indicates that the resource is serialized only within an address space. If
STEP is specified, a request for the same QNAME and RNAME from a
program in another address space denotes a different resource.

,SCOPE=SYSTEM
Indicates that the resource is serialized across all address spaces in a
system.

,SCOPE=SYSTEMS
Indicates that the resource is serialized across all systems in a GRS Star or
GRS Ring complex.

,SCOPE=SYSPLEX
Indicates that the resource is serialized across all systems in a GRS Star
sysplex or GRS ring. (Same as scope SYSTEMS.)

,SCOPEVAL=scopeval
When SCOPE=VALUE, RESERVEVOLUME=NO, RESLIST=NO and
REQUEST=OBTAIN are specified, a required input parameter that contains a
value indicating the desired scope. The value provided must be equivalent to
the constants provided in the ISGYENQ macro indicating the scope. (See the
ISGYENQ_ constants in the ISGYENQ macro for more information.)

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,SYNCHRES=SYSTEM
,SYNCHRES=YES
,SYNCHRES=NO

When RESERVEVOLUME=YES, RESLIST=NO and REQUEST=OBTAIN are
specified, an optional parameter that specifies whether the request should issue
a synchronous reserve. A synchronous reserve immediately reserves the
volume instead of waiting for the first use.

Note that an RC=4 (ISGENQRc_Warn), RSC=0403
(ISGENQRsn_ECBWillBePosted) is presented for CONTENTIONACT=WAIT,
WAITTYPE=ECB, reserve requests (where UCB@ is specified) when there is
contention on the ENQ resource or there was no contention on the resource,
and the reserve I/O was done synchronously. The default is
SYNCHRES=SYSTEM.

,SYNCHRES=SYSTEM
Indicates that the installation system default SYNCHRES setting should be
used.

,SYNCHRES=YES
Indicates to issue a synchronous reserve. In cases where the hardware
reserve is performed (it was not converted to a Global/Systems ENQ), the
caller is ensured that the reserve I/O is complete when the ISGENQ
request has successfully completed.

,SYNCHRES=NO
Indicates that a synchronous reserve should be avoided when possible.
Some devices require that the reserve must be done synchronously
regardless of this setting. If the reserve I/O is not done synchronously, the

ISGENQ macro

1204 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

reservce is done when the first I/O is done to the device after the reserve
request is issued. For more information, see z/OS MVS Planning: Global
Resource Serialization.

,SYNCHRES=DO_NOT_OVERRIDE
,SYNCHRES=SYSTEM
,SYNCHRES=YES
,SYNCHRES=NO

When RESLIST=YES and REQUEST=OBTAIN are specified, an optional
parameter that specifies whether all requests specified in the resource table
should issue a synchronous reserve. This overrides any SYNCHRES specified
in the resource table. A synchronous reserve immediately reserves the volume
instead of waiting for the first use. The default is
SYNCHRES=DO_NOT_OVERRIDE.

,SYNCHRES=DO_NOT_OVERRIDE
Indicates that the SYNCHRES specified in the resource table should be
used.

,SYNCHRES=SYSTEM
Indicates that the system default setting should be used.

,SYNCHRES=YES
Indicates to issue a synchronous reserve. In cases where the the hardware
reserve is performed (it was not converted to a Global/Systems ENQ), the
caller is ensured that the reserve I/O is complete when the request has
successfully completed.

,SYNCHRES=NO
Indicates that a synchronous reserve should be avoided when possible.
Some devices require that the reserve must be done synchronously
regardless of this setting. If the reserve I/O is not done synchronously, the
reserve is done when the first I/O is done to the device after the reserve
request is issued. See z/OS MVS Planning: Global Resource Serialization for
more information.

,TEST=NO
,TEST=YES

When REQUEST=OBTAIN is specified, an optional parameter. The default is
TEST=NO.

,TEST=NO
Indicates that this is not a test request. The ENQ must be obtained.

,TEST=YES
Indicates that this is a test request. The ENQ must not be obtained. This
parameter setting can be used to obtain information about how the given
obtain request is processed and how a resource is currently held by the
current task or a task specified by OWNINGTTOKEN.

Mutually exclusive with COND=NO.

For existing requests from the same task, which match the specified
resource, the ENQToken of that request is returned.

See ISGQUERY SEARCH=BY_ENQTOKEN for information about
outstanding ENQ requests.

The following return and reason codes can be used to determine if the
resource is available and how it might be held by the OWNINGTTOKEN
task:
v ISGENQRc_ok

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1205

v ISGENQRsn_NotImmediatelyAvailable
v ISGENQRsn_TaskOwnsExclusive
v ISGENQRsn_TaskOwnsShared
v ISGENQRsn_TaskWaiting

,UCB@=ucb@
When RESERVEVOLUME=YES, RESLIST=NO and REQUEST=OBTAIN are
specified, a required input parameter that contains the address of the UCB for
the device to be reserved. For unauthorized callers, the UCB must be allocated
to the job step before ISGENQ RESERVEVOLUME(YES) is issued.

Note: Authorized callers do not need to allocate the UCB to the job step before
invoking ISGENQ, but the caller must serialize the UCB against dynamic I/O
reconfiguration requests. The caller can accomplish this serialization by
allocating or pinning the UCB. Such serialization ensures that a dynamic I/O
reconfiguration request does not delete or reuse the UCB before the ISGENQ
macro uses the address.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,UCB@=ucb@
,UCB@=DO_NOT_OVERRIDE

When RESLIST=YES and REQUEST=OBTAIN are specified, an optional input
parameter that contains the address of the UCB@ for the device to be reserved
for all resources in the resource table. This overrides any UCB addresses
specified in the resource table. The default is DO_NOT_OVERRIDE.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,USERDATA=userdata
,USERDATA=NO_USERDATA

When TEST=NO and REQUEST=OBTAIN are specified, an optional input
parameter that contains the userdata to be associated with this request. For
information about using USERDATA as a filter, or making ISGQUERY return
USERDATA for requests, see Chapter 134, “ISGQUERY — Global resource
serialization query service,” on page 1293.

Note that GRS has no interests in the contents of the USERDATA. Unlike the
QNAME, RNAME, and SCOPE parameters, USERDATA has no meaning in the
definition of the logically serialized resource identity. For example, exclusive
requests with different user data and the same QNAME, RNAME, and SCOPE
contend with each other.

This request requires a version 2 parameter list. The default is
NO_USERDATA.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,WAITTYPE=SUSPEND
,WAITTYPE=ECB

When CONTENTIONACT=WAIT, TEST=NO and REQUEST=OBTAIN are
specified, an optional parameter that indicates the method by which the caller
waits. The default is WAITTYPE=SUSPEND.

,WAITTYPE=SUSPEND
Indicates that the current task is suspended until the entire request is
completed.

ISGENQ macro

1206 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,WAITTYPE=ECB
Indicates that if contention for the ENQ resource exists or the device
reserve is done synchronously (see “,SYNCHRES=SYSTEM” on page 1204),
return to the caller, and post the ECB when the request is complete.

Mutually exclusive with COND=NO.

WAITTYPE=ECB in combination with setting a timer with ECB can be
used to control the amount of time that you are willing to wait for either
ENQ contention or a synchronous reserve to complete. If the request does
not complete before the time expires you can do the following actions.
v You can use the the ISGECA and ISGQUERY services to interrogate the

overall state of the request and associated resource.
v You can back out of the request using an ISGENQ REQUEST=RELEASE

request."

ABEND codes
For REQUEST=OBTAIN and REQUEST=CHANGE requests the caller might
encounter abend codes X'138', X'238', X'338', X'438', X'538', X'638', X'738', X'838',
X'938'.

For REQUEST=RELEASE requests the caller might encounter abend codes X'130',
X'230', X'330', X'430', X'530', X'630', X'730', X'830', X'930'.

For explanations and responses for these codes, see z/OS MVS System Codes.

Note that the ABEND reason codes correspond to the same reason codes listed in
Table 107.

Return and reason codes
When the ISGENQ macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro ISGYCON provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support the xxxx value,
where xxxx represent 4 hex digits. Note that when the xxxx value is 'E0F2'
hexadecimal, it indicates a reason-code set by the ISGNQXITBATCH or
ISGNQXITBATCHCND exits.

Table 107. Return and Reason Codes for the ISGENQ Macro

Return Code Reason Code Equate Symbol Meaning and Action

00 — Equate Symbol: ISGENQRc_OK

Meaning: ISGENQ request successful. Depending on the type of
request, the ENQ is successfully obtained, changed to exclusive,
or released. If RESLIST=YES is specified, all ENQ obtain, change,
and release requests are successful. For REQUEST=OBTAIN,
TEST=YES, the resource is immediately available.

Action: None required.

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1207

Table 107. Return and Reason Codes for the ISGENQ Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

04 — Equate Symbol: ISGENQRc_Warn

Meaning: Warning

Action: Refer to action under the individual reason code.

04 xxxx0401 Equate Symbol: ISGENQRsn_NonZeroReturnCodes

Meaning: A non-zero return code was issued for one or more
entries in a RESLIST=YES request. The return table has the return
and reason codes for each of the requests in the list.

Action: See the return and reason codes returned in the
RETURNTABLE.

04 xxxx0402 Equate Symbol: ISGENQRsn_RequestNotProcessed

Meaning: For RESLIST=YES requests. One of the other requests in
the RESTABLE failed such that this request was prevented from
being processed. Note that requests in a RESTABLE are not
necessarily processed in the order they appear in the RESTABLE.
Note: This reason code returned only in the RETURNTABLE, not
through the RSNCODE keyword.

Action: Check the return and reason codes for all other requests
in the RETURNTABLE to identify the problem.

04 xxxx0403 Equate Symbol: ISGENQRsn_ECBWillBePosted

Meaning: For REQUEST=OBTAIN CONTENTIONACT=WAIT
WAITTYPE=ECB, the OBTAIN request was successful, but the
ENQ resource was not immediately available or the reserve I/O
needed to be done synchronously (SYNCHRES). The ECB is
posted when all requested resources are owned by the specified
task, or when an error has occurred. The ENQToken for the
request has been returned.

Action: Wait on the ECB and check the return code in the ECB
before using the requested resources.

04 xxxx0404 Equate Symbol: ISGENQRsn_NotImmediatelyAvailable

Meaning: The ENQ of the resource was not immediately
available. For REQUEST=OBTAIN CONTENTIONACT=FAIL, the
requested resource is not obtained. For REQUEST=OBTAIN
TEST=YES, the holder is a task other than OWNINGTTOKEN.

Action: No action required.

04 xxxx0405 Equate Symbol: ISGENQRsn_TaskOwnsExclusive

Meaning: For REQUEST=OBTAIN, including TEST=YES, the
given task specified by OWNINGTTOKEN already owns the
specified resource exclusively. The ENQToken for the owning
request has been returned.

Action: No action required.

ISGENQ macro

1208 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 107. Return and Reason Codes for the ISGENQ Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

04 xxxx0406 Equate Symbol: ISGENQRsn_TaskOwnsShared

Meaning: For a REQUEST=OBTAIN, including TEST=YES, the
given task specified by OWNINGTTOKEN already owns the
specified resource shared. The ENQToken for the owning request
has been returned.

Action: No action required.

04 xxxx0407 Equate Symbol: ISGENQRsn_TaskWaiting

Meaning: For a REQUEST=OBTAIN, including TEST=YES, the
given task specified by OWNINGTTOKEN is already waiting for
control of the specified resource. The ENQToken for the waiting
request has been returned.

Action: No action required.

04 xxxx0409 Equate Symbol: ISGENQRsn_OtherSharedOwners

Meaning: For REQUEST=CHANGE. The control cannot be
changed to exclusive. There are other shared owners of the
resource.

Action: No action required.

04 xxxx040A Equate Symbol: ISGENQRsn_TaskDoesNotOwn

Meaning: For REQUEST=CHANGE. The control cannot be
changed to exclusive. The task does not yet own the resource.

Action: No action required.

04 xxxx040B Equate Symbol: ISGENQRsn_TaskSuspendedForResource

Meaning: For REQUEST=RELEASE. The task that requested the
ENQ obtain has not yet been assigned control of the resource The
task continues waiting and the resource is not released. (This
reason code might result in an exit routine, which received control
because of an interruption, issued a RELEASE reqquest on behalf
of the task.)

Action: Correct the program so that the ISGENQ RELEASE
request is issued only after the ISGENQ OBTAIN request has
returned to the task. If possible, avoid issuing the RELEASE
request in the exit routine.

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1209

Table 107. Return and Reason Codes for the ISGENQ Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

04 xxxx040D Equate Symbol: ISGENQRsn_UnprotectedQName

Meaning: For REQUEST=OBTAIN. An authorized caller requested
an ENQ with an unauthorized QNAME.

For TEST=NO,COND=YES, the OBTAIN request completed
successfully, an unauthorized caller under the same owning task
might release the ENQ. The ENQToken has been returned.

For TEST=NO, COND=NO, the requester was abended with a
X'438' abend. The request might not have completed successfully

For TEST=YES requests, the resource is currently available.

Action: No action required. If the ENQ needs to be protected from
unauthorized RELEASE requests or from unauthorized callers
obtaining an ENQ to block this request, specifiy one of the
authorized QNAMEs for the resource.

04 xxxx040E Equate Symbol: ISGENQRsn_UnprotectedExitQNAME

Meaning: For REQUEST=OBTAIN. An authorized caller requested
an ENQ with a QNAME that a dynamic exit changed to an
unauthorized QNAME. For TEST=NO, the OBTAIN request
completed successfully, an unauthorized caller under the same
owning task might release the ENQ. The ENQToken has been
returned. For TEST=YES requests, the resource is currently
available but the QNAME was changed by a dynamic exit to an
unprotected QNAME.

Action: No action required. Contact the system programmer, if the
ENQ needs to be protected from unauthorized RELEASE requests
or from unauthorized callers obtaining an ENQ to block this
request. The system programmer should check the ISGNQXIT
installation exits to ensure that they are not coded to specify an
unauthorized QNAME for authorized requests.

04 xxxx040F Equate Symbol: ISGENQRsn_ECBAtleastOneRequestFailed

Meaning: For REQUEST=OBTAIN RESLIST=Yes with ECB@, at
least one request failed to be processed. Some requests might have
been processed unsuccessfully. The system might not backout any
successfully processed requests.

Note: This reason code is returned in a posted ECB, not through
the RSNCODE or RETURNTABLE keywords.

Action: The user should issue an ISGQUERY on the ENQTOKENs
to see if they were obtained and take appropriate action.
Alternately, the user can release all the ENQs with a ISGENQ
REQUEST=RELEASE with ENQTOKENTBL and reissue the
ISGENQ OBTAIN request.

08 — Equate Symbol: ISGENQRc_ParmError

Meaning: ISGENQ request specified parameters in error.

Action: Refer to action under the individual reason code.

ISGENQ macro

1210 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 107. Return and Reason Codes for the ISGENQ Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0801 Equate Symbol: ISGENQRsn_BadPlistAddress

Meaning: Unable to access parameter list.

Action: Check that the entire parameter list is addressable. If in
AR-mode, check that the ALET of the parameter list is correct.
Note that if this macro is issued in AR-mode, SYSSTATE
ASCENV=AR must be issued before this macro. Ensure that the
storage is in the same key as the caller.

08 xxxx0802 Equate Symbol: ISGENQRsn_BadPlistALET

Meaning: Bad parameter list ALET. The ALET is neither zero nor
is it associated with a valid public entry on the caller's
Dispatchable Unit Access List (DU-AL), nor a valid entry for a
common area data space.

Action: Ensure that the ALET of the parameter list is valid. Its
access register may not have been set up properly.

08 xxxx0803 Equate Symbol: ISGENQRsn_BadPlistVersion

Meaning: Bad parameter list version number. The service level of
GRS on which the caller is running does not support this version
of the ISGENQ service, or the ISGENQ parameter list version is
lower than the minimum required for parameters that were
specified.

Action: Check for possible storage overlay of the parameter list.
Retry the request with the correct version number. Verify that
your program was assembled with the correct macro library for
the release of MVS on which your program is running.

08 xxxx0804 Equate Symbol: ISGENQRsn_ReservedFieldNotNull

Meaning: A reserved field in the parameter list is non-zero.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0805 Equate Symbol: ISGENQRsn_MutuallyExclusive

Meaning: Mutually exclusive keywords were specified.

Action: Check for a possible storage overlay of the parameter list.

08 xxxx0806 Equate Symbol: ISGENQRsn_BadRequest

Meaning: Bad REQUEST parameter.

Action: IBM suggests that the ISGENQ macro is used when
invoking the ISGENQ service.

08 xxxx0807 Equate Symbol: ISGENQRsn_BadContentionAct

Meaning: Bad CONTENTIONACT parameter.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0808 Equate Symbol: ISGENQRsn_BadOwningTToken

Meaning: The specified TToken does not represent a valid task.

Action: Ensure that the task token (TToken) represents a valid
task.

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1211

Table 107. Return and Reason Codes for the ISGENQ Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0809 Equate Symbol: ISGENQRsn_BadAnsAreaAddress

Meaning: Unable to access the answer area.

Action: Ensure that the entire answer area is addressable. If in
AR-mode, this field is accessed via its address and ALET, check
that both these values are correct. Check that the specified answer
area length is correct. Ensure that the storage is in the same key as
the caller.

08 xxxx080A Equate Symbol: ISGENQRsn_BadAnsAreaALET

Meaning: Bad answer area ALET. The ALET is neither zero nor is
it associated with a valid public entry on the caller's Dispatchable
Unit Access List (DU-AL), nor a valid entry for a common area
data space.

Action: Ensure that the ALET of the answer area is valid. Its
access register may not have been set up properly.

08 xxxx080B Equate Symbol: ISGENQRsn_AnsLenTooSmall

Meaning: The specified answer area length was too small to
return the requested information.

Action: Invoke ISGENQ again with a larger answer area. The
answer area length needed is dependent on the number of
resource requests specified in NUMRES.

08 xxxx080C Equate Symbol: ISGENQRsn_BadRNameAddress

Meaning: Unable to access the RNAME.

Action: Ensure that the entire RNAME is addressable. If in
AR-mode, this field is accessed via its address and ALET, check
that both these values are correct. Check that the specified
RNAME length is correct. Ensure that the storage is in the same
key as the caller.

08 xxxx080D Equate Symbol: ISGENQRsn_BadRnameALET

Meaning: Bad RNAME ALET. The ALET is neither zero nor is it
associated with a valid public entry on the caller's Dispatchable
Unit Access List (DU-AL), nor a valid entry for a common area
data space.

Action: Ensure that the ALET of the RNAME is valid. Its access
register may not have been set up properly.

08 xxxx080E Equate Symbol: ISGENQRsn_BadRNameLen

Meaning: The RNAME length specified is not valid.

Action: Ensure the RNAME length field contains a number in the
range of 1-255.

08 xxxx080F Equate Symbol: ISGENQRsn_BadScope

Meaning: Bad SCOPE keyword parameter.

Action: Check for possible storage overlay of the parameter list.

ISGENQ macro

1212 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 107. Return and Reason Codes for the ISGENQ Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0810 Equate Symbol: ISGENQRsn_BadUCB@

Meaning: The storage specified by the UCB@ keyword does not
map to a valid UCB.

Action: Ensure that the UCB@ points to a valid UCB.

08 xxxx0811 Equate Symbol: ISGENQRsn_BadCond

Meaning: Bad COND keyword parameter.

Action: IBM suggests that the ISGENQ macro is used when
invoking the ISGENQ service.

08 xxxx0812 Equate Symbol: ISGENQRsn_BadSynchRes

Meaning: Bad SYNCHRES keyword parameter.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0813 Equate Symbol: ISGENQRsn_BadENQTokenAddress

Meaning: Unable to access the ENQToken.

Action: Ensure that the entire ENQToken is addressable. If in
AR-mode, this field is accessed via its address and ALET, check
that both these values are correct. Ensure that the storage is in the
same key as the caller. Note: The ISGENQ request might not have
completed.

08 xxxx0814 Equate Symbol: ISGENQRsn_BadENQTokenALET

Meaning: Bad ENQToken ALET. The ALET is neither zero nor is
it associated with a valid public entry on the caller's Dispatchable
Unit Access List (DU-AL), nor a valid entry for a common area
data space.

Action: Ensure that the ALET of the ENQToken is valid. Its access
register may not have been set up properly. Note: The ISGENQ
request might not have completed.

08 xxxx0815 Equate Symbol: ISGENQRsn_BadENQToken

Meaning: For REQUEST=RELEASE or REQUEST=CHANGE, the
specified ENQToken does not represent an ENQ for the given task
(current task or specified by OWNINGTTOKEN).

Action: Ensure that the specified ENQToken is from a previous
request for the given task, that has not been subsequently
released.

08 xxxx0816 Equate Symbol: ISGENQRsn_BadNumRes

Meaning: The NUMRES specified is not valid.

Action: Ensure the NUMRES field contains a number in the range
of 1-65535 (2?6-1)

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1213

Table 107. Return and Reason Codes for the ISGENQ Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0817 Equate Symbol: ISGENQRsn_BadResTableAddress

Meaning: Unable to access the resource table.

Action: Ensure that the entire resource table is addressable. If in
AR-mode, this field is accessed via its address and ALET, check
that both these values are correct. Check that the resource table
length is correct. Ensure that the storage is in the same key as the
caller.

08 xxxx0818 Equate Symbol: ISGENQRsn_BadResTableALET

Meaning: Bad resource table ALET. The ALET is neither zero nor
is it associated with a valid public entry on the caller's
Dispatchable Unit Access List (DU-AL), nor a valid entry for a
common area data space.

Action: Ensure that the ALET of the resource table is valid. Its
access register may not have been set up properly.

08 xxxx0819 Equate Symbol: ISGENQRsn_BadResTable

Meaning: The RESTABLE specified is not valid.

Action: Ensure that the resource table does not specify mutually
exclusive parameters.

08 xxxx081A Equate Symbol: ISGENQRsn_BadENQTokenTblAddress

Meaning: Unable to access the ENQToken table.

Action: Ensure that the entire ENQToken table is addressable. If
in AR-mode, this field is accessed via its address and ALET, check
that both these values are correct. Check that the ENQToken table
length is correct. Ensure that the storage is in the same key as the
caller. Note: The ISGENQ request might not have completed.

08 xxxx081B Equate Symbol: ISGENQRsn_BadENQTokenTblALET

Meaning: Bad ENQToken table ALET. The ALET is neither zero
nor is it associated with a valid public entry on the caller's
Dispatchable Unit Access List (DU-AL), nor a valid entry for a
common area data space.

Action: Ensure that the ALET of the ENQToken table is valid. Its
access register may not have been set up properly. Note: The
ISGENQ request might not have completed.

08 xxxx081C Equate Symbol: ISGENQRsn_BadReturnTableAddress

Meaning: Unable to access the return table.

Action: Ensure that the entire return table is addressable. If in
AR-mode, this field is accessed via its address and ALET, check
that both these values are correct. Check that the return table
length is correct. Ensure that the storage is in the same key as the
caller. Note: The ISGENQ request might not have completed.

ISGENQ macro

1214 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 107. Return and Reason Codes for the ISGENQ Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx081D Equate Symbol: ISGENQRsn_BadReturnTableALET

Meaning: Bad return table ALET. The ALET is neither zero nor is
it associated with a valid public entry on the caller's Dispatchable
Unit Access List (DU-AL), nor a valid entry for a common area
data space.

Action: Ensure that the ALET of the return table is valid. Its
access register may not have been set up properly. Note: The
ISGENQ request might not have completed.

08 xxxx081E Equate Symbol: ISGENQRsn_NotAuthorizedForQName

Meaning: For REQUEST=OBTAIN. An unauthorized caller
specified an authorized QNAME.

Action: Unauthorized callers must avoid specifying the
authorized QNAMEs listed in the ISGENQ macro prologue.

08 xxxx081F Equate Symbol: ISGENQRsn_NotAuthorizedForExitQname

Meaning: For REQUEST=OBTAIN. An ISGNQXIT exit specified
an authorized QNAME for an unauthorized OBTAIN request.

Action: Contact your system programmer. The system
programmer should check the ISGNQXIT installation exits to
ensure they are not coded to specify an authorized QNAME for
unauthorized requests.

08 xxxx0821 Equate Symbol:
ISGENQRsn_NotAuthorizedForOWNINGTTOKEN

Meaning: An unauthorized caller specified OWNINGTTOKEN.

Action: Unauthorized callers should avoid specifying
OWNINGTTOKEN.

08 xxxx0822 Equate Symbol: ISGENQRsn_BadUserDataAddress

Meaning: Unable to access the USERDATA.

Action: Ensure that the entire USERDATA is addressable. If in
AR-mode, this field is accessed via its address and ALET, check
that both these values are correct. Ensure that the storage is in the
same key as the caller.

08 xxxx0823 Equate Symbol: ISGENQRsn_BadUserDataAlet

Meaning: Bad UserData ALET. The ALET is neither zero nor is it
associated with a valid public entry on the caller's Dispatchable
Unit Access List (DU-AL), nor a valid entry for a common area
data space.

Action: Ensure that the ALET of the userdata is valid. Its access
register may not have been set up properly.

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1215

Table 107. Return and Reason Codes for the ISGENQ Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0824 Equate Symbol: ISGENQRsn_DeviceNotAllocated

Meaning: For REQUEST=OBTAIN with RESERVEVOLUME=YES.
An unauthorized caller specified a device that is not allocated to
the requesting task.

Action: Unauthorized callers should allocate the UCB to the job
step before ISGENQ RESERVEVOLUME(YES) is issued.

08 xxxx0825 Equate Symbol: ISGENQRsn_ExitDeviceNotAllocated

Meaning: For REQUEST=OBTAIN. An ISGNQXIT exit specified a
UCB for a device that is not allocated to the requesting,
unauthorized task.

Action: Contact your system programmer. The system
programmer should ensure that the installation exits do not
modify the UCB to specify one that is not allocated to an
unauthorized requests.

08 xxxx0826 Equate Symbol: ISGENQRsn_BadControl

Meaning: Bad CONTROL keyword parameter.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0827 Equate Symbol: ISGENQRsn_BadExitUCB@

Meaning: The storage pointed to by the UCB address changed by
a dynamic exit does not map to a valid UCB.

Action: Contact your system programmer. The system
programmer should ensure that the installation exits do not
specify a bad UCB address.

08 xxxx0828 Equate Symbol: ISGENQRsn_NotAuthorizedForENQMAX

Meaning: For REQUEST=OBTAIN, an unauthorized caller
specified ENQMAX=NO.

Action: Unauthorized callers should avoid specifying
ENQMAX=NO.

0C — Equate Symbol: ISGENQRc_EnvError

Meaning: ISGENQ request has an environment error.

Action: Refer to action under the individual reason code.

0C xxxx0C01 Equate Symbol: ISGENQRsn_RequestLimitExceeded

Meaning: For REQUEST=OBTAIN, the limit for the number of
concurrent resource requests has been reached. The task does not
have control of the resource unless some previous ENQ or
RESERVE request caused the task to obtain control of the
resource.

Action: Retry the request one or more times. If the problem
persists, consult your system programmer. For more information
on concurrent count limits and how the system can be tuned
when necessary, see z/OS MVS Planning: Global Resource
Serialization.

ISGENQ macro

1216 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 107. Return and Reason Codes for the ISGENQ Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

0C xxxx0C05 Equate Symbol: ISGENQRsn_AbendInExit

Meaning: One of the GRS dynamic exits abended.

Action: Retry the request one or more times. Contact your system
programmer.

0C xxxx0C0A Equate Symbol: ISGENQRsn_TaskEnding

Meaning: The task represented by the specified TToken was
ending. The point was reached in task termination after which no
ENQs can be obtained.

Action: Determine why the task identified by the TToken was
ending. Correct that error and retry the request.

0C xxxx0C0B Equate Symbol: ISGENQRsn_FRRHeld

Meaning: The caller issued ISGENQ when an FRR was
established.

Action: Avoid issuing ISGENQ when using functional recovery
routines.

0C xxxx0C0C Equate Symbol: ISGENQRsn_LockHeld

Meaning: A lock was held upon entry. No locks can be held when
calling ISGENQ.

Action: Avoid using ISGENQ when locks are held.

0C xxxx0C0D Equate Symbol: ISGENQRsn_SrbMode

Meaning: ISGENQ was issued while in SRB mode.

Action: Avoid using ISGENQ in SRB mode.

0C xxxx0C0E Equate Symbol: ISGENQRsn_NotEnabled

Meaning: ISGENQ was issued while not enabled.

Action: Avoid using ISGENQ when not enabled.

0C xxxx0C0F Equate Symbol: ISGENQRsn_MasidTarget

Meaning: The requester to be released is still the target of an ENQ
with the MASID and MTCB options specified. The release does
complete and the resource might be damaged.

Action: The task that issued the ENQ macro instruction with
MASID and MTCB should issue the DEQ before this requester
does so.

0C xxxx0C10 Equate Symbol: ISGENQRsn_UnsupportedMode.

Meaning: The current GRS mode does not support this specific
request.

Action: Defer the usage of this particular type of request.

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1217

Table 107. Return and Reason Codes for the ISGENQ Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

0C xxxx0C11 Equate Symbol: ISGENQRsn_MasidNotSupported.

Meaning: The resource that was the target of this
REQUEST=CHANGE,CONTROL=SHARED request currently or at
one time contained MASID users.
REQUEST=CHANGE,CONTROL=SHARED is not supported for
resources that involve MASID requestors.

Action: Do not use REQUEST=CHANGE,CONTROL=SHARED on
resources that involve MASID requestors.

10 — Equate Symbol: ISGENQRc_CompError

Meaning: Component Error.

Action: Contact the IBM Support Center.

Reason code that are not defined below contain internal
diagnostic information.

10 xxxx1002 Equate Symbol: ISGENQRsn_CannotObtainHomeStorage

Meaning: ISGENQ processing could not obtain storage in the
home address space.

10 xxxx1003 Equate Symbol: ISGENQRsn_CannotObtainCommonStorage

Meaning: ISGENQ processing could not obtain storage in the
common area.

10 xxxx1004 Equate Symbol: ISGENQRsn_CannotObtainPrimaryAlet

Meaning: ISGENQ processing could not obtain the ALET of the
caller's primary address space.

10 xxxx1006 Equate Symbol: ISGENQRsn_SynchResFlushFailed

Meaning: For REQUEST=OBTAIN, a synchronous reserve failed
device state transition flushing.

10 xxxx1007 Equate Symbol: ISGENQRsn_ReserveStartFailed

Meaning: For REQUEST=OBTAIN, reserve start processing failed.

10 xxxx1008 Equate Symbol: ISGENQRsn_ReserveCountOverflow

Meaning: For REQUEST=OBTAIN, reserve processing detected an
overflow when updating the reserve count.

10 xxxx1009 Equate Symbol: ISGENQRsn_CannotObtainDSQE

Meaning: ISGENQ processing could not obtain a DSQE to
suspend a request during an RNL change.

10 xxxx100A Equate Symbol: ISGENQRsn_ReserveDoneFailed

Meaning: For REQUEST=OBTAIN, synchronous reserve back end
processing has failed; therefore, the reserve was never completed.

10 xxxx100B Equate Symbol: ISGENQRsn_CannotObtainPrimaryStorage

Meaning: ENQ/DEQ processing could not obtain storage in the
primary address space.

ISGENQ macro

1218 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Examples
Use these examples as a guide.
* **
* Request exclusive control of a single resource
* **

ISGENQ REQUEST=OBTAIN,QNAME=QNAM1,RNAME=RNAM1,RNAMELEN=RLEN1, X
SCOPE=SYSTEMS,CONTROL=EXCLUSIVE,ENQTOKEN=ENQT1

* **
* Release control of a single resource
* **

ISGENQ REQUEST=RELEASE,ENQTOKEN=ENQT1,COND=YES, X
RETCODE=(3),RSNCODE=(2)

* ***
* Conditionally request shared control of 3 resources
* ***

ISGENQ REQUEST=OBTAIN,RESLIST=YES,NUMRES=3,RESTABLE=RSTBL, X
ENQTOKENTBL=ETTBL,RETURNTABLE=RTTBL,COND=YES, X
RETCODE=(3),RSNCODE=(2),PLISTVER=1

QNAM1 DC CL8’QNAME1’
RNAM1 DC CL10’RNAME1’
RLEN1 DC AL1(L’RNAM1)
RNAM2 DC CL12’RNAME2’
RNAM3 DC CL14’RNAME3’

DS 0D
RSTBL DS 0CL(3*ISGYENQRES_LEN)
ENTRY1 DC CL8’QNAME1’ QNAME

DC F’0’ FIRST WORD OF RNAME ADDR
DC A(RNAM1) RNAME ADDR31
DC F’0’ RNAME ALET
DC A(0) UCB@
DC AL1(L’RNAM1) RNAME LENGTH
DC AL1(ISGYENQ_kSTEP)
DC AL1(ISGYENQ_kCONTROLSHARED)
DC XL1’00’ FLAGS
DC XL4’00’ RESERVED

ENTRY2 DC CL8’QNAME2’ QNAME
DC F’0’ FIRST WORD OF RNAME ADDR
DC A(RNAM2) RNAME ADDR31
DC F’0’ RNAME ALET
DC A(0) UCB@
DC AL1(L’RNAM2) RNAME LENGTH
DC AL1(ISGYENQ_kSYSTEM)
DC AL1(ISGYENQ_kCONTROLSHARED)
DC XL1’00’ FLAGS
DC XL4’00’ RESERVED

ENTRY3 DC CL8’QNAME3’ QNAME
DC F’0’ FIRST WORD OF RNAME ADDR
DC A(RNAM3) RNAME ADDR31
DC F’0’ RNAME ALET
DC A(0) UCB@
DC AL1(L’RNAM3) RNAME LENGTH
DC AL1(ISGYENQ_kSYSTEMS)
DC AL1(ISGYENQ_kCONTROLSHARED)
DC XL1’00’ FLAGS
DC XL4’00’ RESERVED

DYNAREA DSECT
ENQT1 DS CL(ISGYENQTOKEN_LEN)
ETTBL DS CL(3*ISGYENQTOKEN_LEN)
RTTBL DS CL(3*ISGYENQRETURN_LEN)

ISGENQ macro

Chapter 121. ISGENQ — Global resource serialization ENQ service 1219

* **
* Request exclusive control of a single resource with userdata
* **

ISGENQ REQUEST=OBTAIN,QNAME=QNAM1,RNAME=RNAM1,RNAMELEN=RLEN1, X
SCOPE=SYSTEMS,CONTROL=EXCLUSIVE,ENQTOKEN=ENQT1, X
USERDATA=UDATA1

UDATA1 DC CL32’MY USERDATA’

For more information on global resource serialization, see z/OS MVS Planning:
Global Resource Serialization.

ISGENQ macro

1220 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 122. ISGLCRT — Create a latch set

Description
Call the Latch_Create service to create a set of latches. Your application should call
Latch_Create during application initialization, and specify a number of latches that
is sufficient to serialize all the resources that the application requires. Programs
that run as part of the application can call the following related services:

ISGLOBT
Requests exclusive or shared ownership of a latch.

ISGLREL
Releases ownership of an owned latch or a pending request to obtain a
latch.

ISGLPRG
Purges all granted and pending requests for a particular requestor within a
specific latch set.

ISGLID
Provides a latch set creator the ability to attach a latch identity array to the
latch set to identify the individual latches.

In the following description of Latch_Create, equate symbols defined in the
ISGLMASM macro are followed by their numeric equivalents; you may specify
either when coding calls to Latch_Create.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM allowing key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be accessible from the primary

address space.

Programming requirements
Before you call the Latch_Create service, include the ISGLMASM macro to obtain
assembler declaration statements for Latch_Create. ISGLMASM provides the
following equate symbols for use when calling Latch_Create:
* Latch Create Option Equate Symbols
*
ISGLCRT_PRIVATE EQU 0
*
* Latch Create Return Codes
*

© Copyright IBM Corp. 1988, 2016 1221

ISGLCRT_SUCCESS EQU 0
ISGLCRT_DUPLICATE_NAME EQU 4
ISGLCRT_NO_STORAGE EQU 16
*

Restrictions
You cannot create a latch set in the master scheduler address space if the master
scheduler address space is not also the home address space.

Input register information
Before calling the Latch_Create service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a standard 72-byte save area located in the primary address
space

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v number_of_latches
v latch_set_name
v create_option

Latch_Create returns values in the following parameters:
v latch_set_token
v return_code

ISGLCRT callable service

1222 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

CALL ISGLCRT

,(number_of_latches
,latch_set_name
,create_option
,latch_set_token
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

number_of_latches
Specifies a fullword integer that indicates the number of latches to be created.

,latch_set_name
Specifies a 48-byte area that contains the name of the latch set. The latch set
name must be unique within the current address space. The latch set name can
be any value up to 48 characters, but the first character must not be binary
zeros or an EBCDIC blank. If the latch set name is less than 48 characters, it
must be padded on the right with blanks.

IBM recommends that you use a standard naming convention for the latch set
name. To avoid using a name that IBM uses, do not begin the latch set name
with the character string SYS. It is a good idea to select a latch set name that is
readable in output from the DISPLAY GRS command and interactive problem
control system (IPCS). Avoid '@', '$', and '#' because those characters do not
always display consistently.

,create_option
Specifies a fullword integer that must have one of the following values:
v ISGLCRT_PRIVATE (or a value of 0)
v ISGLCRT_PRIVATE + ISGLCRT_LOWSTGUSAGE (or a value of 2)
v ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET1 (or a value of 64)
v ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET2 (or a value of 128)
v ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET1 +

ISGLCRT_LOWSTGUSAGE (or a value of 66)
v ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET2 +

ISGLCRT_LOWSTGUSAGE (or a value of 130)

If the creating address space is constrained by private storage, use the
ISGLCRT_LOWSTGUSAGE option. ISGLCRT_LOWSTGUSAGE reduces storage
usage at the cost of performance. IBM suggests that this option is only used if
there is a known or possible storage constraint issue. See "Specifying the
Number of Latches in a Latch Set" in z/OS MVS Programming: Authorized
Assembler Services Guide for a description of the amount of storage that can be
consumed by a latch set.

If you want to have the latch obtain services detect some "simple" latch
deadlock situations, consider using the ISGLCRT_DEADLOCKDET1 and
ISGLCRT_DEADLOCKDET2 options. For performance reasons, latch deadlock
detection is not exhaustive. It can detect some simple deadlock situations.

ISGLCRT callable service

Chapter 122. ISGLCRT — Create a latch set 1223

When ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET1 is specified, it can
detect the following deadlock situations:
v The work unit requests exclusive ownership of a latch that the work unit

already owns exclusively.
v The work unit requests shared ownership of a latch that the work unit

already owns exclusively.

When ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET2 is specified, it can
detect all the deadlock situations listed under ISGLCRT_PRIVATE +
ISGLCRT_DEADLOCKDET1, and it can also detect the following situations:
v if the work unit holding a SHARED latch requests exclusive use of the same

latch.
v if the work unit holding a SHARED latch requests it SHARED and another

unit of work is waiting to obtain the latch EXCLUSIVE.

Because ISGLCRT_DEADLOCKDET2 provides the best deadlock detection,
IBM suggests that you use ISGLCRT_DEADLOCKDET1 in cases where it can
be used and use ISGLCRT_DEADLOCKDET2 in all cases where there are not
many SHARED latch holders.

Note:

1. The unit of work context of the requester is captured at latch obtain time.
The system does not know if the application passes responsibility for
releasing the latch to another unit of work. To prevent false detection, dead
lock detection cannot be used if latches are used in such a way that
responsibility for releasing the latch is passed between the obtainer and the
releaser.

2. Deadlock detection can be safely used by SRBs, if all the obtained latches
are released by the SRB work unit before the unit of work completes. There
is a possibility of false deadlock hits otherwise.

3. Deadlock detection is not performed if the latches are obtained
conditionally using the ISGLOBT_ASYNC_ECB option in ISGLOBT.

,latch_set_token
Specifies an 8-byte area to contain the latch set token returned by the
Latch_Create service. The latch set token uniquely identifies the latch set.
Programs must specify this value on calls to the Latch_Obtain, Latch_Release,
and Latch_Purge services.

,return_code
A fullword integer to contain the return code from the Latch_Create service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return codes
When the Latch_Create service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in parentheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

ISGLCRT callable service

1224 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 108. ISGLCRT Return Codes

Return code and Equate symbol Meaning and Action

00
(0)
ISGLCRT_SUCCESS

Meaning: The Latch_Create service completed successfully.

Action: None required.

04
(4)
ISGLCRT_DUPLICATE_NAME

Meaning: The specified latch_set_name already exists, and is
associated with a latch set that was created by a program running
in the current primary address space. The latch manager does not
create a new latch set.

Action: To create a new latch set, specify a unique name on the
latch_set_name parameter, then call the Latch_Create service again.
Otherwise, continue processing with the returned latch set token.

10
(16)
ISGLCRT_NO_STORAGE

Meaning: Environmental error. Not enough storage was available
to contain the requested number of latches. The latch manager
does not create a new latch set.

Action: Specify a smaller value on the number_of_latches
parameter.

LATCHX31 - How to call AMODE 31 latch devices
TITLE ’LATCHX31 - How to call AMODE 31 Latch Services’

*** START OF SPECIFICATIONS ***
*
01 MODULE-NAME = LATCHX31
*
02 DESCRIPTIVE-NAME = SAMPLE PROGRAM WHICH CONTAINS CALLS
* TO EACH LATCH SERVICE.
*
*01*PROPRIETARY STATEMENT =
*
* LICENSED MATERIALS - PROPERTY OF IBM
* THIS MACRO IS "RESTRICTED MATERIALS OF IBM"
*
*01*STATUS = HBB7760
*
01 FUNCTION:
*
* This module provides samples of how to call the following AMODE 31
* services: ISGLCRT (Latch Create), ISGLID (Latch Id), ISGLOBT
* (Latch Obtain), ISGLREL (Latch Release), ISGLPRG (Latch Purge),
* and ISGLPBA (Latch Purge By Address Space).
*

*
02 RECOVERY-OPERATIONS: None.
*

*
01 NOTES =
*
* (1) Also shows sample of how to allocate an ISGYLID_ENTRY block
* to change the Latch ID field of a latch in the latchset.
*
02 DEPENDENCIES: None
*
*
02 RESTRICTIONS: None
*
*
02 REGISTER-CONVENTIONS:
*
03 REGISTERS SAVED: R0-R15
*

ISGLCRT callable service

Chapter 122. ISGLCRT — Create a latch set 1225

03 REGISTERS RESTORED: R2-R14
*
03 CODE REGISTER: R12
*
03 DATA REGISTER: R13
*
02 PATCH-LABEL: None
*
01 MODULE-TYPE: Procedure
*
02 PROCESSOR: HLASM
*
02 MODULE-SIZE: See External Symbol Dictionary
*
02 ATTRIBUTES:
*
03 LOCATION: User specified
03 LOAD MODULE: LATCHX31
03 TYPE: Non-Reentrant
03 RMODE: Any
03 SYSGEN: None
*

*
01 ENTRY-POINT: LATCHX31
*
02 PURPOSE: See FUNCTION section for this module.
*
03 OPERATION: See FUNCTION section for this module.
*
03 ENTRY
*
04 MODE: Enabled
04 STATE: Problem
04 KEY: 8
04 AMODE: 31
04 LOCKS HELD: None
04 ASCMODE: Primary
04 MEMORY MODE: Non-XMEM
04 DISPATCH MODE: Task
04 RECOVERY TYPE: None
04 ADDRESS SPACE: Caller’s
*
03 EXECUTION
*
04 MODE: Enabled
04 STATE: Supervisor
04 KEY: 0
04 AMODE: 31
04 LOCKS OBTAINED: None
04 ASCMODE: Primary
04 MEMORY MODE: Non-XMEM
04 ADDRESS SPACE: Caller’s
*
02 LINKAGE: Branched to.
*
03 CALLERS:
*
* Any
*
02 INPUT:
*
03 ENTRY-REGISTERS:
*
* R0 - R12,R15 - Irrelevant
* AR0-AR15 - Irrelevant
*

ISGLCRT callable service

1226 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

02 OUTPUT:
*
02 EXIT-NORMAL: RETURN TO CALLER
*
03 CONDITIONS: successful completion
*
03 EXIT-REGISTERS:
*
* R0 -R14 - Unchanged
* R15 - Return code (always 0)
* AR0-AR15 - Irrelevant
*
03 RETURN-CODES: None
*
* Return code Reason code Interpretation
* ----------- ----------- --------------
* ’0’x N/A Success
*
02 EXIT-ERROR: None
*

*
01 TERMINATION-CONSIDERATIONS: None
*

*
01 EXTERNAL-REFERENCES :
*
*
02 ROUTINES: Latch Services.
*
02 DATA-AREAS: None
*
02 CONTROL-BLOCKS:
*
* Name Use Mapping Description
* ------- ---- -------- ----------
* ISGYLID CW ISGLMASM Latch Identity Entry
*
* Legend: C=Create, R=Read, W=Write, D=Delete
*
01 TABLES: TRTABLE
*
01 MACROS-EXECUTABLE:
*
* None
*
01 SERIALIZATION:
*
* None
*
01 MESSAGES:
*
* None
*
01 POST-CODES:
*
* None
*
01 ABEND-CODES:
*
* None
*
01 WAIT-STATE-CODES:
*
* None
*

ISGLCRT callable service

Chapter 122. ISGLCRT — Create a latch set 1227

01 CHANGE-ACTIVITY:
*
* None
*
**** END OF SPECIFICATIONS **
LATCHX31 CSECT
LATCHX31 AMODE 31
LATCHX31 RMODE ANY

BAKR R14,R0 Save gprs 2-14 and PSW
SAC 0 Ensure primary mode
BRAS R12,PSTART Establish addressability

PSTART EQU *
USING PSTART,12
MODESET MODE=SUP Get into supervisor state
STORAGE OBTAIN,LENGTH=DYNALEN Get savearea and dynamic area
LR R13,R1 Place savearea address into reg13
USING DYNASTORE,R13
MVC 4(4,R13),=C’F1SA’ Set the Save area ID (31 bit)

*
**
* Create latch set
**
*

CALL ISGLCRT,(NUM_LATCH,LS_NAME,PRIVATE,LS_TOKEN,RETCD), X
MF=(E,CREATE_DPL)

*
**
*
* Initialize Storage for initial LID Entry Block.
* Note that in this example the DYNASTOR section is not freed and
* non-pertinant data is placed in the DYNASTOR section for simplicity.
*
* The default subpool associated with the STORAGE OBTAIN macro has a
* lifetime of the address space, so the DYNASTOR * section will exist
* for the life of the address space as well.
*
* However, IBM recommends using a separate storage request
* for the LIDPointerArray and ISGYLID_Entry blocks so that only
* necessary data will continue to exist beyond the life of the calling
* module.
*
* Also, it is not necessary to initialize all latch IDs in the set
* to point to a default ISGYLID_ENTRY block. NULL values in the
* Latch ID Pointer Array are acceptable.
*
**
*

XC INIT_STOR,INIT_STOR
XC ENTIRELIDARRAY,ENTIRELIDARRAY
LA R3,INIT_STOR Base ISGYLID_ENTRY block X

at address of allocated storage
LLGTR R3,R3 Clear high half of 64-bit address
USING ISGYLID_ENTRY,R3
LA R4,INITLIDSTR
LLGTR R4,R4 Clear high half of 64-bit address
STG R4,LIDPRINTABLESTRING@
LHI R4,L’INITLIDSTR Put length of INITLIDSTR into X

entry block
STH R4,LIDPRINTABLESTRINGLENGTH
L R4,ONEMINUTE Set hold threshold value to X

one minute
ST R4,LIDHOLDTHRESHOLD
L R4,THIRTYSECONDS Set contention threshold value to X

thirty seconds
ST R4,LIDCONTTHRESHOLD

*
**

ISGLCRT callable service

1228 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

*
* Set Latch ID array entries all to address of Initial Lid Entry ---
* indicating all entries are currently unused.
*
* Latch ID Pointer Array must be in the primary address space.
*
**
*

LHI R6,0
L R4,NUM_LATCH

LOOP1 EQU *
STG R3,LIDPTRARRAY(R6)
A R6,LIDPTRARRAYLEN
BCT R4,LOOP1
DROP R3

*
**
*
* Attach Latch IDs to Latch Set
*
**
*

CALL ISGLID,(LS_TOKEN,LIDPTRARRAY,LIDVERSION, X
RETCD),MF=(E,LID_DPL)

*
**
*
* Change Latch ID Entry for latch #3
*
* Note:
* Once the Latch Identity Pointer Array has been attached to the
* latch set, it cannot be deleted. However it can be replaced by
* calling the service again and specifying a new array. To change
* the Latch Identity for a particular latch, allocate a new latch
* identity block, fill it out, and update the corresponding array
* entry. Then the program is free to delete the previous latch
* identity block.
*
**
*

MVC NEW_STOR,INIT_STOR Copy LID Entry to new storage
USING ISGYLID_ENTRY,R3 Use R3 as base for LID Entry Block
LA R3,NEW_STOR
LLGTR R3,R3 Clearing high half of 64-bit address
LA R4,NEWLIDSTR
LLGTR R4,R4 Clearing high half of 64-bit address
STG R4,LIDPRINTABLESTRING@ Store address and length of new X

string in ISGYLID_ENTRY block
LHI R5,L’NEWLIDSTR
STH R5,LIDPRINTABLESTRINGLENGTH
L R4,LATCH_NUM Point to new ISGLID_ENTRY block
SLL R4,3 Multiply by 8 (size of LIDPTRARRAY)
STG R3,LIDPTRARRAY(R4)
DROP R3

*
**
* Obtain latch #3
**
*

MVC REQ_IDH,PSAAOLD-PSA Use ASCB address as high half
MVC REQ_IDL,PSATOLD-PSA Use TCB address as low half
CALL ISGLOBT,(LS_TOKEN,LATCH_NUM,REQ_ID,SUSPEND,EXCLUSIVE, X

ECB_ADDR,LATCH_TOKEN1,WORK_AREA,RETCD), X
MF=(E,OBTAIN_DPL)

*
**
* Release latch #3

ISGLCRT callable service

Chapter 122. ISGLCRT — Create a latch set 1229

**
*

CALL ISGLREL,(LS_TOKEN,LATCH_TOKEN1, X
UNCOND,WORK_AREA,RETCD),MF=(E,RELEASE_DPL)

*
**
*
* Purge requestor from latch set.
*
* Normally reserved for recovery situations.
*
**
*

XC REQ_IDL,REQ_IDL Clear the low half of requestor ID
CALL ISGLPRG,(LS_TOKEN,REQ_ID,RETCD),MF=(E,PURGE_DPL)

*
**
*
* Purge all granted and pending requests for a group of requestors for
* a group of latch sets in the current address space.
*
* Normally reserved for recovery situations.
*
**
*

CALL ISGLPBA,(=AD(0),REQ_ID,REQ_MASK,LS_NAME,LS_MASK,RETCD), X
MF=(E,PURGEBA_DPL)

*
**
* Exit
*
* Restore caller’s regs and return. Also restores caller’s PSW key and
* State without a MODESET MODE=PROB.
*
**
*

LHI R15,0 Set return code to zero
PR ,

*
**
* Equates
**
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
*
**
* Constants
**
*
NUM_LATCH DC F’16’ Number of latches to create - input
* to create

ISGLCRT callable service

1230 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

LS_NAME DC CL48’EXAMPLE.ONE_LATCH_SET’ latch set name - input to
* create
LS_MASK DC 48XL1’FF’ Latch set name mask to match all
* names - input to purge group
REQ_MASK DC 4XL1’FF’

DC 4XL1’00’ Requestor ID mask to match all
* requestors with the same first
* half (ascb@) and any second half
INITLIDSTR DC C’Latch not used’ Initial LID string and length
*
LIDVERSION DC AL1(ISGYLID_VERSION1) Set latch version to default
*
LIDPTRARRAYLEN DC F’8’
*
THIRTYSECONDS DC F’30’
*
ONEMINUTE DC F’60’
*
NEWLIDSTR DC C’Serializing Abstract Resource’ New string and length
*
PRIVATE DC A(ISGLCRT_PRIVATE) Create option - input to create -
* (defined in IDF)
LATCH_NUM DC F’3’ Number of latch to be obtained -
* input to obtain
SUSPEND DC A(ISGLOBT_SYNC) Obtain option - input to obtain -
* (defined in IDF)
EXCLUSIVE DC A(ISGLOBT_EXCLUSIVE) access option - input to obtain -
* (defined in IDF)
UNCOND DC A(ISGLREL_UNCOND) Release option - input to release -
* (defined in IDF)
**
* Dynamic area for save area, parmlists, and variables
**
*
DYNASTORE DSECT
*
SAVEAREA DS 18F 72-byte register save area
*
ENTIRELIDARRAY DS 0XL128
*
LIDPTRARRAY DS 16AD LIDPtrArray
*
CREATE_DPL DS 0F

CALL ,(NUM_LATCH,LS_NAME,PRIVATE,LS_TOKEN,RETCD),MF=L
*
OBTAIN_DPL DS 0F

CALL ,(LS_TOKEN,LATCH_NUM,REQ_ID,SUSPEND,EXCLUSIVE, X
ECB_ADDR,LATCH_TOKEN1,WORK_AREA,RETCD),MF=L

*
LID_DPL DS 0F

CALL ,(LS_TOKEN,LIDPTRARRAY,LIDVERSION, X
RETCD),MF=L

*
RELEASE_DPL DS 0F

CALL ,(LS_TOKEN,LATCH_TOKEN1,UNCOND,WORK_AREA,RETCD),MF=L
*
PURGE_DPL DS 0F

CALL ,(LS_TOKEN,REQ_ID,RETCD),MF=L
*
PURGEBA_DPL DS 0F

CALL ,(0,REQ_ID,REQ_MASK,LS_NAME,LS_MASK,RETCD),MF=L
*
ECB DS F ECB (used only when the obtain
* option is ISGLOBT_ASYNC_ECB)
ECB_ADDR DS A Address of ECB - input to obtain -
* (required for the interface, but
* only used when obtain option is

ISGLCRT callable service

Chapter 122. ISGLCRT — Create a latch set 1231

* ISGLOBT_ASYNC_ECB)
LS_TOKEN DS 2F Latch set token - output from create
* and input to obtain, latch identity,
* release, purge, and purge group
LATCH_TOKEN1 DS 2F Latch token - output from obtain
* and input to release
REQ_ID DS 0D Double word requestor ID - input to
* obtain, purge, and purge group
REQ_IDH DS F First half of requestor ID (ascb@)
*
REQ_IDL DS F Second half of requestor ID (tcb@)
*
WORK_AREA DS 32D 256-byte work area
*
RETCD DS F Return code - output from services
*
INIT_STOR DS XL(ISGYLID_ENTRY_LEN) Isgylid_entry block storage
*
NEW_STOR DS XL(ISGYLID_ENTRY_LEN)
*
DYNALEN EQU *-DYNASTORE
*

IHAPSA , Needed for ascb@ and tcb@ req ID
ISGLMASM , Needed for latch constants
END LATCHX31

ISGLCRT callable service

1232 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 123. ISGLCR64 — Create a latch set in 64-bit mode

Description
Call the 64-bit Latch_Create service to create a set of latches. Your application
should call Latch_Create during application initialization, and specify a number of
latches that is sufficient to serialize all the resources that the application requires.
Programs that run as part of the application can call the following related services:

ISGLOB64
Requests exclusive or shared ownership of a latch.

