z/OS

Security Server RACF Diagnosis Guide

Version 2 Release 2
Contents

Figures .. v

Tables vii

About this document ix
- Intended audience ix
- How to use this document ix
- Where to find RACF information x
- Where to find more information xi
- RACF courses xi
- Other sources of information xi
- Internet sources xi

How to send your comments to IBM xv
- If you have a technical problem xv

- Summary of changes for z/OS Version 2 Release 1 xviii

Chapter 1. Starting diagnosis 1
- Planning for problem diagnosis 1
- Troubleshooting the problem 1
 - Diagnosis hints 2
 - Troubleshooting tables for problems in RACF 7
 - Using the troubleshooting tables 7
 - Troubleshooting tables 9
- Performing a preliminary search for a matching problem 34
 - Introduction to searching for a matching problem 34
 - Related information 35
 - Steps for searching for a matching problem 35
 - Examples of search arguments for RACF 38

Chapter 2. Collecting and analyzing problem data 41
- Collecting problem data 41
 - Obtaining a description of a RACF installation 41
 - Obtaining a system dump 41
 - Formatting a system dump 42
 - Obtaining RACF return codes and reason codes from a RACF macro invocation 42
 - Obtaining RACF return codes and reason codes from a RACF callable service invocation 43
 - Obtaining traces 43
 - Obtaining traces for program control and Program Access to Data Set (PADS) errors 44
 - Obtaining traces on z/OS UNIX System Services 48
 - Obtaining information about z/OS UNIX file and directory violations 48
 - Obtaining trace records using the SET TRACE command 50
- Validating input 78
- Identifying the caller of RACF 78
- Checking the parameter list passed to RACF 80
- Searching for a matching problem 81
 - Prerequisites 81
 - How to search for a matching problem 81
- Application Identity Mapping Considerations 82
- LOGREC data set entries for the alias index 83
- Recovering from errors with Application Identity Mapping 83

Using SAF Trace to debug IBM HTTP server problems 84
- Before you begin 84
- Starting the trace 84
- The order of trace calls 85
- Examples of each of the post records 85
- Using the trace to find problems 95

Chapter 3. Reporting RACF problems to IBM 99
- Prerequisites 99
- Introduction to reporting RACF problems to IBM 99
- How to report RACF problems to IBM 99

Chapter 4. Troubleshooting your RACF database 107
- Format of the RACF database 107
 - Header block (ICB) 108
 - Templates 109
 - Segment table block 109
 - BAM blocks 109
 - Index blocks 110
 - Profiles 117
- Database Unload Utility for a RACF Database (IRRDBU00) 121
- Block update command for a RACF database (BLKUPD) 121

Chapter 5. Error recovery for RACF remote sharing facility (RRSF) 139
- Types of errors in an RRSF environment 140
 - Definition errors 140
 - Environmental errors 140
 - Program errors 141
 - Transmission and line errors 141
- Handshaking and state changes 141
 - Connection states of RRSF nodes 141
 - Connection state changes after a successful TARGET command 143
- Actions to recover from an RRSF failure 144
 - RRSF ESTAE processing 144
 - Failure of MVS system service 145
 - VSAM failures 145
 - Node communications 147

© Copyright IBM Corp. 1994, 2015
Chapter 6. Diagnosis reference for RACF

Parameter list descriptions
- RACROUTE parameter list: 156
- AUDIT service parameter list: 159
- AUTH service parameter list: 160
- DEFINE service parameter list: 164
- DIRAUTH service parameter list: 170
- EXTRACT service parameter list: 171
- FASTAUTH service parameter list: 173
- LIST service parameter list: 174
- SIGNON service parameter list: 175
- STAT service parameter list: 176
- TOKENBLD service parameter list: 177
- TOKENMAP/TOKENXTR service parameter list: 180
- VERIFY/VERIFYX service parameter list: 181
- ICHEINT parameter list: 185

Process flows for RACF
- Process flow for RACF commands: 188
- Process flow for RACF directed commands: 189
- Process flow for RACF macros: 189
- Process flow for RACF installation exits: 190
- Process flow for RACF utilities: 192
- Process flow for the RACF report writer: 193
- Process flow for SMF data unload utility (IRRADU00): 194
- Process flow for RACF callable services: 195

Error recording for callable services
- Variable data recorded by RACF callable services: 196
- Variable data recorded by RRSF (IRRSSQ00): 232

SVC dump title descriptions
- SVC failure (ICHRST00): 234
- RACF initialization failure (ICHESEC02): 236
- RAelist failure (IRRCP010): 237
- RACF COPY RACGLIST failure (IRRRLS12): 237
- RACF CREATE RACGLIST failure (IRRRLS13): 238
- RACF DELETE RACGLIST failure (IRRRLS14): 238
- RACF data space recovery failure (IRRRLS15): 239
- RACF subsystem failures (IRRRLS01, IRRSSS01, and IRRLOG00): 240
- Persistent verification failures: 240
- RACF I/O failures: 240
- RACF index block error: 241

Dump title description for Callable Services: 242
VRA keys provided by RACF for some abends: 242
Front-ending RACF commands: 244
Command processing changes: 244
Considerations if writing a command front-end processor: 245
The DEBUG command: 246

Chapter 7. Error recovery for RACF

Sysplex data sharing: 247

Actions to recover from a coupling facility error: 247

Appendix A. The Inventory Control Block (ICB)

Constants: 255
Cross reference: 256

Appendix B. The Security Product Trace Area (SAFT)

Appendix C. IPCS formatting for RACF control blocks

Using the VERBX RACFDATA command: 265
Using the SUMMARY FORMAT command: 265
Using the control block formatters: 266

Appendix D. Accessibility

Accessibility features: 267
Consult assistive technologies: 267
Keyboard navigation of the user interface: 267
Dotted decimal syntax diagrams: 267

Notices

Policy for unsupported hardware: 272
Minimum supported hardware: 273
Programming interface information: 273
Trademarks: 273

Index

275
Figures

1. Trace output showing a problem in the command processor or RACF 52
2. Sample Proc 1: GTFRACF 54
3. Sample parmlib member: GTFPRM#O 54
4. Format of the RACF database 108
5. Template blocks 109
6. Block masks of the RACF database 110
7. Example of a RACF Index 111
8. Example overview of a level-1 index block 112
9. Example of an index block header 113
10. Example overview of an alias index block 114
11. Example of front-end compression in an index block 115
12. Example of index entry for USR26 with a base, TSO, and DFP segment 117
13. Example of a profile displayed by BLKUPD 121
14. The relationship between the BLKUPD command and its levels of subcommands 123
15. Flow of a directed command in an RRSE environment 140
16. NETSTAT command output 150
17. RACROUTE parameter list (part 1 of 2) 157
18. RACROUTE parameter list (part 2 of 2) 158
19. AUDIT service parameter list 159
20. AUTH service parameter list (part 1 of 4) 160
21. AUTH service parameter list (part 2 of 4) 161
22. AUTH service parameter list (part 3 of 4) 162
23. AUTH service parameter list (part 4 of 4) 163
24. DEFINE service parameter list (part 1 of 6) 164
25. DEFINE service parameter list (part 2 of 6) 165
26. DEFINE service parameter list (part 3 of 6) 166
27. DEFINE service parameter list (part 4 of 6) 167
28. DEFINE service parameter list (part 5 of 6) 168
29. DEFINE service parameter list (part 6 of 6) 169
30. DIRAUTH service parameter list 170
31. EXTRACT service parameter list (part 1 of 3) 171
32. EXTRACT service parameter list (part 2 of 3) 171
33. EXTRACT service parameter list (part 3 of 3) 172
34. FASTAUTH service parameter list 173
35. LIST service parameter list 174
36. SIGNON service parameter list 175
37. STAT service parameter list 176
38. TOKENBLD service parameter list (part 1 of 4) 177
39. TOKENBLD service parameter list (part 2 of 4) 178
40. TOKENBLD service parameter list (part 3 of 4) 179
41. TOKENBLD service parameter list (part 4 of 4) 180
42. TOKENMAP/TOKENXTR service parameter list 180
43. VERIFY/VERIFYX service parameter list (part 1 of 4) 181
44. VERIFY/VERIFYX service parameter list (part 2 of 4) 182
45. VERIFY/VERIFYX service parameter list (part 3 of 4) 183
46. VERIFY/VERIFYX service parameter list (part 4 of 4) 184
47. ICHEINTY parameter list (part 1 of 3) 185
48. ICHEINTY parameter list (part 2 of 3) 186
49. ICHEINTY parameter list (part 3 of 3) 187
50. Process flow for RACF commands 188
51. Process flow for RACF directed commands 189
52. Process flow for RACF macros 189
53. Process flow for RACF installation exits (part 1 of 2) 190
54. Process flow for RACF installation exits (part 2 of 2) 191
55. Process flow for RACF cross-reference and database unload utilities 192
56. Process flow for RACF remove ID Utility 192
57. Process flow for other RACF Utilities 192
58. Process flow for the RACF report writer 193
59. Process flow for SMF data unload utility 194
60. Process flow for RACF callable services 195
61. An example of a symptom record when an SNAME is not found in the alias index entry but is found in the mapping profile (part 1 of 2) 198
62. An example of a symptom record when an SNAME is not found in the alias index entry but is found in the mapping profile (part 2 of 2) 199
63. An example of a symptom record when a UID is not found in the alias index entry but is found in the mapping profile (part 1 of 2) 201
64. An example of a symptom record when a UID is not found in the alias index entry but is found in the mapping profile (part 2 of 2) 202
65. An example of a symptom record when the callable service cannot communicate with RACF 229
66. An example of a symptom record when a command fails 231
67. Control block overview: ACEE in a single-user address space 234
68. Control block overview: ACEE in a multiple-user address space 234
69. Control block overview: ACEEs when third-party AUTH request is used 234
70. Sample symptoms for RACF (DAEDATA output) 242
71. Sample SDWA for RACF 244
Tables

1. Determining whether you have a RACF problem .. 2
2. Index to troubleshooting tables for RACF .. 8
3. Troubleshooting table: Abends ... 10
4. Troubleshooting table: Documentation ... 19
5. Troubleshooting table: Incorrect output .. 20
6. Troubleshooting table: Logon problems ... 28
7. Troubleshooting table: Loops ... 29
8. Troubleshooting table: Messages .. 29
9. Troubleshooting table: Performance problems ... 31
10. Troubleshooting table: Return codes .. 33
11. Troubleshooting table: Waits ... 34
12. Preliminary search symptoms for RACF .. 36
13. Examples of search arguments for RACF ... 38
14. RACF FMIDs ... 39
15. RMID levels, yyy and zzzzz values for example 1 .. 45
16. RMID levels, yyy and zzzzz values for example 2 .. 47
17. Callable services type numbers ... 56
18. RACROUTE CALL= service type number ... 57
19. Additional search symptoms for RACF ... 81
20. Information to gather before calling IBM with abend problems 100
21. Information to gather before calling IBM with documentation problems 100
22. Information to gather before calling IBM with output problems 101
23. Information to gather before calling IBM with logon problems 101
24. Information to gather before calling IBM with loop problems 102
25. Information to gather before calling IBM with message problems 103
26. Information to gather before calling IBM with performance problems 104
27. Information to gather before calling IBM with return code problems 104
28. Information to gather before calling IBM with wait problems 105
29. Segment identifiers ... 116
30. Connection states between nodes .. 142
31. Table of new connection states based on a successful TARGET command 144
32. Contents of primary symptom string for a RACF subsystem address space error 153
33. Contents of secondary symptom string for a RACF subsystem address space error 154
34. Potential contents of variable symptom string for a RACF subsystem address space error for the indicated protocol used .. 154
35. Additional LOGREC data for a RACF subsystem address space error 154
36. Cross-reference for RACROUTE REQUEST=type, the independent RACF system macros, and the parameter list name .. 155
37. Additional search symptoms for RACF ... 81
38. Contents of secondary symptom string for a callable service error 196
39. Additional LOGREC data for a callable service error 196
40. Failing data space layer for an internal subroutine identifier 204
41. Failing system service for a failing system service identifier 205
42. Indicator of R_cacheserv operation ... 206
43. System service or internal check being performed 207
44. Additional information ... 228
About this document

This document supports z/OS® (5650-ZOS) and contains information about Resource Access Control Facility (RACF®), which is part of z/OS Security Server.

This document provides information that is useful for diagnosing problems in RACF, such as:
- Parameter list descriptions
- Process flows
- Control block overviews
- SVC dump title descriptions
- A description of variable recording area (VRA) keys provided by RACF

The information included in this document should help you to:
- Follow diagnostic procedures for each type of problem in RACF
- Collect and analyze data needed to diagnose the problem
- Develop a search argument to be used for searching problem-reporting databases
- Gather the necessary problem data before reporting the problem to IBM®

In addition, this document describes how to use the BLKUPD command to correct problems in the RACF database.

Intended audience

This document is for anyone who diagnoses problems that appear to be caused by RACF and for RACF system programmers who intend to use the BLKUPD command to correct problems in the RACF database.

This document assumes that you:
- Understand basic system concepts and the use of system services
- Code in assembler language and read assembler and linkage editor output
- Understand the commonly used diagnostic tasks and aids, such as message logs, system dumps, and the interactive problem control system (IPCS)
- Understand the externals for RACF

How to use this document

Before using this document, collect this problem data:
- The problem type, such as an abend
- An indication that the problem was caused by RACF

If you do not have this data, see the problem determination and diagnosis publications for your system and perform the recommended procedures.

Use this document to diagnose problems in RACF only. If the problem is not caused by RACF, return to your system diagnosis guide to identify the failing component or program.
Use this document to diagnose problems in RACF as follows:
1. Identify the problem type.
2. Collect problem data.
3. Analyze the problem data to develop symptoms.
4. Develop search arguments, search problem-reporting databases, and request the problem fix if the problem has been reported before. If not, continue diagnosis.
5. Collect additional problem data.
6. Analyze the problem data to isolate the problem.
7. Report the problem to IBM if assistance is needed or if the problem is new.

This flowchart illustrates the possible paths to be taken during problem analysis while using this document.

Where to find RACF information

For general RACF information, see the RACF website at: http://www.ibm.com/systems/z/os/zos/features/racf/
Finding RACF information

For more detailed RACF information, see z/OS Security Server RACF System Programmer’s Guide. For help in gathering information about your RACF installation, see your RACF security administrator and RACF auditor or see z/OS Security Server RACF Security Administrator’s Guide and z/OS Security Server RACF Auditor’s Guide.

For the syntax, return codes, and error reason codes for RACF macros, see z/OS Security Server RACF Macros and Interfaces except for the RACROUTE macro, which is described in z/OS Security Server RACROUTE Macro Reference.

For the mappings of RACF control blocks (such as the RCVT and the ACEE), see z/OS Security Server RACF Data Areas.

Where to find more information

When possible, this information uses cross-document links that go directly to the topic in reference using shortened versions of the document title. For complete titles and order numbers of the documents for all products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Knowledge Center, see IBM Knowledge Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

RACF courses

The following RACF classroom courses are available in the United States:

ES191 Basics of z/OS RACF Administration
BE870 Effective RACF Administration
ES885 Exploiting the Advanced Features of RACF

IBM provides various educational offerings for RACF. For more information about classroom courses and other offerings, do any of the following:

- See your IBM representative
- Call 1-800-IBM-TEACH (1-800-426-8322)

Other sources of information

IBM provides customer-accessible discussion areas where RACF may be discussed by customer and IBM participants. Other information is also available through the Internet.

Internet sources

The following resources are available through the Internet to provide additional information about the RACF library and other security-related topics:

- Online library
 To view and print online versions of the z/OS publications, use this address:
 http://www.ibm.com/systems/z/os/zos/bkserv/

- Redbooks®
 The documents known as IBM Redbooks that are produced by the International Technical Support Organization (ITSO) are available at the following address:
 http://www.redbooks.ibm.com
Finding RACF information

- **Enterprise systems security**
 For more information about security on the S/390® platform, and z/OS, including the elements that comprise the Security Server, use this address:

- **RACF home page**
 You can visit the RACF home page on the World Wide Web using this address:

- **RACF-L discussion list**
 Customers and IBM participants may also discuss RACF on the RACF-L discussion list. RACF-L is not operated or sponsored by IBM; it is run by the University of Georgia.
 To subscribe to the RACF-L discussion and receive postings, send a note to:
 listserv@listserv.uga.edu
 Include the following line in the body of the note, substituting your first name and last name as indicated:
 subscribe racf-l first_name last_name
 To post a question or response to RACF-L, send a note, including an appropriate Subject: line, to:
 racf-l@listserv.uga.edu

- **Sample code**
 You can get sample code, internally-developed tools, and exits to help you use RACF. This code works in our environment, at the time we make it available, but is not officially supported. Each tool or sample has a README file that describes the tool or sample and any restrictions on its use.
 To access this code from a Web browser, go to the [RACF home page](http://www.ibm.com/systems/z/os/zos/features/racf/) and select the “Resources” file tab, then select “Downloads” from the list, or go to http://www-03.ibm.com/systems/z/os/zos/features/racf/goodies.html.
 The code is also available from ftp.software.ibm.com through anonymous FTP.
 To get access:
 1. Log in as user **anonymous**.
 2. Change the directory, as follows, to find the subdirectories that contain the sample code or tool you want to download:

    ```
    cd eserver/zseries/zos/racf/
    ```
 An announcement will be posted on the RACF-L discussion list whenever something is added.

Note: Some Web browsers and some FTP clients (especially those using a graphical interface) might have problems using ftp.software.ibm.com because of inconsistencies in the way they implement the FTP protocols. If you have problems, you can try the following:

- Try to get access by using a Web browser and the links from the [RACF home page](http://www.ibm.com/systems/z/os/zos/features/racf/).
- Use a different FTP client. If necessary, use a client that is based on command line interfaces instead of graphical interfaces.
- If your FTP client has configuration parameters for the type of remote system, configure it as UNIX instead of MVS™.
Restrictions

Because the sample code and tools are not officially supported,
• There are no guaranteed enhancements.
• No APARs can be accepted.
Finding RACF information
How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and completeness of the information or provide any other feedback that you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://www.ibm.com/systems/z/os/zos/webqs.html).

Include the following information:
• Your name and address.
• Your email address.
• Your telephone or fax number.
• The publication title and order number:
 z/OS V2R2 Security Server RACF Diagnosis Guide
 GA32-0886-01
• The topic and page number that is related to your comment.
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute the comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the issues that you submit.

If you have a technical problem

Do not use the feedback methods that are listed for sending comments. Instead, take one of the following actions:
• Contact your IBM service representative.
• Call IBM technical support.
• Visit the IBM Support Portal at z/OS Support Portal (http://www-947.ibm.com/systems/support/z/zos/)
z/OS Version 2 Release 2 summary of changes for Security Server RACF Diagnosis Guide

The following changes are made to z/OS Version 2 Release 2 (V2R2).

New

- Log records CSECT IRRRLDL10 and CSECT IRRRLDL12 are added for R_Datalib to “Variable data recorded by RACF callable services” on page 196.
- Log record CSECT IRRSSQ00 is added for RRSF to “Variable data recorded by RRSF (IRRSSQ00)” on page 232.
- “Using the SUMMARY FORMAT command” on page 265 is updated to include that the RRSF formatter is changed and now shows all of the defined RRSF nodes and some of their characteristics.
- Appendix A, “The Inventory Control Block (ICB),” on page 249 is updated to add:
 - ICBPSC, indicating that special characters are allowed in passwords.
 - ICBPREP, ICBPMEM, and ICBPALG as password algorithm identifiers.

Changed

- “Constants” on page 255 in Appendix A, “The Inventory Control Block (ICB),” on page 249 is updated to include support for FMID 77A0 for z/OS Version 2, Release 2.

Deleted

- Information is removed about APAR OA12443, sharing data between z/OS V1R4 and V1R8 (or higher) in “Block update command for a RACF database (BLKUPD)” on page 121.

Summary of changes for z/OS Version 2 Release 1

See the following publications for all enhancements to z/OS Version 2 Release 1 (V2R1):

- z/OS Migration
- z/OS Planning for Installation
- z/OS Summary of Message and Interface Changes
- z/OS Introduction and Release Guide
Chapter 1. Starting diagnosis

This information contains diagnostic procedures that you can perform with problem data that is quick and easy to obtain. It includes:

- “Planning for problem diagnosis”
- “Troubleshooting the problem”
- “Performing a preliminary search for a matching problem” on page 34

Planning for problem diagnosis

Consider making these preparations for diagnosis before you use RACF:

- Install and operate RACF so that you get adequate problem data (such as messages and dumps) when problems occur.
- Provide timely and complete backups of the RACF database.
- Obtain access to a RACF user with the SPECIAL attribute.
- Reserve a RACF user ID with the SPECIAL attribute for use only after logon problems are resolved. For example, if all users logging on are, through an error, revoked when logging on, then even the system security administrator could be revoked when logging on. After the problem is corrected, the system security administrator could then log on with the user ID that is still active and activate the other user IDs.
- Obtain messages that have been sent to the system console or the security console.
- Prevent common problems by using RACF macros and utilities. See the recommendations in “Utilities” on page 3.
- Correct any problems that were caused while using RACF profiles and options. See z/OS Security Server RACF Security Administrator’s Guide.

Troubleshooting the problem

This describes the RACF information you will need to troubleshoot your problem.

- “Diagnosis hints” on page 2.
 This information includes:
 - How to make sure that the problem is in RACF
 - How to prevent some common programming errors in RACF macros and utilities
- “Troubleshooting tables for problems in RACF” on page 7.
 These tables provide steps to follow in diagnosing each type of symptom, such as abend, message, or incorrect output.
- “Performing a preliminary search for a matching problem” on page 34.
 This information tells you how to search a database for a matching problem.

Note:

Chapter 4, “Troubleshooting your RACF database,” on page 107 describes how to use the BLKUPD command. The skills used in working with the BLKUPD command are different from the skills used in general troubleshooting for suspected RACF problems.
Troubleshooting

Diagnosis hints

This information provides advice on making sure that this is a problem with RACF and describes special types of problems that you might be able to fix without calling IBM.

If the recommendations that follow do not solve the problem, you need to follow the other diagnosis procedures described in the troubleshooting tables.

Making sure this is a RACF problem

Table 1 helps you make sure that the problem is in RACF, rather than in either the caller of RACF or a system service used during processing of a RACF request.

For some problems, you might be able to do a quick check of the problem symptoms in the dump (if present), the job and system message log, SYS1.LOGREC, trace records, or other problem output.

Table 1. Determining whether you have a RACF problem

<table>
<thead>
<tr>
<th>Questions</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was there a valid request for a RACF function?</td>
<td>This could be that:</td>
</tr>
<tr>
<td></td>
<td>• A RACF macro was invoked</td>
</tr>
<tr>
<td></td>
<td>• A RACF utility was invoked</td>
</tr>
<tr>
<td></td>
<td>• A RACF command was invoked</td>
</tr>
<tr>
<td></td>
<td>• A user selected a RACF option on an ISPF panel</td>
</tr>
<tr>
<td></td>
<td>The RACF request must be valid. A user request could invoke a routine that</td>
</tr>
<tr>
<td></td>
<td>in turn invokes RACF. A RACF error message (like ICH408I, insufficient</td>
</tr>
<tr>
<td></td>
<td>access authority) would then be issued not because of a RACF error or</td>
</tr>
<tr>
<td></td>
<td>because of an error made by the original user, but because of the routine</td>
</tr>
<tr>
<td></td>
<td>that invoked RACF.</td>
</tr>
<tr>
<td>Note:</td>
<td>If there is a system dump, you can check this in the trace records that</td>
</tr>
<tr>
<td></td>
<td>are recorded in the dump. If there is no system dump, you may need to re-</td>
</tr>
<tr>
<td></td>
<td>create the problem and request a system dump when the problem recurs.</td>
</tr>
<tr>
<td>Were error messages issued by system services</td>
<td>Check whether any error messages were issued for the user request, and</td>
</tr>
<tr>
<td>that were used during RACF processing?</td>
<td>make sure that message IDs are included with the messages.</td>
</tr>
<tr>
<td></td>
<td>If a batch job produced the output, check that the job statement had</td>
</tr>
<tr>
<td></td>
<td>MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the</td>
</tr>
<tr>
<td></td>
<td>user profile had these options specified: PROFILE WTPMSG MSGID.</td>
</tr>
<tr>
<td>Did RACF return control to the program that</td>
<td>For RACF macros and utilities: if there is a system dump, you can check this</td>
</tr>
<tr>
<td>made the request?</td>
<td>in the trace records that are recorded in the dump or (if an SVC was</td>
</tr>
<tr>
<td></td>
<td>issued) in the RB chain in the system dump. If there is no system dump,</td>
</tr>
<tr>
<td></td>
<td>you might need to re-create the problem and request a system dump when the</td>
</tr>
<tr>
<td></td>
<td>problem recurs. For batch jobs, you can also check whether the job step</td>
</tr>
<tr>
<td></td>
<td>for the program completed with a zero return code. (If an application</td>
</tr>
<tr>
<td></td>
<td>program made the request, the TSO TEST command, a SLIP command issued by</td>
</tr>
<tr>
<td></td>
<td>the system operator, or a WTO or PTRACE macro added to the program could be</td>
</tr>
<tr>
<td></td>
<td>helpful in checking the execution steps within the program.)</td>
</tr>
</tbody>
</table>

Note: While diagnosing the problem, you need to continue to check whether something other than RACF might be the source of the problem. Possible candidates are:

• Callers of RACF
• System services used by RACF
• A hardware error
Troubleshooting

- A program that overlaid storage used by RACF, its caller, or a system service
- A storage shortage can cause RACF commands to ABEND unpredictably

Common usage problems with RACF macros and utilities
This information provides advice for resolving problems that might result when using the RACF macros and utilities. The problems described here might appear at first to be errors in RACF.

Note: Advice for resolving coding problems is in the z/OS Security Server RACF System Programmer’s Guide.

Utilities
This information describes typical errors for RACF utilities and advice on action to take to resolve the problem.

IRRUT100 Utility:
Error Assuming that the utility is in a loop because it runs a long time. This utility reads every profile in the RACF database and usually takes a long time to run.

Action Run the utility when the system is not heavily used and allow it to continue running until completion.

IRRUT200 Utility:
Error Assuming the RACF database contains no errors because the utility runs without error. The utility does not find all errors on a RACF database. Errors might exist within profiles and could result in message IRR407I.

 RACF DATA SET INDEX ERROR. xxx
 RACF DATA SET SEQUENCE nnn, dsname SEARCH ON entry-name

where xxx is PRIMARY or BACKUP, nnn is the database sequence number, dsname is the data set name, and entry-name is the type of entry.

Action If the utility does not find any errors, list the profiles involved using the appropriate RACF command. Look for error messages such as NO CONNECT ENTRY FOUND or incorrect data in fields such as OWNER.

Use the RACF commands to list and correct the profiles, if possible. If the commands fail, use BLKUPD to correct or delete the profiles.

RACF Sysplex Data Sharing: If RACF is enabled for sysplex communication and the system is operating in read-only mode, you cannot use BLKUPD to update the RACF database.

You can, however, run BLKUPD from another system (in the same data sharing group) that is not in read-only mode.

Error Running the utility against an active output database. Even if there are no other users on the system, other system tasks and applications might be accessing the RACF database. If any changes are made to the database, the output of the utility is not reliable.

Action Enter the RVARY INACTIVE or RVARY SWITCH command before running the utility.
Troubleshooting

Error
Assuming that the run of the utility failed because a nonzero return code was received.

Action
The return code returned is the highest return code encountered while processing the RACF database. A nonzero return code does not mean that the utility failed. See z/OS Security Server RACF Messages and Codes for details.

IRRUT400 Utility:

Error
Do not use this utility to merge RACF databases from separate systems.

Action
Use it only for merging back together a database from one system.

Error
Ignoring return code 4 or return code 8 on IRRUT400 MERGE. These return codes can indicate that duplicate profiles were found. Ignoring them can result in profile conflicts.

Action
Check the duplicate profiles on each of the input databases to determine which ones you want on the output database. Use the RACF commands to delete the unwanted ones and rerun the IRRUT400 MERGE.

Error
Running the utility against an active RACF database. Even if there are no other users on the system, other system tasks and applications might be accessing the RACF database. If any changes are made to the database, the output of the utility is not reliable.

Action
Enter the RVARY INACTIVE or RVARY SWITCH command before running the utility.

Error
RACF manager return code X'50' (decimal 80) received while trying to access the RACF database. This return code means that one of these occurred:

• You attempted to update a RACF database that has had the utility run against it with the LOCKINPUT keyword specified.
• RACF is enabled for sysplex communication and while running in read-only mode, you tried to update the RACF database.

Action
The LOCKINPUT keyword makes the input database unusable for system updates. It should be used with caution.

If your RACF database is locked, and you want to unlock it, use the UNLOCKINPUT parameter of IRRUT400 or IRRDBU00.

Note: If this error occurs because your RACF sysplex data sharing system is in read-only mode, UNLOCKINPUT does not correct the problem. You cannot update the RACF database when your system is operating in read-only mode.

IRRDBU00 Utility:

Error
RACF manager return code X'50' (decimal 80) received from another task while trying to access the RACF database. This return code means that one of these has occurred:
Troubleshooting

- A task attempted to update the RACF database while the IRRDBU00 utility was running against the database with the LOCKINPUT keyword specified.
- RACF is enabled for sysplex communication and was operating in read-only mode, when a task tried to update the RACF database.

Action

A task cannot update the database that is shared by a sysplex data sharing group when the system is operating in read-only mode. If, however, the utility is running with LOCKINPUT specified, do:

- Wait until the utility is finished running.
- Run the utility at another time when updates are not needed.
- Run the utility against a copy of the RACF database—not against the active database.

Note: The LOCKINPUT keyword makes the input database for the utility temporarily unusable for system updates. It should be used with caution.

Error

I/O error while reading the database; your data set has slipped into secondary extents. These console messages appear:

```
13.31.20 J0800019 *IRR401I 500 ABEND DURING RACF PROCESSING OF NEXT REQUEST FOR ENTRY MURPHYB
13.31.20 J0800019 IRR401I 500 ABEND DURING RACF PROCESSING
```

These messages appear from SYSPRINT:

```
IRR67122I *** Utility ESTAE error routine in control. ***
IRR67124I Profile processing DID NOT finish before the abend.
Output is NOT complete.
IRR67120I 500 abend during utility processing. Reason code 0000.
IRR67125I Utility ESTAE error routine will now attempt clean-up processing.
IRR67121I The module in control at time of abend was IRRDBU03.
```

Action

Reallocate the database that is causing the problem as a single extent. Recopy the data.

Error

Not all of your data is unloaded. Entire classes are missing.

Action

If you have imported a database from another system, you must use the class descriptor table from that system. IPL your system with the class descriptor table associated with the imported database.

Error

Fields are missing or field offsets are incorrect in the output database.

Action

Ensure that you have the current level of templates for the input database. Run IRRMIN00 with PARM=UPDATE and the current level of templates.

IRRRID00 Utility:

Error

The RACF remove ID utility (IRRRID00) does not issue any user abends. If a user abend is received, it was issued by a called service such as DFSORT.

Action

If you see a user abend, consult the documentation for the called service.
RACF report writer utility (RACFRW):

Error The RACF report writer utility (RACFRW) does not issue any user abends. If a user abend is received, it was issued by a called service such as SORT.

Action If you see a user abend, consult the documentation for the called service.

IRRIRA00:

Error If the utility runs for a long period of time it is considered to be "in a loop". When going from stage 0 to stage 1 (which can take a considerable amount of time), IRRIRA00 reads every mapping profile for the application identity mapping fields in the RACF database. It then reads the base profile named by the mapping profile to verify that the base profile-alias correlation is valid, and also to verify every user and group profile with an OMVS segment. For every valid correlation found, the alias index entry must be maintained. Additionally, when going from stage 2 to stage 3 (which can take a considerable amount of time), all application identity mapping profiles in the RACF database are deleted.

Action Run the utility when the system is not being heavily used, and allow it to continue running through completion.

RACF macros

This information describes typical errors for RACF macros and advice on action to take to resolve the problem.

General:

Error Unexpected return code or incorrect output when using the list and execute form of a macro. Results are not the same as for standard form.

Action 1. Check that the list form is in a CSECT, not a DSECT. If the list form is only in a DSECT, the parameter list is not initialized.
 2. Check that the list form was copied over correctly into the GETMAIN work area.
 3. Make sure the LIST and EXECUTE forms of the RACROUTE macro specify the same value for the RELEASE= parameter.

Error Incorrect output from a macro with some keywords that were ignored.

Action If the macro is continued on a second line, check that there is a continuation marked in column 72 and that the second line begins in column 16. If the macro is continued in column 17 or later, the assembler ignores that line.

ICHEINTY macro:

Error Incorrect output on an ICHEINTY macro when looking at discrete or generic profiles.

Action Check the meaning of the GENERIC keyword. This keyword refers to the encoding of the resource name. It does not correspond to the type of profile returned. If the generic profile was retrieved, the high-order bit is on at offset 'XA' in the work area specified in the ICHEINTY macro. It will be off if a discrete profile was returned.
Error Difficulties while using the ICHEINTY macro.

Action Read the documentation of the macro very carefully. The ICHEINTY macro and its related macros are quite complex. They bypass exits, naming conventions, authorization checking, and do little parameter validation. They are recommended only when there is no other way of accomplishing the task that you want (no command or utility that does the same thing). Note that in some cases, the RACXTRT macro can be used instead of the ICHEINTY macro.

Error Message IRR401I reporting a DEQ abend (such as abend 730) or abend 0C4 in IRRMRT00 on an ICHEINTY macro.

Action Check the specification of ENTRY or ENTRYX. This should point to a 1-byte length followed by the ENTRY or ENTRYX NAME. If the length is zero, or if it points directly to the ENTRY or ENTRYX name, an overlay occurs, resulting in the abend.

RACROUTE macro:

Error Abend 282-64 (decimal 100) on RACROUTE REQUEST=AUTH macro with ACEE (accessor environment element) keyword, or abend 283-4C (decimal 76) on RACROUTE REQUEST=VERIFY DELETE with ACEE keyword.

Action Check the specification of the ACEE keyword. On a REQUEST=VERIFY, the ACEE keyword specifies a pointer to the address of the ACEE. On a REQUEST=AUTH, the ACEE keyword specifies a pointer to the ACEE.

Error Return code 4, abend 282-20 (DECIMAL 32), or abend 0C4 during parameter validation on RACROUTE REQUEST=AUTH macro.

Action Check the specification of the ENTITY keyword. If a variable name is specified, it requires one set of parentheses. If a register is used, it requires two sets of parentheses, as in ENTITY=((R4)).

Troubleshooting tables for problems in RACF

You need to be familiar with RACF's basic concepts and functions in order to use the troubleshooting tables. If you need more information, see page "Where to find RACF information" on page x.

The troubleshooting tables that follow can help you:
• Select the type of problem that most closely matches your problem.
• Follow procedures to diagnose each type of problem.
• Determine the symptoms to use to search for a matching problem.
• Collect the information you need if you report the problem to IBM.

Using the troubleshooting tables

Before you begin:
You need to document the problem that you have and how it presents itself

Perform these steps to use the tables:
1. First, determine which type of symptom best describes the problem that you are troubleshooting and locate that type in the first column, **Symptom Type**, in Table 2.

2. If you find a matching symptom type:
 a. Go to the page listed in the second column, **Refer To Page...**, in Table 2. This is the appropriate troubleshooting table.
 b. In the appropriate table, locate the specific RACF symptom for the problem (for example, Abends). In the second column, **Recommended Diagnostic Procedures**, in Table 3 on page 10, follow the steps for diagnosing the problem.

3. If the problem has several symptoms, you should look up each symptom in the table. For example, some problems cause an abend and an I/O error message.

Table 2. Index to troubleshooting tables for RACF

<table>
<thead>
<tr>
<th>Symptom Type</th>
<th>Refer To Page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abend</td>
<td>“Abend troubleshooting table” on page 9</td>
</tr>
<tr>
<td>Documentation error</td>
<td>“Documentation troubleshooting table” on page 19</td>
</tr>
<tr>
<td>Incorrect output</td>
<td>“Incorrect output troubleshooting table” on page 19</td>
</tr>
<tr>
<td>Logon problems</td>
<td>“Logon problems troubleshooting table” on page 28</td>
</tr>
<tr>
<td>Loop</td>
<td>“Loops troubleshooting table” on page 29</td>
</tr>
<tr>
<td>Messages</td>
<td>“Messages troubleshooting table” on page 29</td>
</tr>
<tr>
<td>Performance degradation</td>
<td>“Performance problems troubleshooting table” on page 31</td>
</tr>
<tr>
<td>Return code from RACF</td>
<td>“RACF return codes troubleshooting table” on page 33</td>
</tr>
<tr>
<td>Wait or hang</td>
<td>“Waits troubleshooting table” on page 34</td>
</tr>
</tbody>
</table>

If none of the symptoms in the list matches your problem, try these diagnostic procedures:

1. Check whether any error messages were issued for the user request and make sure that message IDs are included with the messages.

 If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID
2. If you find an error message that might relate to the problem, see Table 8 on page 29.

3. If you do not have a system dump for the problem, and you want to request one, see “Obtaining a system dump” on page 41.

4. If you have a system dump for the problem, display or print the symptom record in the dump.
 Use the IPCS VERBEXIT LOGDATA and VERBEXIT SYMPTOMS subcommands.

 Note: SYMPTOMS has some prerequisite VERBEXITs, such as DAEDATA, which provides the abend and non-abend symptoms for the dump. You can also use the BLSCSCAN CLIST with IPCS to obtain the prerequisites. For details, see z/OS MVS IPCS User’s Guide.
 If the symptom record indicates an abend, loop, or wait, use the corresponding entry in the list of symptom types in Table 2 on page 8.

5. If you have SYS1.LOGREC output for the problem, or a dump with LOGDATA output, check the LOGREC records related to the problem. If you have a software LOGREC record for an abend, use Table 3 on page 10.

You know that you are done when you matched a system type with the type of problem you are having.

If you still do not have a symptom type,
1. Check the general problem analysis advice in z/OS MVS Diagnosis: Reference
2. Read the information in “Making sure this is a RACF problem” on page 2
3. If you need additional assistance, report the problem to IBM.

Troubleshooting tables

Abend troubleshooting table

Table 3 on page 10 describes abends (abnormal end of task) related to RACF, including:
- **RACF abends**, which are abends that result from using RACF functions and that could occur under any operating system
- **MVS abends**, which are abends that MVS system services issue and that are unique to MVS

For RACF abends, the first digit indicates the type of problem, as shown in the table, and the second and third digits together indicate which SVC (supervisor call instruction) was associated with the abend. SVCs occur because a macro was invoked.
- SVC X’82’ (in decimal, SVC 130) occurs because a RACHECK macro was invoked independently or by using a RACROUTE REQUEST=AUTH.
- SVC X’83’ (in decimal, SVC 131) occurs because a RACINIT macro was invoked independently or by using a RACROUTE REQUEST=VERIFY.
- SVC X’84’ (in decimal, SVC 132) occurs because a RACLIST macro was invoked independently or by using a RACROUTE REQUEST=LIST.
Abends

- SVC X'85' (in decimal, SVC 133) occurs because a RACDEF macro was invoked independently or by using a RACROUTE REQUEST=DEFINE.

Table 3. Troubleshooting table: Abends

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for Abends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abends: X'0Cx'</td>
<td>Description: Program exception.</td>
</tr>
<tr>
<td>Action:</td>
<td>1. Format the system dump.</td>
</tr>
<tr>
<td></td>
<td>2. In the PSW (program status word) in the dump, find the address of the failing instruction</td>
</tr>
<tr>
<td></td>
<td>(the “next sequential instruction”).</td>
</tr>
<tr>
<td></td>
<td>3. The address of the failing instruction should be an address that was available in the dump.</td>
</tr>
<tr>
<td></td>
<td>Look in the dump for the eye-catcher before the failing instruction. (The hexadecimal values in</td>
</tr>
<tr>
<td></td>
<td>the dump are usually interpreted along the right side of the dump. In a system dump that contains</td>
</tr>
<tr>
<td></td>
<td>mostly unprintable characters, a readable name, such as the name of an object module, is easy to</td>
</tr>
<tr>
<td></td>
<td>see.) The next eye-catcher before a failed instruction should include the name of the object</td>
</tr>
<tr>
<td></td>
<td>module containing the failing instruction.</td>
</tr>
<tr>
<td></td>
<td>4. If the module name begins with ICH or IRR, RACF was executing when the abend occurred.</td>
</tr>
<tr>
<td></td>
<td>Check these special cases first:</td>
</tr>
<tr>
<td>For 0C1 abends:</td>
<td>Use AMBLIST LISTLOAD to verify that the failing load module has been properly link-edited.</td>
</tr>
<tr>
<td></td>
<td>• Check the JCLIN as shipped with the RACF product.</td>
</tr>
<tr>
<td></td>
<td>• Pay particular attention to aliases and entry points.</td>
</tr>
<tr>
<td></td>
<td>• If IGC0013</td>
</tr>
<tr>
<td>Note:</td>
<td>The last character in the load module name is X'C0'.</td>
</tr>
<tr>
<td></td>
<td>Determine whether the load module has been physically moved since it was link-edited. If the</td>
</tr>
<tr>
<td></td>
<td>load module is in SYS1.LPALIB:</td>
</tr>
<tr>
<td></td>
<td>a. Link edit the load module again.</td>
</tr>
<tr>
<td></td>
<td>b. Re-IPL with CLPA.</td>
</tr>
<tr>
<td>For 0C4 abends:</td>
<td>If the failing module is ICHCLD00, ICHDSM35, IRRRCK00, IRRRIN04,</td>
</tr>
<tr>
<td></td>
<td>IRRRIN05, IRRRXT00, or IRRFLC00, it is likely that the module is trying to address a CSA or</td>
</tr>
<tr>
<td></td>
<td>private profile that does not exist.</td>
</tr>
<tr>
<td></td>
<td>This can happen when a RACROUTE REQUEST=AUTH preprocessing exit passes a return code of 4 or 8</td>
</tr>
<tr>
<td></td>
<td>but does not build a CSA or private profile even though the CSA or private option was specified</td>
</tr>
<tr>
<td></td>
<td>on the AUTH request.</td>
</tr>
<tr>
<td></td>
<td>To correct this error, correct the RACROUTE REQUEST=AUTH preprocessing exit so that it builds a</td>
</tr>
<tr>
<td></td>
<td>CSA or private profile when requested on the AUTH request.</td>
</tr>
<tr>
<td>Note:</td>
<td>To check the parameters that are actually passed to RACF on a macro request, see</td>
</tr>
<tr>
<td></td>
<td>“Checking the parameter list passed to RACF” on page 80.</td>
</tr>
<tr>
<td>5.</td>
<td>If these preliminary checks fail, check “Identifying the caller of RACF” on page 78 to see</td>
</tr>
<tr>
<td></td>
<td>if RACF is the probable cause of the problem or to determine who called the RACF module.</td>
</tr>
<tr>
<td>Note:</td>
<td>To check the parameters that are actually passed to RACF on a macro request, see</td>
</tr>
<tr>
<td></td>
<td>“Checking the parameter list passed to RACF” on page 80.</td>
</tr>
<tr>
<td>6.</td>
<td>If your investigation leads you to think that RACF was the cause of the problem, fill out the</td>
</tr>
<tr>
<td></td>
<td>Information to gather before calling IBM with abend problems worksheet in Table 20 on page 100</td>
</tr>
<tr>
<td></td>
<td>and call the IBM support center.</td>
</tr>
</tbody>
</table>
Table 3. Troubleshooting table: Abends (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for Abends</th>
</tr>
</thead>
</table>
| **Abends:** X'182' X'183' X'185' | **Description:** RACF was unable to establish an ESTAE for the SVC (supervisor call instruction).
Action:
1. See the message issued with the abend. This could be message IRR401I or ICH409I. Find the abend reason code, if any, in the text for the messages.
2. See [z/OS Security Server RACF Messages and Codes](https://www.ibm.com/support/docview.ws?rs=166&context_id=SSGT&doc_id=redp9798) for information about the abend code and the accompanying message (if you have not looked up the explanation already). In general, the information in [z/OS Security Server RACF Messages and Codes](https://www.ibm.com/support/docview.ws?rs=166&context_id=SSGT&doc_id=redp9798) should be sufficient to correct the problem.
3. If the information in [z/OS Security Server RACF Messages and Codes](https://www.ibm.com/support/docview.ws?rs=166&context_id=SSGT&doc_id=redp9798) is not sufficient to correct the problem, do the rest of the steps in this procedure.
4. See “Performing a preliminary search for a matching problem” on page 34. If you do not find a matching problem, you need to collect problem information to report to IBM, using the steps in the rest of this list.
5. If the abend did not generate a system dump, and the problem is reproducible, obtain a system dump. See “Obtaining a system dump” on page 41.
6. Format the system dump. See “Formatting a system dump” on page 42.
7. You may want to re-create the problem you are investigating (or set up the conditions to allow the problem to recur) after setting the trap to obtain the dump.
8. See “Searching for a matching problem” on page 81.
9. If you still do not find a matching problem, see Chapter 3, “Reporting RACF problems to IBM,” on page 99. |

| Abends: X'282' X'283' X'285' | **Description:** Parameter error on input to the SVC (supervisor call instruction). The reason codes associated with these abends indicate which parameter is bad in the parameter list. The bad parameter was probably set by the caller of RACF.
Action:
1. See the message issued with the abend. This could be message IRR401I or ICH409I. Find the abend reason code, if any, in the text for the messages.
2. If you have not looked up the explanations already, see [z/OS Security Server RACF Messages and Codes](https://www.ibm.com/support/docview.ws?rs=166&context_id=SSGT&doc_id=redp9798) for the explanations of the message and the abend code. (Abend codes are also called “completion codes.”) Pay particular attention to the reason code associated with the abend. In general, the information in [z/OS Security Server RACF Messages and Codes](https://www.ibm.com/support/docview.ws?rs=166&context_id=SSGT&doc_id=redp9798) should be sufficient to correct the problem.
3. If the information in [z/OS Security Server RACF Messages and Codes](https://www.ibm.com/support/docview.ws?rs=166&context_id=SSGT&doc_id=redp9798) is not sufficient to correct the problem, follow the rest of the steps in this procedure.
4. Check whether any other error messages were issued with the abend messages. These messages might indicate the context in which the abend occurred. In particular, messages preceding the abend message might indicate conditions that caused the abend.
Note: If message IDs were not included with the messages and you can re-create the error, do:
• If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified.
• If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID. |
Abends

Table 3. Troubleshooting table: Abends (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for Abends</th>
</tr>
</thead>
</table>
| Abends: | 1. Find the name of the calling module. This is the module that issued the RACF request (such as a RACF macro, command, or utility). The conditions set up by this module might have caused the abend.
See “Identifying the caller of RACF” on page 78.
2. Find the owner of the module: an IBM product, a non-IBM product, or a user at your installation.
If the module name begins with ICH or IRR, it is a RACF module. Continue with this procedure.
If the module name begins with the letters A through I, S, or X (but not ICH or IRR), it is probably part of an IBM product, but it is not RACF. See the diagnosis or logic document for the program of which the module is a part. To determine the name of the component that owns the module, use the component summary in z/OS MVS Diagnosis: Reference.
3. See “Performing a preliminary search for a matching problem” on page 34.
If you find a matching problem, apply the appropriate PTFs (program temporary fixes).
If you do not find a matching problem, you need to collect problem information to report to IBM, using the steps in the rest of this procedure. Please be sure to fill out a blank copy of the worksheet shown in Table 20 on page 100.
4. If the abend did not generate a system dump, and the problem is reproducible, obtain a system dump. You may want to re-create the problem you are investigating (or set up the conditions to allow the problem to recur) after setting the trap to obtain the dump.
5. See “Searching for a matching problem” on page 81.
6. If you still do not find a matching problem, see Chapter 3, “Reporting RACF problems to IBM,” on page 99. |
| Abends: | Description: A user exit associated with an SVC (supervisor call instruction) passed a non-valid return code.
Action:
1. See the message issued with the abend. This could be message IRR401I or ICH409I.
2. If you have not looked up the explanations already, see z/OS Security Server RACF Messages and Codes for the explanations of the message and the abend code. (Abend codes are also called “completion codes.”) Pay particular attention to the explanation of the abend code. In general, the information in z/OS Security Server RACF Messages and Codes should be sufficient to correct the problem.
3. If the information in z/OS Security Server RACF Messages and Codes is not sufficient to correct the problem, do the rest of the steps in this procedure.
4. Check whether any other error messages were issued with the abend messages. These messages might indicate the context in which the abend occurred. In particular, messages preceding the abend message might indicate conditions that caused the abend.
Note: If message IDs were not included with the messages and you can re-create the error, do:
• If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified.
• If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID. |
Abends

Table 3. Troubleshooting table: Abends (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for Abends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abends:</td>
<td></td>
</tr>
<tr>
<td>X'382'</td>
<td>1. Find the name of the calling module. This is the module that issued the RACF request</td>
</tr>
<tr>
<td></td>
<td>(such as a RACF macro, command, or utility). The conditions set up by this module might</td>
</tr>
<tr>
<td></td>
<td>have caused the abend.</td>
</tr>
<tr>
<td>X'383'</td>
<td>See “Identifying the caller of RACF” on page 78.</td>
</tr>
<tr>
<td>X'385'</td>
<td>2. Find the owner of the module: an IBM product, a non-IBM product, or a user at your</td>
</tr>
<tr>
<td>(continued)</td>
<td>installation.</td>
</tr>
<tr>
<td></td>
<td>If the module name begins with ICH or IRR, it is a RACF module. Continue with this</td>
</tr>
<tr>
<td></td>
<td>procedure.</td>
</tr>
<tr>
<td></td>
<td>If the module name begins with the letters A through I, S, or X (but not ICH or IRR), it is</td>
</tr>
<tr>
<td></td>
<td>probably part of an IBM product, but it is not RACF. See the diagnosis or logic document</td>
</tr>
<tr>
<td></td>
<td>for the program of which the module is a part. To determine the name of the component</td>
</tr>
<tr>
<td></td>
<td>that owns the module, use the component summary in “z/OS MVS Diagnosis: Reference”.</td>
</tr>
<tr>
<td></td>
<td>3. See “Performing a preliminary search for a matching problem” on page 34.</td>
</tr>
<tr>
<td></td>
<td>If you find a matching problem, apply the appropriate PTFs (program temporary fixes).</td>
</tr>
<tr>
<td></td>
<td>If you do not find a matching problem, you need to collect problem information to report</td>
</tr>
<tr>
<td></td>
<td>to IBM, using the steps in the rest of this procedure. Please be sure to fill out a blank</td>
</tr>
<tr>
<td></td>
<td>copy of the worksheet shown in Table 20 on page 100.</td>
</tr>
<tr>
<td></td>
<td>4. If the abend did not generate a system dump, and the problem is reproducible, obtain a</td>
</tr>
<tr>
<td></td>
<td>system dump. See “Obtaining a system dump” on page 41.</td>
</tr>
<tr>
<td></td>
<td>5. Format the system dump. See “Formatting a system dump” on page 42.</td>
</tr>
<tr>
<td></td>
<td>6. You might want to re-create the problem you are investigating (or set up the conditions to</td>
</tr>
<tr>
<td></td>
<td>allow the problem to recur) after setting the trap to obtain the dump.</td>
</tr>
<tr>
<td></td>
<td>7. See “Searching for a matching problem” on page 81.</td>
</tr>
<tr>
<td></td>
<td>8. If you still do not find a matching problem, see Chapter 3, “Reporting RACF problems to</td>
</tr>
<tr>
<td></td>
<td>IBM,” on page 99.</td>
</tr>
<tr>
<td>Abends: X'3C7'</td>
<td>Description: RACF storage manager error during processing of a non-SVC, SRB mode, get space</td>
</tr>
<tr>
<td></td>
<td>and free space request.</td>
</tr>
<tr>
<td></td>
<td>Action:</td>
</tr>
<tr>
<td></td>
<td>1. See the message issued with the abend. This could be message ICH409I. Find the abend</td>
</tr>
<tr>
<td></td>
<td>reason code, if any, in the text for the message.</td>
</tr>
<tr>
<td></td>
<td>2. If you have not looked up the explanations already, see “z/OS Security Server RACF</td>
</tr>
<tr>
<td></td>
<td>Messages and Codes” for the explanations of the message and the abend code. (Abend codes</td>
</tr>
<tr>
<td></td>
<td>are also called “completion codes.”) Pay particular attention to the reason code</td>
</tr>
<tr>
<td></td>
<td>associated with the abend. In general, the information in “z/OS Security Server RACF</td>
</tr>
<tr>
<td></td>
<td>Messages and Codes should be sufficient to correct the problem.</td>
</tr>
</tbody>
</table>
Abends

Table 3. Troubleshooting table: Abends (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for Abends</th>
</tr>
</thead>
</table>
| Abends: X'400' | **Description:** This abend is issued by IOS (I/O supervisor) when the RACF database goes into multiple extents. (The RACF database must be allocated in a single contiguous extent.)
| | **Action:**
| | 1. To correct this problem, reallocate the RACF database with enough space to fit in a single extent and re-IPL the system.
| | 2. If this step does not solve the problem, do the rest of the steps in this procedure.
| | 3. See “Performing a preliminary search for a matching problem” on page 34.
| | If you do not find a matching problem, you will need to collect problem information to report to IBM, using the steps in the rest of this list.
| | 4. If the abend did not generate a system dump, and the problem is reproducible, obtain a system dump. See “Obtaining a system dump” on page 41.
| | 5. Format the system dump. See “Formatting a system dump” on page 42.
| | 6. You might want to re-create the problem you are investigating (or set up the conditions to allow the problem to recur) after setting the trap to obtain the dump.
| | 7. See “Searching for a matching problem” on page 81.
| | 8. If you still do not find a matching problem, see Chapter 3, “Reporting RACF problems to IBM,” on page 99. |

| Abends: X'482' X'483' X'485' | **Description:** RACF manager error during SVC (supervisor call instruction) processing.
| | **Action:**
| | 1. See the message issued with the abend. This could be message IRR401I or ICH409I. Find the abend reason code, if any, in the text for the messages.
| | 2. See message IRR413I, which occurs with RACF manager abends. Find the RACF manager request ID in the message.
| | 3. See z/OS Security Server RACF Messages and Codes for information about the abend code and the accompanying message (if you have not looked up the explanation already). In general, the information in z/OS Security Server RACF Messages and Codes should be sufficient to correct the problem.
| | 4. If the information in z/OS Security Server RACF Messages and Codes is not sufficient to correct the problem, do the rest of the steps in this procedure.
| | 5. See “Performing a preliminary search for a matching problem” on page 34.
| | If you do not find a matching problem, you need to collect problem information to report to IBM, using the steps in the rest of this list.
| | 6. If the abend did not generate a system dump, and the problem is reproducible, obtain a system dump. See “Obtaining a system dump” on page 41.
| | 7. Format the system dump. See “Formatting a system dump” on page 42.
| | 8. You might want to re-create the problem you are investigating (or set up the conditions to allow the problem to recur) after setting the trap to obtain the dump.
| | 10. If you still do not find a matching problem, see Chapter 3, “Reporting RACF problems to IBM,” on page 99.
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for Abends</th>
</tr>
</thead>
</table>
| **Abends: X'4C6'** | **Description:** A service call to a RACF module used for z/OS UNIX services did not complete. The specific error is indicated by the abend reason code.
Action:
1. See the message issued with the abend. This could be message ICH409I. **Find the abend reason code, if any, in the text for the message.**
2. If you have not looked up the explanations already, see [z/OS Security Server RACF Messages and Codes](#) for the explanations of the message and the abend code. (Abend codes are also called “completion codes.”) **Pay particular attention to the reason code associated with the abend.** In general, the information in [z/OS Security Server RACF Messages and Codes](#) should be sufficient to correct the problem.
| **Abends: X'4C7'** | **Description:** RACF storage manager error during processing of a non-SVC, task mode, get space and free space request.
Action:
1. See the message issued with the abend. This could be message ICH409I. **Find the abend reason code, if any, in the text for the message.**
2. If you have not looked up the explanations already, see [z/OS Security Server RACF Messages and Codes](#) for the explanations of the message and the abend code. (Abend codes are also called “completion codes.”) **Pay particular attention to the reason code associated with the abend.** In general, the information in [z/OS Security Server RACF Messages and Codes](#) should be sufficient to correct the problem.
| **Abends: X'582' X'585'** | **Description:** Error during SVC (supervisor call instruction) processing. The specific error is indicated by the abend reason code.
Action:
1. See message IRR401I or ICH409I, which occur with RACF abends. Find the abend reason code, if any, in the message text. If the abend reason code is zero, no ACEE (accessor environment element) could be found.
 Note: This is normal if a job started or a user logged on while RACF was inactive but has since been reactivated.
2. If the abend reason code is not zero, do the rest of the steps in this procedure.
3. If you have not looked up the explanations already, see [z/OS Security Server RACF Messages and Codes](#) for the explanations of the message and the abend code. (Abend codes are also called “completion codes.”) **Pay particular attention to the reason code associated with the abend.** In general, the information in [z/OS Security Server RACF Messages and Codes](#) should be sufficient to correct the problem.
4. If the information in [z/OS Security Server RACF Messages and Codes](#) is not sufficient to correct the problem, do the rest of the steps in this procedure.
5. Check whether any other error messages were issued with the abend messages. These messages might indicate the context in which the abend occurred. In particular, messages preceding the abend message might indicate conditions that caused the abend.
 Note: If message IDs were not included with the messages and you can re-create the error, do:
 • If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified.
 • If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID. |
Table 3. Troubleshooting table: Abends (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for Abends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abends:</td>
<td></td>
</tr>
<tr>
<td>X’582’ X’585’ (continued)</td>
<td>1. Find the name of the calling module. This is the module that issued the RACF request (such as a RACF macro, command, or utility). The conditions set up by this module might have caused the abend. See “Identifying the caller of RACF” on page 78. 2. Find the owner of the module: an IBM product, a non-IBM product, or a user at your installation. If the module name begins with ICH or IRR, it is a RACF module. Continue with this procedure. If the module name begins with the letters A through I, S, or X (but not ICH or IRR), it is probably part of an IBM product, but it is not RACF. See the diagnosis or logic document for the program of which the module is a part. To determine the name of the component that owns the module, use the component summary in z/OS MVS Diagnosis: Reference. 3. See “Performing a preliminary search for a matching problem” on page 34. If you find a matching problem, apply the appropriate PTFs (program temporary fixes). If you do not find a matching problem, you need to collect problem information to report to IBM, using the steps in the rest of this procedure. Please be sure to fill out a blank copy of the worksheet shown in Table 20 on page 100. 4. If the abend did not generate a system dump, and the problem is reproducible, obtain a system dump. See “Obtaining a system dump” on page 41. 5. Format the system dump. See “Formatting a system dump” on page 42. 6. You might want to re-create the problem you are investigating (or set up the conditions to allow the problem to recur) after setting the trap to obtain the dump. 7. See “Searching for a matching problem” on page 81. 8. If you still do not find a matching problem, see Chapter 3, “Reporting RACF problems to IBM,” on page 99.</td>
</tr>
</tbody>
</table>

Description: Insufficient authority to issue the SVC (supervisor call) instruction. The issuer of the SVC must be APF-authorized (authorized program facility). These abends can occur if a RACF command is not in the TSO command table.

Action:

1. See the message issued with the abend. This could be message IRR401I or ICH409I. **Find the abend reason code, if any, in the text for the messages.**

2. If you have not looked up the explanations already, see [z/OS Security Server RACF Messages and Codes](#) for the explanations of the message and the abend code. (Abend codes are also called “completion codes.”) **Pay particular attention to the reason code associated with the abend.** In general, the information in [z/OS Security Server RACF Messages and Codes](#) should be sufficient to correct the problem.

3. If the information in [z/OS Security Server RACF Messages and Codes](#) is not sufficient to correct the problem, do the rest of the steps in this procedure.

4. Check whether any other error messages were issued with the abend messages. These messages might indicate the context in which the abend occurred. In particular, messages preceding the abend message might indicate conditions that caused the abend. **Note:** If message IDs were not included with the messages and you can re-create the error, do:

 - If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified.
 - If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.

