<|ll

7/08S

MYVS Programming: Authorized Assembler
Services Reference, Volume 2 (EDT-1XG)

Version 2 Release 2

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 1459,

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2016.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . . XXV
Tables . . XXxvii
About this document. . XXix
Who should use this document . . Xxix
How to use this document. . Xxxix
z/0S information. . Xxix
How to send your comments to IBM xxxi
If you have a technical problem . - oxxxd
Summary of changes . . XXxxiii

Summary of changes for z/OS Version 2 Release
2 (V2R2), as updated December, 2015.

Summary of changes for z/OS Version 2 Release
2. . oo Xxxdid
Summary of changes for z/OS Version 2 Release

. Xxxiii

1, as updated February 2015. . xxxiv
z/0OS Version 2 Release 1 summary of changes XXXV
Chapter 1. Using the services .1
Compatibility of MVS macros. .1
Addressing mode (AMODE) . .2
Address space control (ASC) mode . .3
ALET qualification . .4
User parameters . oo .. 4
Telling the system about the executlon env1r0nment 6
Specifying a macro version number. . .7
How to request a macro version using PLISTVER 7
Register use . . 8
Handling return codes and reason codes . .9
Handling program errors . . .o .9
Handling environmental and system errors. . . 10
Using X-macros1
Macro forms . . . e 12
Conventional list form macros12
Alternative list form macros.13
Coding the macros13
Continuation lines16
Coding the callable services . . . B ()
Including equate (EQU) statements B V4
Link-editing linkage-assist routines17
Service summary18

Chapter 2. EDTINFO — Obtain eligible
device table information 29

Description29
Environment L.29
Programming requlrements L.02
Restrictions . . . L. 029
Input register mformatlon 30
Output register information.30
Performance implications.30

© Copyright IBM Corp. 1988, 2016

Syntax . . 30
Parameters . .31
Return and reason codes . .31
Example . . 32
EDTINFO - List form . .32
Syntax . .32
Parameters . 33
EDTINFO - Execute form . 33
Syntax . . 33
Parameters .34
EDTINFO - Modify form .34
Syntax . . . 34
Parameters . 35
Chapter 3. ENFREQ — Listen for
system events . 37
Description . 37
Environment . . . 37
Programming requ1rements . . 37
Restrictions . 37
Input register mformatlon . 38
Output register information . . 38
Performance implications. . 38
LISTEN option . 38
Syntax . . 38
Parameters . . 40
ENF event codes and meanmgs . 45
Return codes . . 62
Example 1. . 64
Example 2. . 65
DELETE option . . 66
Syntax . . 66
Parameters . . 66
Return and reason codes . . . 67
ENFREQ ACTION=LISTEN - List form . . 67
Syntax . . 67
Parameters . 69
ENFREQ ACTION= LISTEN Execute form . 69
Syntax . . 69
Parameters .70
ENFREQ ACTION= DELETE L1st form .71
Syntax . .71
Parameters .71
ENFREQ ACTION= DELETE Execute form .71
Syntax . .71
Parameters .72
Chapter 4. ENQ — Request control of a
serially reusable resource . 73
Description .73
Environment . . .74
Programming requlrements . .74
Restrictions .74
Input register mformatlon .74
Output register information . .75
iii

Performance implications.75

Syntax75
Parameters77
ABEND codes81
Return and reason codes81
Example1.86
Example2.86
ENQ - List form.87
Syntax8
Parameters88
ENQ - Execute form88
Syntax8
Parameters9

Chapter 5. ESPIE — Extended SPIE . . 91

Description9
Environment L. .92
Programming requlrements e e s 092
Restrictions . . . Lo 92
Performance 1mphcat10ns e 92
ABEND codes92

ESPIE SET option . . . o092
Input register mformatron L. ... 092
Output register information92
Syntax9
Parameters93
Return and reason Codes9
Example1.9
Example2.9

ESPIE SET - List form.9
Syntax9
Parameters96
Example . . . B

ESPIE SET - Execute form9
Syntax9
Parameters97
Example . . V4

ESPIE RESET optlon V4
Input register information97
Output register information.97
Syntax9
Parameters98
Return and reason codes L.98
Example98

ESPIE TEST option. . . e 99
Input register mformatlon L. ... L0999
Output register information.99
Syntax9
Parameters1o0
Return and reason Codes100
Example100

Chapter 6. ESTAE and ESTAEX —
Specify task abnormal exit extended . 101

Description101
Environment102
Programming requirements. 102
Restrictions . . . e (1)
Input register mformatlon e 021
Output register information 102

Performance implications
Syntax.

Parameters .

ABEND codes .

Return and reason codes
Example 1

Example 2

Example 3

Example 4

Example 5 .

ESTAEX - Specify task abnormal ex1t extended
Environment. Lo
Programming requirements .
Restrictions .

Syntax.

Parameters

ABEND codes .

Return and reason codes
Example .

ESTAE and ESTAEX Llst form
Syntax.

Parameters .

ESTAE or ESTAEX - Execute form
Syntax.

Parameters

Chapter 7. ETCON — Connect entry
table

Description .
Related macros .
Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes
Examples.
ETCON - List form
Syntax.
Parameters . .o
ETCON - Execute form .
Syntax.
Parameters .

Chapter 8. ETCRE — Create entry

table .

Description .
Related macros .
Environment ..
Programming requirements.
Restrictions . .
Input reglster mformatlon .
Output register information
Performance implications
Syntax.
Parameters .

iV z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

. 103
. 103
. 105
. 109
. 109
. 110
. 110
. 111
111
111
111
111
111
111
. 112
. 113
. 113
. 113
. 115
. 115
. 115
. 116
. 116
. 117
. 118

. 119
. 119
. 119
. 119
. 119
. 119
. 120
. 120
. 120
. 120
. 121
. 122
. 122
. 122
. 122
. 122
. 123
. 123
. 123
. 123

. 125
. 125
. 125
. 125
. 125
. 125
. 125
. 126
. 126
. 126
. 127

ABEND codes . . 127
Return codes . 127
Example . . 127
Chapter 9. ETDEF — Create an entry
table descriptor (ETD) . 129
Description . . 129
Related macros . . 129
Environment .. . 129
Programming requirements. . 129
Restrictions . . . 130
Register information . . 130
Performance implications . . 130
TYPE=INITIAL, TYPE=ENTRY, and
TYPE=FINAL parameters . 130
Syntax. L. . 130
Parameters . . . 132
TYPE=SET parameter . 135
Syntax. . . 135
Parameters . . 137
ABEND codes . . 138
Return and reason codes . 138
Example . . 138
Chapter 10. ETDES — Destroy entry
table . . 139
Description . . 139
Related macros . . 139
Environment .o . 139
Programming requirements. . 139
Restrictions . . . 139
Input register 1nformat10n . . 139
Output register information . 139
Performance implications . 140
Syntax. . 140
Parameters . . 140
ABEND codes . . 141
Return codes . 141
Examples. . 141
ETDES - List form. . 141
Syntax. . 141
Parameters . . . 142
ETDES - Execute form . 142
Syntax. . 142
Parameters . . 143
Chapter 11. ETDIS — Disconnect entry
table . . 145
Description . . 145
Related macros . . 145
Environment .o . 145
Programming requirements. . 145
Restrictions 145
Input register 1nformat10n . . 145
Output register information . 145
Performance implications . 146
Syntax. . 146
Parameters . . 146
ABEND codes . . 147
Return codes . 147

Examples.147

Chapter 12. EVENTS — Wait for one
or more events to complete 149

Description149
Environment149
Programming requirements. 150
Restrictions150
Input register 1nf0rmat10n150
Output register information 150
Performance implications 150
Syntax.150
Parameters151
ABEND codes152
Return and reason codes152
Example1153
Example2153

Chapter 13. EXTRACT — Extract TCB
information 155

Description155
Environment155
Programming requirements. 155
Restrictions155
Performance 1mp11cat10ns155
Syntax.156
Parameters156
ABEND codes157
Return and reasoncodes157
Examplel158
Example2158
Example3158

EXTRACT - List form158
Syntax.158
Parameters . . . O o))

EXTRACT - Execute form O o)
Syntax.15
Parameters160

Chapter 14. FESTAE — Fast extended
STAE.161

Description16l
Environment16l
Programming requirements. 161
Restrictions . . . P () |
Input register mformatlon 162
Output register information 162
Performance implications 162
Syntax.162
Parameters163
ABEND codes164
Returncodes1l64
Example165

Contents V

Chapter 15. FRACHECK — Check
user's authorization (for RACF

Release 1.8.1 or earlier) . . 167

Chapter 16. FREEMAIN — Free virtual

storage . e e . 169
Description169
Environment169
Programming requirements. 170
Restrictions 170
Input register mformatlon for SVC entry .. . 170
Output register information for SVC entry. . . 170

Input register information for BRANCH=YES 171
Output register information for BRANCH=YES 171
Input register information for

BRANCH=(YES,GLOBAL)172
Output register information for
BRANCH=(YES,GLOBAL)172
Performance implications172
Syntax.172
Parameters173
ABENDcodes176
Return and reason codes 177
Example1177
Example2177
Example3177
Example4178
Example 5 T V4 <
FREEMAIN - Lrst form T V4
Parameters . . . P V4
FREEMAIN - Execute form R V4°)
Parameters180

Chapter 17. GETDSAB — Accessing
the DSAB chain 181

Description181
Environment181
Programming requirements. 181
Restrictions181
Register information182
Performance implications 182
Syntax.18
Parameters183
Return and reason codes P <7
Examplel18
Example218
Example318
Example4186

GETDSAB - List form186
Syntax.186
Parameters186

GETDSAB - Execute form O . V4
Syntax.187
Parameters188

Chapter 18. GETMAIN — Allocate

virtual storage . e . 189
Description18
Environment190

Programming requirements. . 191
Restrictions . . . 191
Input register mformatron for SVC entry . . 191
Output register information for SVC entry. . 191
Input register information for BRANCH=YES 192
Output register information for BRANCH=YES 192
Input register information for
BRANCH=(YES,GLOBAL) . . 193
Output register information for
BRANCH=(YES,GLOBAL) . . 193
Performance implications . 194
Syntax. . 194
Parameters . . 196
ABEND codes . . 202
Return and reason codes . 203
Example 1 . 205
Example 2 . 205
Example 3 . 205
Example 4 . 205
Example 5 . 205
Chapter 19. GQSCAN — Extract
information from global resource
serialization queue . . 207
Description . . 207
Environment .o . 207
Programming requirements. . 207
Restrictions . . . 208
Input register mformatron . . 208
Output register information . 208
Performance implications . 208
Syntax. . 209
Parameters . . 210
ABEND codes . . 213
Return and reason codes . 213
GQSCAN - List form . . 215
Parameters . . . 217
GQSCAN - Execute forrn . 217
Parameters . . 219
Chapter 20. GTRACE — GTF trace
recording . . 221
Description . . 221
GTRACE TEST . . 221
Environment . . 221
Programming requlrements . 222
Restrictions . . . 222
Input register mformatron . . 222
Output register information . 222
Performance implications . 222
Syntax. . 222
Parameters . . 223
ABEND codes . . 223
Return codes . 223
GTRACE QUERY . . 223
Environment .o . 223
Programming requirements. . 224
Restrictions . . . 224
Input register mformatlon . . 224
Output register information . 224

Vi z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes
GTRACE DATA
Environment
Programming requlrements
Restrictions . .
Input regrster mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes
Example . .
GTRACE DATA - Llst form
Syntax.
Parameters . .
GTRACE DATA - Execute form
Syntax.
Parameters .

Chapter 21. HISMT — HIS
multithreading service
Description .
Environment .
Programming requrrements
Input register information .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes
Example .

Chapter 22. HISSERV macro —
HISSERV Service.

Description .
Environment
Programming Requrrements
Restrictions .
Input Register Informatlon
Output Register Information
Performance Implications
Syntax.
Parameters .
ABEND Codes . ..
Return and Reason Codes .
Example .

Chapter 23. HSPSERV — Read from

and write to a Hiperspace .
Description .

Read and write services for standard hlperspaces

Environment .o
Programming requirements.
Restrictions .

. 224
. 224
. 224
. 225
. 225
. 225
. 225
. 225
. 225
. 225
. 226
. 226
. 226
. 226
. 227
. 227
. 228
. 228
. 228
. 229
. 229
. 229
. 230

. 231
. 231
. 231
. 231
. 232
. 233
. 233
. 233
. 234
. 239
. 239
. 241

. 245
. 245
. 245
. 246
. 246
. 246
. 246
. 247
. 247
. 248
. 253
. 253
. 257

. 261
. 261

261

. 261
. 262
. 262

Input register information .
Output register information
Performance implications
Syntax.

Parameters .

ABEND codes .

Return and reason codes

Read and write services for ESO hlperspaces .

Environment R

Programming requirements.

Restrictions . .

Input register 1nf0rmat10n .

Output register information

Performance implications

Syntax.

Parameters .

ABEND codes .

Return and reason codes
HSPSERYV - List form.

Syntax.

Parameters . .
HSPSERV - Execute form

Syntax.

Parameters . .
HSPSERYV - Modlfy form

Syntax. ..

Parameters .

Chapter 24. IARBRVEA — Verify
virtual storage access (AR mode)
Description .

Environment .

Programming requrrements

Restrictions . .

Input register mformatlon .

Output register information

Performance implications

Syntax.

Parameters .

ABEND codes .

Return and reason codes

Chapter 25. IARBRVER — Verify
virtual storage access (primary
address space)
Description .
Environment ..
Programming requirements.
Restrictions . .
Input register 1nformat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes

Contents

. 262
. 262
. 263
. 264
. 265
. 268
. 268
. 268
. 268
. 269
. 269
. 269
. 269
. 269
. 270
. 271
. 274
. 274
. 275
. 275
. 276
. 276
. 277
. 278
. 278
. 278
. 279

. 281
. 281
. 281
. 281
. 281
. 281
. 281
. 282
. 282
. 282
. 282
. 282

. 285
. 285
. 285
. 285
. 285
. 285
. 285
. 286
. 286
. 286
. 286
. 286

vii

Chapter 26. IARCP64 — 64-bit cell
pool services
Description .
Environment .o
Programming requirements.
Restrictions . .
Input register 1nformat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes
Examples.

Chapter 27. IARR2V — Convert a
central storage address to a virtual
storage address .
Description .
Environment .o
Programming requirements.
Restrictions . .
Input register 1nf0rmat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes
Example 1
Example 2
Example 3
Example 4

Chapter 28. IARST64 — 64-bit storage
services.
Description .
Environment ..
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes

Chapter 29. IARSUBSP — Create and
delete a subspace
Description .
Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .

. 289
. 289
. 289
. 290
. 290
. 290
. 290
. 291
. 292
. 294
. 303
. 303
. 304

. 307
. 307
. 307
. 307
. 307
. 307
. 307
. 308
. 308
. 309
. 310
. 311
. 311
. 312
. 312
. 312

. 313

. 313
. 313
. 314
. 314
. 314
. 314
. 315
. 315
. 317
. 321
. 325

. 329
. 329
. 329
. 329
. 330
. 330
. 330
. 330
. 330
. 331

ABEND codes .

Return and reason codes

Example . .
TARSUBSP - List form

Parameters . . .
TARSUBSP - Execute form .

Chapter 30. IARVSERV — Request to

share virtual storage .
Description .
Environment ..
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes
Example 1
Example 2
Example 3
Example 4
Example 5
IARVSERV—Llst form
TARVSERYV - Execute form .

Chapter 31. IARV64 — 64-bit virtual

storage allocation

Description . .

REQUEST= GETSTOR opt1on of IARV64
Environment o
Programming requirements.
Restrictions . .

Input register 1nformat1on .
Output register information
Performance implications
Syntax.

Parameters . .
REQUEST=PAGEFIX optlon of IARV64
Environment o
Programming requirements.
Restrictions . .
Input register 1nformat10n .
Output register information

Performance implications
Syntax.
Parameters .

REQUEST= PAGEUNFIX optlon of IARV64

Environment ..

Programming requirements.

Restrictions . .

Input register mformatlon .

Output register information

Performance implications

Syntax.

Parameters . .
REQUEST=PAGEOUT opt1on of IARV64

Environment Lo

viil z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

. 334
. 334
. 336
. 336
. 337
. 337

. 339
. 339
. 339
. 340
. 340
. 340
. 341
. 341
. 341
. 342
. 345
. 345
. 347
. 348
. 348
. 348
. 348
. 348
. 349

. 351
. 351
. 353
. 353
. 354
. 354
. 354
. 354
. 354
. 354
. 357
. 369
. 369
. 370
. 370
. 370
. 370
. 370
. 371
. 372
. 376
. 376
. 377
. 377
. 377
. 377
. 377
. 378
. 379
. 382
. 382

Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.

Parameters . .

REQUEST=PAGEIN optlon of IARV64
Environment ..
Programming requirements.
Restrictions . .

Input register mformatlon .
Output register information
Performance implications
Syntax.

Parameters . .

REQUEST= DISCARDDATA Opthl’l of IARV64
Environment . L.
Programming requlrements.
Restrictions . .

Input register mformatlon .
Output register information
Performance implications
Syntax.

Parameters .

REQUEST= CHANGEGUARD opt1on of IARV64

Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.

Parameters . .

REQUEST=PROTECT optlon of IARV64
Environment e
Programming requlrements
Restrictions . .

Input register mformatlon .

Output register information

Performance implications

Syntax.

Parameters . . .

REQUEST= UNPROTECT OpthIl of IARV64 .
Environment e
Programming requlrements.
Restrictions . .

Input register 1nformat10n .
Output register information
Performance implications
Syntax.

Parameters . .

REQUEST=LIST option of IARV64
Environment o
Programming requirements.
Restrictions . . .

Input register mformatlon .
Output register information
Performance implications
Syntax.

Parameters .

. 383
. 383
. 383
. 383
. 383
. 383
. 384
. 388
. 388
. 388
. 388
. 388
. 388
. 389
. 389
. 390
. 393
. 393
. 393
. 393
. 393
. 393
. 394
. 394
. 395

399

. 399
. 399
. 400
. 400
. 400
. 400
. 400
. 401
. 406
. 407
. 407
. 407
. 407
. 407
. 408
. 408
. 409
. 413
. 413
. 414
. 414
. 414
. 414
. 414
. 414
. 416
. 420
. 420
. 421
. 421
. 421
. 421
. 421
. 421
. 423

REQUEST=DETACH option of IARV64.

Environment ..
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.

Parameters .

REQUEST= GETSHARED optlon of IARV64

Environment

Programming requ1rements
Restrictions . .
Input register 1nformat10n .
Output register information
Performance implications
Syntax.

Parameters .

REQUEST= SHAREMEMOB] optlon 0f IARV64 .

Environment

Programming requlrements
Restrictions . .
Input register 1nformat10n .
Output register information
Performance implications
Syntax.

Parameters .

REQUEST= CHANGEACCESS optlon of IARV64

Environment .o
Programming requirements.
Restrictions . .
Input register 1nformat10n .
Output register information
Performance implications
Syntax.

Parameters .

REQUEST= GETCOMMON optlon of IARV64

Environment .o
Programming requirements.
Restrictions . . .
Input register 1nformat10n .
Output register information
Performance implications
Syntax.

Parameters .

REQUEST= COUNTPAGES optlon of IARV64

Environment ..
Programming requirements.
Restrictions . .
Input register 1nformat10n .
Output register information
Performance implications
Syntax.

Parameters .

ABEND codes .
Return and reason codes
Example .

Operation:

Contents

. 431
. 431
. 431
. 431
. 431
. 431
. 432
. 432
. 433
. 440
. 440
. 440
. 440
. 440
. 440
. 441
. 441
. 442
. 447
. 447
. 447
. 447
. 447
. 448
. 448
. 448
. 449

453

. 453
. 454
. 454
. 454
. 454
. 454
. 454
. 455
. 459
. 459
. 459
. 459
. 460
. 460
. 460
. 460
. 463
. 473
. 473
. 473
. 473
. 473
. 474
. 474
. 474
. 475
. 479
. 479
. 482
. 482

ix

Chapter 32. IAZXCTKN — Client token Example503
compare service 485

Description48 Chapter 36. IEALSQRY — Linkage
Environment485 stackquery505
Programming requirements. 485 Description505
Restrictions . . . Co. 485 Environment505
Input register 1nformat10n48 Programming requirements. 506
Output register information 485 Restrictions506
Performance implications 485 Input register 1nformat1on506
Syntax. 486 Output register information 506
Parameters486 Performance implications 506
ABEND codes486 Syntax_ . | 74
Returncodes486 ABEND codes507
Example486 Return codes507

Example508

Chapter 33. IAZXJSAB — Obtain

information about a currently running Chapter 37. IEAMETR — Query

job.487 external time reference status 509

Description487 Description509
Environment487 Environment509
Programming requirements. 487 Programming requlrements509
Restrictions488 Restrictions509
Input register 1nf0rmat10n488 Input register 1nformat10n o 0]
Output register information 488 Output register information 509
Performance implications 488 Performance implications510
Syntax.48 Syntax.510
Parameters48 Parameters510
ABEND codes491 Returncodes51
Returncodes491
Example42 Chapter 38. IEAMRMF3 — Obtain

address space dlspatchablllty data . . 513

Chapter 34. IEAARR — Establish an Descriptionb13

associated recovery routine (ARR) . . 493 Environment5I3

Description 493 Programming requirements. 514
Environment493 Restrictions514
Programming requlrements493 Register information514
Restrictions493 Performance implications515
Input register mformatlon49 Syntax.b15
Output register information 493 Parametersb515
Performance implications 494 Returncodes516
Syntax.49 Exampleb516
Parameters49
ABEND codes498 Chapter 39. IEAMSCHD — Schedule
Returncodes498 anSRB52
Example 498 pegrption.51

Environment521

Chapter 35. IEAFP — Floatlng pomt Programming requirements. 521

services. 499 Restrictions . . . O A |

Description49 Input register 1nformat1on o2
Environment49 Output register information522
Programming requirements. 499 Performance implications522
Restrictions . . . Coe 499 Syntax.b22
Input register mformatlon Ce s 499 Parametersb525
Output register information499 ABEND codes53
Performance implications 500 Returncodes53
Syntax.500 Examples.53
Parameters501
ABEND codesb501
Return and reason codes502

X z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

| Chapter 40. IEAMSXMP — Safe
| cross-memory post.

Chapter 41. IEANTCR — Create a
name/token pair
Description .
Environment .o
Programming requirements.
Restrictions . .
Input register 1nf0rmat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes
Example .

Chapter 42. IEANTDL — Delete a

name/token pair
Description .
Environment .
Programming requ1rements
Restrictions . .
Input register 1nformat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes
Example .

Chapter 43. IEANTRT — Retrieve the

token from a name/token pair
Description .
Environment .o
Programming requirements.
Restrictions . .
Input register 1nformat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes
Example 1
Example 2

retrieve register interface

Description .
Environment .
Programming requirements.
Restrictions . . .
Input register 1nformat10n .
Output register information
Performance implications

[
I
[
I
I
[
[
I
I
I Syntax.

Chapter 44. IEANTRTR — Name/token

. 539

. 551
. 551
. 551
. 551
. 552
. 552
. 552
. 552
. 552
. 553
. 554
. 554
. 555

. 557
. 557
. 557
. 557
. 558
. 558
. 558
. 558
. 558
. 559
. 559
. 559
. 560

. 561
. 561
. 561
. 561
. 562
. 562
. 562
. 563
. 563
. 563
. 564
. 564
. 564
. 564

. 569
. 569
. 569
. 569
. 569
. 570
. 570
. 570
. 570

Parameters .
ABEND codes .
Return codes
Example 1
Example 2

Chapter 45. IEAN4CR — Create a
name/token pair
Description .
Environment .o
Programming requirements.
Restrictions . . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes

Chapter 46. IEAN4ADL — Delete a
name/token pair
Description .
Environment .
Programming requ1rements
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes

Chapter 47. IEAN4ART — Retrieve the

token from a name/token pair
Description .
Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 48. IEARBUP — RB update

service .

Description .
Environment ..
Programming requirements.
Restrictions . .
Input register 1nf0rmat10n .
Output register information
Performance implications
Syntax.
Parameters .

Contents

. 571
. 572
. 572
. 573
. 573

. 575
. 575
. 575
. 575
. 576
. 576
. 576
. 576
. 576
. 577
. 578
. 578

. 581
. 581
. 581
. 581
. 582
. 582
. 582
. 582
. 582
. 583
. 583
. 583

. 585
. 585
. 585
. 585
. 586
. 586
. 586
. 587
. 587
. 587
. 588
. 588

. 589
. 589
. 589
. 589
. 589
. 589
. 589
. 590
. 590
. 591

xi

ABEND codes .

Return and reason codes
Example 1

Example 2

Chapter 49. IEATDUMP — Transaction

dump request

Description .
Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes
Examples.

Chapter 50. IEATEDS - Timed event

data services

Description .
Timed Event Data Report
Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes
Examples.

Chapter 51. IEATXDC — Transactional
execution diagnostic controls
Description .
Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes
Examples.

Chapter 52. IEAVAPE —
Allocate_Pause_Element
Description .
Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information

. 594
. 594
. 595
. 596

. 597
. 597
. 597
. 598
. 598
. 598
. 598
. 599
. 599
. 601
. 609
. 609
. 616

. 619
. 619
. 619
. 621
. 621
. 621
. 621
. 621
. 622
. 622
. 623
. 627
. 627
. 629

. 641
. 641
. 641
. 641
. 641
. 641
. 641
. 642
. 642
. 642
. 643
. 643
. 644

. 645
. 645
. 645
. 645
. 645
. 646
. 646

Performance implications
Syntax.

Parameters .

ABEND codes .

Return codes

Chapter 53. IEAVAPE2 —
Allocate_Pause_Element
Description .
Environment ..
Programming requirements.
Restrictions . . .
Input reglster mformahon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 54. IEAVDPE —
Deallocate_Pause_Element
Description .
Environment .
Programming requlrements
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 55. IEAVDPE2 —
Deallocate_Pause_Element
Description .
Environment .
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 56. IEAVPME2 — Pause
multiple elements service .

[

|

| Description .

| Environment ..
| Programming requirements.
| Restrictions . .
| Input register 1nf0rmat10n .
| Output register information
| Performance implications

| Syntax.

| Parameters .

xil z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

. 646
. 646
. 646
. 647
. 648

. 649
. 649
. 649
. 649
. 650
. 650
. 650
. 650
. 651
. 651
. 654
. 654

. 657
. 657
. 657
. 657
. 657
. 657
. 658
. 658
. 658
. 658
. 659
. 659

. 661
. 661
. 661
. 661
. 661
. 662
. 662
. 662
. 662
. 662
. 663
. 663

. 667
. 667
. 667
. 667
. 668
. 668
. 668
. 668
. 669
. 669

| ABEND codes .
| Return codes

. 671
. 671

Chapter 57. IEAVPSE — Pause service 675

Description .
Environment

Programming requirements.

Restrictions .

Input register 1nformat10n .

Output register information
Performance implications
Syntax.

Parameters .

ABEND codes .

Return codes

Chapter 58. IEAVPSE2 — Pause

service .
Description .
Environment

Programming requirements.

Restrictions .

Input reglster 1nformat10n .

Output register information
Performance implications
Syntax.

Parameters .

ABEND codes .

Return codes

Chapter 59. IEAVRLS — Release .

Description .
Environment

Programming requirements.

Restrictions .

Input reglster 1nformat10n .

Output register information
Performance implications
Syntax.

Parameters .

ABEND codes .

Return codes

Chapter 60. IEAVRLS2 — Release.

Description .
Environment

Programming requlrements

Restrictions .

Input register 1nformat10n .

Output register information
Performance implications
Syntax.

Parameters .

ABEND codes .

Return codes

. 675
. 675
. 675
. 675
. 676
. 676
. 676
. 676
. 676
. 678
. 678

. 681
. 681
. 681
. 681
. 682
. 682
. 682
. 682
. 683
. 683
. 684
. 684

. 687
. 687
. 687
. 687
. 687
. 687
. 688
. 688
. 688
. 688
. 689
. 689

. 693
. 693
. 693
. 693
. 694
. 694
. 694
. 694
. 695
. 695
. 696
. 696

Chapter 61. IEAVRPI —
Retrieve_Pause_Element_Information
service .
Description .
Environment ..
Programming requirements.
Restrictions . .
Input register 1nf0rmat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 62. IEAVRPI2 —
Retrieve_Pause Element_Information

service .

Description .
Environment ..
Programming requirements.
Restrictions . .
Input register 1nformat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 63. IEAVTPE —
Test_Pause_Element service.
Description .
Environment .o
Programming requirements.
Restrictions . .
Input reg1ster 1nfor1nat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 64. IEAVXFR — Transfer
service .
Description .
Environment .
Programming requlrements
Restrictions . .
Input reglster 1nformat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Contents

. 699
. 699
. 699
. 699
. 699
. 700
. 700
. 700
. 700
. 700
. 702
. 702

. 705
. 705
. 705
. 705
. 706
. 706
. 706
. 706
. 707
. 707
. 709
. 709

.71
.71
.71
.71
.71
. 711
.71
. 712
. 712
. 712
. 713
. 713

. 715
. 715
. 715
. 715
. 715
. 715
. 716
. 716
. 716
. 716
. 718
. 718

xiii

Chapter 65. IEAVXFR2 — Transfer Environment743

service T Programming requirements.743
Description .) 71 Restrictions743
Environment7 Input register mformatlon o ... T743
Programming requirements. o1 Output register information74
Restrictions . . . N Performance implications74
Input register 1nformat10n o722 e T
Output register information . 722 Parameters74
Performance implications722 ABEND codes745
Syntax. o 73 Returncodes745
Parameters723)
ABENDcodes75 | Chapter70. IEAAPME2 — 64-bit pause
Returncodes725 | multiple elements service 747
| Description747
Chapter 66. IEA4APE — | Environment747
Allocate_Pause Element 727 | Programmingrequirements.747
Description727 l Restrictions . . . e
Environment . . . Nl | Input register mformatlon 748
Programming re qulrements N A Output register information 748
Restrictions . . . N 4 | Performance implications748
Input register mformatlon L T728 l Syntax. ... L TA9
Output register information728 l Parameters749
Performance implications728 l ABEND codes75l
Syntax.728 | Returncodes751
Parameters728
ABEND codes70 Chapter 71. IEA4PSE — Pause service 755
Returncodes730 Description 755
Environment75
Chapter 67. IEA4APE2 — Programming requirements.755
Allocate_Pause_Element 731 Restrictions . . . S T
Description 731 Input register 1nformat10n75
E P ’ t. N 731 Output register information 756
P?:gu;zgﬁig re;qu.irer.nel.lts:) Performance implications756
Restrictions . . . 46 4 Is’%a]?at?r):e.tel:s . ;gg
Input register mformatlon ... UT32 ABEND co de:s [758
Output register information732 Return codes e 758
Performance implications732 [
Syntax.733
Pzrameters e Chapter 72. IEA4PSE2 — Pause
ABENDcodes73 serviceT761
Returncodes73 Description76l
Environment76l
Chapter 68. IEA4DPE - Programming requirements.76l
Deallocate Pause Element 739 Restrictions . . . C 762
Description 739 Input register 1nformat1on T < YA
E P) t. . 739 Output register information762
nvironment - .. . oo Performance implications762
Programming requlrements Lo T3
Syntax.762
Restrictions 0739
Parameters763
Input register mformatlon 4) ABEND codes 764
Output register information 740 Return codes [764
Performance implications740 o
Syntax.740
Pirameters R 2T Chapter 73. IEA4ARLS — Release . . . 767
ABEND codes74 Description . . . C S 767
Returncodes74 Environment . . . e 767
Programming requlrements L V4
Chapter 69. IEA4ADPE2 — Restrictions . . . L. T767
Deallocate Pause Element 743 Input register mformatlon L. ... T767
ea o - — oo Output register information 768
Description74 Performance implications 768

Xiv z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 74. IEA4RLS2 — Release.

Description .
Environment .o
Programming requirements.
Restrictions . .
Input register 1nformat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 75. IEA4RPI —
Retrieve_Pause_Element_Information
service .
Description .
Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 76. IEA4RPI2 —
Retrieve_Pause Element_Information

service .

Description .
Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 77. IEA4TPE —
Test_Pause_Element service.
Description .
Environment .o
Programming requirements.
Restrictions . .
Input reglster mformatlon .
Output register information
Performance implications
Syntax.
Parameters .

. 768
. 768
. 769
. 769

. 773
. 773
. 773
. 773
. 774
. 774
. 774
. 774
. 774
. 775
. 776
. 776

. 779
. 779
. 779
. 779
. 779
. 780
. 780
. 780
. 780
. 780
. 782
. 783

. 785
. 785
. 785
. 785
. 786
. 786
. 786
. 786
. 786
. 787
. 789
. 790

. 793
. 793
. 793
. 793
. 793
. 793
. 793
. 794
. 794
. 794

ABEND codes .
Return codes

Chapter 78. IEA4XFR — Transfer
service .
Description .
Environment .o
Programming requirements.
Restrictions . .
Input reg1ster 1nformat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 79. IEA4XFR2 — Transfer
service .
Description .
Environment .o
Programming requirements.
Restrictions . .
Input register 1nformat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 80. IEECMDS —

Query/remove attached commands .

Description .
Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return codes

Chapter 81. IEEQEMCS — Query
EMCS console .

Description .
Environment .
Programming reqmrements
Restrictions . .
Input register 1nformat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes
Examples.

Contents

. 795
. 795

. 797
. 797
. 797
. 797
. 797
. 797
. 798
. 798
. 798
. 798
. 800
. 800

. 805
. 805
. 805
. 805
. 805
. 806
. 806
. 806
. 806
. 807
. 808
. 808

. 81
. 811
. 811
. 811
. 811
. 811
. 811
. 812
. 812
. 813
. 817
. 817

. 821
. 821
. 821
. 821
. 821
. 821
. 821
. 822
. 822
. 824
. 830
. 830
. 833

XV

Chapter 82. IEEVARYD — Vary one or

more devices online or offline .
Description . .
Comparison to MGCRE macro
Environment .
Programming requrrements
Restrictions . .
Input register 1nf0rmat10n .
Output register information
Performance implications
Syntax.
Parameters .
ABEND codes .
Return and reason codes
Examples.
Example 1
Example 2 .
IEEVARYD - List form
IEEVARYD - Execute form .

Chapter 83. IEFPPSCN — Scan the

program properties table
Description .
Environment .o
Programming requirements.
Restrictions . .
Register information .
Performance implications
Syntax.
Parameters .
Return codes
Example . .
IEFPPSCN - List form
Syntax.
Parameters . . .
IEFPPSCN - Execute form .
Syntax.
Parameters .

Chapter 84. IEFQMREQ — Invoke
SWA manager in move mode
Description .
Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Syntax.
Parameters .
ABEND codes .
Return and reason codes

Chapter 85. IEFSJSYM — JCL symbol

service .

Description .
Environment ..
Programming requirements.
Restrictions . .
Input register 1nf0rmat10n .

. 837
. 837
. 837
. 837
. 837
. 838
. 838
. 838
. 838
. 838
. 839
. 840
. 840
. 842
. 842
. 845
. 847
. 848

. 851
. 851
. 851
. 851
. 851
. 851
. 852
. 852
. 853
. 854
. 854
. 856
. 856
. 856
. 856
. 857
. 857

. 859
. 859
. 859
. 859
. 859
. 859
. 859
. 860
. 860
. 860
. 860

. 863
. 863
. 863
. 864
. 864
. 864

Output register information
Performance implications

REQUEST= parameter of IEFS]SYM
Syntax. o
Parameters .

ABEND codes .

Return and reason codes

Example .

Chapter 86. IEFSSI — Dynamlcally
control a subsystem
Description .
Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
REQUEST=ADD parameter of IEFSSI
Syntax for REQUEST=ADD
Parameters for REQUEST=ADD . .
REQUEST=ACTIVATE parameter of IEFSSI
Syntax for REQUEST=ACTIVATE
Parameters for REQUEST=ACTIVATE .
REQUEST=OPTIONS parameter of IEFSSI.
Syntax for REQUEST=OPTIONS .
Parameters for REQUEST=0OPTIONS
REQUEST=DEACTIVATE parameter of IEFSSI
Syntax for REQUEST=DEACTIVATE
Parameters for REQUEST=DEACTIVATE .
REQUEST=SWAP parameter of IEFSSI .
Syntax for REQUEST=SWAP .
Parameters for REQUEST=SWAP.
REQUEST=PUT parameter of IEFSSI
Syntax for REQUEST=PUT .
Parameters for REQUEST=PUT
REQUEST=GET parameter of IEFSSI
Syntax for REQUEST=GET .
Parameters for REQUEST=GET
REQUEST=QUERY parameter of IEFSSI
Syntax for REQUEST=QUERY .
Parameters for REQUEST=QUERY
ABEND codes .
Return and reason codes
Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8

Chapter 87. IEFSSVT — Create a
subsystem vector table .
Description .
Environment ..
Programming requirements.
Restrictions . .
Input reglster mformatlon .

XVl z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

. 864
. 864
. 865
. 865
. 866
. 868
. 868
. 871

. 873
. 873
. 874
. 874
. 875
. 875
. 875
. 875
. 875
. 876
. 877
. 879
. 879
. 880
. 882
. 883
. 884

887

. 887
. 888
. 889
. 890
. 891
. 893
. 893
. 894
. 896
. 896
. 897
. 899
. 899
. 900
. 902
. 902
. 906
. 907
. 907
. 907
. 907
. 907
. 907
. 908

. 909
. 909
. 910
. 910
. 910
. 910

Output register information

Performance implications
REQUEST=CREATE parameter of IEFSSVT
Syntax for REQUEST=CREATE

Parameters for REQUEST=CREATE .

REQUEST=DISABLE parameter of IEFSSVT .

Syntax for REQUEST=DISABLE .
Parameters for REQUEST=DISABLE.
REQUEST=ENABLE parameter of IEFSSVT
Syntax for REQUEST=ENABLE

Parameters for REQUEST=ENABLE .

REQUEST=EXCHANGE parameter of IEFSSVT

Syntax for REQUEST=EXCHANGE .
Parameters for REQUEST=EXCHANGE
ABEND codes .

Return and reason codes

Examples.

Example 1

Example 2

Example 3

Example 4

Chapter 88. IEFSSVTI — Associate

. 911
. 911
. 911
. 911
. 913
. 915
. 915
. 916
. 918
. 919
. 920

922

. 922
. 923
. 926
. 926
. 929
. 929
. 929
. 929
. 930

function routines with function codes. 931

Description .

Environment .o
Programming requirements.
Restrictions . . .
Input register mformatlon .
Output register information
Performance implications
ABEND codes .

Return and reason codes
Examples.

TYPE=LIST parameter of IEFSSVTI
Syntax. e
Parameters . .

TYPE=INITIAL parameter of IEFSSVTI
Syntax. e
Parameters . . .

TYPE=ENTRY parameter of IEFSSVTI .
Syntax. o
Parameters . .

TYPE=FINAL parameter of IEFSSVTI
Syntax. e
Parameters . .

TYPE=SET parameter of IEFSSVTI
Syntax. o
Parameters . .

TYPE=RESERVE parameter of IEFSSVTI
Syntax. o
Parameters .

TYPE=COPY parameter of IEFSSVTI
Syntax. e
Parameters .

Chapter 89. IFAQUERY — SMF
configuration query service .
Description .

Environment

. 931
. 932
. 933
. 933
. 933
. 933
. 933
. 933
. 933
. 934
. 935
. 935
. 936
. 936
. 936
. 936
. 937
. 937
. 938
. 939
. 939
. 939
. 939
. 939
. 940
. 942
. 942
. 943
. 943
. 943
. 944

. 945
. 945
. 945

Programming requirements. 945
Restrictions95
Input register mformatlon .. .95
Output register information 945
Performance implications 946
Syntax.96
Parameters97
ABEND codes948
Return and reason codes948

Chapter 90. IOCINFO — Obtain MVS
I/O configuration information 951

Description91
Environment951
Programming requirements.95l
Restrictions91
Input register mformatron91
Output register information951
Performance implications 952
Syntax.92
Parameters95
ABENDcodes95
Return and reason codes95

IOCINFO—List form.955
Syntax.95
Parameters96

IOCINFO - Execute form96
Syntax.96
Parameters957

Chapter 91. IOSADMF — Transfer
hiperspacedata 959

Description99
Environment95
Programming requirements. 959
Restrictions 9%
Input register mformatlon o959
Output register information 959
Performance implications 960
Syntax.960
Parameters96l
ABENDcodes963
Return and reason codes 963

IOSADMF - List form967
Syntax.97
Parameters L0968

IOSADMEF - Execute form968
Syntax.968
Parameters969

Chapter 92. IOSCAPF — Obtain the
actual address of a captured UCB . . 971

Description971
Environment971
Programming requirements. 971
Restrictions . . . B VA |
Input register mformatlon T VA |
Output register information972
Performance implications972
Syntax.972

Contents XVii

Parameters .
ABEND codes .
Return and reason codes

Chapter 93. IOSCAPU — Capture,
release, or obtain the actual address
of a UCB

Description .
Environment .
Programming requlrements
Restrictions . .
Input register mformatlon .
Output register information
Performance implications
Capture an UCB function
Syntax.
Parameters .
ABEND codes .
Return and reason codes
Example . .
IOSCAPU CAPTUCB Llst form
Syntax.
Parameters . .
IOSCAPU CAPTUCB - Execute form
Syntax.
Parameters .
Release a captured UCB functlon
Syntax.
Parameters .
ABEND codes .
Return and reason codes
Example . .
IOSCAPU UCAPTUCB L1st form
Syntax.
Parameters . .
IOSCAPU UCAPTUCB - Execute form
Syntax.
Parameters . .
Translate captured to actual address functlon
Syntax.
Parameters .
ABEND codes .
Return and reason codes
Example . .
IOSCAPU CAPTOACT Llst form
Syntax.
Parameters . .
IOSCAPU CAPTOACT - Execute form
Syntax.
Parameters .

Chapter 94. IOSCDR — Retrieve
configuration data records
Description .
Environment .o
Programming requirements.
Restrictions . .
Input register mformatlon .
Output register information
Performance implications

xviii

. 972
. 973
. 973

. 975
. 975
. 975
. 976
. 976
. 976
. 976
. 977
. 977
. 977
. 978
. 979
. 979
. 980
. 980
. 980
. 981
. 981
. 981
. 982
. 982
. 982
. 983
. 984
. 984
. 985
. 985
. 985
. 985
. 986
. 986
. 987
. 987
. 987
. 988
. 988
. 988
. 989
. 989
. 989
. 990
. 990
. 990
. 991

. 993
. 993
. 993
. 993
. 993
. 994
. 994
. 994

Syntax. .
Parameter descrlptlons .
Return codes

Example.

Chapter 95. IOSCHPD — 10S CHPID

description service
Description.
Environment .
Programming requlrements
Restrictions. .
Input register mformat10n
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes. .
Return and reason codes .

Chapter 96. IOSCMB — Locate the
channel measurement block (CMB) .
Description.

Environment .

Programming requ1rements

Restrictions. .

Input register mformatlon

Output register information .

Performance implications .

Syntax

Parameters . .

Return and reason codes .

Example.

Chapter 97. IOSCMXA — Obtain
address of the UCB common
extension segment
Description.

Environment .

Programming requ1rements

Restrictions. .

Input register mformatlon

Output register information .

Performance implications .

Syntax

Parameters .

ABEND codes. -

Return and reason codes .
IOSCMXA - List form .

Syntax

Parameters .
IOSCMXA - Execute form

Syntax

Parameters .

Chapter 98. IOSCMXR — Obtain
address of the UCB common

extension segment
Description.
Environment .

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

. 994
. 995
. 998

. 1000

. 1007

. 1007
. 1007
. 1007
. 1007
. 1007
. 1007
. 1008
. 1008
. 1009
. 1012
. 1012

1015

. 1015
. 1015
. 1015
. 1015
. 1015
. 1015
. 1016
. 1016
. 1016
. 1017
. 1017

. 1019

. 1019
. 1019
. 1019
. 1019
. 1020
. 1020
. 1020
. 1020
. 1021
. 1021
. 1021
. 1022
. 1022
. 1022
. 1022
. 1023
. 1023

. 1025

. 1025
. 1025

Programming requirements
Restrictions. .
Input reglster mformatlon
Output register information .
Performance implications .
Syntax

Parameters .

ABEND codes. .
Return and reason codes .

Chapter 99. IOSCUINF — Control unit

information service
Description.
Environment .
Programming requ1rements
Restrictions. .
Input reglster mformatlon
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes. .
Return and reason codes .

Chapter 100. IOSCUMOD — I0S
control unit entry build service
Description. .o
Programming requlrements
Restrictions. .
Performance 1mp11cat10ns .
Syntax
Parameters .
ABEND codes. .
Return and reason codes .

Chapter 101. IOSDCXR — Obtain
address of the device class
extension segment
Description.
Environment .
Programming requlrements
Restrictions. .
Input reglster mformatlon
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes. .
Return and reason codes .

Chapter 102. IOSENQ —

service.

Description.
Environment .
Programming requ1rements
Restrictions. .
Input register 1nformat10n
Output register information .
Performance implications .

10S ENQ

. 1025
. 1025
. 1025
. 1026
. 1026
. 1026
. 1026
. 1027
. 1027

. 1029
. 1029

. 1029
. 1029
. 1029
. 1029
. 1029
. 1030
. 1030
. 1031
. 1034
. 1034

. 1035
. 1035
. 1035
. 1035
. 1035
. 1035
. 1036
. 1037
. 1037

. 1039
. 1039

. 1039
. 1039
. 1039
. 1040
. 1040
. 1040
. 1040
. 1041
. 1041
. 1041

. 1043
. 1043

. 1043
. 1043
. 1043
. 1043
. 1043
. 1044

Syntax

Parameters .

ABEND codes. .o
Return and reason codes .

Chapter 103. IOSFBA — IOS fixed
block architecture service
Description.
Environment .
Programming requlrements
Restrictions. .
Input register 1nformat10n
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes. .
Return and reason codes .

Chapter 104. IOSHXBLK — Request
to suspend and resume Basic
HyperSwap services .
Description.

Environment .

Programming requlrements

Restrictions. .

Input register 1nf0rmat10n

Output register information .

Performance implications .

Syntax

Parameters .

ABEND codes. .

Return and reason codes .

Chapter 105. IOSINFO — Obtain the
subchannel number for a UCB
Description.

Environment . .

Input register information .

Output register information .

Syntax

Parameters .

Return codes .

Example 1 .

Example 2

Example 3 .

Chapter 106. IOSLOOK — Locate
unit control block .
Description.

Syntax

Parameters .

Return codes .

Example.

Chapter 107. IOSODS — I0S offline
device service

Description.
Environment .

Contents

. 1044
. 1045
. 1047
. 1047

. 1049

. 1049
. 1049
. 1049
. 1050
. 1050
. 1050
. 1050
. 1050
. 1051
. 1064
. 1064

. 1067

. 1067
. 1067
. 1067
. 1067
. 1067
. 1067
. 1068
. 1068
. 1069
. 1071
. 1071

. 1075

. 1075
. 1075
. 1075
. 1075
. 1076
. 1076
. 1076
. 1077
. 1077
. 1077

. 1079

. 1079
. 1079
. 1079
. 1080
. 1080

. 1081

. 1081
. 1081

Xix

Programming requirements . 1081
Restrictions. . . 1081
Input register mformatlon . 1081
Output register information . . 1081
Performance implications . . 1082
Syntax . 1082
Parameters . . 1083
ABEND codes. . 1084
Return codes . . 1084
IOSODS - List form . . 1085
Syntax . 1085
Parameters . . 1085
I0SODS - Execute form . 1086
Syntax . 1086
Parameters . . 1087
Chapter 108. IOSPTHV — Validate 1/0
paths . 1089
Description. . 1089
Environment . . 1089
Programming requrrements . 1089
Restrictions. . . 1089
Input register mformatlon . 1090
Output register information . . 1090
Performance implications . . 1090
Syntax . . 1090
Parameter descrlptlons . 1091
Return and reason codes . . 1093
Example. . 1094
| Chapter 109. IOSSCM — Storage
| class memory information . 1099
| Description. . 1099
| Environment . . 1099
[Programming requ1rements . 1099
| Restrictions. . . 1099
| Input register mformatlon . 1099
| Output register information . . 1099
| Performance implications . . 1100
I Syntax . 1100
| Parameters . . 1100
| ABEND codes . . 1103
| Return and reason codes . 1103
Chapter 110. IOSSPOF — Check for
single points of failure . . 1105
Description. . 1105
Environment . .o . 1105
Programming requirements . 1105
Restrictions. . . 1105
Input register mformatlon . 1105
Output register information . . 1105
Performance implications . . 1106
Syntax . 1106
Parameters . . 1108
ABEND codes . . 1114
Return codes . . 1114
Return and reason codes . 1116
IOSSPOF - List form. . 1116
Syntax . 1116

Parameters .
IOSSPOF - Execute form

Syntax

Parameters .

Chapter 111. IOSUPFA — Obtain

address of the UCB prefix extension

segment .
Description .
Environment .
Programming requirements
Restrictions . .
Input register mformat10n
Output register information
Performance implications .
Syntax
Parameters .
ABEND codes.
Return and reason codes
IOSUPFA - List form
Syntax
Parameters . .
IOSUPFA - Execute form .
Syntax
Parameters .

Chapter 112. IOSUPFR — Obtain
address of the UCB prefix extension

segment .

Description.
Environment . .
Programming requirements
Restrictions. .
Input register mformatron
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes .
Return and reason codes

Chapter 113. IOSVRYSW — Vary
switch service
Description.
Environment . .
Programming requirements
Restrictions. .
Input reglster mformatlon
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes.
Return and reason codes
IOSVRYSW—List form .

Chapter 114. IOSWITCH — I0S
switch information service .
Description.

XX z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

. 1117
. 1117
. 1117
. 1118

. 1119

. 1119
. 1119
. 1119
. 1119
. 1119
. 1119
. 1120
. 1120
. 1120
. 1121
. 1121
. 1121
. 1121
. 1121
. 1122
. 1122
. 1122

. 1123

. 1123
. 1123
. 1123
. 1123
. 1123
. 1124
. 1124

. 1124
. 1124
. 1124
. 1125

. 1127
. 1127

. 1127
. 1127
. 1127
. 1127
. 1128
. 1128
. 1128
. 1129
. 1130
. 1130
. 1131

. 1135
. 1135

Environment . .
Programming requirements
Restrictions. .
Input register mformatlon
Output register information .
Performance implications .
Syntax

Parameters .

ABEND codes.

Return and reason codes

Chapter 115. IOSZHPF — zHPF

. 1135
. 1135
. 1135
. 1135
. 1135
. 1136
. 1136
. 1137
. 1139
. 1139

channel program capabilities service. 1141

Description.
Environment . .
Programming requirements
Restrictions. .
Input reglster mformatlon
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes.
Return and reason codes

Chapter 116. IQPINFO — Obtain PCle

information .

Description.
Environment . .
Programming requirements
Restrictions. .
Input register 1nformat10n
Output register information .
Performance implications .
Syntax
Parameters .
Return codes .

Chapter 117. IRDFSD — FICON
switch data services .
Description.
Environment . .
Programming requirements
Restrictions. .
Input register 1nformat10n
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes.
Return codes .
Reason codes .

Chapter 118. IRDFSDU — FICON
switch data update services
Description.

Environment .

Programming requlrements

Restrictions.

. 1141
. 1141
. 1141
. 1141
. 1141
. 1141
. 1142
. 1142
. 1142
. 1143
. 1143

. 1145
. 1145

. 1145
. 1145
. 1145
. 1145
. 1145
. 1146
. 1146
. 1147
. 1149

. 1151
. 1151

. 1151
. 1151
. 1151
. 1151
. 1151
. 1152
. 1152
. 1153
. 1155
. 1155
. 1156

. 1157
. 1157
. 1157
. 1157
. 1157

Input register information .
Output register information .
Performance implications .
Syntax

Parameters .

ABEND codes.

Return codes .

Reason codes .

Chapter 119. ISGADMIN — Gilobal

resource serialization administration

service.

Description.
Environment .
Programming requirements
Restrictions. .
Input register 1nformat10n
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes .
Return and reason codes
Examples

Chapter 120. ISGECA — GRS
enhanced contention analysis
service.
Description.
Environment
Programming requlrements
Restrictions. .
Input reglster mformatlon
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes. .
Return and reason codes
Examples

Chapter 121. ISGENQ — Global

resource serialization ENQ service.

Description.
Environment ..
Programming requirements
Restrictions. .
Input reglster mformatlon
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes. .
Return and reason codes .
Examples

Chapter 122. ISGLCRT — Create a
latch set .
Description.

Contents

. 1157
. 1157
. 1158
. 1158
. 1158
. 1160
. 1160
. 1161

. 1163

. 1163
. 1163
. 1163
. 1163
. 1164
. 1164
. 1164
. 1165
. 1165
. 1169
. 1169
. 1174

. 177

. 1177
. 1178
. 1178
. 1178
. 1179
. 1179
. 1179
. 1180
. 1180
. 1184
. 1184
. 1186

. 1187

. 1187
. 1187
. 1188
. 1188
. 1188
. 1188
. 1189
. 1190
. 1192
. 1207
. 1207
. 1219

. 1221

. 1221

xxi

Environment L1221 Chapter 126. ISGLOBT — Obtain a

Programming requlrements T VA | latch.1253
Restrictions. . . coe e e 1222 Description.1253
Input register mformatlon Lo 1222 Environment 1253
Output register information 1222 Programming Re qulrements 1253
Performance implications 1222 Restrictions. . . 1254
Syntax 1222 Input register 1nf0rmat10n1254
Parameters.1223 Output register information 1254
ABEND codes. 1224 Performance implications 1254
Return codes- 1224 Syntax1255
LATCHX31 - How to call AMODE 31 latch Parameters 1255
devices 1225 ABEND codes.1257
Returncodes1257
Chapter 123. ISGLCR64 — Create a Example.1257
latch set in 64-bitmode 1233
Description.1233 Chapter 127. ISGLOB64 — Obtain a
Environment1233 latch in 64-bitmode 1259
Programming requlrements 1233 Description.1259
Restrictions. . . coe e e 123 Environment1259
Input register mformatlon L. 1234 Programming re qu1rements 1259
Output register information 1234 Restrictions. . . 1260
Performance implications 1234 Input register 1nformat10n 1260
Syntax 123 Output register information 1260
Parameters.123 Performance implications 1260
ABEND COdeS 1236 Syntax 1261
Return codes . . . - - 1236 Parameters.1261
LATCHX64 - How to call AMODE 64 latch ABEND codes. 1263
services 1237 Returncodes1263
Example.1263

Chapter 124. ISGLID — Identlfy a
latchset.1245 Chapter 128. ISGLPBA — Purge a

Description.1245 group of requestors from a group of
Environment L1245 latch sets . 1265
Programming requlrements B 102 35) . e s
R Description.1265

estrictions. L1245 Environment 1265
Input register mformatlon 1245 Prc‘)nrzmmem 1.'e ;nr(.am.ents oo o 1265
Output register information 1245 ReS%I‘lCthl’lS g req oo o 1266
IS)e;ft(;meanCE implications ... Eig Input register information.1266
Pzrametérs . 1246 Output register information 1266
ABEND codes. 1oy gerftormance implications 322
Returncodes1247 P};?ai)l(etérs. o 1267
Example. .. 128 ABEND codes.1268

Returncodes1268

Chapter 125. ISGLID64 — Identify a
latch set in 64-bitmode 1249 Chapter 129. ISGLPB64 — Purge a

Desﬁcrirpi?oor?rﬁeﬁt T }iig group of requestors from a group of
Programming requirements 1249 Iatch gets in 64-bit mode 1269
Restrictions. 1249 Description.1269

Input register mformatlon . 1249 Environment o '1269

Output register information 1249 Programming requlrements e 1270
Performance implications 1250 Restrictions. . . coe e 1270
Syntax1250 Input register 1nf0rmat10no 1270
Parameters.1250 Output register information 1270
ABEND codes. 1231 Performance implications 1270
Returncodes1251 Syntax ... 1271
Example.1251 Parameters.1271

ABEND codes.1272

Returncodes1272

xxil z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 130. ISGLPRG — Purge a
requestor from a latch set
Description.
Environment .
Programming requlrements
Restrictions. .
Input register 1nf0rmat10n
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes.
Return codes .
Example.

Chapter 131. ISGLPR64 — Purge a
requestor from a latch set in 64-bit
mode
Description.

Environment .

Programming requ1rements

Restrictions.

Input register 1nf0rmat10n

Output register information .

Performance implications .

Syntax

Parameters .

ABEND codes.

Return codes .

Example.

Chapter 132. ISGLREL — Release a
latch.
Description.
Environment .
Programming requlrements
Restrictions. .
Input register 1nformat10n
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes.
Return codes .
Example.

Chapter 133. ISGLRE64 — Release a
latch in 64-bit mode .
Description.
Environment .
Programming requlrements
Restrictions. .
Input reglster 1nformat10n
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes.
Return codes .

. 1273

. 1273
. 1273
. 1273
. 1273
. 1274
. 1274
. 1274
. 1274
. 1274
. 1275
. 1275
. 1275

. 1277

. 1277
. 1277
. 1277
. 1277
. 1278
. 1278
. 1278
. 1278

. 1279
. 1279
. 1279
. 1279

. 1281
. 1281

. 1281
. 1281
. 1282
. 1282
. 1282
. 1282
. 1282
. 1283
. 1284
. 1284
. 1285

. 1287
. 1287

. 1287
. 1287
. 1288
. 1288
. 1288
. 1288
. 1288
. 1289
. 1290
. 1290

Example.

. 1291

Chapter 134. ISGQUERY — Global
resource serialization query service . 1293

Description.
Environment .
Programming requ1rements
Restrictions. .
Input reglster 1nformat10n

Output register information .

Performance implications .
Syntax

Parameters .

ABEND codes.

Return and reason codes
Examples

. 1293
. 1293
. 1293
. 1294
. 1294
. 1294
. 1295
. 1296
. 1298
. 1311
. 1311
. 1320

Chapter 135. ITTFMTB — Generate

component trace format table.

Description.
Environment .
Programming requlrements
Restrictions.
Reglster 1nformat10n
Performance implications .
Syntax
Parameters . .
Return and reason Codes .

. 1323

. 1323
. 1323
. 1323
. 1323
. 1323
. 1323
. 1323
. 1325
. 1327

Chapter 136. ITTWRITE — Write a full

trace buffer to DASD or tape

Description.
Environment .
Programming requlrements
Restrictions.
Register 1nf0rmat10n
Performance implications .
Syntax
Parameters .
ABEND codes. .
Return and reason codes .
Example. . .
ITTWRITE - List form .
Syntax
Parameters .
ITTWRITE - Execute form
Syntax
Parameters .

. 1329

. 1329
. 1329
. 1329
. 1329
. 1329
. 1330
. 1330
. 1331
. 1332
. 1332
. 1333
. 1333
. 1333
. 1334
. 1334
. 1334
. 1335

Chapter 137. ITZXFILT — Transaction

trace filter exit
Description.
Environment .
Programming requlrements
Restrictions. .
Input reglster 1nf0rrnat10n

Output register information .

Performance implications .
Syntax

. 1337
. 1337
. 1337
. 1337
. 1337
. 1337
. 1337
. 1338
. 1338

Contents XXxiii

Parameters .

ABEND codes. .
Return and reason codes .
Example.

Chapter 138. IXGBRWSE —
Browse/read a log stream
Description.
Environment .
Programming requlrements
Restrictions. .
Input reglster 1nformat10n
Output register information .
Performance implications . .
REQUEST=START option of IXGBRWSE
Syntax for REQUEST=START.
Parameters for REQUEST=START .
REQUEST=READCURSOR option of
IXGBRWSE.
Syntax for REQUEST= READCURSOR

Parameters for REQUEST=READCURSOR

REQUEST=READBLOCK option of IXGBRWSE
. 1357
. 1359
. 1364
. 1364
. 1365
. 1369
. 1369
. 1370
. 1373
. 1373
. 1385

Syntax for REQUEST=READBLOCK

Parameters for REQUEST=READBLOCK .
REQUEST=RESET option of IXGBRWSE .

Syntax for REQUEST=RESET.
Parameters for REQUEST=RESET .
REQUEST=END option of IXGBRWSE
Syntax for REQUEST=END
Parameters for REQUEST=END .
ABEND codes. .

Return and reason codes .

Examples

Chapter 139. IXGCONN —

Connect/disconnect to log stream .

Description.
Environment .
Programming requ1rements
Restrictions. .
Input register mformatlon
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes. .
Return and reason codes .
Example 1 .
Example 2
Example 3 .

. 1338
. 1339
. 1339
. 1339

. 1341
. 1341

. 1341
. 1342
. 1343
. 1343
. 1343
. 1344
. 1344
. 1344
. 1345

. 1350
. 1350

1352
1357

. 1389
. 1389

. 1389
. 1390
. 1390
. 1391
. 1391
. 1391
. 1392
. 1394
. 1400
. 1400
. 1412
. 1413
. 1413

Example 4 .
Example 5 .

Chapter 140. IXGDELET — Deleting

log data from a log stream .
Description.
Environment . .
Programming requirements
Restrictions. .
Input reglster mformatlon
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes. .
Return and reason codes .
Examples

Chapter 141. IXGWRITE — Write log

data to a log stream .
Description.
Environment . .
Programming requirements
Restrictions. .
Input register mformatlon
Output register information .
Performance implications .
Syntax
Parameters .
ABEND codes. .
Return and reason codes .
Example 1 .
Example 2
Example 3 .

Appendix. Accessibility
Accessibility features

Consult assistive technologles

Keyboard navigation of the user mterface
Dotted decimal syntax diagrams

Notices .
Policy for unsupported hardware
Minimum supported hardware .
Programming interface information
Trademarks

Index

XXiV z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

. 1413
. 1414

. 1415

. 1415
. 1415
. 1415
. 1416
. 1416
. 1416
. 1416
. 1417
. 1418
. 1422
. 1422
. 1430

. 1433

. 1433
. 1433
. 1434
. 1434
. 1434
. 1435
. 1435
. 1435
. 1437
. 1441
. 1441
. 1452
. 1452
. 1453

. 1455

. 1455
. 1455
. 1455
. 1455

. 1459

. 1460
. 1461
. 1461
. 1461

. 1463

Figures

1.

Ll

Sample User Parameter List for Callers in AR

Mode5
Sample tabular syntax dlagram for the TEST

macro P
Continuation Codmg16
Return Code Area Used by ENQ o . 82
Characteristics and Restrictions for Standard

Hiperspaces264

© Copyright IBM Corp. 1988, 2016

Characteristics and Restrictions for ESO

Hiperspaces 270
Sample (beginning port1on) Tlmed Event Data
spreadsheet 636
Sample (second portion) Tlmed Event Data
spreadsheet 636

RANGLIST and NUMRANGE Pararneters 962

XXV

XXVl z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Tables

N =

oGk »

10.

11.
12.

13.

14.
15.
16.
17.
18.
19.
20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

35.
36.

37.

Passing User Parameters in AR Mode .
Execution environment characteristics and

corresponding SYSSTATE parameters and global

symbols .

Service Summary

ENF macro event codes

Return Codes for the ENFREQ Macro
Return Codes for the ENQ Macro with the
RET=TEST Parameter . . .
Return Codes for the ENQ Macro wrth the
RET=USE Parameter .
Return Codes for the ENQ Macro wrth the
RET=CHNG Parameter .
Return Codes for the ENQ Macro wrth the
RET=HAVE Parameter . .
Return Codes for the ENQ Macro w1th the
ECB Parameter

Return Codes for the ESPIE TEST Macro
Return and Reason Codes for the ESTAE
Macro . .
Return and Reason Codes for the ESTAEX
Macro . .
Return Code for the ETCON Macro .
Return Code for the ETCRE Macro

Return Codes for the ETDES Macro .
Return Code for the ETDIS Macro

Return Codes for the FESTAE Macro

Return Codes for the FREEMAIN Macro
Return Codes for the GETDSAB Macro
Return and Reason Codes for the GETDSAB
Macro .

Return Codes for the GETMAIN Macro
Return codes for the GQSCAN macro
Return Codes for the GTRACE TEST Macro
Return Codes for the GTRACE DATA Macro
Return and reason codes for the HISMT
macro .

Return and Reason Codes for the HISSERV
Macro .

Return and Reason Codes for HSPSERV
SREAD and HSPSERV SWRITE

Return and Reason Codes for HSPSERV
CREAD and HSPSERV CWRITE .

Return codes for the IARBRVEA service
Return codes for the IARBRVER service
Return and Reason Codes for the JARCP64
Macro . .

Return and Reason Codes for the IARRZV
Macro . .

Return and Reason Codes for the IARST64
Macro . .

Storage Attrlbutes Requlred for Subspaces
Return and Reason Codes for the JARSUBSP
Macro . .

IARVSERV Permrtted Storage Combmatrons

© Copyright IBM Corp. 1988, 2016

.6

.18
. 46
. 62
. 82
. 83
. 83
. 84

. 85

100

. 109

. 113
. 122
. 127
. 141
. 147

164
177
184

. 185

203
213
223
227

. 239

. 253

. 268

. 274

282
286

. 303

. 311

. 326

333

. 335

340

38.

40.
41.

42.
43.
44.
45.
46.
47.

48.
49.
50.
51.
52.
53.
54.
55.

56.

57.

58.
59.
60.

61.
62.

63.
64.
65.
66.
67.
68.

69.
70.

71.
72.
73.
74.
75.

76.

Return and Reason Codes for the IARVSERV
Macro .

. Return and Reason Codes for the IARV64

Macro .

Return Codes for the IAZXCTKN Macro
Return and Reason Codes for the IAZX]SAB
Macro .

