
z/OS

XML System Services User’s Guide and

Reference

SA23-1350-03

���

z/OS

XML System Services User’s Guide and

Reference

SA23-1350-03

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

257.

Fourth Edition, September 2008

This edition applies to Version 1 Release 10 of z/OS (5694-A01) and to subsequent releases and modifications until

otherwise indicated in new editions.

This is a major revision of SA23-1350-02.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you

may address your comments to the following address:

 International Business Machines Corporation

 MHVRCFS, Mail Station P181

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: http://www.ibm.com/systems/z/os/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/systems/z/os/zos/webqs.html

Contents

Tables . vii

About this document . ix

Who should use this document ix

Where to find more information ix

Softcopy publications . ix

IBM Systems Center publications ix

Using LookAt to look up message explanations x

Using IBM Health Checker for z/OS x

Summary of changes . xi

Chapter 1. Introduction . 1

What is XML? . 1

z/OS XML System Services . 2

Chapter 2. Overview of z/OS XML System Services 3

z/OS XML System Services features 3

z/OS XML System Services functions 4

Querying XML documents . 4

Parsing XML documents without validation 4

Parsing XML documents with validation 4

Document processing model . 5

Output buffer format . 7

Optimized Schema Representation 7

String Identifiers . 7

Memory management . 7

Dynamic LPA support . 7

Enable offload to specialty engines 8

Chapter 3. Querying XML documents 9

Header files and data macros . 9

Chapter 4. Parsing XML documents 11

Steps for parsing XML documents without validation 12

Steps for parsing XML documents with validation 13

Using Optimized Schema Representations 13

Header files and data macros 15

Parsed data model . 15

Common record header . 16

Record (token) types . 17

Metadata records . 18

Buffer info record . 18

Error info record . 19

Aux info record . 19

Extended end element record 22

Default attribute flag . 23

31- and 64-bit compatibility 23

Length/Value pairs . 23

String Identifiers . 23

Record forms . 24

Record form 0 . 25

Record form 1 . 25

© Copyright IBM Corp. 2008 iii

||

||

||
||

||
||

||
||
||

Record form 2 . 25

Record form 3 . 26

Field values by record type . 26

Spanning buffers . 28

Splitting records . 29

Splitting multibyte characters 29

Processing DTDs . 29

Resolving entity references . 29

Namespace declarations . 30

Using the z/OS XML parser in a multithreaded environment 30

Chapter 5. Additional usage considerations 31

Recovery considerations . 31

Encoding support . 31

EBCDIC encoding considerations 32

Managing memory resources . 32

Using return and reason codes 33

Chapter 6. z/OS XML parser API: C/C++ 35

Setting XPLINK compiler option 35

Support for the Metal C compiler option 35

Where to find the header files, DLLs and side decks 35

Using the recovery routine . 35

z/OS XML XL C/C++ API . 36

gxlpControl — perform a parser control function 37

gxlpInit — initialize the z/OS XML parser 41

gxlpLoad — load a z/OS XML function 44

gxlpParse — parse a buffer of XML text 46

gxlpQuery — query an XML document 49

gxlpTerminate — terminate a parse instance 51

OSR generator API . 52

gxluInitOSRG — initialize an OSR generator instance 53

gxluControlOSRG — perform an OSR generator control operation 55

gxluTermOSRG — terminate an OSR generator instance 58

gxluLoadSchema — load a schema into the OSR generator 60

gxluSetStrIDHandler — specify the StringID handler for OSR generation 63

gxluSetEntityResolver — specify the entity resolver for OSR generation . . . 66

gxluLoadOSR — load an OSR into the OSR generator 68

gxluGenOSR — generate an Optimized Schema Representation (OSR) . . . 70

gxluGenStrIDTbl — generate StringID table from an OSR 73

GXLPSYM31 (GXLPSYM64) — StringID handler 76

Chapter 7. z/OS XML parser API: Assembler 79

How to invoke the z/OS XML System Services assembler API 79

z/OS XML parser Assembler API 80

API entry points . 80

Common register conventions 80

Using the recovery routine . 81

GXL1CTL (GXL4CTL) — perform a parser control function 82

GXL1INI (GXL4INI) — initialize a parse instance 86

GXL1PRS (GXL4PRS) — parse a buffer of XML text 90

GXL1QXD (GXL4QXD) — query an XML document 93

GXL1TRM (GXL4TRM) — terminate a parse instance 96

GXL1LOD (GXL4LOD) — load a z/OS XML function 98

Chapter 8. z/OS XML System Services exit interface 101

iv z/OS V1R10.0 z/OS XML User’s Guide and Reference

||

||
||
||
||
||
||
||
||
||
||

||

Exit functions . 101

Common register conventions 101

Input registers . 101

Output registers . 102

Environmental requirements 102

Restrictions . 102

GXLGST31 (GXLGST64) — get memory 104

GXLFST31 (GXLFST64) — free memory 107

GXLSYM31 (GXLSYM64) — StringID service 109

Chapter 9. Diagnosis and problem determination 111

XMLDATA IPCS subcommand 111

Diagnostic Area . 113

SLIP trap for return codes from the z/OS XML parser 114

ARR recovery routine . 114

Chapter 10. System Admin: Servicing the z/OS XML parser 115

Servicing the dynamic LPA exit 115

Appendix A. Return Codes Listed by Value 117

Appendix B. Reason Codes Listed by Value 119

Appendix C. Reason Codes Listed by Value 139

Appendix D. Reason Codes Listed by Value 145

Appendix E. xsdosrg command reference 167

Name . 167

Synopsis . 167

Description . 167

Options . 167

Operands . 167

Example . 167

Environment variables . 168

Localization . 168

Files . 168

Usage notes . 168

Exit values . 168

Portability . 168

Related information . 169

Appendix F. C/C++ header files and assembler macros 171

gxlhxml.h - main z/OS XML header file 171

gxlhxeh.h (GXLYXEH) - mapping of the output buffer record 171

gxlhxec.h (GXLYXEC) - constants definitions 172

gxlhqxd.h (GXLYQXD) - mapping of the output from the query XML declaration

service . 172

gxlhxd.h (GXLYXD) - mapping of extended diagnostic area 173

gxlhxr.h (GXLYXR) - defines the return codes and reason codes 173

gxlhxsv.h (GXLYXSV) - mapping of the system service vector 174

gxlhxft.h (GXLYXFT) - mapping of the control feature input output area 174

gxlhxosr.h (GXLYXOSR) - mapping of the OSR control area 174

gxlhxosrg.h - OSR generator prototypes 174

gxlhxosrd.h - mapping of the OSR generator diagnostic area 175

gxlhxstr.h - StringID table . 175

Contents v

||

||
||

||

||
||
||
||
||
||
||
||
||
||
||
||
||
||

||
||
||
||
|
||
||
||
||
||
||
||
||
||

Appendix G. Java file . 177

gxljxr.java - return and reason code declarations 177

Appendix H. Callable services examples - AMODE 31 181

GXL1CTL example . 182

GXL1INI example . 183

GXL1PRS example . 185

GXL1TRM example . 186

Appendix I. Callable services examples - AMODE 64 187

GXL4CTL example . 188

GXL4INI example . 189

GXL4PRS example . 191

GXL4TRM example . 192

Appendix J. Exit examples - AMODE 31 193

GXLE1FRM (GXLFST31 example) 194

GXLE1GTM (GXLGST31 example) 198

GXLSYM31 example . 203

Appendix K. Exit examples - AMODE 64 223

GXLE4FRM (GXLFST64 example) 224

GXLE4GTM (GXLGST64 example) 228

GXLSYM64 example . 234

Appendix L. Supported encodings 253

Appendix M. Accessibility . 255

Using assistive technologies 255

Keyboard navigation of the user interface 255

z/OS information . 255

Notices . 257

Programming Interface information 258

Trademarks . 258

Acknowledgments . 259

Contact your system administrator. 259

Index . 261

vi z/OS V1R10.0 z/OS XML User’s Guide and Reference

||
||

||
||
||
||
||

Tables

 1. Common record header . 16

 2. Record flag bits . 16

 3. Record types . 17

 4. Buffer info record structure . 18

 5. Error info record structure . 19

 6. Aux info record . 19

 7. Extended end element record (no StringID) . 22

 8. Extended end element record (StringID) . 23

 9. Record form 0 . 25

10. Record form 1 . 25

11. Record form 2 (with StringID) . 25

12. Record form 2 (without StringID) . 25

13. Record form 3 (with StringID) . 26

14. Record form 3 (without StringID) . 26

15. Field values by record type . 26

16. Code page CCSID values . 31

17. Load module for C/C++ parser . 45

18. Caller stubs and associated offsets . 79

19. Input register conventions . 80

20. Output register conventions . 80

21. Output access register conventions . 81

22. Load modules . 99

23. System services input register conventions . 101

24. System services input access register conventions 102

25. System services output register conventions . 102

26. System services output access register conventions 102

27. XMLDATA options . 111

28. SLIP examples by release . 114

29. Code page CCSID values . 253

© Copyright IBM Corp. 2008 vii

||
||
||

||

||

||

viii z/OS V1R10.0 z/OS XML User’s Guide and Reference

About this document

This document presents the information you need to use the z/OS XML System

Services (z/OS XML) parser.

Who should use this document

This document is for application programmers, system programmers, and end users

working on a z/OS system and using the z/OS XML parser.

This document assumes that readers are familiar with the z/OS system and with the

information for z/OS and its accompanying products.

Where to find more information

Where necessary, this document references information in other documents about

the elements and features of z/OS™. For complete titles and order numbers for all

z/OS documents, see z/OS Information Roadmap.

Direct your request for copies of any IBM publication to your IBM representative or

to the IBM branch office serving your locality.

There is also a toll-free customer support number (1-800-879-2755) available

Monday through Friday from 6:30 a.m. through 5:00 p.m. Mountain Time. You can

use this number to:

v Order or inquire about IBM publications

v Resolve any software manufacturing or delivery concerns

v Activate the program reorder form to provide faster and more convenient ordering

of software updates

Softcopy publications

The z/OS library is available on the z/OS Collection Kit, SK2T-6700. This softcopy

collection contains a set of z/OS and related unlicensed product documents. The

CD-ROM collection includes the IBM® Library Reader™, a program that enables

customers to read the softcopy documents.

Softcopy z/OS publications are available for web-browsing and PDF versions of the

z/OS publications for viewing or printing using Adobe Acrobat Reader. Visit the z/OS

library at http://www.ibm.com/systems/z/os/zos/bkserv/.

IBM Systems Center publications

IBM Systems Centers produce Redbooks that can be helpful in setting up and using

z/OS. You can order these publications through normal channels, or you can view

them with a Web browser. See the IBM Redbooks site at http://www.ibm.com/
redbooks.

These documents have not been subjected to any formal review nor have they

been checked for technical accuracy, but they represent current product

understanding (at the time of their publication) and provide valuable information on

a wide range of z/OS topics. You must order them separately.

© Copyright IBM Corp. 2008 ix

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/redbooks
http://www.ibm.com/redbooks

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS elements and features, z/VM®, z/VSE™, and Clusters for AIX® and Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS systems to

access IBM message explanations using LookAt from a TSO/E command line

(for example: TSO/E prompt, ISPF, or z/OS UNIX® System Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from the

z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T-4271) and use it from the resulting Windows graphical user interface

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html with a

handheld device that has wireless access and an Internet browser (for example:

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

v A CD in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T-4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in the

LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide checks

that take advantage of the IBM Health Checker for z/OS framework. This book

might refer to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

x z/OS V1R10.0 z/OS XML User’s Guide and Reference

http://www.ibm.com/systems/z/os/zos/bkserv/lookat/
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/lookatm.html

Summary of changes

Summary of Changes

for SA23-1350-03

z/OS Version 1 Release 10

 This document contains information previously presented in z/OS XML System

Services User’s Guide and Reference, SA23-1350-01, which supports z/OS

Release 9.

New Information

v New information in Chapter 4, “Parsing XML documents,” on page 11

v “Aux info record” on page 19

v New information in Chapter 6, “z/OS XML parser API: C/C++,” on page 35

v New information in Chapter 7, “z/OS XML parser API: Assembler,” on page 79

v “XMLDATA IPCS subcommand” on page 111

v New reason codes in Appendix B, “Reason Codes Listed by Value,” on page 119

v Appendix E, “xsdosrg command reference,” on page 167

v New information in Appendix F, “C/C++ header files and assembler macros,” on

page 171

v Appendix G, “Java file,” on page 177

Summary of Changes

for SA23-1350-02

z/OS Version 1 Release 9

 This document is a refresh of z/OS XML System Services User’s Guide and

Reference, SA23-1350-01, which supports z/OS Release 9.