5. Find the name of the calling module. This is the module that issued the RACF request (such as a RACF macro, command, or utility). The conditions set up by this module might have caused the abend. See “Identifying the caller of RACF” on page 78.
Abends

Table 3. Troubleshooting table: Abends (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for Abends</th>
</tr>
</thead>
</table>
| Abends: X'683' X'684' X'685' (continued) | 1. Find the owner of the module: an IBM product, a non-IBM product, or a user at your installation.
If the module name begins with ICH or IRR, it is a RACF module. Continue with this procedure.
If the module name begins with the letters A through I, S, or X (but not ICH or IRR), it is probably part of an IBM product, but it is not RACF. See the diagnosis or logic document for the program of which the module is a part. To determine the name of the component that owns the module, use the component summary in [z/OS MVS Diagnosis: Reference](#).
2. See [Performing a preliminary search for a matching problem](#) on page 34.
If you find a matching problem, apply the appropriate PTFs (program temporary fixes).
If you do not find a matching problem, you need to collect problem information to report to IBM, using the steps in the rest of this procedure. Please be sure to fill out a blank copy of the worksheet shown in [Table 20 on page 100](#).
3. If the SVC (supervisor call instruction) was issued because a user issued a RACF command, check to be sure the RACF command is in the list of APF-authorized (authorized program facility) commands or in the ISPF command tables.
4. See [Performing a preliminary search for a matching problem](#) on page 34.
If you do not find a matching problem, you will need to collect problem information to report to IBM, using the steps in the rest of this list.
5. If the abend did not generate a system dump, and the problem is reproducible, obtain a system dump. See [Obtaining a system dump](#) on page 41.
6. Format the system dump. See [Formatting a system dump](#) on page 42.
7. You might want to re-create the problem you are investigating (or set up the conditions to allow the problem to recur) after setting the trap to obtain the dump.
8. See [Searching for a matching problem](#) on page 81.
9. If you still do not find a matching problem, see Chapter 3, “Reporting RACF problems to IBM,” on page 99. |

| Abends: X'9C7' | Description: RACF token error during RACROUTE functions. **Action:**
1. See the message issued with the abend. **Find the abend reason code, if any, in the text for the messages.**
2. See [z/OS Security Server RACF Messages and Codes](#) for information about the abend code and the accompanying message (if you have not looked up the explanation already). In general, the information in [z/OS Security Server RACF Messages and Codes](#) should be sufficient to correct the problem.
3. If the information in [z/OS Security Server RACF Messages and Codes](#) is not sufficient to correct the problem, do the rest of the steps in this procedure.
4. See [Performing a preliminary search for a matching problem](#) on page 34.
If you do not find a matching problem, you need to collect problem information to report to IBM, using the steps in the rest of this list.
5. If the abend did not generate a system dump, and the problem is reproducible, obtain a system dump. See [Obtaining a system dump](#) on page 41.
6. Format the system dump. See [Formatting a system dump](#) on page 42.
7. You might want to re-create the problem you are investigating (or set up the conditions to allow the problem to recur) after setting the trap to obtain the dump.
8. See [Searching for a matching problem](#) on page 81.
9. If you still do not find a matching problem, see Chapter 3, “Reporting RACF problems to IBM,” on page 99. |
| Abends: X'AC5' | **Description:** Internal RACF problem.
Action:
1. See “Performing a preliminary search for a matching problem” on page 34.
 If you do not find a matching problem, you need to collect problem information to report to IBM, using the steps in the rest of this list.
2. Format the system dump. See “Formatting a system dump” on page 42.
4. If you still do not find a matching problem, see Chapter 3, “Reporting RACF problems to IBM,” on page 99. |
| Abends: X'D82' X'D83' X'D84' X'D85' | **Description:** RACF storage manager error during SVC processing.
Action:
1. See the message issued with the abend. This could be message IRR401I or ICH409I. Find the abend reason code, if any, in the text for the messages.
2. If you have not looked up the explanations already, see z/OS Security Server RACF Messages and Codes for the explanations of the message and the abend code. (Abend codes are also called “completion codes.”) Pay particular attention to the reason code associated with the abend. In general, the information in z/OS Security Server RACF Messages and Codes should be sufficient to correct the problem.
3. If the information in z/OS Security Server RACF Messages and Codes is not sufficient to correct the problem, do the rest of the steps in this procedure.
4. Check whether any other error messages were issued with the abend messages. These messages might indicate the context in which the abend occurred. In particular, messages preceding the abend message might indicate conditions that caused the abend.
Note: If message IDs were not included with the messages and you can re-create the error, do:
 • If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified.
 • If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.
5. Find the name of the calling module. This is the module that issued the RACF request (such as a RACF macro, command, or utility). The conditions set up by this module might have caused the abend.
See “Identifying the caller of RACF” on page 78.
Table 3. Troubleshooting table: Abends (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for Abends</th>
</tr>
</thead>
</table>
| Abends: X'D82' X'D83' X'D84' X'D85' (continued) | 1. Find the owner of the module: an IBM product, a non-IBM product, or a user at your installation. If the module name begins with ICH or IRR, it is a RACF module. Continue with this procedure. If the module name begins with the letters A through I, S, or X (but not ICH or IRR), it is probably part of an IBM product, but it is not RACF. See the diagnosis or logic document for the program of which the module is a part. To determine the name of the component that owns the module, use the component summary in [z/OS MVS Diagnosis: Reference].
2. See “Performing a preliminary search for a matching problem” on page 34. If you find a matching problem, apply the appropriate PTFs (program temporary fixes). If you do not find a matching problem, you need to collect problem information to report to IBM, using the steps in the rest of this procedure. Please be sure to fill out a blank copy of the worksheet shown in Table 20 on page 100.
3. If the abend did not generate a system dump, and the problem is reproducible, obtain a system dump. See “Obtaining a system dump” on page 41.
4. Format the system dump. See “Formatting a system dump” on page 42.
5. You may want to re-create the problem you are investigating (or set up the conditions to allow the problem to recur) after setting the trap to obtain the dump.
7. If you still do not find a matching problem, see Chapter 3, “Reporting RACF problems to IBM,” on page 99. |
| Abends: X'E82' X'E83' X'E84' X'E85' | **Description:** RACF is not installed. **Action:** Make sure that RACF is properly installed. |

Documentation troubleshooting table

Table 4. Troubleshooting table: Documentation

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended Procedures for Documentation</th>
</tr>
</thead>
</table>
| Error in a publication that documents RACF | **Action:**
1. If you have a problem with RACF documentation, see “How to send your comments to IBM” on page xv to report the documentation error. Report the problem to the IBM support center for these situations:
 - The correction to the documentation is needed to prevent a severe problem.
 - You are not sure if the error is in the documentation or the product.
 - The error is in an online panel.
2. If you plan to report the problem to the IBM support center, see:
 a. “Performing a preliminary search for a matching problem” on page 34
 b. “Searching for a matching problem” on page 81
 c. Chapter 3, “Reporting RACF problems to IBM,” on page 99 |

Incorrect output troubleshooting table

This topic describes incorrect output from RACF. Generally, incorrect output can be missing records, duplicate records, incorrect values, format errors, or meaningless data.
Incorrect output

Incorrect output could also be the improper issuing of an error message, an abend code, a return code from a macro, or a wait-state code. For example, an abend could be issued when no abend is needed, or a message that should be issued is not issued. Another example is message text that includes incorrect information.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for incorrect output</th>
</tr>
</thead>
</table>
| Incorrect output: Improper access to a protected resource with no message issued | **Action:**
1. Check whether any error messages were issued for the user request and make sure that message IDs are included with the messages. If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.
2. Check the global access checking table for an entry describing the resource. This step does not apply for z/OS or OS/390 z/OS UNIX System Services.
3. Check for an installation exit for RACROUTE REQUEST=AUTH. This step does not apply for z/OS or OS/390 z/OS UNIX System Services.
4. Check the kind of RACROUTE request that was made. Compare it with the level of protection of the resource. (Use LISTDSD or RLIST command for the resource; use LISTUSER command for the user.) This step does not apply for z/OS or OS/390 z/OS UNIX System Services.
5. If the cause of the problem is not apparent, attempt to duplicate the problem with another user doing the same kind of request. Try another user with similar attributes and group associations. If the problem can be duplicated, then determine which user attributes or group associations cause the problem. This can help you define the problem. If the problem cannot be duplicated with other users, try to duplicate the problem with other resources protected like the original.
6. See “Performing a preliminary search for a matching problem” on page 34. If you do not find a matching problem, you need to collect problem information to report to IBM, using the procedures in the remainder of this list.
7. Get a printed or online copy of the incorrect output. You need it to analyze the problem or report the problem to IBM.
8. See “Searching for a matching problem” on page 81.
Table 5. Troubleshooting table: Incorrect output (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for incorrect output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect output: Messages</td>
<td>Action:</td>
</tr>
<tr>
<td></td>
<td>1. Make sure that you have all the error messages that were issued for the user request, and make sure that message IDs are included with the messages.</td>
</tr>
<tr>
<td></td>
<td>If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.</td>
</tr>
<tr>
<td></td>
<td>2. Decide which of these types of messages applies:</td>
</tr>
<tr>
<td></td>
<td>a. Macro error messages (MNOTEs)</td>
</tr>
<tr>
<td></td>
<td>b. System error messages issued by RACF (messages with prefixes of CST, HCP, ICH, IRR, and RPI)</td>
</tr>
<tr>
<td></td>
<td>3. Decide what the nature of the message error is.</td>
</tr>
<tr>
<td></td>
<td>a. Was the message valid but unexpected? See "Messages troubleshooting table" on page 29.</td>
</tr>
<tr>
<td></td>
<td>b. Was the message itself incorrect; for example, did it contain incorrect or unreadable data, or was an error message issued for a non-error situation?</td>
</tr>
<tr>
<td></td>
<td>4. If you had incorrect output from a RACF macro, see "Utilities" on page 3 for a list of common application programming errors for RACF; the results of some of these errors could appear to be incorrect output from RACF.</td>
</tr>
<tr>
<td></td>
<td>5. See "Performing a preliminary search for a matching problem" on page 34.</td>
</tr>
<tr>
<td></td>
<td>If you do not find a matching problem, you need to collect problem information to report to IBM using the procedures in the remainder of this list.</td>
</tr>
<tr>
<td></td>
<td>6. Get a printed or online copy of the incorrect output. You need it to analyze the problem or report the problem to IBM.</td>
</tr>
<tr>
<td></td>
<td>a. For macro error messages (MNOTEs): Get a copy of the assembler listing that contained the macro error message.</td>
</tr>
<tr>
<td></td>
<td>b. For system error messages issued by RACF: Get a copy of the part of the job log or system log that contained the message. (The IBM support center might also need to check messages that preceded the error message in the log.)</td>
</tr>
<tr>
<td></td>
<td>7. See "Searching for a matching problem" on page 81.</td>
</tr>
</tbody>
</table>
Incorrect output

Table 5. Troubleshooting table: Incorrect output (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for incorrect output</th>
</tr>
</thead>
</table>
| Incorrect output: Incorrect abends | **Action:**
1. Check whether any error messages were issued in response to the user request and make sure that message IDs are included with the messages.
If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.
2. Decide what the nature of the abend error is.
a. Was the abend valid but unexpected? Go to “Abend troubleshooting table” on page 9.
b. Was the abend not documented? Go to “Documentation troubleshooting table” on page 19.
c. Was the abend itself incorrect? For example, was the abend issued for a non-error situation?
d. If you had incorrect output from a RACF macro, see “Utilities” on page 3 for a list of common application programming errors for RACF; the results of some of these errors could appear to be incorrect output from RACF.
3. See “Performing a preliminary search for a matching problem” on page 34.
If you do not find a matching problem, you need to collect problem information to report to IBM, using the procedures in the remainder of this list.
4. Get a printed or online copy of the incorrect output. You need it to analyze the problem or report the problem to IBM.
To Get the Dump Output and Analysis Results:
Use the procedures described:
a. “Obtaining a system dump” on page 41, if you need to request a dump
b. “Formatting a system dump” on page 42
c. “Validating input” on page 78
5. See “Searching for a matching problem” on page 81
Incorrect output

Table 5. Troubleshooting table: Incorrect output (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for incorrect output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect output: Improperly formatted output from RACF LIST commands</td>
<td></td>
</tr>
<tr>
<td>(LISTDSD, LISTGRP, LISTUSER, RLIST, and RACLINK LIST)</td>
<td></td>
</tr>
<tr>
<td>Action:</td>
<td></td>
</tr>
<tr>
<td>1. Check whether any error messages were issued for the user request and make sure that message IDs are included with the messages.</td>
<td></td>
</tr>
<tr>
<td>If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.</td>
<td></td>
</tr>
<tr>
<td>2. Decide what caused the incorrect output:</td>
<td></td>
</tr>
<tr>
<td>• The data read by the command (the RACF database). If this is the case, see the table entry for the RACF database.</td>
<td></td>
</tr>
<tr>
<td>• RACF's processing of the command request</td>
<td></td>
</tr>
<tr>
<td>3. If the database should have been updated by a command that was issued on another system in the RACF remote sharing facility (RRSF) network, check the status of the connection with a TARGET LIST on this system and the originating system. Also, check the RRSFDATA profiles on the originating system.</td>
<td></td>
</tr>
<tr>
<td>4. See "Performing a preliminary search for a matching problem" on page 34.</td>
<td></td>
</tr>
<tr>
<td>If you do not find a matching problem, you need to collect problem information to report to IBM, using the procedures in the remainder of this list.</td>
<td></td>
</tr>
<tr>
<td>5. Get a printed or online copy of the incorrect output. You need it to analyze the problem or report the problem to IBM.</td>
<td></td>
</tr>
<tr>
<td>You can capture the output by executing the command in a batch job, or under the session manager, or in a CLIST in which you trap the output from the command.</td>
<td></td>
</tr>
<tr>
<td>Incorrect output: Improperly formatted reports (from DSMON or RACF report writer)</td>
<td></td>
</tr>
<tr>
<td>Action:</td>
<td></td>
</tr>
<tr>
<td>1. Check whether any error messages were issued for the user request and make sure that message IDs are included with the messages.</td>
<td></td>
</tr>
<tr>
<td>If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.</td>
<td></td>
</tr>
<tr>
<td>2. See "Performing a preliminary search for a matching problem" on page 34.</td>
<td></td>
</tr>
<tr>
<td>If you do not find a matching problem, you need to collect problem information to report to IBM, using the procedures in the remainder of this list.</td>
<td></td>
</tr>
<tr>
<td>3. Get a printed or online copy of the improperly formatted report. You need it to analyze the problem or report the problem to IBM.</td>
<td></td>
</tr>
<tr>
<td>4. Check whether the problem is caused by RACF in generating the report or by bad data used as input to the report:</td>
<td></td>
</tr>
<tr>
<td>As a check on the RACF report writer, you can print (or display) the SMF (system management facility) records using the access method services PRINT command with DUMP specified.</td>
<td></td>
</tr>
<tr>
<td>As a check on DSMON, use the RACF LIST commands to check the profiles that seem to be reported incorrectly by DSMON.</td>
<td></td>
</tr>
<tr>
<td>5. See "Searching for a matching problem" on page 81.</td>
<td></td>
</tr>
</tbody>
</table>
Incorrect output

Table 5. Troubleshooting table: Incorrect output (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for incorrect output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect output: SMF records (types 80, 81, or 83)</td>
<td>Action:</td>
</tr>
<tr>
<td></td>
<td>1. Check whether any error messages were issued for the user request and make sure that message IDs are included with the messages.</td>
</tr>
<tr>
<td></td>
<td>If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.</td>
</tr>
<tr>
<td></td>
<td>2. If the RACF SMF data unload utility leads you to suspect that the SMF (system management facilities) records are not valid, check to make sure that the SMF records are at fault, not the utility.</td>
</tr>
<tr>
<td></td>
<td>3. See “Performing a preliminary search for a matching problem” on page 34. If you do not find a matching problem, you need to collect problem information to report to IBM, using the procedures in the remainder of this list.</td>
</tr>
<tr>
<td></td>
<td>4. Get a printed or online copy of the incorrect output. You need it to analyze the problem or report the problem to IBM.</td>
</tr>
<tr>
<td></td>
<td>For SMF records (type 80 or 81):</td>
</tr>
<tr>
<td></td>
<td>• Use the RACF SMF data unload utility to list the contents of the RACF SMF records. See z/OS Security Server RACF Auditor’s Guide for more information.</td>
</tr>
<tr>
<td></td>
<td>• As a check on the RACF SMF data unload utility, you can print (or display) the record using the access method services PRINT command with HEX specified.</td>
</tr>
<tr>
<td></td>
<td>• See “Searching for a matching problem” on page 81.</td>
</tr>
<tr>
<td></td>
<td>• See Chapter 3, “Reporting RACF problems to IBM,” on page 99.</td>
</tr>
</tbody>
</table>
Incorrect output

Table 5. Troubleshooting table: Incorrect output (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for incorrect output</th>
</tr>
</thead>
</table>
| Incorrect output: The RACF database (this includes profiles, index blocks, and inventory control block) | 1. Check whether any error messages were issued for the user request and make sure that message IDs are included with the messages. If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.
2. These RACF functions affect the RACF database:
 - RACF commands that add, alter, or delete profiles (such as ADDUSER, ALTUSER, DELUSER, RDEFINE, RALTER, and RDELETE)
 - BLKUPD command
 - RVARY and SETROPTS commands
 - IRRUT400 utility
 - RACF macros: RACDEF, RACINIT, ICHEINTY, ICHETEST, ICHEACTN, and RACXTRT (with ENCRYPT or TYPE=REPLACE specified)
3. If the database should have been updated by a command that was issued on another system in the RACF remote sharing facility (RRSF) network, check the status of the connection with a TARGET LIST on this system and the originating system. Also, check the RRSFDATA profiles on the originating system.
4. If you had incorrect output from a RACF macro, see "Utilities" on page 3 for a list of common application programming errors for RACF; the results of some of these errors could appear to be incorrect output from RACF.
5. See "Performing a preliminary search for a matching problem" on page 34. If you do not find a matching problem, you need to collect problem information to report to IBM, using the procedures in the remainder of this list.
6. Get a printed or online copy of the incorrect output. You need it to analyze the problem or report the problem to IBM. Run the IRRUT200 utility and the BLKUPD command to get a description of the RACF database. See z/OS Security Server RACF System Programmer’s Guide for a description of how to use IRRUT200, and "Block update command for a RACF database (BLKUPD)" on page 121 for a description of how to use BLKUPD.
7. See “Searching for a matching problem” on page 81.
Table 5. Troubleshooting table: Incorrect output (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for incorrect output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect output: RACF subsystem</td>
<td>Action:</td>
</tr>
<tr>
<td></td>
<td>1. Check for any messages that might have been issued by the RACF subsystem.</td>
</tr>
<tr>
<td></td>
<td>2. Refer to z/OS Security Server RACF Messages and Codes.</td>
</tr>
<tr>
<td></td>
<td>3. If the RVARY command, along with other commands, is not working, then the subsystem is also not working correctly.</td>
</tr>
<tr>
<td></td>
<td>4. Check to see if the subsystem initialized correctly; if it did not, check for an install problem and get a system console log (SYSLOG).</td>
</tr>
<tr>
<td></td>
<td>5. If a <code>userid.RRSFLIST</code> data set is missing output, or contains incorrect output:</td>
</tr>
<tr>
<td></td>
<td>- Issue the SET LIST command and verify that:</td>
</tr>
<tr>
<td></td>
<td>- Automatic direction or password synchronization is active for the type of request for which output is missing.</td>
</tr>
<tr>
<td></td>
<td>- The OUTPUT keyword specifies the user ID that should be receiving the missing output.</td>
</tr>
<tr>
<td></td>
<td>- The correct level of output is specified (ALWAYS, WARN, or FAIL).</td>
</tr>
<tr>
<td></td>
<td>- Check the RRSFDATA profiles and access lists and make sure that the requests are really being directed.</td>
</tr>
<tr>
<td></td>
<td>- Check the TSO PREFIX specification for the user ID that is missing the output. If it is set to something other than the user ID, the RRSFLIST data set might have a different name than you expect.</td>
</tr>
<tr>
<td></td>
<td>- Issue the TARGET LIST command on both nodes involved, and make sure that they are both operative-active, and that requests are not queued in one of the INMSG or OUTMSG data sets.</td>
</tr>
<tr>
<td></td>
<td>- Check whether anyone stopped the RACF subsystem address space, or used the TARGET command to purge an INMSG or OUTMSG file while a request was active. These actions can cause requests and output to be lost.</td>
</tr>
<tr>
<td></td>
<td>- Check for TSO TRANSMIT messages to the user ID that is missing the output. If there was an error processing the RRSFLIST data set a message should have been sent. Check the console log too.</td>
</tr>
<tr>
<td></td>
<td>- Make sure that the RRSFLIST data set is allocated with the proper DCB parameters and is not full. If in doubt, you can delete or rename it and let RACF create another one.</td>
</tr>
<tr>
<td></td>
<td>6. If an abend occurred, get a copy of the system dump that was taken.</td>
</tr>
<tr>
<td></td>
<td>7. If the abend did not generate a system dump, and the problem is reproducible, obtain a system dump. See “Obtaining a system dump” on page 41.</td>
</tr>
<tr>
<td></td>
<td>8. Format the system dump. See “Formatting a system dump” on page 42.</td>
</tr>
</tbody>
</table>
Incorrect output

Table 5. Troubleshooting table: Incorrect output (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for incorrect output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect output: Return or reason code from a RACF macro or utility</td>
<td>Action:</td>
</tr>
<tr>
<td></td>
<td>1. Check whether any error messages were issued for the user request and make sure that message IDs are included with the messages. If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.</td>
</tr>
<tr>
<td></td>
<td>2. Decide if the return or reason code is:</td>
</tr>
<tr>
<td></td>
<td>• Incorrect</td>
</tr>
<tr>
<td></td>
<td>• Undocumented. See “Documentation troubleshooting table” on page 19.</td>
</tr>
<tr>
<td></td>
<td>3. See “Utilities” on page 3 for a list of common application programming errors for RACF; the results of some of these errors could appear to be incorrect output from RACF.</td>
</tr>
<tr>
<td></td>
<td>4. See “Performing a preliminary search for a matching problem” on page 34. If you do not find a matching problem, you need to collect problem information to report to IBM, using the procedures in the remainder of this list.</td>
</tr>
<tr>
<td></td>
<td>5. Get a printed or online copy of the incorrect output. You need it to analyze the problem or report the problem to IBM. Note: If the macro return code or reason code was incorrect, request a system dump from a RACF macro request that produced the incorrect output when RACF returns control. To Get the Dump Output and Analysis Results: Use the procedures described in these areas:</td>
</tr>
<tr>
<td></td>
<td>a. “Obtaining a system dump” on page 41 if you need to request a dump</td>
</tr>
<tr>
<td></td>
<td>b. “Formatting a system dump” on page 42</td>
</tr>
<tr>
<td></td>
<td>c. “Validating input” on page 78.</td>
</tr>
</tbody>
</table>
Logon problems troubleshooting table

Table 6. Troubleshooting table: Logon problems

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for logon problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users cannot log on</td>
<td>Action:</td>
</tr>
<tr>
<td></td>
<td>1. Check whether any error messages were issued for the user request and make sure that message IDs are included with the messages. If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.</td>
</tr>
<tr>
<td></td>
<td>2. If only one or a few users cannot log on, check that they are using the current password. If no users can log on, do the rest of this procedure.</td>
</tr>
<tr>
<td></td>
<td>3. There might be a password synchronization problem, which you should be able to recognize because the user's old password is either accepted as correct or as expired. Enter a RACLINALK LIST command on each system to check the user's user ID association if that's what is being used to synchronize passwords.</td>
</tr>
<tr>
<td></td>
<td>4. If the database should have been updated by a command that was issued on another system in the RACF remote sharing facility (RRSF) network, check the status of the connection with a TARGET LIST on this system and the originating system. Also, check the RRSFDATA profiles on the originating system.</td>
</tr>
<tr>
<td></td>
<td>5. Check the system date in effect for the current system IPL. If the wrong date is in effect, users who cannot log on might have the REVOKE attribute in their user profiles. See z/OS Security Server RACF Security Administrator’s Guide for more information about the REVOKE attribute.</td>
</tr>
<tr>
<td></td>
<td>6. If you are sharing your database with other systems, make sure that all systems sharing the database are using the same password authentication algorithm, and that there has not been a period of time when the systems were using different algorithms. The default password authentication algorithm for the RACF component of the SecureWay Security Server is the Data Encryption Standard (DES) algorithm. The default password authentication algorithm for RACF on MVS beginning with RACF 2.1 is the (DES) algorithm, but for releases previous to RACF 2.1 the default is the masking algorithm. Make sure that you have taken the correct steps to activate the algorithm that you intend to use on each system sharing the database. See z/OS Security Server RACF System Programmer’s Guide for more information.</td>
</tr>
<tr>
<td>Users cannot log on</td>
<td>1. If you are using a PassTicket, make sure:</td>
</tr>
<tr>
<td>(continued)</td>
<td>• The PTKTDATA class has been activated and a class profile exists.</td>
</tr>
<tr>
<td></td>
<td>• You do not try to use the same PassTicket more than once.</td>
</tr>
<tr>
<td></td>
<td>• The GMT clock on the evaluating computer is within the valid time range.</td>
</tr>
<tr>
<td></td>
<td>For more information, see z/OS Security Server RACF Security Administrator’s Guide.</td>
</tr>
<tr>
<td></td>
<td>2. See “Performing a preliminary search for a matching problem” on page 34.</td>
</tr>
<tr>
<td></td>
<td>If you do not find a matching problem, you need to collect problem information to report to IBM, using the procedures in the remainder of this list.</td>
</tr>
<tr>
<td></td>
<td>3. Get a printed or online copy of the SMF records related to the logon problem. You need it to analyze the problem or report the problem to IBM.</td>
</tr>
<tr>
<td></td>
<td>4. See “Searching for a matching problem” on page 81.</td>
</tr>
</tbody>
</table>
Loops troubleshooting table

Table 7. Troubleshooting table: Loops

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for loops</th>
</tr>
</thead>
</table>
| Any loop during RACF processing | **Action:**
1. Check whether any error messages were issued for the user request that had the loop and make sure that message IDs are included with the messages. If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.
2. Check whether the prefix of one of the modules involved in the loop is ICH or IRR.
Note: The instructions involved in the loop are generally pointed to by the PSW that was active when the system dump was generated. Most modules owned by IBM have an identifier with the module name at either the beginning or end of the object code for the module. See the MVS diagnosis publications if you need further details of general loop analysis techniques.
3. If the prefix is ICH or IRR, the problem might be caused by RACF, and you should use these diagnostic procedures: a. Check that the problem was not due to repeated requests for RACF services. Repeated requests might be caused by a loop of logic in the application program issuing the request. If the loop was in a program making repeated requests, report the problem to the owner of the program. If the loop was within RACF, use the diagnostic procedures in the remainder of this list. b. See “Performing a preliminary search for a matching problem” on page 34. c. If you do not find a matching problem, you need to request a dump (if you don’t have one already) and collect problem information to report to IBM. **To Get the Dump Output and Analysis Results:**
Use the procedures described in these areas:
1) “Obtaining a system dump” on page 41, if you need to request a system dump.
2) “Formatting a system dump” on page 42
3) “Validating input” on page 78
4. If the prefix of one of the looping modules is **neither ICH nor IRR**, the problem was probably not caused by RACF. Note the prefixes of the looping modules. If the module is owned by IBM (modules owned by IBM usually start with the letters A through I, S, or X), see the diagnosis or logic document for the program that the module is a part of. To determine the name of the component that owns the module, use the component summary in [z/OS MVS Diagnosis: Reference](#). |

Messages troubleshooting table

Table 8. Troubleshooting table: Messages

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for messages</th>
</tr>
</thead>
</table>
| Messages with a prefix of IKJ | **Description:** These are TSO messages issued for RACF commands. IKJ messages are issued by the TSO Terminal Monitor Program (TMP).
Action:
1. See [z/OS TSO/E Messages](#) for a description of the message and the condition causing it. Attempt to correct the problem from the information in the messages document.
2. If you cannot correct the problem from the information in the messages document, do the problem determination procedure related to the message. |
Messages

Table 8. Troubleshooting table: Messages (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages with a prefix of ICH or IRR</td>
<td>Description: These are RACF messages.</td>
</tr>
<tr>
<td></td>
<td>Action:</td>
</tr>
<tr>
<td></td>
<td>1. See z/OS Security Server RACF Messages and Codes for a description of the message and the</td>
</tr>
<tr>
<td></td>
<td>condition causing it. Attempt to correct the problem from the information in z/OS Security Server RACF Messages and Codes.</td>
</tr>
<tr>
<td></td>
<td>2. If you cannot correct the problem from the information in z/OS Security Server RACF Messages and Codes, do the problem determination procedure related to the message.</td>
</tr>
<tr>
<td>Messages with a prefix of BPX</td>
<td>Description: These are z/OS and OS/390 z/OS UNIX System Services messages.</td>
</tr>
<tr>
<td></td>
<td>Action: If there are no RACF messages with this message, the problem is probably not caused by RACF. See your system diagnosis guide for information about correcting this problem.</td>
</tr>
<tr>
<td>Unnumbered messages</td>
<td>Description: Unnumbered messages are also issued by RACF.</td>
</tr>
<tr>
<td></td>
<td>Action:</td>
</tr>
<tr>
<td></td>
<td>1. Make sure that any message IDs are included with the messages.</td>
</tr>
<tr>
<td></td>
<td>If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.</td>
</tr>
<tr>
<td></td>
<td>2. See z/OS Security Server RACF Messages and Codes for a description of the message and the</td>
</tr>
<tr>
<td></td>
<td>condition causing it. Attempt to correct the problem from the information in the messages document.</td>
</tr>
<tr>
<td></td>
<td>3. If the message is not in z/OS Security Server RACF Messages and Codes and you are certain it is a RACF message, see “Documentation troubleshooting table” on page 19.</td>
</tr>
</tbody>
</table>
Performance problems

Performance problems troubleshooting table

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for performance problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance, such as:</td>
<td>Action: Most performance problems related to RACF are corrected by changing the way RACF is set up at an installation. Before suspecting that RACF itself is causing performance problems, review this checklist to assure that the problem is not actually caused by the way your installation has set up RACF. Pay close attention to any recent changes you have made in the way you have set up RACF. For more information about these performance considerations, see z/OS Security Server RACF System Programmer’s Guide.</td>
</tr>
<tr>
<td>There is excessive I/O to the RACF database.</td>
<td>• The rate at which users log on to TSO/E, sign on the IMS/VS or CICS/VS, or submit batch jobs on MVS affects system performance. The higher the rate, the lower the performance. You might see peaks and valleys in performance through the work day.</td>
</tr>
<tr>
<td>Users report slow response time, particularly when logging on or off, or when opening data sets.</td>
<td>• Using the RAclist or GENLIST operands on the SETROPTS command can improve system performance.</td>
</tr>
<tr>
<td></td>
<td>• Use of the global access checking table can improve system performance.</td>
</tr>
<tr>
<td></td>
<td>• Using RACROUTE REQUEST=FASTAUTH instead of RACROUTE REQUEST=AUTH can improve system performance.</td>
</tr>
<tr>
<td></td>
<td>• Using ADSP and PROTECT=YES can degrade system performance.</td>
</tr>
<tr>
<td></td>
<td>• The processing performed by installation-written exit routines can affect system performance.</td>
</tr>
<tr>
<td></td>
<td>• The placement of the RACF database on DASD (including how many DASDs the database is placed on) can affect system performance.</td>
</tr>
<tr>
<td></td>
<td>• The use of logging by users with SPECIAL or group-SPECIAL attributes or users with AUDITOR or group-AUDITOR attributes can reduce system performance.</td>
</tr>
<tr>
<td></td>
<td>• The gathering of resource statistics can reduce system performance.</td>
</tr>
<tr>
<td></td>
<td>• The use of certain RACF commands (such as SEARCH, LISTDSD with the ID or PREFIX operands, LISTGRP *, and others) can reduce system performance when there is a single RACF database.</td>
</tr>
<tr>
<td></td>
<td>• The use of RACF utilities can reduce system performance when there is a single data set in the RACF database.</td>
</tr>
<tr>
<td></td>
<td>• The use of erase-on-scratch can reduce system performance.</td>
</tr>
</tbody>
</table>
Performance problems

Table 9. Troubleshooting table: Performance problems (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for performance problems</th>
</tr>
</thead>
</table>
| Performance (continued) | • During failsoft processing, the operator is prompted frequently, thereby degrading system performance while you repair RACF.
 To improve system performance during failsoft processing, write a RACROUTE REQUEST=AUTH preprocessing exit.
 • List of groups processing can reduce system performance.
 • Group authority processing when made to percolate for a user to subgroups owned by the group can reduce system performance.
 • Defining many generic profiles within a data set high-level qualifier or a general resource class can hurt performance.
 • The use of the IRRACEE VLF class can improve system performance. The use of the IRRUMAP, IRRGMAP, and IRRSMAP VLF classes can improve performance of z/OS and OS/390 z/OS UNIX System Services.
 • See “Performing a preliminary search for a matching problem” on page 34.
 If you do not find a matching problem, you will need to collect problem information to report to IBM, using the procedures in the remainder of this list.
 • See “Searching for a matching problem” on page 81.
 • See Chapter 3, “Reporting RACF problems to IBM,” on page 99. |
RACF return codes troubleshooting table

Table 10. Troubleshooting table: Return codes

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for return codes</th>
</tr>
</thead>
</table>
| Return codes from RACF macros (nonzero value in register 15) | **Action:**
1. For some macros, depending on the return code, there is a reason code in register 0. Check register 0 for this reason code. (To obtain the reason code from a RACF macro, see “Obtaining RACF return codes and reason codes from a RACF macro invocation” on page 42.)
2. See “Utilities” on page 3 for a summary of some commonly encountered macro reason codes and advice on how to resolve problems that are due to an error in the program that issued a RACF macro.
Note: Error return codes and reason codes from a RACF macro are generally due to a problem in the program that issued the macro.
3. If you haven’t done so already, look up the explanation of the RACF macro’s return and reason codes. See [z/OS Security Server RACF Macros and Interfaces](https://www.ibm.com/support/knowledgecenter/SQA5UG_9.1.0/racsecurity_racfmaandint.pdf) except for the RACROUTE macro, which is described in [z/OS Security Server RACROUTE Macro Reference](https://www.ibm.com/support/knowledgecenter/SS757_9.1.0/racsecurity_racroute.pdf).
Note: For the RACROUTE macro, you should also check the first and second words of the SAF parameter list. These are the return and reason codes from the RACF request (usually a RACF macro invocation).
4. Check whether any error messages were issued for the user request, and make sure that message IDs are included with the messages.
If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options: PROFILE WTPMSG MSGID.
5. The module that issued the macro is either owned by IBM or is a non-IBM product. If the module is owned by IBM (modules owned by IBM usually start with the letters A through I, S, or X), see the diagnosis or logic document for the program of which the module is a part. To determine the name of the component that owns the module, use the component summary in [z/OS MVS Diagnosis: Reference](https://www.ibm.com/support/knowledgecenter/SQA57_9.1.0/zos Diagnosis Ref.pdf).
6. If the problem still appears to be caused by RACF, use the diagnostic procedures described in these areas:
 a. “Performing a preliminary search for a matching problem” on page 34. If you do not find a matching problem, continue diagnosis, using the procedures in the remainder of this list.
 b. If you need to request a system dump, “Obtaining a system dump” on page 41.
 c. “Formatting a system dump” on page 42.
 d. “Validating input” on page 78.
 e. “Searching for a matching problem” on page 81.

RACF manager return codes
Action:
1. See [z/OS Security Server RACF Messages and Codes](https://www.ibm.com/support/knowledgecenter/SQA5UG_9.1.0/racsecurity_rmcmd.pdf) for a description of the message and the condition causing it. Attempt to correct the problem from the information in the messages document.
2. If you cannot correct the problem from the information in the messages document, perform the problem determination procedure that is related to the message. |

Return codes from RACF callable services
Action:
1. Check the parameter list for the SAF return code, the RACF return code, and the RACF reason code.
2. If you have not done so already, look up the explanations of the return codes and reason codes. See [z/OS Security Server RACF Callable Services Messages and Codes](https://www.ibm.com/support/knowledgecenter/SQA5UG_9.1.0/racsecurity_racsmsgc.pdf) and [z/OS Security Server RACF Messages and Codes](https://www.ibm.com/support/knowledgecenter/SQA5UG_9.1.0/racsecurity_rmcmd.pdf).
Waits troubleshooting table

Table 11. Troubleshooting table: Waits

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended procedures for waits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wait:</td>
<td>Action:</td>
</tr>
<tr>
<td>• Enabled wait ("hang") in the task that issued a RACF request</td>
<td>1. First, see your system diagnosis guide to check which module caused the wait. Try to find out what address space the module was running in. The key question to answer is, “Why was the job or user waiting?” (If a task is waiting for a RACF macro request, RACF might not have caused the wait; another routine could cause the wait if it never released a resource needed by RACF.) Perform the remaining diagnostic steps only if you have determined that RACF is actually the cause of the problem (that is, RACF never released a resource or caused the wait in some other way).</td>
</tr>
<tr>
<td>• Dummy (no work) wait</td>
<td>2. Check whether any error messages were issued for the user request that immediately preceded the wait. If a batch job produced the output, check that the job statement had MSGLEVEL=(1,1) specified. If a TSO/E user had the problem, check that the user profile had these options specified: PROFILE WTPMSG MSGID.</td>
</tr>
<tr>
<td>• Wait caused by RACF</td>
<td>3. If the prefix of a module that caused the wait is ICH or IRR, the problem is probably caused by RACF and these diagnostic procedures apply:</td>
</tr>
<tr>
<td></td>
<td>a. “Performing a preliminary search for a matching problem.” If you do not find a matching problem, continue diagnosis, using the procedures in the remainder of this list.</td>
</tr>
<tr>
<td></td>
<td>b. If you do not have a dump, “Obtaining a system dump” on page 41.</td>
</tr>
<tr>
<td></td>
<td>c. “Formatting a system dump” on page 42.</td>
</tr>
<tr>
<td></td>
<td>d. “Validating input” on page 78.</td>
</tr>
<tr>
<td></td>
<td>e. “Searching for a matching problem” on page 81.</td>
</tr>
<tr>
<td></td>
<td>4. If the prefix of the waiting module’s name is neither ICH nor IRR, the problem was probably not caused by RACF. If the module is owned by IBM (modules owned by IBM usually start with the letters A through I, S, or X), see the diagnosis or logic document for the program of which the module is a part. To determine the name of the component that owns the module, use the component summary in z/OS MVS Diagnosis.</td>
</tr>
</tbody>
</table>

Performing a preliminary search for a matching problem

Introduction to searching for a matching problem

This topic discusses how to create a list of symptoms for RACF. You (or IBM) can use these symptoms in the search argument for a preliminary search of a problem database.

A search argument consists of a set of problem symptoms, called search symptoms, to use in a search to identify a matching problem.

If you have a search tool such as Information Management, consider searching these for a matching problem (which could have a fix that is already developed). You should search in the order shown:

1. PSP bucket (Preventive Service Plan)
2. Your problem database (if you have one)
3. An IBM problem database
Preliminary search

If you find that the problem has already been reported, you can avoid or reduce
time-consuming problem analysis work. In addition, if you have the Info/Access
tool, or SoftwareXcel Extended in the ServiceLink application on IBMLink, you can
order the fix for the problem.

If you don't have a search tool, you need to collect additional search symptoms
before you report the problem to IBM. (The troubleshooting tables list the
additional procedures to use.)

If you are doing a structured search, you should provide symptoms in the order
that they are listed in DAEDATA and SYMPTOMS output to have the fastest
search.

The procedure gives examples of the free-format search symptoms that you can
use if you have a search tool such as Info/System (with the Info/MVS database) or
Info/Management. It also has examples of the search symptoms that you need if
you do a structured search using a tool such as Info/Management or Info/Access.
You might need the structured symptoms if you call the IBM support center to
report a problem or if you review the APAR and PTF descriptions in IBM's Early
Warning System (EWS). EWS is on microfiche and on the Info/MVS database.

The formats used in the examples are the same formats that are used at the IBM
support center to enter problem descriptions for APARs and to do searches.

Related information
If you need information about doing problem searches with the Info/System,
Info/MVS, Info/Management, or Info/Access program, see Introducing the
Information/Family.

For examples of Info/Management panels and structured search symptoms to use
in a search for a matching problem, see Using Information/Family Problem
Management.

Steps for searching for a matching problem

Before you begin: You need to verify that this is a problem caused by RACF and
to collect some initial problem symptoms. See "Troubleshooting tables for problems
in RACF" on page 7 for steps to perform this prerequisite.

Perform these steps to:
1. Make an initial list of search symptoms.
2. Use the list to search for a matching problem.
3. If you did not find a match, try other symptoms.
4. If you found too many matches, add search symptoms.

Details of the procedure are:
1. Use Table 12 on page 36 to select which search arguments apply to the type of
 problem you have.

2. Using Table 13 on page 38 for examples of search arguments, do your first
 search for a match.

3. If your search does not produce a match, try widening your search.
Preliminary search

a. Use the word “RACF” instead of the component ID.
b. Use fewer search arguments.

4. If a search produces too many matches, use some of the other symptoms listed in this procedure to narrow the search.

5. If your preliminary searches are unsuccessful, do the structured search described in “Searching for a matching problem” on page 81.
 a. If a structured search is still unsuccessful, gather additional information before reporting the problem to IBM by using the diagnostic procedures recommended for your type of problem.
 b. Return to where you were in the troubleshooting tables.

6. If your search has too many matches, consider using these procedures to add search symptoms:
 a. Return to the troubleshooting tables to obtain one or more additional symptoms to narrow your search.
 b. Obtain additional search symptoms by analyzing a dump or doing other in-depth analysis. (For lists of the procedures for doing the analysis, return to where you were in the troubleshooting tables.)

Note: “Searching for a matching problem” on page 81 summarizes the additional symptoms that you can obtain through in-depth analysis.

You know you are done when you have found a problem match for your symptom or have contacted IBM for additional help.

Table 12. Preliminary search symptoms for RACF

<table>
<thead>
<tr>
<th>Search Argument</th>
<th>Free-Format Example</th>
<th>Structured Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component identification (ID)</td>
<td>RACF 5752XXH00</td>
<td>PIDS/5752XXH00</td>
</tr>
<tr>
<td>The component ID matches problems that had RACF as either the cause of the problem or the apparent cause (for a problem that was reassigned to another component).</td>
<td>RACF 5752SC1BN</td>
<td>PIDS/5752SC1BN</td>
</tr>
<tr>
<td>Release level of RACF: Use the FMID (function modification identifier). For a list of RACF FMIDs, see Table 14 on page 39</td>
<td>R902 or RI02 (R for release; I, the ninth letter of the alphabet, can stand for 9; and 02 for 02.</td>
<td>LVLS/902 or LVLS/RI02</td>
</tr>
<tr>
<td></td>
<td>R922 (for RACF 1.9.2)</td>
<td>LVLS/922</td>
</tr>
<tr>
<td></td>
<td>R210 (for RACF 2.1)</td>
<td>LVLS/210</td>
</tr>
<tr>
<td></td>
<td>R220 (for RACF 2.2)</td>
<td>LVLS/220</td>
</tr>
<tr>
<td></td>
<td>R230 (for FMID HRF2230)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R240 (for FMID HRF2240)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R260 (for FMID HRF2260)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2608 (for FMID HRF2608)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7703 (for FMID HRF7703)</td>
<td></td>
</tr>
<tr>
<td>RACF request that failed</td>
<td>RACHECK</td>
<td>PCSS/RACHECK</td>
</tr>
<tr>
<td></td>
<td>PROFILE</td>
<td>PCSS/PROFILE</td>
</tr>
<tr>
<td>Error reason code from the RACF request (if available)</td>
<td>rc00000004</td>
<td>PRCS/00000004</td>
</tr>
</tbody>
</table>
Table 12. Preliminary search symptoms for RACF (continued)

<table>
<thead>
<tr>
<th>Search Argument</th>
<th>Free-Format Example</th>
<th>Structured Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated error message ID</td>
<td>msgICH408I</td>
<td>MS/ICH408I</td>
</tr>
<tr>
<td>The job log or system log might contain error messages associated with the problem that you encountered. Some problems produce multiple error messages, such as problems initiated by a previous abend or I/O error. General error messages, such as the IEA995I symptom dump message for all types of abends, are not needed as search symptoms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associated reason code from message</td>
<td>rc04</td>
<td>PRCS/04</td>
</tr>
<tr>
<td>RACF module</td>
<td>ICHRIN00</td>
<td>RIDS/ICHRIN00</td>
</tr>
<tr>
<td>SMF record with error</td>
<td>SMF type 80</td>
<td>RECS/SMF80</td>
</tr>
</tbody>
</table>

Symptoms for later searches

<table>
<thead>
<tr>
<th>Component ID of a service used by RACF, such as Master Scheduler</th>
<th>Component ID of a service used by RACF, such as Master Scheduler</th>
</tr>
</thead>
<tbody>
<tr>
<td>5752SC1B8</td>
<td>5752SC1B8</td>
</tr>
<tr>
<td>PIDS/5752SC1B8</td>
<td>PIDS/5752SC1B8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A PTF number</th>
<th>A PTF number</th>
</tr>
</thead>
<tbody>
<tr>
<td>UY00934</td>
<td>UY00934</td>
</tr>
<tr>
<td>UW02010</td>
<td>UW02010</td>
</tr>
<tr>
<td>PTF/UY00934</td>
<td>PTF/UY00934</td>
</tr>
<tr>
<td>PTF/UY02010</td>
<td>PTF/UY02010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area within a document, such as a part, section, chapter, appendix, or page</th>
<th>Area within a document, such as a part, section, chapter, appendix, or page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter3 appendixA</td>
<td>Chapter3 appendixA</td>
</tr>
<tr>
<td>PUBS/CHAP3</td>
<td>PUBS/CHAP3</td>
</tr>
<tr>
<td>PUBS/APPXA</td>
<td>PUBS/APPXA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Document order number</th>
<th>Document order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC28-1154-01</td>
<td>GC28-1154-01</td>
</tr>
<tr>
<td>PUBS/GC28115401</td>
<td>PUBS/GC28115401</td>
</tr>
</tbody>
</table>
Examples of search arguments for RACF

Table 13 has examples of free-format search arguments for problems in RACF.

<table>
<thead>
<tr>
<th>Problem type</th>
<th>Example of search argument</th>
<th>Descriptions of search symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abend</td>
<td>5752XXH00</td>
<td>Component ID</td>
</tr>
<tr>
<td></td>
<td>abend685</td>
<td>Abend code</td>
</tr>
<tr>
<td></td>
<td>rc04</td>
<td>Abend reason code (if one exists)</td>
</tr>
<tr>
<td>Documentation error</td>
<td>5752XXH00</td>
<td>Component ID</td>
</tr>
<tr>
<td></td>
<td>doc</td>
<td>The word doc</td>
</tr>
<tr>
<td></td>
<td>RACHECK</td>
<td>The name of the RACF request with the documentation error</td>
</tr>
<tr>
<td>Incorrect output</td>
<td>5752XXH00</td>
<td>Component ID</td>
</tr>
<tr>
<td></td>
<td>RACHECK</td>
<td>The type of output request that was involved</td>
</tr>
<tr>
<td></td>
<td>output</td>
<td>The word output</td>
</tr>
<tr>
<td>Loop</td>
<td>5752XXH00</td>
<td>Component ID</td>
</tr>
<tr>
<td></td>
<td>ICHRIN00</td>
<td>The name of any associated module (or RACF request)</td>
</tr>
<tr>
<td></td>
<td>enabled loop</td>
<td>The word loop. Add the word enabled or disabled if you know the type of loop.</td>
</tr>
<tr>
<td>Message</td>
<td>5752XXH00</td>
<td>Component ID</td>
</tr>
<tr>
<td></td>
<td>msgICH408I</td>
<td>The message identifier</td>
</tr>
<tr>
<td></td>
<td>invalid password</td>
<td>Any inserted code (or text) in the message</td>
</tr>
<tr>
<td>Performance degradation</td>
<td>5752XXH00</td>
<td>Component ID</td>
</tr>
<tr>
<td></td>
<td>RACHECK</td>
<td>The name of any associated RACF request</td>
</tr>
<tr>
<td></td>
<td>performance</td>
<td>The word performance</td>
</tr>
<tr>
<td>Return code from macro</td>
<td>5752XXH00</td>
<td>Component ID</td>
</tr>
<tr>
<td></td>
<td>RACHECK</td>
<td>The return code and any reason code</td>
</tr>
<tr>
<td></td>
<td>rc08rc04</td>
<td>(Specify both return code and reason code if a reason code occurred.)</td>
</tr>
<tr>
<td>Wait - hang or coded wait state (using ICHRIN00)</td>
<td>5752XXH00</td>
<td>Component ID</td>
</tr>
<tr>
<td></td>
<td>ICHRIN00</td>
<td>The name of any associated RACF module (or RACF request)</td>
</tr>
<tr>
<td></td>
<td>enabled wait</td>
<td>The word wait and any associated wait-state code (for a wait state indicated at the system operator's console). If you know the type of wait, add the word enabled, disabled, or dummy (for a no-work wait).</td>
</tr>
</tbody>
</table>
Table 13. Examples of search arguments for RACF (continued)

<table>
<thead>
<tr>
<th>Problem type</th>
<th>Example of search argument</th>
<th>Descriptions of search symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wait - hang or coded wait state (using RACHECK)</td>
<td>5752XXH00</td>
<td>Component ID</td>
</tr>
<tr>
<td></td>
<td>RACHECK</td>
<td>The name of any associated RACF module (or RACF request)</td>
</tr>
<tr>
<td></td>
<td>wait03c</td>
<td>The word wait and any associated wait-state code (for a wait state indicated at the system operator's console). If you know the type of wait, add the word enabled, disabled, or dummy (for a no-work wait).</td>
</tr>
</tbody>
</table>

Table 14. RACF FMIDs

<table>
<thead>
<tr>
<th>RACF Level</th>
<th>RACF FMID</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACF 1.9</td>
<td>HRF1902</td>
</tr>
<tr>
<td>RACF 1.9.2</td>
<td>JRF1922</td>
</tr>
<tr>
<td>RACF 2.1</td>
<td>HRF2210</td>
</tr>
<tr>
<td>RACF 2.2</td>
<td>HRF2220</td>
</tr>
<tr>
<td>OS/390® Release 1</td>
<td>HRF2220</td>
</tr>
<tr>
<td>OS/390 Release 2</td>
<td>HRF2220</td>
</tr>
<tr>
<td>OS/390 Release 3</td>
<td>HRF2230</td>
</tr>
<tr>
<td>OS/390 Version 2 Release 4</td>
<td>HRF2240</td>
</tr>
<tr>
<td>OS/390 Version 2 Release 5</td>
<td>HRF2240</td>
</tr>
<tr>
<td>OS/390 Version 2 Release 6</td>
<td>HRF2260</td>
</tr>
<tr>
<td>OS/390 Version 2 Release 7</td>
<td>HRF2260</td>
</tr>
<tr>
<td>OS/390 Version 2 Release 8</td>
<td>HRF2608</td>
</tr>
<tr>
<td>OS/390 Version 2 Release 9</td>
<td>HRF2608</td>
</tr>
<tr>
<td>OS/390 Version 3 Release 10</td>
<td>HRF7703</td>
</tr>
<tr>
<td>OS/390 Version 3 Release 12</td>
<td>HRF7705</td>
</tr>
<tr>
<td>z/OS Version 1 Release 3</td>
<td>HRF7706</td>
</tr>
<tr>
<td>z/OS Version 1 Release 4</td>
<td>HRF7707</td>
</tr>
<tr>
<td>z/OS Version 1 Release 5</td>
<td>HRF7708</td>
</tr>
<tr>
<td>z/OS Version 1 Release 6</td>
<td>HRF7709</td>
</tr>
<tr>
<td>z/OS Version 1 Release 7</td>
<td>HRF7720</td>
</tr>
<tr>
<td>z/OS Version 1 Release 8</td>
<td>HRF7730</td>
</tr>
<tr>
<td>z/OS Version 1 Release 9</td>
<td>HRF7740</td>
</tr>
<tr>
<td>z/OS Version 1 Release 10</td>
<td>HRF7750</td>
</tr>
<tr>
<td>z/OS Version 1 Release 11</td>
<td>HRF7760</td>
</tr>
<tr>
<td>z/OS Version 1 Release 12</td>
<td>HRF7770</td>
</tr>
<tr>
<td>z/OS Version 1 Release 13</td>
<td>HRF7780</td>
</tr>
<tr>
<td>z/OS Version 2 Release 1</td>
<td>HRF7790</td>
</tr>
<tr>
<td>z/OS Version 2 Release 2</td>
<td>HRF77A0</td>
</tr>
</tbody>
</table>
Preliminary search
Chapter 2. Collecting and analyzing problem data

This topic explains how to collect and analyze problem data. These tasks include obtaining dumps and traces, validating input, and searching for matching problems.

Collecting problem data

If you do not know what data to collect for the problem that you are diagnosing, see "Troubleshooting the problem" on page 1. Also, Chapter 3, "Reporting RACF problems to IBM," on page 99 summarizes the information that you should consider collecting before reporting each type of problem to IBM.

Obtaining a description of a RACF installation

For advice on gathering information about a RACF installation, see the information about conducting an audit in z/OS Security Server RACF Auditor’s Guide.

Obtaining a system dump

Prerequisites
You have a problem with an abend for which a system dump was not taken.

How to obtain a system dump

If the problem occurred while a batch job was using the DSMON command (or the RACF report writer), run the job again with a SYSABEND DD statement specified. This generates a system dump.

If an abend does not produce a system dump, and the problem is reproducible, set a SLIP trap to obtain a system dump the next time the problem recurs.

The trap set by this procedure causes an SVC dump to be generated. Generally, an SVC dump contains all the information needed for debugging RACF-related problems. You may want to re-create the problem you are investigating (or set up the conditions to allow the problem to recur) after setting the trap.

1. On the operator's console, enter this command:

 SLIP SET,COMP=xxx,ACTION=SYNSVCVD,JOBNAME=jobname,END

 where xxx is the system completion code and jobname is the job name (if a batch job is involved) or the user ID (if an interactive user is involved).

 Note: For more information about setting the SLIP trap, see z/OS MVS System Commands.

2. When the abend occurs, the system console receives message IEA989I:

 SLIP TRAP ID=nnn MATCHED

 where nnn is the system-assigned SLIP ID. The operator should notify you if a system dump was requested. You can format and read the system dump.

 Note: A system dump is not generated if the SLIP is a NODUMP SLIP.
Formatting a system dump

Prerequisites

- IPCS
- A system dump (see “Obtaining a system dump” on page 41)

How to format a system dump

To start debugging a system dump, the IBM support center requires this information to be formatted in the dump.

- Use IPCS to format the system dump by using:
 - SUMMARY
 - SUMDUMP
 - FORMAT
 - CURRENT
 - TRACE
 - LOGDATA
 - LPAMAP
 - CPUDATA
 - SYMPTOMS

This can help you start researching a problem. The IBM support center may request further information, for which other verbexits would be used for further research on specific problems.

Obtaining RACF return codes and reason codes from a RACF macro invocation

If the program that issued the RACF macro received an error return code from the macro, but did not produce a message containing the return and reason codes, you can use one of these techniques to obtain the codes:

- Use the RACF SET TRACE command. See “Obtaining trace records using the SET TRACE command” on page 50.
- Place a TSO TEST trap at the instruction after the macro expansion instructions in the program, and check the return and reason codes when the trap matches.

Note: You could use the SLIP command to set a trap, but it affects system performance. If you use SLIP, consider qualifying it with job name or PVTMOD options, and request an SVC dump when the trap is hit.

- Use the SPZAP (“superzap”) service aid to modify the program that issued the RACF macro:
 1. Locate the RACF macro instruction in the assembly listing or the object code for the program.
 2. Use the SPZAP service aid to change the program’s instruction that follows the last instruction of the macro expansion. Change the instruction operation (op) code to an invalid op code, such as X’00’.
 3. Re-create the problem, using JCL with a SYSMDUMP, SYSUDUMP, or SYSABEND DD statement. The invalid op code causes an X’0C1’ abend. The SYSMDUMP DD statement is recommended if you plan to report the problem to IBM.
Obtaining RACF return codes and reason codes from a RACF callable service invocation

If the program that invoked the callable service received an error return code from the macro, but did not produce a message containing the return code and reason code, you can use one of these techniques to obtain the codes:

- Use the RACF SET TRACE command. See "Obtaining trace records using the SET TRACE command" on page 50.
- Place a TSO TEST trap at the instruction after the callable service invocation in the program, and check the return code and reason code when the trap matches.

Note: You could use the SLIP command to set a trap, but it affects system performance. If you use SLIP, consider qualifying it with job name or PVTMOD options, and request an SVC dump when the trap is hit.
- Use the SPZAP (“superzap”) service aid to modify the program that invoked the callable service:
 1. Locate the callable service invocation in the assembly listing or the object code for the program.
 2. Use the SPZAP service aid to change the program's instruction that follows the callable service invocation. Change the instruction operation (op) code to an invalid op code, such as X'00'.
 3. Re-create the problem, using JCL with a SYSMDUMP, SYSUDUMP, or SYSABEND DD statement. The invalid op code causes an X'0C1' abend.
 The SYSMDUMP DD statement is recommended if you plan to report the problem to IBM.

At the time of the trap or the 0C1 abend, Register 1 contains the address of the parameter list for the callable service. This parameter list contains the SAF return code and the RACF return code and reason code. See z/OS Security Server RACF Callable Services for more information.

Obtaining traces

When access to a resource is allowed (or denied) incorrectly, you can obtain more data about the problem with GTF trace. GTF trace must be activated to obtain trace output just before reproducing the problem.

To obtain a trace when access is incorrectly denied, do:

1. To start GTF, enter this command:
   ```
   START GTF,TRACE=SLIP
   ```
2. Set this SLIP trap:
   ```
   SLIP SET,IF,LPAEP=(ICHRFR00,0,0),ACTION=TRACE,JOBNAME=xxx,
   TRDATA=(STD,REGS,1R??,+100),END
   ```
 where `xxx` is the job name of a batch job or the user ID of an interactive user.
 This SLIP trap produces a GTF trace entry each time a RACROUTE macro is invoked (ICHRFR00 is the module called by RACROUTE). The trace entry contains the parameter list passed with the RACROUTE macro request.
3. Use the START GTF command to trace the SVCs related to the RACHECK macro (equivalent to SVC 130) and RACDEF macro (equivalent to SVC 133).
 There is more than one way to do this. This is a suggestion only:
 a. On the master console, enter the START GTF command with TRACE=SVCP specified.
 b. When GTF prompts for trace-event keywords, specify SVC=(130,133).
Collecting data

4. Run the job that has the access problem (or ask the user to attempt to gain access to the resource again) while GTF is on.
5. Stop GTF after the job has ended or after the user has attempted access.
6. Examine the GTF trace output. See [z/OS MVS IPCS Commands](#) for more information.

Obtaining traces for program control and Program Access to Data Set (PADS) errors

Program control allows an installation to treat load modules (programs) as protected resources. This gives installations the ability to control who can execute which programs.

Load modules are protected by creating a profile for the program in the PROGRAM general resource class. A program protected by such a profile is called a controlled program.

An installation can use a controlled program as a condition for access to a specified data set. That is, some users can access specified data sets at a specified access level only while executing a certain controlled program. This is known as program access to data sets (PADS). PADS is set up by creating a conditional access list for the data set profile protecting the data sets.

In some cases, users trying to implement program control and PADS might receive message IEC1501I, ABEND 913-38, or message ICH408I, INSUFFICIENT ACCESS AUTHORITY, when they feel they have the necessary authority to open the data set through the conditional access list of the data set. In these scenarios, these error messages most commonly occur when a controlled program loaded an uncontrolled program.

Other error messages are generated when dealing with program control and PADS in the user's environment. These RACF processing messages can be used to diagnose errors when defining programs to RACF and the file system. Check the job log and security console for these diagnostic messages, and use the responses in [z/OS Security Server RACF Messages and Codes](#) to attempt to correct the problem before setting the slip traps.

In a RACF environment, a program and user combination can open a RACF-protected data set through conditional access list authority if all of the other programs in the environment are RACF-protected. RACF turns on a bit in the TCB, known as the “dirty bit” or TCBNCTL, to indicate that a program not protected by RACF is loaded into the environment. If this bit is on, an uncontrolled program causes a failure. RACF provides an environment service, IRRENS00, to assist in handling program control and PADS. For more information about this service, see [z/OS Security Server RACF Macros and Interfaces](#).

Thus, in a RACF environment, it is **not** sufficient to only protect the program doing the open of the data set. To correctly implement PADS, you must protect all of the programs loaded in the environment before the attempt to open the data set. This is also true for any utilities that are to be executed. If a utility loads another program during execution, this additional program must also be protected to prevent an error condition. To help users determine what programs need to be protected, a TRACE is provided in “Trace examples” on page 45 so that when set correctly, it prints out the program name, data set name, and volume required to define profiles in the PROGRAM class for these other programs.
Attention:

Read all of the information that follows before beginning any of the activities described.

Trace examples

This information provides two examples of traces. The first example writes a GTF trace record for each program that is loaded into the environment. The second example can determine additional programs that need to be protected.

Trace example 1: This slip should be used to write a GTF trace record for each program loaded into the environment:

```
SLIP SET,IF,ACTION=TRACE,LPAMOD=(ICHRFR00,xxxxx),J=jobname,
TRDATA=(STD,REGS,zzzzzz),ML=100,END
```

The offset into ICHRFR00 where ICHRCP00 starts plus the `yyy` value defined in Table 15 for your RMID level of the ICHRCP00 CSECT. Run an AMBLIST of ICHRFR00 to determine the offset of the beginning of ICHRCP00 into ICHRFR00.

See Table 15 for the correct TRDATA information based on your RMID level of the ICHRCP00 CSECT. The `yyy` and `zzzzz` values specified for UW21213 should be used for all later RMID levels beginning with RACF 2.2.0, and for the OS/390 Release 3 level of RACF (HRF2230). If you have a later RMID level for RACF 2.1.0, you should use the `yyy` and `zzzzz` values specified for UW16891.

`jobname`

If the program is executed in batch, this is the name of the job that executes the program. If a TSO user executes the job, this is the TSO user ID. In the case of a TSO user ID, you must set the slip before the user logging on to the system.

<table>
<thead>
<tr>
<th>RMID LEVEL</th>
<th>yyy</th>
<th>zzzzz</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRF2220</td>
<td>5E</td>
<td>9R?+00?,+7,9R?+04?,+2B,9R?+08?,+5</td>
</tr>
<tr>
<td>UW21213</td>
<td>60</td>
<td>9R?+00?,+7,9R?+04?,+2B,9R?+08?,+5</td>
</tr>
<tr>
<td>HRF2240 to HRF2608</td>
<td>80</td>
<td>9R?+00?,+7,9R?+04?,+2B,9R?+08?,+5</td>
</tr>
<tr>
<td>HRF7703</td>
<td>84</td>
<td>9R?+00?,+7,9R?+04?,+2B,9R?+08?,+5</td>
</tr>
<tr>
<td>HRF7707 to current</td>
<td>9C</td>
<td>9R?+00?,+7,9R?+04?,+2B,9R?+08?,+5</td>
</tr>
</tbody>
</table>

Because this slip produces GTF records, you need to start GTF ensuring that you use PARM TRACE=SLIP, then use IPCS to format the data with the GTFTRACE IPCS command.

If the preceding steps have been implemented correctly, 'SLIP S+U' entries are generated in the trace records. Under the 'SLIP S+U' heading, locate the 'General Purpose Register Values' line and obtain the value of R15 for each of the 'SLIP S+U' records in the trace output.
R15 can have 5 possible values:

0 User or group is authorized to resource.
4 Resource is not defined to RACF.
8 User or group is not authorized to resource.
C Resource is not defined to RACF and library is controlled.
10 User or group is authorized to resource and program has NOPADCHK attribute.

If the value in R15 is 4, 8, or C, a profile in the PROGRAM class must be defined to protect the program identified by this trace entry. In addition to defining the profile in the PROGRAM class, the PERMIT command must be issued to put users or groups in the access list for program’s profile. To rebuild the in-storage profile list, issue the SETROPTS WHEN(PROGRAM) REFRESH command after making changes to the PROGRAM class. This allows the changes to take effect immediately. For more information about defining profiles in the PROGRAM class and creating entries in a conditional access list, see z/OS Security Server RACF Security Administrator’s Guide.

Note: If the RACF database is being shared with other systems, the SETROPTS REFRESH takes effect only on the system on which it was issued. In this case, the SETROPTS WHEN(PROGRAM) REFRESH must be issued on all the other sharing systems. This allows the PROGRAM class changes to take effect immediately on the other systems as well. An exception occurs when RACF is enabled for sysplex communications.

The information that you need to define the PROGRAM class profile correctly is found in the 'SLIP USR' of the trace record following the 'SLIP S+U' information. If the zzzzz value was set correctly, it is:

- 0008 PROGRAM
- 002C DATASET.NAME
- 0006 VOLUME

where:

PROGRAM
Is the actual name of the program being loaded as it is known to RACF.

DATASET.NAME
Is the name of the data set from which the program name was loaded.
There are instances where the library name does not show up in the trace.

VOLUME
Is the volume that the data set resides on.

Note: As stated in z/OS Security Server RACF Security Administrator’s Guide if a TSO user has executed a non-controlled program during the current session, and then attempts to access a PADS data set, the attempt fails. The TSO user can in some cases temporarily regain a controlled environment by invoking the controlled program through the TSOEXEC command. See “Special consideration when REXX is involved” on page 47 for exceptions to this. When writing a program, you can do the equivalent by invoking the TSO IKJEFTSR service. This technique is useful to users who want to have their programs run from the TSO session, but do not want to protect every program that is executed between logon time and execution of the program intended to access the data set.
Also, program AAOEFTB3 might require protection if the MVS/TSO Dynamic Steplib Facility, program number 5798-DZW, is used while attempting to implement program control in the environment created by TSOEXEC. AAOEFTB3 is normally found in SYS1.LINKLIB.

Trace example 2: There are instances in which the SLIP trace specified in "Trace example 1" on page 45 might not detect all the modules that should be protected. This SLIP should be used with the SLIP trace in "Trace examples" on page 45 if you are still failing with an ABEND 913.

With this trap, it is not necessary to check the value in general register 15. All modules that appear in the trace records need to be protected.

Note: The same module name might appear multiple times in the trace output. Also, you might not see a library name in the trace.

To determine the additional programs that need to be protected use:

```
SLIP SET,IF,ACTION=TRACE,LPAMOD=(ICHRFR00,xxxxx),J=jobname,TRDATA=(STD,REGS,zzzzz),END
```

Table 16. RMID levels, yyy and zzzzz values for example 2

<table>
<thead>
<tr>
<th>RMID LEVEL</th>
<th>yyy</th>
<th>zzzzz</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRF2220</td>
<td>76</td>
<td>9R?+00?,+7,9R?+04?,+2B,9R?+08?,+5</td>
</tr>
<tr>
<td>UW21213</td>
<td>78</td>
<td>9R?+00?,+7,9R?+04?,+2B,9R?+08?,+5</td>
</tr>
<tr>
<td>HRF2240 to HRF2608</td>
<td>98</td>
<td>9R?+00?,+7,9R?+04?,+2B,9R?+08?,+5</td>
</tr>
<tr>
<td>HRF7707 to current</td>
<td>B4</td>
<td>9R?+00?,+7,9R?+04?,+2B,9R?+08?,+5</td>
</tr>
</tbody>
</table>

As with the previous TRACE, you need to run an AMBLIST of ICHRFR00 to determine the offset of ICHRCP00. Also, GTF must be started with TRACE=SLIP.

Special consideration when REXX is involved

As mentioned previously, the TCB contains a bit that indicates if the current environment is trusted to open a program accessed data set (PADS) or not. This bit, the TCBNCTL, is turned on by RACF when an unprotected and “untrusted” program is loaded into the environment.

The TCB dirty bit can also be turned on by TSO/E itself. If so, none of the RACF traces detect this. If you issue TSOEXEC pgm_name, which called IRXINIT to create a REXX environment, TSO/E would mark the TCBs on the parallel side “dirty”, if the job-step TCB is “dirty”. If there are any stack-related commands in the REXX exec, TSO/E checks the job-step TCB and marks the parallel side dirty if the job-step dirty bit is on. Examples of stack-related commands are: PUSH, PULL, QUEUE, MAKEBUF.

Even though TSOEXEC creates a “clean” parallel side in a TSOE address space, TSOE can mark the parallel side “dirty” if the REXX exec is being used and depending on what REXX is doing.
Special consideration when using IMS

DFSDLOC0 is an IMS™ module that issued an OPEN. This module is not loaded through Contents Supervisor in which case RACF is not called. You cannot use PROGRAM CONTROL/PADS if DFSDLOC0 is involved.

Obtaining traces on z/OS UNIX System Services

When access to a resource is allowed (or denied) incorrectly, you can obtain more data about the problem by using the RACF SET TRACE command, or with GTF trace. GTF trace must be activated to obtain trace output just before reproducing the problem.

To obtain a trace when access is incorrectly denied, using the RACF SET TRACE command. See “Obtaining trace records using the SET TRACE command” on page 50.

To obtain a trace with GTF trace, the trace must be activated to obtain trace output just before reproducing the problem. You may use this procedure:

1. To start GTF, enter this command:

   ```
   START GTF,TRACE=SLIP
   ```

2. Set this SLIP trap for callable services:

   ```
   SLIP SET,IF,LPAEP=(IRRRFR10,0,0),ACTION=TRACE,JOBNAME=xxx,
   TRDATA=(STD,REGS,1R?,+100),END
   ```

 where `xxx` is the job name of a batch job or the user ID of an interactive user.

 This SLIP trap produces a GTF trace entry each time a RACF callable service is invoked (IRRRFR10 is the module called by the RACF callable service). The trace entry contains the parameter list passed with the RACF callable service request.

3. Run the job that has the access problem (or ask the user to attempt to gain access to the resource again) while GTF is on.

4. Stop GTF after the job has ended or after the user has attempted access.

5. Examine the GTF trace output. See `z/OS MVS IPCS Commands` for more information.

Obtaining information about z/OS UNIX file and directory violations

An error occurs when RACF detects an attempt to specify a z/OS UNIX function for which the user does not have authority. When an ICH408I message is issued, it contains a syscall-name that identifies the z/OS UNIX callable service that invoked RACF. In some cases, the message indicates that you do not have sufficient authority to perform the callable service because it requires superuser authority. Superuser authority is UID 0, or authority to an appropriate FACILITY class or UNIXPRIV class profile. In other cases, the message indicates that you do not have access to a file or a directory, and contains your access intent and allowed access.

This message indicates that you do not have permission to find the file pointed to by path name `/u/myuser/path`:

```
ICH408I USER(MYUSER ) GROUP(MYGROUP ) NAME(ME)
/u/myuser/path  CL(DIRSRCH ) FID(01C7C6E5D4E400811E00000000)
INSUFFICIENT AUTHORITY TO LOOKUP
ACCESS INTENT(---X) ACCESS ALLOWED(GROUP ---)
EFFECTIVE UID (0000000023) EFFECTIVE GID (0000000012)
```
The final line of the message indicates the UID and GID upon which RACF has based its decision. The first thing to verify is that the UID and GID are the expected values for the failing user ID. In some cases, the values may not correspond to the actual user ID that performed the function (identified within the message). For example, if you execute a set-uid file, which runs under the authority of the file owner, the UID displayed is the file owner. In this case, it is the file owner, and not the end user, who lacks authority to the file or directory.

In the message, a syscall-name of LOOKUP or OPEN, a class name of DIRSRCH, and an access intent of X are all indicators that you do not have authority to a directory in the path name.

This lists the permissions encoded by the file permission bits:

- **r** - Read permission

 Are you allowed to read the file/directory?

- **w** - Write permission

 Are you allowed to write to the file/directory?

- **x** - Execute permission

 Are you allowed to execute the file?

- **x** - Lookup permission

 Are you allowed to traverse the directory?

Correcting the permissions when access is denied

To correct the permissions, you should do:

- Verify that every directory contained in the path has the execute permission bit set.

 Examine the path that is printed in the message. For every intermediate directory, including the root, issue the command:

  ```bash
  ls -alLd directory-name
  ```

 If the path is: /a/b/c, the commands are:

  ```bash
  ls -alLd /
  ls -alLd /a
  ls -alLd /a/b
  ls -alLd /a/b/c
  ```

 Verify that the execute bits are set by examining the output of those commands and correct, if necessary.

  ```bash
  chmod +x filename
  ```

 Note: After granting this permission, another ICH408I message may be generated, which although similar, is different in the file ID.

- Use the file ID (FID) printed in the message to determine the exact directory which needs to have permission granted.

 Obtain the auditid tool, which searches the file system for a particular file ID contained in the message. The auditid tool can be found on the z/OS UNIX System Services Tools and Toys website http://www.ibm.com/systems/z/os/zos/features/unix/bpxatoys.html.

 List the directory using this command:

  ```bash
  ls -alLd directory-name
  ```

 Verify that the execute bits are set by examining the output of this command and correct, if necessary.
Collecting data

chmod +x filename
Repeat, if necessary, until there are no more violations.

See z/OS UNIX System Services Programming: Assembler Callable Services Reference for more information about syscall functions or z/OS UNIX System Services Planning for setting up security for files and directories.

Obtaining trace records using the SET TRACE command

The SET TRACE(APPC | NOAPPC | ASID | NOASID | CALLABLE | NOCALLABLE | CLASS | NOCLASS | ALLCLASSES | IFCLASS | NEVERCLASS | DATABASE | NODATABASE | IMAGE | NOIMAGE | JOBNAME | NOJOBNAME | CALLABLE | NOCALLABLE | RACROUTE | NORACROUTE | SYSTEMSSL | USERID | NOUSERID | ALLUSERIDS | IFUSERID | NEVERUSERID | GENERICANCHOR | NOGENERICANCHOR | RRSF | NORRSF) command specifies whether or not Generalized Trace Facility (GTF) records should be created for the specified events. If the TRACE operand is specified, at least one suboperand is required. The record created is EF44 for each trace event. See z/OS MVS IPCS User’s Guide or z/OS MVS Diagnosis: Tools and Service Aids for information about viewing these records.

Note: These records are intended only for diagnosis use when requested by the IBM support center. The format will not be documented.

Attention: Trace records might contain passwords and therefore, trace output data sets should be appropriately protected.

Command tracing

Command tracing can be useful when diagnosing command errors and can be used with any command in z/OS Security Server RACF Command Language Reference that supports the AT keyword. It provides a step-by-step history of how the command text is parsed and rebuilt by the RACF command envelope module and can be used to determine which TSO macros are used. It can help determine if the problem is in the command envelope module or the command processor load module and also determine where a failure occurred during command parsing and rebuilding.

To obtain a command trace, do:
1. At the operator console, activate SET TRACE(IMAGE).
2. From a TSO terminal in TSO READY mode or from ISPF Option 6 (Command), do one or more of:
 * Issue a RACF command and append the two characters -c (note there's a leading blank between the command and the two characters) to obtain a trace of the command buffer. This keyword is the most useful and is recommended over the others.
 * Issue a RACF command and append the two characters -t (note there's a leading blank between the command and the two characters) to obtain a trace of the TSO macros used during the parsing of the RACF command and to obtain a trace of the command buffer.
 * Issue a RACF command and append the two characters -n (note there's a leading blank between the command and the two characters) to not run the command.
3. Output is sent to the user's TSO terminal.