Return and reason codes for the IEAFP macro
Return Codes for IEALSQRY

Return Codes for the IEAMETR Macro
Return Codes for the IEAMRME3 Macro
Return Codes for the IEAMSCHD Macro
Return and reason codes for the IEAMSXMP
macro . . .
Return Codes for the IEANTCR Macro
Return Codes for the IEANTDL Macro
Return Codes for the IEANTRT Macro
Return Codes for the IEANTRTR Macro
Return Codes for the IEAN4CR Macro
Return Codes for the IEAN4DL Macro
Return Codes for the IEAN4RT Macro
Return and Reason Codes for the IEARBUP
Macro .

Return and Reason Codes for the IEATDUMP

. 345

. 479

486

. 491
502

. 508

511
516
534

. 547

554
560
564
572
578
584
588

. 595

Macro . . 609

Return and reason codes for the IEATEDS

macro . . . 627

Return codes for the IEATXDC Macro 643

Authorization . 647

Checkpoint/Restart Toleratlon only

available when the CVTPAUS4 bit is set in

the CVT. . 647

Authorization . 651

Checkpoint/Restart Toleratlon only

available when the CVTPAUS4 bit is set in

the CVT. . . 651

Linkage option . . 654

Linkages . . . 671

Linkage variables 708

Untrusted attribute linkage varrable . . 708

Authorization . 729

Checkpoint/Restart Toleratlon only

available when the CVTPAUS4 bit is set in

the CVT. . 729

Authorization . 733

Checkpoint/Restart Toleratlon only

available when the CVTPAUS4 bit is set in

the CVT. . . 733

Linkage option . . 736

Linkages . . . 751

Linkage variables 787

Untrusted attribute linkage varrable . . 788

Return and Reason Codes for the IEEQEMCS

Macro . . . 830

Return and Reason Codes for the IEEVARYD

Macro . . 840
xxvii

77. Return Codes for the IEFPPSCN Macro 854 101. Return Codes for IRDFSD macro.

78. Return Codes for the IEFQMREQ Macro 860 102. Return and Reason Codes for IRDFSD macro

79. Reason Codes for the IEFQMREQ Macro 861 103. Return Codes for IRDFSDU macro

80. Return and reason codes for the IEFS]SYM 104. Return and Reason Codes for IRDFSD macro
macro 868 105. Return and Reason Codes for the

81. Return and reason codes for the IEFSSI macro 903 ISGADMIN Macro

82. Return and Reason Codes for the IEFSSVT 106. Return and Reason Codes for the ISGECA
Macro 926 Macro.

83. Return and Reason Codes for the IFAQUERY 107. Return and Reason Codes for the ISGENQ
Macro 949 Macro

84. Parameters Vahd w1th IOSADMF Requests 961 108. ISGLCRT Return Codes

85. Return and Reason Codes for the IOSADMEFE 109. ISGLCR64 Return Codes
Macro 963 110. ISGLID Return Codes

86. Return and Reason Codes for the IOSCAPU 111. ISGLID64 Return Codes
CAPTUCB Macro 979 112. ISGLOBT Return Codes.

87. Return and Reason Codes for the IOSCAPU 113. ISGLOBT64 Return Codes .
UCAPTUCB Macro . . . 984 114. ISGLPBA Return Codes.

88. Return and Reason Codes for the IOSCAPU 115. ISGLPB64 Return Codes
CAPTOACT Macro . . . 989 116. ISGLPRG Return Codes.

89. Return and reason codes for the IOSCHPD 117. ISGLPRG Return Codes.
macro. 1012 118. ISGLREL Return Codes .

90. Return Codes for the IOSCMB Macro 1017 119. ISGLRE64 Return Codes .

91. Return and Reason Codes for the IOSCUINF 120. Return and Reason Codes for the
Macro 1034 ISGQUERY Macro

92. ABEND Codes for the IOSENQ Macro 1047 121. Abend codes for the ITTWRITE Macro

93. Return and Reason Codes for the IOSENQ 122. Return and Reason Codes for the ITTWRITE
Macro . . . 1048 Macro

94. Return and reason codes for the IOSFBA 123. Return and Reason Codes for the ITZXFILT
macro. 1065 Macro

95. Return Codes for the IOSHXBLK Macro 1071 124. Return and Reason Codes for the

96. Return Codes for the IOSLOOK Macro 1080 IXGBRWSE Macro

97. Return and reason codes for the IOSSCM 125. Return and reason codes for the IXGCONN
macro. 1103 macro.

98. Return Codes for the IOSVRYSW Macro 1131 126. Return and Reason Codes for the IXGDELET

99. Return and reason codes for the IOSWITCH Macro
macro. 1139 127. Return and reason codes for the IXGWRITE

100. Return codes for the IQPINFO macro 1149 macro.
XXViil z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

. 1155
1156
1160
1161

. 1169

. 1184

. 1207
. 1225
. 1236
. 1247
. 1251
. 1257
. 1263
. 1268
. 1272
. 1275
. 1279
. 1284
. 1290

. 1312

1332

. 1333

. 1339

. 1374

. 1400

. 1423

. 1441

About this document

This document describes the authorized services that the MVS™ operating system
provides; that is, services available only to authorized programs. An authorized
program must meet one or more of the following requirements:

* Running in supervisor state
* Running under PSW key 0-7
* Running with APF-authorization.

Some of the services included in this document are not authorized, but are
included because they are of greater interest to the system programmer than to the
general applications programmer. The functions of these services are of such a
nature that their use should be limited to programmers who write authorized
programs. Services are also included if they have one or more authorized
parameters — parameters available only to authorized programs.

Programmers using assembler language can use the macros described in this
document to invoke the system services that they need. This document includes
the detailed information — such as the function, syntax, and parameters — needed
to code the macros.

This document is divided into four volumes. Volumes 1 through 4 present the
macro descriptions in alphabetic order.

Who should use this document

This document is for the programmer who is using assembler language to code a
system program. A system program is usually one that runs in supervisor state or
runs with PSW key 0-7 or runs with APF authorization.

The document assumes a knowledge of the computer, as described in Principles of
Operation, as well as an in-depth knowledge of assembler language programming.

System macros require High Level Assembler. Assembler language programming is
described in the following information:

* |[HLASM Programmer’s Guide|

 |[HLASM Language Reference|

Using this information also requires you to be familiar with the operating system
and the services that programs running under it can invoke.

How to use this document

This document is one of the set of programming documents for MVS. This set
describes how to write programs in assembler language or high-level languages,
such as C, FORTRAN, and COBOL. For more information about the content of this
set of documents, see [z/0S V2R2 Information Roadmap]

z/0S information

This information explains how z/OS references information in other documents
and on the web.

© Copyright IBM Corp. 1988, 2016 xxix

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see [z/0S V2R2 Information Roadmap|

To find the complete z/OS® library, o to |IBM Knowledge Centeﬂ
(http:/ /www.ibm.com /support/knowledgecenter/SSLTBW / welcome)}

XXX z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

How to send your comments to IBM

We appreciate your input on this documentation. Please provide us with any
feedback that you have, including comments on the clarity, accuracy, or
completeness of the information.

Use one of the following methods to send your comments:

Important: If your comment regards a technical problem, see instead
la technical problem.”]

* Send an email to|mhvrcfs@us.ibm.com|

* Send an email from the|'Contact us" web page for z/OS (http:/ /www.ibm.com /|
[systems /z/0s/z0s /webgs.html)|

Include the following information:

* Your name and address

* Your email address

* Your phone or fax number

* The publication title and order number:
z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG
SA23-1373-04

* The topic and page number or URL of the specific information to which your

comment relates
* The text of your comment.

When you send comments to IBM®, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem

Do not use the feedback methods that are listed for sending comments. Instead,
take one or more of the following actions:

* Visit the [[BM Support Portal (support.ibm.com)}

* Contact your IBM service representative.
* Call IBM technical support.

© Copyright IBM Corp. 1988, 2016 xxxi

mailto:mhvrcfs@us.ibm.com
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://support.ibm.com/

xxxil z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 2 (V2R2), as updated
December, 2015

The following changes are made for z/OS Version 2 Release 2 (V2R2), as updated
December, 2015. In this revision, all technical changes for z/OS V2R2 are indicated
by a vertical line to the left of the change.

New
* IARV64 has a new SADMP parameter for REQUEST=GETSTOR,
REQUEST=GETSHARED, and REQUEST=GETCOMMON.

* The following callable services have been added:
— [Chapter 56, “IEAVPME2 — Pause multiple elements service,” on page 667
— [Chapter 70, “IEA4PME2 — 64-bit pause multiple elements service,” on page]
i

¢ IXGCONN and IXGWRITE have a new return code 08, reason code xxxx084E.

Changed
* IARCP64 REQUEST=FREE now accepts the INPUT_CPID parameter.

* Restrictions are updated for the following callable services:
— [Chapter 52, “IEAVAPE — Allocate_Pause_Element,” on page 645
— [Chapter 66, “IEA4APE — Allocate_Pause_Element,” on page 727
— [Chapter 53, “IEAVAPE2 — Allocate_Pause_Element,” on page 649
— [Chapter 67, “IEA4APE2 — Allocate_Pause_Element,” on page 731.|

Summary of changes for z/OS Version 2 Release 2

The following information has been added, changed, or deleted in z/OS Version 2
Release 2 (V2R2).

New

+ The MEMLIMIT=COND option has been added in ["REQUEST=GETSTOR option|
|of IARV64” on page 353.|

* The IARBRVEA callable service has been added in [Chapter 24, “TARBRVEA —]
[Verify virtual storage access (AR mode),” on page 281]

« The IARBRVER callable service has been added in|Chapter 25, “JARBRVER —|
[Verify virtual storage access (primary address space),” on page 285,

* The IARV64 service has the following new parameters:
— The PAGEFRAMESIZE parameter has been added in
['REQUEST=GETSHARED option of IARV64” on page 440
— The GUARDSIZE, GUARDSIZE64, and GUARDLOC parameters have been
added in [“REQUEST=GETCOMMON option of IARV64” on page 459

« The TRANSFER parameter has been added in |[Chapter 39, “IEAMSCHD —|
[Schedule an SRB,” on page 521)

© Copyright IBM Corp. 1988, 2016 xxxiii

+ The IEANTRTR macro has been added in[Chapter 44, “IEANTRTR —|
[Name/token retrieve register interface,” on page 569

+ The EVENTRTN parameter has been added in |[Chapter 86, “TEFSSI —|
[Dynamically control a subsystem,” on page 873

* Return code X'00' has a new reason code, X' 02", in [Chapter 103, “IOSFBA —]|
[TOS fixed block architecture service,” on page 1049.|

+ The BYPONLINEFENCE parameter has been added in |Chapter 107, “IOSODS —|
[IOS offline device service,” on page 1081

* The IOSSCM service has been added in |Chapter 109, “IOSSCM — Storage class|
[memory information,” on page 1099

Changed

* Updates have been made to the Restrictions topic in [Chapter 17, “GETDSAB —|
[Accessing the DSAB chain,” on page 181.|

* Updates have been made in ['REQUEST=GETSTOR option of IARV64” on page|
i353

* Modified event code 78 of ENF event codes and meanings to reference JES
instead of JES2. See|“ENF event codes and meanings” on page 45

* Information about the SYNCH parameter has been updated in [Chapter 39
[“TEAMSCHD — Schedule an SRB,” on page 521

* Information about the CHPID parameter and reason codes has been updated in
[Chapter 95, “IOSCHPD — I0S CHPID description service,” on page 1007.|

Deleted

* The FEATURE=CPMASK parameter has been removed from
[“TEAMSCHD — Schedule an SRB,” on page 521 The FEATURE=CPMASK
syntax is still accepted, but is ignored.

Summary of changes for z/OS Version 2 Release 1, as updated

February 2015

The following changes are made for z/OS Version 2 Release 1 (V2R1), as updated
February 2015.

New

* A new DACHMONC subtype for device monitoring has been added for ENF
signal type 33 in[“ENF event codes and meanings” on page 45.|

* A new HISMT service has been added in [Chapter 21, “HISMT — HIS|
[multithreading service,” on page 231/

+ The LOCALSYSAREA parameter is added in|Chapter 26, “IARCP64 — 64-bit celll
|pool services,” on page 289.|

e The description of return code 4, reason code 0, has been added in thapter 120]
[“ISGECA — GRS enhanced contention analysis service,” on page 1177

Changed
Chapter 22, “HISSERV macro — HISSERV Service,” on page 245|is updated for
z/0S multithreading support.

* The IEAFP service is updated to modify the STOP parameter and to add the
STOPVECTOR and START parameters. Return and reason codes are updated
also. See [Chapter 35, “IEAFP — Floating point services,” on page 499|for more
information.

XXX1V z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

* [Chapter 26, “TARCP64 — 64-bit cell pool services,” on page 289|is updated and
restructured to improve clarity.

* The descriptions of the CSA, LSQA, RGN, and SQA options of the SDATA
parameter have been updated in [Chapter 49, “IEATDUMP — Transaction dump]|
[request,” on page 597

e Information about the parameters and the return and reason codes is updated in
|Chapter 114, “TIOSWITCH — IOS switch information service,” on page 1135]

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):

* [z/OS Planning for Installation|

* [z/OS Summary of Message and Interface Changes|

* |z/OS Introduction and Release Guide|

Summary of changes XXXV

XXXV1I z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 1. Using the services

Macros and callable services are programming interfaces that application programs
can use to access MVS system services. This chapter provides general information
and guidelines about how to use the macros and callable services accurately and
efficiently. For more specific and detailed information about coding a particular
macro or callable service, see the individual service description in this information.

Some of the topics covered in this chapter apply only to macros, some apply only
to callable services, and some apply to both. This chapter uses the word "services"
when referring to information that applies to both service types. When information
applies only to one type or the other, the particular service type is specified.

Note: z/OS macros do not code to restrictions that are imposed by the
COMPAT(CASE) HLASM option or its abbreviation CPAT(CASE). Therefore, you
cannot rely on using COMPAT(CASE) if you use z/OS macros.

The following table lists the topics covered in this chapter and whether the topic
applies to macros, callable services, or both:

Topic Service Type
“Compatibility of MVS macros” Macros
“ Addressing mode (AMODE)” on page 2| Both
“ Address space control (ASC) mode” on page 3| Both
‘ALET qualification” on page 4] Both
‘User parameters” on page 4| Macros
‘Telling the system about the execution environment” on page 6| Macros
‘Specifying a macro version number” on page 7] Macros
‘Register use” on page § Both
"Handling return codes and reason codes” on page 9 Both
“Handling program errors” on page 9| Both
‘Handling environmental and system errors” on page 10| Both
“Using X-macros” on page 11 Macros
‘Macro forms” on page 12| Macros
‘Coding the macros” on page 13| Macros
‘Coding the callable services” on page 16| Callable Services
‘Including equate (EQU) statements” on page 17| Callable Services
‘Link-editing linkage-assist routines” on page 17 Callable Services
[‘Service summary” on page 1§ Both

Compatibility of MVS macros

When IBM introduces a new version or a new release of an existing version, the
new version or release supports all MVS macros from previous versions and
releases. Programs assembled on an earlier level of MVS that issue macros will run
on later levels of MVS.

In most cases, the reverse is also true. When you assemble programs that issue

macros on a particular version and release of MVS, those programs can run on
earlier versions and releases of MVS, provided you request only those functions

© Copyright IBM Corp. 1988, 2016 1

that are supported by the earlier version and release. This is useful for installations
that write applications that might be assembled on one level of MVS, but run on a
different level.

As MVS supports new architectures, addressability changes. To take best
advantage of the new architectures, some macros have more than one possible
expansion. You are required to have the macro expand according to the
environment in which the program runs. This topic is described in this
introductory information.

The problem of compatibility is not the same as selecting a macro version through
the PLISTVER parameter to ensure the correct parameter list size for a macro. For
selecting a parameter list version number, see|“Specifying a macro version|

inumber” on page 7|

Addressing mode (AMODE)

2

A program can run in 24-bit, 31-bit, or 64-bit addressing mode. A program that
executes in 24-bit or 31-bit addressing mode can invoke most of the services
described in this information. A program that executes in 64-bit addressing mode
has a smaller group of services that it can invoke.

In general,

* A program running in 24-bit addressing mode cannot pass parameters or
parameter addresses that are higher than 16 megabytes. However, there are
exceptions. For example, a program running in 24-bit addressing mode can:

— Free storage above 16 megabytes using the FREEMAIN macro
— Allocate storage above 16 megabytes using the GETMAIN macro

— Use cell pool services for cell pools located in storage above 16 megabytes
using the CPOOL macro

— Use page services for storage locations above 16 megabytes using the PGSER
macro

* A program running in 24-bit or 31-bit addressing mode cannot pass parameter
addresses that are higher than 2 gigabytes, unless stated otherwise in the
individual service description.

* If a program running in 31-bit or 64-bit addressing mode issues a service,
parameters and parameter addresses can be above or below 16 megabytes,
unless otherwise stated in the individual service description.

Some macros can generate code that is appropriate for programs in either 64-bit
addressing mode or 24-bit or 31-bit addressing mode. These macros check a global
symbol set by the SYSSTATE macro. See[“Telling the system about the execution|
|environment” on page 6| for more information.

When you call a callable service in 24-bit or 31-bit addressing mode, you must pass
31-bit addresses to the system service regardless of what addressing mode your
program is running in. If your program is running in 24-bit mode and you use a
callable service, you must set the high-order byte of parameter addresses to zeros.

You can invoke the following services in 64-bit addressing mode, subject to the
“SVC or PC” restrictions mentioned later in this topic, but you cannot pass
parameters and parameter addresses above 2 gigabytes: ABEND, ATTACHX,
CALLDISP, CHAP, CSVQUERY, DELETE, DEQ, DETACH, DOM, DSPSERY,
DYNALLOC, ENQ, ESPIE, ESTAEX, EXCP, FREEMAIN, GETMAIN, GTRACE,

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IARVSERYV, IDENTIFY, IEAARR, LINKX, LOAD, MODESET, PGSER, POST,
RESERVE, SDUMPX, SETRP, STAX, STIMER, STIMERM, STORAGE, SYNCHYX,
TIME, TIMEUSED, TTIMER, VRADATA, WAIT, WTO, WTOR, and XCTL.

There are many services that support 64-bit addressing mode and parameter
addresses above 2 gigabytes. Examples are IRAV64, IARST64, and ISGENQ. For
details on the supported addressing mode and parameter address ranges for any
specific service, see the following books:

* [2/0S MVS Programming: Assembler Services Reference ABE-HSP|

* [z/0S MVS Programming: Assembler Services Reference IAR-XCT|

* [2/0S MVS Programming: Authorized Assembler Services Reference ALE-DYN]
* |2/0S MVS Programming: Authorized Assembler Services Reference EDT-IXG|
* [/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU|
« k/0s Mvs Programming: Authorized Assembler Services Reference SET-WTO|
[z/OS MV'S Programming: Sysplex Services Reference|

Before invoking a service in 64-bit addressing mode, you must inform system
macros, by specifying SYSSTATE AMODE=64, that you are in 64-bit addressing
mode. You can invoke only those options that result in calling the system by an
SVC or PC in 64-bit addressing mode. You cannot invoke any option that results in
calling the system by a branch-entry in 64-bit addressing mode.

Unless explicitly stated otherwise, assume that a given service cannot be invoked
in 64-bit addressing mode and cannot accept parameters and parameter addresses
above 2 gigabytes. Such an explicit statement would include a specific reference to
64-bit addressing mode in the AMODE specification of a particular macro’s
environment section. By contrast, an AMODE specification of "Any" means that the
macro can be invoked in either 24-bit or 31-bit addressing mode; it does not mean
that the macro can be invoked in 64-bit addressing mode.

For information about 64-bit addressing mode and the 64-bit GPR, see z/OS MV'S
[Programming: Extended Addressability Guide}

Address space control (ASC) mode

A program can run in either primary ASC mode or access register (AR) ASC mode.
In primary mode, the processor uses the contents of general purpose registers
(GPRs) to resolve an address to a specific location. In AR mode, the processor uses
the contents of ARs as well as the contents of GPRs to resolve an address to a
specific location. See [z/OS MVS Programming: Assembler Services Guiddfor more
detailed information about AR mode.

Some macros can generate code that is appropriate for programs in either primary
mode or AR mode. These macros check a global symbol set by the SYSSTATE
macro. See [“Telling the system about the execution environment” on page 6|for
more information. [Table 3 on page 18|lists the macros that check the global symbol.

Some services can generate code that is appropriate for programs in primary mode
only. If you write a program in AR mode that invokes one or more services, check
the description in this information for each service your program issues. Unless the
description indicates that a service supports callers in AR mode, the service does
not support callers in AR mode. In this case, use the SAC instruction to change the
ASC mode of your program and issue the service in primary mode.

Chapter 1. Using the services 3

4

Whether the caller is in primary or AR ASC mode, the system uses ARs 0-1 and
14-15 as work registers across any service call.

ALET qualification

The address space where you can place parameters varies with the individual
service:

* You can place parameters in the primary address space in all service.

* You must place parameters in the primary address space in some services.
* You can place parameters in any address space in some services.

To identify where you can locate parameters in a service, read the individual
service description.

Programs in AR mode that pass parameters must use an access register and the
corresponding general purpose register together (for example, access register 1 and
general purpose register 1) to identify where the parameters are located. The access
register must contain an access list entry token (ALET) that identifies the address
space where the parameters reside. The general purpose register must identify the
location of the parameters within the address space.

The only ALETs that MVS services typically accept are:

* Zero (0), which specifies that the parameters are in the caller's primary address
space

* An ALET for a public entry on the caller's dispatchable unit access list (DU-AL)

* An ALET for a common area data space (CADS)

MVS services do not accept the following ALETs, and you cannot attempt to pass

them to a service:

* One (1), which signifies that the parameters are in the caller's secondary address
space

e An ALET that is on the caller's primary address space access list (PASN-AL) that
does not represent a CADS

* An ALET for a private entry on the PASN-AL or the DU-AL

Throughout, this information uses the term AR/GPR 7 to mean an access register
and its corresponding general purpose register. For example, to identify access
register 1 and general purpose register 1, this information uses AR/GPR 1.

User parameters

Some macros that you can issue in AR mode include control parameters, user
parameters, or both. Control parameters refer to the macro parameter list, and the
parameters whose addresses are in the parameter list. Control parameters control
the operation of the macro itself. User parameters are parameters that a user
provides to be passed through to a user routine. For example, the PARAM
parameter on the ATTACHX macro defines user parameters. The ATTACHX macro
passes these parameters to the routine that it attaches. All other parameters on the
ATTACHX macro are control parameters that control the operation of the
ATTACHX macro.

Note:
1. User parameters are sometimes referred to as problem program parameters.

2. Control parameters are sometimes referred to as system parameters or control
program parameters.

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

The macros shown in allow a caller in AR mode to pass information in the
form of a parameter list (or parameter lists) to another routine. This table identifies
the parameter that receives the ALET-qualified address of the parameter list and
tells you where the target routine finds the ALET-qualified address.

Table 1. Passing User Parameters in AR Mode

Macro Parameter Location of User Parameter List Address

ATTACH/ATTACHX |PARAM,VL=1 AR/GPR 1 contains the address of a list of
addresses. When either

* a 4-bytes-per-entry parameter list or

* an 8-bytes-per-entry parameter list with
PLISTSARALETS=YES

is being used, this list also contains the ALETs

associated with those addresses. (See

for the format of the 4-bytes-per-entry
parameter list when it contains ALETs.)

ESTAEX PARAM SDWAPARM contains the address of an 8-byte
area, which contains the address and ALET of
the parameter list.

When an AR mode caller who is using a 4-bytes-per-entry parameter list passes
ALET-qualified addresses to the called program through PARAM,VL=1 on the
ATTACH/ATTACHX macro, the system builds a list formatted as shown in

The addresses passed to the called program are at the beginning of the
list, and their associated ALETs follow the addresses. The last address in the list
has the high-order bit on to indicate the end of the list. For example,
shows the format of a list where an AR mode issuer of ATTACHX who is using a
4-bytes-per-entry parameter list has coded the PARAM parameter as follows:

PARAM=(A,B,C),VL=1

When an AR mode caller who is using an 8-bytes-per-entry parameter list specifies
PLISTSARALETS=YES, the system builds a parameter list with the 8-byte
addresses at the beginning of the list and their associated 4-byte ALETs following
the addresses.

@A
@B
1]ec
GPR1 @ ALET A
AR1 ALET ALET B
ALET C

Figure 1. Sample User Parameter List for Callers in AR Mode

For information about linkage conventions, see the chapter in|z/OS MVS§
[Programming: Assembler Services Guidd,

Chapter 1. Using the services 5

Telling the system about the execution environment

6

To generate code that is correct for the environment in which the program runs,
some macros need to know one or more of the following characteristics about that
environment:

* The addressing mode (AMODE) at the time the macro is issued
* The ASC mode of the program at the time the macro is issued
 The architectural level in which the program runs

For macros that are sensitive to their environment, use the SYSSTATE macro to
define the environment. During the assembly stage, SYSSTATE sets one or more
global symbols. Later, in your source code, the macro checks the global symbols
and generates the correct code, which might mean avoiding using a

z/ Architecture® instruction or an access register. [Table 3 on page 18lists MVS
macros and identifies macros that need to know the environmental characteristics.

IBM recommends you issue the SYSSTATE macro before you issue other macros.
Once a program has issued SYSSTATE, there is no need to reissue it, unless the
program switches from one AMODE to another or one ASC mode to another or
has code paths that are isolated according to architecture level or operating system
release. If you switch AMODE or ASC mode to a different architecture code path,
issue SYSSTATE immediately after the switch to indicate the new state. In general,
specify SYSSTATE ARCHLVL=2, and switch to SYSSTATE ARCHLVL=3 before
issuing macros in sections of code that only run when z/OS 2.1 capabilities are
available. If you do not issue the SYSSTATE macro, the system assumes the macro
is issued as follows:

* In AMODE other than 64-bit
* In primary ASC mode

* Usually, in ESA/390 architectural level (but may assume z/Architecture level
since all supported z/OS releases require z/ Architecture level)

describes the relevant characteristics, the corresponding parameters on the
SYSSTATE macro, and the global symbols the macro checks.

Table 2. Execution environment characteristics and corresponding SYSSTATE parameters
and global symbols

Characteristic Parameter on SYSSTATE Global symbol
AMODE of 64-bit, or either 24-bit or 31-bit AMODE64=YES or NO &SYSAM64
Primary or AR ASC mode ASCENV=P or AR &SYSASCE
Architectural level of z/Architecture ARCHLVL=0, 1, 2, 3 or OSREL &SYSALVL
Operating system release ZOSVouRr &SYSOSREL

You can issue the SYSSTATE macro with the TEST parameter in your own
user-written macro to allow your macros to generate code appropriate for their
execution environment.

Callable services do not check the global symbols described in this topic. To
determine whether a callable service is sensitive to the AMODE, ASC mode, or the
Architecture level, see the description of the individual callable service.

In early releases of MVS, the SPLEVEL macro performs a function similar to
SYSSTATE. The SPLEVEL macro identifies the level of the operating system, so
that you can tune a macro expansion based on that level. You can use this where

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

macro expansions change incompatibly. Because SPLEVEL applies to levels that the
system no longer supports, it is not described in this topic.

Specifying a macro version number

Often there is more than one version of a macro, differentiated by additional
parameters or new or expanded function. For example, version 1 of the IXGCONN
macro provides a connection to a log stream, while version 2 adds new parameters
in support of resource manager programs. This is different than using the
SPLEVEL macro to select a macro version level to solve problems of downward
compatibility.

You can request a specific version of a macro based on the parameters you need to
use in your application, but you should also be attuned to the storage constraints
of the program. The version of a macro might affect the length of the parameter
list generated when the macro is assembled, because when you add new
parameters to a macro, the parameter list must be large enough to fit them. The
size of the parameter list might grow from release to release of z/OS, perhaps
affecting the amount of storage your program needs.

How to request a macro version using PLISTVER

Many macros that have one or more versions supply the PLISTVER parameter. For
those that do, use the PLISTVER parameter to request a version of the macro.
PLISTVER is the only parameter allowed on the list form of a macro (MF), and it
determines which parameter list the system generates. PLISTVER is optional. If
you omit it, the system generates a parameter list for the lowest version that will
accommodate the parameters specified. This is the IMPLIED_VERSION default.
Note that on the list form, the default will cause the smallest parameter list to be
created.

You can also code a specific version number using plistver, or specify MAX:

* You can use plistver to code a decimal value corresponding to the version of the
macro you require. The decimal value you provide determines the amount of
storage allotted for the parameter list.

* You can use MAX to request that the system generate a parameter list for the
highest version number currently available. The amount of storage allotted for
the parameter list will depend on the level of the system on which the macro is
assembled.

IBM recommends, if your program can tolerate additional growth, that you
always specify PLISTVER=MAX on the list form of the macro. MAX ensures that
the list form parameter list is always long enough to hold whatever parameters
might be specified on the execute form when both forms are assembled using
the save level of the system.

Hints for using PLISTVER

There are some general considerations that you should keep in mind when
specifying the version of a macro with PLISTVER:

 If PLISTVER is omitted, the macro generates a parameter list of the lowest
version that allows all the parameters specified to be processed.

 If you code PLISTVER=n and then specify any version ‘n+1" parameter, the
macro will not assemble.

* If you code PLISTVER=n and do not specify any version ‘n’ parameter, the
macro will generate a version ‘n’ parameter list.

Chapter 1. Using the services 7

* If you are using the standard form of the macro (MF=S), there is no reason you
need to code the PLISTVER parameter.

¢ Not all macros have the same version numbers. The version numbers need not
be contiguous.

The PLISTVER parameter appears in the syntax diagram and in the parameter
descriptions. Within each macro description, the PLISTVER parameter description
specifies the range of values and lists the parameters applicable for each version of
the macro.

Register use

Some services require that the caller place information in specific general purpose
registers (GPRs) or access registers (ARs) prior to issuing the service. If a service
has such a requirement, the “Input Register Information” topic for the service
provides that information. The topic lists only those registers that have a
requirement. If a register is not specified as having a requirement, then the caller
does not have to place any information in that register unless using it in register
notation for a particular parameter, or using it as a base register.

Once the caller issues the service, the system can change the contents of one or
more registers, and leave the contents of other registers unchanged. When control
returns to the caller, each register contains one of the following values or has the
following status:

* The register content is preserved and is the same as it was before the service
was issued.

* The register contains a value placed there by the system for the caller's use.
Examples of such values are return codes and tokens.

* The system used the register as a work register. Do not assume that the register
content is the same as it was before the service was issued.

Note that the system uses ARs 0, 1, 14, and 15 as work registers for every service,
regardless of whether the caller is in primary or AR address space control (ASC)
mode. The system does not use ARs 2 through 13 for any service.

For more information about linkage conventions for a calling program’s registers,
see the "Saving the calling program’s registers" topic in the "Linkage conventions"
chapter in|z/OS MVS Programming: Assembler Services Guide|

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Many macros require that the caller have a program base register and assembler
USING instruction in effect when issuing the macro; that is, the caller must have
program addressability. AR mode programs also require that the AR associated with
the caller's base GPR be set to zero. IBM recommends the following;:

* When issuing a macro, the caller should always have program addressability in
effect.

* When establishing addressability, the caller should use only registers 2 through
12.

8 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Many macros can take advantage of relative branching when they are used with
the IEABRC macro or with SYSSTATE ARCHLVL=1 or SYSSTATE ARCHLVL=2, if
they are running on z/OS. If relative branching is used, the caller might then need
addressability only to the static data portion of the program, and not to the
executable code.

Handling return codes and reason codes

Most of the services described in this information provide return codes and reason
codes. Return and reason codes indicate the outcome of the service in one of the
following ways:

* Successful completion: you do not need to take any action.

* Successful or partially successful completion, with additional information
supplied: you should evaluate the additional information in light of your
particular program and determine if you need to take any action.

* Unsuccessful completion: some type of error has occurred, and you must take
some action to correct the error.

The errors that cause unsuccessful completion fall into three broad categories:

Program errors
Errors that your program causes: you can correct these.

Environmental errors
Errors not caused directly by your program; rather, your program's request
caused a limit to be exceeded, such as a storage limit, or the limit on the
size of a particular data set. You might or might not be able to correct
these.

System errors
Errors caused by the system: your program did nothing to cause the error,
and you probably cannot correct these.

In some cases, a return or reason code can result from some combination of these
errors.

The return and reason code descriptions for the services in this information
indicate whether the error is a program error, an environmental error, a system
error, or some combination. Whenever possible, the return and reason code
descriptions give you a specific action that you can take to fix the error.

IBM recommends that you read all the return and reason codes for each service
that your program issues. You can then design your program to handle as many
errors as possible. When designing your program, you should allow for the
possibility that future releases of MVS might add new return and reason codes to a
service that your program issues.

Handling program errors

The actions to take in the case of program errors are usually straightforward.
Typical examples of program errors are:

1. Breaking one of the rules of the service. For example:
* Passing parameters that are either in the wrong format or not valid

* Violating one of the environment requirements (addressing mode, locking
requirements, dispatchable unit mode, and so on)

* Providing insufficient storage for information to be returned by the system.

Chapter 1. Using the services 9

2. Causing errors related to the parameter list. For example:
¢ Coding an incorrect combination of parameters
* Coding one or more parameters on the service incorrectly
* Inadvertently overlaying an area of the parameter list storage
* Inadvertently destroying the pointer to the parameter list.

3. Requesting a service or function for which the calling program is not
authorized, or which is not available on the system on which the program is
running.

In each of the first two cases, you can correct your program. For completeness, the
return and reason code descriptions give you specific actions to perform, even
when it might seem obvious what the action should be.

In the third case, you might have to contact your system administrator or system
programmer to obtain the necessary authorization, or to request that the service or
function be made available on your system, and the return or reason code
description asks you to take that step.

Note: Generally, the system does not take dumps for errors that your program
causes when issuing a system service. If you require such a dump, then it is your
responsibility to request one in your recovery routine. See the topic on providing
recovery in [z/0S MV'S Programming: Authorized Assembler Services Guidd for
information about writing recovery routines.

Handling environmental and system errors

With environmental errors, often your first action should be to rerun your program
or retry the request one or more times. The following are examples of
environmental errors where rerunning your program or retrying the request is
appropriate:

* The request being made through the service exceeds some internal system limit.
Sometimes, rerunning your program or retrying the request results in successful
completion. If the problem persists, it might be an indication of a larger problem
requiring you to consult your system programmer, or possibly IBM support
personnel. Your system programmer might be able to tune the system or cancel
users so that the limit is no longer exceeded.

* The request exceeds an installation-defined limit. If the problem persists, the
action might be to contact your system programmer and request that a
specification in an installation exit or parmlib member be modified.

* The system cannot obtain storage, or some other resource, for your request. If
the problem persists, the action might be to check with the operator to see if
another user in the installation is causing the problem, or to see if the entire
installation is experiencing storage constraint problems.

You might be able to design your program to anticipate certain environmental
errors and handle them dynamically.

With system errors, as with environmental errors, often your first action should be
to rerun your program or retry the request one or more times. If the problem
persists, you might have to contact IBM support personnel.

Whenever possible for environmental and system errors, the return or reason code

description gives you either a specific action you can take, or a list of
recommended actions you can try.

10 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

For some errors, providing a specific action is not possible, because the action you
should take depends on your particular application, and on what is happening in
your installation. In those cases, the return or reason code description gives you
one or more possible causes of the error to help you to determine what action to
take.

Some system errors result in return and reason codes that are provided for IBM
diagnostic purposes only. In these cases, the return or reason code description asks
you to record the information and provide it to the appropriate IBM support
personnel.

Using X-macros

Some MVS services support callers in both primary and AR ASC mode. When the
caller is in AR mode, macros must generate larger parameter lists; the increased
size of the list reflects the addition of ALETs to qualify addresses, as described
under [“ALET qualification” on page 4] For some MVS macros, two versions of a
particular macro are available: one for callers in primary mode and one for callers
in AR mode. The name of the macro for the AR mode caller is the same as the
name of the macro for primary mode callers, except the AR mode macro name
ends with an “X”. This information refers to these macros as X-macros.

The authorized X-macros are:
 ATTACHX

e ESTAEX

* SDUMPX

* SYNCHX

The only way these macros know that a caller is in AR mode is by checking the
global symbol that the SYSSTATE macro sets. Each of these macros (and
corresponding non-X-macro) checks the symbol. If SYSSTATE ASCENV=AR has
been issued, the macro issues code that is valid for callers in AR mode. If it has not
been issued, the macro generates code that is not valid for callers in AR mode.
When your program returns to primary mode, use the SYSSTATE ASCENV=P
macro to reset the global symbol.

IBM recommends that you use the X-macro regardless of whether your program is
running in primary or AR mode. However, you should consider the following
before deciding which macro to use:

The rules for using all X-macros, except ESTAEX, are:
* Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary
mode. Some parameters on the non-X-macros are not valid for callers in AR
mode. Check the macro descriptions for these exceptions.

¢ (Callers in AR mode should issue the X-macros.

If a caller in AR mode issues the non-X-macro, the system substitutes the
X-macro and sends a message describing the substitution.

IBM recommends you always use ESTAEX unless your program and your

recovery routine are in 24-bit addressing mode, or your program requires a branch
entry. In these cases, you should use ESTAE.

Chapter 1. Using the services 11

Macro forms

You can code most macros in three forms: standard, list, and execute. Some macros
also have a modify form. When you code a macro, you use the MF parameter to
select one of the forms. The list, execute and modify forms are for reenterable
programs that need to change values in the parameter list of the macro. The
standard form is for programs that are not reenterable, or for programs that do not
change values in the parameter list.

When a program wants to change values in the parameter list of a macro, it can
make the change dynamically.

However, using the standard form and changing the parameter list dynamically
might cause errors. For example, after storing a new value into the inline, standard
form of the parameter list, a reenterable program operating under a given task
might be interrupted by the system before the program can invoke the macro. In a
multiprogramming environment, another task can use the same reenterable
program, and that task might change the inline parameter list again before the first
task regains control. When the first task regains control, it invokes the macro.
However, the inline parameter list now has the wrong values.

Through the use of the different macro forms, a program that runs in a
multiprogramming environment can avoid errors related to reenterable programs.
The techniques required for using the macro forms, however, are different for some
macros, called alternative list form macros, than for most other macros. For the
alternative list form macros, the list form description notes that different
techniques are required and refers you to the information under [“ Alternative list|
fform macros” on page 13

Conventional list form macros

With conventional list form macros, you can use the macro forms as follows:

1. Use the list form of the macro, which expands to the parameter list. Place the
list form in the section of your program where you keep non-executable data,
such as program constants. Do not code it in the instruction stream of your
program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
some virtual storage.

3. Code a move character instruction that moves the parameter list from its
non-executable position in your program into the virtual storage area that you
obtained.

4. For macros that have a modify form, you can code the modify form of the
macro to change the parameter list. Use the address parameter of the modify
form to reference the parameter list in the virtual storage area that you
obtained. Thus, the parameter list that you change is the one in the virtual
storage area obtained by the GETMAIN or STORAGE macro.

5. Invoke the macro by issuing the execute form of the macro. Use the address
parameter of the execute form to reference the parameter list in the virtual
storage area that you obtained.

With this technique, the parameter list is safe even if the first task is interrupted
and a second task intervenes. When the program runs under the second task, it
cannot access the parameter list in the virtual storage of the first task.

12 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Alternative list form macros

Certain macros, called alternative list form macros, require a somewhat different
technique for using the list form. With these macros, you do not move the area
defined by the list form into virtual storage that you have obtained; instead, you
place the area defined by the list form into a DSECT. Also, it is the list form, not
the execute form, that you use to specify the address parameter that identifies the
address of the storage for the parameter list. Note that no modify form is available
for these macros.

You can use the macro forms for the alternative list form macros as follows:

1. Use the list form of the macro to define an area of storage that the execute form
can use to store the parameters. As with other macros, do not code the list form
in the instruction stream of your program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
virtual storage for the list form expansion.

3. Place the area defined by the list form into a DSECT that maps a portion of the
virtual storage you obtained.

4. Invoke the macro by issuing the execute form of the macro. The address
parameter specified on the list form references the parameter list in the virtual
storage area that you obtained.

Coding the macros

In this information, each macro description includes a syntax diagram near the
beginning of the macro description. The diagram shows how to code the macro.
The syntax diagram does not explain the meanings of the parameters; the
meanings are explained in the parameter descriptions that follow the syntax
diagram. For most macros, the syntax diagrams are in a tabular format; however,
some newer macros might have syntax diagrams in the railroad track format.

The syntax tables assume that the standard begin, end, and continue columns are
used. Thus, column 1 is assumed as the begin column. To change the begin, end,
and continue columns, use the ICTL instruction to establish the coding format you
want to use. If you do not use ICTL, the assembler recognizes the standard
columns. To code the ICTL instruction, see [HLASM Language Referencd

[Figure 2 on page 14 shows a sample macro called TEST and summarizes all the
coding information that is available for it. The table is divided into three zones, A,
B, and C.

Chapter 1. Using the services 13

name name:symbol. Begin name in column 1.
b One or more blanks must precede TEST.
TEST
b One or more blanks must follow TEST.
MATH
HIST
GEOG
,DATA= data addr dataaddr: RX-type address, or register (2) - (12)

LNG=

datalength datalength: symbol or decimal digit, with a maximum value of 256.

JFMT=HEX Default: FMT=HEX
FMT=DEC
,FMT=BIN
,PASS= value value: symbol, decimal digit, or register (1) or (2) - (12).

,grade

Default: PASS=65
grade: symbol, decimal digit, or register (1) or (2) - (12).

Figure 2. Sample tabular syntax diagram for the TEST macro

Column one of the table contains zones A and B. Zone A begins at the left
margin; zone B is indented from the left margin by one or more blank spaces.
Column two of the table contains zone C.

Zone A and zone B contain those parameters that are allowed for the macro.
Zone A contains those parameters that are required; zone B contains those
parameters that are optional.

If a parameter appears on a single line in the diagram (that is, a line whose
preceding line and following line are both blank), as shown in Al and B1, then
that is the only available choice for the particular parameter.

If two or more parameters appear on adjacent lines (that is, with no intervening
blank lines), as shown in A2 and B2, the parameters on those lines are mutually
exclusive, that is, you can code any one of those parameters.

A further distinction is made between mandatory and optional parameters. The
parameter descriptions that follow the syntax table clearly identify those
parameters which are optional.

Zone C (which is the second column in the syntax table), provides additional
information about coding the macro.

When substitution of a variable is indicated in zone C, the following classifications
are used:

Variable

Classification

14 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

symbol
Any symbol valid in the assembler language. The symbol can be as long as
the supported maximum length of a name entry in the assembler you are
using.

Decimal digit
Any decimal digit up to and including the value indicated in the
parameter description. If both symbol and decimal digit are indicated, an
absolute expression is also allowed.

Register (2) - (12)
One of general purpose registers 2 through 12, specified within
parentheses, previously loaded with the right-adjusted value or address
indicated in the parameter description. You must set the unused high-order
bits to zero. You can designate the register symbolically or with an
absolute expression.

Register (0)
General purpose register 0, previously loaded with the right-adjusted value
or address indicated in the parameter description. You must set the unused
high-order bits to zero. Designate the register as (0) only.

Register (1)
General purpose register 1, previously loaded with the right-adjusted value
or address indicated in the parameter description. You must set the unused
high-order bits to zero. Designate the register as (1) only.

Register (15)
General purpose register 15, previously loaded with the right-adjusted
value or address indicated in the parameter description. You must set the
unused high-order bits to zero. Designate the register as (15) only.

RX-type address
Any address that is valid in an RX-type instruction (for example, LA).

RS-type address
Any address that is valid in an RS-type instruction (for example, STM).

RS-type name
Any name that is valid in an RS-type instruction (for example, STM).

A-type address
Any address that can be written in an A-type address constant.

Default
A value that is used in default of a specified value; that is, the value the
system assumes if the parameter is not coded.

Rules for parameters: Use the parameters to specify the services and options to
be performed, and write them according to the following rules:

e If the selected parameter is written in all capital letters (for example, MATH,
HIST, or FMT=HEX), code the parameter exactly as shown.

e If the selected parameter is written in italics (for example, grade), substitute the
indicated value, address, or name.

* If the selected parameter is a combination of capital letters and italics separated
by an equal sign (for example, DATA=data addr), code the capital letters and
equal sign as shown, and then make the indicated substitution for the italicized
portion.

* Read the table from top to bottom.
* Code commas and parentheses exactly as shown.

Chapter 1. Using the services 15

* DPositional parameters (parameters without equal signs) appear first; you must
code them in the order shown. You may code keyword parameters (parameters
with equal signs) in any order.

* If you select a parameter, read the second column (zone C) before proceeding to
the next parameter. The second column often contains coding restrictions for the
parameter.

Continuation lines
You can continue the parameter field of a macro on one or more additional lines
according to the following rules:
* Enter a continuation character (not blank, and not part of the parameter coding)
in column 72 of the line.
* Continue the parameter field on the next line, starting in column 16. All columns
to the left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the
parameter field through column 71, with no blanks, and continue in column 16 of
the next line; or truncate the parameter field by a comma, where a comma
normally falls, with at least one blank before column 71, and then continue in
column 16 of the next line. shows an example of each method.

1 10 16 44 72

vy v |

NAME 1 OP1 OPERAND1,OPERAND2,0PERAND3,OPERAND4,0PERAND5,OPERANDG,OPX

ERAND7 THIS IS ONE WAY
NAME2 OP2 OPERAND1,0PERAND2 THIS IS ANOTHER WAY §
OPERANDS,0PERANDA4,

OPERAND5,0PERAND6,OPERAND7

Figure 3. Continuation Coding

Coding the callable services

A callable service is a programming interface that uses the CALL macro to access
system services. To code a callable service, code the CALL macro followed by the
name of the callable service, and a parameter list; for example:

CALL service, (parameter Tist)

The syntax diagram for the sample callable service SCORE:

Syntax Description
S(test_type
Jevel

CALL SCORE ,data

[format_option
,return_code)

Considerations for coding callable services are:

16 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

* You must code all the parameters in the parameter list because parameters are
positional in a callable service interface. That is, the function of each parameter
is determined by its position with respect to the other parameters in the list.
Omitting a parameter, therefore, assigns the omitted parameter's function to the
next parameter in the list.

* You must place values explicitly into all input parameters, because callable
services do not set default values.

* You can use the list and execute forms of the CALL macro to preserve your
program's reentrancy.

Including equate (EQU) statements

IBM supplies sets of equate (EQU) statements for use with some callable services.
These statements, which you may optionally include in your source code, provide
constants for use in your program. IBM provides the statements as a programming
convenience to save you the trouble of coding the definitions yourself.

Note: Check the “Programming Requirements” section of the individual service
description to determine if the equate statements are available for the callable
service you are using. If the equate statements are available, that section will also
provide a list of the statements that are provided, along with a description of how
to include them in your program.

Link-editing linkage-assist routines
Linkage-assist routines provide the connection between your program and the
system services that your program requests. When using callable services, link-edit
the appropriate linkage-assist routines into your program module so that, during
execution, the linkage-assist routines can resolve the address of, and pass control
to, the requested system services. You can also dynamically link to linkage-assist
routines as an alternative to link-editing. For example, issue the LOAD macro for
the linkage-assist routine, then issue a CALL to the loaded addresses.

To invoke the linkage-editor or binder, code JCL as in the following example:

//userid JOB 'accounting-info', 'name',CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4096K
//LINKSTEP EXEC PGM=HEWL,
// PARM='LIST,LET,XREF,REFR,RENT'
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSN=userid.LOADLIB,DISP=0LD
//SYSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//0BJLIB DD DSN=userid.OBJLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (5,2))
//SYSLIN Db =

INCLUDE OBJLIB(userpgm)

ENTRY userpgm

NAME userpgm(R)
/*

Note: Omitting NCAL from the linkedit parameters (as the example shows) and
specifying SYS1.CSSLIB in the //SYSLIB statement, as shown, causes the addresses
of all required linkage-assist routines to be automatically resolved. This statement
saves you the trouble of having to specify individual linkage-assist routines in
INCLUDE statements.

Chapter 1. Using the services 17

Service summary
Table 3|lists services described in the following:

18

z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN|

2/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG]

2/OS MV'S Programming: Authorized Assembler Services Reference LLA-SDUI

z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO|

For each service, the table indicates:

Whether a program in AR ASC mode can issue the service
Whether a program in cross memory mode can issue the service
Whether the macro checks the SYSSTATE global macro variables
Whether the macro can be issued in 64-bit addressing mode

Note:

1.

3.

A program running in primary ASC mode when PASN=HASN=SASN can issue
any of the services listed in the table.

Cross memory mode means that at least one of the following conditions is true:

PASN-=SASN
The primary address space (PASN) and the secondary address space
(SASN) are different.

PASN-=HASN
The primary address space (PASN) and the home address space
(HASN) are different.

SASN-=HASN
The secondary address space (SASN) and the home address space
(HASN) are different.
For more information about functions that are available to programs in cross
memory mode, see [z/OS MVS Programming: Extended Addressability Guide|

Callable services do not check the SYSSTATE or SPLEVEL global variables.

Table 3. Service Summary

Service Can be issued Can be issued Checks Can be issued in
in AR ASC in cross SYSSTATE 64-bit AMODE
mode memory mode

ALESERV Yes Yes No No

ASCRE Yes Yes Yes No

ASDES Yes Yes Yes No

ASEXT Yes Yes No No

ATSET No Yes Yes No

ATTACH Yes (See note No Yes No

ATTACHX Yes No Yes Yes

AXEXT No Yes Yes No

AXFRE No Yes Yes No

AXRES No Yes Yes No

AXREXX No Yes Yes Yes

AXSET No Yes Yes No

BPXEKDA Yes No Yes No

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 3. Service Summary (continued)

Service Can be issued |Can be issued |Checks Can be issued in
in AR ASC in cross SYSSTATE 64-bit AMODE
mode memory mode

BPXESMF Yes No Yes No

CALLDISP No Yes No Yes

CALLRTM No Yes (See note No No

CHANGKEY No Yes No No

CIRB No No No No

CMDAUTH No No No No

CNZMXURF No Yes No No

CNZTRKR No Yes No No

COFCREAT Yes Yes Yes No

COFDEFIN Yes Yes Yes No

COFIDENT Yes Yes Yes No

COENOTIF Yes Yes Yes No

COFPURGE Yes Yes Yes No

COFREMOV Yes Yes Yes No

COFRETRI Yes Yes Yes No

COFSDONO No No Yes No

CONFCHG No No Yes No

CPF No No No No

CPOOL No Yes Yes No

CPUTIMER No Yes Yes No

CSRSI No Yes No No

CSRUNIC Yes Yes No No

CSVAPF Yes (See note Yes (See note Yes No
[on page 26) fon page 26)

CSVDYNEX Yes (See note Yes (See note Yes No
[on page 27) lon page 27)

CTRACE No No Yes No

CTRACECS Yes No Yes No

CTRACEWR Yes Yes Yes No

DATOFF Yes No No No

DEQ No Yes Yes Yes

DIV Yes No Yes No

DOM No No No Yes

DSPSERV Yes Yes Yes Yes

DYNALLOC No No No Yes

EDTINFO No Yes Yes Yes

ENFREQ No No No No

ENQ No Yes Yes Yes

Chapter 1. Using the services 19

20

Table 3. Service Summary (continued)

Service Can be issued |Can be issued | Checks Can be issued in
in AR ASC in cross SYSSTATE 64-bit AMODE
mode memory mode

ESPIE No No No Yes

ESTAE (See note |No No Yes No

ESTAEX Yes Yes Yes Yes

ETCON No Yes Yes No

ETCRE No Yes Yes No

ETDEF Yes Yes No No

ETDES No Yes Yes No

ETDIS No Yes Yes No

EVENTS No No No No

EXTRACT No No No No

FESTAE No No No No

FREEMAIN Yes (See note Yes Yes Yes

GETDSAB No No Yes No

GETMAIN Yes (See note Yes Yes Yes

GQSCAN No Yes No No

GTRACE No Yes No Yes

HSPSERV Yes Yes (See note E See note No

IARCP64 Yes Yes Yes Yes

[ARR2V Yes Yes No No

IARSUBSP Yes Yes Yes No

[IARST64 Yes Yes Yes Yes

IARVSERV Yes Yes Yes No

[ARV64 Yes Yes Yes Yes

TAZXCTKN Yes Yes Yes No

IAZXJSAB Yes Yes (See note Yes No

on pag)

IEAARR Yes Yes Yes Yes

IEAFP Yes Yes Yes No

IEALSQRY Yes Yes Yes No

IEAMETR Yes Yes Yes No

IEAMRMF3 No Yes No No

IEAMSCHD Yes Yes Yes No

IEANTCR Yes Yes N/A No

IEANTDL Yes Yes N/A No

IEANTRT Yes Yes N/A No

[EARBUP Yes Yes Yes No

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 3. Service Summary (continued)

Service Can be issued |Can be issued |Checks Can be issued in
in AR ASC in cross SYSSTATE 64-bit AMODE
mode memory mode

IEATDUMP Yes No Yes No

IEATEDS Yes Yes Yes No

IEATXDC Yes Yes Yes Yes

IEAVAPE No Yes No No

IEAVAPE2 No Yes No No

IEAVDPE No Yes No No

IEAVDPE2 No Yes No No

IEAVPSE No Yes No No

IEAVPSE2 No Yes No No

IEAVRLS No Yes No No

IEAVRLS2 No Yes No No

IEAVRPI No Yes No No

[EAVRPI2 No Yes No No

IEAVTPE No Yes No No

IEAVXFR No Yes No No

IEAVXFR2 No Yes No No

IEA4APE No Yes No Yes

IEA4APE2 No Yes No Yes

IEA4DPE No Yes No Yes

IEA4DPE2 No Yes No Yes

IEA4PSE No Yes No Yes

IEA4PSE2 No Yes No Yes

IEA4RLS No Yes No Yes

IEA4RLS2 No Yes No Yes

IEA4RPI No Yes No Yes

IEA4RPI2 No Yes No Yes

IEA4TPE No Yes No Yes

IEA4XFR No Yes No Yes

IEA4XFR2 No Yes No Yes

IEECMDS Yes Yes Yes No

IEEQEMCS Yes Yes Yes No

IEEVARYD No No Yes No

IEFPPSCN No No Yes No

IEFQMREQ No No No No

IEFSSI Yes No No No

IEFSSVT Yes No No No

IEFSSVTI Yes Yes No No

IFAQUERY Yes Yes No No

Chapter 1. Using the services 21

22

Table 3. Service Summary (continued)

Service Can be issued |Can be issued | Checks Can be issued in
in AR ASC in cross SYSSTATE 64-bit AMODE
mode memory mode

IOCINFO Yes Yes No No

IOSADMF No No Yes No

IOSCAPF No Yes (See note E Yes No

on page 26)

IOSCAPU Yes Yes (See note E Yes No

IOSCDR No No Yes No

IOSCHPD Yes Yes Yes No

IOSCMXA No Yes (See note Iz Yes No

on page 26|

IOSCMXR No Yes (See note Iz Yes No

on page 26)
IOSDCXR No Yes (See note Izl Yes No
on page 26)

IOSENQ Yes Yes Yes No

IOSINFO No No No No

IOSLOOK No No No No

I0OSPTHV No No Yes No

IOSSPOF No Yes Yes Yes

IOSUPFA No Yes Yes No

IOSUPFR No Yes Yes No

IOSVRYSW Yes Yes Yes No

IOSWITCH Yes Yes Yes No

IOSZHPF Yes Yes Yes No

IRDFSD Yes Yes Yes No

IRDFSDU Yes Yes Yes No

ISGADMIN Yes Yes Yes Yes

ISGECA Yes Yes Yes Yes

ISGENQ Yes Yes Yes Yes

ISGLCRT (See No Yes N/A No

note

27)

ISGLID (See No Yes N/A Yes

note

27)

ISGLOBT No Yes N/A No

ISGLREL No Yes N/A No

ISGLPRG No Yes N/A No

ISGQUERY Yes Yes Yes Yes

ITTEMTB No No No No

ITZXFILT No Yes Yes No

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 3. Service Summary (continued)

Service Can be issued |Can be issued |Checks Can be issued in
in AR ASC in cross SYSSTATE 64-bit AMODE
mode memory mode

IWMCLSFY No Yes Yes No

IWMCONN No Yes Yes No

IWMDISC No Yes Yes No

IWMECQRY No Yes Yes No

IWMECREA No Yes Yes No

IWMEDELE No Yes Yes No

IWMMABNL No Yes No No

IWMMCHST No Yes No No

IWMMCREA No Yes Yes No

IWMMDELE No Yes Yes No

IWMMEXTR No Yes Yes No

IWMMINIT No Yes No No

IWMMNTFY No Yes Yes No

IWMMRELA No Yes Yes No

IWMMSWCH No Yes Yes No

IWMMXFER No Yes No No

IWMPQRY Yes Yes Yes No

IWMRCOLL Yes Yes Yes No

IWMRPT No Yes Yes No

IWMRQRY Yes Yes Yes No

IWMSRDRS No Yes Yes No

IWMSRSRG No Yes Yes No

IWMSRSRS No Yes Yes No

IWMWMCON |No Yes Yes No

IWMWQRY Yes Yes Yes No

IWMWQWRK No Yes Yes No

IXCCREAT Yes Yes Yes No

IXCDELET Yes Yes Yes No

IXCJOIN Yes No Yes No

IXCLEAVE Yes No Yes No

IXCMG Yes Yes Yes No

IXCMOD Yes Yes Yes No

IXCMSGI Yes No Yes No

IXCMSGO Yes Yes Yes No

IXCQUERY Yes Yes Yes No

IXCQUIES Yes No Yes No

IXCSETUS Yes Yes Yes No

IXCTERM Yes Yes Yes No

Chapter 1. Using the services 23

24

Table 3. Service Summary (continued)

Service Can be issued |Can be issued | Checks Can be issued in
in AR ASC in cross SYSSTATE 64-bit AMODE
mode memory mode

IXGBRWSE Yes Yes Yes Yes

IXGCONN Yes Yes Yes Yes

IXGDELET Yes Yes Yes Yes

IXGWRITE Yes Yes Yes Yes

LLACOPY No No Yes No

LOAD Yes No No Yes

LOADWAIT No Yes Yes No

LOCASCB Yes Yes Yes No

LXFRE No Yes Yes No

LXRES No Yes Yes No

MCSOPER Yes No Yes No

MCSOPMSG Yes No Yes No

MGCR No No No No

MGCRE No No No No

MIHQUERY Yes No Yes No

MODESET No Yes No Yes

NIL Yes Yes Yes No

NMLDEF No No No No

NUCLKUP No No No No

OIL Yes Yes Yes No

OUTADD No No No No

OUTDEL No No No No

PCLINK No Yes No No

PGANY No No No No

PGFIX No Yes No No

PGFIXA No No No No

PGFREE No Yes No No

PGFREEA No No No No

PGSER Yes (See note Yes (See note No Yes
on_page 26)

POST No Yes No Yes

PTRACE No Yes No No

PURGEDQ No No No No

QEDIT No No No No

RESERVE No No No Yes

RESMGR Yes Yes No No

RESUME No Yes No No

RISGNL No Yes No No

SCHEDIRB Yes No Yes No

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 3. Service Summary (continued)

Service Can be issued |Can be issued |Checks Can be issued in
in AR ASC in cross SYSSTATE 64-bit AMODE
mode memory mode

SCHEDULE Yes Yes Yes No

SCHEDXIT No Yes No No

SDUMP Yes (See note Yes (See note E Yes No
[on page 26) fon page 26)

SDUMPX Yes Yes (See note E Yes Yes

on page 26)

SETFRR Yes Yes Yes No

SETLOCK Yes Yes Yes No

SETRP Yes Yes Yes Yes

SJFREQ No Yes No No

SPIE No No No No

SPOST No No No No

SRBSTAT No Yes No No

SRBTIMER No No No No

STATUS Yes Yes No No

STORAGE Yes Yes No Yes

SUSPEND No Yes No No

SVCUPDTE No No No No

SWAREQ No No No No

SWBTUREQ No No No No

SYMREC No Yes Yes No

SYNCH Yes (See note No Yes No

SYNCHX Yes No Yes Yes

SYSEVENT No No No No

TCBTOKEN Yes Yes No No

TCTL No No No No

TESTAUTH No No No No

TIMEUSED Yes (See note Yes No Yes

T6EXIT No No No No

UCBINFO Yes Yes Yes No

UCBLOOK Yes Yes Yes No

UCBPIN Yes Yes Yes No

UCBSCAN Yes Yes Yes No

VSMLIST No Yes Yes No

VSMLOC No Yes Yes No

VSMREGN No Yes No No

WAIT No Yes No Yes

WTL No No No No

Chapter 1. Using the services 25

26

Table 3. Service Summary (continued)

Service Can be issued Can be issued Checks Can be issued in
in AR ASC in cross SYSSTATE 64-bit AMODE
mode memory mode

WTO No No No Yes

WTOR No No No Yes

Notes:

1.

10.

11.

12.

Primary mode callers can use either macro in the following macro pairs:
* ATTACH or ATTACHX

* SDUMP or SDUMPX

* SYNCH or SYNCHX

IBM recommends that programs in AR ASC mode use the X-macros
(ATTACHX, SDUMPX, and SYNCHX). If, however, a program in AR mode
issues ATTACH, SDUMP, or SYNCH after issuing SYSSTATE ASCENV=AR,
the system substitutes the corresponding X-macro and issues a message telling
you that it made the substitution.

CALLRTM TYPE=MEMTERM can be issued in cross memory mode. For
CALLRTM TYPE=ABTERM, see the CALLRTM macro description.

The only programs that can use ESTAE are programs that are in primary
mode with (PASN=HASN=SASN).

IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, or your program requires a
branch entry. In these cases, you should use ESTAE.

IBM recommends that AR mode callers use the STORAGE macro instead of
using GETMAIN or FREEMAIN.

For HSPSERV SREAD and HSPSERV SWRITE, PASN=HASN=SASN for a
non-shared standard hiperspace for which an ALET is not used (that is, the
HSPALET parameter is omitted).

If you use the HSPALET parameter, the HSPSERV macro checks SYSSTATE.

If the input UCB is captured, the IOSCAPF, IOSCMXA, IOSCMXR, and
IOSDCXR macros can be issued in cross memory mode only if the UCB is
captured in the primary address space. IOSCAPU CAPTOACT without the
ASID parameter also can be issued in cross memory mode if the UCB was
captured in the primary address space. IOSCAPU CAPTUCB and IOSCAPU
UCAPTUCB cannot be issued in cross memory mode.

PGSER can be issued in AR ASC mode only if you specify BRANCH=Y.
PGSER can be issued in cross memory mode only if you specify BRANCH=Y
or BRANCH=SPECIAL.

Both SDUMP and SDUMPX can be issued in cross memory mode only if you
specify BRANCH=YES.

Only TIMEUSED LINKAGE=SYSTEM can be issued in AR ASC mode.
TIMEUSED LINKAGE=BRANCH cannot be issued in AR ASC mode.

For a QUERY request, CSVAPF can be issued only in primary mode. For all
other requests, CSVAPF can be issued in primary or AR mode.

For CSVAPF with the ADD, DELETE, and DYNFORMAT requests, PASN =
HASN = SASN. For CSVAPF with the QUERY, QUERYFORMAT, and LIST
requests, any PASN, any HASN, any SASN.

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

13.

14.

15.

16.

For a QUERY or a CALL request with FASTPATH=YES, CSVDYNEX can be
issued only in primary mode. For all other requests, CSVDYNEX can be
issued in primary or AR mode.

For CSVDYNEX CALL, RECOVER, and QUERY requests, any PASN, any
HASN, any SASN. For all other requests, PASN=HASN=SASN.

When the caller of the IAZXJSAB macro specifies the ASCB parameter, any
PASN, any HASN, any SASN; otherwise, PASN=HASN is required.

The 64 bit entry names are as follows:
+ ISGLCR64
* ISGLID64
+ ISGLOB64
+ ISGLRE64
» ISGLPB64
* ISGLPR64

Chapter 1. Using the services

27

28 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 2. EDTINFO — Obtain eligible device table
information

Description

The EDTINFO macro enables you to obtain information from the eligible device
table (EDT) and to check your device specification against the information in the
EDT. See £/OS HCD Planning|and [z/OS MVS Programming: Assembler Services Guide|
for further information about the EDT.

For callers only in supervisor state AND PSW key 0, the EDTINFO macro performs
the following function:

* Return EDT Latch Tables (RTNEDTLT)

Note: If the RTNEDTLT function is specified, no other EDTINFO functions can be
requested on the same invocation nor can the IOCTOKEN and EDTADDR
keywords be specified.

For a list of functions performed by the EDTINFO macro for both unauthorized
and authorized callers, see[z/OS MVS Programming: Assembler Services Reference|

Environment

The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state and any PSW key 0.
Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN or PASN-=HASN-=SASN
AMODE: 24- or 31- bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be in the primary address space.

Programming requirements

Callers requesting the RTNEDTLT function of the EDTINFO macro must be in
31-bit AMODE to reference the areas returned through the ELTPRI and ELTSEC
pointers.

Callers requesting the RTNEDTLT function of the EDTINFO macro are required to
free the storage returned through the ELTPRI and ELTSEC pointers.

Restrictions

Callers must be supervisor state and PSW key 0 in order to invoke the RTNEDTLT
function.

© Copyright IBM Corp. 1988, 2016 29

EDTINFO macro

Input register information

Before issuing the EDTINFO macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents
0 Reason code if GPR 15 contains a return code of 04 or 08; otherwise, used

as a work register by the system

1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller

depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications

None.
Syntax
The standard form of the EDTINFO macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede EDTINFO.
EDTINFO
b One or more blanks must follow EDTINFO.
RTNEDTLT Note: If this function is specified, no other functions can be requested.