New Information

v Feature flag option added to “gxlpControl — perform a parser control function” on

page 37 and “GXL1CTL (GXL4CTL) — perform a parser control function” on

page 82

v Encodings added to on page 0, “gxlhxec.h (GXLYXEC) - constants definitions” on

page 172, and on page 0

v Appendix L, “Supported encodings,” on page 253

Summary of Changes

for SA23-1350-01

z/OS Version 1 Release 9

 This document contains information previously presented in z/OS XML System

Services User’s Guide and Reference, SA23-1350-00, which supports z/OS

Release 8.

New Information

v Feature flag option added to “GXL1CTL (GXL4CTL) — perform a parser control

function” on page 82

v Chapter 6, “z/OS XML parser API: C/C++,” on page 35

v “ARR recovery routine” on page 114

v Appendix F, “C/C++ header files and assembler macros,” on page 171

© Copyright IBM Corp. 2008 xi

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

xii z/OS V1R10.0 z/OS XML User’s Guide and Reference

Chapter 1. Introduction

What is XML?

XML allows you to tag data in a way that is similar to how you tag data when

creating an HTML file. XML incorporates many of the successful features of HTML,

but was also developed to address some of the limitations of HTML. XML tags may

be user-defined, by either a DTD or a document written in the XML Schema

language, that can be used for validation. In addition, namespaces can help ensure

you have unique tags for your XML document. The syntax of XML has more

restrictions than HTML, but this results in faster and cheaper browsing. The ability

to create your own tagging structure gives you the power to categorize and

structure data for both ease of retrieval and ease of display. XML is already being

used for publishing, as well as for data storage and retrieval, data interchange

between heterogeneous platforms, data transformations, and data displays. As

these XML applications evolve and become more powerful, they may allow for

single-source data retrieval and data display.

The benefits of using XML vary but, overall, marked-up data and the ability to read

and interpret that data provide the following benefits:

v With XML, applications can more easily read information from a variety of

platforms. The data is platform-independent, so now the sharing of data between

you and your customers can be simplified.

v Companies that work in the business-to-business (B2B) environment are

developing DTDs and schemas for their industry. The ability to parse

standardized XML documents gives business products an opportunity to be

exploited in the B2B environment.

v XML data can be read even if you do not have a detailed picture of how that data

is structured. Your clients will no longer need to go through complex processes to

update how to interpret data that you send to them because the DTD or schema

gives the ability to understand the information.

v Changing the content and structure of data is easier with XML. The data is

tagged so you can add and remove elements without impacting existing

elements. You will be able to change the data without having to change the

application.

However, despite all the benefits of using XML, there are some things to be aware

of. First of all, working with marked up data can be additional work when writing

applications because it physically requires more pieces to work together. Given the

benefits of using XML, this additional work up front can reduce the amount of work

needed to make a change in the future. Second, although it is a recommendation

developed by the World Wide Web Consortium (W3C®), XML, along with its related

technologies and standards including Schema, XPath, and DOM/SAX APIs, is still a

developing technology.

An XML parser is a processor that reads an XML document and determines the

structure and properties of the data. It breaks the data up into discrete units and

provides them to other components. There are two basic types of XML parsers:

non-validating and validating. A non-validating parser checks if a document is

well-formed, but does not check a document against any DTDs or XML Schemas. A

validating parser not only checks if a document is well-formed, but also verifies that

it conforms to a specific DTD or XML Schema.

© Copyright IBM Corp. 2008 1

z/OS XML System Services

z/OS XML System Services (z/OS XML) is an XML processing component of the

z/OS operating system. It contains an XML parser intended for use by system

components, middleware, and applications that need a simple, efficient, XML

parsing solution. z/OS XML can parse documents either with or without validation.

Note: The use of the term z/OS XML parser in this document refers specifically to

the z/OS XML System Services parser.
The following are some distinct characteristics of z/OS XML:

v z/OS XML is an integrated component of z/OS. There is no need to download or

install any additional packages to use it.

v z/OS XML provides a collection of programming interfaces for callers to use:

– C/C++ and assembler interfaces to the z/OS XML parser itself.

– C/C++, Java, and UNIX command line interfaces to utility functions that build

binary artifacts required for validation during a parse.

– Assembler interfaces for user exits that give callers control over how the z/OS

XML parser interacts with the rest of z/OS.

– C/C++ interfaces to a service similar to a user exit, called a StringID handler,

that allows for shorthand communications between the z/OS XML parser and

the caller.

v The z/OS XML parser utilizes a buffer-in, buffer-out processing model instead of

the event driven model common to SAX parsers. Input to, and output from the

parser may span multiple buffers, allowing the caller to request parses for

documents that are arbitrarily long.

v z/OS XML has minimal linkage overhead in order to reduce CPU usage as much

as possible.

v z/OS XML provides assistive aids to the user in debugging not-well-formed

documents.

v z/OS XML supports a number of character encodings, among them UTF-8,

UTF-16 (big endian), IBM-1046 and IBM-037. There is no need on the part of the

caller to transcode documents to a canonical encoding before calling the z/OS

XML parser. For a full list of these supported encodings, see Appendix L,

“Supported encodings,” on page 253.

The z/OS XML parser is invoked as a callable service and can be used as such.

The callable services stubs are shipped in CSSLIB.

Note about constant names: Some constant names begin with the string ″GXLH″.

These constants are used solely by C callers. For assembler callers, remove the

″GXLH″ portion to get the appropriate constant name.

2 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|

|
|
|

|
|

|

|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|

|

Chapter 2. Overview of z/OS XML System Services

This chapter provides an overview of the z/OS XML System Services; it briefly

describes some of the XML features supported by the z/OS XML System Services

and other technologies used by the z/OS XML parser. The following topics are

discussed within this chapter:

v “z/OS XML System Services features” on page 3

v “z/OS XML System Services functions” on page 4

v “Document processing model” on page 5

v “Output buffer format” on page 7

v “Optimized Schema Representation” on page 7

v “String Identifiers” on page 7

v “Memory management” on page 7

v “Dynamic LPA support” on page 7

z/OS XML System Services features

The following is a list of features provided by z/OS XML System Services.

References to additional information on the various features are provided where

appropriate:

v An external C and C++ API, see Chapter 6, “z/OS XML parser API: C/C++,” on

page 35

v An external assembler API, see Chapter 7, “z/OS XML parser API: Assembler,”

on page 79

v Support for AMODE 31- and 64-bit callers with data above or below the bar.

v Support for UTF-8, UTF-16 (big endian only), IBM-1047, IBM-037, and several

other encodings. See “Encoding support” on page 31 for more information.

v XML processing features

– Parsing with schema validation (validation with DTD not supported)

– Support in the parsed data stream for offsets back into the original source

document

– Optionally return fully qualified element names in end element records

– Support for XML 1.0 and XML 1.1

– Newline normalization, see “EBCDIC encoding considerations” on page 32

– Attribute value normalization

– Omit or return comments in the parsed data stream

– Optionally return significant white space in unique white space records

(instead of character data records)

– Namespace support, see “Namespace declarations” on page 30

– Entity resolution, see “Resolving entity references” on page 29

– Partial DTD processing, see “Processing DTDs” on page 29

v User exits for system services, see Chapter 8, “z/OS XML System Services exit

interface,” on page 101

v Query service for determining document characteristics, see Chapter 3,

“Querying XML documents,” on page 9

v Diagnostic support (Chapter 9, “Diagnosis and problem determination,” on page

111), including:

– Diagnostic area, see “Diagnostic Area” on page 113

© Copyright IBM Corp. 2008 3

|

|

|

|
|

|

|

|
|

– Slip trap support, see “SLIP trap for return codes from the z/OS XML parser”

on page 114

– ARR recovery routine, see “ARR recovery routine” on page 114

– IPCS formatting, see “XMLDATA IPCS subcommand” on page 111

v Segmented input and output (the entire document does not have to reside in a

single buffer), see “Spanning buffers” on page 28

v Mapping macro interfaces for parsed data

v “Enable offload to specialty engines” on page 8

z/OS XML System Services functions

z/OS XML System Services include the following three primary functions:

v A query service that allows callers to determine the encoding of the document

and acquire information from the XML declaration.

v Parsing with schema validation

v Parsing without validation

These functions are provided in the form of callable services. A caller can access

these services through the z/OS XML System Services APIs (for information on the

APIs, see Chapter 6, “z/OS XML parser API: C/C++,” on page 35 and Chapter 7,

“z/OS XML parser API: Assembler,” on page 79). The following two sections

provide a summary of the functions, with pointers on where to go for more

information.

Querying XML documents

XML documents have characteristics that affect the way they are parsed, and the

kinds of information that the parser generates during the parse process. One such

characteristic is the encoding scheme of the document, which the z/OS XML parser

must know before parsing. Using the query service will allow the caller to acquire

this information, after which it can then pass it to the z/OS XML parser. The z/OS

XML parser will then be able to use the correct encoding scheme to parse the

document. For more on this service, see Chapter 3, “Querying XML documents,” on

page 9.

Parsing XML documents without validation

The non-validating parse process consists of three fundamental steps: initialize the

parser, parse the document, and terminate the parser. Multiple documents may be

parsed using either a single instance of the parser, or several distinct instances as

the caller requires. For more information on this procedure and the individual

services called, see Chapter 4, “Parsing XML documents,” on page 11.

Parsing XML documents with validation

Parsing with validation follows the same basic process as for a non-validating

parse. The key difference is an additional step to load a pre-processed version of

the schema used to validate the document during the parse. This binary schema,

referred to as an Optimized Schema Representation (OSR) can be loaded once,

and used to validate any document that conforms to it. For more information on

OSRs, see “Optimized Schema Representation” on page 7.

4 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|

|

|
|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|

Document processing model

There are three main components required for parsing XML documents: input

buffer, z/OS XML parser, and output buffer. These three components and their

interrelationships make up the processing model. There may be more than one

input and output buffer, depending on the size of the document being parsed. If the

document is sufficiently large, the caller may find it necessary to provide it to the

parser in several pieces, using buffer spanning to maintain the document structure

as it is being parsed. Similarly, the caller may need to provide multiple buffers to

contain the data stream that the z/OS XML parser generates. For more information

on how buffer spanning works, see “Spanning buffers” on page 28.

Document processing is the creation of the output buffers from the parsed input

data. As the z/OS XML parser traverses through the input buffer, the output buffer is

built. See “Parsed data model” on page 15 for more information on this format.

The following is a diagram of the processing model using buffer spanning. It shows

both the input and output buffers, where buffers 2-5 represent the additional buffers

created to support a large document.

Chapter 2. Overview of z/OS XML System Services 5

For more on how to parse XML documents using the z/OS XML parser, see

Chapter 4, “Parsing XML documents,” on page 11.

 z/OS XML parser

Input
Buffer

Output
Buffer
 4

Input
Buffer

Input
Buffer
 3

 2

Output
Buffer
 2

Output
Buffer

Output
Buffer
 5

Output
Buffer
 3

OSR
(for validating parses only)

Figure 1. Processing model

6 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|
|
|

Output buffer format

The output buffer contains the parsed data stream that results from the parse

process. This data stream will contain the parsed XML document contents, along

with header and any error information that was produced during the parse. For

more information on the format of the output data stream, see “Parsed data model”

on page 15.

Optimized Schema Representation

Optimized Schema Representations (OSRs) are pre-processed versions of

schemas. They are more easily and more efficiently handled than schemas in text

form. When parsing with validation, this form of schema is utilized. An OSR API is

provided to assist in the generation, loading and manipulation of these specialized

schemas. For information on how to use OSRs, see “Using Optimized Schema

Representations” on page 13. For more information on the OSR API, see “OSR

generator API” on page 52. For information on performing a validating parse, see

Chapter 4, “Parsing XML documents,” on page 11.

String Identifiers

String Identifiers (StringIDs) are a special type of output data used to represent

some of the strings that the z/OS XML parser encounters during a parse. A StringID

is a 4 byte numeric value used to represent a complete string of text, thereby

substantially reducing the size of the parsed data stream for documents containing

frequently recurring strings, like namespace references. StringIDs can only be used

if the optional StringID exit service is activated. For more information on StringIDs,

see “String Identifiers” on page 23.

Memory management

The z/OS XML parser provides a memory allocation/deallocation exit allowing

callers to provide a pair of allocation/deallocation services. For callers that do not

provide a memory allocation exit, the z/OS XML parser provides an option at

initialization time allowing the caller to specify how the z/OS XML parser’s default

routine allocates memory. For more information on these services and the special

initialization time feature, see “Managing memory resources” on page 32.