Note:
Collecting data

1. The three characters that are added to the end of the command must be entered exactly as shown and in lowercase letters only. That is, the command image must be followed by one blank space, either `-c`, `-t`, or `-n` and no trailing blanks.

2. Each of these keywords does one thing, but can be issued on the same command together to get multiple results. For example, `-c -n` would trace, but not run the command.

3. If you front-end commands, ensure that this information about the command buffer is passed to RACF:
 - The command alias name (for example, AG, ADDGROUP, and so on) is still the first thing in the buffer
 - The `-c`, `-t`, and `-n` are the last characters in the buffer (with no trailing blanks).

4. Do not use the common command exit, IRREVX01, to put trace characters in the command buffer. Doing this causes a parse error.

See [“Front-ending RACF commands” on page 244](#) for additional information about front-ending RACF commands.

Example of command tracing: Command tracing would be helpful in this example. You entered the command, `ALTUSER MURPHY DATA('PRESIDENT - CATSKILL DIVISION')`, and the command seemed to run, but the installation data field was not updated. By reissuing the command with the `-c` appended to the end of it, `ALTUSER MURPHY DATA('PRESIDENT - CATSKILL DIVISION') -c`, (note the leading blank between the command and the two characters) you can quickly determine if the RACF command envelope module parsed and rebuilt the command image properly before invoking the ALTUSER command processor module.

The command envelope module does multiple parses and rebuilds of the RACF command. If the traced image has the correct installation data, the problem exists in the command processor or some deeper level of RACF. If the traced image does not have the correct installation data, you isolated the problem to the command envelope module.

[Figure 1 on page 52](#) shows the command:

```
ALTUSER MURPHY DATA('PRESIDENT - CATSKILL DIVISION') -c
```

being issued, traced, and rebuilt correctly with all the proper keywords. Therefore, the problem must exist in the command processor or some deeper level of RACF.
Collecting data

Figure 1. Trace output showing a problem in the command processor or RACF

Tracing GENERICANCHOR
GENERICANCHOR specifies that tracing is to be in effect for generic anchor loading events. When RACF creates a new generic anchor list for an applicable job, it records a trace record providing the HLQ or class name of the profile list it is creating, the number of profile names in the list, the number of anchors present for the job, and, if applicable, the HLQ or class name for the list that RACF is replacing. Tracing occurs for jobs selected based on the ASID (or ALLASIDS), JOBNAME (or ALLJOBNAMES), or USER ID (or ALLUSERIDS, IFUSERID) keywords.

NOGENERICANCHOR specifies that RACF should not trace generic anchor loading events.

Tracing the R_admin callable service
RACF provides a component trace ability for the R_admin callable service. To activate this trace, start GTF specifying TRACE=USR, and issue the RACF SET TRACE(IMAGE) command. When tracing of IMAGE events is active, the R_admin callable service records a snapshot of the input data it receives in GTF records, including:
- The function-specific parameter list containing segment and field data
- The caller's jobname, ASID, PSW, and ASCB address

It also logs, in a separate record:
- The return code
- The reason code
- The output messages
Tracing the callable services, RACROUTE, and RACF database manager request calls

RACF provides a trace facility that allows tracing RACROUTEs, Callable Services, and RACF Database Manager Requests. When tracing these services, the trace routine will copy the parameter lists into a GTF record before and after the function executes. IPCS is used to view the trace data. To obtain these traces:

1. Start the GTF using the GTFRACF [Figure 2 on page 54] or other procedure:

   ```
   START GTFRACF.GTF,,,NOPROMPT
   ```

2. Use the SET command to enable your trace:

   ```
   @SET TRACE(RACROUTE(TYPE(5)) JOBNAME(IBMUSER))
   ```

3. Reproduce the scenario that you want. For example, start batch job, log in, start application, use CICS® application or access resource.

4. Next stop GTF to prevent excessive traces:

   ```
   STOP GTF
   ```

5. Use IPCS to view the trace data. The input trace data is contained in the data set specified on the IEFDRER DD card in the GTFRACF (or other) procedure. The sample GTFRACF procedure specifies 'SYS1.TRACE'. Once the TSO IPCS session is active the IPCS subcommand 'IP GTF USR' may be used to display the formatted trace.

Note: The SET TRACE command sets data in the IRRSAFT control block, see Appendix B, “The Security Product Trace Area (SAFT),” on page 261. This information can be used by IBM support to help diagnosis SAF TRACE problems.

Performance Considerations:

- Security as implemented on the OS/390, z/OS platform includes many calls to the security product. This trace facility can adversely affect system performance by adding to the path length associated with performance sensitive security functions. This trace should only be used as a debugging aid. Caution should be exercised when designing the trace (as with any other trace) to impose the least performance penalty. For example, if the address space ID or jobname is known, use these to restrict the scope of the trace.

Usage hints:

- RACF database contention

 - The scope of RACF database serialization depends on the RACF database manager parameter list. Set up a trace for Manager ALTER requests on the specific ASID indicated using GRS contention displays. Examine the trace records to find out what RACF is changing in the database so frequently.

 - When applications specify subsystem and requester information, this is contained in the trace record header. You can determine who is issuing the security function.
Collecting data

```
//GTFRACF PROC MEMBER=GTFPRM#O
//BR14 EXEC PGM=IEFBR14,REGION=512K
//SYSPRINT DD SYSOUT=* 
//D DD DISP=(OLD,DELETE),UNIT=3380, Vol= SER= TEMP01,  
// DSN=SYS1.TRACE 
//IEFPROC EXEC PGM=AHLGTF, PARM='MODE=EXT,DEBUG=NO,SA=100K,AB=100K', 
// REGION=2880K,TIME=NOLIMIT 
//IEFORDER DD DNAME=SYS1.TRACE,UNIT=3380, Vol= SER= TEMP01, 
// DISP=(NEW, CATLG), SPACE=(TRK,(100)) 
//SYSLIB DD DNAME=RACFDVR.Parmlib.R6(&MEMBER), DISP=SHR
```

Figure 2. Sample Proc 1: GTFRACF

```
TRACE=USRP
USR=(F44),END
```

Figure 3. Sample parmlib member: GTFPRM#O

Reading a trace output: The trace output formatted by IPCS is split into 3 main areas. The first area contains common information for all services. For example, the caller’s information and return codes. The parameter lists and unloaded parameters are found in the second area. The third area is a complete hex dump of the entire GTF record which includes the header information, parameter lists and all of the parameters that were unloaded.

For RACROUTE requests, there are two parameters lists. The first one is the SAF parameter list mapped by ICHSAFP. The second parameter list is mapped by the specific RACROUTE type parameter list. These are described in z/OS Security Server RACF Data Areas. The parameter lists for Callable Services can be found in z/OS Security Server RACF Callable Services. For Manager calls, see the Diagnosis Guide for the Manager parameter list mapping.

Following the parameter lists are the parameters that are unloaded. Not all parameters are unloaded. Before most parameters are unloaded, there are extra entries that say OFFSET##. This is for informational purposes to let you know that the following parameter is at offset ## in the parameter list. This helps determine what parameter you are examining.

Due to nesting of some services PRE and POST trace records might not be in sequential order. For example, one might see two PRE calls and then two POST calls.

Explaining trace header information:

Trace identifier
SAFTRACE Record type 54.

Record eyecatcher
Eyecatcher for the SAFTRACE record type: RTRACE.

Trace type
Identifies what trace this is. Types are OMVS for callable services, MNGR for manager calls, or RACF for RACROUTE traces. These types are followed by PRE or POST to indicate that the record pertains to a pre-function trace or post-function trace.

Ending sequence
This contains a unique identifier in the case of the trace record exceeded the maximum size. If an there is an abend during the trace, it contains RECOVERY. Ending sequences indicate that a problem occurred during
Collecting data

trace capture. If you find these, it is indicative of a problem with the parameter list built by the caller of the function.

Calling address
Address of the caller. This is useful along with a dump of the address space when determining the caller of the service in question. It may not be possible to determine the caller of the function using the Request/Subsystem (when available).

Requestor/Subsystem
Caller’s SAFPREQR and SAFPSUBS as specified on RACROUTE.

Primary jobname
Primary jobname.

Primary asid
Primary ASID.

Primary ACEEP
Primary ASID related ACEE pointer, as indicated in ASXBSENV.

Home jobname
Home Jobname.

Home asid
Home ASID.

Home ACEEP
Home ASID related ACEE pointer as indicated in the home address space ASXBSENV field.

Task address
TCB pointer of current task.

Time
Time stamp.

Error class
Possible Security product resource class name in error.

Service number
Service number for Callable service or RACROUTE. (See Table 17 on page 56 and Table 18 on page 57 for supported services).

RACF Return code
RACF Return Code.

RACF Reason code
RACF Reason Code.

Return area address
Address of data returned by the function. When used with a dump of an address space, storage creep problems can be isolated to the application.

Parameter count
Number of parameters that were captured. Note, this is not the number of parameters in the parmlist, but rather the number of parameters which were collected.
Table 17. Callable services type numbers

<table>
<thead>
<tr>
<th>CALLABLE SERVICE</th>
<th>Service Number or TYPE (HEX)</th>
<th>Service Number or TYPE (DECIMAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRRSIU00</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IRRSDU00</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>IRRSMF00</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Reserved</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>IRRSMM00</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>IRRSKA00</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>IRRSKP00</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>IRRSUM00</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>IRRSGM00</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>IRRSGG00</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>IRRSSU00</td>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>IRRSEU00</td>
<td>C</td>
<td>12</td>
</tr>
<tr>
<td>IRRSSG00</td>
<td>D</td>
<td>13</td>
</tr>
<tr>
<td>IRRSEG00</td>
<td>E</td>
<td>14</td>
</tr>
<tr>
<td>IRRSCO00</td>
<td>F</td>
<td>15</td>
</tr>
<tr>
<td>IRRSCF00</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>IRRSCA00</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>IRRSEX00</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>IRRSAU00</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>IRRSKO00</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>IRRSQ500</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>IRRSQF00</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>IRRSCS00</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>IRRSKF00</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>IRRSMR00</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>IRRSPT00</td>
<td>1A</td>
<td>26</td>
</tr>
<tr>
<td>IRRSUG00</td>
<td>1B</td>
<td>27</td>
</tr>
<tr>
<td>IRRSFK00</td>
<td>1C</td>
<td>28</td>
</tr>
<tr>
<td>IRRSM100</td>
<td>1D</td>
<td>29</td>
</tr>
<tr>
<td>IRRSK100</td>
<td>1E</td>
<td>30</td>
</tr>
<tr>
<td>IRRSC100</td>
<td>1F</td>
<td>31</td>
</tr>
<tr>
<td>IRRSC200</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>IRRSGE00</td>
<td>21</td>
<td>33</td>
</tr>
<tr>
<td>IRRSD100</td>
<td>22</td>
<td>34</td>
</tr>
<tr>
<td>IRRSDK00</td>
<td>23</td>
<td>35</td>
</tr>
<tr>
<td>IRRSUD00</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>IRRSDA00</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>IRRSIA00</td>
<td>26</td>
<td>38</td>
</tr>
</tbody>
</table>
Table 17. Callable services type numbers (continued)

<table>
<thead>
<tr>
<th>CALLABLE SERVICE</th>
<th>Service Number or TYPE (HEX)</th>
<th>Service Number or TYPE (DECIMAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRRSEQ00*</td>
<td>27</td>
<td>39</td>
</tr>
<tr>
<td>IRRSIM00</td>
<td>28</td>
<td>40</td>
</tr>
<tr>
<td>IRRSDL00</td>
<td>29</td>
<td>41</td>
</tr>
<tr>
<td>IRRSMK00</td>
<td>2A</td>
<td>42</td>
</tr>
<tr>
<td>IRRSPK00</td>
<td>2B</td>
<td>43</td>
</tr>
<tr>
<td>IRRSPX00</td>
<td>2C</td>
<td>44</td>
</tr>
<tr>
<td>IRRSCH00</td>
<td>2D</td>
<td>45</td>
</tr>
<tr>
<td>IRRSPY00</td>
<td>2E</td>
<td>46</td>
</tr>
<tr>
<td>IRRSCL00</td>
<td>2F</td>
<td>47</td>
</tr>
<tr>
<td>IRRSSB00</td>
<td>30</td>
<td>48</td>
</tr>
<tr>
<td>IRRSWP00</td>
<td>31</td>
<td>49</td>
</tr>
<tr>
<td>IRRSGS00</td>
<td>32</td>
<td>50</td>
</tr>
<tr>
<td>IRRSAX00</td>
<td>33</td>
<td>51</td>
</tr>
<tr>
<td>IRRSGI00</td>
<td>34</td>
<td>52</td>
</tr>
<tr>
<td>IRRSPS00</td>
<td>35</td>
<td>53</td>
</tr>
</tbody>
</table>

Note: Callable Service IRRSEQ00, R_Admin, has its own trace facility.

Table 18. RACROUTE CALL= service type number

<table>
<thead>
<tr>
<th>RACROUTE CALL=</th>
<th>Service / Type Number in Hex</th>
<th>Service / Type Number in Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTH</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FASTAUTH</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LIST</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DEFINE</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>VERIFY</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>EXTRACT</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>DIRAUTH</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>TOKENMAP</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>VERIFYX</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>TOKENXTR</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>TOKENBLD</td>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>EXTRACT, BR=YES</td>
<td>C</td>
<td>12</td>
</tr>
<tr>
<td>AUDIT</td>
<td>D</td>
<td>13</td>
</tr>
<tr>
<td>STAT</td>
<td>E</td>
<td>14</td>
</tr>
<tr>
<td>SIGNON</td>
<td>F</td>
<td>15</td>
</tr>
<tr>
<td>TOKENMAP, XMEM</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>TOKENXTR, XMEM</td>
<td>11</td>
<td>17</td>
</tr>
</tbody>
</table>
Collecting data

Examples of trace output: When an ACEE is dumped in the trace record, the associated ACEX, USP, and TOKEN are also dumped with it.

Callable Service: This is an example of SAF trace output for the R_dceauth Callable Service (service type 37) PRE and POST entries.

**** GTFTRACE DISPLAY OPTIONS IN EFFECT ****
USR=ALL

**** GTF DATA COLLECTION OPTIONS IN EFFECT: ****
USR= option

**** GTF TRACING ENVIRONMENT ****
Release: SP7.0.3 FMID: HBB7706 System name: RACFR13
CPU Model: 4381 Version: FF Serial no. 111515

USR57 F44 ASCB 00FA9500 JOBN J23DC002

Following is a formatted R_TRACE record.
This trace record was generated by IRRTRC00 with IDENT(R_TRACE).

Trace Identifier: 00000036
Record Eyecatcher: RTRACE
Trace Type: OMVSPRE
Ending Sequence:
Calling address: 00000000 8B000BAE
Requestor/Subsystem:
Primary jobname: J23DC002
Primary asid: 0000012E
Primary ACEEP: 00000000 006F6700
Home jobname: J23DC002
Home asid: 0000012E
Home ACEEP: 00000000 006F6700
Task address: 00000000 006F6800
Task ACEEP: 00000000 00000000
Time: B570BA31 042B3327
Error class:
Service number: 00000025
RACF Return code: 00000000
RACF Reason code: 00000000
Return area address: 00000000 00000000
Parameter count: 00000025

Area length: 00000040

Area value:
0800182C 080016EC 080016F0 080016EC |0.... |
080016F4 080016EC 080016F8 08001700 | .4........8.... |
080016EC 080019A1 080019C5 080019E9 |~...E...Z |
080019F2 08001AE8 08001704 08001706 |Y.......

Area length: 00000008

Area value:
D6C6C6E2 C5E30004 | OFFSET.. |

Area length: 00000004

Area value:
00000000 | |

Area length: 00000008
Collecting data

Area value: D6C6C6E2 C5E3000B | OFFSET..
Area length: 00000004
Area value: 00000000 |
Area length: 00000008
Area value: D6C6C6E2 C5E3000C | OFFSET..
Area length: 00000004
Area value: 00000000 |
Area length: 00000008
Area value: D6C6C6E2 C5E30010 | OFFSET..
Area length: 00000004
Area value: 00000000 |
Area length: 00000008
Area value: D6C6C6E2 C5E30014 | OFFSET..
Area length: 00000004
Area value: 00000000 |
Area length: 00000008
Area value: D6C6C6E2 C5E30018 | OFFSET..
Area length: 00000004
Area value: 00000000 |
Area length: 00000008
Area value: D6C6C6E2 C5E3001C | OFFSET..
Area length: 00000004
Area value: 7FFF5268 | "...
Area length: 000000A8
Area value:
C1C3C5C5 FF000000 02000000 00000000 | ACEE...y........
00000000 05C806D5 C4C14040 4004E2E8 |HONDA .SY
E2F14040 404000101 0001054F 40404040 | S1
40404040 00000000 00000000 00000000 |
40404040 40404040 00000000 00000000 |
00000000 00000000 40404040 40404040 |
Collecting data

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>00000000 7FFD3258 00000000 0101054F</code></td>
<td><code>... "....."</code></td>
<td></td>
</tr>
<tr>
<td><code>00000000 00A00000 00000000 00000000</code></td>
<td><code>..............</code></td>
<td></td>
</tr>
<tr>
<td><code>00000000 00000000 7FFD3290 00000000</code></td>
<td><code>........"....."</code></td>
<td></td>
</tr>
<tr>
<td><code>00000000 7FFD396B</code></td>
<td><code>..."...</code></td>
<td></td>
</tr>
<tr>
<td>Area length:</td>
<td><code>00000050</code></td>
<td></td>
</tr>
<tr>
<td>Area value:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>50010000 0000C000 00000000 00000000</code></td>
<td><code>&.....(.........</code></td>
<td></td>
</tr>
<tr>
<td><code>00000000 00000000 00000000 00000000</code></td>
<td><code>..............</code></td>
<td></td>
</tr>
<tr>
<td><code>00000000 00000000 00000000 00000000</code></td>
<td><code>..............</code></td>
<td></td>
</tr>
<tr>
<td><code>00000000 00000000 00000000 00000000</code></td>
<td><code>..............</code></td>
<td></td>
</tr>
<tr>
<td><code>C8D6D5C4 C1404040 E2E8E2F1 40404040</code></td>
<td><code>HONDA SYS1</code></td>
<td></td>
</tr>
<tr>
<td>Area length:</td>
<td><code>00000090</code></td>
<td></td>
</tr>
<tr>
<td>Area value:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>C1C3C5E7 03000000 00000000 00000000</code></td>
<td><code>ACEX............</code></td>
<td></td>
</tr>
<tr>
<td><code>00000000 00000000 00000000 00000000</code></td>
<td><code>..............</code></td>
<td></td>
</tr>
<tr>
<td>Area length:</td>
<td><code>0000008B</code></td>
<td></td>
</tr>
<tr>
<td>Area value:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>D6C6C6E2 C5E30020</code></td>
<td><code>OFFSET..</code></td>
<td></td>
</tr>
<tr>
<td>Area length:</td>
<td><code>00000004</code></td>
<td></td>
</tr>
<tr>
<td>Area value:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>00000000</code></td>
<td><code>....</code></td>
<td></td>
</tr>
<tr>
<td>Area length:</td>
<td><code>00000008</code></td>
<td></td>
</tr>
<tr>
<td>Area value:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>D6C6C6E2 C5E30024</code></td>
<td><code>OFFSET..</code></td>
<td></td>
</tr>
<tr>
<td>Area length:</td>
<td><code>00000024</code></td>
<td></td>
</tr>
<tr>
<td>Area value:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>B182B384 85868182 60838485 86608182</code></td>
<td><code>abcdef-ab-cdef-"ab</code></td>
<td></td>
</tr>
<tr>
<td><code>838460F1 F1818160 F4F5F4F5 F4F5F4F5</code></td>
<td><code>cd-11aa-45454545</code></td>
<td></td>
</tr>
<tr>
<td><code>F4F5F4F5</code></td>
<td><code>4545</code></td>
<td></td>
</tr>
<tr>
<td>Area length:</td>
<td><code>00000008</code></td>
<td></td>
</tr>
<tr>
<td>Area value:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>D6C6C6E2 C5E30028</code></td>
<td><code>OFFSET..</code></td>
<td></td>
</tr>
<tr>
<td>Area length:</td>
<td><code>00000024</code></td>
<td></td>
</tr>
<tr>
<td>Area value:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>B182B384 85868182 60838485 8660F2F3</code></td>
<td><code>abcdefab-cdef-23</code></td>
<td></td>
</tr>
<tr>
<td><code>F3F260F1 F1818160 F4F5F4F5 F4F5F4F5</code></td>
<td><code>32-11aa-45454545</code></td>
<td></td>
</tr>
<tr>
<td><code>F4F5F4F5</code></td>
<td><code>4545</code></td>
<td></td>
</tr>
<tr>
<td>Area length:</td>
<td><code>00000008</code></td>
<td></td>
</tr>
<tr>
<td>Area value:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>D6C6C6E2 C5E3002C</code></td>
<td><code>OFFSET..</code></td>
<td></td>
</tr>
<tr>
<td>Area length:</td>
<td><code>00000006</code></td>
<td></td>
</tr>
</tbody>
</table>
Collecting data

Area value:
05C8D6D5 C4C1 | .HONDA |
Area length: 00000008

Area value:
D6C6C6E2 C5E30030 | OFFSET.. |
Area length: 00000008

Area value:
C6C1C3C9 D3C9E3E8 | FACILITY |
Area length: 00000008

Area value:
D6C6C6E2 C5E30034 | OFFSET.. |
Area length: 00000006

Area value:
D7D9D6E3 E6D6 | PROTWO |
Area length: 00000008

Area value:
D6C6C6E2 C5E30038 | OFFSET.. |
Area length: 00000002

Area value:
0006 | .. |
Area length: 00000008

Area value:
D6C6C6E2 C5E3003C | OFFSET.. |
Area length: 00000001

Area value:
04 | . |
Area length: 000000A8

Area value:
C1C355C5 FF0000A8 02000000 00000000 | ACEE...Y......... |
00000000 07C9C2D4 E4E2C509 4004E2E8 | IBMUSER .SY |
E2F14040 4040A110 0001054F 40404040 | S1 ~....| |
40404040 00000000 00000000 00000000 | |
40404040 40404040 00000000 00000000 | |
00000000 00000000 40404040 40404040 | |
00000000 006F67AB 00000000 00000000 | ?..y... |
00000000 006F67CB 00000000 0101054F | ?.[......] |
00000000 00200000 00000000 00000000 | |
00000000 006F6888 | ?..h |
Area length: 0000050

Area value:
50010207 0003C000 00000000 00000000 | &.....{...........} |
D7D602E5 D4D4C3D3 C9C2D4E4 E2C5D940 | P0KVMMLIBMUSER |
D7D602E5 D4D4C3D3 E2E8E2F1 40404040 | P0KVMMLSYS1 |
C9D5E3D9 C4D94040 00000000 00000000 | INTRDR|
C9C2D4E4 E2C5D940 E2E8E2F1 40404040 | IBMUSER SYS1 |
Collecting data

Hexadecimal dump of record follows:
+0000 00000036 D9E3D9C1 C3C54040 D604E5E2 | ...RTRACE OMVS |
+0010 D7D9C540 00000000 00000000 00000000 | PRE |
+0020 00000000 00000000 00000000 00000000 | |
+0030 00000000 00000000 00000000 00000000 |?.Q.... |
+0040 00000000 00000000 00000000 00000000 | |
+0050 00000000 00000000 00000000 00000000 | |
+0060 00000000 00000000 00000000 00000000 | |
+0070 00000000 00000000 00000000 00000000 | |
+0080 00000000 00000000 00000000 00000000 | |
+0090 00000000 00000000 00000000 00000000 | |
+00A0 00000000 00000000 00000000 00000000 |4.......8 |
+00B0 00000000 00000000 00000000 00000000 |~...E |
+00C0 00000000 00000000 00000000 00000000 | ...Z...2...Y.... |
+00D0 00000000 00000000 00000000 00000000 |OFFSET.. |
+00E0 00000000 00000000 00000000 00000000 |OFFS |
+00F0 C5E30008 00000000 00000000 00000000 | ET.............. |
+0100 00000000 00000000 00000000 00000000 | |
+0110 00000000 00000000 00000000 00000000 | |
+0120 00000000 00000000 00000000 00000000 | |
+0130 00000000 00000000 00000000 00000000 | |
+0140 00000000 00000000 00000000 00000000 | ET.............. |
+0150 00000000 00000000 00000000 00000000 | |
+0160 00000000 00000000 00000000 00000000 | |
+0170 00000000 00000000 00000000 00000000 | |
+0180 00000000 00000000 00000000 00000000 | |
+0190 00000000 00000000 00000000 00000000 | |
+01A0 00000000 00000000 00000000 00000000 | |
+01B0 00000000 00000000 00000000 00000000 | |
+01C0 00000000 00000000 00000000 00000000 | |
+01D0 00000000 00000000 00000000 00000000 | |
+01E0 00000000 00000000 00000000 00000000 | |
+01F0 00000000 00000000 00000000 00000000 | |
+0200 00000000 00000000 00000000 00000000 | |
+0210 00000000 00000000 00000000 00000000 | |
+0220 00000000 00000000 00000000 00000000 | |
+0230 00000000 00000000 00000000 00000000 | |
+0240 00000000 00000000 00000000 00000000 | |
+0250 C80D05C4 C1404040 E2E8E2F1 40404040 | HONDA SYS1 |
+0260 00000000 00000000 00000000 00000000 | |
+0270 00000000 00000000 00000000 00000000 | |
+0280 00000000 00000000 00000000 00000000 | |
+0290 00000000 00000000 00000000 00000000 | |
+02A0 00000000 00000000 00000000 00000000 | |
+02B0 00000000 00000000 00000000 00000000 | |
+02C0 00000000 00000000 00000000 00000000 | |
+02D0 00000000 00000000 00000000 00000000 | |
+02E0 00000000 00000000 00000000 00000000 | |
+02F0 00000000 00000000 00000000 00000000 | |
+0300 00000000 00000000 00000000 00000000 | |
+0310 00000000 00000000 00000000 00000000 | |
+0320 00000000 00000000 00000000 00000000 | |
+0330 00000000 00000000 00000000 00000000 | |
+0340 00000000 00000000 00000000 00000000 | |
+0350 C5E30028 00000002 001828384 00868182 | ET..abcdefab |
+0360 00000000 00000000 00000000 00000000 | |
Collecting data

Following is a formatted R_TRACE record.
This trace record was generated by IRRTRC00 with IDENT(R_TRACE).

Trace Identifier: 00000036
Record Eyecatcher: RTRACE
Trace Type: OMVSPOST
Ending Sequence:
Calling address: 00000000 8B000BAE
Requestor/Subsystem:
Primary jobname: J23DC002
Primary asid: 0000012E
Primary ACEEP: 00000000 006F6700
Home jobname: J23DC002
Home asid: 0000012E
Home ACEEP: 00000000 006F6700
Task address: 00000000 006F6700
Task ACEEP: 00000000 00000000
Time: B570BA31 24A9A948
Error class:
Service number: 00000025
RACF Return code: 00000000
RACF Reason code: 00000000
Return area address: 00000000 00000000
Parameter count: 0000025

Area length: 00000040
Collecting data

Area value:	0B001B2C 0B0016EC 0B0016F0 0B0016EC0....
Area value:	0B0016F4 0B0016EC 0B0016F8 0B001700	...4.......8....
Area value:	0B0016EC 0B0019A1 0B0019C5 0B0019E9E...Z
Area value:	0B0019F2 0B001AE8 0B001704 0B001706	...2...Y........

Area length: 00000008

Area value: D6C6C6E2 C5E30004 | OFFSET.. |

Area length: 00000004

Area value: 00000000 | |

Area length: 00000008

Area value: D6C6C6E2 C5E30008 | OFFSET.. |

Area length: 00000004

Area value: 00000000 | |

Area length: 00000008

Area value: D6C6C6E2 C5E3000C | OFFSET.. |

Area length: 00000004

Area value: 00000000 | |

Area length: 00000008

Area value: D6C6C6E2 C5E30010 | OFFSET.. |

Area length: 00000004

Area value: 00000000 | |

Area length: 00000008

Area value: D6C6C6E2 C5E30014 | OFFSET.. |

Area length: 00000004

Area value: 00000000 | |

Area length: 00000008

Area value: D6C6C6E2 C5E30018 | OFFSET.. |

Area length: 00000004

Area value: 00000000 | |

Area length: 00000008
Collecting data

<table>
<thead>
<tr>
<th>Area value:</th>
<th>D6C6C6E2 C5E3001C</th>
<th>OFFSET..</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area length:</td>
<td>00000004</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area value:</th>
<th>7FFF526B</th>
<th>"..."</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area length:</td>
<td>000000A8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area value:</th>
<th>C1C3C5C5 FF0000A8 02000000 00000000</th>
<th>ACEE...y........</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area value:</td>
<td>05C8D6D5 C4C14040 4004E2E8</td>
<td>...HONDA .SY</td>
</tr>
</tbody>
</table>
| Area value: | E2F14040 40400101 0001054F 40404040 | S1
| Area value: | 40404040 00000000 00000000 00000000 | |
| Area value: | 40404040 00000000 00000000 00000000 | |
| Area value: | 00000000 7FFF5000 00000000 00000000 |".&........ |
| Area value: | 00000000 00000000 00000000 00000000 | |
| Area value: | 00000000 00000000 00000000 00000000 | |
| Area value: | 00000000 7FFD3258 00000000 0101054F | "......... |
| Area value: | 00000000 00000000 00000000 00000000 | |
| Area value: | 00000000 00000000 00000000 00000000 | |
| Area value: | 00000000 00000000 00000000 00000000 | |
| Area value: | 00000000 00000000 00000000 00000000 | |
| Area value: | 00000000 00000000 00000000 00000000 | |
| Area value: | 00000000 00000000 00000000 00000000 | |
| Area value: | 00000000 00000000 00000000 00000000 | |
| Area value: | 00000000 00000000 00000000 00000000 | |

| Area length: | 00000000 |

<table>
<thead>
<tr>
<th>Area value:</th>
<th>50010000 0000C000 00000000 00000000</th>
<th>&....{.........</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area value:</td>
<td>00000000 00000000 00000000 00000000</td>
<td>................</td>
</tr>
<tr>
<td>Area value:</td>
<td>00000000 00000000 00000000 00000000</td>
<td>................</td>
</tr>
<tr>
<td>Area value:</td>
<td>00000000 00000000 00000000 00000000</td>
<td>................</td>
</tr>
<tr>
<td>Area value:</td>
<td>C8D6D5C4 C1404040 E2E8E2F1 40404040</td>
<td>HONDA SYS1</td>
</tr>
</tbody>
</table>

| Area length: | 00000000 |

<table>
<thead>
<tr>
<th>Area value:</th>
<th>C1C3C5E7 03000000 00000000 00000000</th>
<th>ACEX............</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area value:</td>
<td>00000000 00000000 00000000 00000000</td>
<td>................</td>
</tr>
<tr>
<td>Area value:</td>
<td>00000000 00000000 00000000 00000000</td>
<td>................</td>
</tr>
<tr>
<td>Area value:</td>
<td>00000000 00000000 00000000 00000000</td>
<td>................</td>
</tr>
<tr>
<td>Area value:</td>
<td>00000000 00000000 00000000 00000000</td>
<td>................</td>
</tr>
<tr>
<td>Area value:</td>
<td>00000000 00000000 00000000 00000000</td>
<td>................</td>
</tr>
<tr>
<td>Area value:</td>
<td>00000000 00000000 00000000 00000000</td>
<td>................</td>
</tr>
<tr>
<td>Area value:</td>
<td>00000000 00000000 00000000 00000000</td>
<td>................</td>
</tr>
<tr>
<td>Area value:</td>
<td>00000000 00000000 00000000 00000000</td>
<td>................</td>
</tr>
</tbody>
</table>

| Area length: | 00000008 |

<table>
<thead>
<tr>
<th>Area value:</th>
<th>D6C6C6E2 C5E30020</th>
<th>OFFSET..</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area length:</td>
<td>00000004</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area value:</th>
<th>00000000</th>
<th>....</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area length:</td>
<td>00000008</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area value:</th>
<th>D6C6C6E2 C5E30024</th>
<th>OFFSET..</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area length:</td>
<td>00000024</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area value:</th>
<th>81828384 85868182 6838485 86608182</th>
<th>abcdefab-cdef-ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area value:</td>
<td>838460F1 F1818160 F4F5F4F5 F4F5F4F5</td>
<td>cd-11aa-45454545</td>
</tr>
<tr>
<td>Area value:</td>
<td>F4F5F4F5</td>
<td>4545</td>
</tr>
</tbody>
</table>

Chapter 2. Collecting and analyzing problem data 65
Collecting data

Area length: 00000008
Area value: D6C6C6E2 C5E30028 | OFFSET.. |

Area length: 00000024
Area value: B1828384 85868182 60838481 8660F2F3 abcdefab-cdef-23
 F3F260F1 F181B160 F4F5F4F5 F4F5F4F5 32-11aa-45454545
 F4F5F4F5 | 4545 |

Area length: 00000008
Area value: D6C6C6E2 C5E30002C | OFFSET.. |

Area length: 00000008
Area value: 05C8D6D5 C4C1 | .HONDA |

Area length: 00000008
Area value: C6C1C3C9 D3C9E3E8 | FACILITY |

Area length: 00000008
Area value: D6C6C6E2 C5E30030 | OFFSET.. |

Area length: 00000008
Area value: D6C6C6E2 C5E30034 | OFFSET.. |

Area length: 00000006
Area value: D7D9D6E3 E6D6 | PROTWO |

Area length: 00000008
Area value: D6C6C6E2 C5E3003B | OFFSET.. |

Area length: 00000002
Area value: 0006 | .. |

Area length: 00000008
Area value: D6C6C6E2 C5E3003C | OFFSET.. |

Area length: 00000001
Area value: 04 | . |

Area length: 00000008
Area value: C1C3C5C5 FF0000A8 02000000 00000000 | ACEE...y........ |
Collecting data

Chapter 2. Collecting and analyzing problem data
Collecting data

RACROUTE REQUEST=VERIFY: This is an example of SAF trace output for RACROUTE REQUEST=VERIFY (service type 5) PRE and POST entries. Note that the column offsets are not exact but the content has not been altered.

**** GTFTRACE DISPLAY OPTIONS IN EFFECT ****
USR=ALL

**** GTF DATA COLLECTION OPTIONS IN EFFECT: ****
USRP option

**** GTF TRACING ENVIRONMENT ****

z/OS V2R2 Security Server RACF Diagnosis Guide
Following is a formatted R_TRACE record. This trace record was generated by IRRTRC00 with IDENT(R_TRACE).

Trace Identifier: 00000036
Record Eyecatcher: RTRACE
Trace Type: RACFPRE
Ending Sequence:
Calling address: 00000000 B804A12E
Requestor/Subsystem: RSC6 9 RACF
Primary jobname: RACF
Primary asid: 0000001D
Primary ACEEP: 00000000 006FFDC0
Home jobname: RACF
Home asid: 0000001D
Home ACEEP: 00000000 006FFDC0
Task address: 00000000 006E10A0
Task ACEEP: 00000000 00000000
Time: B5773AAD 0E780C4B
Error class:
Service number: 00000005
RACF Return code: 00000000
RACF Reason code: 00000000
Return area address: 00000000 00000001
Parameter count: 0000000A

Area length: 0000006B
Area value:
00000000 00000000 00000000 00000000 | |
08009158 08091560 0809156C 00000000 | ..j...j-..j%.... |
00000000 00000068 00000000 00000000 | |
00400000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |

Area length: 0000006C
Area value:
00000000 00000000 00000000 00000000 | |
60000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |

Area length: 00000008
Area value:
D6C6C6C6 00000000 00000000 00000000 | OFFSET.. |

Area length: 00000004
Area value:
00000000 00000000 00000000 00000000 | .%9. |

Area length: 000000A8
Collecting data

<table>
<thead>
<tr>
<th>Area value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1C3C5C5 FF0000A8 02000000 00000000</td>
</tr>
<tr>
<td>00000000 085CC2E8 D7C1E2E2 5C015C40</td>
</tr>
<tr>
<td>40404040 40400000 001059F 40404040</td>
</tr>
<tr>
<td>40404040 40404040 00000000 00000000</td>
</tr>
<tr>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>40404040 00000000 00000000 00000000</td>
</tr>
<tr>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>00000000 006CF850</td>
</tr>
<tr>
<td>Area length:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>50010003 4002C000 00000000 00000000</td>
</tr>
<tr>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>F0F14040 40404040 00000000 00000000</td>
</tr>
<tr>
<td>5CC2E0D7 C1E2E2C5 40404040 40404040</td>
</tr>
<tr>
<td>Area length:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1C3C5E7 03000000 00000000 00000000</td>
</tr>
<tr>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>Area length:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1C3C5C5 FF0000A8 02000000 00000000</td>
</tr>
<tr>
<td>00000000 07C9C2D4 E4E2C5D9 4004E2E8</td>
</tr>
<tr>
<td>E2F14040 4040A110 4001059F D9C1C3C6</td>
</tr>
<tr>
<td>40404040 00000000 00000000 00000000</td>
</tr>
<tr>
<td>40404040 40404040 00000000 00000000</td>
</tr>
<tr>
<td>00000000 00000000 006FDFC8 00000000</td>
</tr>
<tr>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>00000000 00000000 006FDFC8 00000000</td>
</tr>
<tr>
<td>Area length:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>50012204 40000000 00000000 00000000</td>
</tr>
<tr>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>C9C2D4E4 E2C50940 E2E8E2F1 40404040</td>
</tr>
<tr>
<td>Area length:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1C3C5E7 03000000 00000000 00000000</td>
</tr>
<tr>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>Area length:</td>
</tr>
</tbody>
</table>

70 z/OS V2R2 Security Server RACF Diagnosis Guide
Collecting data

Chapter 2. Collecting and analyzing problem data

00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |

Hexadecimal dump of record follows:
+0000 00000036 D9E3D9C1 C3C54040 D9C1C3C6 | ...RTRACE RACF |
+0010 D7D9C540 00000000 00000000 00000000 | PRE |
+0020 00000000 00000000 00000000 8B04A24E |s+ |
+0030 D9E2E2C3 F0F640F9 00000000 00000000 | RSSC06 9........ |
+0040 D9C1C3C6 40404040 006EC1A0 00FA9B00 | RACF .>A..... |
+0050 00FA9B00 0000001D 0000001D D9C1C3C6 |RACF |
+0060 40404040 D9C1C3C6 40404040 006FFDC0 | RACF .?{ |
+0070 006FFDC0 00000000 B5773AAD 0E780C4B | ?..{............ |
+0080 00000000 00000001 0000000A 00000005 | |
+0090 00000068 00000000 00000000 00680200 | |
+00A0 00055800 0808915B 08089160 0808916C |j...j...j% |
+00B0 00000000 00000000 00000000 00000000 | |
+00C0 00000000 00400000 00000000 00000000 | |
+00D0 00000000 00000000 00000000 00000000 | |
+00E0 00000000 00000000 00000000 00000000 | |
+00F0 00000000 00000000 00000000 00000000 | |
+0100 6C0000A0 00000000 00000000 00000000 | %............... |
+0110 00000000 00000000 00000000 00000000 | |
+0120 00000000 00000000 00000000 00000000 | |
+0130 00000000 00000000 00000000 00000000 | |
+0140 00000000 00000000 00000000 00000000 | |
+0150 00000000 00000000 00000000 00000000 | |
+0160 00000000 00000000 00000000 00000000 | |
+0170 00000000 00000000 00000000 00000000 | |
+0180 00000000 00000000 00000000 00000000 | |
+0190 00000000 00000000 00000000 00000000 | |
+01A0 00000000 00000000 00000000 00000000 | |
+01B0 00000000 00000000 00000000 00000000 | |
+01C0 00000000 00000000 00000000 00000000 | |
+01D0 00000000 00000000 00000000 00000000 | |
+01E0 00000000 00000000 00000000 00000000 | |
+01F0 00000000 00000000 00000000 00000000 | |
+0200 00000000 00000000 00000000 00000000 | |
+0210 00000000 00000000 00000000 00000000 | |
+0220 00000000 00000000 00000000 00000000 | |
+0230 00000000 00000000 00000000 00000000 | |
+0240 00000000 00000000 00000000 00000000 | |
+0250 00000000 00000000 00000000 00000000 | |
+0260 00000000 00000000 00000000 00000000 | |
+0270 00000000 00000000 00000000 00000000 | |
+0280 00000000 00000000 00000000 00000000 | |
+0290 00000000 00000000 00000000 00000000 | |
+02A0 00000000 00000000 00000000 00000000 | |
+02B0 00000000 00000000 00000000 00000000 | |
+02C0 00000000 00000000 00000000 00000000 | |
+02D0 00000000 00000000 00000000 00000000 | |
+02E0 00000000 00000000 00000000 00000000 | |
+02F0 00000000 00000000 00000000 00000000 | |
+0300 00000000 00000000 00000000 00000000 | |
+0310 00000000 00000000 00000000 00000000 | |
+0320 00000000 00000000 00000000 00000000 | |
+0330 00000000 00000000 00000000 00000000 | |
+0340 00000000 00000000 00000000 00000000 | |
+0350 00000000 00000000 00000000 00000000 | |
+0360 00000000 00000000 00000000 00000000 | |
+0370 00000000 00000000 00000000 00000000 | |
+0380 00000000 00000000 00000000 00000000 | |
+0390 00000000 00000000 00000000 00000000 | |
+03A0 00000000 00000000 00000000 00000000 | |
+03B0 00000000 00000000 00000000 00000000 | |
+03C0 00000000 00000000 00000000 00000000 | |
Following is a formatted R_TRACE record.
This trace record was generated by IRRTRC00 with IDENT(R_TRACE).

Trace Identifier: 00000036
Record Eyecatcher: RTRACE
Trace Type: RACFPOST
Ending Sequence:
Calling address: 00000000 8B04A24E
Requestor/Subsystem: RSCS06 9 RACF
Primary Jobname: RACF
Primary asid: 0000001D
Primary ACEEP: 00000000 006FFDC0
Home jobname: RACF
Home asid: 0000001D
Home ACEEP: 00000000 006FFDC0
Task address: 00000000 006EC1A0
Task ACEEP: 00000000 00000000
Time: B5773AAD 0E8C548B
Error class:
Service number: 00000005
RACF Return code: 00000000
RACF Reason code: 00000000
Return area address: 00000000 080891C4
Parameter count: 00000005

Area length: 00000068

Area value:
00000000 00000000 00680200 00055800 |
0B08915B 0B089160 0B08916C 00000000 | .j...j-..j%....
00000000 00000068 00000000 00000000 |
00400000 00000000 00000000 00000000 |
00000000 00000000 00000000 00000000 |
00000000 00000000 00000000 00000000 |
00000000 00000000 00000000 00000000 |
00000000 00000000 00000000 00000000 |
00000000 00000000 00000000 00000000 |

Area length: 0000006C

Area value:
6C0000A0 00000000 00000000 00000000 | %.............
00000000 00000000 00000000 00000000 |
00000000 00000000 00000000 00000000 |
00000000 00000000 00000000 00000000 |
00000000 00000000 00000000 00000000 |
00000000 00000000 00000000 00000000 |
00000000 00000000 00000000 00000000 |
00000000 00000000 00000000 00000000 |

Area length: 000000A8
Collecting data

Area value:

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1C3C5C5</td>
<td>FF0000A8 02000000 00000000</td>
<td>ACEE...y........</td>
</tr>
<tr>
<td>C9C2D4E4</td>
<td>IBMUSER.SY</td>
<td></td>
</tr>
<tr>
<td>E2F14040</td>
<td>RACF</td>
<td></td>
</tr>
<tr>
<td>40404040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>00000000 00400000 00000000</td>
<td>IBMUSER.SYS1</td>
</tr>
</tbody>
</table>

Area length:

- 0000050

Area value:

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50012204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>00000000 00000000 00000000</td>
<td>IBMUSER.SYS1</td>
</tr>
</tbody>
</table>

Area length:

- 0000090

Area value:

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1C3C5E7</td>
<td>03000000 00000000 00000000</td>
<td>ACEX...................</td>
</tr>
<tr>
<td>00000000</td>
<td>00000000 00000000 00000000</td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>000000024 06F6E008 00000000</td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>00000000 00000000 00000000</td>
<td></td>
</tr>
</tbody>
</table>

Hexadecimal dump of record follows:

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0000</td>
<td>00000036 D9E3D9C1 C3C54040 D9C1C3C6</td>
</tr>
<tr>
<td>+0010</td>
<td>D7D6E2E3 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0020</td>
<td>00000000 00000000 00000000 880A424E</td>
</tr>
<tr>
<td>+0030</td>
<td>D9E2EE2C3 F0F64OF9 00000000 00000000</td>
</tr>
<tr>
<td>+0040</td>
<td>D9C1C3C6 40400404 006EC1A0 00F90BA0</td>
</tr>
<tr>
<td>+0050</td>
<td>00F90B00 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0060</td>
<td>40400404 D9C1C3C6 40400404 006FD0C0</td>
</tr>
<tr>
<td>+0070</td>
<td>006FD0C0 00000000 05733ADB 0E8C54BB</td>
</tr>
<tr>
<td>+0080</td>
<td>00000000 00891C4 00000005 00000005</td>
</tr>
<tr>
<td>+0090</td>
<td>000000068 00000000 00000000 00680200</td>
</tr>
<tr>
<td>+00A0</td>
<td>00555800 008915B 0089160 008916C</td>
</tr>
<tr>
<td>+00B0</td>
<td>00800000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+00C0</td>
<td>00000000 00400000 00000000 00000000</td>
</tr>
<tr>
<td>+00D0</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+00E0</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+00F0</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0100</td>
<td>00C0000A0 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0110</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0120</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0130</td>
<td>00000000 0089154 00000000 00000000</td>
</tr>
<tr>
<td>+0140</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0150</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0160</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0170</td>
<td>C1C3C5C5 FF0000A8 02000000 00000000</td>
</tr>
<tr>
<td>+0180</td>
<td>00000000 07C9C2D4 E42C50F9 004E2E8B</td>
</tr>
<tr>
<td>+0190</td>
<td>E2F14040 4040A110 4001059F 09C1C3C6</td>
</tr>
<tr>
<td>+01A0</td>
<td>40400404 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+01B0</td>
<td>40404040 40404040 00000000 00000000</td>
</tr>
<tr>
<td>+01C0</td>
<td>00000000 00000000 00404040 00404040</td>
</tr>
<tr>
<td>+01D0</td>
<td>00000000 006FD0E8 00000000 00000000</td>
</tr>
<tr>
<td>+01E0</td>
<td>00000000 006FD0E8 00000000 0101059F</td>
</tr>
</tbody>
</table>

Chapter 2. Collecting and analyzing problem data 73
MANAGER ALTER: This is an example of a MANAGER ALTER trace with PRE and POST entries. Note that the column offsets are not exact but the content has not been altered.

**** GTFTRACE DISPLAY OPTIONS IN EFFECT ****
USR=ALL

**** GTF DATA COLLECTION OPTIONS IN EFFECT: ****

USR P option

**** GTF TRACING ENVIRONMENT ****
Release: SP7.0.3 Fimd: HBB7706 System name: RACFR13
CPU Model: 4381 Version: FF Serial no. 111515

USR57 F44 ASCB 00FACD00 JOBN IBMUSER

is a formatted R_TRACE record.
This trace record was generated by IRRTRC00 with IDENT(R_TRACE).

Trace Identifier: 00000036
Record Eyecatcher: RTRACE
Trace Type: MNGRPRE
Ending Sequence:
Calling address: 00000000 0B000BAE
Requestor/Subsystem:
Primary jobname: IBMUSER
Primary asid: 00000019
Primary ACEEP: 00000000 066F60B
Home jobname: IBMUSER
Home asid: 00000019
Home ACEEP: 00000000 066F60B
Task ACEEP: 00000000 00000000
Time: B57740CE B8ED7F45
Error class:
Service number: 00000000
RACF Return code: 00000000
RACF Reason code: 00000000
Return area address: 00000000 00000000
Parameter count: 00000006

Area length: 00000050

Area value:
Chapter 2. Collecting and analyzing problem data

Collecting data

```
| 08004102 0015FFDA 001468F8 00000000 | ...........8.... |
| 00000000 00000000 00000000 01000000 | ........................ |
| 20000000 00000000 40404040 40404040 | ............ |
| 00000000 00000000 00000000 00000000 | ........................ |
| 00000000 00000000 00000000 00000000 | ........................ |

Area length: 00000008

Area value:
D6C6C6E2 C5E30004 | OFFSET.. |

Area length: 00000004

Area value:
03D1D1D7 | .JJP |

Area length: 000000A8

Area value:
C1C3C5C5 FF0000A8 02000000 00000000 | ACEE...y........ |
00000000 07C9C2D4 E4E2C5D9 4004E2E8 | IBMUSER .SY |
E2F14040 4040A110 001059F 40404040 | SI1 ~........
40404040 00828CA0 00000000 00000000 | ................
D36C3C1 D3CF1F0 00000000 00000000 | LOCALC10........ |
00000000 00000000 00000000 00000000 | ............ |
00000000 006DFBF9 00000000 00000000 | ........................ |
00000000 006FDFB0 00000000 00000000 | ........................ |

Area length: 00000050

Area value:
50010206 0001000 00000000 00000000 | &.....[......... |
00000000 00000000 00000000 00000000 | ........................ |
00000000 00000000 00000000 00000000 | ........................ |
D36C3C1 D3CF1F0 00000000 00000000 | LOCALC10........ |
C9C2D4E4 E2C5D940 E2E8E2F1 40404040 | IBMUSER SYS1 |

Area length: 00000090

Area value:
C1C3C5E7 03000000 00000000 00000000 | ACEX............ |
00000000 00000000 00000000 00000000 | ........................ |
00000000 00000000 00000000 00000000 | ........................ |
00000000 00000000 00000000 00000000 | ........................ |
00000000 00000000 00000000 00000000 | ........................ |
00000000 00000000 00000000 00000000 | ........................ |
00000000 00000000 00000000 00000000 | ........................ |
00000000 00000000 00000000 00000000 | ........................ |
00000000 00000000 00000000 00000000 | ........................ |
00000000 00000000 00000000 00000000 | ........................ |

Hexadecimal dump of record follows:
```

+0000 000000036 D9E3D9C1 C3C54040 D405C709 |RTRACE MNGR |
+0010 D709C540 00000000 00000000 00000000 | PRE |
+0020 00000000 00000000 00000000 00000000 | |
+0030 00000000 00000000 00000000 00000000 | |
+0040 00000000 00000000 00000000 00000000 | |
+0050 00000000 00000000 00000000 00000000 | |
+0070 006FDF8B 00000000 00000000 00000000 | B57740CE B8ED7F45 .?6........
+0080 00000000 00000000 00000000 00000000 |?8..... |
+0090 00000000 00000000 00000000 00000000 |?.. |
+00A0 00000000 00000000 00000000 00000000 | |
+00B0 00000000 00000000 00000000 00000000 | |
+00C0 40404040 00000000 00000000 00000000 | |
```
Collecting data

is a formatted R_TRACE record.
This trace record was generated by IRRTRC00 with IDENT(R_TRACE).

Trace Identifier: 0000036
Record Eyecatcher: RTRACE
Trace Type: MNGRPOST
Ending Sequence: ........
Calling address: 00000000 8B000BAE
Requestor/Subsystem: ........ ........
Primary jobname: IBMUSER
Primary asid: 00000019
Primary ACEEP: 00000000 006FF608
Home jobname: IBMUSER
Home asid: 00000019
Home ACEEP: 00000000 006FF608
Task address: 00000000 006B8220
Task ACEEP: 00000000 00000000
Time: B57740CE C6AEBD85
Error class: ........
Service number: 00000000
RACF Return code: 00000000
RACF Reason code: 00000000
Return area address: 00000000 00000000
Parameter count: 00000006

Area length: 00000050

Area value:
08004102 0015FFDA 001468F8 00000000 ........8....
00000000 00000000 00000000 00000000 ............
00000000 00000000 00000000 00000000 ...........
20000000 00000000 C2C1E2C5 40404040 ........BASE
00000000 00000000 00000000 00000000 ...........
00000000 00000000 00000000 00000000 ...........

USR57 F44 ASCB 00FACD00 JOBN IBMUSER
Collecting data

Area length: 00000008
Area value:
D6C6C6E2 C5E30004 | OFFSET..

Area length: 00000008
Area value:
03D1D1D7 | .JJP

Area length: 00000008
Area value:
C1C3C5C5 FF0000A8 02000000 00000000 | ACEE...
00000000 07C9C2D4 E4E2C5D9 4004E2E8 | .....IBMUSER .SY
E2F14040 4040A110 0001059F 40404040 | S1 ~...
00404040 00B28CA0 00000000 00000000 | ...........
D36C3C1 D3C3F1F0 00000000 00000000 | LOCALC10.......
00000000 00000000 00000000 00000000 | ...........
00000000 00000000 00000000 00000000 | ................
00000000 00000000 00000000 00000000 | ................
00000000 00000000 00000000 00000000 | ................
00000000 00000000 00000000 00000000 | ................
00000000 00000000 00000000 00000000 | LOCALC10.......
00000000 00000000 00000000 00000000 | ....}?.......|
00000000 00000000 00000000 00000000 | ................
00000000 00000000 00000000 00000000 | ................
00000000 00000000 00000000 00000000 | ................
00000000 00000000 00000000 00000000 | ................
00000000 00000000 00000000 00000000 | ................
00000000 00000000 00000000 00000000 | ................
00000000 00000000 00000000 00000000 | ................
00000000 00000000 00000000 00000000 | ................
00000000 00000000 00000000 00000000 | ................
Hexadecimal dump of record follows:

+0000 00000000 00000000 00000000 00000000 | .RTRACE MNGR
+0010 D7D6E2E3 00000000 00000000 00000000 | POST..........0020 00000000 00000000 00000000 00000000 | ............%
+0020 00000000 00000000 00000000 00000000 | ............%
+0030 00000000 00000000 00000000 00000000 | ............%
+0040 00000000 00000000 00000000 00000000 | ............%
+0050 00000000 00000000 00000000 00000000 | ............%
+0070 00000000 00000000 00000000 00000000 | ............%
+0080 00000000 00000000 00000000 00000000 | ............%
+0090 00000000 00000000 00000000 00000000 | ............%
+00A0 00000000 00000000 00000000 00000000 | ............%
+00B0 00000000 00000000 00000000 00000000 | ............%
+00C0 00000000 00000000 00000000 00000000 | ............%
+00D0 00000000 00000000 00000000 00000000 | ............%
+00E0 00000000 00000000 00000000 00000000 | ............%
+00F0 00000000 00000000 00000000 00000000 | ............%
+0100 00000000 00000000 00000000 00000000 | ............%
+0110 00000000 00000000 00000000 00000000 | ............%
Validating input

This explains how to validate input to RACF processes.

Identifying the caller of RACF

Prerequisites

- "Obtaining a system dump" on page 41
- "Formatting a system dump" on page 42

Introduction to procedure

When a RACF abend occurs, RACF might be the cause of the problem, or the program calling RACF might have passed an incorrect parameter list, which caused RACF to issue the abend. (The parameter list is the only input RACF gets from a caller.)

This describes how to determine what module issued the RACF macro.

Procedure

1. Look at the system dump and check the TCB with field TCBCMP (equal to the abend code).

2. Locate the RB that issued the RACF SVC (SVC 82, 83, 84, or 85). In this RB, get the address of the next sequential instruction from field RBOPSW. If no such RB exists, then the executing RACF service may be PC-entered. In this case, use the “Alternative procedure” on page 79.

3. Find this address in the system dump and scan backward for the eye-catcher (a module or CSECT name printed in readable form along the right margin of the dump). That is the name of the routine that issued the RACROUTE macro.

Note: If the address of the next sequential instruction after the RACROUTE macro is not in the system dump, check an LPA (link pack area) map to determine if it is within an LPA module. If it is within an LPA module, that module is the issuer of the RACROUTE macro.
Validating input

- If the name you find is not the ICHRFR00 module, then the name found caused RACF to abend. (Note that the issuer of the RACF SVC may not have caused the original error but may have merely passed bad data created by yet another module that called it. The end of the bad data chain might be several callers away.)

- If the name you find is the ICHRFR00 module, then SAF (the system authorization facility) issued the RACF macro as requested by another module that issued the RACROUTE macro.

To determine who issued the RACROUTE macro, locate the “current task” in the system dump and check the active RBs.

a. Find the PRB with a RACF SVC (SVC 82, 83, 84, or 85) in the RBRTPSW2 field.

b. Find the next RB.
   - In a formatted dump that has been printed, this is the RB below the RB with the SVC.
   - On IPCS (interactive problem control system), this is the RB displayed below the RB with the SVC.

- Check the general-purpose registers in this RB. Register 1 should have the same value as the trace entry for the SVC found in Step 3a. Register 13 points to the save area of the ICHRFR00 module.

- For RACROUTE functions other than VERIFY or VERIFYX:
  - Find the save area of the ICHRFR00 module and make sure that in the save area, the address at offset X'4' points to the save area of the ICHSF00 module (the previous save area).

- For RACROUTE functions VERIFY or VERIFYX:
  - Find the save area of the ICHRFR00 module and make sure that in the save area, the address at offset X'4' points to the save area of the IRRSVY00 (or IRRSVX00) module (the previous save area).
  - Find the save area of the ICHRFR00 module and make sure that in the save area, the address at offset X'4' points to the save area of the ICHSF00 module (the previous save area).

- Find the save area of the ICHRFR00 module and make sure that in the save area, the address at offset X'4' points to the save area of the ICHSF00 module (the previous save area).

- Find the save area of the issuer of the RACROUTE macro. In the save area of the issuer of the RACROUTE macro, offset X'C' is the contents of Register 14 of the module that issued the RACROUTE macro. Register 14 contains the address of the instruction after the RACROUTE macro.

- Find this address in the system dump and scan backward for the eye-catcher (a module or CSECT name printed in readable form along the right margin of the dump). That is the name of the routine that issued the RACROUTE macro.

Alternative procedure

1. Look at the system dump and issue the IPCS command, SUMMARY FORMAT, to format the linkage stack for the failing task or SRB. In most cases, the top entry on this linkage stack represents the current RACF service; this can be
Validating input

validated by taking the formatted PSW for the stack entry and scrolling backward in memory in search of a module eyecatcher that has a RACF prefix, ICH or IRR.

2. If this stack entry represents a RACF service, then general purpose register 13 should point to a standard save area, and the caller of RACF can be located by tracing backward through a chain of such areas. If these steps do not appear to have produced the caller of RACF, then you cannot determine the caller of RACF without additional support.

Checking the parameter list passed to RACF

Prerequisites
- "Obtaining a system dump" on page 41
- "Formatting a system dump" on page 42

How to check the parameter list passed to RACF
This procedure is useful only for a RACF macro request that was active when the system dump was generated.

1. Find the save area for the routine that issued the RACF macro. This can be found either in the trace-table entry for the SVC associated with the RACF macro, or in the RBs in a formatted dump. See "Identifying the caller of RACF" on page 78.

2. In the save area, find the contents of register 1.
   - If register 1 is zero, then the RACROUTE macro was issued and module ICHRFR00 issued the RACF macro. In this case, register zero points to a two-word parameter list. The first word of this parameter list points to the RACF SVC parameter list, and the second word of this parameter list points to the SAF parameter list. This is shown:

   Reg 0
   ![Diagram of parameter list]

   - If register 1 is not zero, then this is the address of the parameter list that is passed with the macro request.

3. Find the address in the storage portion of the system dump. The values in the dump are the actual parameter list as seen by the system when processing the RACF request.

4. Use the description of the parameter list from "Parameter list descriptions" on page 155 to decode the actual parameter list.

   Note: For some parameter lists (such as RACROUTE REQUEST=AUTH, RACROUTE REQUEST=DEFINE, and RACROUTE REQUEST=VERIFY) the length of the parameter list varies from release to release. Check the first byte of these parameter lists for the actual length used.

5. Use these checks to determine whether the active RACF macro request had an error. You can do the checks most efficiently if you have a listing of the program that issued the macro.
   a. Did the RACF macro request that invoked RACF services use valid keyword values, including addresses?
   b. Did the caller supply a register save area for the RACF macro?
c. Do the caller's storage areas contain correct values?
You could check the system dump for application program storage areas that appear to have incorrect values, such as missing printable identifiers for modules or control blocks. Key storage areas are pointed to by the register save area for the RACF macro. (Incorrect values are caused by logic problems due to incorrect addresses.)
This check is especially important for these types of unexpected abends, which might involve a logic error in either the application program that issued the RACF macro or a system routine:
• A X'0Cx' abend, such as X'0C4'
• A cancel (a X'x22' abend)

Alternative procedure to check the parameter list passed to RACF
After you find the caller of RACF, the first word of the parameter list pointed to from the stack entry should contain the address of the parameters passed to RACF on the request.

Searching for a matching problem

Prerequisites
1. See “Performing a preliminary search for a matching problem” on page 34 for a description of easily located problem symptoms to use to find a matching problem.
2. See “Troubleshooting the problem” on page 1 for the diagnostic procedures to follow to collect additional symptoms needed for a search.
For problems involving system dumps, you need to follow the diagnostic procedures in “Obtaining a system dump” on page 41 and “Formatting a system dump” on page 42.

How to search for a matching problem
This procedure summarizes search symptoms that you can collect by using this document's problem analysis procedures for RACF. You might want to use these symptoms to search for a matching problem in a problem database, or to report to IBM.

If you need descriptions or examples of entire search arguments, see the prerequisite procedure, “Performing a preliminary search for a matching problem” on page 34.

Scan Table 19 for more RACF symptoms that you might want to use in your search for a matching problem (or to report to IBM). It lists some of the most probable search symptoms for problems in RACF.

Note: For abends, more symptoms such as a register/PSW (program status word) difference and a failing instruction area are automatically produced in DAEDATA output, so they are not repeated here. Notes about the symptoms are indicated with asterisks (*) and "Note n", where n is the number of the note.

Table 19. Additional search symptoms for RACF

<table>
<thead>
<tr>
<th>Description of search symptom</th>
<th>Free-format example</th>
<th>Structured example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control block name</td>
<td>ACEE</td>
<td>FLDS/ACEE</td>
</tr>
</tbody>
</table>
Table 19. Additional search symptoms for RACF (continued)

<table>
<thead>
<tr>
<th>Description of search symptom</th>
<th>Free-format example</th>
<th>Structured example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control block field name</td>
<td>ACEEFLG1</td>
<td>FLDS/ACEEFLG1</td>
</tr>
<tr>
<td>Symptoms for later searches</td>
<td>HRF2220 or</td>
<td>LVLS/HRF2220</td>
</tr>
<tr>
<td></td>
<td>UW09958</td>
<td>PTFS/UW09958</td>
</tr>
</tbody>
</table>

Note:

1. If you receive too many matches on your first search, consider adding a control block field name or other text from a RACF error message. (Avoid use of addresses or other values that would vary between executions of the RACF function.)
2. The ID and level at the beginning of a failing module might be pointed to by RACF's PSW at the time of the failure. For abends, the module level might be in the SDWAMLVL field and in DAEDATA output.

Application Identity Mapping Considerations

The conversion utility IRRIRA00 processes a RACF database to activate the function that controls the indexing of application identities for existing databases. IRRIRA00 is responsible for handling the non-RACF application identities that compose the alias index. The term 'alias' refers to any non-RACF application user identity (such as identities for products including Lotus Notes for z/OS, Novell Directory Services for OS/390, and z/OS UNIX System Services) that is part of this index structure.

For more information about the IRRIRA00 utility and the stages of application identity mapping, see z/OS Security Server RACF System Programmer's Guide.

IRRIRA00 activates this in four stages that are controlled by the installation and lists the current stage of the active primary database. Down-level systems do not have any support for application identity mapping, so errors might occur if the RACF database is shared by systems running releases before Version 2 Release 10. Therefore, you should make your changes from your Version 2 Release 10 system only. To prevent changes being made from a down-level system inadvertently, do one of the following before running IRRIRA00:

- Migrate all your systems to Version 2 Release 10
- Use the command protection steps described in z/OS Security Server RACF Security Administrator’s Guide

These examples point out problems that can occur when sharing the RACF database with a system running Version 2 Release 10 or higher that has the application identity mapping support at stage 1 or higher and a down-level system system:

- You ADD a user or group profile with an application identity on a down-level system. The IRRUT200 report runs successfully on the Version 2 Release 10 system, but shows that the mapping profiles were created though no alias indexes were ever created.
- You ALTER an application identity field in a user or group profile with a different application identity on the down-level system. The IRRUT200 report
Considerations

runs successfully on the Version 2 Release 10 system, but shows that the new mapping profiles were created though the old alias indexes that still exist. You must also issue the LISTUSER or LISTGRP command or run DBUNLOAD and compare the output to the IRRUT200 output to see differences.

- You DELETE a user or group profile with a mapping on the down-level system. The IRRUT200 report runs successfully on the Version 2 Release 10 system, but shows the mapping profiles are deleted though the old alias indexes still exist.

Additionally, if base profiles containing application identities are incorrectly manipulated from a down-level system, the alias index is not updated.

LOGREC data set entries for the alias index

In all stages, the getUMAP, getGMAP, and R-usermap callable services report unexpected ICHEINTY and RACROUTE return codes (nonzero return codes other than indicating the profile was not found) with a LOGREC entry. Additionally, if locating an alias index entry fails but a mapping profile is found for a database at Stage 2, the callable service writes an entry to the LOGREC data set with a return code of X'0000000C' and a reason code of X'00000000'. The presence of these LOGREC entries indicates that the alias index is not complete and must be corrected before moving to Stage 3. The variable data for services IRRRGM01 (GID to group name mapping service), IRRRUM01 (UID to user ID mapping service) and IRRRIM00 (application ID to RACF user ID mapping service) serves as the RACF group name or user ID and as the entry name specified on the locate request for the alias index entry.

Recovering from errors with Application Identity Mapping

Before stage 3, RACF maintains mapping profiles and functionality to ensure mapping compatibility with down-level systems that share a database with higher-level systems. This means the RACF database is susceptible to errors if a mapping profile is inadvertently deleted, or if the mapping profile is modified so that the alias index entry does not match the corresponding USER profile, as seen in the previous examples.

With application identity mapping enabled at stage 3, RACF uses an alias index rather than mapping profiles to associate users and groups with specific application identities from products such as Lotus Notes for z/OS, Novell Directory Services for OS/390, or z/OS UNIX System Services. Though unlikely, it is possible that an unexpected error could cause an association mismatch that you can identify by comparing IRRUT200 alias index output with profile information returned from LISTUSER or LISTGRP (or DBUNLOAD). This area suggests methods to correct such inconsistencies.

If the mapping profile exists, and if your database is at stage 3, no profiles in class UNIXMAP, NOTELINK, or NDSLINK should exist. If you find one, you can ignore it just as RACF does. Otherwise, you can delete it using RDELETE. For example:

```
RDELETE UNIXMAP U1
```

If the mapping profile contains lowercase letters, you cannot specify them on the RDELETE command. You must use BLKUPD or RACROUTE to delete the profile.

If your database is at stage 1 or higher and you believe the profile to be incorrect, consider one of these:

- If the alias index entry is missing, and if your database is at stage 0, you should not expect to see any alias index.
Considerations

- If your database is at stage 1 or higher and you do not find any alias index entry corresponding to a specified application identity, you can regenerate the entry by altering the user or group profile with the wanted application identity. For example, you can issue:
  
  ALTUSER YOURID OMVS(UID(1))

- If the mapping profile associated with a user does not exist but the alias index entry does exist (at stage 1 or 2), you can remove the entry by temporarily adding the referenced profile with the indicated application identity, and then deleting the profile. For example, you can issue:

  ADDUSER YOURID OMVS(UID(1))
  DELUSER YOURID

- If an alias index entry references the incorrect user or group, but the user or group profile references a correct application identity, correct this by altering the user or group with the incorrect application identity, and then altering the user or group putting back the correct application identity. Suppose the alias index entry for the Lotus Notes for z/OS SNAME, USER1, references MYID rather than the wanted YOURID. For example, you can issue:

  ALTUSER MYID LNOTES(SNAME(USER1))
  ALTUSER YOURID LNOTES(SNAME(USER1))

Using SAF Trace to debug IBM HTTP server problems

SAF Trace may be used to debug IBM HTTP server problems related to an incorrect SAF keyring configuration. In this area, following are the steps needed to provide the appropriate output to be analyzed. Also provided is sample data for you to compare your output to.

Before you begin

You need to determine if the IBM HTTP server is using SAF keyrings.

- Verify that these lines are in httpd.main.conf:

  - sslmode on
  - sslport 443
  - keyfile mysslring SAF

  If those lines do not exist in httpd.main.conf, stop, this diagnostic procedure does not apply.

- If the operator console says:

  00 ICH408I USER(WEBSERV ) GROUP(IMWEB ) NAME(####################)
  IRR.DIGTCERT.LSTRING CL(FACILITY)
  INSUFFICIENT ACCESS AUTHORITY
  ACCESS INTENT(READ ) ACCESS ALLOWED(NONE )

  You must give WEBSERV READ access to IRR.DIGTCERT.LSTRING in the FACULTY class. WEBSERV is the ID assigned to the web server process.

Starting the trace

Perform these steps to use SAF Trace to debug IBM HTTP server problems related to an incorrect SAF keyring configuration.

1. Turn SAF Trace on for IRRSDL00:

   @SET TRACE(CALLABLE(TYPE(41)) JOBNAME(*))

2. Turn on GTF:

   Start gtfracf.gtf,,noprompt
The order of trace calls

SSL calls the r_datalib (IRRSDL00) callable service. For an error free SSL connection, SAF Trace contains a pre and post record for the r_datalib functions in this order listed:

DataGetFirst
   initial DataGetFirst call that fails due to bad length of parameters

DataGetFirst
   the first DataGetFirst call succeeds

CheckStatus

DataGetNext
   call fails due to bad length of parameters

DataGetNext
   call succeeds

CheckStatus

DataGetNext
   call fails because there are no more certificates in the key ring

DataAbortQuery
   the call ending the query

Examples of each of the post records

Note: This trace was generated by IRRTRC00 with IDENT(R_TACE).

DataGetFirst

Trace Identifier: 00000036
Record Eyecatcher: RTRACE
Trace Type: OMVSPOST
Ending Sequence: ........
Calling address: 00000000 A6168CFA
Requestor/Subsystem: ........ ........
Primary jobname: IMWEBSRV
Primary asid: 00000022
Primary ACEEP: 00000000 009FFDC0
Home jobname: IMWEBSRV
Home asid: 00000022
Home ACEEP: 00000000 009FFDC0
Task address: 00000000 009F0898
Task ACEEP: 00000000 00000000
Time: B5F9F4C7 804A5686
Error class: ........
Service number: 00000029
RACF Return code: 00000000
RACF Reason code: 00000000
Return area address: 00000000 00000000
Parameter count: 00000029
Area length: 00000034
Area value:
2561D0C0 25615600 256155F4 25615604 | ./}{./.../.4./.. |
256155F8 25615608 256155FC 256154D1 | ./.8./.../.../.J |
2561560C 256154D2 256104C0 25615610 | ../../K/M{../ |
A5615790 | v/..
Area length: 00000008
Area value:
D6C6C6E2 C5E30004 | OFFSET.. |
SAF Trace

| Area value: 00000000 | .... | Area value: D6C6C6E2 C5E30008 | OFFSET.. |
| Area length: 00000008 | .... | Area value: 00000000 | .... |
| Area value: 00000008 | .... | Area value: D6C6C6E2 C5E3000C | OFFSET.. |
| Area length: 00000004 | .... | Area value: 00000000 | .... |
| Area value: 00000008 | .... | Area value: D6C6C6E2 C5E30010 | OFFSET.. |
| Area length: 00000004 | .... | Area value: 00000000 | .... |
| Area value: 00000008 | .... | Area value: D6C6C6E2 C5E30014 | OFFSET.. |
| Area length: 00000004 | .... | Area value: 00000000 | .... |
| Area value: 00000008 | .... | Area value: D6C6C6E2 C5E30018 | OFFSET.. |
| Area length: 00000004 | .... | Area value: 00000000 | .... |
| Area value: 00000008 | .... | Area value: D6C6C6E2 C5E30020 | OFFSET.. |
| Area length: 00000004 | .... | Area value: 00000000 | .... |
| Area value: 00000008 | .... | Area value: D6C6C6E2 C5E30024 | OFFSET.. |
| Area length: 00000004 | .... | Area value: 00000000 | .... |
| Area value: 00000008 | .... | Area value: D6C6C6E2 C5E30028 | OFFSET.. |

Note: Offset 10 is the return code, which in this case is 0.

Area length: 00000004
Area value: 00000000 | .... |
Area value: D6C6C6E2 C5E30014 | OFFSET.. |
Area length: 00000004
Area value: 00000000 | .... |
Area value: D6C6C6E2 C5E30018 | OFFSET.. |

Note: Offset 18 is the reason code, which in this case is 0.

Area length: 00000004
Area value: 00000000 | .... |
Area value: D6C6C6E2 C5E30020 | OFFSET.. |
Area length: 00000004
Area value: 00000000 | .... |
Area value: D6C6C6E2 C5E30024 | OFFSET.. |
Area length: 00000004
Area value: 00000000 | .... |
Note: Offset 1C is the function code, which in this case is 01. 01 is DataGetFirst.
Note: Offset 28 is the ring name found in .conf file, which in this case is MYSSLRING.