30 2z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

EDTINFO macro

Syntax Description
,ELTPRI=eltpri eltpri: RS-type address or register (2) - (12).
,ELTSEC=eltsec eltsec: RS-type address or register (2) - (12).
,RETCODE-=retcode retcode: RX-type address or register (2) - (12).
,RSNCODE-=rsncode rsncode: RX-type address or register (2) - (12).
Parameters
The parameters are explained as follows:
RTNEDTLT

Specifies that the EDTINFO service should return both the primary and
secondary EDT Latch Tables.

,ELTPRI=eltpri
Specifies the fullword output field that will contain the address of the primary
EDT Latch Table. The area returned can be mapped by IEFDELT.

ELTSEC=eltsec
Specifies the fullword output field that will contain the address of the
secondary EDT Latch Table. The area returned can be mapped by IEFDELT.

,RETCODE=retcode
Specifies the fullword location where the system is to store the return code.
The return code is also in GPR 15.

»RSNCODE=rsncode
Specifies the fullword location where the system is to store the reason code.
The reason code is also in GPR 0.

Return and reason codes

When control returns from EDTINFO, GPR 15 (and retcode addr, if you coded
RETCODE) contains one of the following hexadecimal return codes:

Return Code |Meaning

00 The requested function or functions were performed and no reason code
information has been returned.

04 The requested function or functions were performed and information has
been returned, as explained by the hexadecimal reason code that
accompanies this return code. The reason code is in GPR 0 (and in rsncode,
if you coded RSNCODE).

Reason Code
Meaning

04 Either the primary EDT Latch Table or the secondary EDT Latch
Table or both EDT Latch Tables contain no entries.

Chapter 2. EDTINFO — Obtain eligible device table information 31

EDTINFO macro

Return Code |Meaning

08 There is data in the input parameter list that is not valid, as explained by
the hexadecimal reason code that accompanies this return code. The
reason code is in GPR 0 (and in rsncode, if you coded RSNCODE).

Reason Code

Meaning

01 The input unit name could not be found in the EDT.

02 The input device type could not be found in the EDT.

03 One or more of the input device numbers is invalid.

04 The caller did not provide sufficient storage for the returned
information.

05 The MAXELIG function requires a generic device type as input,
but the input specified does not represent a generic device type.

06 The caller did not request any functions.

07 The caller requested functions that are not valid

08 For a required input, the caller specified a value that is not valid.

For example, other functions were specified with a function that
requires no other function requests.

09 The caller was not in supervisor state and PSW key 0 for a
function that requires this environment.
10 Storage could not be obtained for the request.
18 An unexpected system error occurred.
Example

Obtain the EDT Latch Tables for both the primary and secondary EDTs.
EDTINFO RTNEDTLT,ELTPRI=PRI_ELT_PTR,ELTSEC=SEC_ELT_PTR

EDTINFO - List form

Use the list form of the EDTINFO macro together with the execute form for
applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses for storing the parameters.

Syntax

This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros.

The list form of the EDTINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.
b One or more blanks must precede EDTINFO.
EDTINFO

32 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

EDTINFO macro

Syntax

Description

One or more blanks must follow EDTINFO.

MF=(L,list addr)

list addr: Symbol.

MF=(L,list addr,attr)

attr: 1- to 60-character input string

MF=(L,list addr,0D)

Default: 0D

Parameters

The parameters are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)
Specifies the list form of the EDTINFO macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

EDTINFO - Execute form

Use the execute form of the EDTINFO macro together with the list form for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the EDTINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.
b One or more blanks must precede EDTINFO.
EDTINFO
b One or more blanks must follow EDTINFO.

RTNEDTLT Note: If this function is specified, no other functions can be requested.

,ELTPRI=eltpri

eltpri: RS-type address or register (2) - (12).

Chapter 2. EDTINFO — Obtain eligible device table information 33

EDTINFO macro

Syntax

Description

LJELTSEC=eltsec

eltsec: RS-type address or register (2) - (12).

,RETCODE=retcode

retcode: RX-type address or register (2) - (12).

,RSNCODE-=rsncode

rsncode: RX-type address or register (2) - (12).

,MF=(E,list addr)

list addr: RX-type address or register (2) - (12).

MF=(E,list addr,COMPLETE)

Default: COMPLETE

MF=(E list addr NOCHECK)

Parameters

The parameters are explained under the standard form of the EDTINFO macro
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
Specifies the execute form of the EDTINFO macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

COMPLETE specifies that the system is to check for required parameters and
supply defaults for optional parameters that were not specified. NOCHECK
specifies that the system does not check for required parameters and does not
supply defaults for optional parameters that were not specified.

Note: When using the NOCHECK option, make sure that it is preceded by an
execute or modify form invocation that specifies or defaults to the COMPLETE
option. Otherwise, the parameter list might not be completely initialized.

EDTINFO - Modify form

Use the modify form of the EDTINFO macro to change parameters in the control
parameter list that the system created through the list form of the macro.

Syntax
The modify form of the EDTINFO macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede EDTINFO.
EDTINFO

34 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

EDTINFO macro

Syntax Description
b One or more blanks must follow EDTINFO.
RTNEDTLT Note: If this function is specified, no other functions can be requested.
,ELTPRI=eltpri eltpri: RS-type address or register (2) - (12).
,ELTSEC=eltsec eltsec: RS-type address or register (2) - (12).
,RETCODE-=retcode retcode: RX-type address or register (2) - (12).
,RSNCODE-=rsncode rsncode: RX-type address or register (2) - (12).
JMF=(M,list addr) list addr: RX-type address or register (2) - (12).
MF=(M,list addr, COMPLETE) Default: COMPLETE
,MF=(M_list addr, NOCHECK)

Parameters

The parameters are explained under the standard form of the EDTINFO macro
with the following exceptions:

,MF=(M,list addr)
sMF=(M,list addr,COMPLETE)
,MF=(M, list addr,NOCHECK)
Specifies the modify form of the EDTINFO macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

COMPLETE specifies that the system is to check for required parameters and
supply defaults for optional parameters that were not specified. NOCHECK
specifies that the system does not check for required parameters and does not
supply defaults for optional parameters that were not specified.

Note: When using the NOCHECK option, make sure that it is preceded by an

execute or modify form invocation that specifies or defaults to the COMPLETE
option. Otherwise, the parameter list might not be completely initialized.

Chapter 2. EDTINFO — Obtain eligible device table information 35

EDTINFO macro

36 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 3. ENFREQ — Listen for system events

Description

The ENFREQ macro enables an authorized program to:

* Register to be notified when an ENF-defined event occurs (ACTION=LISTEN),
or

* Delete registration for notification of an ENF-defined event (ACTION=DELETE).

To listen for an event, a program issues ENFREQ with the ACTION=LISTEN
parameter. When the event that the program is listening for occurs, control passes
to the listener user exit routine specified on the EXIT or SRBEXIT parameter. For a
list of the events for which a program can listen, see|Table 4 on page 46}

To stop listening for an event, a program issues ENFREQ with the
ACTION=DELETE parameter to delete the listen request. When a program issues
ENFREQ with the ACTION=DELETE parameter, ENF either deletes the listen
request immediately if the listener user exit has completed, or waits until the
listener user exit completes. Because the listener user exit might not have
completed processing at the time the delete request is issued, you must not release
the listener user exit's storage or any resources that may be required by the exit.
ENF does not delete the user exit when it deletes a listen request. See

foption” on page 66| for the syntax of a delete request.

For guidance information about how to use the ENFREQ macro and code the
listener user exit routine, see [z/OS MVS Programming: Authorized Assembler Serviced

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state and any PSW key
Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

Control parameters: Must be in the primary address space

Programming requirements
The caller of ENFREQ must do the following:

¢ Include the CVT, IEFENFCT, and IEFENFPM mapping macros. Specify the
DSECT=YES option with the CVT mapping macro.

¢ Declare a fullword and label it ENFPTR.

Restrictions

None.

© Copyright IBM Corp. 1988, 2016 37

ENFREQ macro

Input register information

Before issuing the ENFREQ macro, the caller must ensure that the following GPRs
contain the specified information:

Register
Contents
13 Address of a standard 18-word save area.

Output register information

When control returns to the caller of the ENFREQ macro, the general purpose
registers (GPRs) contain:

Register
Contents
0 Unchanged
1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller of the ENFREQ macro, the access registers (ARs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Reason code

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller

depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications

None.
LISTEN option
Syntax
The standard form of the ENFREQ macro for ACTION=LISTEN is written as
follows:
Syntax Description
name name: Symbol. Begin name in column 1.

38 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENFREQ macro

Syntax Description

b One or more blanks must precede ENFREQ.
ENFREQ

b One or more blanks must follow ENFREQ.

ACTION=LISTEN

,CODE=¢vent code

event code: Decimal digit or symbol.

,DTOKEN=dtoken

dtoken: RX-type address or address in register (2) - (12).

,DISABLE=NO

Default: DISABLE=YES

,DISABLE=YES

,ESTBNME-=estab name

estab name: RX-type address or address in register (2) - (12).

SJEXITNME=exitrtn name

exitrtn name: RX-type address or address in register (2) - (12).

,MASEXIT=No

Default: MASEXIT=NO

,MASEXIT=YES

,JFLTRBLK=filter block addr

filter block addr: RX-type address or address in register (2) — (12).

,QUAL=qualifier

qualifier: RX-type address or address in register (2) - (12).

Default: QMASK=NONE

,BITQUAL=bitqual

bitqual: name of a 32-byte field, hexadecimal numeric value (X'xxx'), or
address in register (2) - (12)

Default: 32 bytes of X'00'.

,BITCOMPARE=SUBSET

Default: BITCOMPARE=SUBSET

,BITCOMPARE=INTERSECT

,BITCOMPARE=EQUAL

,SRBEXIT=exitrtn addr

exitrtn addr: A-type address, or address in register (2) - (12).

JEXIT=exitrtn addr

exitrtn addr: A-type address or address in register (2) - (12).

, PARM=parm addr

parm addr: A-type address, or address in register (2) - (12).

,JPARM=parm data

parm data: a fullword of data

Chapter 3. ENFREQ — Listen for system events

39

ENFREQ macro

Syntax Description
,EOT=NO Default: EOT=NO.
,EOT=YES
,EOM=NO Default: EOM=NO.
,EOM=YES
,PLISTVER=2 Default: Version implied by keywords

,PLISTVER=3
,PLISTVER=MAX

,RELATED=(value) value: Any text.
XSYS=NO Default: XSYS=NO.
XSYS=YES

Parameters

The parameters are explained as follows:

ACTION=LISTEN

A required parameter that specifies that you want to listen for a specific system
event.

,CODE=event code

A required parameter that specifies the system event about which the caller
wants to be notified. The event code can be any of the decimal codes listed in
[Table 4 on page 46]

,DTOKEN=dtoken
Specifies a 4-byte output field into which the event notification facility (ENF)

returns a token to identify the request. To explicitly delete the listen request in
the future, you must code this parameter.

,DISABLE=NO
,DISABLE=YES
Indicates if the listen exit should be disabled for future calls in the case where

ENF enters into recovery processing because of an abend or other error in the
listen exit. The default is DISABLE=YES.

,ESTBNME=estab name
Specifies the name of the establisher of the listener user exit routine. The name
can be 1 to 8 alphanumeric characters. This optional parameter can be helpful

for diagnostic purposes. If you specify ESTBNME, you must also specify
EXITNME.

,EXITNME=exitrtn name
Specifies the name of the listener user exit routine to receive control when the
requested event occurs. The name can be 1 to 8 alphanumeric characters. This
optional parameter can be helpful for diagnostic purposes. If you specify
EXITNME, you must also specify ESTBNME.

40 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENFREQ macro

,MASEXIT=NO

,MASEXIT=YES
Specifies whether multiple address spaces can use the same listen exit.
MASEXIT=NO, the default, specifies that only one address space can use a
particular listen exit. MASEXIT=YES specifies that other address spaces can use
the same listen exit.

Note: If you specify the MASEXIT parameter, you cannot also specify the
SRBEXIT parameter.

,FLTRBLK=filter block addr
Specifies the address of an ENF Listener Filter block. This can only be specified
for ENF codes that support it. See [Table 4 on page 46| for the ENF codes that
support filter blocks. The filter data is specific to the signal code. See the ENF
Codes And Meanings section of the|z/OS MVS Programming: Authorized
IAssembler Services Guide to find the macro mapping name which would contain
the filter block data. The storage containing the filter block data can be
released following the ENFREQ LISTEN request.

,QUAL=qualifier
Specifies a four-byte value. The four-byte value, called a qualifier, further
defines the event. The qualifiers that are valid depend on the system event for
which you are listening. [Table 4 on page 46| lists the meaning of the valid
QUAL values for each event.

To use this keyword, set QUAL equal to a qualifier that is listed in
for your event code. The mapping macro that defines symbolics
possible for the qualifier also appears in [Table 4 on page 46

The listener user exit receives control only when a system event occurs that
matches the characteristics specified by the QMASK bytes of the hexadecimal
value. For example, if QMASK=BYTE], the listener user exit routine receives
control when an event with characteristics described by the first byte in the
qualifier occurs. ENF ignores information in bytes 2 through 4 because
QMASK=BYTEL.

If your listen request also specifies the BITQUAL keyword, the listen exit
receives control only when the system event also matches the characteristics
described by the bit-mapped qualifier and bit-wise comparison operator you
specify. The system event is only delivered if your listen request also specifies
the FLTRBLK keyword. The listen exit receives control only when those filters
are also passed. See the BITQUAL and BITCOMPARE parameter descriptions.

,QMASK=gmask keywords
Specifies which bytes of the four-byte qualifier ENF uses to further define the
event. The listener user exit receives control only when a system event occurs
that matches the characteristics specified by the QMASK bytes of the QUAL
field.

To specify the bytes of the qualifier that ENF is to use, code any combination
of the following keywords separated by commas. If you specify ALL or NONE,
ENF ignores all other QMASK keywords. If you do not specify any QMASK
keywords, the default is NONE.

BYTE1
First byte

BYTE2
Second byte

Chapter 3. ENFREQ — Listen for system events 41

ENFREQ macro

BYTE3
Third byte

BYTE4
Fourth byte

ALL All four bytes

NONE
No bytes

,BITQUAL=bitqual

Specifies a 32-byte field, a hexadecimal constant, or a register containing the
address of a 32-byte field containing a bit-mapped qualifier that further defines
the event. The qualifiers that are valid depend on the system event for which
you are listening.

To use this keyword, set BITQUAL as described in [Table 4 on page 46 The
figure also lists the mapping macro that defines symbolic values for the
qualifier, if any. If you do not specify BITQUAL, the system responds as if you
had provided a bit-mapped qualifier with all bits set to zero.

The listen exit receives control only when a system event occurs that matches
the characteristics specified by the bit-mapped qualifier and the comparison
operation specified by the BITCOMPARE parameter. For example, if
BITCOMPARE=INTERSECT, the listener user exit receives control when an
event with characteristics represented by any of the bits that are set to ‘1" in
the bit-mapped qualifier occurs.

If your listen request also specifies the QUAL keyword, the listen exit receives
control only when the system event also matches the characteristics specified
by the QMASK bytes of the QUAL field. The system event is only delivered if
your listen request also specifies the FLTRBLK keyword. The listen exit
receives control only when those filters are also passed. See the description of
the QUAL and QMASK keywords in this information.

,BITCOMPARE=SUBSET
,BITCOMPARE=INTERSECT
,BITCOMPARE=EQUAL

Specifies the comparison operation ENF uses to interpret the bit-mapped
qualifier specified with the BITQUAL parameter. In the examples provided
with the following parameter descriptions, only 8 of the 256 bits in the
bit-mapped qualifier are shown.
¢ SUBSET, the default, specifies that ENF is to pass control to the listener user
exit when an event with characteristics represented by all of the bits that are
set to ‘1" in the bit-mapped qualifier occurs.
For example, if BITQUAL=X'A0...' (B'10100000...") and
BITCOMPARE=SUBSET, ENF will pass control to the listener user exit for a
system event described by any of the following bit patterns:

— B'10100000..."
— B'11100000..."
- B'10111111...'

Note: The above list is not exhaustive.

In all these cases, the characteristics described by the BITQUAL parameter
are a subset of the event's characteristics. That is, every bit set to '1' in the
bit-mapped qualifier is also set to '1' in the bit pattern describing the system
event.

42 7z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENFREQ macro

* INTERSECT specifies that ENF is to pass control to the listener user exit
when an event with characteristics represented by any of the bits that are set
to 1" in the bit-mapped qualifier occurs.

For example, if BITQUAL=X'A0..." (B'10100000...") and
BITCOMPARE=INTERSECT, ENF will pass control to the listener user exit
for a system event described by any of the following bit patterns:

— B'10000000..."
— B'00100000..."
- B'10111111..."

Note: This list is not exhaustive.

In all these cases, the intersection of the characteristics described by the
BITQUAL parameter and the characteristics of the event is non-null. At least
one bit set to '1' in the bit-mapped qualifier is also set to '1' in the bit pattern
describing the system event.

¢ EQUAL specifies that ENF is to pass control to the listener user exit when
an event with characteristics exactly represented by the bit-mapped qualifier
occurs.

For example, if BITQUAL=X'A0..." (B'10100000...") and
BITCOMPARE=EQUAL, ENF will pass control to the listener user exit only
for a system event described by the bit pattern B'10100000...". In this case, the
characteristics described by the BITQUAL parameter exactly match the
characteristics of the system event that has occurred, and the bit-mapped
qualifier exactly matches the bit pattern describing the system event.

To specify that ENF is not to consider the bit-mapped qualifier when
determining whether the listener user exit is to receive control, do one of the
following:

¢ Omit both the BITQUAL and the BITCOMPARE parameters, or
* Specify BITQUAL=0 and BITCOMPARE=SUBSET

»SRBEXIT=exitrtn addr
Specifies the address of a listener user exit routine that receives control when
the requested event occurs. The specified routine receives control in SRB mode
in the address space that issued the listen request. SRBEXIT is valid only with
certain event codes. The combination of EOM=NO and EOT=YES is not
allowed with SRBEXIT. Do not let EOM default to NO.

If you specify SRBEXIT, you cannot also specify EXIT. See 'Coding the Listener
User Exit Routine' in /OS MV'S Programming: Authorized Assembler Services|
for information about SRBEXIT environment.

,EXIT=exitrtn addr
Specifies the address of the listener user exit routine that receives control when
the requested system event occurs. If you want this listener user exit routine to
run in 31-bit mode, you must turn on the high order bit of the exit routine's
address; otherwise the exit gets control in 24-bit mode.

If you specify EXIT, you cannot also specify SRBEXIT. See Exit Routine
Environment in [z/OS MVS Programming: Authorized Assembler Services Guide for
information about EXIT Environment.

,PARM=parm addr
Specifies the address of a parameter list that the ENF listener can use to pass
parameters to the listener user exit routine. This address is stored into the third
word of a six-word data structure pointed to by register 1 on entry to the
listener user exit routine.

Chapter 3. ENFREQ — Listen for system events 43

ENFREQ macro

The fifth word of the six-word data structure is the address of the area mapped
by the IEFENFSG macro. If the signal for which your listen exit is invoked
originated on another system, the area mapped IEFENFSG will identify the
target system. The sixth word of the data structure is reserved for possible
ALET-qualification of the address mapped by the IEFENFSG macro.

You can specify either PARM=parm addr or PARM=parm data.

,PARM=parm data

Specifies a fullword of data that is stored into the third word of a six-word
data structure pointed to by register 1 on entry to the listener user exit routine.
Use PARM to pass data to either a standard or an SRB listener user exit
routine.

The six-word data structure pointed to by register 1 on entry to the listener
user exit routine:

e Address of parameter list supplied by the system for this event code
 Fullword of zeros

* Fullword of data specified by the PARM parameter of the listen request that
established the listen exit

* Fullword of zeros
¢ Address of a parameter list mapped by the IEFENFSG macro
* Fullword of zeros

,EOT=YES

Specifies that, if the task that issued the listen request ends, ENF no longer
passes control to the listener user exit routine when the specified event occurs.
EOT=YES is valid only in TCB mode with EOM=YES.

,EOT=NO

Specifies that, if the task that issued the listen request ends, ENF continues to
pass control to the listener user exit routine when the specified event occurs.
EOT=NO is the default.

,EOM=YES

Specifies that, if the address space that issued the listen request ends, ENF no
longer passes control to the listener user exit routine when the specified event
occurs.

,EOM=NO

Specifies that, if the address space that issued the listen request ends, ENF
continues to pass control to the listener user exit routine when the specified
event occurs. EOM=NO is valid only in TCB mode with EOT=NO. EOT=NO is
the default. If you specify SRBEXIT, do not let EOM default to NO.

,XSYS=NO
,XSYS=YES

Specifies whether this listen exit is to receive signals originating from other
systems in the sysplex. XSYS=NO, the default, specifies that the listen exit is to
receive only signals originating from the local system. XSYS=YES specifies that
the listen exit is to receive signals from other systems in the sysplex as well
those originating locally. XSYS=YES is valid only for those event codes that are
defined to ENF (on the system where the listen request is established), as
capable of cross-system notification. For more information about listening for
system events, see [z/OS MVS Programming: Authorized Assembler Services Guidd,

,PLISTVER=2
»PLISTVER=3

44 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENFREQ macro

» PLISTVER=MAX
Specifies the version of the parameter list to be generated by ENFREQ. Note
that MAX may be specified instead of a number, and the parameter list will be
of the largest size currently supported. This size may grow from release to
release (thus possibly affecting the amount of storage needed by your
program). If your program can tolerate this, IBM recommends that you always
specify MAX when creating the list form parameter list as that will ensure that
the list form parameter list is always long enough to hold whatever parameters
might be specified on the execute form. When PLISTVER is omitted, the
default is the lowest version which allows all of the parameters specified on
the invocation to be processed.

The parameter list field that identifies the version number of the macro is only
set when the standard or list form is used, or when PLISTVER is explicitly
specified. Be sure that the resulting parameter list version number covers all
the keys that you use.

The following listen request keywords require the version 3 (or higher)
parameter list:
* BITQUAL
* BITCOMPARE
¢ FLTRBLK
* MASEXIT
* XSYS
,RELATED=(value)
An optional parameter that specifies information used to self-document macros
by ‘relating” functions or services to corresponding functions or services. The

format and contents of the information specified are at the discretion of the
user, and can be any values.

ENF event codes and meanings
The following characteristics vary depending on the event for which you are
listening.
Event code
Identifies the event

Qualifier
Further defines the specific event for which you would like to listen

Parameter list
Passes information about the event to the listener user exit

Exit type
Specifies the type of the listener user exit routine, which can be either EXIT
or SRBEXIT

Cross-system capable
Specifies whether the exit is to receive signals from other systems in the
sysplex

Chapter 3. ENFREQ — Listen for system events 45

ENFREQ macro

Table 4. ENF macro event codes

Exit type /
Event Parameter list passed to the | Cross-system
code Description Qualifier user exit capable
20 Notes: The defined QUAL values are: Mapped by SIVIV2V3 EXIT / NO
1. The input save area and the P : DSECT w1th1r'1 macro
information area (registers 13 and 1) Qualifier Information type CSRS,HDF' This area
point to areas above 16M. When x'80000004' .contalns .the current
e . . information that would be
specifying ENFREQ System information changed. Any returned by the CSRSI
REQUEST=LISTEN, make sure that the program using the data returned by . hen all data i
. . . . service when all data is
exit rou.tme (EXIT keyword) gets the CSRSI service should obtain the requested (a request type of
control in AMODE 31. updated data. CSRSI_TYPE,_
2. This exit only gets control in task V1CPC_Machine plus
mode in ASID 1. CSRSI_TYPE_
3. Ever}t 20 "lister}" exits s}'wuld avoid nggﬁ i,];(%;lf {)/'1311CSPC7VM),
issuing dynamic allocation (SVC99) with the exception of the
calls. fields whose names begin
with “SIOOPCCA”. If the
SIOOPCCAxxx fields are
needed, the CSRSI service
can be called. The
SIV1V2V3 area is in 31-bit
storage.
23 The system or an operator varied a device | Corresponds to the UCBTYP field in the UCB Mapped by IEFEVARY EXIT / NO
online. data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:
An operator can vary a device online by First byte = UCBDVCLS
using the VARY command. For more Second byte = UCBUNTYP
information about the VARY command, Third byte = UCBTBYT2
see E/OS MVS System Commtmd;l Fourth byte = UCBTBYT1
24 The system or an operator varied a device | Corresponds to the UCBTYP field in the UCB Mapped by IEFEVARY EXIT / NO
offline. data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:
An operator can vary a device offline by First byte = UCBDVCLS
using the VARY command. For more Second byte = UCBUNTYP
information about the VARY command, Third byte = UCBTBYT2
see z/OS MVS System Commands} Fourth byte = UCBTBYT1
25 The system or an operator unloaded a Corresponds to the UCBTYP field in the UCB Mapped by IEZEUNLD EXIT / NO
DASD or tape volume. data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:
An operator can unload a DASD volume First byte = UCBDVCLS
by issuing the VARY command. For more Second byte = UCBUNTYP
information about the VARY command, Third byte = UCBTBYT2
see p/OS MVS System Commands| Fourth byte = UCBTBYT1
28 A dynamic device reconfiguration (DDR) | None 8-byte parameter list. The EXIT / NO
swap occurred. first four bytes contain the
address of the UCB for the
A DDR swap moves or swaps a device that was the source
demountable volume from a failed device of the swap event. The
to another available device. For second four bytes contain
information about the SWAP command, the address of the UCB for
which enables an operator to perform a the device that was the
DDR swap, see E/OS MVS Syste;zl target of the swap event.
|Commands)
29 The system or an operator placed a device | Corresponds to the UCBTYP field in the UCB Mapped by IEFEVARY EXIT / NO
in pending offline status. data area. The bytes in the qualifier correspond
to the bytes in UCBTYP as follows:
An operator can place a device in offline First byte = UCBDVCLS
status by issuing the VARY command. For Second byte = UCBUNTYP
more _information about this command, Third byte = UCBTBYT2
see £/OS MVS System Commands| Fourth byte = UCBTBYT1
30 The system or an operator placed a Corresponds to the UCBTYP field in the UCB Mapped by IEFEVARY EXIT / NO
volume online so that it would be data area. The bytes in the qualifier correspond
available for system use. to the bytes in UCBTYP as follows:
First byte = UCBDVCLS
An operator can place a volume online by Second byte = UCBUNTYP
issuing the VARY command. For more Third byte = UCBTBYT2
information about this command, see Fourth byte = UCBTBYT1
IMVS System Commandd
46 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 4. ENF macro event codes (continued)

ENFREQ macro

Exit type /
Event Parameter list passed to the | Cross-system
code Description Qualifier user exit capable
31 A configuration change that involves None Mapped by IOSDDCCD EXIT / NO
deleting a device or deleting a path to a
device was requested or was rejected.
32 A configuration change was successful. None Mapped by IOSDDCCD EXIT / NO
33 One of the following changes to the . Mapped by IOSDDACH EXIT / NO
hardware configuration of a device BYTE1 Device class (Byte 3 from UCBTYP)
occurred: BYTE2 Reserved
* A device is added or deleted from the
hardware configuration definition or a | BYTES 3-4
device is attached or detached with the Qualifier number
VM ATTACH or DETACH command.
The I/O subchannel corresponding to Each qualifier number designates a type of
the device's UCB is connected or change, such as I/O subchannel change, device
disconnected. available, a configuration data record (CDR)
* A device is made available because the change, ora HyperPav‘ mode Cl'lzjmge. Along with
hannel path to the device is each qualifier number is a qualifier
¢ P number-dependent mapping in the IOSDDACH
reestablished. . . : X o
mapping macro, which designates fields specific
* The description of a device is added, to the type of change.
deleted, or changed. The
self-description information is stored in | The following ENF signal 33 subtypes are issued
a configuration data record (CDR). A for PAV-alias devices:
change to a CDR is always a delete « DACHIO
followed by an add. Use timestamps to |+« DACHIORA
determine the correct sequence. « DACHCCDR
* The HyperPAV mode of operation for a |* DACHPAV
logical control unit is changed. For each of these subtypes, if the signal applies
* A change in state has occurred for a to a device in the alternate subchannel set, the
PCle device. issuer will fill in a new field in the DACH
+ A device requires monitoring. subtype for the subchannel set identifier and
change the subtype according to the information
in z/OS MVS Data Areas in the |z /OS Internetl
library (http://www.ibm.com/systems/z/0s/|
zos/bkserv/)l
ENF 33 is issued once for the logical control unit
when its HyperPav mode is changed. The
following ENF 33 subtype fields are updated to
uniquely identify this event:
* DACHDEVC='CU'
* DACHTRAN=TRAN'
* DACHQN=X'0008'
* DACH_TRAN_CU=control unit that is
changing
* DACH_TRAN_MODE-=target mode of
operation
For specific field definitions, see the IOSDDACH
macro in z/OS MVS Data Areas in the
|Internet library (http://www.ibm.com svstemiﬂ
:zgosgzosgbkservg |
The ENF signal 33 subtype DACHPCIE (X'0009")
is issued for the change in state of a PCle device.
For this subtype, the following value is set in the
DACHTYPE field by the issuer of the signal:
DACHTYPEPCIE ('PCIE).
For this subtype, the DACHQN field is set to
X'0009' (PCIE device event).
Chapter 3. ENFREQ — Listen for system events 47

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

ENFREQ macro

Table 4. ENF macro event codes (continued)

Event
code

Description

Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

33
(cont.)

For this subtype, the following data is supplied
in the DACHQUALD field by the issuer of the

signal:

DACH_PCIE_PFID (4 bytes): The PFID of PCle
device involved in the event.
DACH_PCIE_DEVID (2 bytes): The device ID
of PCle device involved in the event.
DACH_PCIE_VENDID (2 bytes): The vendor
ID of PCle device involved in the event.
DACH_PCIE_EVENT (1 byte): The device
event code:

1 = The device is going online.

2 = The device is going offline.

ENF signal 33 subtype DACHMONC
(DACHTYPE = DACHMONC) is issued when a
change in device monitoring is requested. This
signal may be generated for secondary devices
monitored for HyperSwap® configurations for
which I/O operations may begin to be started.
This signal may also be received when devices
that were previously identified by ENF 33
subtype DACHMONC no longer require
monitoring.

Programs such as RMF" may choose to monitor
this ENF 33 signal to know when to begin
collecting data for these devices which might
otherwise see only insignificant amounts of I/O
activity. For the DACHMONC subtype:

For a device that requires monitoring, the
following fields are set:
DACH_IO_QUAL
Set to
DACH_IO_QUAL_MONC_ON
DACH_IO_DEVN
Device number
DACH_IO_SSID
Subchannel set identifier
DACH_IO_DTYP
Contents of the UCBTYP field from
the UCB
DACHUCBC
Device class
DACHQN
Either DACHIO or DACHIO_AS

Each device receives a separate signal to begin
monitoring. When monitoring is requested, the
UCBCMONR bit is set on in the UCB.

When one or more devices no longer require
monitoring, a single ENF 33 DACHTYPE =
DACHMONC, DACHQN = DACHIO signal is
given with DACH_IO_QUAL =
DACH_IO_QUAL_MONC_OFE. This is
typically done after a HyperSwap occurs or
when a configuration is purged from the
HyperSwap manager. When this signal is
received, a UCBSCAN can be done to detect
devices for which the UCBCMONR bit is no
longer set on. DACH_IO_DEVN and
DACH_IO_SSID are not used for this signal.

48

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 4. ENF macro event codes (continued)

ENFREQ macro

Event
code

Description

Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

35

One of the following XES or XCF events
has occurred:

* New coupling facility resources have
become available on this system.
Requests to connect with IXLCONN
that previously failed might now
succeed because of this new coupling
facility resource.

* A specific structure has become
available for use. Requests to connect to
the structure with IXLCONN that
previously failed might now succeed
because of this new coupling facility
resource.

* A system has joined the sysplex. The
system name and ID are presented to
the user.

* A system has been partitioned from the
sysplex. The system name and ID are
presented to the user.

* A CF definition with a SITE specified
has been added or an existing CF SITE
specification has changed.

Note that the listener user exit routine for
event code 35 can run in SRB mode.

None

Mapped by IXCYENF

EXIT or
SRBEXIT /
NO

36

The system wrote a record to the logrec
data set or the logrec log stream. ENF
passes to the listener user exit routine a
parameter list containing the record
information.

For details about the contents of the
parameter list, see IFBENF36 in z/0S MVS
Data Areas in the I; /OS Internet library]

http: / /www.ibm.com /systems/z/0s/

[zos /bkserv/)l

Additional considerations for listeners of
this code include the following:

* The mapping does not indicate whether
an IBM or non-IBM program caused the
record to be written to logrec.

* ENF does not suppress duplicate ENF
signals sent to the listener. The listener
must be aware of instances where a
program loop causes the same software
record to be recorded in logrec multiple
times, thus causing ENF to issue
duplicate signals.

* ENF does not filter software records
based on any criteria including ABEND
codes.

The specific logrec record type value is used as
the qualifier for each ENF event code 36 signal.
Note that no signal is issued for record types
X'9x'.

Mapped by IFBENF36

EXIT or
SRBEXIT /
NO

Chapter 3. ENFREQ — Listen for system events 49

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

ENFREQ macro

Table 4. ENF macro event codes (continued)

Event
code

Description

Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

37

One of the following SMF
accounting-related events occurred:

* SMF was initialized

* SMF ended

* SMF INTVAL parameter changed

* SMF SYNCVAL parameter changed

* SMF interval expired

* SMF interval sync processing disabled

* SMF event driven interval occurred

For information about these
accounting-related events, see E/OS Mv§|
|System Management Facilities (SMF)|

ENF37Q00

SMF address space was initialized.

ENF37Q01
SMF address space ended.

ENF37Q02
SMF INTVAL parameter changed.

ENF37Q03

SMF SYNCVAL parameter changed.

ENF37Q04
SMF interval expired.

ENF37Q05
SMF interval sync processing
disabled.

ENF37Q06

SMF event driven interval occurred.

Mapped by IFAENF37

EXIT / NO

38

One of the following automatic restart
manager events occurred:

* Ajob or task started or was restarted,
and has registered or reregistered as an
element of the automatic restart
manager.

* An element notified the system that it is
ready to accept work.

* An element has deregistered with the
automatic restart manager.

* This system has acquired (or regained)
access to the automatic restart
management couple data set. Batch jobs
and started tasks may now register as
elements of the automatic restart
manager.

* An element has been deregistered with
the automatic restart manager.

None

Mapped by IXCYAREN

SRBEXIT /
NO

40

A JES2 subsystem either completed
initialization or ended normally. (Note
that ENF code 40 does not reflect
situations in which JES2 abends.)

ENF passes to the listener user exit
routine a parameter list that identifies the
JES2 subsystem. For details about the
contents of the parameter list, see
TEFENF40 in z/OS MVS Data Areas in the

OS Internet library (http://]

ww.ibm.com/systems/z/0s/z0s/
lbkserv/)

ENF40_INIT
A JES completed initialization.

ENF40_TERM
A JES ended normally

Mapped by IEFENF40

EXIT / NO

50

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 4. ENF macro event codes (continued)

ENFREQ macro

Exit type /

Event Parameter list passed to the | Cross-system

code Description Qualifier user exit capable

41 A workload management (WLM) event Mapped by INMRENF1 EXIT / NO
occurred. The following qualifiers for ENF WLMENF11
code 41 are provided: A VARY WLM,POLICY command

was issued.
BYTE 1
1 Policy change was | WLMENF12
initiated. A VARY WLM,POLICY command
2 Policy change completed.
mpleted.
3 ;’Zlicpyecflange WLMENF13
failed A VARY WLM,POLICY command
’ failed. The new policy could not be
BYTE 2 Reserved. activated on this system.
BYTE 3 WLMENF31
1 Workload activity WLM workload activity reporting
reporting failed and failed and has begun recovery.
has begun recovery. WLMENF32
z Workl9ad activity WLM workload activity reporting
reporting recovery
recovery was successful.
was successful.
3 Workload activity WLMENF33
reporting recovery Workload activity reporting recovery
was not successful. was unsuccessful.
BYTE 4 WLMENF41
1 WLM service Service definition was successfully
definition was installed.
successfully
installed.

43 A new copy of workload management None Four byte parameter EXIT / NO
sampled address space information is containing the length of the
available via INMRQRY. storage required to hold the

information. A listener can
Event code 43 is issued at the end of pass this length to
workload management's sampling interval IWMRQRY in the ANSLEN
so a listener can synchronize its sampling parameter and save issuing
interval with workload management's IWMRQRY to determine the
interval. length.

44 A configuration change involving paths to | None Mapped by IXLYCFSE EXIT / NO
a coupling facility has occurred.

45 The SMSVSAM server address space has | None Mapped by IDAENF45 SRBEXIT /
been initialized or reinitialized after a NO
failure. Any subsystem that lost
connection to the service provider address
space can now reconnect.

46 z/0OS UNIX System Services has been None None EXIT / NO
initialized or reinitialized.

47 DAE has detected that the threshold for None Mapped by ADYENF EXIT / NO
completed or suppressed dumps, related
to a particular symptom string, has been
reached.

48 A status change has occurred within None Mapped by IXGENF SRBEXIT /
system logger. The events issued by ENF YES
48 are issued to all systems in the sysplex.

For a description of using ENF event 48
for system logger, seelz/OS MVSl
Programming: Authorized Assembler Services|
:Guidel For a description of the events
mapped by the IXGENF macro, see z/0S
MVS Data Areas in the [z7OS Internet]
library (http://www.ibm.com/systems/z
los/zos /bkserv/

49 The logrec output recording medium has | None IFBNTASM SRBEXIT /
been changed by the SETLOGRC NO

command.

Chapter 3. ENFREQ — Listen for system events

51

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

ENFREQ macro

Table 4. ENF macro event codes (continued)

Exit type /
Event Parameter list passed to the | Cross-system
code Description Qualifier user exit capable
51 One of the following types of GRS The qualifier (QUAL parameter) has the Contention data: ISGE51CN | EXIT or
information: following format: SRBEXIT /
. ion i ; RNL data: ISGE51RN YES
Resource contention information BYTE1 Type of signal information:
* RNL change effects on user jobs x:Ol: Contention data Mode change data: None
* GRS mode change information x'02 RNL changes
x'03' Mode changes
Note that the listener user exit routine for | pyEg 2 Always x00"
event code 51 can run in SRB mode.
BYTE 3 Varies with type of signal (value of
Event code 51 can generate large numbers BYTE1):
of events in short periods of time. The x'00' Normal contention
listener user exit routine for event code 51 x'01' Waitless contention
must handle the volume of events. See . . .
L/OS MV'S Programming: Authorized) BYTE 4 Varies with type of signal (value of
Assembler Services Guide] for a description B’YT'ED:
of system services to avoid when writing x'01 Local events
listener user exits. x'02' Global events
x'03' Recovery events
Supports Filter Block (FLKBLOCK) .
listners: Mapped by ISGYELF. The filter | The defined QUAL values are:
block reason codes for EnfReq RC=X'68' is Qualifier Information type
in field ISGYELF_ReasonCode. The
mapping also includes constants for the x'01000000'
various values of the reason code. All Normal resource contention
(excludes waitless)
x'01000001'
Normal Local resource contention
x'01000002'
Normal Global resource contention
x'01000003'
Normal Contention-related recovery
information
x'01000100'
All Waitless resource contention
x'01000101"
Waitless Local resource contention
x'01000102'
Waitless Global resource contention
x'02000001"
User job suspended because of RNL
change
x'02000002'
User job resumed following RNL
change
x'0300yyzz'
GRS mode changes:
yy Old mode
zz New mode
Values for yy and zz are those defined
in IHAECVT for the ECVTGMOD
field
52 A LNKLST set has been activated. A None Mapped by CSVDLENF EXIT or
LNKLST set can be activated at IPL SRBEXIT /
through a PROGxx LNKLST statement, or NO
through SET PROG=xx or SETPROG
LNKLST operator commands. For
information about PROGxx, see |z/0S MV.
|Initialization and Tuning Referencd For
commands, see Ig/OS MVS stteﬂ
52 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENFREQ macro

Table 4. ENF macro event codes (continued)

Exit type /
Event Parameter list passed to the | Cross-system
code Description Qualifier user exit capable
53 - A Sysplex Timer (ETR) configuration None 8-byte parameter list EXIT / NO
change occurred. * Bytes 1 and 2 indicate a
* A change to the local time offset conflguratlon'change to
occurred. the Sysplex Timer (ETR).
* Byte 3, if non-zero,
indicates a change to the
local time offset. Possible
values are:
0 Sysplex Timer
configuration
has changed.
1 Local time
offset has
changed.
2 Leap second
offset has
changed.
3 Both local
time offsets
have changed.
55 The system resource manager (SRM) has Mapped by IRAENF55 EXIT or
detected a significant MVS image event, ENF55QLF_REAL_SHORTAGE (X'80000000") SRBEXIT /
which is being signalled. The qualifiers Too many fixed frames in storage; NO

and parameters further define the event. issued when IRA400E occurs.

ENF55QLF_REAL_SHORTAGE_RELIEVED
(X'40000000")
Pageable storage shortage due to
excessive fixed storage relieved;
issued when IRA402I occurs.

ENF55QLF_REAL_WARNING (X'20000000')
Pageable storage warning that
indicates there are many fixed frames
in storage; issued when IRA4051
occurs.

ENF55QLF_AUX_CRITICAL_SHORTAGE
(X'08000000")
Too many slots allocated in the AUX
subsystem. It is a critical shortage and
is issued when IRA201E occurs.

ENF55QLF_AUX_SHORTAGE (X'04000000')
Too many slots allocated in the AUX
subsystem. It is issued when IRA200E
occurs.

ENF55QLF_AUX_SHORTAGE_RELIEVED
(X'02000000")
AUX Storage shortage due to
excessive slots relieved. It is issued
when IRA202I occurs.

ENF55QLF_AUX_WARNING (X'01000000')
AUX Storage usage warning that
indicates there are many slots
allocated in the AUX subsystem. It is
issued when IRA205I occurs.

ENF55QLF_SCM_HIGH_USAGE (X'00040000")
High usage of storage-class memory
(SCM). Issued when IRA250I occurs.

Chapter 3. ENFREQ — Listen for system events 53

ENFREQ macro

Table 4. ENF macro event codes (continued)

Event
code

Description

Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

55
(cont.)

ENF55QLF_SCM_HIGH_USAGE_RELIEVED
(X'00020000")
High usage of storage-class memory
(SCM) relieved. Issued when IRA2521
occurs.

ENF55QLF_AFQ_SHORTAGE (X'00008000")
Available frame queue shortage. Not
enough frames on the available frame
queue.

ENF55QLF_AFQ_SHORTAGE_RELIEVED
(X'00004000')
Available frame queue shortage
relieved.

ENF55QLF_PREF_SHORTAGE (X'00002000")
Preferred frame queue shortage. Not
enough frames on the preferred frame
queue.

Note: This preferred storage shortage
indicator is an informational
notification for applications that are
able to change their storage allocation
type. In case of a preferred storage
shortage, the application should
request non-preferred storage (if
possible) instead of preferred storage.
No action is taken by SRM to address
this shortage.

ENF55QLF_PREF_SHORTAGE_RELIEVED
(X'00001000")
Preferred frame queue shortage
relieved.

56

Workload management has changed an
attribute of a job.

WLMENF56_QUAL_RESET
A job was reset using the RESET
system command or IWMRESET
macro.

WLMENF56_QUAL_ ENCLAVERESET
An enclave has been successfully reset
via the IWMERES service.

Mapped by IWNMRENF2

EXIT / NO

57

The state of a workload management
scheduling environment has been altered.

WLMENF57_NORMAL_ SCHENV_CHANGE
The state of a scheduling environment
has changed due to a
F WLM,RESOURCE command or
IWMSESET macro.

WLMENF57_RECOVERY_ SCHENV_CHANGE
The state of a scheduling environment
has changed due to workload
management recovery processing.

Mapped by IWNMRENF57

EXIT / NO

54

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 4. ENF macro event codes (continued)

ENFREQ macro

Exit type /

Event Parameter list passed to the | Cross-system

code Description Qualifier user exit capable

58 The state of a SYSOUT data set has Mapped by TAZENF58 EXIT / YES
changed. The state of a SYSOUT data set ENF58_Q_PURGE
changes when it is either dynamically The data set was purged.
allocated using the DALRTICTK text unit, ENF58_Q SELECT
or when the SYSOUT application program The data set lected
interface (SAPI) disposition bit is set. ¢ data set was selected.

ENF58_Q_DESELECT_ PROCESSED
For more information, see the “Listening The data set was processed.
for Events” section of the “JES
Client/Server Print Interface” chapter in ENF58_Q_DESELECT_ NOT_PROCESSED
&/OS TES Application Programming] The data set is no longer selected,
disposition was not updated.
ENF58_Q_DESELECT_
NOT_PROCESSED_HELD
The data set is no longer selected,
disposition was not updated, and
data set is held.
ENF58_Q_DESELECT_ ERROR
An error resulting in a system level
hold occurred.
ENF58_Q_EOD_OK
End of data set notification occurred
— successful.
ENF58_Q_EOD_ERROR
End of data set notification occurred
— unsuccessful.
ENF58_Q_JOB_CHANGE
A job status change occurred.
ENF58_Q_TOKEN_ CHANGE
The client token has changed.
ENF58_Q_INSTANCE
Addition instance of data set created.
ENF58_Q_GRP_SELECT
Data set group select.
ENF58_Q_GRP_DESELECT
Data set group deselect.

60 A TRACE TT command has been ENF60_QUAL Mapped by ITZENF60 EXIT / NO
accepted.

61 The capacity of the MVS image or CEC WLMENF61_CAPACITY_ CHANGE Mapped by INMENF61 EXIT / NO
has changed.

62 A RACF® SETROPTS RACLIST command | The qualifier (QUAL) has the following format: Mapped by IRRPENFP in EXIT or
has affected in-storage profiles used for SYS1.MACLIB. SRBEXIT/
authorization requests in a class BYTE 1 . NO
designated as SIGNAL=YES or X'80 SETROPTS RACLIST has
SIGNAL(YES) in the RACF class taken place.
descriptor table: Tl.1e c'lass affected is in BYTE 2
the parameter list in field
IRR ENFCLASS. X'80' SETROPTS RACLIST

- REFRESH has taken place.
BYTE 3
X'80' SETROPTS NORACLIST
has taken place.

63 A permanent error was detected on a None Mapped by IOSDE63R EXIT / NO
HyperSwap capable device.

Chapter 3. ENFREQ — Listen for system events 55

ENFREQ macro

Table 4. ENF macro event codes (continued)

Exit type /
Event Parameter list passed to the | Cross-system
code Description Qualifier user exit capable
64 One of the following events occurred: The qualifier (QUAL parameter) has the Mapped by IECENF64 EXIT / YES
* The capacity of a storage volume has following format:
changed. BYTE1 Type of signal information:
* The VTOC or INDEX of a direct access x'or Volume event
volume has been extended or moved to X'02' LSS event
a new location.
BYTE 2 Varies with event
* The VTOC index of a storage volume
has been built. The index indicates a BYTE3 Always X'00'
direct access volume has changed from . .
an OS format VTOC (OSVTOC) to an | BYTE 4 Varies with event
indexed format VTOC (IXVTOC). §
The defined QUAL values are:
* The content of the volume has changed
due to a full volume copy or restore Qualifier Information type
operation.
X'0100xxxx"
* DS8K recovery scenario occurs either on Volume events
primary or secondary PPRC disk
subsystem. DS8K signals z/OS on all X'01000001"
paths via the Storage Controller Health DASD volume capacity changed
Message attention status.
X'01000002'
* One or more devices in the logical VTOC updated (moved or extended)
subsystem has a PPRC state change.
* A full volume FlashCopy® relationship X'01000003" . R .
has been established. VTOC index is built
X'01000010'
Volume transformed. This qualifier
indicates that the content of the
volume, including system data, such
as the VTOC, VTOC INDEX, and
VVDS, has changed, and the location
of these files may have changed.
X'02xxxxxx'
LSS event
X'02010001'
Storage controller health (LSS) event
X'02020001'
Summary (LSS) event - PPRC state
change
56 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 4. ENF macro event codes (continued)

ENFREQ macro

Event
code

Description

Qualifier

Parameter list passed to the
user exit

Exit type /
Cross-system
capable

65

System REXX event has occurred.

X'80000000'
The AXR address space has
initialized. AXREXX can be invoked.

X'40000000'
The AXR address space has
terminated. Subsequent AXREXX
invocations will be rejected.

X'20000000'
The AXR address space has reached
its threshold of ACTIVE+WAITING
AXREXX requests. No more requests
will be accepted until the number of
requests drops to an acceptable level.

X'10000000'
The number of ACTIVE+WAITING
AXREXX requests has dropped to an
acceptable level. AXREXX requests are
now being accepted.

X'08000000'
The number of ACTIVE+WAITING
AXREXX requests is high and is
nearing the level where subsequent
requests will be rejected.

X'04000000'
The number of extents in the
REXXLIB concatenation exceeds the
system limit. See[z/OS DFSMS Usinﬂ
|Data_Sets|for details. If this condition
is detected during System REXX
initialization, System REXX
terminates; otherwise, no new
AXREXX requests will be accepted.

None

EXIT/NO

67

One of the following IBM Health Checker
for z/OS events has occurred:

* IBM Health Checker for z/OS has
become available.

* IBM Health Checker for z/OS has
terminated and is not available.

The defined BITQUAL values are:
Qualifier Information type

X'80000000'
IBM Health Checker for z/OS is
available. Field
Enf067_BitQual_Available in the
HZSZENF mapping macro.

X'40000000'
IBM Health Checker for z/OS has
terminated and is not available. Field
Enf067_BitQual_NotAvailable in the
HZSZENF mapping macro.

Mapped by HZSZENF

EXIT / NO

Chapter 3. ENFREQ — Listen for system events

57

ENFREQ macro

Table 4. ENF macro event codes (continued)

occurred:
* A change in BCPii status has occurred.

* A hardware communication error has
occurred.

* A hardware event has occurred.

Qualifier Information type

X'01000001'
BCPii is available.

X'01000002'
BCPii is not available.

X'020100yy"
A hardware communication error has
occurred and CPC events might have

been lost. yy denotes the type of error:

01 A temporary error, some
events might have been
lost.

02 A permanent error, no
more events are delivered.

03 Communication to the

CPC has been established
or re-established. Event
delivery from this CPC
will now commence or
re-commence.

X'03xx00yy'
A hardware event has occurred.

xx denotes the event source:
01 CPC
02 Image

yy denotes the event.

The defined BITQUAL values are:
Qualifier Information type

X'0Innnnnn'
N/A

X'0201nnnn'
Bytes 1-17 CPC name, padded with
hexadecimal zeros

X'0301nnnn'
Bytes 1-17, CPC name, padded with
hexadecimal zeros

X'0302nnnn'
Bytes 1-17, CPC name, padded
with hexadecimal zeros
Bytes 18-24, image name, padded
with hexadecimal zeros

and HWICIC

Exit type /
Event Parameter list passed to the | Cross-system
code Description Qualifier user exit capable
68 One of the following BCPii events has The defined QUAL values are: Mapped by HWICIASM EXIT / NO

58

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 4. ENF macro event codes (continued)

ENFREQ macro

Exit type /

Event Parameter list passed to the | Cross-system

code Description Qualifier user exit capable

68 One of the following BCPii events has Hardware Event Codes: Mapped by HWICIASM EXIT / NO
occurred: and HWICIC

. " Code Description
* A change in BCPii status.
- A hardware communication error has | '01' X A command response has been
occurred. received.
* A hardware event has occurred. '02' x An object status change has occurred.
'03' x An object name change has occurred.
'04' x The activation profile of the object has
changed.
'05' x A new object was created.
'06' x An object was deleted.
'07' x An object entered or left an exception
state.
'08' x A Console application has started.
'09' x A Console application has ended.
'0A" x An operating system message has
been received.
'0B' x A hardware message has been
received.
'0C' x A hardware message has been
deleted.
'0D' x A capacity change event has been
received.
'0E' x A capacity record change has
occurred.
'0F' x A security event has been logged.
'10' x An image has entered a disabled wait
state.
11" x A power change event has been
received.

70 The state of a job (batch, STC or TSU) Mapped by IAZENF70 EXIT / YES
owned by JES has changed. The job may ENF70_SELECT
have been selected for processing, Job was selected.
c'omple'ted processing, changgd phase) ENF70_DESELECT
(including changes to execution phase job b d
class), or been purged. Job was processed.

ENF70_CHANGE
Job queued to new phase of
processing.

ENF70_PURGE
Job was purged.

71 A RACF command has affected a user's The qualifier (QUAL) has the following format: Mapped by IRRPENF2 (See | EXIT or
group connections which may affect his or z/OS Security Server RACH | SRBEXIT /
her resource authorization. BYTE 1 Data Areasb YES

X'80' CONNECT command i
The user affected is in the parameter list X'40' REMOVE command
in field IRR_ENF2USER. X20' ALTUSER REVOKE
command
The group affected is in the parameter list X'10' DELUSER command
in field IRR_ENF2GROUP. X'08' DELGROUP command
Control flags that are used to provide BYTES 2 - 4
greater granularity for the listeners are in Reserved
the parameter list in field IRR_ENF2Flags.
Chapter 3. ENFREQ — Listen for system events 59

ENFREQ macro

Table 4. ENF macro event codes (continued)

Exit type /
Event Parameter list passed to the | Cross-system
code Description Qualifier user exit capable
72 Volume status information for SMS. The qualifier (QUAL) has the following format: Volume Status information: | EXIT or
o _ IGDE72VL SRBEXIT /
The listener user exit routine for event BYTE 1 T}'zp e' of signal information: YES
code 72 can run in SRB mode. X1 Volume status Mapped by IGDENV72
BYTE2 Al X'00"
Event code 72 can generate large numbers ways
of events in short periods of time. The BYTES 3 - 4
listener user exit routine for event code 72 Varies with event.
must be able to handle the volume of The defined QUAL values are:
events.
Qualifier Information type
X'01000001"
ENF72_OVER_THRESHOLD_AM_Y.
Volume over threshold when storage
group is defined using AM=Y (Auto
Migrate, yes).
73 The SETLOAD xx, IEASYM command has | None None EXIT/ NO
completed successfully. The local system's
symbol table has been updated.
78 The state of a job (batch, STC or TSU) ENF78_JOB_NOTIFY Mapped by IAZENF78 EXIT/YES
owned by JES has changed. The job has
completed processing.
60 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Table 4. ENF macro event codes (continued)

ENFREQ macro

Exit type /
Event Parameter list passed to the | Cross-system
code Description Qualifier user exit capable
79 A RACF command has modified a profile | The qualifier (IRR_ENF3_QualCode) has the Mapped by IRRPENF3 (See | EXIT or
such that a user's authorization to the following format: z/OS Security Server RACH | SRBEXIT /
resources it protects may be affected. |Data Areasb YES

* The user affected is in the parameter
list in field IRR_ENF3_UserID.

* The class in which the modified profile
belongs is in the parameter list in field
IRR_ENF3_ClassName.

* The length of the affected profile name
is in the parameter list in field
IRR_ENF3_ProfName_Length.

* The name of the affected profile is in
the parameter list in field
IRR_ENF3_ProfName.

Control flags that are used to provide
greater granularity for the listeners are in
the parameter list in field
IRR_ENF3_Flags.

For the PERMIT RACF command
processor, there maybe additional
information regarding:

* The type of Conditional Access, a
numerical value that is in the parameter
list in field
IRR_ENF3_PERMIT_WHEN_Cond.

* The Conditional Access List Entry. The
length of the Conditional Access Name
and the Conditional Access Name itself
is in the parameter list in the fields:

IRR_ENF3_CACLName_Length
IRR_ENF3_CACLName

For the RDEFINE and RALTER RACF
command processors, there may be
additional information in the ADDMEM
and DELMEM lists. The number of
elements in the list, the length of the list,
and the offset to the list are in the
parameter list in the fields:
IRR_ENF3_ADDMEML_Member#
IRR_ENF3_DELMEML_Member#
IRR_ENF3_ADDMEML_Length
IRR_ENF3_DELMEML_Length
IRR_ENF3_ADDMEML_Offset
IRR_ENF3_DELMEML_Offset

BYTE 1
X'80' PERMIT command
X'40' RDEFINE command
X'20' RALTER command
X'10' DELETE command
BYTES 2 -4
Reserved

Chapter 3. ENFREQ — Listen for system events 61

ENFREQ macro

Table 4. ENF macro event codes (continued)

Exit type /
Event Parameter list passed to the | Cross-system
code Description Qualifier user exit capable
80 One of the following z/OS ENF80_RPC_EVENT Mapped by EZAENF80 SRBEXIT /
Communication Server events has NO
occurred:
* The rpcbind server has initialized.
* The rpcbind server is stopping.
Notes:
1. ENF80_RPC DSECT maps the
RPCBIND event.
2. Use the ENF80_RPC_FLAGs to
determine if the rpcbind server is
initializing or ending.
3. When flag ENF80_RPCINIT is on, RPC
applications can register with
RPCBIND.
4. When flag ENF80_RPCTERM is on,
the rpcbind server is stopping.
5. ENF80_RPC DSECT includes the
jobname of the rpcbind server that
generated the event.
Return codes
When ENFREQ macro returns control to your program, GPR 15 contains a return
code.
Table 5. Return Codes for the ENFREQ Macro
Hexadecimal Return Meaning and Action
Code
00 Meaning: ENFREQ processing completed successfully.
Action: None
04 Meaning: Program error. An identical LISTEN request already exists. A
request is considered a duplicate if its QUAL, QMASK, EXIT, BITQUAL,
and BITCOMPARE parameter values are the same as those specified for an
existing request.
Action: None. The request is already established.
0C Meaning: Program error (invalid parameter list) The ENFREQ failed for
one of the following reasons:
* The length of the parameter list is incorrect.
* The specified ACTION code is not valid.
* The specified EVENT code is not valid.
* The caller specified ACTION=LISTEN, and the EXIT address is zero.
* The caller specified ACTION=DELETE, and the DTOKEN field is zero.
Action: After checking and correcting the program environment
parameters, retry the request. If the parameters are correct, check to see if
you inadvertently overlaid the control parameter list.
10 Meaning: System error. This return code is for IBM diagnostic purposes
only.
Action: Record the return code, and supply it to the appropriate IBM
support personnel.
62 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENFREQ macro

Table 5. Return Codes for the ENFREQ Macro (continued)

Hexadecimal Return
Code

Meaning and Action

14

Meaning: Environmental error. Your program issued the ENFREQ macro
before the system initialized ENF.

Action: Retry the request. If the problem persists, record the return code
and supply it to the appropriate IBM support personnel.

18

Meaning: Environmental error. The system cannot obtain storage for your
request.

Action: Rerun your program one or more times. If the problem persists,
check with the operator to see if another user in the installation is causing
the problem, or if the entire installation is experiencing storage constraint
problems.

1C

Meaning: Program error. The DTOKEN parameter does not represent any
LISTEN request that is currently active. ENF does not perform a DELETE.

Action: Verify that the DTOKEN on the DELETE request matches the
DTOKEN from the LISTEN request. Retry the DELETE request with the
correct DTOKEN.

20

Meaning: Program error. An abend occurred in the Listen Exit code.

Action: If a dump was produced for the abend, examine it and correct the
programming error.

3C

Meaning: Program error. EOT=YES was specified on an ENFREQ listen
request while the issuer of the ENFREQ request was running in SRB mode.

Action: Either specify EOT=NO or delete the EOT keyword from the
ENFREQ macro invocation.

46

Meaning: Program error. The SRBEXIT keyword was specified on an
ENFREQ listen request for an event code that does not allow SRBEXIT.

Action: Verify that the listen request is for the correct event code. If so,
replace the SRBEXIT keyword with the EXIT keyword and ensure that the
listen exit resides in common storage.

48

Meaning: Program error. The EXIT keyword was specified on an ENFREQ
listen request for an event code that does not allow EXIT.

Action: Verify that the listen request is for the correct event code. If so,
replace the EXIT keyword with the SRBEXIT keyword.

4A

Meaning: Program error. The keyword combination of EOT=YES and
EOM=NO was specified on an ENFREQ listen request. This combination is
incorrect.

Action: Change the EOM specification to YES or the EOT specification to
NO.

4C

Meaning: Program error. EOM=NO and SRBEXIT were specified on an
ENFREQ listen request. This combination is incorrect.

Action: Change the EOM specification to YES or do not use SRBEXIT.

4E

Meaning: Program error. An ENF request specified XSYS=YES for an event
code that does not support sysplex-wide notification.

Action: Verify that the ENF request is for the correct event code. If so,
specify XSYS=NO (or allow the XSYS parameter to default to XSYS=NO).

50

Meaning: System error. Sysplex-wide notification is not available, because
of a system initialization problem. ENF listeners will receive notifications
originating from only the system where the listen exit was established.

Action: Report the problem to the operator and the system programmer.
The cross-system signalling capability will remain unavailable until the next
system IPL.

Chapter 3. ENFREQ — Listen for system events 63

ENFREQ macro

Table 5. Return Codes for the ENFREQ Macro (continued)

Hexadecimal Return
Code

Meaning and Action

52

Meaning: Program error. Sysplex-wide notification services were requested
for an action type other than listen.

Action: Verify that your program is not overwriting the parameter list, and
that the execute form of the macro correctly addresses the parameter list.

54

Meaning: Program error. An ENF request specified invalid comparison
instructions for the bit-mapped qualifier.

Action: Verify that your program is not overwriting the parameter list, and
that the execute form of the macro correctly addresses the parameter list.

60

Meaning: Program error. An ENF request specified FLTRBLK for an event
code that does not support listener filter blocks.

Action: Verify that the ENF request is for the correct event code. If so, do
not specify FLTRBLK.

64

Meaning: Program error. An ENF request specified FLTRBLK. It was
specified for an event code that does support listener filter blocks, but the
block was not accessible by the owner of that particular event code.

Action: Ensure that the event-specific listener filter block occupies
accessible storage of sufficient length.

68

Meaning: Program error. An ENF request specified FLTRBLK. It was
specified for an event code that does support listener filter blocks, and the
block was accessible by the owner of that particular event code, but the
filter parameters are incorrect.

Action: Check the parameters specified in the FLTRBLK. If the
event-specific mapping includes a reason code, use its value to assist with
the problem determination.

Example 1

Set up and load into common storage the SMFLSTO0 listener user exit routine,
which gains control only if the qualifier equals ENF37Q00.

Note that the qualifiers are declared in the IFAENF37 mapping macro. The
ENFREQ macro specifies QMASK=ALL which requests that all four bytes of the
qualifier mask are used in the qualifier comparison.

* Load ENF Listen Exit (SMFLSTO@) into common storage and save address.

*

SMFLOO@ contains the address of the Tistener user exit routine that

* resides in common storage

ST ROO,SMFLOO@

*
* Issue LISTEN Request for SMF Event Code (Qualifier ENF37Q00)
L RO2,SMFLOOG
ENFREQ ACTION=LISTEN, -- Function +
CODE=ENFC37, -- Event Code +
EXIT=(R0O2), -- Exit Address +
QUAL=ENF37Q00, -- Qualifier Value +
QMASK=ALL, -- Qualifier Mask (Full Word) +
ESTBNME=THISMOD, -- Establisher Name +
EXITNME=SMFLST00, -- Exit Name +
DTOKEN=SMFLOOT -- Returned Token Field
*
* Check the return code from ENFREQ - if not zero issue message
*
* - Local variables

DATAAREA DSECT

64 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

SMFLOO@ DS A
SMFLOOT DS F
ENFPTR DS A

*

* - Local constants
SMFLSTEN CSECT

DS OF
ENFC37 EQU 37
THISMOD DC CL8'SMFLSTEN'

SMFLST0O DC

*

* - External control blocks
CvT DSECT=YES
TEFENFCT

SMFLSTEN CSECT
IFAENF37

DATAAREA DSECT
IEFENFPM

LENODATA EQU *-DATAAREA

*

CL8'SMFLSTOO'

ENFREQ macro

Note that the IFAENF37 macro includes the following declarations:

&SYSECT CSECT
ENF37Q00 DC
ENF37Q01 DC

Example 2

Control Section for Constants

X'80000000"
X'40000000"

SMF Active
SMF Terminated

Set up and load into storage the ENFLSTO1 listener user exit routine. This listener

user exit routine receives a parameter from the ENF listener when the specified

event occurs. The listener user exit runs in the address space of the listener and is
deleted when the address space that issued the listen request ends.

* Ok %X X

* % X

L

RO2,ENFLO1@

ENFREQ ACTION=LISTEN,

CODE=ENFC35,
SRBEXIT=(R02),
PARM=LPARM,
EOT=YES,

EOM=YES,
ESTBNME=THISMOD,
EXITNME=ENFLSTO1,
DTOKEN=ENFLO1T

*

- Local variables
DATAAREA DSECT

ENFLO1@ DS A
ENFLOIT DS F
ENFPTR DS A
LPARM DS CL16

*

* - Local constants
ENFLSTEN CSECT

DS OF
ENFC35 EQU 35
THISMOD DC CL8'ENFLSTEN'

ENFLSTO1 DC

*

* - External control blocks
CvT DSECT=YES

CL8'ENFLSTO1"

Load ENF Listen Exit (ENFLSTO1) into storage and save address.
ENFLO1@ contains the address of the listener user exit routine.