ISGLRE64
Releases ownership of an owned latch or a pending request to obtain a
latch.

ISGLPR64
Purges all granted and pending requests for a particular requestor within a
specific latch set.

ISGLID64
Provides a latch set creator the ability to attach a latch identity array to the
latch set to identify the individual latches.

In the following description of 64-bit Latch_Create, equate symbols defined in the
ISGLMASM macro are followed by their numeric equivalents; you may specify
either when coding calls to Latch_Create.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW allowing key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be accessible from the primary

address space.

Programming requirements
Before you call the 64-bit Latch_Create service, include the ISGLMASM macro to
obtain assembler declaration statements for 64-bit Latch_Create. ISGLMASM
provides the following equate symbols for use when calling Latch_Create:
* Latch Create Option Equate Symbols
*
ISGLCRT_PRIVATE EQU 0
*
* Latch Create Return Codes
*

© Copyright IBM Corp. 1988, 2016 1233

ISGLCRT_SUCCESS EQU 0
ISGLCRT_DUPLICATE_NAME EQU 4
ISGLCRT_NO_STORAGE EQU 16
*

Restrictions
You cannot create a latch set in the master scheduler address space if the master
scheduler address space is not also the home address space.

Input register information
Before calling the 64-bit Latch_Create service, the caller must ensure that the
following general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a standard 144-byte save area located in the primary address
space

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v number_of_latches
v latch_set_name
v create_option

The 64-bit Latch_Create returns values in the following parameters:
v latch_set_token
v return_code

ISGLCR64 callable service

1234 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

CALL ISGLCR64

,(number_of_latches
,latch_set_name
,create_option
,latch_set_token
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

number_of_latches
Specifies a fullword integer that indicates the number of latches to be created.

,latch_set_name
Specifies a 48-byte area that contains the name of the latch set. The latch set
name must be unique within the current address space. The latch set name can
be any value up to 48 characters, but the first character must not be binary
zeros or an EBCDIC blank. If the latch set name is less than 48 characters, it
must be padded on the right with blanks.

IBM recommends that you use a standard naming convention for the latch set
name. To avoid using a name that IBM uses, do not begin the latch set name
with the character string SYS. It is a good idea to select a latch set name that is
readable in output from the DISPLAY GRS command and interactive problem
control system (IPCS). Avoid '@', '$', and '#' because those characters do not
always display consistently.

,create_option
Specifies a fullword integer that must have one of the following values:
v ISGLCRT_PRIVATE (or a value of 0)
v ISGLCRT_PRIVATE + ISGLCRT_LOWSTGUSAGE (or a value of 2)
v ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET1 (or a value of 64)
v ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET2 (or a value of 128)
v ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET1 +

ISGLCRT_LOWSTGUSAGE (or a value of 66)
v ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET2 +

ISGLCRT_LOWSTGUSAGE (or a value of 130)

If the creating address space is constrained by private storage, use the
ISGLCRT_LOWSTGUSAGE option. ISGLCRT_LOWSTGUSAGE reduces storage
usage at the cost of performance. IBM suggests that this option is only used if
there is a known or possible storage constraint issue. See "Specifying the
Number of Latches in a Latch Set" in z/OS MVS Programming: Authorized
Assembler Services Guide for a description of the amount of storage that can be
consumed by a latch set.

If you want to have the latch obtain services detect some "simple" latch
deadlock situations, consider using the ISGLCRT_DEADLOCKDET1 and
ISGLCRT_DEADLOCKDET2 options. For performance reasons, latch deadlock
detection is not exhaustive. It can detect some simple deadlock situations.

ISGLCR64 callable service

Chapter 123. ISGLCR64 — Create a latch set in 64-bit mode 1235

When ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET1 is specified, it can
detect the following deadlock situations:
v The work unit requests exclusive ownership of a latch that the work unit

already owns exclusively.
v The work unit requests shared ownership of a latch that the work unit

already owns exclusively.

When ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET2 is specified, it can
detect all the deadlock situations listed under ISGLCRT_PRIVATE +
ISGLCRT_DEADLOCKDET1, and it can also detect if the work unit holding a
SHARED latch requests exclusive use of the same latch. It also catches multiple
Share requests by same unit of work when there is exclusive Waiter in between
-> Shared (UW1) - Exclusive (UW2) - Shared (UW1).

Because ISGLCRT_DEADLOCKDET2 provides the best deadlock detection,
IBM suggests that you use ISGLCRT_DEADLOCKDET1 in cases where it can
be used and use ISGLCRT_DEADLOCKDET2 in all cases where there are not
many SHARED latch holders.

Note:

1. The unit of work context of the requester is captured at latch obtain time.
The system does not know if the application passes responsibility for
releasing the latch to another unit of work. To prevent false detection, dead
lock detection cannot be used if latches are used in such a way that
responsibility for releasing the latch is passed between the obtainer and the
releaser.

2. Deadlock detection can be safely used by SRBs, if all the obtained latches
are released by the SRB work unit before the unit of work completes. There
is a possibility of false deadlock hits otherwise.

3. Deadlock detection is not performed if the latches are obtained
conditionally using the ISGLOBT_ASYNC_ECB option in ISGLOBT.

,latch_set_token
Specifies an 8-byte area to contain the latch set token returned by the
Latch_Create service. The latch set token uniquely identifies the latch set.
Programs must specify this value on calls to the Latch_Obtain, Latch_Release,
and Latch_Purge services.

,return_code
A fullword integer to contain the return code from the Latch_Create service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return codes
When the Latch_Create service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in parentheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

Table 109. ISGLCR64 Return Codes

Return code and Equate symbol Meaning and Action

00
(0)
ISGLCRT_SUCCESS

Meaning: The Latch_Create service completed successfully.

Action: None required.

ISGLCR64 callable service

1236 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 109. ISGLCR64 Return Codes (continued)

Return code and Equate symbol Meaning and Action

04
(4)
ISGLCRT_DUPLICATE_NAME

Meaning: The specified latch_set_name already exists, and is
associated with a latch set that was created by a program running
in the current primary address space. The latch manager does not
create a new latch set.

Action: To create a new latch set, specify a unique name on the
latch_set_name parameter, then call the Latch_Create service again.
Otherwise, continue processing with the returned latch set token.

10
(16)
ISGLCRT_NO_STORAGE

Meaning: Environmental error. Not enough storage was available
to contain the requested number of latches. The latch manager
does not create a new latch set.

Action: Specify a smaller value on the number_of_latches
parameter.

LATCHX64 - How to call AMODE 64 latch services
TITLE ’LATCHX64 - How to call AMODE 64 Latch Services’

*** START OF SPECIFICATIONS ***
*
01 MODULE-NAME = LATCHX64
*
02 DESCRIPTIVE-NAME = SAMPLE PROGRAM WHICH CONTAINS CALLS
* TO EACH LATCH SERVICE.
*
*01*PROPRIETARY STATEMENT =
*
* LICENSED MATERIALS - PROPERTY OF IBM
* THIS MACRO IS "RESTRICTED MATERIALS OF IBM"
*
*01*STATUS = HBB7760
*
01 FUNCTION:
*
* This module provides samples of how to call the following AMODE 64
* services: ISGLCR64 (Latch Create), ISGLID64 (Latch Id), ISGLOB64
* (Latch Obtain), ISGLRE64 (Latch Release), ISGLPR64 (Latch Purge),
* and ISGLPB64 (Latch Purge By Address Space).
*

*
02 RECOVERY-OPERATIONS: None.
*

*
01 NOTES =
*
* (1) Also shows sample of how to allocate an ISGYLID_ENTRY block
* to change the Latch ID field of a latch in the latchset.
*
02 DEPENDENCIES: None
*
*
02 RESTRICTIONS: None
*
*
02 REGISTER-CONVENTIONS:
*
03 REGISTERS SAVED: R0-R15
*
03 REGISTERS RESTORED: R2-R14
*
03 CODE REGISTER: R12

ISGLCR64 callable service

Chapter 123. ISGLCR64 — Create a latch set in 64-bit mode 1237

*
03 DATA REGISTER: R13
*
02 PATCH-LABEL: None
*
01 MODULE-TYPE: Procedure
*
02 PROCESSOR: HLASM
*
02 MODULE-SIZE: See External Symbol Dictionary
*
02 ATTRIBUTES:
*
03 LOCATION: User specified
03 LOAD MODULE: LATCHX64
03 TYPE: Non-Reentrant
03 RMODE: Any
03 SYSGEN: None
*

*
01 ENTRY-POINT: LATCHX64
*
02 PURPOSE: See FUNCTION section for this module.
*
03 OPERATION: See FUNCTION section for this module.
*
03 ENTRY
*
04 MODE: Enabled
04 STATE: Problem
04 KEY: 8
04 AMODE: 64
04 LOCKS HELD: None
04 ASCMODE: Primary
04 MEMORY MODE: Non-XMEM
04 DISPATCH MODE: Task
04 RECOVERY TYPE: None
04 ADDRESS SPACE: Caller’s
*
03 EXECUTION
*
04 MODE: Enabled
04 STATE: Supervisor
04 KEY: 0
04 AMODE: 64
04 LOCKS OBTAINED: None
04 ASCMODE: Primary
04 MEMORY MODE: Non-XMEM
04 ADDRESS SPACE: Caller’s
*
02 LINKAGE: Branched to.
*
03 CALLERS:
*
* Any
*
02 INPUT:
*
03 ENTRY-REGISTERS:
*
* R0 - R12,R15 - Irrelevant
* AR0-AR15 - Irrelevant
*
02 OUTPUT:
*
02 EXIT-NORMAL: RETURN TO CALLER

ISGLCR64 callable service

1238 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

*
03 CONDITIONS: successful completion
*
03 EXIT-REGISTERS:
*
* R0 -R14 - Unchanged
* R15 - Return code (always 0)
* AR0-AR15 - Irrelevant
*
03 RETURN-CODES: None
*
* Return code Reason code Interpretation
* ----------- ----------- --------------
* ’0’x N/A Success
*
02 EXIT-ERROR: None
*

*
01 TERMINATION-CONSIDERATIONS: None
*

*
01 EXTERNAL-REFERENCES :
*
*
02 ROUTINES: Latch Services.
*
02 DATA-AREAS: None
*
02 CONTROL-BLOCKS:
*
* Name Use Mapping Description
* ------- ---- -------- ----------
* ISGYLID CW ISGLMASM Latch Identity Entry
*
* Legend: C=Create, R=Read, W=Write, D=Delete
*
01 TABLES: TRTABLE
*
01 MACROS-EXECUTABLE:
*
* None
*
01 SERIALIZATION:
*
* None
*
01 MESSAGES:
*
* None
*
01 POST-CODES:
*
* None
*
01 ABEND-CODES:
*
* None
*
01 WAIT-STATE-CODES:
*
* None
*
01 CHANGE-ACTIVITY:
*
* None

ISGLCR64 callable service

Chapter 123. ISGLCR64 — Create a latch set in 64-bit mode 1239

*
**** END OF SPECIFICATIONS **
LATCHX64 CSECT
LATCHX64 AMODE 64
LATCHX64 RMODE ANY

SYSSTATE AMODE64=YES Indicate AMODE 64
BAKR R14,R0 Save gprs 2-14 and PSW
SAC 0 Ensure primary mode
BRAS R12,PSTART Establish addressability

PSTART EQU *
USING PSTART,12
MODESET MODE=SUP Get into supervisor state
STORAGE OBTAIN,LENGTH=DYNALEN Get savearea and dynamic area
LGR R13,R1 Place savearea address into reg13
USING DYNASTORE,R13
MVC 4(4,R13),=C’F4SA’ Set the Save area ID (64 bit)

*
**
* Create latch set
**
*

CALL ISGLCR64,(NUM_LATCH,LS_NAME,PRIVATE,LS_TOKEN,RETCD), X
MF=(E,CREATE_DPL)

*
**
*
* Initialize Storage for initial LID Entry Block.
* Note that in this example the DYNASTOR section is not freed and
* non-pertinent data is placed in the DYNASTOR section for simplicity.
*
* The default subpool associated with the STORAGE OBTAIN macro has a
* lifetime of the address space, so the DYNASTOR * section will exist
* for the life of the address space as well.
*
* However, IBM recommends using a separate storage request
* for the LIDPointerArray and ISGYLID_Entry blocks so that only
* necessary data will continue to exist beyond the life of the calling
* module.
*
* Also, it is not necessary to initialize all latch IDs in the set
* to point to a default ISGYLID_ENTRY block. NULL values in the
* Latch ID Pointer Array are acceptable.
*
**
*

XC INIT_STOR,INIT_STOR
XC ENTIRELIDARRAY,ENTIRELIDARRAY
LA R3,INIT_STOR Base ISGYLID_ENTRY block X

at address of allocated storage
USING ISGYLID_ENTRY,R3
LA R4,INITLIDSTR
STG R4,LIDPRINTABLESTRING@
LHI R4,L’INITLIDSTR Put length of INITLIDSTR into X

entry block
STH R4,LIDPRINTABLESTRINGLENGTH
L R4,ONEMINUTE Set hold threshold value to X

one minute
ST R4,LIDHOLDTHRESHOLD
L R4,THIRTYSECONDS Set contention threshold value to X

thirty seconds
ST R4,LIDCONTTHRESHOLD

*
**
*
* Set Latch ID array entries all to address of Initial Lid Entry ---
* indicating all entries are currently unused.
*

ISGLCR64 callable service

1240 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

* Latch ID Pointer Array must be in the primary address space.
*
**
*

LGHI R6,0
L R4,NUM_LATCH

LOOP1 EQU *
STG R3,LIDPTRARRAY(R6)
A R6,LIDPTRARRAYLEN
BCT R4,LOOP1
DROP R3

*
**
*
* Attach Latch IDs to Latch Set
*
**
*

CALL ISGLID64,(LS_TOKEN,LIDPTRARRAY,LIDVERSION, X
RETCD),MF=(E,LID_DPL)

*
**
*
* Change Latch ID Entry for latch #3
*
* Note:
* Once the Latch Identity Pointer Array has been attached to the
* latch set, it cannot be deleted. However it can be replaced by
* calling the service again and specifying a new array. To change
* the Latch Identity for a particular latch, allocate a new latch
* identity block, fill it out, and update the corresponding array
* entry. Then the program is free to delete the previous latch
* identity block.
*
**
*

MVC NEW_STOR,INIT_STOR Copy LID Entry to new storage
USING ISGYLID_ENTRY,R3 Use R3 as base for LID Entry Block
LA R3,NEW_STOR
LA R4,NEWLIDSTR
STG R4,LIDPRINTABLESTRING@ Store address and length of new X

string in ISGYLID_ENTRY block
LHI R5,L’NEWLIDSTR
STH R5,LIDPRINTABLESTRINGLENGTH
L R4,LATCH_NUM Point to new ISGLID_ENTRY block
SLL R4,3 Multiply by 8 (size of LIDPTRARRAY)
STG R3,LIDPTRARRAY(R4)
DROP R3

*
**
* Obtain latch #3
**
*

MVC REQ_IDH,PSAAOLD-PSA Use ASCB address as high half
MVC REQ_IDL,PSATOLD-PSA Use TCB address as low half
CALL ISGLOB64,(LS_TOKEN,LATCH_NUM,REQ_ID,SUSPEND,EXCLUSIVE, X

ECB_ADDR,LATCH_TOKEN1,WORK_AREA,RETCD), X
MF=(E,OBTAIN_DPL)

*
**
* Release latch #3
**
*

CALL ISGLRE64,(LS_TOKEN,LATCH_TOKEN1, X
UNCOND,WORK_AREA,RETCD),MF=(E,RELEASE_DPL)

*
**

ISGLCR64 callable service

Chapter 123. ISGLCR64 — Create a latch set in 64-bit mode 1241

*
* Purge requestor from latch set.
*
* Normally reserved for recovery situations.
*
**
*

XC REQ_IDL,REQ_IDL Clear the low half of requestor ID
CALL ISGLPR64,(LS_TOKEN,REQ_ID,RETCD),MF=(E,PURGE_DPL)

*
**
*
* Purge all granted and pending requests for a group of requestors for
* a group of latch sets in the current address space.
*
* Normally reserved for recovery situations.
*
**
*

CALL ISGLPB64,(=AD(0),REQ_ID,REQ_MASK,LS_NAME,LS_MASK,RETCD), X
MF=(E,PURGEBA_DPL)

*
**
* Exit
*
* Restore caller’s regs and return. Also restores caller’s PSW key and
* State without a MODESET MODE=PROB.
*
**
*

LGHI R15,0 Set return code to zero
PR ,

*
**
* Equates
**
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
*
**
* Constants
**
*
NUM_LATCH DC F’16’ Number of latches to create - input
* to create
LS_NAME DC CL48’EXAMPLE.ONE_LATCH_SET’ latch set name - input to
* create
LS_MASK DC 48XL1’FF’ Latch set name mask to match all
* names - input to purge group
REQ_MASK DC 4XL1’FF’

DC 4XL1’00’ Requestor ID mask to match all

ISGLCR64 callable service

1242 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

* requestors with the same first
* half (ascb@) and any second half
INITLIDSTR DC C’Latch not used’ Initial LID string and length
*
LIDVERSION DC AL1(ISGYLID_VERSION1) Set latch version to default
*
LIDPTRARRAYLEN DC F’8’
*
THIRTYSECONDS DC F’30’
*
ONEMINUTE DC F’60’
*
NEWLIDSTR DC C’Serializing Abstract Resource’ New string and length
*
PRIVATE DC A(ISGLCRT_PRIVATE) Create option - input to create -
* (defined in IDF)
LATCH_NUM DC F’3’ Number of latch to be obtained -
* input to obtain
SUSPEND DC A(ISGLOBT_SYNC) Obtain option - input to obtain -
* (defined in IDF)
EXCLUSIVE DC A(ISGLOBT_EXCLUSIVE) access option - input to obtain -
* (defined in IDF)
UNCOND DC A(ISGLREL_UNCOND) Release option - input to release -
* (defined in IDF)
**
* Dynamic area for save area, parmlists, and variables
**
*
DYNASTORE DSECT
*
SAVEAREA DS 18D 144-byte register save area
*
ENTIRELIDARRAY DS 0XL128
*
LIDPTRARRAY DS 16AD LIDPtrArray
*
CREATE_DPL DS 0F

CALL ,(NUM_LATCH,LS_NAME,PRIVATE,LS_TOKEN,RETCD),MF=L
*
OBTAIN_DPL DS 0F

CALL ,(LS_TOKEN,LATCH_NUM,REQ_ID,SUSPEND,EXCLUSIVE, X
ECB_ADDR,LATCH_TOKEN1,WORK_AREA,RETCD),MF=L

*
LID_DPL DS 0F

CALL ,(LS_TOKEN,LIDPTRARRAY,LIDVERSION, X
RETCD),MF=L

*
RELEASE_DPL DS 0F

CALL ,(LS_TOKEN,LATCH_TOKEN1,UNCOND,WORK_AREA,RETCD),MF=L
*
PURGE_DPL DS 0F

CALL ,(LS_TOKEN,REQ_ID,RETCD),MF=L
*
PURGEBA_DPL DS 0F

CALL ,(0,REQ_ID,REQ_MASK,LS_NAME,LS_MASK,RETCD),MF=L
*
ECB DS F ECB (used only when the obtain
* option is ISGLOBT_ASYNC_ECB)
ECB_ADDR DS A Address of ECB - input to obtain -
* (required for the interface, but
* only used when obtain option is
* ISGLOBT_ASYNC_ECB)
LS_TOKEN DS 2F Latch set token - output from create
* and input to obtain, latch identity,
* release, purge, and purge group
LATCH_TOKEN1 DS 2F Latch token - output from obtain
* and input to release

ISGLCR64 callable service

Chapter 123. ISGLCR64 — Create a latch set in 64-bit mode 1243

REQ_ID DS 0D Double word requestor ID - input to
* obtain, purge, and purge group
REQ_IDH DS F First half of requestor ID (ascb@)
*
REQ_IDL DS F Second half of requestor ID (tcb@)
*
WORK_AREA DS 64D 512-byte work area
*
RETCD DS F Return code - output from services
*
INIT_STOR DS XL(ISGYLID_ENTRY_LEN) Isgylid_entry block storage
*
NEW_STOR DS XL(ISGYLID_ENTRY_LEN)
*
DYNALEN EQU *-DYNASTORE
*

IHAPSA , Needed for ascb@ and tcb@ req ID
ISGLMASM , Needed for latch constants
END LATCHX64

ISGLCR64 callable service

1244 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 124. ISGLID — Identify a latch set

Description
The ISGLID callable service provides a latch set creator the ability to attach a latch
identity array (in ISGLMASM or ISGLMC) to the latch set for the purposes of
identifying the individual latches in the latch set. The LIDArray must be in the
primary space. The following callable services are related to the ISGLID service:
v ISGLCRT
v ISGLCRT64
v ISGLID
v ISGLID64

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM allowing key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Primary= the space of the latch set creator
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be accessible from the primary

address space.

Programming requirements
After the latch identity pointer array has been attached to the latch set, the
attached LIDArray cannot be deleted. However, the LIDArray can be replaced by
calling the service again and specifying a new array. To change the latch identity
for a particular latch, allocate a new latch identity block, fill it out, and update the
corresponding array entry. Then, you can delete the previous latch identity block.

Restrictions
None.

Input register information
Before calling the ISGLID service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a standard 72-byte save area located in the primary address
space.

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2016 1245

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

Performance implications
None

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v lsetToken
v LIDArray
v LIDEntryVersion

ISGLID returns values in the following parameter:
v retcode

Syntax Description

CALL ISGLID

,(lsetToken
,LIDPtrArray
,LIDEntryVersion
,retcode)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

lsetToken
Specifies an 8-character field that contains the latch set token returned from
ISGLCRT.

LIDPtrArray
Specifies the latch identity pointer array.

LIDEntryVersion
Specifies a 1-byte area that contains the version of the LID entries.

ISGLID callable service

1246 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

RetCode
Specifies a 4-byte or 32-bit area that contains return code from the ISGLID
service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses for these codes.

Return codes
When the ISGLID service returns control to your program, the RetCode parameter
contains a hexadecimal return code. The following table identifies the hexadecimal
reason codes and meaning associated with each reason code:

Table 110. ISGLID Return Codes

Return code and Equate
symbol

Meaning and action

00000000
ISGLID_SUCCESS

Meaning: The ISGLID service completed successfully.

Action: None.

xxxx0401
ISGLID_REPLACED

Meaning: Latch identity pointer array is replaced. A previous latch
identity pointer array existed for this latch set. It has been replaced.

Action: None.

Example
See “LATCHX31 - How to call AMODE 31 latch devices” on page 1225.

ISGLID callable service

Chapter 124. ISGLID — Identify a latch set 1247

1248 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 125. ISGLID64 — Identify a latch set in 64-bit mode

Description
The ISGLID64 callable service provides a latch set creator the ability to attach a
latch identity array (in ISGLMASM or ISGLMC) to the latch set for the purposes of
identifying the individual latches in the latch set. The LIDArray must be in the
primary space. The following callable services are related to the ISGLID64 service:
v ISGLCRT
v ISGLCRT64
v ISGLID
v ISGLID64

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM allowing key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Primary= the space of the latch set creator
AMODE: 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be accessible from the primary

address space.

Programming requirements
After the latch identity pointer array has been attached to the latch set, the
attached LIDArray cannot be deleted. However, the LIDArray can be replaced by
calling the service again and specifying a new array. To change the latch identity
for a particular latch, allocate a new latch identity block, fill it out, and update the
corresponding array entry. Then, you can delete the previous latch identity block.

Restrictions
None.

Input register information
Before calling the ISGLID64 service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a standard 144-byte save area located in the primary address
space

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2016 1249

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v lsetToken
v LIDArray
v LIDEntryVersion

ISGLID64 returns values in the following parameter:
v retcode

Syntax Description

CALL ISGLID64

,(lsetToken
,LIDPtrArray
,LIDEntryVersion
,retcode)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

lsetToken
Specifies an 8-character field that contains the latch set token returned from
ISGLCRT.

LIDPtrArray
Specifies the latch identity pointer array.

LIDEntryVersion
Specifies a 1-byte area that contains the version of the LID entries.

ISGLID64 callable service

1250 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

RetCode
Specifies a 4-byte or 32-bit area that contains return code from the ISGLID64
service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses for these codes.

Return codes
When the ISGLID64 service returns control to your program, the RetCode
parameter contains a hexadecimal return code. The following table identifies the
hexadecimal reason codes and meaning associated with each reason code:

Table 111. ISGLID64 Return Codes

Return code and Equate
symbol

Meaning and action

00000000 Meaning: The ISGLID service completed successfully.

Action: None.

xxxx0401 Meaning: Latch identity pointer array is replaced. A previous latch
identity pointer array existed for this latch set. It has been replaced.

Action: None.

Example
See “LATCHX64 - How to call AMODE 64 latch services” on page 1237.

ISGLID64 callable service

Chapter 125. ISGLID64 — Identify a latch set in 64-bit mode 1251

1252 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 126. ISGLOBT — Obtain a latch

Description
Call the Latch_Obtain service to request exclusive or shared ownership of a latch.
When a requestor owns a particular latch, the requestor can use the resource
associated with that latch. The following callable services are related to
Latch_Obtain:

ISGLCRT
Creates a latch set that an application can use to serialize resources.

ISGLREL
Releases ownership of an owned latch or a pending request to obtain a
latch.

ISGLPRG
Purges all granted and pending requests for a particular requestor within a
specific latch set.

In the following description of Latch_Obtain:
v The term requestor describes a task or SRB routine that calls the Latch_Obtain

service to request ownership of a latch.
v Equate symbols defined in the ISGLMASM macro are followed by their numeric

equivalents; you may specify either when coding calls to Latch_Obtain. For
example, "ISGLOBT_COND (value of 1)" indicates the equate symbol
ISGLOBT_COND and its associated value, 1.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM allowing key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be accessible from the primary

address space.

Programming Requirements
If you specify an obtain_option of ISGLOBT_ASYNC_ECB (as described in
“Parameters” on page 1255), initialize the ECB pointed to by the value on the
ECB_address parameter to zero before calling Latch_Obtain.

Before you use the Latch_Obtain service, you need to include the ISGLMASM
macro to obtain assembler declaration statements for Latch_Obtain. ISGLMASM
provides the following equate symbols for use when calling Latch_Obtain:
*
* Latch Obtain Option Equate Symbols
*

© Copyright IBM Corp. 1988, 2016 1253

ISGLOBT_SYNC EQU 0
ISGLOBT_COND EQU 1
ISGLOBT_ASYNC_ECB EQU 2
*
* Latch Obtain Access Equate Symbols
*
ISGLOBT_EXCLUSIVE EQU 0
ISGLOBT_SHARED EQU 1
*
* Latch Obtain Equate Symbols
*
ISGLOBT_SUCCESS EQU 0
ISGLOBT_CONTENTION EQU 4
*

Restrictions
1. The caller of Latch_Obtain must have a PSW key that allows access to the latch

set storage.
2. The ECB specified on the ECB_address parameter must reside in storage with a

storage key that matches the latch set storage key.
3. You must call Latch_Obtain from the same primary address space from which

the Latch_Create service was called.

Input register information
Before calling the Latch_Obtain service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a standard 72-byte save area located in the primary address
space

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
See the information about obtaining latches in z/OS MVS Programming: Authorized
Assembler Services Guide for performance implications related to the Latch_Obtain
service.

ISGLOBT callable service

1254 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v latch_set_token
v latch_number
v requestor_ID
v obtain_option
v access_option
v ECB_address

Latch_Obtain returns values in the following parameters:
v latch_token
v return_code

Latch_Obtain uses the following parameter for temporary storage:
v work_area

Syntax Description

CALL ISGLOBT

,(latch_set_token
,latch_number
,requestor_ID
,obtain_option
,access_option
,ECB_address
,latch_token
,work_area
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch_set_token that the Latch_Create
service returned earlier when it created the latch set.

,latch_number
Specifies a fullword integer that contains the number of the latch to be
obtained. The latch_number must be in the range from 0 to the total number of
latches in the associated latch set minus one.

,requestor_ID
Specifies an 8-byte area that contains a value that identifies the caller of the
Latch_Obtain service. The requestor_ID can be any value except all binary
zeros.

Recovery routines can purge all granted and pending requests for a particular
requestor (identified by a requestor_id) within a specific latch set. When
specifying the requestor_ID on Latch_Obtain, consider which latches would be
purged if the Latch_Purge service were to be called with the specified

ISGLOBT callable service

Chapter 126. ISGLOBT — Obtain a latch 1255

requestor_ID. For more information about the Latch_Purge service, see
Chapter 130, “ISGLPRG — Purge a requestor from a latch set,” on page 1273.

,obtain_option
A fullword integer that specifies how the system is to handle the Latch_Obtain
request if the latch manager cannot immediately grant ownership of the latch
to the requestor:

ISGLOBT_SYNC (value of 0)
The system processes the request synchronously. The system suspends the
requestor. When the latch manager eventually grants ownership of the
latch to the requestor, the system returns control to the requestor.

ISGLOBT_COND (value of 1)
The system processes the request conditionally. The system returns control
to the requestor with a return code of ISGLOBT_CONTENTION (value of
4). The latch manager does not queue the request to obtain the latch.

ISGLOBT_ASYNC_ECB (value of 2)
The system processes the request asynchronously. The system returns
control to the requestor with a return code of ISGLOBT_CONTENTION
(value of 4). When the latch manager eventually grants ownership of the
latch to the requestor, the system posts the ECB pointed to by the value
specified on the ECB_address parameter.

When you specify this option, the ECB_address parameter must contain
the address of an initialized ECB that is addressable from the home
address space (HASN).

,access_option
A fullword or character string that specifies the access required:
v ISGLOBT_EXCLUSIVE (value of 0) - Exclusive (write) access
v ISGLOBT_SHARED (value of 1) - Shared (read) access

,ECB_address
Specifies a fullword that contains the address of an ECB. If you specify an
obtain_option of ISGLOBT_SYNC (value of 0) or ISGLOBT_COND (value of 1)
on the call to Latch_Obtain, the ECB_address field must be valid (though its
contents are ignored). IBM recommends that an address of 0 be used when no
ECB is to be processed.

If you specify an obtain_option of ISGLOBT_ASYNC_ECB (value of 2) and the
system returns a return code of ISGLOBT_CONTENTION (value of 4) to the
caller, the system posts the ECB pointed to by the value specified on the
ECB_address parameter when the latch manager grants ownership of the latch
to the requestor.

,latch_token
Specifies an 8-byte area to contain the latch token returned by the
Latch_Obtain service. You must provide this value as a parameter on a call to
the Latch_Release service to release the latch.

,work_area
Specifies a 256-byte work area that provides temporary storage for the
Latch_Obtain service. The work area should begin on a doubleword boundary
to optimize performance. The work area must be in the same storage key as
the caller of Latch_Obtain.

,return_code
Specifies a fullword integer that is to contain the return code from the
Latch_Obtain service.

ISGLOBT callable service

1256 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses for these codes.

Return codes
When the Latch_Obtain service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in parentheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

Table 112. ISGLOBT Return Codes

Return code and Equate
Symbol

Meaning and Action

00
(0)
ISGLOBT_SUCCESS

Meaning: The Latch_Obtain service completed successfully.

Action: None.

04
(4)
ISGLOBT_CONTENTION

Meaning: A requestor called Latch_Obtain with an obtain_option of
ISGLOBT_COND (value of 1) or ISGLOBT_ASYNC_ECB (value of 2).
The latch is not immediately available.

Action: If the requestor specified an obtain_option of ISGLOBT_COND
(value of 1), no response is required. If the requestor specified an
obtain_option of ISGLOBT_ASYNC_ECB (value of 2), and the latch is
still required, wait on the ECB to be posted when the latch manager
grants ownership of the latch to the requestor.

Example
See “LATCHX31 - How to call AMODE 31 latch devices” on page 1225 for an
example of how to call Latch_Obtain in assembler language.

ISGLOBT callable service

Chapter 126. ISGLOBT — Obtain a latch 1257

1258 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 127. ISGLOB64 — Obtain a latch in 64-bit mode

Description
Call the 64-bit Latch_Obtain service to request exclusive or shared ownership of a
latch. When a requestor owns a particular latch, the requestor can use the resource
associated with that latch. The following callable services are related to
Latch_Obtain:

ISGLCR64
Creates a latch set that an application can use to serialize resources.

ISGLRE64
Releases ownership of an owned latch or a pending request to obtain a
latch.

ISGLPR64
Purges all granted and pending requests for a particular requestor within a
specific latch set.

In the following description of 64-bit Latch_Obtain:
v The term requestor describes a task or SRB routine that calls the Latch_Obtain

service to request ownership of a latch.
v Equate symbols defined in the ISGLMASM macro are followed by their numeric

equivalents; you may specify either when coding calls to Latch_Obtain. For
example, “ISGLOBT_COND (value of 1)” indicates the equate symbol
ISGLOBT_COND and its associated value, 1.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM allowing key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be accessible from the primary

address space.

Programming requirements
If you specify an obtain_option of ISGLOBT_ASYNC_ECB (as described in
“Parameters” on page 1261), initialize the ECB pointed to by the value on the
ECB_address parameter to zero before calling Latch_Obtain.

Before you use the Latch_Obtain service, you need to include the ISGLMASM
macro to obtain assembler declaration statements for Latch_Obtain. ISGLMASM
provides the following equate symbols for use when calling Latch_Obtain:
*
* Latch Obtain Option Equate Symbols
*

© Copyright IBM Corp. 1988, 2016 1259

ISGLOBT_SYNC EQU 0
ISGLOBT_COND EQU 1
ISGLOBT_ASYNC_ECB EQU 2

*
* Latch Obtain Access Equate Symbols
*
ISGLOBT_EXCLUSIVE EQU 0
ISGLOBT_SHARED EQU 1
*
* Latch Obtain Equate Symbols
*
ISGLOBT_SUCCESS EQU 0
ISGLOBT_CONTENTION EQU 4
*

Restrictions
1. The caller of the 64-bit Latch_Obtain must have a PSW key that allows access

to the latch set storage.
2. The ECB specified on the ECB_address parameter must reside in storage with a

storage key that matches the latch set storage key.
3. You must call the 64-bit Latch_Obtain from the same primary address space

from which the 64-bitLatch_Create service was called.

Input register information
Before calling the 64-bit Latch_Obtain service, the caller must ensure that the
following general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a standard 144-byte save area located in the primary address
space

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
See the information about obtaining latches in z/OS MVS Programming: Authorized
Assembler Services Guide for performance implications related to the 64-bit
Latch_Obtain service.

ISGLOB64 callable service

1260 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v latch_set_token
v latch_number
v requestor_ID
v obtain_option
v access_option
v ECB_address

The 64-bit Latch_Obtain returns values in the following parameters:
v latch_token
v return_code

The 64-bit Latch_Obtain uses the following parameter for temporary storage:
v work_area

Syntax Description

CALL ISGLOB64

,(latch_set_token
,latch_number
,requestor_ID
,obtain_option
,access_option
,ECB_address
,latch_token
,work_area
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch_set_token that the 64-bit
Latch_Create service returned earlier when it created the latch set.

,latch_number
Specifies a fullword integer that contains the number of the latch to be
obtained. The latch_number must be in the range from 0 to the total number of
latches in the associated latch set minus one.

,requestor_ID
Specifies an 8-byte area that contains a value that identifies the caller of the
64-bit Latch_Obtain service. The requestor_ID can be any value except all
binary zeros.

Recovery routines can purge all granted and pending requests for a particular
requestor (identified by a requestor_id) within a specific latch set. When
specifying the requestor_ID on the 64-bit Latch_Obtain, consider which latches
would be purged if the 64-bit Latch_Purge service were to be called with the

ISGLOB64 callable service

Chapter 127. ISGLOB64 — Obtain a latch in 64-bit mode 1261

specified requestor_ID. For more information about the 64-bit Latch_Purge
service, see Chapter 131, “ISGLPR64 — Purge a requestor from a latch set in
64-bit mode,” on page 1277.

,obtain_option
A fullword integer that specifies how the system is to handle the 64-bit
Latch_Obtain request if the latch manager cannot immediately grant ownership
of the latch to the requestor:

ISGLOB64_SYNC (value of 0)
The system processes the request synchronously. The system suspends the
requestor. When the latch manager eventually grants ownership of the
latch to the requestor, the system returns control to the requestor.

ISGLOB64_COND (value of 1)
The system processes the request conditionally. The system returns control
to the requestor with a return code of ISGLOBT_CONTENTION (value of
4). The latch manager does not queue the request to obtain the latch.

ISGLOB64_ASYNC_ECB (value of 2)
The system processes the request asynchronously. The system returns
control to the requestor with a return code of ISGLOBT_CONTENTION
(value of 4). When the latch manager eventually grants ownership of the
latch to the requestor, the system posts the ECB pointed to by the value
specified on the ECB_address parameter.

When you specify this option, the ECB_address parameter must contain
the address of an initialized ECB that is addressable from the home
address space (HASN).

,access_option
A fullword or character string that specifies the access required:
v ISGLOBT_EXCLUSIVE (value of 0) - Exclusive (write) access
v ISGLOBT_SHARED (value of 1) - Shared (read) access

,ECB_address
Specifies a fullword that contains the address of an ECB. If you specify an
obtain_option of ISGLOB64 _SYNC (value of 0) or ISGLOBT_COND (value of
1) on the call to Latch_Obtain, the ECB_address field must be valid (though its
contents are ignored). IBM recommends that an address of 0 be used when no
ECB is to be processed.

If you specify an obtain_option of ISGLOB64 _ASYNC_ECB (value of 2) and
the system returns a return code of ISGLOBT_CONTENTION (value of 4) to
the caller, the system posts the ECB pointed to by the value specified on the
ECB_address parameter when the latch manager grants ownership of the latch
to the requestor.

,latch_token
Specifies an 8-byte area to contain the latch token returned by the 64-bit
Latch_Obtain service. You must provide this value as a parameter on a call to
the 64-bit Latch_Release service to release the latch.

,work_area
Specifies a 512-byte work area that provides temporary storage for the 64-bit
Latch_Obtain service. The work area should begin on a doubleword boundary
to optimize performance. The work area must be in the same storage key as
the caller of 64-bit Latch_Obtain.

ISGLOB64 callable service

1262 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,return_code
Specifies a fullword integer that is to contain the return code from the 64-bit
Latch_Obtain service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses for these codes.

Return codes
When the 64-bit Latch_Obtain service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in parentheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

Table 113. ISGLOBT64 Return Codes

Return code and Equate
Symbol

Meaning and Action

00
(0)
ISGLOBT_SUCCESS

Meaning: The Latch_Obtain service completed successfully.

Action: None.

04
(4)
ISGLOBT_CONTENTION

Meaning: A requestor called Latch_Obtain with an obtain_option of
ISGLOBT_COND (value of 1) or ISGLOBT_ASYNC_ECB (value of 2).
The latch is not immediately available.

Action: If the requestor specified an obtain_option of ISGLOBT_COND
(value of 1), no response is required. If the requestor specified an
obtain_option of ISGLOBT_ASYNC_ECB (value of 2), and the latch is
still required, wait on the ECB to be posted when the latch manager
grants ownership of the latch to the requestor.

Example
See “LATCHX64 - How to call AMODE 64 latch services” on page 1237 for an
example of how to call Latch_Obtain in assembler language.

ISGLOB64 callable service

Chapter 127. ISGLOB64 — Obtain a latch in 64-bit mode 1263

1264 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 128. ISGLPBA — Purge a group of requestors from a
group of latch sets

Description
Call the Latch_Purge_by_Address_Space service to purge all granted and pending
requests for a group of requestors for a group of latch sets in the same address
space. To effectively use this service, your latch_set_names and your requestor_IDs
should be defined such that they have a common portion and a unique portion.
Groups of latch sets can then be formed by masking off the unique portion of the
latch_set_name, and groups of latch requests in a latch set can then be formed by
masking off the unique portion of the requestor_ID. Masking off the unique
portion of the requestor_ID allows a single purge request to handle multiple latch
sets and multiple requests in a latch set. Recovery routines should call
Latch_Purge_by_Address_Space when one or more errors prevent requestors from
releasing latches.

The following callable services are related to Latch_Purge_by_Address_Space:

ISGLCRT
Creates a latch set that an application can use to serialize resources.

ISGLOBT
Requests exclusive or shared control of a latch.

ISGLREL
Releases control of an owned latch or a pending request to obtain a latch.

ISGLPRG
Purges all granted and pending requests for a particular requestor within a
specific latch set.

In the following description of Latch_Purge_by_Address_Space, equate symbols
defined in the ISGLMASM macro are followed by their numeric equivalents; you
may specify either when coding calls to Latch_Purge_by_Address_Space.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM allowing key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be accessible from the primary

address space.

Programming requirements
Before you use the Latch_Purge_by_Address_Space service, you need to include
the ISGLMASM macro to obtain assembler declaration statements for

© Copyright IBM Corp. 1988, 2016 1265

Latch_Purge_by_Address_Space. ISGLMASM provides the following equate
symbols for use when calling Latch_Purge_by_Address_Space

*
* Latch Purge by Address Space Return Codes
*
ISGLPRG_SUCCESS EQU 0
ISGLPRG_DAMAGE_DETECTED EQU 4
ISGLPRG_INCORRECT_MASK EQU C
*

Restrictions
1. The caller of Latch_Purge_by_Address_Space must have a PSW key that allows

access to the latch set storage.
2. You must call Latch_Purge_by_Address_Space from the same primary address

space from which the Latch_Create service was called.

Input register information
Before calling the Latch_Purge_by_Address_Space service, the caller must ensure
that the following general purpose registers (GPRs) contain the specified
information:

Register
Contents

13 Address of a standard 72-byte save area located in the primary address
space

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
Write the CALL as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v latch_set_token

ISGLPBA callable service

1266 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v requestor_ID
v requestor_ID_mask
v latch_set_name
v latch_set_name_mask

Latch_Purge_by_Address_Space returns a value in the return_code parameter.

Syntax Description

CALL ISGLPBA

,(latch_set_token
,requestor_ID
,requestor_ID_mask
,latch_set_name
,latch_set_name_mask
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch_set_token previously returned
by the Latch_Create service or a value of zero. If the value is not zero, the
latch_set_token identifies the latch set from which latch requests are to be
purged. If the latch_set_token is set to zero, a group of latch sets, determined
by the latch_set_name and latch_set_name_mask, will have their latch requests
purged.

,requestor_id
Specifies an 8-byte area that contains a portion of the requestor_ID originally
specified on one or more previous calls to the Latch_Obtain service. This
operand will be compared to the result of logically ANDing each requestor_ID
in the latch set with the requestor_ID_mask. Make sure that any corresponding
bits that are zero in the requestor_ID_mask are also zero in this field, otherwise
no ID matches will occur. Each requestor_ID that has a name match will have
its Latch_Obtain requests released.

,requestor_id_mask
Specifies an 8-byte area that contains the requestor_ID_mask that will be
logically ANDed to each requestor_ID in the latch set and then compared to
the requestor_ID operand. Each requestor_ID that has a name match will have
its Latch_Obtain requests released.

,latch_set_name
Specifies a 48-byte area that contains the portion of the latch_set_name that
will be compared to the result of logically ANDing the latch_set_name_mask
with each latch set name in the primary address space. Make sure that any
corresponding bits that are zero in the latch_set_name_mask are also zero in
this field, otherwise no name matches will occur. Each latch set that has a
name match will have its Latch_Obtain requests released. If the latch_set_token
operand is non-zero this operand is ignored.

,latch_set_name_mask
Specifies a 48-byte area that contains the mask that will be logically ANDed to
each of the latch set names in the primary address apace and then compared to

ISGLPBA callable service

Chapter 128. ISGLPBA — Purge a group of requestors from a group of latch sets 1267

the latch_set_name operand. Each latch set that has a name match will have its
Latch_Obtain requests released. If the latch_set_token operand is non-zero this
operand is ignored.

,return_code
A fullword integer that contains the return code from the
Latch_Purge_By_Address_Space service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return codes
When the Latch_Purge_by_Address_Space service returns control to your program,
the return_code contains a hexadecimal return code. The following table identifies
return codes in hexadecimal and decimal (in parentheses), the equate symbol
associated with each return code, the meaning of each return code, and a
recommended action:

Table 114. ISGLPBA Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLPRG_SUCCESS

Meaning: The Latch_Purge_by_Address_Space
service completed successfully.

Action: None.

04
(4)
ISGLPRG_DAMAGE_DETECTED

Meaning: Program error. While purging all
requests for a particular requestor from a latch
set, the latch manager found incorrect data in one
or more latches. The latch manager tries to purge
the latches that contain incorrect data, but the
damage might prevent the latch manager from
purging those latches. The latch manager purges
the remaining latches (those with correct data) for
the specified requestor.

Action: Take a dump and check for a storage
overlay. If your application can continue without
the resources serialized by the damaged latches,
no action is required.