```
<table>
<thead>
<tr>
<th>Area length:</th>
<th>Area value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>09D48E2</td>
<td>E2D309C9</td>
</tr>
<tr>
<td>D5C7</td>
<td>.MYSSLRING</td>
</tr>
</tbody>
</table>
```

Area length: 00000008
Area value: 00000000 | .... |

Note: Beginning with offset 30, the remaining offsets contain the function specific parameter list (FSPL).

```
<table>
<thead>
<tr>
<th>Area length:</th>
<th>Area value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>25615708</td>
<td>00000002</td>
</tr>
<tr>
<td>000002A5</td>
<td>./.Q............v</td>
</tr>
<tr>
<td>256494B8</td>
<td>00000000</td>
</tr>
<tr>
<td>257DF580</td>
<td>.m.........'5.....</td>
</tr>
<tr>
<td>083599A3</td>
<td>01000000</td>
</tr>
<tr>
<td>00000004</td>
<td>....</td>
</tr>
<tr>
<td>00000038</td>
<td>25610500</td>
</tr>
<tr>
<td>D6C6C6E2</td>
<td>C5E30000</td>
</tr>
<tr>
<td>Area length:</td>
<td>Area value:</td>
</tr>
<tr>
<td>00000000</td>
<td>....</td>
</tr>
</tbody>
</table>
```

Note: Offset 10 is the certificate.

```
<table>
<thead>
<tr>
<th>Area length:</th>
<th>Area value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>308202A1</td>
<td>3082020A</td>
</tr>
<tr>
<td>A0030201</td>
<td>02020100</td>
</tr>
<tr>
<td>00000609</td>
<td>2A864886</td>
</tr>
<tr>
<td>F7000101</td>
<td>05050030</td>
</tr>
<tr>
<td>04D310B3</td>
<td>09060355</td>
</tr>
<tr>
<td>04061302</td>
<td>55533118</td>
</tr>
<tr>
<td>30160603</td>
<td>55040A13</td>
</tr>
<tr>
<td>0F4D5920</td>
<td>434F4050</td>
</tr>
<tr>
<td>4148592C</td>
<td>2049494E</td>
</tr>
<tr>
<td>31243022</td>
<td>06035504</td>
</tr>
<tr>
<td>08131B48</td>
<td>5504414E</td>
</tr>
<tr>
<td>20524553</td>
<td>4F555243</td>
</tr>
<tr>
<td>45532043</td>
<td>45525449</td>
</tr>
<tr>
<td>46394341</td>
<td>5445301E</td>
</tr>
<tr>
<td>17003031</td>
<td>30363038</td>
</tr>
<tr>
<td>30353030</td>
<td>0305A17</td>
</tr>
<tr>
<td>00023030</td>
<td>36313030</td>
</tr>
<tr>
<td>34353935</td>
<td>395A3040</td>
</tr>
<tr>
<td>60035504</td>
<td>06130255</td>
</tr>
<tr>
<td>03318300</td>
<td>53311830</td>
</tr>
<tr>
<td>16060355</td>
<td>048A130F</td>
</tr>
<tr>
<td>4D592043</td>
<td>4F450454</td>
</tr>
<tr>
<td>30086603</td>
<td>4944331</td>
</tr>
<tr>
<td>24302206</td>
<td>03350400</td>
</tr>
<tr>
<td>11088455</td>
<td>04142E4</td>
</tr>
<tr>
<td>5246534F</td>
<td>55524345</td>
</tr>
<tr>
<td>53204345</td>
<td>52544946</td>
</tr>
<tr>
<td>49434154</td>
<td>4530819F</td>
</tr>
<tr>
<td>3000060E</td>
<td>2A864886</td>
</tr>
<tr>
<td>F7000101</td>
<td>01050003</td>
</tr>
<tr>
<td>D6C6C6E2</td>
<td>C5E30000</td>
</tr>
<tr>
<td>Area length:</td>
<td>Area value:</td>
</tr>
<tr>
<td>00000000</td>
<td>....</td>
</tr>
</tbody>
</table>
```

Note: Beginning with offset 30, the remaining offsets contain the function specific parameter list (FSPL).

```
<table>
<thead>
<tr>
<th>Area length:</th>
<th>Area value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>25615708</td>
<td>00000002</td>
</tr>
<tr>
<td>000002A5</td>
<td>./.Q............v</td>
</tr>
<tr>
<td>256494B8</td>
<td>00000000</td>
</tr>
<tr>
<td>257DF580</td>
<td>.m.........'5.....</td>
</tr>
<tr>
<td>083599A3</td>
<td>01000000</td>
</tr>
<tr>
<td>00000004</td>
<td>....</td>
</tr>
<tr>
<td>00000038</td>
<td>25610500</td>
</tr>
<tr>
<td>D6C6C6E2</td>
<td>C5E30000</td>
</tr>
<tr>
<td>Area length:</td>
<td>Area value:</td>
</tr>
<tr>
<td>00000000</td>
<td>....</td>
</tr>
</tbody>
</table>
```

Note: Offset 10 is the certificate.
SAF Trace

819030B1 8D304B06 0955100F 0186F842 | a.a..........f8. |
0100D43E 133C4765 66657261 74656420 | ..........>./. . |
62792074 68652053 65637572 65576179 | . ........./ |
20535653 75726974 79205365 72766572 | .|....|..... |
20668F72 204F532F 33393020 28524143 | ./>.|.|. .... |
4629300E 0603561D 0F0101FF 04040302 | 0006300F 0603561D 130101FF 04053003 |............. |
0101FF30 1D060355 1D0E0416 0414D79A | .`........../>` |
44A04557 328E9635 E655137D 52E787D4 | .w.o.W."XgM |
462E3000 06092008 4866F670 01010505 | .K...f.f7..... |
0003B181 0052EECE 33783893 19B90568 | .aa...#.N. |
AD75205C 97C4DE5 C16013E3 1EEA0526 | ...60(VA...T..W |
D00A29B1 CA6990C0 0ABAD5B9 6C61F417 | )...........N/2/4/ |
95E20D05 CEBB8848 178D222A E38C0154 | nS.N.Y...#K.T.... |
FD664400 8AAB03DA 00750127 079743F5 | .W........J.p.5 |
00ED5E58 DC41FF9 2937C930 E3068662 | ........9.I.T.... |
096D6D5C B680A812 5F589566 150D868C | .o...y-en...Q... |
ECF12799 A58E813B 94DF5F51 45D9C3E2 | .rv.a.m.S...CS |
27C64C2E BD | F<.. |
Area length: 00000008 |
Area value: D6C6C6E2 C5E3001B | OFFSET.. |

Note: Offset 18 is the private_key_ptr. In this case, the length of 0 indicates that there is no key.

Area length: 00000000 |
Area value: |
Area length: 00000008 |
Area value: D6C6C6E2 C5E30028 | OFFSET.. |

Note: Offset 28 is the label.

Area length: 00000009 |
Area value: D4E84D07 02C940C3 C1 | MY PKI CA |
Area length: 00000008 |
Area value: D6C6C6E2 C5E3003C | OFFSET.. |
Area length: 0000004F |
Area value: 3D3D10B 30090603 55040613 02555331 | (. ............ |
18D1606 0355040A 130F4D05 20434F4D | ...........]| |
50414E59 2C20494E 43312430 22060355 | &.++++++ |
4D0B131B 45554541 4E205245 53F5552 | ...(+.....)| |
4355320 43552524 49464943 415445 | ................ |
Area length: 00000008 |
Area value: D6C6C6E2 C5E30044 | OFFSET.. |
Area length: 00000038 |

Note: Offset 44 is the Subjects_DN.

Area value: F0F040D6 E47EC8E4 D4C1D54A D9C5E2D6 | 00.OU=HUMAN&RESO |
E40C3C5 E24AC3C5 D9E3C9C6 C93C3C1E3 | URCESE&CERTIFICAT |
C54B0DF7 E4DB8AC3 D604D7C1 05E88B4A | E.O=MyCompany,E |
C905C34B C73E4AE2 | INC.C=US |
Area length: 00000008 |
Area value: C1C3C5C5 FF0000A4 02000000 00000000 | ACEE...y........ |
00000000 07E6C5C2 E2D50965 0000C9D4 | ......WEBERV.IM |
E6C5E240 40800101 0501163F C904E6C5 | WEB ......IMWE |
C22208E5 00000000 00000000 00000000 | BSRV............. |
### SAF Trace

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40404040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>009FDF90</td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>009FAE0</td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>00200000</td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>009F84B</td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>009FFD70</td>
<td></td>
</tr>
</tbody>
</table>

**Area length:** 00000050

**Area value:**

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50012004</td>
<td>0000C000</td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>009F0898</td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>E6C5C2E2</td>
<td>C509E540</td>
<td>WEBSERV IMWEB</td>
</tr>
</tbody>
</table>

**Area length:** 00000090

**Area value:**

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1C3C5E7</td>
<td>03000000</td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>00000000</td>
<td></td>
</tr>
</tbody>
</table>

**Hexadecimal dump of record follows:**

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0000</td>
<td>00000036</td>
<td>D9E3D9C1 C3C5E7 C5D9E540 D6D4E5E2</td>
</tr>
<tr>
<td>+0010</td>
<td>D7D6E2E3</td>
<td>00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0020</td>
<td>A618CFA</td>
<td></td>
</tr>
<tr>
<td>+0030</td>
<td>00000029</td>
<td></td>
</tr>
<tr>
<td>+0040</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0050</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0060</td>
<td>00F55C80</td>
<td></td>
</tr>
<tr>
<td>+0070</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0080</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0090</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+00A0</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+00B0</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+00C0</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+00D0</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+00E0</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+00F0</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0100</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0110</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0120</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0130</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0140</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0150</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0160</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0170</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0180</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0190</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+01A0</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+01B0</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+01C0</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+01D0</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+01E0</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+01F0</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0200</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0210</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0220</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0230</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0240</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>+0250</td>
<td>00000000</td>
<td></td>
</tr>
</tbody>
</table>

---

Chapter 2. Collecting and analyzing problem data 89
SAF Trace

Note: All remaining examples contain the Function Specific Parameter List (FSPL) part of the trace record. All functions have the same parameter in the r_datalib parameter list, with different values.

CheckStatus

D6C6C6E2 C5E30030 | OFFSET.. | 0000000000
Area length: 00000008
Area value: 00002A5 256494B8
Area length: 00000008
Area value: D6C6C6E2 C5E30004

Note: Offset 4 is the Certificate.

Area length: 000002A5
Area value: 308202A1 3082020A A0030201 02020100 ..b..b......
           30160603 55040A13 040D0243 4F555243 ...
           54555243 46554451 46455541 54455541E
           17030301 30363038 30353030 30353030
           00320303 36313030 34353535 34353535
           5A343535 25313035 5A343535 34353535
           16050355 040A130F 040D0243 4F555243 ...
           4E592C20 494E4331 24302206 0355040B ...
           30160603 55040A13 040D0243 4F555243 ...
           D73D4ECD 16161537 E5E786A1 4C0A09A9
           1464E572 35D5F9C 040D0243 45FDF230 ..V..M......
           53204345 52544946 49444145 4930819F .........a.
           30000609 2A864686 F7000101 01050003 ..f.f7...
SAF Trace

46D2300D 06092A86 4886F70D 01010505 ...f.f7......
000381B1 0052ECEE 33768393 19B9D568 ...aa...#.N,
AD75205 C97C4DE5 C16D13E3 1EEA02E6 ...10(VA...T...W
D00A29B1 CA498CC 0BAAD598 6C61F417 }........N.5/4.
95E2807D 0CAEB80A1 B7D5222A E3BC5154 ns...K.T...
FD664690 8A4BB3DA 0D75D127 079743F5 .W........J..p.5
0095DE58 DC41FF9 2937C933 E3086662 ...........9.I.T...
0096D5DC 05B59566 150BDB0C .o.*..y.¬en..Q,. 27C64CE2 BD .F<..
Area length: 000000A8
Area value:
C1C3C5C5 00000000 00000000 00000000 ACEE...y........
00000000 00000000 00000000 00000000 &.....{.........
50012004 00000000 00000000 00000000 ........
00000000 00000000 00000000 00000000 ........
00000000 00000000 00000000 00000000 ........
00000000 00000000 00000000 00000000 ........
E6C5C240 C9D4E6C5 C2404040 WEB ......IMWEB
Area length: 00000090
Area value:
C1C3C5E7 03000000 03000000 03000000 ACEx............
00000000 00000000 00000000 00000000 ................
00000000 00000000 00000000 00000000 ................
00000000 00000000 7F8770A0 00000000 ........"g....
00000000 00000000 00000000 00000000 ........
00000000 00000000 009F0898 00000000 ...........q....
00F55C80 00000000 00000000 00000000 ................
00000000 00000000 00000000 00000000 ................
00000000 00000000 7F8770A0 00000000 ........"g....
00000000 00000000 00000000 00000000 ........
Area length: 00000000
Area value:
Hexadecimal dump of record follows:
+0000 00000036 D9E3D9C1 C3C54040 D6D4E5E2 ....RTRACE OMVS
+0010 D76E5E2E 00000000 00000000 00000000 POST
+0020 00000000 00000000 00000000 00000000 ........
+0030 A6168F34 00000000 00000000 40400000 w...........w
+0040 00000000 00000000 00000000 00000000 ...........
+0050 00000000 00000000 009F0898 00000000 ...........q...
+0060 00F55C80 00000000 00F55C80 00000000 .5*...5*
+0070 00000022 C9D4E6C5 C2E2D9E5 C9D4E6C5 ....IMWEBRVRMWEB
+0080 C2E2D9E5 00000000 009F0898 00000000 BSVR{......94G
+0090 009F0898 00000000 00000000 00000000 .......
+00A0 00000000 00000000 00000000 00000000 .F%....
+00B0 00000000 00000000 00000000 00000000 ...........
+00C0 25615600 256155F4 25615604 256155F8 .../...A./.../.
+00D0 25615608 256156FC 25615600 2561560C .../.../.../......
+00E0 25615802 256156C0 25615610 A561554C ./.K./M/.../....
+00F0 00000008 D6C6C6E2 C5E30004 00000004 ........OFFSET...
+0100 00000000 00000000 00000000 00000000 ........OFFSET....
+0110 00000004 00000000 00000000 00000004 00000000 ........OFFSET...
+0120 C5E3000C 00000000 00000000 00000000 00000000 .....OFFSET.
+0130 D6C6C6E2 C5E30010 00000004 00000000 00000000 ........OFFSET...
+0140 00000000 00000000 00000000 00000000 00000000 ........OFFSET.
+0150 00000000 00000000 00000000 00000000 00000000 ........OFFSET.
+0160 00000000 00000000 00000000 00000000 00000000 ........OFFSET.

92 z/OS V2R2 Security Server RACF Diagnosis Guide
SAF Trace

+0170 C5E3001C 00000001 04000000 0B6D5C6E ET............OFF
+0180 E2C5E300 20000000 04000000 00000000 SET............
+0190 0B6D5C6E E2C53E00 24000000 01000000 .OFFSET........
+01A0 000B5D6C C62C5E3E 00280000 000A9D04 ..OFFSET.....M
+01B0 E8E2C5E2 09C5D5C7 00000008 D6C65C62 YSSLURING....OFFS
+01C0 C5E3002C 00000004 00000000 00000000 ET............
+01D0 D6C65C6E C5E30030 00000008 000002A5 OFFSET.........v
+01E0 0008D6C6 C6E2C5E3 00280000 000A9D04 ..OFFSET.......M
+01F0 000002A5 380202A1 00000000 00000000 ...v.b~.b......
+0200 02020100 30000609 2A864B86 F70010101 f.f7...
+0210 05050503 3D108380 09063555 04061302 ..(............
+0220 55553118 30160603 55040A13 0F4F5920 .1(................
+0230 43A4F505 14A5E92C 20494E03 31243022 |&+..............
+0240 06035504 08131849 54414A04 20524553 ..(............
+0250 55552453 45523043 45525449 46494341 |................
+0260 55552453 45523043 30000609 2A864B86 F70010101 a...f.f7...
+0270 55552453 45523043 30000609 2A864B86 F70010101 a...f.f7...
+0280 03550408 13184605 00000000 00000000 ..(.+.....
+0290 040E5154 45523043 30000609 2A864B86 F70010101 a...f.f7...
+02A0 000002A5 380202A1 00000000 00000000 ...v.b~.b......
+02B0 02020100 30000609 2A864B86 F70010101 f.f7...
+02C0 45525449 45524946 46494341 |................
+02D0 45525449 45524946 46494341 |................
+02E0 45525449 45524946 46494341 |................
+02F0 45525449 45524946 46494341 |................
+3480 Chapter 2. Collecting and analyzing problem data 93
### SAF Trace

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>+05A0</td>
<td>E7030000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+05B0</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+05C0</td>
<td>00000000 24009FED 00000000 00000000</td>
</tr>
<tr>
<td>+05D0</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+05E0</td>
<td>00000000 07FF8770 00000000 00000000</td>
</tr>
<tr>
<td>+05F0</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0600</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0610</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0620</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>+0630</td>
<td>00</td>
</tr>
</tbody>
</table>

#### DataGetNext

The resulting example output is the same as a **DataGetFirst** example.

#### DataAbortQuery

Your results may contain a certificate. This particular DataAbortQuery follows a DataGetNext that failed because there were no certificates are in the key ring.

```
D6C6C6E2 C5E30030 | OFFSET.. |
Area length: 00000004
Area value: 256157D8 | ./.Q |
Area length: 00000008
Area value: D6C6C6E2 C5E30000 | OFFSET.. |
Area length: 00000014
Area value: 00000000 00000000 00000000 00000000 | |
```

---

**Hexadecimal dump of record follows:**

```
+0000 00000036 D9E3D9C1 C3C54040 D6D4E5E2 |RTRACE OMVS |
+0010 00000036 C3C54040 D6D4E5E2 |RTRACE OMVS |
+0020 00000036 C3C54040 D6D4E5E2 |RTRACE OMVS |
```
Using the trace to find problems

If SSL does not start, or starts but SSL handshake does not occur, turn on trace, and restart the web server. Calls to r_datalib occur when the web server is being started. You should be able to tell from this list what went wrong based on the trace you received. For these trace examples, important trace information is followed by an explanatory note.

- First DataGetFirst contains a return code of 8 with a reason code of 54

All of the trace results offset 8 are not shown. The sample trace follows:
SAF Trace

Area value: D6C6C6E2 C5E30010 | OFFSET...

Note: Offset 10 is the return code

Area length: 00000004
Area value: 00000000

Note: Hex 8 in the return code value

Area length: 00000008
Area value: D6C6C6E2 C5E30014 | OFFSET...

Area length: 00000004
Area value: 00000000

Note: Offset 18 is the reason code

Area length: 00000004
Area value: 00000000

Note: Hex 54 is the reason code value

54 in hex is equal to a reason code of 80 which for this function is reason: Profile for ring_name not found. The next step for fixing this problem would be to look at the trace at offset 28 and compare the ring name found there with the one in the keyfile area of the .conf file. An example of output at offset 28 is the first DataGetFirst previous example. Check that the ring name is correct. Note, ring names are case-sensitive and must be owned by the web server daemon user ID (WEBSRV by default). This can be checked using the RACDCERT LISTRING TSO command.

• SSL doesn't start on the server and there are no traces.
  Check the keyfile like in the http.main.conf file. It should look like this:
  keyfile MYSSLRING SAF

  If the SAF positional parameter is missing, then System SSL treats the name as a GSKKYMAN key file, not a RACF keyring, hence there is no trace. If the keyfile really is a RACF keyring, add the SAF positional parameter.

• Second DataGetNext has a reason code 2C.
  Hex 2C is reason code 44: Record not found. This means that there is a problem with one of the two certificates that are attached to the ring. To find out what exactly is wrong, some more research is needed.
  In order for SSL to function properly the key ring needs:
  – to be owned by the ID who assigned to the web server process
  – to contain a signing CERTAUTH certificate with CERTAUTH usage
  – to contain a PERSONAL certificate owned by the ID who is assigned to the web server process. This certificate must also be signed by the CERTAUTH certificate and be marked DEFAULT.
  – to have neither certificate marked NOTRUST
To learn what could be wrong a RACDCERT should be issued:
RACDCERT ID(webserver-user-id) LISTRING(MYSSLRING)

WEBSERV is the name of the ID who assigned to the web server process.
MYSSLRING is the name that is listed in the keyfile area of the .conf file. The
output should be similar to this example:

Ring:

<table>
<thead>
<tr>
<th>Certificate Label Name</th>
<th>Cert Owner</th>
<th>USAGE</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MY PKI CA</td>
<td>CERTAUTH</td>
<td>CERTAUTH</td>
<td>NO</td>
</tr>
<tr>
<td>SSL CERT</td>
<td>ID(WEBSERV)</td>
<td>PERSONAL</td>
<td>YES</td>
</tr>
</tbody>
</table>

Looking at this output verifies most of these conditions.
The output: "IRRD114I Ring MYSSLRING does not exist." indicates that the ring
in the .conf file does not exist, or that it is not owned by the ID assigned to the
web server process.

To check the signer of the PERSONAL certificate is the CERTAUTH certificate
and that neither certificate is marked NOTRUST, other commands must be used.
Using the previous certificate label names, the commands and output are listed:

Command:
RACDCERT ID(WEBSERV) LIST(LABEL('SSL CERT'))

Output:
Label: SSL CERT
Certificate ID: 2QfmxLixdnl4uLTQMPF2eNA
Status: TRUST
Start Date: 2001/06/25 00:00:00
End Date: 2002/06/25 23:59:59
Serial Number: >01<
Issuer's Name:
>OU=HUMAN RESOURCES CERTIFICATE.O=MY COMPANY, INC.C=US<
Subject's Name:
>CN=WWW.MYCOMPANY.COM.O=MY COMPANY INC.L=MILLBROOK.SP=NEW YORK.C=US<
Signing Algorithm: sha1RSA
Key Type: RSA
Key Size: 1024
Private Key: YES
Ring Associations:
Ring Owner: WEBSERV
Ring:
>MYSSLRING<

Command:
RACDCERT CERTAUTH LIST(LABEL('MY PKI CA'))

Output:
Label: MY PKI CA
Certificate ID: 2QiJmZmDhZmjgdToQNF5yUDDwU8A
Status: TRUST
Start Date: 2001/06/08 00:00:00
End Date: 2020/06/09 23:59:59
Serial Number: >00<
Issuer's Name:
>OU=HUMAN RESOURCES CERTIFICATE.O=MY COMPANY, INC.C=US<
Subject's Name:
>OU=HUMAN RESOURCES CERTIFICATE.O=MY COMPANY, INC.C=US<
SAF Trace

Key Usage: CERTSIGN
Signing Algorithm: sha256RSA
Key Type: RSA
Key Size: 2048
Private Key: YES
Ring Associations:
  Ring Owner: WEBSERV
  Ring:
    >MYSSLRING<

Note: Both certificates have TRUST status and the PERSONAL certificate was issued by the CERTAUTH certificate.

Compare your results with the examples provided to evaluate your situation for common IBM HTTP Server related problems that are related to an incorrect SAF keyring configuration. If you need more assistance when you are done, you might want to consider calling the IBM support center.
Chapter 3. Reporting RACF problems to IBM

Prerequisites

See "Troubleshooting the problem" on page 1 and the diagnostic procedures for this type of problem.

You also need to understand the procedures for reporting a problem to the IBM support center.

Introduction to reporting RACF problems to IBM

This describes the information that you need to collect before you report any RACF problems to IBM. The procedure lists only the information that the IBM support center is most likely to request.

When you report a problem, you need to describe your system and the problem that you experienced. The people at the IBM support center use this information to see whether your problem is already known to IBM and to check whether a fix is available.

Note: If you have the Information/MVS or Information/Access product, or a similar problem-search tool, you can do checking for a duplicate known problem yourself. "Performing a preliminary search for a matching problem" on page 34 and "Searching for a matching problem" on page 81 have advice on which RACF symptoms to use in search arguments for search tools.

If you report a new, unique problem, you need to provide additional problem information.

How to report RACF problems to IBM

Before calling IBM, collect the information called for in the worksheet for your type of problem. See Figures Table 20 on page 100 through Table 28 on page 105 for the applicable worksheet.

Consider collecting all the information about the worksheets before reporting the problem, to speed up your phone conversation if the support center needs the information.

The support center people usually want you to provide the information in the same order as in the checklist.

Recommendations

1. Before you call, you need to have a listing or an interactive display ready that shows any problem information that you obtained from a system dump or another data set.

2. For the most efficient phone conversations with IBM, consider having IPCS (Interactive Problem Control System) ready for interactive dump displays during the conversation. Formatting a system dump on page 42 has advice about using IPCS.
**Procedure**

For the complete list of diagnostic procedures for each type of problem, see “Troubleshooting tables for problems in RACF” on page 7.

**Table 20. Information to gather before calling IBM with abend problems**

<table>
<thead>
<tr>
<th>Information to gather before calling IBM with abend problems</th>
</tr>
</thead>
</table>

You can use this worksheet to write on directly or as a guide for making your own notes elsewhere.

1. Level of z/OS: _____ (Example: z/OS Version 1 Release 1)
2. RACF is enabled for sysplex communication: _____
   - non-data sharing mode _____
   - data sharing mode _____
   - read-only mode _____
3. System is configured as an RRSF node: _____
   - local mode _____
   - remote mode _____
4. PTF level of abending module: _____ (Example: UW27135)
5. Installation exits installed (which exits are used and what they do):
6. User modifications, if any (which modules are modified and what the modifications do):
7. Any recent changes (such as maintenance applied, Security Server options changed, new program products, new hardware):
8. A formatted system dump with options: SUMMARY SUMDUMP FORMAT CURRENT TRACE LOGDATA LPAMAP CPUDATA SYMPTOMS
9. The message that contains the abend code: ________ Complete message text:
10. Assembler listing, if source is available.
11. If a hardware problem is suspected, EREP (error recording and editing program) records.

**Table 21. Information to gather before calling IBM with documentation problems**

<table>
<thead>
<tr>
<th>Information to gather before calling IBM with documentation problems</th>
</tr>
</thead>
</table>

You can use this worksheet to write on directly or as a guide for making your own notes elsewhere.

1. Level of z/OS: _____ (Example: z/OS Version 1 Release 1)
2. RACF is enabled for sysplex communication: _____
   - non-data sharing mode _____
   - data sharing mode _____
   - read-only mode _____
3. System is configured as an RRSF node: _____
   - local mode _____
   - remote mode _____
4. Installation exits installed (which exits are used and what they do):
5. User modifications, if any (which modules are modified and what the modifications do):
6. Publication title and order number (with dash level):
7. Page number or topic number: ______
**Table 22. Information to gather before calling IBM with output problems**

<table>
<thead>
<tr>
<th>Information to gather before calling IBM with output problems</th>
</tr>
</thead>
</table>

You can use this worksheet to write on directly or as a guide for making your own notes elsewhere.

1. Level of z/OS: ______ (Example: z/OS Version 1 Release 1)
2. RACF is enabled for sysplex communication: ______
   - non-data sharing mode ______
   - data sharing mode ______
   - read-only mode ______
3. System is configured as an RRSF node: ______
   - local mode ______
   - remote mode ______
4. Installation exits installed (which exits are used and what they do):
5. User modifications, if any (which modules are modified and what the modifications do):
6. Any recent changes (such as maintenance applied, RACF options changed, new program products, new hardware):
7. Description of RACF request that caused incorrect output (who did it—user's attributes, routine running, or both—and what was done):
8. IBM reference material that explains what correct output should look like:
9. Online or printed copy of output, or other indications that the output is incomplete:
10. If available, please attach example of good output (before problem occurred).
11. If a report writer problem, please attach a listing of the SMF (system management facilities) records.

**Table 23. Information to gather before calling IBM with logon problems**

You can use this worksheet to write on directly or as a guide for making your own notes elsewhere.

<table>
<thead>
<tr>
<th>Information to gather before calling IBM with logon problems</th>
</tr>
</thead>
</table>
Table 23. Information to gather before calling IBM with logon problems (continued)

<table>
<thead>
<tr>
<th>Information to gather before calling IBM with logon problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>You can use this worksheet to write on directly or as a guide for making your own notes elsewhere.</td>
</tr>
</tbody>
</table>
| Note: Before filling out this worksheet, make sure the users are not “revoked”.
| 1. Level of z/OS: _____ (Example: z/OS Version 1 Release 1)
| 2. RACF is enabled for sysplex communication: _____
| - non-data sharing mode _____
| - data sharing mode _____
| - read-only mode _____
| 3. System is configured as an RRSF node: _____
| - local mode _____
| - remote mode _____
| 4. Installation exits installed (which exits are used and what they do):
| 5. User modifications, if any (which modules are modified and what the modifications do):
| 6. Any recent changes (such as maintenance applied, RACF options changed, new program products, new hardware):
| 7. How many users cannot log on? _____
| 8. Are there any aspects that the users having logon problems share, such as group memberships or authorities?
| 9. When users attempt to log on, what message, if any, is displayed?
| 10. If applicable, have SMF records related to the logon problem available.

Table 24. Information to gather before calling IBM with loop problems

<table>
<thead>
<tr>
<th>Information to gather before calling IBM with loop problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure</td>
</tr>
</tbody>
</table>

### Table 24. Information to gather before calling IBM with loop problems (continued)

<table>
<thead>
<tr>
<th>Information to gather before calling IBM with loop problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>You can use this worksheet to write on directly or as a guide for making your own notes elsewhere.</td>
</tr>
<tr>
<td>1. Level of z/OS: _____ (Example: z/OS Version 1 Release 1)</td>
</tr>
<tr>
<td>2. RACF is enabled for sysplex communication: _____</td>
</tr>
<tr>
<td>• non-data sharing mode _____</td>
</tr>
<tr>
<td>• data sharing mode _____</td>
</tr>
<tr>
<td>• read-only mode _____</td>
</tr>
<tr>
<td>3. System is configured as an RRSF node: _____</td>
</tr>
<tr>
<td>• local mode _____</td>
</tr>
<tr>
<td>• remote mode _____</td>
</tr>
<tr>
<td>4. Installation exits installed (which exits are used and what they do):</td>
</tr>
<tr>
<td>5. User modifications, if any (which modules are modified and what the modifications do):</td>
</tr>
<tr>
<td>6. Any recent changes (such as maintenance applied, RACF options changed, new program products, new hardware):</td>
</tr>
<tr>
<td>7. What external symptoms indicate that there is a loop (such as multiple copies of output or poor performance)?</td>
</tr>
<tr>
<td>8. Description of routines involved in loop, with addresses of instructions, if available:</td>
</tr>
<tr>
<td>9. What conditions the loop occurs in:</td>
</tr>
<tr>
<td>10. Whether loop is ___ enabled or ___ disabled.</td>
</tr>
<tr>
<td>11. If loop is enabled, please include a standalone system dump.</td>
</tr>
<tr>
<td>12. If applicable, please have available online or (preferably) printed output.</td>
</tr>
</tbody>
</table>

### Table 25. Information to gather before calling IBM with message problems

<table>
<thead>
<tr>
<th>Information to gather before calling IBM with message problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>You can use this worksheet to write on directly or as a guide for making your own notes elsewhere.</td>
</tr>
<tr>
<td>1. Level of z/OS: _____ (Example: z/OS Version 1 Release 1)</td>
</tr>
<tr>
<td>2. RACF is enabled for sysplex communication: _____</td>
</tr>
<tr>
<td>• non-data sharing mode _____</td>
</tr>
<tr>
<td>• data sharing mode _____</td>
</tr>
<tr>
<td>• read-only mode _____</td>
</tr>
<tr>
<td>3. System is configured as an RRSF node: _____</td>
</tr>
<tr>
<td>• local mode _____</td>
</tr>
<tr>
<td>• remote mode _____</td>
</tr>
<tr>
<td>4. Installation exits installed (which exits are used and what they do):</td>
</tr>
<tr>
<td>5. User modifications, if any (which modules are modified and what the modifications do):</td>
</tr>
<tr>
<td>6. Any recent changes (such as maintenance applied, RACF options changed, new program products, new hardware):</td>
</tr>
<tr>
<td>7. Complete message text, including any related messages that immediately precede or follow it:</td>
</tr>
<tr>
<td>8. Name of routine running when message is issued:</td>
</tr>
</tbody>
</table>
### Table 26. Information to gather before calling IBM with performance problems

You can use this worksheet to write on directly or as a guide for making your own notes elsewhere.

1. Level of z/OS: ______ (Example: z/OS Version 1 Release 1)
2. RACF is enabled for sysplex communication: ______
   - non-data sharing mode ______
   - data sharing mode ______
   - read-only mode ______
3. System is configured as an RRSF node: ______
   - local mode ______
   - remote mode ______
4. Installation exits installed (which exits are used and what they do):
5. User modifications, if any (which modules are modified and what the modifications do):
6. Any recent changes (such as maintenance applied, RACF options changed, new program products, new hardware):
7. Description of the conditions in which degradation occurs:
8. Any console messages (please attach).

### Table 27. Information to gather before calling IBM with return code problems

You can use this worksheet to write on directly or as a guide for making your own notes elsewhere.

1. Level of z/OS: ______ (Example: z/OS Version 1 Release 1)
2. RACF is enabled for sysplex communication: ______
   - non-data sharing mode ______
   - data sharing mode ______
   - read-only mode ______
3. System is configured as an RRSF node: ______
   - local mode ______
   - remote mode ______
4. Installation exits installed (which exits are used and what they do):
5. User modifications, if any (which modules are modified and what the modifications do):
6. Any recent changes (such as maintenance applied, RACF options changed, new program products, new hardware):
7. The return code you expected: ______
   The return code you received: ______
8. The RACF macro request that caused the return code (including the parameters passed):
9. The order number (with dash level) and page number or topic number of your copy of the document in which you found the description of the return code:
   Order number: __________ Page number or topic number: ______
10. Assembler listing of program.
### Table 28. Information to gather before calling IBM with wait problems

<table>
<thead>
<tr>
<th>Information to gather before calling IBM with wait problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>You can use this worksheet to write on directly or as a guide for making your own notes elsewhere.</td>
</tr>
<tr>
<td>1. Level of z/OS: ______ (Example: z/OS Version 1 Release 1)</td>
</tr>
<tr>
<td>2. RACF is enabled for sysplex communication: ______</td>
</tr>
<tr>
<td>• non-data sharing mode ______</td>
</tr>
<tr>
<td>• data sharing mode ______</td>
</tr>
<tr>
<td>• read-only mode ______</td>
</tr>
<tr>
<td>3. System is configured as an RRSF node: ______</td>
</tr>
<tr>
<td>• local mode ______</td>
</tr>
<tr>
<td>• remote mode ______</td>
</tr>
<tr>
<td>4. Installation exits installed (which exits are used and what they do):</td>
</tr>
<tr>
<td>5. User modifications, if any (which modules are modified and what the modifications do):</td>
</tr>
<tr>
<td>6. Any recent changes (such as maintenance applied, RACF options changed, new program products, new hardware):</td>
</tr>
<tr>
<td>7. PSW (program status word): ________</td>
</tr>
<tr>
<td>8. Source and assembler listing of routine in which wait occurred, if available.</td>
</tr>
</tbody>
</table>
Procedure
Chapter 4. Troubleshooting your RACF database

This topic describes the organization of the RACF database and explains how you can troubleshoot and repair it by using some of the RACF utilities.

You can get a better understanding of the contents of your RACF database by running the database unload utility, IRRDBU00. If you unload your RACF database to a sequential file (using the IRRDBU00 utility), you might uncover problems in your database that you find only when reading the profile. This utility reads every profile.

For more information about using the IRRDBU00 utility, see z/OS Security Server RACF Macros and Interfaces and z/OS Security Server RACF Security Administrator's Guide.

You might also find it advantageous to use the IRRUT200 RACF database verification utility program to assist in locating problems in your RACF database. For more details, see z/OS Security Server RACF System Programmer's Guide.

Format of the RACF database

This describes the format of the RACF database.

Each RACF database is a non-VSAM single extent data set that is made up of 4 KB blocks and must be cataloged.

A RACF database consists of several types of records:

**Header block (inventory control block, ICB)**

Is the first block in a RACF database and provides a general description of the database.

**Templates**

Contain mappings of the entity records for the RACF database.

**Segment table block**

Contains mappings of individual segments from within a template.

**BAM (block availability mask) blocks**

Determine allocation of space within the RACF database.

**Index blocks**

Locate entity records (profiles) in the RACF database.

If you are using application identity mapping and it is in stage 1, 2, or 3, there is an alternative alias index to consider. This alias index correlates an application identity (a set field that is defined within a non-base segment within the RACF templates, such as the OMVS UID field) to a base profile (the user or group profile which has an application identity field set to a particular value).

**Profiles (entity records)**

Contain descriptions of the attributes and authorities for every entity that is defined to RACF. These entities are:

- User profiles
- Group profiles
Database format

- DASD data set profiles
- Profiles for resources that are defined by entries in the class descriptor table

Figure 4 illustrates the format of the database.

<table>
<thead>
<tr>
<th>Block 0 (Header (ICB))</th>
<th>Block 1 (Template)</th>
<th>Blocks 1 to 9</th>
<th>Block &quot;A000&quot;</th>
<th>Block &quot;B000&quot;</th>
<th>Block &quot;C000&quot;</th>
<th>Data or Index Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved Template Block</td>
<td>Segment Table</td>
<td>BAM (1 or more blocks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Format of the RACF database

Relative byte addresses (RBA) up to the first BAM block are identified by their position. The need for more BAM blocks is driven by the size of the database. See "BAM block header" on page 109 for more information.

Any RBAs that are after the BAMs consist of unassigned blocks, index blocks, and data blocks. A profile's segment data may begin at any 256-byte slot with a 4 K data block and then continue in consecutive slots, through consecutive RBAs. Therefore, it is possible that a field definition (which is what constitutes the contents of a profiles segment data) starts in one RBA, and completes upon another, possibly spanning many RBAs. The field definition might then deposit a byte of any value in the first byte of the first slot of an RBA.

If initially it might seem a false positive for an index block (X'8A'), a forceful approach read the RACF database might not be able to determine the RBA type by just checking the first byte of the RBA. The index structure and the sequence set provide the information to find a profiles segment data, in its assigned 256-byte slot with a data block. The logical length of the profile indicates the number of consecutive 256-byte slots that are needed.

Therefore, values you might use to locate blocks are:
- X'02' - segment table
- X'00' - BAM
- X'83' - data
- X'8A' - index
- X'C3' - empty block

Header block (ICB)

The ICB (inventory control block) has a relative byte address of zero. RACF uses the ICB to locate the other blocks in a RACF database. Each RACF database has an ICB, but RACF uses only the ICB for the master primary data set when determining the setting of options.

See Appendix A, “The Inventory Control Block (ICB),” on page 249 for the fields shown in the data area, ICB.
Templates

IRRTEMP2 contains database profile mappings. When your installation creates the database, IRRMIN00 reads the mappings, formats them, and writes them to the RACF database.

RACF provides a template for each type of profile (user, group, data set, and general resource). Each profile consists of a BASE segment, plus other potential segments, for example, the DFP segment. In turn, each template contains a number that corresponds to the type of profile that it is mapping. The template maps the fields that are contained in each segment of the profile by describing the field name and field length.

If a template block is continued into another block, the last 3 bytes of the template block contains the block number of the template expansion block. This figure illustrates how the templates would look if Template 2 expanded into Block xxx of the database:

```
<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block xxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template 1</td>
<td>Template 2</td>
<td>Template 3</td>
<td>Template 2 Expansion</td>
</tr>
<tr>
<td>000</td>
<td>xxx</td>
<td>000</td>
<td>000</td>
</tr>
</tbody>
</table>
```

Figure 5. Template blocks

Attention:

Do not modify the template definitions that IBM supplies, or unpredictable results might occur because they are not supported.

Segment table block

The segment table block contains mappings of individual segments from within a template. These describe the segments associated with the profiles.

BAM blocks

A block availability mask (BAM) block is a 4KB block that describes the availability of the corresponding blocks in a RACF database. Each BAM block starts with a header followed by a table of two-byte “block masks”.

The BAM high-water mark contained in the ICB is the address of the BAM block from which segments were last allocated or deallocated. This BAM block is used first when starting a search for space for a new allocation.

BAM block header

The BAM block header contains this information:

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes 0-5:</td>
<td>Relative byte address (RBA) of the previous BAM block (or 0 if this is the first block).</td>
</tr>
<tr>
<td>Bytes 6-11:</td>
<td>RBA of the next BAM block (or 0 if this is the last block).</td>
</tr>
</tbody>
</table>
Database format

Bytes 12-17:
RBA of the first 4KB block whose space this BAM block defines.

Bytes 18-19:
Number of 4KB blocks whose space this BAM block defines. This is also the number of two-byte block masks which follow. A BAM block can correspond to a maximum of 2038 blocks of 4096 bytes each.

BAM block masks
Following the BAM block header is a table of block masks. A block mask is a two-byte field (16 bits) that corresponds to one 4KB block in the RACF database. The first block mask corresponds to the block whose RBA is defined in Bytes 12-17 of the BAM header. Subsequent block masks in the BAM correspond successively to the 4KB blocks following this RBA. Bytes 18-19 of the BAM header contains the number of block masks in this BAM.

Each bit in the block mask corresponds, successively, to a 256-byte slot within the mask’s corresponding 4KB block. If a bit is set to 1, its corresponding slot in the block is free. Otherwise, this slot is in use. Figure 6 is an example of a block mask for a block whose first six slots are in use.

![Figure 6. Block masks of the RACF database](image)

Index blocks
RACF uses a multilevel index set to locate profiles. There can be up to 10 levels on a RACF database. All index searches begin with the highest level index block, whose RBA (relative byte address) is contained in the ICB (inventory control block). At every level but the lowest, the first entry in a block that is equal to or alphabetically greater than the requested profile name is used to reach the next
lower-level index block. If no entry is greater than or equal to the profile name, the index search continues with the RBA pointed to by the last index entry in the block being searched. This situation can occur because of previous index-entry deletions.

The lowest level of index blocks (level 1) is known as the sequence set. Index entries in the sequence set contain the RBAs of the actual profile segments. Each block then points to the next block in succession.

**Note:** The pointer in the ICB that is pointing to the first block in the sequence set is for use by BLKUPD if the database index structure is corrupted. The sequence set pointer is also used by IRRUT400 when reorganizing the database.

**Figure 7** is an example of part of a RACF index, and it illustrates the path RACF uses to find the profile named FAL.N. This example assumes 3 levels. The level-1 blocks for the first and third level-2 blocks are partially shown in the figure.

**Alias index blocks**

A companion to the existing index structure is the alias index structure. For alias indexes, there are four notable differences to consider:

- There are alternate anchors in the ICB
- There is a new format identifier
- There is a new index entry identifier
- The index entries in the sequence set of the alias index contain a base profile data area that names the base profile that corresponds to the particular alias index.
Database format

**Overview**

An index block (regular or alias) is a 4 KB block whose overview is composed of these parts:

- Header
- Table of index entries.
- Sequence set chain pointer entry. For level-1 index blocks only. Follows last index entry.
- X'0C' Delimiter
- (At end of block) Table of 2-byte offsets to the index entries.

Figure 8 is an example of an overview of a level-1 index block. The first 14 bytes is the header. In this example, $n$ (in the header) is the number of index entries. Offset X'0EF8' is the sequence set chain pointer entry (which follows the last index entry). This offset value is also found in the header.

```
<table>
<thead>
<tr>
<th>0</th>
<th>0E</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>0EF8</td>
<td>... n</td>
</tr>
<tr>
<td>Index entry 1</td>
<td>Index entry 2</td>
<td></td>
</tr>
<tr>
<td>Entry 2 cont.</td>
<td>Index entry 3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>0ED4</td>
<td>0EF8</td>
<td></td>
</tr>
<tr>
<td>Index entry n</td>
<td>20 66 RBA 0C</td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 8. Example overview of a level-1 index block

**Index block header**

The format of an index block header in the index block is as follows:

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0:</td>
<td>X'8A' Index block identifier</td>
</tr>
</tbody>
</table>
Database format

Bytes 1-2:
X'1000' Length of the index block

Byte 3:
X'4E' Index block identifier

Byte 4:
X'00' Format identifier for regular index block; X'01' Format identifier for alias index block

Byte 5:
Index-level number (01-0A)

Bytes 6-7:
Offset to the last entry in the index block. In a level-1 index block, the last entry is a sequence set chain pointer entry. In an upper-level index block, the last entry is the last index entry of the block.

Bytes 8-9:
Offset to free space in the index block

Bytes 10-11:
Offset to a table of index-entry offsets

Bytes 12-13:
Count of index entries in the block. This is also equivalent to the count of entries in the table of index-entry offsets (the bottom part of the block).

Figure 9 shows an example of the index block header set up for the example of the level-1 index block in Figure 8 on page 112.

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X'21'</td>
</tr>
<tr>
<td>1</td>
<td>Normal index entry (non-duplicate entry). In a set of duplicate index entries, this identifier marks the last index entry of the set.</td>
</tr>
<tr>
<td>2</td>
<td>X'22'</td>
</tr>
<tr>
<td>3</td>
<td>Duplicate index entry. This entry is a duplicate of the next index entry. Index entries can be duplicates of one another until one marked by the X'21' identifier is reached.</td>
</tr>
<tr>
<td></td>
<td>A duplicate index entry can exist only in a level-1 index block and only for data set profiles with the same name.</td>
</tr>
<tr>
<td>4</td>
<td>X'23'</td>
</tr>
<tr>
<td>5</td>
<td>Alias index entry.</td>
</tr>
</tbody>
</table>

Figure 9. Example of an index block header

Index entries
Following the index block header is a table of index entries. The format of an index entry is:

Bytes | Description |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0:</td>
<td></td>
</tr>
<tr>
<td>Entry identifier, as follows:</td>
<td></td>
</tr>
<tr>
<td>X'21'</td>
<td>Normal index entry (non-duplicate entry). In a set of duplicate index entries, this identifier marks the last index entry of the set.</td>
</tr>
<tr>
<td>X'22'</td>
<td>Duplicate index entry. This entry is a duplicate of the next index entry. Index entries can be duplicates of one another until one marked by the X'21' identifier is reached.</td>
</tr>
<tr>
<td></td>
<td>A duplicate index entry can exist only in a level-1 index block and only for data set profiles with the same name.</td>
</tr>
<tr>
<td>X'23'</td>
<td>Alias index entry.</td>
</tr>
</tbody>
</table>
Database format

![Diagram of alias index block]

Figure 10. Example overview of an alias index block

**Byte 1:**
Type of profile for this index entry, as follows:

- X'01'  Group
- X'02'  User
- X'04'  Data set
- X'05'  General resource

**Bytes 2-3:**
Length of this index entry

**Bytes 4-5:**
Offset from the beginning of the entry to the segment data area for regular index entries, and offset from the beginning of the entry to the base profile data area for alias index.

**Bytes 6-7:**
Front-end compression count. Number of leftmost characters that are suppressed from the profile name in the index entry's name field. To save space in the database, RACF suppresses the leftmost characters that are identical to those in the preceding index entry.

To find the suppressed characters, trace the index entries backward to the one with front-end compression count of zero. In this index entry, all leftmost characters would still be intact in its name field.
The first index entry of the index block always has a front-end compression count of zero. A name that is the same as one in the previous entry might be totally compressed. Figure 11 shows an example of front-end compression counts.

![Figure 11. Example of front-end compression in an index block](image)

**Note:** Not all entry names are necessarily compressed at all times. For example, when a new name is added, it might not be compressed until the database is reformatted (such as through the IRRUT400 utility).

**Bytes 8-9:**
Length of index entry name

**Bytes 10-11:**
Reserved

**Bytes 12-n:**
Index entry name, 0-255 bytes. Bytes 8-9 contain the actual length.

An index entry name corresponds to either a profile name or application identity, but it does not always match letter by letter or byte by byte. It might be compressed (see Bytes 6-7, for example), or some of its characters might be substituted by RACF for internal purposes (such as to save space or to facilitate the search).

For an alias index entry, the first 3 bytes of the entry name are non-EBCDIC and specifies the particular alias field within the template as follows:

- **Byte 0:** Template identifier. Describes the type of base profile that is associated with this alias entry.
- **Byte 1:** Segment identifier. See Table 29 on page 116
- **Byte 2:** Field identifier. See the template descriptions in Server RACF Macros and Interfaces for field identifiers.

In an upper-level (that is, not level 1) index block, the index entry name might correspond to the entry name of the last index entry of the next-lower level block. Its rightmost characters might be compressed if RACF determines that they are not essential to finding the correct index block at the next-lower block.

An index entry name of 255 bytes of X'FF' signifies the end of index blocks for that level number.

**Bytes n+1:**
Segment data area. In an upper-level regular or alias index block, the segment data area has this format:

- **Byte 0:** X'62' Identifier byte
Database format

Bytes 1-6:
RBA of the next-lower-level index block

In a regular level-1 index block, the segment data area has this format:

Byte 0:
Number of segment-data fields in this data area. This is also the number of segments in this profile.

Bytes 1-7:
Segment-data field. This field is repeated successively for each segment in the profile. The format of a segment-data field is:

Byte 0:
Segment Identifier. See Table 29 for a list of identifiers.
Profile type is indicated in Byte 1 of the index entry.

Bytes 1-6:
RBA of the segment.

In an alias level-1 index block, the segment data area has this format:

Bytes 0–1:
Number of base profile fields in this data area.

Bytes 2–n:
Base profile data field. This field is repeated successively for each base profile reference for this application identity.

Bytes 2–3
Denotes the 1–8 character length of the user or group profile name immediately following this field.

Bytes 4–m:
Base profile name.

Table 29. Segment identifiers

<table>
<thead>
<tr>
<th>Group</th>
<th>User</th>
<th>Data set</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'01'—BASE</td>
<td>X'01'—BASE</td>
<td>X'01'—BASE</td>
<td>X'01'—BASE</td>
</tr>
<tr>
<td>X'02'—DFP</td>
<td>X'02'—DFP</td>
<td>X'02'—DFP</td>
<td>X'02'—SESSION</td>
</tr>
<tr>
<td>X'03'—OMVS</td>
<td>X'03'—TSO</td>
<td>X'03'—TME</td>
<td>X'03'—DLF DATA</td>
</tr>
<tr>
<td>X'04'—OVM</td>
<td>X'04'—CICS</td>
<td></td>
<td>X'04'—SSIGNON</td>
</tr>
<tr>
<td>X'05'—TME</td>
<td>X'05'—LANGUAGE</td>
<td></td>
<td>X'05'—STD DATA</td>
</tr>
<tr>
<td>X'06'—CSDATA</td>
<td>X'06'—OPER PARM</td>
<td></td>
<td>X'06'—S F M R</td>
</tr>
<tr>
<td>X'07'—WORKATTR</td>
<td>X'07'—WORKATTR</td>
<td></td>
<td>X'07'—CERT DATA</td>
</tr>
<tr>
<td>X'08'—OMVS</td>
<td>X'08'—OMVS</td>
<td></td>
<td>X'08'—TME</td>
</tr>
<tr>
<td>X'09'—NETVIEW</td>
<td>X'09'—NETVIEW</td>
<td></td>
<td>X'09'—KERB</td>
</tr>
<tr>
<td>X'0A'—DCE</td>
<td>X'0A'—DCE</td>
<td></td>
<td>X'0A'—PROXY</td>
</tr>
<tr>
<td>X'0B'—OVM</td>
<td>X'0B'—OVM</td>
<td></td>
<td>X'0B'—EIM</td>
</tr>
<tr>
<td>X'0C'—LNOTES</td>
<td>X'0C'—LNOTES</td>
<td></td>
<td>X'0C'—ALIAS</td>
</tr>
<tr>
<td>X'0D'—NDS</td>
<td>X'0D'—NDS</td>
<td></td>
<td>X'0D'—CDT INFO</td>
</tr>
<tr>
<td>X'0E'—KERB</td>
<td>X'0E'—KERB</td>
<td></td>
<td>X'0E'—ICTX</td>
</tr>
<tr>
<td>X'0F'—PROXY</td>
<td>X'0F'—PROXY</td>
<td></td>
<td>X'0F'—CFDEF</td>
</tr>
<tr>
<td>X'10'—EIM</td>
<td>X'10'—EIM</td>
<td></td>
<td>X'10'—SIGVER</td>
</tr>
<tr>
<td>X'11'—CSDATA</td>
<td>X'11'—CSDATA</td>
<td></td>
<td>X'11'—ICSF</td>
</tr>
</tbody>
</table>

Figure 12 on page 117 shows an example of a normal index entry in a level-1 index block for a user profile named USR26, which contains three segments: Base, TSO,
Sequence set chain pointer entry
A sequence set chain pointer entry is an entry that references to the next level-1 index block. This entry follows the last index entry of the index block and is applicable only in level-1 index blocks. It has this format:

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>X'2066' Sequence Set Chain Pointer Entry Identifier</td>
</tr>
<tr>
<td>2-7</td>
<td>RBA of next level-1 index block (0 if last one of the set)</td>
</tr>
</tbody>
</table>

An example of a sequence set chain pointer entry is illustrated in Figure 8 on page 112.

X'0C' delimiter
A 1-byte X'0C' delimiter marks the end of the list of entries in an index block. In an upper-level index block, it follows the last index entry. In a level-1 index block, it follows the sequence set chain pointer entry.

The X'0C' delimiter is then followed by a series of zeros until the beginning of the table of index-entry offsets at the end of the block.

Index-Entry offset table
At the end of an index block is a table of two-byte offsets to the index entries. This table starts from the bottom of the block and grows inward so that the last offset of the table is the offset for index entry 1, the next-to-last offset of the table is for index entry 2, and so on. RACF uses this table to perform a search on index entries.

In the example in Figure 8 on page 112, note that the last offset of the table is the offset of the first index entry and the first one of the table is the offset of the last index entry.

Profiles
The profiles, or entity records, contain the actual descriptions of the attributes and authorities for every entity (users, groups, DASD data sets, and resource classes defined in the class descriptor table) defined to RACF. The number in the entry-type field identifies the type of profile and corresponds to the number of the template that maps this type of profile.
Database format

The record data (including the type of profile that it is) follows the header. This data consists of the fields that are mapped by a template. See the template description corresponding to each type of profile for the contents of these fields. The template descriptions are in [z/OS Security Server RACF Macros and Interfaces](#).

Because there can be duplicate entry names in different classes, the RACF manager adds a class identifier to the beginnings of general-resource entry names (for example; DASDVOL-, TAPEVOL-, or TERMINAL- for DASD volumes, tape volumes, or terminals, respectively). General-resource class names that are not eight characters in length are padded with trailing blanks.

**Note:** If you define a profile and use generic characters such as (*) to add members to the profile, RLIST RESGROUP does not return any of the matching profiles in its output because it does not support generic matches.

Generic profile names have the first period in a DATASET profile replaced by X’01’, and the dash in the class identifier for general-resource classes replaced by X’02’. Although these expanded names are transparent to the user, they appear when using the block update utility command or the IRRUT200 utility. You also need to be aware of them when constructing a database range table.

When a tape volume profile is initially created, RACF places the tape volume serial in the volume list of the profile. RACF creates an index entry and profile name in the standard way. If another tape volume is to be added (creating a volume set), RACF adds its volume serial to the volume list in the profile and creates an index entry for the volume that points to the profile.

For example, if there are six tape volumes in a tape volume set, there are six index entries pointing to the same profile and six volume serials in the profile’s volume list. When a tape volume is deleted, RACF removes the volume serial from the volume list in the profile and deletes the index entry. The profile name does not change, even if the volume after which the profile might have been named is deleted.

It is possible to have a profile name of TAPEVOL -TAPE01 without having a corresponding index entry and without having TAPE01 in the volume serial list.

The database profiles consist of segments that are made up of fields and repeat groups that follow a record header. The record header, the field structure, and the repeat group structure are described in this document.

- **Record header**

  The record header consists of these fields:

**Bytes**	**Description**
  **Byte 0:** | X’83’ Record identifier. |
  **Bytes 1-4:** | Physical length of this record, in bytes. |
  **Bytes 5-8:** | Logical record length. Length, in bytes, of the portion of the record that actually contains data. |
  **Bytes 9-16:** | Segment name. |
Database format

Bytes 17-18:
Length of profile name (in Byte 20).

Byte 19:
Reserved

Bytes 20+n:
Profile name. Its length is specified in Bytes 17-18.

• Field structure
Following the record header is a set of one or more segment data fields.
Although the potential total length of these fields is 2GB, that might be limited
by the type of DASD and the amount of virtual storage available to the user.

All data fields are in a variable-length format. The first byte is the field ID. See
the template descriptions in *z/OS Security Server RACF Macros and Interfaces* for
field identifiers. Where indicated in the template descriptions, the field can be a
member of a repeat group.

If the field is not a member of a repeat group, the field ID is followed by a field
indicating the length of the data that follows. If the high-order bit of the length
field is zero, this field is one byte and the data can be up to 127 bytes; if the
high-order is set, the length field is 4 bytes (for example, X'80000022'), and the
data can be up to 2 to the 31st power.

This figure shows the structure of a profile field when the length field is one
byte. The structure is:

```
 i l data
+0 +1 +2
```

where:
– i is the field ID. i is 1 byte.
– l is the length of the data that follows. l is 1 byte.
– The high-order bit of this field is zero.
– data is 1 to 127 bytes of data.

This figure shows the structure of a profile field when the length field is 4 bytes.
The structure is:

```
 i l data
+0 +1 +5
```

where:
– i is the field ID. i is 1 byte.
– l is the length of the data that follows. l is 4 bytes.
– The high-order bit of this field is set to one.
– data is up to 2^31 bytes of data.

• Repeat group structure
A repeat group structure contains a set of fields that are part of a repeat group.
It contains all occurrences of a repeat group and, for each occurrence, it contains
the count of fields and every field in the occurrence, *including those with null
values*.

The field ID (first byte) is associated with the entire repeat group. Fields in a
repeat group structure do not have individual ID fields.
Each repeat group is limited to 64KB of installation data.

The structure of a repeat group is:

```
+10+9 +

+5+1
```

where:
- $i$ is the field ID. $i$ is 1 byte.
- $l$ is the length of the entire repeat group. $l$ is 4 bytes.
- $m$ is the count of repeat group occurrences. $m$ is 4 bytes.
- $c1$, $c2$, and $c3$ are counts of fields in each occurrence. Each is 1 byte.
- $a1$, $a2$, and $b2$ are data, up to $2^{31}$ bytes each.

Each data field has this format:

```
+0 +1/+4
```

where:
- $l$ is the length of data that follows. If its high-order bit is zero, $l$ is one byte and the data length can be up to 127 bytes. If its high-order bit is set to one, $l$ is 4 bytes.
- $data$ is up to $2^{31}$ bytes of data.

When displaying a profile with the BLKUPD command, you might want to have the RACF database templates available for reference. These can be found in [z/OS Security Server RACF Macros and Interfaces](z/OS Security Server RACF Macros and Interfaces). They include a list of the field IDs in numeric order. The field IDs are in decimal in [z/OS Security Server RACF Macros and Interfaces](z/OS Security Server RACF Macros and Interfaces) but in hexadecimal when displayed by the BLKUPD command.

**Example of a profile**

[Figure 13 on page 121](page121) shows a profile and identifies the record header, the first profile field structure, and the first repeat group structure. The field IDs of the other fields are shaded. You can use BLKUPD to display a profile. See “Block update command for a RACF database (BLKUPD)” on page 121.
If you plan to use the block update (BLKUPD) command to update your database, you might want to get a better understanding of what your current database looks like.

The database unload utility (IRRDBU00) reads every profile as it unloads your RACF database to a sequential file. This can uncover problems in your database that you find only when reading the profile.

For more information on using the utility, see z/OS Security Server RACF Macros and Interfaces and z/OS Security Server RACF Security Administrator’s Guide.

Note: RACF creates a member HWM for the SECDATA CATEGORY profile, which is reserved for IBM's use. The HWM member and a corresponding 0503 record exist if you added any categories to the SECDATA CATEGORY profile. Deleting the record impacts RACF behavior.

**Block update command for a RACF database (BLKUPD)**

You can use BLKUPD to examine or modify any block in a RACF database: a data block, index block, BAM block, or deallocated block.

---

**Figure 13. Example of a profile displayed by BLKUPD**

---

**Database Unload Utility for a RACF Database (IRRDBU00)**

If you plan to use the block update (BLKUPD) command to update your database, you might want to get a better understanding of what your current database looks like.

The database unload utility (IRRDBU00) reads every profile as it unloads your RACF database to a sequential file. This can uncover problems in your database that you find only when reading the profile.

For more information on using the utility, see z/OS Security Server RACF Macros and Interfaces and z/OS Security Server RACF Security Administrator’s Guide.

Note: RACF creates a member HWM for the SECDATA CATEGORY profile, which is reserved for IBM's use. The HWM member and a corresponding 0503 record exist if you added any categories to the SECDATA CATEGORY profile. Deleting the record impacts RACF behavior.

**Block update command for a RACF database (BLKUPD)**

You can use BLKUPD to examine or modify any block in a RACF database: a data block, index block, BAM block, or deallocated block.
To use BLKUPD, you must have at least UPDATE authority to the RACF database.

Attention:

Before using the BLKUPD command, you should be familiar with the RACF database and its configuration, because using BLKUPD improperly can damage the RACF database. (See “Format of the RACF database” on page 107.)

Before entering the BLKUPD command, you should read and understand the format of the database. Then, before using the BLKUPD command to perform updates to your RACF database, try to use one of the other RACF commands to alter or delete the entry in question.