Issue LISTEN Request for Event Code 35

Function

Event Code

Exit Address

Parameter

End-of-task delete indicator
End-of-memory delete indicator
Establisher Name

Exit Name

Returned Token Field

+ + o+ o+ o+ o+

Check the return code from ENFREQ - if not zero issue message

Chapter 3. ENFREQ — Listen for system events 65

ENFREQ macro

IEFENFCT
ENFLSTEN CSECT

IXCYENF
DATAAREA DSECT

IEFENFPM
LENODATA EQU =-DATAAREA

*

DELETE option

Syntax
The standard form of the ENFREQ macro for ACTION=DELETE is written as
follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ENFREQ.
ENFREQ
b One or more blanks must follow ENFREQ.

ACTION=DELETE

,CODE=cvent code event code: Decimal digit.
,DTOKEN=dtoken dtoken: RX-type address or address in register (2) - (12).
,RELATED=(value) value: Any text.
Parameters

The parameters are explained as follows:

ACTION=DELETE
A required parameter that specifies that you want to delete an existing request
to listen for a specified event. When a program issues ENFREQ with the
ACTION=DELETE parameter, ENF either deletes the listen request
immediately if the listener user exit has completed, or waits until the listener
user exits completes. Because the listener user exit might not have completed
processing at the time the delete request is issued, do not release the listener
user exit's storage.

,CODE=event code
A required parameter that specifies the ENF event for which a program no
longer needs notification. The event code can be any of the decimal codes listed
in [Table 4 on page 46

66 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

t

E]

Return

ENFREQ macro

DTOKEN=dtoken
The required parameter that identifies the specific listen request you are
deleting. The system returned the token when you issued the
ACTION=LISTEN request.

RELATED=(value)
An optional parameter that specifies information used to self-document macros
by ‘relating” functions or services to corresponding functions or services. The
format and contents of the information specified are at the discretion of the
user, and can be any valid coding values.

and reason codes

For the return codes, in hexadecimal, from the ENFREQ macro see
on page 62]

On systems running z/OS V2R1 or higher, for return code of 0 or 28 (X'1C') from a
ACTION=DELETE request, a reason code is provided in access register 15:

0

The ACTION=DELETE request has completed. The listen exit is not
executing and will not be called again.

The ACTION=DELETE request is pending. The listen exit may be
executing or may be called again.

The reason code provides a way to determine when it is safe to free or reuse
storage containing the exit or used by the exit. Storage can be safely freed or
reused when the first ACTION=DELETE request provides return code 0 and
reason code 0, or after the first ACTION=DELETE request provides return code 0

a
2

nd reason code 1, a subsequent ACTION=DELETE request provides return code
8 (X'1C) and reason code 0.

Because there is no way to determine when it is safe to free or reuse storage
containing the exit or used by the exit on systems running z/OS V1R13 or earlier,
such storage should never be freed or reused.

ENFREQ ACTION=LISTEN - List form

Use the list form of the ENFREQ macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
constructs a parameter list that the execute form of the macro can use or modify.

Syntax
The list form of the ENFREQ macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ENFREQ.
ENFREQ
b One or more blanks must follow ENFREQ.

Chapter 3. ENFREQ — Listen for system events 67

ENFREQ macro

Syntax

Description

ACTION=LISTEN

,CODE=¢vent code

event code: Decimal digit.

,MASEXIT=No

Default: MASEXIT=NO

,MASEXIT=YES

,JFLTRBLK=filter block addr

filter block addr: the address of the filter block

,QUAL=qualifier

qualifier: A constant value

,QMASK=gmask keywords

gmask keywords: BYTE1, BYTE2, BYTE3, BYTE4, ALL, NONE.

Default: QMASK=NONE

,BITQUAL=bitqual

bitqual: name of a 32-byte field, hexadecimal numeric value (X'xxx'),

,BITCOMPARE=SUBSET

Default: BITCOMPARE=SUBSET

,BITCOMPARE=INTERSECT

,BITCOMPARE=EQUAL

,SRBEXIT=exitrtn addr

exitrtn addr: A-type address.

JEXIT=exitrtn addr

exitrtn addr: A-type address.

,PARM=parm addr

parm addr: A-type address.

,PARM=parm data

parm data: a fullword of data

JEOT=NO Default: EOT=NO.
JEOT=YES

,EOM=NO Default: EOM=NO.
,EOM=YES

,PLISTVER=2

Default: Version implied by keywords

,PLISTVER=3

,PLISTVER=MAX

,RELATED=(value)

value: Is any text.

,XSYS=NO

Default: XSYS=NO.

,XSYS=YES

68 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENFREQ macro

Syntax Description

,MF=L

Parameters

The parameters are explained under the standard form of the ENFREQ macro with
ACTION=LISTEN, with the following exceptions:
sMF=L

Specifies the list form of the ENFREQ macro with ACTION=LISTEN.

ENFREQ ACTION=LISTEN - Execute form

Use the execute form of the ENFREQ macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
uses or modifies the parameter list that the list form built.

Syntax
The execute form of the ENFREQ macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ENFREQ.
ENFREQ
b One or more blanks must follow ENFREQ.

ACTION=LISTEN

,CODE=event code event code: Decimal digit.

,DTOKEN=dtoken addr dtoken addr: RX-type address or address in register (2) - (12).
,ESTBNME-=estab name estab name: RX-type address or address in register (2) - (12).
,JEXITNME-=exitrtn name exitrtn name: RX-type address or address in register (2) - (12).
,JFLTRBLK=filter block addr filter block addr: RX-type address or address in register (2) - (12).
,QUAL=qualifier qualifier: A four-byte value.

Chapter 3. ENFREQ — Listen for system events 69

ENFREQ macro

Syntax Description

SQMASK=gmask keywords gmask keywords: BYTE1, BYTE2, BYTE3, BYTE4, ALL, NONE.

Default: QMASK=NONE

,BITQUAL=bitqual bitqual: name of a 32-byte field, hexadecimal numeric value (X'xxx'), or
address in register (2) - (12).

,BITCOMPARE=SUBSET Default: BITCOMPARE=SUBSET

,BITCOMPARE=INTERSECT

,BITCOMPARE=EQUAL

,SRBEXIT=exitrtn addr exitrtn addr: A-type address, or address in register (2) - (12).
JEXIT=exitrin addr exitrtn addr: A-type address or address in register (2) - (12).
,LPARM=parm addr parm addr: A-type address, or address in register (2) - (12).
,LARM=parm data parm data: a fullword of data
LEOT=NO Default: EOT=NO.
,EOT=YES
,EOM=NO Default: EOM=YES.
,EOM=NO
,PLISTVER=2 Default: Version implied by keywords

,PLISTVER=3
,PLISTVER=MAX

,RELATED=(value) value: Is any text.
,XSYS=NO Default: XSYS=NO.
XSYS=YES
MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).
Parameters

The parameters are explained under the standard form of the ENFREQ macro with
ACTION=LISTEN, with the following exceptions:

,MF=(E,list addr)
Specifies the execute form of the ENFREQ macro with ACTION=LISTEN.

list addr specifies the area that the system uses to store the parameters.

70 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENFREQ macro

ENFREQ ACTION=DELETE - List form

Use the list form of the ENFREQ macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
constructs a parameter list that the execute form of the macro can use or modify.

Syntax
The list form of the ENFREQ macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ENFREQ.
ENFREQ
b One or more blanks must follow ENFREQ.

ACTION=DELETE

,CODE=¢cvent code event code: Decimal digit.
,RELATED=(value) value: Any text.
,MF=L
Parameters

The parameters are explained under the standard form of the ENFREQ macro with
ACTION=DELETE, with the following exceptions:
,MF=L

Specifies the list form of the ENFREQ macro with ACTION=DELETE.

ENFREQ ACTION=DELETE - Execute form

Use the execute form of the ENFREQ macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
uses or modifies the parameter list that the list form built.

Syntax
The execute form of the ENFREQ macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.

Chapter 3. ENFREQ — Listen for system events 71

ENFREQ macro

Syntax Description

b One or more blanks must precede ENFREQ.
ENFREQ

b

One or more blanks must follow ENFREQ.

ACTION=DELETE

,CODE=¢cvent code

event code: Decimal digit.

,DTOKEN=dtoken addr

dtoken addr: RX-type address or address in register (2) - (12).

,RELATED=(value)

value: Any text.

,MF=(E,list addr)

list addr: RX-type address or address in register (2) - (12).

Parameters

The parameters are explained under the standard form of the ENFREQ macro with
ACTION=DELETE, with the following exceptions:

,MF=(E,list addr)

Specifies the execute form of the ENFREQ macro with ACTION=DELETE.

list addr specifies the area that the system uses to contain the parameters.

72 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 4. ENQ — Request control of a serially reusable
resource

Description

ENQ assigns control of one or more serially reusable resources to a task. If any of
the resources are not available, the task might be placed in a wait condition until
all of the requested resources are available. Once control of a resource has been
assigned to a task, it remains with that task until one of the programs running
under that task issues a DEQ macro to release the resource or the task terminates.

You can request either shared or exclusive use of a resource. ENQ identifies the
resource by a pair of names, the gname and the rname, and a scope value. The
scope value determines what other tasks, address spaces, or systems can use the
resource. All programs that share the resource must use the gname, rname, and
scope value consistently.

Use ENQ with RET=TEST to determine the status of the resource. Return codes tell
whether the resource is immediately available or in use, and whether control has
been previously requested by the active task in another ENQ macro.

ENQ with the MASID and MTCB parameters allows a further conditional control
of a resource. One task, called the “issuing task” can issue an ENQ macro for a
resource specifying the ASID and TCB of another task, called the “matching task”.
MTCB and MASID parameters are specified with RET=HAVE, RET=TEST, or ECB
to provide additional return codes. If the issuing task does not receive control of
the resource, it may receive a return code indicating that the resource is controlled
by the matching task. Upon receiving this return code, the issuing task could use
the resource, if serialization between itself and the matching task has been
prearranged through a protocol.

Global resource serialization counts and limits the number of concurrent resource
requests from an address space. If an unconditional ENQ (an ENQ that uses the
RET=NONE option) causes the count of concurrent resource requests to exceed the
limit, the caller ends abnormally with a system code of X'538'. For more
information, see the topic on limiting concurrent requests for resources in
IMVS Programming: Assembler Services Guide}

Unless you specify otherwise, when a global resource serialization complex is
initialized, global resource serialization searches the SYSTEM inclusion resource
name list (RNL) and the SYSTEMS exclusion RNL for every resource specified with
a scope of SYSTEM or SYSTEMS. A resource whose name appears on one of these
RNLs might have its scope changed from the scope that appears on the macro. To
prevent RNL processing, use the RNL=NO parameter. See Iz/OS MVS Planning.{
IGlobal Resource Serialization] for additional information about RNL processing.

The ENQ macro is also described in [z/OS MVS Programming: Assembler Services|
[Reference ABE-HSH, with the exception of the SMC, ECB, TCB, MASID, and MTCB
parameters. For information on using the ENQ macro to serialize resources, see the
/0S MVS Programming: Authorized Assembler Services Guide}

© Copyright IBM Corp. 1988, 2016 73

ENQ macro

Environment
The requirements for callers of ENQ are:
Environmental factor Requirement
Minimum authorization: Problem state with any PSW key. For the SMC, ECB, TCB,

MASID, and MTCB parameters or when the specified gname
is ADRDFRAG, ADRDSN, ARCENQG, BWODSN, SYSZ*,
SYSCTLG, SYSDSN, SYSIEAOQ1, SYSIEECT, SYSIEFSD,
SYSIGGV1, SYSIGGV2, SYSPSWRD, SYSVSAM, or
SYSVTOC, the authorization must be one of the following:
* Supervisor state

* PSW key 0-7
* APF-authorized.

Dispatchable unit mode: Task

Cross memory mode: For LINKAGE=SVC: PASN=HASN=SASN
For LINKAGE=SYSTEM: Any PASN, Any HASN, Any
SASN
For LINKAGE=SYSTEM with SMC=STEP: PASN=HASN,
Any SASN

AMODE: 24- or 31- or 64-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space.
Except for the TCB, all parameters can reside above 16
megabytes.

Programming requirements
None.

Restrictions

See "Avoiding Interlock" in[z/OS MVS Programming: Assembler Services Guide|to
ensure that you are following the protocols required to prevent the interlock.

Issuing two ENQ macros for the same resource without an intervening DEQ macro
causes the task to end abnormally, unless the second ENQ designates RET=TEST,
USE, CHNG, or HAVE. If the task ends, either normally or abnormally, while the
task still has control of any serially reusable resources, all requests made by this
task automatically have DEQ processing performed for them. If resource input
addresses are incorrect, the task abnormally ends.

The caller cannot have an EUT FRR established.

There are some considerations to be aware of when using enclaves for tasks that
serialize resources using the ENQ macro. For details, see “Using ENQ/DEQ or
Latch Manager Services With Enclaves” in £/OS MVS Programming: Workload|
IManagement Services|

Input register information

Before issuing the ENQ macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

74 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENQ macro

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 One of the following:
* If you specify RET=TEST, RET=USE, RET=CHNG, RET=HAVE, or ECB:
If all return codes for the resources named in the ENQ macro are 0,
register 15 contains 0. If any of the return codes are not 0, register 15
contains the address of a storage area containing the return codes.
* Otherwise: Used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications

None.
Syntax

The standard form of the ENQ macro is described as follows.

Syntax Description
name name: symbol. Begin name in column 1.

b One or more blanks must precede ENQ.
ENQ
b One or more blanks must follow ENQ.
(
gname addr qname addr: A-type address or register (2) - (12).
:rname addr rname addr: A-type address or register (2) - (12).

Chapter 4. ENQ — Request control of a serially reusable resource 75

ENQ macro

Syntax

Description

Default: E

7

jrname length

rname length: symbol, decimal digit, or register (2) - (12).
Default: assembled length of rname

Note: Code rname length if rname addr is a register.

’

,STEP

Default: STEP

,SYSTEM

,SYSTEMS

,JRET=CHNG

Default: RET=NONE

,RET=HAVE

JRET=TEST

,RET=USE

,RET=NONE

,SMC=NONE

Default: SMC=NONE

,SMC=STEP

,ECB=ecb addr

ech addr: A-type address or register (2) - (12).

,TCB=tcb addr

tch addr: A-type address or register (2) - (12).

Note: Do not specify ECB with RET. You can specify ECB and TCB together.
If TCB is specified without ECB, you must specify RET=CHNG, TEST or
USE.

,MASID=matching-asid addr

matching-asid addr: A-type address or register (2) - (12).

Note: MTCB is required with MASID. Do not specify SMC or TCB with
MASID.

,MTCB=matching-tcb addr

matching-tcb addr: A-type address or register (2) - (12).

Note: MASID is required with MTCB.

,RNL=YES

Default: RNL=YES

76 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENQ macro

Syntax

Description

,RNL=NO

,RELATED=value

value: any valid macro keyword specification.

,LINKAGE=SVC

DEFAULT: LINKAGE=SVC

,LINKAGE=SYSTEM

Parameters

The parameters are explained as follows:

(

Specifies the beginning of the resource description.

qgname addr

t]

Specifies the address of an 8-character name. The name can contain any valid
hexadecimal character. Every program issuing a request for a serially reusable
resource must use the same gname, rname, and scope to represent the resource.
Some names, such as those beginning with certain letter combinations (SYSZ
for example), are used to protect system resources by requiring that the issuing
program be in supervisor state, or system key, or APF-authorized. Authorized
programs should use a restricted qname (as described under Minimum
authorization in the Environment topic of this chapter) to prevent interference
from unauthorized programs.

Note: See|z/OS MVS Diagnosis: Reference for a list of major and minor
ENQ/DEQ names and the resources that issue the ENQ/DEQ.

,rname addr

E]

Specifies the address of the name used together with gname to represent a
single resource. The name must be from 1 to 255 bytes long, can be qualified,
and can contain any valid hexadecimal character.

Specifies whether the request is for exclusive (E) or shared (S) control of the
resource. If the resource is modified while under control of the task, the
request must be for exclusive control; if the resource is not modified, the
request should be for shared control.

,rname length

Specifies the length of the rname. If this parameter is omitted, the system uses
the assembled length of the rname. To override the assembled length, specify
this parameter.

The value you can code depends on whether or not you also specify MASID

and MTCB:

¢ If you specify MASID and MTCB, you can code a value between 1 and 128.

* If you do not specify MASID and MTCB, you can code a value between 1
and 255.

In either case, you can specify 0, which means that the length of the rname
must be contained in the first byte at the rname addr.

Chapter 4. ENQ — Request control of a serially reusable resource 77

ENQ macro

,STEP
,SYSTEM
» SYSTEMS

)

Specifies the scope of the resource.

STEP specifies that the resource can be used only within an address space. If
STEP is specified, a request for the same gname and rname from a program in
another address space denotes a different resource.

SYSTEM specifies that the resource can be used by programs in more than one
address space.

SYSTEMS specifies that the resource can be shared between systems.

STEP, SYSTEM, and SYSTEMS are mutually exclusive and do not refer to the
same resource. If two macros specify the same gname and rname, but one
specifies STEP and the other specifies SYSTEM or SYSTEMS, they are treated
as requests for different resources.

Specifies the end of the resource description.

Notes on specifying multiple resources on one ENQ request:

Within a single set of parentheses, you can repeat the qname addr, rname addr,
type of control, rname length, and the scope until there is a maximum of 255
characters, including the parentheses.

The following parameters apply to all the resources you specify on the request:
RET, SMC, ECB, TCB, MASID, MTCB, and RNL.

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE

,RET=NONE

Specifies the type of request for the resources named on the ENQ request.

CHNG
The status of the resource specified is changed from shared to
exclusive control. When RET=CHNG is specified, the exclusive | shared
(E1S) parameter is overidden. This parameter ensures that the request
will be exclusive regardless of the other parameter.

HAVE Control of the resources is requested conditionally; that is, control is
requested only if a request has not been made previously for the same
task.

TEST The availability of the resources is to be tested, but control of the
resources is not requested.

USE control of the resources is to be assigned to the active task only if the
resources are immediately available. If any of the resources are not
available, the active task is not placed in a wait condition.

NONE
Control of all the resources is unconditionally requested.

See [“Return and reason codes” on page 81|for an explanation of the return
codes for these requests.

, SMC=NONE
,SMC=STEP
,ECB=ecbh addr

78 2z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENQ macro

,TCB=tcbh addr

Specifies optional parameters available to the system programmer:

SMC specifies that the set must-complete function is not to be used (NONE) or
that it is to set as non-dispatchable other tasks for the step until the requesting
task has completed its operations on the resource (STEP).

See £/OS MVS Programming: Authorized Assembler Services Guide| for a
description of the set must-complete function.

Do not use SMC or RET with ECB.

When SMC=STEP is specified with RET=HAVE and the requesting task already
has control of the resource, the SMC function is turned on and the task
continues to control the resource.

SMC and TCB are mutually exclusive with the MASID parameter; therefore,
hexadecimal return codes 20, 24, 28, and 44 will not be given by an ENQ using
the SMC or TCB operands.

The return codes and status of the set must-complete function for the various
RET specifications are as follows:

RET Parameter Hexadecimal Code SMC Status
RET=CHNG 0 on
RET=CHNG 4 off
RET=CHNG 8 off
RET=CHNG 14 off
RET=HAVE 0 on
RET=HAVE 8 on
RET=HAVE 14 off
RET=HAVE 18 off
RET=TEST 0 off
RET=TEST 4 off
RET=TEST 8 off
RET=TEST 14 off
RET=USE on
RET=USE 4 off
RET=USE 8 off
RET=USE 14 off
RET=USE 18 off

ECB specifies the address of an ECB, and conditionally requests all of the
resources named in the macro. If the return code for one or more requested
resources is hexadecimal 4 or 24 and the request is not nullified by a
corresponding DEQ, the ECB is posted when all the requested resources
(specifically, those that initially received a return code of 4 or 24) are assigned

to the requesting task.

If the ECB parameter is an A-type address, the address is the name of the
fullword that is used as an ECB. If the operand is a register, then the register
contains the address of the ECB.

Chapter 4. ENQ — Request control of a serially reusable resource 79

ENQ macro

Note: The ECB must reside in storage that is addressible from the caller's
home address space.

TCB specifies a register that points to a TCB or specifies the address of a
fullword on a fullword boundary that points to a TCB on whose behalf the
ENQ is to be done. If TCB is specified, one of the following must also be
specified:

* RET=TEST

* RET=USE

* RET=CHNG

* ECB

Note: The TCB resides in storage below 16 megabytes in the caller's address
space.

,MASID=matching-asid addr

Specifies the matching task (by defining a matching ASID) for the ENQ, if it is
used together with the MTCB parameter. MASID defines the ASID of a task
that may be using a resource desired by the caller. If the MASID parameter is
an A-type address, the address is the name of a fullword containing the ASID.
If the operand is a register, then the register contains the ASID.

,MTCB=matching-tcb addr

Specifies the matching task (by defining a matching TCB) for the ENQ, if used
together with the MASID parameter. MTCB defines the TCB of a task that may
be using a resource desired by the caller. If the MTCB parameter is an A-type
address, the address is the name of a fullword containing the TCB. If the
operand is a register, then the register contains the TCB.

If the task specified by the MASID and MTCB parameters is not using the
resource, global resource serialization gives control to the caller and returns a
return code indicating whether the resource can be used. If the task specified
by MASID and MTCB parameters is using the resource, global resource
serialization records a request for the resource, suspends the issuing task until
the resource is available, or optionally returns a return code indicating that an
ECB will be posted when the resource can be used.

The MASID and MTCB parameters are specified with RET=HAVE, RET=TEST,
or ECB parameters to elicit additional return codes that provide information
about the owner of the resource.

See the description of the rname length for information about specifying rname
length with MASID and MTCB.

»RNL=YES
,RNL=NO

Controls global resource serialization RNL processing, which can cause the
scope value of a resource to change. IBM recommends that you use the default,
RNL=YES, to allow global resource serialization to perform RNL processing.
Use RNL=NO when you are sure that you want the request to be processed
only by global resource serialization using only the specified scope. When
RNL=NO is specified the ENQ request will be ignored by alternative
serialization products. Refer to [z/OS MVS Planning: Global Resource Serialization)
RNL Processing, for more information about the use of RNL=NO.

,RELATED=value

Specifies information used to self-document macros by ‘relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

80 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENQ macro

» LINKAGE=SVC
» LINKAGE=SYSTEM
Specifies the type of linkage the caller is using to invoke the ENQ service.

For LINKAGE=SVC, the linkage is through an SVC instruction. This linkage is
valid only when the caller is in primary mode and the primary, home, and
secondary address spaces are the same.

For LINKAGE=SYSTEM, the linkage uses a non-SVC entry. This linkage is
valid in cross memory mode or in non-cross memory mode.
LINKAGE=SYSTEM is intended to be used by programs in cross memory
mode.

 If ECB= is specified, the ECB (not the address of the ECB) must be
addressable from the home address space.

* If TCB= is specified, then the specified TCB in the home address space is
associated with the resource; otherwise, the TCB in the home address space
making the request is associated with the resource.

The default is LINKAGE=SVC.

ABEND codes

For only unconditional requests, the caller might encounter abend code X'138' or
X'538'. For unconditional or conditional requests, the caller might encounter one of
the following abend codes:

s X238

s X'338'

s X'438'

+ X738

+ X'838'

+ X'938'

See |z/0S MVS System Codes| for explanations and responses for these codes.

Return and reason codes

The system provides a return code only if you specify RET=TEST, RET=USE,
RET=CHNG, RET=HAVE, or ECB; otherwise, return of the task to the active
condition indicates that control of the resource has been assigned or was
previously assigned to the task. If all return codes for the resources named in the
ENQ macro are 0, register 15 contains 0. For nonzero return codes, register 15
contains the address of a storage area containing the return codes, as shown in

[Figure 4 on page 82

Chapter 4. ENQ — Request control of a serially reusable resource 81

ENQ macro

Address
Returned in Return
Register 15 Codes
l 1 3 4
0 JJ 12
RC1
12
RC2
24 (¥4 Return codes are
12 bytes apart,
starting 3 bytes
from the address
RC3 in register 15.
36
RCN

Figure 4. Return Code Area Used by ENQ

The return codes are placed in the parameter list resulting from the macro
expansion in the same sequence as the resource names in the ENQ macro.

The return codes for the ENQ macro with the RET=TEST parameter are described

in [Table]

Table 6. Return Codes for the ENQ Macro with the RET=TEST Parameter

Hexadecimal
Return Code

Meaning and Action

0

Meaning: The resource is immediately available.

Action: None required. However, you might take some action based on your
application.

4 Meaning: The resource is not immediately available.
Action: None required. However, you might take some action based on your
application.

8 Meaning: A previous request for control of the same resource has been made for

the same task. The task has control of the resource.

Action: None required. However, you might take some action based on your
application.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of flag byte 1 in the parameter list that identifies the owned
resource. If bit 3 is off, the task has exclusive control; If bit 3 is on, the task has
shared control.

82 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENQ macro

Table 6. Return Codes for the ENQ Macro with the RET=TEST Parameter (continued)

Hexadecimal
Return Code

Meaning and Action

14

Meaning: A previous request for control of the same resource has been made for
the same task. The task does not have control of the resource.

Action: None required. However, you might take some action based on your
application.

20

Meaning: The matching task (the task specified in the MASID and MTCB
parameters) owns the resource.

Action: None required. However, you might take some action based on your
application.

The return codes for the ENQ macro with the RET=USE parameter are described

in [Fable 7]

Table 7. Return Codes for the ENQ Macro with the RET=USE Parameter

Hexadecimal
Return Code

Meaning and Action

0

Meaning: The active task now has control of the resource.

Action: None.

Meaning: The resource is not immediately available.

Action: None required. However, you might take some action based on your
application.

Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: None required. However, you might take some action based on your
application.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of flag byte 1 in the parameter list that identifies the owned
resource. If bit 3 is off, the task has exclusive control; If bit 3 is on, the task has
shared control.

14

Meaning: A previous request for control of the same resource has been made for
the same task. The task does not have control of the resource.

Action: None required. However, you might take some action based on your
application.

18

Meaning: Environmental error. The limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless
some previous ENQ or RESERVE request caused the task to obtain control of the
resource.

Action: Retry the request one or more times. If the problem persists, consult
your system programmer, who might be able to tune the system so that the limit
is no longer exceeded.

The return codes for the ENQ macro with the RET=CHNG parameter are
described in

Table 8. Return Codes for the ENQ Macro with the RET=CHNG Parameter

Hexadecimal
Return Code

Meaning and Action

0

Meaning: The status of the resource has been changed to exclusive.

Action: None.

Chapter 4. ENQ — Request control of a serially reusable resource 83

ENQ macro

84

Table 8. Return Codes for the ENQ Macro with the RET=CHNG Parameter (continued)

Hexadecimal
Return Code

Meaning and Action

4

Meaning: The status of the resource cannot be changed to exclusive. Other tasks
share the resource.

Action: None required. However, you might take some action based on your
application.

Meaning: The status of the resource cannot be changed to exclusive. Either no
tasks have issued an ENQ request for the resource, or the task acquired the
resource through the MASID parameter.

Action: None required. However, you might take some action based on your
application.

14

Meaning: The status of the resource cannot be changed to exclusive. A previous
request for control of the same resource has been made for the same task. The
task does not have control of the resource.

Action: None required. However, you might take some action based on your
application.

The return codes for the ENQ macro with the RET=HAVE parameter are described

in [Table 9]

Table 9. Return Codes for the ENQ Macro with the RET=HAVE Parameter

Hexadecimal
Return Code

Meaning and Action

0

Meaning: The active task now has control of the resource.

Action: None.

Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: None required. However, you might take some action based on your
application.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of flag byte 1 in the parameter list that identifies the owned
resource. If bit 3 is off, the task has exclusive control; If bit 3 is on, the task has
shared control.

14

Meaning: A previous request for control of the same resource has been made for
the same task but that request has not yet been satisfied (such as an ENQ with
RET=NONE which waits for the resource). The task does not have control of the
resource.

Action: None required. However, you might take some action based on your
application.

18

Meaning: Environmental error. The limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless
some previous ENQ or RESERVE request caused the task to obtain control of the
resource.

Action: Retry the request one or more times. If the problem persists, consult
your system programmer, who might be able to tune the system so that the limit
is no longer exceeded.

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENQ macro

Table 9. Return Codes for the ENQ Macro with the RET=HAVE Parameter (continued)

Hexadecimal
Return Code

Meaning and Action

20

Meaning: The matching task (the task specified in the MASID and MTCB
parameters) owns the resource.

Action: The caller can use the resource, but it must ensure that the owning task
does not terminate while the caller is using the resource. If the caller requested
exclusive control, then this return code indicates that the matching task is the
only task that currently owns the resource. If the caller requested shared control
and the owning task requested shared control, this return code might indicate
that a previous task had requested exclusive control. The caller must issue a
DEQ macro to cancel this ENQ request.

28 Meaning: The caller cannot obtain exclusive control of the resource using the
ENQ macro with the MASID and MTCB parameters. The matching task's
involvement with other tasks precludes control by the caller.

Action: This task must not issue a DEQ macro to cancel the ENQ request.
44 Meaning: The caller is violating a restriction of using the ENQ macro with the

MASID and MTCB parameters in one or more of the following ways:

* Another task has already issued the ENQ macro for this resource specifying
the same values for the MASID and MTCB parameters

* The MASID and MTCB parameters specify a task that acquired control of the
resource by using the ENQ macro with the MASID and MTCB parameters

* The matching task requested ownership of the resource but has not yet been
granted ownership.

Action: Do not use the resource; the caller does not have control of it.

The return codes for the ENQ macro with the ECB parameter are described in

bl 10

Table 10. Return Codes for the ENQ Macro with the ECB Parameter

Hexadecimal
Return Code

Meaning and Action

0

Meaning: The active task now has control of the resource.

Action: Do not wait on the ECB; it will not be posted.

Meaning: The active task does not have control of the resource yet. The ECB
will be posted when the system assigns control to that task.

Action: Wait on the ECB if your program cannot continue processing without
control of the resource.

Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: Do not wait on the ECB; it will not be posted.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of flag byte 1 in the parameter list that identifies the owned
resource. If bit 3 is off, the task has exclusive control; If bit 3 is on, the task has
shared control.

14

Meaning: A previous request for control of the same resource has been made for
the same task. The task does not have control of the resource.

Action: Do not wait on the ECB; it will not be posted.

Chapter 4. ENQ — Request control of a serially reusable resource 85

ENQ macro

Table 10. Return Codes for the ENQ Macro with the ECB Parameter (continued)

Hexadecimal Meaning and Action
Return Code

18 Meaning: Environmental error. The limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless
some previous ENQ or RESERVE request caused the task to obtain control of the
resource.

Action: Do not wait on the ECB; it will not be posted. Retry the request one or
more times. If the problem persists, consult your system programmer, who
might be able to tune the system so that the limit is no longer exceeded.

20 Meaning: The matching task (the task specified in the MASID and MTCB
parameters) owns the resource.

Action: Do not wait on the ECB; it will not be posted. The caller can use the
resource, but it must ensure that the owning task does not terminate while the
caller is using the resource. If the caller requested exclusive control, then this
return code indicates that the matching task is the only task that currently owns
the resource. If the caller requested shared control and the owning task
requested shared control, this return code might indicate that a previous task
had requested exclusive control. The caller must issue a DEQ macro to cancel
this ENQ request.

24 Meaning: The caller that specifies the ENQ macro with the MASID and MTCB
parameters will have exclusive control after the ECB is posted.

Action: Wait on the ECB. Once the ECB is posted, the caller may use the
resource, but must ensure that the matching task does not terminate while the
caller is using the resource. The caller must issue a DEQ macro to cancel the
ENQ request.

28 Meaning: The caller cannot obtain exclusive control of the resource using the
ENQ macro with the MASID and MTCB parameters. The matching task's
involvement with other tasks precludes control by the caller.

Action: Do not wait on the ECB; it will not be posted. The caller must not issue
a DEQ macro to cancel the ENQ request.

44 Meaning: The caller is violating a restriction of using the ENQ macro with the
MASID and MTCB parameters in one or more of the following ways:

* Another task has already issued the ENQ macro for this resource specifying
the same values for the MASID and MTCB parameters

* The MASID and MTCB parameters specify a task that acquired control of the
resource by using the ENQ macro with the MASID and MTCB parameters

* The matching task requested ownership of the resource but has not yet been
granted ownership.

Action: Do not wait on the ECB; it will not be posted. Do not use the resource;
the caller does not have control of it.

Example 1

Unconditionally request exclusive control of a serially reusable resource that is
known only within the address space (STEP), and set to non-dispatchable other
tasks for the step until the requesting task has completed its operations on the
resource.

ENQ (MAJOR1,MINORI,E,8,STEP),SMC=STEP

Example 2

Conditionally request control of a resource that can be shared on behalf of another
task. The resource is known by more than one address space, and is only wanted if
immediately available.

ENQ (MAJOR2,MINOR2,S,4,SYSTEM),TCB=(R2),RET=USE

86 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ENQ macro

ENQ - List form

Use the list form of ENQ to construct a control program parameter list. You can
specify any number of resources on ENQ, therefore, the number of gname, rname,
and scope combinations in the list form of the ENQ macro must be equal to the
maximum number of gname, rname, and scope combinations in any execute form of
the macro that refers to that list form.

Syntax
The list form of the ENQ macro is written as follows:
Syntax Description
name name: symbol. Begin name in column 1.
b One or more blanks must precede ENQ.
ENQ
b One or more blanks must follow ENQ.
(
gname addr qname addr: A-type address or register (2) - (12).
,rname addr rname addr: A-type address or register (2) - (12).
, Default: E
S
smame length rname length: symbol or decimal digit.
Default: assembled length of rname
, Default: STEP
,STEP
,SYSTEM
,SYSTEMS
)

Chapter 4. ENQ — Request control of a serially reusable resource ~ 87

ENQ macro

Syntax

Description

JRET=CHNG

Default: RET=NONE

,RET=HAVE

,JRET=TEST

,RET=USE

,RET=NONE

,SMC=NONE

Default: SMC=NONE

,SMC=STEP

,ECB=ecb addr

ech addr: A-type address.

,TCB=0 Note: ECB cannot be specified with RET.
Note: TCB or ECB must be specified on the list form if it is used on the
execute form. ECB and TCB can be specified together. If you specify TCB
without ECB, specify RET=CHNG, TEST or USE.

,MASID=0 Note: MTCB is required with MASID. Do not specify SMC or TCB with
MASID.

,JMTCB=0 Note: MASID is required with MTCB.

,RNL=YES Default: RNL=YES

,RNL=NO

,RELATED=value

value: any valid macro keyword specification.

,MF=L

Parameters

The parameters are explained under the standard form of the ENQ macro, with the
following exception:

LMF=L
Specifies the list form of the ENQ macro.

The list form of this macro generates a prefix followed by the parameter list,
however the label specified in MF=L does not include an offset prefix area. If
MASID, MTCB, TCB, or ECB is specified, these labels are offset; allowance must be
made for the parameter list prefix.

ENQ - Execute form

A remote control program parameter list is used in and can be modified by the
execute form of the ENQ macro. The parameter list must be generated by the list
form of ENQ.

88 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Syntax

The execute form of the ENQ macro is written as follows:

ENQ macro

Syntax Description

name name: symbol. Begin name in column 1.
b One or more blanks must precede ENQ.
ENQ
b One or more blanks must follow ENQ.

(Note: (and) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired then (,), and all parameters
between (and) should not be specified. If something in the list is desired,
the (,), and all parameters in the list should be specified as indicated at the
left.

gname addr gqname addr: RX-type address or register (2) - (12).

Jrname addr

rname addr: RX-type address or register (2) - (12).

,rname length

rname length: symbol, decimal digit, or register (2) - (12).

7

,STEP

,SYSTEM

,SYSTEMS

Note: See note opposite (above.

,LRET=CHNG

,JRET=HAVE

,RET=TEST

,RET=USE

,RET=NONE

,SMC=NONE

ech addr: RX-type address or register (2) - (12).

Chapter 4. ENQ — Request control of a serially reusable resource 89

ENQ macro

Syntax

Description

,SMC=STEP

tch addr: RX-type address or register (2) - (12).

,ECB=ecb addr

Note: ECB cannot be specified with RET above.

,TCB=tcb addr

Note: ECB and TCB can be specified together. If you specify TCB without
ECB, then specify RET=CHNG, TEST, or USE.

MASID=matching-asid addr matching-asid addr: RX-type address or register (2)-(12).
Note: MTCB is required with MASID. Do not specify SMC or TCB with
MASID.

MTCB=matching-tcb addr matching-tcb addr: RX-type address or register (2)-(12).

Note: MASID is required with MTCB.

,RNL=YES

,RNL=NO

,RELATED=value

value: any valid macro keyword specification.

,LINKAGE=SVC

DEFAULT: LINKAGE=SVC

,LINKAGE=SYSTEM

MF=(E,list addr)

list addr: RX-type address or register (1) - (12).

Parameters

The parameters are explained under the standard form of the ENQ macro, with the
following exceptions:

,MF=(E,list addr)
Specifies the execute form of the ENQ macro.

list addr specifies the area that the system uses to contain the parameters.

Note: If ECB (or TCB) is specified in the execute form, ECB (or TCB=0) must be
specified in the list form. If MASID and MTCB are specified, MASID=0 and
MTCB=0 must be specified in the list form.

The list form of this macro generates a prefix followed by the parameter list,
however the label specified in MF=L does not include an offset prefix area. If
MASID, MTCB, TCB, or ECB is specified, these labels are offset; allowance must be
made for the parameter list prefix.

90 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 5. ESPIE — Extended SPIE

Description

The ESPIE macro extends the function of the SPIE (specify program interruption
exits) macro to callers in 31-bit and 64-bit addressing mode. For additional
information concerning the relationship between the SPIE and the ESPIE macros,
see the information on program interruptions in z/OS MVS Programming: Assembled
Services Guide and [z/OS MVS Programming: Authorized Assembler Services Guide]

The ESPIE macro performs the following functions using the options specified:
* Establishes an ESPIE environment (that is, identifies the interruption types that

are to cause entry to the ESPIE exit routine) by executing the SET option of the
ESPIE macro

* Deletes an ESPIE environment (that is, cancels the current SPIE/ESPIE
environment) by executing the RESET option of the ESPIE macro

* Determines the current SPIE/ESPIE environment by executing the TEST option
of the ESPIE macro.

The following description of the ESPIE macro also appears in m
[Programming: Assembler Services Reference ABE-HSP} with the exception of
interruption type 17. This interruption type designates page faults, and its use is
restricted to programs that are APF-authorized or run in PSW key 0 - 7.

For information about programs in 64-bit addressing mode (AMODE 64), see
IMVS Programming: Extended Addressability Guide

The information documented under the following headings is provided separately
for each of the three options (SET, RESET, and TEST):

 "Input Register Information"

* "Output Register Information"
e "Syntax"

* "Parameters"

¢ "Return and Reason Codes"

* "Examples"

The information documented in the following topics applies to all three options of
the ESPIE macro (SET, RESET, and TEST):

* "Environment"
* "Programming Requirements"
* "Restrictions"

* "Performance Implications"
* "ABEND Codes"

© Copyright IBM Corp. 1988, 2016 91

ESPIE macro

Environment
The requirements for the caller are:
Environmental factor Requirement
Minimum authorization: To issue ESPIE without encountering an abnormal end,

callers must be in problem state, with a PSW key value that
is equal to the TCB assigned key, except when ESPIE RESET
is issued or ESPIE SET is issued with no interruption codes
specified (where key 0 supervisor state is allowed). To
specify page fault processing, the caller must be
APF-authorized.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31- or 64-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

Control parameters: Must be in the primary address space

Programming requirements

None.

Restrictions
None.

Performance implications

Programs that need to intercept only specific hardware program check
interruptions (such as arithmetic exceptions or data conversion exceptions) will
find ESPIE to be more efficient than establishing an ESTAE environment to screen
all abends for specific OCx abends.

ABEND codes

ESPIE might return with abend code X'46D'. See [z/OS MVS System Codes| for an
explanation and programmer responses.

ESPIE SET option

Input register information

Before issuing the SET option of the ESPIE macro, the caller does not have to place
any information into any register unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain the
following information:

Register
Contents
0 Used as a work register by the system
1 Token representing the previously active SPIE/ESPIE environment

2-13 Unchanged

92 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ESPIE macro

14 Used as a work register by the system
15 Return code of 0

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller

depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Syntax
The standard form of the ESPIE macro with the SET option is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
SET
Jexit addr exit addr: A-type address or register (2) - (12).
[(interruptions) interruptions: Decimal numbers 1 - 15 or 17 expressed as:
e single values: (2, 3, 4,7, 8,9, 10)
* ranges of values: ((2, 4), (7, 10))
e combinations: (2, 3, 4, (7, 10))
,PARAM-=list addr list addr: A-type address or register (2) - (12).
Parameters
The parameters are explained as follows:
SET

Indicates that an ESPIE environment is to be established.

Chapter 5. ESPIE — Extended SPIE 93

ESPIE macro

,exit addr
Specifies the address of the exit routine to be given control when program
interruptions of the type specified by interruptions occur. The exit routine will
receive control in the same addressing mode as the issuer of the ESPIE macro.

,(interruptions)
Indicates the interruption types that are being trapped. The interruption types
are:

Number
Interruption Type

Operation
Privileged operation
Execute

Protection
Addressing
Specification

Data

Fixed-point overflow (maskable)

O© ® N N G Bk W N

Fixed-point divide

p—
(=]

Decimal overflow (maskable)
11 Decimal divide

12 Exponent overflow

13 Exponent underflow (maskable)
14 Significance (maskable)

15 Floating-point divide

17 Page fault

These interruption types can be designated as one or more single numbers, as
one or more pairs of numbers (designating ranges of values), or as any
combination of the two forms. For example, (4,8) indicates interruption types 4
and 8; ((4,8)) indicates interruption types 4 through 8.

If a program interruption type is maskable, the corresponding program mask
bit in the PSW is set to 1. If a maskable interruption is not specified, the
corresponding bit in the PSW is set to 0. Interruption types not specified above
(except for type 17) are handled by the system. The system forces an abnormal
end with the program check as the completion code. If an ESTAE-type
recovery routine is also active, the SDWA indicates a system-forced abnormal
end. The registers at the time of the error are those of the system.

Note: For ESPIE and SPIE - If you are using vector instructions and an
interruption of 8, 12, 13, 14, or 15 occurs, your recovery routine can check the
exception extension code (the first byte of the two-byte interruption code in the
ESPIE or PIE) to determine whether the exception was a vector or scalar type
of exception.

,PARAM=1ist addr
Specifies the fullword address of a parameter list that is to be passed by the
caller to the exit routine.

94 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ESPIE macro

Return and reason codes

None.

Example 1

Give control to an exit routine for interruption types 1 and 4. EXIT is the location
of the exit routine to be given control and PARMLIST is the location of the
user-parameter list to be used by the exit routine.

ESPIE SET,EXIT,(1,4),PARAM=PARMLIST

Example 2

Give control to the exit routine located at EXIT when a page fault occurs.
ESPIE SET,EXIT,(17)

ESPIE SET - List form

Use the list form of the ESPIE macro together with the execute form of the macro
for applications that require reentrant code. The list form of the macro defines an

area of storage, which the execute form of the macro uses to store the parameters.
The list form of ESPIE is valid only for ESPIE SET.

Syntax
The list form of the ESPIE macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
SET
Jexit addr exit addr: A-type address.
Note: This parameter must be specified on either the list or the execute form
of the macro.
J(interruptions) interruptions: Decimal number 1 - 15 or 17 expressed as:

* single values: (2, 3, 4,7, 8,9, 10)
* ranges of values: ((2, 4), (7, 10))
* combinations: (2, 3, 4, (7, 10))

,PARAM=list addr

list addr: A-type address.

,MF=L

Chapter 5. ESPIE — Extended SPIE 95

ESPIE macro

Syntax

Description

Parameters

The parameters are explained under the standard form of ESPIE SET with the
following exception:
JMF=L

Specifies the list form of the ESPIE macro.

Example

Build a nonexecutable problem program parameter list that will cause control to be
transferred to the exit routine, EXIT, for the interruption types specified in the
execute form of the macro. Provide the address of the user parameter list,
PARMLIST.

LIST1 ESPIE SET,EXIT,,PARAM=PARMLIST,MF=L

ESPIE SET - Execute form

Use the execute form of the ESPIE macro together with the list form of the macro
for applications that require reentrant code. The execute form of the macro stores
the parameters into the storage area defined by the list form. The execute form of
ESPIE is valid only for ESPIE SET.

Syntax
The execute form of the ESPIE macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
SET
Jexit addr exit addr: RX-type address or register (2) - (12).
Note: This parameter must be specified on either the list or the execute form
of the macro.
,(interruptions) interruptions: Decimal number 1 - 15 or 17 expressed as:
* single values: (2, 3, 4,7, 8,9, 10)
* ranges of values: ((2, 4), (7, 10))
e combinations: (2, 3, 4, (7, 10))

96 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ESPIE macro

Syntax Description
,PARAM-=list addr list addr: RX-type address or register (1) or (2) - (12).
MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).
Parameters

The parameters are explained under the standard form of ESPIE SET with the
following exception:

,MF=(E,ctrl addr)
Specifies the execute form of the ESPIE macro.

ctrl addr specifies the area that the system uses to store the parameters.

Example

Give control to a installation exit routine for interruption types 1, 4, 6, 7, and 8.
The exit routine address and the address of a user parameter list for the exit
routine are provided in a remote control program parameter list at LIST1.

ESPIE SET,,(1,4,(6,8)),MF=(E,LIST1)

ESPIE RESET option

The RESET option of the ESPIE routine cancels the active SPIE/ESPIE environment
and restores the SPIE/ESPIE environment specified by token.

Input register information

Before issuing the RESET option of the ESPIE macro, the caller does not have to
place any information into any register unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents
0 Used as a work register by the system
1 Token identifying the new active SPIE/ESPIE environment
2-13 Unchanged
14 Used as a work register by the system
15 Return code of 0

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged

Chapter 5. ESPIE — Extended SPIE 97

ESPIE macro

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Syntax
The RESET option of the ESPIE macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
RESET
token token: RX-type address or register (1) or (2) - (12).
Parameters
The parameters are explained as follows:
RESET

Indicates that the current ESPIE environment is to be deleted and the
previously active SPIE/ESPIE environment specified by token is to be
reestablished.

,token
Specifies a fullword that contains a token representing the previously active
SPIE/ESPIE environment. This is the same token that ESPIE processing
returned to the caller when the ESPIE trap was established using the SET
option of the ESPIE macro.

If the token is zero, all SPIEs and ESPIEs are deleted.

Return and reason codes

None.

Example

Cancel the current SPIE/ESPIE environment and restore the SPIE/ESPIE
environment represented by the contents of TOKEN.

ESPIE RESET,TOKEN

98 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ESPIE macro

ESPIE TEST option

The TEST option of the ESPIE macro determines the active SPIE/ESPIE
environment and returns the information in a 4-byte parameter list.

Input register information

Before issuing the TEST option of the ESPIE macro, the caller does not have to
place any information into any register unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents
0 Used as a work register by the system

1-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller

depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Syntax
The TEST option of the ESPIE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
TEST

Chapter 5. ESPIE — Extended SPIE 99

ESPIE macro

Syntax

Description

Jparm addr

parm addr: RX-type address, or register (1) or (2) - (12).

Parameters

The parameters are explained as follows:

TEST

Indicates a request for information concerning the active or current
SPIE/ESPIE environment. ESPIE processing returns this information to the
caller in a 4-word parameter list located at parm addr.

,parm addr

Specifies the address of a 4-word parameter list aligned on a fullword
boundary. The parameter list has the following form:

Word
0

1
2
3

Content

31-bit address of the exit routine (For 24-bit routines, the high order bit
is set to 0. For 31-bit routines, the high order bit is set to 1.)

Address of the user-defined parameter list
Mask of program interruption types

Zero

Return and reason codes

ESPIE TEST returns status information about the current ESPIE environment in
GPR 15. When control returns from ESPIE TEST, GPR 15 contains one of the
following hexadecimal return codes.

Note: These return codes are informational; no actions are required.

Table 11. Return Codes for the ESPIE TEST Macro

Hexadecimal
Return Code

Meaning

00

Meaning: An ESPIE exit is active and the 4-word parameter list contains the
information specified in the description of the parm addr parameter.

04

Meaning: A SPIE exit is active. Word 1 of the parameter list described under
parm addr contains the address of the current PICA. Words 0, 2, and 3 of the
parameter list contain no relevant information.

08

Meaning: No SPIE or ESPIE is active. The contents of the 4-word parameter list
contain no relevant information.

Example

Identify the active SPIE/ESPIE environment. Return the information about the exit
routine in the 4-word parameter list, PARMLIST. Also return, in register 15, an
indication of whether a SPIE, ESPIE, or neither is active.

ESPIE TEST,PARMLIST

100 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit

extended

Description

The ESTAE macro provides recovery capability facilities. Issuing the ESTAE macro
allows the caller to intercept errors. Control is given to a caller-specified exit
routine (called a recovery routine) in which the caller can perform various tasks,
including diagnosing the cause of the error and specifying a retry address to avoid
abnormal ending.

ESTAE type considerations: The type of ESTAE routine, that is, ESTAE or ESTAEX
affects the AMODE of the recovery routine as follows. For recovery routines
defined through the:

* ESTAE macro, at the time of entry to the recovery routine, the AMODE will be
the same as at the time of invocation of the macro.

* ESTAEX macro, the AMODE will be the same as at the time of invocation of the
macro, unless the macro was invoked in AMODE 24 in which case the recovery
routine AMODE will be 31-bit.

* The AMODE at the retry point will be the same as the AMODE on entry to the
recovery routine.

Various mode considerations: Depending on address space, cross-memory (the
primary, secondary, and home address spaces are the same), and access register
(AR) modes, you need to select the proper ESTAE type as follows:

 If your program is to execute in 31-bit addressing mode, you must use the SP
Version 2 of the ESTAE macro or a later version.

* Callers that are in primary address space control (ASC) mode and not in
cross-memory mode can issue either ESTAE or ESTAEX.

* Callers that are in access register (AR) mode or in cross-memory mode must use
ESTAEX.

* IBM recommends that all callers use the ESTAEX macro, unless your program
and your recovery routine are in 24-bit addressing mode, in which case you
need to use ESTAE.

Depending on whether you code ESTAE or ESTAEX, the system passes the address
of the user-specified parameter list differently. The SDWAPARM field in the SDWA
contains either the address of the parameter list (ESTAE), or the address of a
doubleword that contains the address and ALET of the parameter list (ESTAEX).
When you run in AMODE 64 (as indicated by specifying AMODE64=YES through
the SYSSTATE macro) and invoke ESTAEX, your ESTAEX routine will get control
in AMODE 64. The 8-byte area pointed to by the SDWAPARM field will be the
8-byte address of the parameter area.

See the information on providing recovery in[z/OS MVS Programming: Authorized|
|Assembler Services Guidd for information about writing recovery routines.

The descriptions of ESTAE and ESTAEX are:

© Copyright IBM Corp. 1988, 2016 101

ESTAE and ESTAEX macros

* The standard form of the ESTAE macro, which includes general information
about the ESTAE and ESTAEX macros, with some specific information about the
ESTAE macro. The syntax of the ESTAE macro is presented, and all ESTAE
parameters are explained.

* The standard form of the ESTAEX macro, which includes information specific to
the ESTAEX macro. The syntax of the ESTAEX macro is presented.

* The list form of the ESTAE and ESTAEX macros.

* The execute form of the ESTAE and ESTAEX macros.

Note: The ESTAE and ESTAEX macros have the same environment specifications,
register information, programming requirements, restrictions and limitations, and
performance implications described as follows, except where noted in the
explanation for ESTAEX.

Environment
The requirements for the caller are:
Environmental factor Requirement
Minimum authorization: Problem state and any PSW key. To use the CANCEL,

BRANCH, KEY, TOKEN, or SPIEOVERRIDE parameters,
one of the following:

* Supervisor state
* PKM allowing key 0-7 (for BRANCH, key 0 only)
* APF-authorized

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

Control parameters: Must be in the primary address space

Programming requirements

If the program is in AR mode, you must use ESTAEX rather than ESTAE; issue the
SYSSTATE macro with the ASCENV=AR parameter before you issue ESTAEX.
SYSSTATE ASCENV=AR tells the system to generate code appropriate for AR
mode.

Restrictions
For Branch-entry, IBM recommends that you have no EUT FRRs.

IBM recommends that you do not use the ESTAE or ESTAEX macro to deactivate
and no longer define a FESTAE recovery routine that was defined and activated by
a FESTAE macro.

Input register information

Before issuing the ESTAE macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain:

102 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ESTAE and ESTAEX macros

Register
Contents

0 Reason code if GPR 15 contains X'4'; otherwise, used as a work register by
the system

1 Used as a work register by the system

2 If you specify KEY=SAVE, used as a work register by the system;

otherwise, unchanged
3-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller

depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications

None.
Syntax
The standard form of the ESTAE macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ESTAE.
ESTAE
b One or more blanks must follow ESTAE.
exit addr exit addr: A-type address, or register (2) - (12).
0
,CT Default: CT
,OV

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 103

ESTAE and ESTAEX macros

Syntax

Description

,PARAM=Iist addr

list addr: A-type address, or register (2) - (12).

XCTL=NO Default: XCTL=NO

XCTL=YES

,PURGE=NONE Default: PURGE=NONE
,PURGE=QUIESCE

,PURGE=HALT

,ASYNCH=YES Default: ASYNCH=YES

,ASYNCH=NO

/CANCEL=YES Default: CANCEL=YES

,CANCEL=NO

,TERM=NO Default: TERM=NO

,TERM=YES

,BRANCH=NO Default: BRANCH=NO
,BRANCH=YES,SVEAREA=save save addr: A-type address, or register (2) - (12) or (13).
addr

,JKEY=SAVE storage key: Any numeral in the range 0-15.

JKEY=storage key

,RECORD=NO

Default: RECORD=NO

,RECORD=YES

,TOKEN=token addr

token addr: A-type address, or register (2) - (12).

,RELATED=value

value: Any valid macro keyword specification.

,SDWALOC31=NO

Default: SDWALOC31=NO

,SSDWALOC31=YES

,SPIEOVERRIDE=NO

Default: SPIEOVERRIDE=NO

,SPIEOVERRIDE=YES

104 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ESTAE and ESTAEX macros

Parameters

The parameters are explained as follows.

exit addr

0

,CT
,0V

Specifies the 31-bit address of an ESTAE recovery routine to be entered if the
task issuing this macro ends abnormally. If you specify 0, the most recent
ESTAE recovery routine is deactivated and no longer defined.

The ESTAEX exit always gets control in 31-bit mode, regardless of the mode in
which the macro was invoked.

Specifies that a new ESTAE recovery routine is to be defined and activated
(CT), or indicates that parameters passed in this ESTAE macro are to overlay
the data contained in the previous ESTAE routine (OV).

,PARAM=1ist addr

Specifies the 31-bit address of a user-defined list containing data to be used by
the ESTAE routine when it is scheduled for execution.

,XCTL=NO
,XCTL=YES

Specifies that the ESTAE recovery routine will be deactivated and no longer
defined (NO) or will remain activated and defined (YES) if this program issues
an XCTL macro.

» PURGE=NONE
, PURGE=QUIESCE
» PURGE=HALT

Specifies that all outstanding requests for I/O operations are not to be saved
when the ESTAE routine receives control (HALT), or that I/O processing is to
be allowed to continue normally when the ESTAE routine receives control
(NONE), or that all outstanding requests for 1/O operations are to be saved
when the ESTAE routine receives control (QUIESCE). If QUIESCE is specified,
the user's retry routine can restore the outstanding I/O requests.

For PURGE=QUIESCE and PURGE=HALT, RTM requests that all I/O be
purged at the task level for the current task. Be aware that the purge request
involves all I/O started by the task, not just the I/O started by the program
that created this recovery routine. PURGE=QUIESCE must thus be used
carefully, as it may wait for I/O that was not started by the program that
created this recovery routine. Likewise, PURGE=HALT must be used carefully
as it may terminate I/O that was not started by the program that created this
recovery routine.

PURGE=NONE specifies that all control blocks affected by input/output
processing can continue to change during ESTAE routine processing. If you
specify PURGE=NONE and the error was an error in input/output processing,
recursion develops when an input/output interruption occurs, even if the
ESTAE routine is in progress. Thus, it will appear that the ESTAE routine failed
when, in reality, input/output processing caused the failure.

Note:

1.

You need to understand PURGE processing before using this parameter. For
information about PURGE processing, see [z/0S DFSMSdfp Advanced Services|

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 105

ESTAE and ESTAEX macros

2. When using PURGE, you need to consider any access-method ramifications.
See the appropriate DFP information for the particular access method you are
using to determine these ramifications.

3. The system performs the requested I/O processing only for the first
ESTAE-type recovery routine that gets control. Subsequent routines that get
control receive an indication of the I/O processing previously done, but no
additional processing is performed.

»ASYNCH=YES

»ASYNCH=NO
Specifies that asynchronous exit processing will be allowed (YES) or prohibited
(NO) while the user's ESTAE routine is running.

ASYNCH=YES must be coded if:

* Any supervisor services that require asynchronous interruptions to complete
their normal processing are going to be requested by the ESTAE routine.

¢ PURGE=QUIESCE is specified for any access method that requires
asynchronous interruptions to complete normal input/output processing.

¢ PURGE=NONE is specified and the ESTAE routine issues the CHECK macro
for any access method that requires asynchronous interruptions to complete
normal input/output processing.

Note: If ASYNCH=YES is specified and the error was an error in
asynchronous exit handling, recursion will develop when an asynchronous exit
handling was the cause of the failure.

,CANCEL=YES

,CANCEL=NO
Specifies whether you want to allow the recovery routine to be interrupted by
cancel or detach processing.

To allow a recovery routine to be interrupted, specify CANCEL=YES.

To prevent a recovery routine from being interrupted, specify CANCEL=NO. If
a cancel or detach is attempted against a recovery routine for which you have
specified CANCEL=NO, MVS defers cancel and detach processing until the
recovery routine returns control to the system.

Note:

1. If a recovery routine that runs under the CANCEL=NO option can be
called by an unauthorized program running under the same task, IBM
recommends that you specify ASYNCH=NO for each ESTAE(X) macro that
the recovery routine issues. This also includes any ESTAE(X) macros issued
by programs that the recovery routine calls.

2. If a recovery routine running under the CANCEL=NO option calls an
unauthorized program, cancel and detach processing is also deferred for
the called program.

» TERM=NO

» TERM=YES
Specifies that the ESTAE routine will be scheduled (YES) or will not be
scheduled (NO) in the following situations:

* System-initiated logoff
* Job step timer expiration
* Wait time limit for job step exceeded

106 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ESTAE and ESTAEX macros

¢ DETACH macro without the STAE=YES parameter issued from a
higher-level task (possibly by the system if the higher-level task encountered
an error)

* Operator cancel
* Error on a higher level task

* Error in the job step task when a nonjob step task issued the ABEND macro
with the STEP parameter.

e 7/0S UNIX is canceled and the user's task is in a wait in the z/OS UNIX
kernel.

When the ESTAE routine is entered because of one of the preceding reasons,
retry is not permitted. If a dump is requested at the time the ABEND macro is
issued, it is taken before entry into the ESTAE routine.

Note: If DETACH was issued with the STAE parameter, the following occurs
for the task to be detached:

 All ESTAE routines are entered.
¢ The most recently activated STAE routine is entered.

e All STAI/ESTAI routines are entered unless one of the STAI routines issues
return code 16.

In these cases, entry to the routine occurs before dumping and retry is not
permitted.

»BRANCH=NO

,BRANCH=YES,SVEAREA=save addr
Specifies that an SVC entry to the ESTAE service routine is to be performed
(NO) or that a branch entry is to be performed (YES). The save area is a
72-byte area used to save the general registers. If the caller is not in key zero,
the KEY parameter must be specified.

BRANCH and SVEAREA are not valid on ESTAEX.

,KEY=SAVE

,KEY=storage key
Specifies that supervisor state users who are not in key zero can use the branch
entry interface to the ESTAE service routine.

If the user specifies KEY=SAVE, the macro saves the current PSW protection
key in register 2 and issues a set protection key instruction (SPKA) to change
to protection key zero. When the ESTAE service routine returns control, it
restores the original PSW key from register 2. Therefore, the user should save
register 2 before the macro expansion and restore it afterwards. Specifying
KEY=SAVE destroys the contents of register 2 during the macro expansion.

On the other hand, if the user knows the current PSW protection key, he may
specify it directly in the form KEY=(0-15) to eliminate saving and restoring the
original protection key. This procedure eliminates an IPK instruction and
prevents the use of register 2 in the macro expansion.

KEY is not valid on ESTAEX. KEY is optional and valid only with
BRANCH=YES,SVEAREA=save addr.

,RECORD=NO

,RECORD=YES
Specifies whether the system diagnostic work area (SDWA) is to be recorded in
SYS1.LOGREC. If you specify RECORD=YES, the system records the entire
SDWA (including the fixed length base, the variable length recording area, and
the recordable extensions) in SYS1.LOGREC when the associated ESTAE

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 107

ESTAE and ESTAEX macros

108

recovery routine returns control, unless the recovery routine indicates
otherwise by issuing the SETRP macro with RECORD=NO.

If you specify RECORD=NO, the system does not record the SDWA in
SYS1.LOGREC, unless the recovery routine indicates otherwise by issuing the
SETRP macro with RECORD=YES.

,TOKEN=token addr

Specifies that a four-byte token is to be associated with the ESTAE routine.
Unauthorized or accidental destruction of the ESTAE routine is prevented
because the ESTAE cannot be canceled or overlaid unless the same token is
specified.

With CT: ESTAE processing places the token created for this request in the
location specified by foken addr as well as in the ESTAE parameter list.

With OV: ESTAE processing locates the specified ESTAE routine for the current
RB and replaces the routine information. If there are any newer ESTAE
routines for the RB, they are deactivated and no longer defined.

With a recovery routine address of 0: ESTAE processing locates the specified
ESTAE routine for the current RB and deactivates the routine. The routine is no
longer defined. Any newer ESTAE routines for the RB are deactivated and no
longer defined.

,RELATED=value

Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and content of the
information specified are at the discretion of the user, and may be any valid
coding values.

»SDWALOC31=N0
»SDWALOC31=YES

Specifies that the SDWA be in 31-bit storage (YES) or the default 24-bit storage
(NO). You must specify SDWALOC31=YES when the your program is running
in AMODE 31 and you are using 64-bit general purpose registers, because the
time-of-error 64-bit GPRs are only presented to routines with an SDWA in
31-bit storage. Only routines with an SDWA in 31-bit storage can retry while
setting those registers.

Note: The SDWALOC31= parameter applies to ESTAE only. (For ESTAEX, the
SDWA is always in 31-bit storage.)

»SPIEOVERRIDE=NO
,SPIEOVERRIDE=YES

SPIEOVERRIDE specifies that the ESTAEX recovery exit must receive control
for all program exceptions even if a SPIE or ESPIE exit is established.

While the recovery routine that requests this parameter is established, no SPIE
or ESPIE exit can receive control.

You can use this parameter to ensure that the ESTAEX recovery exit receives
control for all program exceptions that occur while running in Problem state.

The SPIEOVERRIDE parameter is not required for programs that run in
Supervisor state, run in cross-memory, or hold any lock, because SPIE and
ESPIE exits are not eligible to receive control in these environments.

SPIEOVERRIDE is not valid on ESTAE.
The default value is SPIEOVERRIDE=NO.

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ABEND codes

None.

Return and reason codes

When control returns to the instruction following the ESTAE macro, GPR 15
contains one of the following return codes and GPR 0 contains one of the
following reason codes.

ESTAE and ESTAEX macros

Table 12. Return and Reason Codes for the ESTAE Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00

None

Meaning: Successful completion of the ESTAE request.

Action: None.

04

00

Meaning: Program error. ESTAE OV was specified but
ESTAE CT was performed. No valid ESTAE recovery
routine existed.

04

04

Meaning: Program error. ESTAE OV was specified but
ESTAE CT was performed. The last ESTAE recovery
routine was not owned by the user's RB.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

04

08

Meaning: Program error. ESTAE OV was specified but
ESTAE CT was performed. The last ESTAE recovery
routine was not created at the current linkage stack level.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

04

0C

Meaning: Program error. ESTAE OV was specified but
ESTAE CT was performed. The last recovery routine was
not an ESTAE recovery routine.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

0C

None

Meaning: Program error. A recovery routine address equal
to zero was specified, and either

* There are no recovery routines for this TCB,

* The most recent recovery routine is not owned by the
caller,

* The most recent recovery routine is not an ESTAE
recovery routine, or

* The ESTAE was created with the TOKEN parameter and
on a deactivate request, either

— The token was not specified or

— The token does not match.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

10

None

Meaning: System error. An unexpected error was
encountered while this request was being processed.

Action: Rerun your program one or more times. If the
problem persists, record the return and reason codes and
supply them to the appropriate IBM support personnel.

14

None

Meaning: Environmental error. ESTAE was unable to
obtain storage for a system data area.

Action: Free some storage and reissue the ESTAE macro.

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 109

ESTAE and ESTAEX macros

110

Table 12. Return and Reason Codes for the ESTAE Macro (continued)

Hexadecimal Hexadecimal Meaning and Action
Return Code Reason Code
18 None Meaning: Program error. ESTAE OV request was invalid

for one of the following reasons:
* ESTAE OV with the TOKEN parameter was specified but
— No ESTAE recovery routine exists or

— The recovery routine is not an ESTAE recovery routine
created with the matching token value by the current
RB.