ISGLPBA callable service

1268 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 129. ISGLPB64 — Purge a group of requestors from a
group of latch sets in 64-bit mode

Description
Call the 64-bit Latch_Purge_by_Address_Space service to purge all granted and
pending requests for a group of requestors for a group of latch sets in the same
address space. To effectively use this service, your latch_set_names and your
requestor_IDs should be defined such that they have a common portion and a
unique portion. Groups of latch sets can then be formed by masking off the unique
portion of the latch_set_name, and groups of latch requests in a latch set can then
be formed by masking off the unique portion of the requestor_ID. Masking off the
unique portion of the requestor_ID allows a single purge request to handle
multiple latch sets and multiple requests in a latch set. Recovery routines should
call 64-bit Latch_Purge_by_Address_Space when one or more errors prevent
requestors from releasing latches.

The following callable services are related to 64-bit
Latch_Purge_by_Address_Space:

ISGLCR64
Creates a 64-bit latch set that an application can use to serialize resources.

ISGLOB64
Requests exclusive or shared control of a 64-bit latch.

ISGLRE64
Releases control of an owned 64-bit latch or a pending request to obtain a
64-bit latch.

ISGLPR64
Purges all granted and pending requests for a particular requestor within a
specific 64-bit latch set.

In the following description of the 64-bit Latch_Purge_by_Address_Space, equate
symbols defined in the ISGLMASM macro are followed by their numeric
equivalents; you may specify either when coding calls to the 64–bit
Latch_Purge_by_Address_Space.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW allowing key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be accessible from the primary

address space.

© Copyright IBM Corp. 1988, 2016 1269

Programming requirements
Before you use the 64–bit Latch_Purge_by_Address_Space service, you need to
include the ISGLMASM macro to obtain assembler declaration statements for the
64–bit Latch_Purge_by_Address_Space. ISGLMASM provides the following equate
symbols for use when calling the 64–bit Latch_Purge_by_Address_Space

*
* Latch Purge by Address Space Return Codes
*
ISGLPRG_SUCCESS EQU 0
ISGLPRG_DAMAGE_DETECTED EQU 4
ISGLPRG_INCORRECT_MASK EQU C
*

Restrictions
1. The caller of the 64–bit Latch_Purge_by_Address_Space must have a PSW key

that allows access to the latch set storage.
2. You must call the 64–bit Latch_Purge_by_Address_Space from the same

primary address space from which the 64–bit Latch_Create service was called.

Input register information
Before calling the 64–bit Latch_Purge_by_Address_Space service, the caller must
ensure that the following general purpose registers (GPRs) contain the specified
information:

Register
Contents

13 Address of a standard 144-byte save area located in the primary address
space

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

ISGLPB64 callable service

1270 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax
Write the CALL as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v latch_set_token
v requestor_ID
v requestor_ID_mask
v latch_set_name
v latch_set_name_mask

The 64–bit Latch_Purge_by_Address_Space returns a value in the return_code
parameter.

Syntax Description

CALL ISGLPB64

,(latch_set_token
,requestor_ID
,requestor_ID_mask
,latch_set_name
,latch_set_name_mask
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch_set_token previously returned
by the Latch_Create service or a value of zero. If the value is not zero, the
latch_set_token identifies the latch set from which latch requests are to be
purged. If the latch_set_token is set to zero, a group of latch sets, determined
by the latch_set_name and latch_set_name_mask, will have their latch requests
purged.

,requestor_id
Specifies an 8-byte area that contains a portion of the requestor_ID originally
specified on one or more previous calls to the Latch_Obtain service. This
operand will be compared to the result of logically ANDing each requestor_ID
in the latch set with the requestor_ID_mask. Make sure that any corresponding
bits that are zero in the requestor_ID_mask are also zero in this field, otherwise
no ID matches will occur. Each requestor_ID that has a name match will have
its Latch_Obtain requests released.

,requestor_id_mask
Specifies an 8-byte area that contains the requestor_ID_mask that will be
logically ANDed to each requestor_ID in the latch set and then compared to
the requestor_ID operand. Each requestor_ID that has a name match will have
its Latch_Obtain requests released.

,latch_set_name
Specifies a 48-byte area that contains the portion of the latch_set_name that
will be compared to the result of logically ANDing the latch_set_name_mask

ISGLPB64 callable service

Chapter 129. ISGLPB64 — Purge a group of requestors from a group of latch sets in 64-bit mode 1271

with each latch set name in the primary address space. Make sure that any
corresponding bits that are zero in the latch_set_name_mask are also zero in
this field, otherwise no name matches will occur. Each latch set that has a
name match will have its Latch_Obtain requests released. If the latch_set_token
operand is non-zero this operand is ignored.

,latch_set_name_mask
Specifies a 48-byte area that contains the mask that will be logically ANDed to
each of the latch set names in the primary address apace and then compared to
the latch_set_name operand. Each latch set that has a name match will have its
Latch_Obtain requests released. If the latch_set_token operand is non-zero this
operand is ignored.

,return_code
A fullword integer that contains the return code from the
Latch_Purge_By_Address_Space service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return codes
When the 64–bit Latch_Purge_by_Address_Space service returns control to your
program, the return_code contains a hexadecimal return code. The following table
identifies return codes in hexadecimal and decimal (in parentheses), the equate
symbol associated with each return code, the meaning of each return code, and a
recommended action:

Table 115. ISGLPB64 Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLPRG_SUCCESS

Meaning: The Latch_Purge_by_Address_Space service completed successfully.

Action: None.

04
(4)
ISGLPRG_DAMAGE_DETECTED

Meaning: Program error. While purging all requests for a particular requestor from
a latch set, the latch manager found incorrect data in one or more latches. The latch
manager tries to purge the latches that contain incorrect data, but the damage might
prevent the latch manager from purging those latches. The latch manager purges the
remaining latches (those with correct data) for the specified requestor.

Action: Take a dump and check for a storage overlay. If your application can
continue without the resources serialized by the damaged latches, no action is
required.

ISGLPB64 callable service

1272 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 130. ISGLPRG — Purge a requestor from a latch set

Description
Call the Latch_Purge service to purge all granted and pending requests for a
particular requestor within a specific latch set. Recovery routines should call
Latch_Purge when one or more errors prevent requestors from releasing latches.
The following callable services are related to Latch_Purge:

ISGLCRT
Creates a latch set that an application can use to serialize resources.

ISGLOBT
Requests exclusive or shared control of a latch.

ISGLREL
Releases control of an owned latch or a pending request to obtain a latch.

In the following description of Latch_Purge, equate symbols defined in the
ISGLMASM macro are followed by their numeric equivalents; you may specify
either when coding calls to Latch_Purge.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM allowing key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be accessible from the primary

address space.

Programming requirements
Before you use the Latch_Purge service, you need to include the ISGLMASM
macro to obtain assembler declaration statements for Latch_Purge. ISGLMASM
provides the following equate symbols for use when calling Latch_Purge:
*
* Latch Purge Return Codes
*
ISGLPRG_SUCCESS EQU 0
ISGLPRG_DAMAGE_DETECTED EQU 4
*

Restrictions
1. The caller of Latch_Purge must have a PSW key that allows access to the latch

set storage.
2. You must call Latch_Purge from the same primary address space from which

the Latch_Create service was called.

© Copyright IBM Corp. 1988, 2016 1273

Input register information
Before calling the Latch_Purge service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a standard 72-byte save area located in the primary address
space

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
Write the CALL as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v latch_set_token
v requestor_ID

Latch_Purge returns a value in the return_code parameter.

Syntax Description

CALL ISGLPRG
,(latch_set_token
,requestor_ID
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

ISGLPRG callable service

1274 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

latch_set_token
Specifies an 8-byte area that contains the latch_set_token previously returned
by the Latch_Create service. The latch set token identifies the latch set from
which latch requests are to be purged.

,requestor_ID
Specifies an 8-byte area that contains the requestor_ID originally specified on
one or more previous calls to the Latch_Obtain service. The Latch_Purge
service is to release all Latch_Obtain requests that specify this requestor_ID.

,return_code
A fullword integer that contains the return code from the Latch_Purge service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return codes
When the Latch_Purge service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in parentheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

Table 116. ISGLPRG Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLPRG_SUCCESS

Meaning: The Latch_Purge service completed successfully.

Action: None.

04
(4)
ISGLPRG_DAMAGE_DETECTED

Meaning: Program error. While purging all requests for a
particular requestor from a latch set, the latch manager
found incorrect data in one or more latches. The latch
manager tries to purge the latches that contain incorrect
data, but the damage might prevent the latch manager from
purging those latches. The latch manager purges the
remaining latches (those with correct data) for the specified
requestor.

Action: Take a dump and check for a storage overlay. If
your application can continue without the resources
serialized by the damaged latches, no action is required.

Example
See “LATCHX31 - How to call AMODE 31 latch devices” on page 1225 for an
example of how to call Latch_Purge in assembler language.

ISGLPRG callable service

Chapter 130. ISGLPRG — Purge a requestor from a latch set 1275

1276 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 131. ISGLPR64 — Purge a requestor from a latch set
in 64-bit mode

Description
Call the 64-bit Latch_Purge service to purge all granted and pending requests for a
particular requestor within a specific 64-bit latch set. Recovery routines should call
64-bit Latch_Purge when one or more errors prevent requestors from releasing
latches. The following callable services are related to the 64-bit Latch_Purge:

ISGLCR64
Creates a 64-bit latch set that an application can use to serialize resources.

ISGLOB64
Requests exclusive or shared control of a 64-bit latch.

ISGLRE64
Releases control of an owned 64-bit latch or a pending request to obtain a
64-bit latch.

In the following description of 64-bit Latch_Purge, equate symbols defined in the
ISGLMASM macro are followed by their numeric equivalents; you may specify
either when coding calls to 64-bit Latch_Purge.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW allowing key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be accessible from the primary

address space.

Programming requirements
Before you use the 64-bit Latch_Purge service, you need to include the ISGLMASM
macro to obtain assembler declaration statements for Latch_Purge. ISGLMASM
provides the following equate symbols for use when calling Latch_Purge:
*
* Latch Purge Return Codes
*
ISGLPRG_SUCCESS EQU 0
ISGLPRG_DAMAGE_DETECTED EQU 4
*

Restrictions
1. The caller of 64-bit Latch_Purge must have a PSW key that allows access to the

latch set storage.

© Copyright IBM Corp. 1988, 2016 1277

2. You must call the 64-bit Latch_Purge from the same primary address space
from which the 64-bit Latch_Create service was called.

Input register information
Before calling the 64-bit Latch_Purge service, the caller must ensure that the
following general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a standard 144-byte save area located in the primary address
space

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
Write the CALL as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v latch_set_token
v requestor_ID

The 64-bit Latch_Purge returns a value in the return_code parameter.

Syntax Description

CALL ISGLPR64
,(latch_set_token
,requestor_ID
,return_code)

ISGLPR64 callable service

1278 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch_set_token previously returned
by the Latch_Create service. The latch set token identifies the latch set from
which latch requests are to be purged.

,requestor_ID
Specifies an 8-byte area that contains the requestor_ID originally specified on
one or more previous calls to the Latch_Obtain service. The Latch_Purge
service is to release all Latch_Obtain requests that specify this requestor_ID.

,return_code
A fullword integer that contains the return code from the Latch_Purge service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return codes
When the 64-bit Latch_Purge service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in parentheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

Table 117. ISGLPRG Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLPRG_SUCCESS

Meaning: The Latch_Purge service completed successfully.

Action: None.

04
(4)
ISGLPRG_DAMAGE_DETECTED

Meaning: Program error. While purging all requests for a
particular requestor from a latch set, the latch manager found
incorrect data in one or more latches. The latch manager tries to
purge the latches that contain incorrect data, but the damage might
prevent the latch manager from purging those latches. The latch
manager purges the remaining latches (those with correct data) for
the specified requestor.

Action: Take a dump and check for a storage overlay. If your
application can continue without the resources serialized by the
damaged latches, no action is required.

Example
See “LATCHX64 - How to call AMODE 64 latch services” on page 1237 for an
example of how to call 64-bit Latch_Purge in assembler language.

ISGLPR64 callable service

Chapter 131. ISGLPR64 — Purge a requestor from a latch set in 64-bit mode 1279

1280 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 132. ISGLREL — Release a latch

Description
Call the Latch_Release service to release ownership of an owned latch or a pending
request to obtain a latch. Requestors should call Latch_Release when the use of a
resource associated with a latch is no longer required. The following callable
services are related to Latch_Release:

ISGLCRT
Creates a latch set that an application can use to serialize resources.

ISGLOBT
Requests exclusive or shared control of a latch.

ISGLPRG
Purges all granted and pending requests for a particular requestor within a
specific latch set.

In the following description of Latch_Release:
v The term requestor describes a program that calls the Latch_Release service to

release ownership of an owned latch or a pending request to obtain a latch.
v Equate symbols defined in the ISGLMASM macro are followed by their numeric

equivalents; you may specify either when coding calls to Latch_Obtain. For
example, "ISGLREL_COND (value of 1)" indicates the equate symbol
ISGLREL_COND and its associated value, 1.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM allowing key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be accessible from the primary

address space.

Programming requirements
Before you use the Latch_Release service, include the ISGLMASM macro to obtain
assembler declaration statements for Latch_Release. ISGLMASM provides the
following equate symbols for use when calling Latch_Release:
*
* Latch Release Option Equate Symbols
*
ISGLREL_UNCOND EQU 0
ISGLREL_COND EQU 1
*
* Latch Release Return Codes
*
ISGLREL_SUCCESS EQU 0

© Copyright IBM Corp. 1988, 2016 1281

ISGLREL_NOT_OWNED_ECB_REQUEST EQU 4
ISGLREL_STILL_SUSPENDED EQU 8
ISGLREL_INCORRECT_LATCH_TOKEN EQU 12
*

Restrictions
1. The caller of Latch_Release must have a PSW key that allows access to the latch

set storage.
2. You must call Latch_Release from the same primary address space from which

the Latch_Create service was called.

Input register information
Before calling the Latch_Release service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a standard 72-byte save area located in the primary address
space

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
See the information about releasing latches in z/OS MVS Programming: Authorized
Assembler Services Guide for performance implications related to the Latch_Release
service.

Syntax
Write the CALL as shown on the syntax diagram, coding all parameters in the
specified order.

Assign values to the following parameters:
v latch_set_token
v latch_token
v release_option

ISGLREL callable service

1282 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Latch_Release returns a value in the following parameter:
v return_code

Latch_Release uses the following parameter for temporary storage:
v work_area

Syntax Description

CALL ISGLREL

,(latch_set_token
,latch_token
,release_option
,work_area
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch set token returned to the caller
of the Latch_Create service. The latch set token identifies the latch set that
contains the latch to be released.

,latch_token
Specifies an 8-byte area that contains the latch token returned to the caller of
the Latch_Obtain service. The latch token identifies the request to be released.

,release_option
Specifies a fullword integer that tells the latch manager what to do when the
requestor either no longer owns the latch to be released or still has a pending
request to obtain the latch to be released:

ISGLREL_UNCOND (value of 0)
Abend the requestor:
v If a requestor originally specified an obtain_option of ISGLOBT_SYNC

(value of 0) and is suspended while waiting to obtain the latch, the latch
manager does not release the latch. The system abends the caller of
Latch_Release with abend X'9C6', reason code xxxx0009.

v If a requestor originally specified an obtain_option of
ISGLOBT_ASYNC_ECB (value of 2) and is suspended while waiting to
obtain the latch, the latch manager does not release the latch. The system
abends the caller of Latch_Release with abend X'9C6', reason code
xxxx0007.

v If the latch manager does not find a previous Latch_Obtain request for
the specified latch, the system abends the caller of Latch_Release with
abend X'9C6', reason code xxxx000A.

ISGLREL_COND (value of 1)
Return control to the requestor:
v If a requestor originally specified an obtain_option of

ISGLOBT_ASYNC_ECB (value of 2) and the latch has been obtained, but
the ECB has not been posted, the latch manager releases the request for
ownership of the latch. The system returns control to the caller of

ISGLREL callable service

Chapter 132. ISGLREL — Release a latch 1283

Latch_Release with a return code of
ISGLREL_NOT_OWNED_ECB_REQUEST (value of 4).

v If a requestor originally specified an obtain_option of ISGLOBT_SYNC
(value of 0) but is suspended while waiting to obtain the latch, the latch
manager does not release the request for ownership of the latch. The
system returns control to the caller of Latch_Release with a return code
of ISGLREL_STILL_SUSPENDED (value of 8).

v If the latch manager does not find a previous Latch_Obtain request for
the specified latch, the system returns control to the caller of
Latch_Release with a return code of
ISGLREL_INCORRECT_LATCH_TOKEN (value of 12).

,work_area
Specifies a 256-byte work area that provides temporary storage for the
Latch_Release service. The work area should begin on a doubleword boundary
to optimize performance. The work area must be in the same storage key as
the caller of Latch_Release.

,return_code
Specifies a fullword integer that is to contain the return code from the
Latch_Release service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return codes
When the Latch_Release service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in parentheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

Table 118. ISGLREL Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLREL_SUCCESS

Meaning: The Latch_Release service completed
successfully. The caller released ownership of the
specified latch request.

Action: None.

04
(4)
ISGLREL_NOT_OWNED_ECB_REQUEST

Meaning: The requestor that originally called the
Latch_Obtain service is still expecting the system
to post an ECB (to indicate that the requestor has
obtained the latch). The call to the Latch_Release
service specified a release_option of
ISGLREL_COND (value of 1). The latch manager
does not post the ECB at the address specified on
the original call to Latch_Obtain. The latch
manager releases the latch.

Action: Validate the integrity of the resource
associated with the latch (the requestor might
have used the resource without waiting on the
ECB). If the resource is undamaged, no action is
necessary (a requestor routine may have been in
the process of cancelling the request to obtain the
latch).

ISGLREL callable service

1284 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 118. ISGLREL Return Codes (continued)

Return code and Equate Symbol Meaning and Action

08
(8)
ISGLREL_STILL_SUSPENDED

Meaning: Program error. The request specified a
correct latch token, but the program that
originally requested the latch is still suspended
and waiting to obtain the latch.

The latch requestor originally specified an
obtain_option of ISGLOBT_SYNC on the call to
the Latch_Obtain service. The call to the
Latch_Release service specified a release_option of
ISGLREL_COND (value of 1). The latch manager
does not release the latch. The latch requestor
remains suspended.

Action:

v Wait for the latch requestor to obtain the latch
and receive control back from the system; then
call the Latch_Release service again, or

v End the program that originally requested the
latch.

0C
(12)
ISGLREL_INCORRECT_LATCH_TOKEN

Meaning: The latch manager could not find a
granted or pending request associated with the
value on the latch token parameter. The latch
manager does not release a latch.

This return code does not indicate an error if a
routine calls Latch_Release to ensure that a latch
is released. For example, if an error occurs when a
requestor calls the Latch_Obtain service, the
requestor's recovery routine might call
Latch_Release to ensure that the requested latch is
released. If the error prevented the requestor from
obtaining the latch, the recovery routine receives
this return code.

Action: If the return code is not expected, validate
that the latch token is the same latch token
returned to the caller of Latch_Obtain.

Example
See “LATCHX31 - How to call AMODE 31 latch devices” on page 1225 for an
example of how to call Latch_Release in assembler language.

ISGLREL callable service

Chapter 132. ISGLREL — Release a latch 1285

1286 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 133. ISGLRE64 — Release a latch in 64-bit mode

Description
Call the 64-bit Latch_Release service to release ownership of an owned latch or a
pending request to obtain a latch. Requestors should call 64-bit Latch_Release
when the use of a resource associated with a latch is no longer required. The
following callable services are related to 64-bit Latch_Release:

ISGLCR64
Creates a 64-bit latch set that an application can use to serialize resources.

ISGLOB64
Requests exclusive or shared control of a 64-bit latch.

ISGLPR64
Purges all granted and pending requests for a particular requestor within a
specific 64-bit latch set.

In the following description of the 64-bit Latch_Release:
v The term requestor describes a program that calls the Latch_Release service to

release ownership of an owned latch or a pending request to obtain a latch.
v Equate symbols defined in the ISGLMASM macro are followed by their numeric

equivalents; you may specify either when coding calls to the 64-bit
Latch_Obtain. For example, “ISGLREL_COND (value of 1)” indicates the equate
symbol ISGLREL_COND and its associated value, 1.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW allowing key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be accessible from the primary

address space.

Programming requirements
Before you use the 64-bit Latch_Release service, include the ISGLMASM macro to
obtain assembler declaration statements for Latch_Release. ISGLMASM provides
the following equate symbols for use when calling the 64-bit Latch_Release:
*
* Latch Release Option Equate Symbols
*
ISGLREL_UNCOND EQU 0
ISGLREL_COND EQU 1
*
* Latch Release Return Codes
*
ISGLREL_SUCCESS EQU 0

© Copyright IBM Corp. 1988, 2016 1287

ISGLREL_NOT_OWNED_ECB_REQUEST EQU 4
ISGLREL_STILL_SUSPENDED EQU 8
ISGLREL_INCORRECT_LATCH_TOKEN EQU 12
*

Restrictions
1. The caller of the 64-bit Latch_Release must have a PSW key that allows access

to the latch set storage.
2. You must call the 64-bit Latch_Release from the same primary address space

from which the 64-bitLatch_Create service was called.

Input register information
Before calling the 64-bit Latch_Release service, the caller must ensure that the
following general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a standard 144-byte save area located in the primary address
space

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
See the information about releasing latches in z/OS MVS Programming: Authorized
Assembler Services Guide for performance implications related to the 64-bit
Latch_Release service.

Syntax
Write the CALL as shown on the syntax diagram, coding all parameters in the
specified order.

Assign values to the following parameters:
v latch_set_token
v latch_token
v release_option

ISGLRE64 callable service

1288 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

The 64-bit Latch_Release returns a value in the following parameter:
v return_code

The 64-bit Latch_Release uses the following parameter for temporary storage:
v work_area

Syntax Description

CALL ISGLRE64

,(latch_set_token
,latch_token
,release_option
,work_area
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch set token returned to the caller
of the 64-bit Latch_Create service. The latch set token identifies the latch set
that contains the latch to be released.

,latch_token
Specifies an 8-byte area that contains the latch token returned to the caller of
the 64-bit Latch_Obtain service. The latch token identifies the request to be
released.

,release_option
Specifies a fullword integer that tells the latch manager what to do when the
requestor either no longer owns the latch to be released or still has a pending
request to obtain the latch to be released:

ISGLREL_UNCOND (value of 0)
Abend the requestor:
v If a requestor originally specified an obtain_option of ISGLOBT_SYNC

(value of 0) when obtaining the latch, the latch manager does not release
the latch. The system abends the caller of Latch_Release with abend
X'9C6', reason code xxxx0009.

v If a requestor originally specified an obtain_option of
ISGLOBT_ASYNC_ECB (value of 2) when obtaining the latch, the latch
manager does not release the latch. The system abends the caller of
Latch_Release with abend X'9C6', reason code xxxx0007.

v If the latch manager does not find a previous Latch_Obtain request for
the specified latch, the system abends the caller of Latch_Release with
abend X'9C6', reason code xxxx000A.

ISGLREL_COND (value of 1)
Return control to the requestor:
v If a requestor originally specified an obtain_option of

ISGLOBT_ASYNC_ECB (value of 2) when obtaining the latch, the latch
manager releases the request for ownership of the latch. The system
returns control to the caller of Latch_Release with a return code of
ISGLREL_NOT_OWNED_ECB_REQUEST (value of 4).

ISGLRE64 callable service

Chapter 133. ISGLRE64 — Release a latch in 64-bit mode 1289

v If a requestor originally specified an obtain_option of ISGLOBT_SYNC
(value of 0) when obtaining the latch, the latch manager does not release
the request for ownership of the latch. The system returns control to the
caller of Latch_Release with a return code of
ISGLREL_STILL_SUSPENDED (value of 8).

v If the latch manager does not find a previous Latch_Obtain request for
the specified latch, the system returns control to the caller of
Latch_Release with a return code of
ISGLREL_INCORRECT_LATCH_TOKEN (value of 12).

,work_area
Specifies a 512-byte work area that provides temporary storage for the 64-bit
Latch_Release service. The work area should begin on a doubleword boundary
to optimize performance. The work area must be in the same storage key as
the caller of Latch_Release.

,return_code
Specifies a fullword integer that is to contain the return code from the 64-bit
Latch_Release service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return codes
When the 64-bit Latch_Release service returns control to your program,
return_code contains a hexadecimal return code. The following table identifies
return codes in hexadecimal and decimal (in parentheses), the equate symbol
associated with each return code, the meaning of each return code, and a
recommended action:

Table 119. ISGLRE64 Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLREL_SUCCESS

Meaning: The Latch_Release service completed
successfully. The caller released ownership of the
specified latch request.

Action: None.

04
(4)
ISGLREL_NOT_OWNED_ECB_REQUEST

Meaning: The requestor that originally called the
Latch_Obtain service is still expecting the system
to post an ECB (to indicate that the requestor has
obtained the latch). The call to the Latch_Release
service specified a release_option of
ISGLREL_COND (value of 1). The latch manager
does not post the ECB at the address specified on
the original call to Latch_Obtain. The latch
manager releases the latch.

Action: Validate the integrity of the resource
associated with the latch (the requestor might
have used the resource without waiting on the
ECB). If the resource is undamaged, no action is
necessary (a requestor routine may have been in
the process of cancelling the request to obtain the
latch).

ISGLRE64 callable service

1290 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 119. ISGLRE64 Return Codes (continued)

Return code and Equate Symbol Meaning and Action

08
(8)
ISGLREL_STILL_SUSPENDED

Meaning: Program error. The request specified a
correct latch token, but the program that
originally requested the latch is still suspended
and waiting to obtain the latch.

The latch requestor originally specified an
obtain_option of ISGLOBT_SYNC on the call to
the Latch_Obtain service. The call to the
Latch_Release service specified a release_option of
ISGLREL_COND (value of 1). The latch manager
does not release the latch. The latch requestor
remains suspended.

Action:

v Wait for the latch requestor to obtain the latch
and receive control back from the system; then
call the Latch_Release service again, or

v End the program that originally requested the
latch.

0C
(12)
ISGLREL_INCORRECT_LATCH_TOKEN

Meaning: The latch manager could not find a
granted or pending request associated with the
value on the latch token parameter. The latch
manager does not release a latch.

This return code does not indicate an error if a
routine calls Latch_Release to ensure that a latch
is released. For example, if an error occurs when a
requestor calls the Latch_Obtain service, the
requestor's recovery routine might call
Latch_Release to ensure that the requested latch is
released. If the error prevented the requestor from
obtaining the latch, the recovery routine receives
this return code.

Action: If the return code is not expected, validate
that the latch token is the same latch token
returned to the caller of Latch_Obtain.

Example
See “LATCHX64 - How to call AMODE 64 latch services” on page 1237 for an
example of how to call the 64-bit Latch_Release in assembler language.

ISGLRE64 callable service

Chapter 133. ISGLRE64 — Release a latch in 64-bit mode 1291

1292 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 134. ISGQUERY — Global resource serialization
query service

Description
The GRS query service routine is given control from the ISGQUERY macro to:
v Search a resource name list (RNL) for a given QNAME/RNAME pair.
v Obtain information on resources and requesters of outstanding ENQ requests.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state. Any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts
Locks: For REQINFO=RNLSEARCH, the caller may be unlocked or

hold both a local lock (LOCAL or CML) and the CMSEQDQ
lock.

For all other REQINFO requests, the caller must not hold
any locks.

Control parameters: Control parameters must be in the primary address space or,
for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

The control parameters must be in the same key as the
caller.

The user-provided answer area via the ANSAREA parameter
has the same requirements and restrictions as the control
parameters.

Programming requirements
The caller must include the ISGYQUAC macro to get a mapping for the answer
area.

Note: The ISGYQUAA macro is stabilized as of z/OS R12.

The caller must include the ISGYCON macro to get the values for the return and
reason codes.

The caller must include the ISGRNLE macro to get a mapping for the RNLE.

© Copyright IBM Corp. 1988, 2016 1293

Restrictions
Do not issue ISGQUERY before the GRS address space has been initialized.

There is a restriction on the number of concurrent resource requests in an address
space. These include unauthorized ISGENQ, ENQ, RESERVE, and incomplete
GQSCAN and ISGQUERY requests. Reason code
ISGQUERYRsn_MaxConcurrentRequests is issued if ISGQUERY would cause this
limit to be exceeded.

When multilevel security support is active on the system, unauthorized callers of
ISGQUERY who specify REQINFO=QSCAN must have at least READ
authorization to the ISG.QSCANSERVICES.AUTHORIZATION resource in the
FACILITY class. When multilevel security support is active on the system,
unauthorized callers of ISGQUERY who specify REQINFO=LATCHECA must have
at least READ authorization to the ISG.LATCHECASERVICES.AUTHORIZATION
resource in the FACILITY class. You can activate the multilevel security support
through the SETROPTS MLACTIVE option in RACF. For general information about
defining profiles in the FACILITY class, see z/OS Security Server RACF Command
Language Reference and z/OS Security Server RACF Security Administrator's Guide. For
information about multilevel security, see z/OS Planning for Multilevel Security and
the Common Criteria.

Callers who specify REQINFO=LATCHECA must not hold any FRRs.

This macro supports multiple versions. Some keywords are unique to certain
versions. For more information, see the description of the
“,PLISTVER=IMPLIED_VERSION” on page 1303 parameter and the common
criteria.

Input register information
Before issuing the ISGQUERY macro, the caller does not have to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

ISGQUERY macro

1294 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
In general, the narrower the search parameters (particularly QNAME and
RNAME), the less time the query takes. Using both a specific QNAME and a
specific RNAME gives better performance than using patterns.

The use of GATHERFROM=SYSPLEX might greatly degrade the performance of
the query request.

Polling for ENQ contention through GQSCAN or ISGQUERY is not recommended.
See the z/OS MVS Planning: Global Resource Serialization and z/OS MVS
Programming: Authorized Assembler Services Guide for more information about
monitoring contention through ENF 51.

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1295

Syntax

main diagram

��
name

b ISGQUERY b �

� REQINFO = RNLSEARCH parameters-1
REQINFO = ENQSTATS , ASID = asid , ANSAREA = ansarea
REQINFO = QSCAN parameters-2
REQINFO = LATCHECA parameters-5
REQINFO = USAGESTATS , ANSAREA = ansarea , ANSLEN = anslen

�

�
, RETCODE = retcode , RSNCODE = rsncode

, PLISTVER = IMPLIED_VERSION

, PLISTVER = MAX
, PLISTVER = 1
, PLISTVER = 2

�

�
, MF = S

, 0D
, MF = (L , list addr)

, attr
, COMPLETE

, MF = (E , list addr)

��

parameters-1

�� , RNL = SIRNL
, RNL = SERNL
, RNL = RCRNL

, QNAME = qname , RNAME = rname , RNAMELEN = rnamelen �

�
, RNLE = rnle

��

parameters-2

�� , SCANACTION = START parameters-3
, SCANACTION = RESUME , RESUMETOKEN = resumetoken , ANSAREA = ansarea , ANSLEN = anslen
, SCANACTION = QUIT , RESUMETOKEN = resumetoken

��

ISGQUERY macro

1296 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

parameters-3

��
, RESUMETOKEN = resumetoken

, ANSAREA = ansarea , ANSLEN = anslen �

�
, ANSDETAIL = SUMMARY

, ANSDETAIL = FULL
, ANSDETAIL = FULL2
, ANSDETAIL = FULL3

, GATHERFROM = SYSTEM

, GATHERFROM = SYSPLEX
�

�
, REQUESTERLIMIT = 32767

, REQUESTERLIMIT = requesterlimit
, SEARCH = BY_ENQTOKEN , ENQTOKEN = enqtoken
, SEARCH = BY_FILTER parameters-4

��

parameters-4

�� , QNAMEMATCH = SPECIFIC , QNAME = qname
, QNAMEMATCH = PATTERN , QNAME = qname

�

� , RNAMEMATCH = ANY
, RNAMEMATCH = SPECIFIC , RNAME = rname , RNAMELEN = rnamelen
, RNAMEMATCH = PATTERN , RNAME = rname , RNAMELEN = rnamelen

�

�
, SCOPE = ANY

, SCOPE = STEP
, SCOPE = SYSTEM
, SCOPE = SYSTEMS
, SCOPE = SYSPLEX

, SERIALIZEBY = ANY

, SERIALIZEBY = RESERVE
, SERIALIZEBY = ENQ_ONLY

, SYSNAME = ANY_SYSNAME

, SYSNAME = sysname
�

�
, ASID = ANY_ASID
, ASID = asid
, JOBNAME = ANY_JOBNAME
, JOBNAME = jobname
, TTOKEN = ANY_TTOKEN
, TTOKEN = ttoken

, MINREQUESTERS = NO_MINREQ

, MINREQUESTERS = minrequesters
�

�
, MINOWNERS = NO_MINOWN

, MINOWNERS = minowners

, MINWAITERS = NO_MINWAIT

, MINWAITERS = minwaiters
�

�
, USERDATAMATCH = ANY

, USERDATAMATCH = SPECIFIC , USERDATA = userdata
, USERDATAMATCH = PATTERN , USERDATA = userdata , USERDATALEN = userdatalen

��

parameters-5

�� , ANALYZE = WAITER
, ANSAREA = ansarea
, ANSLEN = anslen

��

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1297

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the ISGQUERY
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ANALYZE=WAITER
When REQINFO=LATCHECA is specified, a required output parameter, which
queries LATCHECA waiter data to determine if any long term latch contention
exists that might be cause for concern. ISGQUERY only returns LATCHECA
data for waiters.

,ANSAREA=ansarea
When REQINFO=ENQSTATS is specified, a required output parameter, which
is to contain the returned information. The area is mapped by macro
ISGYQUAA. A header area, mapped by DSECT ISGYQUAAHdr, is returned
followed by additional data, two entries mapped by ISGYQUAASys and two
entries mapped by ISGYQUAASp.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSAREA=ansarea
When REQINFO=LATCHAREA is specified, a required output parameter,
which is to contain the returned information. The area is mapped by macro
ISGYQUAA. A header area, mapped by DSECT ISGYQUAAHdr, is returned
followed by additional data mapped by ISGYQUAARs, ISGYQUAARsx,
ISGYQUAARq, and ISGYQUAARqx. Note that the ANSDETAIL specified
determines which data is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSAREA=ansarea
When REQINFO=LATCHECA is specified, a required output parameter, which
is to contain the returned information. The area is mapped by macro
ISGYQUAA. A header area, mapped by DSECT ISGYQUAAHdr, is returned
followed by additional data mapped by ISGYQUAALd and ISGYQUAALrd.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSAREA=ansarea
When REQINFO=USAGESTATS is specified, a required output parameter,
which is to contain the returned information. The area is mapped by macro
ISGYQUAA. A header area, mapped by DSECT ISGYQUAAHdrUs, is returned
followed by additional data mapped by ISGYQUAAUs.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSAREA=ansarea
When SCANACTION=START and REQINFO=QSCAN are specified, a required
output parameter, which is to contain the returned information. The area is
mapped by macro ISGYQUAA. A header area, mapped by DSECT
ISGYQUAAHdr, is returned followed by additional data mapped by

ISGQUERY macro

1298 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ISGYQUAARs, ISGYQUAARsx, ISGYQUAARq, and ISGYQUAARqx. Note that
the ANSDETAIL specified determines which data is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSAREA=ansarea
When SCANACTION=RESUME and REQINFO=QSCAN are specified, a
required output parameter, which is to contain the returned information. The
area is mapped by macro ISGYQUAA. A header area, mapped by DSECT
ISGYQUAAHdr, is returned followed by additional data mapped by
ISGYQUAARs, ISGYQUAARsx, ISGYQUAARq, and ISGYQUAARqx. Note that
the ANSDETAIL specified determines which data is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSDETAIL=SUMMARY
,ANSDETAIL=FULL
,ANSDETAIL=FULL2
,ANSDETAIL=FULL3

When SCANACTION=START and REQINFO=QSCAN are specified, an
optional parameter that indicates the detail level of the information that should
be returned in the answer area. The default is ANSDETAIL=SUMMARY.

,ANSDETAIL=SUMMARY
indicates to only return ISGYQUAAHdr, ISGYQUAARs, and
ISGYQUAARq answer area data records. See ISGYQUAA mapping macro
to know what data is returned in each type of record.

,ANSDETAIL=FULL
indicates to return ISGYQUAAHdr, ISGYQUAARs, ISGYQUAARq, and
ISGYQUAARqx answer area data records. See ISGYQUAA mapping macro
to know what data is returned in each type of record.

,ANSDETAIL=FULL2
indicates that in addition to the records returned by ANSDETAIL=FULL,
the ISGYQUAARsx and the larger FULL2 version of the ISGYQUAARqx is
returned. See ISGYQUAA mapping macro to know what data is returned
in each type of record.

,ANSDETAIL=FULL3
indicates that in addition to the records returned by ANSDETAIL=FULL2,
USERDATA is returned for any records that specified USERDATA on
ISGENQ. Note that when GATHERFROM=SYSPLEX is specified and GRS
is operating in STAR mode, USERDATA is not returned for any global
requests. See ISGYQUAA mapping macro to know what data is returned in
each type of record.

,ANSLEN=anslen
When SCANACTION=START and REQINFO=QSCAN are specified, a required
input parameter that is the length of the answer area provided. The minimum
size is the amount needed to describe a single resource with a single requester.
Use an answer area length of at least 4K.
v For ANSDETAIL=SUMMARY, the minimum is defined by constant

ISGYQUAA_kQSCANMinSummaryAnslen.
v For ANSDETAIL=FULL, the minimum is defined by constant

ISGYQUAA_kQSCANMinFullAnslen.
v For ANSDETAIL=FULL2, the minimum is defined by constant

ISGYQUAA_kQSCANMinFull2Anslen.

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1299

v For ANSDETAIL=FULL3, the minimum is defined by constant
ISGYQUAA_kQSCANMinFull3Anslen.

The length of the answer area is at least 4k.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,ANSLEN=anslen
When SCANACTION=RESUME and REQINFO=QSCAN are specified, a
required input parameter that is the length of the answer area provided. The
minimum size is the amount needed to describe a single resource with a single
requester. Use an answer area length of at least 4K. For
ANSDETAIL=SUMMARY, the minimum is defined by constant
ISGYQUAA_kQSCANMinSummaryAnslen. For ANSDETAIL=FULL, the
minimum is defined by constant ISGYQUAA_kQSCANMinFullAnslen. For
ANSDETAIL=FULL2, the minimum is defined by constant
ISGYQUAA_kQSCANMinFull2Anslen. For ANSDETAIL=FULL3, the minimum
is defined by constant ISGYQUAA_kQSCANMinFull3Anslen. use an answer
area length of at least 4K.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,ANSLEN=anslen
When REQINFO=LATCHECA is specified, a required input parameter that is
the length of the answer area provided. The minimum size is the amount
needed to describe a single resource with a single requester. Use an answer
area length of at least 4K.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,ANSLEN=anslen
When REQINFO=USAGESTATS is specified, a required input parameter that is
the length of the answer area provided. The minimum size is the amount
needed to describe the ENQ, QScan, and latch usage of a single address space
as well as the usage information for terminated address spaces. The minimum
is defined by constant ISGYQUAA_kUSAGESTATSMinAnslen. Use an answer
area length of at least 4K.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,ASID=asid
When REQINFO=ENQSTATS is specified, a required input parameter that is
the ASID of the address space specific information to be returned.

Note that ASIDs are reusable. Once an address space has terminated another
may be created with the same ASID.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value.

,ASID=asid
,ASID=ANY_ASID

When SEARCH=BY_FILTER, SCANACTION=START and REQINFO=QSCAN
are specified, an optional input parameter that is the ASID of the requesting
tasks for which resource information is to be returned. Only information on
requesters with that ASID is returned.

ISGQUERY macro

1300 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Note that ASIDs are reusable. Once an address space has terminated another
may be created with the same ASID.

The default is ANY_ASID.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value.

,ENQTOKEN=enqtoken
When SEARCH=BY_ENQTOKEN, SCANACTION=START and
REQINFO=QSCAN are specified, a required input parameter that is the
ENQToken of the request that is to be queried. Note: ENQTokens are only
valid on the system where the ENQ request was made.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,GATHERFROM=SYSTEM
,GATHERFROM=SYSPLEX

When SCANACTION=START and REQINFO=QSCAN are specified, an
optional parameter that designates the extent to which the search is taken.
Information about other systems is always available locally in a global resource
serialization ring complex, so this keyword is ignored and forced to
GATHERFROM=SYSTEM.

Use the SYSNAME keyword to obtain only information about one particular
system.

Note: Only SYSTEMS scope information is obtained from other systems in the
global resource serialization complex.

The default is GATHERFROM=SYSTEM.

,GATHERFROM=SYSTEM
Indicates to search only the caller's system. The answer area data contains
information about requesters on other systems in the complex only if that
information is already available on the caller's system. The returned
information might be incomplete regarding requesters on other systems,
including counts of the number of requesters for a resource. If performance
is an issue, use GATHERFROM=SYSTEM. This request is always handled
without placing the caller's dispatchable unit into a wait.

,GATHERFROM=SYSPLEX
Indicates to search the caller's sysplex. The answer area data contains
information about requesters in the entire sysplex. If complete information
regarding requesters in the sysplex is required use
GATHERFROM=SYSPLEX. There are significant performance implications
for this search and the caller might be suspended while the information is
being gathered. Do not specify GATHERFROM=SYSPLEX if this condition
cannot be tolerated.

GATHERFROM=SYSPLEX is mutually exclusive with the
USERDATAMATCH=SPECIFIC and USERDATAMATCH=PATTERN filter
options.

When global resource serialization is in STAR mode,
GATHERFROM=SYSPLEX with ANSDETAIL=FULL3 results in no user
data being returned for global requests.

,JOBNAME=jobname
,JOBNAME=ANY_JOBNAME

When SEARCH=BY_FILTER, SCANACTION=START and REQINFO=QSCAN

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1301

are specified, an optional input parameter that is the job name of the
requesting tasks for which resource information is to be returned. Only
information on requesters with that job name is returned. The default is
ANY_JOBNAME.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,MINOWNERS=minowners
,MINOWNERS=NO_MINOWN

When SEARCH=BY_FILTER, SCANACTION=START and REQINFO=QSCAN
are specified, an optional input parameter that is the minimum number of
owners of a resource required for that resource to be returned. If any of the
conditions specified by MINREQUESTERS, MINOWNERS, or MINWAITERS is
met, even if the other two are not met, information for that resource and its
requesters is returned. The default is NO_MINOWN.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,MINREQUESTERS=minrequesters
,MINREQUESTERS=NO_MINREQ

When SEARCH=BY_FILTER, SCANACTION=START and REQINFO=QSCAN

ISGQUERY macro

1302 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

are specified, an optional input parameter that is the minimum number of
owners plus waiters for a resource required for that resource to be returned. If
any of the conditions specified by MINREQUESTERS, MINOWNERS, or
MINWAITERS is met, even if the other two are not met, information for that
resource and its requesters is returned. The default is NO_MINREQ.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,MINWAITERS=minwaiters
,MINWAITERS=NO_MINWAIT

When SEARCH=BY_FILTER, SCANACTION=START and REQINFO=QSCAN
are specified, an optional input parameter that is the minimum number of
waiters for a resource required for that resource to be returned. If any of the
conditions specified by MINREQUESTERS, MINOWNERS, or MINWAITERS is
met, even if the other two are not met, information for that resource and its
requesters is returned. The default is NO_MINWAIT.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1
,PLISTVER=2

An optional input parameter in the 1-2 range that specifies the version of the
macro. PLISTVER determines which parameter list the system generates.
PLISTVER is an optional input parameter on all forms of the macro, including
the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 1, if you use the currently available parameters:
– ANSAREA
– ANSDETAIL
– ANSLEN
– ASID
– ENQTOKEN
– GATHERFROM
– JOBNAME
– MINOWNERS
– MINREQUESTERS
– MINWAITERS
– QNAME

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1303

– QNAMEMATCH
– REQINFO
– REQUESTERLIMIT
– RESUMETOKEN
– RNAME
– RNAMELEN
– RNAMEMATCH
– RNL
– RNLE
– SCANACTION
– SCOPE
– SEARCH
– SERIALIZEBY
– SYSNAME
– TTOKEN

v 2, which supports both the following parameters and those from version 1:
– USERDATA
– USERDATALEN
– USERDATAMATCH

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1, or 2

,QNAME=qname
When REQINFO=RNLSEARCH is specified, a required input parameter that is
the QName of the resource for which the RNLs are to be searched.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,QNAME=qname
When QNAMEMATCH=SPECIFIC, SEARCH=BY_FILTER,
SCANACTION=START and REQINFO=QSCAN are specified, a required input
parameter that is the specific QName of the resources to be returned.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,QNAME=qname
When QNAMEMATCH=PATTERN, SEARCH=BY_FILTER,
SCANACTION=START and REQINFO=QSCAN are specified, a required input
parameter that is a pattern QName to match the resources to be returned.

The QName pattern is 8 characters where ? matches any single character, and *
matches any string of zero or more characters. Note: All trailing blanks are
ignored when matching QNames to QName patterns.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,QNAMEMATCH=SPECIFIC

ISGQUERY macro

1304 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,QNAMEMATCH=PATTERN
When SEARCH=BY_FILTER, SCANACTION=START and REQINFO=QSCAN
are specified, a required parameter.

,QNAMEMATCH=SPECIFIC
Indicates to only return information on resources that exactly match the
specified specific QName.

,QNAMEMATCH=PATTERN
Indicates to only return information on resources that match the specified
QName pattern.

REQINFO=RNLSEARCH
REQINFO=ENQSTATS
REQINFO=QSCAN
REQINFO=LATCHECA
REQINFO=USAGESTATS

A required parameter that designates the data to be returned.

REQINFO=RNLSEARCH
Indicates to search a specific RNL for a given resource name.

The CMSEQDQ lock serializes the use of the RNLs, so holding this lock
ensures that the RNL does not change and therefore the returned RNLE is
valid on the current RNLs.

During an RNL change, the currently active RNLs are searched.

For more information about how a resource can be changed by the system,
see the TEST=YES function in Chapter 121, “ISGENQ — Global resource
serialization ENQ service,” on page 1187.

REQINFO=ENQSTATS
Indicates to return information related to ENQ counts.

REQINFO=QSCAN
Indicates to search the global resource serialization queues for resource and
requester information.

REQINFO=LATCHECA
Indicates to search the global resource serialization queues for query latch
enhanced contention analysis (ECA) data for waiters that might indicate
contention issues.

Note: The LATCHECA search does not return data for blockers or
dependency data.

REQINFO=USAGESTATS
Indicates to search the global resource serialization queues for address
space level contention information related to ENQs (all scopes) and latches
(all latch sets). Global resource serialization gathers latch statistics in
requester and latch set owner address space categories. The statistics are
provided for all address spaces as follows:
v ENQ by scope: this includes contention counts, total delay times, and

the sum of the squared delay (SUMSQ) times. The SUMSQ times can be
used to compute the standard deviation.

v Latch: For both requesters and latch set owners, this includes contention
counts, total delay times, and the sum of the squared delay (SUMSQ)
times

v ENQ usage counts. Note that latch counts are kept in “fast counts” in
latch sets and not on an address space basis.

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1305

,REQUESTERLIMIT=requesterlimit
,REQUESTERLIMIT=32767

When SCANACTION=START and REQINFO=QSCAN are specified, an
optional input parameter that is the maximum number of requesters (owners
and waiters) to be returned for each individual resource. Only resource related
information is returned if 0 is specified. The value range of Requsterlimit is 0
to 2¬15-1 (32767). The default is 32767.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value.

,RESUMETOKEN=resumetoken
When SCANACTION=START and REQINFO=QSCAN are specified, an
optional output parameter that is the resume token for this search. When
RESUMETOKEN is specified, a reason code of ISGQUERYRsn_AnswerAreaFull
indicates that the token can be used to resume the scan on a subsequent call. If
the return code indicates that the search can be resumed, a
SCANACTION=RESUME or SCANACTION=QUIT with the returned resume
token must be subsequently issued.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,RESUMETOKEN=resumetoken
When SCANACTION=RESUME and REQINFO=QSCAN are specified, a
required input/output parameter that is the resume token from a previously
started search. If the search does not complete the resume token can be used to
resume the search on a subsequent call. Check the return code to determine if
the resume token can be used to resume the scan. If the return code indicates
that the search can be resumed, a SCANACTION=RESUME or
SCANACTION=QUIT with the returned resume token must be subsequently
issued.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,RESUMETOKEN=resumetoken
When SCANACTION=QUIT and REQINFO=QSCAN are specified, a required
input/output parameter that is the resume token from a previously started
search. Any global resource serialization storage associated with the search is
freed, and the resume token is cleared to binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,RNAME=rname
When REQINFO=RNLSEARCH is specified, a required input parameter that is
the RName of the resource for which the RNLs are to be searched.

The RName pattern is a string of characters where ? matches any single
character, and * matches any string of zero or more characters.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

ISGQUERY macro

1306 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,RNAME=rname
When RNAMEMATCH=SPECIFIC, SEARCH=BY_FILTER,
SCANACTION=START and REQINFO=QSCAN are specified, a required input
parameter that is the specific RName of the resources to be returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RNAME=rname
When RNAMEMATCH=PATTERN, SEARCH=BY_FILTER,
SCANACTION=START and REQINFO=QSCAN are specified, a required input
parameter that is a pattern RName to match the resources to be returned. The
RName pattern is a string of characters where '?' matches any single character,
and '*' matches any string of zero or more characters.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RNAMELEN=rnamelen
When REQINFO=RNLSEARCH is specified, a required input parameter that is
the length of the given RName. The specified length can be 1 to 255.

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,RNAMELEN=rnamelen
When RNAMEMATCH=SPECIFIC, SEARCH=BY_FILTER,
SCANACTION=START and REQINFO=QSCAN are specified, a required input
parameter that is the length of the given RName. The specified length can be 1
to 255.

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,RNAMELEN=rnamelen
When RNAMEMATCH=PATTERN, SEARCH=BY_FILTER,
SCANACTION=START and REQINFO=QSCAN are specified, a required input
parameter that is the length of the given RName pattern. The specified length
can be 1 to 255.