This describes the following topics:
- Considerations when using the BLKUPD command
- Hierarchy and uses of the BLKUPD command
- Examples

Considerations for using BLKUPD

The following considerations apply to using the block update command (BLKUPD):
- In general:
  - Do not use BLKUPD during hours of peak activity on the active RACF database because the command uses hardware RESERVES or enqueues (GRS ENQs) to serialize access to the database.
  - BLKUPD can only be issued as a TSO command.
  - BLKUPD cannot be directed to run on another system using the AT or ONLYAT keywords or automatic command direction.
  - Whenever you need to run BLKUPD against a database that is active on a system that is a member of the RACF sysplex data sharing group, always run the utility from a system in the group, and make sure that you use the real name of the data set and not an alias. If you do not, you might damage your RACF database, or receive unpredictable results from the utility.
- Before using BLKUPD:
  - Try to correct the error by using other RACF commands.
  - Make a copy of the RACF database. Use BLKUPD on the copy. IBM might be able to use the copy for further diagnosis.
  - Run IRRUT200. The output might be useful in identifying the damaged portion of the database.
  - Document all changes made for future reference and diagnosis.
  - RVARY the “repaired” database online and test your fix.
  - After the fix has been verified, apply the fix to the “real” database and RVARY this database ONLINE.
  - If a profile is in question, delete the index entry that points to the profile, rather than trying to repair the profile itself. Use a RACF command to add the profile and index entry.
  - Do not use BLKUPD to modify the BAM blocks. Instead, run the IRRUT400 utility, which rebuilds the BAM blocks.
  - If a RACF database is RACF-protected, you must have at least UPDATE authority to the database.
When executing BLKUPD under control of command procedures, you must add the DATA and ENDDATA command procedure statements around each BLKUPD command and subcommand that is also a command procedure statement. See z/OS TSO/E Command Reference for a description of command procedures.

When executing BLKUPD under a TMP (terminal monitor program) that allows multitasking, you cannot have any other active task in your session. Allow the BLKUPD command to complete before executing any other TSO command.

BLKUPD does not support attention handling.

If an attention interrupt occurs and the user does not enter any data other than a null line or TIME command, the RACF database remains enqueued.

The subcommands of BLKUPD follow the TSO syntax rules. See z/OS TSO/E Command Reference for a description of TSO command syntax rules.

BLKUPD runs as an APF-authorized TSO command.

TSO prompt must be set on.

When RACF is enabled for sysplex communication, you cannot use BLKUPD to update the database if your system is operating in read-only mode.

If you need assistance in using BLKUPD, contact the IBM support center.

**Hierarchy of the BLKUPD command**

Figure 14 shows the relationship between the BLKUPD command and its levels of subcommands.

![BLKUPD hierarchy diagram](image)

**Using the BLKUPD command**

Use the BLKUPD command to access the RACF database. Do not use BLKUPD during hours of peak activity on the active RACF database because the command uses hardware RESERVES or enqueues (GRS ENQs) to serialize access to the database.
Database format

The Syntax of the BLKUPD command

BLKUPD [racfname]

where racfname specifies the name of a data set in the RACF database. The name can be from 1 to 44 characters.

If the name is not specified, the RACF database must be allocated to the TSO session with the SYSRACF file name.

Working with the RACF database: To update or examine a data set in the RACF database, perform the following steps:

1. Decide which data set in the RACF database you want to work with, and enter BLKUPD.

   Note: After entering the BLKUPD command, you can use the following subcommands: LOCATE, READ, or END.

2. Decide which block on the database you want to work with. If needed, use the LOCATE subcommand to assist you in finding the specific block.

3. Enter the READ subcommand, specifying either UPDATE or NOUPDATE.

4. Enter the subcommands of READ necessary to accomplish your task.

5. Issue the END command to end the utility.

Note that ALIAS index blocks are not supported by this utility. It is possible to use the LIST and the REP subcommands with ALIAS index blocks but great care should be taken since there is no format checking.

For more information about the alias indexes, see "Alias index blocks" on page 111.

The LOCATE subcommand: Use the LOCATE subcommand when you do not know the relative byte address (RBA) of the block you want to address. This subcommand locates an index entry in the sequence set and displays a formatted list of the contents of the level-1 index block containing the entry name. Optionally, the LOCATE subcommand displays a listing of all the index blocks in the chain from the highest-level index block to the appropriate level-1 block.

The syntax of the LOCATE subcommand (of BLKUPD):

```
LOCATE ENTRY(entryname)
 CLASS(classname)
 [GENERIC]
 [LISTALL]
```

where:

ENTRY(entryname)

  Specifies the index entry to be located; entryname can be from 1 to 255 characters, which can be enclosed in quotation marks or not, and can contain hexadecimal data. For example:

  ENTRY('I X'C2' MUSER')

  is equivalent to:

  ENTRY(IBMUSER)

  To specify a mixed-case entry name, you must enclose entryname in quotations.
  If you do not enclose entryname in quotations, alphabetic characters in
entryname are treated as uppercase characters, regardless of the case in which you enter them. For example, if you enter:

LOCATE ENTRY(irrsitec) CLASS(USER)

RACF looks for the index entry IRRSITEC, but if you enter:

LOCATE ENTRY('irrsitec') CLASS(USER)

RACF looks for the index entry irrsitec.

CLASS(classname)

is one of the following:

• GROUP
• USER
• DATASET
• The class name of the general resource

The READ subcommand:

The READ subcommand reads the block specified by the RBA (relative block address) into storage and copies it into a work area.

This subcommand allows you to examine or change the database.

The syntax of the READ subcommand (of BLKUPD):

    READ rba [UPDATE]

where:

rba

Specifications the relative byte address of the block to be read.

If the RBA does not represent an address on a 4KB boundary, the block on the 4KB boundary that contains the RBA is read. You can enter the RBA value as a hexadecimal (X'nn') or decimal (nnn) number. Hexadecimal numbers can be from 1 to 8 characters; decimal numbers can be from 1 to 10 characters.

UPDATE

Specifies you are planning to update one of the blocks in the RACF database.

Specifying the UPDATE keyword imposes an exclusive RESERVE on the database, meaning that the issuing system has exclusive control of the RACF database and only that system can update it. Any system that shares the
database cannot read the database or update it. In addition, no other user on
the issuing system can read or update the database.

If RACF is enabled for sysplex communication:
1. You cannot update the RACF database when you are operating in
   read-only mode.
2. When running in data sharing mode, RACF uses global resource
   serialization (ENQ/DEQ), rather than hardware RESERVEs.

**NOUPDATE**

Specifies you are examining one of the blocks in the RACF database.

Specifying the NOUPDATE keyword imposes a shared RESERVE on the RACF
database, meaning that if you are sharing the RACF database with another
system, both systems can read the database, but neither system can update it.

The NOUPDATE keyword on the READ command permits you to examine the
database block without making any changes. NOUPDATE is the default.
Should you make changes and then end BLKUPD, the changes are not
recorded.

If RACF is enabled for sysplex communication and running in data sharing
mode, RACF uses global resource serialization (ENQ/DEQ) rather than
hardware RESERVEs.

Using the subcommands of READ: The UPDATE keyword on the READ
subcommand allows you to use the subcommands to update the block. The
subcommands are:

- **LIST**: Displays portions of the block in hexadecimal.
- **FORMAT**: Produces a formatted listing of the contents of an index block.
- **FIND**: Locates the offset of data in the block.
- **REP**: Replaces data in the block (valid only with the UPDATE command).
- **DISPLAY**: Displays the entries of an index block one at a time (it has several
  subcommands that are associated with it).
- **REREAD**: Overlays the new block in the work area with the old block (valid
  only with the UPDATE keyword).
- **END**: Terminates the READ function.

The **FIND** subcommand: The FIND subcommand finds the hexadecimal offset of
a string in the block.

Syntax of the FIND subcommand of READ:

```
FIND string [OLD] [NEW]
```

where:

**string**

Specifies the string that is to be located.

The string can be hexadecimal (which is specified as X'string') or characters
(which can be enclosed in quotation marks or not). Hexadecimal strings are
right-aligned and padded with zeros to a byte boundary. Character strings are
left-aligned and padded with zeros to a byte boundary.

If string contains lowercase characters, string must be enclosed in quotation
marks. If string is not enclosed in quotation marks, all characters are treated as
uppercase characters, regardless of the case in which you enter them.
OLD
Specifies the original block obtained by the READ command. OLD is the default.

NEW
Specifies the copy of the block. NEW is valid only with the READ UPDATE function.

After entering the FIND subcommand, enter the LIST subcommand to see the actual data.

The LIST subcommand: The LIST subcommand displays a hexadecimal dump of all or part of the RACF block. It allows you to see exactly what is inside the block and where it is located.

Syntax of the LIST subcommand of READ:

```
LIST [NEW|OLD]
 RANGE(xxx,yyy)
 ALL
```

where:

NEW
Specifies the copy of the original block (it might or might not have been updated). NEW is valid only with the READ UPDATE function.

OLD
Specifies the original block that was copied into storage when you entered the READ command. OLD is the default.

RANGE
Defines the parts of the block to be listed.

- "xxx" specifies the offset into the block where the listing is to start. The default is 0.
- "yyy" specifies the number of bytes to be listed. The default is 16.

The values for "xxx" and "yyy" can be hexadecimal or decimal numbers. If the sum of "xxx" and "yyy" exceeds 4096, the dump ends at the end of the block.

ALL
Specifies a hexadecimal listing of the entire RACF block.

The FORMAT subcommand: The FORMAT subcommand displays a formatted list of the contents of an index block. Use the FORMAT subcommand if you have read an index block and need to see all the entries in this block and their RBAs (relative block addresses).

The list contains the following information:

- The RBA of the block
- The level of the block
- The offset to the last entry
- The offset to free space
- The offset of each entry within the block
- The front-end compression count of each entry
- The name of each entry (generic names are identified by a G in parentheses after the name)
- The last qualifier encode byte of each entry
The RBA of the next-level index block for each entry or, for level-1 blocks, the RBA of the profile.

If the block obtained by the READ command is not a valid index block, the request is rejected.

Syntax of the FORMAT subcommand of READ:

```
FORMAT [OLD|NEW]
```

where:

- **OLD**
  Specifies the original index block obtained by the READ command. OLD is the default.

- **NEW**
  Specifies the index block that was updated. NEW is valid only with the READ UPDATE function.

The REP subcommand: The REP subcommand replaces a string in the new block with another string. Optionally, this subcommand verifies the original string before making the replacement. This subcommand is valid only with the READ UPDATE function.

Syntax of the REP subcommand of READ UPDATE:

```
REP new-string
 OFFSET(xxx)
 [VER(old-string)]
```

where:

- **new-string**
  specifies the new string of data.
  The data can be hexadecimal (which is specified as X'\text{string}') or characters (which can be enclosed in quotation marks or not). Hexadecimal strings are right-aligned and padded with zeros to a byte boundary. Character strings are left-aligned and padded with zeros to a byte boundary.
  If new-string contains lowercase characters, new-string must be enclosed in quotation marks. If new-string is not enclosed in quotation marks, all characters are treated as uppercase characters, regardless of the case in which you enter them.

- **OFFSET(xxx)**
  Specifies the offset into the block where the string is to be replaced.

- **VER(old-string)**
  Specifies the original string that is to be verified. If the string is not found at offset xxx into the new block, the replacement is not made.
  If old-string contains lowercase characters, old-string must be enclosed in quotation marks. If you do not enclose old-string in quotation marks, all characters are treated as uppercase characters, regardless of the case in which you enter them.

**Note:** The verify (VER) operand only verifies the characters specified; it does not verify the whole string. Be sure to enter the entire string you want verified.
The DISPLAY subcommand: The DISPLAY subcommand displays an entry of the index block that was read by the READ command.

When you enter the DISPLAY subcommand (after specifying READ UPDATE), the BLKUPD command copies the original block to a new block in storage. This copy is referred to as a new index block. You can then use the DELETE, CHANGE, and INSERT subcommands of the DISPLAY subcommand to modify the displayed entries.

If the block obtained by the READ command is not a valid index block, RACF rejects your DISPLAY request.

Syntax of the DISPLAY subcommand of READ:
DISPLAY [ENTRY(entryname) CLASS(classname)]
where:
ENTRY(entryname)
  Specifies the index entry where the display begins. If you do not specify an entry name, the display begins at the first entry in the index block; the entry name can be from 1 to 255 alphanumeric characters, which can be enclosed in quotation marks or not, and can contain hexadecimal data.
  To specify a mixed-case entry name, you must enclose entryname in quotations.
  If you do not enclose entryname in quotations, alphabetic characters in entryname are treated as uppercase characters, regardless of the case in which you enter them.
  If you specify an entry name, you must specify a class name.
CLASS(classname)
  Must be one of the following:
  • GROUP
  • USER
  • DATASET
  • The class name of the general resource
GENERIC
  Indicates that the index specified in ENTRY(entryname) is a generic name.

Using the Subcommands of DISPLAY: The subcommands of the DISPLAY subcommand are:
CHANGE
  Changes the displayed entry (valid only with the READ UPDATE function).
INSERT
  Inserts a new index entry immediately preceding the entry that is displayed (valid only with the READ UPDATE function).
NEXT
  Displays the next entry.
DELETE
  Deletes the displayed entry (valid only with the READ UPDATE function).
END
  Ends the DISPLAY function.
The CHANGE subcommand of DISPLAY: This subcommand is valid only with the READ UPDATE function.

The CHANGE subcommand allows you to change the following:
- The name
- The RBA (relative byte address) of the index entry displayed
- The RBA of the segment specified
- The compression count (or the entry identifier byte or both)

The changed entry is displayed. Enter the NEXT subcommand or a null line to display the next entry.

Syntax of the CHANGE subcommand of DISPLAY:

```
CHANGE [ENTRY(entryname) CLASS(classname)][SEGMENT(segment-name)]
[GENERIC]
[RBA(rba)]
[COMP(xx)]
DUPLICATE|NODUPLICATE
```

where:

**ENTRY(entryname)**

Specifies the index entry where the display begins. If you do not specify an entry name, the display begins at the first entry in the index block; the entry name can be from 1 to 255 alphanumeric characters, which can be enclosed in quotation marks or not, and can contain hexadecimal data.

To specify a mixed-case entry name, you must enclose *entryname* in quotations.

If you do not enclose *entryname* in quotations, alphabetic characters in *entryname* are treated as uppercase characters, regardless of the case in which you enter them.

If you specify an entry name, you must specify a class name.

**CLASS(classname)**

Must be one of the following:
- GROUP
- USER
- DATASET
- The class name of the general resource

The length of name plus the compression count cannot exceed 255. To create a fully compressed name, specify ENTRY (’ ’), where the entry name is a null string, with a nonzero compression count. For more information about compression and an explanation of index blocks and encoding, see “Index entries” on page 113.

**SEGMENT(segment-name)**

Specifies the segment RBA to be changed.

The BASE segment cannot be specified as the segment name.

The ENTRY and CLASS keywords and the SEGMENT keyword are mutually exclusive. If both are specified, SEGMENT is ignored.

If you specify SEGMENT, only the RBA (relative byte address) of the SEGMENT is changed.

**GENERIC**
Indicates that the index entry name specified in ENTRY(entryname) is a generic name.

**RBA(rba)**

The value of rba can be from 1 to 8 hexadecimal characters or from 1 to 10 decimal characters.

**COMP(xx)**

The front-end compression count. xx is limited to one less than the length of the entry, and never exceeds 254. xx can be specified as decimal or hexadecimal characters.

**DUPLICATE**

Means that you want to make the entry a duplicate of the entry immediately following. This entry that immediately follows might be on the same block or appear at the beginning of the next block.

**NODUPLICATE**

Means that you do not want the current entry to be a duplicate of the entry immediately following.

There is no default on this keyword; if you do not specify DUPLICATE or NODUPLICATE, the entry identifier byte is not changed. It remains at its previous setting.

Specify only those keywords that you want to change. The others remain at their previous settings.

The BLKUPD command does not perform any checking to see if you have specified the appropriate keyword values to be changed. You must be very careful because specifying an incorrect keyword value or omitting a keyword and its value can produce unpredictable results.

**The INSERT subcommand of DISPLAY:** This subcommand is valid only with the READ UPDATE function.

The INSERT subcommand inserts a new index entry immediately preceding the entry that is displayed if SEGMENT is not specified. When SEGMENT is specified, the new segment ID is placed at the end of the segment array.

**Note:** The BLKUPD command cannot be used to insert the first entry in the database.

BLKUPD displays the new entry; entering the NEXT subcommand displays the original entry again.

**Syntax of the INSERT subcommand of DISPLAY:**

```plaintext
INSERT [ENTRY(entryname) CLASS(classname)]|SEGMENT(segment-name)]
[GENERIC]
RBA(rba)
[COMP(xx)]
[DUPLICATE|NODUPLICATE]
```

where:

**ENTRY(entryname)**

Specifies the index entry where the display begins. If you do not specify an entry name, the display begins at the first entry in the index block. The entry
Database format

name can be from 1 to 255 alphanumeric characters, which can be enclosed in quotation marks or not, and can contain hexadecimal data.
To specify a mixed-case entry name, you must enclose \texttt{entryname} in quotations.
If you do not enclose \texttt{entryname} in quotations, alphabetic characters in \texttt{entryname} are treated as uppercase characters, regardless of the case in which you enter them.
If you specify an entry name, you must specify a class name.

\textbf{CLASS}(\texttt{classname})

Must be one of the following:
\begin{itemize}
  \item GROUP
  \item USER
  \item DATASET
  \item The class name of the general resource
\end{itemize}

The length of name plus the compression count cannot exceed 255. To create a fully compressed name, specify ENTRY (‘ ’), where the entry name is a null string, with a nonzero compression count. For more information about compression, see \textquote{Index entries} on page 113.

\textbf{SEGMENT}(\texttt{segment-name})

Specifies the new segment to be inserted.
The BASE segment cannot be specified as the segment name.
The ENTRY and CLASS keywords and the SEGMENT keyword are mutually exclusive. If both are specified, SEGMENT is ignored.

\textbf{GENERIC}

Indicates that the index specified in ENTRY(\texttt{entryname}) is a generic name.

\textbf{RBA}(\texttt{rba})

The value of \texttt{rba} can be from 1 to 8 hexadecimal characters or from 1 to 10 decimal characters.

\textbf{COMP}(\texttt{xx})

The front-end compression count. \texttt{xx} is limited to one less than the length of the entry, and never exceeds 254. \texttt{xx} can be specified as decimal or hexadecimal characters.

\textbf{DUPLICATE}

Means that you want to make the entry a duplicate of the entry immediately following. This entry that immediately follows might be on the same block or appear at the beginning of the next block.

\textbf{NODUPLICATE}

Means that you do not want the current entry to be a duplicate of the entry immediately following.

\textbf{The NEXT subcommand of DISPLAY:}

The NEXT subcommand displays the next entry.

Syntax of the NEXT subcommand of DISPLAY (READ):

\begin{verbatim}
  NEXT
  N
\end{verbatim}

Entering a null line also displays the next entry.
The DELETE subcommand of DISPLAY: This subcommand is valid only with
the READ UPDATE function.

The DELETE subcommand deletes the current index entry or segment, and the
next entry is displayed.

Attention:

Before you change or delete the first entry in the index, or insert a new first entry,
you must first decompress any compressed entries that follow in the index block.

The best way to decide which entries to decompress is to display the index block
and then examine the names and their compression counts, paying attention to the
second entry in the block. If the second entry is compressed, or does not match the
first entry enough to allow for proper decompression of the following entries, you
must first delete the first entry and then do the following to each entry that needs
decompression:

• If the entry has a compression count, enter a CHANGE command:

  CHANGE COMP(0) ENTRY(xxyyy) CLASS(classname)

  where xxy is the compressed front-end characters as indicated by the old
  compression count, and yyy is the name that the BLKUPD command gave you
  as the name of this entry. (Note that you need the GENERIC keyword on the
  CHANGE command if the entry is generic.)

  The second entry (now the new first entry) has now been changed.

• If this entry matches the old (first) entry for enough characters to decompress
  the remaining entries, you can stop. If it doesn’t, you must decompress any
  entry that this new first entry does not match.

• To do so, enter NEXT commands until you get to the next entry that has to be
  changed. Then enter the CHANGE command to alter it as already described.

  Continue with the NEXT and CHANGE commands until all the entries in
  question have been resolved.

It might only be necessary to decompress that second entry; however, based on
your examination of the listing, you might have to decompress all the entries. For
an explanation of compression, see “Index entries” on page 113.

Syntax of the DELETE subcommand of DISPLAY:

```
DELETE [SEGMENT(segmentname)]
```

where:

```
SEGMENT(segment-name)
```

deletes the specified segment from the current index entry.

The END subcommand of DISPLAY: This subcommand ends the DISPLAY
subcommand.

You can continue to examine or update the block under the READ subcommand.

Syntax of the END subcommand of DISPLAY:

```
END [SAVE NOSAVE]
```

where:
Database format

SAVE
Tells RACF to update the new index block to reflect the changes made under the DISPLAY subcommand. Specifying SAVE means that you want the new index block to replace the old one.

NOSAVE
Tells RACF to ignore all the changes you made under the DISPLAY subcommand with the UPDATE keyword specified on the READ subcommand.
If you did not specify UPDATE on the READ command, then the NOSAVE option is forced.

The REREAD subcommand: The REREAD subcommand is valid only with the READ UPDATE function.
The REREAD subcommand allows you to overlay the new RACF block in the work area with the old block. Use this function when you have made errors to the new block while using the DISPLAY or REP subcommands. This subcommand gives you a new copy of the old block.

Syntax of the REREAD subcommand of READ UPDATE:
REREAD

The END subcommand of READ: The END subcommand ends processing on the RACF database block that you obtained by entering the READ command.

Syntax of the END subcommand of READ:
END  SAVE
NOSAVE

where:
SAVE
Specifies that you want the new block to be written back to the RACF database to replace the old one that was read.

NOSAVE
Specifies that the RACF database not be updated with the new block. The NOSAVE option is forced if you did not specify the UPDATE keyword on the READ command or if you did not make any changes to the block.
If you want to use the READ function to examine or update another block, enter another subcommand.

The END subcommand of BLKUPD: The END subcommand ends BLKUPD.

The syntax of the END subcommand (of BLKUPD):
END

If you want to read another block, do not enter this final end statement (enter another subcommand of the BLKUPD command).

The BLKUPD command—A scenario
This example illustrates the functions of BLKUPD. It is not meant to be used for repairing your RACF database.
1. Issue the BLKUPD command on the RACF data set that you want to work with.
2. Replace a string in the block located at RBA X'E000'.

READ X'E000' UPDATE
BLKUPD:

reads the block at RBA X'E000' and specifies that changes are to be made to the block.

FORMAT

produces a formatted listing of the OLD index block obtained by the READ command.

BLOCK WITH RBA OF 00000000E000
OFFSET COMP. ENTRY NAME RBA BAM
COUNT BLOCK BYTE BIT
00E 000 BEATL 00000000DC00 00 02F 4
02A 000 HILDE 00000000D000 00 02E 0
SEGMENT NAME: TSO
DFP 00000000A000 00 02F 1
051 000 HILDE.RDS.CNTL 00000000DE00 00 02F 6
073 000 IBMUSER 000000007000 00 02E 7
08E 000 M267 00000000D800 00 02F 3
0A6 000 M550ABC 00000000D000 00 02F 5
0C1 000 SALES 00000000F000 00 02F 7
00A 000 SALES.* (G) 00000000F000 00 02E 0
0F5 000 SECLABEL-SYSHIGH 000000001000 00 02E 1
119 000 SECLABEL-SYSLOW 000000002000 00 02E 2
13C 000 SECLABEL-SYSONE 000000003000 00 02E 3
160 000 SYSCTLG 000000006000 00 02E 6
17B 000 SYS1 000000004000 00 02E 4
193 000 VSAMDSET 00000000D500 00 02E 5
1AF 000 255 X'FF'S
2BB SEQUENCE SET POINTER 000000000000
TOTAL NAMES IN THIS BLOCK-015. UNUSED BYTES-3358. AVERAGE NAME LENGTH-025.
LEVEL NUMBER-01. DISPLACEMENT TO LAST KEY-02BB. DISPLACEMENT TO FREE SPACE-02C4
(G) - ENTITY NAME IS GENERIC

3. Find the string in the old block.

FIND M267
IRR63002I Offset is X'0000009A'
BLKUPD:

locates the offset of the character string 'M267' in the old block.

4. Verify that offset X'9A' in the new block contains the character string 'M267' and replace that string with the character string 'M270'.

REP M270 OFFSET(X'9A') VER(M267)
IRR63004I REPLACE complete.

5. List the modified area of the new block (8 bytes beginning at offset X'9A').

LIST NEW RANGE(X'9A',8)00000000E000
009A 04F27F00 01010000
*M270....

6. Delete the first entry in the index block.

BLKUPD:
DISPLAY
OFFSET COMP. ENTRY NAME RBA
COUNT
00E 000 SIVLE 00000000DC00
DELETE
deletes the index entry just displayed. The next entry, which moves up to replace the deleted one, is displayed.

**IRR63036I** The first index entry has been deleted. The rest of the index block may need to be updated.

<table>
<thead>
<tr>
<th>RBA</th>
<th>Offset</th>
<th>Entry Name</th>
<th>Segment Name: TSO</th>
<th>DFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>00E 000</td>
<td>HILDE</td>
<td>00000000D000</td>
<td></td>
<td>00000000DA00</td>
</tr>
</tbody>
</table>

7. Insert a new first index entry.

**INSERT ENTRY(SIVLE) CLASS(USER) RBA(X'DC00')**

inserts a new index entry, with the specified name, and RBA immediately preceding the entry just displayed. The new entry is displayed.

**IRR63038I** The first index entry has been inserted. The rest of the index block may need to be updated.

<table>
<thead>
<tr>
<th>RBA</th>
<th>Offset</th>
<th>Entry Name</th>
<th>Segment Name: TSO</th>
<th>DFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>00E 000</td>
<td>SIVLE</td>
<td>00000000DC00</td>
<td></td>
<td>00000000DA00</td>
</tr>
</tbody>
</table>

8. Change the name of the entry.

**CHANGE ENTRY(HILDE.RDS.CHNG) CLASS(DATASET)**

changes the entry name of the entry.

<table>
<thead>
<tr>
<th>RBA</th>
<th>Offset</th>
<th>Entry Name</th>
<th>Segment Name: TSO</th>
<th>DFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>00C 000</td>
<td>HILDE.RDS.CHNG</td>
<td>00000000DE00</td>
<td></td>
<td>00000000DA00</td>
</tr>
</tbody>
</table>

9. Save the changes you have made and obtain a listing of your updated block.

**END SAVE**

ends the DISPLAY command and saves the changes that were made in the index block. The utility still runs under the READ subcommand.

**IRR63009I** DISPLAY ended. Changes saved.

**FORMAT NEW**

produces a formatted listing of the updated index block.

**BLOCK WITH RBA OF 00000000E000**

<table>
<thead>
<tr>
<th>Offset</th>
<th>COMP.</th>
<th>COUNT</th>
<th>ENTRY NAME</th>
<th>RBA</th>
<th>Block</th>
<th>Byte</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>00E</td>
<td>000</td>
<td>SIVLE</td>
<td>00000000DC00</td>
<td>00</td>
<td>02F</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>000</td>
<td>HILDE</td>
<td>00000000D000</td>
<td>00</td>
<td>02E</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02F</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>04C</td>
<td>000</td>
<td>HILDE.RDS.CHNG</td>
<td>00000000DE00</td>
<td>00</td>
<td>02F</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06E</td>
<td>000</td>
<td>IBMUSER</td>
<td>00000000D700</td>
<td>00</td>
<td>02E</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>089</td>
<td>000</td>
<td>M270</td>
<td>00000000DB00</td>
<td>00</td>
<td>02F</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0A1</td>
<td>000</td>
<td>M550ABC</td>
<td>00000000D000</td>
<td>00</td>
<td>02F</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>08C</td>
<td>000</td>
<td>SALES</td>
<td>00000000DF00</td>
<td>00</td>
<td>02F</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>000</td>
<td>SALES.* (G)</td>
<td>00000000F000</td>
<td>00</td>
<td>032</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0F0</td>
<td>000</td>
<td>SECLABEL-SYSHIGH</td>
<td>00000000D100</td>
<td>00</td>
<td>02E</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>000</td>
<td>SECLABEL-SYSLOW</td>
<td>00000000D200</td>
<td>00</td>
<td>02E</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>000</td>
<td>SECLABEL-SYSHIGH</td>
<td>00000000D300</td>
<td>00</td>
<td>02E</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15B</td>
<td>000</td>
<td>SYSCTLG</td>
<td>00000000D400</td>
<td>00</td>
<td>02E</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>000</td>
<td>SYS1</td>
<td>00000000D500</td>
<td>00</td>
<td>02E</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>18E</td>
<td>000</td>
<td>VSAMDSSET</td>
<td>00000000D500</td>
<td>00</td>
<td>02E</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1AA</td>
<td>000</td>
<td>255 X'FF'S</td>
<td>00000000D500</td>
<td>00</td>
<td>02E</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
10. Save the changes made and write them back to the RACF database.

END SAVE
IRR63013I READ ended. Block saved.

ends the READ command and writes the new block out to the RACF database.

11. Locate the block that contains the generic name of SALES.*.

LOCATE ENTRY(SALES.*) CLASS(DATASET) GENERIC
displays a formatted list of the level one block that contains the generic entry name ‘SALES.*’.

BLOCK WITH RBA OF 00000000D000
OFFSET COMP. ENTRY NAME RBA BLOCK BYTE BIT
COUNT
0EE 000 SIVLE 00000000D000 00 02F 4
025 000 HILDE 00000000D000 00 02E 0
SEGMENT NAME: TSO
04C 000 HILDE.RDS.CHNG 00000000D000 00 02F 6
06E 000 IBMUSER 00000000D700 00 02E 7
089 000 M270 00000000D800 00 02F 3
0A1 000 M550ABC 00000000D900 00 02F 2
0C0 000 SALES 00000000DC00 00 02F 7
0D5 000 SALES.* (G) 00000000D000 00 02F 5
0F0 000 SECLABEL-SYSHIGH 00000000D100 00 02E 1
114 000 SECLABEL-SYSLOW 00000000D200 00 02E 2
137 000 SECLABEL-SYSHIGH 00000000D300 00 02E 3
155 000 SYSCTLG 00000000D400 00 02E 4
176 000 SYS1 00000000D500 00 02E 5
19E 000 VSAMDSSET 00000000D600 00 02E 6
1AA 000 255 X'FF'S
2B6 000 000000000000

12. End the BLKUPD session.

BLKUPD:
END
READY

terminates the BLKUPD command.
Database format
Chapter 5. Error recovery for RACF remote sharing facility (RRSF)

This topic describes:

- The flow of a directed command in a RACF remote sharing facility (RRSF) environment
- The types of errors that are experienced in an RRSF environment
- Handshaking between RRSF nodes
- The connection states of RRSF nodes and the transitions between them
- Actions to recover from an RRSF failure
- The recording of RRSF errors

RRSF moves the RACF command between the user who initiated the command and the RACF subsystem address space where the transaction is processed (either on a local or a remote node) and moves the RACF command output between the RACF subsystem address space where the transaction was processed (on a local or a remote node) and the node where the user was logged on when the transaction was initiated.

The INMSG data set is used to temporarily hold requests that are being sent to the local node from itself or a remote node, such as commands directed to the local node or output from RACF commands that were directed to a remote node. The OUTMSG data set is used to temporarily hold requests that are being sent to a target node, such as commands directed from the local node. If RRSF experiences a failure, it:

- Detects the error when it first occurs. This:
  - Prevents additional damage to the RACF subsystem address space and the RACF database.
  - Allows either the system programmer or the IBM support center to diagnose and fix the problem.
- Protects the rest of the RRSF network from damage by isolating the error to the failing node.
- Saves the work request for retry when the error has been corrected.

Figure 15 on page 140 contains an illustration of the flow of a directed command in an RRSF environment. The steps that are shown in this figure are:

1. A user issues a RACF command. This command enters the local node's OUTMSG data set while waiting to be sent to the remote node.
2. When this command is sent to the remote node to be processed, it enters the remote node's INMSG data set.
3. The command is processed in the remote node's RACF subsystem address space and the results are placed in the remote node's OUTMSG data set while waiting to be sent to the local node.
4. The results are sent to the local node and placed in the local node's INMSG data set until the output is returned to the user.
Types of errors in an RRSF environment

The following types of errors can be experienced by an RRSF network:

Definition errors

For RRSF, typical definition errors are local or remote nodes not being correctly defined to the system or to each other. In general, definitions must be accurate and consistent on both the local and target node. Problems occur when there are:

- For one of the following:
  - Previous versions of RACF database templates
  - Inconsistent node definitions to RACF (that is, something that is specified on the TARGET command at a local node was specified differently on a corresponding TARGET command at a remote node)
  - Incorrect security information for VSAM data sets
  - Differences in node status (NODEA is operative while NODEB thinks NODEA is dormant).
- For APPC:
  - Incorrect VTAM® definitions
  - Incorrect LU names
  - Incorrect security information for APPC conversation
- For TCP/IP:
  - Incorrect TCP/IP definitions
  - Incorrect host address names
  - Incorrect security information for TCP/IP
  - AT-TLS policy problems
  - Digital certificate and key ring problems

Environmental errors

Typical environmental errors are MVS resources not being available. These can occur when MVS or RACF is being restarted or can occur because of high volumes of directed commands (including automatically directed commands) or password changes that are being synchronized. This type of error can occur on either the local or remote node, and includes:

- For one of the following:
  - Insufficient main memory
Types of errors

- Insufficient VSAM space
- Remote RACF subsystem address space not active
- For APPC:
  - VTAM not yet active
  - APPC address space not yet active
  - Retryable APPC errors
- For TCP/IP:
  - TCP/IP policy agent or resolver address spaces not yet active
  - Retryable TCP/IP errors
  - Network connectivity problems
  - Firewall issues
  - Name server problems

Program errors
Overlaid control blocks, overlaid in-storage data, or programming errors within RRSF, and the portions of RACF started within the RACF subsystem address space can also cause an abend. Non-fatal errors detected by RRSF can have the following symptoms:
- Units of work being lost
- Units of work being done multiple times
- All tasks in the RACF subsystem address space being in wait state
- Resources are allocated to a request and the request has completed either normally or abnormally and the resources are not released or deallocated

Transmission and line errors
Transmission and line errors are external to the application, such as a car hitting a telephone pole.

Handshaking and state changes
Handshaking involves verifying that two RRSF nodes can communicate with each other and are compatible. Handshaking occurs whenever a TARGET command is issued to activate the connection between the local node and a remote node if sufficient information has been provided. Activating a remote node connection requires sufficient information to do all of the following:
- Allocate and open the VSAM data sets (INMSG and OUTMSG data sets)
- Register the RACF subsystem address space (as an APPC/MVS server for the APPC protocol, or a socket listener for the TCP/IP protocol)
- Define the required protocol information for the remote node

Connection states of RRSF nodes
While at a high level there are two types of connections between nodes, operative and dormant, at a lower level the connection between two nodes can be in any one of a number of states.

The state of the connection between nodes and the transitions between the states that are used by RRSF have the following characteristics:
- Controls whether information is sent to the remote node.
Handshaking and states

- Respects the state change request of the last person who issued such a request; that is, the connection status is not changed from dormant to active without an explicit human action.
- Provides available information about how the connection reached the current state.
- Recognizes that certain state changes do not occur immediately because they must check with the partner node to determine if the new state is allowed.

The following table shows the potential states that can exist on a local node to describe the connection between that node and a remote node:

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operative pending connection</td>
<td>O-P-C</td>
<td>The local node has requested that the connection be activated and is attempting to activate the conversation. The local node has not yet received a confirmation that the remote node will accept the connection. This state can occur while the local node is attempting to restore a successful connection that was interrupted.</td>
</tr>
<tr>
<td>operative pending verification</td>
<td>O-P-V</td>
<td>The local node’s request for a conversation has been accepted. The two nodes are communicating and evaluating information they have exchanged to determine if they are compatible. The information can include RACF information and the digital certificates exchanged during the TLS handshake performed by TCP/IP. If the two nodes are not compatible, both nodes will remain in the operative pending verification state.</td>
</tr>
<tr>
<td>operative active</td>
<td>O-A</td>
<td>The connection between two nodes is active. The two nodes have verified that they can communicate with each other and that they are compatible with each other.</td>
</tr>
<tr>
<td>operative in error</td>
<td>O-E</td>
<td>A non-retryable error has occurred related to workspace data sets (for example, a volume has gone offline). Console or syslog messages have been issued with more information.</td>
</tr>
<tr>
<td>dormant by local request</td>
<td>D-L</td>
<td>The local node’s connection with a remote node has been made dormant by an operator issuing a TARGET DORMANT command.</td>
</tr>
<tr>
<td>dormant by remote request</td>
<td>D-R</td>
<td>The local node has detected that the connection to the remote node has been made dormant by the remote node or the APPC connection between the local and remote nodes has not been defined on the remote node. This state can occur if the local node cannot successfully connect with a node after a reasonable amount of time.</td>
</tr>
<tr>
<td>dormant by mutual request</td>
<td>D-B</td>
<td>The local and remote nodes have both requested the connection be dormant by an operator issuing a TARGET DORMANT command on each system.</td>
</tr>
</tbody>
</table>
Table 30. Connection states between nodes (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dormant in error</td>
<td>D-E</td>
<td>The local node is dormant and a failure is experienced while saving RRSF requests for later processing.</td>
</tr>
<tr>
<td>defined</td>
<td>DEF</td>
<td>TARGET information has been defined, but no conversation occurs. This state occurs:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Between member systems of a multisystem node. Systems in a multisystem node do not communicate with each other.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Between a local nonmain system and a nonmain system on a remote multisystem node. Nonmain systems of multisystem nodes can communicate with single-system nodes and with the main systems of multisystem nodes, but they do not communicate with nonmain systems of other multisystem nodes.</td>
</tr>
<tr>
<td>not defined (initial)</td>
<td></td>
<td>No connection has been established to the node due to insufficient configuration information, or because a TARGET OPERATIVE or TARGET DORMANT command has not been issued for the node. The TARGET LIST command output shows this state as ???.</td>
</tr>
</tbody>
</table>

These connection states describe the state of the local node and the state of a connection between the local node and a remote node.

For example, from the local node perspective, operative active (O−A) means that the local node can have either a TCP/IP or APPC listener process and accepts connections from remote nodes. Dormant by local request (D−L) means that there are no listener processes active and no new conversations are accepted (existing O−A conversations are unaffected).

These connection states also describe the state of the local node when you have no remote node connection because you have not specified protocol information. The local node can be operative active (O−A), but does not have active listener processes. The local node can be dormant by local request (D−L), but not dormant by remote request (D−R) or dormant by mutual request (D−B). If VSAM errors occur, the local node can be either operative in error (O−E) or dormant in error (D−E).

**Connection state changes after a successful TARGET command**

The following table shows the connection state as seen on the local node after a successful TARGET command is issued on the local node to change the connection state between the local and remote nodes.

For example, if the connection state as seen on the local node is operative in error (O−E) and the local node issues a successful TARGET DORMANT command, the connection state, as seen by the local node, would be dormant by local request (D−L).
### Handshaking and states

#### Table 31. Table of new connection states based on a successful TARGET command

<table>
<thead>
<tr>
<th>Previous connection state</th>
<th>After a successful TARGET OPERATIVE command</th>
<th>After a successful TARGET DORMANT command</th>
<th>After a successful TARGET DELETE command</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-A</td>
<td>O-P-C</td>
<td>D-L</td>
<td>error message received</td>
</tr>
<tr>
<td>O-P-C</td>
<td>O-P-C</td>
<td>D-L</td>
<td>error message received</td>
</tr>
<tr>
<td>O-P-V</td>
<td>O-P-C</td>
<td>D-L</td>
<td>error message received</td>
</tr>
<tr>
<td>O-E</td>
<td>O-P-C</td>
<td>D-L</td>
<td>error message received</td>
</tr>
<tr>
<td>D-L</td>
<td>O-P-C</td>
<td>D-L</td>
<td>connection deleted</td>
</tr>
<tr>
<td>D-R</td>
<td>O-P-C</td>
<td>D-B</td>
<td>error message received</td>
</tr>
<tr>
<td>D-B</td>
<td>O-P-C</td>
<td>D-B</td>
<td>connection deleted</td>
</tr>
<tr>
<td>D-E</td>
<td>O-P-C if INMSG and OUTMSG workspace data sets can be opened, else D-E</td>
<td>D-L if INMSG and OUTMSG workspace data sets can be opened, else D-E</td>
<td>connection deleted</td>
</tr>
<tr>
<td>DEF</td>
<td>DEF Message IRRM035I is issued to syslog.</td>
<td>DEF Message IRRM035I is issued to syslog.</td>
<td>connection deleted</td>
</tr>
</tbody>
</table>

#### Actions to recover from an RRSF failure

RRSF can experience the following types of failures:

1. An ABEND that causes ESTAE processing. For detailed information, see "RRSF ESTAE processing."
2. An error return code from an MVS system service. For detailed information, see "Failure of MVS system service" on page 145.
3. An error return code from APPC/MVS. For detailed information, see "APPC return code handling" on page 151.
4. An error return code from a z/OS UNIX System Services socket API. For detailed information, see "TCP/IP return code handling" on page 148.
5. An error return code from a request to VSAM. For detailed information, see "VSAM failures" on page 145.

#### RRSF ESTAE processing

ESTAE or ESTAI processing occurs when MVS detects an abnormal end during processing of a task within the RACF subsystem address space.

The actions indicated here are normally done internally by RACF itself. However, in some cases, a manual RESTART command might be necessary.

The following is done during recovery processing:

1. If the task that failed had not abended during recovery processing:
   a. If the task is initializing:
Recovery actions

1) The task terminates to clean up its resources.
2) Another attempt is made to re-create the task.

b. If the task is processing an item:
   1) The queue of waiting work is preserved.
   2) The current task is marked as being in recovery processing.
   3) In-use resources for the current item are freed.
   4) The current item is restarted.

c. If the task is terminating, termination continues and the abend is ignored.

d. If the task that failed is in recovery processing:
   1) Resources in use for the task are released.
   2) If the failure occurs when processing the same item for the second time,
      the item is deleted and output to be returned to the originator is
      created.
   3) The task that has failed is restarted.

Failure of MVS system service

When an error return code from an MVS system service is detected, an attempt is
made to recover the work being done by RRSF. The basic retry scheme depends on
where the error is detected. Most of the tasks within RRSF have the following
structure:
1. An initialization section
2. A processing loop
3. A termination section

If errors are detected in the initialization section, the error is recorded and the task
is restarted.

Note: The RACF subsystem address space attempts to restart a task five times
before an abend is issued.

The actions indicated here are normally done internally by RRSF itself. However,
in some cases, a manual RESTART command might be necessary.

If errors are detected within the processing loop, the following steps are done:
1. An entry is created in the LOGREC data set at the time of failure.
2. The element is retried.
3. If retry fails,
   a. Another entry is created in the LOGREC data set.
   b. The failing item is discarded.
   c. If possible, returned output is sent to the originator.
   d. The task is restarted.

If errors are detected in the termination section, the error is recorded and
termination continues. The termination code is usually entered when the task in
the RACF subsystem address space is being restarted or stopped.

VSAM failures

The checkpoint information is stored in a VSAM key-sequenced data set (KSDS).
These files can be unusable for a number of operational reasons, such as:
Recovery actions

- There are I/O errors on the device that contains the VSAM data set.
- The operator has made the device inactive or unavailable.
- There is insufficient space to store the next record.

The actions indicated here are normally done internally by RRSF itself. However, in some cases, a manual RESTART command might be necessary.

If VSAM errors occur on the INMSG or OUTMSG data set, that prevent the records from being written to or deleted from the data sets, RRSF does the following:

- Shuts down the connection by:
  - Rejecting all inbound transactions by marking all affected successfully established connections as operative in error
  - Marking all dormant connections as dormant in error
  - Rejecting all directed commands that would require the use of the damaged VSAM data set

- Notifies the appropriate people by:
  - Writing a message to the system console
  - Creating a symptom record in the LOGREC data set

- Allows for correction by:
  - Attempting to close and de-allocate the VSAM data set that is experiencing errors

An error message is issued to the MVS operator console when a VSAM data set experiences an error. Some common error messages are IRRC029I and IRRC030I, which indicate problems in trying to write to the workspace data sets, and IRRC031I, which indicates that a workspace data set is full. Associated messages IRRC032I and IRRC033I are also issued, indicating that the specified connection has received a DORMANT ERROR or OPERATIVE ERROR.

After the error has been corrected, the following commands must be processed to reactivate the connection:

```
TARGET NODE(nodename) DORMANT
TARGET NODE(nodename) WORKSPACE([current or new settings])
TARGET NODE(nodename) OPERATIVE
```

**Note:** You should use RACF profiles to protect the INMSG and OUTMSG data sets.

**Automatic direction and VSAM errors**

Automatic direction is not apparent to most users who issue RACF commands, change their passwords, or take actions that result in application updates. They are typically not aware that their actions have caused an RRSF request to be automatically directed. Therefore, VSAM errors are not reported to the issuer of the request. Instead, the users who are specified on the NOTIFY and OUTPUT keywords of the RACF SET command (which might include the command issuer using &RACUID) receive an error message that the RRSF request was not sent to the appropriate remote node because of a VSAM file failure.

VSAM failures are critical because the request and the returned output are checkpointed in the VSAM files. If the VSAM files are unusable, there is no record of the RACF request or the output.
Recovery actions

When an RRSF request generated by automatic direction is processed and it experiences a hard VSAM failure (that is, it cannot be written to the file and has not already been saved somewhere else) the standard failure output is sent to the users who are specified on the NOTIFY and OUTPUT keywords of the RACF SET command. This hard VSAM failure can only occur on the node where the request originated and before it is stored in the OUTMSG data set for the target node. In all other cases of a VSAM failure, a copy of the request or output exists in another VSAM file.

Password synchronization and VSAM failures
If possible, VSAM failures for password synchronization requests are processed the same as a VSAM failure for a directed command. A password synchronization failure generates RRSFLIST output and an error message to the TSO user.

IRRBRW00 utility and VSAM data sets
If you have a DASD problem or have a need for offline diagnosis of the RRSF VSAM data sets, RACF has an APF-authorized utility called IRRBRW00 that allows you to dump the RACF data contained within the VSAM data sets. Because this utility provides the capability to dump sensitive RACF data such as RACF command text and returned output, be careful to control access to this utility.

To prevent inadvertent disclosure of the data in the VSAM data sets, RACF requires that a user obtain read access to the resource name IRRBRW00 in the RRSFDATA class so the IRRBRW00 utility can be run. If the class is not active or no profile is defined, the user is denied access to run the utility. The user also needs RACF access to the VSAM data set to be dumped. VSAM data sets can be protected by using profiles in the DATASET class. See Workspace data sets for more information about data set names.

To ensure the integrity of the data in these files, set up these profiles and limit the access to only those with a need. You can use the RACF TARGET command to determine the VSAM data set names being used by the RACF remote sharing facility.

The IRRBRW00 utility is provided for diagnostic purposes only. For complete instructions on running IRRBRW00, see the RACJCL member of SYS1.SAMPLIB and read the IRRBRW00 sample.

Node communications
TCP/IP and APPC are communication vehicles for sending and receiving messages from one RRSF node to another.

TCP/IP errors
This section contains information about:
• Connection processing during system IPL
• TCP/IP return code handling
• Network connectivity issues
• AT-TLS errors
• Obtaining information about RRSF connections

Note: Many network-related problems are general in nature, and are not specific to RRSF. When experiencing connectivity errors, use diagnostic tools provided by the Communication Server, not by RACF. See z/OS V2R2.0 Communications Server: IP Diagnosis Guide for information about debugging network problems.
Connection processing during system IPL: During system IPL, the RACF subsystem is generally started earlier than some of the TCP/IP-related address spaces on which the RRSF TCP protocol support relies. For example, the TCP/IP and policy agent address spaces are required. Further, if host names are used instead of IP addresses in TARGET command definitions, then the resolver address space, and possibly an external name server, are also required. During RACF subsystem initialization, the socket listener process starts when the local node is made operative. Remote TCP connections are not attempted until the listener is successfully established. If the listener fails to initialize, message IRRC050I is issued and the listener periodically tries again for approximately 30 minutes, then issues message IRRC063I and stops trying.

As the TCP/IP address space initializes, it receives AT-TLS policy files from the policy agent address space. Address spaces (such as the RACF subsystem) might be requesting socket services before TCP/IP has obtained its policy files. The default behavior of TCP/IP is to reject such a request unless the user ID has access to a stack initialization resource that is used as an override. If this resource is protected by a RACF profile, then failed accesses result in ICH408I messages to the console. Therefore, you might see such a message for the RACF address space each time it attempts to establish its TCP listener before TCP/IP obtains the policy files. This is normal, and such messages can be ignored. Make sure that you do not allow the RACF subsystem user ID to this resource, or else the listener successfully initializes, and then attempts to establish connections with remote nodes. If these connections are attempted before TCP/IP obtains its policy, RRSF rejects the connections for lack of AT-TLS policy, and the connections must be restarted manually when the policy server has served the policy files to TCP/IP.

TCP/IP return code handling: RRSF uses z/OS UNIX System Services APIs to start socket services. Whenever an error is encountered, a message is issued to the console. The message contains the service name, the return and reason code from the service, and an additional diagnostic code that helps IBM service, if contacted. See z/OS UNIX System Services Messages and Codes for the return and reason codes. The return code is referred to as the errno, and the reason code is referred to as the errnojr. When looking up the reason code, use only the low-order halfword of the displayed value. In z/OS UNIX System Services Messages and Codes there is a name and a value for each return code. Information about the identified service in z/OS UNIX System Services Programming: Assembler Callable Services Reference often lists some common errors by name and possible causes.

If the TCP socket listener encounters an error during initialization, or if a remote connection cannot be established, a console message is issued, and the attempt is periodically tried again. RRSF tracks the failing service name, including its return and reason code, and does not issue an error message if encountering the same error on a subsequent attempt.

Certain errors are not considered unrecoverable, and in such cases, RRSF does not issue an error message, but creates a LOGREC entry. These entries might be of value to IBM service when debugging a problem. See “Creation of LOGREC data set entries” on page 153 for more information.

Network connectivity issues: You are most likely using Communication Server tools and diagnostics to debug network problems. Therefore, you need the IP address of the system that the local system is attempting to communicate. Because
the TARGET command allows you to specify the host address as a host name, it might not be clear which IP address this name corresponds to. Whenever RRSF resolves a host name to an IP address, it saves the address so it can be displayed by the TARGET LIST command. Note that for the local node, the IP address is resolved when a remote connection is attempted, not when the listener is established. If you use the default address (0.0.0.0) for the local node and want to know the resolved IP address, and TARGET LIST is not already displaying it, you should attempt to establish a remote connection, and then issue the TARGET LIST for the local node again.

**AT-TLS errors:** While establishing a connection with a remote RRSF node, the initiating system issues a socket connect() call and the receiving system issues an accept(). Then, both sides of the connection issue a select() on the established socket. The select causes TCP/IP to perform the TLS handshake with the assistance of System SSL. The handshake process determines the AT-TLS policy rule used to protect the connection on each system and applies that policy. The policy identifies the RACF key ring that contains the digital certificates required to authenticate each server to the other.

If the handshake fails, RRSF usually issues message IRR1031I. AT-TLS tracing, by default, logs errors and provides an error code. See [z/OS V2R2.0 Communications Server: IP Diagnosis Guide](#) for more information about the error code. The AT-TLS trace level is specified in the AT-TLS rule for a connection. Because the TLS handshake is performed on both systems and the error might have occurred on only one of the systems, be sure to look in the trace log on the remote system if there is no helpful information about the system you are currently logged on to.

TLS handshake errors are usually caused by certificate or key ring setup errors, and this might not always be obvious from the error code description. The following checks generally identify the problem:

- On each system, use the RACDCERT LISTRING command to check that the key ring specified in the policy rule (the sample policy that RACF provides in the IRRSRRSF member of SYS1.SAMPLIB specifies IRR.RRSF.KEYRING and if using IBM Configuration Assistant, it specifies tlsKeyring) is defined for the RACF subsystem user ID. Note that key ring names are case-sensitive.
- Verify that the key ring contains a digital certificate for the RRSF server (the RACF subsystem user ID) as the default.
- Verify that the key ring contains the RRSF signing certificate and it is trusted.
- Verify that the RACF subsystem user ID has authority to read its own key rings (this is generally accomplished by granting READ access to the IRR.DIGTCERT.LISTRING resource in the FACILITY class). Note that this permission is required even if the RACF subsystem started task definition specifies TRUSTED or PRIVILEGED.

Other problems that might occur are:

- A certificate has expired.
- The key type associated with the certificate is not valid for the cipher algorithm requested in the policy.
- Some aspect of the AT-TLS policy requires ICSF, (for example, if the certificate private key is stored in the ICSF PKDS), but ICSF was not started when RRSF connections were attempted.
- There is a logical inconsistency between the policy files as they exist on the local and the remote system. Typically, both systems should have the same policy statements for RRSF, both for the “client” and “server” portions of the policy.
Recovery actions

After correcting any key ring problems, including an authorization problem, make sure that the policy agent reads the contents of the key ring again, by changing the EnvironmentUserInstance value in the policy rule. If you are using Configuration Assistant, click Reaccess Key Rings... under image level settings, for a given image. After the policy is updated, refresh the policy agent by issuing the following command from the console:

F PAGENT,UPDATE

After correcting an ICSF problem (such as starting ICSF after an RRSF connection has failed because ICSF was not available), you must change the GroupUserInstance value, and then update the policy agent as shown above. Your system configuration must start ICSF earlier in the IPL sequence (before the policy agent starts) so that you avoid this problem on the next IPL.

Note that these keywords might not be in your policy. Specifically, if using the sample policy, the GroupUserInstance keyword is not specified. If so, see for information about where to add this statement in your policy.

Obtaining information about RRSF connections: The z/OS Communications Server NETSTAT command is frequently used to display information about TCP/IP connections. On a busy system, the output can be voluminous. To help identify RRSF sockets, RACF associates application data with each of the sockets it uses. Each socket is tagged with the string "IRRRRSF" to identify it as an RRSF socket. You can issue the NETSTAT command specifying application data to restrict the output to RRSF connections. For example:

NETSTAT ALLCON (APPLD IRRRRSF)

The NETSTAT command displays output such as:

EZZ2350I MVS TCP/IP NETSTAT CS V1R13 TCPIP NAME: TCPIP 13:33:07
EZZ2585I USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
EZZ2587I RSWJ 000000A3 9.57.1.243..18136 9.57.1.13..1034 ESTABL SH
EZZ2591I APPLICATION DATA: IRRRRSF
EZZ2587I RSWJ 0000000A 9.57.1.243..18136 0.0.0.0..0 LISTEN
EZZ2591I APPLICATION DATA: IRRRRSF

Figure 16. NETSTAT command output

This output shows two RRSF sockets. The first is for the listener process, and the second is for a remote node connection. The output shows that the remote node connection was initiated by the remote node, because the local socket value is the default listener port of 18136, and the remote socket uses an ephemeral port number of 1034.

Obtaining AT-TLS information for an RRSF connection: TARGET LIST displays some basic information extracted from the AT-TLS rule covering a remote connection, such as:

• The rule name
• The negotiated cipher
• The client authentication level
• If the client authentication level is SAFCHECK, the local user ID that the remote server's certificate mapped

This information can be helpful as a quick check, however, the NETSTAT command can be used to obtain all the policy information.
**Recovery actions**

See Figure 16 on page 150 for an example of NETSTAT command output and note that a connection identifier is shown in the CONN column. For the remote node, the connection ID shown is A3. To obtain detailed information about the AT-TLS policy covering that connection, issue the NETSTAT command specifying the connection ID:

```
NETSTAT TTLS CONN A3
```

or

```
NETSTAT TTLS CONN A3 DETAIL
```

See [z/OS V2R2.0 Communications Server: IP System Administrator’s Commands](#) for more information about the NETSTAT command.

**APPC errors**

This section contains information about:

- Initializing connection errors
- APPC return code handling

**Initializing of connections:** There is a class of problems that occur because of the order that the MVS address spaces become activated during a system IPL. As an MVS system is being IPLed, address spaces reach a state in which they are able to service requests at different rates. Therefore, there is no assurance that the VTAM and APPC address spaces, that are necessary to service RRSF requests, are available when the RACF subsystem address space issues its first request.

Attempting to activate the connections or send information to remote nodes when the RACF subsystem address space is started, but before VTAM and APPC have completed initialization, result in APPC failures. Normally, such APPC failures cause the connections between the two nodes to become operative in error when the first attempt is made. Instead, RRSF allows the RACF subsystem address space to continue to poll for APPC/MVS availability and when available, attempts to register the RACF subsystem address space as an APPC/MVS server.

If the RRSF APPC server fails to successfully register with APPC/MVS, error message IRRC023I is issued to the MVS operator console and RRSF initialization discontinues.

A registration attempt to APPC/MVS also occurs if:

- A local node is in a dormant state,
- A TARGET command is issued to make the connection operative, and
- Protocol information has been supplied.

A subsequent TARGET LIST command against the node would show a connection state of operative active.

**Note:** If MODENAME is not specified in the TARGET command, RACF sends a default name to APPC that allows the connection to complete successfully. This default name, IRRMODE, is placed in IRRNODE. However, since there was no explicit specification by the user and the default name is a RACF internal, the TARGET LIST output shows “NOT SPECIFIED”.

**APPC return code handling:** The actions indicated here are normally done internally by RRSF itself. However, in some cases, a manual RESTART command might be necessary.
Recovery actions

The MVS callable system services, that are used to implement the APPC or LU6.2 protocols, provide return codes to report the status of the request. Normally, a failure causes:

- The connection to be marked as operative in error
- A symptom record to be created in the LOGREC data set. See “Creation of LOGREC data set entries” on page 153 for details.

However, if RACF receives one of the following three error conditions back from APPC, RACF tries the error again:

- Allocate_failure_retry
- TP_not_available_retry
- Resource_failure_retry

If after 10 times, RACF continues to receive an error return code, it is considered a non-retryable error and:

- The connection is marked as operative in error.
- A symptom record is created in the LOGREC data set. See “Creation of LOGREC data set entries” on page 153 for details.

**APPC missing interrupts:** Another type of APPC error occurs when the MVS callable system service that attempts to perform an APPC function never completes. One way this can occur is if the partner remote RACF subsystem address space starts the TP program, but does not complete the request. A missing interrupt handler (MIH) uses a timer to wait for the transaction to complete. When the timer expires, the MIH breaks the connection and declares an error. The connection between the two nodes is marked as operative in error and message IRRC022I is issued.

**General errors**

This general section contains information about:

- APPC or TCP/IP and the RACF RESTART command
- Deleted nodes

**APPC or TCP/IP and the RACF RESTART command:** The **RESTART command** provides a way to recycle or recover a hung or stopped task. See [z/OS Security Server RACF Command Language Reference](#) for the syntax of the **RESTART command**.

The preferred way to recycle a connection is not to use the **RESTART command**. Instead, the operator should use the **TARGET command** to make the connection to the node dormant and then operative. This method fails if the task is hung waiting for outstanding work. Use the **RESTART command** to recycle a connection only after an unsuccessful attempt at using the **TARGET command** to make that connection dormant and then operative.

On restart, the partner node always marks the sender as dormant-remote. The node being restarted then attempts to handshake with the partner to restore the connection.

**Deleted node:** A command can be executing in the RACF subsystem address space and the node definition for the node on which the command originated can be removed. While requiring the connection to the node to be dormant before it can be deleted reduces the probability of this occurring, it is still possible.

If a message is targeted to a node that is no longer defined to RRSE, the following actions occur:
Recovery actions

- A symptom record is created.
- The command output or the command is discarded.

Recording of errors

Environmental errors and transmission errors must be reported to allow for their correction. When the RACF subsystem address space is unable to access a requested system resource, it records this type of error. Further, the RACF subsystem address space attempts to notify the originator of the command that it was unsuccessful. It might also need to stop transmitting to the affected node. The following mechanisms are used:

- A symptom record is created on the system experiencing the failure and stored in the LOGREC data set.
- If possible, an error message reporting the failure is sent back in the RRSFLIST data set (standard returned output) when the failure is not in RRSF. If the failure is in RRSF, then only a symptom record is created. This returned output is an error message. If the failing request is in storage, the failing request is added to the output. To the system where the request originated, the returned output is identical to the output returned when a command has successfully processed.
- RRSF tries the error again after creating the appropriate record of the failure.

Creation of LOGREC data set entries

When the RACF subsystem address space requests an MVS system resource or uses an MVS system service and is unsuccessful, this failure is recorded. If the failure is not recorded by MVS, RACF puts the symptom records in the LOGREC data set.

z/OS MVS Programming: Assembler Services Guide categorizes information contained within the symptom records as:

- Component Data – This identifies the application in which the error occurred (that is, RACF subsystem address space).
- Primary SDB symptoms – This contains the primary string of problem symptoms. This data is used for duplicate problem recognition (See Table 32).
- Secondary SDB symptoms – This contains any additional diagnostic values saved at the time of the error.
- Variable Data – This contains diagnostic data, such as portions of data areas or parameter lists pertinent to the error.

Table 32 shows the contents of the primary symptom string that the symptom record contains.

Table 32. Contents of primary symptom string for a RACF subsystem address space error

<table>
<thead>
<tr>
<th>SDB key literal</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIDS/</td>
<td>Module CSECT name</td>
</tr>
<tr>
<td>RIDS/</td>
<td>Load module name</td>
</tr>
<tr>
<td>PCSS/</td>
<td>System service (MVS or RACF macro) that failed</td>
</tr>
<tr>
<td>PRCS/</td>
<td>Return code from service</td>
</tr>
<tr>
<td>PRCS/</td>
<td>Reason code from service (if no reason code is available, this field contains a value of zero)</td>
</tr>
</tbody>
</table>
Recovery actions

Table 33 shows the contents of the secondary symptom string that the symptom record contains.

Table 33. Contents of secondary symptom string for a RACF subsystem address space error

<table>
<thead>
<tr>
<th>SDB key literal</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADRS/</td>
<td>Offset of service that failed</td>
</tr>
</tbody>
</table>

Table 34 shows the contents of the variable symptom string that the symptom record contains.

Table 34. Potential contents of variable symptom string for a RACF subsystem address space error for the indicated protocol used

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAME</td>
<td>APPC partner LUNAME</td>
</tr>
<tr>
<td>TPNAME</td>
<td>APPC partner TPNAME</td>
</tr>
<tr>
<td>MODENAME</td>
<td>APPC partner MODE NAME</td>
</tr>
<tr>
<td>ADDRESS</td>
<td>TCP partner host address</td>
</tr>
<tr>
<td>PORTNUM</td>
<td>TCP listener port number</td>
</tr>
<tr>
<td>MISC STRING</td>
<td>Additional information for some service failures</td>
</tr>
</tbody>
</table>

Table 35 shows the additional information that the symptom record contains.

Table 35. Additional LOGREC data for a RACF subsystem address space error

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPDSC</td>
<td>RACF subsystem address space</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>Name of failing service</td>
</tr>
<tr>
<td>SERVLEV</td>
<td>Service level of module</td>
</tr>
<tr>
<td>COMPID</td>
<td>Component ID (5752XXH00)</td>
</tr>
<tr>
<td>COMPLEV</td>
<td>Component level (260)</td>
</tr>
</tbody>
</table>
Chapter 6. Diagnosis reference for RACF

This topic contains:
- Parameter list descriptions (see “Parameter list descriptions”)
- Process flows (see “Process flows for RACF” on page 188)

Parameter list descriptions

This describes parameter lists passed to RACF when a RACF macro is invoked. Installation exits, which are described in z/OS Security Server RACF System Programmer’s Guide, also use parameter lists, which are described in z/OS Security Server RACF Data Areas. See Appendix A, “The Inventory Control Block (ICB),” on page 249 for information about the ICB (inventory control block).

The parameter lists used by RACF in processing RACF commands and the RACF report writer are standard TSO/E parameter lists. See z/OS TSO/E Customization for information about these parameter lists.

The parameter lists used by RACF in processing RACF utilities and DSMON are standard MVS parameter lists.

Table 36 is a quick reference that identifies the system macro-request types that are replacements for the independent RACF system macros. For more information about both types, see z/OS Security Server RACROUTE Macro Reference.

Table 36. Cross-reference for RACROUTE REQUEST=type, the independent RACF system macros, and the parameter list name

<table>
<thead>
<tr>
<th>RACROUTE REQUEST=type</th>
<th>Independent RACF system macro</th>
<th>Parameter list</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQUEST=AUDIT</td>
<td>None</td>
<td>AUDIT</td>
</tr>
<tr>
<td>REQUEST=AUTH</td>
<td>RACHECK</td>
<td>AUTH</td>
</tr>
<tr>
<td>REQUEST=DEFINE</td>
<td>RACDEF</td>
<td>DEFINE</td>
</tr>
<tr>
<td>REQUEST=DIRAUTH</td>
<td>None</td>
<td>DIRAUTH</td>
</tr>
<tr>
<td>REQUEST=EXTRACT</td>
<td>RACXTRT</td>
<td>EXTRACT</td>
</tr>
<tr>
<td>REQUEST=FASTAUTH</td>
<td>FRACHECK</td>
<td>FASTAUTH</td>
</tr>
<tr>
<td>REQUEST=LIST</td>
<td>RACLIST</td>
<td>LIST</td>
</tr>
<tr>
<td>REQUEST=SIGNON</td>
<td>None</td>
<td>SIGNON</td>
</tr>
<tr>
<td>REQUEST=STAT</td>
<td>RACSTAT</td>
<td>STAT</td>
</tr>
<tr>
<td>REQUEST=TOKENBLD</td>
<td>None</td>
<td>TOKENBLD</td>
</tr>
<tr>
<td>REQUEST=TOKENMAP</td>
<td>None</td>
<td>TOKENMAP</td>
</tr>
<tr>
<td>REQUEST=TOKENXTR</td>
<td>None</td>
<td>TOKENXTR</td>
</tr>
<tr>
<td>REQUEST=VERIFY</td>
<td>RACINIT</td>
<td>VERIFY</td>
</tr>
<tr>
<td>REQUEST=VERIFYX</td>
<td>None</td>
<td>VERIFYX</td>
</tr>
</tbody>
</table>

The following are the parameter lists:
- “RACROUTE parameter list” on page 156
- “AUDIT service parameter list” on page 159
- “AUTH service parameter list” on page 160
Parameter descriptions

- “DEFINE service parameter list” on page 164
- “DIRAUTH service parameter list” on page 170
- “EXTRACT service parameter list” on page 171
- “FASTAUTH service parameter list” on page 173
- “LIST service parameter list” on page 174
- “SIGNON service parameter list” on page 175
- “STAT service parameter list” on page 176
- “TOKENBLD service parameter list” on page 177
- “TOKENMAP/TOKENXTR service parameter list” on page 180
- “VERIFY/VERIFYX service parameter list” on page 181
- “ICHEINTY parameter list” on page 185

“Checking the parameter list passed to RACF” on page 80 goes into detail to show you how to locate parameters in a dump. To do this, you find the contents of register 1.

If register 1 is zero, then the RACROUTE macro was issued, and module ICHRFR00 issued the RACF macro. In this case, register zero points to a two-word parameter list. The first word of this parameter list points to the RACF SVC parameter list, and the second word of this parameter list points to the SAF parameter list. This is shown in the following:

Reg 0

![Diagram showing parameter list structure]

If register 1 is not zero, then this is the address of the parameter list passed with the macro request.