* ESTAE OV without the TOKEN parameter was specified
but the ESTAE recovery routine was created with the
TOKEN parameter.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

1C None Meaning: Program error. ESTAE was unable to access the
input parameter list.

Action: Make sure the parameter list is in the primary
address space and reissue the ESTAE macro.

20 None Meaning: Program error. XCTL=YES was rejected because
the linkage stack was not at the same level as it was when
the RB was created.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

24 None Meaning: Program error. A recovery routine address equal
to zero was specified, but it was rejected because no ESTAE
recovery routines were active for the current linkage stack
level.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

28 None Meaning: Program error. ESTAE OV was specified, but it
was rejected because no ESTAE recovery routines were
active for the current linkage stack level.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

30 None Meaning: Program error. Branch-entered ESTAE CT was
specified, but it was rejected because the caller has a
cross-memory environment.

Action: Use ESTAEX for programs that run in a
cross-memory environment.

Example 1

If an error occurs, pass control to the ESTAE routine specified by register 4, allow
asynchronous exit processing, do not allow special error processing, do not branch
enter, and default to CT and PURGE=NONE.

ESTAE (4),ASYNCH=YES,TERM=NO,BRANCH=NO

Example 2

If an error occurs, pass control to the ESTAE routine specified by register 4. The
address of the ESTAE parameter list is in register 2. Place the token associated with
this ESTAE routine in TOKENFLD.

ESTAE (4),PARAM=(2),TOKEN=TOKENFLD

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ESTAE and ESTAEX macros

Example 3

If an error occurs, pass control to the ESTAE routine labeled ADDR, allow
synchronous exit processing, halt I/O, allow special error processing, branch enter,
use the 72-byte save area at SADDR, and execute the execute form of the macro.
EXEC is the label of the ESTAE parameter list built by a list form of the macro
elsewhere in this program.

ESTAE ADDR,ASYNCH=YES,PURGE=HALT,TERM=YES,BRANCH=YES, X
SVEAREA=SADDR,MF=(E,EXEC)

Example 4
Request an overlay of the existing ESTAE recovery routine with the following
options: the address of the parameter list is at PLIST, I/O will be halted, no
asynchronous exits will be taken, ownership will be transferred to the new request
block resulting from any XCTL macros.

ESTAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

Example 5

Provide the pointer to the recovery code in the register called EXITPTR, place the
address of the ESTAE parameter list in register 9. Register 8 points to the area
where the ESTAE parameter list (created with the MF=L option) was moved.

ESTAE (EXITPTR),PARAM=(9),MF=(E, (8))

ESTAEX - Specify task abnormal exit extended

Note: The ESTAEX macro has the same environment specifications, register
information, programming requirements, restrictions and limitations, and
performance implications as the ESTAE macro, with the exceptions that follow.

Environment
The requirements for the caller of ESTAEX that are different from ESTAE are:
Environmental factor Requirement
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary or access register (AR)

Programming requirements
If the program is in AR mode:

¢ Issue the SYSSTATE macro with the ASCENV=AR parameter before you issue
ESTAEX. SYSSTATE ASCENV=AR tells the system to generate code appropriate
for AR mode.

* User parameters, specified on the PARAM parameter, can be located in any
address space.

Restrictions
The caller of ESTAEX cannot have an EUT FRR established.

The parameters on the standard form of the ESTAEX macro are the same as for the
standard form of the ESTAE macro, except BRANCH, SVEAREA, and KEY, which
are not valid for ESTAEX.

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 111

ESTAE and ESTAEX macros

Syntax
The standard form of the ESTAEX macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.
b One or more blanks must precede ESTAEX.
ESTAEX
b One or more blanks must follow ESTAEX.
exit addr exit addr: A-type address, or register (2) - (12).
0

CT Default: CT

OV

,PARAM=list addr list addr: A-type address, or register (2) - (12).

,XCTL=NO Default: XCTL=NO

XCTL=YES

,PURGE=NONE Default: PURGE=NONE

,PURGE=QUIESCE

,PURGE=HALT

,ASYNCH=YES Default: ASYNCH=YES

,ASYNCH=NO

,CANCEL=YES Default: CANCEL=YES

,CANCEL=NO

,TERM=NO Default: TERM=NO

,TERM=YES

,RECORD=NO Default: RECORD=NO

,RECORD=YES

,TOKEN=token addr token addr: A-type address, or register (2) - (12).

112 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ESTAE and ESTAEX macros

Syntax

Description

,RELATED=value

value: Any valid macro keyword specification.

,SSPIEOVERRIDE=NO

Default: SPIEOVERRIDE=NO

,SPIEOVERRIDE=YES

Parameters

The parameters are explained under the syntax for the standard form of the ESTAE

macro.

ABEND codes

None.

Return and reason codes

When control returns to the instruction following the ESTAEX macro, the return
code in GPR 15 and the reason code in GPR 0 might be different from those for the
ESTAE macro. The following table lists the return and reason codes for ESTAEX.

Table 13. Return and Reason Codes for the ESTAEX Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00

None

Meaning: Successful completion of the ESTAEX request.

Action: None.

04

00

Meaning: Program error. ESTAEX OV was specified but
ESTAEX CT was performed. No valid ESTAE recovery
routine existed.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

04

04

Meaning: Program error. ESTAEX OV was specified but
ESTAEX CT was performed. The last ESTAE recovery
routine was not owned by the user's RB.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

04

08

Meaning: Program error. ESTAEX OV was specified but
ESTAEX CT was performed. The last ESTAE recovery
routine was not created at the current linkage stack level.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

04

0C

Meaning: Program error. ESTAEX OV was specified but
ESTAEX CT was performed. The last recovery routine was
not an ESTAE recovery routine.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

08

None

Meaning: Program error. The ESTAEX request was not
valid.

Action: Correct the request and either reissue the ESTAEX
macro or rerun your program, as appropriate.

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 113

ESTAE and ESTAEX macros

114

Table 13. Return and Reason Codes for the ESTAEX Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

0C

None

Meaning: Program error. A recovery routine address equal
to zero was specified, and either

* There are no recovery routines for this TCB,

* The most recent recovery routine is not owned by the
caller,

* The most recent recovery routine is not an ESTAE
recovery routine, or

* The ESTAE was created with the TOKEN parameter and
on a deactivate request, either

— The token was not specified or

— The token does not match.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

10

None

Meaning: System error. An unexpected error was
encountered while this request was being processed.

Action: Rerun your program one or more times. If the
problem persists, record the return and reason codes and
supply them to the appropriate IBM support personnel.

14

None

Meaning: Environmental error. ESTAEX was unable to
obtain storage for a system data area.

Action: Free some storage and reissue the ESTAEX macro.

18

None

Meaning: Program error. ESTAEX OV was requested and
one of the following occurred:

* The TOKEN parameter was specified and the ESTAE
recovery routine is not owned by the current RB

* The TOKEN parameter was not specified but the ESTAE
recovery routine was created with the TOKEN
parameter.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

1C

None

Meaning: Program error. ESTAEX was unable to access the
input parameter list.

Action: Make sure the parameter list is contained in the
primary address space and reissue the ESTAEX macro.

20

None

Meaning: Program error. XCTL=YES was rejected because
the linkage stack was not at the same level as it was when
the RB was created.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

24

None

Meaning: Program error. A recovery routine address equal
to zero was specified, but it was rejected because no ESTAE
recovery routines were active for the current linkage stack
level.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

28

None

Meaning: Program error. The caller was disabled.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ESTAE and ESTAEX macros

Table 13. Return and Reason Codes for the ESTAEX Macro (continued)

Hexadecimal Hexadecimal Meaning and Action
Return Code Reason Code
2C None Meaning: Program error. The caller was locked.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

30 None Meaning: Program error. The caller had FRRs on the
current FRR stack.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

34 None Meaning: Program error. The caller was in SRB mode.

Action: Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

Example

The following example show how to establish an ESTAEX recovery routine that
receives control for all abends, including CANCEL or DETACH abends, and
overrides any SPIE or ESPIE exit that is established:

ESTAEX addr,PARM=parmaddr,TERM=YES,SPIEOVERRIDE=YES

ESTAE and ESTAEX - List form

The list form of ESTAE or ESTAEX is used to construct a remote control parameter

list.
Syntax
The list form of ESTAE or ESTAEX is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ESTAE or ESTAEX.
ESTAE
ESTAEX
b One or more blanks must follow ESTAE or ESTAEX.
exit addr exit addr: A-type address.
,PARAM=list addr list addr: A-type address.
,PURGE=NONE Default: PURGE=NONE
,PURGE=QUIESCE
,PURGE=HALT

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 115

ESTAE and ESTAEX macros

Syntax Description
,ASYNCH=YES Default: ASYNCH=YES
,ASYNCH=NO
/CANCEL=YES Default: CANCEL=YES
,CANCEL=NO
,TERM=NO Default: TERM=NO
,TERM=YES
,RECORD=NO Default: RECORD=NO
,RECORD=YES

,RELATED=value

value: Any valid macro keyword specification.

,SDWALOC31=NO

Default: SDWALOC31=NO

,SDWALOC31=YES

Note: SDWALOCS31 is supported only by ESTAE.

,SPIEOVERRIDE=NO Default: SPIEOVERRIDE=NO

,SPIEOVERRIDE=YES

,MF=L

Parameters

The parameters are explained under the standard form of the ESTAE or ESTAEX
macro with the following exception:

,MF=L
Specifies the list form of the ESTAE or ESTAEX macro.

ESTAE or ESTAEX - Execute form

A remote control parameter list is used in, and can be modified by, the execute
form of the ESTAE or ESTAEX macro. The control parameter list can be generated
by the list form of the ESTAE or ESTAEX macro. Any combination of exit addr,
PARAM, XCTL, PURGE, ASYNCH, TERM, RECORD, TOKEN, and
SPIEOVERRIDE can be specified to dynamically change the contents of the remote
ESTAE or ESTAEX parameter list. If the TOKEN parameter was previously
specified and is to be used again without change, TKNPASS=YES must be coded.
Any fields not specified on the macro remain as they were before the current
ESTAE or ESTAEX request was made.

Note: To ensure that the ESTAE or ESTAEX parameters are correct, the control
parameter list specified for the execute form of the ESTAE and ESTAEX macros
must be initialized from a list form of the macro.

116 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ESTAE and ESTAEX macros

Syntax
The execute form of the ESTAE or ESTAEX macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ESTAE or ESTAEX.
ESTAE
ESTAEX
b One or more blanks must follow ESTAE or ESTAEX.
exit addr exit addr: RX-type address, or register (2) - (12).
0
,CT
OV
,PARAM=list addr list addr: RX-type address, or register (2) - (12).
XCTL=NO
XCTL=YES
,PURGE=NONE
,PURGE=QUIESCE
,PURGE=HALT
,ASYNCH=YES
LASYNCH=NO
,CANCEL=YES Default: CANCEL=YES
,CANCEL=NO
,TERM=NO
,TERM=YES
,BRANCH=NO Note: BRANCH and SVEAREA are not valid on ESTAEX.
,BRANCH=YES,SVEAREA=save save addr: RX-type address, or register (2) - (12) or (13).
addr
,JKEY=SAVE storage key: Any numeral in the range 0-15.
JKEY=storage key Note: KEY is not valid on ESTAEX.

Chapter 6. ESTAE and ESTAEX — Specify task abnormal exit extended 117

ESTAE and ESTAEX macros

Syntax Description
,RECORD=NO
,RECORD=YES
,TOKEN=token addr token addr: RX-type address, or register (2) - (12).
,TKNPASS=NO Default: TKNPASS=NO

,TKNPASS=YES

,RELATED=value value: Any valid macro keyword specification.
,SDWALOC31=NO Default: SDWALOC31=NO

,SDWALOC31=YES Note: SDWALOCS3]1 is supported only by ESTAE.
,SPIEOVERRIDE=NO Default: SPIEOVERRIDE=NO

,SPIEOVERRIDE=YES

MEF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters

The parameters are explained under the standard form of the ESTAE or ESTAEX
macro, with the following exceptions:

» TKNPASS=NO

» TKNPASS=YES
Specifies that a previously-specified token, indicated in the parameter list,
should be ignored (NO), or should remain part of the specification (YES).

,MF=(E,ctrl addr)
Specifies the execute form of the ESTAE or ESTAEX macro using a remote
control parameter list.

118 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 7. ETCON — Connect entry table

Description

The ETCON macro connects one or more previously created entry tables to the
specified linkage table indexes in the current home address space. If an entry table
is connected to a system linkage index (an index reserved with the SYSTEM=YES
option of the LXRES macro), the entry table is connected to the linkage table of
every address space, both present and future.

The connection created by the ETCON macro remains in effect until one of the
following occurs:

* The ETDIS macro removes the connection.
* The entry table owner terminates.

* The address space to which the table is connected terminates unless the
connection was to a system linkage index.

* The system is re-IPLed.

Related macros
ETDEF, ETCRE, ETDES, and ETDIS

Environment

The requirements for callers of ETCON are:

Environmental factor Requirement

Minimum authorization: Supervisor state or PKM 0-7

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt Status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: The parameter list passed to the ETCON macro must be
addressable in primary mode at the time the macro is
issued.

Programming requirements

None.

Restrictions
The restrictions on the use of the ETCON macro are the following:

 If an entry table contains entries that cause address space switches, the entry
table owner must have PT and SSAR authorization to issue PT and SSAR
instructions to the home address space.

* An entry table can be connected only once to a single linkage table.

* The linkage index and the entry table being connected must be owned by the
same task (the cross memory resource owning task of the home address space).

© Copyright IBM Corp. 1988, 2016 119

ETCON macro

Any violation of these restrictions causes the system to abnormally end the calling
program.

Input register information

The ETCON macro is sensitive to the SYSSTATE macro with the OSREL=Z0SV1R6
parameter:

* If the caller has issued the SYSSTATE macro with the OSREL=Z0OSV1R6
parameter (Version 1 Release 6 of z/OS or later) before issuing the ETCON
macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

* Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents
13 The address of an 18-word save area

Output register information

After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When using the standard form of ETCON, do not use register 2 as your program's
base register. The macro modifies register 2 and then uses a branch instruction.
Register 2 is restored by the time control returns to your program.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system

15 Return code

Performance implications

None.
Syntax
The ETCON macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.

120 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ETCON macro

Syntax Description

b One or more blanks must precede ETCON.
ETCON

b One or more blanks must follow ETCON.

TKLIST=addr

addr: RX-type address or register (0) - (12).

JLXLIST=Ix list addr

Ix list addr: RX-type address or register (2) - (12).

JELXLIST=elx list addr

elx list addr: RX-type address or register (2) - (12).

,RELATED=value

value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

TKLIST=addr

Specifies the address of a list of fullword tokens representing the entry tables
to be connected to the linkage table. The first entry in the list must be the
number of tokens that follow (from 1 to 32). The tokens are the values returned
in register 0 when the ETCRE macro is issued.

, LXLIST=addr
,ELXLIST=addr

Ix list addr specifies the address of a list of linkage index (LX) values to which
the specified entry tables are to be connected. The list contains fullword
entries, the first of which must be the number of linkage index values that
follow (from 1 to 32). The number of linkage index values must be the same as
the number of tokens. The first entry table is connected to the first linkage
index; the second entry table is connected to the second linkage index, and so
on.

elx list addr specifies the address of an area that contains extended linkage
index (LX) values to which the specified entry tables are to be connected. The
first word in the area must be the number of extended LX values that follow
(from 1 to 32). Each subsequent eight bytes contains an extended LX value
which consists of a 4-byte sequence number followed by an LX value. The
number of extended linkage index values must be the same as the number of
tokens. The first entry table is connected to the first linkage index; the second
entry table is connected to the second linkage index, and so on. If the sequence
number in the entry is incorrect, the system issues abend X'052' with reason
code X'051B'".

,RELATED=value

Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid
coding values.

Chapter 7. ETCON — Connect entry table 121

ETCON macro

ABEND codes

052
053

See [z/0S MVS System Codes|for an explanation and programmer responses for
these codes.

Return codes

When ETCON macro returns control to your program, GPR 15 contains a return
code.

Table 14. Return Code for the ETCON Macro

Hexadecimal Return Meaning
Code
00 Meaning: The specified connections were successfully made.

Action: None required.

Examples

For examples of the use of this and other cross memory macros, refer to the
chapter on cross memory communication in [z/0S MVS Programming: Extended|
|Addressability Guidel

ETCON - List form

The list form of the ETCON macro constructs a nonexecutable parameter list. This
list, or a copy of it for reentrant programs, can be referred to by the execute form
of the macro.

Syntax
The list form of the ETCON macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.
b One or more blanks must precede ETCON.
ETCON
b One or more blanks must follow ETCON.

TKLIST=addr addr: A-type address.

,LXLIST=addr addr: A-type address.

,RELATED=value value: Any valid macro keyword specification.

122 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ETCON macro

Syntax Description
,MF=L

Parameters

The parameters are explained under the standard form of the ETCON macro, with
the following exception:
,MF=L

Specifies the list form of the ETCON macro.

ETCON - Execute form

The execute form of the ETCON macro can refer to and modify a remote
parameter list created by the list form of the macro.

Syntax
The execute form of the ETCON macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ETCON.
ETCON
b One or more blanks must follow ETCON.
TKLIST=addr addr: RX-type address or register (0) - (12).
,LXLIST=addr addr: RX-type address or register (0) - (12).
,RELATED=value value: Any valid macro keyword specification.
MF=(E,cntl addr) cntl addr: RX-type address or register (0) - (12).
Parameters

The parameters are explained under the standard form of the ETCON macro with
the following exception:

,MF=(E,cntl addr)
Specifies the execute form of the ETCON macro. This form uses a remote
parameter list.

Chapter 7. ETCON — Connect entry table 123

ETCON macro

124 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 8. ETCRE — Create entry table

Description

The ETCRE macro builds a program-call entry table based upon descriptions of
each entry. A token representing the created entry table is returned to the
requestor. You must use this token in all subsequent references to the entry table.

Related macros
ETDEF, ETDES, ETCON, and ETDIS

Environment
These are the requirements for the caller:
Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN-=HASN-=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in primary address space

Programming requirements

Before issuing ETCRE, the caller must create the ETD parameter list that ETCRE
uses as input. The parameter list defines the names and characteristics of the
program call (PC) routines that the entry table will define. To create the parameter
list, the caller can issue the ETDEF macro or can code the data constants needed to
define the list. If data constants are coded, the caller can use mapping macro
IHAETD to map them.

The created entry table is owned by the cross memory resource ownership task in
the current home address space. When the cross memory resource ownership task
terminates, entry tables are disconnected and freed.

Note: Programs written before SP/Version 3, which use data constants to define
the parameter list (the resulting ETD was called a format 0 ETD) and which use
IHAETD to map the data area, will still work. For information about the format 0
ETD, see z/OS MVS Data Areas in the |z/OS Internet library (http:// |
fwww.ibm.com /systems /z/0s/zos/bkserv /)l

Restrictions

None.

Input register information

The ETCRE macro is sensitive to the SYSSTATE macro with the OSREL=Z0SV1R6
parameter

e If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6
parameter (Version 1 Release 6 of z/OS or later) before issuing the ETCRE

© Copyright IBM Corp. 1988, 2016 125

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

ETCRE macro

macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

* Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents
13 The address of an 18-word save area

Output register information

After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register

Contents
0 The 32-bit token associated with the new entry table
1 Used as a work register by the macro

2-13 Unchanged
14 Used as a work register by the macro

15 Return code

Performance implications

None.
Syntax

The ETCRE macro is written as follows:

Syntax Description
name name: Symbol. Begin name in column 1.

b One or more blanks must precede ETCRE.
ETCRE
b One or more blanks must follow ETCRE.

ENTRIES=addr

addr: RX-type address or register (0) - (12).

,RELATED=value

value: Any valid macro keyword specification.

126 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ETCRE macro

Syntax

Description

Parameters

The parameters are explained as follows:

ENTRIES=addr
Specifies the address of the parameter list that defines the PC routines.

An entry index value that does not have a description results in an invalid
entry in the entry table. If the program name field in an ETD entry contains
zeros, an invalid entry is created for that entry index. A program call to an
invalid entry causes the caller to be abnormally terminated. The ETCRE caller
is abnormally terminated if any of the reserved fields are nonzero or if the
system cannot locate the specified program name.

,RELATED=value
Specifies information used to self-document macros by relating functions or
services to corresponding services performed elsewhere. The format and
contents of the information specified can be any valid coding values.

ABEND codes

052
053

See |z/0S MVS System Codes| for an explanation and programmer responses for this
code.

Return codes

When ETCRE macro returns control to your program, GPR 15 contains a return
code.

Table 15. Return Code for the ETCRE Macro

Hexadecimal Return Meaning
Code
00 Meaning: The entry table is successfully created.

Action: None required.

Example

Show the relationship between the ETCRE and the ETDEF macros. ETDEF builds
an entry table descriptor (ETD) that contains two ETD entries. The first entry,
associated with PROGRAMLI, is for a PC routine that runs in supervisor state. The
second entry, associated with PROGRAM?2, is for a PC routine that runs in problem
state.

*
* CREATE THE ENTRY TABLE

LA 2,ETSTART
ETCRE ENTRIES=(2)

Chapter 8. ETCRE — Create entry table 127

ETCRE macro

= DEFINE START OF ETD

*

ETSTART ETDEF TYPE=INITIAL START ETD

*

* DEFINE ENTRIES

*

ETEX2 ETDEF TYPE=ENTRY,PROGRAM="'PROGRAM1',AKM=(0:15)
ETDEF TYPE=ENTRY,PROGRAM='PROGRAM2',AKM=(0:7)

*

= DEFINE END OF ETD

*

ETDEF TYPE=FINAL

128 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 9. ETDEF — Create an entry table descriptor (ETD)

Description

The ETDEF macro builds and modifies the parameter that the ETCRE macro uses
to build an entry table. The parameter, called the entry table descriptor (ETD),
consists of a header, followed by one or more entries, called ETD entries, each one
describing a PC routine. The address of the ETD is input to the ENTRIES
parameter on the ETCRE macro.

The TYPE parameter on the ETDEF macro determines which process the ETDEF
macro is to perform:

* ETDEF TYPE=INITIAL generates the header for the ETD. (Issue this macro once
for each ETD.)

e ETDEF TYPE=ENTRY generates one ETD entry. (You can issue this macro up to
256 times for each ETD.)

* ETDEF TYPE=FINAL terminates the ETD. (Issue this macro once for each ETD.)
* ETDEF TYPE=SET,ETEADR replaces the variable fields of an existing ETD entry.

* ETDEF TYPE=SET,HEADER changes the number of entries in an existing ETD
header.

Related macros
ETDES, ETCRE, ETCON, and ETDIS

Environment
The requirements for the caller are:
Environmental factor Requirement
Minimum authorization: Problem or Supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN or PASN-=HASN
AMODE: 24- or 31-bit
ASC mode: Primary
Serialization: Not applicable
Interrupt status: None
Locks: None
Control parameters: None

Programming requirements

You need to create an ETD at compile time through TYPE=INITIAL, TYPE=ENTRY,
and TYPE=FINAL parameters and initialize the information for the entries at
execution time through TYPE=SET,ETEADR. Therefore, ETDEF with the
TYPE=INITIAL, TYPE=ENTRY, and TYPE=FINAL parameters works like a list
form of the macro. However, unlike the execute form of a macro, which changes
only the values you specify, the TYPE=SET form of ETDEF completely replaces the
variable fields of an ETD entry, taking the default values for any parameters you
omit, and leaves constant fields as initialized. This information describes the two
forms separately.

© Copyright IBM Corp. 1988, 2016 129

ETDEF macro

Although ETDEEF is the preferred programming interface, if you have an existing
ETD and you want to update the parameters (for example, change the user
parameter), you might choose to use the IHAETD mapping macro instead of
ETDEE. If you change an existing ETD, without using any of the function of
MVS/SP Version 3, you can use IHAETD with the format number of “0”. The
format of IHAETD is in z/OS MVS Data Areas in the |z /OS Internet libraryl

|(http: / /www.ibm.com/systems/z/os/zos/bkserv/)| under "ETD".

Note: When changing code to use ETDEF in place of the IHAETD mapping macro,
be sure to specify PC=BASIC so that the PC does not become a stacking PC. If you
want to change an existing PC routine to a stacking PC, be sure to change the PT
instruction in the PC routine to a PR.

Restrictions

None.

Register information

The ETDEF macro does not use any registers, except for those you use to specify
parameters.

Performance implications

None.

TYPE=INITIAL, TYPE=ENTRY, and TYPE=FINAL parameters

The ETDEF macro with the TYPE=INITIAL, TYPE=ENTRY, and TYPE=FINAL
options works like a list form of a macro.

Syntax
This form is described as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ETDEF.
ETDEF
b One or more blanks must follow ETDEF.

TYPE=INITIAL

Valid Parameters: RELATED

TYPE=ENTRY Required Parameters: PROGRAM or ROUTINE, AKM
EKM, ARR, ASCMODE, EAX, EK, PARMI1, PARM2, PC, PKM, SASN,
SSWITCH, STATE, RELATED, ASYNCH, CANCEL
TYPE=FINAL RELATED
,AKM=key-list key-list: List of keys or key ranges where a key is a number 0 - 15.

130 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

ETDEF macro

Syntax

Description

,ARR=arr

arr: A-type address, or alphanumeric character string enclosed by single
quotation marks.

,ARRCOND=NO

Default: ARRCOND=NO

,ARRCOND=YES

Valid only when ARR is also coded.

,ASYNCH=YES Default: ASYNCH=YES
LASYNCH=NO Valid only when ARR is also coded.
,CANCEL=YES Default: CANCEL=YES
,CANCEL=NO Valid only when ARR is also coded.

,ASCMODE=PRIMARY

Default: ASCMODE=PRIMARY

,ASCMODE=AR

JEAX=ceax-value

eax-value: Half-word decimal digit.

,JEK=entry-key

entry-key: Decimal digit 0 - 15.

,JEKM-=key-list

key-list: List of keys or key ranges where a key is a number 0 - 15.

Note: EKM is required with
PKM=REPLACE.

,PARM1=user-parm1

user-parm1: A-type address or string of up to 4 characters enclosed by single
quotation marks.

,LPARM2=user-parm2

user-parm2: A-type address or string of up to 4 characters enclosed by single
quotation marks.

,PC=STACKING

Default: PC=STACKING

,PC=BASIC

, PROGRAM=pgm-name

pgm-name: String of up to 8 alphanumeric characters, optionally enclosed by
single quotation marks.

,ROUTINE=rtn-addr

rtn-addr: A-type address.

,PKM=0OR

Default: PKM=0OR

,PKM=REPLACE

,RAMODE=31

Default: RAMODE=31

Chapter 9. ETDEF — Create an entry table descriptor (ETD) 131

ETDEF macro

Syntax Description
,RAMODE=24
,RAMODE=64
,RELATED=value value: Any valid macro parameter specification.
,SASN=0OLD Default: SASN=OLD
,SASN=NEW
,SSWITCH=NO Default: SSWITCH=NO
,SSWITCH=YES
,STATE=PROBLEM Default: STATE=PROBLEM
,STATE=SUPERVISOR

Parameters

The parameters are described as follows:

TYPE=INITIAL
Generates the header for the ETD.

TYPE=ENTRY
Generates an ETD entry. The system uses the defaults for any parameters you
do not specify on the ETDEF TYPE=ENTRY macro. When you later specify
ETDEF TYPE=SET, that macro initializes the entire ETD entry.

TYPE=FINAL
Specifies that the ETD is complete.

,AKM=key-list
Specifies a list of keys (0 through 15) or key ranges, optionally enclosed in
parentheses, that identifies the authorized keys in which a problem program
can use the PC routine. For example, AKM=(2,(3),5:8,(10:12),15) would
authorize keys 2, 3, 5, 6, 7, 8, 10, 11, 12, and 15.

»ARR=arr
Specifies the associated recovery routine (ARR) that receives control if the
stacking-PC routine abends. You can use the A-type address of the routine, or
the name of the routine (an alphanumeric character string) enclosed in single
quotation marks. If you use the name of the program, the program must be on
the active LPA queue (FLPA or MLPA) or be in the PLPA or nucleus. The
recovery routine will be entered in 31-bit mode. ARR is not valid with
PC=BASIC.

»ARRCOND=NO, ARRCOND=YES
Specifies whether or not the ARR is conditional.

ARRCOND=NO, indicates that the ARR is not conditional, which means that
the system follows the rules described in |”Using ARRS”l found in
IProgramming: Authorized Assembler Services Guidd with respect to recording in
LOGREC error recording if the ARR is skipped. ARRCOND=YES indicates that
no recording in LOGREC error recording is to occur if the ARR is skipped.

132 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ETDEF macro

Use ARRCOND=YES to avoid having to provide two PCs, one without an
ARR for use in an FRR environment, and one with an ARR for use when not
in an FRR environment.

ARRCOND is valid only with ARR.

»ASYNCH=YES

»ASYNCH=NO
Specifies whether or not the ARR can be interrupted by asynchronous exits.
ASYNCH=YES specifies that the ARR can be interrupted by asynchronous
exits. ASYNCH=NO specifies that the ARR cannot be interrupted by
asynchronous exits. ASYNCH=YES is the default. ASYNCH is valid only with
ARR.

,CANCEL=YES

» CANCEL=NO
Specifies whether or not the ARR can be interrupted by CANCEL/DETACH
processing. CANCEL=YES specifies that the ARR can be interrupted by
CANCEL/DETACH processing. CANCEL=NO specifies that the ARR cannot
be interrupted by CANCEL/DETACH processing. CANCEL=YES is the
default. CANCEL is valid only with ARR. To specify CANCEL=NO, one of the
following conditions must be true for the stacking PC routine protected by the
ARR:

* The stacking PC routine runs in supervisor state.
* The entry key for the stacking PC routine is a system key.

¢ The stacking PC routine runs with a system key valid for the entry key
mask that will either replace or be ORed with the PKM.

»ASCMODE=PRIMARY

»ASCMODE=AR
Specifies that the stacking PC routine will execute in primary ASC mode
(ASCMODE=PRIMARY) or in AR ASC mode (ASCMODE=AR).
ASCMODE=AR is not valid with PC=BASIC. ASCMODE=PRIMARY is the
default.

,EAX=eax-value
Specifies the extended authorization index (EAX) that the stacking PC routine
uses. Specify an EAX that is owned by the home address space of the issuer of
the ETCRE macro. An EAX of X'0000' means the PC routine is not
EAX-authorized. If EAX is not specified, the PC routine has the same EAX as
the issuer of the PC instruction. EAX is not valid with PC=BASIC.

,EK=entry-key
Specifies the PSW key (0 through 15) that the PC routine will run in. EK is not
valid with PC=BASIC. If you omit EK, the PC routine gets control in the key of
the caller.

,EKM=key-list
Specifies a list of keys (0 through 15) or key ranges, optionally enclosed in
parentheses, that identify the entry key mask (EKM). When the PC routine is
invoked, the keys specified identify either the additional keys that are to be
ORed into the PKM (if PKM=OR is also specified or taken as the default) or
the keys that should replace the PKM (if PKM=REPLACE is specified). EKM is
required when you specify PKM=REPLACE.

,PARM1=user-parml
Specifies the address or character string to be placed in the first word of the
latent parameter area associated with this ETD entry.

Chapter 9. ETDEF — Create an entry table descriptor (ETD) 133

ETDEF macro

Addressability to the latent parameter area is through the current primary
address space. The latent parameter address is set in general register 4 as a
result of the PC instruction, although AR4 is unchanged by the PC instruction.
If the PC routine runs in AR mode, set the access register corresponding to the
latent parameter area to zero before the PC routine attempts to use it.

,PARM2=user-parm2
Specifies the address or character string to be placed in the second word of the
latent parameter area associated with this ETD entry.

Addressability to the latent parameter area is through the current primary
address space. The latent parameter address is set in general register 4 as a
result of the PC instruction, although AR4 is unchanged by the PC instruction.
If the PC routine runs in AR mode, set the access register corresponding to the
latent parameter area to zero before the PC routine attempts to use it.

,PC=STACKING

,PC=BASIC
Indicates that this is a stacking PC (STACKING) or not a stacking PC (BASIC).
Some parameters apply only to a stacking PC. STACKING is the default.

» PROGRAM=pgm-name

,ROUTINE=rtn-addr
Specifies the PC routine. When you specify PROGRAM, the PC routine must
be on the active LPA queue (FLPA or MLPA) or be in the PLPA or nucleus. The
same restriction applies also to ROUTINE, unless this is a space-switching PC
or the PC is to be used only in the address space that established it. In other
words, the PC routine for a space-switching PC can reside in the private area
of the address space in which it will run, but the ROUTINE parameter must be
used to specify it.

When you specify ROUTINE, you can indicate the AMODE of the PC routine
with the RAMODE parameter. When you specify PROGRAM, the system
locates the PC routine and determines its AMODE.

On TYPE=ENTRY or TYPE=SET,ETEADR, either PROGRAM or ROUTINE is
required.

, PKM=0R

» PKM=REPLACE
Indicates either that the entry key mask (EKM) is ORed with the PSW key
mask (PKM) or replaces the current PKM. PKM=REPLACE is not valid with
PC=BASIC. PKM=OR is the default.

»RAMODE=31

»RAMODE=24

»RAMODE=64
Specifies the AMODE of the routine specified on the ROUTINE parameter.
RAMODE is valid only with ROUTINE. If you specify PROGRAM rather than
ROUTINE, the system locates the routine and determines its AMODE.
RAMODE-=31 is the default.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and may be any valid
coding values.

»SASN=0LD
» SASN=NEW
Specifies whether the stacking PC routine will execute with SASN equal to the

134 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ETDEF macro

caller's PASN (SASN=OLD), or with SASN equal to the PASN of the stacking
PC routine (SASN=NEW). SASN=NEW is not valid with PC=BASIC.
SASN=OLD is the default.

»SSWITCH=NO

» SSWITCH=YES
Specifies whether or not the PC routine switches address spaces. If
SSWITCH=NO is specified, the PC does not switch address spaces. If
SSWITCH=YES is specified, the PC routine will execute in the address space of
the creator of the entry table with the authority of that address space.
SSWITCH=NO is the default.

»STATE=PROBLEM

, STATE=SUPERVISOR
Specifies which state the PC routine will receive control in either problem state
(PROBLEM) or supervisor state (SUPERVISOR). The default is
STATE=PROBLEM.

An example of using the ETDEF macro follows the description of the TYPE=SET
parameter.

TYPE=SET parameter

The ETDEF macro with the SET parameter works similarly to the execute form of a
macro with this important distinction: The TYPE=SET form totally replaces all
variables in an ETD entry and takes default values for all parameters you omit.
The normal execute form of a macro changes only the values you specify.

Constants and reserved fields that are initialized by other TYPE= forms are not
updated or changed. To create an entry table in a storage area that is not initialized
(for example, one just allocated through a GETMAIN request), you must first move
a complete entry table of the proper (or larger) size to that area. The formatted
table will provide the constants and indexes. Then, you can use ETDEF TYPE=SET
to change the required entry's variable parameters.

Syntax
The form of SET is described as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ETDEF.
ETDEF
b One or more blanks must follow ETDEF.

TYPE=SET ETEADR=entry-addr

Required Parameters: PROGRAM or ROUTINE, AKM

Valid Parameters: EKM, ARR, ASCMODE, EAX, EK, PARM1, PARM2, PC,
PKM, RAMODE, SASN, SSWITCH, STATE, RELATED, ASYNCH, CANCEL

entry-addr: RX-type address or register (1) - (15).

Chapter 9. ETDEF — Create an entry table descriptor (ETD) 135

ETDEF macro

Syntax

Description

TYPE=SET HEADER=header-addr

Required Parameter: NUMETE

Valid Parameter: RELATED

header-addr: RX-type address or register (1) - (15).

,AKM=key-list

key-list: List of keys or key ranges where a key is a decimal digit 0 - 15.

,ARR=arr

arr: A-type address, register (2)-(12), or alphanumeric character string,
enclosed by single quotation marks.

,ARRCOND=NO

Default: ARRCOND=NO

,ARRCOND=YES

Valid only when ARR is also coded.

,ASYNCH=YES

Default: ASYNCH=YES

,ASYNCH=NO

Valid only when ARR is also coded.

,CANCEL=YES

Default: CANCEL=YES Valid only when ARR is also coded.

,CANCEL=NO

,ASCMODE=PRIMARY

Default: ASCMODE=PRIMARY

,ASCMODE=AR

JEAX=eax-value

eax-value: Half-word decimal digit or register (2)-(12)

,JEK=entry-key

entry-key: Decimal digit 0 - 15.

,JEKM-=key-list

key-list: List of keys or key ranges where a key is a decimal digit 0 -15.

Note: EKM is required with PKM=REPLACE.

,/NUMETE=nbr-of-entries

nbr-of-entries: 2-byte A-type address, decimal number, or register (2)-(12).

Note: NUMETE is required with HEADER.

,PARM1=user-parm1

user-parm1: A-type address, register (2)-(12), or string of up to 4 characters
enclosed by single quotation marks.

,LPARM2=user-parm?2

user-parm2: A-type address, register (2)-(12), or string of up to 4 characters
enclosed by single quotation marks.

,PC=STACKING

Default: PC=STACKING

,PC=BASIC

136 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ETDEF macro

Syntax

Description

, PROGRAM=pgm-name

pgm-name: String of up to 8 alphanumeric characters, optionally enclosed by

single quotation marks.

,ROUTINE=rtn-addr

rtn-addr: A-type address or registers (2)-(12)

,PKM=0OR

Default: PKM=0OR

,PKM=REPLACE

,RAMODE=31

Default: RAMODE=31

,RAMODE=24

,RAMODE=64

,RELATED=value

value: Any valid macro parameter specification.

,SSASN=OLD Default: SASN=OLD
,SASN=NEW
,SSSWITCH=NO Default: SSWITCH=NO

,SSWITCH=YES

,STATE=PROBLEM

Default: STATE=PROBLEM

,STATE=SUPERVISOR

Parameters

The parameters are described under the TYPE=INITIAL, TYPE=ENTRY, and
TYPE=FINAL options, with the following exceptions:

»ARRCOND=NO, ARRCOND=YES
Specifies whether or not the ARR is conditional.

ARRCOND=NO, which is the default, indicates that the ARR is not
conditional, which means that if the system skips the ARR because of an
incorrect environment, that fact is recorded in LOGREC error recording.
ARRCOND-=YES indicates that if the system skips this ARR, that fact will not
be recorded in LOGREC error recording. Use ARRCOND=YES to avoid having
to provide two PCs, one without an ARR for use in an FRR environment, and
one with an ARR for use when not in an FRR environment.

ARRCOND is valid only with ARR.

,NUMETE=nbr-of-entries
Specifies the number of contiguous entries in the ETD. nbr-of-entries is a
decimal value from 1 to 256. NUMETE is required with the HEADER
parameter. Use it to specify the number of entries you will use. It does not
change the physical size of the table, but can be less than the initial size.

TYPE=SET,ETEADR=entry-addr
Specifies the address of the ETD entry. ETDEF TYPE=SET,ETEADR sets all the
variable fields in the ETD entry that you generated through ETDEF

Chapter 9. ETDEF — Create an entry table descriptor (ETD) 137

ETDEF macro

TYPE=ENTRY macro. ETDEF TYPE=SET,ETEADR will set the ETD entry to the
parameters you specify and to the defaults on all parameters you omit. That
is, the system uses the default value, not the existing value, for any parameter
that you omit.

TYPE=SET,HEADER=header-addr
Changes the size of the ETD. Use TYPE=SET,HEADER to decrease the size of
the ETD from the size you originally established on ETDEF TYPE=INITIAL.

ABEND codes

None.

Return and reason codes

None.

Example

Define an entry table that has three entries. The PC routine called PCPGM receives
control from a program with PSW key authorization of 8, the PC routine named
OTHERTN receives control from a program with PSW authorization keys of 0
through 15, and the third PC routine called PCRTN receives control in PSW
authorization key 0. The fourth ETDEF is there to show that the number of entries
can be changed with ETDEF SET. (Perhaps, because of some input parameter, only
a subset of all possible PC routines are set up. On another invocation of the
program, perhaps all entries would be used.) The entries use all defaults other than
those on the AKM parameter.
MYPGM CSECT

BALR 12,0

USING *,12

LOAD EP=PCPGM

LR 2,0

ETDEF TYPE=SET,HEADER=MYETDS,NUMETE=3

ETDEF TYPE=SET,ETEADR=FIRST,ROUTINE=(2),AKM=8

ETCRE ENTRIES=MYETDS
RETURN

* DATA DEFINITIONS FOR PROGRAM

MYETDS ETDEF TYPE=INITIAL
FIRST ETDEF TYPE=ENTRY,ROUTINE=0,AKM=8
SECOND ETDEF TYPE=ENTRY,PROGRAM=0THERTN,AKM=0:15
THIRD ETDEF TYPE=ENTRY,ROUTINE=PCRTN,AKM=0
FOURTH ETDEF TYPE=ENTRY,ROUTINE=0,AKM=0
ETDEF TYPE=FINAL
*
*

PCRTN DS OH
* PC ROUTINE CODE

END MYPGM

Note that the combination of TYPE=INITIAL, ENTRY, and FINAL is essentially the
list form of the macro and TYPE=SET is the execute form.

138 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 10. ETDES — Destroy entry table

Description

The ETDES macro is used to destroy a previously-created entry table.

Related macros
ETDEF, ETCRE, ETCON, and ETDIS

Environment
These are the requirements for the caller:
Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN-=HASN-=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in primary address space

Programming requirements

None.

Restrictions
An entry table can be destroyed only by the address space that owns it.

Input register information

The ETDES macro is sensitive to the SYSSTATE macro with the OSREL=Z0OSV1R6
parameter

* If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6
parameter (Version 1 Release 6 of z/OS or later) before issuing the ETDES
macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

* Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents
13 The address of an 18-word save area

Output register information

After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers

© Copyright IBM Corp. 1988, 2016 139

ETDES macro

containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents
0-1 Used as work registers by the macro

2-13 Unchanged
14 Used as a work register by the macro

15 Return code

Performance implications

None.
Syntax
The ETDES macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ETDES.
ETDES
b One or more blanks must follow ETDES.
TOKEN=addr addr: RX-type address or register (0) - (12).
,PURGE=NO Default: PURGE=NO
,PURGE=YES
,RELATED=value value: Any valid macro keyword specification.
Parameters
The parameters are explained as follows:
TOKEN=addr

Specifies the address of the fullword token (returned by the ETCRE macro)
associated with the entry table to be destroyed.

, PURGE=NO

»PURGE=YES
Specifies whether (YES) or not (NO) the entry table is to be disconnected from
all linkage tables and then destroyed.

140 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ETDES macro

At the time ETDES is issued, the entry table must not be connected to any
linkage tables unless PURGE=YES is coded. If any outstanding connections still
exist and PURGE=YES is not coded, the entry table is not destroyed and the
caller is abnormally terminated.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding services. The format and contents of the information
specified can be any valid coding values.

ABEND codes

052
053

See [z/0S MVS System Codes| for an explanation and programmer responses for
these codes.

Return codes
When ETDES macro returns control to your program, GPR 15 contains a return
code.

Table 16. Return Codes for the ETDES Macro

Hexadecimal Meaning and Action
Return Code
00 Meaning: The specified entry table was destroyed. There were no connections to

linkage indexes.

Action: None required.

04 Meaning: The specified entry table was destroyed. There were connections to
linkage indexes, PURGE=YES was specified, and the entry table was
disconnected.

Action: None required. However, you may take some action based upon your
application.

Examples
For examples of the use of this and other cross memory macros, refer to the
chapter on cross memory communication in [z/0S MV'S Programming: Extended|
(Addressability Guide|

ETDES - List form

The list form of the ETDES macro constructs a nonexecutable parameter list. The
execute form of the macro can refer to this parameter list, or a copy of it for
reentrant programs.

Syntax
The list form of the ETDES macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ETDES.

Chapter 10. ETDES — Destroy entry table 141

ETDES macro

Syntax Description
ETDES
b One or more blanks must follow ETDES.
TOKEN=addr addr: A-type address.
,PURGE=NO Default: PURGE=NO
,PURGE=YES
,RELATED=value value: Any valid macro keyword specification.
,MF=L
Parameters

The parameters are explained under the standard form of the ETDES macro with
the following exception:
,MF=L

Specifies the list form of the ETDES macro.

ETDES - Execute form

The execute form of the ETDES macro can refer to and modify a remote parameter
list created by the list form of the macro.

Syntax
The execute form of the ETDES macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ETDES.
ETDES
b One or more blanks must follow ETDES.
TOKEN=addr addr: RX-type address or register (0) - (12).
,PURGE=NO Default: PURGE=NO
,PURGE=YES

142 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ETDES macro

Syntax Description
,RELATED=value value: Any valid macro keyword specification.
,MF=(E,cntl addr) cntl addr: RX-type address or register (0) - (12).
Parameters

The parameters are explained under the standard form of the ETDES macro with
the following exception:

,MF=(E,cntl addr)
Specifies the execute form of the ETDES macro. This form uses a remote
parameter list.

Chapter 10. ETDES — Destroy entry table 143

ETDES macro

144 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 11. ETDIS — Disconnect entry table

Description

The ETDIS macro disconnects one or more entry tables from the home address
space's linkage table.

Related macros
ETDEF, ETCRE, ETCON, and ETDES

Environment
These are the requirements for the caller:
Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN-=HASN-=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in primary address space

Programming requirements

None.

Restrictions

An entry table, to be disconnected, must be connected to the home address space
of the ETDIS issuer.

Input register information

The ETDIS macro is sensitive to the SYSSTATE macro with the OSREL=Z0OSV1R6
parameter

e If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6
parameter (Version 1 Release 6 of z/OS or later) before issuing the ETDIS macro,
the caller does not have to place any information into any general purpose
register (GPR) unless using it in register notation for a particular parameter, or
using it as a base register.

¢ Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents
13 The address of an 18-word save area

Output register information

After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were

© Copyright IBM Corp. 1988, 2016 145

ETDIS macro

before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents
0-1 Used as work registers by the macro

2-13 Unchanged
14 Used as a work register by the macro

15 Return code

Performance implications

None.
Syntax
The ETDIS macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede ETDIS.
ETDIS
b One or more blanks must follow ETDIS.
TKLIST=addr addr: RX-type address or register (0) - (12).
,RELATED=value value: Any valid macro keyword specification.
Parameters

The parameters are explained as follows:

TKLIST=addr
Specifies the address of a list of 1 to 32 fullword tokens, returned by the
ETCRE macro, identifying the entry tables to be disconnected from the home
address space's linkage table. The first entry of the list must be a fullword
count of the number of tokens (1 to 32) in the list.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding services performed elsewhere. The format and
contents of the information specified can be any valid coding values.

146 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

ABEND codes

052
053

ETDIS macro

See [z/0S MVSS System Codes|for an explanation and programmer responses for

these codes.

Return codes

When ETDIS macro returns control to your program, GPR 15 contains a return

code.

Table 17. Return Code for the ETDIS Macro

Hexadecimal Return Meaning

Code

00 Meaning: The entry table is successfully disconnected.
Examples

For examples of the use of this and other cross memory macros, refer to the
chapter on cross memory communication in [z/OS MVS Programming: Extended|

[Addressability Guide|

Chapter 11. ETDIS — Disconnect entry table 147

148 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 12. EVENTS — Wait for one or more events to
complete

Description

The EVENTS macro is a functional specialization of the WAIT macro with the
ECBLIST parameter, with the advantages of notifying the program that events have
completed and the order in which they completed.

The macro performs the following functions:

* Creates and deletes EVENTS tables.

¢ Initializes and maintains a list of completed event control blocks.
* Provides for single or multiple ECB processing.

For a detailed explanation of how to use EVENTS to perform these functions, see
"Using the EVENTS macro" in [z/OS MVS Programming: Assembler Services Reference
ABE-HSP

The description of the EVENTS macro follows. The EVENTS macro is also
described in [z/OS MVS Programming: Assembler Services Reference ABE-HSH with the
exception of the BRANCH=YES parameter.

Note: LOCAL lock means the local lock of the home address space.

Environment
The requirements for the caller are different for BRANCH=NO and BRANCH=YES.

If you specify BRANCH=NO, the requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

Control parameters: Must be in the primary address space

If you specify BRANCH=YES, the requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state and key 0

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: Local lock must be held

Control parameters: Must be in the primary address space

© Copyright IBM Corp. 1988, 2016 149

EVENTS macro

Programming requirements
If you specify BRANCH=YES, you must include the CVT mapping macro.

Restrictions
None.

Input register information

Before issuing the EVENTS macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Performance implications

None.
Syntax

The EVENTS macro is written as follows:

Syntax Description
name name: Symbol. Begin name in column 1.

O One or more blanks must precede EVENTS.
EVENTS
O One or more blanks must follow EVENTS.
ENTRIES=n n: Decimal digits 1-32767
ENTRIES=addr addr: Register (2) - (12).

150 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

EVENTS macro

Syntax

Description

ENTRIES=DEL, TABLE=tab addr tab addr: Symbol, RX-type address, or register (2) - (12).

TABLE=tab addr

Note: If the ENTRIES parameter is specified as indicated in the first two
formats, no other parameters may be specified.

,ECB=ecb addr

ech addr: Symbol, RX-type address, or register (2) - (12).

,LAST=last addr

last addr: Symbol, RX-type address, or register (2) - (12).

Note: If LAST is specified, WAIT must also be specified.

,WAIT=YES Note: Do not specify WAIT=YES when running in a disabled state.
,WAIT=NO
,BRANCH=NO Default: BRANCH=NO
,BRANCH=YES
Parameters

The parameters are explained below:

ENTRIES=n
ENTRIES=addr

Specifies either a register or a decimal number from 1 to 32,767 which specifies
the maximum number of completed ECB addresses that can be processed in an
EVENTS table concurrently.

Note: When this parameter is specified, no other parameter should be
specified.

ENTRIES=DEL,TABLE=tab addr

Specifies that the EVENTS table whose address is specified by TABLE=tab addr
is to be deleted. The user is responsible for deleting all of the tables he creates;
however, all existing tables are automatically freed at task termination.

Note:
1. When this parameter is specified, no other parameter should be specified.
2. TABLE resides in 24-bit addressable storage.

TABLE=tab addr

Specifies either a register number or the address of a word containing the
address of the EVENTS table associated with the request. The address specified
with the operand TABLE must be that of an EVENTS table created by this task.

Note: TABLE resides in 24-bit addressable storage.

,WAIT=NO
,WAIT=YES

Specifies whether or not to put the issuing program in a wait state when there
are no completed events in the EVENTS table (specified by the TABLE
parameter).

,ECB=ecbh addr

Specifies either a register number or the address of a word containing the

Chapter 12. EVENTS — Wait for one or more events to complete 151

EVENTS macro

address of an event control block. The EVENTS macro should be used to
initialize any event-type ECB. To avoid the accidental destruction of bit settings
by a system service such as an access method, the ECB should be initialized
after the system service that will post the ECB has been initiated (thus making
the ECB eligible for posting) and before the EVENTS macro is issued to wait
on the EVENTS table.

Note:

1. Register 1 should not be specified for the ECB address.

2. This parameter may not be specified with the LAST parameter.
3. The ECB can reside above or below 16 megabytes.
4

. If only ECB initialization is being requested, neither WAIT=NO nor
WAIT=YES should be specified, to prevent any unnecessary WAIT
processing from occurring.

,LAST=last addr
Specifies either a register number or the address of a word containing the
address of the last EVENT parameter list entry processed.

Note:
1. Do not specify Register 1 for the LAST address.
2. Do not specify this parameter with the ECB parameter.
3. The WAIT macro must also be specified.
4. LAST resides in 24-bit addressable storage.
,BRANCH=NO
»BRANCH=YES

Specifies that an SVC entry (BRANCH=NO) or a branch entry (BRANCH=YES)
is to be performed.

ABEND codes
The caller might encounter one of the following ABEND codes:
s 17A
* 17D
¢ 37A
* 37D
s 47A
s 47D
* 57D
¢ 67D
s 77D
* 87D

See |z/OS MVS System Codes| for explanations and responses for these codes.

Return and reason codes
None.

152 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

EVENTS macro

Example 1
The following shows total processing through EVENTS.

EVENTS and ECB Initialization
EVENTS ENTRIES=1000

ST R1,TABADD
WRITE ECBA
LA R2,ECBA...

EVENTS TABLE=TABADD, ECB=(R2)

Parameter List Processing
EVENTS TABLE=TABADD,WAIT=YES

LR R3,R1 PARMLIST ADDR
B LOOP2 GO TO PROCESS ECB
LOOP1 EVENTS TABLE=TABADD,WAIT=YES,LAST=(R3)
LR R3,R1 SAVE POINTER
LOOPZ EQU * PROCESS COMPLETED EVENTS
™ 0(R3),X'80' TEST FOR MORE EVENTS
BO LOOP1 IF NONE, GO WAIT
LA R3,4(,R3) GET NEXT ENTRY
B LOOP2 GO PROCESS NEXT ENTRY

Deleting EVENTS Table
EVENTS TABLE=TABADD, ENTRIES=DEL

TABADD DS F
Example 2

Processing One ECB at a Time.
EVENTS ENTRIES=10 CREATE EVENTS TABLE
ST R1,TABLE SAVE EVENTS TABLE

* ADDRESS

NEXTREC GET TPDATA,KEY GET KEY OF NEXT RECORD

* TO PROCESS
READ DECBRW,KU,,'S',MF=E READ THE RECORD
LA R3,DECBRW POINT TO ECB

EVENTS TABLE=TABLE,ECB=(R3),WAIT=YES ADD ECB TO

* TABLE AND WAIT UNTIL
* IT IS POSTED
* PROCESS THE RECORD
WRITE DECBRW,K,MF=E WRITE OUT THE RECORD
LA R3,DECBRW POINT TO THE ECB
EVENTS TABLE=TABLE,ECB=(R3),WAIT=NO
B CKRETEST GO SEE IF IT'S POSTED
RETEST ~ EVENTS TABLE=TABLE,WAIT=NO CHECK TO SEE IF ECB IS
* POSTED
CKRETEST LTR R1,R1 ANY ECBS POSTED?
BNZ NEXTREC BRANCH IF YES - NEXT
* RECORD
B RETEST ELSE KEEP CHECKING
TABLE DS A ADDRESS OF EVENTS TABLE

Chapter 12. EVENTS — Wait for one or more events to complete 153

EVENTS macro

154 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 13. EXTRACT — Extract TCB information

Description

The EXTRACT macro causes the system to provide information from specified
fields of the task control block or a subsidiary control block for either the active
task or one of its subtasks. The system places the information in an area that the
program provides. For a description of this area see “Providing an EXTRACT
Answer Area” in [z/OS MVS Programming: Authorized Assembler Services Guide,
When EXTRACT is issued, its parameter list can reside in 24 or 31-bit addressable
storage.

To obtain the address of a TIOT entry, you can use either the GETDSAB macro or
the EXTRACT macro.

Your installation might have installed products that require the use of the
GETDSAB macro to obtain the address of the products' TIOT entries. If you plan to
use the EXTRACT macro, first check the documentation for the related product to
ensure that the product does not require the use of the GETDSAB macro.

Note:

1. For procedures for using GETDSAB to obtain the address of a TIOT entry and
the UCB address, see [z/0S MVS Programming: Authorized Assembler Services|

2. If the EXTRACT macro is used to obtain the TIOT in order to find the UCB, it
is the user's responsibility to ensure that the TIOT contains the UCB address.
For procedures for finding the UCB address, see z/OS MVS Programming]
[Authorized Assembler Services Guide}

Environment

The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Problem state, and user key
Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

Control parameters: Must be in the primary address space

Programming requirements

None.

Restrictions
None.

Performance implications

None.

© Copyright IBM Corp. 1988, 2016 155

EXTRACT macro

Syntax
The standard form of the EXTRACT macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede EXTRACT.
EXTRACT
b One or more blanks must follow EXTRACT.
answer addr answer addr: A-type address, or register (2) - (12).
'S’ Default: 'S'
,tcb addr tcb addr: A-type address, or register (2) - (12).
,FIELDS=(tcb info) tcb info: Any combination of the following, separated by commas:
ALL PRI
GRS CMC
FRS TIOT
AETX COMM
TSO PSB
TJID ASID
Parameters

The parameters are explained as follows:

answer addr
Specifies the address of the answer area to contain the requested information.
The area is one or more fullwords, starting on a fullword boundary. The
number of fullwords must be the same as the number of fields specified in the
FIELDS parameter, unless ALL is coded. If ALL is coded, seven fullwords are
required.

R 1 S 1

,tch addr
Specifies the address of a fullword on a fullword boundary containing the
address of a task control block for a subtask of the active task. If ’S” is coded or
is the default, no address is specified and the active task is assumed.

,FIELDS=(tcbh info)
Specifies the task control block information requested:

156 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

EXTRACT macro

ALL Requests information from the GRS, FRS, reserved, AETX, PRI, CMC,
and TIOT fields. (If ALL is specified, 7 words are required just for
ALL.)

GRS Is the address of the save area used by the system to save the general
purpose registers 0-15 when the task is not active.

FRS Is the address of the save area used by the system to save the floating
point registers 0, 2, 4, and 6 when the task is not active.

AETX Is the address of the end-of-task exit routine specified in the ETXR
parameter of the ATTACH (or ATTACHX) macro used to create the
task.

PRI s the current limit (third byte) and dispatching (fourth byte) priorities
of the task. The two high-order bytes are set to zero.

CMC s the task completion code. If the task is not complete, the field is set
to zero.

TIOT Is the address of the task input/output table.

COMM
Is the address of the command scheduler communications list. The list
consists of a pointer to the communications event control block and a
pointer to the command input buffer, and a token. (If a token exists,
the high-order bit of the token field is set to one). The token is used
only with internal START commands. See “Issuing an Internal START
or REPLY Command” in[z/OS MVS Programming: Authorized Assembler|

Services Guide

TSO Is the address of a byte in which a high-order bit of 1 indicates a
TSO/E address space initiated from the LOGON command (that is, in
a foreground TSO/E session). A high-order bit of 0 indicates either
background TSO/E or a non-TSO/E address space.

PSB Is the address of the TSO/E protected step control block and is
returned:
* In a foreground TSO/E session (initiated through LOGON)
* In a background TSO/E session (initiated through the TSO/E TMP,
IKJEFTO1).

* In a TSO/E environment initialized outside of the TSO/E TMP
(initiated through the IKJTSOEV service).

TJID Is the address space identifier (ASID) for a foreground TSO/E session
(initiated through LOGON), or zero for either background TSO/E or a
non-TSO/E address space.

ASID s the address space identifier.

ABEND codes

The EXTRACT macro might abnormally terminate with one of the following abend
codes: X'128', X'228', and X'328'". See k/OS MVS System Codes|for explanations and
programmer responses.

Return and reason codes

None.

Chapter 13. EXTRACT — Extract TCB information =~ 157

EXTRACT macro

Example 1

Provide information from all the fields of the indicated TCB except ASID. WHERE
is the label of the answer area, ADDRESS is the label of a fullword that contains
the address of the subtask TCB for which information is to be extracted.

EXTRACT WHERE,ADDRESS,FIELDS=(ALL,TSO,COMM,PSB,TJID)

Example 2
Provide information from the current TCB, as above.
EXTRACT WHERE,'S',FIELDS=(ALL,TSO,COMM,PSB,TJID)

Example 3

Provide information from the command scheduler communications list. ANSWER
is the label of the answer area and TCBADDR is the label of a fullword that
contains the address of the subtask TCB from which information is to be extracted.

EXTRACT ANSWER,TCBADDR, FIELDS=(COMM)

EXTRACT - List form

The list form of the EXTRACT macro is used to construct a remote control
program parameter list.

Syntax
The list form of the EXTRACT macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede EXTRACT.
EXTRACT
b One or more blanks must follow EXTRACT.
answer addr answer addr: A-type address.
'S Default: 'S'
Jteb addr tch addr: A-type address.
,FIELDS=(tcb info) tcb info: any combination of the following, separated by commas:
ALL PRI
GRS CMC
FRS TIOT
AETX COMM
TSO PSB
TJID ASID

158 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

EXTRACT macro

Syntax

Description

,MF=L

Parameters

The parameters are explained under the standard form of the EXTRACT macro,
with the following exception:
,MF=L

Specifies the list form of the EXTRACT macro.

EXTRACT - Execute form

The execute form of the EXTRACT macro uses, and can modify, a remote control
program parameter list. If the FIELDS parameter, restricted in use, is coded in the
execute form, any TCB information specified in a previous FIELDS parameter is
canceled and must be respecified if required for this execution of the macro.

Syntax
The execute form of the EXTRACT macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede EXTRACT.
EXTRACT
b One or more blanks must follow EXTRACT.

answer addr

answer addr: RX-type address, or register (2) - (12).

,IS,

tch addr: RX-type address, or register (2) - (12).

Jteb addr

,FIELDS=(tcb info)

tcb info: any combination of the following, separated by commas:

ALL PRI
GRS CMC
FRS TIOT
AETX COMM
TSO PSB
TJID ASID

Chapter 13. EXTRACT — Extract TCB information ~ 159

EXTRACT macro

Syntax Description

MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters

The parameters are explained under the standard form of the EXTRACT macro,
with the following exception:

,MF=(E,ctrl addr)
Specifies the execute form of the EXTRACT macro using a remote control
program parameter list.

160 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 14. FESTAE — Fast extended STAE

Description

The FESTAE macro allows an SVC to define and activate, or to deactivate and no
longer define, an ESTAE-type recovery routine with minimal overhead and no
locking requirements. The ESTAE-type recovery routine activated by FESTAE
receives control in the same sequence and under the same conditions as it would if
it were activated by the ESTAE macro. The FESTAE macro can be issued in cross
memory mode as long as the currently addressable address space is the home
address space. For more information, see [z/0S MVS Programming: Authorized|
|Assembler Services Guidd To delete a FESTAE recovery routine that was established
by the FESTAE macro, use the FESTAE macro rather than macros such as ESTAE,
ESTAEX, or STAE.

The FESTAE macro expansion has no external linkage.

Environment
The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state and PSW key 0

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: The caller may hold locks, but is not required to hold any.

Control parameters: Must be in the primary address space Except for the TCB,
all input parameters to this macro can reside in storage
above 16 megabytes if the issuer is executing in 31-bit
addressing mode.

Programming requirements

FESTAE users executing in 31-bit addressing mode must recompile using the
FESTAE macro expansion so that the exit routine gets control in 31-bit addressing
mode.

The caller must include the following mapping macros:
+ IHAPSA

+ IHARB

+ IHASCB

« IKJTCB

Restrictions
* Only type 2, 3, or 4 SVC routines can use the FESTAE macro

* The FESTAE macro can be issued to create only one recovery routine within the
scope of the SVC routine. The ESTAEX macro or the ESTAE macro with the
BRANCH option must be used to create additional recovery routines.

© Copyright IBM Corp. 1988, 2016 161

FESTAE macro

Input register information

Before issuing the FESTAE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register. Register notation is required for the
following FESTAE macro parameters: EXITADR, WRKREG, RBADDR, TCBADDR,
and PARAM.

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents
0 Unchanged

1-14 One of the following:

¢ If you specify 0, WRKREG=work reg addr, the register you specify (1-14) is
used as a work register by the system.

¢ If you specify EXITADR=exit addr, the register you specify (1-14) is used
as a work register by the system.

* Registers not specified for either work reg addr or exit addr are
unchanged.

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Performance implications

Specification of the TCBADDR keyword results in more efficient code.

Syntax
The FESTAE macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede FESTAE.
FESTAE
b One or more blanks must follow FESTAE.

EXITADR=exit addr

exit addr: Register (1) - (14).

162 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

FESTAE macro

Syntax

Description

0,WRKREG=work reg

work reg addr: Register (1) - (14).

,RBADDR=svrb addr

sorb addr: Register (1) - (14).

,TCBADDR=tcb addr

tcb addr: Register (1) - (14).

,PARAM-=Iist addr

list addr: Register (1) - (14).

XCTL=NO Default: XCTL=NO
XCTL=YES

,PURGE=NONE Default: PURGE=NONE
,PURGE=HALT

,PURGE=QUIESCE

,ASYNCH=YES Default: ASYNCH=YES
,ASYNCH=NO

,TERM=NO Default: TERM=NO
,TERM=YES

,RECORD=NO Default: RECORD=NO
,RECORD=YES

,ERRET=label

label: Any valid assembler name.

,SDWALOC31=NO

Default: SDWALOC31=NO

,SSDWALOC31=YES

Parameters

The parameters are explained as follows:

EXITADR=exit addr

0,WRKREG=work reg
Specifies whether an ESTAE-type recovery routine is to be defined and
activated, or deactivated and no longer defined. EXITADR=exit addr specifies
the register that contains the address of an ESTAE-type recovery routine to be
entered if the task issuing FESTAE ends abnormally.

If you specify 0, WRKREG=work reg, the current ESTAE-type recovery routine is
deactivated and no longer defined if it was defined by the FESTAE macro. An
error occurs if the current ESTAE-type recovery routine was not created by
FESTAE. You do not have to initialize the register you specify for work reg; the
system uses it as a work register.

Chapter 14. FESTAE — Fast extended STAE 163

FESTAE macro

164

,RBADDR=svrb addr

Specifies a register that contains the address of the current SVRB prefix.
RBADDR must be specified if EXITADR has also been specified.

,TCBADDR=tcbh addr

Specifies the register containing the current TCB address.

,PARAM=1ist addr

Specifies the register containing the address of a user-defined parameter list
that contains data to be used by the ESTAE routine. The routine receives this
address when it is scheduled for execution. The use of this parameter list is
optional, but the user should zero out any spurious data it might contain
whether or not he intends to use it. If the user does not select the PARAM
option, the routine receives instead the 24-byte parameter area in the SVRB. In
this case, the user must locate this SVRB parameter area and initialize it with
appropriate data.