Dynamic LPA support

The non-validating z/OS XML parser resides in the link pack area (LPA), and as

such, the non-validating parser can take full advantage of dynamic LPA. The

validating z/OS XML parser is initially located in SIEALNKE, but can be moved to

LPA at post-installation. Both z/OS XML parsers are always accessible, and any

service item fixes can easily be applied to either of the parsers since an IPL is not

required. For more information on dynamic LPA support and servicing of the

non-validating and validating z/OS XML parsers, see Chapter 10, “System Admin:

Servicing the z/OS XML parser,” on page 115. For additional information on

dynamic LPA, see z/OS MVS Initialization and Tuning Reference.

Chapter 2. Overview of z/OS XML System Services 7

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2E151/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7591-06&DT=20080119071214

Enable offload to specialty engines

z/OS XML System Services provides the ability for parsing operations to be run on

specialty processors: a zAAP (System z Application Assist Processor) or a zIIP (IBM

System z10 Integrated Information Processor). The z/OS XML parser, when

executing in TCB mode, is eligible to run on a zAAP, in environments in which one

or more zAAPs are configured. The z/OS XML parser, when executing in enclave

SRB mode, is eligible to run on a zIIP processor, in environments where one or

more zIIPs are configured. Ancillary z/OS XML System Services, such as the query

service and the control service, as well as the StringID exit and memory

management exits, are not eligible to run on specialty processors. Execution of

z/OS XML System Services parsing operations on a specialty processor occurs

transparently to the calling application.

8 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|
|
|
|
|
|
|
|
|
|
|

Chapter 3. Querying XML documents

An XML document contains declarations that may need special handling during a

parse. For instance, if the encoding of the document to parse is unknown, the query

service provided by z/OS XML parser can be used to help determine the encoding

in order to provide the correct Coded Character Set IDentifier (CCSID) to the

parser, when the actual parse is performed.

In order for the caller to query an XML document, all the caller needs to do is use

the query service (gxlpQuery for C/C++ callers, GXL1QXD (GXL4QXD) for

assembler callers). This service allows the caller to obtain all the XML

characteristics of the document. These characteristics can be either the default

values or those explicitly contained in an XML declaration. Once these

characteristics are obtained, the caller can then determine the encoding scheme

needed to parse the document, along with any additional steps that may be

needed.

For example, if the document in question uses an encoding scheme of UTF-16, it

will require that the z/OS XML parser also uses the UTF-16 encoding scheme when

parsing this document. The caller would use the query service to ascertain the

encoding type of the document being parsed. Once this information is acquired, the

z/OS XML parser can be initialized using the initialization service (gxlpInit for C/C++

callers, GXL1INI (GXL4INI) for assember callers, see Chapter 4, “Parsing XML

documents,” on page 11) passing the encoding scheme to parse the UTF-16

encoded document.

Note: The query service is the only service that provides support for both UTF-16

(little endian) and UTF-16 (big endian), whereas the other services only

support UTF-16 (big endian).

The CCSID value returned by the query service can be used to invoke Unicode

Services in order to convert the input document into one of the encodings

supported by the z/OS XML parser.

For more information on the query service, see “gxlpQuery — query an XML

document” on page 49 for C/C++ callers, and “GXL1QXD (GXL4QXD) — query an

XML document” on page 93 for assembler callers. For more information on

document encoding support, see “Encoding support” on page 31.

Header files and data macros

This section provides information on the various header files and data macros

associated with the z/OS XML parser query service. The names and purposes of

these files are listed below:

Note: For header file names, replace the ″*″ with the letter ″H″, convert all letters

of the name to lowercase, and append ″.h″ to the end of the filename. For

data macro names, replace the ″*″ with the letter ″Y″.

GXL*XEC

Contains assorted constant values that are used in the parsed data stream,

values used for assorted fields of the API, and minimum sizes for data

areas passed to the z/OS XML parser.

GXL*QXD

Maps the data area returned from the query service.

© Copyright IBM Corp. 2008 9

|
|
|

GXL*XR

Contains mnemonic values that describe the return and reason codes

generated by the z/OS XML parser.

For information on these header files and data macros, see Appendix F, “C/C++

header files and assembler macros,” on page 171.

10 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Chapter 4. Parsing XML documents

Before the z/OS XML parser can perform a parse on an XML document, it must first

establish a context in which it can operate. This is accomplished when the caller

invokes the initialization routine and passes in a piece of memory where the z/OS

XML parser establishes a Parse Instance Memory Area (PIMA). This is the area

where the z/OS XML parser creates a base for the internal data structures it uses to

complete the parse process.

Rule: A particular PIMA must only be used during the parse of a single XML

document at a time. Only after the parse is complete and the parse instance is

reset can a PIMA be reused for the parse of another document.

In addition to control information, the PIMA is used as a memory area to store

temporary data required during the parse. When the z/OS XML parser needs more

storage than was provided in the PIMA, additional storage is allocated. Because

allocating additional storage is an expensive operation, the PIMA should be initially

allocated with sufficient storage to handle the expected document size, in order to

optimize memory allocation requests.

Rule: For the non-validating z/OS XML parser, the minimum size for the PIMA is

128 kilobytes. For the validating z/OS XML parser, the minimum size for the PIMA is

768 kilobytes.

Everything that the z/OS XML parser needs to complete the parse of a document is

kept in the PIMA, along with any associated memory extensions that the parser

may allocate during the parse process. The caller also must provide input and

output buffers on each call to the parse service (gxlpParse for C/C++ callers,

GXL1PRS (GXL4PRS) for assember callers). In the event that either the text in the

input buffer is consumed or the parsed data stream fills the output buffer, the z/OS

XML parser will return XRC_WARNING, along with a reason code indicating which

buffer (possibly both) needs the caller’s attention. It also indicates the current

location and number of bytes remaining in each buffer by updating the buffer_addr

and buffer_bytes_left parameters passed in on the parse request (for C/C++ callers,

see the description of “gxlpParse — parse a buffer of XML text” on page 46; for

assembler callers, see the description of “GXL1PRS (GXL4PRS) — parse a buffer

of XML text” on page 90). This process is referred to as buffer spanning. For more

information, see “Spanning buffers” on page 28.

If the entire document has been processed when the z/OS XML parser returns to

the caller, the parse is complete and the caller proceeds accordingly. If the caller

requires another document to be parsed, it has the option of terminating the current

parse instance by calling the termination service (gxlpTerminate for C/C++ callers,

GXL1TRM(GXL4TRM) for assembler callers). This will free up any resources that

the z/OS XML parser may have acquired and resets the data structures in the

PIMA. If the caller needs to parse another document, it will have to call the

initialization service again to either completely re-initialize an existing PIMA that has

been terminated or initialize a new PIMA from scratch.

Another option is to use the finish/reset function of the z/OS XML parser control

service (gxlpControl for C/C++ callers, GXL1CTL (GXL4CTL) for assembler callers)

to reset the PIMA so that it can be reused. This is a lighter-weight operation that

preserves certain information that can be reused across parsing operations for

multiple documents. This potentially improves the performance for subsequent

parses, since this information can be reused instead of rebuilt from scratch.

© Copyright IBM Corp. 2008 11

|
|
|
|
|
|

|
|
|

Reusing the PIMA in this way is particularly beneficial to callers that need to handle

multiple documents that use the same symbols (for example, namespaces and local

names for elements and attributes). The PIMA can only be reused in this way when

the XML documents are in the same encoding.

Restriction: The following restrictions apply when conducting a validating parse:

v When parsing in non-Unicode encodings, irrepresentable character entities are

replaced with the ″-″ character prior to validation.

v There is a maximum of 64 KB non-wildcard attributes for a single element, and

64 KB elements in an All group.

Steps for parsing XML documents without validation

The following steps summarize the process of parsing XML documents using the

z/OS XML parser:

1. Call the initialization service. This establishes the PIMA, which is then used to

create and store the initial data structures required to begin the parse process.

2. Call the parse service to parse the document.

Note: During the parse process and before the end of the document is

reached, if the input buffer is empty or the output buffer is full, a warning

is issued and the parse service is stopped. Otherwise, the parse service

will continue until the document is fully processed.

3. The application processes the output buffer.

4. Determine if there are additional documents to be processed. If so, call the

termination service to terminate the existing parse process, and repeat Steps

1-3.

Tip: For increased performance, the caller can use the control service in place

of the termination and initialization services. The control service enables the

PIMA to be reused, avoiding the need to free resources and initialize a new

PIMA. However, the PIMA can only be reused in this way when the XML

documents are in the same encoding. See “gxlpControl — perform a parser

control function” on page 37 and “GXL1CTL (GXL4CTL) — perform a parser

control function” on page 82 for more information on the control service.

There are several data types that can be returned in the output buffer. Therefore,

the caller must know what type of data is being returned to effectively process it.

The following topics discuss the various data types:

v “Parsed data model” on page 15 - overview of the structures that make up the

data stream produced by the parser.

v “Length/Value pairs” on page 23 - the default representation of strings that have

been parsed from the original XML document.

v “String Identifiers” on page 23 - a unique numeric value returned by the z/OS

XML parser that represents a given text string (a StringID exit service must be

provided by the caller to generate these IDs).

v “Metadata records” on page 18 - data records that contain metadata about the

parse stream or error information

12 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|
|

|
|

|

Steps for parsing XML documents with validation

The following steps summarize the process of parsing XML documents using the

z/OS XML parser with validation:

1. Call the parser load service. This will load the parser into storage.

2. Call the OSR initialization utility. This establishes the OSR generator Instance

Memory Area (OIMA), which is then used as the work area for the OSR

generator.

3. Call the OSR generator utility. This utility creates an OSR from one or more

text-based schemas passed to the OSR generator instance, using the load

schema utility.

Note: An OSR can be saved and then used for parsing future documents that

share the same schema(s) from which the OSR was generated. As a

result, steps 2 and 3 may not be required each time an XML document

is parsed using validation.

4. Call the parser initialization service. This establishes the PIMA, which is then

used to create and store the initial data structures required to begin the parse

process.

5. Call the control service. This will load the generated OSR into the z/OS XML

parser.

6. Call the parse service to parse the document.

Note: During the parse process and before the end of the document is

reached, if the input buffer is empty or the output buffer is full, a warning

is issued and the parse service is stopped. Otherwise, the parse service

will continue until the document is fully processed.

7. The application processes the output buffer.

8. Determine if additional schemas need to be processed. If so, repeat steps 3, 5

and 6. If you want to reuse an existing OSR, use the OSR load utility.

9. Determine if there are additional documents to be processed. If so, call the

termination service to terminate the existing parse process, and repeat steps 1

-7.

Tip: For increased performance, the caller can use the control service in place

of the termination and initialization services. The control service enables the

PIMA to be reused, avoiding the need to free resources and re-initiate a new

PIMA. However, the PIMA can only be reused in this way when the XML

documents are in the same encoding. See “gxlpControl — perform a parser

control function” on page 37 and “GXL1CTL (GXL4CTL) — perform a parser

control function” on page 82 for more information on the control service.

Using Optimized Schema Representations

Optimized Schema Representations (OSRs) are specialized forms of schemas used

during the validating parse process. They can be created from utilities provided by

the OSR generator API. For more information about the OSR generator API, see

“OSR generator API” on page 52.

Chapter 4. Parsing XML documents 13

|

|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

Setting up the environment

Before the caller can begin generating OSRs, some environment variables must be

set. The following lists the environment variables that must be set along with their

appropriate values.

Note: The caller should use the proper 31/64-bit versions of the binaries listed

below. Mixing versions of different binaries will result in unpredictable results.

LIBPATH

must include paths to the following:

v For C API callers only (gxlcosr1.dll for 31-bit, gxlcosr4.dll for 64-bit) -

/usr/lib

v For 31-bit callers - /usr/lib/java_runtime

v For 64-bit callers - /usr/lib/java_runtime64

v Java binaries and JVM

– For 31-bit callers -

- /usr/lpp/java/J5.0/bin

- /usr/lpp/java/J5.0/bin/j9vm

– For 64-bit callers -

- /usr/lpp/java/J5.0_64/bin

- /usr/lpp/java/J5.0_64/bin/j9vm

CLASSPATH

must include paths to the following:

v The Java API callers only (gxljapi.jar) - /usr/include/java_classes

Note: Do not include gxljosrgimpl.jar. It will be loaded from

/usr/include/java_classes

Note: Callers of the Java API must choose the 31- or 64-bit version of

Java that they intend to use. They may either specify the explicit

path to the required executable (/usr/lpp/java/J5.0/bin/java for

31-bit, /usr/lpp/java/J5.0_64/bin/java for 64-bit), or include the path

to the required Java version in their PATH variable. Users of the C

API and command interfaces do not need to be concerned with

this.