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,RNAMEMATCH=ANY
,RNAMEMATCH=SPECIFIC
,RNAMEMATCH=PATTERN

When SEARCH=BY_FILTER, SCANACTION=START and REQINFO=QSCAN
are specified, a required parameter.

,RNAMEMATCH=ANY
Indicates to return information on resources with any RName.

,RNAMEMATCH=SPECIFIC
Indicates to only return information on resources that exactly match the
specified specific RName.

,RNAMEMATCH=PATTERN
Indicates to only return information on resources that match the specified
RName pattern.

,RNL=SIRNL
,RNL=SERNL

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1307

,RNL=RCRNL
When REQINFO=RNLSEARCH is specified, a required parameter that
indicates which resource name list (RNL) is to be searched.

,RNL=SIRNL
Indicates to search the system inclusion RNL.

,RNL=SERNL
Indicates to search the systems exclusion RNL.

,RNL=RCRNL
Indicates to search the reserve conversion RNL.

,RNLE=rnle
When REQINFO=RNLSEARCH is specified, an optional output parameter that
is a copy of the matching RNLE. The caller must include the ISGRNLE macro
to get a mapping for the RNLE.

Note: The RNLE returned is dependent on the version of the parameter list. If
a new version of the RNLE should be introduced, it might require a larger
character field. Explicitly state the PLISTVER to ensure that the size of the
RNLE returned does not change.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,SCANACTION=START
,SCANACTION=RESUME
,SCANACTION=QUIT

When REQINFO=QSCAN is specified, a required parameter that designates
whether to start, resume, or quit a QScan.

,SCANACTION=START
Indicates to start a search of the global resource serialization queues.

,SCANACTION=RESUME
indicates to resume a previously started search.

,SCANACTION=QUIT
indicates to quit a previously started search. If a started search has not
completed it must be either resumed until it completes or ended with
SCANACTION=QUIT.

,SCOPE=ANY
,SCOPE=STEP
,SCOPE=SYSTEM
,SCOPE=SYSTEMS
,SCOPE=SYSPLEX

When SEARCH=BY_FILTER, SCANACTION=START and REQINFO=QSCAN
are specified, an optional parameter that is the scope of the resources to be
returned.

Note: Only information on resources with scope of SYSTEMS is returned from
systems other than the caller's system.

ISGQUERY macro

1308 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

The default is SCOPE=ANY.

,SCOPE=ANY
Indicates to return information on resources with any scope.

,SCOPE=STEP
Indicates to only return information on resources with a scope of STEP.

,SCOPE=SYSTEM
Indicates to only return information on resources with a scope of SYSTEM.

,SCOPE=SYSTEMS
Indicates to only return information on resources with a scope of SYSTEMS
or SYSPLEX.

,SCOPE=SYSPLEX
Indicates to only return information on resources with a scope of SYSTEMS
or SYSPLEX. (SYSPLEX is an alias for SYSTEMS.)

,SEARCH=BY_ENQTOKEN
,SEARCH=BY_FILTER

When SCANACTION=START and REQINFO=QSCAN are specified, a required
parameter that designates the method to search for resources.

,SEARCH=BY_ENQTOKEN
Indicates to search using a specific ENQToken. Information is returned
about the requester of the ENQ and the resource for which the ENQ was
requested.

,SEARCH=BY_FILTER
Indicates to search on resource and requester characteristics using filters.
Information is returned about the resources and requesters that match the
search criteria.

,SERIALIZEBY=ANY
,SERIALIZEBY=RESERVE
,SERIALIZEBY=ENQ_ONLY

When SEARCH=BY_FILTER, SCANACTION=START and REQINFO=QSCAN
are specified, an optional parameter that indicates if information should be
returned depending on whether the requests are serialized by device reserves.
The default is SERIALIZEBY=ANY.

,SERIALIZEBY=ANY
Indicates to return information on requests of any type.

,SERIALIZEBY=RESERVE
Indicates to only return information on reserve requests that were not
converted.

,SERIALIZEBY=ENQ_ONLY
Indicates to only return information on requests that do not result in a
device reserve. This includes reserve requests that were converted to global
ENQs. Answer area bit ISGYQUAARqReserveConverted is set for reserve
requests that were converted.

,SYSNAME=sysname
,SYSNAME=ANY_SYSNAME

When SEARCH=BY_FILTER, SCANACTION=START and REQINFO=QSCAN
are specified, an optional input parameter that is the system name of the
requesting tasks for which resource information is to be returned. Only
information on requesters in that system is returned. If

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1309

GATHERFROM=SYSTEM is specified (or is the default), SYSNAME might only
be the name of the caller's system or the default of ANY_SYSNAME.

Note: Only information on resources with scope of SYSTEMS is returned from
systems other than the caller's system.

The default is ANY_SYSNAME.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,TTOKEN=ttoken
,TTOKEN=ANY_TTOKEN

When SEARCH=BY_FILTER, SCANACTION=START and REQINFO=QSCAN
are specified, an optional input parameter that is the task token of the
requesting task for which resource information is to be returned. Only
information on that requester is returned. The TToken specified is valid only
on the current system.

Note: The TToken of requesters is unavailable for ENQs obtained before the
global resource serialization address space was created. The TToken filter will
not match those ENQ requesters.

The default is ANY_TTOKEN.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,USERDATA=userdata
When USERDATAMATCH=SPECIFIC, SEARCH=BY_FILTER,
SCANACTION=START and REQINFO=QSCAN are specified, a required input
parameter that is the specific UserData of the requests to be returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,USERDATA=userdata
When USERDATAMATCH=PATTERN, SEARCH=BY_FILTER,
SCANACTION=START and REQINFO=QSCAN are specified, a required input
parameter that is a pattern UserData to match the requests to be returned. The
UserData pattern is a string of characters where '?' matches any single
character, and '*' matches any string of zero or more characters.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,USERDATALEN=userdatalen
When USERDATAMATCH=PATTERN, SEARCH=BY_FILTER,
SCANACTION=START and REQINFO=QSCAN are specified, a required input
parameter that is the length of the given UserData pattern. The specified
length can be 1 to 32.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value.

,USERDATAMATCH=ANY
,USERDATAMATCH=SPECIFIC
,USERDATAMATCH=PATTERN

When SEARCH=BY_FILTER, SCANACTION=START and REQINFO=QSCAN
are specified, an optional parameter that indicates which requests to return.
The default is USERDATAMATCH=ANY.

ISGQUERY macro

1310 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,USERDATAMATCH=ANY
indicates to return information on request with any USERDATA, including
those with no USERDATA.

,USERDATAMATCH=SPECIFIC
indicates to only return requests that have USERDATA that exactly
matches the specified USERDATA. For information about specifying
USERDATA on an ISGENQ request, see Chapter 121, “ISGENQ — Global
resource serialization ENQ service,” on page 1187. Note that USERDATA
can only be attached to a request through the ISGENQ interface.

This request requires a version 2 parameter list.

GATHERFROM=SYSPLEX is mutually exclusive with the
USERDATAMATCH=SPECIFIC option.

,USERDATAMATCH=PATTERN
indicates to only return information on requests that match the specified
UserData pattern. For information about specifying USERDATA on an
ISGENQ request, see Chapter 121, “ISGENQ — Global resource
serialization ENQ service,” on page 1187.

All trailing blanks are not ignored when matching USERDATA to
USERDATA patterns. For example, if the USERDATA is ABC123, and the
pattern used to search is A*3, it does not match. A pattern such as A*3*
does match.

Note: Userdata can only be attached to a request through the ISGENQ
interface.

This request requires a version 2 parameter list.

GATHERFROM=SYSPLEX is mutually exclusive with the
USERDATAMATCH=PATTERN option.

ABEND codes
None.

Return and reason codes
When the ISGQUERY macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro ISGYCON provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1311

Table 120. Return and Reason Codes for the ISGQUERY Macro

Return Code Reason Code Equate Symbol Meaning and Action

00 — Equate Symbol: ISGQUERYRc_OK

Meaning: ISGQUERY request successful.

For REQINFO=RNLSEARCH, a matching RNLE was found for
the given resource name. For REQINFO=QSCAN, processing
complete and data has been copied into the answer area. There is
no more data to return.

Action: None required.

04 — Equate Symbol: ISGQUERYRc_Warn

Meaning: Warning. ISGQUERY completed successfully, however a
warning has been issued.

Action: Refer to action under the individual reason code.

04 xxxx0401 Equate Symbol: ISGQUERYRsn_NoMatchingRNLE

Meaning: For a REQINFO=RNLSEARCH request. No matching
RNLE was found for the given resource name.

Action: No action required.

04 xxxx0402 Equate Symbol: ISGQUERYRsn_RNLChangeInProgress

Meaning: For a REQINFO=RNLSEARCH request. A matching
RNLE was found for the given resource name, but an RNL change
is in progress in the system.

Action: No action required.

04 xxxx0403 Equate Symbol: ISGQUERYRsn_GRSRNLExclude

Meaning: For a REQINFO=RNLSEARCH request.
GRSRNL=EXCLUDE is in effect. When GRSRNL=EXCLUDE the
RNLs are not used and all SYSTEMS scope requests are forced to
SYSTEM. An alternative serialization product may be in use. No
RNLE is returned.

Action: No action required.

04 xxxx0404 Equate Symbol: ISGQUERYRsn_NoMatchingResources

Meaning: For REQINFO=QSCAN and REQINFO=LatchECA
requests. While scanning the queues, no resources were found that
match the caller's request.

Action: No action required.

ISGQUERY macro

1312 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 120. Return and Reason Codes for the ISGQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

04 xxxx0405 Equate Symbol: ISGQUERYRsn_AnswerAreaFull

Meaning: For a REQINFO=QSCAN request. ISGQUERY has
provided some data, however the answer area is too small to
contain all the requested data.

Action: The user should process the data in the answer area.

If RESUMETOKEN was not specified on the request and more
information is needed, re-issue the request with a larger answer
area or specify a resume token.

If RESUMETOKEN was specified, either issue a
REQINFO=QSCAN SCANACTION=RESUME request with the
returned resume token to continue continue the scan, or issue
REQINFO=QSCAN SCANACTION=QUIT to end the search.

04 xxxx0406 Equate Symbol: ISGQUERYRsn_GRSNone

Meaning: For a REQINFO=RNLSEARCH request. GRS=NONE is
in effect. When GRS=NONE the RNLs are not used and all
requests are serialized only within the current system. Note that
though both scope SYSTEM and SYSTEMS requests are local to
the current system, they still represent separate resouces and are
NOT serialized with each other.

08 — Equate Symbol: ISGQUERYRc_ParmError

Meaning: ISGQUERY request specified parameters in error.

Action: Refer to action under the individual reason code.

08 xxxx0801 Equate Symbol: ISGQUERYRsn_BadPlistAddress

Meaning: Unable to access parameter list.

Action: Check that the entire parameter list is addressable. If in
AR-mode, check that the ALET of the parameter list is correct.
Note that if this macro is issued in AR-mode, SYSSTATE
ASCENV=AR must be issued before this macro. Ensure that the
storage is in the same key as the caller.

08 xxxx0802 Equate Symbol: ISGQUERYRsn_BadPlistALET

Meaning: Bad parameter list ALET. The ALET is neither zero nor
is it associated with a valid public entry on the caller's
dispatchable unit access list (DU-AL), nor a valid entry for a
common area data space.

Action: Ensure that the ALET of the parameter list is valid. Its
access register might have been set up properly.

08 xxxx0803 Equate Symbol: ISGQUERYRsn_BadPlistVersion

Meaning: Bad parameter list version number. The service level of
GRS on which the caller is running does not support this version
of the ISGQUERY service, or the ISGQUERY parameter list
version is lower than the minimum required for parameters that
were specified.

Action: Check that the request has the correct version number.
Check for possible storage overlay of the parameter list.

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1313

Table 120. Return and Reason Codes for the ISGQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0804 Equate Symbol: ISGQUERYRsn_ReservedFieldNotNull

Meaning: A reserved field in the parameter list is non-zero.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0805 Equate Symbol: ISGQUERYRsn_BadReqInfo

Meaning: Bad REQINFO parameter.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0806 Equate Symbol: ISGQUERYRsn_BadRNL

Meaning: Bad RNL parameter.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0807 Equate Symbol: ISGQUERYRsn_BadRNameAddress

Meaning: Unable to access the RName.

Action: Ensure that the entire RName field is addressable. If in
AR-mode, this field is accessed through its address and ALET,
check that both these values are correct. Check that specified
RName length is correct. Ensure that the storage is in the same
key as the caller.

08 xxxx0808 Equate Symbol: ISGQUERYRsn_BadRNameALET

Meaning: Bad RName ALET. The ALET is neither zero nor is it
associated with a valid public entry on the caller's dispatchable
unit access list (DU-AL), nor a valid entry for a common area data
space.

Action: Ensure that the ALET of the RName is valid. Its access
register might have been set up properly.

08 xxxx0809 Equate Symbol: ISGQUERYRsn_BadRNameLen

Meaning: The RName length specified is not valid.

Action: Ensure the RName length field contains a number from
1-255.

08 xxxx080A Equate Symbol: ISGQUERYRsn_BadRNLEAddress

Meaning: Unable to access RNLE output field.

Action: Ensure that the entire RNLE field is addressable. If in
AR-mode, this field is accessed through its address and ALET,
check that both these values are correct. Check that RNLE length
is correct. Ensure that the storage is in the same key as the caller.

08 xxxx080B Equate Symbol: ISGQUERYRsn_BadRNLEALET

Meaning: Bad RNLE ALET. The ALET is neither zero nor is it
associated with a valid public entry on the caller's dispatchable
unit access list (DU-AL), nor a valid entry for a common area data
space.

Action: Ensure that the ALET of the RNLE is valid. Its access
register might have been set up properly.

ISGQUERY macro

1314 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 120. Return and Reason Codes for the ISGQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx080C Equate Symbol: ISGQUERYRsn_MutuallyExclusive

Meaning: Mutually exclusive keywords were specified.

Action: Check for a possible storage overlay of the parameter list.

08 xxxx080D Equate Symbol: ISGQUERYRsn_BadAnsAreaAddress

Meaning: Unable to access the answer area.

Action: Ensure that the entire answer area is addressable. If in
AR-mode, this field is accessed through its address and ALET,
check that both these values are correct. Check that the specified
answer area length is correct. Ensure that the storage is in the
same key as the caller.

08 xxxx080E Equate Symbol: ISGQUERYRsn_BadAnsAreaALET

Meaning: Bad answer area ALET. The ALET is neither zero nor is
it associated with a valid public entry on the caller's Dispatchable
Unit Access List (DU-AL), nor a valid entry for a common area
data space.

Action: Ensure that the ALET of the answer area is valid. Its
access register might have been set up properly.

08 xxxx080F Equate Symbol: ISGQUERYRsn_BadScanAction

Meaning: Bad SCANACTION parameter.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0810 Equate Symbol: ISGQUERYRsn_BadResumeTokenAddress

Meaning: Unable to access the ResumeToken.

Action: Ensure that the entire ResumeToken is addressable. If in
AR-mode, this field is accessed through its address and ALET,
check that both these values are correct. Ensure that the storage is
in the same key as the caller.

08 xxxx0811 Equate Symbol: ISGQUERYRsn_BadResumeTokenALET

Meaning: Bad ResumeToken ALET. The ALET is neither zero nor
is it associated with a valid public entry on the caller's
dispatchable unit access list (DU-AL), nor a valid entry for a
common area data space.

Action: Ensure that the ALET of the ResumeToken is valid. Its
access register might not have been set up properly.

08 xxxx0812 Equate Symbol: ISGQUERYRsn_BadGatherFrom

Meaning: Bad GATHERFROM parameter.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0813 Equate Symbol: ISGQUERYRsn_BadSearch

Meaning: Bad SEARCH keyword parameter.

Action: Check for possible storage overlay of the parameter list.

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1315

Table 120. Return and Reason Codes for the ISGQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0814 Equate Symbol: ISGQUERYRsn_BadENQTokenAddress

Meaning: Unable to access the ENQToken.

Action: Ensure that the entire ENQToken is addressable. If in
AR-mode, this field is accessed via its address and ALET, check
that both these values are correct. Ensure that the storage is in the
same key as the caller.

08 xxxx0815 Equate Symbol: ISGQUERYRsn_BadENQTokenALET

Meaning: Bad ENQToken ALET. The ALET is neither zero nor is
it associated with a valid public entry on the caller's dispatchable
unit access list (DU-AL), nor a valid entry for a common area data
space.

Action: Ensure that the ALET of the ENQToken is valid. Its access
register might have been set up properly.

08 xxxx0816 Equate Symbol: ISGQUERYRsn_BadQNameMatch

Meaning: Bad QNAMEMATCH keyword parameter.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0817 Equate Symbol: ISGQUERYRsn_BadRNameMatch

Meaning: Bad RNAMEMATCH keyword parameter.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0818 Equate Symbol: ISGQUERYRsn_BadScope

Meaning: Bad SCOPE keyword parameter.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0819 Equate Symbol: ISGQUERYRsn_BadSerializeBy

Meaning: Bad SERIALIZEBY keyword parameter.

Action: Check for possible storage overlay of the parameter list.

08 xxxx081A Equate Symbol: ISGQUERYRsn_AnsLenTooSmall

Meaning: The size of the answer area is not large enough to
contain the minimal amount of information.

Action: Increase the answer area size to at least the minimum
required for the specified request. See the provided constants.
However, the answer area length should be at least 4k.

08 xxxx081B Equate Symbol: ISGQUERYRsn_ResumeTokenNotValid

Meaning: The specified resume token is not a valid resume token.

Action: Ensure the resume token is from a previously started
search on the current system.

08 xxxx081C Equate Symbol: ISGQUERYRsn_ResumeTokenTooOld

Meaning: The specified resume token is from an old search
request that has expired.

Action: Restart the search if more information is needed.

ISGQUERY macro

1316 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 120. Return and Reason Codes for the ISGQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx081D Equate Symbol: ISGQUERYRsn_ENQTokenNotValid

Meaning: The ENQToken specified is not a valid ENQToken.

Action: Ensure the ENQToken is from a previous ISGENQ request
on the current system.

08 xxxx081E Equate Symbol: ISGQUERYRsn_BadRequesterLimit

Meaning: The REQUESTERLIMIT value specified is not valid.
RequesterLimit must be 0 to 2?5-1 (32767).

Action: Ensure that the requester limit is in the correct range.

08 xxxx081F Equate Symbol: ISGQUERYRsn_NoPossibleMatch

Meaning: For a REQINFO=QSCAN request. Conflicting
parameters were specified such that no resources could possibly
match the request. A SYSNAME other than the current system
was specified along with SCOPE=STEP, SCOPE=SYSTEM,
TTOKEN, or GATHERFROM=SYSTEM. Or
SERIALIZEBY=RESERVE was specified with SCOPE=STEP.

Action: Avoid specifying conflicting parameters.

08 xxxx0820 Equate Symbol: ISGQUERYRsn_BadAnsDetail

Meaning: Bad ANSDETAIL keyword parameter.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0821 Equate Symbol: ISGQUERYRsn_NotAuthToQscan

Meaning: SETROPTS MLACTIVE is in effect, and the program is
not authorized to issue ISGQUERY REQINFO=QSCAN.

Action: Ensure the program is running authorized, or is
associated with a userid with at least READ access to the best fit
FACILITY class resource profile of the form
ISG.QSCANSERVICES.AUTHORIZATION and that the FACILITY
class is SETROPTS RACLISTed.

08 xxxx0822 Equate Symbol: ISGQUERYRsn_BadASID

Meaning: Bad ASID keyword parameter.

Action: Ensure that the ASID is valid.

08 xxxx0823 Equate Symbol: ISGQUERYRsn_BadUserDataAddress

Meaning: Unable to access the userdata.

Action: Ensure that the entire USERDATA is addressable. If in
AR-mode, this field is accessed via its address and ALET, check
that both these values are correct. If this is a USERDATA pattern
request, check that specified USERDATA length is correct. Ensure
that the storage is in the same key as the caller.

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1317

Table 120. Return and Reason Codes for the ISGQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0824 Equate Symbol: ISGQUERYRsn_BadUserDataAlet

Meaning: Bad USERDATA ALET. The ALET is neither zero nor is
it associated with a valid public entry on the caller's Dispatchable
Unit Access List (DU-AL), nor a valid entry for a common area
data space.

Action: Ensure that the ALET of the USERDATA is valid. Its
access register might have been set up properly.

08 xxxx0825 Equate Symbol: ISGQUERYRsn_BadUserDataLen

Meaning: The USERDATA length specified is not valid.

Action: Ensure the USERDATA length field contains a number in
the range 1-32.

08 xxxx0826 Equate Symbol: ISGQUERYRsn_BadUserDataMatch

Meaning: Bad USERDATAMATCH keyword parameter.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0827 Equate Symbol: ISGQUERYRsn_BadAnalyze

Meaning: The ANALYZE keyword parameter is not valid.

Action: Check for possible storage overlay of the parameter list.

08 xxxx0828 Equate Symbol: ISGQUERYRsn_NotAuthToLatchECA

Meaning: SETROPTS MLACTIVE is in effect and the program is
not authorized to issue ISGQUERY REQINFO=LATCHECA.

Action: Ensure the program is running authorized or is associated
with a userid with at least READ access to the best fit FACILITY
class resource profile of the form
ISG.LATCHECASERVICES.AUTHORIZATION and that the
FACILITY class is SETROPTS RACLISTed.

0C — Equate Symbol: ISGQUERYRc_EnvError

Meaning: ISGQUERY request has an environment error.

Action: Refer to action under the individual reason code.

0C xxxx0C01 Equate Symbol: ISGQUERYRsn_SrbMode

Meaning: ISGQUERY can not be used in SRB mode.

Action: Avoid using ISGQUERY in SRB mode.

0C xxxx0C02 Equate Symbol: ISGQUERYRsn_NotEnabled

Meaning: ISGQUERY can not be used disabled.

Action: Avoid using ISGQUERY when not enabled.

0C xxxx0C03 Equate Symbol: ISGQUERYRsn_ComplexMigrating

Meaning: For a REQINFO=QSCAN request. The ISGQUERY
service failed because the GRS complex was migrating from a ring
to a star configuration.

Action: Retry the request on or more times.

ISGQUERY macro

1318 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 120. Return and Reason Codes for the ISGQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

0C xxxx0C04 Equate Symbol: ISGQUERYRsn_CannotObtainLocks

Meaning: For REQINFO=RNLSEARCH, the local and CMSEQDQ
locks could not be obtained.

Action: Only use ISGQUERY REQINFO=RNLSEARCH when
either no locks are held, or both a local lock and the CMSEQDQ
lock are held with no other locks.

0C xxxx0C05 Equate Symbol: ISGQUERYRsn_LockHeld

Meaning: An incorrect lock was held upon entry. For
REQINFO=QSCAN, no locks may be held. For
REQINFO=RNLSEARCH, either no locks or both a local lock
(LOCAL or CML) and the CMDEQDQ lock must be held.

Action: Avoid using ISGQUERY REQINFO=QSCAN when locks
are held. Avoid using ISGQUERY REQINFO=RNLSEARCH when
locks other than both a local lock and the CMSEQDQ lock are
held.

0C xxxx0C06 Equate Symbol: ISGQUERYRsn_MaxConcurrentRequests

Meaning: For a REQINFO=QSCAN request. The answer area was
filled before queue scan processing completed, and reason code
ISGQUERYRsn_AnswerAreaFull would have been issued.
However, RESUMETOKEN was specified, but the limit for the
number of concurrent resource requests (ISGENQ, ENQ,
RESERVE, GQSCAN, and ISGQUERY) has been reached. The data
in the answer area is valid, but incomplete. The scan cannot be
resumed.

Action: Retry the request one or more times. If the problem
persists, consult your system programmer. For more information
on concurrent count limits and how the system can be tuned
when necessary, see z/OS MVS Planning: Global Resource
Serialization.

0C xxxx0C07 Equate Symbol: ISGQUERYRsn_RingResumeInStar

Meaning: For a REQINFO=QSCAN request. The caller attempted
to resume a scan that was started when the global resource
serialization complex, which is now in star mode, was in ring
mode.

Action: Reissue the original request.

0C xxxx0C08 Equate Symbol: ISGQUERYRsn_InsufficientStorage

Meaning: For a REQINFO=QSCAN request. The ISGQUERY
service could not obtain storage to satisfy the request.

Action: Retry the request one or more times.

0C xxxx0C09 Equate Symbol: ISGQUERYRsn_FRRHeld,

Meaning: For a REQINFO=LATCHECA request. The caller issued
ISGQUERY with a functional recover routine (FRR) established.

Action: Avoid issuing ISGQUERY REQINFO=LATCHECA when
using functional recovery routines.

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1319

Table 120. Return and Reason Codes for the ISGQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

10 — Equate Symbol: ISGQUERYRc_CompError

Meaning: Component Error

Action: Contact the IBM Support Center.

The reason code contains internal diagnostic information.

Examples
Use these examples as a guide.
* ***
* Search the Systems Inclusion RNL for a resource name
* ***

ISGQUERY REQINFO=RNLSEARCH,RNL=SIRNL, X
QNAME=MYQNAME,RNAME=MYRNAME,RNAMELEN=MYRNAMELEN, X
RETCODE=MYRC,RSNCODE=MYRSN

* ***
* Query information on a request specified by ENQToken
* ***

ISGQUERY REQINFO=QSCAN,SCANACTION=START, X
ANSAREA=MYAREA,ANSLEN=MYAREALEN, X
SEARCH=BY_ENQTOKEN,ENQTOKEN=MYENQTOKEN, X
RETCODE=MYRC,RSNCODE=MYRSN

* ***
* Start a resumable query for resources of a specific job that
* matches a specific QNAME and pattern RNAME
* ***

ISGQUERY REQINFO=QSCAN,SCANACTION=START, X
ANSAREA=MYAREA,ANSLEN=MYAREALEN, X
SEARCH=BY_FILTER,QNAMEMATCH=SPECIFIC,QNAME=MYQNAME, X
RNAMEMATCH=PATTERN,RNAME==CL7’ABC?23*’,RNAMELEN=7, X
USERDATAMATCH=SPECIFIC,USERDATA=MYUDATA, X
JOBNAME=MYJOBNAME,RESUMETOKEN=MYRESTOKEN,RETCODE=MYRC, X
RSNCODE=MYRSN

* ***
* Start a resumable query for resources of a specific job that
* matches a specific QNAME and pattern RNAME
* ***

ISGQUERY REQINFO=QSCAN,SCANACTION=START, X
ANSAREA=MYAREA,ANSLEN=MYAREALEN, X
SEARCH=BY_FILTER,QNAMEMATCH=SPECIFIC,QNAME=MYQNAME, X
RNAMEMATCH=PATTERN,RNAME==CL7’ABC?23*’,RNAMELEN=7, X
USERDATAMATCH=PATTERN,USERDATA=MYUDATAP,USERDATALEN=7, X
JOBNAME=MYJOBNAME,RESUMETOKEN=MYRESTOKEN,RETCODE=MYRC, X
RSNCODE=MYRSN

MYUDATA DC CL32’MY USERDATA’
MYUDATAP DC CL7’M??USE*’

* ***
* Resume a query that was started but not completed
* ***

ISGQUERY REQINFO=QSCAN,SCANACTION=RESUME, X

ISGQUERY macro

1320 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

RESUMETOKEN=MYRESTOKEN, X
ANSAREA=MYAREA,ANSLEN=MYAREALEN, X
RETCODE=MYRC,RSNCODE=MYRSN

* ***
* Quit a query that was started but not completed
* ***

ISGQUERY REQINFO=QSCAN,SCANACTION=QUIT, X
RESUMETOKEN=MYRESTOKEN, X
RETCODE=MYRC,RSNCODE=MYRSN

* ***
* Gather ENQ statistics for a particular address space
* ***

ISGQUERY REQINFO=ENQSTATS, X
ANSAREA=MYAREA,ASID=MYASID, X
RETCODE=MYRC,RSNCODE=MYRSN

* ***
* Gather query latch enhanced contention analysis (LATCHECA) data from the *
* global resource serialization queues for waiters delayed because of *
* contention *

ISGQUERY REQINFO=LATCHECA,ANALYZE=WAITER,ANSAREA=MYAREA, X
ANSLEN=MYAREALEN,RETCODE=MYRC,RSNCODE=MYRSN X

* ***
* Gather address space level contention information related to ENQs *
* (all scopes) and latches (all latch sets) from the *
* global resource serialization queues *

ISGQUERY REQINFO=USAGESTATS,ANSAREA=MYAREA,ANSLEN=MYAREALEN, X
RETCODE=MYRC,RSNCODE=MYRSN X

For more information on global resource serialization, see z/OS MVS Planning:
Global Resource Serialization.

ISGQUERY macro

Chapter 134. ISGQUERY — Global resource serialization query service 1321

1322 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 135. ITTFMTB — Generate component trace format
table

Description
ITTFMTB generates a table called the component trace format table. It can also
generate a map of the table. IPCS uses this table to control the formatting of trace
data for program events that occur when the system runs. When you use ITTFMTB
to generate information in the table, you are specifying the formatting style of the
trace data. For information about IPCS, see z/OS MVS IPCS User's Guide and z/OS
MVS IPCS Customization.

Invoke the macro once to define the beginning of the table and once to define the
end of the table. In between, you can invoke the macro repeatedly to define the
individual formats for the various traceable events.

This macro generates nonexecutable code, and therefore is not sensitive to the
execution environment.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt Status: Enabled or disabled for I/O and external interrupts
Locks: No locks held

Programming requirements
None.

Restrictions
None.

Register information
This macro does not use any registers.

Performance implications
None.

Syntax
The ITTFMTB macro is written as follows:

Syntax Description

© Copyright IBM Corp. 1988, 2016 1323

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ITTFMTB.

ITTFMTB

� One or more blanks must follow ITTFMTB.

MAP Required choice. Select one of four options.

TABLEDATA=tabname tabname: Symbol up to eight characters long.

EVENTDATA=eventid eventid: A-type address.

TABLEEND

,ENTRYLENGTH=elength Optional with TABLEDATA and not otherwise allowed.

elength: A-type address.

,LOCBUFNAME=bufname Required choice with TABLEDATA and not otherwise allowed.

bufname: Symbol up to eight characters long.

,LOCBUFADDR=bufaddr bufaddr: A-type address.

,FILTERNAME=pgmname Optional choice with TABLEDATA and not otherwise allowed.

pgmname: Symbol up to eight characters long.

,FILTERADDR=pgmaddr pgmaddr: A-type address.

,MNEMONIC=mnemonic Required with EVENTDATA and not otherwise allowed.

mnemonic: Symbol up to 32 characters long.

,DESCRIPTION=text Required with EVENTDATA and not otherwise allowed. text: Symbol up to
32 characters long.

,MODELNAME=modelname Optional choice with EVENTDATA and not otherwise allowed.

modelname: Symbol up to eight characters long.

,MODELADDR=modeladdr ,MODELADDR=modeladdr

,FORMATNAME=pgmname Optional choice with EVENTDATA and not otherwise allowed.

pgmname: Symbol up to eight characters long.

,FORMATADDR=pgmaddr pgmaddr: A-type address.

,OFFSETASID=(ids) Optional with EVENTDATA and not otherwise allowed.

ids: One or more A-type addresses, separated by commas.

ITTFMTB macro

1324 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,OFFSETJOBNAME=(offsets) Optional with EVENTDATA and not otherwise allowed.

offsets: One or more A-type addresses, separated by commas.

,VIEWSUMMARY=scode Optional with EVENTDATA and not otherwise allowed.

scode: A-type address.

,VIEWFULL=fcode Optional with EVENTDATA and not otherwise allowed.

fcode: A-type address.

,COMPONENTDATA=cdata Optional with EVENTDATA and not otherwise allowed.

cdata: A-type address.

,EXCEPTION Optional choice with EVENTDATA and not otherwise allowed.

,NOEXCEPTION

Parameters
The parameters are explained as follows:

MAP
Specifies that a map of a format table is to be generated.

TABLEDATA=tabname
Specifies that the definition of an initialized format table is to be started. When
you specify TABLEDATA, you also specify the name to be associated with the
table and certain data that appears only once in the table.

EVENTDATA=eventid
Specifies the event identifier that is associated with a component trace event.

TABLEEND
Specifies the end of the definition of the format table.

,LOCBUFNAME=bufname
Specifies the name of the locate buffer exit routine that is loaded by the IPCS
CTRACE subcommand. IPCS calls this routine to locate a component's trace
buffers in a dump.

,LOCBUFADDR=bufaddr
Specifies the address of the locate buffer exit routine. IPCS calls this routine to
locate a component's trace buffers in a dump.

,FILTERNAME=pgmname
Specifies the name of the component filter exit routine that is loaded by the
IPCS CTRACE subcommand. IPCS calls this routine to provide
component-specific filtering for that component's trace entries. No component
filter exit is supplied if you do not specify one.

,FILTERADDR=pgmaddr
Specifies the address of the component filter exit routine. IPCS calls this
routine to provide component-specific filtering for that component's trace
entries. No component filter exit is supplied if you do not specify one.

ITTFMTB macro

Chapter 135. ITTFMTB — Generate component trace format table 1325

,ENTRYLENGTH=elength
When elength is not zero, this parameter specifies the length of the fixed-length
component trace entries that the component maintains. When elength is zero, it
indicates that the component trace entries vary in length. A default of zero is
assumed.

,MNEMONIC=mnemonic
Specifies a mnemonic name for the type of event being described. This name is
the first information to be formatted on a line associated with an event entry of
this type. The name permits the reader of formatted component traces to
rapidly scan the output for patterns of events and events of particular interest.

,DESCRIPTION=text
Specifies descriptive, literal text to be associated with the type of trace entry
being described. When this type of trace entry is formatted, the text appears at
the end of the first line of the output. It helps the reader of the output to
understand the significance of an entry, without having to access separate
reference materials.

,MODELNAME=modelname
Specifies the name of the model that is to be used to format this trace entry.
No model is used if MODELNAME or MODELADDR is not specified.

,MODELADDR=modeladdr
Specifies the address of the model to be used to format this trace entry. No
model is used if MODELADDR or MODELNAME is not specified.

,FORMATNAME=pgmname
Specifies the name of the formatter routine that formats this trace entry. No
formatter routine is called if FORMATNAME or FORMATADDR is not
specified.

,FORMATADDR=pgmaddr
Specifies the address of the formatter routine that formats this trace entry. No
formatter routine is called if FORMATADDR or FORMATNAME is not
specified.

,OFFSETASID=(ids)
If you want ASID filtering to be performed (as requested by an IPCS CTRACE
subcommand), use this parameter to specify the offsets to the ASID fields. The
ASID fields occur at various offsets in the trace entry. Specify up to 5 offsets.
An offset value may not exceed decimal 65,535. If you do not specify
OFFSETASID, ASID filtering is not performed

,OFFSETJOBNAME=(offsets)
If you want job name filtering to be performed (as requested by an IPCS
CTRACE subcommand), use this parameter to specify the offsets to the job
name fields. The job name fields occur at various offsets in the trace entry.
Specify up to 5 offsets. An offset value may not exceed decimal 65,535. If you
do not specify OFFSETJOBNAME, job name filtering is not performed.

,VIEWSUMMARY=scode
Specifies the halfword view that the model processor uses to format summary
fields from the trace entry. A default of X'8000' for scode is used if you do not
specify this parameter.

,VIEWFULL=fcode
Specifies a halfword view (used by model processor) to format all fields from
the trace entry. A default of X'0200' for fcode is used if you do not specify this
parameter.

ITTFMTB macro

1326 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,COMPONENTDATA=cdata
This parameter is reserved for use by the component. If this parameter is not
specified, a default of zero is assumed for cdata indicating that no component
data is associated with the trace entry.

,EXCEPTION
,NOEXCEPTION

EXCEPTION specifies that this trace entry records an exceptional event. When
the IPCS CTRACE subcommand is invoked with the EXCEPTION filtering
option, only trace entries with the EXCEPTION attribute are formatted.

NOEXCEPTION specifies that the trace entries being described record normal
events. These entries will not be formatted when the IPCS CTRACE
subcommand is invoked with the EXCEPTION of the filtering option. The
default is NOEXCEPTION.

Return and reason codes
None.

ITTFMTB macro

Chapter 135. ITTFMTB — Generate component trace format table 1327

1328 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 136. ITTWRITE — Write a full trace buffer to DASD or
tape

Description
The ITTWRITE macro enables the component trace external writer to write a full
trace buffer out to a trace data set on DASD or tape.

The ITTWRITE macro asynchronously captures a full trace buffer while the
application continues processing and writing trace entries to another trace buffer.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 64-bit.
ASC mode: Primary or access register.
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: No locks may be held.
Control Parameters: Must be in the 64-bit primary address space.

Programming requirements
None.

Restrictions
If either the BUFFALET or the TBWCALET identifies the secondary or home
address space, then both must identify the same address space (that is, both the
trace buffer and the trace buffer writer control area must be in the same address
space).

Register information
All registers are viewed as 64-bit values. After the caller issues the macro, the
system might use some registers as work registers or might change the contents of
some registers. When the system returns control to the caller, the contents of these
registers are not the same as they were before the caller issued the macro.
Therefore, if the caller depends on these registers containing the same value before
and after issuing the macro, the caller must save these registers before issuing the
macro and restore them after the system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 If GPR 15 contains 0 or 4, GPR 0 is used as a work register by the system;
otherwise, GPR 0 contains a reason code.

1 Used as a work register by the system

© Copyright IBM Corp. 1988, 2016 1329

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-15 Unchanged

Performance implications
None.

Syntax
The standard form of the ITTWRITE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ITTWRITE.

ITTWRITE

� One or more blanks must follow ITTWRITE.

BUFFADDR=buffer_address buffer_address: RS-type address or register (2)-(12).

,BUFFALET=buffer_alet buffer_alet: RS-type address or register (2)-(12).

,BUFFALET=NOBUFFALET Default: BUFFALET=NOBUFFALET

,BUFFLEN=buffer_length buffer_length: RS-type address or register (2)-(12).

,TOKEN=token token: RS-type address or register (2)-(12).

,TBWCADDR=tbwc_address tbwc_address: RS-type address or register (2)-(12).

,TBWCADDR64=tbwc_address64 tbwc_address64: RS-type address or register (2)-(12).

,TBWCALET=tbwc_alet tbwc_alet: RS-type address or register (2)-(12).

,TBWCALET=NOTBWCALET Default: TBWCALET=NOTBWCALET

,SYNCH=YES | NO Default: SYNCH=NO

,RC=return_code return_code: RS-type address or register (2)-(12).

ITTWRITE macro

1330 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,RSNCODE=reason_code reason_code: RS-type address or register (2)-(12).

,COM=comment comment: A comment string.

,COM=NULL Default: COM=NULL.

,MF=(S) Default: MF=(S)

Parameters
The parameters are explained as follows:

BUFFADDR=buffer_address
Specifies a required parameter that points to the address of the buffer to be
written externally.

,BUFFALET=buffer_alet
,BUFFALET=NOBUFFALET

Contains the PASN ALET that identifies the address/data space where the
buffer resides. Use this optional parameter when the buffer to be written
externally resides in either a data space or an address space that is different
from the current primary address space. The default is
BUFFALET=NOBUFFALET.

,BUFFLEN=buffer_length
Specifies a required parameter that indicates the number of bytes in length of
the buffer to be written externally. Though the buffer length is 64-bits, it is
required to keep the buffer size within manageable limits. IBM suggest that the
length be between 4KB and 512M. Component trace splits buffers that are too
large to fit into a single block.

,TOKEN=token
Specifies a required parameter that specifies the token passed to the start/stop
exit routine when it was requested to start tracing externally.

TBWCADDR=tbwc_address
Specifies a required parameter that points to a word that points to the address
of the storage obtained by the application for the trace buffer writer control
area (TBWC) mapped by ITTTBWC. The TBWC provides communication
between the application and component trace. See TBWC in z/OS MVS Data
Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/) for complete field names and lengths, offsets, and descriptions of the
fields of the TBWC.

TBWCADDR64=tbwc_address64
Specifies a required parameter that points to a word that points to the address
of the storage obtained by the application for the trace buffer writer control
area (TBWC) mapped by ITTTBWC. The TBWC provides communication
between the application and component trace. See TBWC in z/OS MVS Data
Areas in the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/) for complete field names and lengths, offsets, and descriptions of the
fields of the TBWC.

,TBWCALET=tbwc_alet

ITTWRITE macro

Chapter 136. ITTWRITE — Write a full trace buffer to DASD or tape 1331

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

,TBWCALET=NOTBWCALET
Contains the ALET that identifies the address/data space where the TBWC
resides. Use this optional parameter when the TBWC resides in either a data
space or an address space that is different from the current primary address
space. The default is TBWCALET=NOTBWCALET.

,SYNCH=YES | NO
YES causes CTRACE to copy the application's buffers before control is returned
instead of scheduling an asynchronous SRB to copy the buffer. The ITTWRITE
function executes synchronously. The SYNCH keyword is optional. NO causes
the ITTWRITE function to execute asynchronously.

Note: Because your application runs slower, IBM does not suggest that you
use the SYNCH keyword on every ITTWRITE invocation. Use the SYNCH
keyword in the start/stop routine any time that the trace buffers are to be
freed. For example, when the trace is being turned off or the buffer size is
changing, you can free trace buffer storage after issuing the ITTWRITE macro
with the SYNCH keyword. The system copies the buffers to I/O buffers that
CTRACE then can write to the external data set. The default is SYNCH=NO.

,RC=return_code
Specifies the location where the system is to store the return code. The return
code is also in general purpose register (GPR) 15.

,RSNCODE=reason_code
Specifies the location where the system is to store the reason code. If GPR 15
contains a return code other than 0 or 4, the reason code is also in GPR 0.

,COM=comment
,COM=NULL

Comments the macro invocation. If the comment contains any lowercase
characters, it must be enclosed in quotation marks.

,MF=(S)
Specifies the standard form of the ITTWRITE macro.

ABEND codes
The following table identifies abend code and reason code combinations, and a
description of what each means:

Table 121. Abend codes for the ITTWRITE Macro

Abend Code Reason Code Description

00D 00010100 For the ITTWRITE macro, the parameter list version
number is not correct.

00D 00010200 The system found either nonzero values in the reserved
fields or unused fields for the requested service in the
ITTWRITE macro parameter list.

00D 00010300 The buffer length passed was 0 or less.

00D 00010400 The buffer length is unusually large and is not supported
by CTRACE.

Return and reason codes
When control returns from ITTWRITE, GPR 15 (and return_code, if you coded RC)
contains one of the following return codes. The third byte of GPR 0 (and
reason_code, if you coded RSNCODE) might contain one of the following reason
codes.

ITTWRITE macro

1332 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Note: An application should always check the return code from the ITTWRITE
macro. A non-zero code indicates that some data might have been lost in the next
record output.

Table 122. Return and Reason Codes for the ITTWRITE Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 None. ITTWRITE was successful.

04 None. ITTWRITE was unsuccessful. No data was captured
because the trace is not connected to an active external
writer.

08 xxxx01xx Storage required to perform the write operation could not
be obtained.

08 xxxx02xx ITTWRITE was unable to schedule an SRB to process this
request.

08 xxxx03xx The control information (TBWC) has already been reused
by the application.

0C xxxx01xx The caller is holding locks.

0C xxxx02xx The input token was not valid.

0C xxxx0300 The TBWC is not valid because the sequence number is the
same as a previous write request.

0C xxxx0301 The TBWC is not valid for one of the following reasons:

v The TBWC is not in central storage and the ITTWRITE
issuer is disabled.

v The BUFFALET is not the same as the TBWCALET.

Example
Indicate to component trace that the buffer at address TRACEADR is ready to be
written out. Pass the token (TCWTRTKN) that the application received from the
start/stop routine. Component trace is to store the return and reason codes from
the ITTWRITE macro in TCRCODE and TCRSNCODE.

ITTWRITE BUFFADDR=TRACEADR,BUFFLEN=TRACESIZ, X
TOKEN=TCWTRTKN,TBWCADDR=TBWCADR, X
RC=TCRCODE,RSNCODE=TCRSNCODE

TBWCADR DS A TBWC address
TRACEADR DS A Trace buffer address
TRACESIZ DS F Trace buffer size
TCWTRTKN DS CL8 Trace writer token produced by

* CTRACE upon connection
TCRCODE DS F Return code from CTRACE
TCRSNCODE DS F Reason code from CTRACE

ITTWRITE - List form

Syntax
The list form of the ITTWRITE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ITTWRITE.

ITTWRITE macro

Chapter 136. ITTWRITE — Write a full trace buffer to DASD or tape 1333

Syntax Description

ITTWRITE

� One or more blanks must follow ITTWRITE.

,MF=(L,cntl) cntl: Symbol.

,MF=(L,cntl,attr) attr: 1- to 60-character input string.

,MF=(L,cntl,0D) Default: 0D

Parameters
The parameters are explained as follows:

,MF=(L,cntl)
,MF=(L,cntl,attr)
,MF=(L,cntl,0D)

Specifies the list form of the macro.

cntl is the name of a storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

ITTWRITE - Execute form
Use the execute form of the ITTWRITE macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the ITTWRITE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ITTWRITE.

ITTWRITE

� One or more blanks must follow ITTWRITE.

BUFFADDR=buffer_address buffer_address: RS-type address or register (2)-(12).

ITTWRITE macro

1334 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,BUFFALET=buffer_alet buffer_alet: RS-type address or register (2)-(12).

,BUFFALET=NOBUFFALET Default: BUFFALET=NOBUFFALET

,BUFFLEN=buffer_length buffer_length: RS-type address or register (2)-(12).

,TOKEN=token token: RS-type address or register (2)-(12).

,TBWCADDR=tbwc_address tbwc_address: RS-type address or register (2)-(12).

,TBWCADDR64=tbwc_address64 tbwc_address64: RS-type address or register (2)-(12).

,TBWCALET=tbwc_alet tbwc_alet: RS-type address or register (2)-(12).

,TBWCALET=NOTBWCALET Default: TBWCALET=NOTBWCALET

,SYNCH=YES | NO Default: SYNCH=NO

,RC=return_code return_code: RS-type address or register (2)-(12).

,RSNCODE=reason_code reason_code: RS-type address or register (2)-(12).

,COM=comment comment: A comment string.

,COM=NULL Default: COM=NULL.

,MF=(E,cntl) cntl: RX-type address or register (2) - (12).

,MF=(E,cntl,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the ITTWRITE macro
with the following exception:

,MF=(E,cntl)
,MF=(E,cntl,COMPLETE)

Specifies the execute form of the macro.

cntl is the name of a storage area for the parameter list.

COMPLETE specifies that the system is to check the macro parameter syntax
and supply defaults on parameters that you do not use. COMPLETE is the
default.

ITTWRITE macro

Chapter 136. ITTWRITE — Write a full trace buffer to DASD or tape 1335

ITTWRITE macro

1336 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 137. ITZXFILT — Transaction trace filter exit

Description
The ITZXFILT macro is used to invoke the Transaction Trace filter exit.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state. PSW key 8 - 15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked or locked
Control parameters: Control parameters must be in the primary address space.

Programming requirements
None.

Restrictions
1. Addressability to CVT and IHAECVT must be established prior to using this

macro.
2. FRRs are allowed.
3. The version of the IWMCLSFY parameter list must be 4 or higher.

Input register information
Before issuing the ITZXFILT macro, the caller must insure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 The address of a 72-byte standard save area in the primary address space

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Unpredictable (Used as a work register by the system)

2-13 Unchanged

14 Unpredictable (Used as a work register by the system)

15 Return code

© Copyright IBM Corp. 1988, 2016 1337

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Unpredictable (Used as a work register by the system)

2-13 Unchanged

14-15 Unpredictable (Used as a work register by the system)

Some callers depend on register contents remaining the same before and after
issuing a macro. If the macro changes the contents of registers on which the caller
depends, the caller must save them before issuing the macro and restore them after
the macro returns control.

Performance implications
None.

Syntax
The ITZXFILT macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede ITZXFILT.

ITZXFILT

� One or more blanks must follow ITZXFILT.

FILTPARM=filtparm filtparm: RS-type address or address in register (2) - (12).

,WKAREA=wkarea wkarea: RS-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12).

Parameters
The parameters are explained as follows:

name
This is an optional symbol, starting in column 1, that is the name on the
ITZXFILT macro invocation. The name must conform to the rules for an
ordinary assembler language symbol.

FILTPARM=filtparm
This is a required input parameter of the IWMCLSFY parameter list to be
passed to the transaction trace filter exit.

ITZXFILT macro

1338 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,WKAREA=wkarea
This is a required input parameter of a 256-byte work area to be used by the
transaction trace filter exit routine.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
This is an optional output parameter into which the return code is to be copied
from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND codes
None.

Return and reason codes
When the ITZXFILT macro returns control to your program, GPR 15 (and retcode,
when you code RETCODE) contains a return code.

The following table identifies the hexadecimal return and reason codes.

Table 123. Return and Reason Codes for the ITZXFILT Macro

Return Code Meaning and Action

0 Meaning: The transaction trace token was created.

Action: None.

4 Meaning: The transaction trace token was not created.

Action: If the address of the 32-character transaction trace token field was
not provided, provide it in the parameter list. Otherwise, the token was not
created because of no match between the input parameter attributes and
the transaction trace filter sets attributes.

Example
IWMCLSFY MF=(L,TT_PARM),PLISTVER=MAX
USING TT_PARM,R5
LA R1,TRANNAME
ST R1,TT_PARM_XTRXNAME_ADDR
LA R1,TRANTOKN
ST R1,TT_PARM_XTTRACETOKEN_ADDR
ITZXFILT FILTPARM=TT_PARM,WKAREA=TT_WORK
SPACE 1
LTR R15,R15
BC NZERO,NOTOKEN
.
.

NOTOKEN DS 0H
.
.

TT_WORK DS CL256
TRANNAME DC CL8’MYWORKNM’
TRANTOKN DC CL32’ ’

ITZXFILT macro

Chapter 137. ITZXFILT — Transaction trace filter exit 1339

ITZXFILT macro

1340 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 138. IXGBRWSE — Browse/read a log stream

Description
Use the IXGBRWSE macro to read and browse a log stream for log block
information. Using IXGBRWSE, a program can read consecutive log blocks in a log
stream or search for and read a specific log block in a log stream. IXGBRWSE
returns the specified log block in the calling program's output buffer.