,ERRET=label

Specifies a label within the CSECT issuing the FESTAE for which
addressability has been established. The FESTAE macro branches to this label if
it is returning a code other than zero. This option saves the user the
instructions necessary to check the return code. If the user does not specify the
ERRET option, control returns instead to the instruction immediately following

the FESTAE macro. The return code is in register 15.

All the other FESTAE parameters have the same meaning as their ESTAE

counterparts.

ABEND codes

None.

Return codes

When control is returned to the instruction following the FESTAE macro, GPR 15
contains one of the following return codes.

Table 18. Return Codes for the FESTAE Macro

Hexadecimal
Return Code

Meaning and Action

00

Meaning: Successful completion of the FESTAE request.

Action None.

08

Meaning: Program error. A previous create has been issued with FESTAE for
this SVRB; the request has been ignored.

Action: None; do not reissue this macro.

0C

Meaning: Program error. Cancel has been specified under one of the following
conditions:

* There is no exit for this TCB.
* The most recent exit is not owned by the caller.

* The most recent exit was not created by FESTAE.

Action: Ensure that the current recovery routine was established using the
FESTAE macro.

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

FESTAE macro

Example

In case of an abnormal termination, execute the ESTAE routine specified by register
2, allow asynchronous processing, do not allow special error processing, default to
PURGE=NONIE, and pass the parameter list pointed to by register 7 to the ESTAE
routine.

FESTAE EXITADR=(REG2),RBADDR=(REG3),TCBADDR=(REG6), X
PARAM=(REG7) ,ASYNCH=YES, TERM=NO

Chapter 14. FESTAE — Fast extended STAE 165

FESTAE macro

166 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 15. FRACHECK — Check user's authorization (for
RACF Release 1.8.1 or earlier)

See |z/OS Security Server RACROUTE Macro Reference for a description of this macro.

© Copyright IBM Corp. 1988, 2016 167

168 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 16. FREEMAIN — Free virtual storage

Description

Use the FREEMAIN macro to free one or more areas of virtual storage. You can
also use the FREEMAIN macro to free an entire virtual storage subpool if it is
owned by the task under which your program is issuing the FREEMAIN. For more
information on releasing a subpool, see the chapter about virtual storage
management in f/OS MVS Programming: Assembler Services Guidel

You can also use the STORAGE macro to free storage, even if the storage was
obtained using the GETMAIN macro. Compared to FREEMAIN, STORAGE
provides an easier-to-use interface and has no restrictions or locking requirements.
See the chapter about virtual storage management in [z/0S MV'S Programming!]
[Authorized Assembler Services Guidd for a comparison of FREEMAIN and STORAGE.

The FREEMAIN macro is also described in[z/OS MVS Programming: Assembler|
[Services Reference ABE-HSH, with the exception of the BRANCH parameter.

The FREEMAIN macro provides two types of entry linkage: SVC entry and branch
entry. If you do not specify the BRANCH parameter, the FREEMAIN service
receives control through SVC entry. If you specify the BRANCH parameter, the
FREEMALIN service receives control through branch entry.

Environment

The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For subpools 0-127: problem state and PSW key 8-15. For
subpools 131 and 132, one or more of the following:
* Supervisor state
* PSW key 0-7
* APF-authorization.
* PSW key mask (PKM) that allows the calling program to
switch its PSW key to match the key of the storage to be
released.

For other subpools, one or more of the following:
e Supervisor state

* PSW key 0-7

¢ APF-authorized.

To issue a subpool release for subpool 0: PSW key 0. For

branch entry: supervisor state and PSW key 0.
Dispatchable unit mode: For SVC entry: task. For branch entry: task or SRB.
Cross memory mode: For SVC entry: PASN=HASN=SASN.

For branch entry: any PASN, any HASN, any SASN.

© Copyright IBM Corp. 1988, 2016 169

FREEMAIN macro

Environmental factor Requirement
AMODE: For SVC entry: 24- or 31- or 64-bit.

For branch entry: 24- or 31-bit.

* For RU, RC requests: The system treats all addresses and
values as 31-bit.

* For all other requests: If the calling program is in 31-bit
mode, the system treats all addresses and values, passed
to the FREEMAIN macro, as 31-bit. Otherwise, the system
treats addresses and values as 24-bit.

ASC mode: For BRANCH=(YES,GLOBAL), primary or access register

(AR). For all other requests, primary.

Callers in AR mode must use BRANCH=(YES,GLOBAL)
and can obtain only global (common) storage.

Interrupt status: For BRANCH=(YES,GLOBAL), disabled for I/O and
external interrupts. For all other requests, enabled for I/O
and external interrupts.

Locks: For SVC entry, no locks may be held.

* For BRANCH=YES, your program must hold the local
lock for the currently addressable address space.

* For BRANCH=YES, when running in cross-memory
mode, your program must hold the CML lock for the
currently addressable address space.

* For BRANCH=(YES,GLOBAL), your program must be in
an MVS-recognized state of disablement, which can be
achieved by obtaining the CPU lock.

Control parameters: For LC, LU, L, VC, VU, V, EC, EU, E requests: control
parameters must be in the primary address space. For other
requests: control parameters are in registers.

Programming requirements
Before issuing the FREEMAIN macro in AR mode, issue SYSSTATE ASCENV=AR.

Restrictions

* Parameters passed to the FREEMAIN macro must not reside within the area
being freed. If this restriction is violated and the parameters are the last
allocated areas on a virtual page, the whole page is freed and FREEMAIN ends
abnormally with an X'0C4' abend code.

* The current task ends abnormally if the specified virtual storage area does not
start on a doubleword boundary or, for an unconditional request, if the specified
area or subpool is not owned by the task identified as the owner of the storage.

* For SVC entry, the caller cannot have an EUT FRR established.

Input register information for SVC entry

Before issuing the FREEMAIN macro without the BRANCH parameter (SVC
entry), the caller does not have to place any information into any register unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information for SVC entry

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

170 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

FREEMAIN macro

0-1 Used as work registers by the system.

2-13 Unchanged.

14 Used as a work register by the system.

15 For a conditional request, contains the return code. For an unconditional
request, used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Input register information for BRANCH=YES

Before issuing the FREEMAIN macro with BRANCH=YES, the caller must ensure
that the following GPRs contain the specified information:

Register
Contents
4 The address of the input TCB, if you are releasing private storage.

Set GPR 4 to 0 or the address of a TCB in the currently addressable
address space. Setting GPR 4 to 0 identifies the input TCB as the TCB that
owns the cross-memory resources for the currently addressable address
space (task whose TCB address is in ASCBXTCB).

For an explanation of the term input TCB, and to determine
system-assigned defaults for private storage ownership, see the topic about
selecting the right subpool for virtual storage requests in
[Programming: Authorized Assembler Services Guide

7 The address of the ASCB for the currently addressable address space.

Output register information for BRANCH=YES
For RC, RU, VRC, and VRU requests: when control returns to the caller, GPRs

contain:
Register
Contents
0-1 Used as work registers by the system.
2 Unchanged.
3 Used as a work register by the system.
4-13 Unchanged.
14 Used as a work register by the system.
15 For a conditional request, contains the return code. For an unconditional

request, used as a work register by the system.

For all other requests: when control returns to the caller, GPRs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14 Used as a work register by the system.

15 For a conditional request, contains the return code. For an unconditional
request, used as a work register by the system.

When control returns to the caller, ARs contain:

Chapter 16. FREEMAIN — Free virtual storage 171

FREEMAIN macro

Register
Contents
0-1 Used as work registers by the system.
2-13 Unchanged.
14-15 Used as work registers by the system.

Input register information for BRANCH=(YES,GLOBAL)

Before issuing the FREEMAIN macro with BRANCH=(YES,GLOBAL), you are not
required to place any information into any register unless using it in register
notation for a particular parameter, or using it as a base register.

Output register information for BRANCH=(YES,GLOBAL)

When control returns to the caller, the GPRs contain:

Register

Contents
0-1 Used as work registers by the system.
2 Unchanged.

3-4 Used as work registers by the system.

5-13 Unchanged.

14 Used as a work register by the system.

15 For a conditional request, contains the return code. For an unconditional
request, used as a work register by the system.

When control returns to the caller, the ARs contain:

Register
Contents
0-1 Used as work registers by the system.
2-13 Unchanged
14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the service returns control.

Performance implications

None.
Syntax

The standard form of the FREEMAIN macro is written as follows:

Syntax Description
name name: symbol. Begin name in column 1.

b One or more blanks must precede FREEMAIN.
FREEMAIN
b One or more blanks must follow FREEMAIN.

172 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

FREEMAIN macro

Syntax

Description

LC LA=length addr

length addr: A-type address, or register (2) - (12).

LU,LA=length addr

L, LA=length addr

vC

A48

\Y%

EC,LV=length value

length value: symbol, decimal number, or register (2) - (12).

EU,LV=length value

E,LV=length value

RC,LV=length value

If R, RC, or RU is specified, register (0) may also be used.

RC,SP=subpool nmbr

subpool nmbr: symbol, decimal number 0-255, or register (2) - (12). If R is
specified, register (0) may also be used.

Note: For a subpool release (RC,SP or RU,SP, or R,SP), no other parameters
except RELATED and BRANCH=YES can be specified.

RU,LV=length value

RU,SP=subpool nmbr

R,LV=length value

R,SP=subpool nmbr

JA=addr

addr: A-type address, or register (2) - (12). If R, RC, or RU is specified,
register (1) can also be used.

Note: If R, RC, or RU is specified, register (1) can also be specified.

,SP=subpool nmbr

subpool nmbr: symbol, decimal number 0-255, or register (2) - (12).

Default: SP=0. If R is specified, register (0) may also be used.

,BRANCH=YES

Note: BRANCH=(YES,GLOBAL) may be specified only with RC or RU.

,BRANCH=(YES,GLOBAL)

JKEY=number

nmbr: decimal numbers 0-15, or register (2) - (12).

Note: KEY may be specified only with RC or RU.

,RELATED=value

value: any valid assembler character string.

Parameters

The parameters are explained as follows:

LC,LA=length addr
LU,LA=length addr
L,LA=length addr

Chapter 16. FREEMAIN — Free virtual storage 173

FREEMAIN macro

EC,LV=Ilength value
EU,LV=Ilength value
E,LV=length value
RC,LV=1length value
RC,SP=subpool nmbr
RU,LV=length value
RU,SP=subpool nmbr
R,LV=length value
R,SP=subpool nmbr

Specifies the type of FREEMAIN request:

LC, LU, and L indicate conditional (LC) and unconditional (LU and L) list
requests and specify release of one or more areas of virtual storage. The length
of each virtual storage area is indicated by the values in a list beginning at the
address specified in the LA parameter. The address of each of the virtual
storage areas must be provided in a corresponding list whose address is
specified in the A parameter. All virtual storage areas must start on a
doubleword boundary.

VC, VU, and V indicate conditional (VC) and unconditional (VU and V)
variable requests and specify release of single areas of virtual storage. The
address and length of the virtual storage area are provided at the address
specified in the A parameter.

EC, EU, and E indicate conditional (EC) and unconditional (EU and E) element
requests and specify release of single areas of virtual storage. The length of the
single virtual storage area is indicated in the LV parameter. The address of the
virtual storage area is provided at the address indicated in the A parameter.

RC, RU, and R indicate conditional (RC) and unconditional (RU and R) register
requests and specify either the release of all the storage in a subpool or the
release of a certain area in a subpool. For information on how to release all the
storage in a subpool, see the description for the SP parameter. If the release is
for a certain area in a subpool, the address of the virtual storage area is
indicated in the A parameter. The length of the area is indicated in the LV
parameter. The virtual storage area must start on a doubleword boundary.

Note:

1. For a conditional request, errors detected while processing a FREEMAIN
request with incorrect or inconsistent parameters cause the FREEMAIN
service to return to the caller with a non-zero return code. For all other
errors, the system abnormally ends the active task if the FREEMAIN
request cannot be successfully completed.

For an unconditional request, the system abnormally ends the active task if
the FREEMAIN request cannot be successfully completed.

2. If the address of the area to be freed is above 16 megabytes, you must use
RC or RU.

LA specifies the virtual storage address of one or more consecutive fullwords
starting on a fullword boundary. One word is required for each virtual storage
area to be released; the high-order bit in the last word must be set to 1 to
indicate the end of the list. Each word must contain the required length in the
low-order three bytes. The fullwords in this list must correspond with the
fullwords in the associated list specified in the A parameter. The words must
not be in the area to be released. If this rule is violated and if the words are the

174 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

FREEMAIN macro

last allocated items on a virtual page, the whole page is returned to storage
and the FREEMAIN abends with an X'0C4' abend code.

LV specifies the length, in bytes, of the virtual storage area being released. The

value should be a multiple of §; if it is not, the control program uses the next

high multiple of 8.

¢ If you specify R,LV=(0) you cannot specify the SP parameter. You must
specify the subpool in register 0; the high-order byte must contain the
subpool number and the low-order three bytes must contain the length
unless you are requesting a subpool release. On a subpool release, the
low-order three bytes must contain zeros.

* If you specify R,LV using a symbol, decimal number, or register 2-12, you
can specify the SP parameter using registers 0 or 2-12.

sA=addr
Specifies the virtual storage address of one or more consecutive fullwords
starting on a fullword boundary.

e If E, EC, or EU is coded, one word is required, which contains the address of
the virtual storage area to be released.

e If V, VC, or VU is coded, two words are required; the first word contains the
address of the virtual storage area to be released, and the second word
contains the length of the area to be released.

* If L, LC, or LU is coded, one word is required for each virtual storage area
to be released; each word contains the address of one virtual storage area.

* If R, RC, or RU is coded, one word is required, which contains the address
of the virtual storage area to be released. If R, RC, or RU is coded and addr
specifies a register, register 1 through 12 can be used and must contain the
address of the virtual storage area to be released.

Do not specify a storage address of 0 with a storage length of 0. This
combination causes FREEMAIN to free the subpool specified with the SP
parameter, or subpool 0 if the SP parameter is omitted.

»SP=subpool nmbr
Specifies the subpool number of the virtual area to be released. Valid subpools
numbers are between 0 and 255. The SP parameter is optional and if omitted,
subpool 0 is assumed. If you specify a register, the subpool number must be in
bits 24-31 of the register, with bits 0-23 set to zero.

A request to release all the storage in a subpool is known as a subpool release.
To issue a subpool release, specify RC,SP or RU,SP or R,SP, and do not use the
A or the KEY parameter. The following subpools are valid on the SP parameter
for a subpool release: 0-127, 129-132, 203-204, 213-214, 223-224, 229-230, 233,
236-237, 240, 249, and 250-253. An attempt to issue a subpool release for any
other subpool causes an abend X'478' or X'40A'. For information about
subpools, see |lz/OS MVS Programming: Assembler Services Guidel and |z/OS MVS|
(Programming: Authorized Assembler Services Guide]

Note:

1. Callers executing in supervisor state and PSW key 0, who specify subpool
0, will free storage from subpool 252. Therefore, when requesting a dump
of this storage through the SDUMP macro, the caller must specify subpool
252 rather than subpool 0.

2. Requests for storage from subpools 240 and 250 are translated to subpool 0
storage requests.

,BRANCH=YES

Chapter 16. FREEMAIN — Free virtual storage 175

FREEMAIN macro

,BRANCH=(YES, GLOBAL)

Specifies that a branch entry is to be used.

BRANCH=YES allows both local (private area) and global (common area)
storage to be released. See [“Input register information for BRANCH=YES” on|
for specific information on input register requirements.

BRANCH=(YES,GLOBAL) allows only global storage to be released. With
BRANCH=(YES,GLOBAL), the SP parameter may designate only subpools
226-228, 231, 239, 241, 245, 247, or 248. BRANCH=(YES,GLOBAL) is valid only
with RC or RU.

,KEY=key number

Specifies the storage key in which the storage was obtained. The valid storage
keys are 0-15. If a register is specified, the storage key must be in bits 24-27 of
the register. KEY can be specified for the following subpools: 129-132, 227-231,
241, and 249. BRANCH is required with KEY for subpools 227-231, 241, and
249. BRANCH=(YES,GLOBAL) is not valid for subpools 129-132, 229-230, and
249.

,RELATED=value

Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services and can be any valid assembler
character string.

ABEND codes

Abend codes FREEMAIN might issue are listed below in hexadecimal. For detailed
abend code information, see |z/OS MVS System Codes}

105
10A
178
205
20A
278
305
30A
378
40A
478
505
605
705
70A
778
805
S80A
878
905
90A
978
A05

176 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

 AOA
* A78
* B05
* BOA
* B78
* D05
* DOA
* D78

FREEMAIN macro

Return and reason codes

When the FREEMAIN macro returns control to your program and you specified a
conditional request, GPR 15 contains one of the following hexadecimal return

codes:

Table 19. Return Codes for the FREEMAIN Macro

Return Code

Meaning and Action

0

Meaning: Successful completion.

Action: None.

Meaning: Program error. Not all requested virtual storage was freed.

Action: Check your program for the following kinds of errors:
* The address of the storage area to be freed is not correct.

* The subpool you have specified does not match the subpool of the storage to
be freed.

* The key you have specified does not match the key of the storage to be freed.

* For private storage: the owning task identified by the input TCB is not correct
for the storage to be freed.

Meaning: Program error. No virtual storage was freed because part of the
storage area to be freed is fixed.

Action: Determine whether you have made one of the following errors. If so,
correct your program and rerun it:

* You passed an incorrect storage area address to the FREEMAIN macro.

* You attempted to free storage that is fixed.

Example 1

Free 400 bytes of storage from subpool 10. Register 1 contains the address of the
storage area. If the storage is not allocated to the current task, do not abnormally
terminate the caller.

FREEMAIN RC,LV=400,A=(1),SP=10

Example 2

Free all of subpool 3 (if any) that belongs to the current task. If the request is not
successful, abnormally terminate the caller.

FREEMAIN RU,SP=3

Example 3

Free from subpool 5, three areas of storage of 200, 800, and 32 bytes, previously
obtained using the list and execute forms of the GETMAIN macro. Storage area
addresses are in AREAADD. If any of the storage areas to be freed are not
allocated to the current task, abnormally terminate the caller.

Chapter 16. FREEMAIN — Free virtual storage 177

FREEMAIN macro

FREEMAIN LU,LA=LNTHLIST,A=AREAADD,SP=5

LNTHLIST DC F'200',F'800',X'80"',FL3'32"
AREAADD DS 3F

Example 4

Free 400 bytes of storage from default subpool 0 using branch entry. The address
of the storage area is in register 2. If the request is not successful, do not
abnormally terminate the caller.

FREEMAIN EC,LV=400,A=(2),BRANCH=YES

Example 5

Free 48 bytes of storage from subpool 231 using global branch entry. Register 5
contains the address of the storage area. Register 3 contains the storage key of the
storage to be released. If the request is unsuccessful, abnormally terminate the
caller.

FREEMAIN RU,LV=48,A=(5),SP=231,KEY=(3),BRANCH=(YES,GLOBAL)

FREEMAIN - List form

Use the list form of the FREEMAIN macro to construct a nonexecutable control
program parameter list.

The list form of the FREEMAIN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

b One or more blanks must precede FREEMAIN.

FREEMAIN

b One or more blanks must follow FREEMAIN.

LC

LU

vC

VU

EC

EU

,LA=length addr length addr: A-type address.

178 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

FREEMAIN macro

Syntax Description
,LV=length value length value: symbol or decimal number.
Note:

1. LA may only be specified with LC, LU, or L above.
2. LV may only be specified with EC, EU, or E above.

JA=addr addr: A-type address.
,SP=subpool nmbr subpool nmbr: symbol or decimal number.
,RELATED=value value: any valid assembler character string.
,MF=L
Parameters

The parameters are explained under the standard form of the FREEMAIN macro,
with the following exceptions:
JMF=L

Specifies the list form of the FREEMAIN macro.

FREEMAIN - Execute form

A remote control program parameter list is used in, and can be modified by, the
execute form of the FREEMAIN macro. The parameter list can be generated by the
list form of either a GETMAIN or a FREEMAIN.

The execute form of the FREEMAIN macro is written as follows:

Syntax Description
name name: symbol. Begin name in column 1.
b One or more blanks must precede FREEMAIN.
FREEMAIN
b One or more blanks must follow FREEMAIN.
LC
LU
L
vC
VU

Chapter 16. FREEMAIN — Free virtual storage 179

FREEMAIN macro

Syntax Description
\Y
EC
EU
E
,LA=length addr length addr: RX-type address or register (2) - (12).
,LV=length value length value: symbol, decimal number, or register (2) - (12).
Note:

1. LA may only be specified with LC, LU, or L above.
2. LV may only be specified with EC, EU, or E above.

JA=addr addr: RX-type address, or register (2) - (12).

,SP=subpool nmbr subpool nmbr: symbol, decimal number, or register (0) or (2) - (12).

,BRANCH=YES

,RELATED=value value: any valid assembler character string.
MF=(E,list addr) list addr: RX-type address, or register (1) or (2) - (12).
Parameters

The parameters are explained under the standard form of the FREEMAIN macro,
with the following exceptions:

,MF=(E,list addr)
Specifies the execute form of the FREEMAIN macro using a remote control
program parameter list.

180 2z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 17. GETDSAB — Accessing the DSAB chain

Description
The GETDSAB macro returns a pointer to the data set association block (DSAB)
associated with a DD name.
Use the GETDSAB macro to:
* Retrieve the address of the first DSAB associated with a DD name, as specified
by:
— An input DD name
— An input device control block (DCB) address
— An input task control block (TCB) address.
* Scan the DSAB chain
See [z/0OS MVS Programming: Authorized Assembler Services Guide| for procedures that
use the DSAB address returned by the GETDSAB macro to obtain the address of
the TIOT entry and the UCB address.
Environment
The requirements for the caller are:
Environmental factor Requirement
Minimum authorization: Problem state or supervisor state, and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit addressing mode
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements

To use GETDSAB, the caller must include the DSAB mapping macro (IHADSAB),
the CVT mapping macro (CVT), and the JESCT mapping macro (IEFJESCT).

The caller must provide or inherit serialization on the SYSZTIOT resource before
calling the GETDSAB macro and while using the output addresses of the macro.
The minimum required level of serialization is shared (SHR).

The GETDSAB service does not provide a recovery environment. Because the

service runs in task mode, the system uses any recovery environment that is
defined to the caller before invoking GETDSAB.

Restrictions

Use caution when running as a system user.

GETDSAB uses the current JSCB and not the active JSCB.

© Copyright IBM Corp. 1988, 2016 181

GETDSAB macro

GETDSAB facilitates the process of finding a DSAB for an end user. In this case,
the end user runs with TCBJSCB pointing to the active JSCB.

System users who are in the window before or after the jobstep program is
attached run the risk of using the current JSCB, which might differ from the active
JSCB. System address spaces might have the same current and active JSCB address.

Register information

After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

On input to the macro, register 13 must contain the address of an 18-word save
area.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code if GPR 15 contains 12; otherwise, used as a work register by
the system

1 Used as a work register by the system

2-13 Unchanged
14 Used as a work register by the system
15 Return code

Performance implications

There are no performance implications related to GETDSAB.

Syntax
The standard form of the GETDSAB macro follows.
Syntax Description
name name: Symbol. Begin name in column 1.
a One or more blanks must precede GETDSAB.
GETDSAB
O One or more blanks must follow GETDSAB.
FIRST
NEXT

182 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GETDSAB macro

Syntax Description
DCBPTR=dcb addr dcb addr: RX-type address, or register (2) - (12).
DDNAME=dd addr dd addr: RX-type address, or register (2) - (12). This address specifies an
8-byte field which contains a DD name.
,DSABPTR=dsab addr dsab addr: RX-type address, or register (2) - (12).
,TCBPTR=tcbh addr tch addr: RX-type address, or register (2) - (12). Default: TCBPTR=0
,RETCODE-=retcode addr retcode addr: RX-type address, or register (2) - (12) of fullword output
variable
,RSNCODE=rsn addr name: RX-type address, or register (2) - (12).
,LOC=BELOW Default = BELOW
,LOC=ANY
Parameters
The parameters are described as follows:
FIRST
NEXT

DCBPTR=dcbh addr

DDNAME=dd addr
FIRST requests the first DSAB in the DSAB chain. The system uses the DSAB
chain associated with the TCB specified by the TCBPTR parameter, or, if none
is specified, by the current TCB.

NEXT requests the pointer to the next DSAB in the DSAB chain, following the
one pointed to by the initial value in DSABPTR.

DCBPTR=dcb addr specifies the name of a pointer that contains the address of a
fullword field. The fullword points to the DCB associated with a DD name.
The system retrieves the DSAB pointer associated with the DCB.

When DCBPTR points to an open DCB, DCBPTR and TCBPTR are mutually
exclusive.

Do not use the DCBPTR option for a DCB in a DCB OPEN exit, DCB ABEND
exit, data management ABEND installation exit or the DCB OPEN installation
exit.

When DCBPTR points to a closed DCB, the system selects the DSAB chain
associated with the TCB specified by TCBPTR parameter, or, if none is
specified, by the current TCB.

DDNAME=dd addr specifies a DD name associated with a DSAB. The system
puts the address of the DSAB associated with this DD name into the fullword
field specified by the DSABPTR parameter. The DSAB selected is that
associated with the TCB specified by the TCBPTR parameter, or, if none is
specified, by the current TCB. The dd addr is an 8-character, left-justified field,
with trailing blanks. The dd addr may not contain all blanks.

Chapter 17. GETDSAB — Accessing the DSAB chain 183

GETDSAB macro

,DSABPTR=dsab addr

Specifies the name of a required fullword field that will be set to the address of
the desired DSAB.

When used with the NEXT keyword, DSABPTR must contain the address of a
DSAB that was previously obtained by invoking GETDSAB with FIRST,
DCBPTR, or DDNAME. The system will replace this initial address with the
address of the next DSAB in the DSAB chain.

When used with the keywords FIRST, DCBPTR, or DDNAME, DSABPTR is an
output field only.

Upon output, DSABPTR contains the address of the specified DSAB if the
return code is zero. If the return code is not zero, DSABPTR contains 0.

,TCBPTR=tcbhb addr

Specifies the name of a pointer that contains the address of the TCB associated
with the task for which DSAB information is requested.

When DCBPTR points to an open DCB, DCBPTR and TCBPTR are mutually
exclusive.

The default, TCBPTR=0, requests the current TCB.

,RETCODE=retcode addr

Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

,RSNCODE=rsncode addr

Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0.

LOC=BELOW
LOC=ANY

Specifies whether or not GETDSAB should limit where it searches to find the
DSAB corresponding to the input DDname.

LOC=BELOW, which is the default, searches only those DSABs residing below
the 16 MB line

LOC=ANY searches both below and above the 16 MB line.

Return and reason codes

When control returns from GETDSAB, GPR 15 (and retcode addr, if you coded
RETCODE) contains one of the following decimal return codes.

Table 20. Return Codes for the GETDSAB Macro

Decimal Return Meaning

Code

00 Meaning: Successful completion

04 Meaning: Request failed. NEXT was specified when DSABPTR pointed to the
last DSAB in the DSAB chain.

08 Meaning: Request failed. The specified DSAB was not found.

12 Meaning: Request failed. Input values were in error or in conflict.

16 Meaning: Request failed. The GETDSAB function is not currently installed on

the system. Consult your system programmer.

When control returns from GETDSAB, GPR 0 (and rsncode addr, if you coded
RSNCODE) might contain one of the following decimal reason codes:

184 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GETDSAB macro

Table 21. Return and Reason Codes for the GETDSAB Macro

Decimal Return Decimal Reason Meaning

Code Code

12 1200 Request failed because of input error. The DDNAME
specified or obtained was all blanks.

12 1210 Request failed because of input error. TCBPTR was
specified when DCBPTR points to an open DCB.

12 1220 Request failed because of input error. The DSAB pointed to
by DSABPTR is not valid.

12 1230 Request failed because of input error. The LOC=BELOW is

requested, but the DSAB chain contains DSABs from both
above and below the 16 MB line. Use LOC=ANY for this
DSAB chain.

Example 1

In this example, MYDSAB will contain the address of DSAB associated with the
DD named DD09.

MVC THEDD,=CL8'DDO9'
GETDSAB DDNAME=THEDD,DSABPTR=MYDSAB

AUTO DSECT
THEDD DS CL8
MYDSAB DS AL4

Example 2

In this example, the first invocation of GETDSAB will set MYDSAB to the address
of the first DSAB in the DSAB chain. MYRC will contain the return code.

The second invocation of GETDSAB will replace the initial address in MYDSAB
with the address of the next DSAB in the DSAB chain.

GETDSAB FIRST,DSABPTR=MYDSAB,RETCODE=MYRC
GETDSAB NEXT,DSABPTR=MYDSAB

AUTO DSECT

MYDSAB DS AL4
MYRC DS F

This technique can be used to get the DSAB for the first DD in a concatenation and
then to step through the DSABs for all other DDs in the concatenation. It is the
user's responsibility to determine when the DSAB for the last DD in the
concatenation has been fetched, because a subsequent invocation of GETDSAB
NEXT will simply return the next DSAB on the chain (if one exists), even if it is for
a different DD statement.

Example 3

In this example, DCBPTR contains the address of a fullword pointer that points to
the DCB associated with a DD name. MYDSAB will contain the address of the
DSAB associated with the DCB. MYRSN will contain the reason code.

Chapter 17. GETDSAB — Accessing the DSAB chain 185

GETDSAB macro

GETDSAB DCBPTR=MYDCB,DSABPTR=MYDSAB,RSNCODE=MYRSN

AUTO DSECT

MYDSAB DS AL4

MYDCB DS AL4

MYRSN DS F
Example 4

If DCBPTR points to an open DCB, DCBPTR and TCBPTR are mutually exclusive.
The request will fail with return code 12. MYDSAB will contain 0.

If DCBPTR points to a closed DCB, the system will search the DSAB chain
associated with the TCB. MYDSAB will contain the address of the DSAB related to
the TCB specified by TCBPTR.

GETDSAB DCBPTR=MYDCB,DSABPTR=MYDSAB, TCBPTR=MYTCB

AUTO DéECT

MYDSAB DS AL4
MYDCB DS AL4
MYTCB DS F

GETDSAB - List form

Use the list form of the GETDSAB macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the

parameters.
Syntax
The list form of the GETDSAB macro follows.
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede GETDSAB.
GETDSAB
b One or more blanks must follow GETDSAB.
MF=(L,stor addr) stor addr: symbol.
MF=(L,stor addr,attr) attr: 1- to 60-character input string. Default: 0D
Parameters

The following parameters are the only ones you can specify using the list format:

186 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GETDSAB macro

MF=L

Specifies the list form of the GETDSAB macro.

The stor addr parameter specifies the name of a required storage area for the
parameter list. This storage area will be generated as part of the macro
expansion and should not be separately defined by the user. Note also, that the
"stor addr" in the List and Execute forms of the macro must refer to the same
storage area.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

GETDSAB - Execute form

Use the execute form of the GETDSAB macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the GETDSAB macro follows.
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede GETDSAB.
GETDSAB
b One or more blanks must follow GETDSAB.
FIRST
NEXT

DCBPTR=dcb addr

dcb addr: RX-type address, or register (2) - (12).

DDNAME=dd addr

dd addr: RX-type address, or register (2) - (12).

,DSABPTR=dsab addr

dsab addr: RX-type address, or register (2) - (12).

,TCBPTR=tcb addr

tcb addr: RX-type address, or register (2) - (12). Default: TCBPTR=0

,RETCODE=retcode addr

retcode addr: RX-type address, or register (2) - (12) of fullword output
variable

,RSNCODE=rsncode addr

rsncode addr: RX-type address, or register (2) - (12).

,LOC=BELOW

Default = BELOW

Chapter 17. GETDSAB — Accessing the DSAB chain 187

GETDSAB macro

Syntax Description
,LOC=ANY
MF=(E,stor addr) stor addr: RX-type address, or any register (1) - (12). If register 1 is specified,
its value may be changed by the macro invocation.
MF=(E,stor addr,COMPLETE) Default: COMPLETE
Parameters

The parameters are explained under the standard form of the GETDSAB macro,
with the following exception:

MF=(E,stor addr)
MF=(E,stor addr,COMPLETE)
Specifies the execute form of the macro.

The stor addr parameter specifies the name of a required storage area for the
parameter list.

The COMPLETE parameter specifies the degree of macro parameter syntax
checking. COMPLETE checks for required macro keywords and supplies
defaults for optional parameters that are not specified.

188 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 18. GETMAIN — Allocate virtual storage

Description

Use the GETMAIN macro to request one or more areas of virtual storage.

Before obtaining storage, be sure to read the topic about selecting the right subpool
for virtual storage requests in [z/OS MVS Programming: Authorized Assembler Services

You can also use the STORAGE macro to obtain storage. Compared to GETMAIN,
STORAGE provides an easier-to-use interface and has fewer restrictions and
locking requirements. See the virtual storage management chapter in
(Programming: Authorized Assembler Services Guide for a comparison of GETMAIN
and STORAGE.

The GETMAIN macro is also described in [z/OS MVS Programming: Assembler|
[Services Reference ABE-HSH, with the exception of the BRANCH and OWNER
parameters.

Note:

1. When you obtain storage, the system clears the requested storage to zeros if
you obtain either:

* 8192 bytes or more from a pageable, private storage subpool.

* 4096 bytes or more from a pageable, private storage subpool, with
BNDRY=PAGE specified.

In all other cases you must not assume that the storage is cleared to zeros.

The caller can specify CHECKZERO=YES to detect these and other cases
where the system clears the requested storage to zeros.

2. Do not allocate user key (8-15) storage in the common area because it can be
read or written by any program in any address space.

The GETMAIN macro provides two types of entry linkage: SVC entry and branch
entry. If you do not specify the BRANCH parameter, the GETMAIN service
receives control through SVC entry. If you specify the BRANCH parameter, the
GETMAIN service receives control through branch entry.

If you use GETMAIN to request real storage backing above 2 gigabytes, but your
system does not support 64-bit storage, your request will be treated as a request
for backing above 16 megabytes, even on earlier releases of z/OS that do not
support backing above 2 gigabytes. However, boundary requirements indicated by
the CONTBDY and STARTBDY parameters will be ignored by earlier releases of
z/0S.

© Copyright IBM Corp. 1988, 2016 189

GETMAIN macro

Environment

The requirements for the caller are:

Environmental factor

Minimum authorization:

Dispatchable unit mode:

Cross memory mode:

AMODE:

ASC mode:

Interrupt status:

Locks:

Requirement
For subpools 0-127: problem state and PSW key 8-15.

For subpools 131 and 132, one or more of the following:

e Supervisor state

* PSW key 0-7

* APF-authorization.

* PSW key mask (PKM) that allows the calling program to
switch its PSW key to match the key of the storage to be
obtained.

For other subpools: one or more of the following:
* Supervisor state

* PSW key 0-7

* APF-authorization.

For branch entry: supervisor state and PSW key 0.
For SVC entry: task.

For branch entry: task or SRB.
For SVC entry: PASN=HASN=SASN.

For branch entry: any PASN, any HASN, any SASN.
For SVC entry: 24- or 31- or 64-bit.

For branch entry: 24- or 31-bit.

» For R, LC, LU, VC, VU, EC, or EU requests: If the calling
program is in 31-bit mode, the system treats all addresses
and values as 31-bit. Otherwise, the system treats
addresses and values as 24-bit.

* For RC, RU, VRC, and VRU requests: The system treats
all addresses and values as 31-bit.

For BRANCH=(YES,GLOBAL): primary or access register

(AR).

For all other requests: primary.

Callers in AR mode must use BRANCH=(YES,GLOBAL)
and can obtain only global (common) storage.

For BRANCH=(YES,GLOBAL): disabled for I/O and
external interrupts.

For all other requests: enabled for I/O and external
interrupts.

* For SVC entry: no locks may be held.

* For BRANCH=YES: your program must hold the local
lock for the currently addressable address space. This
must be the address space from which the storage is to be
obtained.

* For BRANCH=YES, when running in cross-memory
mode: your program must hold the CML lock for the
currently addressable address space. This must be the
address space from which the storage is to be obtained.

* For BRANCH=(YES,GLOBAL): your program must be in
an z/OS-recognized state of disablement, which can be
attained by obtaining the CPU lock.

190 2z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GETMAIN macro

Environmental factor Requirement
Control parameters: For LC, LU, VC, VU, EC, EU requests: control parameters

must be in the primary address space.

For other requests: control parameters are in registers.

Programming requirements
Before issuing the GETMAIN macro in AR mode, issue SYSSTATE ASCENV=AR.

Restrictions

¢ For SVC entry, the caller cannot have an EUT FRR established.

Input register information for SVC entry

Before issuing the GETMAIN macro without the BRANCH parameter (SVC entry)
the caller does not have to place any information into any register unless using it
in register notation for a particular parameter, or using it as a base register.

Output register information for SVC entry

For LC, LU, VC, VU, EC, and EU requests: when control returns to the caller, the
general purpose registers (GPRs) contain:

Register
Contents
0-1 Used as work registers by the system.
2-13 Unchanged.
14 Used as a work register by the system.

15

Contains the return code.

For RC, RU, and R requests: when control returns to the caller the GPRs contain:

Register
Contents

0 Used as a work register by the system.

1 The address of the allocated storage when GETMAIN is successful;
otherwise, used as a work register by the system.
Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

2-13 Unchanged.

14 Used as a work register by the system.

15 Contains the return code.

For VRC and VRU requests: when control returns to the caller the GPRs contain:

Register
Contents

0 For a successful request, contains the length of the storage obtained.
Otherwise, used as a work register by the system.

1 The address of the allocated storage when GETMAIN is successful;
otherwise, used as a work register by the system.
Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

2-13 Unchanged.

14 Used as a work register by the system.

Chapter 18. GETMAIN — Allocate virtual storage 191

GETMAIN macro

15 Contains the return code.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Input register information for BRANCH=YES

Before issuing the GETMAIN macro with BRANCH=YES, the caller must ensure
that the following GPRs contain the specified information:

Register
Contents
4 The address of the input TCB, if you are obtaining private storage.

Set GPR 4 to 0 or the address of a TCB in the currently addressable
address space. Setting the GPR 4 to 0 identifies the input TCB as the TCB
that owns the cross-memory resources for the currently addressable
address space (task whose TCB address is in ASCBXTCB).

For an explanation of the term input TCB, and to determine
system-assigned defaults for private storage ownership, see the topic about
selecting the right subpool for virtual storage requests in
(Programming: Authorized Assembler Services Guidel

7 The address of the ASCB for the currently addressable address space.

Output register information for BRANCH=YES

For RC, RU, and R requests: when control returns to the caller, the GPRs contain:

Register
Contents
0 Used as a work register by the system.
1 The address of the allocated storage when GETMAIN is successful;

otherwise, used as a work register by the system.

Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

2 Unchanged

3 For R requests, unchanged. For RC and RU requests, used as a work
register by the system.

4-13 Unchanged.

14 Used as a work register by the system.

15 Contains the return code.

For VRC and VRU requests: when control returns to the caller, the GPRs contain:

Register
Contents
0 For a successful request, contains the length of the storage obtained.
Otherwise, used as a work register by the system. storage obtained.
1 The address of the allocated storage when GETMAIN is successful;

otherwise, used as a work register by the system.

Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

192 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GETMAIN macro

2 Unchanged

3 Used as a work register by the system.
4-13 Unchanged.

14 Used as a work register by the system.
15 Contains the return code.

For EC, EU, LC, LU, VC, and VU requests: when control returns to the caller, the
GPRs contain:

Register

Contents
0-1 Used as work registers by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Contains the return code.

When control returns to the caller, the ARs contain:

Register
Contents
0-1 Used as work registers by the system.
2-13 Unchanged.
14-15 Used as work registers by the system.

Input register information for BRANCH=(YES,GLOBAL)

For RC, RU, VRC, and VRU requests (the only valid requests with
BRANCH=(YES,GLOBAL)): the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using
it as a base register.

Output register information for BRANCH=(YES,GLOBAL)

For RC and RU requests: when control returns to the caller, the GPRs contain:

Register
Contents
0 Used as a work register by the system.
1 The address of the allocated storage when GETMAIN is successful;

otherwise, used as a work register by the system.

Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

2 Unchanged

3-4 Used as work registers by the system.

5-13 Unchanged.

14 Used as a work register by the system.

15 Contains the return code.

For VRC and VRU requests: when control returns to the caller, the GPRs contain:

Register
Contents

0 For a successful request, contains the length of the storage obtained.
Otherwise, used as a work register by the system.

1 The address of the allocated storage when GETMAIN is successful;

otherwise, used as a work register by the system.

Chapter 18. GETMAIN — Allocate virtual storage 193

GETMAIN macro

Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

2 Unchanged.

3-4 Used as work registers by the system.

5-13 Unchanged.

14 Used as a work register by the system.

15 Contains the return code.

When control returns to the caller, the ARs contain:

Register
Contents
0-1 Used as work registers by the system.
2-13 Unchanged
14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the service returns control.

Performance implications

Repeatedly issuing the GETMAIN macro can slow down performance. If your
program requires many identically sized storage areas, use the CPOOL macro or
callable cell pool services for better performance.

Syntax
The standard form of the GETMAIN macro is written as follows:
Syntax Description
name name: symbol. Begin name in column 1.
b One or more blanks must precede GETMAIN.
GETMAIN
b One or more blanks must follow GETMAIN.
LC,LA=length addr,A=addr length addr: A-type address, or register (2) - (12).
LU,LA=length addr,A=addr length value: symbol, decimal number, or register (2) - (12).
VC,LA=length addr,A=addr If RC or RU is specified, register (0)
VU,LA=length addr,A=addr may also be specified.
EC,LV=length value,A=addr addr: A-type address or register (2) - (12).
EU,LV=length value,A=addr Note: RC, RU, VRC, or VRU must be used for address greater than 16
megabytes.
RC,LV=length value
RU,LV=length value
R,LV=length value

194

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GETMAIN macro

Syntax

Description

VRC,LV=(maximum length value,
minimum length value)

maximum length value: symbol, decimal number, or register (2) - (12).

VRU,LV=(maximum length value,
minimum length value)

minimum length value: symbol, decimal number, or register (2) - (12).

,SP=subpool nmbr

subpool nmbr: symbol or decimal number 0-255; or register (2) - (12).

Default: SP=0

Note: Specify the subpool as follows:

* Use the SP parameter for LC, LU, VC, VU, EC, EU, RC, RU, VRC, and
VRU requests, and for R requests where LV does not indicate register 0.

* Use register 0 for R requests with LV=(0); do not code the SP parameter.
The low-order three bytes of register 0 must contain the length of the
requested storage, and the high-order byte must contain the subpool
number.

,BNDRY=DBLWD

Default: BNDRY=DBLWD

,BNDRY=PAGE

Note: This parameter may not be specified with R above.

/CONTBDY=containing_bdy

containing_bdy: Decimal number 3-31 or register (2) - (12).
Note: CONTBDY may be specified only with RC or RU.

,STARTBDY=starting_bdy

starting_bdy: Decimal number 3-31 or register (2) - (12).
Note: STARTBDY may be specified only with RC or RU.

,BRANCH=YES

Note: BRANCH=(YES,GLOBAL) may be specified only with RC, RU, VRC,
or VRU.

,BRANCH=(YES,GLOBAL)

JKEY=key number

key number: decimal numbers 0-15, or register (2) - (12).

Note: KEY may be specified only with RC, RU, VRC, or VRU.

,LOC=24

Note: This parameter can only be used with RC, RU, VRC, or VRU. On all
other forms, LOC=24 is used.

LOC=(24,31)

,LOC=(24,64)

,LOC=31

,LOC=(31,31)

,LOC=(31,64)

,LOC=RES

Default: LOC=RES

,LOC=(RES,31)

LOC=(RES,64)

,LOC=EXPLICIT

Note: You must specify the INADDR parameter with

,LOC=(EXPLICIT,24)

EXPLICIT.

,LOC=(EXPLICIT,31)

Chapter 18. GETMAIN — Allocate virtual storage 195

GETMAIN macro

Syntax

Description

,LOC=(EXPLICIT,64)

JINADDR=stor addr

stor addr: RX-type address or register (1)-(12).
Note: This parameter can only be specified with LOC=EXPLICIT.

,OWNER=HOME

Default: OWNER=HOME

,OWNER=PRIMARY

,OWNER=SECONDARY

J,OWNER=SYSTEM

,CHECKZERO=YES

Default: CHECKZERO=NO

,CHECKZERO=NO

Note: CHECKZERO may be specified only with RC, RU, VRC, or VRU.

,RELATED=value

value: Any valid assembler character string

Parameters

The parameters are explained as follows.

The first parameter of the GETMAIN macro is positional and is required. This
parameter describes the type or mode of the GETMAIN request. The first
parameter can be one of the following values:

LC,LA=length
LU,LA=length
VC,LA=length
VU, LA=length
EC,LV=Ilength
EU,LV=1length
RC,LV=length
RU,LV=length

addr, A=addr
addr, A=addr
addr, A=addr
addr, A=addr
value, A=addr
value, A=addr
value

value

R,LV=length value
VRC,LV=(maximum length value,minimum length value)
VRU, LV=(maximum length value,minimum length value)

196

LC and LU indicate conditional (LC) and unconditional (LU) list requests, and
specify requests for one or more areas of virtual storage. The length of each
virtual storage area is indicated by the values in a list beginning at the address
specified in the LA parameter. The address of each of the virtual storage areas
is returned in a list beginning at the address specified in the A parameter. No
virtual storage is allocated unless all of the requests in the list can be satisfied.

VC and VU indicate conditional (VC) and unconditional (VU) variable
requests, and specify requests for single areas of virtual storage. The length of
the single virtual storage area is between the two values at the address
specified in the LA parameter. The address and actual length of the allocated
virtual storage area are returned by the system at the address indicated in the
A parameter.

EC and EU indicate conditional (EC) and unconditional (EU) element requests,
and specify requests for single areas of virtual storage. The length of the single

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GETMAIN macro

virtual storage area is indicated by the parameter, LV=Ilength value. The address
of the allocated virtual storage area is returned at the address indicated in the
A parameter.

RU and R indicate unconditional register requests; RC indicates a conditional
register request. RC, RU, and R specify requests for single areas of virtual
storage. The length of the single virtual area is indicated by the parameter,
LV=length value. The address of the allocated virtual storage area is returned in
register 1.

VRC and VRU indicate variable register conditional (VRC) and unconditional
(VRU) requests for a single area of virtual storage. The length returned will be
between the maximum and minimum lengths specified by the parameter
LV=(maximum length value, minimum length value). The address of the allocated
virtual storage is returned in register 1 and the length in register 0.

Note:

1. A conditional request indicates that the active unit of work is not to be
abnormally terminated if there is insufficient contiguous virtual storage to
satisfy the request. A conditional request does not prevent all abnormal
terminations. For example, if the request has incorrect or inconsistent
parameters, the system abnormally terminates the active unit of work. An
unconditional request indicates that the active unit of work is to be
abnormally terminated whenever the request cannot complete successfully.

2. The LC, LU, VC, VU, EC, EU, and R requests can be used only to obtain
virtual storage with addresses below 16 megabytes. The RC, RU, VRC, and
VRU requests can be used to obtain virtual storage with addresses above 16
megabytes.

LA specifies the virtual storage address of consecutive fullwords starting on a
fullword boundary. Each fullword must contain the required length in the
low-order three bytes, with the high-order byte set to 0. The lengths should be
multiples of 8; if they are not, the system uses the next higher multiple of 8. If
VC or VU was coded, two words are required. The first word contains the
minimum length required, the second word contains the maximum length. If
LC or LU was coded, one word is required for each virtual storage area
requested; the high-order bit of the last word must be set to 1 to indicate the
end of the list. The list must not overlap the virtual storage area specified in
the A parameter.

LV=length value specifies the length, in bytes, of the requested virtual storage.
The number should be a multiple of §; if it is not, the system uses the next
higher multiple of 8. If R is specified, LV=(0) may be coded; the low-order
three bytes of register 0 must contain the length, and the high-order byte must
contain the subpool number. LV=(maximum length value, minimum length value)
specifies the maximum and minimum values of the length of the storage
request.

The A parameter specifies the virtual storage address of consecutive fullwords,
starting on a fullword boundary. The system places the address of the virtual
storage area allocated in one or more words. If E was coded, one word is
required. If LC or LU was coded, one word is required for each entry in the
LA list. If VC or VU was coded, two words are required. The first word
contains the address of the virtual storage area, and the second word contains
the length actually allocated. The list must not overlap the virtual storage area
specified in the LA parameter.

Chapter 18. GETMAIN — Allocate virtual storage 197

GETMAIN macro

»SP=subpool nmbr

Specifies the number of the subpool from which the virtual storage area is to
be allocated. If you specify a register, the subpool number must be in bits 24-31
of the register, with bits 0-23 set to zero. Valid subpool numbers range from 0
to 255. See the topic about selecting the right subpool for virtual storage
requests in &/0S MVS Programming: Authorized Assembler Services Guide| for
detailed guidance on subpool selection.

Note:

1. Callers running in supervisor state and key zero, who specify subpool 0,
will obtain storage from subpool 252. Therefore, when requesting a dump
of this storage using the SDUMP or SDUMPX macro, they must specify
subpool 252 rather than 0.

2. Requests for storage from subpools 240 and 250 are translated to subpool 0
storage requests.

,BNDRY=DBLWD
,BNDRY=PAGE

Specifies that alignment on a doubleword boundary (DBLWD) or alignment
with the start of a virtual page on a 4K boundary (PAGE) is required for the
start of a requested area.

If the request specifies one of the LSQA or SQA subpools, the system ignores
the BNDRY=PAGE keyword. Requests for storage from these subpools are then
fulfilled from a single page, unless the request is greater than a page. See the
virtual storage management chapter in [z/0S MV'S Programming: Authorized|
|Assembler Services Guidd for a list of LSQA and SQA subpools.

,CONTBDY=containing_bdy

Specifies the boundary the obtained storage must be contained within. Specify
a power of 2 that represents the containing boundary. Supported values are
3-31. For example, CONTBDY=10 means the containing boundary is 2**10, or
1024 bytes. The containing boundary must be at least as large as the maximum
requested boundary. The obtained storage will not cross an address that is a
multiple of the requested boundary.

If a register is specified, the value must be in bits 24 - 31 of the register.
CONTBDY is valid only with RC or RU.

CONTBDY is not valid with LOC=EXPLICIT or BNDRY=PAGE.
CONTBDY applies to all subpools.

Generally, if you omit this parameter, there is no containing boundary.
However, if the GETMAIN is for SQA or LSQA, and is for less than 4 KB, and
STARTBDY is specified, the default of CONTBDY is 12, ensuring that the
GETMAIN stays within a 4 KB page boundary.

For GETMAIN macros that specify a CONTBDY parameter value that is larger
than 12, it is possible that the allocated area spans across a 4 KB page
boundary, even when the area is less than or equal to 4 KB and in an SQA or
LSQA subpool.

,STARTBDY=starting_bdy

Specifies the boundary the obtained storage must start on. Specify a power of 2
that represents the start boundary. Supported values are 3-31. For example,
STARTBDY=10 means the start boundary is 2**10, or 1024 bytes. The obtained
storage will begin on an address that is a multiple of the requested boundary.

If a register is specified, the value must be in bits 24-31 of the register.
STARTBDY is valid only with RC or RU.

198 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GETMAIN macro

STARTBDY is not valid with LOC=EXPLICIT or BNDRY=PAGE.
STARTBDY applies to all subpools.

If you omit this parameter, the start boundary is 8 bytes (equivalent to
specifying STARTBDY=3).

»BRANCH=YES
»BRANCH=(YES, GLOBAL)
Specifies that a branch entry is to be used.

BRANCH-=YES allows both local (private) and global (common) storage to be
allocated. See |[“Input register information for BRANCH=YES” on page 192 for
specific information on input register requirements.

BRANCH=(YES,GLOBAL) allows only global storage to be allocated. With
BRANCH=(YES,GLOBAL), the SP parameter may designate only subpools
226-228, 231, 239, 241, 245, 247, or 248. BRANCH=(YES,GLOBAL) is valid only
with RC, RU, VRC, or VRU.

,KEY=key number
Specifies the storage key in which the storage is to be obtained. The valid
storage keys are 0-15. If a register is specified, the storage key must be in bits
24-27 of the register. KEY is valid with RC, RU, VRC, or VRU, and applies to
subpools 129-132, 227-231, 241, and 249. If you specify KEY without specifying
RC, RU, VRC, or VRU, or use KEY for any other subpools, the system ignores
the KEY parameter. BRANCH is required with KEY for subpools 227-231, 241,
and 249. BRANCH=(YES,GLOBAL) is not valid for subpools 129-132, 229-230,
and 249. See the virtual storage management chapter in
[Programming: Authorized Assembler Services Guidel for information about how the
system determines the storage key to assign to your storage request.

,L0C=24

,L0C=(24,31)

,L0C=(24,64)

,L0C=31

,L0C=(31,31)

,L0C=(31,64)

,LOC=RES

,LOC=(RES,31)

,LOC=(RES, 64)

,LOC=EXPLICIT

,L0C=(EXPLICIT,24)

,LOC=(EXPLICIT,31)

,LOC=(EXPLICIT,64)
Specifies the location of virtual storage and central (also called real) storage.
This is especially helpful for callers with 24-bit dependencies. When LOC is
specified, central storage is allocated anywhere until the storage is fixed, (for
example, using the PGSER macro). You can specify the location of central
storage (after the storage is fixed) and virtual storage (whether or not the
storage is fixed) using the following LOC parameter values:

LOC=24 indicates that central and virtual storage are to be located below 16
megabytes.

Note:

1. Specifying LOC=BELOW is the same as specifying LOC=24. LOC=BELOW
is still supported, but IBM recommends using LOC=24 instead.

Chapter 18. GETMAIN — Allocate virtual storage 199

GETMAIN macro

2. LOC=24 should not be used to allocate disabled reference (DREF) storage.
If issued in AMODE?24, an abend B78 will result. In AMODE31, the
LOC=24 parameter will be ignored, and the caller will be given an address
above 16 megabytes.

3. For GETMAINSs from all SQA subpools, central storage will sometimes be
above 16 mg even when LOC=24 or LOC=BELOW is coded.

LOC=(24,31) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere below 2 gigabytes.

Note: Specifying LOC=(BELOW,ANY) is the same as specifying LOC=(24,31).
LOC=(BELOW,ANY) is still supported, but IBM recommends using
LOC=(24,31) instead.

LOC=(24,64) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere in 64-bit storage.

LOC=31 and LOC=(31,31) indicate that virtual and central storage can be
located anywhere below 2 gigabytes.

Note: Specifying LOC=ANY or LOC=(ANY,ANY) is the same as specifying
LOC =31 or LOC=(31,31). LOC=ANY and LOC=(ANY,ANY) are still
supported, but IBM recommends using LOC=31 or LOC=(31,31) instead.

LOC=(31,64) indicates that virtual storage is to be located below 2 gigabytes
and central storage can be located anywhere in 64-bit storage.

Note: When you specify LOC=31, the actual location of the virtual storage
(that is, whether it is above or below 16 megabytes) depends on the subpool
you specify on the SP parameter:

* Some subpools (for example, 203-204) are supported only above 16
megabytes. For these subpools, GETMAIN locates virtual storage above 16
megabytes. If you specify LOC=24 for one of these subpools, the system
abends your program.

All other subpools are supported both above and below 16 megabytes. For
these subpools, specifying LOC=31 causes GETMAIN to try to allocate virtual
storage above 16 megabytes. If the attempt fails, GETMAIN tries to allocate
virtual storage below 16 megabytes. If this attempt also fails, GETMAIN does
not allocate any storage.

All other subpools are supported both above and below 16 megabytes. For
these subpools, specifying LOC=31 causes GETMAIN to try to allocate virtual
storage above 16 megabytes. If the attempt fails, GETMAIN tries to allocate
virtual storage below 16 megabytes. If this attempt also fails, GETMAIN does
not allocate any storage.

When you use LOC=RES to allocate storage that can reside either above or
below 16 megabytes, LOC=RES indicates that the location of virtual and
central storage depends on the location of the caller. If the caller resides below
16 megabytes, virtual and central storage are to be located below 16
megabytes. If the caller resides above 16 megabytes, virtual and central storage
are to be located either above or below 16 megabytes.

LOC=(RES,31) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
to be located below 16 megabytes; if the caller resides above 16 megabytes,
virtual storage can be located anywhere below 2 gigabytes. In either case,
central storage can be located anywhere below 2 gigabytes.

200 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GETMAIN macro

Note: Specifying LOC=(RES,ANY) is the same as specifying LOC=(RES,31).
LOC=(RES,ANY) is still supported, but IBM recommends using LOC=(RES,31)
instead.

LOC=(RES,64) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
to be located below 16 megabytes; if the caller resides above 16 megabytes,
virtual storage can be located anywhere in 31-bit storage. In either case, central
storage can be located anywhere in 64-bit storage.

Note: If your program resides below 16 megabytes but runs with 31-bit
addressing mode, you can specify LOC=RES (as a default or explicitly) or
LOC=(RES,31) to obtain storage from a subpool supported only above 16
megabytes. Do not specify subpools supported only above 16 megabytes on
requests using LOC=RES or LOC=(RES,31) if your program resides below 16
megabytes and runs with 24-bit addressing.

LOC=EXPLICIT, LOC=(EXPLICIT,24), LOC=(EXPLICIT,31), or
LOC=(EXPLICIT,64) specify that the requested virtual storage is to be located
at the address specified with the INADDR parameter, which is required with
EXPLICIT. EXPLICIT is valid only for subpools 0-127, 129-132, 240, 250, 251,
and 252. You can use LOC=EXPLICIT only with RC or RU. You cannot specify
the BNDRY or OWNER parameters with EXPLICIT.

Note: Specifying LOC=(EXPLICIT,BELOW) is the same as specifying
LOC=(EXPLICIT,24). Specifying LOC=(EXPLICIT,ANY is the same as
specifying LOC=(EXPLICIT,31). The older specifications are still supported, but
IBM recommends using the newer specifications instead.

LOC=(EXPLICIT,31) indicates that virtual storage is to be located at the
address specified on the INADDR parameter, and central storage can be
located anywhere below 2 gigabytes.

LOC=(EXPLICIT,24) indicates that virtual storage is to be located at the
address specified on the INADDR parameter, and central storage is to be
located below 16 megabytes. The virtual storage address specified on the
INADDR parameter must be below 16 megabytes.

LOC=EXPLICIT and LOC=(EXPLICIT,64) indicate that virtual storage is to be
located at the address specified on the INADDR parameter, and central storage
can be located anywhere in 64-bit storage.

When you specify EXPLICIT on a request for storage from the same virtual
page as previously requested storage, you must request it in the same key,
subpool, and central storage area as on the previous storage request. For
example, if you request virtual storage backed with central storage below 16
megabytes, any subsequent requests for storage from that virtual page must be
specified as LOC=(EXPLICIT,24).

» INADDR=stor addr
Specifies the desired virtual address for the storage to be obtained. When you
specify INADDR, you must specify EXPLICIT on the LOC parameter.

Note:
1. The address specified on INADDR must be on a doubleword boundary.

2. Make sure that the virtual storage address specified on INADDR and the
central storage backing specified on the LOC=EXPLICIT parameter are a
valid combination. For example, if the address specified on INADDR is for

Chapter 18. GETMAIN — Allocate virtual storage 201

GETMAIN macro

virtual storage above 16 megabytes, specify LOC=EXPLICIT or
LOC=(EXPLICIT,ANY). Valid combinations include:

* Virtual above, central any

e Virtual any, central any

e Virtual below, central below

* Virtual below, central any

» OWNNER=HOME
» OWNNER=PRIMARY
» OWNNER=SECONDARY
,OWNER=SYSTEM
Specifies the entity to which the system will assign ownership of requested
CSA, ECSA, SQA, and ESQA storage. The system uses this ownership
information to track the use of CSA, ECSA, SQA and ESQA storage. This
parameter can have one of the following values:
HOME
The home address space.
PRIMARY
The primary address space.
SECONDARY
The secondary address space.
SYSTEM
The system (the storage is not associated with an address space);
specify this value if you expect the requested storage to remain
allocated after termination of the job that obtained the storage.

The default value is OWNER=HOME. The system ignores the OWNER
parameter unless you specify a CSA, SQA, ECSA, or ESQA subpool on the SP
parameter. The OWNER parameter is valid only on the VC, VU, RC, RU, VRC,
and VRU types of GETMAIN requests.

Programs that issue the GETMAIN macro with the OWNER parameter can run
on any z/OS system.

,CHECKZERO=YES

,CHECKZERO=NO
Specifies whether or not the return code for a successful completion should
indicate if the system has cleared the requested storage to zeroes. When
CHECKZERO=NO is specified or defaulted, the return code for a successful
completion is 0. When CHECKZERO=YES is specified, the return code for a
successful completion is X'14' if the system has cleared the requested storage to
zeroes, and 0 if the system has not cleared the requested storage to zeroes.

There is no performance cost to specifying CHECKZERO=YES.

Programs that issue the GETMAIN macro with the CHECKZERO parameter
can run on any z/0OS system. On a down-level system, CHECKZERO will be
ignored, and the return code for a successful completion (conditional or
unconditional) will be 0.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the

information specified are at the discretion of the user, and may be any valid
assembler character string.

ABEND codes

Abend codes the GETMAIN macro might issue are listed below in hexadecimal.
For detailed abend code information, see [z/0S MVS System Codes

202 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

* 104
* 10A
* 178
e 204
* 20A
e 278
* 30A
- 378
* 40A
* 478
* 504
* 604
« 704
* 70A
e 778
* 804
* 80A
» 878
* 90A
e 978
 AOA
* A78
* B04
* BOA
* B78
* D04
* DOA
* D78

GETMAIN macro

Return and reason codes

When the GETMAIN macro returns control to your program and you specified a
conditional request, GPR 15 contains one of the following hexadecimal return

codes:

Table 22. Return Codes for the GETMAIN Macro

Return Code

Meaning and Action

0

Meaning: Successful completion. CHECKZERO=YES was not specified,

or the system has not cleared the requested storage to zeroes.

Action: None.

Chapter 18. GETMAIN — Allocate virtual storage

203

GETMAIN macro

204

Table 22. Return Codes for the GETMAIN Macro (continued)

Return Code

Meaning and Action

4

If you did not specify EXPLICIT on the LOC parameter:

* Meaning: Environmental or system error. Virtual storage was not
obtained because insufficient storage is available.

* Action: If the request was for low private (local) storage, consult the
system programmer to see if you have exceeded an
installation-determined private storage limit.

If the request is for common (global) storage, your system is
probably experiencing a common storage shortage and your request
cannot be satisfied until the shortage is corrected.

If you specified EXPLICIT on the LOC parameter:

* Meaning: Program error. Virtual storage was not obtained because
part of the requested storage area is outside the bounds of the user
region.

e Action: Determine why your program is mistakenly requesting
storage outside the user region. If the request was for low private
(local) storage, consult the system programmer to see if you have
exceeded an installation-determined private storage limit.

Meaning: System error. Virtual storage was not obtained because the
system has insufficient central storage to back the request.

Action: Report the problem to the system programmer so the cause of
the problem can be determined and corrected.

Meaning: System error. Virtual storage was not obtained because the
system cannot page in the page table associated with the storage to be
allocated.

Action: Report the problem to the system programmer so the cause of
the problem can be determined and corrected.

10

Meaning: Program error. Virtual storage was not obtained for one of
the following reasons: This reason code applies only to GETMAIN
requests with LOC=EXPLICIT specified.

* Part of the requested area is allocated already.

* Virtual storage was already allocated in the same page as this
request, but one of the following characteristics of the storage was
different:

— The subpool
— The key
— Central storage backing

Action: Determine why your program is attempting to obtain allocated
storage or why your program is attempting to obtain virtual storage
with different attributes from the same page of storage. Correct the
coding error.

14

Meaning: Successful completion. The system has cleared the requested
storage to zeroes. This return code occurs only when
CHECKZERO=YES is specified.

Action: None.

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GETMAIN macro

Example 1

Obtain 400 bytes of storage from subpool 10. If the storage is available, the address
will be returned in register 1 and register 15 will contain 0; if storage is not
available, register 15 will contain 4.

GETMAIN RC,LV=400,SP=10

Example 2

Obtain 48 bytes of storage from default subpool 0. If the storage is available, the
address will be stored in the word at AREAADDR; if the storage is not available,
the task will be abnormally terminated.

GETMAIN EU,LV=48,A=AREAADDR

AREAADDR DS F

Example 3

Obtain a minimum of 1024 bytes to a maximum of 4096 bytes of virtual storage
from default subpool 0 with virtual and central storage locations either above or
below 16 megabytes. If the storage is available, the starting address is to be
returned in register 1 and the length of the storage allocated is to be returned in
register 0; if the storage is not available, the caller is to be terminated.

GETMAIN VRU,LV=(4096,1024),L0C=ANY

Example 4

Obtain 248 bytes of storage from subpool 0 using branch entry. To obtain storage
from subpool 0, a supervisor state and PSW key 0 caller must specify subpool 240
or 250. If the storage cannot be obtained, the caller is abnormally terminated.

GETMAIN EU,LV=248,A=AREAADDR,BRANCH=YES,SP=250.

Example 5

Obtain 4096 bytes of storage from CSA subpool 231. Assign the storage area
storage key 2. Indicate that the system is to assign the storage to the primary
address space. If the storage cannot be obtained, do not abnormally terminate the
caller.