Usage tips

Tips are provided below to facilitate the usage of OSRs:

v An OSR is not a schema library. In other words, you should not throw all

necessary schemas into a single OSR and use it similar to a library.

v Schemas should reference one another via the <xsl:import ...> construct. That

is, OSRs are meant to contain hierarchies of schemas, where one or more

schemas reference others to handle increasingly more specific structures in the

source XML document being transformed.

v You should consider creating one schema OSR to validate entire classes of

documents.

The OSR used for validation becomes part of the parse instance, and remains in

use for all validating parse requests until a different one is specified through the

control service. Callers who use buffer spanning to pass documents to and from the

parser in pieces should know that schemas cannot be changed in the middle of the

14 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|

parse process. A control request to specify a different schema will cause a reset of

the parse instance so that the next parse request must be for a new XML

document.

Note: For callers using schemas written in XML 1.1 format, use IBM Java

Technology Edition V6.

Header files and data macros

This section provides information on the header files and data macros associated

with the z/OS XML parser. The names and purposes of these files are listed below:

Note: For header file names, replace the ″*″ with the letter ″H″, convert all letters

of the name to lowercase, and append ″.h″ to the end of the filename. For

data macro names, replace the ″*″ with the letter ″Y″.

GXL*XEH

Describes all of the structures that the z/OS XML parser generates in the

parsed data stream. This includes both the records that represent the

individual markup and content parsed from the document, as well as

metadata about the data stream itself.

GXL*XEC

Contains assorted constant values that are used in the parsed data stream,

values used for assorted fields of the API, and minimum sizes for data

areas passed to the z/OS XML parser.

GXL*XD

Maps the z/OS XML parser extended diagnostic area.

GXL*XR

Contains mnemonic values that describe the return and reason codes

generated by the z/OS XML parser.

GXL*XSV

Maps the system service vector that the caller uses to describe the exits

that it provides to the z/OS XML parser.

GXL*XFT

Maps the input and output area used by the control feature flag of the

GXL1CTL (GXL4CTL) service.

GXL*XOSR

Maps the input and output area used by the optimized schema

representation.

For information on these header files and corresponding data macros, see

Appendix F, “C/C++ header files and assembler macros,” on page 171.

Parsed data model

This section provides information on the data model used to represent the contents

of the output buffer. The caller needs to understand this data model so that it can

effectively process the parsed data stream that has been created in the output

buffer.

The z/OS XML parser produces a structured data stream resulting from the parse

process. It is a feature that distinguishes the z/OS XML parser from most other XML

parsers. The parsed data stream consists of a set of self-describing records

Chapter 4. Parsing XML documents 15

|
|
|

|
|

|

|
|
|

|
|
|

http://www.ibm.com/servers/eserver/zseries/software/java/
http://www.ibm.com/servers/eserver/zseries/software/java/

representing the output of the parser. These records provide a structure to the data

stream that allows a consumer to navigate the data stream as needed. Some of the

records represent the actual semantic content of the parsed document, while others

provide metadata about the parse itself. There may be more than one group of

these records (or record groups) in a single output buffer. This can occur if the input

buffer spans multiple times before the output buffer is filled.

Common record header

Each record in the parsed data stream consists of a common header, followed by

information that is specific to a given record type. The common header has the

following structure:

 Table 1. Common record header

+0 record type (2 bytes) flags (1 byte) reserved (1 byte)

+4 record length

The record type determines the form of the data that immediately follows the

header and which makes up the body of the record. The record flags provide

information about the specific record to which they belong. Each bit of the flags byte

has the following meaning:

 Table 2. Record flag bits

Bit

position Name Purpose

0 XEH_Continued This record is continued in the next output buffer.

1 XEH_No_Escapes There are no characters that need to be escaped in this

record.

2 * reserved

The XEH_No_Escapes flag is provided as an aid to callers that need to re-serialize

the parsed data stream back to an XML document in text form. It is relevant only for

records that represent character data or attribute values (its meaning is undefined

for all other records). It indicates that there are no special characters present that

need to be escaped in the text of the record during re-serialization. The set of these

special characters is made up of ″<″, ″>″, ″&″, and the single and double quotes.

The caller must substitute either one of the well known strings (″<″, ″>″,

″amp;″, ″'″, ″"″) or a numeric character reference in the serialized text in

order to create a well formed XML document.

When this flag is on, the caller can safely avoid scanning the text associated with

the record to look for characters that must be escaped during re-serialization. When

the flag is off, one of the special characters may be present, and such a scan is

required. Note that there are certain instances involving buffer spanning when it is

not possible for the parser to determine that this bit should be set. As a result, for

character data and attribute value records that span multiple output buffers, the

XEH_No_Escapes bit may be off, even when there are actually no characters that

need to be replaced during serialization. If the bit is on though, it will always be safe

to avoid scanning for characters that need escaping.

The flags field is followed by 1 reserved byte and the record length. The record

length contains the total length of the record - including the header. Navigating from

one record to the next is done by moving a pointer, by the specified record length,

from the first byte of the current record header.

16 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Record (token) types

Record types are values used to identify the purpose of each record parsed from

the input document. The record type, along with the data stream options in the

buffer info record (see “Buffer info record” on page 18), indicates the form of the

record. Record forms are a means of indicating the number of values that make up

the record itself, and are described in a separate section below. Here are the record

types returned by the z/OS XML parser (their definitions are provided in gxlhxec.h

for C and C++ callers, and GXLYXEC for assembler callers):

 Table 3. Record types

Token name Meaning

GXLHXEC_TOK_BUFFER_INFO information about the buffer containing

the parsed data stream

GXLHXEC_TOK_ERROR error information

GXLHXEC_TOK_XML_DECL an XML declaration

GXLHXEC_TOK_START_ELEM start of an element

GXLHXEC_TOK_END_ELEM end of an element

GXLHXEC_TOK_ATTR_NAME name of an attribute

GXLHXEC_TOK_ATTR_VALUE value of an attribute

GXLHXEC_TOK_NS_DECL a namespace declaration

GXLHXEC_TOK_CHAR_DATA character data

GXLHXEC_TOK_START_CDATA start of a CDATA section

GXLHXEC_TOK_END_CDATA end of a CDATA section

GXLHXEC_TOK_WHITESPACE a string of white space characters

GXLHXEC_TOK_PI processing instruction

GXLHXEC_TOK_COMMENT a comment

GXLHXEC_TOK_DTD_DATA DOCTYPE declaration information

GXLHXEC_TOK_UNRESOLVED_REF an entity reference that cannot be

resolved

GXLHXEC_TOK_AUX_INFO auxiliary information about individual

items in the parsed data stream

The above token names are for the C/C++ callers. Assembler callers use token

names without the prefix ″GXLH″.

Most of the record types listed above fall into one of four classes, based on the

number of values they contain from the document being parsed. Two of these

record types - the buffer info and error records - are different (see “Buffer info

record” on page 18 and “Error info record” on page 19) because they contain

metadata about the information in one of the buffers (input or output), rather than

data parsed from the input stream. The form of the data they contain is unique to

the purpose of the record.

The data structures that describe this data stream can be found in the data model

header file gxlhxeh.h for C/C++ callers, and the mapping macro GXLYXEH for

assembler callers. Data is not aligned on any kind of boundary, and there are no

alignment requirements for the input or output buffers provided by the caller.

Chapter 4. Parsing XML documents 17

|
|

|

Metadata records

Some records contain metadata related to the parsing process. These records are

discussed below.

Buffer info record

Because the data stream that the z/OS XML parser generates in the output buffer

consists of one or more groups of records, each group always begins with the

buffer info record - a record containing metadata about the parsed data stream

contained in the current output buffer. This record includes the length of the buffer

used by the record group and flags indicating the characteristics of the data stream.

The following is the structure for the buffer info record, including the record header:

 Table 4. Buffer info record structure

+0 record type flags reserved

+4 record length

+8 datastream options

+C parse status reserved

+10 buffer length used

+14

+18 offset to error record

+20

This record is not allowed to span output buffers, so the continuation flag in the

record flags field of the buffer header will always be zero. The datastream options

contain a flag indicating whether or not StringIDs are in use, plus some of the flags

from the feature flags parameter on the z/OS XML parser init call. These flags

indicate some characteristic of the data in the parsed data stream. The full list of

flags indicate:

v StringIDs are in effect

v Comments are stripped (GXLHXEC_FEAT_STRIP_COMMENTS)

v White space is being tokenized (GXLHXEC_FEAT_TOKENIZE_WHITESPACE)

v Returning CDATA as CHARDATA (GXLHXEC_FEAT_CDATA_AS_CHARDATA)

v Validating parser is enabled (GXLHXEC_FEAT_VALIDATE)

v Source offsets are enabled (GXLHXEC_FEAT_SOURCE_OFFSETS)

v Full end tag feature is enabled (GXLHXEC_FEAT_FULL_END)

Notes:

1. The GXLHXEC_FEAT* flags in above parentheses are defined in gxlhxec.h for

C/C++ callers and GXLYXEC for assembler callers. For assembler callers,

remove the ″GXLH″ prefix from the constant names.

2. The buffer info record is mapped out in gxlhxeh.h for C/C++ callers and

GXLYXEH for assembler callers.

The ″parse status″ field is another set of flags that indicate whether unresolved

external references are present in this particular buffer.

The ″buffer length used″ field indicates the portion of the output buffer consumed by

the group of records represented by this buffer info record. If no buffers are

spanned during the parse process, there will be only one buffer info record present

in the output buffer, representing a single group of records. If buffers are spanned,

18 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|

|

|

|
|
|

|
|

|
|
|
|

there may be several record groups, each with corresponding buffer info records

present in the output buffer. The number of record groups and buffer info records

depends on how the caller manages the buffers that are passed to the parser. See

“Spanning buffers” on page 28 for more information.

The ″error record offset″ field indicates the offset from the beginning of the buffer

info record to the beginning of the error info record. If this offset is zero, there is no

error record present in the group of records represented by the buffer info record.

Error info record

The error info record is placed in the parsed data stream whenever a parsing error

is detected. The offset to the error from the start of the document, along with the

return and reason code generated by the z/OS XML parser when the error was

encountered, are kept in a field of the error info record. Here is the structure of the

record, including the record header:

 Table 5. Error info record structure

+0 record type flags reserved

+4 record length

+8 return code

+C reason code

+10 offset of the error from the start of the document

+14

Note: The error info record is mapped out in gxlhxeh.h for C/C++ callers, and

GXLYXEH for assembler callers.

For information on error codes and how to use them, see “Using return and reason

codes” on page 33.

Aux info record

When the source document offsets feature

(GXLHXEC_FEAT_SOURCE_OFFSETS) is selected, a new information record is

inserted in the output buffer. This record has the following structure:

 Table 6. Aux info record

+0 record type flags reserved

+4 record length

+8 aux flags information type

+C -varied information-

The record values are defined as follows:

Record header

This is the standard record header of all records in the data model. The

record type is XEC_TOK_AUX_INFO.

Aux flags

These flags provide information about the form of the data in the rest of the

record:

v XEH_AUX_LONG_VALUE - This flag is only used in records which

contain values which can vary in size. This bit will be OFF if the record

contains integer values that are 4 bytes in length. The bit will be ON if

Chapter 4. Parsing XML documents 19

|
|
|
|

|
|
|

|
|

|

|
|
|

||

||||

||

|||

||
|
|

|
|
|

|
|
|

|
|
|

the record contains values that are 8 bytes in length. Any value or record

length fields in the record such as the record length in the header will

always be 4 bytes no matter what the value of this bit is.

All offset values which are under 4GB-1 in magnitude will be represented

as a 4 byte value in the data stream and the XEH_AUX_LONG_VALUE

flag will be OFF. When an offset is encountered which exceeds 4 GB,

then all offset records from that point on will be represented as 8 byte

values in the data stream and the XEH_AUX_LONG_VALUE will be set

ON.

v AUX_ENTITY - This is set for information records that are generated

from entities.

Information type

This value identifies what information is contained in the record. See on

page 20 for details on the different types.

-varied information-

The contents of the additional information will depend on the information

type and flags. For offset records, this will contain either a 4 or an 8 byte

value which represents the offset of the particular structure from the

beginning of the document. It will be 4 bytes if the

XEH_AUX_LONG_VALUE bit flag bit is OFF in the header. It will be 8 bytes

if the XEH_AUX_LONG_VALUE bit flag is ON in the header.