**RACROUTE parameter list**

The RACROUTE parameter list is also called the SAF router parameter list or the MVS router parameter list. It is mapped by macro ICHSAFP. For another description of this parameter list that includes field names, see [z/OS Security Server RACF Data Areas](#).
### Parameter descriptions

**Message returned (if MSGRTRN=YES) or zero**

**SAF work area**

**Subsystem name (supplied by caller)**

**Return code from installation exit or RACF request (usually a RACF macro)**

**Reason code from installation exit or RACF request (usually a RACF macro)**

**Length of RACROUTE parameter list**

**RACF version or release**

**Reserved**

**Request number**

**Flag byte**

**Subpool for messages (MSGSP)**

**Requester name (REQSTOR)**

**Subsystem name (SUBSYS)**

**SAF work area (WORKA)**

**Message returned (MSGADDR) or zero**

**Reserved**

**Signed offset from the start of the MVS router parameter list to the parameter list of the RACF request.**

---

#### Request number (in decimal):

1. REQUEST=AUTH (RACHECK)
2. REQUEST=FASTAUTH (FRACHECK)
3. REQUEST=LIST (RACLST)
4. REQUEST=DEFINE (RACDEF)
5. REQUEST=VERIFY (RACINIT)
6. REQUEST=EXTRACT (RACXTRT)
7. REQUEST=DIRAUTH (RACDAUTH)
8. REQUEST=TOKENMAP (RACTKSRV)
9. REQUEST=VERIFYX (RACINIT)
10. REQUEST=TOKENXTR (RACTKSRV)
11. REQUEST=TOKENBLD (RACINIT)
12. REQUEST=EXTRACT, BRANCH=YES
13. REQUEST=AUDIT (RACAUDIT)
14. REQUEST=STAT (RACSTAT)
15. REQUEST=SIGNON (SIGNON)
16. REQUEST=TOKENMAP, XMEM=YES
17. REQUEST=TOKENXTR, XMEM=YES

---

**RELEASE=keyword**

- X'00' RELEASE=1.9 or earlier
- X'02' RELEASE=1.9.2
- X'03' RELEASE=2.1
- X'04' RELEASE=2.2
- X'05' RELEASE=2.3
- X'06' RELEASE=2.4
- X'07' RELEASE=2.6

---

**REQUEST=AUTH (RACHECK)**

**REQUEST=FASTAUTH (FRACHECK)**

**REQUEST=LIST (RACLST)**

**REQUEST=DEFINE (RACDEF)**

**REQUEST=VERIFY (RACINIT)**

**REQUEST=EXTRACT (RACXTRT)**

**REQUEST=DIRAUTH (RACDAUTH)**

**REQUEST=TOKENMAP (RACTKSRV)**

**REQUEST=VERIFYX (RACINIT)**

**REQUEST=TOKENXTR (RACTKSRV)**

**REQUEST=TOKENBLD (RACINIT)**

**REQUEST=EXTRACT, BRANCH=YES**

**REQUEST=AUDIT (RACAUDIT)**

**REQUEST=STAT (RACSTAT)**

**REQUEST=SIGNON (SIGNON)**

**REQUEST=TOKENMAP, XMEM=YES**

**REQUEST=TOKENXTR, XMEM=YES**

---

**Figure 17. RACROUTE parameter list (part 1 of 2)**
These areas show up on both MVS and VM systems, but they are used only on VM.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+28</td>
<td>SAF return code</td>
</tr>
<tr>
<td>+2C</td>
<td>SAF reason code</td>
</tr>
<tr>
<td>+30</td>
<td>Length of SAFP Extension parameter list</td>
</tr>
<tr>
<td>+32</td>
<td>Length of original parameter list</td>
</tr>
<tr>
<td>+34</td>
<td>Returned data</td>
</tr>
<tr>
<td>+38</td>
<td>Flat parameter</td>
</tr>
<tr>
<td>+3C</td>
<td>ECB1</td>
</tr>
<tr>
<td>+40</td>
<td>ECB2</td>
</tr>
<tr>
<td>+44</td>
<td>Previous flat list</td>
</tr>
<tr>
<td>+48</td>
<td>Next flat list address</td>
</tr>
<tr>
<td>+4C</td>
<td>Original parameter list</td>
</tr>
<tr>
<td>+50</td>
<td>Flat parameter list length</td>
</tr>
<tr>
<td>+54</td>
<td>User word identifier</td>
</tr>
<tr>
<td>+58</td>
<td>Preprocessing exit address</td>
</tr>
<tr>
<td>+5C</td>
<td>Postprocessing exit address</td>
</tr>
<tr>
<td>+60</td>
<td>Synchronous ECB</td>
</tr>
<tr>
<td>+64</td>
<td>Requestor's storage key</td>
</tr>
<tr>
<td>+65</td>
<td>Requestor's addressing mode</td>
</tr>
<tr>
<td>+66</td>
<td>Status byte</td>
</tr>
<tr>
<td>+67</td>
<td>Reserved</td>
</tr>
<tr>
<td>+68</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

```
+ XX X X X X X X
```

```
1: SFS User accessing own file or directory
1: Request came from GCS
```

Figure 18. RACROUTE parameter list (part 2 of 2)
### AUDIT service parameter list

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>Version of AUDIT parameter list</td>
</tr>
<tr>
<td>+2</td>
<td>Length of AUDIT parameter list</td>
</tr>
<tr>
<td>+4</td>
<td>Event name</td>
</tr>
<tr>
<td>+8</td>
<td>Event code qualifier</td>
</tr>
<tr>
<td>+A</td>
<td>Reserved</td>
</tr>
<tr>
<td>+C</td>
<td>Class name</td>
</tr>
<tr>
<td>+10</td>
<td>Entity name</td>
</tr>
<tr>
<td>+14</td>
<td>ACEE</td>
</tr>
<tr>
<td>+18</td>
<td>LOGSTR data</td>
</tr>
<tr>
<td>+1C</td>
<td>Result byte</td>
</tr>
<tr>
<td>+1D</td>
<td>Reserved</td>
</tr>
<tr>
<td>+20</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

**Figure 19. AUDIT service parameter list**
AUTH parameters

AUTH service parameter list

Figure 20. AUTH service parameter list (part 1 of 4)
This field is zero if bit 4 of the flag byte at offset 4 is one (input was RACROUTE REQUEST=AUTH).

This field is zero if bit 4 of the flag byte at offset 4 is zero (input was RACHECK macro).

Figure 21. AUTH service parameter list (part 2 of 4)
**AUTH parameters**

```
+28 ↑ Class name (CLASS) or zero
+2C ↑ VOLSER or zero
+30 ↑ Access level (ACCLVL)
+34 ↑ Access level parameters (ACCLVL)
+38 FILESEQ
+3A Flag byte
+3B Flag byte
+3C ↑ USER ID
+40 ↑ GROUP ID

Length Class name
0 1 8 bytes

Length VOLSER
0 6 bytes

Length Access level
0 1 8 bytes

Additional access level data
0

Reserved
Kind of tape label:
00: STD
01: NL
10: BLP

Reserved
1: STATUS=ACCESS
1: STATUS=WRITEONLY
1: STATUS=EVERDOM
1: STATUS=ERASE

User ID
0 8 bytes

Group ID
0 8 bytes
```

1 This field is zero if bit 4 of the flag byte at offset 4 is one (input was RACROUTE REQUEST=AUTH).
2 This field is zero if bit 4 of the flag byte at offset 4 is zero (input was RACHECK macro).

*Figure 22. AUTH service parameter list (part 3 of 4)*
Figure 23. AUTH service parameter list (part 4 of 4)
**DEFINE service parameter list**

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>Length of DEFINE parameter list</td>
</tr>
<tr>
<td>+1</td>
<td>Installation parameters or zero (INSTLN)</td>
</tr>
<tr>
<td>+4</td>
<td>Flag byte (SPECIAL, DSTYPE, TYPE)</td>
</tr>
<tr>
<td>+5</td>
<td>Resource name (ENTITY) or zero</td>
</tr>
<tr>
<td>+8</td>
<td>OLD VOLSER (OLDVOL) or New data set name (TYPE=NEWNAME or TYPE=NEWNAMEX)</td>
</tr>
<tr>
<td>+C</td>
<td>VOLSER</td>
</tr>
<tr>
<td>+10</td>
<td>Class name (CLASS)</td>
</tr>
</tbody>
</table>

- **0**: SPECIAL=NO
- **1**: SPECIAL=YES
- **1**: DSTYPE=M (model)
- **1**: DSTYPE=V (VSAM)
- **1**: Parameter list in 31-bit format
- **1**: New data set name specified
- **1**: Old VOLSER specified
- **00**: TYPE=DEFINE
- **01**: TYPE=ADDVOL
- **10**: TYPE=DELETE
- **11**: TYPE=CHGVOL

**Installation parameters**
(variable and set by user)

- **0**: SPECIAL=NO
- **1**: SPECIAL=YES
- **1**: DSTYPE=M (model)
- **1**: DSTYPE=V (VSAM)
- **1**: Parameter list in 31-bit format
- **1**: New data set name specified
- **1**: Old VOLSER specified
- **00**: TYPE=DEFINE
- **01**: TYPE=ADDVOL
- **10**: TYPE=DELETE
- **11**: TYPE=CHGVOL

**Resource name**

- **0**: 44 bytes

**Old VOLSER**

- **0**: 44 bytes

**New data set name**

- **0**: 44 bytes

**Buffer length**

- **2 bytes**

**Name length**

- **2 bytes**

**Characters**

- **255 max**

**VOLSER**

- **0**: 6 bytes

**Length**

- **0**: 1 byte

**Class name**

- **0**: 8 bytes

- **This field is zero if bit 4 of the flag byte at offset 4 is one (input was RACROUTE REQUEST=DEFINE).**

*Figure 24. DEFINE service parameter list (part 1 of 6)*
Figure 25. DEFINE service parameter list (part 2 of 6)
DEFINE parameters

Figure 26. DEFINE service parameter list (part 3 of 6)
DEFINE parameters

Figure 27. DEFINE service parameter list (part 4 of 6)

This field is zero if bit 4 of the flag byte at offset 4 is zero (input was RACDEF macro).
Figure 28. DEFINE service parameter list (part 5 of 6)
### DEFINE parameters

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+54</td>
<td>NOTIFY user ID (NOTIFY)</td>
<td>0</td>
<td>User ID</td>
</tr>
<tr>
<td>+58</td>
<td>Storage class (STORCLA)</td>
<td>0</td>
<td>Storage class</td>
</tr>
<tr>
<td>+60</td>
<td>Management class (MGMTCLA)</td>
<td>0</td>
<td>Management class</td>
</tr>
<tr>
<td>+62</td>
<td>Resource owner (RESOWN)</td>
<td>0</td>
<td>Resource owner</td>
</tr>
<tr>
<td>+64</td>
<td>Flag byte</td>
<td>0</td>
<td>Flag byte</td>
</tr>
<tr>
<td>+65</td>
<td>Reserved</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>+68</td>
<td>DDNAME (DDNAME)</td>
<td>0</td>
<td>DDNAME (DDNAME)</td>
</tr>
<tr>
<td>+6C</td>
<td>SECLABEL</td>
<td>0</td>
<td>SECLABEL</td>
</tr>
<tr>
<td>+70</td>
<td>Reserved</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>+74</td>
<td>Reserved</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>+78</td>
<td>Reserved</td>
<td>0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Figure 29. DEFINE service parameter list (part 6 of 6)
DIRAUTH parameters

DIRAUTH service parameter list

Figure 30. DIRAUTH service parameter list
EXTRACT service parameter list

Figure 31. EXTRACT service parameter list (part 1 of 3)

(The following is used when TYPE = ENVRXTR.)

Figure 32. EXTRACT service parameter list (part 2 of 3)
EXTRACT parameters

(The following is used when TYPE=ENCRYPT.)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>+C</td>
<td>Data to be encoded (ENCRYPT)</td>
</tr>
<tr>
<td>+10</td>
<td>Encoding method (ENCRYPT)</td>
</tr>
</tbody>
</table>

Encoding method:
1: ENCRYPT (addr,DES)
2: ENCRYPT (addr,HASH)
3: ENCRYPT (addr,INST)
4: ENCRYPT (addr,STDDES)

(The following is used when TYPE is not ENCRYPT or ENVRXTR.)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>+C</td>
<td>Class name (CLASS)</td>
</tr>
<tr>
<td>+10</td>
<td>Subpool for returned data (SUBPOOL)</td>
</tr>
<tr>
<td>+14</td>
<td>Field list (FIELDS)</td>
</tr>
<tr>
<td>+18</td>
<td>Segment name (SEGMENT)</td>
</tr>
<tr>
<td>+20</td>
<td>Segment data (SEGDATA)</td>
</tr>
<tr>
<td>+24</td>
<td>ACEE to use (ACEE)</td>
</tr>
<tr>
<td>+28</td>
<td>VOLSER</td>
</tr>
<tr>
<td>+32</td>
<td>Flags</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>Number of fields</td>
</tr>
<tr>
<td>+4</td>
<td>Name of first field</td>
</tr>
<tr>
<td>+C</td>
<td>Name of second field</td>
</tr>
<tr>
<td>+14</td>
<td>Name of next field</td>
</tr>
</tbody>
</table>

SEGMENT

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>Length of field 1</td>
</tr>
<tr>
<td>+4</td>
<td>Field 1</td>
</tr>
<tr>
<td>+(4+x)</td>
<td>Length of field 2</td>
</tr>
<tr>
<td>+(4+x+4)</td>
<td>Field 2</td>
</tr>
</tbody>
</table>

ACEE

VOLID

Reserved

NOTE: In this figure, the length of field 1 is x.

Figure 33. EXTRACT service parameter list (part 3 of 3)
FASTAUTH service parameter list

Figure 34. FASTAUTH service parameter list
### LIST parameters

#### LIST service parameter list

![Diagram of LIST service parameter list]

**Figure 35. LIST service parameter list**
SIGNON parameters

SIGNON service parameter list

Figure 36. SIGNON service parameter list
**STAT parameters**

**STAT service parameter list**

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
<th>Description</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>Resource class name (CLASS)</td>
<td>Class name</td>
<td>8</td>
</tr>
<tr>
<td>+4</td>
<td>Static CDT entry address (ENTRY)</td>
<td>Entry address</td>
<td>4</td>
</tr>
<tr>
<td>+8</td>
<td>Length of STAT parameter list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+A</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+C</td>
<td>Address of area to hold CDT entry (COPY)</td>
<td>Storage owned by the program or caller</td>
<td>n</td>
</tr>
<tr>
<td>+10</td>
<td>Length of the COPY area (COPYLEN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+14</td>
<td>Address of the class name for the NEXT keyword</td>
<td>Class name for NEXT=</td>
<td>8</td>
</tr>
</tbody>
</table>

*Figure 37. STAT service parameter list*
Figure 38. TOKENBLD service parameter list (part 1 of 4)
Figure 39. TOKENBLD service parameter list (part 2 of 4)
Figure 40. TOKENBLD service parameter list (part 3 of 4)
TOKENMAP/TOKENXTR parameters

Figure 41. TOKENBLD service parameter list (part 4 of 4)

TOKENMAP/TOKENXTR service parameter list

Figure 42. TOKENMAP/TOKENXTR service parameter list
Figure 43. VERIFY/VERIFYX service parameter list (part 1 of 4)
Figure 44. VERIFY/VERIFYX service parameter list (part 2 of 4)
Figure 45. VERIFY/VERIFYX service parameter list (part 3 of 4)
VERIFY/VERIFYX parameters

Figure 46. VERIFY/VERIFYX service parameter list (part 4 of 4)
ICHEINTY parameter list

Figure 47. ICHEINTY parameter list (part 1 of 3)
ICHEINTY parameters

Figure 48. ICHEINTY parameter list (part 2 of 3)
Figure 49. ICHEINTY parameter list (part 3 of 3)
Process flows for RACF

This provides process flows for:
- Commands
- Directed commands
- Macros
- Installation exits
- Utilities
- The report writer
- The SMF data unload utility
- Callable services

Process flow for RACF commands

![Image of process flow diagram for RACF commands]

Figure 50. Process flow for RACF commands
Process flow for RACF directed commands

Figure 51. Process flow for RACF directed commands

Process flow for RACF macros

Figure 52. Process flow for RACF macros
Process flows

Process flow for RACF installation exits

Figure 53. Process flow for RACF installation exits (part 1 of 2)
Figure 54. Process flow for RACF installation exits (part 2 of 2)
**Process flow for RACF utilities**

1. User request for utility function
2. RACF utility processing
3. SVC 132
4. RACF manager
5. RACF database
6. Information about the RACF database
7. Messages
8. Return Code

**Figure 55. Process flow for RACF cross-reference and database unload utilities**

1. IRRDBU00 records
2. RACF remove ID utility processing (IRRRID00)
3. CLIST Messages Return Codes
4. Sort/Merge program

**Figure 56. Process flow for RACF remove ID Utility**

1. User request for utility function
2. RACF utility processing
3. BDAM access method
4. RACF database
5. Information about the RACF database
6. Messages
7. Return Code

**Figure 57. Process flow for other RACF Utilities**
Process flow for the RACF report writer

SMF records

SMF dump program (PGM=IFASMFDP)

Data set containing SMF data

RACFRW command

TMP processing

RACF report writer processing

SORT/MERGE program

ICHRSME installation exit

Reports
Messages
Return code

Figure 58. Process flow for the RACF report writer
Process flow for SMF data unload utility (IRRADU00)

Figure 59. Process flow for SMF data unload utility. The USER2 exit is invoked once for each record that meets the criteria in the IFASMFDP control statements. See z/OS MVS System Management Facilities (SMF) for more information. The USER3 exit is invoked once.
Error recording for callable services

Environmental errors must be reported to allow their correction. Some of the RACF callable services create symptom records for errors and store them in the LOGREC data set.

<Client> categorizes information contained in the symptom records as:

- Component data
Error recording

This identifies the application in which the error occurred (that is, the RACF subsystem address space).

- Primary SDB symptoms
  This contains the primary string of problem symptoms. This data is used for duplicate problem recognition (see Table 37).

- Secondary SDB symptoms
  This contains any additional diagnostic values saved at the time of the error. See Table 38.

- Variable data
  This contains diagnostic data, such as portions of data areas or parameter lists pertinent to the error. See Table 39.

Table 37 shows the contents of the primary symptom string in the symptom record.

**Table 37. Contents of primary symptom string for a callable service error**

<table>
<thead>
<tr>
<th>SDB key literal</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIDS/</td>
<td>Module CSECT name</td>
</tr>
<tr>
<td>RIDS/</td>
<td>Load module name (IRRRFR10)</td>
</tr>
<tr>
<td>PCSS/</td>
<td>System service (MVS or RACF macro) that failed</td>
</tr>
<tr>
<td>PRCS/</td>
<td>Return code from service</td>
</tr>
<tr>
<td>PRCS/</td>
<td>Reason code from service (if no reason code is available, this field contains a value of zero)</td>
</tr>
</tbody>
</table>

Table 38 shows the contents of the secondary symptom string.

**Table 38. Contents of secondary symptom string for a callable service error**

<table>
<thead>
<tr>
<th>SDB key literal</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADRS/</td>
<td>Offset of service that failed</td>
</tr>
</tbody>
</table>

Table 39 shows the additional information that the symptom record contains.

**Table 39. Additional LOGREC data for a callable service error**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPDSC</td>
<td>RACF callable service</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>Name of failing service</td>
</tr>
<tr>
<td>SERVLEV</td>
<td>Service level of module</td>
</tr>
<tr>
<td>COMPID</td>
<td>Component ID (5752XXH00)</td>
</tr>
<tr>
<td>COMPLEV</td>
<td>Component level (260)</td>
</tr>
</tbody>
</table>

Variable data recorded by RACF callable services

Each RACF callable service records additional variable data specific to the problem:

- **R_usermap (CSECT IRRRIM00)**
  - Error determining the RACF user ID associated with an application user identity
    - Service name: RACXTRT or ICHEINTY
Error recording

- Variable data: The string 'IRRRIM00_XXXX:', where XXXX is the procedure name from which error occurs
- Additional variable data: application user identity and field names, such as SNAME or UNAME

* Error determining the application user identity associated with a RACF user ID
  - Service name: RACXTRT
  - Variable data: The string 'IRRRIM00_XXXX:', where XXXX is the procedure name from which error occurs
  - Additional variable data: RACF user ID and field names, such as SNAME or UNAME

* Figure 61 on page 198 shows an example of a symptom record when the user name is not found in an alias index entry but is found in the mapping profile.
Error recording

TYPE: SYMPTOM RECORD
REPORT: SOFTWARE EDIT REPORT
DAY: 032
YEAR: 00
ERROR DATE: 032 00
SCP: VS 2 REL 3
MODEL: 4381
SERIAL: 127685
TIME: 08:28:48.85
ERROR DATE: 032 00
SEARCH ARGUMENT ABSTRACT:
PIDS/5752XXH00 PRCS/0000000C PRCS/00000000 RIDS/IRRRIM00
RIDS/IRRRF10#L

SYSTEM ENVIRONMENT:
CPU MODEL: 4381
CPU SERIAL: 127685
SYSTEM: RACSF10
BCP: MVS
RELEASE LEVEL OF SERVICE ROUTINE: HBB7703
SYSTEM DATA AT ARCHITECTURE LEVEL: 10
COMPONENT DATA AT ARCHITECTURE LEVEL: 10
SYSTEM DATA: 00000000 00000000 |........|
COMPONENT INFORMATION:
COMPONENT ID: 5752XXH00
COMPONENT RELEASE LEVEL: 7703
SERVICE RELEASE LEVEL: HRF7703
DESCRIPTION OF FUNCTION: RACF z/OS UNIX SYSTEM CALLABLE SERV.
PROBLEM ID: ICHEINTY

PRIMARY SYMPTOM STRING:
PIDS/5752XXH00 PRCS/0000000C PRCS/00000000 RIDS/IRRRIM00
RIDS/IRRRF10#L

SYMPTOM SYMPTOM DATA EXPLANATION
--------------- ------------- -----------
PIDS/5752XXH00 5752XXH00 COMPONENT IDENTIFIER
PRCS/0000000C 0000000C RETURN CODE
PRCS/00000000 00000000 RETURN CODE
RIDS/IRRRIM00 IRRRIM00 ROUTINE IDENTIFIER
RIDS/IRRRF10#L IRRRFR10#L ROUTINE IDENTIFIER

SECONDARY SYMPTOM STRING:
ADRS/0000140C

SYMPTOM SYMPTOM DATA EXPLANATION
--------------- ------------- -----------
ADRS/0000140C 0000140C STORAGE ADDRESS

FREE FORMAT COMPONENT INFORMATION:
KEY = F000 LENGTH = 00100 (0064)
+000 C9D9D9D9 C9D4F0F0 6DC19389 81A26DD3 |IRRRIM00_ALIAS_L|
+010 96837A40 E2D5C1D4 C540D4E8 40D3D596 |OC: SNAME MY LNO|
+020 A385A240 C9958696 40404040 40404040 |TES INFO |
+030 LENGTH(0048) ==> ALL BYTES CONTAIN X'40'.
+060 40404040 | |

HEX DUMP OF RECORD:
HEADER
+000 4C831800 00000000 000032F 08284885 |<C............E|
+010 FF127685 43810000 | ...E.A.. |

Figure 61. An example of a symptom record when an SNAME is not found in the alias index entry but is found in the mapping profile (part 1 of 2)
getGMAP (CSECT IRRRGM01)

- Error extracting the group name corresponding to the input group ID
  - Service name: RACXTRT or ICHEINTY
  - Variable data: The string 'IRRRGM01_XXXX: YYYY', where XXXX is the procedure name from which error occurs and YYYY is the GROUP mapping profile name for RACXTRT service or is the GROUP Alias name for ICHEINTY service

- Error extracting the group ID corresponding to the input group name
  - Service name: RACXTRT
  - Variable data: The string 'IRRRGM01_XXXX: YYYY', where XXXX is the procedure name from which error occurs and YYYY is the GROUP profile name

getGMAP/getUMAP/initUSP (CSECT IRRRUM02)

- Error locating or updating a profile during automatic UID/GID assignment
  - Service name: ICHEINTY
  - Variable data: The string 'IRRRUM02_XXXX: YYYY', where XXXX is the procedure name from which error occurs and YYYY is the ICHEINTY operation
  - Additional Variable data: class name and profile name
    - Primary symptom string return code: ICHEINTY return code
    - Secondary symptom string reason code: ICHEINTY reason code
  - Error processing APPLDATA for the BPX.NEXT.USER profile in the FACILITY class
    - Service name: BPXNEXT

Figure 62. An example of a symptom record when an SNAME is not found in the alias index entry but is found in the mapping profile (part 2 of 2)
Error recording

- Variable data: The string ‘IRRRUM02_XXXX: YYYY’, where XXXX is the procedure name from which error occurs and YYYY is the profile being processed for automatic UID/GID assignment
- Additional variable data: One of the following error descriptions:
  - Profile BPX.NEXT.USER ran out of UID values
  - Profile BPX.NEXT.USER ran out of GID values

getUMAP (CSECT IRRRUM01)

- Error extracting the user name corresponding to the input user ID
  - Service name: RACXTRT or ICHEINTY
  - Variable data: The string ‘IRRRUM01_XXXX: YYYY’, where XXXX is the procedure name from which error occurs and YYYY is the USER mapping profile name for RACXTRT service or is the USER application identity name for ICHEINTY service
- Error extracting the user ID corresponding to the input user name
  - Service name: RACXTRT
  - Variable data: The string ‘IRRRUM01_XXXX: YYYY’, where XXXX is the procedure name from which the error occurs and YYYY is the USER profile name

Figure 63 on page 201 shows an example of a symptom record when the user name is not found in an alias index entry but is found in the mapping profile.
Figure 63. An example of a symptom record when a UID is not found in the alias index entry but is found in the mapping profile (part 1 of 2)
Error recording

SYMPTOM RECORD
+000 E2D9F4F3 F8F1F1F2 F7F6F8F5 FFFFBCF1 SR4381127685...1
+010 B388D17B 767DA544 40404040 40404040 .HJ#.'V.
+020 4040D9C1 C3C609F1 F040F5F7 F5F2BCB2 RACFR10 5752HB
+030 C2F7F7F0 F3400000 00000000 00000000 B7703 ...........A
+040 F1F00030 00640070 00490138 00000181 10............A
+050 0068018F 00000000 00000000 00000000 ............
+060 00000000 00000000 00000000 00000000 ............
+070 E2D9F2F1 F1F05F7 F52E7E7 CB8F0F00 SR21105752XXH00.
+080 FF7F6F3 C09C6F7 F7F0340 00000000 7703HRF7703 ....
+090 00000000 00000000 00000000 00000000 ............
+0A0 40069785 95C58489 A3899695 40C38193 z/OS UNIX SYSTEM
+0B0 93818293 B540E285 99A54840 00000000 CALLABLE SERV.
+0C0 00000000 C9C3C8C5 C905E3E8 00000000 ....ICHEINTY....
+0D0 00000000 06694591 06694591 0669459F ...........J....
+0E0 0669459F 06694607 06694607 01000000 ............
+0F0 06694410 00000000 00000000 F0F12F3 ...........123
+100 F4F5F6F7 F8F9C1C2 C3C4C5C6 00490000 456789ABCDDEF....
+110 00680000 00000000 F0F00F0F 00C2C1C1 ........000000AA
+120 00000000 00000000 00000000 00000000 ............
+130 00000000 00000000 00000000 00000000 ............
+140 F2E7E7C8 F0F04007 D9CE261 F0F0F0F0 22XX00 PRCS/0000
+150 F0F0003C 40D79C3 E261F0F0 F0F0F0F0 000C PRCS/0000
+160 F0F04009 C9C4E261 C9D9D9D9 4D4F0F01 00 RIDS/IRRRM01
+170 40D9C9C4 E261C9D9 D909C6D9 F1F790F3 RIDS/IRRRF10#L
+180 40C1C4D9 E261F0F0 F0F0F0F0 00C2C1C1 ADRS/000000000 0
+190 000664C9 D909D9E4 D4F016D C1D3C9C1 ...IRRRM01_ALIA
+1A0 E260E4D3 D637A40 F1F2F3F4 F5F6F7F8 5_ULOC: 12345678
+1B0 LENGTH(0064) ===> ALL BYTES CONTAIN X'40'.

Figure 64. An example of a symptom record when a UID is not found in the alias index entry but is found in the mapping profile (part 2 of 2)

**InitACEE (CSECT IRRRIA00)**

- Certificate decoding problem
  - Service name: DECX509B
  - Variable data: The following 6 fullwords:
    1. Address of the certificate passed to InitACEE
    2. Length of the certificate passed to InitACEE
    3. Address of the byte found to be in error
    4. Internal diagnostic word
    5. Number of certificate bytes recorded in the next 4 variable data sections
    6. Number of certificate bytes skipped at the beginning of the certificate when recording
      - Additional variable data: up to 1024 bytes of the certificate
- Error in certificate profile (user ID not valid)
  - Service name: GETUSERI
  - Variable data: The string 'Bad DIGTCERT Class Profile'
  - Additional variable data: The name of the DIGTCERT class profile found to be in error
- Error in certificate profile (user ID not defined to RACF)
  - Service name: RACINIT
  - Variable data: The string 'Bad DIGTCERT Class Profile'
  - Additional variable data: The name of the DIGTCERT class profile found to be in error
- Unexpected return code from R_cacheserv SAF callable service
Error recording

- Service name: CACHSERV
- Variable Data: The 8 byte user ID input to R_cacheserv
- Primary symptom string return code: R_cacheserv return code
- Primary symptom string return code: R_cacheserv reason code
- Unexpected return code from RACROUTE REQUEST=VERIFY
  - Service name: RACINIT
  - Variable data: The nine character user ID being verified (1 byte length followed by up to 8 characters for the user ID itself)
- Problem with IDID user mapping
  - Service name: IRRID2U
  - Variable data: Includes return code and IDID

InitACEE (CSECT IRRRIA02)
- Certificate decoding problem
  - Service name: DECX509B
  - Variable data: The following 6 fullwords:
    1. Address of the certificate passed to InitACEE
    2. Length of the certificate passed to InitACEE
    3. Address of the byte found to be in error
    4. Internal diagnostic word
    5. Amount of certificate data recorded
    6. Amount of certificate data truncated
    - Additional variable data: up to 1024 bytes of the certificate
- Error retrieving the CERTAUTH certificate repeat group from the irrcerta profile.
  - Service name: RACXTRT
  - Variable data: The string 'Couldn't extract the CERTAUTH anchor USER profile, irrcerta'.
    - Additional variable data: none
- Error extracting the private key size (CERTPRVS) from a DIGTCERT profile.
  - Service name: RACXTRT
  - Variable data: The string 'Bad CERTAUTH class profile:label-value'
    - Additional variable data: The profile name

InitACEE (CSECT IRRRIA05)
- Error extracting the trust status (UACC) from a DIGTCERT profile
  - Service name: RACEXTR
  - Variable data: The string 'Bad DIGTCERT Class Profile'
    - Additional variable data: The profile name
- Error extracting date fields CERTSTRT, CERTEND from a DIGTCERT profile
  - Service name: RACEXTR
  - Variable data: The string 'Bad DIGTCERT Class Profile'
    - Additional variable data: The profile name
- Error extracting the CERTAUTH anchor in the USER profile.
  - Service name: RACEXTR
  - Variable data: The string 'Bad USER class profile — irrcerta'

R_cacheserv (CSECT IRRRCH12)
Physical error accessing the CACHECLS profile on the RACF database
- Service name: ICHEINTY
- Variable data: The string "LOCATE CACHECLS profile xxxx" where xxxx is the 16 byte profile name.

Logical error with the contents of the CACHECLS profile read from the RACF database
- Service name: Database (not a real Service, rather an indicator something was wrong with the profile read from the RACF database)
- Variable data: The string "CACHECLS profile xxxx not valid:" where xxxx is the 16 byte profile name. Following that string is one of the following reasons the profile was determined not to be valid.
  - missing profile
  - profile not valid
  - timestamp is not correct
  - data space offset is not correct
  - data space size is not correct
  - data space count is not correct
  - cache version is not correct

R_cacheserv (CSECT IRRRCH13)
- Physical error accessing the CACHECLS profile on the RACF database
  - Service name: ICHEINTY
  - Variable data: The string "[LOCATE | ALTER | ADD] CACHECLS profile xxxx" where xxxx is the 16 byte profile name.

R_cacheserv (CSECT IRRRCH14)
- Physical error accessing the CACHECLS profile on the RACF database
  - Service name: ICHEINTY
  - Variable data: The string "[NEXT | DELETE] CACHECLS profile xxxx" where xxxx is the 16 byte profile name.

R_cacheserv (all CSECTs IRRRCHQx in IRRRCH16)
- Error occurred in data space layer
  - Service name: DISPLAYER
  - Variable data: xxxxxxxx yyyyyyyyy zzzzzzzz aaaaaaaa bbbbbbb: cccccccc
  - xxxxxxxx = Internal subroutine identifier

The following are possible values for xxxxxxxx. These identify the failing data space layer subroutine:

<table>
<thead>
<tr>
<th>xxxxxxxx</th>
<th>Data space layer call</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>dspCreate</td>
</tr>
<tr>
<td>24</td>
<td>dspDelete</td>
</tr>
<tr>
<td>28</td>
<td>dspConnect</td>
</tr>
<tr>
<td>32</td>
<td>dspExtend</td>
</tr>
<tr>
<td>36</td>
<td>dspExpose</td>
</tr>
<tr>
<td>40</td>
<td>dspHide</td>
</tr>
<tr>
<td>44</td>
<td>addAlet</td>
</tr>
<tr>
<td>48</td>
<td>delAlet</td>
</tr>
</tbody>
</table>

Table 40. Failing data space layer for an internal subroutine identifier
### Error recording

**Table 40. Failing data space layer for an internal subroutine identifier (continued)**

<table>
<thead>
<tr>
<th>xxxxxxxx</th>
<th>Data space layer call</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>dspAdd</td>
</tr>
<tr>
<td>60</td>
<td>dspDisconnect</td>
</tr>
<tr>
<td>64</td>
<td>dasENQDS</td>
</tr>
<tr>
<td>68</td>
<td>dasDEQDs</td>
</tr>
<tr>
<td>76</td>
<td>dasSetVer</td>
</tr>
<tr>
<td>80</td>
<td>dasGetVer</td>
</tr>
<tr>
<td>84</td>
<td>dasCopyDS</td>
</tr>
</tbody>
</table>

- yyyyyyy = Failing system service

The following are possible values for yyyyyyy. These identify the failing system service or internal request:

**Table 41. Failing system service for a failing system service identifier**

<table>
<thead>
<tr>
<th>yyyyyyy</th>
<th>Failing system service</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>TCBTOKEN</td>
</tr>
<tr>
<td>8</td>
<td>DSPSERV CREATE</td>
</tr>
<tr>
<td>12</td>
<td>ALESERV ADD</td>
</tr>
<tr>
<td>16</td>
<td>DSPSERV DELETE</td>
</tr>
<tr>
<td>20</td>
<td>Data space does not exist</td>
</tr>
<tr>
<td>24</td>
<td>Data space header eye-catcher bad</td>
</tr>
<tr>
<td>28</td>
<td>Irrrch10 not found</td>
</tr>
<tr>
<td>32</td>
<td>IEANTCR</td>
</tr>
<tr>
<td>36</td>
<td>IEANTRT</td>
</tr>
<tr>
<td>40</td>
<td>IEANTDL</td>
</tr>
<tr>
<td>44</td>
<td>DSPSERV EXTEND</td>
</tr>
<tr>
<td>48</td>
<td>ALESERV DELETE</td>
</tr>
</tbody>
</table>

Uppercase values are z/OS system macros. Lowercase values are internal requests.

- zzzzzzzz = failing system service return code
- aaaaaaaa = failing system service reason code
- bbbbbbbb = identifies R_cacheserv subroutine
- cccccccc = additional diagnostic text, such as "dspCreate failed"

**R_cacheserv (CSECTs IRRRCHQx in IRRRCH16)**

- Error occurred in data space layer
  - Service name: DSPLAYER
  - Variable data: bbbbbbbb: cccccccc
  - bbbbbbbb = identifies R_cacheserv subroutine
  - cccccccc = additional diagnostic text

**R_cacheserv (CSECTs IRRRCHQC in IRRRCH16)**

- Recovery attempted after a failure during cache creation
  - Service name: REEXPOSE
Error recording

- Variable data: bbbbbbbb: RE-EXPOSE cccccccc dddddddd
  - bbbbbbbb = identifies R_cacheserv subroutine
  - cccccccc = identifies failing object
  - dddddddd = successful or failed

R_cacheserv (CSECT IRRRCHQD, IRRRCHQG, IRRRCHQE in IRRRCH16)
  - Name/token service failure
    - Service name: IEANTRT
    - Variable data: bbbbbbbb: IEANTRT error
      - bbbbbbbb = identifies R_cacheserv subroutine

R_cacheserv (CSECT IRRRCHQG in IRRRCH16)
  - Name/token service failure
    - Service name: IEANTCR
    - Variable data: bbbbbbbb: IEANTCR Error
      - bbbbbbbb = identifies R_cacheserv subroutine

R_cacheserv (CSECT IRRRCHQJ in IRRRCH16)
  - Error restoring cache
    - Service name: RESTORE
    - Variable data: Restore: IRRRCH12 Restore DS error

R_cacheserv (CSECT IRRRCH18)
  - Unable to use ICSF for random number generation, therefore, a software pseudo random number generator (SW PRNG) is used. It is possible that CSNBRNG is not found in LPA. See 'FINDMOD:' logrec for more information.
    - Service name: RANDNUM
    - Variable Data: IRRRCH18: USING SW PRNG, NOT CSNBRNG
    - Primary symptom string return code: 4
    - Primary symptom string reason code: 0
  - Unable to find module in LPA using CSVQUERY
    - Service name: name of the module that was not found
    - Variable Data: aaaaaaaaa bbbbbbbb cccccccc dddddddd FINDMOD: UNABLE TO FIND MODULE IN LPA.
      - aaaaaaaaa is an indicator of R_cacheserv operation.
      The following are possible values for aaaaaaaaa:

Table 42. Indicator of R_cacheserv operation

<table>
<thead>
<tr>
<th>aaaaaaaaa</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>IRRRCH10 SRB failed</td>
</tr>
<tr>
<td>202</td>
<td>Find IRRRCH10 SRB in LPA</td>
</tr>
<tr>
<td>203</td>
<td>Find other module in LPA (CSNBRNG)</td>
</tr>
<tr>
<td>210</td>
<td>Get cell from cell pool in data space</td>
</tr>
<tr>
<td>211</td>
<td>Add cell pool extent to cell pool in data space</td>
</tr>
<tr>
<td>213</td>
<td>Copy data to data cell in cell pool</td>
</tr>
<tr>
<td>214</td>
<td>Locate data in data space</td>
</tr>
<tr>
<td>215</td>
<td>Delete data in data space</td>
</tr>
</tbody>
</table>
Table 42. Indicator of R_cacheserv operation (continued)

<table>
<thead>
<tr>
<th>aaaaaaa</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>216</td>
<td>R18ADD</td>
</tr>
<tr>
<td>217</td>
<td>R18IDX</td>
</tr>
<tr>
<td>218</td>
<td>R18GET</td>
</tr>
<tr>
<td>219</td>
<td>GenerateReference</td>
</tr>
<tr>
<td>220</td>
<td>CallDes</td>
</tr>
</tbody>
</table>

- **bbbbbbbb** is the system service or internal check being performed.
- The following are possible values for **bbbbbbbb**:

Table 43. System service or internal check being performed

<table>
<thead>
<tr>
<th>bbbbbb</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>DSPSERV create – Create data space</td>
</tr>
<tr>
<td>10</td>
<td>CSRPGT1 – Get cell pool cell</td>
</tr>
<tr>
<td>11</td>
<td>CSRPEXP – Add cell pool extent</td>
</tr>
<tr>
<td>12</td>
<td>ALESERV Add</td>
</tr>
<tr>
<td>13</td>
<td>CHKEXT – Check if data space is full (does EXTent area hit data area)</td>
</tr>
<tr>
<td>14</td>
<td>Search – Find node in cache</td>
</tr>
<tr>
<td>15</td>
<td>PLO instruction #1</td>
</tr>
<tr>
<td>16</td>
<td>DSPSERV delete – delete data space</td>
</tr>
<tr>
<td>17</td>
<td>PLO instruction #2</td>
</tr>
<tr>
<td>18</td>
<td>CSRPFR1 – Free cell pool cell (ddddddd = address of cell being freed)</td>
</tr>
<tr>
<td>19</td>
<td>Not used</td>
</tr>
<tr>
<td>20</td>
<td>Expiration time check for data or reference</td>
</tr>
<tr>
<td>21</td>
<td>CSNBRNG – ICSF random number function</td>
</tr>
<tr>
<td>22</td>
<td>Not used</td>
</tr>
<tr>
<td>23</td>
<td>CSVQUERY – Find mod in LPA</td>
</tr>
<tr>
<td>24</td>
<td>RACROUTE TYPE=ENCRYPT</td>
</tr>
</tbody>
</table>

- **cccccccc** is return code from service **bbbbbbbb**.
- **ddddddd** is reason code from service **bbbbbbbb**.
- Primary symptom string return code: 4
- Primary symptom string reason code: 0

- **CSNBRNG** failure, using software pseudo random number generator (PRNG)
  - Service name: RANDNUM
  - Variable Data: aaaaaaa bbbbbb bbbbbb ccccccc dddddd GENREF: USE SOFTWARE PRNG, NOT CSNBRNG
    - aaaaaaa = indicator of R_cacheserv operation
    See Table 42 on page 206 for possible values.
- **bbbbbbbb** = system service or internal check being performed
  See Table 43 for possible values.
- **cccccccc** = return code from service **bbbbbbbb**
Error recording

- dddddddd = reason code from service bbbbbbbb
- Primary symptom string return code: 0
- Primary symptom string reason code: 0

- RACROUTE TYPE=ENCRYPT failure
  - Service name: CALLDES
  - Variable Data: aaaaaaaa bbbbbbbb cccccccc dddddddd RACROUTE
    REQ=EXTRACT,TYPE=ENCRYPT FAIL
    - aaaaaaaa = indicator of R_cacheserv operation
      See Table 42 on page 206 for possible values.
    - bbbbbbbb = system service or internal check being performed
      See Table 43 on page 207 for possible values.
    - cccccccc = return code from service bbbbbbbb
    - dddddddd = reason code from service bbbbbbbb
  - Primary symptom string return code: RACROUTE return code
  - Primary symptom string reason code: 0

R_cacheserv (CSECT IRRRCH20)

- Name/token service failure
  - Service name: [IEANTRT0 | IEANTRT1 | IEANTCR]
  - Variable data: SETUPCACHE: [IEANTRT | IEANTCR] FAILURE
  - Primary symptom string return code: return code from
    IEANTRT/IEANTCR
  - Primary symptom string reason code: 0 (name/token functions have no
    reason codes)

- Failure due to no RCVI
  - Service name: FINDRCVI
  - Variable data: RCVTRCVI=0. UNABLE TO BUILD ICTX
  - Primary symptom string return code: 0
  - Primary symptom string reason code: 0

- Error occurred during STORE operation
  - Service name: STORE
  - Variable Data: aaaaaaaa bbbbbbbb cccccccc dddddddd STORE: R18ADD ([1|2])
    ERROR
    - aaaaaaaa = indicator of R_cacheserv operation
      See Table 42 on page 206 for possible values.
    - bbbbbbbb = system service or internal check being performed
      See Table 43 on page 207 for possible values.
    - cccccccc = return code from service bbbbbbbb
    - dddddddd = reason code from service bbbbbbbb
  - Primary symptom string return code: [0,4,8...]
  - Primary symptom string reason code: 0

- Error occurred while an R_cacheserv operation was trying to find or create
  the cache
  - Service name: IRRRCH18
  - Variable Data: aaaaaaaa bbbbbbbb cccccccc dddddddd SETUPCACHE: ERROR
    IN IRRRCH18
    - aaaaaaaa = indicator of R_cacheserv operation
Error recording

See Table 42 on page 206 for possible values.
- bbbbbbbb = system service or internal check being performed
  See Table 43 on page 207 for possible values.
- cccccccc = return code from service bbbbbbbb
- dddddd = reason code from service bbbbbbbb
- Primary symptom string return code: [0,4,8...]
- Primary symptom string reason code: 0

• Error occurred during DESTROY operation
  - Service name: DESTROY
  - Variable Data: aaaaaaaa bbbbbbbb cccccccc dddddd DESTROY: R18TERM ERROR
    - aaaaaaaa = indicator of R_cacheserv operation
      See Table 42 on page 206 for possible values.
    - bbbbbbbb = system service or internal check being performed
      See Table 43 on page 207 for possible values.
    - cccccccc = return code from service bbbbbbbb
    - dddddd = reason code from service bbbbbbbb
    - Primary symptom string return code: [0,4,8...]
    - Primary symptom string reason code: 0

• Error occurred during RETRIEVE operation
  - Service name: RETRIEVE
  - Variable Data: aaaaaaaa bbbbbbbb cccccccc dddddd RETRIEVE: R18GET ERROR
    - aaaaaaaa = indicator of R_cacheserv operation
      See Table 42 on page 206 for possible values.
    - bbbbbbbb = system service or internal check being performed
      See Table 43 on page 207 for possible values.
    - cccccccc = return code from service bbbbbbbb
    - dddddd = reason code from service bbbbbbbb
    - Primary symptom string return code: [0,4,8...]
    - Primary symptom string reason code: 0

• Error occurred during REMOVE operation
  - Service name: REMOVE
  - Variable Data: aaaaaaaa bbbbbbbb cccccccc dddddd STORE: R18DEL ERROR
    - aaaaaaaa = indicator of R_cacheserv operation
      See Table 42 on page 206 for possible values.
    - bbbbbbbb = system service or internal check being performed
      See Table 43 on page 207 for possible values.
    - cccccccc = return code from service bbbbbbbb
    - dddddd = reason code from service bbbbbbbb
    - Primary symptom string return code: [0,4,8...]
    - Primary symptom string reason code: 0

• Error occurred during REMOVE EXPIRED operation
  - Service name: CLEANUP
  - Service name: CLEANUP
Error recording

- Variable Data: aaaaaaa bbbbbbb cccccccc dddddddd STORE: R18CLN ERROR
  - aaaaaaa = indicator of R_cacheserv operation
    See Table 42 on page 206 for possible values.
  - bbbbbbbb = system service or internal check being performed
    See Table 43 on page 207 for possible values.
  - cccccccc = return code from service bbbbbbbb
  - dddddd = reason code from service bbbbbbbb
- Primary symptom string return code: [0,4,8...]
- Primary symptom string reason code: 0

  • Error occurred during LOCATE operation
    - Service name: LOCATE
    - Variable Data: aaaaaaa bbbbbbb cccccccc dddddddd STORE: R18IDX ERROR
      - aaaaaaa = indicator of R_cacheserv operation
        See Table 42 on page 206 for possible values.
      - bbbbbbbb = system service or internal check being performed
        See Table 43 on page 207 for possible values.
      - cccccccc = return code from service bbbbbbbb
      - dddddd = reason code from service bbbbbbbb
      - Primary symptom string return code: [0,4,8...]
      - Primary symptom string reason code: 0

R_cacheserv (CSECT IRRRCH22)

  • Error occurred obtaining storage for a DSG block
    - Service name: OBTAIN1
    - Variable data: aaaaaaa bbbbbbb cccccccc dddddddd STORAGE OBTAIN FOR DSG FAILURE
      - aaaaaaa = STORAGE OBTAIN length
      - bbbbbbbb = STORAGE OBTAIN subpool
      - cccccccc = unused
      - dddddd = unused
    - Primary symptom string return code: storage obtain return code. See z/OS MVS Programming: Assembler Services Reference IAR-XCT for the description of the return codes for the STORAGE OBTAIN macro.
    - Primary symptom string reason code: 0

  • No active TTAB was found
    - Service name: TTAB1
    - Variable data: aaaaaaa bbbbbbb cccccccc dddddddd NO ACTIVE TTAB FOUND
      - aaaaaaa = address of the DSCA
      - bbbbbbbb = TTAB anchor
      - cccccccc = active TTAB pointer
      - dddddd = unused
    - Primary symptom string return code: 0
    - Primary symptom string reason code: 0

  • Inconsistency found in TTAB slot
    - Service name: MEMTOKCK
Error recording

- Primary symptom string return code: 0
- Primary symptom string reason code: 0

• DSG is returned with either no DSGR or more than one DSGR
  - Service name: DSG2
    - Variable data: aaaaaaaa bbbbbbbb cccccccc dddddddd DSG INCONSISTENCY FROM SYSTEM system-name
      - aaaaaaaa = DSG address
      - bbbbbbbb = DSG return code
      - cccccccc = DSGR pointer
      - dddddddd = number of responses
      - system-name = system name of sysplex member
    - Primary symptom string return code: 0
    - Primary symptom string reason code: 0

• Error occurred when attempting intersystem communication
  - Service name: DSG1
    - Variable data: aaaaaaaa bbbbbbbb cccccccc dddddddd UNEXPECTED DSG RC FROM SYSTEM system-name
      - aaaaaaaa = DSG address
      - bbbbbbbb = DSG return code
      - cccccccc = number of DSGs sent
      - dddddddd = DSGR pointer
      - system-name = system name of sysplex member
    - Primary symptom string return code: 0
    - Primary symptom string reason code: 0

• Other system had either: more information to return and had a STORAGE OBTAIN error, or an unexpected error
  - Service name: IRRRCH24
    - Variable data: aaaaaaaa bbbbbbbb cccccccc dddddddd IRRRCH24 HAD PROBLEM ON SYSTEM system-name
      - aaaaaaaa = DSG address
      - bbbbbbbb = DSGR pointer
      - cccccccc = DSGR return buffer pointer
      - dddddddd = DSGR return buffer length
      - system-name = system name of sysplex member
    - Primary symptom string return code: IRRRCH24 return code
    - 2 - BAD_OBTAIN, STORAGE OBTAIN failure
    - Primary symptom string reason code: IRRRCH24 reason code
Error recording

- When IRRRCH24 return code = 2, storage obtain return code. See z/OS MVS Programming: Assembler Services Reference IAR-XCT for the description of the return codes for the STORAGE OBTAIN macro.

- The DSGR lacks a return buffer
  - Service name: DSGR1
  - Variable data: aaaaaaaaa bbbbbbbb cccccccc dddddddd DSGR LACKS RETURN BUFFER FROM system-name
    - aaaaaaaaa = DSG address
    - bbbbbbbb = DSGR pointer
    - cccccccc = DSGR return buffer pointer
    - dddddddd = DSGR return buffer length
    - system-name = system name of sysplex member
  - Primary symptom string return code: 0
  - Primary symptom string reason code: 0

- STORAGE OBTAIN failure on R_cacheserv return buffer for record name
  - Service name: OBTAIN2
  - Variable data: aaaaaaaaa bbbbbbbb cccccccc dddddddd STORAGE OBTAIN FOR RECORD NAME FAILURE
    - aaaaaaaaa = STORAGE OBTAIN length
    - bbbbbbbb = STORAGE OBTAIN subpool
    - cccccccc = unused
    - dddddddd = unused
  - Primary symptom string return code: storage obtain return code. See z/OS MVS Programming: Assembler Services Reference IAR-XCT for the description of the return codes for the STORAGE OBTAIN macro.
  - Primary symptom string reason code: 0

- STORAGE OBTAIN failure on R_cacheserv return buffer for date
  - Service name: OBTAIN3
  - Variable data: aaaaaaaaa bbbbbbbb cccccccc dddddddd STORAGE OBTAIN FOR DATA FAILURE
    - aaaaaaaaa = STORAGE OBTAIN length
    - bbbbbbbb = STORAGE OBTAIN subpool
    - cccccccc = unused
    - dddddddd = unused
  - Primary symptom string return code: storage obtain return code. See z/OS MVS Programming: Assembler Services Reference IAR-XCT for the description of the return codes for the STORAGE OBTAIN macro.
  - Primary symptom string reason code: 0

- STORAGE OBTAIN failure on R_cacheserv return buffer for source
  - Service name: OBTAIN4
  - Variable data: aaaaaaaaa bbbbbbbb cccccccc dddddddd STORAGE OBTAIN FOR SOURCE FAILURE
    - aaaaaaaaa = STORAGE OBTAIN length
    - bbbbbbbb = STORAGE OBTAIN subpool
    - cccccccc = unused
    - dddddddd = unused
Primary symptom string return code: storage obtain return code. See z/OS MVS Programming: Assembler Services Reference IAR-XCT for the description of the return codes for the STORAGE OBTAIN macro.

Primary symptom string reason code: 0

Error from a R_cacheserv operation on another system

Service name: IRRRCH24

Variable data: aaaaaaaa bbbbbbbb cccccccc dddddddd **xx password ERROR ON SYSTEM system-name
  - aaaaaaaa = R_cacheserv option
  - bbbbbbbb = unused
  - cccccccc = unused
  - dddddddd = unused
  - **xx = 1st 4 characters of input user ID
  - password = input password
  - system-name = system name of sysplex member

Primary symptom string return code: system-name R_cacheserv RACF return code

Primary symptom string reason code: system-name R_cacheserv RACF reason code

IRRRCCH22 had an unknown return code

Service name: WAYOUT

Variable data: aaaaaaaa bbbbbbbb cccccccc dddddddd **xx password INTERNAL ERROR
  - aaaaaaaa = R_cacheserv option
  - bbbbbbbb = unused
  - cccccccc = unused
  - dddddddd = unused
  - **xx = 1st 4 characters of input user ID
  - password = input password

Primary symptom string return code: unexpected IRRRCH22 return code

Primary symptom string reason code: unexpected IRRRCH22 reason code

** R_cacheserv (CSECT IRRRCH28) **

- Name/token service failure
  - Service name: IEANTCR
  - Variable data: Identifies R_cacheserv subroutine

- ENVR object creation failure
  - Service name: IRRACM16
  - Variable data: Identifies subroutine and ACEE

- Unexpected return code from IRRRCH18 caching function
  - Service name: type of request (locate, store, and so on)
  - Variable data: Identifies related error information

** R_cacheserv (CSECT IRRRCH30) **

- Storage Obtain failure
  - Service name: OBTAINx
  - Variable data: Identifies subpool and length

- Unexpected return code from RACF sysplex communication path
Error recording

- Service name: Identifies the failure point
- Variable data: Identifies related error information

• Unexpected return code from off-system cache
  - Service name: IRRRCH32
  - Variable data: system name and ICR information

_R_Datalib (CSECT IRRRDLO4)
  • Error determining the owning user ID for a DIGTCERT profile
    - Service name: RACXTRT
    - Variable data: The string ‘Method GETUSERID failed to extract the UserID’
    - Additional variable data: The profile name
  • Error incrementing the last serial number (CERTLSER) of a DIGTCERT profile
    - Service name: RACXTRT or ICHEINTY
    - Variable data: The string ‘Module IRRCDC29 failed to generate new Serial Number’
    - Additional variable data: The profile name

_R_Datalib (CSECT IRRRDLO6)
  • Error parsing the input certificate
    - Service name: IRRCDC03
    - Variable data: The string ‘IRRCDC03 failed to parse the certificate’
  • Error retrieving the certificate profile
    - Service name: RACMAP
    - Variable data: The string ‘RACMAP failed to retrieve the certificate profile’
    - Additional variable data: The certificate profile name
  • Error retrieving the CERTNAME repeat group from a user profile
    - Service name: RACEXTR
    - Variable data: The string ‘RACEXTR failed to retrieve the CERTNAME repeat group’
    - Additional variable data: The user name
  • Error locating the certificate in the CERTNAME repeat group
    - Service name: RACEXTR
    - Variable data: The string ‘Certificate not found in USER profile’
    - Additional variable data: The user name
  • Error retrieving the private key from the certificate profile
    - Service name: RACEXTR
    - Variable data: The string ‘RACFEXTR failed to retrieve the private key’
    - Additional variable data: The certificate profile name
  • Error adding the certificate to RACF
    - Service name: IRRCDC02
    - Variable data: The string ‘IRRCDC02 Error - Certificate already exists’
    - Additional variable data: The certificate profile name
  • Error adding the certificate to RACF
    - Service name: IRRCDC02
Error recording

- Variable data: The string ‘IRRCDC02 failed to add the certificate’
- Additional variable data: The certificate profile name

• Error altering the certificate in RACF
  - Service name: IRRCDC05
  - Variable data: The string ‘IRRCDC05 failed to alter the certificate’
  - Additional variable data: The certificate profile name

• Error connecting the certificate to a RACF ring
  - Service name: IRRCDC19
  - Variable data: The string ‘IRRCDC19 failed to connect the certificate’
  - Additional variable data: The certificate profile name

• Error calling ICSF service CSNDKRR to retrieve the PKDS entry
  - Service name: CSNDKRR
  - Variable data: The string ‘CSNDKRR failed to retrieve the PKDS entry’
  - Additional variable data: The PKDS entry name

R_Datalib (CSECT IRRRDL10)
  • Error altering the certificate in RACF
    - Service name: IRRCDC05
    - Variable data: The string ‘IRRCDC05 failed to alter the certificate’
    - Additional variable data: The certificate label name

R_Datalib (CSECT IRRRDL12)
  • Error verifying that the specified ring profile exists in RACF
    - Service name: RACEXTR
    - Variable data: The string ‘RACEXTR failed to retrieve the DIGTRING profile’
    - Additional variable data: The ring profile name

  • Error verifying that the specified ring owner exists in RACF
    - Service name: RACEXTR
    - Variable data: The string ‘RACEXTR failed to retrieve the USER profile’
    - Additional variable data: The user name

  • Error retrieving the next DIGTRING profile from RACF
    - Service name: RACEXTRN
    - Variable data: The string ‘RACEXTRN failed to retrieve the next DIGTRING profile’
    - Additional variable data: The ring profile name

  • Error retrieving the CERTDATA segment CERTNAME and CERTLABL repeat group fields from RACF
    - Service name: RACEXTR
    - Variable data: The string ‘RACEXTR failed to retrieve ring information’
    - Additional variable data: The certificate profile name

  • Error retrieving the certificate owner from RACF
    - Service name: RACMAP
    - Variable data: The string ‘RACMAP failed to retrieve the certificate owner’
    - Additional variable data: The certificate profile name

R_DCEAUTH (CSECT IRRRDA00)
  • Create ACEE failure
Error recording

- Service name: RACINIT
  - Variable data: the RACF user ID
- Convert UUID to RACF user ID failure
  - Service name: RACXTRT
  - Variable data: the DCEUUIDS profile name
- Check authorization failure
  - Service name: RACHECK or FASTAUTH
  - Variable data: the RACF user ID, class, profile, and access requested
- Delete ACEE failure
  - Service name: RACINIT
  - Variable data: the ACEE address

R_DCEINFO (CSECT IRRRDI00)
  - Extract DCE fields failure
    - Service name: RACXTRT
    - Variable data: the RACF user ID and the names of the fields
  - Replace DCE fields failure
    - Service name: RACXTRT
    - Variable data: the RACF user ID and the names of the fields

R_DCEUUID (CSECT IRRRU000)
  - Extract DCEUUIDS APPLDATA failure
    - Service name: RACXTRT
    - Variable data: the DCEUUIDS profile name

R_DCEKEY (CSECT IRRDK00)
  - Extract DCE key failure
    - Service name: RACXTRT
    - Variable data: the RACF user ID
  - Replace DCE key failure
    - Service name: RACXTRT
    - Variable data: the RACF user ID

R_DCEKEY (CSECT IRRCP01)
  - Extract KEYSMSTR key failure
    - Service name: ICHEINTY
    - Variable data: the class and profile name
  - ICSF CSNBENC callable service failure
    - Service name: CSNBENC
    - Variable data: the RACF user ID
  - ICSF CSNBDEC callable service failure
    - Service name: CSNBDEC
    - Variable data: the RACF user ID

R_PKIser (CSECT IRRRPX00)
  - Error calling RACROUTE REQUEST=AUTH to determine the caller's access to a FACILITY class profile
    - Service name: RACCHECK
Error recording

- Variable data: The string 'Error in R_PKIserv attempting to check a caller’s authority to the service'
- Additional variable data: The FACILITY class profile name, the ACEE address, and the user ID from the ACEE

**R_PKIserv (CSECT IRRRPX02)**
- Error calling RACROUTE REQUEST=AUTH to determine the caller’s access to a FACILITY class profile
  - Service name: RACHECK
  - Variable data: The string 'Error in R_PKIserv GENCERT attempting to check a caller’s authority to the service'
  - Additional variable data: The FACILITY class profile name, the ACEE address, and the user ID from the ACEE
- Unexpected return code from RACDCERT internal subroutine IRRCDC23
  - Service name: IRRCDC23
  - Variable data: The string 'Error in R_PKIserv GENCERT attempting to call RACDCERT subroutine. Unexpected return code'
  - Additional variable data: The first 942 bytes of the RACDCERT internal work area
- Error calling RACROUTE REQUEST=EXTRACT to retrieve the PGMRNAME field from the USER profile
  - Service name: RACXTRT
  - Variable data: The string 'Error in R_PKIserv GENCERT attempting to extract PGMRNAME field to build Common Name'
  - Additional variable data: The user ID

**R_PKIserv (CSECT IRRRPX04)**
- Error calling RACROUTE REQUEST=AUTH to determine the caller’s access to a FACILITY class profile
  - Service name: RACHECK
  - Variable data: The string 'Error in R_PKIserv EXPORT attempting to check the caller’s authority to the service'
  - Additional variable data: The FACILITY class profile name, the ACEE address, and the user ID from the ACEE
- Unexpected return code from RACDCERT internal subroutine IRRCDC25
  - Service name: IRRCDC25
  - Variable data: The string 'Error in R_PKIserv EXPORT attempting to call RACDCERT subroutine. Unexpected return code'
  - Additional variable data: The first 942 bytes of the RACDCERT internal work area

**R_PKIserv (CSECT IRRRPX06)**
- Error calling RACROUTE REQUEST=AUTH to determine the caller’s access to a FACILITY class profile
  - Service name: RACHECK
  - Variable data: The string 'Error in R_PKIserv GENCERT attempting to check the caller’s authority to the service'
  - Additional variable data: The FACILITY class profile name, the ACEE address, and the user ID from the ACEE
- Unexpected return code from RACDCERT internal subroutine IRRCDC27
  - Service name: IRRCDC27
Error recording

- Variable data: The string 'Error in R_PKIserv GENCERT attempting to call RACDCERT subroutine. Unexpected return code'
- Additional variable data: The first 942 bytes of the RACDCERT internal work area

- Error calling RACROUTE REQUEST=EXTRACT to retrieve the PGMRNAME field from the USER profile
  - Service name: RACXTRT
  - Variable data: The string 'Error in R_PKIserv GENCERT attempting to extract PGMRNAME field to build Common Name'
  - Additional variable data: The user ID

- Error calling MVS Name/Token Service
  - Service name: IEANTRT
  - Variable data: The string 'Name/Token service failed'
  - Additional variable data: The first 942 bytes of the RACDCERT internal work area

- Error on PC to PKI Services
  - Service name: PKIGENC
  - Variable data: The string 'PKI Services Failed for function GENCERT'
  - Additional variable data: Additional information word returned from PKI Services (register 1) followed by the parameter list used on the PC

R_PKIserv (CSECT IRRPX07)

- Error calling RACROUTE REQUEST=AUTH to determine the caller’s access to a FACILITY class profile
  - Service name: RACHECK
  - Variable data: The string 'Error in R_PKIserv EXPORT attempting to check the caller's authority to the service'
  - Additional variable data: The FACILITY class profile name, the ACEE address, and the user ID from the ACEE

- Error calling IRRCDC67 to find parent CERTAUTH chain to input certificate and build PKCS7 package.
  - Service name: IRRCDC67
  - Variable data: The string 'Error in R_PKIserv EXPORT attempting to call RACDCERT subroutine. Unexpected return code.'
  - Additional variable data: RACDCERT failing module and service in form of diagnostic data from the RACDCERT internal work area:
    - 4 bytes - internal service code
    - 4 bytes - service return code
    - 4 bytes - service reason code
    - 8 bytes - RACF class name
    - 8 bytes - RACF segment name
    - 81 bytes - blank
    - 8 bytes - csect name
    - 71 bytes - diagnostic message text
    - 4 bytes - RACF entity length
    - 4 bytes - number of extracted fields
    - 56 bytes - array of 8 byte field names (max 7 entries)
    - 256 bytes - RACF entity name
Error recording

- Error calling MVS Name/Token Service
  - Service name: IEANTRT
  - Variable data: The string 'Name/Token service failed'
  - Additional variable data: None
- Error on PC to PKI Services
  - Service name: PKIEXPT
  - Variable data: The string 'PKI Services Failed for function EXPORT'
  - Additional variable data: Additional information word returned from PKI Services (register 1) followed by the parameter list used on the PC

R_PKIserv (CSECT IRRPX08)
- Error calling MVS Name/Token Service
  - Service name: IEANTRT
  - Variable data: The string 'Name/Token service failed'
  - Additional variable data: None
- Error on PC to PKI Services
  - Service name: PKIQRYR or PKIQRYC
  - Variable data: The string 'PKI Services Failed for function {QUERYREQS | QUERYCERTS}'
  - Additional variable data: Additional information word returned from PKI Services (register 1) followed by the parameter list used on the PC

R_PKIserv (CSECT IRRPX10)
- Error calling MVS Name/Token Service
  - Service name: IEANTRT
  - Variable data: The string 'Name/Token service failed'
  - Additional variable data: None
- Error on PC to PKI Services
  - Service name: PKICRTR or PKICRTD
  - Variable data: The string 'PKI Services Failed for function {REQDETAILS | CERTDETAILS}'
  - Additional variable data: Additional information word returned from PKI Services (register 1) followed by the parameter list used on the PC

R_PKIserv (CSECT IRRPX12)
- Error on PC to PKI Services
  - Service name: PKIMODR or PKIMODC
  - Variable data: The string 'PKI Services Failed for function {MODIFYREQS | MODIFYCERTS}'
  - Additional variable data: Additional information word returned from PKI Services (register 1) followed by the parameter list used on the PC
- Error calling MVS Name/Token Service
  - Service name: IEANTRT
  - Variable data: The string 'Name/Token service failed'
  - Additional variable data: None

R_PKIserv (CSECT IRRPX13)
- Error calling RACROUTE REQUEST=AUTH to determine the caller's access to a FACILITY class profile
  - Service name: RACHECK
Error recording

- Variable data: The string 'Error in R_PKIServ VERIFY attempting to check the caller's authority to the service'
- Additional variable data: The FACILITY class profile name, the ACEE address, and the user ID from the ACEE

- Error calling MVS Name/Token Service
  - Service name: IEANTRT
  - Variable data: The string 'Name/Token service failed'
  - Additional variable data: None

- Error on PC to PKI Services
  - Service name: PKIVERF
  - Variable data: The string 'PKI Services Failed for function VERIFY'
  - Additional variable data: Additional information word returned from PKI Services (register 1) followed by the parameter list used on the PC

R_PKIserv (CSECT IRRRPX14)

- Error calling RACROUTE REQUEST=AUTH to determine the caller's access to a FACILITY class profile
  - Service name: RACHECK
  - Variable data: The string 'Error in R_PKIServ REVOKE attempting to check the caller's authority to the service'
  - Additional variable data: The FACILITY class profile name, the ACEE address, and the user ID from the ACEE

- Error calling MVS Name/Token Service
  - Service name: IEANTRT
  - Variable data: The string 'Name/Token service failed'
  - Additional variable data: None

- Error on PC to PKI Services
  - Service name: PKIREVOKE
  - Variable data: The string 'PKI Services Failed for function REVOKE'
  - Additional variable data: Additional information word returned from PKI Services (register 1) followed by the parameter list used on the PC

R_PKIserv (CSECT IRRRPX15)

- Error calling RACROUTE REQUEST=AUTH to determine the caller's access to a FACILITY class profile
  - Service name: RACHECK
  - Variable data: The string 'Error in R_PKIServ RENEW attempting to check the caller's authority to the service'
  - Additional variable data: The FACILITY class profile name, the ACEE address, and the user ID from the ACEE

- Error on PC to PKI Services
  - Service name: PKIRENW
  - Variable data: The string 'PKI Services Failed for function RENEW'
  - Additional variable data: Additional information word returned from PKI Services (register 1) followed by the parameter list used on the PC

- Error calling MVS Name/Token Service
  - Service name: IEANTRT
  - Variable data: The string 'Name/Token service failed'
  - Additional variable data: None
Error recording

R_PKIserv (CSECT IRRRPX18)

- Error calling RACROUTE REQUEST=AUTH to determine the caller's access to a FACILITY class profile
  - Service name: RACHECK
  - Variable data: The string 'Error in R_PKIserv RESPOND attempting to check the caller's authority to the service'
  - The FACILITY class profile name, the ACEE address, the user ID from the ACEE
- Error calling MVS Name/Token Service
  - Service name: IEANTRT
  - Variable data: The string 'Name/Token Service, IEANTRT, failed'
  - Additional variable data: None
- Error on PC to PKI Services
  - Service name: R_PKIserv RESPOND
  - Variable data: The string 'PKI Services failed for function RESPOND'
  - Additional variable data: Additional information word returned from PKI Services (register 1) followed by the parameter list used on the PC.