GETMAIN RC,LV=4096,SP=231,BRANCH=(YES,GLOBAL) ,BNDRY=PAGE,KEY=2,0WNER=PRIMARY

Chapter 18. GETMAIN — Allocate virtual storage 205

GETMAIN macro

206 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 19. GQSCAN — Extract information from global
resource serialization queue

Description

Use the GQSCAN macro to obtain the status of resources and requestors of those
resources. The GQSCAN macro allows you to obtain resource information from the
system.

ISGQUERY is the IBM recommended replacement for the GQSCAN service.

The ISGRIB macro allows you to interpret the data that the GQSCAN service
routine returns to the user-specified area. The ISGRIB macro maps the resource
information block (RIB) and the resource information block extent (RIBE) as shown
in z/OS MVS Data Areas in z/OS Internet Library at |http:/ /www.ibm.com /|
lsystems/z/0s/zos/bkserv /|

There are two fields in the RIB that you can use to determine whether any RIBEs
were not returned:

¢ RIBTRIBE contains the total number of RIBEs associated with this RIB

* RIBNRIBE contains the total number of RIBEs returned by GQSCAN with this
RIB in the user-specified area indicated by the AREA parameter.

Global resource serialization counts and limits the number of outstanding global
resource serialization requests. A global resource serialization request is any ENQ,
RESERVE, or GQSCAN that causes an element to be inserted into a queue in the
global resource serialization request queue area. See “Limiting global resource
serialization requests” in “Chapter 4: Serialization” in [z/OS MVS Programming/|
[Authorized Assembler Services Guided

Environment

The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Problem state with any PSW key. For the SCOPE=GLOBAL
and SCOPE=LOCAL parameters, supervisor state.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN or PASN-=HASN-=SASN

Any PASN, any HASN, any

SASN

AMODE: 24- or 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Control parameters must be in the primary address space.

Programming requirements

To interpret the data that the GQSCAN service routine returns in the user-specified
area, you must include the ISGRIB mapping macro as a DSECT in your program.

© Copyright IBM Corp. 1988, 2016 207

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

GQSCAN macro

Restrictions

Unauthorized callers of GOQSCAN need to be authorized through System
Authorization Facility (SAF) when Multi-level security (MLS) is active. If the caller
is not authorized, the request will fail.

When multilevel security support is active on the system, unauthorized callers of
ISGQUERY who specify REQINFO=QSCAN must have at least READ
authorization to the ISG.QSCANSERVICES.AUTHORIZATION resource in the
FACILITY class. You can activate the multilevel security support through the
SETROPTS MLACTIVE option in RACF. For general information about defining
profiles in the FACILITY class, see /OS Security Server RACE Command Languagel
[Reference| and |z/OS Security Server RACF Security Administrator’s Guide] For
information about multilevel security, see[z/OS Planning for Multilevel Security and|
lthe Common Criteria)

Input register information

Before issuing the GQSCAN macro, the caller does not have to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents
0 Register 0 contains a fullword reason code if the return code in register 15

is X'0A' or X'0C'. Otherwise, register 0 contains the following two

halfword values:

¢ The first (high-order) halfword contains the length of the fixed portion
of each RIB returned.

* The second (low-order) halfword contains the length of each RIBE
returned or reason code.

1 Contains the number of RIBs that were copied into the area provided
2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications

In general, the narrower the search parameters (particularly QNAME and
RNAME), the less time it takes. Using both a specific QNAME and a specific
RNAME gives better performance than using generic prefix.

208 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GQSCAN macro

The use of XSYS=YES (the default) might greatly degrade the performance of the
request. Use it only when required.

Polling for ENQ contention through GQSCAN or ISGQUERY is not recommended.
See the |z/OS MVS Planning: Global Resource Serialization|and [z/0S MV

(Programming: Authorized Assembler Services Guidd for more information about

monitoring contention through ENF 51.

When you specify SCOPE=GLOBAL, or SCOPE=LOCAL, the performance of
programs that issue ENQ, DEQ, or the RESERVE macro might be temporarily
degraded while the GQSCAN service is running.

Syntax
The standard form of the GQSCAN macro is written as follows:
Syntax Description
name name: symbol. Begin name in column 1.
0 One or more blanks must precede GQSCAN.
GQSCAN
0 One or more blanks must follow GQSCAN.

AREA=(area addr,area size)

area addr: A-type address or register (2) - (12).

area size: symbol, decimal digit, or register (2) - (12).
Note: AREA cannot be specified with QUIT=YES.

,REQLIM=value

value: symbol, decimal digit, register (2) - (12), or the word MAX.

,REQLIM=MAX Default: REQLIM=MAX
,SCOPE=ALL Default: SCOPE=STEP
,SCOPE=STEP

,SCOPE=SYSTEM

,SCOPE=SYSTEMS

,SCOPE=LOCAL

,SCOPE=GLOBAL

,RESERVE=YES

Default: All resources requested with RESERVE and all resources requested
with ENQ.

,RESERVE=NO

,RESNAME=(gname

gname addr: RX-type address or register (2) - (12).

addr[,rname addr,

rname addr: RX-type address or register (2) - (12).

Chapter 19. GQSCAN — Extract information from global resource serialization queue 209

GQSCAN macro

Syntax Description

rname length], rname length: decimal digit, or register (2) - (12).

Default: assembled length of rname.

[GENERIC | SPECIFIC],

gname length) Default: gname length of eight.
,SYSNAME=(sysname addr sysname addr: RX-type address or register (2) - (12).
[Lasid value]) asid value: symbol, decimal digit, or register (2) - (12).

Note: Provide rname addr only when gname addr is used. Code rname length
if a register is specified for rname addr. Code an asid value only when the
sysname addr is used.

,QUIT=YES Default: QUIT=NO

,QUIT=NO Note: QUIT=YES is mutually exclusive with all parameters but TOKEN and
ME.

,REQCNT=value value: decimal digit or register (2) - (12).

Default: REQCNT=0

J,OWNERCT=value, WAITCNT=

value value: decimal digit or register (2) - (12).

JOWNERCT=value value: decimal digit or register (2) - (12).

,WAITCNT=value value: decimal digit or register (2) - (12).

,TOKEN=addr addr: RX-type address or register (2) - (12).

XSYS=YES Default: XSYS=YES

XSYS=NO Note: XSYS=NO is mutually exclusive with TOKEN, QUIT=YES and

SYSNAME, when SYSNAME is not equal to zero or zero and the asid
value(0,asid value). In a global resource serialization ring complex,
XSYS=NO is ignored.

Parameters

The parameters are explained as follows:

AREA=(area addr,area size)
Specifies the location and size of the area where information extracted from the
global resource serialization resource queues is to be placed. The minimum size
is the amount needed to describe a single resource, which is the length of the
fixed portions of the RIB and the maximum size rname rounded up to a
fullword value. IBM recommends that you use a minimum of 1024 bytes as the
area size.

,REQLIM=value

210 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GQSCAN macro

» REQLIM=MAX
Specifies the maximum number of owners and waiters to be returned for each
individual resource within the specification of RESNAME, which can be any
value in the range 0 to 2°~1. MAX specifies 2'°~1 (32767).

»SCOPE=ALL

»SCOPE=STEP

»SCOPE=SYSTEM

»SCOPE=SYSTEMS

»SCOPE=LOCAL

»SCOPE=GLOBAL
Specifies that you want information only for resources having the indicated
scope. STEP, SYSTEM, or SYSTEMS is the scope specified on the resource
request. If you specify SCOPE=ALL (meaning STEP, SYSTEM, and SYSTEMS),
the system returns information for all resources the system recognizes that
have the specified RESNAME, RESERVE, or SYSNAME characteristics. If you
specify SCOPE=LOCAL, information is returned about this system's resources
that are not being shared with other systems in the global resource serialization
complex. If you specify SCOPE=GLOBAL, information is returned about
resources that are being shared with other systems in the global resource
serialization complex. Remember that entries in the resource name lists can
cause the scope to change.

»RESERVE=YES

»RESERVE=NO
If you specify RESERVE=YES, information is only returned for the requestors
of the resource, that requested the resource with the RESERVE macro. If, for
example, the resource also had requestors with the ENQ macro, the ENQ
requestor's information would not be returned for the resource.

RESERVE=NO information is only returned for the requestors of the resource
that requested the resource with the ENQ macro. In other words, if the
resource also had requestors with the RESERVE macro, the RESERVE
requestor's information would not be returned for the resource.

,RESNAME=(gname addr[,rname addr,rname

length], [GENERIC|SPECIFIC] ,qname length)
RESNAME identifies an individual resource or group of resources that
GQSCAN will examine.

RESNAME with (rname) indicates the name of one resource.

The gname addr specifies the address of the 8-character major name of the
requested resource.

The rname addr specifies the virtual storage address of a 1 to 255-byte minor
name used with the major name to represent a single resource. Information
returned is for a single resource unless you specify SCOPE=ALL, in which case
it could be for three resources (STEP, SYSTEM, and SYSTEMS) or
SCOPE=LOCAL in which case it could be for two resources (STEP and
SYSTEM) if there is a matching name in each of these categories. If the name
specified by rname is defined by an EQU assembler instruction, the rname
length must be specified.

The rname length specifies the length of the minor name. If you use the register
form, specify length in the low-order (rightmost) byte. The length must match
the rname length specified on ENQ or RESERVE.

Chapter 19. GQSCAN — Extract information from global resource serialization queue 211

GQSCAN macro

GENERIC specifies that the rname of the requested resource must match but
only for the length specified. For example, an ENQ for SYS1.PROCLIB would
match the GQSCAN rname specified as SYS1 for an rname length of 4.

SPECIFIC specifies that the rname of the requested resource must exactly match
the GQSCAN rname.

Note: GENERIC and SPECIFIC are mutually exclusive.

The gname length specifies the number of characters in a resource gname that
must match the GQSCAN gname specified by RESNAME. You must specify a
gname length to request a GQSCAN for a generic gname. For example, an ENQ
with a gname of SYSDSN would match a GQSCAN specifying GENERIC with
a gname of SYSD and gname length of 4. Specify zero for the gname length (with
any gname) to request a generic GQSCAN matching any resource gname. If you
do not specify a gname length, GQSCAN uses the default of 8.

,SYSNAME= (sysname addr[,asid value])

Specify SYSNAME to tell GQSCAN to return information for resources
requested by tasks running on the MVS system specified in an 8-byte field
pointed to by the address in sysname address and the asid value, a 4-byte address
space identifier, right justified. Valid SYSNAMEs are specified in the IEASYSxx
parmlib member.

Information returned includes only those resources whose sysname addr and
asid value match the ones specified. SYSNAME=0 or SYSNAME=(0,asid value),
specifies that the system name is that of the system on which GQSCAN is
issued. The system issues return code X'0A' with a reason code of X'0C', if
SYSNAME=0 or SYSNAME#(0,asid value) is specified with XSYS=NO.

,QUIT=YES
,QUIT=NO

QUIT=NO indicates that you do not want to end the current global resource
serialization queue scan. QUIT=YES tells GQSCAN to stop processing the
current global resource serialization queue scan and release the storage
allocated to accumulate the information specified in the token.

If you specify QUIT=YES, you must specify the TOKEN parameter. If you
specify QUIT=YES without the TOKEN parameter, the system issues abend
X'09A".

If you specify QUIT=YES without the TOKEN parameter, the system issues
return code X'0A' with a reason code of X'34'. Specifying QUIT=YES with

TOKEN=0 will result in the system issuing return code X'0A" with a reason
code of X'2C".

If you specify QUIT=YES with a token that was previously obtained through
GQSCAN with SCOPE=LOCAL or SCOPE=GLOBAL, your program must be
in supervisor state when it issues GQSCAN with QUIT=YES.

If you specify QUIT=YES with XSYS=NO, the system issues return code X'0A'
with a reason code of X'0C'.

»REQCNT=rcount

Specifies that you want GQSCAN to return resource information only when
the total number of requesters (owners plus waiters) for an individual resource
is greater than or equal to rcount, which can be any value in the range 0 to
271

,OWNERCT=0count

Specifies that you want GQSCAN to return resource information only when

212 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GQSCAN macro

the total number of owners for an individual resource is greater than or equal
to ocount, which can be any value in the range 0 to 2*'-1.

,WAITCNT=wcount

Specifies that you want GQSCAN to return resource information only when
the total number of waiters for an individual resource is greater than or equal
to weount, which can be any value in the range 0 to 2*'-1.

OWNERCT=ocount ,WAITCNT=wcount
Specifies that you want GQSCAN to return resource information only when
the total number of owners for an individual resource is greater than or equal
to ocount or when the total number of waiters for an individual resource is
greater than or equal to wcount.

, TOKEN=addr

Specifies the address of a fullword of storage that the GQSCAN service routine
can use to provide you with any remaining information in subsequent
invocations. If the token value is zero, the scan starts at the beginning of the
resource queue. If the token value is not zero, the scan resumes at the point
specified on TOKEN. Specify the same token value that GQSCAN returned on
its previous invocation to continue where processing left off on the previous

invocation.

When providing a non-zero token value, you must specify the same scope that
you specified on the GQSCAN request that returned the token.

,XSYS=YES
,XSYS=NO

Specifies whether GQSCAN should be propagated across systems in the global
resource serialization complex, to gather complex-wide information. This
parameter is ignored in a global resource serialization ring complex, and for
requests that only gather local data.

Specify XSYS=YES if the program requires complex-wide global resource
serialization information. The caller might be suspended while the information
is being gathered. Do not specify or default to XSYS=YES if this condition
cannot be tolerated.

Specify XSYS=NO if the program will accept global resource serialization
information from this system only. The RIBE data will contain information
about requestors from other other systems in the complex only if that

information is

already available on the GQSCAN caller's system. Otherwise,

RIBE data will be provided only for requests from the GQSCAN caller's
system, and the counts in the RIB will reflect only those requests. This request
is always handled without placing the caller's dispatchable unit into a wait.

ABEND codes

See [/0S MVS System Codes|for more information about the abend codes.

Return and reason

codes

When GQSCAN returns control, register 15 contains one of the following return

codes:

Table 23. Return codes for the GQSCAN macro

Hexadecimal return
code

Meaning and action

00

Meaning: Queue scan processing is complete. Data is now in the area you specified. There
is no more data to return.
Action: Process the data.

Chapter 19.

GQSCAN — Extract information from global resource serialization queue 213

GQSCAN macro

214

Table 23. Return codes for the GQSCAN macro (continued)

Hexadecimal return
code

Meaning and action

04

Meaning:
Action: Meaning: Queue scan processing is complete. No resources matched your request.

Action: Do not try to process any data; none exists.

08

Meaning: The area you specified was filled before queue scan processing completed.
Action: If you specified TOKEN, process the information in the area and issue GQSCAN
again, specifying the TOKEN returned to you. If you did not specify TOKEN, specify a
larger area or specify a TOKEN.

0A

Meaning: The information you specified to GQSCAN is not valid.
Action: Take the action indicated by the following hexadecimal reason code found in
register 0.

Reason code

Meaning

04 The caller attempted to use GQSCAN before the global resource serialization
(GRS) address space was active.

08 The size of the reply area, specified by the AREA parameter, is too small to
contain a resource information block (RIB) of maximum size.

0C You specified mutually exclusive arguments (RESERVE=YES, RESERVE=NO,
RESNAME=, SYSNAME=, or XSYS=NO) to GQSCAN.

10 The caller was holding a local lock other than the GRS local lock when GQSCAN
was invoked.

14 One of the following conditions, in reference to the RESNAME parameter, was
detected by GQSCAN:

* The gname length was specified with a value greater than eight.

* The gname length value was specified without the gname addr value.

* The SPECIFIC parameter was specified with a rname length value of zero.
* The rname or rname length was specified without the gname addr value.

18 The asid value, for the SYSNAME parameter was specified without the sysname
addr value.

1C The REQCNT parameter was specified with either the OWNERCNT or
WAITCNT parameters.

20 The combination of values specified on the SCOPE parameter is not valid.

28 An element in GQSCAN's input parameter list was not in the caller's storage

protect key.

2C An invalid token was specified to GQSCAN.

30 The GQSCAN caller is not authorized to use the restricted interface
(SCOPE=LOCAL or GLOBAL).

34 QUIT=YES was specified without the TOKEN parameter.

38 The caller held a CMS lock other than CMSEQDQ when GQSCAN was invoked.

3C The caller held a lock that violated the environmental restrictions of a service

required by GQSCAN.

40 The caller invoked GQSCAN in the service request block (SRB) mode.

44 The value specified for the REQLIM parameter was not valid.

48 The value specified for the REQCNT parameter was not valid.

4C The value specified for the OWNERCT parameter was not valid.

50 The value specified for the WAITCNT parameter was not valid.

54 The GQSCAN token (TOKEN) is expired.

58 SETROPTS MLACTIVE is in effect, and the program is not authorized to issue

GQSCAN. Ensure the program is running authorized, or is associated with a
userid with at least READ access to the best fit FACILITY class resource profile
of the form ISG.QSCANSERVICES.AUTHORIZATION and that the FACILITY
class is SETROPTS RACLISTed.

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GQSCAN macro

Table 23. Return codes for the GQSCAN macro (continued)

Hexadecimal return
code

Meaning and action

0C

Meaning: System error. Queue scan encountered an abnormal situation while processing.
The information in your area is not meaningful. The reason code in register 0 contains one
of the following:

Reason code

Meaning

00 GQSCAN has sustained an unrecoverable error.

04 The GQSCAN caller attempted to resume a scan that was started when the
global resource serialization complex, which is now in star mode, was in ring
mode.

08 The GQSCAN service is not able to obtain storage to satisfy the request.

oC Sysplex processing of a SYSTEMS or GLOBAL request failed.

10 The GQSCAN service failed because the complex was migrating from a ring to a

star configuration.

14 The GQSCAN service failed because inconsistent data was returned from one or
more systems.
Action: Do not try to process any data; none exists. Retry the request one or more times.

10

Meaning: Program error. An incorrect SYSNAME was specified as input to queue scan. The
information in your area is not meaningful.
Action: Specify a valid SYSNAME on the call to GQSCAN.

14

Meaning: Environmental error. The area you specified was filled before queue scan
processing completed. Your request specified TOKEN, but the limit for the number of
concurrent resource requests (ENQ, RESERVE, or GQSCAN) has been reached. The
information in your area is valid but incomplete. The scan cannot be resumed.

Action: Retry the request one or more times. If the problem persists, consult your system
programmer, who might be able to tune the system so that the limit is no longer exceeded.

GQSCAN - List form

The list form of the GQSCAN macro is used to construct a non-executable
parameter list. This parameter list, or a copy of it for reentrant programs, can be
referred to by the execute form of the GQSCAN macro.

The list form of the GQSCAN macro is written as follows:

Syntax Description
name name: symbol. Begin name in column 1.
b One or more blanks must precede GQSCAN.
GQSCAN
b One or more blanks must follow GQSCAN.
AREA=(area addr, area size) areqa addr: A-type address.
area size: symbol, decimal digit.
Note:
1. This parameter cannot be specified with QUIT=YES.
2. AREA is required on either the list or the execute form of the macro.

Chapter 19. GQSCAN — Extract information from global resource serialization queue 215

GQSCAN macro

Syntax

Description

,REQLIM=value

value: symbol, decimal digit or the word MAX.

,REQLIM=MAX

Default: REQLIM=MAX

,SCOPE=ALL

Default: SCOPE=STEP

,SCOPE=STEP

,SCOPE=SYSTEM

,SCOPE=SYSTEMS

,RESERVE=YES

Default: All resources requested with RESERVE and all

,RESERVE=NO

resources requested with ENQ.

,RESNAME=(qname

gname addr: A-type address.

addr [, rname addr,

rname addr: A-type address.

rname length],

rname length: decimal digit.

[GENERIC | SPECIFIC],

Default: assembled length of rname.

gname length)

Default: gname length of eight.

,SYSNAME=(sysname addr

sysname addr: A-type address.

[,asid value])

asid value: symbol, decimal digit.

Note: rname addr can be provided only when gname addr is used. rname
length must be provided if a register is specified for rname addr. An asid value
can be coded only when the sysname addr is used.

,QUIT=YES

Default: QUIT=NO

,QUIT=NO

Note: Only TOKEN and MF=L can be specified with QUIT=YES.

,REQCNT=value

value: decimal digit.

Default: REQCNT=0

JLOWNERCT=0value, WAITCNT=

value

value: decimal digit.

JOWNERCT=0value

value: decimal digit.

JWAITCNT=value

value: decimal digit.

,TOKEN=addr

addr: RX-type address.

,XSYS=YES

Default: XSYS=YES

216 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GQSCAN macro

Syntax Description
XSYS=NO Note: XSYS=NO is mutually exclusive with TOKEN, QUIT=YES and
SYSNAME, when SYSNAME is not equal to zero or zero and the asid
value(0,asid value). In a global resource serialization ring complex,
XSYS=NO is ignored.
,MF=L

Parameters

The parameters are explained under the standard form of the GQSCAN macro
with the following exception:

,MF=L
Specifies the list form of the GQSCAN macro.

GQSCAN - Execute form

The execute form of the GQSCAN macro can refer to and modify a remote
parameter list built by the list form of the macro. There are no defaults for any of
the parameters in the execute form of the macro.

The execute form of the GQSCAN macro is written as follows:

Syntax Description
name name: symbol. Begin name in column 1.
b One or more blanks must precede GQSCAN.
GQSCAN
b One or more blanks must follow GQSCAN.

AREA=(area addr,area size)

area addr: RX-type address or register (2) - (12).

area size: symbol, decimal digit, or register (2) - (12).

Note:
1. AREA cannot be specified with QUIT=YES.

2. AREA is required on either the list or the execute form of the macro.

,REQLIM=value

value: symbol, decimal digit, register (2) - (12), or the word MAX.

,REQLIM=MAX

,SCOPE=STEP Note: SCOPE=LOCAL and SCOPE=GLOBAL cannot be coded on the list
form of this macro.

,SCOPE=ALL

,SCOPE=SYSTEM

Chapter 19. GQSCAN — Extract information from global resource serialization queue

217

GQSCAN macro

Syntax

Description

,SCOPE=SYSTEMS

,SCOPE=LOCAL

,SCOPE=GLOBAL

,RESERVE=YES

,RESERVE=NO

,RESNAME=(qname

gname addr: RX-type address or register (2) - (12).

addr[,rname addr,

rname addr: RX-type address or register (2) - (12).

rname length],

rname length: decimal digit, register (2) - (12). Default: assembled length of
rname.

[GENERIC| SPECIFIC],

gname length)

,SYSNAME=(sysname addr

sysname addr: RX-type address or register (2) - (12).

[,asid value]

asid value: symbol, decimal digit, or register (2) - (12).

Note: rname addr can be provided only when gname addr is used. rname
length must be provided if a register is specified for rname addr. An asid value
can be coded only when the sysname addr is used.

,QUIT=YES

Default: QUIT=NO

,QUIT=NO

Note: Only TOKEN and MF=(E, parm list addr) can be specified with
QUIT=YES.

,REQCNT=value

value: decimal digit or register (2) - (12).

Default: REQCNT=0

J,OWNERCT=value, WAITCNT=
value

value: decimal digit.

JOWNERCT=value

value: decimal digit.

SWAITCNT=value

value: decimal digit.

,TOKEN=addr

addr: RX-type address of register (2) - (12).

XSYS=YES

Default: XSYS=YES

,XSYS=NO

Note: XSYS=NO is mutually exclusive with TOKEN, QUIT=YES and
SYSNAME, when SYSNAME is not equal to zero or zero and the asid
value(0,asid value). In a global resource serialization ring complex,
XSYS=NO is ignored.

,MF=(E,list addr)

list addr: RX-type address or register (2) - (12).

218 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GQSCAN macro

Parameters

The parameters are explained under the standard form of the GQSCAN macro
with the following exception:

,MF=(E,list addr)
Specifies the execute form of the GQSCAN macro.

list addr specifies the area that the system uses to contain the parameters.

Chapter 19. GQSCAN — Extract information from global resource serialization queue 219

GQSCAN macro

220 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 20. GTRACE — GTF trace recording

Description

Use the GTRACE macro to record system or application errors through the

generalized trace facility (GTF). The GTRACE macro provides three separate

functions, depending on the keyword specified:

¢ GTRACE TEST indicates whether the operator requested a specific user event.

* GTRACE QUERY indicates how much data GTF can store when a program
issues GTRACE DATA.

* GTRACE DATA generates GTF trace records for specific events.

Refer to[z/OS MVS Diagnosis: Tools and Service Aidd and |z/OS V2R2 Problend
IManagement| for information about using GTF.

The following description of the GTRACE macro is divided into three sections, one
for each function of the macro. The TEST and QUERY functions have only one
form each, while the DATA function has standard, list, and execute forms.

GTRACE TEST

The TEST function of the GTRACE macro indicates whether the operator requested
a particular user event in response to the USRP option. The system returns the test
result as a return code in register 15.

By issuing GTRACE TEST and checking the return code, you can determine
whether you need to subsequently issue GTRACE DATA to write the record. If the
return code indicates that tracing has been requested by USRP for the specified
user event, then issue GTRACE DATA.

Issuing GTRACE TEST before issuing GTRACE DATA is not necessary but you
might find it useful to do so if the processing of your code can benefit from
learning whether processing is active for the record type you want to record to the
generalized trace facility (GTF) before requesting to do that recording.

When the operator requests GTF prompting for specific event identifiers with the
USRP option and your program issues GTRACE DATA, the system records the
user trace record only when the event identifier specified on GTRACE DATA was
also requested with the USRP option. However, the TEST function is still
supported for compatibility with existing programs.

Environment
The requirements for the caller are:
Environmental factor Requirement
Minimum authorization: Problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No requirement

© Copyright IBM Corp. 1988, 2016 221

GTRACE macro

Environmental factor Requirement
Control parameters: Must be in the primary address space and all data must
reside in primary address space.

Programming requirements
* Include the CVT and the MCHEAD mapping macros.
* When you code the CVT mapping macro, you must not specify PREFIX=YES.

Restrictions
None.

Input register information

Before issuing the GTRACE TEST macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents
0 Unchanged
1 Used as a work register by the system

2-13 Unchanged
14 Used as a work register by the system
15 Return code

Performance implications

None.
Syntax

The TEST function of the GTRACE macro is coded as follows:

Syntax Description
name name: Symbol. Begin name in column 1.

b One or more blanks must precede GTRACE.
GTRACE
b One or more blanks must follow GTRACE.
TEST=YES

222 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GTRACE macro

Syntax

Description

ID=id

id: Symbol, decimal digit, or hexadecimal number.

Parameters
The parameters are explained as follows:

TEST=YES
Specifies the test function of the GTRACE macro.

,ID=id
Specifies the event ID for the user event that is to be tested. Decimal event IDs
0 through 1023 (X'3FF') are available for user events. You can specify the ID in
decimal or in hexadecimal. Use the expression X'id' to specify a hexadecimal
number.

ABEND codes

None.

Return codes
When GTRACE TEST macro returns control to your program, GPR 15 contains a
return code.
Table 24. Return Codes for the GTRACE TEST Macro

Hexadecimal Meaning and Action
Return Code

00 Meaning: Tracing has not been requested by USRP for the specified user event.

Action: Do not issue a GTRACE DATA request to create your trace record for
the specified user event ID.

04 Meaning: Tracing has been requested by USRP for the specified user event.

Action: You may issue a GTRACE DATA request to create your trace record for
the specified user event ID.

GTRACE QUERY

The QUERY function of the GTRACE macro determines how much data GTF will
accept, and returns the value in the variable or register specified with the
MAXLNG parameter. This function is useful when your program must run on
different levels of MVS that accept different amounts of trace data in GTRACE

DATA.
Environment
The requirements for the caller are:
Environmental factor Requirement
Minimum authorization: Problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O or external interrupts

Chapter 20. GTRACE — GTF trace recording 223

GTRACE macro

Environmental factor Requirement
Locks: No requirement
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions

None.

Input register information

Before issuing the GTRACE QUERY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register

Contents
0-14 Unchanged
15 Zero

Performance implications

None.
Syntax

The QUERY function of the GTRACE macro is coded as follows:

Syntax Description
name name: Symbol. Begin name in column 1.

b One or more blanks must precede GTRACE.
GTRACE
b One or more blanks must follow GTRACE.
QUERY
MAXLNG=addr addr: RX-type address or register (2) - (12).

Parameters

The parameters are explained as follows:

224 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

QUERY

GTRACE macro

Specifies the query function of the GTRACE macro.

,MAXLNG=addr

Specifies the address in which the maximum amount of GTF data is returned.

ABEND codes

None.

Return codes

The return code from GTRACE QUERY is always zero.

GTRACE DATA

The DATA function of the GTRACE macro records system or problem program
data in the GTF trace buffers. GTRACE DATA can trace up to 8192 bytes of data.

Data is written only if you requested the event qualifier (through the USRP option)
when you started GTF. Therefore, you can issue the GTRACE DATA without

issuing a GTRACE TEST.

In earlier releases, GTRACE DATA writes the record to the GTF data set even if the
record's event ID (EID) is excluded from a USRP list in the GTF trace options.
Therefore, you need to issue a GTRACE TEST before you issue GTRACE DATA to
determine if data is to be collected for the event qualifier.

Environment

The requirements for the caller are:

Environmental factor

Minimum authorization:
Dispatchable unit mode:

Cross memory mode:
AMODE:

ASC mode:
Interrupt status:
Locks:

Control parameters:

Requirement

Problem state, any PSW key

Task or SRB

Any PASN, any HASN, any SASN; all data and parameters
must reside in the home address space.

24- or 31- or 64-bit. The caller must be in 31-bit mode for
GTRACE to record data above 16 megabytes.

Primary

Enabled or disabled for I/O and external interrupts

No requirement

Must be in the primary address space

Programming requirements

None.

Restrictions

None.

Input register information

Before issuing the GTRACE DATA macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Chapter 20. GTRACE — GTF trace recording 225

GTRACE macro

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents
0 Unchanged
1 Used as a work register by the system
2-14 Unchanged
15 Return code

Performance implications

None.
Syntax
The standard form of the DATA function of the GTRACE macro is coded as
follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede GTRACE.
GTRACE
b One or more blanks must follow GTRACE.
DATA=addr addr: RX address or register (2) - (12).
DATA64=addr
,LNG=nbr nbr: Symbol, decimal number, hexadecimal number, or register (2) - (12).
JID=id id: Symbol, decimal number, or hexadecimal number.
,JFID=fidname fidname: Symbol, decimal number, hexadecimal number, or register (2) - (12).
,PAGEIN=NO Default: PAGEIN=NO
,PAGEIN=YES
Parameters
The parameters are explained as follows:
DATA=addr

226 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GTRACE macro

DATA64=addr
Specifies the virtual storage address of the data that is to be recorded.

Note: DATA64 can be specified only when running in 64-bit address mode
(AMODE).

,LNG=nbr
Specifies the number of data bytes (1 through 8192) to be recorded from the
address specified by the DATA parameter. You can specify the number in
decimal or in hexadecimal. If the number is hexadecimal, use the expression
X'nbr' to specify the number.

Note: When you specify LNG, the trace record contains the number of bytes
that you specify plus 12 bytes, which is the size of the trace record header. The
header consists of a 4-byte ASCB address followed by an 8-byte jobname.
Thus, if you specify LNG=8192, the trace record has 8204 (8192+12) bytes.

,ID=id
Specifies the event ID that is to be recorded with the data bytes. Decimal event
ids 0 through 1023 (X'3FF') are available for user events. You can specify the ID
in decimal or in hexadecimal. Use the expression X'id' to specify a hexadecimal
number.

,FID=fidname
Specifies the format appendage that controls the formatting of this record.
Formatting occurs when the trace output is processed by GTF trace. The
format appendage name is formed by appending the 2-digit FID value to the
names AMDUSR, HMDUSR, and IMDUSR. Assign FID values as follows:

X'00' The record is to be dumped in hexadecimal.

X'01' to X'50'
The record contains user format identifiers.

Note: If you code FID without any fidname, or if you omit the FID parameter,
the system supplies a default fidname of zero.

»PAGEIN=NO

»PAGEIN=YES
Specifies that paged-out user data is to be processed (YES) or not to be
processed (NO). To ensure that all user data is traced, specify YES.

ABEND codes

None.

Return codes

When GTRACE DATA macro returns control to your program, GPR 15 contains a
return code.

Table 25. Return Codes for the GTRACE DATA Macro

Hexadecimal Meaning and Action

Return Code

00 Meaning: GTF is active. The data was recorded in GTF trace buffers.
Action: None.

04 Meaning: GTF is not active or not active for this particular event ID. No data
was recorded.
Action: None.

Chapter 20. GTRACE — GTF trace recording 227

GTRACE macro

Table 25. Return Codes for the GTRACE DATA Macro (continued)

Hexadecimal
Return Code

Meaning and Action

08

Meaning: Program error. The value of the LNG keyword is not valid. It must be
a number from 1 through 8192. No data was recorded.

Action: Reissue the macro, specifying a valid amount of trace data to be
recorded.

0C

Meaning: Program error. The value of the DATA keyword is not valid. It does
not represent an area of storage that the calling program can refer to. No data
was recorded.

Action: Correct the problem and reissue the macro.

10

Meaning: Program error. The value of the FID keyword is not valid. It must be a
number from X'0' through X'FF'. No data was recorded.

Action: Correct the problem and reissue the macro.

18

Meaning: Environmental condition. All GTF buffers are full. No data was
recorded.

Action: None.

1C

Meaning: Program error. The address of the parameter list for GTF is not valid.
The parameter list is not in storage that the caller can refer to, or its format is
not valid. No data was recorded.

Action: Correct the problem and reissue the macro.

20

Meaning: Program error. Some of the data to be recorded was paged out. No
data was recorded. This return code is not valid with PAGEIN=YES.

Action: Page-fix the storage containing the data to be recorded or modify the
macro invocation to specify the PAGEIN=YES option.

Example

Use GTRACE to record 200 bytes of user data plus 12 bytes for the trace record
header. The user data is found at symbolic address AREA. Use an event identifier
of 37. Use the formatting appendage named IMDUSR40 to control the formatting.

GTRACE DATA=AREA,LNG=200,ID=37,FID=X"'40"

GTRACE DATA - List form

Use the list form of the GTRACE DATA macro together with the execute form of
the macro for applications that require reentrant code. The list form of the macro
defines an area of storage that the execute form of the macro uses to store the

parameters.

The list form

of the GTRACE parameter list must reside below the bar.

Syntax
The list form of the DATA function of the GTRACE macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede GTRACE.

228 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

GTRACE macro

Syntax Description

GTRACE

b One or more blanks must follow GTRACE.
DATA=addr addr: A-type address or register (2) - (12).

DATA64=addr

,LNG=nbr nbr: Symbol, decimal number, hexadecimal number, or register (2) - (12).

,JFID=fidname fidname: Symbol, decimal number, hexadecimal number, or register (2) - (12).

,MF=L

Parameters
The parameters are described under the standard form of the GTRACE DATA
macro, with the following exception:

JMF=L
Specifies the list form of the GTRACE DATA macro.

GTRACE DATA - Execute form

Use the execute form of the GTRACE DATA macro together with the list form of
the macro for applications that require reentrant code. The execute form of the
macro stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the DATA function of the GTRACE macro is written as
follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede GTRACE.
GTRACE
b One or more blanks must follow GTRACE.
DATA=addr addr: RX address or register (2) - (12).
DATA64=addr

Chapter 20. GTRACE — GTF trace recording 229

GTRACE macro

Syntax Description
,LNG=nbr nbr: Symbol, decimal number, hexadecimal number, or register (2) - (12).
JID=id id: Symbol, decimal number, or hexadecimal number.
,JFID=fidname fidname: Symbol, decimal number, hexadecimal number, or register (2) - (12).
Note: If you omit the FID parameter on the execute form of GTRACE, the
FID value defaults to zero. This default overlays the FID value that you
specify on the list form of GTRACE. If you want the system to obtain the
FID value from the remote problem-program parameter list, then you must
specify the FID parameter as a null value by coding FID= without any
fidname.
,PAGEIN=NO Default: PAGEIN=NO
,PAGEIN=YES
,MF=(E,parm list addr) parm list addr: A-type address or register (2) - (12).

Parameters

230

The parameters are described under the standard form of the GTRACE DATA
macro, with the following exception:

,MF=(E,parm list addr)

Specifies the execute form of the GTRACE DATA macro using a remote
problem-program parameter list.

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 21. HISMT — HIS multithreading service

Description
HISMT provides an interface to retrieve multithreading metrics at different
granularity levels between the caller's current and previous HISMT invocations.
Environment

The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: Supervisor state. PSW key 0.

Dispatchable unit mode: Task or SRB mode.

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 31-bit.

ASC mode: Primary.

Interrupt status: Enabled or disabled for I/O and external interrupts.

Locks: Locks may be held.

Control parameters: Control parameters and the save area must be addressable
from the primary address space and must be in DREF/fixed
storage.

Programming requirements

There must be at least 1 second between HISMT invocations for the same interval
area.

The service can be invoked in any multithreading mode, including a
multithreading mode of 1. The multithreading mode of a processor class is the
number of active threads per core for a processor class. The multithreading mode
for each processor class can be set via the [IEAOPTxx parmlib member.

The caller must include the HISYMT macro to get a mapping of the interval area
(INTVAREA) and constants for the return and reason codes.

HISMT exploiters may register as a listener for ENF 20 (System Information) and if
a primary or secondary CPU speeds have changed, invoke HISMT to end the
HISMT interval. The current CPU speeds are available in SI22V1PrimaryCPUSpeed
and SI22V1SecondaryCPUSpeed fields of the STSI (see macro CSRSIIDF). When the
core speed changes during the HISMT interval, HISMT will return a warning
reason code HisMT_kRsnWarn_ConfigChanged to inform users of questionable
HISMT metrics due to the core state changing during the interval. See field
HisMT_Hdr_Flags in the interval area header for what has changed.

The multithreading metrics requested through the HISMT service must be the
same on each call for the same interval area (INTVAREA). The size of the interval
area (INTVAREALEN) depends on the multithreading metrics requested, machine,
and configuration. To allocate a sufficiently large interval area, you must adhere to
the following protocol:

1. Obtaining sufficient storage:

© Copyright IBM Corp. 1988, 2016 231

HISMT macro

a. As part of initialization, invoke the HISMT service with the requested
metrics and pass an interval area that is the minimum interval area length,
HisMT_Hdr_kLength. (See INTVAREA parameter for requirements on the
first call for a new interval area)

b. The service will likely complete with a return code HisMT_kRetWarn and
reason code HisMT_kRsnWarn_IntvAreaSmall.

c. Using the HisMT_Hdr_LengthRequired field in the interval area returned by
the HISMT service, allocate a new interval area that is at least
HisMT_Hdr_LengthRequired bytes long.

2. Making the first HISMT call with the new interval area:

a. Invoke the HISMT service with the same requested multithreading metrics
passing the newly allocated interval area that is at least
HisMT_Hdr_LengthRequired bytes long. (See INTVAREA parameter for
requirements on the first call for a new interval area)

b. The service will likely complete with a return code HisMT_kRetOk. The
first HISMT invocation for a new interval area marks the start of the first
HISMT interval. The requested HISMT metrics will not be returned in the
new interval area for the first call. Each metric will contain
HisMT_Entry_kNoData since the system is unable to calculate the metrics
on the very first call. (See Step 3 of the protocol below for instructions on
getting the requested HISMT metrics in the interval area)

3. Making a subsequent HISMT call with the previous interval area:

a. Invoke the HISMT service with the same requested multithreading metrics
passing the interval area from the previous invocation, unchanged.

b. The service will likely complete with a return code HisMT_kRetOk. This
invocation marks the end of the current HISMT interval and the start of the
next HISMT interval. The requested HISMT metrics will be returned in the
interval area for the current interval (the time between the previous HISMT
invocation and this HISMT invocation). The HISMT interval area has
descriptors for each requested metric that contain information on how to
locate and process each array of metric values. For all requested metrics,
these descriptors contain the offset to the first element in the array of metric
values, the number of elements in the array, and the size each value in the
metric array. See macro HISYMT for more information.

For example, with multithreading, to calculate how much single thread capacity an
MT=2 core of a particular processor class can deliver for the current workload over
an interval for this workload, calculate:

interval x Procclass Max Capacity Factor / HisMT_Entry kMetricFactor

(Assembler programs can shift right by HisMT_Entry_kMetricShift bits for the
division.)

Input register information

Before issuing the HISMT macro, the caller must ensure that the following general
purpose register (GPR) contains the specified information.

GPR Contents

13 The address of a 144-byte FASA format save area in the primary address
space

232 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HISMT macro

Before issuing the HISMT macro, the caller does not have to place any information
into any general purpose register (GPR) unless using it in register notation for a
particular parameter, or using it as a base register.

Before issuing the HISMT macro, the caller does not have to place any information
into any access register (AR).

Output register information

When control returns to the caller, the GPRs contain:
GPR Contents

0 Reason code if GPR15 is not 0

1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller

depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications

None.
Syntax

The HISMT macro is written as follows:

Syntax Description
name name: symbol. Begin name in column 1.

O One or more blanks must precede HISMT.
HISMT
O One or more blanks must follow HISMT.

INTVAREA=xintvarea

Chapter 21. HISMT — HIS multithreading service 233

HISMT macro

Syntax

Description

JINTVAREALEN=xintvarealen

,AVGTDCLASS=NO

Default: AVGTDCLASS=NO

,AVGTDCLASS=YES

,CAPCLASS=NO

Default: CAPCLASS=NO

,CAPCLASS=YES

,COREBUSYTIME=NO

Default: COREBUSYTIME=NO

,COREBUSYTIME=YES

,MAXCAPCLASS=NO

Default: MAXCAPCLASS=NO

,MAXCAPCLASS=YES

,PRODCLASS=NO

Default: PRODCLASS=NO

,PRODCLASS=YES

,PRODCORE=NO

Default: PRODCORE=NO

,PRODCORE=YES

,RETCODE-=retcode

retcode: RS-type address or register (2) - (12) or (15), (GPR15),

,RSNCODE-=rsncode

rsncode: RS-type address or register (0) or (2) - (12), (00), (GPR

,PLISTVER=IMPLIED_VERSION

Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

MF=5

Default: MF=S

JMEFE=(L,list addr)

list addr: RS-type address or register (1) - (12)

MEFE=(L,list addr,attr)

MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters

The parameters are explained as follows:

234

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HISMT macro

name
An optional symbol, starting in column 1, that is the name on the HISMT
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

INTVAREA=xintvarea
is the name (RS-type), or address in register (2) - (12), of a required character
input/output that contains the interval area. It must be in DREF or fixed
storage. Note that the interval area must start and end on a double word
boundary. The size of the interval area depends on the MT metrics requested,
machine, and configuration. If this is the first HISMT request for a new
interval area, the first byte of the interval area must contain binary zeroes. If
this is a subsequent HISMT request, pass the interval area that was returned
by the previous HISMT invocation, unchanged. Macro HISYMT contains the
mapping of the interval area. The minimum amount of storage required for the
request is HisMT_Hdr_kLength. See ['Programming requirements” on page 231]
for the protocol for passing an interval area that is long enough to
accommodate the request.

» INTVAREALEN=xintvarealen
is the name (RS-type), or address in register (2) - (12), of a required fullword
input that contains the length of the provided interval area. The minimum
INTVAREALEN required for the request is HisMT_Hdr_kLength. Note that the
interval area length must be a multiple of 8 bytes.

»AVGTDCLASS=NO

»AVGTDCLASS=YES
Indicates whether Average Thread Density must be returned by processor class
granularity and can be located using HisMT_Hdr_AvgTDClass_Desc. Average
Thread Density is the average number of active threads for active cores
(dispatched to physical hardware) within a processor class. If the system
cannot calculate this value, the value will contain HisMT_Entry_kNoData. For
example, the AVGTDCLASS will contain HisMt_Entry_kNoData when there
are no cores defined in a processor class, when all cores are offline in a
processor class, when all cores in a processor class change ONLINE/OFFLINE
status during an HISMT interval or when no cores in a processor class were
dispatched to physical hardware.

The default is AVGTDCLASS=NO.

»AVGTDCLASS=NO
Average thread density is not needed for any processor class.

»AVGTDCLASS=YES
Average thread density is needed for each processor class.

»CAPCLASS=NO

»CAPCLASS=YES
Indicates whether multithreading capacity factor metrics must be returned by
processor class granularity and can be located using
HisMT_Hdr_CapClass_Desc. Each metric is calculated for the current
multithreading mode while the cores are dispatched to physical hardware. If
the system cannot calculate this metric, the metric will contain
HisMT_Entry_kNoData. For example, the CAPCLASS metric will contain
HisMt_Entry_kNoData when there are no cores defined in a processor class.

The multithreading capacity factor is a metric that represents a ratio of how
much work was accomplished at the current multithreading mode to the
amount of work (for the same workload) that could have been accomplished
while running with a multithreading mode of 1. For a multithreading mode of

Chapter 21. HISMT — HIS multithreading service 235

HISMT macro

1, a processor class will achieve a capacity factor ratio of 1.0 (100%) because
whenever cores are dispatched to physical hardware, they are executing as
much work as possible. For example, if the multithreading mode was greater
than 1 (100%) and the MT capacity factor was 1.3 (130%), it means for the
workload running, the cores were able to accomplish 1.3 times (or 130%) the
work than the processor class running with a multithreading mode of 1 would
have accomplished for the same workload.

The default is CAPCLASS=NO

»CAPCLASS=NO
Multithreading capacity factor metric is not needed for any processor class.

> CAPCLASS=YES
Multithreading capacity factor metric is needed for each processor class.

» COREBUSYTIME=NO
,COREBUSYTIME=YES

Indicates whether core busy time must be returned by core granularity and can
be located using HisMT_Hdr_CoreBusyTime_Desc.

Core busy time is the amount of time (in milliseconds) a logical core was
dispatched to a physical core over some interval. If the system cannot calculate
this value, the value will contain HisMT_Entry_kNoData. For example, the
COREBUSYTIME will contain HisMt_Entry_kNoData for an undefined core.

The default is COREBUSYTIME=NO

,COREBUSYTIME=NO
Core busy time is not needed for any core.

,COREBUSYTIME=YES
Core busy time is needed for each core.

»MAXCAPCLASS=NO
,MAXCAPCLASS=YES

Indicates whether multithreading maximum capacity factor metrics must be
returned by processor class granularity and can be located using
HisMT_Hdr_MaxCapClass_Desc. Each metric is calculated for the current
multithreading mode while the cores are dispatched to physical hardware. If
the system cannot calculate this metric, the metric will contain
HisMT_Entry_kNoData. For example, the MAXCAPCLASS metric will contain
HisMt_Entry_kNoData when there are no cores defined in a processor class.

Multithreading max capacity factor is a metric that represents a ratio of the
maximum amount of work that can be accomplished using all active threads at
the current multithreading mode to the amount of work (for the same
workload) that would have been accomplished while running with a
multithreading mode of 1. For a multithreading mode of 1, a processor class
will achieve a max capacity factor ratio of 1.0 (100%) because whenever cores
are dispatched to physical hardware, they are executing the maximum amount
of work as possible. For example, if the multithreading mode is greater than 1
and the multithreading max capacity factor was 1.4 (140%), it means that if the
processor class was able to achieve a productivity ratio of 1.0, then the
workload running would be able to accomplish 1.4 times (140%) the work a
processor class running with a multithreading mode of 1 would have
accomplished for the same workload.

The default is MAXCAPCLASS=NO

236 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HISMT macro

»MAXCAPCLASS=NO
Multithreading max capacity factor metric is not needed for any processor
class.

sMAXCAPCLASS=YES
Multithreading max capacity factor metric is needed for each processor
class.

,PRODCLASS=NO

»PRODCLASS=YES
Indicates whether multithreading productivity metrics must be returned by
processor class granularity and can be located using
HisMT_Hdr_ProdClass_Desc. Each metric is calculated for the current
multithreading mode while the cores are dispatched to physical hardware. If
the system cannot calculate this metric, the metric will contain
HisMT_Entry_kNoData. For example, the PRODCLASS metric will contain
HisMt_Entry_kNoData when there are no cores defined in a processor class.

Multithreading productivity is a metric that represents a ratio of how much
work was accomplished to the maximum amount of work that could have
been accomplished. For a multithreading mode of 1, a processor class will
achieve a productivity ratio of 1.0 (100%) because whenever cores are
dispatched to physical hardware, they are executing as much work as possible.
For example, if the multithreading mode is greater than 1 and the productivity
ratio is 0.93 (93%), it means the active threads on all cores accomplished 93%
of the work that could have been accomplished while dispatched to physical
hardware. Typically, when the multithreading productivity is less than 1.0
(<100%), it is because there were times when the cores were dispatched to
physical hardware and one or more threads on those cores were in a wait state
because they had no work to run.

The default is PRODCLASS=NO

»PRODCLASS=NO
Multithreading productivity metric is not needed for any processor class.

»PRODCLASS=YES
Multithreading productivity metric is needed for each processor class.

»PRODCORE=NO

, PRODCORE=YES
Indicates whether multithreading productivity metrics must be returned by
core granularity and can be located using HisMT_Hdr_ProdCore_Desc. Each
metric is calculated for the current multithreading mode while the cores are
dispatched to physical hardware. If the system cannot calculate this metric, the
metric will contain HisMT_Entry_kNoData. For example, the PRODCORE
metric will contain HisMt_Entry_kNoData for an undefined or offline core.

See the PRODCLASS keyword for information about multithreading
productivity.

The default is PRODCORE=NO

, PRODCORE=NO
Multithreading productivity metric is not needed for any core.

»PRODCORE=YES
Multithreading productivity metric is needed for each core.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from

Chapter 21. HISMT — HIS multithreading service 237

HISMT macro

GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12) or
(15), (GPR15), (REG15), or (R15).

»RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPRO, GPR00, REGO, REGO00, or RO (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2) -
(12), (00), (GPRO), (GPR00), REG0), (REG00), or (RO).

,PLISTVER=IMPLIED_VERSION

, PLISTVER=MAX

,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
PLISTVER is the only key allowed on the list form of MF and determines
which parameter list is generated. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

¢ IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

¢ MALY, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

* 0, if you use the currently available parameters.

To code: Specify one of the following:
+ IMPLIED_VERSION

*+ MAX

* A decimal value of 0

JMF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
sMF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The

238 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HISMT macro

list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1) - (12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of OF to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

»COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes

None.

Return and reason codes

When the HISMT macro returns control to your program:
* GPR 15 (and retcode, when you code RETCODE) contains a return code.

* When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code
RSNCODE) contains a reason code.

Macro HISYSERV provides equate symbols for the return and reason codes. Note
carefully that bits 0 - 15 of the reason code may contain component diagnostic data
and must not be assumed to be 0.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 26. Return and reason codes for the HISMT macro

Return code

Reason code Equate symbol, meaning, and action

0 - Equate Symbol: HisMT_kRetOk
Meaning: HISMT request successful.
Action: Processing continues.

4 - Equate Symbol: HisMT_kRetWarn

Meaning: Warning

Action: Refer to the action provided with the specific reason code.

Chapter 21. HISMT — HIS multithreading service 239

HISMT macro

Table 26. Return and reason codes for the HISMT macro (continued)

Return code

Reason code

Equate symbol, meaning, and action

4

xxxx0401

Equate Symbol: HisMT_kRsnWarn_IntvAreaSmall

Meaning: The interval area provided was large enough to hold
the minimum amount of data required for the request, but not
large enough to hold all of the data requested.

Action: Obtain a larger interval area using the
HisMT_Hdr_LengthRequired field returned in the request's
INTVAREA. Then call the service with the newly allocated
interval area. (See[“Programming requirements” on page 231| for
the protocol for passing a new interval area that is at least
HisMT_Hdr_LengthRequired bytes long)

xxxx0402

Equate Symbol: HisMT_kRsnWarn_ConfigChanged

Meaning: The system configuration was changed during the
interval between the last HISMT call and the current HISMT call.
The metric values returned in the interval area is questionable
since the configuration was not consistent during the interval. See
field HisMT_Hdr_Flags in the interval area header for what has
changed.

Action: The metric values returned from this call can be ignored.

Equate Symbol: HisMT_kRetUser
Meaning: HISMT request failed due to a user error.

Action: Refer to the action provided with the specific reason code

xxxx0801

Equate Symbol: HisMT_kRsnUser_InvVersion
Meaning: The version for the parameter list specified is not valid.

Action: Check for possible storage overlay.

xxxx0802

Equate Symbol: HisMT_kRsnUser_InconsistentIntvArea

Meaning: The HISMT call for this interval does not match the
previous HISMT call for the provided interval area.

Action: If this is the first invocation for this interval area, follow
the protocol described in [“Programming requirements” on page

to provide an interval area. If this is a subsequent call to

HISMT for the interval area, make sure all subsequent calls to
HISMT with that interval area request the same MT metrics.

xxxx0803

Equate Symbol: HisMT_kRsnUser_IntvLenTooSmall

Meaning: The interval area is less than HisMT_Hdr_kLength
bytes.

Action: Ensure the interval area length and the storage provided
for the interval area is at least HisMT_Hdr_kLength bytes long.
(See ["“Programming requirements” on page 231| for the protocol
for obtaining big enough storage to contain the requested MT
metrics)

240 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HISMT macro

Table 26. Return and reason codes for the HISMT macro (continued)

Return code

Reason code

Equate symbol, meaning, and action

8

xxxx0804

Equate Symbol: HisMT_kRsnUser_UnknownDatalnIntvArea

Meaning: The interval area for this HISMT call contains some
unexpected data. A storage overlay may have occurred.

Action: Issue HISMT request with a new interval area.

xxxx0805

Equate Symbol: HisMT_kRsnUser_IntvAreaNotAligned

Meaning: The interval area provided for this HISMT call is not on
a doubleword boundary.

Action: Make sure that the interval area is on a doubleword
boundary.

xxxx0806

Equate Symbol: HisMT_kRsnUser_IntvLenNot8ByteMultiple

Meaning: The interval area length provided for this HISMT call is
not a multiple of 8-bytes.

Action: Provide an interval area whose length is an 8-byte
multiple.

xxxx0807

Equate Symbol: HisMT_kRsnUser_UnknownEyeCatcher

Meaning: The eye catcher in the interval area for this HISMT call
is unexpected. A storage overlay may have occurred.

Action: Issue a HISMT request with a new interval area. The first
byte must contain binary zeroes.

10

Equate Symbol: HisMT_kRetUnknown
Meaning: Unexpected failure.

Action: Refer to the action provided with the specific reason code.

10

xxxx1001

Equate Symbol: HisMT_kRsnUnknown_Unknown

Meaning: Unexpected failure. The state of the request is
unpredictable.

Action: Contact your system programmer.

Example
Operation

Requesting CAPCLASS, MAXCAPCLASS, PRODCLASS and PRODCORE metrics

with HISMT:

1. Invoke HISMT with the requested metrics and pass an interval area that is the
minimum interval area length, HisMT_Hdr_kLength.

2. Use the HisMT_Hdr_LengthRequired field in the interval area returned by the
HISMT service and, allocate a new interval area that is at least
HisMT_Hdr_LengthRequired bytes long.

3. Invoke HISMT for the first time with the requested metrics and pass the new
interval area with sufficient storage.

4. Invoke HISMT for a subsequent call with the same requested metrics and pass
the interval area from the previous invocation, unchanged. The requested
HISMT metrics will be returned in the interval area for the current interval.

Chapter 21. HISMT — HIS multithreading service 241

HISMT macro

The code is as follows:
dhkkhkhkhkhhkhkhhhhhhhhhhhhhhhhdhhhddhhhdhhhhhhhhhhhhkhhhhhhhkhhhhdhdhhhdhkhddxkx

Invoke the HISMT service with the requested metrics and pass =
an interval area that is the minimum interval area length, *
HisMT_Hdr_kLength. *
Note: *
On the first call, the first byte of the interval area *

(HisMT_Hdr_EyeCatcherFirstChar) must contain binary zeroes *

dhkkhkhkhkhhkhkhkhkhhhhhhhhhhhhhhdhhddhhdhdhhdhhhhhhhkhkhhkhhhhhhhhhhhdhdhhhdhkkhkxkx

LA R8,LHisMT_Header

Using HisMT_Hdr,R8

MVI ~ HisMT_Hdr_EyeCatcherFirstChar,X'00"

HISMT MF=(E,servicelist),INTVAREA=LHisMT_Header,
INTVAREALEN=HisMT_Hdr kLength,
PRODCLASS=YES,PRODCORE=YES,
MAXCAPCLASS=YES,CAPCLASS=YES,
RETCODE=LRetCode,RSNCODE=LRsnCode

EE

B R R R R R R R R R R R R R R R T R R T S R R R R T R L R e R R L

* Check return and reason code. *
* If HISMT requests a Targer area, save required length. *
* Obtain new storage with required Tength (code not shown) *

KKIKKKKKKRKRKRKRKRRRKRRRRKARhhkhkhkkkhhkhkhkkhkhkkhkhkkhkhkkkhkkkhkhkkhkhkkhkhkkkhkkkhkkkkx
LHI ~ R2,HisMT_kRetWarn
L R3,LRetCode
CLR R2,R3
JNE INTVAREA_UNEXP
LHI ~ R4,HisMT_kRsnWarn_IntvAreaSmall
L R5,LRsnCode
CLR R4,R5
JE INTVAREA_WARN

INTVAREA_UNEXP DS OH

*

* Place code to handle unexpected return/reason codes here
*

INTVAREA_WARN DS OH
L R7,HisMT_Hdr_LengthRequired

*

* Place code to obtain storage of Tength HISMT_HDR_LENGTHREQUIRED and
* save address in R8

*

""""""" T)
* Invoke the HISMT service with the requested metrics and pass *
* an interval area that is the required interval area length, *
* HISMT_HDR_LENGTHREQUIRED. Save required interval area length =
* in LHisMT_INTVAREA_LEN *
* Note: *
* On the first call, the first byte of the interval area *
* (HisMT_Hdr_EyeCatcherFirstChar) must contain binary zeroes *

kkkkkkkhkkkkhkkkkhkkkhkkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkkkhkhkkhkhkkkhkkkxk**x
ST R7,LHisMT_INTVAREA_LEN
Using HisMT_Hdr,R8
MVI ~ HisMT_Hdr_EyeCatcherFirstChar,X'00"

EVN_LOOP DS OH
HISMT MF=(E,servicelList),INTVAREA=HisMT_Hdr,
INTVAREALEN=LHisMT_INTVAREA LEN,
PRODCLASS=YES,PRODCORE=YES,
MAXCAPCLASS=YES,CAPCLASS=YES,
RETCODE=LRetCode,RSNCODE=LRsnCode

*
* Place code to check return/reason codes here

242 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

>< > X< X<

>< > X< X<

HISMT macro

B R R R R R R R R R R R o o o e R R R T T R S

* 0On a subsequent HISMT call, invoke the HISMT service *
* with the same requested MT metrics passing the interval area =*
* from the previous invocation, unchanged. *

hhkhkkhhkhkhkhhhhhhdhhdhhhhhhhdhhhhdrhdrhdhhhhdrhdrhhhhhhdhhkdrhdrdrhdhrixsk

*

* For a subsequent HISMT call, place code to process the returned metrics
* for the current interval here
*

J EVN_LOOP

DynArea DSECT
LRetCode DS F
LRsnCode DS F
LHisMT_Header DS CL(HisMT_Hdr_kLength)
LHisMT_INTVAREA_LEN DS F
HISMT MF=(L,serviceList)

POP USING
HISYMT

Chapter 21. HISMT — HIS multithreading service 243

HISMT macro

244 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 22. HISSERV macro — HISSERV Service

Description

HISSERV provides an interface to begin profiling and retrieve instrumentation data
from the system. There are currently two types of instrumentation data:

Events
Events are recorded at the CPU or core level. As events occur, they are
captured and recorded, to be queried at any interval determined by
software. Events are grouped into event types, which can be enabled and
disabled independently of each other.

Sampling
At predetermined intervals, a sample representing the current state of a
CPU is stored into a Sampling Data Buffer (SDBs). As SDBs are filled
software is notified allowing the software to process the full SDBs. The
SDBs are then cleared to be reused by the hardware. There are different
sampling types that can be enabled and disabled independently of each
other, however a profiler can only indicate its intention to receive sampling
data. The sampling frequency, as well as which sampling types are enabled
are determined by the service parameters specified on a F hisproc,SERVICE
command.

Specifically, with HISSERV you can do the following;:

* Query for event info such as determining which events and event types are
available. (REQUEST=QUERY, TYPE=EVENT).

* Query for sampling info such as the sampling interval and which sampling
types are available. (REQUEST=QUERY,TYPE=SAMPLE).

* Query for statistics of whomever is currently profiling the system.
(REQUEST=QUERY,TYPE=PROFILERS).

* Begin profiling the system, indicating to the system the intention of collecting
one or more event types and/or sampling data. Requests that require a
PROFILETKN must first use this to identify itself as wanting to profile the
system. (REQUEST=PROFILE,ACTION=START)

 Stop profiling the system. The PROFILETKN is no longer useable and when the
last profiler stops profiling the system, any unnecessary resources are released.
(REQUEST=PROFILE,ACTION=STOP)

* Query for event data provided by the service. Requires a PROFILETKN.
(REQUEST=QUERY, TYPE=EVENTDATA).

The HISSERV service is only enabled when the HIS address space has been
initialized. The dynamic exit HIS.SERVSTAT can be used to be notified when the
service has been enabled or disabled.

Environment
The requirements for the caller are:
Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0-7

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN

© Copyright IBM Corp. 1988, 2016 245

HISSERV macro

Environmental factor Requirement

AMODE: 31- or 64-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: The caller must not be holding any locks.

Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

The user-provided answer area (via the ANSAREA
parameter) has the same requirements and restrictions as the
control parameters.

The user-provided CPU or core bitmask (via the CPUMASK
parameter) has the same requirements and restrictions as the
control parameters.

Programming Requirements

The caller should include the HISYSERV macro to get equate symbols for the
return and reason codes.

The caller must include the HISYSERV macro to get a mapping of the output area
provided via the ANSAREA parameter for REQUEST=QUERY.

The caller must include the HISYEXIT macro to get a mapping of the parameter
area passed to the exit routine specified by the EXITRTN parameter for
REQUEST=PROFILE,ACTION=START requests.

The caller must include the HISYSMPX macro to get a mapping of the parameter
area passed to the exit routine specified by the EXITRTN parameter for
REQUEST=PROFILE, ACTION=START requests, when the profiler requests
sampling data (SAMPLE=YES).

Restrictions

The caller must not have functional recovery routines (FRRs) established.

Input Register Information

Before issuing the HISSERV macro, the caller does not have to place any
information into any general purpose register (GPR) unless using it in register
notation for a particular parameter, or using it as a base register.

Before issuing the HISSERV macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

Register
Contents
0 Reason code if GPR15 is not 0
1 Used as work registers by the system

246 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HISSERV macro

2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller

depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance Implications

None.
Syntax

The HISSERV macro is written as follows:

Syntax Description
name name: symbol. Begin name in column 1.

4} One or more blanks must precede HISSERV.
HISSERV
4} One or more blanks must follow HISSERV.

REQUEST=PROFILE

REQUEST=QUERY

,ACTION=START

,ACTION=STOP

,OUTPROFILETKN=outprofiletkn

outprofiletkn: RS-type address or address in register (2) - (12)

,EVENT=cvent

event: RS-type address or address in register (2) - (12)

,EVENT=NO_EVENT

Default: EVENT=NO_EVENT

SAMPLE=NO

Default: SAMPLE=NO

Chapter 22. HISSERV macro — HISSERV Service

247

HISSERV macro

Syntax

Description

,SSAMPLE=YES

JZNAME=name

name: RS-type address or address in register (2) - (12)

JEXITRTN=exitrtn

exitrtn: RS-type address or address in register (2) - (12)

,PROFILETKN=profiletkn

profiletkn: RS-type address or address in register (2) - (12)

,ANSAREA=ansarea

ansarea: RS-type address or address in register (2) - (12)

,ANSLEN=anslen

anslen: RS-type address or address in register (2) - (12)

,TYPE=EVENTDATA

,TYPE=EVENT

,TYPE=SAMPLE

,TYPE=PROFILERS

,PROFILETKN=profiletkn

profiletkn: RS-type address or address in register (2) - (12)

,CPUMASK=cpumask

cpumask: RS-type address or address in register (2) - (12)

,CPUMASK=ALL

Default: CPUMASK=ALL

,RETCODE-=retcode

retcode: RS-type address or register (2) - (12) or (15), (GPR15),

,RSNCODE-=rsncode

rsncode: RS-type address or register (0) or (2) - (12), (00), (GPR

,PLISTVER=IMPLIED_VERSION

Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

MF=5

Default: MF=S

JMEFE=(L,list addr)

list addr: RS-type address or register (1) - (12)

MEFE=(L,list addr,attr)

MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr, COMPLETE)

Parameters

The parameters are explained as follows:

248 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HISSERV macro

name
An optional symbol, starting in column 1, that is the name on the HISSERV
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=PROFILE
REQUEST=QUERY
A required parameter, used to indicate the type of request.

REQUEST=PROFILE
indicates the intention to start or stop profiling the system.

REQUEST=QUERY
indicates to query the service.

,ACTION=START

,ACTION=STOP
When REQUEST=PROFILE is specified, a required parameter, used to indicate
the profiling action to take. Note that a PROFILE action cannot be requested
from within a profiler's exit routine, nor should it be requested from a work
unit holding a resource required by a profiler's exit routine.

»ACTION=START
indicates to start profiling the system.

»ACTION=STOP
indicates to stop profiling the system. When profiling for sampling data,
the exit routine specified by EXITRTN will receive a final sampling related
callback, with the HisSmpParmFlgs_Last flag on, for each CPU that is
currently sampling. Note this service call will not return until after the
EXITRTN has handled every CPU's final sampling callback. If no more
profilers are profiling the system, all resources associated with profiling
will be released.