Information types:

XEC_OFFSET_START_STARTTAG

This is the offset of the ‘<’ at the beginning of an XML start tag. This record

occurs in the datastream immediately preceding the

XEC_TOK_START_ELEM .

XEC_OFFSET_END_STARTTAG

This is the offset of the ‘>’ at the end of an XML start tag. This record

occurs in the datastream immediately after the last

XEC_OFFSET_END_ATTRVALUE, if there are attributes, or the

XEC_OFFSET_END_STARTTAGNAME record if there are no attributes.

XEC_OFFSET_END_STARTTAGNAME

This is the offset to the end of the XML start name qname. This record

occurs in the datastream immediately following the

XEC_TOK_START_ELEM.

XEC_OFFSET_START_ATTRVALUE

This is the offset of the beginning quote of the attribute value. This record

occurs in the datastream immediately preceding the

XEC_TOK_ATTR_VALUE.

XEC_OFFSET_END_ATTRVALUE

This is the offset of the ending quote of the attribute value. This record

occurs in the datastream immediately after the XEC_TOK_ATTR_VALUE.

XEC_OFFSET_START_COMMENT

This is the offset of the ‘<’ at the beginning of an XML comment. This

record occurs in the datastream immediately preceding the

XEC_TOK_COMMENT.

XEC_OFFSET_END_COMMENT

This is the offset of the ‘>’ at the end of an XML comment. This record

occurs in the datastream immediately following the XEC_TOK_COMMENT.

20 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

XEC_OFFSET_START_CDATA

This is the offset of the ‘<’ at the beginning of an XML CDATA. This record

occurs in the datastream immediately preceding the

XEC_TOK_START_CDATA.

XEC_OFFSET_END_CDATA

This is the offset of the ‘>’ at the end of an XML CDATA. This record occurs

in the datastream immediately following the XEC_TOK_END_CDATA.

XEC_OFFSET_START_PI

This is the offset of the ‘<’ at the beginning of an XML PI. This record

occurs in the datastream immediately preceding the XEC_TOK_PI.

XEC_OFFSET_END_PI

This is the offset of the ‘>’ at the end of an XML PI. This record occurs in

the datastream immediately following the XEC_TOK_PI.

XEC_OFFSET_START_XMLDECL

This is the offset of the ‘<’ at the beginning of an XML Declaration. This

record occurs in the datastream immediately preceding the

XEC_TOK_XML_DECL.

XEC_OFFSET_END_XMLDECL

This is the offset of the ‘>’ at the end of an XML Declaration. This record

occurs in the datastream immediately following the XEC_TOK_XML_DECL.

XEC_OFFSET_START_ENDTAG

This is the offset of the ‘<’ at the beginning of an XML end tag. This record

occurs in the datastream immediately preceding the

XEC_TOK_END_ELEM.

XEC_OFFSET_END_ENDTAG

This is the offset of the ‘>’ at the end of an XML end tag. This record occurs

in the datastream immediately following the XEC_TOK_END_ELEM.

XEC_OFFSET_START_DTD

This is the offset of the ‘<’ at the beginning of an XML DOCTYPE

declaration. This record occurs in the datastream immediately preceding the

XEC_TOK_DTD_DATA.

XEC_OFFSET_END_DTD

This is the offset of the ‘>’ at the end of an XML DOCTYPE declaration.

This record occurs in the datastream immediately following the

XEC_TOK_DTD_DATA.

XEC_OFFSET_START_NSVALUE

This is the offset of the quote at the beginning of an XML namespace

declaration value. This record occurs in the datastream immediately

preceding the XEC_TOK_NS_DECL.

XEC_OFFSET_END_NSVALUE

This is the offset of the quote at the end of an XML namespace declaration

value. This record occurs in the datastream immediately following the

XEC_TOK_NS_DECL.

Entities and default XML structures

If the records are inserted in the output stream via XML entity replacement or

default generation, then offset information records will be generated, and the varied

information field will represent the offset of the ‘;’ character of the entity reference in

the main document or the ‘>’ character of the element which contains the default

attribute. Also, all information records generated from entities will have the entity

flag bit set ON.

Chapter 4. Parsing XML documents 21

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

Default XML structures include any of the following:

Attributes

These can be generated from DTDs or schemas.

Namespace declarations

These can be generated from DTDs or schemas.

Start tags and end tags

These can be generated from schemas only.

Content

These can be generated from schemas only and only within default start

and end tags.

Interactions with other features

The source offsets feature can interact with other features. The following is a list of

those features, along with an explanation of the interaction:

Strip comments (GXLHXEC_FEAT_STRIP_COMMENTS)

When source offsets are enabled, comment records will continue to be

stripped. However, the source offset information records for comment

markup will continue to be inserted into the output.

CDATA as char data (GXLHXEC_FEAT_CDATA_AS_CHARDATA)

When source offsets are enabled, CDATA will continue to be outputted as

character records. However, the source offset information records for

CDATA markup will continue to be inserted into the output. In this case, the

order of the information records will not be in document order in relation to

the data in the character records.

Validation

Information records will be created when using the validating parser as well

as the non-validating parsing.

Extended end element record

If the XEC_FEAT_FULL_END feature is enabled, then the XEC_TOK_END_ELEM

record will be generated as a Record Form 3 instead of Record Form 0. Here are

the contents of the record when StringIDs are disabled:

 Table 7. Extended end element record (no StringID)

+0 record type flags reserved

+4 record length

+8 length of Lname

+C value of Lname

+10

+14 length of URI

+18 value of URI

+1C

+20 length of prefix

+24 value of prefix

+28

Here are the contents of the record when StringIDs are enabled:

22 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|

||

||||

||

||

||

|

||

||

|

||

||

|
|
|

Table 8. Extended end element record (StringID)

+0 record type flags reserved

+4 record length

+8 StringID of Lname

+C StringID of URI

+10 StringID of prefix

Default attribute flag

When an Attribute Name record is generated from a definition in the DTD or

schema, a flag bit will be set in the record header flags field. This bit will indicate

that the attribute was generated from the DTD or schema.

31- and 64-bit compatibility

The length and offset fields outlined in the metadata records above are all 64-bit

values, with associated 31-bit versions to provide 31- and 64-bit compatibility.

Assembler callers in 64-bit mode can pass in buffer lengths greater than 2 GB to

GXL4PRS. As a result, the z/OS XML parser may have values in length and offset

fields that are much greater than 2 GB. 31-bit assembler callers are limited to 2 GB,

and should reference the XEH_*31 fields in order to use the proper value. The

XEH_*31 fields are in GXLYXEH . These fields can also be found in gxlhxeh.h for

C/C++ callers.

Note: The offset of the error from the start of the document, when the input

document is segmented and the sum of the segment sizes is greater than 2

GB, may be a 64-bit value even though the caller may only be 31-bit.

Length/Value pairs

Strings that have been parsed from the original XML document (qualified name

components, character data, comment text, etc.) are, by default, represented by

length/value pairs. This length indicates the actual length of the text represented by

the pair. There are no string terminators, such as a NULL character used to indicate

the end of a piece of text. Length fields may be zero, indicating that a particular

string is not present (for example, the namespace string length for an element that

is not namespace qualified will be zero), and the value length will also be zero. In

the absence of a String Identifier exit (see “String Identifiers”), all strings in the

parsed data stream are represented by a length/value pair.

String Identifiers

This section provides information on the String Identifiers (StringIDs) that can be

passed back to the caller by the z/OS XML parser.

Note: The StringID exit is an optional service that the caller may supply. If there is

no StringID exit available, the z/OS XML parser will simply return the actual

length/value pairs for the strings representing localnames, URIs, and prefixes

in the data stream it returns to the caller. See “Length/Value pairs” for more

discussion on this topic.

Chapter 4. Parsing XML documents 23

||

||||

||

||

||

||
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

StringIDs are 4 byte numeric values that are used to represent a given string that is

returned from the z/OS XML parser to the caller. StringIDs can be used to represent

the localname (lname), namespace prefix, and namespace URI for the following

items:

v element names

v attribute names

v namespace declarations

These are the strings in the parsed data stream that are most likely to be repeated.

StringIDs are provided by a caller-supplied service exit that the z/OS XML parser

invokes any time it encounters certain strings that it hasn’t seen before. See the

description of the symbol service exit (“GXLSYM31 (GXLSYM64) — StringID

service” on page 109, “GXLPSYM31 (GXLPSYM64) — StringID handler” on page

76) for more details.

Once the z/OS XML parser receives a StringID for a given string, it will record the

ID, and return it in place of the actual lname, namespace prefix, or namespace URI

string in the parsed data stream that is returned to the caller. The use of StringIDs

reduces the size of the parsed data stream especially for documents with

namespace references. URIs that would normally be returned for every element and

attribute name can be represented in 4 bytes instead of their text that is generally

much longer.

Record forms

The general form of a record created in the parsed data stream contains a fixed

header section, followed by zero or more values. These values may consist of

either a length and value pair, or a single StringID value, depending on the type of

data being represented, and the data stream options that are in use. StringIDs are

used to represent attribute and element name components - the lname, namespace

URI, and namespace prefix for start element and attribute name records, and the

namespace prefix and URI for namespace declarations. When StringIDs are not in

use, these name components are represented by length and value pairs, just like

other types of data returned in the records that make up the parsed data stream.

Each record begins with a fixed section that contains the record type, a set of flags,

and the length of the entire record. This is followed by the values relevant to the

specific type of information represented by the record. In most cases, these values

represent an individual item parsed from the XML document. The exceptions are

the metadata records (the buffer info and error records), which contain information

describing the input and output streams, but which are not directly related to a

specific item from the XML document.

The record length field is the value that must be used to navigate from one record

to the next in the parsed data stream. Although the lengths and types of the

individual fields of a record are explained below, the caller must not use these to

calculate the location of subsequent records.

The data stream options contained in the buffer info record of each output buffer,

and the token types of each record within those buffers uniquely identify the type of

information contained in each record. This type information is reflected in the record

form used for each record. These structures are defined in the header file

“gxlhxeh.h (GXLYXEH) - mapping of the output buffer record” on page 171. For

assembler callers, they are defined in GXLYXEH. Also, see Table 15 on page 26 for

a description of the various record types.

24 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|
|
|

|
|
|
|
|
|
|

Record form 0

This is a simple record that is used to describe items in the output stream that have

no associated value. It consists of only a record header.

 Table 9. Record form 0

record type flags reserved

record length

Record form 1

These records describe items in the output stream that have one associated value -

most often a character string.

 Table 10. Record form 1

record type flags reserved

record length

value 1 length

bytes 1 to n of value 1

These records are used to return things like character data to the caller. StringIDs

are never used in these records.

Record form 2

These records describe items in the output stream that contain two values. There

are two variations of this record form, depending on whether or not StringIDs are

being used. Namespace declaration records are examples of these. In the case

where StringIDs are provided by the caller through the GXLSYM31 (GXLSYM64)

StringID service exit, the record form looks like the following:

 Table 11. Record form 2 (with StringID)

record type flags reserved

record length

StringID for value 1

StringID for value 2

When StringIDs are not in use, values one and two are represented as conventional

length and value pairs:

 Table 12. Record form 2 (without StringID)

record type flags reserved

record length

value 1 length

bytes 1 to n of value 1

value 2 length

bytes 1 to n of value 2

There are other form 2 records that will always use length and value pairs,

regardless of whether or not StringIDs are available. Processing instructions are an

example of this kind of record, since the target and value of a processing instruction

are always returned as strings represented by length and value pairs.

Chapter 4. Parsing XML documents 25

Record form 3

Records of this form are for parsed data that is described by 3 separate values.

These records include those for element and attribute names, which can contain

either StringIDs or length and value pairs, as well as XML declarations, which are

always represented by the length and value pair version of this record form. Here is

what the StringID based version of this form looks like:

 Table 13. Record form 3 (with StringID)

record type flags reserved

record length

StringID for value 1

StringID for value 2

StringID for value 3

The following is the length and value pair version of the record form:

 Table 14. Record form 3 (without StringID)

record type flags reserved

record length

value 1 length

bytes 1 to n of value 1

value 2 length

bytes 1 to n of value 2

value 3 length

bytes 1 to n of value 3

Field values by record type

The following is a complete listing of the descriptions of values for each record type.

The actual type of certain values will differ, depending on the use of StringID.