R_PKIserv (CSECT IRRRPX20)

- Error calling RACROUTE REQUEST=AUTH to determine the caller's access to a FACILITY class profile
  - Service name: RACHECK
  - Variable data: The string 'Error in R_PKIserv SCEPREQ attempting to check the caller's authority to the service'
  - Additional variable data: The FACILITY class profile name, the ACEE address, the user ID from the ACEE
- Error calling MVS Name/Token Service
  - Service name: IEANTRT
  - Variable data: The string 'Name/Token Service, IEANTRT, failed'
  - Additional variable data: None
- Error on PC to PKI Services
  - Service name: R_PKIserv PKISCEP
  - Variable data: The string 'PKI Services failed for function SCEPREQ'
  - Additional variable data: Additional information word returned from PKI Services (register 1) followed by the parameter list used on the PC.

R_PKIserv (CSECT IRRRPX22)

- Error calling MVS Name/Token Service
  - Service name: IEANTRT
  - Variable data: The string 'Name/Token Service, IEANTRT, failed'
  - Additional variable data: None
- Error on PC to PKI Services
  - Service name: R_PKIserv PKIPREG
  - Variable data: The string 'PKI Services failed for function PREREGISTER'
  - Additional variable data: Additional information word returned from PKI Services (register 1) followed by the parameter list used on the PC.

R_PKIserv (CSECT IRRRPX24)
Error recording

- Error calling RACROUTE REQUEST=AUTH to determine the caller’s access to a FACILITY class profile
  - Service name: RACHECK
  - Variable data: The string ‘Error in R_PKIserv QRECOVER attempting to check the caller’s authority to the service’
  - Additional variable data: The FACILITY class profile name, the ACEE address, and the user ID from the ACEE

- Error calling MVS Name/Token Service
  - Service name: IEANTRT Error recording
  - Variable data: The string ‘Name/Token service failed’
  - Additional variable data: None

- Error on PC to PKI Services
  - Service name: PKIQREC
  - Variable data: The string ‘PKI Services Failed for function QRECOVER’
  - Additional variable data: Additional information word returned from PKI Services (register 1), followed by the parameter list used on the PC

R_PgmSignVer (CSECT IRRSPS00)

- Error with range
  - Service name: IRRRPS00
  - Variable data: Too many ranges
  - Primary symptom string return code: Index of invalid range
  - Secondary symptom string reason code: 0

- Error with end address
  - Service name: IRRRPS00
  - Variable data: End Address before start
  - Start: 0Xaaaaaaaa aaaaaaaa
  - End: 0Xbbbbbbbb bbbbbbbb
  - Aaaaaaaa aaaaaaaa=start address
  - Bbbbbbbbb bbbbbbbbb = end address
  - Primary symptom string return code: Index of invalid range
  - Secondary symptom string reason code: 0

- Extract error
  - Service name: SIGINIT
  - Variable data: Extract error:
    - 0xaaaaaaaa
    - 0xbbbbbbbb
    - 0cccccccc
    - Aaaaaaaa=SAFRC
    - Bbbbbbb=RACFRC
    - Cccccc=RACFRSN
    - Primary symptom string return code: RACROUTE return code
    - Secondary symptom string reason code: RACROUTE reason code

- Error with APPLDATA algorithm
  - Service name: SIGINIT
  - Variable data: APPLDATA invalid algorithm: alg
    - Alg=What was specified in appldata
    - Primary symptom string return code: 0
• Error locating APPLDATA in profile
  - Service name: SIGINIT
  - Variable data: APPLDATA not found in profile
  - Primary symptom string return code: 0
  - Secondary symptom string reason code: 0
• APPLDATA error with leading/trailing blanks
  - Service name: SIGINIT
  - Variable data: APPLDATA: Leading/Trailing blank encountered
  - Primary symptom string return code: Variable ‘T’ – Index of first blank in appldata
  - Secondary symptom string reason code: 0
• Error with APPLDATA algorithm name
  - Service name: SIGINIT
  - Variable data: APPLDATA: algorithm name too long
  - Primary symptom string return code: Variable ‘T’ – Index of first blank in appldata
  - Secondary symptom string reason code: 0
• RING error, ID too long
  - Service name: SIGINIT
  - Variable data: RING: / not found or ID too long
  - Primary symptom string return code: Variable ‘T’, index of ‘’
  - Secondary symptom string reason code: Variable ‘j’ Index of ‘’
• RING error, name too long
  - Service name: SIGINIT
  - Variable data: RING: Name too long or not specified
  - Primary symptom string return code: Variable ‘T’, index of ‘’
  - Secondary symptom string reason code: Variable ‘j’ Index of ‘’
• Key error in default certificate
  - Service name: SIGINIT
  - Variable data: No Private Key in default certificate
  - Primary symptom string return code: Number of certificates in ring
  - Secondary symptom string reason code: Index of default certificate in ring
• Error with key analysis
  - Service name: SIGINIT
  - Variable data: Key analysis error
  - Primary symptom string return code: RC from analysisKey() routine
  - Secondary symptom string reason code: 0
• Error with number of certificates in ring
  - Service name: SIGINIT
  - Variable data: Too many certificates in ring
  - Primary symptom string return code: Number of certificates in ring
  - Secondary symptom string reason code: 0
• Error with ring default certificate
  - Service name: SIGINIT
• Error with certificate ordering
  – Service name: SIGINIT
  – Variable data: Certificate ordering error
  – Primary symptom string return code: RC from OrderPKCS7CA
  – Secondary symptom string reason code: 0

• Error with trust chain length
  – Service name: SIGINIT
  – Variable data: Trust chain too long
  – Primary symptom string return code: Number of items in trust chain
  – Secondary symptom string reason code: 0

• Error with R_datalib
  – Service name: SIGINIT
  – Variable data: R_datalib error:
    Function Code X, 
    RC=0Xaaaaaaaa 0Xbbbbbbbb 0Xcccccccc
  – Primary symptom string return code: R_datalib Function code
  – Secondary symptom string reason code: R_datalib SAFRC

• Digest failure error
  – Service name: IRRRPS21
  – Variable data: Digest failure
  – Primary symptom string return code: 0
  – Secondary symptom string reason code: 0

• Digest failure 2 error
  – Service name: IRRRPS21
  – Variable data: Digest failure 2
  – Primary symptom string return code: 0
  – Secondary symptom string reason code: 0

• Number of ranges error
  – Service name: IRRRPS21
  – Variable data: Too many ranges
  – Primary symptom string return code: # specified ranges
  – Secondary symptom string reason code: 0

• Error with end address
  – Service name: IRRRPS21
  – Variable data: End address before start:
    Start: 0Xaaaaaaaa aaaaaaaa
    End: 0xbadbad badbadbad" 
    - Aaaaaaa aaaaaaa=start address
    - Bbbbbbbbb bbbbbbbbb = end address
  – Primary symptom string return code: Failing range index
  – Secondary symptom string reason code: 0

• Context error
  – Service name: IRRRPS21
- Variable data: New context
- Primary symptom string return code: CLiC rc
- Secondary symptom string reason code: 0
  - New digest error
    - Service name: IRRRPS21
    - Variable data: New digest
    - Primary symptom string return code: CLiC rc
    - Secondary symptom string reason code: 0
  - Digest update error
    - Service name: IRRRPS21
    - Variable data: Digest update
    - Primary symptom string return code: CLiC rc
    - Secondary symptom string reason code: 0
  - Digest update 2 error
    - Service name: IRRRPS21
    - Variable data: Digest update 2
    - Primary symptom string return code: CLiC rc
    - Secondary symptom string reason code: 0
  - New context error
    - Service name: IRRRPS31
    - Variable data: New context
    - Primary symptom string return code: CLiC rc
    - Secondary symptom string reason code: 0
  - Pk service error
    - Service name: IRRRPS31
    - Variable data: Pk service
    - Primary symptom string return code: CLiC rc
    - Secondary symptom string reason code: 0
  - Rs a sign error
    - Service name: IRRRPS31
    - Variable data: Rs a sign
    - Primary symptom string return code: CLiC rc
    - Secondary symptom string reason code: 0
  - Rs a verify error
    - Service name: IRRRPS31
    - Variable data: Rs a verify
    - Primary symptom string return code: CLiC rc
    - Secondary symptom string reason code: 0
  - Decode failure 1 error
    - Service name: IRRRPS51
    - Variable data: Decode Failure 1
    - Primary symptom string return code: RC from decodeSimple()
    - Secondary symptom string reason code: 0
  - Decode failure 2 error
    - Service name: IRRRPS51
Error recording

- Variable data: Decode Failure 2
  aaaaaaaaa bbbbbbbb cccccccc dddddddd
eeeeeeee fffffffff gggggggg hhhhhhh iiiiiiiii
- Primary symptom string return code: 0
- Secondary symptom string reason code: 0
- Decode failure 3 error
  - Service name: IRRRPS51
  - Variable data: Decode Failure 3 (hex data)
  - Primary symptom string return code: 0
  - Secondary symptom string reason code: 0
- Decode failure 4 error
  - Service name: IRRRPS51
  - Variable data: Decode failure 4
  - Primary symptom string return code: RC from DecodeSimple
  - Secondary symptom string reason code: 0
- Decode failure 5 error
  - Service name: IRRRPS51
  - Variable data: Decode failure 5
  - Primary symptom string return code: RC from analysiskey()
  - Secondary symptom string reason code: 0
- Decode failure 6 error
  - Service name: IRRRPS51
  - Variable data: Decode failure 6
  - Primary symptom string return code: Value of variable seqCount should be 5
  - Secondary symptom string reason code: 0
- Error with signature algorithm
  - Service name: VERFINAL
  - Variable data: Unsupported signature algorithm
  - Primary symptom string return code: Value of CxSignAlg
  - Secondary symptom string reason code: 0
- APPLDATA format error
  - Service name: VERFINAL
  - Variable data: Appldata format error:
    #### aaaaa
  - Primary symptom string return code: Variable BlankPos: Index of ‘ ’ in Appldata
  - Secondary symptom string reason code: Variable DelimPos: index of ‘/’ in ApplData
- Extract error
  - Service name: VERFINAL
  - Variable data: Extract Error:
    0xaaaaaa
    0xbbbbbbbb
    0xcccccccc
    - Aaaaaaa=safrc
    - Bbbbbbbb=racfrc
Error recording

- Cccccccc=racfrsn
  - Primary symptom string return code: RACROUTE
  - Secondary symptom string reason code: RACROUTE
- Decode X509 error
  - Service name: VERFINAL
  - Variable data: Decode X509 error
  - Primary symptom string return code: RC from Decode X509
  - Secondary symptom string reason code: Certificate number (I loop index)
- SetCertificate error
  - Service name: VERFINAL
  - Variable data: SetCertificate Error
  - Primary symptom string return code: RC from SetCertificate
  - Secondary symptom string reason code: Certificate number
- R_datalib error
  - Service name: VERFINAL
  - Variable data: R_datalib error:
    Function code aaaaaaaa,
    RC=0xbbbbbbb 0xcccccccc 0xdddddddd
    - Aaaaaaaa=R_datalib func code
    - Bbbbbbbb=saf RC from r_datalib
    - Cccccccc=RACFRC from r_datalib
    - Dddddddd=RACFRsn from r_datalib
  - Primary symptom string return code: R_datalib function code
  - Secondary symptom string reason code: R_datalib RC

R_proxserv (CSECT IRRPY00)

- Name/token service failure
  - Service name: IEANTRT
  - Variable data: The string "Name/token service failure"
  - Additional variable data: The name for the requested token

R_proxserv (CSECT IRRPY01 and IRRPY02)

- Error response from LDAP
  - Service name: LDAP
  - Variable data: Up to 100 bytes of the LDAP error message
- LDAP message response decoding failure
  - Service name: LDAPMSG
  - Variable data: One of the following strings –
    - "Error in LDAP message – Incorrect ASN.1 syntax"
    - "Error in LDAP message – Expected field not found"
    - "Error in LDAP message – Unsupported character set detected"
  - Additional variable data: Up to 1024 bytes of the returned LDAP message

R_proxserv (CSECT IRCPT01)

- Extract KEYSMSTR key failure
  - Service name: ICHEINTY
  - Variable data: the class and profile name
- ICSF CSNBENC callable service failure
Error recording

- Service name: CSNBENC
- Variable data: the RACF user ID
- ICSF CSNBDEC callable service failure
  - Service name: CSNBDEC
  - Variable data: the RACF user ID

R_admin (CSECT IRRREQ00)

- The R_admin callable service uses the RACF subsystem address space. RACF command images generated by the callable service or by the caller are passed to the RACF subsystem for execution by invoking the internal macro IRRREQ. The IRRREQ macro uses the IEFSSREQ macro to communicate with the RACF subsystem.

In this environment the following errors could occur:
- IRRREQ is unable to communicate with the RACF subsystem (for example, the RACF subsystem is not started).
- IRRREQ is able to communicate with the RACF subsystem, but the RACF command fails in the RACF subsystem (for example, an ADDUSER command specifying a class that is not valid).

- The R_admin callable service differentiates between these two errors. For the first error, the callable service returns a SAF return code of 8, a RACF return code of 12, and a RACF reason code set equal to the return code from IEFSSREQ. For the second error, the callable service returns a SAF return code of 8, a RACF return code of 16, and a RACF reason code set equal to the return code returned from the command's execution in the RACF subsystem. Additionally, the R_admin callable service writes symptom records to SYS1.LOGREC for the errors. The symptom records contain the following information:
  - Primary symptom string:
    - Component identifier (PIDS) - 5752XXH00
    - 1st return code (PRCS) - RACF return code from the callable service
    - 2nd return code (PRCS) - RACF reason code from the callable service
    - Csect routine identifier (RIDS) - IRRREQ00
    - Loadmod routine identifier (RIDS) - IRRFR10#L
  - Secondary symptom string:
    - Storage address (ADRS) - Error offset into IRRREQ00
  - Free format component information: Specific to the error

For the first error (unable to communicate with the RACF subsystem), RACF records the following additional information in the free format area:

<table>
<thead>
<tr>
<th>Table 44. Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

[Figure 65 on page 229] shows an example of a symptom record created when the R_admin callable service is unable to communicate with the RACF
The IRRREQ (IEFSSREQ) return code is 4. Looking at the free format component information, the first byte has a value of X'02', indicating this was an ADMN_DEL_USER request. The next 4 bytes contain the address of the generated command image (X'04803CA2'). The sixth and seventh bytes contain the two byte length of the generated command image (X'000D').

For the second error (execution of the RACF command failed), the main intent of the symptom record is to capture the command image that was executed, because it might not be available elsewhere. Therefore, to limit the amount of user error information written to SYS1.LOGREC, RACF does not write symptom records for ADMN_RUN_COMD requests that fail. RACF
also does not write symptom records for ADMN_ADD_USER requests where the RACF user ID exists and ADMN_DEL_USER requests where the RACF user ID does not exist. For the cases where RACF does write a symptom record, the following additional information is recorded in the free format area:

- First X'64' byte area—Command message output (if any). This is the first message text string only and is truncated if it exceeds X'64' bytes in length.
- Next four X'100' byte areas—A copy of the command image that was executed. The command image is truncated if it exceeds 1024 (decimal) bytes in length.

You can trace the R_admin callable service to obtain information not included in the symptom records. For information about tracing, see "Tracing the R_admin callable service" on page 52.

Figure 66 on page 231 shows an example of a symptom record created when the R_admin callable service is able to communicate with the RACF subsystem, but the command fails.
In this example, the RACF subsystem return code is 8. In the free format component information, the first X'64' byte area contains the diagnostic message ("IKJ56702I INVALID CLASS NAME, BADCLASS") produced by executing the command image. The next four X'100' areas (only 1 in this TYPE: SYMPTOM RECORD REPORT: SOFTWARE EDIT REPORT DAY YEAR REPORT DATE: 014 97 SCP: VS 2 REL 3 ERROR DATE: 014 97 MODEL: 4381 HH MM SS.TH SERIAL: 111606 TIME: 10:24:10.11 SEARCH ARGUMENT ABSTRACT: PIDS/5752XXH00 PRCS/00000010 PRCS/00000008 RIDS/IRRREQ00 RIDS/IRRRFR10#L SYSTEM ENVIRONMENT: CPU MODEL: 4381 DATE: 014 97 CPU SERIAL: 111606 TIME: 10:24:10.11 SYSTEM: NODE1 BCP: MVS RELEASE LEVEL OF SERVICE ROUTINE: JBB6604 SYSTEM DATA AT ARCHITECTURE LEVEL: 10 COMPONENT DATA AT ARCHITECTURE LEVEL: 10 SYSTEM DATA: 00000000 00000000 00000000 00000000 |........| COMPONENT INFORMATION: COMPONENT ID: 5752XXH00 COMPONENT RELEASE LEVEL: 240 SERVICE RELEASE LEVEL: HRF2240 DESCRIPTION OF FUNCTION: RACF z/OS UNIX SYSTEM CALLABLE SERV. PROBLEM ID: IRRREQ PRIMARY SYMPTOM STRING: PIDS/5752XXH00 PRCS/00000010 PRCS/00000008 RIDS/IRRREQ00 RIDS/IRRRFR10#L SYMPTOM SYMPTOM DATA EXPLANATION --------------- ------------- ----------- PIDS/5752XXH00 5752XXH00 COMPONENT IDENTIFIER PRCS/00000010 00000010 RETURN CODE PRCS/00000008 00000008 RETURN CODE RIDS/IRRREQ00 IRRREQ00 ROUTINE IDENTIFIER RIDS/IRRRFR10#L IRRFR10#L ROUTINE IDENTIFIER SECONDARY SYMPTOM STRING: ADRS/00000748 SYMPTOM SYMPTOM DATA EXPLANATION --------------- ------------- ----------- ADRS/00000748 00000748 STORAGE ADDRESS FREE FORMAT COMPONENT INFORMATION: KEY = F000 LENGTH = 000100 (0064) +000 C9D2D1F5 F6F7F0F2 C940C905 E5C1D3C9 |IKJ56702I INVALID| +010 C440C3D3 C1E2E240 D5C1D4C5 6B40C2C1 |D CLASS NAME, BA| +020 C4C3D3C1 E2E24040 40404040 40404040 |DCLASS| +030 LENGTH(0048) ==> ALL BYTES CONTAIN X'40'. +060 40404040 | KEY = F000 LENGTH = 00256 (0100) +000 C1C4CA4E E2C5D940 C7E404C2 E8404040 |ADDUSER GUMBY| +010 404005C1 D4C54040 40404040 40404040 |NAME | +020 D1968895 40D84840 C7A9482 A870D540 |JOHN Q. GUMBY' | +030 40404040 D3C1E4E3 C8404040 40404040 |CLAUTH | +040 82818483 93B1A2A2 5D0407C1 E2E2E6D6 |BADCLASS| +050 D9C44040 40404040 40404040 C1C4C4C3 |RD (XXX) ADDC | +060 C1E3C5C7 D6B9E440 40404040 83B1A3F1 |CATEGORY (CAT1 | +070 5D044040 40404040 40404040 40404040 | ) | +080 LENGTH(0128) ==> ALL BYTES CONTAIN X'40'. Figure 66. An example of a symptom record when a command fails
Error recording

- The log records created from what occurred during the file request that ended with the DEQ failure contain:
  - Failing module: IRRSSQ00
  - Service RC: IRRSSQ00 RC
  - Service reason code: DEQ RC
  - The offset into IRRSSQ00 to DEQ request subroutine
  - Additional text: addr DEQ Failed oper rname_len rname
    - addr = Address of node-def-block representing the file in error
    - oper = R,E,I,X, or M for read, erase, insert, read next that are read by MAIN node
    - rname_len = Length of DEQ rname
    - rname = Text of DEQ rname
  - This is followed by one or more log records that contain all of the ENQ/DEQ activity for the request. Each of these contain:
    - Failing module: IRRSSQ00
    - Service RC: IRRSSQ00 RC
    - Service reason code: DEQ RC
    - The offset into IRRSSQ00 where this LOGREC is being printed
    - Additional text is any one of the following:
      - oper ENQ qname= SYSZRAC3, rLen len, rname !rname!, rc=rc
        oper = Shared or Exclusive
        len = Length of rname
        rname = The rname, delimited by !!
      - rc RC from ENQ service
        An attempt was made to get the specified ENQ with RC, indicating the results of the attempt.
      - Getting ENQ Not
        No attempt was made to get an ENQ.
      - Rname not set properly
        No attempt is made to get an ENQ.
      - addr DEQ rname=rname
        addr = Node definition address
        rname = rname DEQ
        About to DEQ the specified rname.
      - addr DEQ RC=rc
        addr = Node definition address
        rc = DEQ return code
        DEQ attempted with return code.
Error recording

- addr DEQ ERROR rc, restarting node
  addr = Node definition address
  rc: DEQ failing return code
  Issued when DEQ fails.
- ENQ in IRRSSQ00 is not received. No DEQ for addr.
  addr = Node definition address
  Internal error. DEQ requested, but IRRSSQ00 is not able to find
  corresponding ENQ.
- Track num ENQ for addr
  addr = Node definition address
  num = Internal tracking number
  ENQ is received and being tracked.
- Unable to Track ENQ
  Code is not able to track the ENQ received.
- Clear ENQ for addr
  addr = Node definition block
  DEQ is complete and tracking is clear.
- ENQ num not found in list
  num = Tracking number
  DEQ is complete, but IRRSSQ00 is not able to find tracking for it.
- addr rname is rname
  addr = Node definition block
  rname = rname for ENQ/DEQ
  The next ENQ or DEQ uses this rname.

Control block overviews for RACF

This presents the links between control blocks that can be useful when diagnosing
problems related to RACF.

RCVT and SAF router vector table

ACCE and related control blocks
The first time a RACROUTE REQUEST=VERIFY is issued for an address space,
there is only one ACCE (accessor environment element), and it is pointed to by the
ASXB (see Figure 67 on page 234).

For any subsequent task in the address space (multiple users), the following cases
could occur:
- A table of pointers to ACEEs is set up in the address space. This occurs for CICS
  (Customer Information Control System) or IMS (Information Management
  System) address spaces.
- Another ACEE is created when the VERIFY request is issued. This ACEE is
  pointed to only by the TCB for that task. See Figure 68 on page 234.
- When a third-party AUTH request is used (USERID was specified on the
  RACROUTE REQUEST=AUTH), the ACEE is pointed to by an existing ACEE.
  See Figure 69 on page 234.
For more information about how ACEEs are created and which ACEE is used, see z/OS Security Server RACF System Programmer’s Guide.

**SVC dump title descriptions**

This describes the SVC (supervisor call instruction) dumps generated by RACF recovery routines.

**SVC failure (ICHRST00)**

This SVC dump issued by RACF has the form:

ICHRST00-RACF SVCS, ABEND CODE=sss-rrr, SVC=srvname, USER=RACF user ID or job name, GROUP=RACF group ID or step name[, EXIT= csectname]

**Component:**
Resource Access Control Facility (RACF), 5752-XXH00

**Issuing Module:**
ICHRST00-ESTAE

**Explanation:**
An abend occurred during processing of one of the RACF SVCs or during processing of the GENLIST or RACLIST operand of the SETROPTS command. The values in the system dump title are:
SVC dump descriptions

**sss**
System completion code (abend code), in hexadecimal.

**rrr**
Reason code associated with the system completion code (described in [z/OS Security Server RACF Data Areas](https://www.ibm.com/docs/en/z-os-security-server-racf?topic=abl codes)).

**svcname**
Name of the RACF routine handling the SVC and issuing the abend.

**RACF user ID or job name**
If interactive, RACF user ID of user who encountered the problem.
If batch, then name of job that encountered the problem.

**RACF group ID or step name**
If interactive, RACF group of user who encountered the problem.
If batch, then name of step that encountered the problem.

**csectname**
Name of the CSECT that probably caused the error.

**System Action:**
The executing task is terminated. The areas dumped are PSA, RGN, LPA, TRT, CSA, and SQA.

**Problem Determination:**
1. Look for the EXIT shown in the dump title:
   - If the EXIT shown in the system dump title is an installation exit, the installation exit probably caused the error (for a description of installation exits, see [z/OS Security Server RACF System Programmer’s Guide](https://www.ibm.com/docs/en/z-os-security-server-racf?topic=installation-exit)). Debug the installation exit. You can use standard debugging methods to analyze the problem described in this system dump.
   - If the EXIT shown in the system dump title is an IBM routine, or if EXIT is missing from the system dump title, follow the remaining steps in this procedure.

2. Look for message ICH409I as issued for this system dump. See the message text for the following:
   - Abend code and reason code (must be the same as in the dump title)
   - RACF macro or SETROPTS command option (GENLIST or RACLIST) that was being processed
   - Whether parameter validation or other processing was being done

3. If ICH409I is unavailable, see [z/OS Security Server RACF Messages and Codes](https://www.ibm.com/docs/en/z-os-security-server-racf?topic=mces) for an explanation of the abend code (**sss**) and reason code (**rrr**) from the dump title.

4. If the explanation of the code does not help you solve the problem and the EXIT named in the system dump title is an IBM routine, see "Abend troubleshooting table" on page 9 for instructions on debugging the problem.

**Other Problem Data Produced:**
A software record is written to SYS1.LOGREC and includes:

**SDWAMODN**
Main CSECT (control section) name of SVC (supervisor call instruction)
RACF initialization failure (ICHSEC02)

The form of this dump issued by RACF depends on the cause of the dump.

Component:
Resource Access Control Facility (RACF), 5752-XXH00

Issuing Module:
ICHSEC02-ESTAE

Explanation:
An abend occurred during RACF initialization processing. The areas dumped are SQA, CSA, NUC, and RGN.

Problem Determination:
1. See message ICH505A for the abend code that caused the system dump.
2. If message ICH529I was issued, an RVARY command failed.
3. See z/OS Security Server RACF Messages and Codes for an explanation of the abend code and the messages.
4. If the explanations in z/OS Security Server RACF Messages and Codes do not help you solve the problem, see “Abend troubleshooting table” on page 9 for instructions on debugging the problem.

Other Problem Data Produced:
A software record is written to SYS1.LOGREC and includes:

SDWAMODN
ICHSEC00 (module detecting the error)

SDWAREXN
ICHSEC02 (module detecting the error)

SDWACRC
Completion code

SDWACID
XXH00

SDWAEAS
1 if SDUMP is generated by ICHSEC00

SDWAREQ
Zero if SDUMP is generated by ICHSEC00
SVC dump descriptions

SDWAREQ
    Zero if SDUMP is generated by ICHSEC00

RACLIST failure (IRRCOP10)
    This dump issued by RACF has the form:

IRRCOP10-RACF RAclist TO A DATA SPACE FAILED FOR CLASS=classname

Component:
    Resource Access Control Facility (RACF), 5752-XXH00

Issuing Module:
    IRRCOP10-Copy RAclisted Class to a Data Space

Explanation:
    One of the following failed when attempting to copy the in-storage profiles
    into a data space during RACF initialization:
    • SETROPTS RAclist
    • SETROPTS RAclist REFRESH
    • RACROUTE REQUEST=LIST,GLOBAL=YES request
    • RAclist

System Action:
    The RAclist for classname failed. A dump was taken to help determine
    the cause of the problem. Areas dumped are CSA, LSQA, and the data
    space.

Problem Determination:
1. Determine the cause of the failure by checking the return and reason
   codes provided by:
   • Message ICH14058I for the SETROPTS RAclist or SETROPTS
     RAclist REFRESH cases
   • Message ICH546I for the RAclist during initialization case
   • Message IRRL0002I for the RACROUTE
     REQUEST=LIST,GLOBAL=YES case

2. Use standard debugging methods to analyze the dump itself. To look at
   a data space with IPCS, you must know the name of the data space.
   The name of a data space obtained for RAclist purposes is
   "IRRxxxxx", where xxxx is a hex number. The name of the data space
   in this dump can be obtained by an IPCS command, “listdump select”.
   Simply scan the command’s output for “DSPNAME” and use the
   resulting name and ASID to access the data space.

RACF COPY RACGLIST failure (IRRRLS12)
    The form of this dump is:

IRRRLS12-RACF COPY RACGLIST classname_nnnnn PROFILES FOR
CLASS=classname

Component:
    Resource Access Control Facility (RACF), 5752-XXH00

Issuing Module:
    IRRRLS12RACF RACGLIST to Data Space Routine

Explanation:
    Problems were encountered while trying to read A RACGLIST
SVC dump descriptions

In order to use the RACLIST results stored in those profiles to build the RACLIST data space for \textit{classname},

\textbf{System Action:}

In addition to taking this dump, RACF issues IRRL0000I, which identifies the specific profile and the manager return and reason codes for the failure. RACF proceeds to RACLIST \textit{classname} by reading \textit{classname}'s discrete and generic profiles from the database to build the RACLIST results, which are then copied to the RACLIST data space. Areas dumped are SQA, LSQA, PSA, RGN, LPA, TRT, CSA, and SUMDUMP.

\textbf{Problem Determination:}

1. Determine the cause of the failure by checking the return and reason codes provided by message IRRL0000I.
2. Use standard debugging methods to analyze the dump itself.

\textbf{RACF CREATE RACGLIST failure (IRRRLS13)}

The form of this dump is:

IRRRLS13RACF CREATE RACGLIST \textit{classname}_nnnnn PROFILES FOR CLASS=\textit{classname}

\textbf{Component:}

Resource Access Control Facility (RACF), 5752-XXH00

\textbf{Issuing Module:}

IRRRLS13RACF Data Space to RACGLIST Routine

\textbf{Explanation:}

Problems were encountered while trying to write a RACGLIST \textit{classname}_nnnnn profile to the database after building a raclist data space while RACLISTing \textit{classname}.

\textbf{System Action:}

In addition to taking this dump, RACF issues IRRL0000I, which identifies the specific profile and the manager return and reason codes for the failure. RACF attempts to delete all the RACGLIST \textit{classname}_nnnnn profiles. The RACLIST operation successfully built the RACLIST data space for \textit{classname}. Areas dumped are SQA, LSQA, PSA, RGN, LPA, TRT, CSA, and SUMDUMP.

\textbf{Problem Determination:}

1. Determine the cause of the failure by checking the return and reason codes provided by message IRRL0000I.
2. Use standard debugging methods to analyze the dump itself.

\textbf{RACF DELETE RACGLIST failure (IRRRLS14)}

The form of this dump is:

IRRRLS14RACF DELETE RACGLIST \textit{classname}_nnnnn PROFILES FOR CLASS=\textit{classname}

\textbf{Component:}

Resource Access Control Facility (RACF), 5752-XXH00

\textbf{Issuing Module:}

IRRRLS14RACF Delete RACGLIST \textit{classname}_nnnnn
SVC dump descriptions

Explanation:
Problems were encountered while trying to delete a RACGLIST classname_nnnnn profile from the database.

System Action:
In addition to taking this dump, RACF issues IRRL0000I, which identifies the specific profile and the manager return and reason codes for the failure. If the command being processed was RDELETE RACGLIST classname, RACF terminates command processing. If the command was one of the commands or requests causing RACF to RACLST classname, the RACLST succeeded, but RACGLIST classname_nnnnn was not updated. Areas dumped are SQA, LSQA, PSA, RGN, LPA, TRT, CSA, and SUMDUMP.

Problem Determination:
1. Determine the cause of the failure by checking the return and codes provided by message IRRL0000I.
2. Use standard debugging methods to analyze the dump itself.

RACF data space recovery failure (IRRRLS15)
The form of this dump is:

IRRRLS15RACF RACLST TO A DATA SPACE RECOVERY FOR CLASS=classname

Component:
Resource Access Control Facility (RACF), 5752-XXH00

Issuing Module:
IRRRLS15RACF RACLST to Data Space Recovery

Explanation:
One of the following abended while processing a data space:
• SETROPTS RACLST
• SETROPTS RACLST REFRESH
• RACLST during initialization
• RACROUTE REQUEST=LIST, GLOBAL=YES

The ICHRST00 dump described on page “SVC failure (ICHRST00)” on page 234 is also taken. This dump provides the data space, which is not provided by the ICHRST00 dump.

System Action:
The command or request failed. A dump was taken to determine the cause of the problem. Areas dumped are CSA, LSQA, and the data space.

Problem Determination:
1. Analyze the ICHRST00 dump as described.
2. Use standard debugging methods to analyze this dump. To look at a data space with IPCS, you must know the name of the data space. The name of a data space obtained for RACLST purposes is “IRRxxxxx” where xxxx is a hex number. The name of the data space in the dump can be obtained by an IPCS command, “lisdump select”. Simply scan the command’s output for “DSPNAME” and use the resulting name and ASID to access the data space.
SVC dump descriptions

**RACF subsystem failures (IRRSC01, IRRSSS01, and IRRLOG00)**

All dumps issued by the RACF subsystem have the form:

```
DUMP_TITLE=uuuu subsystem,vvvvvvvv task,www yyyy module,zzzzzz segment.
```

The appropriate subsystem name, task name, abend code, module name, and segment name are all provided. The numbers following the module name give the compile date for that module.

An example of a RACF subsystem dump title is:

```
DUMP_TITLE=RACF Subsystem,IRRSC00 task,OC1 abend,IRRSSM04 92100 module,WAITECB segment.
```

Component:
RACF (5752-XXH00)

Issuing Modules:
IRRSC01 IRRSSS01

Explanation:
The RACF subsystem issued dumps.

Problem Determination:
1. See [z/OS MVS System Codes](#) for an explanation of the abend code and the messages.
2. If the explanations in [z/OS MVS System Codes](#) do not help you solve the problem, see "Abend troubleshooting table" on page 9 for instructions on debugging the problem.
3. When the dump title identifies IRRLOG00 as the failing CSECT, there might be additional diagnostic information available in the SYSOUT and CEEDUMP DDs for the subsystem started task.

**Persistent verification failures**

Dumps issued by RACF for persistent verification support in RACF's subsystem have the form:

```
DUMP_TITLE=COMPON=RACF,COMPID=5752XXH00,ISSUER=IRRSGN06,
MODULE=mmmmmmm,ABEND=S0 xxx,REASON=yyyyyyyyy
```

Component:
RACF (5752-XXH00)

Issuing Module:

```
mmmmmmm
```

Explanation:
The RACROUTE REQ=SIGNON service issued a dump.

Problem Determination:
1. Look up the abend and reason code in [z/OS Security Server RACF](#) Messages and Codes
2. Use standard debugging methods to analyze the dump.

**RACF I/O failures**

Dumps issued by the RACF manager when an I/O occurs while processing a RACHECK, RACINIT, RACDEF, or RACF command request have the form:
SVC dump descriptions

DUMP TITLE= ISSUER=IRRMER01-RACF SVCS, I/O ERROR,SVC=xxxxxxxx, USER=yyyyyyyyy ,GROUP=zzzzzzzz

where:

- xxxxxxxx is the SVC name
- yyyyyyyy is the RACF user's name from the ACEE or job name.
- zzzzzzzzz is the RACF user's group name from the ACEE or step name.

An example of a RACF I/O dump title is:

DUMP TITLE= ISSUER=IRRMER01-RACF SVCS, I/O ERROR,SVC=ICHRSV00, USER=IBMUSER ,GROUP=SYS1

Component: RACF (5752-XXH00)
Issuing Modules: IRRMER01
Explanation: An I/O error occurred and RACF issued a Sdump.

RACF index block error

In some cases where message IRR407I is issued, a DAE suppressible dump might be provided as a problem determination aid. This can occur during SVC 132 processing.

DUMP TITLE= COMPON=RACF,COMPID=5752XXH00,ISSUER=ICHRSV00, MODULE=IRRMLLO00,MANAGER RC=4C,RBA=xxxxxxxxxxxx

where:

- xxxxxxxxxxxx is the RBA of the index block (which is not valid) that produced message IRR407I.

An example of a RACF Index Block error dump title is:

DUMP TITLE=COMPON=RACF,COMPID=5752XXH00,ISSUER=ICHRSV00, MODULE=IRRMLLO00,MANAGER RC=4C,RBA=000000001000

Component: RACF (5752-XXH00)
Issuing Modules: ICHR5V00
Explanation: ICHR5V00 takes a DAE suppressible dump in cases where the RACF manager detects an index block that is not valid. In some cases this error occurs because of storage overlay. This dump captures information that might be helpful in debugging the overlay. IRRMLLO00 is the RACF manager routine that determines whether conditions exist that call for this dump to be taken.
**Dump title description for Callable Services**

The following dump title is displayed on the MVS console when a RACF module used for processing a SAF callable service abends:

```
DUMP>Title=ISSUER=csect,COMPID=5752-XXH00,COMPON=RACF,CSECT=aaaaaaaa, LVL=bbbbbbbb,ABEND=ssss-rrr,USR=cccccccc
```

Where:

- **csect** is the name of the csect that issued the dump, either IRRRCOMR or IRRRCHD7
- **aaaaaaaa** is the name of the RACF module that abended
- **bbbbbbbb** is the product fmid (that is, HRF7706)
- **sss** is the system completion code (abend code), in hexadecimal
- **rrr** is the reason code associated with the system completion code
- **cccccccc** is the user’s name from the RACF ACEE

When the module abends, the executing task is terminated. The areas dumped are RGN, SQA, TRT, and SUM.

**VRA keys provided by RACF for some abends**

For some abends, RACF provides VRA (variable recording area) keys that can help in describing a problem to the IBM support center or in narrowing a search when an initial search gets too many matches.

The VRA is part of the SDWA (system diagnostic work area) that recovery routines can use when a problem occurs. The VRA can be included in an SYS1.LOGREC record and in a system dump. To format the VRA, use the DAEDATA control statement in PRDMP or the DAEDATA verbexit in IPCS. Symptoms included in the VRA can be formatted using the SYMPTOMS control statement in PRDMP or the SYMPTOMS verbexit in IPCS.

*Figure 70. Sample symptoms for RACF (DAEDATA output)*
A number of headers for VRA keys are produced by RACF. These headers (labeled HEADER FOR DATA) describe error data (labeled HEX ERROR DATA). For example, in this dump RACFCNTS is the header for 01000000, and IPLPTR is the header for 0000EB74.

Headers

<table>
<thead>
<tr>
<th>Description</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACFCNTS</td>
<td>HEADER FOR DATA</td>
</tr>
<tr>
<td>IPLPTR</td>
<td>Pointer to the input parameter list for the current RACF manager request.</td>
</tr>
<tr>
<td>ACTNPTR</td>
<td>Pointer to the action being performed at the time of the abend.</td>
</tr>
<tr>
<td>TESTPTR</td>
<td>Pointer to the test being performed at the time of the abend.</td>
</tr>
<tr>
<td>MGRREQST</td>
<td>RACF manager request ID for the ICHEINTY macro being performed at the time of the abend. This request ID is also reported in message ICH413I. This ID is included only on internal RACF requests.</td>
</tr>
</tbody>
</table>


VRA keys

Figure 71. Sample SDWA for RACF

<table>
<thead>
<tr>
<th>1</th>
<th>HEADER FOR DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3708</td>
<td>D9C1 C36C3D5 E3E2</td>
</tr>
</tbody>
</table>

RACFCNTS (header for this VRA key)
Length of header
VRA key X'37' (indicates this is a header)

<table>
<thead>
<tr>
<th>2</th>
<th>HEX ERROR DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3E04</td>
<td>01000000</td>
</tr>
</tbody>
</table>

Value for RACFCNTS
Length of header
VRA key X'38' (indicates this is hex data)

Front-ending RACF commands

The RACF common command exit, IRREVX01, allows customers to customize or cancel RACF commands before the RACF command processor is invoked. This exit is the recommended vehicle for preprocessing RACF commands. Before RACF provided this exit, some customers created their own front-end processors to preprocess RACF commands. Because RACF 2.2 changed the way RACF processes commands, customers who wrote front-end processors before RACF 2.2 and who want to continue to use these front-end processors might have to change them. This information is intended for those customers.

Note: If you currently use a front-end processor for commands, it is recommended that you replace it with an IRREVX01 exit.

Command processing changes

Before RACF 2.2, when a RACF TSO command was issued, control was passed directly to the appropriate command processor.

To make this happen, RACF included an entry similar to the following for ADDGROUP in the linkage editor statements for each RACF command.
Front-ending

INCL AOSBN(IHCAG00)
INCL AOSBN(other modules)

ALIAS AG,ADDGROUP
ENTRY IHCAG00
SETCODE AC(1)
NAME IHCAG00(R)

Note: AG or ADDGROUP is the alias name by which the command is issued by a user and ICHCAG00 is the full name of the command by which it is invoked internally.

In RACF 2.2 and OS/390 Security Server (RACF), the entry in the linkage editor statements for most RACF commands look like this:

INCL AOSBN(IHCAG00)
INCL AOSBN(other modules)

ENTRY IHCAG00
NAME IHCAG00(R)

Note: The aliases are not present.

The aliases are removed from each individual command and placed in a new entry for IRRENV00.

INCL AOSBN(IRRENV00)
INCL AOSBN(other modules)
ENTRY IRRENV00
ALIAS AD,ADDSD
ALIAS AG,ADDGROUP
ALIAS other commands

: SETCODE AC(1)
NAME IRRENV00(R)
e tc.

IRRENV00 receives control before each command processor. If the AT or ONLYAT keywords were not specified, IRRENV00 invokes the appropriate command processor using its full name. When the command processor returns control, IRRENV00 determines if automatic direction is required for the command. If so, a work item is sent to the RACF subsystem address space. If the AT or ONLYAT keywords were specified, IRRENV00 sends the command to the RACF subsystem address space for processing.

Considerations if writing a command front-end processor

If IRRENV00 processing is bypassed by a front-end processor, RACF remote sharing functions (RRSF) does not work. When writing a command front-end processor, ensure that IRRENV00 gets control somewhere in the processing before the command processor.

To ensure that all RRSF functions are processed as specified, commands must be invoked by one of the alias names with which they are shipped (for example, AG, ADDGROUP, ADDSD, and so on). When IRRENV00 receives control, the command buffer must have one of the two alias names in the first position. For example, AG or ADDGROUP should be coded, not ICHCAG00. If a front-end processor gets control before IRRENV00, set the command buffer correctly before attaching or linking to IRRENV00. If it gets control after IRRENV00, do not change the content of the command buffer as doing so might result in the information not being processed correctly by automatic command direction.
Front-ending

If the alias is changed to point to a front-end processor, it gets control before IRRENV00 when a command is issued as a TSO command. However, the preprocessor does not get control in all situations. For example, it does not get control for commands resulting from automatic command direction, or for commands issued from the RACF parameter library.

One possible approach to avoid the pitfalls mentioned is to include your front-end processor in RACF’s load module.

```
INCLUDE mylib(mymod)
INCLUDE SYSMOD(ICHCAG00)
ENTRY mymod
NAME ICHCAG00(R)
```

After completing its processing, the front-end processor will need to call the entry point for RACF’s command processor. If the front-end processor needs to communicate with the user, be aware that the preprocessor could be running in the RACF subsystem address space and not in the TSO user’s address space. The ACEERASP bit (x’40’) is set in the ACEEFLG3 flag field of the ACEE for the RACF subsystem address space.

Assigning the entry point to the front-end processor (mymod) causes it to be invoked at the same point in the processing that the specific command processing would be invoked by RACF. Because the alias is not included, the RACF remote sharing functions operate and IRRENV00 is invoked.

The DEBUG command

The DEBUG command starts the diagnostic print statements that wrap the cryptographic library calls and displays additional diagnostic information for RACDCERT invoked ICHEINTY ALTER, RACROUTE REQUEST=EXTRACT, and RACROUTE REQUEST=DEFINE failures. However, the contents of these messages are not documented in any publication. When a problem is encountered, customers can use this keyword to gather diagnostic information for the IBM Support Center.
Chapter 7. Error recovery for RACF sysplex data sharing

This topic describes actions to take in order to allow RACF to continue servicing requests when you encounter a situation where coupling facility recovery scenarios do not work properly.

Actions to recover from a coupling facility error

Do not issue SETXCF to force the rebuild of a structure into a coupling facility that is not available to the system because the result is read-only mode. If SETXCF was issued, you need to exit out of read-only mode by issuing RVARY DATASHARE. Therefore, RACF returns to the original coupling facility.

If you encounter a situation where coupling facility recovery scenarios do not work properly, the following information might make it possible for RACF to continue servicing requests.

For example, assume a sysplex with 3 members: J90, J91, and J92. A coupling facility containing RACF Structure IRRXCF00_B001 has been lost. Member J90 remains active.

The following messages are received at the operator console:

IRRX016I RACF MEMBER J90 DETECTED A COUPLING FACILITY ERROR
IXC5211 REBUILD FOR STRUCTURE IRRXCF00_B001 HAS BEEN STARTED
IRRX020I REBUILD FOR STRUCTURE IRRXCF00_B001 ON MEMBER J90 HAS BEEN INITIATED

The following message is not received at the operator console:

IRRX008I REBUILD FOR STRUCTURE IRRXCF00_B001 HAS BEEN COMPLETED

Issuing the following command from the operator console:

DISPLAY XCF,STRUCTURE

displays the following: IRRXCF00_B001 ALLOCATED REBUILDING

Issuing the following command from the operator console:

DISPLAY GRS,CONTENTION

displays the following: SYSZRAC2, minor name backup-racf-db is held on system J90 by RACFDS

In this situation, members of the sysplex might be unable to function properly because RACF is holding enqueues. A rebuild of a RACF structure has been requested but cannot go ahead. The following steps might be helpful in allowing RACF to continue operating, though it will be at a degraded mode.

1. Make sure if message IXC402D has been received one or more times at the operator's console, you reply "down" to all of them. If this allows REBUILD to complete, you do not need to continue with the following steps.

2. Issue the following command at the operator console:

SETXCF STOP,REBUILD,STRNAME=IRRXCF00_B001
This command stops REBUILD and release enqueues. Additionally, message IRRX004A is received, which displays the following: IRRX004A MEMBER J90 IS IN READ-ONLY MODE.

3. Issue the following command at the operator console:
   
   RVARY NODATASHARE

   All remaining sysplex members now operate off the database, without the coupling facility. Note that performance will not be as good while running without the coupling facility.

4. You might be able to further improve the situation if you have configured your sysplex appropriately. This means that you have more than one coupling facility and that after the failure of one of them is still available. To illustrate this, read the following:

   Take, for example, two coupling facilities. All structures for the primary RACF database are assigned to one coupling facility and all structures for the backup RACF database are assigned to the other coupling facility. (In this example, assume that no alternate coupling facilities have been assigned.) If you lose one or the other of the coupling facilities in this configuration, you can still get back into data sharing mode, though it will be without a backup database.

   For example:
   
   • If the coupling facility containing the primary database structures goes down, issue the command:
     
     RVARY SWITCH

     which makes the backup database primary and deactivates the old primary database.

   • If the coupling facility containing the backup database structures goes down, issue the command:
     
     RVARY INACTIVE

     on the backup database.

   • Issue the command:
     
     RVARY DATASHARE

     which allows remaining sysplex members the ability to connect to all structures on the available coupling facility.

   The fourth step has an adverse consequence, however. Although these steps improve performance while a coupling facility is unavailable, your backup and primary databases will most likely become out of sync. This must be resolved before you can go back to normal operations with both primary and backup databases. This can be done by using IRRUT200, as documented in Security Server RACF System Programmer’s Guide.
Appendix A. The Inventory Control Block (ICB)

The ICB is included here to help you diagnose RACF problems.

<table>
<thead>
<tr>
<th>Common Name:</th>
<th>RACF Database Inventory Control Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro ID:</td>
<td>ICHPICB</td>
</tr>
<tr>
<td>DSECT Name:</td>
<td>INVICB</td>
</tr>
<tr>
<td>Owning Component:</td>
<td>Resource Access Control Facility (XXH00)</td>
</tr>
<tr>
<td>Eye-Catcher ID:</td>
<td>RACIFICB</td>
</tr>
<tr>
<td>Offset:</td>
<td>1010</td>
</tr>
<tr>
<td>Length:</td>
<td>8</td>
</tr>
</tbody>
</table>

Storage Attributes:
- **Subpool:** 231
- **Key:** 0
- **Residency:** ECSA

Size: 4096 bytes

Created by: IRRMIN00 or IRRUT400 on the RACF database. In storage by RACF initialization when the system is in data sharing mode or if the database is not shared.

Pointed to by: DSDEHDR in the DSDT data area

Serialization:
- For the copy on the data set: SYSZRACF RESERVE or SYSZRACF ENQ
- For the in-storage copy: SYSZRACF ENQ

Function: The ICB is the first record of the RACF database. It provides a control area for the routines that manage RACF data. This control area contains information needed to locate data related to the templates.

<table>
<thead>
<tr>
<th>Offset (Dec)</th>
<th>Offset (Hex)</th>
<th>Type</th>
<th>Len</th>
<th>Name (Dim)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>STRUCTURE</td>
<td>4096</td>
<td>INVICB</td>
<td>Inventory Control Block</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>CHARACTER</td>
<td>2599</td>
<td>ICBHDR</td>
<td>Reserved</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>ADDRESS</td>
<td>4</td>
<td>ICBCHAIN</td>
<td>Number of BAM blocks in data set</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>SIGNED</td>
<td>4</td>
<td>ICBBAMNO</td>
<td>Number of BAM blocks in data set RBA of highest level CIB</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>BITSTRING</td>
<td>6</td>
<td>ICCIBRBA</td>
<td>RBA of first block of index sequence set</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>BITSTRING</td>
<td>6</td>
<td>ICISSRBA</td>
<td>RBA of first block of index sequence set</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>BITSTRING</td>
<td>6</td>
<td>ICBAMRBA</td>
<td>RBA of first BAM</td>
</tr>
<tr>
<td>26</td>
<td>1B</td>
<td>BITSTRING</td>
<td>1</td>
<td>ICBFLAGS</td>
<td>Status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBEXTND</td>
<td>RACF data set has been extended, RACF will no longer process updates to this version</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>Reserved, do not use</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBEDAT</td>
<td>RESIDENT data blocks option used on some system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBDSFMT</td>
<td>1 = new RACF data set format</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBWIP</td>
<td>HPCS 1 = Write In Progress</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>Reserved</td>
</tr>
<tr>
<td>27</td>
<td>18</td>
<td>ADDRESS</td>
<td>1</td>
<td>ICTMPCNT</td>
<td>Number of templates</td>
</tr>
<tr>
<td>28</td>
<td>1C</td>
<td>BITSTRING</td>
<td>6</td>
<td>ICBAMHWM</td>
<td>BAM HWM.</td>
</tr>
<tr>
<td>34</td>
<td>22</td>
<td>CHARACTER</td>
<td>16</td>
<td>ICBTEMP (9)</td>
<td>Space for 9 template DEFNS</td>
</tr>
<tr>
<td>34</td>
<td>22</td>
<td>SIGNED</td>
<td>2</td>
<td>ICTMPL</td>
<td>Template length</td>
</tr>
<tr>
<td>36</td>
<td>24</td>
<td>ADDRESS</td>
<td>1</td>
<td>ICTMPN</td>
<td>Template number</td>
</tr>
<tr>
<td>37</td>
<td>25</td>
<td>BITSTRING</td>
<td>1</td>
<td>ICMRSV1</td>
<td>Align to half word boundary</td>
</tr>
<tr>
<td>Offset (Dec)</td>
<td>Offset (Hex)</td>
<td>Type</td>
<td>Len</td>
<td>Name (Dim)</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>-----</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>38</td>
<td>(26)</td>
<td>BITSTRING</td>
<td>6</td>
<td>ICTMPRBA</td>
<td>RBA of FDT</td>
</tr>
<tr>
<td>44</td>
<td>(2C)</td>
<td>CHARACTER</td>
<td>6</td>
<td>ICTMRSV2</td>
<td>Reserved</td>
</tr>
<tr>
<td>178</td>
<td>(B2)</td>
<td>CHARACTER</td>
<td>16</td>
<td>*</td>
<td>Reserved</td>
</tr>
<tr>
<td>194</td>
<td>(C2)</td>
<td>CHARACTER</td>
<td>1</td>
<td>ICBSTAT</td>
<td>Status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>(C3)</td>
<td>BITSTRING</td>
<td>1</td>
<td>ICBEXTA</td>
<td>Reserved</td>
</tr>
<tr>
<td>196</td>
<td>(C4)</td>
<td>CHARACTER</td>
<td>1</td>
<td>ICBSTAT1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>(C5)</td>
<td>CHARACTER</td>
<td>1</td>
<td>ICBAUOP</td>
<td>RACF audit options</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>(C6)</td>
<td>BITSTRING</td>
<td>1</td>
<td>ICBAXTA</td>
<td>Reserved</td>
</tr>
<tr>
<td>199</td>
<td>(C7)</td>
<td>CHARACTER</td>
<td>1</td>
<td>ICBEROP</td>
<td>Miscellaneous options</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>(C8)</td>
<td>SIGNED</td>
<td>4</td>
<td>ICBCHCT</td>
<td>Change count array for all levels of index blocks</td>
</tr>
<tr>
<td>240</td>
<td>(F0)</td>
<td>ADDRESS</td>
<td>1</td>
<td>ICBPINV</td>
<td>Global max password interval value, valid range 1-254</td>
</tr>
<tr>
<td>241</td>
<td>(F1)</td>
<td>BITSTRING</td>
<td>4</td>
<td>ICBCSTA</td>
<td>Class STATISTICS mask</td>
</tr>
<tr>
<td>245</td>
<td>(F5)</td>
<td>BITSTRING</td>
<td>4</td>
<td>ICBCAUD</td>
<td>Class AUDIT mask</td>
</tr>
<tr>
<td>249</td>
<td>(F9)</td>
<td>BITSTRING</td>
<td>4</td>
<td>ICBCPRO</td>
<td>Class PROTECTION mask</td>
</tr>
<tr>
<td>253</td>
<td>(FD)</td>
<td>UNSIGNED</td>
<td>1</td>
<td>ICBPHIST</td>
<td>Password HISTORY value</td>
</tr>
<tr>
<td>Offset (Dec)</td>
<td>Offset (Hex)</td>
<td>Type</td>
<td>Len</td>
<td>Name (Dim)</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----</td>
<td>---------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>254</td>
<td>(FE)</td>
<td>UNSIGNED</td>
<td>1</td>
<td>ICBPRVOK</td>
<td>Password REVOKE value</td>
</tr>
<tr>
<td>255</td>
<td>(FF)</td>
<td>UNSIGNED</td>
<td>1</td>
<td>ICBPWARN</td>
<td>Password WARNING value</td>
</tr>
<tr>
<td>256</td>
<td>(100)</td>
<td>CHARACTER</td>
<td>10</td>
<td>ICBPSYN (8)</td>
<td>Password SYNTAX rules</td>
</tr>
<tr>
<td>256</td>
<td>(100)</td>
<td>UNSIGNED</td>
<td>1</td>
<td>ICBPSLEN</td>
<td>Starting length value</td>
</tr>
<tr>
<td>257</td>
<td>(101)</td>
<td>UNSIGNED</td>
<td>1</td>
<td>ICBPELEN</td>
<td>Ending length value</td>
</tr>
<tr>
<td>258</td>
<td>(102)</td>
<td>CHARACTER</td>
<td>8</td>
<td>ICBPRULS</td>
<td>Content rules</td>
</tr>
<tr>
<td>258</td>
<td>(102)</td>
<td>CHARACTER</td>
<td>1</td>
<td>ICBPRUL1</td>
<td>Content rule</td>
</tr>
<tr>
<td>259</td>
<td>(103)</td>
<td>CHARACTER</td>
<td>1</td>
<td>ICBPRUL2</td>
<td>Content rule</td>
</tr>
<tr>
<td>260</td>
<td>(104)</td>
<td>CHARACTER</td>
<td>1</td>
<td>ICBPRUL3</td>
<td>Content rule</td>
</tr>
<tr>
<td>261</td>
<td>(105)</td>
<td>CHARACTER</td>
<td>1</td>
<td>ICBPRUL4</td>
<td>Content rule</td>
</tr>
<tr>
<td>262</td>
<td>(106)</td>
<td>CHARACTER</td>
<td>1</td>
<td>ICBPRUL5</td>
<td>Content rule</td>
</tr>
<tr>
<td>263</td>
<td>(107)</td>
<td>CHARACTER</td>
<td>1</td>
<td>ICBPRUL6</td>
<td>Content rule</td>
</tr>
<tr>
<td>264</td>
<td>(108)</td>
<td>CHARACTER</td>
<td>1</td>
<td>ICBPRUL7</td>
<td>Content rule</td>
</tr>
<tr>
<td>265</td>
<td>(109)</td>
<td>CHARACTER</td>
<td>1</td>
<td>ICBPRUL8</td>
<td>Content rule</td>
</tr>
<tr>
<td>336</td>
<td>(150)</td>
<td>UNSIGNED</td>
<td>1</td>
<td>ICBINACT</td>
<td>INACTIVATE interval</td>
</tr>
<tr>
<td>337</td>
<td>(151)</td>
<td>BITSTRING</td>
<td>4</td>
<td>ICBCGEN</td>
<td>Generic profile checking, class mask</td>
</tr>
<tr>
<td>341</td>
<td>(155)</td>
<td>BITSTRING</td>
<td>4</td>
<td>ICBCGCM</td>
<td>Generic commands processing, class mask</td>
</tr>
<tr>
<td>345</td>
<td>(159)</td>
<td>BITSTRING</td>
<td>4</td>
<td>ICBMOPt</td>
<td>Miscellaneous options</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBFPDS</td>
<td>Fastpath for DATASET class</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBTDSDN</td>
<td>Tape data set protection in effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBPRO</td>
<td>PROTECT-ALL is in effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBPROF</td>
<td>1 - PROTECT-ALL WARNING is in effect, 0 - PROTECT-ALL FAILURE is in effect (This flag is ignored if ICBPRO has a value of '0'B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBEOS</td>
<td>ERASE-ON-SCRATCH is in effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBEOSL</td>
<td>ERASE-ON-SCRATCH by SECLEVEL is in effect (This flag is ignored if ICBEOS has a value of '0'B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBEOSA</td>
<td>ERASE-ON-SCRATCH for all data sets is in effect (This flag is ignored if ICBEOS has a value of '0'B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBPLC</td>
<td>Mixed case password</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBPSC</td>
<td>Special characters are allowed in passwords</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBPROG</td>
<td>PROGRAM CONTROL is in effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>Reserved</td>
</tr>
<tr>
<td>347</td>
<td>(15B)</td>
<td>BITSTRING</td>
<td>1</td>
<td>*</td>
<td>Reserved</td>
</tr>
<tr>
<td>349</td>
<td>(15D)</td>
<td>BITSTRING</td>
<td>4</td>
<td>ICBFPTH</td>
<td>Class FASTPATH mask</td>
</tr>
<tr>
<td>353</td>
<td>(161)</td>
<td>UNSIGNED</td>
<td>1</td>
<td>ICBSLVL</td>
<td>Security Level for ERASE-ON-SCRATCH</td>
</tr>
<tr>
<td>354</td>
<td>(162)</td>
<td>UNSIGNED</td>
<td>2</td>
<td>ICBRTP</td>
<td>Security Retention Period</td>
</tr>
<tr>
<td>356</td>
<td>(164)</td>
<td>UNSIGNED</td>
<td>1</td>
<td>ICBLALI</td>
<td>Length of prefix for single level data set names</td>
</tr>
<tr>
<td>357</td>
<td>(165)</td>
<td>CHARACTER</td>
<td>9</td>
<td>ICBQUAL</td>
<td>Installation controlled prefix for single level data set names, plus the period for level</td>
</tr>
<tr>
<td>366</td>
<td>(16E)</td>
<td>UNSIGNED</td>
<td>1</td>
<td>ICBSLALI</td>
<td>SECLEVEL to audit</td>
</tr>
</tbody>
</table>
### ICB

<table>
<thead>
<tr>
<th>Offset (Dec)</th>
<th>Offset (Hex)</th>
<th>Type</th>
<th>Len</th>
<th>Name (Dim)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>367</td>
<td>(16F)</td>
<td>UNSIGNED</td>
<td>1</td>
<td>ICBALIAS</td>
<td>367 (16F) UNSIGNED 1 ICBALIAS application identity mapping byte.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 stages:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 0=stage 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– only mapping profiles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 1=stage 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– maintain alias index, but also maintain and use VLF and mapping profiles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Reject locates of application identities</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 2=stage 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– maintain and use alias index, but also maintain VLF the mapping profiles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Allow locates of application identities</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 3=stage 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– maintain and use only alias index</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– mapping profiles have been removed</td>
</tr>
<tr>
<td>368</td>
<td>(170)</td>
<td>SIGNED</td>
<td>4</td>
<td>ICBCHCTD</td>
<td>Change count for data blocks, used to maintain current in-storage blocks with a shared RACF data set</td>
</tr>
<tr>
<td>372</td>
<td>(174)</td>
<td>CHARACTER</td>
<td>8</td>
<td>ICBSWPW</td>
<td>Password for RVARY SWITCH command</td>
</tr>
<tr>
<td>380</td>
<td>(17C)</td>
<td>CHARACTER</td>
<td>8</td>
<td>ICBINPW</td>
<td>Password for RVARY ACTIVE/INACTIVE command</td>
</tr>
<tr>
<td>388</td>
<td>(184)</td>
<td>BITSTRING</td>
<td>16</td>
<td>ICBLRCL</td>
<td>CDT-ANCHORED RAListed profile class mask, ON if active</td>
</tr>
<tr>
<td>404</td>
<td>(194)</td>
<td>BITSTRING</td>
<td>16</td>
<td>ICBLGNC</td>
<td>CDT-ANCHORED GENListed profile class mask, ON if active</td>
</tr>
<tr>
<td>420</td>
<td>(1A4)</td>
<td>BITSTRING</td>
<td>16</td>
<td>ICBLSTAC</td>
<td>Class STATISTICS option mask long version, ON if active</td>
</tr>
<tr>
<td>436</td>
<td>(1B4)</td>
<td>BITSTRING</td>
<td>16</td>
<td>ICBLAUDC</td>
<td>Class AUDITING option mask long version, ON if active</td>
</tr>
<tr>
<td>452</td>
<td>(1C4)</td>
<td>BITSTRING</td>
<td>16</td>
<td>ICBLPROC</td>
<td>Class PROTECTION option mask long version, ON if active</td>
</tr>
<tr>
<td>468</td>
<td>(1D4)</td>
<td>BITSTRING</td>
<td>16</td>
<td>ICBLENC</td>
<td>Class mask for GENERIC PROFILE CHECKING long version, ON if active</td>
</tr>
<tr>
<td>484</td>
<td>(1E4)</td>
<td>BITSTRING</td>
<td>16</td>
<td>ICBLGENMC</td>
<td>Class mask for GENERIC COMMAND CHECKING long version, ON if active</td>
</tr>
<tr>
<td>500</td>
<td>(1F4)</td>
<td>BITSTRING</td>
<td>16</td>
<td>ICBLFPTC</td>
<td>Class FASTPATH option mask long version, ON if active</td>
</tr>
<tr>
<td>516</td>
<td>(204)</td>
<td>SIGNED</td>
<td>1</td>
<td>ICBPMIN</td>
<td>SETROPTS PASSWORD(MINCHANGE) setting</td>
</tr>
<tr>
<td>517</td>
<td>(205)</td>
<td>ADDRESS</td>
<td>1</td>
<td>ICNTMPCT</td>
<td>Number of new templates</td>
</tr>
<tr>
<td>518</td>
<td>(206)</td>
<td>CHARACTER</td>
<td>16</td>
<td>ICBTMPVR</td>
<td>Template version levels</td>
</tr>
<tr>
<td>518</td>
<td>(206)</td>
<td>CHARACTER</td>
<td>8</td>
<td>ICBTMPRL</td>
<td>Release level</td>
</tr>
<tr>
<td>526</td>
<td>(20E)</td>
<td>CHARACTER</td>
<td>8</td>
<td>ICBTMPAL</td>
<td>APAR level</td>
</tr>
<tr>
<td>534</td>
<td>(216)</td>
<td>BITSTRING</td>
<td>6</td>
<td>ICBTXRBA</td>
<td>RBA of the template extensions</td>
</tr>
<tr>
<td>540</td>
<td>(21C)</td>
<td>SIGNED</td>
<td>2</td>
<td>ICBTXLN</td>
<td>Length of the template extension</td>
</tr>
<tr>
<td>542</td>
<td>(21E)</td>
<td>CHARACTER</td>
<td>136</td>
<td>*</td>
<td>Reserved</td>
</tr>
<tr>
<td>Offset (Dec)</td>
<td>Offset (Hex)</td>
<td>Type</td>
<td>Len</td>
<td>Name (Dim)</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-----</td>
<td>----------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>678</td>
<td>(2A6)</td>
<td>BITSTRING</td>
<td>4</td>
<td>ICBVMSSP</td>
<td>VM 370 SYNC counter</td>
</tr>
<tr>
<td>682</td>
<td>(2AA)</td>
<td>BITSTRING</td>
<td>4</td>
<td>ICBVMSXA</td>
<td>VMXA ACI SYNC counter</td>
</tr>
<tr>
<td>686</td>
<td>(2AE)</td>
<td>CHARACTER</td>
<td>8</td>
<td>ICBBMAPA</td>
<td>VM XA profile name which contains the audit settings</td>
</tr>
<tr>
<td>694</td>
<td>(2B6)</td>
<td>CHARACTER</td>
<td>8</td>
<td>ICBBMAPP</td>
<td>VM XA profile name contains the project settings</td>
</tr>
<tr>
<td>702</td>
<td>(2BE)</td>
<td>CHARACTER</td>
<td>92</td>
<td>ICBBMAP</td>
<td>Saved copy of the ACI bit map located in the CP nucleus</td>
</tr>
<tr>
<td>702</td>
<td>(2BE)</td>
<td>BITSTRING</td>
<td>2</td>
<td>ICBMAPSZ</td>
<td>Length of the entire ACI bit map with uncompressed events</td>
</tr>
<tr>
<td>704</td>
<td>(2C0)</td>
<td>BITSTRING</td>
<td>1</td>
<td>ICBDIAL</td>
<td>Indicator for: DIAL CMND</td>
</tr>
<tr>
<td>705</td>
<td>(2C1)</td>
<td>BITSTRING</td>
<td>1</td>
<td>ICBPRMSG</td>
<td>Indicator for: DIAL CMND, PRELOGON MESSAGE CMD</td>
</tr>
<tr>
<td>706</td>
<td>(2C2)</td>
<td>BITSTRING</td>
<td>88</td>
<td>ICBEVENT</td>
<td>ACI bit map events</td>
</tr>
<tr>
<td>794</td>
<td>(31A)</td>
<td>SIGNED</td>
<td>2</td>
<td>ICBSINT</td>
<td>LU Session Interval</td>
</tr>
<tr>
<td>796</td>
<td>(31C)</td>
<td>BITSTRING</td>
<td>16</td>
<td>ICBLGAL</td>
<td>SETROPTS &quot;LOGOPTIONS ALWAYS&quot; class mask, ON if active</td>
</tr>
<tr>
<td>812</td>
<td>(32C)</td>
<td>BITSTRING</td>
<td>16</td>
<td>ICBLNVR</td>
<td>SETROPTS &quot;LOGOPTIONS NEVER&quot; class mask, ON if active</td>
</tr>
<tr>
<td>828</td>
<td>(33C)</td>
<td>BITSTRING</td>
<td>16</td>
<td>ICBLGSU</td>
<td>SETROPTS &quot;LOGOPTIONS SUCCESSES&quot; class mask, ON if active</td>
</tr>
<tr>
<td>844</td>
<td>(34C)</td>
<td>BITSTRING</td>
<td>16</td>
<td>ICBLGFL</td>
<td>SETROPTS &quot;LOGOPTIONS FAILURES&quot; class mask, ON if active</td>
</tr>
<tr>
<td>860</td>
<td>(35C)</td>
<td>CHARACTER</td>
<td>8</td>
<td>ICBJSYS</td>
<td>User ID from the SETROPTS command JES(NJUSERID(id))</td>
</tr>
<tr>
<td>868</td>
<td>(364)</td>
<td>CHARACTER</td>
<td>8</td>
<td>ICBJUND</td>
<td>User ID from the SETROPTS command JES(UNDEFINEDUSER(id))</td>
</tr>
<tr>
<td>876</td>
<td>(36C)</td>
<td>SIGNED</td>
<td>4</td>
<td>ICBRCGSN</td>
<td>RACF group data synchronization value</td>
</tr>
<tr>
<td>881</td>
<td>(371)</td>
<td>BITSTRING</td>
<td>1</td>
<td>ICBLOGD</td>
<td>LOGOPTIONS for DATASET</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBDLGA</td>
<td>LOGOPTIONS &quot;ALWAYS&quot; for the DATASET class</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBDLGN</td>
<td>LOGOPTIONS &quot;NEVER&quot; FOR THE DATASET CLASS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBDLGS</td>
<td>LOGOPTIONS &quot;SUCCESSES&quot; for the DATASET class</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBDLGF</td>
<td>LOGOPTIONS &quot;FAILURES&quot; for the DATASET class</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>Reserved</td>
</tr>
<tr>
<td>882</td>
<td>(372)</td>
<td>CHARACTER</td>
<td>8</td>
<td>ICBSPAUD</td>
<td>VM/SP profile names which contains the audit settings</td>
</tr>
<tr>
<td>Offset (Dec)</td>
<td>Offset (Hex)</td>
<td>Type</td>
<td>Len</td>
<td>Name (Dim)</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----</td>
<td>------------</td>
<td>-------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>890</td>
<td>(37A)</td>
<td>CHARACTER</td>
<td>8</td>
<td>ICBSPCTL</td>
<td>VM/SP profile names which contains the protect settings</td>
</tr>
<tr>
<td>898</td>
<td>(382)</td>
<td>BITSTRING</td>
<td>1</td>
<td>ICBFLG2</td>
<td>RACF 1.9.0 SETROPTS options</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBSLCL</td>
<td>SETROPTS SECLABELCONTROL - ON if active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBCATD</td>
<td>SETROPTS CATDSNS - ON if active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBLMLQT</td>
<td>SETROPTS MLQUIET - ON if active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBLMLST</td>
<td>SETROPTS MLSTABLE - ON if active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBLMLS</td>
<td>SETROPTS MLS - ON if active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBLMLAC</td>
<td>SETROPTS MLACTIVE - ON if active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBGNOW</td>
<td>SETROPTS GENERICOWNER - ON if active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBAUSL</td>
<td>SETROPTS SECLABELAUDIT - ON if active</td>
</tr>
<tr>
<td>899</td>
<td>(383)</td>
<td>CHARACTER</td>
<td>3</td>
<td>ICBNL1</td>
<td>PRIMARY LANGUAGE default</td>
</tr>
<tr>
<td>902</td>
<td>(386)</td>
<td>CHARACTER</td>
<td>3</td>
<td>ICBNL2</td>
<td>SECONDARY LANGUAGE default</td>
</tr>
<tr>
<td>905</td>
<td>(389)</td>
<td>BITSTRING</td>
<td>1</td>
<td>ICBDIRT</td>
<td>Dirty bits to indicate whether fields have been initialized.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBSESS</td>
<td>SESSIONINTERVAL dirty bit, 0=&gt;Field not initialized, 1=&gt;Field is initialized.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>Reserved</td>
</tr>
<tr>
<td>906</td>
<td>(38A)</td>
<td>BITSTRING</td>
<td>1</td>
<td>ICBML2F</td>
<td>SETROPTS options for RACF z/OS multilevel security support</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBMLFS</td>
<td>Security labels required for File System Objects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBMLIP</td>
<td>Security labels required for IPC Objects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBMLNM</td>
<td>Display of Names Restricted by Security label</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBSBYS</td>
<td>Security label by System requested</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>Reserved</td>
</tr>
<tr>
<td>907</td>
<td>(38B)</td>
<td>CHARACTER</td>
<td>85</td>
<td>*</td>
<td>Reserved</td>
</tr>
<tr>
<td>992</td>
<td>(3E0)</td>
<td>CHARACTER</td>
<td>6</td>
<td>ICBALRBA</td>
<td>Highest ALIAS index block</td>
</tr>
<tr>
<td>998</td>
<td>(3E6)</td>
<td>CHARACTER</td>
<td>6</td>
<td>ICBASRBA</td>
<td>ALIAS index sequence set</td>
</tr>
<tr>
<td>1004</td>
<td>(3EC)</td>
<td>ADDRESS</td>
<td>4</td>
<td>ICBMCT</td>
<td>Count field to control purge of VLF class IRRSMAP</td>
</tr>
<tr>
<td>1008</td>
<td>(3F0)</td>
<td>CHARACTER</td>
<td>1</td>
<td>ICBKRBLV</td>
<td>SETROPTS KERBLVL setting</td>
</tr>
<tr>
<td>1009</td>
<td>(3F1)</td>
<td>CHARACTER</td>
<td>1</td>
<td>*</td>
<td>Reserved</td>
</tr>
<tr>
<td>1010</td>
<td>(3F2)</td>
<td>CHARACTER</td>
<td>8</td>
<td>ICBID</td>
<td>Identifier, gets filled in during IRRMIN00 initialization</td>
</tr>
<tr>
<td>1018</td>
<td>(3FA)</td>
<td>CHARACTER</td>
<td>6</td>
<td>ICBVRMN</td>
<td>Version/release/modification number, also filled in IRRMIN00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End of first 1024 bytes</td>
</tr>
<tr>
<td>1024</td>
<td>(400)</td>
<td>SIGNED</td>
<td>2</td>
<td>ICTSEGLN</td>
<td>Length of segment table</td>
</tr>
<tr>
<td>1026</td>
<td>(402)</td>
<td>BITSTRING</td>
<td>6</td>
<td>ICTSEGRB</td>
<td>RBA of segment table</td>
</tr>
<tr>
<td>1032</td>
<td>(408)</td>
<td>BITSTRING</td>
<td>1</td>
<td>ICBRDSFL</td>
<td>RDS flags</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICBINITF</td>
<td>ICB was completely initialized by RDS IRRMIN00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
### ICB