The requests for IXGBRWSE are:
v REQUEST=START, which starts a browse session. A browse session is identified

by a browse token which is created by the browse start request. The browse
session remains active until it is ended as a result of a REQUEST=END request
or the log stream has been disconnected. See “REQUEST=START option of
IXGBRWSE” on page 1344 for the syntax of this request.

v REQUEST=READCURSOR, which reads the next consecutive log block (or
blocks) in the log stream. Use this request multiple times or use the
MULTIBLOCK keyword to read consecutive blocks in a log stream. See
“REQUEST=READCURSOR option of IXGBRWSE” on page 1350 for the syntax
of this request.

v REQUEST=READBLOCK, which reads a selected log block in a log stream. See
“REQUEST=READBLOCK option of IXGBRWSE” on page 1357 for the syntax of
this request.

v REQUEST=RESET, which resets the browse cursor to either the beginning or the
end of the log stream. See “REQUEST=RESET option of IXGBRWSE” on page
1364 for the syntax of this request.

v REQUEST=END, which ends a browse session. See “REQUEST=END option of
IXGBRWSE” on page 1369 for the syntax of this request.

For information about using the system logger services and the IXGBRWSE
request, see z/OS MVS Programming: Assembler Services Guide, which also includes
information about related macros IXGCONN, IXGINVNT, IXGWRITE, IXGDELET,
and IXGQUERY.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem or Supervisor state with any PSW key. The caller

must be in supervisor state with any system (0-7) PSW key
to either invoke this service in SRB mode or to use the
MODE=SYNCEXIT keyword.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, HASN or SASN
AMODE: 31-bit or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.

© Copyright IBM Corp. 1988, 2016 1341

Environmental factor Requirement
Control parameters: All control parameters must be in the primary address space

with the following exceptions:

v The ECB should be addressable from the home address
space.

v Any parameter area that is explicitly ALET-qualified as
allowed by the input parameter (for example, the area
referenced by the BUFFER parameter when the
BUFFALET parameter is specified) must be in an address
or data space that is addressable through a public entry
on the caller's dispatchable unit access list (DU-AL).

All storage areas specified must be in the same storage key
as the caller with the following exception:

v Any parameter area is explicitly storage key qualified as
allowed by the input parameters (example: the area
referenced by the BUFFER parameter when the BUFFKEY
parameter is also specified).

Programming requirements
v The current primary address space must be the same primary address space

used at the time your program issued the IXGCONN request.
v The calling program must be connected to the log stream through the

IXGCONN service with either read or write authority.
v The parameter list for this service must be addressable in the caller's primary

address space.
v Include the IXGCON mapping macro in your program. This macro provides a

list of equate symbols for the system logger services.
v Include macro IXGANSAA in your program. This macro maps the format of the

answer area output returned for each system logger service in the ANSAREA
parameter.

v For a READCURSOR browse request with the MULTIBLOCK=YES option,
include the IXGBRMLT mapping macro in your program. This macro provides a
mapping of the area returned by the system logger for each block that is
returned in the caller's buffer. Additionally, the area pointed to by the BUFFER
or BUFFER64 parameter must be on a word boundary for multiple log block
READCURSOR requests.

v Although the data pointed to by the BUFFER64 keyword may be above the bar
(2-gigabyte), the length of the name or address of the input field specified in the
BUFFLEN keyword is still limited to 4 bytes.

v When coding the MODE=SYNCECB and ECB parameters, you must ensure that:
– The virtual storage area specified for the ECB resides on a fullword boundary.
– You initialize the ECB field to zero.
– The ECB resides in either common or home address space storage at the time

the IXGBRWSE request is issued.
– The storage used for output parameters, such as ANSAREA,

BROWSETOKEN, BUFFER, BUFFER64, ANSAREA, BLKSIZE, TIMESTAMP,
and RETBLOCKID, are accessible by both the IXGBRWSE invoker and the
ECB waiter.

v When coding the MODE=SYNCEXIT parameter, you must ensure that the
storage used for output parameters, such as ANSAREA, BROWSETOKEN,

IXGBRWSE macro

1342 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

BUFFER, BUFFER64, ANSAREA, BLKSIZE, TIMESTAMP, and RETBLOCKID, are
accessible by both the IXGBRWSE invoker and the completion exit routine.

Restrictions
There is more than one version of this macro available. The parameters you can
use depend on the version you specify on the PLISTVER parameter. See the
description of the PLISTVER parameter for more information.

You can call any of the system logger services in either AMODE 31 or 64, but the
parameter list and all other data addresses, with the excption of BUFFER64 must
reside in 31-bit storage.

Input register information
Before issuing the IXGBRWSE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if register 15 contains a non-zero return code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as a work register by the system

2-13 Unchanged

14-15 Used as a work register by the system

When control returns to a caller running in AMODE 64, the 64–bit registers
contain:

Register
Contents

0-1 Used as a work register by the system, if the caller specified BUFFER64.
Otherwise, unchanged.

2-13 Unchanged

14 Unchanged

15 Used as a work register by the system.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1343

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

REQUEST=START option of IXGBRWSE
The IXGBRWSE macro with the REQUEST=START parameter starts a browse
session and sets the starting position of the browse cursor.

Syntax for REQUEST=START
The IXGBRWSE REQUEST=START macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede
IXGBRWSE.

IXGBRWSE

� One or more blanks must follow IXGBRWSE.

REQUEST=START

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) -
(12).

,BROWSETOKEN=browsetoken browsetoken: RS-type address or register (2) -
(12).

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

,OLDEST Default: OLDEST

,YOUNGEST

,STARTBLOCKID=startblockid startblockid: RS-type address or register (2) -
(12).

,SEARCH=search search: RS-type address or register (2) - (12).

GMT=YES

GMT=NO

IXGBRWSE macro

1344 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

VIEW=ACTIVE Default: VIEW=ACTIVE

VIEW=ALL

VIEW=NO_VIEW

MODE=SYNC Default: MODE=SYNC

MODE=SYNCECB

MODE=SYNCEXIT

,REQDATA=reqdata reqdata: RS-type address or register (2) - (12).

,ECB=ecb ecb: RS-type address or register (2) - (12).

,DIAG=NO_DIAG Default: DIAG=NO_DIAG

,DIAG=NO

,DIAG=YES

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters for REQUEST=START
The parameters are explained as follows:

REQUEST=START
Requests that a browse session be started.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1345

,STREAMTOKEN=streamtoken
Specifies the name or address (using a register) of a required 16-byte input
field containing the token for the log stream that you want to browse and read.
The stream token is returned by the IXGCONN service at connection to the log
stream.

,BROWSETOKEN=browsetoken
Specifies the name or address (using a register) of a required 4-byte output
area where a token uniquely identifying the browse session is returned by the
IXGBRWSE REQUEST=START request. This browse token is then used as an
input to subsequent IXGBRWSE requests to identify the browse session.

,ANSAREA=ansarea
Specifies the name (or address in a register) of an answer area containing
information about this request. The answer area must be at least 40 bytes. To
map this information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the
answer area length. The length of the answer area must be at least 40 bytes
and must be the same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the
ANSAA_PREFERRED_SIZE field of the IXGANSAA macro.

,OLDEST
,YOUNGEST
,STARTBLOCKID=startblockid
,SEARCH=search

Specifies where the cursor should be set for the start of the browse session.
v OLDEST: Specifies that the block cursor be positioned at the oldest log block

in the log stream.
When VIEW=ACTIVE is specified for this browse session, the cursor is
positioned at the oldest active log block in the log stream. If there is no
active data in the log stream, the request will fail.
When VIEW=ALL is specified, the cursor is positioned at the oldest log
block in the log stream of the active and inactive data. If there is neither
active nor inactive data in the log stream, the request will fail.

v YOUNGEST: Specifies that the block cursor be positioned at the youngest
log block in the log stream.
When VIEW=ACTIVE is specified for this browse session, the cursor is
positioned at the youngest active log block in the log stream.
When VIEW=ALL is specified, the cursor is positioned at the youngest log
block in the log stream, even if the youngest block is eligible for deletion.

v STARTBLOCKID=startblockid: Specifies the name (or register) of a 8-byte
input field containing the block identifier for the log block you want to use
as the starting cursor position.
When VIEW=ALL is specified, you must specify a starting block that is
active.

v SEARCH=search: Specifies the name (or register) of a 64-bit input field
containing the time stamp you want to use in searching for a particular log
block as the starting cursor position for this browse session. For information
on how the SEARCH keyword works, see z/OS MVS Programming: Assembler
Services Guide.

IXGBRWSE macro

1346 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

The time stamp must be Coordinated universal time (UTC) or local time, in
time of day (TOD) clock format. The GMT parameter is required with the
SEARCH parameter.

,GMT=YES
,GMT=NO

Specifies whether the time stamp specified on the SEARCH parameter is UTC
or local time.
v GMT=YES: The time stamp specified on the SEARCH parameter is in UTC

format.
v GMT=NO: The time stamp specified on the SEARCH parameter is local

time.

VIEW=ACTIVE
VIEW=ALL
VIEW=NO_VIEW

Specifies whether requests issued during this browse session return active data
only, or both active and inactive data. Active data is data that has not been
marked for deletion via the IXGDELET service. Inactive data is data that has
been deleted via IXGDELET but has not been physically deleted from the log
stream because of the retention period specified in the log stream definition in
the LOGR couple data set.
v VIEW=ACTIVE, which is the default, specifies that in this browse session,

system logger will only return active data from the log stream.
v VIEW=ALL specifies that in this browse session, system logger will return

both active and inactive data.
When VIEW=ALL is specified and a log block is returned, system logger sets
a flag in the answer area, AnsaaBlkFromInactive, indicating whether the
block was active or eligible for deletion.

v VIEW=NO_VIEW specifies that the default VIEW value will be used for the
browse session.

The system where IXGBRWSE is issued must be IPLed for the VIEW parameter
to be recognized.

,MODE=SYNC
,MODE=SYNCECB
,MODE=SYNCEXIT

Specifies that the request should be processed in one of the following ways:
v MODE=SYNC: Specifies that the request process synchronously. Control is

not returned to the caller until request processing is complete. If necessary,
the calling program will be suspended until the request completes.

v MODE=SYNCECB: Specifies that the request process synchronously if
possible. If the request processes asynchronously, control returns to the caller
before the request completes and the event control block (ECB) specified on
the ECB parameter is posted when the request completes. The ECB
parameter is required with MODE=SYNCECB.

v MODE=SYNCEXIT: Specifies that the request process synchronously, if
possible. If the request cannot be processed synchronously, your complete
exit (specified on the COMPLETEEXIT parameter on the IXGCONN request)
gets control when this request completes. Control returns to the caller with a
return and reason code indicating that the request is not complete. The
system passes the data specified on the REQDATA parameter, if specified, to
the complete exit.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1347

When a MODE=SYNCEXIT request processes asynchronously, system logger
maintains latent binds to the storage location specified by the answer area
(ANSAREA) fields, and, if specified, to RETBLOCKID and TIMESTAMP.
To use this parameter, the system where the application is running must be
IPLed. The application must run in supervisor state, key 0-7 to use this
parameter.

,ECB=ecb
Specifies the name or address (using a register) of a 4-byte input field
containing an event control block (ECB) to be posted when the request
completes.

Before coding ECB, you must ensure that:
v You initialize the ECB to zero.
v The ECB must reside in either common storage or the home address space at

the time the IXGBRWSE request is issued.
v The virtual storage area specified for the ECB must reside on a fullword

boundary.

,DIAG=NO_DIAG
,DIAG=NO
,DIAG=YES

Specifies whether or not the DIAG option on the IXGCONN for this logstream
will be in effect for this browse session. Refer to the DIAG keyword on the
IXGINVNT, IXGCONN, and IXGDELET macro services.

If you specify DIAG=NO_DIAG, which is the default, then the DIAG option
on the IXGCONN for this logstream will be in effect for this browse session.

If you specify DIAG=NO, thenLogger will not take additional diagnostic action
as defined in the logstream definition DIAG parameter.

If you specify DIAG=YES, then Logger will take additional diagnostic action as
defined on the logstream definition DIAG parameter providing the IXGCONN
connect DIAG specification allows it.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default. Note that on the list form, the
default will cause the smallest parameter list to be created.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form when both forms are
assembled using the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

IXGBRWSE macro

1348 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v 1, supports both the following parameters and parameters from version 0:
– DIAG
– REQDATA

v 2, supports both the following parameters and parameters from version 0
and 1:
– MAXNUMLOGBLOCKS
– MULTIBLOCK
– RETBLOCKINFO

To code: Specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1 or 2

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where
the system will place the return code. The return code is also in general
purpose register (GPR) 15.

,RSNCODE=rsncode
Specifies a name or address (using a register) of a 4-byte output field where
the system will place the reason code. The reason code is also in general
purpose register (GPR) 0, if you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter can be specified on the list form of
the macro. IBM recommends that you always specify PLISTVER=MAX on the
list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

You should use the modify and execute forms in the following order:

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1349

v Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters,
including all required ones.

v Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to
change.

v Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

REQUEST=READCURSOR option of IXGBRWSE
The IXGBRWSE macro with the REQUEST=READCURSOR option allows a
program to read the next consecutive log block in a log stream. Subsequent
READCURSOR requests will start reading at the next consecutive block. Use this
request multiple times or use the MULTIBLOCK keyword to read a series of
consecutive log blocks. The direction of the browse is controlled by the program
and can be changed dynamically.

READCURSOR requests are limited to reading log blocks within the range of data
defined by the browse session's view. The view is controlled by the VIEW keyword
on either the browse START request or the browse RESET request.

Note: REQUEST=READCURSOR reads the next consecutive log block in the log
stream, but the blocks may not be in exact local time sequence. This can happen,
for example, because of daylight savings time, one or more records with the same
local time stamp, or multiple applications writing to the same log stream.

Syntax for REQUEST=READCURSOR
The IXGBRWSE REQUEST=READCURSOR macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IXGBRWSE.

IXGBRWSE

� One or more blanks must follow IXGBRWSE.

IXGBRWSE macro

1350 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

REQUEST=READCURSOR

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,BROWSETOKEN=browsetoken browsetoken: RS-type address or register (2) - (12).

,BUFFER=buffer buffer: RS-type address or register (2) - (12).

,BUFFER64=buffer64 buffer64: RS-type address or register (2) - (12).

,BUFFLEN=bufflen bufflen: RS-type address or register (2) - (12).

,DIRECTION=OLDTOYOUNG

,DIRECTION=YOUNGTOOLD

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

,BUFFKEY=buffkey buffkey: RS-type address or register (2) - (12).

Default: PSW key of the caller

,BUFFALET=buffalet buffalet: RS-type address or register (2) - (12).

Default: BUFFALET=0

,BLKSIZE=blksize blksize: RS-type address or register (2) - (12). Default:
BLKSIZE=0

,MULTIBLOCK=YES

,MULTIBLOCK=NO Default: MULTIBLOCK=NO

,RETBLOCKID=retblockid retblockid: RS-type address or register (2) - (12). Default:
NO_BLKID Note: RETBLOCKID is valid with
MULTIBLOCK=NO only.

,TIMESTAMP=timestamp timestamp: RS-type address or register (2) - (12). Default:
NO_TIMESTAMP Note: TIMESTAMP is valid with
MULTIBLOCK=NO only.

,RETBLOCKINFO=YES

,RETBLOCKINFO=NO Default: NO Note: RETBLOCKINFO is valid with
MULTIBLOCK=YES only.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1351

Syntax Description

,MAXNUMLOGBLOCKS=maxnumlogblocks

maxnumlogblocks: RS-type address or register (2) - (12).

Default: MAXNUMLOGBLOCKS=0 Note:
MAXNUMLOGBLOCKS is valid with MULTIBLOCK=YES
only.

MODE=SYNC Default: MODE=SYNC

MODE=SYNCECB

MODE=SYNCEXIT

,ECB=ecb ecb: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters for REQUEST=READCURSOR
The parameters are explained as follows:

REQUEST=READCURSOR
Requests that a program read the next consecutive log block in the log stream,
in the direction specified on the DIRECTION parameter.

,STREAMTOKEN=streamtoken
Specifies the name or address (using a register) of a required 16-byte input

IXGBRWSE macro

1352 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

field containing the token for the log stream that you want to browse and read.
The stream token is returned by the IXGCONN service at connection to the log
stream.

,BROWSETOKEN=browsetoken
Specifies the name or address (using a register) of a required 4-byte input field
containing the identifier for the browse session which was returned on the
IXGBRWSE REQUEST=START request.

,BUFFER=buffer
,BUFFER64=buffer64

Specifies the name or address (using a register) of a required output field that
contains the buffer into which the log block is read.
v BUFFER=buffer specifies that the location of the buffer is in 31-bit storage.
v BUFFER64=buffer64 specifies that the location of the buffer is in 64-bit

storage.

the BUFFER and BUFFER64 parameters are mutually exclusive.

,BUFFLEN=bufflen
Specifies the name or address (using a register) of a required 4-byte input field
that contains the length of the buffer specified on the BUFFER or BUFFER64
parameter.

IXGBRWSE will return the length of the block in the BLKSIZE parameter, if
specified. If you specify MULTIBLOCK=NO, you can issue IXGBRWSE with
BLKSIZE specified to obtain the length of the block and then re-issue
IXGBRWSE using the returned BLKSIZE value in the BUFFLEN parameter.

,DIRECTION=OLDTOYOUNG
,DIRECTION=YOUNGTOOLD

Specifies the direction that you want the cursor to move to read the next
consecutive log block. Specify OLDTOYOUNG to get the next youngest block
or YOUNGTOOLD to get the next oldest block.

,ANSAREA=ansarea
Specifies the name (or address in a register) of an answer area containing
information about this request. The answer area must be at least 40 bytes. To
map this information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the
answer area length. The length of the answer area must be at least 40 bytes
and must be the same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the
ANSAA_PREFERRED_SIZE field of the IXGANSAA macro.

,BUFFKEY=buffkey
Specifies the name (or address in a register) of a 4-byte input field specifying
the storage key for the buffer specified on the BUFFER or BUFFER64
parameter.

If the caller is running in problem state, the caller's PSW key and the key
specified in the BUFFKEY parameter must match.

If the caller is running in supervisor state, specify any syntactically valid (0
through 15) key on the BUFFKEY parameter.

If you omit the BUFFKEY parameter, the default used is the PSW key of the
caller.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1353

,BUFFALET=buffalet
Specifies the name (or address in a register) of a 4-byte input field specifying
the access list entry table (ALET) to be used to access the buffer specified on
the BUFFER or BUFFER64 keyword. If the buffer is ALET-qualified, the ALET
must index a valid entry on the task's dispatchable unit access list (DUAL) or
specify a SCOPE=COMMON data space. An ALET that indexes the system
logger PASN-AL list will not work.

The default is 0, which means that the buffer is in the calling program's
primary address space.

,BLKSIZE=blksize
Specifies the name or address (using a register) of a 4-byte output field where
the space used or needed in the BUFFER or BUFFER64 area is returned. When
MULTIBLOCK=NO is specified and there is enough space in the buffer to
return the requested log block data, the actual size of the log block is returned.
When MULTIBLOCK=YES is specified and there is enough space in the buffer
to return the requested log blocks, the amount of space used in the BUFFER or
BUFFER64 area is returned. If the BUFFLEN value is not large enough to allow
any log block data to be returned, then the BLKSIZE value will indicate the
minimum amount of space necessary to return the next log block.

,MULTIBLOCK=YES
,MULTIBLOCK=NO

Specifies whether one or more than one log stream log block will be returned
by the read cursor request.
v MULTIBLOCK=NO indicates that only one log stream log block is to be

returned.
v MULTIBLOCK=YES indicates that the system logger will retrieve as many

log blocks as meet the browse parameter criteria and fit into the caller's
buffer.

,RETBLOCKID=retblockid
Specifies the name or address (using a register) of an 8-byte output field where
the identifier or the requested log block is returned

,TIMESTAMP=timestamp
Specifies the name or address (using a register) of a 16-byte output field where
the Coordinated universal time stamp and the local time stamp associated with
the requested log block are returned. The UTC time stamp is first, then the
local time stamp. Both time stamps are in TOD-clock format.

,RETBLOCKINFO=YES
,RETBLOCKINFO=NO

Specifies whether or not system logger should return the log blocksize, blockid,
timestamps and other identification information in the caller's buffer as part of
the output. Specify RETBLOCKINFO=YES to receive each log block's
identification information. Specify RETBLOCKINFO=NO to only receive the
information necessary to navigate the caller's buffer.

If you omit the RETBLOCKINFO parameter, RETBLOCKINFO=NO is the
default.

,MAXNUMLOGBLOCKS=xmaxnumlogblocks
Specifies the name (or address in a register) of an optional fullword input that
indicates the maximum number of log blocks to be returned in the buffer.
When a non-zero value is specified, system logger will not return more than
this requested number of log blocks, even if there are more log blocks that
meet the other browse parameter criteria.

IXGBRWSE macro

1354 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v If enough room is provided in the BUFFLEN value and there are sufficient
log blocks that meet the browse criteria, system logger will return the
requested maximum number of log blocks.

v If enough room is not provided in the BUFFLEN value, system logger will
return as many log blocks as fit into the caller's buffer.

v If there are fewer log blocks remaining than the requested maximum
number, system logger will return as many of the remaining log blocks as fit
into the caller's buffer.

If you omit the MAXNUMLOGBLOCKS, the default is 0.

,MODE=SYNC
,MODE=SYNCECB
,MODE=SYNCEXIT

Specifies that the request should be processed in one of the following ways:
v MODE=SYNC: Specifies that the request process synchronously. Control is

not returned to the caller until request processing is complete. If necessary,
the calling program will be suspended until the request completes.

v MODE=SYNCECB: Specifies that the request process synchronously if
possible. If the request processes asynchronously, control returns to the caller
before the request completes and the event control block (ECB) specified on
the ECB parameter is posted when the request completes. The ECB
parameter is required with MODE=SYNCECB.

v MODE=SYNCEXIT: Specifies that the request process synchronously, if
possible. if the request cannot be processed synchronously, your complete
exit (specified on the COMPLETEEXIT parameter on the IXGCONN request)
gets control when this request completes. Control returns to the caller with a
return and reason code indicating that the request is not complete. The
system passes the data specified on the REQDATA parameter, if specified, to
the complete exit.
When a MODE=SYNCEXIT request processes asynchronously, system logger
maintains latent binds to the storage location specified by the answer area
(ANSAREA) fields, and, if specified, to RETBLOCKID and TIMESTAMP.
To use this parameter, the system where the application is running must be
IPLed. The application must run in supervisor state, key 0-7 to use this
parameter.

ECB=ecb
Specifies the name or address (using a register) of a 4-byte input field that
contains an event control block (ECB) to be posted when the request
completes.

Before coding ECB, you must ensure that:
v You initialize the ECB to zero.
v The ECB must reside in either common storage or the home address space at

the time the IXGBRWSE request is issued.
v The virtual storage area specified for the ECB must reside on a fullword

boundary.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1355

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default. Note that on the list form, the
default will cause the smallest parameter list to be created.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form when both forms are
assembled using the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– DIAG
– REQDATA

v 2, supports both the following parameters and parameters from version 0
and 1:
– MAXNUMLOGBLOCKS
– MULTIBLOCK
– RETBLOCKINFO

To code: Specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1 or 2

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where
the system will place the return code. The return code is also in general
purpose register (GPR) 15.

,RSNCODE=rsncode
Specifies a name or address (using a register) of a 4-byte output field where
the system will place the reason code. The reason code is also in general
purpose register (GPR) 0, if you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The

IXGBRWSE macro

1356 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter can be specified on the list form of
the macro. IBM recommends that you always specify PLISTVER=MAX on the
list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following
order:
v Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters,

including all required ones.
v Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to

change.
v Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

REQUEST=READBLOCK option of IXGBRWSE
The IXGBRWSE macro with the REQUEST=READBLOCK parameter allows a
program to search for and read a specific log block from the log stream. The target
can be defined either by the log block identifier or by a time stamp.

Syntax for REQUEST=READBLOCK
The IXGBRWSE REQUEST=READBLOCK macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IXGBRWSE.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1357

Syntax Description

IXGBRWSE

� One or more blanks must follow IXGBRWSE.

REQUEST=READBLOCK

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,BROWSETOKEN=browsetoken browsetoken: RS-type address or register (2) - (12).

,BLOCKID=blockid blockid: RS-type address or register (2) - (12).

,SEARCH=search search: RS-type address or register (2) - (12).

,BUFFER=buffer buffer: RS-type address or register (2) - (12).

,BUFFER64=buffer64 buffer64: RS-type address or register (2) - (12).

,BUFFLEN=bufflen bufflen: RS-type address or register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

GMT=YES

GMT=NO

,BUFFKEY=buffkey buffkey: RS-type address or register (2) - (12).

Default: PSW key of the caller

,BUFFALET=buffalet buffalet: RS-type address or register (2) - (12).

Default: BUFFALET=0

,BLKSIZE=blksize blksize: RS-type address or register (2) - (12).

Default: BLKSIZE=0

,RETBLOCKID=retblockid retblockid: RS-type address or register (2) - (12).

Default: NO_BLKID

,TIMESTAMP=timestamp timestamp: RS-type address or register (2) - (12).

Default: NO_TIMESTAMP

MODE=SYNC Default: MODE=SYNC

IXGBRWSE macro

1358 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

MODE=SYNCECB

MODE=SYNCEXIT

,ECB=ecb ecb: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters for REQUEST=READBLOCK
The parameters are explained as follows:

REQUEST=READBLOCK
Requests that a program read a specific block from the log stream. The target
can be defined either by the log block identifier or by a time stamp.

,STREAMTOKEN=streamtoken
Specifies the name or address (using a register) of a required 16-byte input
field containing the token for the log stream that you want to search. The
stream token is returned by the IXGCONN service at connection to the log
stream.

,BROWSETOKEN=browsetoken
Specifies the name or address (using a register) of a required 4-byte input field
containing the identifier for the browse session which was returned from the
IXGBRWSE REQUEST=START request.

,BLOCKID=blockid
Specifies the name or address (using a register) of an 8-byte input field that
contains the block identifier of the log block you wish to read. The block
identifier was returned from the IXGWRITE request.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1359

,SEARCH=search
Specifies the name or address (using a register) of a 64-bit input field
containing the time stamp for the log block you wish to search for and read.
The time stamp must be Greenwich mean time or local time,

When you use a time stamp as a search criteria, IXGBRWSE searches in the
oldest-to-youngest direction, searching for a log block with an exactly matching
time stamp. If no exact match is found, IXGBRWSE reads the next latest
(youngest) time stamp. For information on how the SEARCH keyword works,
see z/OS MVS Programming: Assembler Services Guide.

The GMT parameter is required with the SEARCH parameter.

,BUFFER=buffer
,BUFFER64=buffer64

Specifies the name or address (using a register) of a required output field that
contains the buffer into which the log block is read.
v BUFFER=buffer specifies that the location of the buffer is in 31-bit storage.
v BUFFER64=buffer64 specifies that the location of the buffer is in 64-bit

storage.

the BUFFER and BUFFER64 parameters are mutually exclusive.

,BUFFLEN=bufflen
Specifies the name or address (using a register) of a required 4-byte input field
that contains the length of the buffer specified on the BUFFER or BUFFER64
parameter.

IXGBRWSE will return the length of the block in the BLKSIZE parameter, if
specified. You can issue IXGBRWSE with BLKSIZE specified to obtain the
length of the block and then re-issue IXGBRWSE using the returned BLKSIZE
value in the BUFFLEN parameter.

,ANSAREA=ansarea
Specifies the name (or address in a register) of an answer area containing
information about this request. The answer area must be at least 40 bytes. To
map this information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the
answer area length. The length of the answer area must be at least 40 bytes
and must be the same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the
ANSAA_PREFERRED_SIZE field of the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or register) of the 4-byte field containing the answer area
length. The length of the answer area must be at least 32 bytes and must be
the same length as the field specified in ANSAREA.

To ascertain the optimal answer area size, look at the
ANSAA_PREFERRED_SIZE field of the IXGANSAA macro.

,GMT=YES
,GMT=NO

Specifies whether the time stamp specified on the SEARCH parameter is in
Coordinated universal time (UTC) or local time.
v GMT=YES: The time stamp specified on the SEARCH parameter is in

Greenwich mean time.

IXGBRWSE macro

1360 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v GMT=NO: The time stamp specified on the SEARCH parameter is local
time.

,BUFFKEY=buffkey
Specifies the name (or address in a register) of a 4-byte input field specifying
the storage key for the buffer specified on the BUFFERor BUFFER64 parameter.

If the caller is running in problem state, the caller's PSW key and the key
specified in the BUFFKEY parameter must match.

If the caller is running in supervisor state, specify any syntactically valid (0
through 15) key on the BUFFKEY parameter.

If you omit the BUFFKEY parameter, the default used is the PSW key of the
caller.

,BUFFALET=buffalet
Specifies the name (or address in a register) of a 4-byte input field specifying
the access list entry table (ALET) to be used to access the buffer specified on
the BUFFER or BUFFER64 keyword. If the buffer is ALET-qualified, the ALET
must index a valid entry on the task's dispatchable unit access list (DUAL) or
specify a SCOPE=COMMON data space. An ALET that indexes the system
logger PASN-AL list will not work.

The default is 0, which means that the buffer is in the calling program's
primary address space.

,BLKSIZE=blksize
Specifies the name or address (using a register) of a 4-byte output field where
the actual size of the requested log block is returned.

,RETBLOCKID=retblockid
Specifies the name or address (using a register) of a 8-byte output field where
the identifier of the requested log block is returned.

,TIMESTAMP=timestamp
Specifies the name or address (using a register) of a 16-byte output field where
the Coordinated universal time and local time stamps associated with the
requested log block is returned. The UTC time stamp is first, then the local
time stamp. Both time stamps will be in TOD-clock format.

,MODE=SYNC
,MODE=SYNCECB
,MODE=SYNCEXIT

Specifies that the request should be processed in one of the following ways:
v MODE=SYNC: Specifies that the request process synchronously. Control is

not returned to the caller until request processing is complete. If necessary,
the calling program will be suspended until the request completes.

v MODE=SYNCECB: Specifies that the request process synchronously if
possible. If the request processes asynchronously, control returns to the caller
before the request completes and the event control block (ECB) specified on
the ECB parameter is posted when the request completes. The ECB
parameter is required with MODE=SYNCECB.

v MODE=SYNCEXIT: Specifies that the request process synchronously, if
possible. if the request cannot be processed synchronously, your complete
exit (specified on the COMPLETEEXIT parameter on the IXGCONN request)
gets control when this request completes. Control returns to the caller with a
return and reason code indicating that the request is not complete. The
system passes the data specified on the REQDATA parameter, if specified, to
the complete exit.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1361

When a MODE=SYNCEXIT request processes asynchronously, system logger
maintains latent binds to the storage location specified by the answer area
(ANSAREA) fields, and, if specified, to RETBLOCKID and TIMESTAMP.
To use this parameter, the system where the application is running must be
IPLed. The application must run in supervisor state, key 0-7 to use this
parameter.

ECB=ecb
Specifies the name or address (using a register) of a 4-byte input field that
contains an event control block (ECB) to be posted when the request
completes.

Before coding ECB, you must ensure that:
v You initialize the ECB to zero.
v The ECB must reside in either common storage or the home address space at

the time the IXGBRWSE request is issued.
v The virtual storage area specified for the ECB must reside on a fullword

boundary.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default. Note that on the list form, the
default will cause the smallest parameter list to be created.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form when both forms are
assembled using the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– DIAG
– REQDATA

v 2, supports both the following parameters and parameters from version 0
and 1:
– MAXNUMLOGBLOCKS
– MULTIBLOCK
– RETBLOCKINFO

To code: Specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1 or 2

IXGBRWSE macro

1362 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where
the system will place the return code. The return code is also in general
purpose register (GPR) 15.

,RSNCODE=rsncode
Specifies a name or address (using a register) of a 4-byte output field where
the system will place the reason code. The reason code is also in general
purpose register (GPR) 0, if you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter can be specified on the list form of
the macro. IBM recommends that you always specify PLISTVER=MAX on the
list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following
order:
v Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters,

including all required ones.
v Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to

change.
v Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1363

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

REQUEST=RESET option of IXGBRWSE
The IXGBRWSE macro with the REQUEST=RESET parameter allows a program to
re-position the browse cursor to either the youngest or oldest block in the log
stream.

Syntax for REQUEST=RESET
The IXGBRWSE REQUEST=RESET macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IXGBRWSE.

IXGBRWSE

� One or more blanks must follow IXGBRWSE.

REQUEST=RESET

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,BROWSETOKEN=browsetoken browsetoken: RS-type address or register (2) - (12).

,POSITION=YOUNGEST

,POSITION=OLDEST

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

VIEW=ACTIVE

VIEW=ALL

MODE=SYNC Default: MODE=SYNC

MODE=SYNCECB

MODE=SYNCEXIT

IXGBRWSE macro

1364 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,ECB=ecb ecb: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters for REQUEST=RESET
The parameters are explained as follows:

REQUEST=RESET
Requests that the browse cursor be repositioned at either the oldest or
youngest block in the log stream.

,STREAMTOKEN=streamtoken
Specifies the name or address (using a register) of a required 16-byte input
field containing the token for the log stream that you want to search. The
stream token is returned by the IXGCONN service at connection to the log
stream.

,BROWSETOKEN=browsetoken
Specifies the name or address (using a register) of a required 4-byte input field
containing the identifier for the browse session which was returned from the
IXGBRWSE REQUEST=START request.

,POSITION=YOUNGEST
,POSITION=OLDEST

Specifies the cursor position desired, at either the youngest or the oldest log
block in the log stream.

,ANSAREA=ansarea
Specifies the name (or address in a register) of an answer area containing
information about this request. The answer area must be at least 40 bytes. To
map this information, use the IXGANSAA macro.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1365

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the
answer area length. The length of the answer area must be at least 40 bytes
and must be the same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the
ANSAA_PREFERRED_SIZE field of the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or register) of the 4-byte field containing the answer area
length. The length of the answer area must be at least 32 bytes and must be
the same length as the field specified in ANSAREA.

To ascertain the optimal answer area size, look at the
ANSAA_PREFERRED_SIZE field of the IXGANSAA macro.

VIEW=ACTIVE
VIEW=ALL

Specifies whether requests issued during this browse session return active data
only, or both active and inactive data. Active data is data that has not been
marked for deletion via the IXGDELET service. Inactive data is data that has
been deleted via IXGDELET but has not been physically deleted from the log
stream because of the retention period specified in the log stream definition in
the LOGR couple data set.
v VIEW=ACTIVE, which is the default, specifies that in this browse session,

system logger will only return active data from the log stream.
v VIEW=ALL specifies that in this browse session, system logger will return

both active and inactive data.
When VIEW=ALL is specified and a log block is returned, system logger sets
a flag in the answer area, AnsaaBlkFromInactive, indicating whether the
block was active or eligible for deletion.

The system where IXGBRWSE is issued must be IPLed.

,MODE=SYNC
,MODE=SYNCECB
,MODE=SYNCEXIT

Specifies that the request should be processed in one of the following ways:
v MODE=SYNC: Specifies that the request process synchronously. Control is

not returned to the caller until request processing is complete. If necessary,
the calling program will be suspended until the request completes.

v MODE=SYNCECB: Specifies that the request process synchronously if
possible. If the request processes asynchronously, control returns to the caller
before the request completes and the event control block (ECB) specified on
the ECB parameter is posted when the request completes. The ECB
parameter is required with MODE=SYNCECB.

v MODE=SYNCEXIT: Specifies that the request process synchronously, if
possible. if the request cannot be processed synchronously, your complete
exit (specified on the COMPLETEEXIT parameter on the IXGCONN request)
gets control when this request completes. Control returns to the caller with a
return and reason code indicating that the request is not complete. The
system passes the data specified on the REQDATA parameter, if specified, to
the complete exit.
When a MODE=SYNCEXIT request processes asynchronously, system logger
maintains latent binds to the storage location specified by the answer area
(ANSAREA) fields, and, if specified, to RETBLOCKID and TIMESTAMP.

IXGBRWSE macro

1366 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

To use this parameter, the system where the application is running must be
IPLed. The application must run in supervisor state, key 0-7 to use this
parameter.

ECB=ecb
Specifies the name or address (using a register) of a 4-byte input field that
contains an event control block (ECB) to be posted when the request
completes.

Before coding ECB, you must ensure that:
v You initialize the ECB to zero.
v The ECB must reside in either common storage or the home address space at

the time the IXGBRWSE request is issued.
v The virtual storage area specified for the ECB must reside on a fullword

boundary.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default. Note that on the list form, the
default will cause the smallest parameter list to be created.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form when both forms are
assembled using the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– DIAG
– REQDATA

v 2, supports both the following parameters and parameters from version 0
and 1:
– MAXNUMLOGBLOCKS
– MULTIBLOCK
– RETBLOCKINFO

To code: Specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1 or 2

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1367

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where
the system will place the return code. The return code is also in general
purpose register (GPR) 15.

,RSNCODE=rsncode
Specifies a name or address (using a register) of a 4-byte output field where
the system will place the reason code. The reason code is also in general
purpose register (GPR) 0, if you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter can be specified on the list form of
the macro. IBM recommends that you always specify PLISTVER=MAX on the
list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following
order:
v Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters,

including all required ones.
v Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to

change.
v Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

IXGBRWSE macro

1368 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

REQUEST=END option of IXGBRWSE
The IXGBRWSE macro with the REQUEST=END parameter ends the browse
session begun with the REQUEST=START parameter.

Syntax for REQUEST=END
The IXGBRWSE REQUEST=END macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IXGBRWSE.

IXGBRWSE

� One or more blanks must follow IXGBRWSE.

REQUEST=END

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,BROWSETOKEN=browsetoken browsetoken: RS-type address or register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

MODE=SYNC Default: MODE=SYNC

MODE=SYNCECB

MODE=SYNCEXIT

,ECB=ecb ecb: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1369

Syntax Description

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters for REQUEST=END
The parameters are explained as follows:

REQUEST=END
Requests that the browse session be ended.

,STREAMTOKEN=streamtoken
Specifies the name or address (using a register) of a required 16-byte input
field containing the token for the log stream that you want to search. The
stream token is returned by the IXGCONN service at connection to the log
stream.

,BROWSETOKEN=browsetoken
Specifies the name or address (using a register) of a required 4-byte input field
containing the identifier for the browse session which was returned from the
IXGBRWSE REQUEST=START request.

,ANSAREA=ansarea
Specifies the name (or address in a register) of an answer area containing
information about this request. The answer area must be at least 40 bytes. To
map this information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the
answer area length. The length of the answer area must be at least 40 bytes
and must be the same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the
ANSAA_PREFERRED_SIZE field of the IXGANSAA macro.

,MODE=SYNC
,MODE=SYNCECB
,MODE=SYNCEXIT

Specifies that the request should be processed in one of the following ways:

IXGBRWSE macro

1370 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v MODE=SYNC: Specifies that the request process synchronously. Control is
not returned to the caller until request processing is complete. If necessary,
the calling program will be suspended until the request completes.

v MODE=SYNCECB: Specifies that the request process synchronously if
possible. If the request processes asynchronously, control returns to the caller
before the request completes and the event control block (ECB) specified on
the ECB parameter is posted when the request completes. The ECB
parameter is required with MODE=SYNCECB.
When a MODE=SYNCECB request processes asynchronously, system logger
maintains latent binds to the storage location specified by the answer area
(ANSAREA) fields, and, if specified, to BUFFER, BUFFER64, RETBLOCKID,
TIMESTAMP, and BLKSIZE.

v MODE=SYNCEXIT: Specifies that the request process synchronously, if
possible. if the request cannot be processed synchronously, your complete
exit (specified on the COMPLETEEXIT parameter on the IXGCONN request)
gets control when this request completes. Control returns to the caller with a
return and reason code indicating that the request is not complete. The
system passes the data specified on the REQDATA parameter, if specified, to
the complete exit.
When a MODE=SYNCEXIT request processes asynchronously, system logger
maintains latent binds to the storage location specified by the answer area
(ANSAREA) fields, and, if specified, to BUFFER, BUFFER64, RETBLOCKID,
TIMESTAMP, and BLKSIZE.
To use this parameter, the system where the application is running must be
IPLed. The application must run in supervisor state, key 0-7 to use this
parameter.

ECB=ecb
Specifies the name or address (using a register) of a 4-byte input field that
contains an event control block (ECB) to be posted when the request
completes.

Before coding ECB, you must ensure that:
v You initialize the ECB to zero.
v The ECB must reside in either common storage or the home address space at

the time the IXGBRWSE request is issued.
v The virtual storage area specified for the ECB must reside on a fullword

boundary.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default. Note that on the list form, the
default will cause the smallest parameter list to be created.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1371

ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form when both forms are
assembled using the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports both the following parameters and parameters from version 0:
– DIAG
– REQDATA

v 2, supports both the following parameters and parameters from version 0
and 1:
– MAXNUMLOGBLOCKS
– MULTIBLOCK
– RETBLOCKINFO

To code: Specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1 or 2

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where
the system will place the return code. The return code is also in general
purpose register (GPR) 15.

,RSNCODE=rsncode
Specifies a name or address (using a register) of a 4-byte output field where
the system will place the reason code. The reason code is also in general
purpose register (GPR) 0, if you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter can be specified on the list form of
the macro. IBM recommends that you always specify PLISTVER=MAX on the
list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

IXGBRWSE macro

1372 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following
order:
v Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters,

including all required ones.
v Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to

change.
v Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

ABEND codes
The IXGBRWSE service may issue abend X'1C5' with reason codes X'804', X'85F' or
X'30006'. See z/OS MVS System Codes for more information on this abend.

Return and reason codes
When IXGBRWSE macro returns control to your program, GPR 15 contains a
return code and GPR 0 contains a reason code.

Note: A program invoking the IXGBRWSE service may indicate via the MODE
parameter that requests which can not be completed synchronously should have
control returned to the caller prior to completion of the request. When the request
does complete, the invoker will be notified and the return and reason codes are in
the answer area mapped by IXGANSAA.

The IXGCON mapping macro provides equate symbols for the return and reason
codes. The equate symbols associated with each hexadecimal return code are as
follows:

00 IXGRSNCODEOK - Service completes successfully.

04 IXGRSNCODEWARNING - Service completes with a warning.

08 IXGRETCODEERROR - Service does not complete.

0C IXGRETCODECOMPERROR - Service does not complete.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1373

The following table contains hexadecimal return and reason codes, the equate
symbols associated with each reason code, and the meaning and suggested action
for each return and reason code.

Table 124. Return and Reason Codes for the IXGBRWSE Macro

Return Code Reason Code Meaning and Action

00 xxxx0000 Equate Symbol: IxgRsnCodeOk

Explanation: Request processed successfully.

04 xxxx0401 Equate Symbol: IxgRsnCodeProcessedAsynch

Explanation: Program error. The program specified
MODE=SYNCECB and the request must be
processed asynchronously.

Action: Wait for the ECB specified on the ECB
parameter to be posted, indicating that the request is
complete. Check the ANSAA_ASYNCH_RETCODE
and ANSAA_ASYNCH_RSNCODE fields, mapped
by IXGANSAA, to determine whether the request
completed successfully.

04 xxxx0402 Equate Symbol: IxgRsnCodeWarningDel

Explanation: Environment error. The request
completed successfully, but the data requested was
deleted from the log stream. The next available data
in the log stream in the direction specified is
returned.

Action: Determine whether this is an acceptable
condition for your application. If so, ignore this
condition. If not, provide serialization or some other
installation protocol to prevent deletes from being
performed by other applications on the log stream
during a browse session.

04 xxxx0403 Equate Symbol: IxgRsnCodeWarningGap

Explanation: Environment error. The request
completed successfully, but the data requested was
unreadable. The next readable data in the log stream
in the specified direction is returned. This condition
could be caused by either an I/O error while
attempting to read a log data set or a log data set
deleted without using the logger interfaces.

Action: The action necessary is completely up to the
application, depending on how critical your data is.
You can do one of the following:

v Accept this condition and continue reading.

v Stop processing the log all together.

v Attempt to get the problem rectified, if possible,
and then attempt to re-read the log data.

IXGBRWSE macro

1374 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 124. Return and Reason Codes for the IXGBRWSE Macro (continued)

Return Code Reason Code Meaning and Action

04 xxxx0405 Equate Symbol: IxgRsnCodeWarningLossOfData

Explanation: Environment error. Returned for
READCURSOR, START OLDEST and RESET
OLDEST requests. This condition occurs when a
system and coupling facility fail and not all of the
log data in the log stream could be recovered.

v For READCURSOR: A log block has been
returned, but there may be log blocks
permanently missing between this log block and
the one previously returned.

v For START OLDEST and RESET OLDEST: The
oldest log blocks in the log stream may be
permanently missing, the browse cursor is set at
the oldest available log block.

Action: If your application cannot tolerate any data
loss, stop issuing system logger services to this log
stream, disconnect from the log stream, and
reconnect to a new, undamaged log stream. You can
continue using the log stream if your applications
can tolerate data loss.

04 xxxx0416 Equate Symbol: IxgRsnCodeWarningMultiblock

Explanation: Environment error. Returned for
READCURSOR requests with MULTIBLOCK=YES
specified only. The request completed successfully,
which means that some log block data was returned,
but at least one of the log blocks returned in the
buffer area encountered a warning return code
condition. To determine which log block or blocks
encountered the warning condition, check the fields,
Ixgbrmlt_RetCode and Ixgbrmlt_RsnCode, as the log
blocks are processed by your program.

Action: The action necessary is completely up to the
application, depending on how critical your data is.
You can do one of the following:

v Accept this condition and continue reading.

v Stop processing the log all together.

v Attempt to get the problem rectified, if possible,
and then attempt to re-read the log data.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1375

Table 124. Return and Reason Codes for the IXGBRWSE Macro (continued)

Return Code Reason Code Meaning and Action

04 xxxx0417 Equate Symbol: IxgRsnCodeMultiblockErrorWarning

Explanation: Environment error. Returned for
READCURSOR requests with MULTIBLOCK=YES
specified only. A log block has been returned, but an
error condition was encountered while attempting to
read more data. This may be issued when some log
block data is returned and an end of the log stream
(eof) is reached.

Action: The action necessary is completely up to the
application, depending on how critical your data is.
You can do one of the following:

v Accept this condition and continue reading.

v Stop processing the log all together.

v Attempt to get the problem rectified, if possible,
and then attempt to re-read the log data.

08 xxxx0801 Equate Symbol: IxgRsnCodeBadParmlist

Explanation: Program error. The parameter list could
not be accessed.

Action: Ensure that the storage area for the
parameter list is accessible to the system logger for
the duration of the request. The parameter list
storage must be addressable in the caller's primary
address space and in the same key as the caller.

08 xxxx0802 Equate Symbol: IxgRsnCodeXESError

Explanation: System error. A severe cross-system
extended services (XES) error has occurred.

Action: See ANSAA_DIAG1 for the XES return code
and ANSAA_DIAG2 for the XES reason code.

08 xxxx0803 Equate Symbol: IxgRsnCodeBadBuffer

Explanation: Program error. The virtual storage area
specified on the BUFFER or BUFFER64 parameter is
not addressable. On IXGBRWSE READCURSOR
MULTIBLOCK requests, the buffer address must be
on a word boundary.

Action: Ensure that the storage area specified on the
BUFFER or BUFFER64 parameter is accessible to
system logger for the duration of the request. If the
BUFFKEY parameter is specified, make sure it
contains a valid key associated with the storage area.
If BUFFKEY is not used, ensure that the storage is in
the same key as the program at the time the logger
service was requested. The storage must be
addressable in the caller's primary address space.
For IXGBRWSE READCURSOR MULTIBLOCK
requests, put the buffer address on a word
boundary.

IXGBRWSE macro

1376 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 124. Return and Reason Codes for the IXGBRWSE Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx0804 Equate Symbol: IxgRsnCodeNoBlock

Explanation: Program error. The block identifier or
time stamp does not exist in the requested view of
the log stream. If the SEARCH parameter was
specified on a START request, the time stamp is
greater than any block in the log stream. Either the
value provided was never a valid location within the
log stream, or a prior IXGDELET request deleted the
portion of the log stream it referred to.

Action: Ensure that the value provided references an
existing portion of the log stream.

08 xxxx0806 Equate Symbol: IxgRsnCodeBadStmToken

Explanation: Program error. One of the following
occurred:

v The stream token was not valid.

v The specified request was issued from an address
space other than the connector's address space.

Action: Do one of the following:

v Make sure that the stream token specified is valid.

v Ensure that the request was issued from the
connector's address space.

08 xxxx0807 Equate Symbol: IxgRsnCodeBadBrwToken

Explanation: Program error. The browse token
specified is not valid.

Action: Ensure that the browse token being passed
to the IXGBRWSE service is the same one returned
from the IXGBRWSE REQUEST=START function.

08 xxxx080A Equate Symbol: IxgRsnCodeRequestLocked

Explanation: Program error. The program issuing the
request is holding a lock.

Action: Ensure that the program issuing the request
is not holding a lock.

08 xxxx080F Equate Symbol: IxgRsnCodeBadBufsize

Explanation: Program error. The buffer specified on
the BUFFER or BUFFER64 parameter is not large
enough to contain the next log block. No data is
returned.

Action: Obtain a buffer of at least the length
returned in the BLKSIZE parameter and then
re-issue the request.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1377

Table 124. Return and Reason Codes for the IXGBRWSE Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx0814 Equate Symbol: IxgRsnCodeNotAvailForIPL

Explanation: Environment error. The system logger
address space is not available for the remainder of
this IPL. The system issues messages about this error
during system logger initialization.

Action: See the explanation for system messages
issued during system logger initialization.

08 xxxx0815 Equate Symbol: IxgRsnCodeNotEnabled

Explanation: Program error. The program issuing the
request is not enabled for I/O and external
interrupts, so the request fails.

Action: Make sure the program issuing the request
is enabled for I/O and external interrupts.