 Table 15. Field values by record type

Record type

Record

form

Contains

StringIDs

Value

number Value description

GXLHXEC_TOK_BUFFER_INFO Not

applicable

Not

applicable

- See “Buffer info

record” on page 18

GXLHXEC_TOK_ERROR Not

applicable

Not

applicable

- See “Error info record”

on page 19

GXLHXEC_TOK_XML_DECL 3 - 1 length and value for

version

2 length and value for

encoding

3 length and value for

standalone

26 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Table 15. Field values by record type (continued)

Record type

Record

form

Contains

StringIDs

Value

number Value description

GXLHXEC_TOK_START_ELEM 3 No 1 length and value of

Lname

2 length and value of

namespace URI

3 length and value of

namespace prefix

GXLHXEC_TOK_START_ELEM 3 Yes 1 StringID of Lname

2 StringID of namespace

URI

3 StringID of namespace

prefix

GXLHXEC_TOK_END_ELEM 0 - - none

GXLHXEC_TOK_END_ELEM (only

used when

XEC_FEAT_FULL_END feature is

enabled)

3 No 1 length and value of

Lname

2 length and value of

namespace URI

3 length and value of

namespace prefix

GXLHXEC_TOK_END_ELEM (only

used when

XEC_FEAT_FULL_END feature is

enabled)

3 Yes 1 StringID of Lname

2 StringID of namespace

URI

3 StringID of namespace

prefix

GXLHXEC_TOK_ATTR_NAME 3 No 1 length and value of

Lname

2 length and value of

namespace URI

3 length and value of

namespace prefix

GXLHXEC_TOK_ATTR_NAME 3 Yes 1 StringID of Lname

2 StringID of namespace

URI

3 StringID of namespace

prefix

GXLHXEC_TOK_ATTR_VALUE 1 - 1 length and value of

attribute value

GXLHXEC_TOK_NS_DECL 2 No 1 length and value of

namespace prefix

2 length and value of

namespace URI

GXLHXEC_TOK_NS_DECL 2 Yes 1 StringID of namespace

prefix

2 StringID of namespace

URI

GXLHXEC_TOK_CHAR_DATA 1 - 1 length and value of

character data

Chapter 4. Parsing XML documents 27

|

Table 15. Field values by record type (continued)

Record type

Record

form

Contains

StringIDs

Value

number Value description

GXLHXEC_TOK_START_CDATA 0 - - none

GXLHXEC_TOK_END_CDATA 0 - - none

GXLHXEC_TOK_WHITESPACE 1 - 1 length and value of a

white space string

GXLHXEC_TOK_PI 2 - 1 length and value of PI

target

2 length and value of PI

text

GXLHXEC_TOK_COMMENT 1 - 1 length and value of

comment

GXLHXEC_TOK_DTD_DATA 3 - 1 length and value of

root element name

2 length and value of

public identifier

3 length and value of

system identifier

GXLHXEC_TOK_UNRESOLVED_REF 1 No 1 length and value of

entity name

GXLHXEC_TOK_AUX_INFO

The above token names are for the C/C++ callers. Assembler callers use token

names without the ″GXLH″ prefix.

Spanning buffers

The z/OS XML parser is built to handle documents that may be larger than any

single buffer the caller can pass to the z/OS XML parser. When buffers need to be

spanned (because either the text in the input buffer is consumed, or the parsed

data stream fills the output buffer), the z/OS XML parser returns a conditional

success return code (XRC_WARNING), and a reason code that indicates which

buffer caused the spanning condition. The caller then should handle the spanning

buffer, and can optionally manage the other buffer as well.

For example, if the z/OS XML parser indicates that the output buffer is full on a

return to the caller after saving and refreshing the output buffer pointers, the caller

may choose to refill the input buffer with more text to parse before calling the parse

service again to continue the parse process. This will require either moving the

unparsed text to the front of the current input buffer, or to a new input buffer, and

filling in the remainder with more unparsed text. In this way, the caller potentially

reduces the number of times the z/OS XML parser has to return to the caller

because of a spanned buffer during the parse of a document.

The z/OS XML parser will advance the input and output pointers to the byte after

the last byte that the parser processed in each buffer. Similarly, it will update the

bytes_left parameters to indicate the number of unprocessed or unused bytes in

each buffer. The caller must use the reason code returned from the z/OS XML

parser to tell which buffer must be handled and which buffer may optionally be

handled. The caller cannot rely on either the address values or the bytes_left values

to tell which buffer has spanned.

28 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|

Splitting records

When building the parsed data stream in the output buffer, the z/OS XML parser will

always ensure that all records are fully formed. Since some records represent items

from the document that may be very long (eg. CDATA, white space, or comments),

certain types of records are deemed to be splittable. In these cases, the z/OS XML

parser will always ensure that the header for the split record is complete, but the

value(s) in the record will only contain a part of the item being parsed. A flag in the

record header will be set to indicate that the record is continued. Split records may

span several output buffers if they are very long, or if the output buffers are

relatively short.

Records that represent items of fixed length or that contain multiple values are

mostly deemed to be non-splittable. If there is no room in the current output buffer

to hold them, the entire record will be placed in the next output buffer. These

records represent things like start element tags, attribute names, namespace

declarations, or end element tags.

Note: The one exception to this rule are processing instructions (PIs). Because the

text associated with PIs can be arbitrarily long, they are permitted to split.

If the z/OS XML parser determines that an output buffer is spanned, and requests

another buffer to continue processing, the caller needs to return a new buffer large

enough to contain a minimum set of complete data. If the item that needs to be

placed at the beginning of this new buffer is a non-splittable record that doesn’t fit,

the z/OS XML parser will return with a return code of XRC_FAILURE, and a reason

code of XRSN_BUFFER_OUTBUF_SMALL.

Splitting multibyte characters

When a caller segments an input stream for passing to the z/OS XML parser in

several parts, the possibility exists that the end of an input buffer falls in the middle

of a multibyte character. When this happens, the z/OS XML parser will detect the

partial character, and buffer up any bytes for that character from the current buffer

before returning to the caller for more input. When the next buffer of input arrives,

the z/OS XML parser will virtually prefix the saved bytes of the split character to the

beginning of the new buffer, and continue processing. This relieves the caller from

having to ensure that multibyte characters at the end of a buffer are complete

before calling the z/OS XML parser.

Processing DTDs

z/OS XML System Services will handle internal DTDs for the purpose of processing

entity declarations and default attribute value definitions. It only processes entity

declarations and default attribute values from the internal DTD. Processing

instructions that fall within the internal DTD will be returned to the caller, but no

other text from the DTD will be processed. The z/OS XML parser will return a DTD

record in the parsed data stream that contains the name of the root element, plus

the system and public literals that make up the identifier of any external subset. The

content of the internal subset is not returned to the caller.

Resolving entity references

Entities declared in the internal DTD will have all references to them in the root

element resolved. These references will have the text from the entity declaration

substituted for the reference, and there will be no other indications made in the

parsed data stream that an entity reference was present in the parsed document.

Chapter 4. Parsing XML documents 29

|
|
|
|
|
|
|
|

Unresolved entities are references to entity names that have no declaration in the

internal DTD. Unresolved entities in the root element are tolerated if there is an

external subset (standalone=″no″ in the XML declaration). In this case, a record of

type XEC_TOK_UNRESOLVED_REF is generated in the parsed data stream, with

the associated value being the name of the entity. When the document only has an

internal subset (standalone=″yes″), all unresolved entities are flagged as errors.

Namespace declarations

Namespace declaration records are placed in the parsed data stream between the

start and end element records for the elements that contain them. This is different

than in SAX-like environments where the namespace declaration events precede

the start element event for a given element.

Only the namespaces that have been declared within an element, including the

default namespace, will have entries in the parsed data stream for that element.

The caller may construct the complete namespace context for an element by

keeping a stack of namespace declarations as they are encountered in the parsed

data stream. Default namespaces will have URI values, but no associated prefix.

When a default namespace is unset, it is represented in the parsed data stream as

a namespace declaration record with no URI or prefix.

Note: The z/OS XML parser is an XML compliant namespace parser only, and not

an XML non-namespace parser. Because of this, if the z/OS XML parser parses a

document compliant with the XML non-namespace standard, it can attribute

namespace characteristics to an element that is not intended to contain

namespaces. This is because non-namespace documents can have a ″:″ in an

element structure that does not actually indicate a namespace. Thus, if

non-namespace documents are being parsed, the resulting parsed data stream may

not match the expected parsed data stream or the parser may flag the document as

erroneous.

Using the z/OS XML parser in a multithreaded environment

The z/OS XML parser can be called from multiple work units (threads/tasks or

SRBs) to parse multiple documents at the same time, provided that each parse

utilizes a unique Parse Instance Memory Area (PIMA). Multiple work units must not

utilize the same PIMA simultaneously, or the z/OS XML parser will behave

unpredictably. As long as the invoker has a separate PIMA that has been initialized

by the z/OS XML parser for each document being processed, multiple documents

can be handled simultaneously. A caller may choose to preallocate a pool of PIMAs

to be used for parse requests. It is the responsibility of the caller to allocate the

PIMA in a subpool that will not be cleaned up while the PIMA is in use. Subpools

tied to the job step task are recommended.

30 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Chapter 5. Additional usage considerations

This chapter provides additional usage information for the z/OS XML parser. The

following topics are discussed:

v “Recovery considerations”

v “Encoding support”

v “Managing memory resources” on page 32

v “Using return and reason codes” on page 33

Recovery considerations

z/OS XML provides an ARR recovery routine. This recovery routine can be turned

on through an initialization option when invoked through the assembler API. For

callers of the C/C++ parse API (gxlpParse), when running in Language

Environment, the ARR recovery routine is provided by default in most cases. For

more information on the ARR recovery routine, see “ARR recovery routine” on page

114.

Recovery can also be supplied by the caller. Callers who want to clean up z/OS

XML parser resources should invoke GXL1TRM (GXL4TRM), the parser termination

service, either when the parse completes or if an unexpected error occurs during

the parse. The termination service will cause all secondary storage to be freed. It is

up to the caller to free the PIMA storage (see “Managing memory resources” on

page 32 for more information).

Encoding support

z/OS XML System Services supports several code pages. The caller must supply

the CCSID of the encoding for the document at the time the z/OS XML parser is

initialized. For a complete listing of the supported code pages, see Appendix L,

“Supported encodings,” on page 253. The following table lists more commonly used

code pages with their associated CCSID values, along with the equates provided

for the caller.

 Table 16. Code page CCSID values

Code page CCSID Equate Names

UTF-8 1208 GXLHXEC_ENC_UTF_8

UTF-16 (big endian) 1200 GXLHXEC_ENC_UTF_16

EBCDIC/IBM-037 37 GXLHXEC_ENC_IBM_037

EBCDIC/IBM-1047 1047 GXLHXEC_ENC_IBM_1047

Assembler callers use equate names without the ″GXLH″ prefix.

The query service provides a query of a document’s XML declaration so that a

caller can determine if the document has to first be converted to one of the

supported encodings before parsing begins. This function will return a parsed

record for the XML declaration that contains, among other things, a Coded

Character Set IDentifier (CCSID) which can be passed to an encoding conversion

service, such as Unicode Services, to put the document in a form that the z/OS

XML parser can process. See the description for “gxlpQuery — query an XML

document” on page 49 or “GXL1QXD (GXL4QXD) — query an XML document” on

page 93 for more information.

© Copyright IBM Corp. 2008 31

|

EBCDIC encoding considerations

There are a couple of EBCDIC encoding considerations to deal with when trying to

parse an XML file on z/OS. The first involves the character set differences between

EBCDIC and Unicode. Because only a small number of Unicode characters can be

represented in EBCDIC, when an EBCDIC encoded XML document is parsed, any

Unicode character entity in the parsed document that does not have an EBCDIC

value is converted into a dash.

Secondly, if the EBCDIC XML document has been created or modified on a z/OS

system, then the line ending character is typically a NL (x’15’) character. This is

commonly associated with the Unicode NEL character (x’85’). For EBCDIC code

page documents, the z/OS XML parser will accept XML 1.0 documents that have a

NL as a line termination character, and will normalize all line-endings to EBCDIC NL

(NEL). However, because these documents are non-compliant, they may not be

accepted by parsers on other platforms. In general, EBCDIC is not a portable

encoding so IBM does not recommend using EBCDIC for XML documents going

between platforms or on the Internet.

Note: For XML 1.1 documents, NL is legitimate and the z/OS XML parser is

compliant in processing it as such.

Managing memory resources

The z/OS XML parser processes a document using memory resources that are

provided by the caller. This storage is passed from caller to z/OS XML parser in the

form of a Parse Instance Memory Area (PIMA). This required data area is used by

the z/OS XML parser to suballocate a call stack, control blocks, and the tables and

trees that are used to hold assorted document-specific information for the document

being parsed. The environment created by the z/OS XML parser in this memory

area completely describes the context of a given document parse.