<table>
<thead>
<tr>
<th>Offset</th>
<th>Type</th>
<th>Len</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1033</td>
<td>CHARACTER</td>
<td>3</td>
<td>*</td>
<td>Reserved; Prevent byte skip msg</td>
</tr>
<tr>
<td>1036</td>
<td>UNSIGNED</td>
<td>4</td>
<td>ICBUSCT</td>
<td>ACEE data repository change count for user profile</td>
</tr>
<tr>
<td>1040</td>
<td>UNSIGNED</td>
<td>4</td>
<td>ICBGPCT</td>
<td>ACEE data repository change count for group profile</td>
</tr>
<tr>
<td>1044</td>
<td>UNSIGNED</td>
<td>4</td>
<td>ICBGRCT</td>
<td>ACEE data repository change count for general resource classes APPL, APPCPORT, JESINPUT, CONSOLE, TERMINAL, GTERMINL &amp; SECLABEL</td>
</tr>
<tr>
<td>1048</td>
<td>ADDRESS</td>
<td>4</td>
<td>ICBUMCT</td>
<td>count field to control purge of VLF class IRRUMAP</td>
</tr>
<tr>
<td>1052</td>
<td>ADDRESS</td>
<td>4</td>
<td>ICBGMCT</td>
<td>count field to control purge of VLF class IRRGMAP</td>
</tr>
<tr>
<td>1056</td>
<td>CHARACTER</td>
<td>7</td>
<td>ICBTmplV</td>
<td>Template level value filled in by IRRMIN00</td>
</tr>
<tr>
<td>1063</td>
<td>BITSTRING</td>
<td>128</td>
<td>ICBVPROC</td>
<td>Class protection mask</td>
</tr>
<tr>
<td>1191</td>
<td>BITSTRING</td>
<td>128</td>
<td>ICBVGENC</td>
<td>Generic profile checking class mask</td>
</tr>
<tr>
<td>1319</td>
<td>BITSTRING</td>
<td>128</td>
<td>ICBVGCMC</td>
<td>Generic command processing class mask</td>
</tr>
<tr>
<td>1447</td>
<td>BITSTRING</td>
<td>128</td>
<td>ICBVRCL</td>
<td>CDT-anchored RAQUALTed profile class mask</td>
</tr>
<tr>
<td>1575</td>
<td>BITSTRING</td>
<td>128</td>
<td>ICBVGNL</td>
<td>CDT-anchored GENLISTed profile class mask</td>
</tr>
<tr>
<td>1703</td>
<td>BITSTRING</td>
<td>128</td>
<td>ICBVFPTC</td>
<td>Fastpath option class mask</td>
</tr>
<tr>
<td>1831</td>
<td>BITSTRING</td>
<td>128</td>
<td>ICBVAUDC</td>
<td>Auditing option class mask</td>
</tr>
<tr>
<td>1959</td>
<td>BITSTRING</td>
<td>128</td>
<td>ICBVSTAC</td>
<td>Statistics option mask</td>
</tr>
<tr>
<td>2087</td>
<td>BITSTRING</td>
<td>128</td>
<td>ICBVLGA</td>
<td>SETROPTS LOGOPTIONS ALWAYS class mask</td>
</tr>
<tr>
<td>2215</td>
<td>BITSTRING</td>
<td>128</td>
<td>ICBVLNV</td>
<td>SETROPTS LOGOPTIONS NEVER class mask</td>
</tr>
<tr>
<td>2343</td>
<td>BITSTRING</td>
<td>128</td>
<td>ICBVLGS</td>
<td>SETROPTS LOGOPTIONS SUCCESSES class mask</td>
</tr>
<tr>
<td>2471</td>
<td>BITSTRING</td>
<td>128</td>
<td>ICBVLGF</td>
<td>SETROPTS LOGOPTIONS FAILURES class mask</td>
</tr>
<tr>
<td>2599</td>
<td>ADDRESS</td>
<td>1</td>
<td>ICTMPXCT</td>
<td>Number of template extensions</td>
</tr>
<tr>
<td>2600</td>
<td>UNSIGNED</td>
<td>2</td>
<td>ICBPREP</td>
<td>Password algorithm repetition factor</td>
</tr>
<tr>
<td>2602</td>
<td>UNSIGNED</td>
<td>2</td>
<td>ICBPMEM</td>
<td>Password algorithm memory factor</td>
</tr>
<tr>
<td>2604</td>
<td>UNSIGNED</td>
<td>1</td>
<td>ICBPALG</td>
<td>Password algorithm in effect: 0 = DES or the algorithm as indicated by ICHDEX01 (masking, DES, or installation-defined) 1 = PBKDF2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset</th>
<th>Type</th>
<th>Len</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2605</td>
<td>CHARACTER</td>
<td>146</td>
<td>ICBRSVD</td>
<td>RESERVED</td>
</tr>
</tbody>
</table>

### Constants

<table>
<thead>
<tr>
<th>Len</th>
<th>Type</th>
<th>Value</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>CHARACTER</td>
<td>RACFICB</td>
<td>ICBIDC</td>
<td>Constant for ICBID field</td>
</tr>
<tr>
<td>6</td>
<td>CHARACTER</td>
<td>1090</td>
<td>ICB1090</td>
<td>Constant representing FMD HRF1902 for ICBVRMN field</td>
</tr>
<tr>
<td>6</td>
<td>CHARACTER</td>
<td>1092</td>
<td>ICB1092</td>
<td>Constant representing FMD JRF1922 for ICBVRMN field</td>
</tr>
<tr>
<td>6</td>
<td>CHARACTER</td>
<td>2010</td>
<td>ICB2010</td>
<td>Constant representing FMD JRF2210 for ICBVRMN field</td>
</tr>
<tr>
<td>6</td>
<td>CHARACTER</td>
<td>2020</td>
<td>ICB2020</td>
<td>Constant representing FMD JRF2220 for ICBVRMN field</td>
</tr>
</tbody>
</table>
### Cross reference

<table>
<thead>
<tr>
<th>Name</th>
<th>Hex Offset</th>
<th>Hex Value</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICBAAPL</td>
<td>371</td>
<td>08</td>
<td>4</td>
</tr>
<tr>
<td>ICBADAS</td>
<td>C5</td>
<td>08</td>
<td>4</td>
</tr>
<tr>
<td>ICBADAT</td>
<td>C5</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>ICBAGRO</td>
<td>C5</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>ICBALIAS</td>
<td>16F</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBALRBA</td>
<td>3E0</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBAMHWM</td>
<td>1C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBAMRBA</td>
<td>14</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBAOVR</td>
<td>C5</td>
<td>01</td>
<td>4</td>
</tr>
<tr>
<td>ICBASRBA</td>
<td>3E6</td>
<td>01</td>
<td>3</td>
</tr>
<tr>
<td>ICBATAP</td>
<td>C5</td>
<td>04</td>
<td>4</td>
</tr>
<tr>
<td>Name</td>
<td>Hex Offset</td>
<td>Hex Value</td>
<td>Level</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>ICBATER</td>
<td>C5</td>
<td>02</td>
<td>4</td>
</tr>
<tr>
<td>ICBAUOP</td>
<td>C5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBAUSE</td>
<td>C5</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>ICBAUSL</td>
<td>382</td>
<td>01</td>
<td>4</td>
</tr>
<tr>
<td>ICBAVIO</td>
<td>C7</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>ICBAXTA</td>
<td>C6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBBAMNO</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBBMAP</td>
<td>2BE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBBMAPA</td>
<td>2AE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBBMAPP</td>
<td>2B6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBCATD</td>
<td>382</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>ICBCATF</td>
<td>371</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>ICBCAUD</td>
<td>F5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBCGCM</td>
<td>155</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBCGEN</td>
<td>151</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBCCHAIN</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBCHCT</td>
<td>C8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBCHCTD</td>
<td>170</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBCMPM</td>
<td>371</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>ICBCPRO</td>
<td>F9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBCSTA</td>
<td>F1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBDASD</td>
<td>C4</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>ICBDGCM</td>
<td>C4</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>ICBDGEN</td>
<td>C4</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>ICBDIAT</td>
<td>2C0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ICBDIERT</td>
<td>89</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBDLGA</td>
<td>370</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>ICBDLGF</td>
<td>370</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>ICBDLGN</td>
<td>370</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>ICBDLGS</td>
<td>370</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>ICBDSFMT</td>
<td>1A</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>ICBEDAT</td>
<td>1A</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>ICBEGIN</td>
<td>C2</td>
<td>01</td>
<td>4</td>
</tr>
<tr>
<td>ICBEOS</td>
<td>15A</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>ICBEOSA</td>
<td>15A</td>
<td>08</td>
<td>4</td>
</tr>
<tr>
<td>ICBEOSL</td>
<td>15A</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>ICBEROP</td>
<td>C7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBEVENT</td>
<td>2C2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ICBEXTA</td>
<td>C3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBEXTND</td>
<td>1A</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>ICBFLAGS</td>
<td>1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBFLG2</td>
<td>382</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBFLG2X</td>
<td>371</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBFPDS</td>
<td>159</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>ICBFPETH</td>
<td>15D</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBGMCT</td>
<td>41C</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBGNOW</td>
<td>382</td>
<td>02</td>
<td>4</td>
</tr>
<tr>
<td>ICBGPCT</td>
<td>410</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBGRCT</td>
<td>414</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBHDR</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ICBID</td>
<td>3F2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBINACT</td>
<td>150</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBINITF</td>
<td>408</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>Name</td>
<td>Hex Offset</td>
<td>Hex Value</td>
<td>Level</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>ICBINPW</td>
<td>17C</td>
<td>01</td>
<td>3</td>
</tr>
<tr>
<td>ICBJALL</td>
<td>C4</td>
<td>02</td>
<td>4</td>
</tr>
<tr>
<td>ICBJCHK</td>
<td>C4</td>
<td>02</td>
<td>4</td>
</tr>
<tr>
<td>ICBJSYS</td>
<td>35C</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBJUND</td>
<td>364</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBJXAL</td>
<td>C4</td>
<td>04</td>
<td>4</td>
</tr>
<tr>
<td>ICBKRBBLV</td>
<td>3F0</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBLAUDC</td>
<td>1B4</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBLFPTC</td>
<td>1F4</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBLGAL</td>
<td>31C</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBLGCMC</td>
<td>1E4</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBLGENC</td>
<td>1D4</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBLGFIL</td>
<td>34C</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBLGNL</td>
<td>194</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBLGRP</td>
<td>C7</td>
<td>01</td>
<td>4</td>
</tr>
<tr>
<td>ICBLGSU</td>
<td>33C</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBLNVR</td>
<td>32C</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBLOGD</td>
<td>370</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBLPROC</td>
<td>1C4</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBLRCL</td>
<td>184</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBLSTAC</td>
<td>1A4</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>ICBMAPPZ</td>
<td>2BE</td>
<td>04</td>
<td></td>
</tr>
<tr>
<td>ICBMMDG</td>
<td>C7</td>
<td>08</td>
<td>4</td>
</tr>
<tr>
<td>ICBMRGP</td>
<td>C7</td>
<td>02</td>
<td>4</td>
</tr>
<tr>
<td>ICBMLAC</td>
<td>382</td>
<td>04</td>
<td>4</td>
</tr>
<tr>
<td>ICBMLAF</td>
<td>371</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>ICBMLFS</td>
<td>38A</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>ICBMLIP</td>
<td>38A</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>ICBMLNM</td>
<td>38A</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>ICBMLQT</td>
<td>382</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>ICBMLS</td>
<td>382</td>
<td>08</td>
<td>4</td>
</tr>
<tr>
<td>ICBMLSF</td>
<td>371</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>ICBMLST</td>
<td>382</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>ICBML2F</td>
<td>38A</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>ICBMIOPT</td>
<td>159</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>ICBMUSR</td>
<td>C7</td>
<td>04</td>
<td>4</td>
</tr>
<tr>
<td>ICBNADS</td>
<td>C2</td>
<td>02</td>
<td>4</td>
</tr>
<tr>
<td>ICBNDSS</td>
<td>C2</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>ICBNDVS</td>
<td>C2</td>
<td>08</td>
<td>4</td>
</tr>
<tr>
<td>ICBNLS</td>
<td>C2</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>ICBNL1</td>
<td>383</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>ICBNL2</td>
<td>386</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>ICBNOADC</td>
<td>371</td>
<td>04</td>
<td>4</td>
</tr>
<tr>
<td>ICBNTEMP</td>
<td>206</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>ICBNTMS</td>
<td>C2</td>
<td>04</td>
<td>4</td>
</tr>
<tr>
<td>ICBNTVS</td>
<td>C2</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>ICBPELEN</td>
<td>101</td>
<td>04</td>
<td></td>
</tr>
<tr>
<td>ICBPHIST</td>
<td>FD</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>ICBPINV</td>
<td>F0</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>ICBPRMSG</td>
<td>2C1</td>
<td>04</td>
<td></td>
</tr>
<tr>
<td>ICBPRO</td>
<td>15A</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>ICBPROF</td>
<td>15A</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>ICBPROG</td>
<td>15B</td>
<td>80</td>
<td>4</td>
</tr>
</tbody>
</table>
## Appendix A. The Inventory Control Block (ICB)

<table>
<thead>
<tr>
<th>Name</th>
<th>Hex Offset</th>
<th>Hex Value</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICBPRULS</td>
<td>102</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ICBPRUL1</td>
<td>102</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>ICBPRUL2</td>
<td>103</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>ICBPRUL3</td>
<td>104</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>ICBPRUL4</td>
<td>105</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>ICBPRUL5</td>
<td>106</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>ICBPRUL6</td>
<td>107</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>ICBPRUL7</td>
<td>108</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>ICBPRUL8</td>
<td>109</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>ICBPRVOK</td>
<td>FE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBPISLEN</td>
<td>100</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ICBPISYN</td>
<td>100</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBPWARN</td>
<td>FF</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBLPLN</td>
<td>164</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBNQUAL</td>
<td>165</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBRCGSN</td>
<td>36C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBRDSFL</td>
<td>408</td>
<td>08</td>
<td>4</td>
</tr>
<tr>
<td>ICBRDSN</td>
<td>C4</td>
<td>08</td>
<td>4</td>
</tr>
<tr>
<td>ICBRETP</td>
<td>162</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBRSVD</td>
<td>A27</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ICBSAUD</td>
<td>C7</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>ICBSBY</td>
<td>38A</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>ICBSSE</td>
<td>389</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>ICBSIN</td>
<td>31A</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBSLAU</td>
<td>16E</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBSLCL</td>
<td>382</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>ICBSLV</td>
<td>161</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBSMCT</td>
<td>3EC</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBSPAUD</td>
<td>372</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBSPTL</td>
<td>37A</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBSSTAT</td>
<td>C2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBSSTAT1</td>
<td>C4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBSWFW</td>
<td>174</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBTAPE</td>
<td>C4</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>ICBDNSN</td>
<td>159</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>ICBTMP</td>
<td>22</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBTERP</td>
<td>C7</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>ICBTPAL</td>
<td>20E</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBTMRL</td>
<td>206</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBTMPLV</td>
<td>420</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBTMRP</td>
<td>206</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBTUAC</td>
<td>C7</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>ICBTXLN</td>
<td>21C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBTXRBA</td>
<td>216</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBUMCT</td>
<td>418</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBUSCT</td>
<td>40C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBVAUDC</td>
<td>727</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBVFPTC</td>
<td>6A7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBVGCMC</td>
<td>527</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBVGENC</td>
<td>4A7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBVGNL</td>
<td>627</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBVGLGA</td>
<td>827</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ICBVGLGF</td>
<td>9A7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Name</td>
<td>Hex Offset</td>
<td>Hex Value</td>
<td>Level</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>ICBVLGS</td>
<td>927</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBVLNV</td>
<td>8A7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBVMSSP</td>
<td>2A6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBVMSXA</td>
<td>2AA</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBVPROC</td>
<td>427</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBVRCL</td>
<td>5A7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBVRMN</td>
<td>3FA</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBVSTAC</td>
<td>7A7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICBWIP</td>
<td>1A08</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ICCIBRBA</td>
<td>8E</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICISSRBA</td>
<td>E</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICNTMPCT</td>
<td>205</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICTMPCNT</td>
<td>1B</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICTMPL</td>
<td>22</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ICTMPN</td>
<td>24</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ICTMPNN</td>
<td>208</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ICTMPRBA</td>
<td>26</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ICBTMPRL</td>
<td>206</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ICTMRSV1</td>
<td>25</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ICTMRSV2</td>
<td>2C</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ICTSEGLN</td>
<td>400</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICTSEGRB</td>
<td>402</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INVICB</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B. The Security Product Trace Area (SAFT)

The SAFT is included here to help you diagnose RACF problems.

<table>
<thead>
<tr>
<th>Common Name:</th>
<th>RACF Security Product Trace Area Control Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro ID:</td>
<td>IRRSAFT</td>
</tr>
<tr>
<td>DSECT Name:</td>
<td>SAFT</td>
</tr>
<tr>
<td>Owning Component:</td>
<td>Resource Access Control Facility (SC1BN)</td>
</tr>
<tr>
<td>Eye-Catcher ID:</td>
<td>SAFT</td>
</tr>
<tr>
<td>Offset:</td>
<td>0</td>
</tr>
<tr>
<td>Length:</td>
<td>4</td>
</tr>
<tr>
<td>Storage Attributes:</td>
<td>Subpool:</td>
</tr>
<tr>
<td></td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Key: 0</td>
</tr>
<tr>
<td></td>
<td>Residency: SQA</td>
</tr>
<tr>
<td>Size:</td>
<td>200 bytes</td>
</tr>
<tr>
<td>Created by:</td>
<td>ICHSEC07 during RACF initialization.</td>
</tr>
<tr>
<td>Pointed to by:</td>
<td>SAFVSECT in the SAFV data area</td>
</tr>
<tr>
<td>Serialization:</td>
<td>This control block is serialized with SYSZRAC2 ENQ.</td>
</tr>
<tr>
<td>Function:</td>
<td>The SAFT provides a communication area for information global to the SAF Trace utility.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset (Dec)</th>
<th>Offset (Hex)</th>
<th>Type</th>
<th>Len</th>
<th>Name (Dim)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>STRUCTURE</td>
<td></td>
<td>SAFT</td>
<td>IRRSAFT Control Block</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>CHARACTER</td>
<td>4</td>
<td>SAFTID</td>
<td>SAFT eyecatcher</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>UNSIGNED</td>
<td>1</td>
<td>SAFTVRSN</td>
<td>Version Number</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>CHARACTER</td>
<td>3</td>
<td>*</td>
<td>RESERVED</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>UNSIGNED</td>
<td>1</td>
<td>SAFTSUBP</td>
<td>Storage subpool</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>UNSIGNED</td>
<td>3</td>
<td>SAFTLENG</td>
<td>Length of SAFT</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>UNSIGNED</td>
<td>4</td>
<td>SAFTTRCO</td>
<td>Trace routine address</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>UNSIGNED</td>
<td>4</td>
<td>SAFTTRPC</td>
<td>Trace routine PC number</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>BITSTRING</td>
<td>4</td>
<td>SAFTTRAC</td>
<td>RACF trace flags</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>BITSTRING</td>
<td>1</td>
<td>SAFTTACT</td>
<td>RACF trace flags</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>SAFTACTV</td>
<td>A trace is active</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>SAFTRRTE</td>
<td>Trace racroute events</td>
</tr>
<tr>
<td>..1</td>
<td>..1</td>
<td></td>
<td></td>
<td>SAFTMGRT</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td>..1</td>
<td>..1</td>
<td></td>
<td></td>
<td>SAFTSYS</td>
<td>Trace system calls</td>
</tr>
<tr>
<td>..1</td>
<td>..1</td>
<td></td>
<td></td>
<td>SAFTSYSZ</td>
<td>Trace SAF3 calls</td>
</tr>
<tr>
<td>..1</td>
<td>..1</td>
<td></td>
<td></td>
<td>SAFTGANC</td>
<td>Trace SET GENERICANCHORs</td>
</tr>
<tr>
<td>..1</td>
<td>..1</td>
<td></td>
<td></td>
<td></td>
<td>* RESERED</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>BITSTRING</td>
<td>3</td>
<td>*</td>
<td>RESERED</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>BITSTRING</td>
<td>8</td>
<td>SAFTRRTR</td>
<td>Racroute events</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>BITSTRING</td>
<td>1</td>
<td>*</td>
<td>RESERED</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>SAFTRALL</td>
<td>Trace all racroutes</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>SAFTAUTH</td>
<td>SAFPREQT = 1 (Auth)</td>
</tr>
<tr>
<td>..1</td>
<td>..1</td>
<td></td>
<td></td>
<td>SAFTFAUT</td>
<td>SAFPREQT = 2 (Fastauth)</td>
</tr>
<tr>
<td>..1</td>
<td>..1</td>
<td></td>
<td></td>
<td>SAFTLIST</td>
<td>SAFPREQT = 3 (List)</td>
</tr>
</tbody>
</table>
### SAFT

<table>
<thead>
<tr>
<th>Offset (Dec)</th>
<th>Offset (Hex)</th>
<th>Type</th>
<th>Len</th>
<th>Name (Dim)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.... 1...</td>
<td>SAFTDEFN</td>
<td></td>
<td></td>
<td>SAFPREQ = 4 (Define)</td>
<td></td>
</tr>
<tr>
<td>.... .1...</td>
<td>SAFTVFY</td>
<td></td>
<td></td>
<td>SAFPREQ = 5 (Verify)</td>
<td></td>
</tr>
<tr>
<td>.... .1...</td>
<td>SAFTEXTR</td>
<td></td>
<td></td>
<td>SAFPREQ = 6 (Extract)</td>
<td></td>
</tr>
<tr>
<td>.... ....</td>
<td>SAFTDIR</td>
<td></td>
<td></td>
<td>SAFPREQ = 7 (Dirauth)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>(19) BITSTRING</td>
<td>1 *</td>
<td></td>
<td>SAFTTKSR</td>
<td>SAFPREQ = 8 (Token Serv)</td>
</tr>
<tr>
<td>1... ....</td>
<td>SAFTVFYX</td>
<td></td>
<td></td>
<td>SAFPREQ = 9 (VerifyX)</td>
<td></td>
</tr>
<tr>
<td>.1... ....</td>
<td>SAFTTEXT</td>
<td></td>
<td></td>
<td>SAFPREQ = A (Token Serv)</td>
<td></td>
</tr>
<tr>
<td>...1 ....</td>
<td>SAFTTBLS</td>
<td></td>
<td></td>
<td>SAFPREQ = B (Token Bld.)</td>
<td></td>
</tr>
<tr>
<td>.... 1...</td>
<td>SAFTTXBR</td>
<td></td>
<td></td>
<td>SAFPREQ = C (Extract BR=Y)</td>
<td></td>
</tr>
<tr>
<td>.... .1...</td>
<td>SAFTAUD</td>
<td></td>
<td></td>
<td>SAFPREQ = D (Audit)</td>
<td></td>
</tr>
<tr>
<td>.... ..1...</td>
<td>SAFTSTS</td>
<td></td>
<td></td>
<td>SAFPREQ = E (Status)</td>
<td></td>
</tr>
<tr>
<td>.... ....</td>
<td>SAFTSIGN</td>
<td></td>
<td></td>
<td>SAFPREQ = F (Signon)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>(1A) BITSTRING</td>
<td>1 *</td>
<td></td>
<td>SAFTRXM</td>
<td>SAFPREQ = 10 (Tmap Xmem)</td>
</tr>
<tr>
<td>1... ....</td>
<td>SAFTTTXM</td>
<td></td>
<td></td>
<td>SAFPREQ = 11 (Text Xmem)</td>
<td></td>
</tr>
<tr>
<td>.1... ....</td>
<td>SAFTRXM</td>
<td></td>
<td></td>
<td>SAFPREQ = 12 (Text Xmem)</td>
<td></td>
</tr>
<tr>
<td>...11 1111 *</td>
<td></td>
<td></td>
<td></td>
<td>RESERVED</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>(1B) BITSTRING</td>
<td>5 *</td>
<td></td>
<td>SAFTRXM</td>
<td>SAFPREQ = 13 (Text Xmem)</td>
</tr>
<tr>
<td>32</td>
<td>(20) BITSTRING</td>
<td>16</td>
<td></td>
<td>SAFTRXM</td>
<td>Trace RACF sycalls</td>
</tr>
<tr>
<td>32</td>
<td>(20) BITSTRING</td>
<td>1 *</td>
<td></td>
<td>SAFTRXM</td>
<td>Trace all sycalls</td>
</tr>
<tr>
<td>1... ....</td>
<td>SAFTSALL</td>
<td></td>
<td></td>
<td>SAFTRXM</td>
<td>Trace all sycalls</td>
</tr>
<tr>
<td>.1... ....</td>
<td>5 SAFTSIU0</td>
<td>Init USP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...1 ....</td>
<td>SAFTRXM</td>
<td>Delete USP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... 1...</td>
<td>SAFTRXM</td>
<td>Make FSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... ....</td>
<td>SAFTRXM</td>
<td>Set File Mode Creation Mask</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... ..1...</td>
<td>SAFTRXM</td>
<td>Check Access</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... ....</td>
<td>SAFTRXM</td>
<td>Check Privilege</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>(22) BITSTRING</td>
<td>1 *</td>
<td></td>
<td>SAFTRXM</td>
<td>Get Umap</td>
</tr>
<tr>
<td>1... ....</td>
<td>SAFTRXM</td>
<td>Get Gap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.1... ....</td>
<td>SAFTRXM</td>
<td>Get Supplemental Groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>....1 ....</td>
<td>SAFTRXM</td>
<td>Set Uid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... 1...</td>
<td>SAFTRXM</td>
<td>Set Effective Uid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... .1...</td>
<td>SAFTRXM</td>
<td>Set Gid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... ..1...</td>
<td>SAFTRXM</td>
<td>Set Effective Gid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... ....</td>
<td>SAFTRXM</td>
<td>Change Owner Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>(22) BITSTRING</td>
<td>1 *</td>
<td></td>
<td>SAFTRXM</td>
<td>Change file mode</td>
</tr>
<tr>
<td>1... ....</td>
<td>SAFTRXM</td>
<td>Change file audit options</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.1... ....</td>
<td>SAFTRXM</td>
<td>Exec Set Uid, Gid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... 1...</td>
<td>SAFTRXM</td>
<td>Audit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... .1...</td>
<td>SAFTRXM</td>
<td>Check Process owner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... ..1...</td>
<td>SAFTRXM</td>
<td>Query Security options</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... ....</td>
<td>SAFTRXM</td>
<td>Query File options</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... ....</td>
<td>SAFTRXM</td>
<td>Clear SETID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>(23) BITSTRING</td>
<td>1 *</td>
<td></td>
<td>SAFTRXM</td>
<td>Check File Owner</td>
</tr>
<tr>
<td>1... ....</td>
<td>SAFTRXM</td>
<td>Make Root FSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.1... ....</td>
<td>SAFTRXM</td>
<td>PTRACE Authority Check</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... 1...</td>
<td>SAFTRXM</td>
<td>Get User groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... .1...</td>
<td>SAFTRXM</td>
<td>Fork Exit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... ....</td>
<td>SAFTRXM</td>
<td>Make ISP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Appendix B. The Security Product Trace Area (SAFT)

<table>
<thead>
<tr>
<th>Offset (Dec)</th>
<th>Offset (Hex)</th>
<th>Type</th>
<th>Len</th>
<th>Name (Dim)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>(24)</td>
<td>BITSTRING</td>
<td>1</td>
<td>SAFTSC20</td>
<td>Check Owner 2 Files</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSGE0</td>
<td>Get EUid/EGid SupGrp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSDI0</td>
<td>R_dceinfo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSDK0</td>
<td>R_dcekey</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSUD0</td>
<td>R_dceurid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSDA0</td>
<td>R_dceauth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSIA0</td>
<td>InitAceee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSEQ0</td>
<td>RACF Admin Request</td>
</tr>
<tr>
<td>37</td>
<td>(25)</td>
<td>BITSTRING</td>
<td>1</td>
<td>SAFTSIM0</td>
<td>User Map</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSDL0</td>
<td>R_datalib</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSMK0</td>
<td>Kerb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSPK0</td>
<td>Ticket Serve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSPX0</td>
<td>R_PKIServ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSCH0</td>
<td>R_cacheserv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSPY0</td>
<td>R_proxyxserv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSCL0</td>
<td>R_SetFacl</td>
</tr>
<tr>
<td>38</td>
<td>(26)</td>
<td>BITSTRING</td>
<td>10</td>
<td>SAFTZCLS</td>
<td>Trace SAF3 calls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTZMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td>48</td>
<td>(30)</td>
<td>BITSTRING</td>
<td>1</td>
<td>SAFTZALL</td>
<td>All SAF3 clls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTZA00</td>
<td>aznAccess</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSC00</td>
<td>aznCreds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>RESERVED</td>
</tr>
<tr>
<td>49</td>
<td>(31)</td>
<td>BITSTRING</td>
<td>7</td>
<td>SAFTZALL</td>
<td>All SAF3 clls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTZA00</td>
<td>aznAccess</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTSC00</td>
<td>aznCreds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>RESERVED</td>
</tr>
<tr>
<td>56</td>
<td>(38)</td>
<td>BITSTRING</td>
<td>8</td>
<td>SAFTMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td>57</td>
<td>(39)</td>
<td>BITSTRING</td>
<td>7</td>
<td>SAFTMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAFTMTRC</td>
<td>Trace DB manager events</td>
</tr>
<tr>
<td>64</td>
<td>(40)</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTRRPR</td>
<td>Address of pre-function call indicator</td>
</tr>
<tr>
<td>68</td>
<td>(44)</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTRRPS</td>
<td>Address of post-function call indicator</td>
</tr>
<tr>
<td>72</td>
<td>(48)</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTSCPR</td>
<td>Address of pre-function call indicator</td>
</tr>
<tr>
<td>76</td>
<td>(4C)</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTSCPS</td>
<td>Address of post-function call indicator</td>
</tr>
<tr>
<td>80</td>
<td>(50)</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTZCPR</td>
<td>Address of pre-function call indicator</td>
</tr>
<tr>
<td>84</td>
<td>(54)</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTZCPS</td>
<td>Address of post-function call indicator</td>
</tr>
<tr>
<td>88</td>
<td>(58)</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTMGPR</td>
<td>Address of pre-function call indicator</td>
</tr>
<tr>
<td>92</td>
<td>(5C)</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTMGPS</td>
<td>Address of post-function call indicator</td>
</tr>
<tr>
<td>96</td>
<td>(60)</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTGAPR</td>
<td>Address of pre-function call indicator</td>
</tr>
<tr>
<td>Offset (Dec)</td>
<td>Offset (Hex)</td>
<td>Type</td>
<td>Len</td>
<td>Name (Dim)</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
<td>------------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>100</td>
<td>(64) ADDRESS</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTGAPS</td>
<td>Address of post-function call indicator</td>
</tr>
<tr>
<td>104</td>
<td>(68) ADDRESS</td>
<td>ADDRESS</td>
<td>4</td>
<td>*</td>
<td>RESERVED</td>
</tr>
<tr>
<td>108</td>
<td>(6C) UNSIGNED</td>
<td>UNSIGNED</td>
<td>2</td>
<td>*</td>
<td>RESERVED</td>
</tr>
<tr>
<td>110</td>
<td>(6E) UNSIGNED</td>
<td>UNSIGNED</td>
<td>1</td>
<td>SAFTALLC</td>
<td>List count for allow filter</td>
</tr>
<tr>
<td>111</td>
<td>(6F) UNSIGNED</td>
<td>UNSIGNED</td>
<td>1</td>
<td>SAFTTOTC</td>
<td>List count total for all filters</td>
</tr>
<tr>
<td>112</td>
<td>(70) ADDRESS</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTALST</td>
<td>Trace ASID LIST</td>
</tr>
<tr>
<td>116</td>
<td>(74) ADDRESS</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTJLST</td>
<td>Trace JOBS LIST</td>
</tr>
<tr>
<td>120</td>
<td>(78) ADDRESS</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTCLST</td>
<td>Trace CLASS LIST</td>
</tr>
<tr>
<td>124</td>
<td>(7C) ADDRESS</td>
<td>ADDRESS</td>
<td>4</td>
<td>SAFTULST</td>
<td>Trace USERID LIST</td>
</tr>
<tr>
<td>128</td>
<td>(80) ADDRESS</td>
<td>ADDRESS</td>
<td>8</td>
<td>*</td>
<td>RESERVED</td>
</tr>
<tr>
<td>136</td>
<td>(88) CHARACTER</td>
<td>CHARACTER</td>
<td>16</td>
<td>SAFTRRFRL</td>
<td>Flags to the security product</td>
</tr>
<tr>
<td>136</td>
<td>(88) CHARACTER</td>
<td>CHARACTER</td>
<td>8</td>
<td>SAFTRPRE</td>
<td>Pre process flag</td>
</tr>
<tr>
<td>144</td>
<td>(90) CHARACTER</td>
<td>CHARACTER</td>
<td>8</td>
<td>SAFTRPOS</td>
<td>Post process flag</td>
</tr>
<tr>
<td>152</td>
<td>(98) CHARACTER</td>
<td>CHARACTER</td>
<td>16</td>
<td>SAFTSCFL</td>
<td>Flags to the security product</td>
</tr>
<tr>
<td>152</td>
<td>(98) CHARACTER</td>
<td>CHARACTER</td>
<td>8</td>
<td>SAFTSPRE</td>
<td>Pre process flag</td>
</tr>
<tr>
<td>160</td>
<td>(A0) CHARACTER</td>
<td>CHARACTER</td>
<td>8</td>
<td>SAFTSPOS</td>
<td>Post process flag</td>
</tr>
<tr>
<td>168</td>
<td>(A8) CHARACTER</td>
<td>CHARACTER</td>
<td>16</td>
<td>SAFTZCFL</td>
<td>Flags to the PD product</td>
</tr>
<tr>
<td>168</td>
<td>(A8) CHARACTER</td>
<td>CHARACTER</td>
<td>8</td>
<td>SAFTZPRE</td>
<td>Pre process flag</td>
</tr>
<tr>
<td>176</td>
<td>(B0) CHARACTER</td>
<td>CHARACTER</td>
<td>8</td>
<td>SAFTZPOS</td>
<td>Post process flag</td>
</tr>
<tr>
<td>184</td>
<td>(B8) CHARACTER</td>
<td>CHARACTER</td>
<td>16</td>
<td>SAFTMGFL</td>
<td>Flags to the security product</td>
</tr>
<tr>
<td>184</td>
<td>(B8) CHARACTER</td>
<td>CHARACTER</td>
<td>8</td>
<td>SAFTMPRE</td>
<td>Pre process flag</td>
</tr>
<tr>
<td>192</td>
<td>(C0) CHARACTER</td>
<td>CHARACTER</td>
<td>8</td>
<td>SAFTMPRE</td>
<td>Pre process flag</td>
</tr>
<tr>
<td>200</td>
<td>(C8) CHARACTER</td>
<td>CHARACTER</td>
<td>16</td>
<td>SAFTGAFL</td>
<td>Flags to security product</td>
</tr>
<tr>
<td>200</td>
<td>(C8) CHARACTER</td>
<td>CHARACTER</td>
<td>8</td>
<td>SAFTGPRE</td>
<td>Pre process flag</td>
</tr>
<tr>
<td>208</td>
<td>(D0) CHARACTER</td>
<td>CHARACTER</td>
<td>8</td>
<td>SAFTGPOS</td>
<td>Post process flag</td>
</tr>
</tbody>
</table>

End of SAFT mapping
Appendix C. IPCS formatting for RACF control blocks

This topic explains how to analyze RACF dump information by providing formatting support for RACF control blocks by using IPCS formatting.

IPCS formatting is intended only for diagnosis use when requested by the IBM support center.

Using the VERBX RACFDATA command

Use the VERBX RACFDATA command, without any options, to provide a list of acceptable report options. The following report options are provided:

RRSF
Shows remote requests that are actively being processed on a RACF address space TCB, including any requests that are queued for execution. The output summarizes the requests being processed and provides output containing commands. For example:

IP CBF 00067F28 ASID(x'001E') STR(IRRSSSTCB) EXIT

For more information, cut and past the IP CBF command line to the command input area in the IPCS screen:

IPCS OUTPUT STREAM ---------------------------------- Line 0 Cols 1 78
Command ===> IP CBF 00067F28 ASID(x'001E') STR(IRRSSSTCB) EXIT SCROLL ===> CSR

Press ENTER and you see the control block that you requested. Press PF3 to return to the previous control block.

CDT
Shows class descriptor table information, including static and dynamic class descriptors. Static is the common storage and most frequently available. Dynamic are in a data space and usually not dumped. Both CDTs are pointing to structures that reside in RACF data spaces. The formatting code attempts to locate the data space in the dump, but if it is not present, a message is issued identifying the data space that is missing from the dump.

If there is a problem with CDT processing, request a dump that includes RACF data spaces. The option to use on the DUMP or SLIP command is:

DSPNAME=(1.IRR*)

This dumps all data spaces that are owned by ASID(1) that start with IRR.

DSDT
Shows information about all active primary and backup RACF data sets.

DSG
Shows information about requests from other systems in the sysplex.

Using the SUMMARY FORMAT command

When using the SUMMARY FORMAT command, it drives the invocation of exits for control blocks that it formats. The RACF IPCS support provides exits for ASXB, TCB, STCB, and RBs. These exits look for data that is relevant to RACF for the control block. For example, ASXBSENV and TCBSENV might point to an ACEE. When this field is nonzero, then the exit generates output:
For more ACEE information, cut and paste this command to the command line and run it. The EXIT option on the CBF command causes an ACEE exit to get control which formats different extensions on the ACEE. For example, you can see the list of groups that the user ID is connected to.

The STCB exit looks for the presence of a RACD and generates a command:

```
IP CBF 7FFFAD00 ASID(X'0067') STR(IRRPRACD)
```

RB is the most frequent exit. The RB exit determines whether it is an SVRB and if the SVRB was created for SVC 82, 83, 84 or 85 (all the RACF SVCs). For each SVC, there is a SAF parameter list and a function unique parameter list. The RB exit identifies the function being called, who invoked the SVC and CBF commands to format any parameter lists that are present. For example:

```
The previous RB has called RACF SVC 82 for function RACHECK
Return address of SAF caller: 00D2A93A
ASID(X'0018') D2A93A. IFG0194A+293A IN PLPA
IP CBF 008D1D40 ASID(X'0018') STR(ICHSAFP)
IP CBF 008D1D68 ASID(X'0018') STR(ICHACHKL)
```

For more information about parameter lists, see "Parameter list descriptions" on page 155.

The RRSF formatter displays all of the defined RRSF nodes and some of their characteristics. Included might be workspace file information, communication settings, and state.

### Using the control block formatters

You can format many of the control blocks RACF uses. See "Using the SUMMARY FORMAT command" on page 265 for examples. Also, see the RCVT, by using the CBF ICHPRCVT command, for another example, which can be useful to find your active exits. A complete list can be found in the results of IPCSDATA CURRENT ACTIVE.
Appendix D. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (http://www.ibm.com/support/knowledgentercenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the “Contact us” web page for z/OS (http://www.ibm.com/systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision use software products successfully. The accessibility features in z/OS can help users do the following tasks:
- Run assistive technology such as screen readers and screen magnifier software.
- Operate specific or equivalent features by using the keyboard.
- Customize display attributes such as color, contrast, and font size.

Consult assistive technologies

Assistive technology products such as screen readers function with the user interfaces found in z/OS. Consult the product information for the specific assistive technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface

You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes the default settings for the PF keys.
- z/OS TSO/E Primer
- z/OS TSO/E User’s Guide
- z/OS V2R2 ISPF User’s Guide Vol 1

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more syntax elements are always present together (or always absent together), they can appear on the same line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers correctly, make sure that the screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number (for example, all the syntax elements that have the number 3.1) are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the syntax elements. Occasionally, these words and symbols might occur at the beginning of the element itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the format 3 \* FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* \* FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the syntax just before the items they separate. These characters can appear on the same line as each item, or on a separate line with the same dotted decimal number as the relevant items. The line can also show another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax elements, the elements must be separated by a comma. If no separator is given, assume that you use a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them. The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element

The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number followed by the ! symbol and a syntax element indicate that the syntax element is the default option for all syntax elements that share the same dotted decimal number. Only one of the syntax elements that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the default option KEEP is applied. A default option also applies to the next higher dotted decimal number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1 (KEEP), and 2.1.1 (DELETE), the default option KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable

The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A dotted decimal number followed by the * symbol indicates that this syntax element can be used zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data area, you know that you can include one data area, more than one data area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted decimal number, you can repeat that same item more than once.
2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal number, you can use more than one item from the list, but you cannot use the items more than once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.
3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included

The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal number followed by the + symbol indicates that the syntax element must be included one or more times. That is, it must be included at least once and can be repeated. For example, if you hear the line 6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the + symbol can repeat a particular item if it is the only item with that dotted decimal number. The + symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.
Notices

This information was developed for products and services offered in the U.S.A. or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted
for service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently change when service for particular servers or devices is withdrawn. Likewise, the levels of other software products supported on a particular release of z/OS are subject to the service support lifecycle of those products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and product documentation) can include references to hardware and software that is no longer supported.

- For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
- For information about currently-supported IBM hardware, contact your IBM representative.

Programming interface information

This publication documents information that is NOT intended to be used as a programming interface of z/OS

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available at Copyright and Trademark information (http://www.ibm.com/legal/copytrade.shtml)
Index

Special characters

?? state 143

A

abend
example of search argument 38, 100
VRA keys provided by RACF 242
worksheet for reporting problems 100

abends
troubleshooting table 9

access to a directory
directory 48

accessibility
call 267
features 267

ACEE
control block overview 233
ACTNPTR symptom in DAEDATA output 243
administration, RACF
classroom courses xi
alias index blocks
description of 111

ALL keyword
on BLKUPD LIST subcommand 127

APPC
obtaining trace records 50
restarting a stopped task 152
return code handling 148, 151
application identity mapping
elements 82
handling 82
IRRIRAPA 82

ASID events
obtaining trace records 50
assistive technologies 267
ASXB control block overview 234
AT-TLS errors 149
attention handling
when using BLKUPD 123

AUDIT request
parameter list 159

AUTH requests
parameter list 160

B

BAM blocks
block masks 110
description of 107, 109
format of the header 109

BLKUPD command
authority required for 121
calls 122
data command procedure statement 123
description of 121
END subcommand 134

BLKUPD command (continued)
ENDDATA command procedure statement 123
examples 134
invoking 123
LOCATE subcommand 124
locating an index entry 124
READ subcommand 125
syntax of 124
terminating 134
upating a RACF block 125
block update command (BLKUPD) 121

C
callable services
error recording 195
process flow 195
tracing 53

Callable Services
dump title description 242
caller of RACF, identifying 78
CHANGE subcommand of BLKUPD DISPLAY subcommand 130
checking the parameter list passed to RACF 80
class identifier
adding to profile names 118
CLASS keyword
on BLKUPD DISPLAY subcommand 129, 130, 132
classname
on LOCATE subcommand of BLKUPD 125
classroom courses, RACF xi
collecting problem data for RACF 41
command
BLKUPD 121
front-ending 244
incorrect output 23
trace records 50
command procedures
executing BLKUPD under control of 123
command traces 50

COMP keyword
on CHANGE subcommand of BLKUPD DISPLAY subcommand 131
on INSERT subcommand of BLKUPD DISPLAY subcommand 132
component identification for RACF 35
compression count, front-end 114
Connection processing during system IPL
Connection processing 148
connection state changes 141
connection states of RRSF nodes 141, 143
contact
z/OS 267

control block
ACEE 233
ASXB 234
GRPF 233
ICB 249
inventory 249
RCVT 233
SAF router vector table 233
task control block (TCB) 233
courses about RACF xi

D

D-B state 142
D-E state 143
D-L state 142
D-R state 142

DATABASE events
obtaining trace records 50
data encryption standard (DES) algorithm 28
data base 121

DEBUG command 246

© Copyright IBM Corp. 1994, 2015

275
DEFINE request parameter list 164
defined state 143
definition errors for RRSF 140
DELETE subcommand of BLKUPD READ DISPLAY subcommand 133
DES (Data Encryption Standard) algorithm 28
diagnosis hints 2
problems in racf 1
procedures for RACF 1
DIRAUTH request parameter list 170
directed commands process flow 189
dirty bit 44
controlled programs 44
DISPLAY subcommand of BLKUPD READ subcommand 129
distributed environment types of errors 140
documentation troubleshooting table 19
documentation error example of search argument 38
worksheet for reporting problems 99
dormant by local request state 142
dormant by mutual request state 142
dormant by remote request state 142
dormant in error state 143
DSECTs INVICB 249
SAFT 261
DSMON incorrect output 23
dump title descriptions Callable Services 242
ICHRST00-RACF SVCS 234
IRRCOP10 module 237
IRRLS12 module 237
IRRLS13 module 238
IRRLS14 module 238
IRRLS15 module 239
RACF initialization failure 236
RACF persistent verification dumps 240
RACF subsystem dumps 240
SVC 234, 242
DUPLICATE keyword on CHANGE subcommand of BLKUPD DISPLAY subcommand 131
on INSERT subcommand of BLKUPD DISPLAY subcommand 132
ENTRY keyword on BLKUPD DISPLAY subcommand 129
on CHANGE subcommand of BLKUPD DISPLAY subcommand 130
on INSERT subcommand of BLKUPD DISPLAY subcommand 131
entryname on LOCATE subcommand of BLKUPD 124
environmental errors for RRSF 140
error recording for callable services 195
for RRSF 153
error recovery for RACF sysplex data sharing actions 247
consequences 248
errors definition errors for RRSF 140
environmental errors for RRSF 140
program errors for RRSF 140
transmission/line errors 140
errors in a distributed environment 140
ESTAE processing for RRSF 144
EXTRACT request parameter list 171
failure keywords for a complete search 81
for a preliminary search 34
failure of an MVS system service 145
FASTAUTH request parameter list 173
FIND subcommand of READ subcommand of BLKUPD 126
FMIDs for RACF 39
format of the RACF database 107
FORMAT subcommand of BLKUPD READ subcommand format of 128
list of the information displayed 127
FRACHECK macro equivalent RACROUTE REQUEST type 155
free-format search examples of symptoms for RACF 35, 81
front-end compression count 114
front-ending commands 244
front-ending processor 244
GENERAL keyword (continued)
on INSERT subcommand of BLKUPD DISPLAY subcommand 132
on LOCATE subcommand of BLKUPD 125
GRPF control block overview 233
GTF traces 43, 44, 48, 50
handshaking 141
header for BAM blocks 109
for index blocks 112
header block description of 107, 108
fields in 249, 261
format 108
ICB (inventory control block) description of 107, 108
fields in 249
format 108
ICB constants 255
ICHEINTY macro common problems 6
parameter list 185
ICHRST00 module dump title for certain abends 234
ICHSEC00 module dump title for initialization failure 236
identifying the caller of RACF 78
IMAGE events obtaining trace records 50
incorrect output 22
example of search argument 38
troubleshooting table 19
worksheet for reporting problems 99
independent RACF system macros equivalent RACROUTE REQUEST types 155
index blocks compression of index entries 114
description of 107, 110
format of 112
header 112
index entries 113
sequence set chain pointers 117
how profiles are located 110
information listed by the FORMAT subcommand 127
index entry compression of 114
format of 113
locating in a sequence set 124
index entry table sequence set chain pointers 117
index structure example of 110, 111
END subcommand of BLKUPD command 134
of BLKUPD DISPLAY subcommand 133
of BLKUPD READ subcommand 134
ENDDATA command procedure statement when executing BLKUPD 123
END subcommand of BLKUPD command 134
of BLKUPD DISPLAY subcommand 133
of BLKUPD READ subcommand 134
ENDDATA command procedure statement when executing BLKUPD 123
Information/Access
use for RACF problem searches 35
Information/Management
use for RACF problem searches 35
Information/MVS
use for RACF problem searches 35
Information/System
use for RACF problem searches 35
initial state 143
initialization problem
dump title for initialization failure 236
INMSG data set for RRSF 139, 141
INSERT subcommand of BLKUPD DISPLAY subcommand 131
installation exit
process flow 190
inventory control block (ICB)
description of 107
fields in 249
format of 107
INVICB DSECT 249
IPCS (interactive problem control system) 9
IPCS formatting for RACF control blocks
IPCS 265
IPLPTR symptom in DAEDATA output 243
IRRBRW00 utility 147
IRRCP01 module
dump title for failed data space 237
IRRDBU00 utility
using database unload utility 107
IRENV00 module 244
IRRRD00 utility
process flow 192
IRRRLS12 module
dump title for COPY RACLIST 237
IRRRLS13 module
dump title for CREATE RACLIST 238
IRRRLS14 module
dump title for DELETE RACLIST 238
IRRRLS15 module
dump title for data space recovery failure 239
IRRSC01 module
dump title for RACF subsystem 240
IRRSS01 module
dump title for RACF subsystem 240
IRRTEMPP member of SYS1.MACLIB used by IRRMIN00 109

J
JOBNAME events
obtaining trace records 50

K
keyboard
navigation 267
PF keys 267
shortcut keys 267

L
level of failing module 81
LIST request
parameter list 174
LIST subcommand of BLKUPD READ subcommand
format of 127
LISTALL keyword
on LOCATE subcommand of BLKUPD 125
LOCATE subcommand of BLKUPD format of 124
locating an index entry 124
logon problems 28
troubleshooting table 28
worksheet for reporting problems 99
LOGREC data set entries
for callable services errors 195
for RRSF errors 153
loop
diagnostic procedures 29
example of search argument 38
troubleshooting table 29
worksheet for reporting problems 99

M
macros
checking parameter lists 80
ICHPICB 249
incorrect output 27
IRRSAF 261
process flow 189
return codes 33
masks
block masks in the RACF database 110
matching problem
searching for a 81
message
troubleshooting table 29
worksheet for reporting problems 99
incorrect output 21
MGREQUEST symptom in DAEDATA output 243
MVS router
NOTIFY symptom in DAEDATA output 243
NODEFAULT symptom in DAEDATA output 243
MVS router
parameter list 156
nodes, RRSF
connection states 141
connection states after TARGET 143
NODUPLICATE keyword
on CHANGE subcommand of BLKUPD DISPLAY subcommand 131
on INSERT subcommand of BLKUPD DISPLAY subcommand 132
non-VSAM data set
used for the RACF database 107
NOSAVE keyword
on BLKUPD END subcommand 134
on END subcommand of BLKUPD DISPLAY subcommand 133
not defined state 143
Notices 271

O
O-A state 142
O-E state 142
O-P-C state 142
O-P-V state 142
Obtaining AT-TLS information for an RRSF connection 150
Obtaining information about RRSF connections 150
OFFSET keyword
on BLKUPD REPLACE subcommand 128
OLD keyword
on BLKUPD FIND subcommand 127
on BLKUPD FORMAT subcommand 128
on BLKUPD LIST subcommand 127
operative active state 142
operative in error state 142
operative pending connection state 142
operative pending verification state 142
OUTMSG data set for RRSF 139, 141
output, incorrect
troubleshooting table 19
worksheet for reporting problems 99

P
PADS (program access to data sets) 44
parameter list
AUDIT service 159
AUTH service 160
checking 80
cross reference for RACROUTE REQUEST types 155
DEFINE service 164
descriptions 155
DIRAUTH service 170
EXTRACT service 171
FASTAUTH service 173
ICHENITY 185
list passed to RACF 80
LIST service 174
MVS router 156
obtaining 43, 48
RACROUTE 156
RACROUTE REQUEST=AUDIT 159

Index 277
RACROUTE REQUEST=AUTH 160
RACROUTE REQUEST=DEFINE 164
RACROUTE REQUEST=DIRAUTH 170
RACROUTE REQUEST=EXTRACT 171
RACROUTE REQUEST=FASTAUTH 173
RACROUTE REQUEST=LIST 174
RACROUTE REQUEST=SIGNON 175
RACROUTE REQUEST=STAT 176
RACROUTE REQUEST=TOKENBLD 177
RACROUTE REQUEST=TOKENEXTR 180
RACROUTE REQUEST=TOKENMAP 180
RACROUTE REQUEST=VERIFY 181
RACROUTE REQUEST=VERIFYX 181
SAF router 156
SIGNON service 175
STAT service 176
TOKENBLD service 177
TOKENEXTR service 180
TOKENMAP service 180
VERIFY service 181
VERIFYX service 181
PassTicket
logon problems 28
performance
troubleshooting table 31
worksheet for reporting problems 99
persistent verification
dump title for RACF subsystem 240
preliminary search for a matching problem 34
problem diagnosis
making sure this is a RACF problem 2
procedures for RACF 1
problem reporting procedure for RACF 99
program flow
RACF callable services 195
RACF commands 188
RACF directed commands 189
RACF installation exits 190
RACF macros 189
RACF remove ID utility 192
RACF report writer 193
RACF utilities 192
SMF data unload utility 194
profile
class identifier 118
description 117
description of templates 109
displayed by BLKUPD, example of 120
how RACF locates 110
program access to data sets (PADS) 44
program control
determining programs that need protection 44
program errors for RRSF 141
R
R_admin callable service
tracing 52
RACDEF macro
equivalent RACROUTE REQUEST type 155
RACF blocks
updating 125
RACF callable services
process flow 195
RACF commands
process flow 188
RACF database managers request tracing 53
RACF directed commands
process flow 189
RACF FMIDs 39
RACF index block errors
description 241
RACF installation exits
process flow 190
RACF macros
how to locate parameters in a dump 80
ICHEINTY parameter list 185
ICHEINTY parameter list 185
obtaining parameter list for RACROUTE 43, 48
obtaining parameter list for RACROUTE 43, 48
process flow 189
RACF macros and utilities
common problems 3
RACF macross
common problems 6
RACF manager
adding a class identifier to profile names 118
RACF problems
data for 41
reporting to IBM 99
searching for a matching problem 81
RACF profile
description 117
RACF reason codes
obtaining 42
RACF remote sharing facility (RRSF)
INMSG data set 139
OUTMSG data set 139
workspace data set 139
RACF remove ID utility
process flow 192
RACF report writer
process flow 193
RACF return codes
obtaining 42
RACF SMF data unload utility
process flow 194
RACF subsystem module
dump title for RACF subsystem 240
RACF subsystem dumps 240
RACF utilities
common problems 3
IRRDBU00 Utility 4
IRRIRA00 Utility 6
IRRRRID00 Utility 5
RACF utilities (continued)
common problems (continued)
IRRUT100 Utility 3
IRRUT200 Utility 3
IRRUT400 Utility 4
IRRFRW Utility 6
IRRDBU00 121
process flow 192
RACFCNTS symptom in DAEDATA
output 243
RACFRW utility
common problems 6
RACHECK macro
equivalent RACROUTE REQUEST type 155
RACINIT macro
equivalent RACROUTE REQUEST type 155
RACLIST macro
equivalent RACROUTE REQUEST type 155
RACROUTE events
obtaining trace records 50
RACROUTE macro
common problems 7
parameter list 156
RACROUTE REQUEST types
equivalent RACF system macros 155
RACROUTE REQUEST=AUTH macro
parameter list 160
RACROUTE REQUEST=DEFINE macro
parameter list 164
RACROUTE REQUEST=EXTRACT macro
parameter list 171
RACROUTE REQUEST=FASTAUTH macro
parameter list 173
RACROUTE REQUEST=LIST macro
parameter list 174
RACROUTE REQUEST=SIGNON macro 175
parameter list 175
RACROUTE REQUEST=STAT macro 176
parameter list 176
RACROUTE REQUEST=TOKENBLD macro
parameter list 177
RACROUTE REQUEST=TOKENMAP/TOKENXTR macros
parameter list 180
RACROUTE REQUEST=VERIFY macro
parameter list 181
Racroutes
tracing 53
RACSTAT macro
equivalent RACROUTE REQUEST type 155
RACXTRT macro
equivalent RACROUTE REQUEST type 155
RANGE keyword
on BLKUPD LIST subcommand 127
RBA (relative byte address)
on READ subcommand of BLKUPD 125
used in locating a profile 110
RBA keyword
- on CHANGE subcommand of BLKUPD DISPLAY subcommand 131
- on INSERT subcommand of BLKUPD DISPLAY subcommand 132
READ subcommand of BLKUPD END subcommand 134
FIND subcommand 126 for reading a RACF database block 126
for updating a RACF database block 126
format of 125
FORMAT subcommand 127
LIST subcommand 127
REP subcommand 128
REREAD subcommand 134
RESTART command using to recover from failures 152
RETAIN symptom string
- sample in DAEDATA output 242
- sample in formatted dump 242
return codes
- example of search argument 38
- from callable service 43
- from RACF macros 42
obtaining 42, 43
troubleshooting table 33
worksheet for reporting problems 99
REVOKE attribute in user profile 28
RRSF (RACF remote sharing facility)
- connection states 141
- connection states after TARGET 143
- defined state 143
- dormant by local request state 142
- dormant by mutual request state 142
- dormant by remote request state 142
- dormant in error state 143
- error recording 153
- ESTAE processing 144
- failure recovery 144
- initial state 143
- INMSG data set 141
- IRRBRW00 utility 147
- LOGREC data set entries 153
- not defined state 143
- operative active state 142
- operative in error state 142
- operative pending connection state 142
- operative pending verification state 142
- OUTMSG data set 141
- RRSFLIST data set 153
- workspace data set 141
- dumping the data in 147
- RRSFLIST data set
- recording of errors 153
SEGMENT keyword
- on BLKUPD DISPLAY subcommand 132
- on CHANGE subcommand of BLKUPD DISPLAY subcommand 130
segment table block 109
sending comments to IBM xv
sequence set
- definition of 110, 111
- format of the chain pointers 117
- locating an index entry 124
- sequential file
  - creating for further manipulation 107
  - using the database unload utility (IRRDBU00) 107
shortcut keys 267
SIGNON request
- parameter list 176
SLIP trap
- ESTAE setting 41
SMF data unload utility
- process flow 194
- SMF records
  - incorrect output 24
STAT request
- parameter list 176
structured search
- examples of symptoms for RACF 35, 81
subsystem dumps
- RACF persistent verification dump
  - title description 240
- RACF subsystem dump title description 240
summary of changes xvii
Summary of changes xvii
SVC dump title descriptions 144
symptom record 9, 153, 195
symptoms
- for a complete search 81
- for a preliminary search 34
- troubleshooting for RACF 7
SYSLILOGREC entries
- for callable services errors 195
- for RRSF errors 153
- SYSLIMACLIB
  - IRRTEMP2 member 109
sympex data sharing option 3, 126
system dump
- formatting 42
- obtaining 41
Tape volume
- how RACF creates and names profiles 118
task control block (TCB)
- overview of 233
tasks
- performing a preliminary search for a matching problem
  - steps for 34
- SAF keyring debugging
  - steps for 84

Index 279
tasks (continued)
SAF Trace debugging
steps for 84
using the troubleshooting tables
steps for 7
TCB (task control block)
overview of 233
templates
description of 107, 109
terminal monitor program
executing BLKUPD under 123
TESTPTR symptom in DAEDATA
output 243
TMP (terminal monitor program)
executing BLKUPD under 123
TOKENBLD request
parameter list 177
TOKENEXTR request
parameter list 180
TOKENMAP request
parameter list 180
trace area
SAFT 261
traces
for callable services 53
for R_admin callable service 52
for RACF database managers
requests 53
for racroutes 53
obtaining 43
obtaining command trace records 50
obtaining for program access to data
sets 44
obtaining for program control 44
obtaining on z/OS UNIX System
Services 48
obtaining using SET TRACE
command 50
Tracing GENERICANCHOR
tracing 52
trademarks 273
transmission and line errors 141
troubleshooting problems
overview 1
RACF database 107
troubleshooting table
abends incorrectly issued 22
access with no message issued 20
DSMON report 23
loop 29
macro return code or reason code
messages 21, 29
overview 7
performance 31
RACF database 25
RACF LIST command output 23
reason code from macro or utility
report writer report 23
return code from macro or utility
SMF records 24
utility return code or reason code
27
UPDATE keyword
on READ subcommand of
BLKUPD 126
user interface
ISPF 267
TSO/E 267
utilities
incorrect output 27
IRRBRW00 147
IRRDBU00 121
process flow 192
VSAM file browser 147
V
variable data collected by RACF callable
services
descriptions 196
variable data recorded by RRSF
descriptions 232
VER keyword
on BLKUPD REPLACE
subcommand 128
VERIFY request
parameter list 181
VERIFYX request
parameter list 181
VRA (variable recording area) keys
provided by RACF 242
VSAM data sets
IRRBRW00 utility 147
VSAM errors
messages issued 146
VSAM failures 145
automatic direction 146
password synchronization 147
W
waits
example of search argument 38
troubleshooting table 34
worksheet for reporting problems 99
workspace data sets, dumping the data
in 147
X
X'0C' delimiter 117
Z
z/OS UNIX System Services
RACF callable services process
flow 195
U
unloading to a sequential file 121
Product Number: 5650-ZOS

Printed in USA