08 xxxx0816 Equate Symbol: IxgRsnCodeBadAnslen

Explanation: Program error. The answer area length
(ANSLEN parameter) is not large enough. The
system logger returned the required size in the
Ansaa_Preferred_Size field of the answer area,
mapped by IXGANSAA macro.

Action: Re-issue the request, specifying an answer
area of the required size.

08 xxxx0817 Equate Symbol: IxgRsnCodeBadAnsarea

Explanation: Program error. The storage area
specified on the ANSAREA parameter cannot be
accessed. This may occur after the system logger
address space has terminated.

Action: Specify storage that is in the caller's primary
address space and in the same key as the calling
program at the time the system logger service was
issued. This storage must be accessible until the
request completes.

08 xxxx0818 Equate Symbol: IxgRsnCodeBadBlockidStor

Explanation: Program error. The storage area
specified by BLOCKID cannot be accessed.

Action: Ensure that the storage area is accessible to
system logger for the duration of the request. The
storage must be addressable in the caller's primary
address space and in the same key as the caller.

08 xxxx082D Equate Symbol: IxgRsnCodeExpiredStmToken

Explanation: Environment error. The stream token is
no longer valid because the connector has been
disconnected.

Action: Connect to the log stream again before
issuing any functional requests.

IXGBRWSE macro

1378 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 124. Return and Reason Codes for the IXGBRWSE Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx0836 Equate Symbol: IxgRsnCodeBadGap

Explanation: Environment error. The request failed
because the requested log data was unreadable. This
condition could be caused by either an I/O error
while attempting to read a log data set or a log data
set deleted without using logger interfaces.

Action: For an IXGBRWSE request, choose on of the
following:

v Continue processing.

v Stop processing the log stream all together.

v Attempt to get the problem rectified if possible,
then attempt to re-read the log data.

For an IXGDELET request, the block identifier of the
first accessible block toward the youngest data in the
log stream is returned in the
ANSAA_GAPS_NEXT_BLKID field in the answer
area mapped by the IXGANSAA macro. If
appropriate, re-issue the IXGDELET request using
this block identifier.

08 xxxx0837 Equate Symbol: IxgRsnCodeBadTimestamp

Explanation: Program error. The storage area
specified by TIMESTAMP cannot be accessed.

Action: Ensure that the storage area is accessible to
the system logger service for the duration of the
request. The storage must be addressable in the
caller's primary address space and in the same key
as the caller.

08 xxxx083B Equate Symbol: IxgRsncodeBadBTokenStor

Explanation: Program error. The storage area
specified by BROWSETOKEN cannot be accessed.

Action: Ensure that the storage area is accessible to
the system logger for the duration of the request.
The storage must be addressable in the caller's
primary address space and in the same key as the
caller.

08 xxxx083D Equate Symbol: IxgRsnCodeBadECBStor

Explanation: Program error. The ECB storage area
was not accessible to the system logger.

Action: Ensure that the storage area is accessible to
the system logger for the duration of the request.
The storage must be addressable in the caller's home
address space and in the same key as the caller.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1379

Table 124. Return and Reason Codes for the IXGBRWSE Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx083F Equate Symbol: IxgRsnCodeTestartError

Explanation: System error. An unexpected error was
encountered while attempting to validate the buffer
ALET.

Action: See ANSAA_DIAG1 in the answer area
mapped by the IXGANSAA macro for the return
code from the TESTART system service.

08 xxxx0841 Equate Symbol: IxgRsnCodeBadBufferAlet

Explanation: Program error. The buffer ALET
specified is not zero and does not represent a valid
entry on the caller's dispatchable unit access list
(DUAL). See the ANSAA_DIAG1 field of the answer
area, mapped by the IXGANSAA macro, for the
return code from the TESTART system service.

Action: Ensure that the correct ALET was specified.
If not, provide the correct ALET. Otherwise, add the
correct ALET to dispatchable unit access list
(DUAL).

08 xxxx0845 Equate Symbol: IxgRsnCodeInvalidFunc

Explanation: System error. One of 2 problems was
detected.

1. The parameter list for this service contains an
unrecognizable function code. The parameter list
storage may have been overlayed.

2. The IXGBRWSE START is rejected because either:

v A: An unauthorized caller attempted to start a
session when 100 or more browse sessions
already exist for this connection. Or,

v B: An unauthorized caller attempted to start a
session when 20 or more browse sessions
already exist that show no recent activity. (An
unauthorized caller is a caller whose PSW Key
is >= 8 and that is not in supervisor state).

For Case 2: DIAG1 in the Answer Area will contain
1 if 'A' is the case, and 2 if 'B' is the case.

DIAG2 will contain the number of browse sessions
that was exceeded.

Action: Fix the problem and then re-issue the
request. It may be necessary to terminate some
Browse sessions that are not being used.

08 xxxx0846 Equate Symbol: IxgRsnCodeEmptyStream

Explanation: Environment error. The log stream is
empty.

Action: Wait for data to be written to the log stream
before browsing for data.

IXGBRWSE macro

1380 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 124. Return and Reason Codes for the IXGBRWSE Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx0847 Equate Symbol: IxgRsnCodeEOFDelete

Explanation: Environment error. The request
prematurely reached the beginning or the end of the
log stream. The portion of the log stream from the
requested log data to either the beginning or the end
of the log stream (depending on the direction of the
read) was deleted from the log stream.

Action: Determine whether this is an acceptable
condition for your application. If so, ignore this
condition. If not, provide serialization on the log
stream or some other installation protocol to prevent
deletes from being performed by other applications
during a browse session.

08 xxxx0848 Equate Symbol: IxgRsnCodeEndReached

Explanation: Environment error. The request failed
and no log data is returned. For a READCURSOR
request, the end of the log stream has been reached
in the direction of the read. If the SEARCH
parameter was specified on a READBLOCK request,
the time stamp is greater than any block in the log
stream.

Action: For the READCURSOR case, no more data
exists in the log stream in the direction of the read.
You can choose to stop reading, wait for more data
to be written, or change the direction of the read. In
the case where the SEARCH parameter was
provided, ensure that the time stamp is less than or
equal to the highest time stamp of a log block in the
log stream.

08 xxxx0849 Equate Symbol: IxgRsnCodeBadBuffkey

Explanation: Program error. The buffer key specified
on the BUFFKEY parameter specifies an invalid key.
Either the key is greater than 15 or the program is
running in problem state and the specified key is not
the same key as the PSW key at the time the system
logger service was issued.

Action: For problem state programs, either do not
specify the BUFFKEY parameter or else specify the
same key as the PSW key at the time the system
logger service was issued. For supervisor state
programs, specify a valid storage key (0 <= key <=
15).

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1381

Table 124. Return and Reason Codes for the IXGBRWSE Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx084A Equate Symbol: IxgRsnCodeEOFGap

Explanation: Environment error. The request
prematurely reached the beginning or the end of the
log stream. The portion of the log stream from the
requested log data to either the beginning or the end
of the log stream (depending on the direction of the
read) was unreadable. This condition may be caused
by either an I/O error while trying to read a log
data set, or a log data set deleted without using
logger interfaces.

Action: The action necessary is completely up to the
application depending on how critical your data is.
You can do one of the following:

v Accept this condition and continue reading.

v Stop processing the log all together.

v Attempt to get the problem rectified, if possible,
and then attempt to re-issue the request.

08 xxxx084B Equate Symbol: IxgRsncodeLossOfDataGap

Explanation: Environment error. The requested log
data referenced a section of the log stream where log
data is permanently missing. This condition occurs
when a system or coupling facility is in recovery due
to a failure, but not all of the log data in the log
stream could be recovered.

Action: If your application cannot tolerate any data
loss, stop issuing system logger services to this log
stream, disconnect from the log stream, and
reconnect to a new, undamaged log stream. You can
continue using the log stream if your applications
can tolerate data loss.

08 xxxx084D Equate Symbol: IxgRsnCodeLossOfDataEOF

Explanation: Environment error. The request
prematurely reached the beginning or the end of the
log stream. The portion of the log stream from the
requested log data to either the beginning or the end
of the log stream (depending on direction of the
read) was permanently lost. This condition occurs
when a system or coupling facility is in recovery due
to a failure, but not all of the log data in the log
stream could be recovered.

Action: If your application cannot tolerate any data
loss, stop issuing system logger services to this log
stream, disconnect from the log stream, and
reconnect to a new, undamaged log stream. You can
continue using the log stream if your applications
can tolerate data loss.

IXGBRWSE macro

1382 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 124. Return and Reason Codes for the IXGBRWSE Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx0852 Equate Symbol: IxgRsnCodeBadBlkSizeStor

Explanation: Program error. The storage area
specified on the BLKSIZE parameter cannot be
accessed.

Action: Ensure that the storage area is accessible to
system logger for the duration of the request.

08 xxxx085F Equate Symbol: IxgRsnPercToRequestor

Explanation: Environment error. Percolation to the
service requestor's task occurred because of an
abend during system logger processing. Retry was
not allowed.

Action: Issue the request again. If the problem
persists, contact the IBM Support Center.

08 xxxx0861 Equate Symbol: IxgRsnCodeRebuildInProgress

Explanation: Environment error. No requests can be
processed for this log stream because a coupling
facility structure re-build is in progress for the
structure associated with this log stream.

Action: Listen for ENF signal 48 that will indicate
one of the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not
available.

08 xxxx0862 Equate Symbol: IxgRsnCodeXESPurge

Explanation: Environment error. An cross-system
extended services (XES) request has been purged
due to re-build processing.

Action: Listen for ENF signal 48 that will indicate
one of the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not
available.

08 xxxx0863 Equate Symbol: IxgRsnCodeStructureFailed

Explanation: Environment error. Either the coupling
facility structure associated with the log stream has
failed or the coupling facility itself has failed.

Action: Listen for ENF signal 48 that will indicate
one of the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not
available.

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1383

Table 124. Return and Reason Codes for the IXGBRWSE Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx0864 Equate Symbol: IxgRsnCodeNoConnectivity

Explanation: Environment error. No connectivity
exists to the coupling facility associated with the log
stream. The system logger will either attempt to
re-build the log stream in another coupling facility
or the log stream will be disconnected.

Action: Listen for ENF signal 48 that will indicate
one of the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not
available.

v The log stream has been disconnected from this
system.

If a re-build initiated because of a loss of
connectivity previously failed, an ENF
corresponding to this reason code might not be
issued. Further action by the installation might be
necessary to cause the change of the log stream
status again. Check the log for messages IXG101I,
IXG107I and related rebuild messages for
information on resolving any outstanding issues.

08 xxxx0890 Equate Symbol: IxgRsnCodeAddrSpaceNotAvail

Explanation: System error. The system logger
address space failed and is not available.

Action: Do not issue system logger requests.

08 xxxx0891 Equate Symbol: IxgRsnCodeAddrSpaceInitializing

Explanation: System error. The system logger
address space is not available because it is IPLing.

Action: Listen for ENF signal 48, which will indicate
when the system logger address space is available.
Re-connect to the log stream, then re-issue this
request. You can also listen for ENF signal 48, which
will indicate if the system logger address space will
not be available for the life of the IPL. In that case,
do not issue system logger services.

08 xxxx08D0 Equate Symbol: IxgRsnCodeProblemState

Explanation: Environment error. The request was
rejected because of one of the following:

v The request was issued in SRB mode while the
requestor was in problem program state.

v The SYNCEXIT parameter was specified while the
requestor's PSW key was in problem program key.

Action: Change the invoking environment to
supervisor state.

IXGBRWSE macro

1384 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 124. Return and Reason Codes for the IXGBRWSE Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx08D1 Equate Symbol: IxgRsnCodeProgramKey

Explanation: Environment error. The request was
rejected because of one of the following:

v The request was issued in SRB mode while the
requestor was in problem program key (key 8-F).

v The SYNCEXIT parameter was specified while the
requestor's PSW key was in problem program key.

Action: Change the invoking environment to a
system key (key 0-7).

08 xxxx08D2 Equate Symbol: IxgRsnCodeNoCompleteExit

Explanation: Program error. MODE=SYNCEXIT was
specified, but the connection request did not identify
a complete exit.

Action: Either change this request to a different
MODE option, or reconnect to the log stream with a
complete exit on the COMPLETEXIT parameter.

08 xxxx08D3 Equate Symbol: IxgRsnCodeFuncNotSupported

Explanation: Environment error. The options
specified on the IXGBRWSE request are not
supported on this system/maintenance level of
system logger.

Action: Either install the level of system logger that
provides the support for the requested function, or
do not specify options that are not supported at this
level.

0C xxxx0000 Equate Symbol: IxgRetCodeCompError

Explanation: User or System error. One of the
following occurred:

v You issued the FORCE IXGLOGR,ARM command
to terminate the system logger address space.

v System logger component error occurred.

Action: If this reason code is not the result of forcing
the system logger address space, search problem
reporting data bases for a fix for the problem. If no
fix exists, contact the IBM Support Center. Provide
the diagnostic data in the answer area (IXGANSAA)
and any dumps or LOGREC entries from system
logger.

Examples
Example 1

Issue IXGBRWSE REQUEST=START to start a browse session, starting the browse
cursor at the log block with the specified local time.

IXGBRWSE REQUEST=START, X
STREAMTOKEN=TOKEN, X
SEARCH=SRCHTIME, X

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1385

GMT=NO, X
BROWSETOKEN=BRSTOKEN, X
MODE=SYNC, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

ANSLEN DC A(L’ANSAREA) length of logger’s answer area
TOKEN DS CL16 stream token from connect
SRCHTIME DS 2F local search time in stck format
BRSTOKEN DS CL4 returned browse token
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT

IXGANSAA LIST=YES answer area

Example 2

Issue IXGBRWSE REQUEST=READCURSOR to read the next consecutive log block
in the specified direction. In this example, the default of MULTIBLOCK=NO has
been taken.

IXGBRWSE REQUEST=READCURSOR, X
STREAMTOKEN=TOKEN, X
BUFFER=BUFF, X
BUFFLEN=BUFFLEN, X
BUFFALET=ALET, X
BLKSIZE=BLKSIZE, X
DIRECTION=OLDTOYOUNG, X
RETBLOCKID=RETBLK, X
TIMESTAMP=TIMESTMP, X
BROWSETOKEN=BRSTOKEN, X
MODE=SYNC, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

ANSLEN DC A(L’ANSAREA) length of logger’s answer area
BUFFLEN DC F’200’ buffer length
TOKEN DS CL16 stream token from connect
BRSTOKEN DS CL4 returned browse token
BUFF DS CL200 buffer where data will be put
ALET DC F’1’ buffer alet in secondary
BLKSIZE DS F block size of buffer
RETBLK DS CL8 return block id
TIMESTMP DS CL16 returned time stamp stck format
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT

IXGANSAA LIST=YES answer area

Example 3

Issue IXGBRWSE REQUEST=READBLOCK to read a log block selected by block
identifier.

IXGBRWSE REQUEST=READBLOCK, X
STREAMTOKEN=TOKEN, X
BLOCKID=BLKID, X
BUFFER=BUFF, X
BUFFLEN=BUFFLEN, X
BUFFALET=ALET, X

IXGBRWSE macro

1386 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

BLKSIZE=BLKSIZE, X
RETBLOCKID=RETBLK, X
TIMESTAMP=TIMESTMP, X
BROWSETOKEN=BRSTOKEN, X
MODE=SYNC, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

ANSLEN DC A(L’ANSAREA) length of logger’s answer area
BUFFLEN DC F’200’ buffer length
TOKEN DS CL16 stream token from connect
BRSTOKEN DS CL4 returned browse token
BUFF DS CL200 buffer where data will be put
ALET DS F’1’ buffer alet in secondary
BLKSIZE DS F block size of buffer
RETBLK DS CL8 return block id
BLKID DS CL8 specific block id to browse
TIMESTMP DS CL16 returned time stamp stck format
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT

IXGANSAA LIST=YES answer area

Example 4

Issue IXGBRWSE REQUEST=RESET to reset the cursor at the youngest block in the
log stream.

IXGBRWSE REQUEST=RESET, X
STREAMTOKEN=TOKEN, X
POSITION=YOUNGEST, X
BROWSETOKEN=BRSTOKEN, X
MODE=SYNC, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

ANSLEN DC A(L’ANSAREA) length of logger’s answer area
TOKEN DS CL16 stream token from connect
BRSTOKEN DS CL4 returned browse token
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT

IXGANSAA LIST=YES answer area

Example 5

Issue IXGBRWSE REQUEST=END to end a browse session.
IXGBRWSE REQUEST=END, X

STREAMTOKEN=TOKEN, X
BROWSETOKEN=BRSTOKEN, X
MODE=SYNC, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

ANSLEN DC A(L’ANSAREA) length of logger’s answer area
TOKEN DS CL16 stream token from connect
BRSTOKEN DS CL4 browse token from browse start
ANSAREA DS CL(ANSAA_LEN) answer area for log requests

IXGBRWSE macro

Chapter 138. IXGBRWSE — Browse/read a log stream 1387

RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT

IXGANSAA LIST=YES answer area

Example 6

Issue IXGBRWSE REQUEST=END to end a browse session asynchronously, if
synchronous processing is not possible.

IXGBRWSE REQUEST=END, X
STREAMTOKEN=TOKEN, X
BROWSETOKEN=BRSTOKEN, X
MODE=SYNCECB, X
ECB=ANECB, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

*++
* if rsncode = ’00000401’X then wait on
* the ecb ANECB.
*++
ANSLEN DC A(L’ANSAREA) length of logger’s answer area
TOKEN DS CL16 stream token from connect
BRSTOKEN DS CL4 browse token from browse start
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
ANECB DS F ecb on which to wait
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT

IXGANSAA LIST=YES answer area

Example 7

Issue IXGBRWSE REQUEST=END using registers.
LA R6,TOKEN place stream token in reg 6
IXGBRWSE REQUEST=END, X

STREAMTOKEN=(6), X
BROWSETOKEN=BRSTOKEN, X
MODE=SYNC, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

ANSLEN DC A(L’ANSAREA) length of logger’s answer area
TOKEN DS CL16 stream token from connect
BRSTOKEN DS CL4 browse token from browse start
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT

IXGANSAA LIST=YES answer area
R6 EQU 6

IXGBRWSE macro

1388 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 139. IXGCONN — Connect/disconnect to log stream

Description
Use the IXGCONN macro to connect a program to a specific log stream or
disconnect a program from a specific log stream.

IXGCONN returns a unique connection identifier called a stream token on
completion of the IXGCONN REQUEST=CONNECT request. Subsequent logger
services use the stream token to identify the connection. If multiple applications
connect to the same log stream, the log blocks written from the different
applications are merged.

The IXGCONN connect service can be used in the following ways:
v Once a program has connected to a log stream, any application running in the

same address space shares the connect status and may share the same stream
token to issue other logger services. Any program in the address space can
disconnect the entire address space from the log stream by issuing the
IXGCONN REQUEST=DISCONNECT service.

v Multiple programs in a single address space can issue IXGCONN
REQUEST=CONNECT individually to connect to the same log stream and
receive separate stream tokens. Each program must disconnect from the log
stream individually.

v Multiple address spaces on one or more MVS systems may connect to a single
log stream, but each one must issue IXGCONN individually to connect and then
disconnect from the log stream. Each one receives a unique stream token;
address spaces cannot share a stream token.
Note that a DASD-only log stream is single-system in scope. This means that
only one system may connect to a DASD-only log stream, although there can be
multiple connections from that one system.

The parameter descriptions indicate parameters that can only be used in supervisor
state, PSW key zero. All others can be used in problem or supervisor state with
any PSW key.

For information about using the system logger services and the IXGCONN request,
see z/OS MVS Programming: Assembler Services Guide which includes information
about related macros IXGBRWSE, IXGDELET, IXGWRITE, IXGINVNT, and
IXGQUERY.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN, any SASN
AMODE: 31-bit or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks may be held.

© Copyright IBM Corp. 1988, 2016 1389

Environmental factor Requirement
Control parameters: None.

Programming requirements
v The parameter list for this service must be addressable in the caller's primary

address space.
v Include the IXGCON mapping macro in your program. This macro provides a

list of equate symbols for the system logger services.
v Include mapping macro IXGANSAA in your program. This macro shows the

format of the answer area output returned for each system logger service in the
ANSAREA parameter.

v If you use IXGCONN REQUEST=CONNECT,...,MF=(E,parmlist,NOCHECK)
with either the STREAMTOKEN=xxxx or the USERDATA=yyyy keyword, the
following procedure must be followed. When the processing is complete, move
the STREAMTOKEN or USERDATA values from the parameter list specified on
MF= to your own storage.

v Each task that issues IXGCONN REQUEST=CONNECT to connect to a log
stream must later issue IXGCONN REQUEST=DISCONNECT to disconnect from
the log stream. When a task disconnects from the log stream, the stream token
that identified the connection expires. Any requests that use the stream token
after the disconnect are rejected with reason code X'82D'.

v If a task that issued the IXGCONN REQUEST=CONNECT request ends before
issuing a disconnect request, system logger automatically disconnects the task
from the log stream. This means that the unique log stream connection identifier,
or the STREAMTOKEN, is no longer valid. The application receives an expired
log stream token error response with reason code X'82D', if this application
continues to use the same STREAMTOKEN after the task has been disconnected
on subsequent logger service requests.

v Any job step task (JST) terminates within the address space that has a
connection to the log stream. System logger treats any job step task termination
in a manner similar to an address space termination. That is, all log stream
connections are disconnected and logger associations are terminated with the
address space.
If this condition occurs and there remains an expected use of a log stream, then
a new log stream connection will be required.

Restrictions
v All storage areas specified in this service must be in the same storage key as the

caller's storage key and must exist in the caller's primary address space.
v The caller cannot have an EUT FRR established.
v If the System Authorization Facility (SAF) is available, the system performs SAF

authorization checks on all IXGCONN REQUEST=CONNECT requests in order
to protect the integrity of data in a log stream.
To connect successfully to a log stream, the caller must have SAF authorization
that matches the authorization required for the log stream:
– To connect to a log stream with an authorization level of READ, the caller

must have read access to RESOURCE(log_stream_name) in SAF class
CLASS(LOGSTRM).

– To connect to a log stream with an authorization level of WRITE, the caller
must have alter access to RESOURCE(log_stream_name) in SAF class
CLASS(LOGSTRM).

IXGCONN macro

1390 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|

If SAF is not available or if CLASS(LOGSTRM) is not defined to SAF, no security
checking is performed. In that case, the caller is connected to the log stream with
the requested or default AUTH parameter value.

v There is more than one version of this macro available. The parameters you can
use depend on the version you specify on the PLISTVER parameter. See the
description of the PLISTVER parameter for more information.

Input register information
Before issuing the IXGCONN macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if register 15 contains a non-zero return code

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as a work register by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
Some messages and WTORs can be issued to delay or fail the IXGCONN Request.
These messages and WTORs are issued when Logger is waiting for other system
services. The following messages may need to be replied to, or other action taken:
v IXG054A - LOGR CDS not yet made available for Logger's use
v IXG254I - SMS is not yet active
v IXG115A - Log stream recovery not making progress trying to move recovered

log data to secondary (offload) data sets.
See the topic on IXG Messages in z/OS MVS System Messages, Vol 10 (IXC-IZP)
for more information about IXG messages.

IXGCONN macro

Chapter 139. IXGCONN — Connect/disconnect to log stream 1391

Syntax
The standard form of the IXGCONN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IXGCONN.

IXGCONN

� One or more blanks must follow IXGCONN.

Valid parameters (Required parameters are
underlined.)

REQUEST=CONNECT All parameters are valid.

REQUEST=DISCONNECT STREAMTOKEN, ANSAREA, ANSLEN,
USERDATA, RETCODE, RSNCODE, MF

,STREAMNAME=streamname streamname: RS-type address or register (2) - (12).

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

,AUTH=READ Default: AUTH=READ

,AUTH=WRITE

,STRUCTNAME=structname structname: RS-type address or register (2) - (12).

,AVGBUFSIZE=avgbufsize avgbufsize: RS-type address or register (2) - (12).

,MAXBUFSIZE=maxbufsize maxbufsize: RS-type address or register (2) - (12).

,ELEMENTSIZE=elementsize elementsize: RS-type address or register (2) - (12).

,LSVERSION=lsversion lsversion: RS-type address or register (2) - (12).

,COMPLETEEXIT=completeexit completeexit: RS-type address or register (2) -
(12).

IXGCONN macro

1392 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,USERDATA=userdata userdata: RS-type address or register (2) - (12).

,IMPORTCONNECT=NO Default: IMPORTCONNECT=NO

,IMPORTCONNECT=YES

,DIAG=NO_DIAG Default: DIAG=NO_DIAG

,DIAG=NO

,DIAG=YES

,RMNAME=rmname rmname: RS-type address or register (2) - (12).

,RMEXIT=rmexit rmexit: RS-type address or register (2) - (12).

,RMDATA=rmdata rmdata: RS-type address or register (2) - (12).

,RMEVENTS=LBWRITE

,RMEVENTS=LBDELETE

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=1

,PLISTVER=2

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

IXGCONN macro

Chapter 139. IXGCONN — Connect/disconnect to log stream 1393

Parameters
The parameters are explained as follows:

REQUEST=CONNECT
REQUEST=DISCONNECT

Input parameter specifying whether the program is connecting to or
disconnecting from the specified log stream.

When you specify CONNECT, all parameters are valid. Keywords required
with connect are: STREAMNAME, STREAMTOKEN, ANSAREA, and
ANSLEN.

When you specify DISCONNECT, the following parameters are valid (required
parameters are underlined): STREAMTOKEN, ANSAREA, ANSLEN,
USERDATA, RETCODE, RSNCODE, and MF.

,STREAMNAME=streamname
Specifies the 26-byte field (or register) containing the name of the log stream to
which a program is connecting. You must use the name you defined for the log
stream in the LOGR policy, see the IXGINVNT macro for information on the
syntax of log stream names in the LOGR policy.

,STREAMTOKEN=streamtoken
Specifies the 16-byte token uniquely identifying the program's connection to
the log stream.

When specified with REQUEST=CONNECT, STREAMTOKEN is an output
parameter where IXGCONN places the log stream token when the macro
completes successfully.

When specified with REQUEST=DISCONNECT or other logger services,
STREAMTOKEN is an input parameter where you specify the log stream token
returned at connection.

,ANSAREA=ansarea
Specifies the name (or address in a register) of an answer area containing
information about this request. The answer area must be at least 40 bytes. To
map this information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the
answer area length. The length of the answer area must be at least 40 bytes
and must be the same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the
ANSAA_PREFERRED_SIZE field of the IXGANSAA macro.

,AUTH=READ
,AUTH=WRITE

Specifies whether the caller has write or read access to the specified log stream.

If you specify AUTH=READ when connecting to a log stream, the program
must also have read access authority to SAF resource(logstream_name) in
CLASS(LOGSTRM) for the specified log stream. You can then issue only the
IXGBRWSE and IXGQUERY requests against the log stream.

If you specify AUTH=WRITE when connecting to a log stream, the program
must also have write access authority to SAF resource(logstream_name) in
CLASS(LOGSTRM) for the specified log stream. You can then issue any system
logger request against the log stream.

IXGCONN macro

1394 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,STRUCTNAME=structname
Specifies the name or address (using a register) of a 16-byte output field where
IXGCONN REQUEST=CONNECT will return the name of the coupling facility
structure that the log stream is connected to. The name comes from the LOGR
policy.

If you are connecting to a DASD-only log stream, this field will contain binary
zeros. In addition, flag Ansaa_DasdOnlyLogStream in macro IXGANSAA will
be set on for a DASD-only log stream.

,MAXBUFSIZE=maxbufsize
Specifies the name or address (using a register) of a 4-byte output field where
IXGCONN returns the size, in bytes, of the largest log block that can be
written to this log stream.

MAXBUFSIZE is defined in the LOGR policy.

,AVGBUFSIZE=avgbufsize
Specifies the name or address (using a register) of a 4-byte output field where
IXGCONN returns the average size, in bytes, of individual log blocks that can
be written to the coupling facility structure associated with this log stream.

AVGBUFSIZE is defined in the LOGR policy.
v If you are using a LOGR couple data set for a coupling facility log stream,

this value shows the initial setting used to determine the element-to-entry
ratio. system logger monitors structure usage and adjusts the average buffer
size dynamically, but the AVGBUFSIZE value returned by IXGCONN will
always reflect the original setting rather than the actual value in use by
system logger at any given time.

v If you are connecting to a DASD-only log stream, this field will contain
binary zeros. In addition, flag Ansaa_DasdOnlyLogStream in macro
IXGANSAA will be set on for a DASD-only log stream.

,ELEMENTSIZE=elementsize
Specifies the name or address (using a register) of a 4-byte output field where
IXGCONN returns the size of the elements that system logger will break the
log blocks into to write them to the coupling facility associated with this log
stream.

If you are connecting to a DASD-only log stream, this field will contain binary
zeros. In addition, flag Ansaa_DasdOnlyLogStream in macro IXGANSAA will
be set on for a DASD-only log stream.

,LSVERSION=lsversion
Specifies the name or address (using a register) of a 64-bit output field where
IXGCONN returns the version of the log stream the program is connecting to.

The log stream version is a UTC timestamp that uniquely identifies the
instance of the log stream definition. A program can use the log stream version
to see if a log stream definition has been deleted and redefined since the last
connect to a log stream.

For example, assume you connect to log stream LS1 and IXGCONN returns a
log steam version of X'AA00000000000000', which the program saves. On a
subsequent connection to log stream LS1, IXGCONN returns a different log
stream version, which indicates that the definition for log stream LS1 in the
LOGR policy has been deleted and redefined since the last connection.

,COMPLETEEXIT=completeexit
Specifies the name or address (using a register) of a user exit called a complete
exit. Use this parameter to specify a complete exit for the caller. The complete

IXGCONN macro

Chapter 139. IXGCONN — Connect/disconnect to log stream 1395

exit gets control when the system processes IXGBRWSE, IXGDELET, or
IXGWRITE requests that specify MODE=SYNCEXIT asynchronously. The
complete exit receives control in SRB mode, supervisor state, key 0, enabled,
and unlocked.

If you specify a name for this parameter, it must be the name of an entry point
addressable in the invoking load module. For example, the name can be a
routine name that exits in the invoking module or a CSECT link-edited into the
invoking load module.

The caller must ensure that the complete exit routine is loaded into either
private storage in the connector's primary address space or common storage.
The exit must remain loaded in storage until all asynchronous requests that
have specified SYNCEXIT with the log stream token returned by this connect
request have completed. Even if the log stream is disconnected, you cannot
assume that all SYNCEXIT requests have completed.

For more information on coding a complete exit and the environment where
the complete exit runs, see z/OS MVS Programming: Assembler Services Guide.

,USERDATA=userdata
Specifies a 64-byte input/output field containing a user data area.

When specified with REQUEST=CONNECT, USERDATA is an output
parameter where IXGCONN returns the user data specified for this log stream.

When specified with REQUEST=DISCONNECT, USERDATA is an input
parameter where you can specify or update the user data the user data for the
specified log stream. You can only specify or change the user data for a log
stream on a disconnect request.

,IMPORTCONNECT=NO
,IMPORTCONNECT=YES

Specifies whether the connection is for writing or importing log data to a log
stream. You must specify AUTH=WRITE to use the IMPORTCONNECT
parameter.

If you specify IMPORTCONNECT=YES, this connection will be used for
importing data to a log stream. Importing log data means using the IXGIMPRT
service to copy data from one log stream to another, maintaining the same log
block identifier and UTC time stamp. IXGWRITE requests are not valid with
IMPORTCONNECT=YES. You can have only one IMPORTCONNECT=YES
connection active for a log stream in the sysplex.

If you specify IMPORTCONNECT=NO, which is the default, the connect
request is a write connection. In a write connection, only IXGWRITE requests
can be issued against the log stream, IXGIMPRT requests will be rejected.

You can have multiple write connects to a log stream, provided there are no
import connections. If you have a write connect established against a log
stream, a subsequent import connection will be rejected. You cannot, in other
words, issue both IXGIMPRT and IXGWRITE requests against a single log
stream.

,RMNAME=rmname
Specifies the name (or address in a register) of the 8-byte input field containing
the name of the resource manager program connecting to the log stream. The
resource manager name specified on the IXGCONN request must be the same
as the one associated with the log stream in the log stream definition in the
LOGR policy. The application must run in supervisor state, key 0-7 to use this
parameter.

IXGCONN macro

1396 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

The RMNAME parameter is specified only by the resource manager at connect
time, to tell system logger that it is connecting to a log stream. Other
connections to a resource manager managed log stream do not have to specify
RMNAME. Note that a resource manager can only connect to one log stream
per system.

The active primary LOGR couple data set must be formatted at the z/OS level
to use this parameter.

,RMEXIT=rmexit
Specifies the name (or address in a register) of the input field containing the
address of user exit for the resource manager. The application must run in
supervisor state, key 0-7 to use this parameter.

RMEXIT is required with the RMNAME parameter, even though use of a
resource manager exit is optional. The exit is called only if the resource
manager monitors write and/or delete events as selected on the RMEVENT
parameter.

The active primary LOGR couple data set must be formatted at the z/OS level
to use this parameter.

RMEXIT is required when you specify RMNAME.

,RMDATA=rmdata
Specifies the name (or address in a register) of the 8-byte input field containing
the data for the user exit. The application must run in supervisor state, key 0-7
to use this parameter.

RMDATA is required with the RMNAME parameter.

The active primary LOGR couple data set must be formatted at the z/OS level
to use this parameter.

,RMEVENT=LBWRITE
,RMEVENT=LBDELETE

Input parameter specifying the events that you want to trigger the resource
manager user exit. RMEVENT is required with the RMNAME parameter. You
can specify RMEVENTS=LBWRITE, RMEVENTS=LBDELETE, or
RMEVENTS=(LBWRITE,LBDELETE). The application must run in supervisor
state, key 0-7 to use this parameter.

If you specify RMEVENT=LBWRITE, successful write requests to the log
stream will trigger the resource manager user exit.

If you specify RMEVENT=LBDELETE, successful delete requests to the log
stream will trigger the resource manager user exit.

The active primary LOGR couple data set must be formatted at the z/OS level
to use this parameter.

,DIAG=NO_DIAG
,DIAG=NO
,DIAG=YES

Specifies whether Logger should provide additional diagnostics as specified on
the logstream definition DIAG parameter. This indication is used over the span
of this connectoin. Refer to the DIAG keyword on the IXGINVNT, IXGBRWSE,
and IXGDELET macro services.

If you specify DIAG=NO_DIAG, which is the default, then Logger will not
provide the additional diagnostics as specified on the logstream definition
DIAG parameter, unless another Logger service, for example, IXGBRWSE,
specifically requests the additional diagnostics.

IXGCONN macro

Chapter 139. IXGCONN — Connect/disconnect to log stream 1397

If you specify DIAG=NO, the Logger will not provide the additional
diagnostics as specified on the logstream definition DIAG parameter, regardless
of other Logger service specifications.

If you specify DIAG=YES, then Logger will provide additional diagnostics as
specified on the logstream definition DIAG parameter, unless another Logger
service, for example, IXGDELET, specifically requests not to provide the
additional diagnostics.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default. Note that on the list form, the
default will cause the smallest parameter list to be created.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form when both forms are
assembled using the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 1, which supports all parameters except those specifically referenced in
higher versions.

v 2, which supports both the following parameters and parameters from
version 1:
– COMPLETEEXIT
– IMPORTCONNECT
– LSVERSION
– RMDATA
– RMEVENTS
– RMEXIT
– RMNAME

To code: specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1 or 2

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where
the system will place the return code. The return code is also in general
purpose register (GPR) 15.

,RSNCODE=rsncode
Specifies a name (or address in a register) of a 4-byte output field where the

IXGCONN macro

1398 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

system will place the reason code. The reason code is also in general purpose
register (GPR) 0, if you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter can be specified on the list form of
the macro. IBM recommends that you always specify PLISTVER=MAX on the
list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following
order:
v Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters,

including all required ones.
v Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to

change.
v Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

IXGCONN macro

Chapter 139. IXGCONN — Connect/disconnect to log stream 1399

ABEND codes
None.

Return and reason codes
When IXGCONN macro returns control to your program, GPR 15 contains a return
code and GPR 0 contains a reason code.

The IXGCON mapping macro provides equate symbols for the return and reason
codes. The equate symbols associated with each hexadecimal return code are as
follows:

00 IXGRETCODEOK - Service completes successfully.

04 IXGRETCODEWARNING - Service completes with a warning.

08 IXGRETCODEERROR - Service does not complete.

0C IXGRETCODECOMPERROR - Service does not complete.

The following table contains hexadecimal return and reason codes, the equate
symbols associated with each reason code, and the meaning and suggested action
for each return and reason code.

Table 125. Return and reason codes for the IXGCONN macro

Return code Reason code Meaning and zction

00 xxxx0000 Equate symbol: IxgRsnCodeOk

Explanation: Request processed successfully.

04 xxxx0404 Equate symbol: IxgRsnCodeDisconnectInProgress

Explanation: Environment error. The disconnect
request is being completed asynchronously. The
application has been disconnected from the log
stream and the stream token is no longer valid.

Action: The log stream cannot be deleted until the
asynchronous portion of the disconnect processing
completes.

04 xxxx0406 Equate symbol: IxgRsnCodeConnectRebuild

Explanation: Environment error. The connect request
was successful, but the log stream is temporarily
unavailable because a coupling facility structure
re-build is in progress.

Action: Listen to the ENF signal 48, which will
indicate either that the log stream is available
because the re-build completed successfully or that
the log stream is not available because the re-build
failed. In the meantime, do not attempt to issue
system logger services against the log stream.

IXGCONN macro

1400 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 125. Return and reason codes for the IXGCONN macro (continued)

Return code Reason code Meaning and zction

04 xxxx0407 Equate symbol:
IxgRsnCodeConnPossibleLossOfData

Explanation: Environment error. The request was
successful, but there may be log blocks permanently
missing between this log block and the one
previously returned. This condition occurs when a
system or coupling facility fails and not all of the
data in the log stream could be recovered.

Action: If your application cannot tolerate any data
loss, stop issuing system logger services to this log
stream, disconnect from the log stream, and
reconnect to a new, undamaged log stream. You can
continue using the log stream if your applications
can tolerate data loss.

04 xxxx0408 Equate symbol: IxgRsnCodeDsDirectoryFullWarning

Explanation: Environment error. The request was
successful, but the DASD data set directory for the
log stream is now full. system logger cannot offload
any further data to DASD. system logger will
continue to process IXGWRITE requests only until
the coupling facility structure space for this log
stream is full.

Action: Either delete data from the log stream to free
up space in the data set directory or disconnect from
the log stream.

04 xxxx0409 Equate symbol: IxgRsnCodeWowWarning

Explanation: Environment error. The request was
successful, but an error condition was detected
during a previous offload of data. system logger
might not be able to offload further data. system
logger will continue to process IXGWRITE requests
only until the interim storage for the log stream is
filled. (Interim storage is the coupling facility for a
coupling facility log stream and local storage buffers
for a DASD-only log stream.)

Action: Do not issue any further requests for this log
stream and disconnect. Connect to another log
stream. Check the system log for message IXG301I to
determine the cause of the error. If you cannot fix
the error, search problem reporting data bases for a
fix for the problem. If no fix exists, contact the IBM
Support Center.

08 xxxx0801 Equate symbol: IxgRsnCodeBadParmlist

Explanation: Program error. The parameter list could
not be accessed.

Action: Ensure that the storage area for the
parameter list is accessible to the system logger for
the duration of the request. The parameter list
storage must be addressable in the caller's primary
address space and in the same key as the caller.

IXGCONN macro

Chapter 139. IXGCONN — Connect/disconnect to log stream 1401

Table 125. Return and reason codes for the IXGCONN macro (continued)

Return code Reason code Meaning and zction

08 xxxx0802 Equate symbol: IxgRsnCodeXESError

Explanation: System error. A severe cross-system
extended services (XES) error has occurred.

Action: See ANSAA_DIAG1 for the XES return code
and ANSAA_DIAG2 for the XES reason code.

08 xxxx0806 Equate symbol: IxgRsnCodeBadStmToken

Explanation: Program error. The stream token was
not valid.

Action: Make sure that the stream token specified is
valid.

08 xxxx0808 Equate symbol: IxgRsnCodeEIOError

Explanation: System error. A severe log data set I/O
error has occurred.

Action: Contact the IBM Support Center. Provide the
return and reason code.

08 xxxx080A Equate symbol: IxgRsnCodeRequestLocked

Explanation: Program error. The program issuing the
request is holding a lock.

Action: Ensure that the program issuing the request
is not holding a lock.

08 xxxx080B Equate symbol: IxgRsnCodeNoStream

Explanation: Program error. The log stream name
specified has not been defined in the LOGR policy.

Action: Ensure that the required log stream name
has been defined in the LOGR policy. If the
definition appears to be correct, ensure that the
application is passing the correct log stream name to
the service.

08 xxxx080C Equate symbol: IxgRsnCodeStagingAllocError

Explanation: Environment error. The system
encountered a severe dynamic allocation error with
the staging data set. ANSAA_DIAG2 of the answer
area contains either the dynamic allocation error
code, SMS reason code, or media manager reason
code. For more information about the error, check
for either message IXG251I, which is issued for data
set allocation errors, or check for messages issued by
the access method.

Action: If the problem persists, search problem
reporting data bases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

IXGCONN macro

1402 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 125. Return and reason codes for the IXGCONN macro (continued)

Return code Reason code Meaning and zction

08 xxxx080D Equate symbol: IxgRsnCodeNoSAFAuth

Explanation: Environment error. The user does not
have correct SAF authorization for the request. The
caller is not authorized to connect to the log stream
or the caller specified AUTH=WRITE when
connecting to a log stream with only READ
authority.

Action: IXGCONN returns information about the
error in the answer area that is mapped by
IXGANSAA. Investigate the meaning of
ANSAA_Diag1, ANSAA_Diag2 and ANSAA_Diag4.

v ANSAA_Diag1 contains the RACF or installation
exit return code from the RACROUTE
REQUEST=AUTH macro.

v ANSAA_Diag2 contains the RACF or installation
exit reason code from the RACROUTE
REQUEST=AUTH macro.

v ANSAA_Diag4 contains the SAF return code from
the RACROUTE REQUEST=AUTH macro.

See z/OS Security Server RACROUTE Macro Reference
for information about the RACROUTE macro.

Define the required SAF authorization to allow the
requestor to connect to the log stream. If
authorization has already been defined, either
change the authorization to allow UPDATE access to
the log stream or change the application to
AUTH=READ.

08 xxxx0811 Equate symbol: IxgRsnCodeBadStrname

Explanation: Environment error. The structure name
specified on the STRUCTNAME parameter is not
defined in the CFRM policy.

Action: Make sure that the structure you want to
specify is defined in the CFRM policy.

08 xxxx0812 Equate symbol:
IxgRsnCodeLogStreamRecoveryFailed

Explanation: Environment error. The log stream
could not be recovered so the connection attempt
failed. The system issues message IXG210E and/or
IXG211E along with message IXG231I providing
further information about the error.

Action: If the problem persists, search problem
reporting data bases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

IXGCONN macro

Chapter 139. IXGCONN — Connect/disconnect to log stream 1403

Table 125. Return and reason codes for the IXGCONN macro (continued)

Return code Reason code Meaning and zction

08 xxxx0813 Equate symbol: IxgRsnCodeLogStreamDeleted

Explanation: Environment error. The request to
connect to the specified log stream failed because the
log stream is being deleted.

Action: Re-define the log stream in the LOGR policy
and then re-issue the connect request.

08 xxxx0814 Equate symbol: IxgRsnCodeNotAvailForIPL

Explanation: Environment error. The system logger
address space is not available for the remainder of
this IPL. The system issues messages about this error
during system logger initialization.

Action: See the explanation for system messages
issued during system logger initialization.

08 xxxx0815 Equate symbol: IxgRsnCodeNotEnabled

Explanation: Program error. The program issuing the
request is not enabled for I/O and external
interrupts, so the request fails.

Action: Make sure the program issuing the request
is enabled for I/O and external interrupts.

08 xxxx0816 Equate symbol: IxgRsnCodeBadAnslen

Explanation: Program error. The answer area length
(ANSLEN parameter) is not large enough. The
system logger returned the required size in the
Ansaa_Preferred_Size field of the answer area,
mapped by IXGANSAA macro.

Action: Re-issue the request, specifying an answer
area of the required size.

08 xxxx0819 Equate symbol: IxgRsnCodeSRBMode

Explanation: Program error. The calling program is
in SRB mode, but task mode is the required
dispatchable unit mode for this system logger
service.

Action: Make sure the calling program is in task
mode.

IXGCONN macro

1404 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 125. Return and reason codes for the IXGCONN macro (continued)

Return code Reason code Meaning and zction

08 xxxx081A Equate symbol: IxgRsnCodeMaxStreamConn &
IXGINVNT requests

Explanation: Environment error. This system has
reached the limit for the maximum number of log
streams that can be concurrently active. One of the
following is true:

v The limit of 16,384 concurrently active
DASDONLY log streams per system has been
reached. For this case, the Answer Area field
DIAG1 will contain 16,384.

v Either the PRODUCTION or TEST GROUP cannot
connect to any more log streams. Message
IXG075E or IXG076I is issued. In this case, the
Answer Area field DIAG1 will contain the number
of structures that are in use for this GROUP.

v The TEST GROUP has previously failed and a
request has been made to define a logstream with
GROUP(TEST). Message IXG074I has been
previously issued. In this case, the Answer Area
field DIAG1 will contain 0.

v A Log stream delete cannot be processed because
logger needs to perform an internal connect to the
Log stream to complete the delete but no more
connections are allowed.

Action: Your workload need to be planned to either
consolidate log streams or balance system activity
such that fewer log streams are needed during this
time frame.

08 xxxx081B Equate symbol: IxgRsnCodePrimaryNotHome

Explanation: Program error. The primary address
space does not equal the home address space.

Action: Make sure that the primary address space
equals the home address space when issuing this
system logger service.

08 xxxx081D Equate symbol: IxgRsnCodeRMNameBadState

Explanation: Program error. The calling program
cannot issue IXGCONN with the RMNAME
parameter unless it is in supervisor state and system
key.

Action: Make sure the calling program is in
supervisor state.

08 xxxx081E Equate symbol: IxgRsnCodeXESStrNotAuth

Explanation: Environment Error. The system logger
address space does not have access authority to the
coupling facility structure associated with the log
stream specified.

Action: Make sure the system logger address space
has SAF access to the structure.

IXGCONN macro

Chapter 139. IXGCONN — Connect/disconnect to log stream 1405

Table 125. Return and reason codes for the IXGCONN macro (continued)

Return code Reason code Meaning and zction

08 xxxx081F Equate symbol: IxgRsnCodeXcdsError

Explanation: System error. system logger
encountered an internal problem while processing
the LOGR couple data set.

Action: Contact the IBM Support Center. Provide the
return and reason code and the contents of the
answer area (ANSAREA field).

08 xxxx0820 Equate symbol: IxgRsnCodeBadModelConn

Explanation: Program error. The program issued an
IXGCONN request to connect to a log stream that
was defined as a model in the LOGR policy. You
cannot connect to a model log stream.

Action: Either change the definition of the specified
structure so that it is not a model, or else request
connection to a different log stream that is not a
model.

08 xxxx082D Equate symbol: IxgRsnCodeExpiredStmToken

Explanation: Environment error. The stream token is
no longer valid because the connector has been
disconnected.

Action: Connect to the log stream again before
issuing any functional requests.

08 xxxx082E Equate symbol: IxgRsnCodeNoLogrCDSAvail

Explanation: Environment error. The request failed
because no LOGR couple data set is available. The
operator was prompted to either make a couple data
set available or to indicate that the current request
should be rejected. The operator specified that the
current request should be rejected.

Action: system logger services are unavailable for
the remainder of this IPL.

08 xxxx0831 Equate symbol: IxgRsnCodeBadStreamName

Explanation: Program error. The log stream name
specified on the STREAMNAME parameter is not
valid.

Action: Issue the request again with a valid log
stream name on the STREAMNAME parameter.

08 xxxx083A Equate symbol: IxgRsnCodeRMNameNotAllowed

Explanation: Program error. The request specified
the RMNAME parameter, but the log stream is not
defined as having an associated resource manager.

Action: Either define a resource manager for the log
stream definition in the LOGR couple data set, or
remove the RMNAME parameter from the request.

IXGCONN macro

1406 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 125. Return and reason codes for the IXGCONN macro (continued)

Return code Reason code Meaning and zction

08 xxxx0843 Equate symbol: IxgRsnCodeXcdsReformat

Explanation: Program error. A couple data set record
is not valid.

Action: Format the system logger couple data set
again.

08 xxxx084C Equate symbol: IxgRsnCodeRMAlreadyConnected

Explanation: Program error. The resource manager is
trying to connect to a log stream that it is already
connected to. Only one connection specifying
RMNAME can be active for a log stream.

Action: Correct the program so that it does not try
to reconnect to the log stream.

08 xxxx084E Equate symbol:
IXGRSNCODESTRSACETOOSMALL

Explanation: Environment error. Structure resources
are not available to satisfy the request. All structure
resources are allocated as system logger control
resources. This condition occurs when the structure
resources are consumed by the logstreams
connections.

Action: Increase the size of the structure in the
CFRM policy or use the SETXCF ALTER command
to dynamically increase the size of the structure.

08 xxxx084F Equate symbol:
IxgRsnCodeInvalidRMNameSpecified

Explanation: Program error. The value for the
RMNAME parameter on the connect request does
not match the name of the resource manager defined
in the LOGR couple data set for the log stream.

Action: Either correct the RMNAME value on the
connect request or correct the resource manager
name in the log stream definition in the LOGR
couple data set.

08 xxxx0850 Equate symbol: IXGRSNCODEBADVECTORLEN

Explanation: Environment error. The connect request
was rejected. system logger was unable to locate a
vector table in the hardware system area (HSA) that
is large enough for the number of log streams
associated with it.

Action: Add storage to the vector storage table
and/or retry the connect request later, when storage
might be available.