A memory allocation exit is supported by the z/OS XML parser so that the caller can

provide a pair of allocation/deallocation services. The allocation service will be

called by the z/OS XML parser in the event that a given document causes the z/OS

XML parser to exhaust the PIMA. For performance reasons, it is best if the PIMA

provided by the invoker is large enough that this exit is not used. However, the exit

gives the z/OS XML parser a means to complete processing of a document in the

event that the memory area provided at initialization time is too small. This exit is

only used to extend the PIMA, and is not used in any way to manage input or

output buffers.

The deallocation service will be called by the z/OS XML parser to free the memory

extension created by the allocation service. The deallocation service will never free

the original PIMA storage.

For callers that do not provide a memory allocation exit, the z/OS XML parser

provides default routines to allocate and free memory. The z/OS XML parser also

provides an option at initialization time allowing the caller to specify how the z/OS

XML parser’s default routine allocates memory. This feature should be specified

when PIMAs are used on multiple tasks, in order to prevent task termination from

causing storage extents to be freed before the z/OS XML parser is done using

them. Normally, z/OS XML parser will allocate memory at the task level. However,

when the feature is specified, the z/OS XML parser will allocate memory at the Job

Step Task (JST) level instead.

32 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|
|
|
|
|
|

|
|

In both cases, the caller is assuming the responsibility to call GXL1TRM

(GXL4TRM) in the event the z/OS XML parser abends and the caller’s recovery

gets control.

When no memory allocation exit is provided, the subpool used will be as follows:

v If running in SRB or cross memory mode, subpool 129 will be used. This is JST

related and cannot be freed by unauthorized callers. The key will be the same as

the key at the time the z/OS XML parser is invoked.

v If running in task mode (PSATOLD not zero), with

PRIMARY=SECONDARY=HOME, then the subpool chosen will depend on the

authorization state of the caller and on the specification of the

XEC_FEAT_JST_OWNS_STORAGE feature on the GXL1INI (GXL4INI) call. If

the caller is running in key 0-7 or supervisor state, they will be considered

authorized.

– Authorized and JST requested — subpool 129

– Authorized and JST not requested — subpool 229

– Unauthorized and JST requested — subpool 131

– Unauthorized and JST not requested — subpool 0

Note: If running on a subtask which is sharing subpool 0, then this storage

will be owned by the task that owns subpool 0.

These choices of subpool will eliminate the possibility of the z/OS XML parser

running in an authorized state while using problem key storage which could be

freed and reallocated.

Using return and reason codes

The z/OS XML parser API services provide a return and reason code to indicate the

success or failure of the parse process. The return code is a fullword value that

indicates the class of the return status, and takes on one of the following values:

v Success (XRC_SUCCESS)

v Warning (XRC_WARNING) - parsing is successful, but incomplete. This is most

often caused by the z/OS XML parser reaching the end of either the input or the

output buffer.

v Failure (XRC_FAILURE) - a terminating failure has occurred. The return

information passed back in the parameters, such as the numbers of bytes left in

the input and output buffers, are valid. The extended diagnostic information may

also contain additional problem determination information that is of use.

v Not-well-formed (XRC_NOT_WELL_FORMED) - a terminating failure has

occurred because the input document is not well formed. As with the failure case

above, all return information passed back through the parameters and extended

diagnostic area is valid.

v Fatal (XRC_FATAL) - a terminating error has occurred. None of the return

information is valid.

v Not valid (XRC_NOT_VALID) - The document is not valid according to the

specified schema.

In addition to the return code describing the class of error, the reason code provides

more detail. The reason code is only valid when the return code is not

XRC_SUCCESS. When a service of the z/OS XML parser API returns

XRC_SUCCESS, the reason code may have any random value.

Chapter 5. Additional usage considerations 33

|
|
|
|

|
|

The reason code itself is a fullword value, but is made up of two halfwords. The

upper halfword is reserved for a module identifier that is used by IBM Service to

isolate the source of the problem, and the lower halfword indicates the reason why

the parse process was paused or terminated. When checking the value of the

reason code, the caller must be sure to AND the reason code with the reason code

mask (XRSN_REASON_MASK) before testing the value. The declaration of

XRSN_REASON_MASK and all of the defined reason code values are contained in

the GXLYXR macro. A list of the reason codes and their descriptions can be found

in Appendix B, “Reason Codes Listed by Value,” on page 119.

34 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Chapter 6. z/OS XML parser API: C/C++

This chapter lists the C/C++ callable services interface used for the z/OS XML

parser.

Setting XPLINK compiler option

If the calling application is compiled without XPLINK and wants to use z/OS XML

System Services, the calling application must set the following option:

export _CEE_RUNOPTS="XPLINK(ON)"

If this option is not set, an error will occur once the application is run.

For more information on the XPLINK compiler option, see z/OS XL C/C++ User’s

Guide.

Support for the Metal C compiler option

Support is provided for callers who wish to use the Metal C compiler option. The

same APIs available to the standard C and C++ callers are also available to Metal

C users, with the following restrictions:

v All parameters must be variables.

v The functions do not return values.

Note: Return codes and reason codes are still returned through the parameter

lists.

For more information on how to use the Metal C compiler option, see Metal C

Run-time Library Guide and Reference.

Where to find the header files, DLLs and side decks

Header files for non-Metal C can be found in the z/OS UNIX directory

/usr/include. Header files for Metal C can be found in the z/OS UNIX directory

/usr/include/metal. If you are not using z/OS UNIX, then the non-Metal C header

files can be found in the PDSE SYS1.SIEAHDRV.H . There are no Metal C header

files for the batch environment.

DLLs for non-Metal C can be found in the z/OS UNIX directory /usr/lib. If you are

not using z/OS UNIX, then the DLLs can be found in SYS1.SIEALNKE . There are

no DLLs for Metal C.

Side decks for non-Metal C can be found in /usr/lib. If you are not using z/OS

UNIX, then the side decks can be found in SYS1.SIEALNKE . There are no side

decks for Metal C.

Using the recovery routine

z/OS XML provides an ARR recovery routine to assist with problem determination

and diagnostics. In the C/C++ environment, the recovery routine is provided as the

default setting in most cases and will recover the code and collect dumps for most

abends that occur during a parse. For unauthorized C/C++ callers, an IEATDUMP

will be taken in data set userid.GXLSCXML.DYYMMDD.THHMMSS.DUMP, where

the userid is extracted from the task level ACEE if present or the address space

© Copyright IBM Corp. 2008 35

|
|

|
|
|

|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

http://publibz.boulder.ibm.com/epubs/pdf/cbcug170.pdf
http://publibz.boulder.ibm.com/epubs/pdf/cbcug170.pdf

ACEE, and where DYYMMDD is the date and THHMMSS is the time the dump was

taken. For authorized C/C++ callers, an SDUMPX will be taken into a system dump

data set. See “ARR recovery routine” on page 114 for more information.

In order to effectively use the recovery routine, you must set the following runtime

option: TRAP(ON,NOSPIE). If this runtime option is not set, unpredictable behavior

may result with regard to recovery.

z/OS XML XL C/C++ API

36 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|

gxlpControl — perform a parser control function

Description

This is a general purpose service which provides control functions for interacting

with the z/OS XML parser. The function performed is selected by setting the

ctl_option parameter using the constants defined in gxlhxec.h . These functions

include:

GXLHXEC_CTL_FIN

The caller has finished parsing the document. Reset the necessary

structures so that the PIMA can be reused on a subsequent parse, and

return any useful information about the current parse.

GXLHXEC_CTL_FEAT

The caller wants to change the feature flags. A XEC_CTL_FIN function will

be done implicitly.

Note: XEC_FEAT_JST_OWNS_STORAGE is not supported on

gxlpControl. Make sure that the feature flag is turned to the ″off″

state before calling gxlpControl to set the feature flag, otherwise the

gxlpControl request will fail.

GXLHXEC_CTL_LOAD_OSR

The caller wants to load and use an Optimized Schema Representation

(OSR) for a validating parse.

Note: finish-and-reset processing is performed by all operations available through

this control service.

Performance Implications

The finish-and-reset function allows the caller to re-initialize the PIMA to make it

ready to handle a new XML document. This re-initialization path enables the z/OS

XML parser to preserve its existing symbol table, and avoid other initialization

pathlength that’s performed by calling the initialization service. The reset features

function also allows the caller to re-initialize the z/OS XML parser as above and

allows the feature flags to be reset as well.

Syntax

 int gxlpControl (void * PIMA,

 int ctl_operation,

 void * ctl_data_p,

 int * rc_p,

 int * rsn_p);

Parameters

PIMA

Supplied parameter

Type: void *

The name of the Parse Instance Memory Area (PIMA which has been

previously initialized with a call to the initialization service.

ctl_operation

Supplied parameter

Type: int

gxlpControl

Chapter 6. z/OS XML parser API: C/C++ 37

|
|
|

|

||
|
|
|
|
|

|

|

The name of the parameter containing an integer value representing one of the

following operations:

GXLHXEC_CTL_FIN

This indicates that the caller wishes to end the current parse at the

current position in the XML document. The PIMA is re-initialized to allow

it to be used on a new parse request. To free up all resources

associated with the parse instance, the caller should use the

termination service.

GXLHXEC_CTL_FEAT

This indicates that the caller wishes to re-initialize the z/OS XML parser,

as with the reset-and-finish function as above and in addition, to reset

some of the feature flags used during the parse.

Note: The following feature flags are not supported by this service:

v GXLHXEC_FEAT_JST_OWNS_STORAGE

v GXLHXEC_FEAT_RECOVERY

v GXLHXEC_FEAT_VALIDATE

Make sure that these feature flags are turned to the OFF state

before calling this service to set the feature flags. If these

features need to be changed (for example, if switching between

validating and non-validating parses), the parse instance must be

terminated and re-initialized with the required feature settings.

GXLHXEC_CTL_LOAD_OSR

This indicates that the caller wants to load and use a given Optimized

Schema Representation (OSR) during a validating parse. This operation

will also cause the parser to perform reset-and-finish processing.

ctl_data_p

Supplied and returned parameter

Type: void *

The name of the parameter that contains the address of an area as defined by

ctl_operation:

GXLHXEC_CTL_FIN

This parameter must contain a pointer to where the service will store

the address of the diagnostic area, which is mapped by header file

gxlhxd.h . This provides additional information that can be used to

debug problems in data passed to the z/OS XML parser. The diagnostic

area resides within the PIMA, and will be overlaid on the next call to the

z/OS XML parser. If the caller does not wish receive diagnostic

information, the NULL value is used in place of the address of the

diagnostic area.

GXLHXEC_CTL_FEAT

This parameter must contain the address of a fullword (doubleword),

which is mapped by header file gxlhxft.h. See “gxlhxft.h (GXLYXFT) -

mapping of the control feature input output area” on page 174 for more

information on this header file.

The GXLHXFT_FEAT_FLAGS parameter is an input parameter to the API and

contains the value of feature flags to be used in the subsequent parse. It is

defined as follows:

gxlpControl

38 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

GXLHXEC_FEAT_STRIP_COMMENTS

This effectively strips comments from the document by not returning

any comments in the parsed data stream. Default: off.

GXLHXEC_FEAT_TOKENIZE_WHITESPACE

This sets the default token value for white space preceding markup in

the root element to an explicit white space value. Default: off – white

space is returned as character data.

GXLHXEC_FEAT_CDATA_AS_CHARDATA

This returns CDATA in records with a CHARDATA token type. The

content of these records may contain text that would normally have to

be escaped to avoid being handled as markup. Default: off.

GXLHXEC_FEAT_SOURCE_OFFSETS

This feature is used to include records in the parsed data stream which

contain offsets to the corresponding structures in the input document.

Default: off.

GXLHXEC_FEAT_FULL_END

This feature is used to expand the end tags to include the local name,

prefix and URI corresponding to the qname on the end tag. Default: off.

If none of the features are required, pass the name of a fullword field containing

zero. Do not construct a parameter list with a zero pointer in it.

The GXLHXFT_XD_PTR must contain the address of a fullword (doubleword)

where the service will store the address of the diagnostic area, which is

mapped by header file gxlhxd.h. This provides additional information that can be

used to debug problems in data passed to the z/OS XML parser. The diagnostic

area resides within the PIMA, and will be overlaid on the next call to the z/OS

XML parser.

GXLHXEC_CTL_LOAD_OSR

 This indicates that the caller wants to load and use a given Optimized

Schema Representation (OSR) during a validating parse. Once an OSR

has been loaded, it remains in use for all validating parse requests until a

different OSR is provided by calling this service again.