,OUTPROFILETKN=outprofiletkn
When ACTION=START and REQUEST=PROFILE are specified, a required
output parameter, into which the unique profiler token to identify this profiler
will be returned. If this is the first profiler of the system, resources associated
with profiling will be obtained and held until the last profiler stops profiling
the system.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,EVENT=event

,EVENT=NO_EVENT
When ACTION=START and REQUEST=PROFILE are specified, an optional
input parameter, which should contain the event types to profile. When
querying the event data, only the event types specified when starting to
PROFILE the system will be returned. If the event types are not authorized at
the time of the PROFILE request the request will be remembered. Later if the
system becomes authorized for that event type, it will be returned in any
subsequent event data query. The storage is mapped by HisEvnTyp in macro
HISYSERV and must be a subset of the event type data returned in
HisEvn_ValidEvnTyp, which is returned in the
REQUEST=QUERY,TYPE=EVENT request. If EVENT=NO_EVENT or the
storage passed in is binary zeroes, the profiler will not be able to query for
event data. The default is NO_EVENT.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit
field.

Chapter 22. HISSERV macro — HISSERV Service 249

HISSERV macro

,SAMPLE=NO

» SAMPLE=YES
When ACTION=START and REQUEST=PROFILE are specified, an optional
parameter, which is used to determine whether to receive callbacks with
sampling data. When SAMPLE=YES, the exit routine defined in the EXITRTN
parameter will be called as Sampling Data Blocks (SDBs) become available If
sampling is not authorized at the time of the PROFILE request the request will
be remembered. Later if the system becomes authorized for sampling, it will
begin providing sampling data. The types of sampling entries returned by the
service is dependent on the configuration of the service by the SAMPTYPE
parameter from the most recent F HIS,SERVICE or F HIS,BEGIN command.
The default is SAMPLE=NO.

» SAMPLE=NO
Do not receive callbacks with sampling data.

»SAMPLE=YES
Receive callbacks with sampling data.

,NAME=name
When ACTION=START and REQUEST=PROFILE are specified, a required
input parameter, which should contain the unique name identifying this
profiler. The name should use EBCDIC characters from among the set of
alphanumerics. The NAME will be returned in any QUERY, TYPE=PROFILE
queries to identify this profiler. This name will also be displayed as output
from the D HIS command. The NAME specified should be one that easily
identifies the product requesting the profiling, for example the HIS supplied
profiler starts with "HIS". The service will not allow another name starting
with "HIS". The NAME must be unique for each profiler registered with the
service.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,EXITRTN=exitrtn
When ACTION=START and REQUEST=PROFILE are specified, a required
input parameter, which should contain the name of the exit routine that will be
called when the service needs to notify the profiler for some reason, such as
for sampling callbacks. The exit routine must reside in LPA, the LNKLST
LNKLST concatenation, or the nucleus. The interface to the exit routine is
described in macro HISYEXIT. The EXITRTN must be unique for each profiler
registered with the service.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,PROFILETKN=profiletkn
When ACTION=STOP and REQUEST=PROFILE are specified, a required input
parameter, which should contain the profiler's unique token received from this
profiler's REQUEST=PROFILE, ACTION=START request (parameter
OUTPROFILETKN.) The profiler's token will no longer be useable.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,ANSAREA=ansarea
When REQUEST=QUERY is specified, a required input parameter, which will
be used by the service to store information associated with the query request.
Macro HISYSERV contains mappings of the answer areas to provide, the size

250 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HISSERV macro

of the area depends on the type of query being requested. The minimum
amount of storage required for the request to be successful and return a subset
of the data, is HisAns_kLength.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSLEN=anslen
When REQUEST=QUERY is specified, a required input parameter, which
should contain the length of the provided answer area. The length depends on
the query that is requested. The minimum ANSLEN required for the request to
be successful and return a subset of the data, is HisAns_kLength.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field, or specify a literal decimal value.

» TYPE=EVENTDATA

» TYPE=EVENT

» TYPE=SAMPLE

» TYPE=PROFILERS
When REQUEST=QUERY is specified, a required parameter, used to indicate
the type of query to process.

» TYPE=EVENTDATA
indicates to process a query event data request. ANSAREA should point to
storage that will be mapped by HisEvnData in macro HISYSERV. It is
possible for the amount of storage required to change between two
consecutive TYPE=EVENTDATA queries, depending on which event types
are currently authorized in the system and which CPUs or cores are
currently online.

» TYPE=EVENT
indicates to process a query event request. ANSAREA should point to
storage that will be mapped by HisEvn in macro HISYSERV.

> TYPE=SAMPLE
indicates to process a query sample request. ANSAREA should point to
storage that will be mapped by HisSmp in macro HISYSERV.

» TYPE=PROFILERS
indicates to process a query profiler info request. ANSAREA should point
to storage that will be mapped by HisProf in macro HISYSERV. It is
possible for the amount of storage required to change between two
consecutive TYPE=PROFILERS queries, depending on the current number
of profilers in the system.

,PROFILETKN=profiletkn
When TYPE=EVENTDATA and REQUEST=QUERY are specified, a required
input parameter, which should contain the profiler's unique token received
from this profilers's REQUEST=PROFILE,ACTION=START request (parameter
OUTPROFILETKN).

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

, CPUMASK=cpumask

, CPUMASK=ALL
When TYPE=EVENTDATA and REQUEST=QUERY are specified, an optional
input parameter representing a bitmask of which CPUs and/or cores to query
event data. The bitmask should be ECVTMaxMPNumBytesInMask bytes long.
Bit 0 represents CPU 0's event data as well as core 0's event data to query, and

Chapter 22. HISSERV macro — HISSERV Service 251

HISSERV macro

so forth up to the bit position at CVTMAXMP. If requesting all CPUs and all
cores specify ALL, pass in a CPUMASK of binary ones, or omit the CPUMASK
parameter. The default is ALL.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RETCODE=retcode

An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REGO, REGO00, or RO (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPRO), (GPR00), REGO), (REG00), or (RO).

,PLISTVER=IMPLIED_VERSION
, PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:

* IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

* MAX if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

* 0, if you use the currently available parameters.
To code: Specify one of the following:
 IMPLIED_VERSION

* MAX

e A decimal value of 0

JMF=§
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

252 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HISSERV macro

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of OF to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND Codes

None.

Return and Reason Codes
When the HISSERV macro returns control to your program:
e GPR 15 (and retcode, when you code RETCODE) contains a return code.

* When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code
RSNCODE) contains a reason code.

Macro HISYSERV provides equate symbols for the return and reason codes. Note
carefully that bits 0-15 of the reason code may contain component-diagnostic data
and must not be assumed to be 0.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 27. Return and Reason Codes for the HISSERV Macro

Return Code

Reason Code Equate Symbol Meaning and Action

0

— Equate Symbol: Hisserv_kRetOk

Meaning: HISSERV request successful.

Action: Processing continues.

Chapter 22. HISSERV macro — HISSERV Service 253

HISSERV macro

Table 27. Return and Reason Codes for the HISSERV Macro (continued)

Return Code

Reason Code

Equate Symbol Meaning and Action

4

Equate Symbol: Hisserv_kRetWarn
Meaning: Warning

Action: Refer to the action provided with the specific reason code.

xxxx0401

Equate Symbol: Hisserv_kRsnWarn_AnsAreaSmall

Meaning: For REQUEST=QUERY, the answer area provided was
large enough to hold the minimum amount of data required for
the request, but not large enough to hold all of the data requested.

Action: Obtain a larger answer area using the
HisAns_LengthRequire field returned in the request's ANSAREA.

Equate Symbol: Hisserv_kRetUser
Meaning: HISSERV request failed due to a user error.

Action: Refer to the action provided with the specific reason code

xxxx0801

Equate Symbol: Hisserv_kRsnUser_BadParmArea
Meaning: Unable to access parameter area.

Action: Check for possible storage overlay.

xxxx0802

Equate Symbol: Hisserv_kRsnUser_BadParmAreaALET
Meaning: Bad parameter area ALET.

Action: Make sure that the ALET associated with the parameter
area is valid. The access register might not have been set up
correctly.

xxxx0803

Equate Symbol: Hisserv_kRsnUser_BadVersion
Meaning: Bad version for the parameter list was specified.

Action: Check for possible storage overlay.

xxxx0804

Equate Symbol: Hisserv_kRsnUser_SrbMode
Meaning: This function is only available in task mode.

Action: Use function in task mode.

xxxx0805

Equate Symbol: Hisserv_kRsnUser_NotEnabled
Meaning: This function is only available to enabled programs.

Action: Use function while enabled.

xxxx0806

Equate Symbol: Hisserv_kRsnUser_LocksHeld
Meaning: This function is only available to unlocked programs.

Action: Use function while unlocked.

xxxx0807

Equate Symbol: Hisserv_kRsnUser_CallerFRR

Meaning: This function is only available to programs that have
not established an FRR.

Action: Retry the request without an FRR established.

254 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HISSERV macro

Table 27. Return and Reason Codes for the HISSERV Macro (continued)

Return Code

Reason Code

Equate Symbol Meaning and Action

8

xxxx0808

Equate Symbol: Hisserv_kRsnUser_BadRequest
Meaning: A Bad request was made to the service.

Action: Check for possible storage overlay.

xxxx0809

Equate Symbol: Hisserv_kRsnUser_BadProfTkn
Meaning: Token specified was not a valid token.

Action: Use a valid token provided by the
REQUEST=PROFILE,ACTION=START request.

xxxx080A

Equate Symbol: Hisserv_kRsnUser_NamelnUse
Meaning: The name requested is already in use.

Action: Provide a NAME that is unique to the service.

xxxx080B

Equate Symbol: Hisserv_kRsnUser_InvName
Meaning: The name requested is invalid.

Action: Provide a valid NAME, it cannot begin with HIS.

xxxx080C

Equate Symbol: Hisserv_kRsnUser_ExitRtnNotFound
Meaning: The exit routine specified wasn't found.

Action: Ensure the exit routine specified exists in LPA, the LNKLS
concatenation, or the nucleus.

xxxx080D

Equate Symbol: Hisserv_kRsnUser_ExitRinInUse
Meaning: The exit routine specified is already in use.

Action: A different exit routine must be provided.

xxxx080E

Equate Symbol: Hisserv_kRsnUser_BadEvnTyp

Meaning: For REQUEST=PROFILE,ACTION=START requests, one
or more event types specified could not be properly configured
for because it is not allowed. Only event types returned in the
HisEvn_ValidEvnTyp field of a REQUEST=QUERY, TYPE=EVENT
request can be requested.

Action: Ensure the event types being requested are a subset of the
event types returned in the HisEvn_ValidEvnTyp field of a
REQUEST=QUERY,TYPE=EVENT request.

xxxx080F

Equate Symbol: Hisserv_kRsnUser_BadProfReq
Meaning: A bad PROFILE request was made to the service.

Action: Check for possible storage overlay.

xxxx0810

Equate Symbol: Hisserv_kRsnUser_BadProfStart

Meaning: For REQUEST=PROFILE,ACTION=START, a bad
request was made. At least one event type or sampling should be
requested when starting to profile the system.

Action: Request at least one event type or sampling.

Chapter 22. HISSERV macro — HISSERV Service 255

HISSERV macro

Table 27. Return and Reason Codes for the HISSERV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0811 Equate Symbol: Hisserv_kRsnUser_BadQuery
Meaning: For REQUEST=QUERY, a bad query was requested.

Action: Check for possible storage overlay.

8 xxxx0812 Equate Symbol: Hisserv_kRsnUser_Bad AnsArea
Meaning: For REQUEST=QUERY, unable to access answer area.

Action: Provide a valid answer area.

8 xxxx0813 Equate Symbol: Hisserv_kRsnUser_BadAnsAreaALET
Meaning: Bad answer area ALET.

Action: Make sure that the ALET associated with the answer area
is valid. The access register might not have been set up correctly.

8 xxxx0814 Equate Symbol: Hisserv_kRsnUser_AnsLenTooSmall

Meaning: For REQUEST=QUERY, the answer area length is
incorrect.

Action: Ensure the answer area length and the storage provided
as the answer area is at least HisAns_kLength bytes long.

8 xxxx0815 Equate Symbol: Hisserv_kRsnUser_BadCpuMask

Meaning: For REQUEST=QUERY, TYPE=EVENTDATA requests,
unable to access the CPU mask.

Action: Provide a valid CPU mask.

8 xxxx0816 Equate Symbol: Hisserv_kRsnUser_BadCpuMaskALET
Meaning: Bad CPU mask ALET.

Action: Make sure that the ALET associated with the CPU mask is
valid. The access register might not have been set up correctly.

8 xxxx0817 Equate Symbol: Hisserv_kRsnUser_NoEvnTyp

Meaning: For REQUEST=QUERY, TYPE=EVENTDATA requests,
the profiler making the request is not profiling events.

Action: When registering with the system to profile, indicate the
intention to profile events using the EVENT= parameter.

8 xxxx0818 Equate Symbol: Hisserv_kRsnUser_InvProfChange

Meaning: A REQUEST=PROFILE request was made from a
profiler's exit routine.

Action: A REQUEST=PROFILE request cannot be made from a
profiler's exit routine.

C — Equate Symbol: Hisserv_kRetEnv

Meaning: Environmental error

Action: Refer to the action provided with the specific reason code.

256 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HISSERV macro

Table 27. Return and Reason Codes for the HISSERV Macro (continued)

Return Code

Reason Code

Equate Symbol Meaning and Action

C

xxxx0C01

Equate Symbol: Hisserv_kRsnEnv_NotAvailable
Meaning: Function is not available.

Action: This function is only available when the HIS address
space is running.

xxxx0C02

Equate Symbol: Hisserv_kRsnEnv_NotReady

Meaning: Function is available but is not currently ready to
accept requests.

Action: Retry the request.

xxxx0C03

Equate Symbol: Hisserv_kRsnEnv_NoStorage

Meaning: There was not enough storage in HIS private storage to
complete the request.

Action: Contact your system programmer.

10

Equate Symbol: Hisserv_kRetUnk
Meaning: Unexpected failure.

Action: Refer to the action provided with the specific reason code.

10

xxxx1001

Equate Symbol: Hisserv_kRsnUnk_Unk

Meaning: Unexpected failure. The state of the request is
unpredictable.

Action: Contact your system programmer.

10

xxxx1002

Equate Symbol: Hisserv_kRsnUnk_QueryCpu

Meaning: For REQUEST=QUERY,TYPE=EVENTDATA, while
attempting to query a CPU's event data an unknown error
occurred.

Action: Contact your system programmer.

Example

Operation

1. Profile for all available event types, and sampling.

2. Query the event types on 1 minute intervals for an hour, ensuring all event
data is returned each query.

3. Process Sampling Data Blocks (SDBs) as they become available.

4. Stop profiling the system.

The code is as follows.

EE R
* Query Events to determine what can be enabled. *

HISSERV MF=(E,serviceList),REQUEST=QUERY,

ANSAREA=EvnAnsArea,ANSLEN=EvnAnsLen,
TYPE=EVENT,RETCODE=LRetCode, *
RSNCODE=LRsnCode

ICM R5,B'1111',LRetCode

Jz

EVNAREA_GOOD

Chapter 22. HISSERV macro — HISSERV Service 257

HISSERV macro

LA R4,Hisserv_kRetWarn

CLR R5,R4

JE EVNAREA_WARN
EVNAREA_BAD DS OH

*
* Place code to check bad return/reason codes here
*
EVNAREA_WARN DS OH
L R5,LRsnCode
NILH R5,0
CHI R5,Hisserv_kRsnWarn_AnsAreaSmall
JNE EVNAREA_BAD

PTlace code to handle obtaining more storage for the
ANSAREA, and repeat the request if necessary.

* % X X

EVNAREA_GOOD DS OH
LA R8,EvnAnsArea
Using HisEvn,R8
kkhkkkkhkkhkhkkhkhkkhhkhkhhkkhkhhkhhkhkhhkhhkkhhkkhhkhhkkhkhkkhhkkhhkhkhkkhkhkkhkhkkhkkkkkkx
* Start profiling the system. Output from the previous *
* query is used as input to this query, specifically we *
* want to profile all valid event types. *
khkhkkkhkkkhkkhhkkhhkkhhkkhhkkhhhhhkhhhkkhhhkhhhhhkhhhkkhhkkhhhdhkkhhkkhhkhkhhkkdxkxdxx
HISSERV MF=(E,servicelist),REQUEST=PROFILE,
ACTION=START,QUTPROFILETKN=ProfToken,
NAME=ProfName, EXITRTN=ExitMod, SAMPLE=YES,
EVENT=HisEvn_ValidEvnTyp,RETCODE=LRetCode,
RSNCODE=LRsnCode

* %k X X

Place code to check return/reason codes here

Place code to obtain storage of length HisEvnData_kLength,
save address in R8, length in EvnDataAnslLen

* % X X X %

EVN_LOOP DS OH

* Query the current state of the events *
khkkkkhkhkhkkhkkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhhhhhhhhhhhhhhhkkhhkhkkkkxx
Using HisEvnData,R8
HISSERV MF=(E,servicelist),REQUEST=QUERY,
TYPE=EVENTDATA,PROFILETKN=ProfToken,
CPUMASK=ALL,ANSAREA=HisEvnData,
ANSLEN=EvnDataAnsLen,RETCODE=LRetCode,
RSNCODE=LRsnCode
ICM R5,B'1111',LRetCode
JZ EVNDATAAREA_GOOD
LA R4,Hisserv_kRetWarn
CLR R5,R4
JE EVNDATAAREA_WARN
EVNDATAAREA_BAD DS OH

*
* Place code to check bad return/reason codes here
*
EVNDATAAREA_WARN DS OH
L R5,LRsnCode
NILH R5,0
CHI R5,Hisserv_kRsnWarn_AnsAreaSmall
JNE EVNAREA_BAD

* %k X X

Place code to free storage of length EvnDataAnsLen, then
obtain new storage of length HisEvnData_Length, save address
in R8, length in EvnDataAnsLen

* Ok kX X

J EVN_LOOP
EVNDATAAREA_GOOD DS OH

*

258 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HISSERV macro

* Place code to process the returned events here.
*

L R5,EvnQueryVal

BCT R5,EVNDONE

ST R5,EvnQueryVal

STIMER WAIT,BINTVL=EvnIntv

J EVN_LOOP
EVNDONE DS OH
khhkkkkhkhkhhhhhhhdhhhhhhhhhhdhhhhhdrhhrhhhhhhdhrhdrhdhhhhhdhhrhdrkhdx
* Stop profiling the system *
B T T R LR *hkkRIKRKK

HISSERV MF=(E,servicelist),REQUEST=PROFILE,
ACTION=STOP,PROFILETKN=ProfToken,
RETCODE=LRetCode,RSNCODE=LRsnCode

*

* Place code to check return/reason codes here

*

EvnIntv DC F'6000' One minute interval between =*
event queries

ProfName DC CL8'SAMPLEO1' External name for profiler

ExitMod DC CL8'SAMPEXRT' EXITRTN Name

HISYSERV Return code information and =*

ANSAREA mappings.

DynArea DSECT

LRetCode DS F

LRsnCode DS F

ProfToken DC CL16'0"

EvnQueryVal DC F'60' Query events 60 times

EvnAnsArea DS XL(HisEvn_Len+HisEvnCtr_Len)

EvnAnsLen DS AD(HisEvn_Len+HisEvnCtr_Len)

EvnDataAnsLen DS D

HISSERV MF=(L,servicelist)

*
*
* HISEXRTN CSECT, the EXITRTN Tocated in LPA,LNKLIST or the
* nucleus.
*
H

ISEXRTN CSECT
Using HisExitParm,R1
CLI HisExitParm_Func,HisExitParmFunc_kStat
JNE CHECK_SMP
PUSH USING
USING HisStatParm,R1

*

* Place code to process any service actions
*
J DONE
POP USING
CHECK_SMP DS OH
CLI HisExitParm_Func,HisExitParmFunc_kSmp
JNE DONE
PUSH USING
USING HisSmpParm,R1

*

* Place code to process the full SDBs
*

POP USING
DONE DS OH

HISYEXIT

HISYSMPX

Chapter 22. HISSERV macro — HISSERV Service 259

HISSERV macro

260 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 23. HSPSERV — Read from and write to a Hiperspace

Description

HSPSERV transfers data between virtual storage areas in address spaces and
hiperspaces. It reads data from a hiperspace to an address space and it writes data
to a hiperspace from an address space.

A hiperspace can be either a standard hiperspace, of which there are two types,
shared and nonshared, or an ESO (expanded storage only) hiperspace:

¢ The nonshared standard hiperspace and the shared standard hiperspace are
backed with real storage and, if necessary, auxiliary storage. Through the buffer
area in the address space, your program can view or scroll through the
hiperspace. HSPSERV SWRITE and HSPSERV SREAD transfer data to and from
a standard hiperspace. You create a standard hiperspace through the
HSTYPE=SCROLL parameter on the DSPSERV macro. The description of
HSPSERV macro for standard hiperspaces begins on|‘Read and write services|
[for standard hiperspaces.”|

* The ESO hiperspace is backed only with real storage. It is a high-speed buffer
area or cache for data that your program needs. HSPSERV CWRITE and
HSPSERV CREAD transfer data to and from an ESO hiperspace. You create an
ESO hiperspace through the HSTYPE=CACHE parameter on the DSPSERV
macro. The description of the HSPSERV macro for ESO hiperspaces begins on
[“Read and write services for ESO hiperspaces” on page 268

The STOKEN parameter identifies the specific hiperspace to be read from or
written to. The HSPALET parameter specifies an optional ALET for the hiperspace.
The RANGLIST parameter identifies one or more of the storage ranges in the
address space and the one or more storage ranges in the hiperspace. A storage
range consists of contiguous 4K byte blocks starting on a 4K byte boundary.

HSPSERV is also described in /OS MVS Programming: Assembler Services Reference]
with the exception of the parameters that are valid only for supervisor
state or PSW key 0 through 7 programs: CREAD, CWRITE, ADDRSP, and KEEP.
For more information about hiperspaces and data spaces see m
[Programming: Extended Addressability Guide}

Read and write services for standard hiperspaces

Environment
The requirements for the caller who specifies SREAD and SWRITE are:
Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN

Note: PASN=HASN=SASN is required for a nonshared
standard hiperspace for which an ALET is not used (that is,
the HSPALET parameter is omitted).

AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts

© Copyright IBM Corp. 1988, 2016 261

HSPSERV macro

Environmental factor Requirement
Locks: No locks held
Control parameters: Must be in the caller's primary address space. If the caller's

PSW key is not zero, the PSW key must match the storage
key associated with the control parameters.

Programming requirements

* If you code the HSPALET parameter on the HSPSERV macro, you must first
code the SYSSTATE macro to indicate the ASC mode of your program.

 If you code the HSPALET parameter on the HSPSERV macro, you must provide
a 144-byte save area in the caller's primary address space.

* The range list must be addressable in the caller's primary address space.

Restrictions

If you code HSPALET, and you have an FRR recovery routine that gains control
while HSPSERYV is executing, your recovery routine cannot attempt retry at the
time of error.

Input register information

Before issuing the HSPSERV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

However, if the caller specifies the HSPALET parameter:

* General purpose register (GPR) 13 must contain the address of a 144-byte save
area. The save area must be in the caller's primary address space.

* Access register (AR) 13 must contain 0, regardless of whether the caller is in
primary or AR address space control (ASC) mode.

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register

Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

262 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HSPSERV macro

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

The following figure describes the characteristics and restrictions for the use of

standard hiperspaces, the hiperspaces that allow your program to scroll through
large areas of data.

Chapter 23. HSPSERV — Read from and write to a Hiperspace 263

HSPSERV macro

Non-shared standard hiperspace:

For problem state and PSW key 8-F callers:

- If an ALET is not used, the aller’'s TCB must own the hiperspace.

- If an ALET is used, any TCB in the caller’s home address space can own the hiperspace.

For superviosr state or PSW key 0-7 callers, any TCB in the caller's home address space can
own the hiperspace.

If an ALET is used:

- The ALET must be used for a hiperspace on the caller’'s DU-AL or PASN-AL.

- The cross memory mode can be any.

If an ALET is not used, the cross memory mode must be PASN=HASN.

For PSW key 0 callers, can have any storage key and can be fetch protected.

For PSW key 1-F callers requesting SWRITE or SREAD RELEASE=YES, must have matching
storage key.

For PSW key 1-F callers requesting SREAD RELEASE=NO, can have non-matching storage key
only if hiperspace is not fetch protected.

Shared standard hiperspace:

Problem state and PSW key 8-F callers must use an ALET.

Any task in the sytem can own the hiperspace. If the owning task is not in the caller’s home or primary
address space, the owner’s home address space must be non-swappable.

If an ALET is used, it must be for a hiperspace on the caller’s DU-AL or PASN-AL.

The cross memory mode can be any.

For PSW key 0 callers, can have any storage key and can be fetch protected.

For PSW keys 1-F callers requesting SWRITE or SREAD RELEASE=YES, must have matching
storage key.

For PSW key 1-F callers requesting SREAD RELEASE=NO, can have non-matching storage key only
if hiperspace is not fetch-protected.

Standard
Address Space Hiperspace
HSPSERV SWRITE...
HSPSERV SREAD...

Area of standard hiperspace.

Area in add : « Must be on 4K boundry.

réa in address space: . Can map a data-in-virtual object on permanent
* Must be in private subpool. storage.
* Must be within the home address space. . For SWRITE requests, cannot have a DIV SAVE
* Must not be within a DREF subpool. current for the area of the hiperspace.
* Can’t be page-fixed. . If an ALET is used, cannot have a DIV SAVE current
+ Must be on a 4K-byte boundary. for any part of the hiperspace.

» Can’t be part of a VIO window.

» For PSW key O callers, can have any storage key.

« For PSW key 1-F callers, must have a matching storage key with
one exception: for SWRITE callers, if the area is not
fetch-protected, it can have any storage key.

Figure 5.

Syntax

The standard form of the HSPSERV macro for standard hiperspaces is written as

follows:

Characteristics and Restrictions for Standard Hiperspaces

Syntax

Description

name

name: Symbol. Begin name in column 1.

264 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HSPSERV macro

Syntax Description
b One or more blanks must precede HSPSERV.
HSPSERV
b One or more blanks must follow HSPSERV.
SREAD
SWRITE
,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).
JHSPALET=alet-addr alet-addr: RX-type address or register (2) - (12).
,ZNUMRANGE=n n: Number from 1 to 50.
/NUMRANGE=num-addr num-addr: RX-type address or register (2) - (12). Default: NUMRANGE=1.
,RANGLIST=list-addr list-addr: RX-type address or register (2) - 12).
,RELEASE=NO Default: RELEASE=NO.
,RELEASE=YES
,JRETCODE-=ret-addr ret-addr: RX-type address or register (2) - (12).
,RSNCODE=rsn-addr rsn-addr: RX-type address or register (2) - (12).
,MF=5S
Parameters
The parameters are explained as follows:
SREAD
Requests that the system read data from a standard hiperspace to an address
space.

STOKEN and RANGLIST are required parameters on the SREAD request.
HSPALET, NUMRANGE, RELEASE, RSNCODE, and RETCODE are optional
parameters.

SWRITE
Requests that the system write data to a standard hiperspace from an address
space.

Note:

Chapter 23. HSPSERV — Read from and write to a Hiperspace 265

HSPSERV macro

1. When HSPSERV returns to the caller after the SWRITE operation, the
contents of the address space storage range are not preserved. You can use
the address space area again.

2. If the hiperspace maps a data-in-virtual object, do not issue an SWRITE
request while a DIV SAVE request is current.

STOKEN and RANGLIST are required parameters on the SWRITE request.
HSPALET, NUMRANGE, RETCODE, and RSNCODE are optional parameters.

,STOKEN=s token-addr

Specifies the address of the eight-character variable that contains the STOKEN
for the standard hiperspace from which the data is to be read or into which the
data is to be written. Restrictions on standard hiperspaces are described in
[Figure 5 on page 264

,HSPALET=alet-addr

Specifies either the address of a fullword or a register that contains the ALET
for the hiperspace that is to be accessed. The ALET must be for a hiperspace
that is on the caller's DU-AL or PASN-AL.

The HSPALET parameter is optional except for the following case: If the caller
accesses a shared hiperspace, is in problem state and has PSW key 8 - F,
HSPALET is required.

Use of the HSPALET parameter requires that the caller provide a 144-byte save
area in the caller's primary address space. AR/GPR 13 must provide
addressability to this area regardless of the caller's ASC mode. GPR 13 must
contain the address of the area and AR 13 must contain 0.

If you code HSPALET, do not code RELEASE=YES.

If you code HSPALET, and you have an FRR recovery routine that gains
control while HSPSERV is executing, your recovery routine cannot attempt
retry at the time of error.

,NUMRANGE=n
, NUMRANGE=num-addr

Specifies the number of entries, from 1 to 50, or specifies a fullword that
identifies the number of entries in the range list (that the RANGLIST
parameter points to), or specifies a register containing the address of a
fullword containing the number of entries. The default is NUMRANGE=1.

If you omit NUMRANGE, HSPSERV reads or writes one entry in the range
list.

,RANGLIST=1list-addr

Specifies a fullword that contains an address of a list of ranges (up to 50) that
the system is to read or write, or specifies a register that contains the address
of the fullword pointer to the range list. The range list consists of a number of
entries (specified by NUMRANGE) where each entry consists of three words as
follows:

First word
The starting virtual address in the address space into which the data is
to be read or from which the data is to be written.

Second word
The starting virtual address in the hiperspace from which the system is
to read or into which the system is to write.

266 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HSPSERV macro

Third word
The number of blocks the system is to read or write. Note that the
address is the block number followed by 12 binary zeros.

An example of how to code the RANGLIST parameter when NUMRANGE=3
is as follows:

NUMRANGE=3 ,RANGLIST=(5)
or

NUMRANGE=3, RANGLIST=RANGADDR

<«———12Bytes—— >

Register 5 -
RANGADDR AddrSp Loc| Hiper Loc | Blocks
(fullword)

AddrSp Loc | Hiper Loc Blocks

AddrSp Loc| Hiper Loc | Blocks

Further restrictions on the areas in the address space and the hiperspace are
described in [Figure 5 on page 264}

On return, only if the caller issued the HSPSERV macro with the HSPALET
parameter, the range list values might be different from the input values if the
system could not at first successfully complete the read or write operation. In
that case, the system changes the range list values, but does not restore the
input values when it finally returns control to the caller.

»RELEASE=NO

»RELEASE=YES
Specifies whether or not the system is to release the hiperspace pages after it
completes the SREAD operation. RELEASE is valid only with SREAD.

RELEASE=NO specifies that the system does not release the hiperspace pages
after it completes the SREAD operation. Unless a subsequent SWRITE request
changes the data, the same data will be available again on the next SREAD
request. RELEASE=NO is the default.

RELEASE=YES specifies that, after the SREAD request, the system is to release
the storage that backed the data in the hiperspace. If you code RELEASE=YES,
do not code HSPALET.

,RETCODE=ret-addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

»RSNCODE=rsn-addr
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0.

sMF=$
Specifies the standard form of the macro. This form generates code to place the
parameters into an inline parameter list and invoke the service.

Chapter 23. HSPSERV — Read from and write to a Hiperspace 267

HSPSERV macro

ABEND codes

HSPSERV might abnormally terminate with abend code X'01D'". See|z/OS MVS

for an explanation of abend code X'01D'.

Return and reason codes

When control returns from HSPSERV SREAD or HSPSERV SWRITE, GPR 15 (and
ret-addr, if you coded RETCODE) contains one of the following hexadecimal return
codes. GPR 0 (and rsn-addr, if you coded RSNCODE) contains one of the following

hexadecimal reason codes.

Note: yy is X'09' for SREAD and X'0A' for SWRITE.
Table 28. Return and Reason Codes for HSPSERV SREAD and HSPSERV SWRITE

Hexadecimal Return

Hexadecimal Reason
Code Code

Meaning and Action

00 00

Meaning: HSPSERV completed successfully.

Action: None.

08 xxyy05xx

Meaning: System error. The system rejects the
request. A hiperspace page is unavailable.

Action: Record the return and reason code and
supply it to the appropriate IBM support
personnel.

08 xxyy06xx

Meaning: System error. The system rejects the
request. An address space page is unavailable.

Action: Record the return and reason code and
supply it to the appropriate IBM support
personnel.

0C xx006xx

Meaning: System error. System failure because of
environmental problems.

Action: Record the return and reason code and
supply it to the appropriate IBM support
personnel.

Read and write services for ESO hiperspaces

Environment
The requirements for the caller who requests CREAD and CWRITE are:

Environmental factor

Minimum authorization:
Dispatchable unit mode:

Cross memory mode:
AMODE:

ASC mode:

Interrupt status:
Locks:

Control parameters:

Requirement

Supervisor state or PSW key 0 - 7

Task or SRB

Any PASN, any HASN, any SASN

31-bit

Primary or access register (AR)

Enabled or disabled for I/O and external interrupts

The caller may hold locks, but is not required to hold any
The parameter list and range list must be in nonpageable,
non-DREF storage. If the caller specifies HSPALET and is
disabled, the save area must also be in nonpageable,
non-DREF storage. The parameter list and save area must all
be in the common area or in the private area of the caller's
primary address space.

268 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HSPSERV macro

Programming requirements

 If you code the HSPALET parameter on the HSPSERV macro, you must first
code the SYSSTATE macro to indicate the ASC mode of your program.

 If you code the HSPALET parameter on the HSPSERV macro, you must provide
a 144-byte save area in the caller's primary address space.

* The range list must be addressable in the caller's primary address space.

Restrictions

If you code HSPALET, and you have an FRR recovery routine that gains control
while HSPSERV is executing, your recovery routine cannot attempt retry at the
time of error.

Input register information

Before issuing the HSPSERV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

However, if the caller specifies the HSPALET parameter:

* General purpose register (GPR) 13 must contain the address of a 144-byte save
area. The save area must be in the caller's primary address space.

* Access register (AR) 13 must contain 0, regardless of whether the caller is in
primary or AR address space control (ASC) mode.

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register

Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller

depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications

None.

Chapter 23. HSPSERV — Read from and write to a Hiperspace 269

HSPSERV macro

The following figure describes the characteristics and restrictions for the use of
ESO hiperspaces, the hiperspaces that act as a high-speed buffer or cache for data.

IThe ESO hiperspace:

» Owner can be any task in the caller’s home or primary address
space or in a on-swappable address space.

« For PSW key 0 callers, can have any storage key.

. For PSW key 1-F callers, with CWRITE requests, must have
matching storage key.

» For PSW key 1-F callers with CREAD requests where storage
key does not match callers PSW key, must not be
fetch-protected.

ESO
Address Space Hiperspace

PSERV CWRITE..
PSERV CREAD...

T
(2}

T
g

g

/

Area in address space:
Must be on a 4K-byte boundary. * Must be on a 4K boundary.
Must be withing the home, primary or CSA.
Can’t be part of a VIO window.

Can’'t map a data-in-virtual object.

For PSW key 0 callers, can have any storage key.

For PSW key 1-F callers on CREAD requests, must have a matching

storage key.

* For PSW key 1-F callers on CWRITE requests, if the area does not have a
matching storage key, it must not be fetch-protected and KEEP=NO cannot
be specified.

* Can be either fixed or not; however for CREAD requests, must not have a
PGSER FIX in progress.

Area of ESO hiperspace:

Figure 6. Characteristics and Restrictions for ESO Hiperspaces

Syntax
The standard form of the HSPSERV macro for ESO hiperspaces follows.

CAUTION:

Code the parameters on the HSPSERV CREAD and HSPSERV CWRITE macros
very carefully. Read the requirements for the address space buffer and the
hiperspace, as listed in For performance reasons, the system does not
verify the location of the addresses you specify on these macros. Incorrect
coding can cause damage to the system.

Syntax Description

name name: Symbol. Begin name in column 1.

270 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HSPSERV macro

Syntax Description

b One or more blanks must precede HSPSERV.
HSPSERV

b One or more blanks must follow HSPSERV.
CREAD

CWRITE

,STOKEN=stoken-addr

stoken-addr: RX-type address or register (2) - (12).

,JHSPALET=alet-addr

alet-addr: RX-type address or register (2) - (12).

,NUMRANGE=n

n: A number from 1 to 50.

JNUMRANGE=num-addr

num-addr: RX-type address or register (2) - (12). Default: NUMRANGE=1.

,JRANGLIST=list-addr

list-addr: RX-type address or register (2) - (12).

,ADDRSP=HOME

Default: ADDRSP=HOME.

,ADDRSP=PRIMARY

,ADDRSP=COMMON

,JKEEP=YES

Default: KEEP=YES.

,KEEP=NO

,RETCODE=ret-addr

ret-addr: RX-type address or register (2) - (12).

,RSNCODE=rsn-addr

rsn-addr: RX-type address or register (2) - (12).

,MF=5

Parameters

The parameters are explained as follows:

CREAD

Requests that the system read data from an ESO hiperspace

If all blocks requested to be read are available in the hiperspace, then the
system performs the read operation. However, if one or more of the blocks to
be read are no longer available in the hiperspace, then the system returns a
failing return code. (See return code 08.) In this case, the system does not tell
you which blocks it successfully reads, if any.

Chapter 23. HSPSERV — Read from and write to a Hiperspace 271

HSPSERV macro

,HSPALET=alet-addr

STOKEN and RANGLIST are required parameters on the CREAD request.
ADDRSP, NUMRANGE, RSNCODE, and RETCODE are optional parameters.

CWRITE

Requests that the system write data to an ESO hiperspace. If the system cannot
write all the requested blocks to the hiperspace, then it doesn't write any and
rejects the request. (See return code 08.) In this case, the data in the specified
range in the hiperspace is unpredictable. Therefore, after an unsuccessful write,
do not issue another CREAD against the failing hiperspace range of virtual
storage until an intervening CWRITE is successful.

STOKEN and RANGLIST are required parameters on the CWRITE request.
ADDRSP, NUMRANGE, KEEP, RSNCODE, and RETCODE are optional
parameters.

,STOKEN=stoken-addr

Specifies the address of the 8-character variable that contains the STOKEN for
the ESO hiperspace from which the data is to be read or into which the data is
to be written. Restrictions on the hiperspace are described in [Figure 6 on pagel

Specifies either the address of a fullword or a register that contains the ALET
for the hiperspace that is to be accessed. The ALET must be for a hiperspace
that is on the caller's DU-AL or PASN-AL.

Use of the HSPALET parameter requires that the caller provide a 144-byte save
area in the caller's primary address space or in the common area. If the caller is
disabled, the save area must be in nonpageable storage. AR/GPR 13 must
provide addressability to this area regardless of the caller's ASC mode. GPR 13
must contain the address of the area and AR 13 must contain 0.

If you code HSPALET, do not code RELEASE=YES.

If you code HSPALET and you have an FRR recovery routine that gains control
while HSPSERYV is executing, your recovery routine cannot attempt retry at the
time of error.

,NUMRANGE=n
, NUMRANGE=num-addr

Specifies a fullword that identifies the number of entries in the range list (that
the RANGLIST parameter points to), or specifies a register containing the
address of a fullword containing the number of entries, or specifies the number
of entries, from 1 to 50. The default is NUMRANGE=1.

If you omit NUMRANGE, then HSPSERV reads or writes one virtual range.

,RANGLIST=1list-addr

Specifies a fullword that contains the address of a parameter area in
nonpageable storage that contains a list of up to 50 ranges that the system is to
read or write, or specifies a register that contains the address of the fullword
pointer to the range list.

The range list consists of a number of entries (specified by NUMRANGE)
where each entry consists of three words as follows:

First word
The starting virtual address in the address space into which the data is
to be read or from which the data is to be written.

272 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HSPSERV macro

Second word
The starting virtual address in the hiperspace from which the system is
to read or into which the system is to write.

Third word
The number of blocks the system is to read or write.

An example of how to code the RANGLIST parameter when NUMRANGE=3
is as follows:

NUMRANGE=3 ,RANGLIST=(5)
or

NUMRANGE=3, RANGLIST=RANGADDR

N<—12 Bytes ——MM »

Register 5
RANGADDR AddrSp Loc | Hiper Loc Blocks
(fullword)

AddrSp Loc| Hiper Loc | Blocks

AddrSp Loc| Hiper Loc | Blocks

The one or more address space ranges on RANGLIST must be consistent with
the ADDRSP parameter. When you specify ADDRSP=COMMON, each address
space range described in the range list must reside entirely within CSA and
have no intersections with other common area subpools or the private area.
When you specify ADDRSP=HOME or ADDRSP=PRIMARY, each address
space range described in the range list must reside entirely within the private
area.

Restrictions on the areas in the address space and the hiperspace are described
in IFigure 6 on page 270l

The range list must be in the common area or in the private area of the caller's
primary address space.

,ADDRSP=HOME

»ADDRSP=PRIMARY

»ADDRSP=COMMON
Specifies the location of the virtual storage range from which the system is to
read or into which the system is to write. The location can be the caller's home
address space (ADDRSP=HOME), the caller's primary address space
(ADDRSP=PRIMARY), or the CSA (ADDRSP=COMMON). The default is
ADDRSP=HOME.

,KEEP=YES

,KEEP=NO
Specifies whether or not the system preserves the source data in the virtual
storage of the address space after it completes the CWRITE request. KEEP is
valid only on the CWRITE request.

If you specify KEEP=YES, the data in the specified address space is unchanged
and available for reference. The default is KEEP=YES.

Chapter 23. HSPSERV — Read from and write to a Hiperspace 273

HSPSERV macro

If you specify KEEP=NO, the system might not preserve the data in the
address space. If your program will reuse the same virtual storage area after
the CWRITE request completes, use KEEP=NO.

,RETCODE=ret-addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

»RSNCODE=rsn-addr
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0.

MF=$

2
Specifies the standard form of the macro. This form generates code to place the
parameters into an inline parameter list and invoke the macro service.

ABEND codes

HSPSERV might abnormally terminate with abend code X'01D'". See |z/0S MV'S
for an explanation of abend code X'01D'.

Return and reason codes

When control returns from HSPSERV CREAD or HSPSERV CWRITE, GPR 15 (and
ret-addr, if you coded RETCODE) contains one of the following hexadecimal return
codes. GPR 0 (and rsn-addr, if you coded RSNCODE) contains one of the following
hexadecimal reason codes.

Note: yy is X'07' for CREAD and X'08' for CWRITE.
Table 29. Return and Reason Codes for HSPSERV CREAD and HSPSERV CWRITE

Hexadecimal Return Hexadecimal Reason Meaning and Action
Code Code
00 00 Meaning: HSPSERV completed successfully.

Action: None.

08 xxyy0lxx Meaning: Program error. The hiperspace data
you requested is not available (CREAD request).

Action: The data must be retrieved from its
permanent copy.

08 xxyy02xx Meaning: Program error. The system rejects the
request because an address space page is not
currently backed by real storage. You can repeat
the HSPSERV request after you reference one or
more pages, which causes the system to page the
storage in CWRITE request.

Action: Reference the page or pages that are not
in processor storage.

08 xxyy03xx Meaning: Environmental error. The system rejects
the request because the necessary real storage
frames are not currently available.

Action: Rerun your program one or more times
during a period of lower system usage. If the
problem persists, consult your system
programmer, who might be able to tune the
system so that more resources are available to
your program.

274 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HSPSERV macro

Table 29. Return and Reason Codes for HSPSERV CREAD and HSPSERV

CWRITE (continued)

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

08

xxyy04xx

Meaning: Environmental error. The system rejects
the request because no frames are currently
available.

Action: Rerun your program one or more times
during a period of lower system usage. If the
problem persists, consult your system
programmer, who might be able to tune the
system so that more resources are available to
your program.

08

xxyy05xx

Meaning: System error. The system rejects the
request because a hiperspace page is unavailable.

Action: Record the return and reason code and
supply it to the appropriate IBM support
personnel.

08

xxyy06xx

Meaning: System error. The system rejects the
request because an address space page is
unavailable.

Action: Record the return and reason code and
supply it to the appropriate IBM support
personnel.

HSPSERYV - List form

Use the list form of the HSPSERV macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the

parameters.

Syntax

The list form of the HSPSERV macro is written as follows:

Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede HSPSERV.
HSPSERV
b One or more blanks must follow HSPSERV.

PLISTVER=vernum

vernum: Parameter list version 0 or 1

Default: Version that allows all specified parameters.

MF=(L,list-addr)

list-addr: Symbol.

JMF=(L,list addr,attr)

attr: 1- to 60-character input string. Default: 0D.

Chapter 23. HSPSERV — Read from and write to a Hiperspace

275

HSPSERV macro

Syntax Description

Parameters
Parameters for the list form of HSPSERV are as follows:
PLISTVER=vernum
Specifies the macro version associated with HSPSERV. PLISTVER is an optional

parameter that determines which parameter list the system generates. Specify 0
if you use parameters only from this group:

e ADDRSP
* CREAD

« CWRITE

* KEEP

* MF

« NUMRANGE
e PLISTVER
* RANGLIST
* RELEASE
* RETCODE
* RSNCODE
* SREAD

* STOKEN
* SWRITE

If you use the HSPALET parameter, specify 1.

If you do not specify PLISTVER, the default is to allow all of the parameters
you specify on the invocation to be processed.

,MF=(L, list-addr)
,MF=(L,list-addr,attr)
Specifies the list form of HSPSERV.

list-addr is the address of the storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

HSPSERYV - Execute form

The execute form of the HSPSERV macro changes parameters in the control
parameter list that the system created through the list form of the macro and
performs the specified operation.

276 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HSPSERV macro

Syntax
The execute form of the HSPSERV macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede HSPSERV.
HSPSERV
b One or more blanks must follow HSPSERV.
SREAD
SWRITE
CREAD
CWRITE

,STOKEN=stoken-addr

stoken-addr: RX-type address or register (2) - (12).

JHSPALET=alet-addr

alet-addr: RX-type address or register (2) - (12).

,NUMRANGE=1

Default: NUMRANGE=1.

,JNUMRANGE=num-addr

num-addr: RX-type address or register (2) - (12).

,RANGLIST=list-addr

list-addr: RX-type address or register (2) - (12).

,RELEASE=NO

Default: RELEASE=NO.

,RELEASE=YES

,ADDRSP=HOME

Default: ADDRSP=HOME.

,ADDRSP=PRIMARY

,ADDRSP=COMMON

,JKEEP=YES

Default: KEEP=YES.

,KEEP=NO

,RETCODE=ret-addr

ret-addr: RX-type address or register (2) - (12).

,RSNCODE=rsn-addr

rsn-addr: RX-type address or register (2) - (12).

MF=(E,list-addr, COMPLETE)

list-addr: RX-type address or register (2) - (12).

Chapter 23. HSPSERV — Read from and write to a Hiperspace

277

HSPSERV macro

Syntax

Description

,MF=(E,list-addr, NOCHECK) Default: COMPLETE.

Parameters

The parameters are explained under the standard form of the HSPSERV macro
with the following exceptions:

,MF=(E,list-addr,COMPLETE)
,MF=(E, list-addr ,NOCHECK)
Specifies the execute form of the HSPSERV macro.

list-addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that you did not specify.

NOCHECK specifies that the system does not check for required parameters
and does not supply the optional parameters that you did not specify.

HSPSERYV - Modify form

Use the modify form of the HSPSERV macro together with the list and execute
forms of the macro for service routines that need to provide different options
according to user-provided input. Use the list form to define a storage area; use the
modify form to set the appropriate options; then use the execute form to call the
service.

Syntax
The modify form of the HSPSERV macro is written as follows:
Syntax Description
name name: Symbol. Begin name in column 1.
b One or more blanks must precede HSPSERV.
HSPSERV
b One or more blanks must follow HSPSERV.
SREAD
SWRITE
CREAD
CWRITE

,STOKEN=stoken-addr

stoken-addr: RX-type address or register (2) - (12).

,JHSPALET=alet-addr

alet-addr: RX-type address or register (2) - (12).

278 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

HSPSERV macro

Syntax

Description

,NUMRANGE=1

Default: NUMRANGE-=1.

,JNUMRANGE=num-addr

num-addr: RX-type address or register (2) - (12).

,JRANGLIST=list-addr

list-addr: RX-type address or register (2) - (12).

,RELEASE=NO

Default: RELEASE=NO.

,RELEASE=YES

,ADDRSP=HOME

Default: ADDRSP=HOME.

,ADDRSP=PRIMARY

,ADDRSP=COMMON

,JKEEP=YES

Default: KEEP=YES.

,KEEP=NO

,RETCODE=ret-addr

ret-addr: RX-type address or register (2) - (12).

,RSNCODE-=rsn-addr

rsn-addr: RX-type address or register (2) - (12).

,MF=(E,list-addr COMPLETE)

list-addr: RX-type address or register (2) - (12).

MF=(E,list-addr, NOCHECK)

Default: COMPLETE.

Parameters
Parameters for the modify form of HSPSERV are described in the standard form of
the macro with the following exceptions:

,MF=(M, list-addr,COMPLETE)
,MF=(M, list-addr ,NOCHECK)

Specifies the modify form of the HSPSERV macro.
list-addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that you did not specify.

NOCHECK specifies that the system does not check for required parameters
and does not supply the optional parameters that you did not specify.

Chapter 23. HSPSERV — Read from and write to a Hiperspace 279

280 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 24. IARBRVEA — Verify virtual storage access (AR
mode)

Description
Call the IARBRVEA service as a replacement for the TPROT instruction to
determine whether a page of virtual storage can be accessed when the page to be
tested resides in ALET-qualified storage.
Environment
The requirements for the caller are:
Environmental factor Requirement
Minimum authorization: Supervisor state, any PSW key (The key is used to
determine storage access.)
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: AR
Interrupt status: Enabled or disabled
Locks: Any lock may be held.
Control parameters: GPR 1 contains the virtual address of the page to be tested.

AR 1 contains the ALET.

Programming requirements

¢ The IARBRVEA service is only available when the RCEOA46291APPLIED bit is
set (B'1") in the RCE data area.

* The input virtual storage address in general purpose register (GPR) 1 and the
ALET in access register (AR) 1 may refer to any address space.

* Include the IHAPVT macro. PVTBRVEA contains the address of the entry point
of the routine.

Restrictions

None.

Input register information

Before calling the IARBRVEA service, the caller must ensure that the following
GPRs contain the specified information:

Register
Contents
1 Virtual address to be tested

15 Address of the entry point

Before calling the IARBRVEA service, the caller must ensure that AR 1 contains the
ALET.

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2016 281

IARBRVEA callable service

282

Register
Contents
0 Used as a work register by the system

1-14 Unchanged

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents
0 Used as a work register by the system

1-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the JARBRVEA call as shown in the syntax diagram.

USING PSA,0
L 15,FLCCVT(0)

BASR 14,15

L 15,CVTPVTP-CVTMAP(15)
L 15,PVTEXTPT-PVT(15)
L 15,PVTBRVEA-PVTEXT(15)

Parameters

None.

ABEND codes

None.

Return and reason codes

When IARBRVEA returns control to your program, GPR 15 contains a return code.
able 3(] identifies return codes in hexadecimal, tells what each means, and
recommends an action to take.

Table 30. Return codes for the IARBRVEA service

Hexadecimal return
code

Meaning and action

00

Meaning: The caller has write access to the page and the page is not backed by
a freemained frame.

Action: None.

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IARBRVEA callable service

Table 30. Return codes for the IARBRVEA service (continued)

Hexadecimal return
code

Meaning and action

01

Meaning: The caller has read access to the page and the page is not backed by a
freemained frame.

Action: None.

02

Meaning: The caller has no access to the page and the page is not backed by a
freemained frame.

Action: None.

03

Meaning: The page either cannot be translated or is backed by a freemained
frame.

Action: Use VSMLOC, VSMLIST, or IARQDUMP to determine the status of the
page.

Chapter 24. IARBRVEA — Verify virtual storage access (AR mode) 283

284 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 25. IARBRVER — Verify virtual storage access
(primary address space)

Description
Call the IARBRVER service as a replacement for the TPROT instruction to
determine whether a page of virtual storage can be accessed when the page to be
tested resides in the primary address space.
Environment
The requirements for the caller are:
Environmental factor Requirement
Minimum authorization: Supervisor state, any PSW key (The key is used to
determine storage access.)
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled
Locks: Any lock may be held.
Control parameters: GPR 1 contains the virtual address of the page to be tested.

Programming requirements

* The IARBRVER service is only available when the RCEOA46291APPLIED bit is
set (B'1") in the RCE data area.

 The input virtual storage address refers to the primary address space at the time
of invocation.

* Include the IHAPVT macro. PVTBRVER contains the address of the entry point
of the routine.

Restrictions
None.

Input register information

Before calling the IARBRVER service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents
1 Virtual address to be tested

15 Address of the entry point

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents
0 Used as a work register by the system

© Copyright IBM Corp. 1988, 2016 285

IARBRVER callable service

286

1-14
15

Unchanged

Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents
0 Used as a work register by the system
1-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the JARBRVER call as shown in the syntax diagram.

L
L
L
L
BASR

USING PSA,0

15,FLCCVT(0)
15,CVTPVTP-CVTMAP(15)
15,PVTEXTPT-PVT(15)
15,PVTBRVER-PVTEXT(15)
14,15

Parameters

None.

ABEND codes

None.

Return and reason codes

When IARBRVER returns control to your program, GPR 15 contains a return code.
identifies return codes in hexadecimal, tells what each means, and
recommends an action to take.

Table 31. Return codes for the IARBRVER service

code

Hexadecimal return | Meaning and action

00

Meaning: The caller has write access to the page and the page is not backed by
a freemained frame.

Action: None.

01

Meaning: The caller has read access to the page and the page is not backed by a
freemained frame.

Action: None.

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IARBRVER callable service

Table 31. Return codes for the IARBRVER service (continued)

Hexadecimal return
code

Meaning and action

02 Meaning: The caller has no access to the page and the page is not backed by a
freemained frame.
Action: None.

03 Meaning: The page either cannot be translated or is backed by a freemained

frame.

Action: Use VSMLOC, VSMLIST, or IARQDUMP to determine the status of the
page.

Chapter 25. IARBRVER — Verify virtual storage access (primary address space) 287

IARBRVER callable service

288 z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

Chapter 26. IARCP64 — 64-bit cell pool services

Description
Use IARCP64 to request 64-bit cell pool services.

With TARCP64, you can request to:

* Build a pool (REQUEST=BUILD).

* Obtain a cell from the pool (REQUEST=GET).
e Return a cell to the pool (REQUEST=FREE).

* Delete the pool (REQUEST=DELETE).

Note: There is diagnostic support for 64 bit cell pools in IPCS via the CBFORMAT
command. CBF cpid STR(IAXCPHD) formats the cell pool header, where cpid is the
cell pool identifier that was returned on IARCP64 REQUEST=BUILD. If you cannot
locate your cell pool identifier in the dump, simply browse storage starting at
X'100000000"' and issue a FIND on CPHD. There might be multiple cell pools, so you
must look at the cell contents to make sure you have the right pool. To see details
about all of the cells in the pool, use the EXIT option as follows: CBF cpid
STR(IAXCPHD) EXIT.

Environment

The requirements for the caller are:

Environmental factor Requirement

Minimum authorization: For TARCP64 REQUEST=BUILD, use of the
COMMONS=YES, TYPE=DREF, TYPE=FIXED,
OWNINGTASK=RCT, MEMLIMIT=NO, or MOTKN
parameter or the KeyOOToF(Q parameter with a value other
than X'90', require any of the following:

e Supervisor state
* PSW key 0-7
* APF authorized

All other options have a minimum authorization of Problem
state and PSW key 8-15. For IARCP64 REQUEST=GET,
FREE or DELETE, the caller must be able to modify the
storage for the cell pool. That means the caller must be in
key 0 or in the same key as the cell pool or the cell pool
must be in the public key (key 9). Supervisor state is
required for the TRACE=YES option. APF authorization has
no bearing on these services.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit

ASC mode: Primary or access register (AR)

© Copyright IBM Corp. 1988, 2016 289

IARCP64 macro

290

Environmental factor Requirement
Interrupt status: For the BUILD and DELETE requests, enabled.

For the GET and FREE requests:

* The caller might be enabled or disabled for interrupts
when requesting cells that are from pools are defined as
COMMON=YES and TYPE=FIXED.

* For all other combinations of options, the caller must be
enabled for interrupts.
Locks: For the BUILD and DELETE requests, no locks may be held.

For the GET request, the following locks must be held by
the caller or must be obtainable by IARCP64:

* For requests with EXPAND=NO, the caller might hold
locks but is not required to hold any.

* For requests with COMMON=NO and EXPAND=YES, the
caller might hold the local lock (LOCAL or CML) of the
current primary address space.

* For requests with COMMON=YES and EXPAND=YES,
the locking restrictions for the caller are the same as for
IARV64 REQUEST=GETCOMMON.

For the FREE request, the caller might hold locks but is not
required to hold any.
Control parameters: Control parameters must be in the primary address space.

Programming requirements
Specify SYSSTATE AMODE64=YES prior to invoking this macro.

Restrictions

None.

Input register information

Before issuing the IARCP64 macro, the caller does not have to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit GPRs contain:

For REQUEST=BUILD:

Register
Contents
0 Reason code in the low 32 bits if the return code is not 0. Otherwise, used

as a work register by the system.
1 Used as a work register by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Return code in the low 32 bits.

For REQUEST=GET:

z/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IARCP64 macro

Register
Contents

0 Reason code in the low 32 bits if the return code is not 0. Otherwise, used
as a work register by the system.

1 The address of the obtained cell.

2-12 Unchanged if REGS=SAVE was specified, used as work registers by the
system if REGS=USE was specified.

13 Unchanged.
14 Used as a work register by the system.
15 Return code in the low 32 bits.

For REQUEST=FREE:

Register
Contents

0-1 Used as a work register by the system.

2-12 Unchanged if REGS=SAVE was specified, used as work registers by the
system if REGS=USE was specified.

13 Unchanged.
14-15 Used as a work register by the system.

For REQUEST=DELETE:

Register
Contents

0-1 Used as a work register by the system.
2-13 Unchanged.
14-15 Used as work registers by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller

depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Chapter 26. IARCP64 — 64-bit cell pool services 291

IARCP64 macro

Syntax
The standard form of the IARCP64 macro is written as follows:
Syntax Description
name name: symbol. Begin name in column 1.
O One or more blanks must precede IARCP64.
IARCP64
O One or more blanks must follow IARCP64.

REQUEST=BUILD

REQUEST=GET

REQUEST=FREE

REQUEST=DELETE

JHEADER=header

header: RS-type address or address in register (2) - (12)

,CELLSIZE=cellsize

cellsize: RS-type address or address in register (2) - (12)

,OUTPUT_CPID=output_cpid

output_cpid: RS-type address or address in register (2) - (12)

,COMMON=NO

,COMMON=YES

JOWNINGTASK=CURRENT

J,OWNINGTASK=MOTHER

JOWNINGTASK=IPT

JOWNINGTASK=JOBSTEP

,OWNINGTASK=CMRO

J,OWNINGTASK=RCT

,MEMLIMIT=YES

Default: MEMLIMIT=YES

,MEMLIMIT=NO

JMOTKN=motkn

motkn: RS-type address or address in register (2) - (12)

,MOTKN=NO_MOTKN

Default: MOTKN=NO_MOTKN

,DUMP=LIKERGN

,DUMP=LIKELSQA

292 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IARCP64 macro

Syntax

Description

,DUMP=LIKECSA

,DUMP=LIKESQA

,DUMP=NO

,DUMPPRIO=dumpprio

dumpprio: RS-type address or address in register (2) - (12)

,OWNER=HOME

,OWNER=PRIMARY

,OWNER=SECONDARY

,OWNER=SYSTEM

,OWNER=BYASID

,OWNINGASID=owningasid

owningasid: RS-type address or address in register (2) - (12)

,FPROT=YES

,FPROT=NO

,TYPE=PAGEABLE

,TYPE=DREF

,TYPE=FIXED

,CALLERKEY=YES

,CALLERKEY=NO

, KEYO0TOF0=key00tof0

key0Otof0: RS-type address or address in register (2) - (12)

,TRAILER=COND

,TRAILER=YES

,TRAILER=NO

,FAILMODE=RC

,FAILMODE=ABEND

,LOCALSYSAREA=NO

Default: LOCALSYSAREA=NO

,LOCALSYSAREA=YES

JINPUT_CPID=input_cpid

input_cpid: RS-type address or address in register (2) - (12)

,CELLADDR=celladdr

celladdr: RS-type address or address in register (2) - (12)

,EXPAND=YES

Chapter 26. IARCP64 — 64-bit cell pool services

293

IARCP64 macro

Syntax

Description

,EXPAND=NO

,TRACE=YES

,TRACE=NO

,CELLNAME=cellname

cellname: RS-type address or address in register (2) - (12)

,CELLADDR=celladdr

celladdr: RS-type address or address in register (2) - (12)

,REGS=SAVE

,REGS=USE

JANPUT_CPID=input_cpid

input_cpid: RS-type address or address in register (2) - (12)

,RETCODE-=retcode

retcode: RS-type address or register (2) - (12), (GPR15), (REG15), or (R15).

,RSNCODE=rsncode

rsncode: RS-type address or register (2) - (12), (GPRO0), (GPR00), (REGO),
(REGO00), or (RO).

,PLISTVER=IMPLIED_VERSION

Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

MF=8

Default: MF=S

JMEFE=(L,list addr)

list addr: RS-type address or register (1) - (12)

MEFE=(L,list addr,attr)

MF=(L/list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr, COMPLETE)

Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the IJARCP64
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=BUILD

REQUEST=GET
REQUEST=FREE

REQUEST=DELETE
A required parameter that indicates the type of request.

294 2/0S V2R2 MVS Authorized Assembler Services Reference EDT-IXG

IARCP64 macro

REQUEST=BUILD
Request to build the pool. The initial pool size is 1 MB. The CELLSIZE and
TRAILER specifications determine how many available cells are in the
pool.

REQUEST=GET
Request to obtain a cell from the pool.

REQUEST=FREE
Request to return a cell to the pool. Note that this request is unconditional
and will abnormally end in the event of a problem. No return and reason
codes are provided; therefore, do not specify the RETCODE and
RSNCODE parameters.

REQUEST=DELETE
Request to delete the pool. Note that this request is unconditional and will
abnormally end in the event of a problem. No return and reason codes are
provided; therefore, do not specify the RETCODE and RSNCODE
parameters.

Parameters for REQUEST=BUILD

The following parameters are valid when you specify REQUEST=BUILD:

,HEADER=header
A required input parameter that specifies information to be placed into the
pool header for potential diagnostic purposes. The information helps to
identify the requestor and the purpose for the pool.

To code: Specify the RS-type address, or address in register (2) - (12), of a
24-character field.

,CELLSIZE=cellsize
A required input parameter that indicates the size of a cell in the pool. The cell
size can be anywhere between 1 and (1M-8192)/2 or 520,192 bytes. Cell size is
rounded up to a quadword multiple for cell sizes less than a cache line. Cells
larger than a cache line are rounded up to a cache line multiple. Cells larger
than a page are rounded to start on a page boundary. The first cell in an extent
is always located on a page boundary. Specifying a cell size that is at least 4
bytes less than the size after rounding for boundary alignment makes room for
a trailer to be inserted. See TRAILER=YES below.

To code: Specify the RS-type address, or address in register (2) - (12), of a
fullword field, or specify a literal decimal value.

,OUTPUT_CPID=output_cpid
A required output parameter that is to contain the cell pool ID.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

» COMMON=NO
» COMMON=YES
A required parameter that indicates if the pool is to reside in common storage.

» COMMON=NO
The pool is not to reside in common storage.

»COMMON=YES
The pool is to reside in common storage.

» OWNINGTASK=CURRENT

Chapter 26. IARCP64 — 64-bit cell pool services 295

IARCP64 macro

,OWNINGTASK=MOTHER

,OWNINGTASK=IPT

,OWNINGTASK=JOBSTEP

,OWNINGTASK=CMRO

>OWNINGTASK=RCT
A required parameter that indicates the task to be considered as the owner of
the cell pool. When this task ends, the cell pool is automatically deleted.

»OWNINGTASK=CURRENT
The current task is to be the owner. Do not specify this unless the program
is in task mode.

» OWNINGTASK=MOTHER
The mother task of the current task is to be the owner. If the current task is
the cross-memory resource owning task, the request will fail. Do not
specify this unless the program is in task mode.

»OWNINGTASK=IPT
The initial pthread task is to be the owner. If the current task or mother
task is not the IPT, then this will default to the current task as the owner.
Do not specify this unless the program is in task mode.

»OWNINGTASK=JOBSTEP
The jobstep task of the current task (the task with TCB address in field
TCBJSTCB of the current task's TCB) is to be the owner. Do not specify this
unless the program is in task mode.

»OWNINGTASK=CMRO
The cross-memory resource-owning task of the current primary address
space is to be the owner.

»OWNINGTASK=RCT
The region control task (RCT) of the current primary address space is to be
the owner.

>MEMLIMIT=YES

,MEMLIMIT=NO
An optional parameter that specifies whether the 64-bit private memory objects
created for this cell pool are to count towards the address space MEMLIMIT.
The default is MEMLIMIT=YES.

,MEMLIMIT=YES
The 64-bit private memory objects contribute towards the address space
MEMLIMIT.

»MEMLIMIT=NO
The 64-bit private memory objects are not counted against the address
space MEMLIMIT.

,MOTKN=motkn

,MOTKN=NO_MOTKN
An optional input parameter that identifies the memory object token to be
associated with the memory object. This is expected to be a memory object
token that is user-generated (as opposed to having been created by the system
with the OUTMOTKN parameter of IARV64 GETSTOR). The main reason to
specify your own MOTKN is to have the cell pool extents be associated with
other memory objects from a dumping perspective. WARNING: If y