IXGCONN macro

Chapter 139. IXGCONN — Connect/disconnect to log stream 1407

Table 125. Return and reason codes for the IXGCONN macro (continued)

Return code Reason code Meaning and zction

08 xxxx0851 Equate symbol: IXGRSNCODEBADCFLEVEL

Explanation: Environment error. The connect request
was rejected. The operational level of the coupling
facility is not sufficient to support logger functions.

Action: Ensure that the coupling facility operational
level for logger structures is at the required level.
See z/OS MVS Setting Up a Sysplex.

08 xxxx0853 Equate symbol: IxgRsnCodeNoCF

Explanation: Environment error. The connect request
was rejected. system logger could not allocate
coupling facility structure space because no suitable
coupling facility was available.

Action: Check accompanying message IXG206I for a
list of the coupling facilities where space allocation
was attempted and the reason why each attempt
failed.

08 xxxx0861 Equate symbol: IxgRsnCodeRebuildInProgress

Explanation: Environment error. No requests can be
processed for this log stream because a coupling
facility structure re-build is in progress for the
structure associated with this log stream.

Action: Listen for ENF signal 48 that will indicate
one of the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not
available.

08 xxxx0862 Equate symbol: IxgRsnCodeXESPurge

Explanation: Environment error. An cross-system
extended services (XES) request has been purged
due to re-build processing.

Action: Listen for ENF signal 48 that will indicate
one of the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not
available.

IXGCONN macro

1408 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 125. Return and reason codes for the IXGCONN macro (continued)

Return code Reason code Meaning and zction

08 xxxx0863 Equate symbol: IXGRSNCODESTRUCTUREFAILED

Explanation: Environment error. Either the coupling
facility structure associated with the log stream has
failed or the coupling facility itself has failed.

Action: Listen for ENF signal 48 that will indicate
one of the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not
available.

08 xxxx0864 Equate symbol: IXGRSNCODENOCONNECTIVITY

Explanation: Environment error. No connectivity
exists to the coupling facility associated with the log
stream. The system logger will either attempt to
re-build the log stream in another coupling facility
or the log stream will be disconnected.

Action: Listen for ENF signal 48 that will indicate
one of the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not
available.

v The log stream has been disconnected from this
system.

If a re-build initiated because of a loss of
connectivity previously failed, an ENF
corresponding to this reason code might not be
issued. Further action by the installation might be
necessary to cause the change of the log stream
status again. Check the log for messages IXG101I,
IXG107I and related rebuild messages for
information on resolving any outstanding issues.

08 xxxx0866 Equate symbol: IXGRSNCODESTRUCTUREFULL

Explanation: Environment error. The coupling
facility structure space is full.

Action: Listen to the ENF signal 48 which will
indicate that space is available for the structure after
data has been offloaded to DASD.

08 xxxx0890 Equate symbol:
IXGRSNCODEADDRSPACENOTAVAIL

Explanation: System error. The system logger
address space failed and is not available.

Action: Do not issue system logger requests.

IXGCONN macro

Chapter 139. IXGCONN — Connect/disconnect to log stream 1409

Table 125. Return and reason codes for the IXGCONN macro (continued)

Return code Reason code Meaning and zction

08 xxxx0891 Equate symbol:
IXGRSNCODEADDRSPACEINITIALIZING

Explanation: System error. The system logger
address space is not available because it is IPLing.

Action: Listen for ENF signal 48, which will indicate
when the system logger address space is available.
Re-issue this request. You can also listen for ENF
signal 48, which will indicate if the system logger
address space will not be available for the life of the
IPL. In that case, do not issue system logger services.

08 xxxx08B0 Equate symbol:
IXGRSNCODESTRUCTURENOTAVAIL

Explanation: Environment error. The connect request
failed. The structure associated with the log stream
is temporarily unavailable because either a re-build
is in progress, a structure dump is in progress, or
connections to the structure are being prevented.

Action: Listen for ENF signal 48, which indicates
that a coupling facility is available, and then retry
the connect.

08 xxxx08D3 Equate symbol: IXGRsnCodeFuncNotSupported

Explanation: Environment error. The connect request
specified the RMNAME or IMPORTCONNECT
parameter. The request failed because the active
primary LOGR couple data set must be at the z/OS
level to support these parameters.

Action: Either retry the request without the
RMNAME or IMPORTCONNECT parameters or
reformat the LOGR couple data set to the z/OS
level.

IXGCONN macro

1410 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 125. Return and reason codes for the IXGCONN macro (continued)

Return code Reason code Meaning and zction

08 xxxx08D6 Equate symbol: IXGRsnCodeConnTypeNotAllowed

Explanation: Environment error. One of the
following occurred:

v The connect request specified
IMPORTCONNECT=YES, but there is already an
active write connection (AUTH=WRITE
IMPORTCONNECT=NO) in the sysplex. You
cannot have an import connection and a write
connection to the same log stream.

v The connect request specified AUTH=WRITE
IMPORTCONNECT=NO, but there is already an
active import connection
(IMPORTCONNECT=YES) for the log stream. You
cannot have an import connection and a write
connection to the same log stream.

You can only have one import connection to a log
stream. You may have multiple write connections, as
long as there is no import connection against a log
stream.

Action: Correct your program and retry the request.

08 xxxx08E2 Equate symbol: IxgRsncodeDasdOnlyConnected

Explanation: Environment error system logger
rejected an attempt to connect to a DASD-only log
stream because the log stream is already connected
to by another log stream in the sysplex. Only one
system at a time can connect to a DASD-only log
stream.

Action: Determine which system you want to have a
connection to the log stream. If you need this
connection, disconnect the first system connection to
the log stream and retry this connect request.

IXGCONN macro

Chapter 139. IXGCONN — Connect/disconnect to log stream 1411

Table 125. Return and reason codes for the IXGCONN macro (continued)

Return code Reason code Meaning and zction

08 000008E3 Equate symbol: IxgRsnCodeLogstreamNotSupported

Explanation: Environment error. An attempt to
connect for the log stream is rejected on this system
because the system release level does not support
this type of log stream. For example, this system
does not support DASD-only log streams, or a log
stream attribute such as EHLQ or
DUPLEXMODE(DRXRC) cannot be processed on
this system release level.

Action: If you must connect to a DASD-only log
stream, make sure you do one of the following:

v Update the log stream definition in the LOGR
policy to a coupling facility one by specifying a
structure name on the definition.

v To issue a request for a log stream that has the
EHLQ attribute, you must be on a system that is
at z/OS Version 1 Release 3 or higher.

If you must connect to a log stream with the EHLQ
attribute specified, make sure you connect from a
system that is at z/OS Version 1 Release3 or higher.

If you must connect to a log stream with the
DUPLEXMODE(DRXRC) attribute specified, make
sure you connect from a system that is at z/OS
Version 1 Release 7 or higher.

0C xxxx0000 Equate symbol: IxgRetCodeCompError

Explanation: User or System error. One of the
following occurred:

v You issued the FORCE IXGLOGR,ARM command
to terminate the system logger address space.

v system logger component error occurred.

Action: If this reason code is not the result of forcing
the system logger address space, search problem
reporting data bases for a fix for the problem. If no
fix exists, contact the IBM Support Center. Provide
the diagnostic data in the answer area (IXGANSAA)
and any dumps or LOGREC entries from system
logger.

Example 1
Issue IXGCONN REQUEST=CONNECT to connect to a log stream with write
authority.

IXGCONN REQUEST=CONNECT, X
STREAMNAME=STRMNAME, X
STREAMTOKEN=TOKEN, X
AUTH=WRITE, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

IXGCONN macro

1412 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

STRMNAME DC CL26’LOG.STREAM.NAME’ stream name
ANSLEN DC A(L’ANSAREA) length of logger’s answer area
TOKEN DS CL16 returned stream token
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT

IXGANSAA LIST=YES answer area

Example 2
Issue IXGCONN REQUEST=CONNECT using registers.

LA R6,STRMNAME load stream name into reg 6
IXGCONN REQUEST=CONNECT, X

STREAMNAME=(6), X
STREAMTOKEN=TOKEN, X
AUTH=WRITE, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

STRMNAME DC CL26’LOG.STREAM.NAME’ stream name
ANSLEN DC A(L’ANSAREA) length of logger’s answer area
TOKEN DS CL16 returned stream token
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT

IXGANSAA LIST=YES answer area
R6 EQU 6 set up register 6

Example 3
Issue IXGCONN REQUEST=CONNECT as an import connect. This means the
connection may issue IXGIMPRT to import data to a log stream.

IXGCONN REQUEST=CONNECT, X
STREAMNAME=ONAME, X
STREAMTOKEN=OTOKEN, X
AUTH=WRITE, X
IMPORTCONNECT=YES, X
ANSAREA=XANSAREA, X
ANSLEN=XANSLEN, X
RSNCODE=RSCODE

*
ONAME DS CL26 Output Stream name
STOKEN DS CL16 Input Stream token
XANSAREA DS CL(ANSAA_LEN) Logger answer area
XANSLEN DC A(ANSAA_LEN) Answer area length
RSCODE DS F Reason code

DSECT ,
IXGANSAA , The answer area macro

Example 4
Issue IXGCONN REQUEST=DISCONNECT to disconnect from a log stream and
associate some user data with the log stream.

IXGCONN REQUEST=DISCONNECT, X
STREAMTOKEN=TOKEN, X
USERDATA=USERDATA, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X

IXGCONN macro

Chapter 139. IXGCONN — Connect/disconnect to log stream 1413

RETCODE=RETCODE
USERDATA DC CL64’SOME USER DATA’ user data to log with DISCONNECT
ANSLEN DC A(L’ANSAREA) length of logger’s answer area
TOKEN DS CL16 token returned from CONNECT
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT

IXGANSAA LIST=YES answer area

Example 5
Issue IXGCONN to connect to a log stream, specifying a resource manager and
resource manager exit for the log stream.

L R5,RMEXIT_ADDR
IXGCONN REQUEST=CONNECT,

STREAMNAME=SNAME,
STREAMTOKEN=STOKEN,
AUTH=WRITE,
RMNAME=RMNAME,
RMEXIT=(R5),
RMDATA=RMDATA,
RMEVENTS=(LBWRITE,LBDELETE),
ANSAREA=XANSAREA,
ANSLEN=XANSLEN,
RSNCODE=RSCODE

*
SNAME DS CL26 Stream name
STOKEN DS CL16 Input Stream token
RMEXIT_ADDR DS A RM exit rtn address
RMDATA DS CL8 RM exit data
XANSAREA DS CL(ANSAA_LEN) Logger answer area
XANSLEN DC A(ANSAA_LEN) Answer area length
RSCODE DS F Reason code

DSECT ,
IXGANSAA , The answer area macro

IXGCONN macro

1414 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 140. IXGDELET — Deleting log data from a log
stream

Description
Use the IXGDELET macro to delete log blocks from a log stream.

For information about using the system logger services and the system logger
inventory, see z/OS MVS Programming: Assembler Services Guide, which includes
information about related macros IXGCONN, IXGBRWSE, IXGWRITE, IXGINVNT,
and IXGQUERY.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key. The caller must be

supervisor state with any system (0-7) PSW key to either
invoke the service in SRB mode or use the
MODE=SYNCEXIT keyword.

Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN, any SASN
AMODE: 31-bit or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameter: All control parameters must be in the primary address space

with the following exceptions:

v The ECB should be addressable from the home address
space.

v All storage areas specified must be in the same storage
key as the caller.

Programming requirements
v The current primary address space must be the same primary address space

used at the time your program issued the IXGCONN request.
v The parameter list for this service must be addressable in the caller's primary

address space.
v The calling program must be connected to the log stream with write authority

through the IXGCONN service.
v Include the IXGCON mapping macro in your program. This macro provides a

list of equate symbols for the system logger services.
v Include mapping macro IXGANSAA in your program. This macro shows the

format of the answer area output returned for each system logger service in the
ANSAREA parameter.

v If there are multiple connections to a log stream, each connected application
must serialize delete requests so that a delete of log blocks does not occur, for
example, in the middle of another application's browse session.

v When coding the MODE=SYNCECB and ECB parameters, you must ensure that:

© Copyright IBM Corp. 1988, 2016 1415

– The virtual storage area specified for the ECB resides on a full word
boundary.

– You initialize the ECB field to zero.
– The ECB resides in either the common or home address space storage at the

time the IXGDELET request is issued.
– The storage used for output parameters, such as ANSAREA and OBLOCKID,

are accessible by both the IXGDELET invoker and the ECB waiter.
v When coding the MODE=SYNCEXIT parameter, you must ensure that the

storage used for output parameters, such as ANSAREA and OBLOCKID, are
accessible by both the IXGDELET invoker and the completion exit routine.

Restrictions
v All storage areas specified in this service must be in the same storage key as the

caller's storage key and must exist in the caller's primary address space.
v There is more than one version of this macro available. The parameters you can

use depend on the version you specify on the PLISTVER parameter. See the
description of the PLISTVER parameter for more information.

Input register information
Before issuing the IXGDELET macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if register 15 contains a non-zero return code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as a work register by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

IXGDELET macro

1416 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax
The standard form of the IXGDELET macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede
IXGDELET.

IXGDELET

� One or more blanks must follow
IXGDELET.

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register
(2) - (12).

,BLOCKS=ALL

,BLOCKS=RANGE

,BLOCKID=blockid blockid: RS-type address or register (2) -
(12).

,ANSAREA=ansarea ansarea: RS-type address or register (2) -
(12).

,ANSLEN=anslen anslen: RS-type address or register (2) -
(12).

,FORCE=NO Default: FORCE=NO

,FORCE=YES

,FORCEINFO=NO Default: FORCEINFO=NO

,OBLOCKID=oblockid oblockid: RS-type address or register (2) -
(12).

MODE=SYNC Default: MODE=SYNC

MODE=ASYNCNORESPONSE

MODE=SYNCECB

MODE=SYNCEXIT

,REQDATA=reqdata reqdata: RS-type address or register (2) -
(12).

IXGDELET macro

Chapter 140. IXGDELET — Deleting log data from a log stream 1417

Syntax Description

,ECB=ecb ecb: RS-type address or register (2) - (12).

,DIAG=NO_DIAG Default: DIAG=NO_DIAG

,DIAG=NO

,DIAG=YES

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=0

,PLISTVER=1

,RETCODE=retcode retcode: RS-type address or register (2) -
(12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) -
(12).

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters
The parameters are explained as follows:

,STREAMTOKEN=streamtoken
Specifies the name or address (using a register) of a required 16-byte input
field containing the token for the log stream that you want to search. The
stream token is returned by the IXGCONN service at connection to the log
stream.

,BLOCKS=ALL
,BLOCKS=RANGE

Specifies whether all or just a subset of log blocks in a log stream be deleted.
v BLOCKS=ALL: Specifies that all the log blocks in the specified log stream be

deleted.

IXGDELET macro

1418 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

v BLOCKS=RANGE: Specifies that the range of log blocks, older than the
block specified on the BLOCKID parameter, be deleted. The BLOCKID
parameter is required with BLOCKS=RANGE, See z/OS MVS Programming:
Assembler Services Guide for more information on deleting a range of log
blocks.

,BLOCKID=blockid
Specifies the name or address (using a register) of a 8-byte input field which
contains a log block identifier. BLOCKID is required with the
BLOCKS=RANGE parameter. All blocks in the log stream older than the block
specified on BLOCKID will be deleted. Note that the block specified in
BLOCKID is not deleted.

Block identifiers are returned in the RETBLOCKID field of the IXGWRITE
service.

,ANSAREA=ansarea
Specifies the name (or address in a register) of an answer area containing
information about this request. The answer area must be at least 40 bytes. To
map this information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the
answer area length. The length of the answer area must be at least 40 bytes
and must be the same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the
ANSAA_PREFERRED_SIZE field of the IXGANSAA macro.

,FORCE=NO
,FORCE=YES

Specifies whether this delete request can be overridden by a resource manager
exit.

If you specify FORCE=NO, which is the default, the delete request can be
overridden by the resource manager exit.

If you specify FORCE=YES, the delete request cannot be overridden by a
delete exit.

,OBLOCKID=oblockid
Specifies the name or address (using a register) of an 8 character output field
where the resource manager places the override block identifier.

,MODE=SYNC
,MODE=ASYNCNORESPONSE
,MODE=SYNCECB
,MODE=SYNCEXIT

Specifies that the request should be processed in one of the following ways:
v MODE=SYNC: Specifies that the request process synchronously. Control is

not returned to the caller until request processing is complete. If necessary,
the calling program will be suspended until the request completes.

v MODE=ASYNCNORESPONSE: Specifies that the request process
asynchronously. The caller is not notified when the request completes and
the answer area (ANSAREA) fields will not contain valid information.
To use this parameter, the system where the application is running must be
IPLed. The application must run in supervisor state, key 0-7 to use this
parameter.

v MODE=SYNCECB: Specifies that the request process synchronously if
possible. If the request processes asynchronously, control returns to the caller

IXGDELET macro

Chapter 140. IXGDELET — Deleting log data from a log stream 1419

before the request completes and the event control block (ECB) specified on
the ECB parameter is posted when the request completes. The ECB
parameter is required with MODE=SYNCECB.

v MODE=SYNCEXIT: Specifies that the request process synchronously, if
possible. If the request cannot be processed synchronously, your complete
exit (specified on the COMPLETEEXIT parameter on the IXGCONN request)
gets control when this request completes. Control returns to the caller with a
return and reason code indicating that the request is not complete. The
system passes the data specified on the REQDATA parameter, if specified, to
the complete exit.
When a MODE=SYNCEXIT request processes asynchronously, system logger
maintains latent binds to the storage location specified by the answer area
(ANSAREA) fields, and, if specified, to RETBLOCKID and TIMESTAMP.
To use this parameter, the system where the application is running must be
IPLed.The application must run in supervisor state, key 0-7 to use this
parameters.

,REQDATA=reqdata
Specifies the name (or address in a register) of a 8-byte input field containing
user-defined data to pass to the complete exit. REQDATA is only valid with
the MODE=SYNCEXIT parameter.

ECB=ecb
Specifies the name or address (using a register) of a 4-byte input field that
contains an event control block (ECB) to be posted when the request
completes.

Before coding ECB, you must ensure that:
v You initialize the ECB.
v The ECB must reside in either common storage or the home address space

where the IXGDELET request was issued.
v The virtual storage area specified for the ECB must reside on a fullword

boundary.

,DIAG=NO_DIAG
,DIAG=NO
,DIAG=YES

Specifies whether or not the DIAG option on the IXGCONN for this logstream
will be in effect for this delete log data request. Refer to the DIAG keyword on
the IXGINVNT, IXGCONN and IXGBRWSE macro services.

If you specify DIAG=NO_DIAG, which is the default, then the DIAG option
on the IXGCONN for this logstream will be in effect for this delete log data
request.

If you specify DIAG=NO, then Logger will not take additional diagnostic
action as defined on the logstream definition DIAG parameter.

If you specify DIAG=YES, then Logger will take additional diagnostic action as
defined on the logstream definition DIAG parameter providing the IXGCONN
connect DIAG specification allows it.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

IXGDELET macro

1420 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default. Note that on the list form, the
default will cause the smallest parameter list to be created.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form when both forms are
assembled using the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 2, supports both the following parameters and parameters from version 0:
– FORCE
– OBLOCKID
– REQDATA

To code: specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0 or 1

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where
the system will place the return code. The return code is also in general
purpose register (GPR) 15.

,RSNCODE=rsncode
Specifies a name (or address in a register) of a 4-byte output field where the
system will place the reason code. The reason code is also in general purpose
register (GPR) 0, if you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter can be specified on the list form of
the macro. IBM recommends that you always specify PLISTVER=MAX on the
list form of the macro.

IXGDELET macro

Chapter 140. IXGDELET — Deleting log data from a log stream 1421

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following
order:
v Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters,

including all required ones.
v Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to

change.
v Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
When IXGDELET macro returns control to your program, GPR 15 contains a return
code and GPR 0 contains a reason code.

Note: A program invoking the IXGDELET service may indicate through the
MODE parameter that requests which can not be completed synchronously should
have control returned to the caller prior to the completion of the request. When the
request does complete, the invoker will be notified and the return and reason
codes are in the answer area mapped by IXGANSAA.

The IXGCON macro provides equate symbols for the return and reason codes. The
equate symbols associated with each hexadecimal return code are as follows:

00 IXGRETCODEOK - Service completes successfully.

04 IXGRETCODEWARNING - Service completes with a warning.

08 IXGRETCODEERROR - Service does not complete.

IXGDELET macro

1422 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

0C IXGRETCODECOMPERROR - Service does not complete.

The following table contains hexadecimal return and reason codes, the equate
symbols associated with each reason code, and the meaning and suggested action
for each return and reason code.

Table 126. Return and Reason Codes for the IXGDELET Macro

Return Code Reason Code Meaning and Action

00 xxxx0000 Equate Symbol: IxgRsnCodeOk

Explanation: Request processed successfully.

04 xxxx0401 Equate Symbol: IxgRsnCodeProcessedAsynch

Explanation: Program error. The program specified
MODE=SYNCECB and the request must be processed
asynchronously.

Action: Wait for the ECB specified on the ECB parameter to
be posted, indicating that the request is complete. Check
the ANSAA_ASYNCH_RETCODE and
ANSAA_ASYNCH_RSNCODE fields, mapped by
IXGANSAA, to determine whether the request completed
successfully.

04 xxxx040B Equate Symbol: IxgRsnCodeRMNotConnected

Explanation: Program or environment error. The log stream
is identified as being a source log stream managed by a
resource manager (RMNAME is specified in the LOGR
couple data set). However, at the time of the delete request,
the resource manager was not connected to the log stream
and FORCE=NO was specified on the request. Delete
requests can only be honored on a resource manager
managed system if the resource manager is connected to
the log stream.

Action: Either:

v Start the resource manager so that it can connect to the
log stream.

v Issue the IXGDELET request specifying FORCE=YES to
delete the log block even though the resource manager is
not connected to the source log stream.

04 xxxx040C Equate Symbol: IxgRsnCodeRMOverrideOK

Explanation: The caller's delete request was overridden by
the associated resource manager. The override information
was successfully processed.

04 xxxx040D Equate Symbol: IxgRsnCodeRMNoBlock

Explanation: Program error. The log block identifier on the
IXGDELET request does not exist in the log stream. Either
the block id never existed or was deleted in a previous
IXGDELET request. This warning is issued only if a
resource manager overrides the caller-specified block id.

Action: Make sure that the block id specified on the
IXGDELET request is correct.

IXGDELET macro

Chapter 140. IXGDELET — Deleting log data from a log stream 1423

Table 126. Return and Reason Codes for the IXGDELET Macro (continued)

Return Code Reason Code Meaning and Action

04 xxxx040E Equate Symbol: IxgRsnCodeRMBadGap

Explanation: Environment error. The IXGDELET request
failed because the requested log data was unreadable. This
problem is caused by either an I/O error while attempting
to read a DASD log data set or a log data set was deleted
using an interface other than IXGDELET. This reason code
is issued only when a resource manager exit overrides the
block identifier specified on the IXGDELET request.

Action: System logger returns the block identifier of the
first readable log block (in the direction of youngest data)
in the ANSAA_GAPS_NEXT_BLKID field of the answer
area mapped by IXGANSAA. If appropriate, reissue the
IXGDELET request using this block identifier.

04 xxxx040F Equate Symbol: IxgRsnCodeRMEOFGap

Explanation: Environment error. While processing the
IXGDELET request, system logger prematurely reached the
end or beginning of the log stream. The portion of the log
stream from the requested log data to either the beginning
or end of the log stream was unreadable. This problem is
caused by either an I/O error while attempting to read a
DASD log data set or a log data set was deleted using an
interface other than IXGDELET. This reason code is issued
only when a resource manager exit overrides the block
identifier specified on the IXGDELET request.

Action: The action you take depends on whether your
application can tolerate any loss of data. You can either:

v Accept the loss of data and continue processing this log
stream.

v Stop using this log stream.

v Correct the problem and re-issue the request.

04 xxxx0410 Equate Symbol: IxgRsnCodeRMLossOfDataGap

Explanation: Environment error. The log data you tried to
delete is in a section of the log stream where data is
permanently missing. This condition occurs when a system
or coupling facility is in recovery from a failure and not all
the log data could be recovered. This reason code is issued
only when a resource manager exit overrides the block
identifier specified on the IXGDELET request.

Action: If your application cannot tolerate any data loss,
stop issuing system logger services to this log stream,
disconnect from the log stream, and reconnect to a new,
undamaged log stream. If your application can tolerate
data loss, you can continue using the log stream.

04 xxxx0411 Equate Symbol: IxgRsnCodeRMAbended

Explanation: Program error. The resource manager
abended and percolated to the system logger recovery
environment. The IXGDELET request was not processed.

Action: Look for and correct the problem in your resource
manager program or reissue the delete request, specifying
FORCE=YES.

IXGDELET macro

1424 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 126. Return and Reason Codes for the IXGDELET Macro (continued)

Return Code Reason Code Meaning and Action

04 xxxx0412 Equate Symbol: IxgRsnCodeRMDisabled

Explanation: Environment error. The log stream is
identified as being managed by a resource manager
(RMNAME is specified in the LOGR couple data set). The
resource manager is connected to the log stream, but is
disabled due to an abend from which it did not recover
successfully (by percolating to system logger recovery
environment).

Action: Either:

v Cancel the resource manager exit and then restart the
resource manager address space.

v Reissue the request, specifying FORCE=YES.

04 xxxx0414 Equate Symbol: IxgRsnCodeRMStoppedDelete

Explanation: The resource manager does not allow this
IXGDELET request to delete any log blocks.

Action: Determine why the resource manager is prohibiting
deletes. Specify FORCE=YES to stop the resource manager
exit from stopping the delete request.

08 xxxx0801 Equate Symbol: IxgRsnCodeBadParmlist

Explanation: Program error. The parameter list could not
be accessed.

Action: Ensure that the storage area for the parameter list
is accessible to the system logger for the duration of the
request. The parameter list storage must be addressable in
the caller's primary address space and in the same key as
the caller.

08 xxxx0802 Equate Symbol: IxgRsnCodeXESError

Explanation: System error. A severe cross-system extended
services (XES) error has occurred.

Action: See ANSAA_DIAG1 for the XES return code and
ANSAA_DIAG2 for the XES reason code.

08 xxxx0804 Equate Symbol: IxgRsnCodeNoBlock

Explanation: Program error. The block identifier or time
stamp does not exist in the log stream. Either the value
provided was never a valid location within the log stream
or a prior IXGDELET request deleted the portion of the log
stream it referenced.

Action: Ensure that the value provided references an
existing portion of the log stream and issue the request
again. Use the LIST LOGSTREAM DETAIL(YES) request on
the IXCMIPU utility to display the range of valid block
identifiers for the log stream.

IXGDELET macro

Chapter 140. IXGDELET — Deleting log data from a log stream 1425

Table 126. Return and Reason Codes for the IXGDELET Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx0806 Equate Symbol: IxgRsnCodeBadStmToken

Explanation: Program error. One of the following occurred:

v The stream token was not valid.

v The specified request was issued from an address space
other than the connector's address space.

Action: Do one of the following:

v Make sure that the stream token specified is valid.

v Ensure the request was issued from the connector's
address space.

08 xxxx080A Equate Symbol: IxgRsnCodeRequestLocked

Explanation: Program error. The program issuing the
request is holding a lock.

Action: Ensure that the program issuing the request is not
holding a lock.

08 xxxx0814 Equate Symbol: IxgRsnCodeNotAvailForIPL

Explanation: Environment error. The system logger address
space is not available for the remainder of this IPL. The
system issues messages about this error during system
logger initialization.

Action: See the explanation for system messages issued
during system logger initialization.

08 xxxx0815 Equate Symbol: IxgRsnCodeNotEnabled

Explanation: Program error. The program issuing the
request is not enabled for I/O and external interrupts, so
the request fails.

Action: Make sure the program issuing the request is
enabled for I/O and external interrupts.

08 xxxx0816 Equate Symbol: IxgRsnCodeBadAnslen

Explanation: Program error. The answer area length
(ANSLEN parameter) is not large enough. The system
logger returned the required size in the
Ansaa_Preferred_Size field of the answer area, mapped by
IXGANSAA macro.

Action: Re-issue the request, specifying an answer area of
the required size.

08 xxxx0817 Equate Symbol: IxgRsnCodeBadAnsarea

Explanation: Program error. The storage area specified on
the ANSAREA parameter cannot be accessed. This may
occur after the system logger address space has terminated.

Action: Specify storage that is in the caller's primary
address space and in the same key as the calling program
at the time the system logger service was issued. This
storage must be accessible until the request completes.

IXGDELET macro

1426 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 126. Return and Reason Codes for the IXGDELET Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx081C Equate Symbol: IxgRsnCodeNotAuthFunc

Explanation: Program error. The program connected to the
log stream with the AUTH=READ parameter and then
tried to delete or write data. You cannot write or delete
data when connected with read authority.

Action: Issue the IXGCONN service with AUTH=WRITE
authority and then re-issue this request.

08 xxxx081F Equate Symbol: IxgRsnCodeXcdsError

Explanation: System error. System logger encountered an
internal problem while processing the LOGR couple data
set.

Action: Contact the IBM Support Center. Provide the return
and reason code and the contents of the answer area
(ANSAREA field).

08 xxxx082D Equate Symbol: IxgRsnCodeExpiredStmToken

Explanation: Environment error. The stream token is no
longer valid because the connector has been disconnected.

Action: Connect to the log stream again before issuing any
functional requests.

08 xxxx0836 Equate Symbol: IxgRsnCodeBadGap

Explanation: Environment error. The request failed because
the requested log data was unreadable. This condition
could be caused by either an I/O error while attempting to
read a log data set or a log data set deleted without using
the IXGDELET interface.

Action: The block identifier of the first accessible block
toward the youngest data in the log stream is returned in
the ANSAA_GAPS_NEXT_BLKID field in the answer area
mapped by the IXGANSAA macro. If appropriate, re-issue
the IXGDELET request using this block identifier.

08 xxxx083D Equate Symbol: IxgRsnCodeBadECBStor

Explanation: Program error. The ECB storage area was not
accessible to the system logger.

Action: Ensure that the storage area is accessible to the
system logger for the duration of the request. The storage
must be addressable in the caller's home address space and
in the same key as the caller.

IXGDELET macro

Chapter 140. IXGDELET — Deleting log data from a log stream 1427

Table 126. Return and Reason Codes for the IXGDELET Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx084A Equate Symbol: IxgRsnCodeEOFGap

Explanation: Environment error. The request prematurely
reached the beginning or the end of the log stream. The
portion of the log stream from the requested log data to
either the beginning or the end of the log stream
(depending on the direction of the read) was unreadable.
This condition may be caused by either an I/O error while
trying to read a log data set, or a log data set deleted
without using the IXGDELET interface.

Action: The action necessary is completely up to the
application depending on how critical your data is. You can
do one of the following:

v Accept this condition and continue reading.

v Stop processing the log all together.

v Attempt to get the problem rectified, if possible, and
then try to re-issue the request.

08 xxxx084B Equate Symbol: IxgRsnCodeLossOfDataGap

Explanation: Environment error. The requested log data
referenced a section of the log stream where log data is
permanently missing. This condition occurs when a system
or coupling facility is in recovery due to a failure, but not
all of the log data in the log stream could be recovered.

Action: If your application cannot tolerate any data loss,
stop issuing system logger services to this log stream,
disconnect from the log stream, and reconnect to a new,
undamaged log stream. You can continue using the log
stream if your applications can tolerate data loss.

08 xxxx0861 Equate Symbol: IxgRsnCodeRebuildInProgress

Explanation: Environment error. No requests can be
processed for this log stream because a coupling facility
structure re-build is in progress for the structure associated
with this log stream.

Action: Listen for ENF signal 48 that will indicate one of
the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not available.

08 xxxx0862 Equate Symbol: IxgRsnCodeXESPurge

Explanation: Environment error. An cross-system extended
services (XES) request has been purged due to re-build
processing.

Action: Listen for ENF signal 48 that will indicate one of
the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not available.

IXGDELET macro

1428 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 126. Return and Reason Codes for the IXGDELET Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx0863 Equate Symbol: IxgRsnCodeStructureFailed

Explanation: Environment error. Either the coupling facility
structure associated with the log stream has failed or the
coupling facility itself has failed.

Action: Listen for ENF signal 48 that will indicate one of
the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not available.

08 xxxx0864 Equate Symbol: IxgRsnCodeNoConnectivity

Explanation: Environment error. No connectivity exists to
the coupling facility associated with the log stream. The
system logger will either attempt to re-build the log stream
in another coupling facility or the log stream will be
disconnected.

Action: Listen for ENF signal 48 that will indicate one of
the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not available.

v The log stream has been disconnected from this system.

If a re-build initiated because of a loss of connectivity
previously failed, an ENF corresponding to this reason
code might not be issued. Further action by the installation
might be necessary to cause the change of the log stream
status again. Check the log for messages IXG101I, IXG107I
and related rebuild messages for information on resolving
any outstanding issues.

08 xxxx0890 Equate Symbol: IxgRsnCodeAddrSpaceNotAvail

Explanation: System error. The system logger address
space failed and is not available.

Action: Do not issue system logger requests.

08 xxxx0891 Equate Symbol: IxgRsnCodeAddrSpaceInitializing

Explanation: System error. The system logger address
space is not available because it is IPLing.

Action: Listen for ENF signal 48, which will indicate when
the system logger address space is available. Re-connect to
the log stream, then re-issue this request. You can also
listen for ENF signal 48, which will indicate if the system
logger address space will not be available for the life of the
IPL. In that case, do not issue system logger services.

08 xxxx08D0 Equate Symbol: IxgRsnCodeProblemState

Explanation: Environment error. The request was rejected
because of one of the following:

v The request was issued in SRB mode while the requestor
was in problem program state.

v The SYNCEXIT parameter was specified while the
requestor's PSW key was in problem program key.

Action: Change the invoking environment to supervisor
state.

IXGDELET macro

Chapter 140. IXGDELET — Deleting log data from a log stream 1429

Table 126. Return and Reason Codes for the IXGDELET Macro (continued)

Return Code Reason Code Meaning and Action

08 xxxx08D1 Equate Symbol: IxgRsnCodeProgramKey

Explanation: Environment error. The request was rejected
because of one of the following:

v The request was issued in SRB mode while the requestor
was in problem program key (key 8-F).

v The SYNCEXIT parameter was specified while the
requestor's PSW key was in problem program key.

Action: Change the invoking environment to a system key
(key 0-7).

08 xxxx08D2 Equate Symbol: IxgRsnCodeNoCompleteExit

Explanation: Program error. MODE=SYNCEXIT was
specified, but the connection request did not identify a
complete exit.

Action: Either change this request to a different MODE
option, or reconnect to the log stream with a complete exit
specified on the COMPLETEXIT parameter.

08 xxxx085F Equate Symbol: IxgRsnPercToRequestor

Explanation: Environment error. Percolation to the service
requestor's task occurred because of an abend during
system logger processing. Retry was not allowed.

Action: Issue the request again. If the problem persists,
contact the IBM Support Center.

0C xxxx0000 Equate Symbol: IxgRetCodeCompError

Explanation: User or System error. One of the following
occurred:

v You issued the FORCE IXGLOGR,ARM command to
terminate the system logger address space.

v System logger component error occurred.

Action: If this reason code is not the result of forcing the
system logger address space, search problem reporting data
bases for a fix for the problem. If no fix exists, contact the
IBM Support Center. Provide the diagnostic data in the
answer area (IXGANSAA) and any dumps or LOGREC
entries from system logger.

Examples
Example 1

Delete all data from the log stream.
IXGDELET STREAMTOKEN=TOKEN, X

BLOCKS=ALL, X
MODE=SYNC, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

ANSLEN DC A(L’ANSAREA) length of logger’s answer area
TOKEN DS CL16 stream token from connect
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code

IXGDELET macro

1430 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

RSNCODE DS F reason code
DATAREA DSECT

IXGANSAA LIST=YES answer area

Example 2

Delete a range of data from the log stream asynchronously, if synchronous
processing is not possible.

IXGDELET STREAMTOKEN=TOKEN, X
BLOCKS=RANGE, X
BLOCKID=BLOCKID, X
MODE=SYNCECB, X
ECB=ANECB, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

*++
* If rsncode = ’00000401’X then wait on
* the ecb ANECB.
*++
ANSLEN DC A(L’ANSAREA) length of logger’s answer area
BLOCKID DS CL8 block id from which to delete
TOKEN DS CL16 stream token from connect
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
ANECB DS F ecb on which to wait
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT

IXGANSAA LIST=YES answer area

Example 3

Delete all data from the log stream using registers with the macro.
LA R6,TOKEN load stream token into register 6
IXGDELET STREAMTOKEN=(6), X

BLOCKS=ALL, X
MODE=SYNC, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

ANSLEN DC A(L’ANSAREA) length of logger’s answer area
TOKEN DS CL16 stream token from connect
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT

IXGANSAA LIST=YES answer area
R6 EQU 6

IXGDELET macro

Chapter 140. IXGDELET — Deleting log data from a log stream 1431

IXGDELET macro

1432 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 141. IXGWRITE — Write log data to a log stream

Description
Use the IXGWRITE macro to allow a program to write a log block to a log stream.
IXGWRITE returns a unique identifier for each log block written to the log stream.

System logger generates a time stamp for each log block as they are received from
applications issuing IXGWRITE and writes the blocks to the log stream in that
order. Applications that imbed their own time stamps in log blocks will find that
the blocks may not be in application-generated time stamp order, especially if
multiple applications are writing to a log stream simultaneously. In order to ensure
chronological order of log blocks by application-generated time stamp, applications
should provide their own serialization on the log stream.

For information on using the system logger services and the LOGR policy, see z/OS
MVS Programming: Assembler Services Guide, which also includes information about
related macros IXGCONN, IXGBRWSE, IXGINVNT, IXGDELET, and IXGQUERY.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key. The caller must be

supervisor state with any system (0-7) PSW key to either
invoke this service in SRB mode or to use the
MODE=SYNCEXIT keyword.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: All control parameters must be in the primary address space

with the following exceptions:

v The ECB should be addressable from the home address
space.

v Any parameter area that is explicitly ALET-qualified as
allowed by the input parameter (for example, the area
referenced by the BUFFER parameter when the
BUFFALET parameter is specified) must be in an address
or data space that is addressable through a public entry
on the caller's dispatchable unit access list (DU-AL). All
storage areas specified must be in the same storage key as
the caller, with the following exception:

The parameter area is explicitly storage key qualified
as allowed by the input parameters (example: the area
referenced by the BUFFER parameter when the
BUFFKEY parameter is also specified).

© Copyright IBM Corp. 1988, 2016 1433

Programming requirements
v Before issuing IXGWRITE, you must put the data you wish to write to the log

stream into a buffer specified on the BUFFER parameter. IXGWRITE will then
write this buffer to the log stream as a log block.

v The current primary address space from which you issue the IXGWRITE service
must be the same as the primary address space at the time you issued the
IXGCONN request.

v The parameter list for this service must be addressable in the caller's primary
address space.

v The calling program must be connected to the log stream with write authority
through the IXGCONN service.

v IXGWRITE cannot be issued if the connection is an import connection
(IMPORTCONNECT=YES on the IXGCONN service). The IXGWRITE service
must be issued under a write connection (IMPORTCONNECT=NO, which is the
default).

v Include the IXGCON mapping macro in your program. This macro provides a
list of equate symbols for the system logger services.

v Include mapping macro IXGANSAA in your program. This macro shows the
format of the answer area output returned for each system logger service in the
ANSAREA parameter.

v When coding the MODE=SYNCECB and ECB parameters, you must ensure that:
– The virtual storage area specified for the ECB resides on a full word

boundary.
– You initialize the ECB field to zero.
– The ECB resides in either the common or home address space storage at the

time the IXGWRITE request is issued.
– The storage used for output parameters, such as ANSAREA, RETBLOCKID,

and TIMESTAMP, are accessible by both the IXGWRITE invoker and the ECB
waiter.

v When coding the MODE=SYNCEXIT parameter, you must ensure that the
storage used for output parameters, such as ANSAREA, RETBLOCKID, and
TIMESTAMP, are accessible by both the IXGWRITE invoker and the completion
exit routine.

Restrictions
v All storage areas specified on this macro must be in the same storage key as the

caller's storage key, with the exception of the BUFFKEY parameter.
Storage areas that are not ALET-qualified must exist in the caller's primary
address space. The ECB should be addressable from the home address space.

v There is more than one version of this macro available. The parameters you can
use depend on the version you specify on the PLISTVER parameter. See the
description of the PLISTVER parameter for more information.

v You can call any of the system logger services in either AMODE 31 or 64, but
the parameter list and all other data addresses, with the excption of BUFFER64
must reside in 31-bit storage.

Input register information
Before issuing the IXGWRITE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

IXGWRITE macro

1434 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if register 15 contains a non-zero return code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as a work register by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the IXGWRITE macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede IXGWRITE.

IXGWRITE

� One or more blanks must follow IXGWRITE.

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,BUFFER=buffer buffer: RS-type address or register (2) - (12).

BUFFER64=buffer64 buffer64: RS-type address or register (2) - (12).

,BLOCKLEN=blocklen blocklen: RS-type address or register (2) - (12).

IXGWRITE macro

Chapter 141. IXGWRITE — Write log data to a log stream 1435

Syntax Description

,RETBLOCKID=retblockid retblockid: RS-type address or register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

,BUFFKEY=buffkey buffkey: RS-type address or register (2) - (12).

,BUFFKEY=* Default: BUFFKEY=*

,BUFFALET=buffalet buffalet: RS-type address or register (2) - (12).
Default: BUFFALET=0

,TIMESTAMP=timestamp timestamp: RS-type address or register (2) - (12).
Default: NO_TIMESTAMP

MODE=SYNC Default: MODE=SYNC

MODE=ASYNCNORESPONSE

MODE=SYNCECB

MODE=SYNCEXIT

,REQDATA=reqdata reqdata: RS-type address or register (2) - (12).

,ECB=ecb ecb: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver

,PLISTVER=0

,PLISTVER=1

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S Default: MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

IXGWRITE macro

1436 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax Description

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters
The parameters are explained as follows:

,STREAMTOKEN=streamtoken
Specifies the name (or address in a register) of a required 16-byte input field
containing the token for the log stream that you want to write to. The stream
token is returned by the IXGCONN service at connection to the log stream.

,BUFFER=buffer
,BUFFER64=buffer64

Specifies the field name (or address in a register) of the data to be written to
the log.
v BUFFER=buffer specifies that the location of the buffer is in 31-bit storage.
v BUFFER64=buffer64 specifies that the location of the buffer is in 64-bit

storage.

The BUFFER and BUFFER64 parameters are mutually exclusive.

,BLOCKLEN=blocklen
Specifies the name (or address in a register) of a 4-byte input field that
contains the length in bytes of the log block you are writing to the log stream.

The value of BLOCKLEN must be between 1 and the value for MAXBUFSIZE.

RETBLOCKID=retblockid
Specifies the name (or address in a register) of a 8-byte output field where
IXGWRITE returns the unique block identifier for the log block written to the
log stream.

,ANSAREA=ansarea
Specifies the name (or address in a register) of an answer area containing
information about this request. The answer area must be at least 40 bytes. To
map this information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the
answer area length. The length of the answer area must be at least 40 bytes
and must be the same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the
ANSAA_PREFERRED_SIZE field of the IXGANSAA macro.

BUFFALET=buffalet
Specifies the name (or address in a register) of a 4-byte input field specifying
the access list entry table (ALET) to be used to access the buffer specified on
the BUFFER or BUFFER64 keyword. If the buffer is ALET-qualified, the ALET
must index a valid entry on the task's dispatchable unit access list (DUAL) or
specify a SCOPE=COMMON data space. An ALET that indexes the system
logger PASN-AL list will not work.

IXGWRITE macro

Chapter 141. IXGWRITE — Write log data to a log stream 1437

The default is 0, which means that the buffer is in the calling program's
primary address space.

BUFFKEY=buffkey
Specifies the name (or address in a register) of a 4-byte input field specifying
the storage key for the buffer specified on the BUFFER or BUFFER64
parameter.

If the caller is running in problem state, the caller's PSW key and the key
specified in the BUFFKEY parameter must match.

If the caller is running in supervisor state, specify any syntactically valid (0
through 15) key on the BUFFKEY parameter.

If you omit the BUFFKEY parameter, the default used is the PSW key of the
caller.

TIMESTAMP=timestamp
Specifies the name (or address in a register) of a 16-byte output field where the
Greenwich mean time and local time stamps associated with the requested log
block are returned when the write request is successful. Both time stamps will
be in time of day (TOD) clock format.

MODE=SYNC
MODE=ASYNCNORESPONSE
MODE=SYNCECB
MODE=SYNCEXIT

Specifies that the request should be processed in one of the following ways:
v MODE=SYNC: Specifies that the request process synchronously. Control is

not returned to the caller until request processing is complete. If necessary,
the calling program will be suspended until the request completes.

v MODE=ASYNCNORESPONSE: Specifies that the request process
asynchronously. The caller is not notified when the request completes and
the answer area (ANSAREA) fields will not contain valid information.
To use this parameter, the system where the application is running must be
IPLed. The application must run in supervisor state, key 0-7 to use this
parameter.

v MODE=SYNCECB: Specifies that the request process synchronously if
possible. If the request processes asynchronously, control returns to the caller
before the request completes and the event control block (ECB) specified on
the ECB keyword is posted when the request completes. The ECB keyword
is required with MODE=SYNCECB.

v MODE=SYNCEXIT: Specifies that the request process synchronously, if
possible. If the request cannot be processed synchronously, your complete
exit (specified on the COMPLETEEXIT parameter on the IXGCONN request)
gets control when this request completes. Control returns to the caller with a
return and reason code indicating that the request is not complete. The
system passes the data specified on the REQDATA parameter, if specified, to
the complete exit.
When a MODE=SYNCEXIT request processes asynchronously, system logger
maintains latent binds to the storage location specified by the answer area
(ANSAREA) fields, and, if specified, to RETBLOCKID and TIMESTAMP.
To use this parameter, the system where the application is running must be
IPLed. The application must run in supervisor state, key 0-7 to use this
parameter.

IXGWRITE macro

1438 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

,REQDATA=reqdata
Specifies the name (or address in a register) of a 8-byte input field containing
user-defined data to pass to the complete exit. REQDATA is only valid with
the MODE=SYNCEXIT parameter.

,ECB=ecb
Specifies the name (or address in a register) of a 4-byte input field that
contains the event control block (ECB) to be posted when the request
completes.

Before coding ECB, you must ensure that:
v You initialize the ECB to zero.
v The ECB must reside in either common storage or the home address space

where the IXGWRITE service was issued.
v The virtual storage area specified for the ECB must reside on a fullword

boundary.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default. Note that on the list form, the
default will cause the smallest parameter list to be created.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form when both forms are
assembled using the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in
higher versions.

v 1, which supports both the following parameters and parameters from
version 0:
– REQDATA

To code: Specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0 or 1

,RETCODE=retcode
Specifies a name (or address in a register) of a 4-byte output field where the
system will place the return code. The return code is also in general purpose
register (GPR) 15.

,RSNCODE=rsncode
Specifies a name (or address in a register) of a 4-byte output field where the

IXGWRITE macro

Chapter 141. IXGWRITE — Write log data to a log stream 1439

system will place the reason code. The reason code is also in general purpose
register (GPR) 0, if you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter can be specified on the list form of
the macro. IBM recommends that you always specify PLISTVER=MAX on the
list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following
order:
v Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters,

including all required ones.
v Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to

change.
v Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

IXGWRITE macro

1440 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ABEND codes
None.

Return and reason codes
When IXGWRITE macro returns control to your program, GPR 15 contains a return
code and GPR 0 contains a reason code.

Note: A program invoking the IXGWRITE service may indicate through the
MODE parameter that requests which can not be completed synchronously should
have control returned to the caller prior to completion of the request. When the
request does complete, the invoker will be notified and the return and reason
codes are in the answer area mapped by IXGANSAA.

The IXGCON macro provides equate symbols for the return and reason codes. The
equate symbols associated with each hexadecimal return code are as follows:

00 IXGRSNCODEOK - Successful completion.

04 IXGRSNCODEWARNING - The request was processed successfully,
however a warning condition was encountered.

08 IXGRETCODEERROR - An error has been encountered. The associated
reason code provides more information.

0C IXGRETCODECOMPERROR - A system logger component error has been
encountered.

The following table contains hexadecimal return and reason codes, the equate
symbols associated with each reason code, and the meaning and suggested action
for each return and reason code.

Table 127. Return and reason codes for the IXGWRITE macro

Return code Reason code Meaning and action

00 xxxx0000 Equate symbol: IxgRsnCodeOk

Explanation: Request processed successfully.

04 xxxx0401 Equate symbol: IxgRsnCodeProcessedAsynch

Explanation: Program error. The program specified
MODE=SYNCECB and the request must be processed
asynchronously.

Action: Wait for the ECB specified on the ECB parameter to
be posted, indicating that the request is complete. Check
the ANSAA_ASYNCH_RETCODE and
ANSAA_ASYNCH_RSNCODE fields, mapped by
IXGANSAA, to determine whether the request completed
successfully.

IXGWRITE macro

Chapter 141. IXGWRITE — Write log data to a log stream 1441

Table 127. Return and reason codes for the IXGWRITE macro (continued)

Return code Reason code Meaning and action

04 xxxx0405 Equate symbol: IxgRsnCodeWarningLossOfData

Explanation: Environment error. Returned for
READCURSOR, START OLDEST and RESET OLDEST
requests. This condition occurs when a system and
coupling facility fail and not all of the log data in the log
stream could be recovered.

v For READCURSOR: A log block has been returned, but
there may be log blocks permanently missing between
this log block and the one previously returned.

v For START OLDEST and RESET OLDEST: The oldest log
blocks in the log stream may be permanently missing,
the browse cursor is set at the oldest available log block.

Action: If your application cannot tolerate any data loss,
stop issuing system logger services to this log stream,
disconnect from the log stream, and reconnect to a new,
undamaged log stream. You can continue using the log
stream if your applications can tolerate data loss.

04 xxxx0407 Equate symbol: IxgRsnCodeConnPossibleLossOfData

Explanation: Environment error. The request was
successful, but there may be log blocks permanently
missing between this log block and the one previously
returned. This condition occurs when a system or coupling
facility fails and not all of the data in the log stream could
be recovered.

Action: If your application cannot tolerate any data loss,
stop issuing system logger services to this log stream,
disconnect from the log stream, and reconnect to a new,
undamaged log stream. You can continue using the log
stream if your applications can tolerate data loss.

04 xxxx0408 Equate symbol: IxgRsnCodeDsDirectoryFullWarning

Explanation: Environment error. The request was
successful, but the log streams DASD data set directory is
full. System logger cannot offload any further data from
the coupling facility structure to DASD. The system logger
will continue to process IXGWRITE requests until this log
streams portion of the coupling facility structure becomes
full.

Action: Either delete enough data from the log stream to
free up space in the log streams data set directory so that
offloading can occur or disconnect from the log stream.

04 xxxx0409 Equate symbol: IxgRsnCodeWowWarning

Explanation: Environment error. The request was
successful, but an error condition was detected during a
previous offload of data. System logger might not be able
to offload further data. System logger will continue to
process IXGWRITE requests only until the interim storage
for the log stream is filled. (Interim storage is the coupling
facility for a coupling facility log stream and local storage
buffers for a DASD-only log stream.)

Action: Do not issue any further requests for this log
stream and disconnect. Connect to another log stream.
Check the system log for message IXG301I to determine the
cause of the error. If you cannot fix the error, search
problem reporting data bases for a fix for the problem. If
no fix exists, contact the IBM Support Center.

IXGWRITE macro

1442 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 127. Return and reason codes for the IXGWRITE macro (continued)

Return code Reason code Meaning and action

04 0000040A Equate symbol: IxgRsnCodeDuplexFailureWarning

Explanation: Environment error. The request was
successful, but the system logger was unable to duplex log
data to staging data sets, even though the log stream
definition requested unconditional duplexing to staging
data sets by specifying the log stream attributes:
STG_DUPLEX=YES, DUPLEXMODE=UNCOND, or
STG_DUPLEX=YES,DUPLEXMODE=DRXRC. When
DUPLEXMODE=UNCOND is specified, but Logger was
unable to obtain a staging data set to duplex the log data.
Therefore, the Logger duplexing is being done in local
buffers (data space).

When DUPLEXMODE=DRXRC is specified for a logstream
and being used for (non-local) disaster recovery duplexing,
if the internal buffers used for asynchronous buffering of
the log blocks become full. Meaning the internal buffers
became full before at least one of the full buffers could be
written to the staging data set.

Action: For DUPLEXMODE=UNCOND, if duplexing to
staging data sets is required, disconnect from this log
stream and connect to a log stream that can be duplexed to
staging data sets.

For DUPLEXMODE=DRXRC, if duplexing to a
DRXRC-type staging data sets is required, then cause the
log data to be offload to the log stream secondary storage
(offload data sets) and then continue writing to the log
stream.

08 xxxx0801 Equate symbol: IxgRsnCodeBadParmlist

Explanation: Program error. The parameter list could not
be accessed.

Action: Ensure that the storage area for the parameter list
is accessible to the system logger for the duration of the
request. The parameter list storage must be addressable in
the caller's primary address space and in the same key as
the caller.

08 xxxx0802 Equate symbol: IxgRsnCodeXESError

Explanation: System error. A severe cross-system extended
services (XES) error has occurred.

Action: See ANSAA_DIAG1 for the XES return code and
ANSAA_DIAG2 for the XES reason code.

08 xxxx0803 Equate symbol: IxgRsnCodeBadBuffer

Explanation: Program error. The virtual storage area
specified on the BUFFER or BUFFER64 parameter is not
addressable.

Action: Ensure that the storage area specified on the
BUFFER or BUFFER64 parameter is accessible to system
logger for the duration of the request. If the BUFFKEY
parameter is specified, make sure it contains a valid key
associated with the storage area. If BUFFKEY is not used,
ensure that the storage is in the same key as the program
at the time the logger service was requested. The storage
must be addressable in the caller's primary address space.

IXGWRITE macro

Chapter 141. IXGWRITE — Write log data to a log stream 1443

Table 127. Return and reason codes for the IXGWRITE macro (continued)

Return code Reason code Meaning and action

08 xxxx0806 Equate symbol: IxgRsnCodeBadStmToken

Explanation: Program error. One of the following occurred:

v The stream token was not valid.

v The specified request was issued from an address space
other than the connector's address space.

Action: Do one of the following:

v Make sure that the stream token specified is valid.

v Ensure the request was issued from the connector's
address space.

08 xxxx0809 Equate symbol: IxgRsnCodeBadWriteSize

Explanation: Program error. The size of the log block
specified in the BLOCKLEN parameter is not valid. The
value for BLOCKLEN must be greater than zero and less
than or equal to the maximum buffer size (MAXBUFSIZE)
defined in the LOGR policy for the structure associated
with this log stream.

Action: Ensure that the value specified on the BLOCKLEN
parameter is greater than 0 and less than or equal to the
MAXBUFSIZE which is returned on the log stream connect
request.

08 xxxx080A Equate symbol: IxgRsnCodeRequestLocked

Explanation: Program error. The program issuing the
request is holding a lock.

Action: Ensure that the program issuing the request is not
holding a lock.

08 xxxx0814 Equate symbol: IxgRsnCodeNotAvailForIPL

Explanation: Environment error. The system logger address
space is not available for the remainder of this IPL. The
system issues messages about this error during system
logger initialization.

Action: See the explanation for system messages issued
during system logger initialization.

08 xxxx0815 Equate symbol: IxgRsnCodeNotEnabled

Explanation: Program error. The program issuing the
request is not enabled for I/O and external interrupts, so
the request fails.

Action: Make sure the program issuing the request is
enabled for I/O and external interrupts.

08 xxxx0816 Equate symbol: IxgRsnCodeBadAnslen

Explanation: Program error. The answer area length
(ANSLEN parameter) is not large enough. The system
logger returned the required size in the
Ansaa_Preferred_Size field of the answer area, mapped by
IXGANSAA macro.

Action: Re-issue the request, specifying an answer area of
the required size.

IXGWRITE macro

1444 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 127. Return and reason codes for the IXGWRITE macro (continued)

Return code Reason code Meaning and action

08 xxxx0817 Equate symbol: IxgRsnCodeBadAnsarea

Explanation: Program error. The storage area specified on
the ANSAREA parameter cannot be accessed. This may
occur after the system logger address space has terminated.

Action: Specify storage that is in the caller's primary
address space and in the same key as the calling program
at the time the system logger service was issued. This
storage must be accessible until the request completes.

08 xxxx0818 Equate symbol: IxgRsnCodeBadBlockidStor

Explanation: Program error. The storage area specified by
BLOCKID cannot be accessed.

Action: Ensure that the storage area is accessible to system
logger for the duration of the request. The storage must be
addressable in the caller's primary address space and in the
same key as the caller.

08 xxxx081C Equate symbol: IxgRsnCodeNotAuthFunc

Explanation: Program error. The program connected to the
log stream with the AUTH=READ parameter and then
tried to delete or write data. You cannot write or delete
data when connected with read authority.

Action: Issue the IXGCONN service with AUTH=WRITE
authority and then re-issue this request.

08 xxxx082D Equate symbol: IxgRsnCodeExpiredStmToken

Explanation: Environment error. The stream token is no
longer valid because the connector has been disconnected.

Action: Connect to the log stream again before issuing any
functional requests.

08 xxxx0837 Equate symbol: IxgRsnCodeBadTimestamp

Explanation: Program error. The storage area specified by
TIMESTAMP cannot be accessed.

Action: Ensure that the storage area is accessible to the
system logger service for the duration of the request. The
storage must be addressable in the caller's primary address
space and in the same key as the caller.

08 xxxx083D Equate symbol: IxgRsnCodeBadECBStor

Explanation: Program error. The ECB storage area was not
accessible to the system logger.

Action: Ensure that the storage area is accessible to the
system logger for the duration of the request. The storage
must be addressable in the caller's home address space and
in the same key as the caller.

08 xxxx083F Equate symbol: IxgRsnCodeTestartError

Explanation: System error. An unexpected error was
encountered while attempting to validate the buffer ALET.

Action: See ANSAA_DIAG1 in the answer area mapped by
the IXGANSAA macro for the return code from the
TESTART system service.

IXGWRITE macro

Chapter 141. IXGWRITE — Write log data to a log stream 1445

Table 127. Return and reason codes for the IXGWRITE macro (continued)

Return code Reason code Meaning and action

08 xxxx0841 Equate symbol: IxgRsnCodeBadBufferAlet

Explanation: Program error. The buffer ALET specified is
not zero and does not represent a valid entry on the caller's
dispatchable unit access list (DUAL). See the
ANSAA_DIAG1 field of the answer area, mapped by the
IXGANSAA macro, for the return code from the TESTART
system service.

Action: Ensure that the correct ALET was specified. If not,
provide the correct ALET. Otherwise, add the correct ALET
to dispatchable unit access list (DUAL).

08 xxxx0849 Equate symbol: IxgRsnCodeBadBuffkey

Explanation: Program error. The buffer key specified on the
BUFFKEY parameter specifies an invalid key. Either the key
is greater than 15 or the program is running in problem
state and the specified key is not the same key as the PSW
key at the time the system logger service was issued.

Action: For problem state programs, either do not specify
the BUFFKEY parameter or else specify the same key as the
PSW key at the time the system logger service was issued.
For supervisor state programs, specify a valid storage key
(0 <= key <= 15).

08 xxxx084E Equate symbol: IXGRSNCODESTRSACETOOSMALL
Explanation: Environment error. Structure resources are
not available to satisfy the request. All structure resources
are allocated as system logger control resources. This
condition occurs when the structure resources are
consumed by the logstreams connections.
Action: Increase the size of the structure in the CFRM
policy or use the SETXCF ALTER command to dynamically
increase the size of the structure.

IXGWRITE macro

1446 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

|||
|
|
|
|
|
|
|
|

Table 127. Return and reason codes for the IXGWRITE macro (continued)

Return code Reason code Meaning and action

08 xxxx085C Equate symbol: IxgRsnCodeDsDirectoryFull

Explanation: Environment error. The interim storage (for
example: the coupling facility structure space allocated or
the staging data set space) for the log stream is full. System
logger's attempts to offload the interim storage log data to
DASD has failed because the log stream's data set directory
is full. If this reason code is issued by the IXGWRITE
request, no further write requests can be processed until
additional directory space is available for the log stream.

System logger will periodically re-drive its offload attempts
for this condition, which is applicable to both coupling
facility structure and DASD-only type log streams. If
system logger is able to offload log data, then an ENF
event will be issued informing the connectors that the log
stream should be available for writing more log data.
However, the time that passes before you can write to the
log stream is unpredictable.

The system issues related messages IXG257I, IXG261E,
IXG262A and IXG301I.

Action: The system programmer must make more log
stream data set directory space available.

For information about how an authorized application
program might respond to this reason code, see Setting Up
the System Logger Configuration in the z/OS MVS
Programming: Authorized Assembler Services Guide.

For information about how an unauthorized application
program might respond to this reason code, see
IXGWRITE: Writing to a log stream in the z/OS MVS
Programming: Assembler Services Guide.

IXGWRITE macro

Chapter 141. IXGWRITE — Write log data to a log stream 1447

Table 127. Return and reason codes for the IXGWRITE macro (continued)

Return code Reason code Meaning and action

08 xxxx085D Equate symbol: IxgRsnCodeWowError

Explanation: Environment error. The interim storage (for
example: the coupling facility structure space allocated or
the staging data set space) for the log stream is full. System
logger's attempts to offload the interim storage log data to
DASD have failed because of severe errors. No further
write requests can be processed until the offload error
condition is cleared.

System logger will periodically re-drive its offload attempts
for this condition, which is applicable to both coupling
facility structure and DASD-only type log streams. If
system logger is able to offload log data, then an ENF
event will be issued informing the connectors that the log
stream should be available for writing more log data.
However, the time that passes before you can write to the
log stream is unpredictable.

The system issues related message IXG301I.

Action: The system programmer must correct the severe
error condition inhibiting the log stream offload. If you are
unable to correct the error, search problem reporting data
bases for a fix for the problem. If no fixt exists, contact the
IBM Support Center.

You can retry your write request periodically or wait for
the ENF signal that the log stream is available, or
disconnect from this log stream and connect to another log
stream.

For information on how an authorized application program
might respond to this reason code, see Setting up the
system logger configuration in the z/OS MVS Programming:
Authorized Assembler Services Guide.

For information on how an authorized application program
might respond to this reason code, see IXGWRITE: Writing
to a log stream in the z/OS MVS Programming: Assembler
Services Guide.

08 xxxx0860 Equate symbol: IxgRsnCodeCFLogStreamStorFull

Explanation: Environment error. The coupling facility
structure space allocated for this log stream is full. No
further requests can be processed until the log data in the
coupling facility structure is offloaded to DASD log data
sets.

Action: Listen to the ENF signal 48 which will indicate that
the log stream is available after the data has been offloaded
to DASD. For IXGCONN requests, Listen to the ENF signal
48 which will indicate that the structure is available. Then,
re-issue the request.

IXGWRITE macro

1448 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 127. Return and reason codes for the IXGWRITE macro (continued)

Return code Reason code Meaning and action

08 xxxx0861 Equate symbol: IxgRsnCodeRebuildInProgress

Explanation: Environment error. No requests can be
processed for this log stream because a coupling facility
structure re-build is in progress for the structure associated
with this log stream.

Action: Listen for ENF signal 48 that will indicate one of
the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not available.

08 xxxx0862 Equate symbol: IxgRsnCodeXESPurge

Explanation: Environment error. An cross-system extended
services (XES) request has been purged due to re-build
processing.

Action: Listen for ENF signal 48 that will indicate one of
the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not available.

08 xxxx0863 Equate symbol: IxgRsnCodeStructureFailed

Explanation: Environment error. Either the coupling facility
structure associated with the log stream has failed or the
coupling facility itself has failed.

Action: Listen for ENF signal 48 that will indicate one of
the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not available.

08 xxxx0864 Equate symbol: IxgRsnCodeNoConnectivity

Explanation: Environment error. No connectivity exists to
the coupling facility associated with the log stream. The
system logger will either attempt to re-build the log stream
in another coupling facility or the log stream will be
disconnected.

Action: Listen for ENF signal 48 that will indicate one of
the following:

v The log stream is available because the re-build
completed successfully. Re-issue the request.

v The re-build failed and the log stream is not available.

v The log stream has been disconnected from this system.

If a re-build initiated because of a loss of connectivity
previously failed, an ENF corresponding to this reason
code might not be issued. Further action by the installation
might be necessary to cause the change of the log stream
status again. Check the log for messages IXG101I, IXG107I
and related rebuild messages for information on resolving
any outstanding issues.

IXGWRITE macro

Chapter 141. IXGWRITE — Write log data to a log stream 1449

Table 127. Return and reason codes for the IXGWRITE macro (continued)

Return code Reason code Meaning and action

08 xxxx0865 Equate symbol: IxgRsnCodeStagingDSFull

Explanation: Environment error. The staging data set
allocated for this log stream on this system is full. No
further requests can be processed until enough log data in
the coupling facility structure is offloaded to DASD log
data sets to relieve the staging data set's full condition.

Action: Listen to the ENF signal 48 which will indicate that
the log stream is available after room becomes available in
the staging data set. Then, re-issue the request.

08 xxxx0867 Equate symbol: IxgRsnCodeLocalBufferFull

Explanation: Environment error. One of the two following
problems was detected:

v The available local buffer space (data space storage) for
the system logger address space is full. Ansaa_Diag1 and
Ansaa_Diag2 in the Answer Area will contain 0 for this
error return.

v The IXGWRITE is rejected because a caller attempted to
write log data when the outstanding asynchronous write
activity for this connection was considered too high. The
limit for unauthorized IXGWRITE invokers is 2,000 and
the limit of 10,000 is used for authorized callers. An
unauthorized caller is a caller whose PSW key is >= 8
and that is not in supervisor state. ANSAA_DIAG1 in
the answer area contains a value of 1 for this error return
for unauthorized callers and a value of 2 for authorized
callers. ANSAA_DIAG2 contains the total number of
outstanding write requests for this connection.

No further writing requests can be processed until the log
data in the local buffer space is offloaded to DASD log data
sets or this connector's prior IXGWRITE requests complete.
Note: This reason code applies to both CF and DASD only
log stream requests.

Action:

v For authorized writers: Listen for the ENF signal 48 that
will indicate that the log stream is available. With the
first condition, logger issues the ENF signal after the
data has been offloaded to DASD. With the second
condition, logger issues the ENF signal 48 that the log
stream is available when the number of in-flight
authorized asynchronous writes is reduced below 85% of
the limit. There will be no ENF signal issued when the
unauthorized limit is relieved.

v For unauthorized callers: Wait for a short interval and
then reissue the request.

v If the attempts continue to fail or the ENF signal is not
issued for an unacceptable period, consider notifying
operations or disconnecting from the log stream.

IXGWRITE macro

1450 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 127. Return and reason codes for the IXGWRITE macro (continued)

Return code Reason code Meaning and action

08 xxxx0868 Equate symbol: IxgRsnCodeStagingDSFormat

Explanation: Environment error. The staging data set
allocated for this log stream on this system has not finished
being formatted for use by System Logger. No further
IXGWRITE requests can be processed until the formatting
completes.

Action: Listen to the ENF signal 48 which will indicate that
the logstream is available after formatting process is
finished. Then, re-issue the request.

08 xxxx0890 Equate symbol: IxgRsnCodeAddrSpaceNotAvail

Explanation: System error. The system logger address
space failed and is not available.

Action: Do not issue system logger requests.

08 xxxx0891 Equate symbol: IxgRsnCodeAddrSpaceInitializing

Explanation: System error. The system logger address
space is not available because it is IPLing.

Action: Listen for ENF signal 48, which will indicate when
the system logger address space is available. Re-connect to
the log stream, then re-issue this request. You can also
listen for ENF signal 48, which will indicate if the system
logger address space will not be available for the life of the
IPL. In that case, do not issue system logger services.

08 xxxx08D1 Equate symbol: IxgRsnCodePrgramKey

Explanation: Environment error. The request was rejected
because of one of the following:

v The request was issued in SRB mode while the requestor
was in problem program key (key 8-F).

v The SYNCEXIT parameter was specified while the
requestor's PSW key was in problem program key.

Action: Change the invoking environment to a system key
(key 0-7).

08 xxxx08D2 Equate symbol: IxgRsnCodeNoCompleteExit

Explanation: Program error. MODE=SYNCEXIT was
specified, but the connection request did not identify a
complete exit.

Action: Either change this request to a different MODE
option, or reconnect to the log stream with a complete exit
specified on the COMPLETEXIT parameter.

08 xxxx08D7 Equate symbol: IxgRsnCodeRequestNotAllowed

Explanation: Program error. The caller issued an
IXGWRITE request while an import connection was active
on this system (IXGCONN IMPORTCONNECT=YES).

Action: Re-issue the request, based on the type of
connection active.

IXGWRITE macro

Chapter 141. IXGWRITE — Write log data to a log stream 1451

Table 127. Return and reason codes for the IXGWRITE macro (continued)

Return code Reason code Meaning and action

0C xxxx0000 Equate symbol: IxgRetCodeCompError

Explanation: User or System error. One of the following
occurred:

v You issued the FORCE IXGLOGR,ARM command to
terminate the system logger address space.

v System logger component error occurred.

Action: If this reason code is not the result of forcing the
system logger address space, search problem reporting data
bases for a fix for the problem. If no fix exists, contact the
IBM Support Center. Provide the diagnostic data in the
answer area (IXGANSAA) and any dumps or LOGREC
entries from system logger.

Example 1
Write data to the log stream synchronously.

IXGWRITE STREAMTOKEN=TOKEN, X
BUFFER=BUFF, X
BLOCKLEN=BLKLEN, X
BUFFALET=BUFALET, X
RETBLOCKID=RETBLK, X
BUFFKEY=BUFKEY, X
TIMESTAMP=RET_TIME, X
MODE=SYNC, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

BUFF DC CL256’BUFFER TEXT’ buffer to write to log stream
BLKLEN DC F’256’ length of block to be written
ANSLEN DC A(L’ANSAREA) length of logger’s answer area
BUFKEY DC F’8’ buffer key
TOKEN DS CL16 stream token from connect
RET_TIME DS CL16 returned timestamp of block
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
BUFALET DC F’1’ buffer alet secondary
RETBLK DS CL8 returned block id
DATAREA DSECT

IXGANSAA LIST=YES answer area

Example 2
Write data to the log stream asynchronously, if synchronous processing is not
possible.

IXGWRITE STREAMTOKEN=TOKEN, X
BUFFER=BUFF, X
BLOCKLEN=BLKLEN, X
BUFFALET=BUFALET, X
RETBLOCKID=RETBLK, X
MODE=SYNCECB, X
ECB=ANECB, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

IXGWRITE macro

1452 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

*+++
* if return code = ’00000401’X then wait
* on the ecb ANECB for the request to complete
*+++
BUFF DC CL256’BUFFER TEXT’ buffer to write to log stream
BLKLEN DC F’256’ length of block to be written
ANSLEN DC A(L’ANSAREA) length of logger’s answer area
TOKEN DS CL16 stream token from connect
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
BUFALET DC F’1’ buffer alet secondary
ANECB DS F ecb to wait on
RETBLK DS CL8 returned block id
DATAREA DSECT

IXGANSAA LIST=YES answer area

Example 3
Write data to the log stream using registers.

LA R6,TOKEN load stream token in register 6
IXGWRITE STREAMTOKEN=(6), X

BUFFER=BUFF, X
BLOCKLEN=BLKLEN, X
RETBLOCKID=RETBLK, X
MODE=SYNC, X
ANSAREA=ANSAREA, X
ANSLEN=ANSLEN, X
RSNCODE=RSNCODE, X
MF=S, X
RETCODE=RETCODE

BUFF DC CL256’BUFFER TEXT’ buffer to write to log stream
BLKLEN DC F’256’ length of block to be written
ANSLEN DC A(L’ANSAREA) length of logger’s answer area
TOKEN DS CL16 stream token from connect
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
RETBLK DS CL8 returned block id
DATAREA DSECT

IXGANSAA LIST=YES answer area
R6 EQU 6 set up register 6

IXGWRITE macro

Chapter 141. IXGWRITE — Write log data to a log stream 1453

1454 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Appendix. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the "Contact us" web page for z/OS (http://www.ibm.com/
systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out

© Copyright IBM Corp. 1988, 2016 1455

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

1456 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix. Accessibility 1457

1458 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1988, 2016 1459

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

1460 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This information is intended to help the customer to code macros that are available
to authorized assembler language programs. This information documents intended
programming interfaces that allow the customer to write programs to obtain
services of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
Trademark information (http://www.ibm.com/legal/copytrade.shtml).

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 1461

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

1462 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Index

Numerics
31-bit addressing mode

macros requiring expansion
ESTAE macro 101

64-bit
guidance information 352, 479

64-bit latch
obtaining 1259
purging 1277
purging a group 1269
purpose 1259, 1269, 1277, 1287
releasing 1287

64-bit latch manager services
ISGLPB64 callable service

syntax 1269
64-bit latch set

creating 1233
purpose 1233

A
abend

interrupting scheduled 101
accessibility 1455

contact IBM 1455
features 1455

addressing mode and the services 2
ALET qualification

of parameters 4
AR () mode

description 3
ASC (address space control) mode

defining 3
assistive technologies 1455

C
callable service

coding 16
captured UCB

obtaining actual address 971
coding the callable services 16
coding the macros 13
component trace format table

generating 1323
contact

z/OS 1455
continuation line 16

D
data sharing with IARVSERV macro 339
device measurement block index

obtaining 951

E
EDT (eligible device table)

obtaining information 29

EDTINFO macro 29
ENF (event notification facility)

example 45
ENFREQ macro 37
ENQ macro 73
entry table

connecting 119
creating 125
destroying 139
disconnecting 145

entry table descriptor
creating 129

ESPIE macro 91
ESTAE and ESTAEX macros 101
ETCON macro 119
ETCRE macro 125
ETDEF macro 129
ETDES macro 139
ETDIS macro 145
event

notification of occurrence 37
waiting for completion 149

EVENTS macro 149
EXTRACT macro 155

F
FESTAE macro 161
FRACHECK macro (for RACF Release

1.8.1 or earlier) 167
FREEMAIN macro 169

G
GETDSAB macro 181
GETMAIN macro 189
global serialization queue

extracting information 207
GQSCAN macro 207
GTRACE macro 221

DATA function 225
QUERY function 223
TEST function 221

H
hiperspace

reading to 261
writing from 261

HISMT macro 231
HISSERV macro 261
HSPSERV macro 261

I
I/O configuration token

obtaining 951
IARBRVEA callable service 281
IARBRVER callable service 285

IARCP64 macro 289
IARR2V macro 307
IARST64 macro 313
IARSUBSP macro 329
IARV64 macro 351

REQUEST=CHANGEACCESS 453
REQUEST=DETACH 431
REQUEST=GETSHARED 440
REQUEST=SHAREMEMOBJ 447

IARVSERV macro
data sharing 339

IAZXCTKN macro 485
IAZXJSAB macro 487
IEA4APE callable service 727
IEA4APE2 callable service 731
IEA4DPE callable service 739
IEA4DPE2 callable service 743
IEA4PME2 callable service 747
IEA4PSE callable service 755
IEA4PSE2 callable service 761
IEA4RLS callable service 767
IEA4RLS2 callable service 773
IEA4RPI callable service 779
IEA4RPI2 callable service 785
IEA4TPE callable service 793
IEA4XFR callable service 797
IEA4XFR2 callable service 805
IEAARR macro 493
IEAFP macro 499
IEALSQRY macro 505
IEAMETR macro 509
IEAMRMF3 macro 513
IEAMSCHD macro 521
IEAMSXMP macro 539
IEAN4CR callable service 575
IEAN4DL callable service 581
IEAN4RT callable service 585
IEANTCR callable service 551
IEANTDL callable service 557
IEANTRT callable service 561
IEANTRTR macro 569
IEARBUP RB Update Service 589
IEATEDS macro 619
IEATXDC macro 641
IEAVAPE callable service 645
IEAVAPE2 callable service 649
IEAVDPE callable service 657
IEAVDPE2 callable service 661
IEAVPME2 callable service 667
IEAVPSE callable service 675
IEAVPSE2 callable service 681
IEAVRLS callable service 687
IEAVRLS2 callable service 693
IEAVRPI callable service 699
IEAVRPI2 callable service 705
IEAVTPE callable service 711
IEAVXFR callable service 715
IEAVXFR2 callable service 721
IEECMDS macro 811
IEEQEMCS macro 821
IEEVARYD macro 837

© Copyright IBM Corp. 1988, 2016 1463

IEEVARYD macro (continued)
comparison to MGCRE macro 837

IEFPPSCN macro 851
IEFQMREQ macro 859
IEFSJSYM macro 863

Environment 863
Input register information 864
Output register information 864
Performance implications 864
Programming requirements 864
REQUEST= parameter 865

Parameters 866
Syntax 865

Restrictions 864
Return and reason codes 868

IEFSSI macro 873
IEFSSVT macro 909
IEFSSVTI macro 931
IFAQUERY service 945
IOCINFO macro 951
IOS (input/output supervisor)

building control unit entry 1035
ENQ 1043
FBA (fixed block architecture) 1049
obtain switch information 1135
obtaining information 1007, 1019,

1029, 1075, 1119
IOSADMF macro 959
IOSCAPF macro 971
IOSCAPU macro 975
IOSCDR macro 993
IOSCHPD macro 1007
IOSCMB macro 1015
IOSCMXA macro 1019
IOSCMXR macro 1025
IOSCUINF macro 1029
IOSCUMOD macro 1035
IOSDCXR macro 1039
IOSENQ macro 1043
IOSFBA macro 1049
IOSHXBLK macro 1067
IOSINFO macro 1075
IOSLOOK macro 1079
IOSODS macro 1081

Execute Form 1086
List Form 1085

IOSPTHV macro 1089
IOSSPOF macro 1105

Execute Form 1117
List Form 1116

IOSUPFA macro 1119
IOSUPFR macro 1123
IOSVRYSW macro 1127
IOSWITCH macro 1135
IOSZHPF macro 1141
IQPINFO macro 1145
IRDFSD macro 1151
IRDFSDU macro 1157
ISGECA macro 1186
ISGLCR64 callable service 1233

syntax 1233
ISGLCRT callable service 1221

syntax 1221
ISGLOB64 callable service 1259

syntax 1259
ISGLOBT callable service 1253

syntax 1253

ISGLPB64 callable service
syntax 1269

ISGLPBA callable service
syntax 1265

ISGLPR64 callable service 1277
syntax 1277

ISGLPRG callable service 1273
syntax 1273

ISGLRE64 callable service 1287
syntax 1287

ISGLREL callable service 1281
syntax 1281

ITTFMTB macro 1323
ITTWRITE macro 1329
ITZXFILT macro 1337
IXGBRWSE macro 1341
IXGCONN macro 1389
IXGDELET macro 1415
IXGWRITE macro 1433

J
job

obtaining information about
current 487

K
keyboard

navigation 1455
PF keys 1455
shortcut keys 1455

L
latch

obtaining 1253
purging 1273
purging a group 1265
purpose 1253, 1265, 1273, 1281
releasing 1281

latch manager services
ISGLCR64 callable service

syntax 1233
ISGLCRT callable service

syntax 1221
ISGLOB64 callable service

syntax 1259
ISGLOBT callable service

syntax 1253
ISGLPBA callable service

syntax 1265
ISGLPR64 callable service

syntax 1277
ISGLPRG callable service

syntax 1273
ISGLRE64 callable service

syntax 1287
ISGLREL callable service

syntax 1281
latch set

creating 1221
purpose 1221

linkage stack
query macro 505

M
macro

coding 13
forms 12
level

selecting 1
sample 14
selecting level 1
user parameter, passing 4
X-macros

using 11

N
navigation

keyboard 1455
Notices 1459

S
sending comments to IBM xxxi
serially reusable resource

requesting control 73
service

ALET qualification 4
summary 18

services
addressing mode 2
ASC mode

defining 3
using 1

sharing storage with IARVSERV
macro 339

shortcut keys 1455
SMF

configuration query service 945
subchannel number

obtaining for a UCB 1075
summary of changes xxxiii
Summary of changes xxxiv, xxxv
SWA manager

invoking in move mode 859

T
TCB (task control block)

extracting information 155

U
unit control block

capturing and releasing 975
locating 1079
obtaining address of common

extension segment 1025
obtaining address of device class

extension 1039
obtaining address of prefix

extension 1123
vary switch service 1127

user interface
ISPF 1455
TSO/E 1455

user parameter
passing 4

1464 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

V
virtual storage

allocating 169, 189
Virtual storage

sharing with IARVSERV macro 339

X
X-macros

using 11

Index 1465

1466 z/OS V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IBM®

Product Number: 5650-ZOS

Printed in USA

SA23-1373-04

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	How to use this document
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 2 (V2R2), as updated December, 2015
	Summary of changes for z/OS Version 2 Release 2
	Summary of changes for z/OS Version 2 Release 1, as updated February 2015
	z/OS Version 2 Release 1 summary of changes

	Chapter 1. Using the services
	Compatibility of MVS macros
	Addressing mode (AMODE)
	Address space control (ASC) mode
	ALET qualification
	User parameters

	Telling the system about the execution environment
	Specifying a macro version number
	How to request a macro version using PLISTVER
	Hints for using PLISTVER

	Register use
	Handling return codes and reason codes
	Handling program errors
	Handling environmental and system errors

	Using X-macros
	Macro forms
	Conventional list form macros
	Alternative list form macros

	Coding the macros
	Continuation lines

	Coding the callable services
	Including equate (EQU) statements
	Link-editing linkage-assist routines

	Service summary

	Chapter 2. EDTINFO — Obtain eligible device table information
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Example

	EDTINFO - List form
	Syntax
	Parameters

	EDTINFO - Execute form
	Syntax
	Parameters

	EDTINFO - Modify form
	Syntax
	Parameters

	Chapter 3. ENFREQ — Listen for system events
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications

	LISTEN option
	Syntax
	Parameters
	ENF event codes and meanings
	Return codes
	Example 1
	Example 2

	DELETE option
	Syntax
	Parameters
	Return and reason codes

	ENFREQ ACTION=LISTEN - List form
	Syntax
	Parameters

	ENFREQ ACTION=LISTEN - Execute form
	Syntax
	Parameters

	ENFREQ ACTION=DELETE - List form
	Syntax
	Parameters

	ENFREQ ACTION=DELETE - Execute form
	Syntax
	Parameters

	Chapter 4. ENQ — Request control of a serially reusable resource
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	ENQ - List form
	Syntax
	Parameters

	ENQ - Execute form
	Syntax
	Parameters

	Chapter 5. ESPIE — Extended SPIE
	Description
	Environment
	Programming requirements
	Restrictions
	Performance implications
	ABEND codes

	ESPIE SET option
	Input register information
	Output register information
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2

	ESPIE SET - List form
	Syntax
	Parameters
	Example

	ESPIE SET - Execute form
	Syntax
	Parameters
	Example

	ESPIE RESET option
	Input register information
	Output register information
	Syntax
	Parameters
	Return and reason codes
	Example

	ESPIE TEST option
	Input register information
	Output register information
	Syntax
	Parameters
	Return and reason codes
	Example

	Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	ESTAEX - Specify task abnormal exit extended
	Environment
	Programming requirements
	Restrictions
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	ESTAE and ESTAEX - List form
	Syntax
	Parameters

	ESTAE or ESTAEX - Execute form
	Syntax
	Parameters

	Chapter 7. ETCON — Connect entry table
	Description
	Related macros
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	ETCON - List form
	Syntax
	Parameters

	ETCON - Execute form
	Syntax
	Parameters

	Chapter 8. ETCRE — Create entry table
	Description
	Related macros
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 9. ETDEF — Create an entry table descriptor (ETD)
	Description
	Related macros
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	TYPE=INITIAL, TYPE=ENTRY, and TYPE=FINAL parameters
	Syntax
	Parameters
	TYPE=SET parameter
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 10. ETDES — Destroy entry table
	Description
	Related macros
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	ETDES - List form
	Syntax
	Parameters

	ETDES - Execute form
	Syntax
	Parameters

	Chapter 11. ETDIS — Disconnect entry table
	Description
	Related macros
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	Chapter 12. EVENTS — Wait for one or more events to complete
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	Chapter 13. EXTRACT — Extract TCB information
	Description
	Environment
	Programming requirements
	Restrictions
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	EXTRACT - List form
	Syntax
	Parameters

	EXTRACT - Execute form
	Syntax
	Parameters

	Chapter 14. FESTAE — Fast extended STAE
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 15. FRACHECK — Check user's authorization (for RACF Release 1.8.1 or earlier)
	Chapter 16. FREEMAIN — Free virtual storage
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information for SVC entry
	Output register information for SVC entry
	Input register information for BRANCH=YES
	Output register information for BRANCH=YES
	Input register information for BRANCH=(YES,GLOBAL)
	Output register information for BRANCH=(YES,GLOBAL)
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	FREEMAIN - List form
	Parameters

	FREEMAIN - Execute form
	Parameters

	Chapter 17. GETDSAB — Accessing the DSAB chain
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4

	GETDSAB - List form
	Syntax
	Parameters

	GETDSAB - Execute form
	Syntax
	Parameters

	Chapter 18. GETMAIN — Allocate virtual storage
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information for SVC entry
	Output register information for SVC entry
	Input register information for BRANCH=YES
	Output register information for BRANCH=YES
	Input register information for BRANCH=(YES,GLOBAL)
	Output register information for BRANCH=(YES,GLOBAL)
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Chapter 19. GQSCAN — Extract information from global resource serialization queue
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	GQSCAN - List form
	Parameters

	GQSCAN - Execute form
	Parameters

	Chapter 20. GTRACE — GTF trace recording
	Description
	GTRACE TEST
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	GTRACE QUERY
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	GTRACE DATA
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	GTRACE DATA - List form
	Syntax
	Parameters

	GTRACE DATA - Execute form
	Syntax
	Parameters

	Chapter 21. HISMT — HIS multithreading service
	Description
	Environment
	Programming requirements
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 22. HISSERV macro — HISSERV Service
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 23. HSPSERV — Read from and write to a Hiperspace
	Description
	Read and write services for standard hiperspaces
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Read and write services for ESO hiperspaces
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	HSPSERV - List form
	Syntax
	Parameters

	HSPSERV - Execute form
	Syntax
	Parameters

	HSPSERV - Modify form
	Syntax
	Parameters

	Chapter 24. IARBRVEA — Verify virtual storage access (AR mode)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 25. IARBRVER — Verify virtual storage access (primary address space)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 26. IARCP64 — 64-bit cell pool services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	Chapter 27. IARR2V — Convert a central storage address to a virtual storage address
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4

	Chapter 28. IARST64 — 64-bit storage services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	Chapter 29. IARSUBSP — Create and delete a subspace
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	IARSUBSP - List form
	Parameters

	IARSUBSP - Execute form

	Chapter 30. IARVSERV — Request to share virtual storage
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	IARVSERV—List form
	IARVSERV - Execute form

	Chapter 31. IARV64 — 64–bit virtual storage allocation
	Description
	REQUEST=GETSTOR option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=PAGEFIX option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=PAGEUNFIX option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=PAGEOUT option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=PAGEIN option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=DISCARDDATA option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=CHANGEGUARD option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=PROTECT option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=UNPROTECT option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=LIST option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=DETACH option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=GETSHARED option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=SHAREMEMOBJ option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=CHANGEACCESS option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=GETCOMMON option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	REQUEST=COUNTPAGES option of IARV64
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters

	ABEND codes
	Return and reason codes
	Example
	Operation:

	Chapter 32. IAZXCTKN — Client token compare service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 33. IAZXJSAB — Obtain information about a currently running job
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 34. IEAARR — Establish an associated recovery routine (ARR)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 35. IEAFP — Floating point services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 36. IEALSQRY — Linkage stack query
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	ABEND codes
	Return codes
	Example

	Chapter 37. IEAMETR — Query external time reference status
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return codes

	Chapter 38. IEAMRMF3 — Obtain address space dispatchability data
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Return codes
	Example

	Chapter 39. IEAMSCHD — Schedule an SRB
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	Chapter 40. IEAMSXMP — Safe cross-memory post
	Chapter 41. IEANTCR — Create a name/token pair
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 42. IEANTDL — Delete a name/token pair
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 43. IEANTRT — Retrieve the token from a name/token pair
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2

	Chapter 44. IEANTRTR — Name/token retrieve register interface
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2

	Chapter 45. IEAN4CR — Create a name/token pair
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 46. IEAN4DL — Delete a name/token pair
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 47. IEAN4RT — Retrieve the token from a name/token pair
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 48. IEARBUP — RB update service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Operation

	Example 2
	Operation:

	Chapter 49. IEATDUMP — Transaction dump request
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	Chapter 50. IEATEDS - Timed event data services
	Description
	Timed Event Data Report
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples
	Timed Event Data Report example invocations

	Chapter 51. IEATXDC — Transactional execution diagnostic controls
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	Chapter 52. IEAVAPE — Allocate_Pause_Element
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 53. IEAVAPE2 — Allocate_Pause_Element
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 54. IEAVDPE — Deallocate_Pause_Element
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 55. IEAVDPE2 — Deallocate_Pause_Element
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 56. IEAVPME2 — Pause multiple elements service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 57. IEAVPSE — Pause service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 58. IEAVPSE2 — Pause service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 59. IEAVRLS — Release
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 60. IEAVRLS2 — Release
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 61. IEAVRPI — Retrieve_Pause_Element_Information service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 62. IEAVRPI2 — Retrieve_Pause_Element_Information service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 63. IEAVTPE — Test_Pause_Element service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 64. IEAVXFR — Transfer service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 65. IEAVXFR2 — Transfer service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 66. IEA4APE — Allocate_Pause_Element
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 67. IEA4APE2 — Allocate_Pause_Element
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 68. IEA4DPE - Deallocate_Pause_Element
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 69. IEA4DPE2 — Deallocate_Pause_Element
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 70. IEA4PME2 — 64-bit pause multiple elements service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 71. IEA4PSE — Pause service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 72. IEA4PSE2 — Pause service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 73. IEA4RLS — Release
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 74. IEA4RLS2 — Release
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 75. IEA4RPI — Retrieve_Pause_Element_Information service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 76. IEA4RPI2 — Retrieve_Pause_Element_Information service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 77. IEA4TPE — Test_Pause_Element service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 78. IEA4XFR — Transfer service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 79. IEA4XFR2 — Transfer service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 80. IEECMDS — Query/remove attached commands
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 81. IEEQEMCS — Query EMCS console
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	Chapter 82. IEEVARYD — Vary one or more devices online or offline
	Description
	Comparison to MGCRE macro
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples
	Example 1
	Example 2

	IEEVARYD - List form
	IEEVARYD - Execute form

	Chapter 83. IEFPPSCN — Scan the program properties table
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Return codes
	Example

	IEFPPSCN - List form
	Syntax
	Parameters

	IEFPPSCN - Execute form
	Syntax
	Parameters

	Chapter 84. IEFQMREQ — Invoke SWA manager in move mode
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 85. IEFSJSYM — JCL symbol service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications

	REQUEST= parameter of IEFSJSYM
	Syntax
	Parameters

	ABEND codes
	Return and reason codes
	Example

	Chapter 86. IEFSSI — Dynamically control a subsystem
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	REQUEST=ADD parameter of IEFSSI
	Syntax for REQUEST=ADD
	Parameters for REQUEST=ADD
	REQUEST=ACTIVATE parameter of IEFSSI
	Syntax for REQUEST=ACTIVATE
	Parameters for REQUEST=ACTIVATE
	REQUEST=OPTIONS parameter of IEFSSI
	Syntax for REQUEST=OPTIONS
	Parameters for REQUEST=OPTIONS
	REQUEST=DEACTIVATE parameter of IEFSSI
	Syntax for REQUEST=DEACTIVATE
	Parameters for REQUEST=DEACTIVATE
	REQUEST=SWAP parameter of IEFSSI
	Syntax for REQUEST=SWAP
	Parameters for REQUEST=SWAP
	REQUEST=PUT parameter of IEFSSI
	Syntax for REQUEST=PUT
	Parameters for REQUEST=PUT
	REQUEST=GET parameter of IEFSSI
	Syntax for REQUEST=GET
	Parameters for REQUEST=GET
	REQUEST=QUERY parameter of IEFSSI
	Syntax for REQUEST=QUERY
	Parameters for REQUEST=QUERY
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8

	Chapter 87. IEFSSVT — Create a subsystem vector table
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	REQUEST=CREATE parameter of IEFSSVT
	Syntax for REQUEST=CREATE
	Parameters for REQUEST=CREATE
	REQUEST=DISABLE parameter of IEFSSVT
	Syntax for REQUEST=DISABLE
	Parameters for REQUEST=DISABLE
	REQUEST=ENABLE parameter of IEFSSVT
	Syntax for REQUEST=ENABLE
	Parameters for REQUEST=ENABLE
	REQUEST=EXCHANGE parameter of IEFSSVT
	Syntax for REQUEST=EXCHANGE
	Parameters for REQUEST=EXCHANGE
	ABEND codes
	Return and reason codes
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Chapter 88. IEFSSVTI — Associate function routines with function codes
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	ABEND codes
	Return and reason codes
	Examples
	Example 1
	Example 2

	TYPE=LIST parameter of IEFSSVTI
	Syntax
	Parameters

	TYPE=INITIAL parameter of IEFSSVTI
	Syntax
	Parameters

	TYPE=ENTRY parameter of IEFSSVTI
	Syntax
	Parameters

	TYPE=FINAL parameter of IEFSSVTI
	Syntax
	Parameters

	TYPE=SET parameter of IEFSSVTI
	Syntax
	Parameters

	TYPE=RESERVE parameter of IEFSSVTI
	Syntax
	Parameters

	TYPE=COPY parameter of IEFSSVTI
	Syntax
	Parameters

	Chapter 89. IFAQUERY — SMF configuration query service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 90. IOCINFO — Obtain MVS I/O configuration information
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	IOCINFO—List form
	Syntax
	Parameters

	IOCINFO - Execute form
	Syntax
	Parameters

	Chapter 91. IOSADMF — Transfer hiperspace data
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	IOSADMF - List form
	Syntax
	Parameters

	IOSADMF - Execute form
	Syntax
	Parameters

	Chapter 92. IOSCAPF — Obtain the actual address of a captured UCB
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 93. IOSCAPU — Capture, release, or obtain the actual address of a UCB
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications

	Capture an UCB function
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	IOSCAPU CAPTUCB - List form
	Syntax
	Parameters

	IOSCAPU CAPTUCB - Execute form
	Syntax
	Parameters

	Release a captured UCB function
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	IOSCAPU UCAPTUCB - List form
	Syntax
	Parameters

	IOSCAPU UCAPTUCB - Execute form
	Syntax
	Parameters

	Translate captured to actual address function
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	IOSCAPU CAPTOACT - List form
	Syntax
	Parameters

	IOSCAPU CAPTOACT - Execute form
	Syntax
	Parameters

	Chapter 94. IOSCDR — Retrieve configuration data records
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameter descriptions
	Return codes
	Example

	Chapter 95. IOSCHPD — IOS CHPID description service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 96. IOSCMB — Locate the channel measurement block (CMB)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Example

	Chapter 97. IOSCMXA — Obtain address of the UCB common extension segment
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	IOSCMXA - List form
	Syntax
	Parameters

	IOSCMXA - Execute form
	Syntax
	Parameters

	Chapter 98. IOSCMXR — Obtain address of the UCB common extension segment
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 99. IOSCUINF — Control unit information service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 100. IOSCUMOD — IOS control unit entry build service
	Description
	Programming requirements
	Restrictions
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 101. IOSDCXR — Obtain address of the device class extension segment
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 102. IOSENQ — IOS ENQ service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 103. IOSFBA — IOS fixed block architecture service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 104. IOSHXBLK — Request to suspend and resume Basic HyperSwap services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 105. IOSINFO — Obtain the subchannel number for a UCB
	Description
	Environment
	Input register information
	Output register information
	Syntax
	Parameters
	Return codes
	Example 1
	Example 2
	Example 3

	Chapter 106. IOSLOOK — Locate unit control block
	Description
	Syntax
	Parameters
	Return codes
	Example

	Chapter 107. IOSODS — IOS offline device service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	IOSODS - List form
	Syntax
	Parameters

	IOSODS - Execute form
	Syntax
	Parameters

	Chapter 108. IOSPTHV — Validate I/O paths
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameter descriptions
	Return and reason codes
	Example

	Chapter 109. IOSSCM — Storage class memory information
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 110. IOSSPOF — Check for single points of failure
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Return and reason codes

	IOSSPOF - List form
	Syntax
	Parameters

	IOSSPOF - Execute form
	Syntax
	Parameters

	Chapter 111. IOSUPFA — Obtain address of the UCB prefix extension segment
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	IOSUPFA - List form
	Syntax
	Parameters

	IOSUPFA - Execute form
	Syntax
	Parameters

	Chapter 112. IOSUPFR — Obtain address of the UCB prefix extension segment
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 113. IOSVRYSW — Vary switch service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	IOSVRYSW—List form
	Syntax
	Parameters
	Examples

	Chapter 114. IOSWITCH — IOS switch information service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 115. IOSZHPF — zHPF channel program capabilities service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 116. IQPINFO — Obtain PCIe information
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return codes

	Chapter 117. IRDFSD — FICON switch data services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Reason codes

	Chapter 118. IRDFSDU — FICON switch data update services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Reason codes

	Chapter 119. ISGADMIN — Global resource serialization administration service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	Chapter 120. ISGECA — GRS enhanced contention analysis service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	Chapter 121. ISGENQ — Global resource serialization ENQ service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	Chapter 122. ISGLCRT — Create a latch set
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	LATCHX31 - How to call AMODE 31 latch devices

	Chapter 123. ISGLCR64 — Create a latch set in 64-bit mode
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	LATCHX64 - How to call AMODE 64 latch services

	Chapter 124. ISGLID — Identify a latch set
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 125. ISGLID64 — Identify a latch set in 64-bit mode
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 126. ISGLOBT — Obtain a latch
	Description
	Environment
	Programming Requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 127. ISGLOB64 — Obtain a latch in 64-bit mode
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 128. ISGLPBA — Purge a group of requestors from a group of latch sets
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 129. ISGLPB64 — Purge a group of requestors from a group of latch sets in 64-bit mode
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 130. ISGLPRG — Purge a requestor from a latch set
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 131. ISGLPR64 — Purge a requestor from a latch set in 64-bit mode
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 132. ISGLREL — Release a latch
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 133. ISGLRE64 — Release a latch in 64-bit mode
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Chapter 134. ISGQUERY — Global resource serialization query service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	Chapter 135. ITTFMTB — Generate component trace format table
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes

	Chapter 136. ITTWRITE — Write a full trace buffer to DASD or tape
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	ITTWRITE - List form
	Syntax
	Parameters

	ITTWRITE - Execute form
	Syntax
	Parameters

	Chapter 137. ITZXFILT — Transaction trace filter exit
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 138. IXGBRWSE — Browse/read a log stream
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	REQUEST=START option of IXGBRWSE
	Syntax for REQUEST=START
	Parameters for REQUEST=START
	REQUEST=READCURSOR option of IXGBRWSE
	Syntax for REQUEST=READCURSOR
	Parameters for REQUEST=READCURSOR
	REQUEST=READBLOCK option of IXGBRWSE
	Syntax for REQUEST=READBLOCK
	Parameters for REQUEST=READBLOCK
	REQUEST=RESET option of IXGBRWSE
	Syntax for REQUEST=RESET
	Parameters for REQUEST=RESET
	REQUEST=END option of IXGBRWSE
	Syntax for REQUEST=END
	Parameters for REQUEST=END
	ABEND codes
	Return and reason codes
	Examples

	Chapter 139. IXGCONN — Connect/disconnect to log stream
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Chapter 140. IXGDELET — Deleting log data from a log stream
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	Chapter 141. IXGWRITE — Write log data to a log stream
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	Appendix. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	Numerics
	A
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	S
	T
	U
	V
	X