This parameter must contain the address of an area containing information

about the OSR to load. This area is mapped by gxlhxosr.h. See “gxlhxosr.h

(GXLYXOSR) - mapping of the OSR control area” on page 174 for more

information on the structures in this header. Also, see the usage notes

below for details about how the information in this area is used.

rc_p

Returned parameter

Type: int *

The name of the area where the service stores the return code.

rsn_p

Returned parameter

Type: int *

The name of the area where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

gxlpControl

Chapter 6. z/OS XML parser API: C/C++ 39

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|

|
|
|
|

|
|
|
|
|

|

|
|

||

|
|

Return and Reason Codes

On return from a call to this service, register 15 will contain the return code. The

return and reason code are both set as output parameters. The value of the reason

code is undefined when the return code is 0 (XRC_SUCCESS). Return and reason

codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) - defines the

return codes and reason codes” on page 173), and are dependent on the control

function specified by the caller. For reason code descriptions, also see Appendix B,

“Reason Codes Listed by Value,” on page 119.

Example

void * PIMA;

int ctl_operation = GXLHXEC_CTL_FIN;

void * diag_addr;

int rc_p, rsn_p;

gxlpControl(PIMA, ctl_operation, &diag_addr, &rc_p, &rsn_p);

void * PIMA;

int ctl_operation = GXLHXEC_CTL_FEAT;

GXLHXFT xft;

xft.XFT_FEAT_FLAGS = GXLHXEC_FEAT_STRIP_COMMENTS;

void * ctlData = (void*)&xft;

int rc_p, rsn_p;

gxlpControl(PIMA, ctl_operation, (void*)&ctlData, &rc_p, &rsn_p);

Usage notes

This callable service is mapped to GXL1CTL (GXL4CTL). Refer to“Usage notes” on

page 85 of GXL1CTL (GXL4CTL) for usage information.

gxlpControl

40 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|

|

gxlpInit — initialize the z/OS XML parser

Description

The gxlpInit callable service initializes the PIMA and records the addresses of the

caller’s system service routines (if any). The PIMA storage is divided into the areas

that will be used by the z/OS XML parser to process the input buffer and produce

the parsed data stream.

Performance Implications

The initialization of structures used by the z/OS XML parser in the PIMA is only

done once per parse and is therefore unlikely to affect performance. The caller may

choose to reuse the PIMA after each parse to eliminate the overhead of storage

allocation and the page faults that occur when referencing new storage. In this

case, a control operation is required to reset the necessary fields in the PIMA

before parsing can continue. For more information on the control operation, see

“gxlpControl — perform a parser control function” on page 37.

Syntax

 int gxlpInit (void * PIMA,

 long PIMA_LEN,

 int ccsid,

 int feature_flags,

 GXLHXSV sys_svc_vector,

 void * sys_svc_parm,

 int * rc_p,

 int * rsn_p);

Parameters

PIMA

Pointer to Parse Instance Memory Area (PIMA).

Type: void *

PIMA_Len

Length of PIMA

Type: long

The name of an area containing the length of the Parse Instance Memory Area.

This service validates the length of this area against a minimum length value.

The minimum length of the PIMA depends on whether or not validation will be

performed during the parse:

v GXLHXEC_NVPARSE_MIN_PIMA_SIZE (non-validating)

v GXLHXEC_VPARSE_MIN_PIMA_SIZE (validating)

ccsid

Supplied parameter

Type: Integer

The Coded Character Set IDentifier (CCSID) that identifies the document’s

character set. The CCSID value in this parameter will override any character set

or encoding information contained in the XML declaration of the document. A

set of CCSID constants for supported encodings has been declared in

GXLYXEC. See Appendix L, “Supported encodings,” on page 253 for a full list

of supported encodings.

feature_flags

Supplied parameter

gxlpInit

Chapter 6. z/OS XML parser API: C/C++ 41

|
|
|
|

|

|

Type: Integer

The name of the area that contains an integer value representing one or more

of the following z/OS XML parser features. OR these flags together as needed

to enable features. Choose any of the following:

v GXLHXEC_FEAT_CDATA_AS_CHARDATA - return CDATA in records with a

CHARDATA token type. The content of these records may contain text that

would normally have to be escaped to avoid being handled as markup.

v GXLHXEC_FEAT_FULL_END - expand the end tags to include the local

name, prefix and URI corresponding to the qname on the end tag.

v GXLHXEC_FEAT_JST_OWNS_STORAGE - allocate storage as Job Step

Task (JST) related instead of task related. See the “Usage notes” on page 88

below for more information.

v GXLHXEC_FEAT_RECOVERY - this option is used to turn on the recovery

routine.

Note: This option is only valid when using the Metal C compiler option.

v GXLHXEC_FEAT_SOURCE_OFFSETS - include records in the parsed data

stream which contain offsets to the corresponding structures in the input

document.

v GXLHXEC_FEAT_STRIP_COMMENTS - effectively strip comments from the

document by not returning any comments in the parsed data stream.

v GXLHXEC_FEAT_TOKENIZE_WHITESPACE - set the default token value

for white space preceeding markup within the context of the root element to

an explicit white space value. Use this value in conjunction with the special

xml:space attribute to determine how such white space gets classified.

v GXLHXEC_FEAT_VALIDATE - perform validation while parsing. See “Usage

notes” on page 88 for details of parsing with validation.

Note: By using the values of off (zero), W3C XML compliant output is

generated. Turning on options GXLHXEC_FEAT_STRIP_COMMENTS

and GXLHXEC_FEAT_CDATA_AS_CHARDATA will cause the output to

vary from standard compliance.
If none of the features are required, pass the name of a fullword field containing

zero. Do not construct a parameter list with a zero pointer in it.

sys_svc_vector

Supplied parameter

Type: GXLHXSV

The name of a structure containing a count of entries that follow and then a list

of 31 (64) bit pointers to system service routines. The GXLHXSV member

XSV_COUNT must have a value of 0 if no services are provided. For more

details on usage, see “Usage notes” on page 43. For more information on exit

routines, see the Chapter 8, “z/OS XML System Services exit interface” chapter.

sys_svc_parm

Supplied parameter

Type: void *

The name of the area which is passed to all system service exits. This provides

for communication between the z/OS XML parser caller and its exit routines.

Specify the name of a location containing 0 if no parameter is required for

communication.

gxlpInit

42 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|

|
|

|
|
|

|
|

|

|
|
|

|
|

|
|
|
|

|
|

rc_p

Returned parameter

Type: int *

The name of the area where the service stores the return code.

rsn_p

Returned parameter

Type: int *

The name of the area where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return and Reason Codes

On return from a call to this service, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return

and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) -

defines the return codes and reason codes” on page 173). For reason code

descriptions, also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

#include <stdlib.h>

#include <gxlhxec.h>

void * pima_p;

long pima_l;

GXLHXSV sysServiceVec;

int rc, rsn;

if (pima_p = malloc(GXLHXEC_MIN_PIMA_SIZE))

 { /* pima malloc succeeded */

 pima_l = GXLHXEC_MIN_PIMA_SIZE;

 sysServiceVec.XSV_COUNT = 0;

gxlpInit(pima_p, pima_l,

 GXLHXEC_ENC_UTF_8,

 GXLHXEC_FEAT_STRIP_COMMENTS,

 sysServiceVec,

 NULL,

 &rc, &rsn);

 } /* pima malloc succeeded */

Usage notes

System service exit routines cannot get control in the C/C++ environment. Instead,

they must be coded to the assembler interface.

Addresses passed in the system_service_vec parameter must point to the entry

point of the exit being supplied. To obtain the entry point address of a function in

31-bit NOXPLINK DLL compiled module, refer to the FDCB structure in z/OS

Language Environment Vendor Interfaces, SA22-7568. Otherwise, taking the

address of the function will return the entry point address.

This callable service is a direct map to the callable service GXL1INI (GXL4INI).

Refer to “Usage notes” on page 88 of GXL1INI (GXL4INI) for additional usage

information.

gxlpInit

Chapter 6. z/OS XML parser API: C/C++ 43

gxlpLoad — load a z/OS XML function

Description

Load a module that implements a z/OS XML function into storage.

Performance Implications

There are no performance implications.

Syntax

 int gxlpLoad (int function_code,

 void * function_data,

 int * rc_p,

 int * rsn_p)

Parameters

PIMA

Supplied parameter

Type: int

This parameter identifies the z/OS XML function to load. It is the name of an

integer value representing the following function:

XEC_LOD_VPARSE

The validating parse function

See gxlhxec.h for the list of function code constants.

function_data

Returned parameter

Type: void *

Specify a word of zeroes for this parameter.

rc_p

Returned parameter

Type: int *

The name of the area where the service stores the return code.

rsn_p

Returned parameter

Type: int *

The name of the area where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return and Reason Codes

On return from a call to this service, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return

and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) -

defines the return codes and reason codes” on page 173). For reason code

descriptions, also see Appendix B, “Reason Codes Listed by Value,” on page 119.

gxlpLoad

44 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|
|

|
|

|

||
|
|
|
|

|

|
|

||

|
|

|
|

|

|
|

||

|

|
|

||

|

|
|

||

|
|

|

|

|
|
|
|
|
|

Example

None.

Usage notes

This load step is not required for performing non-validating parsing. This operation

is only required when using the validating parser. The caller does have the option of

loading the load module for the specified function without using this service - either

through the z/OS LOAD macro (assembler interface), or by putting it in LPA or the

extended LPA. Both the LOAD macro and calls to this service are not allowed when

running in an SRB. The use of either interface must be performed in the task before

entering SRB mode.

If the required z/OS XML function is made available, either by LOADing the

executable load module for it or putting the load module in LPA, this service is not

required. Documentation on the LOAD macro can be found in z/OS MVS

Programming: Assembler Services Reference, Volume 2, and information on how to

load modules into LPA can be found in z/OS Initialization and Tuning Guide.

The load module associated with the function is as follows:

 Table 17. Load module for C/C++ parser

Function code Function performed Load module name

XEC_LOD_VPARSE Validating parser function GXLIMODV

gxlpLoad

Chapter 6. z/OS XML parser API: C/C++ 45

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

||

|||

|||
|
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2A981/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7607-13&DT=20080119082809
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2A981/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7607-13&DT=20080119082809
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2E151/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7591-06&DT=20080119071214

gxlpParse — parse a buffer of XML text

Description

The gxlpParse callable service parses a buffer of XML text and places the result in

an output buffer.

Performance Implications

Ideal performance will be obtained when the PIMA is sufficiently large to contain all

the needed data structures, and the input and output buffers are large enough to

process the entire XML document. During the parsing process, the z/OS XML

parser constructs persistent information in the PIMA that can be reused within a

parse instance. If the caller is going to process multiple documents that contain

similar sets of symbols (namespaces and local element and attribute names in

particular), then reusing the PIMA will improve performance during the processing of

subsequent documents. If this behavior is not required, the PIMA should be cleaned

up by calling the termination service and reinitialized by calling the initialization

service before using the PIMA for another parse request.

Syntax

 int gxlpParse(void * PIMA,

 int * option_flags,

 void ** input_buffer_addr,

 long * input_buffer_bytes_left,

 void ** output_buffer_addr,

 long * output_buffer_bytes_left,

 int * rc_p,

 int * rsn_p);

Parameters

PIMA

Supplied parameter

Type: void *

The name of the Parse Instance Memory Area (PIMA which has been

previously initialized with a call to the initialization service.

option_flags

Supplied parameter

Type: int *

This parameter must point to a word with the value 0.

input_buffer_addr

Supplied and returned parameter

Type: void **

The name of the area that contains the address of the buffer with the XML text

to parse. The z/OS XML parser updates this parameter to provide important

return information when control returns to the caller. See the “Usage notes” on

page 92 for details.

input_buffer_bytes_left

Supplied and returned parameter

Type: long *

gxlpParse

46 z/OS V1R10.0 z/OS XML User’s Guide and Reference

The name of the area that contains the number of bytes in the input buffer that

have not yet been processed. The z/OS XML parser updates this parameter to

provide important return information when control returns to the caller. See the

“Usage notes” on page 92 for details.

output_buffer_addr

Supplied and returned parameter

Type: void **

The name of the area that contains the address of the buffer where the z/OS

XML parser should place the parsed data stream. The z/OS XML parser

updates this parameter to provide important return information when control

returns to the caller. See the “Usage notes” on page 92 for details.

output_buffer_bytes_left

Supplied and returned parameter

Type: long *

The name of the area that contains the number of available bytes in the output

buffer. When the z/OS XML parser returns control to the caller, this parameter

will be updated to indicate the number of unused bytes in the output buffer. This

buffer must always contain at least a minimum number of bytes as defined by

the GXLHXEC_MIN_OUTBUF_SIZE constant, declared in header file gxlhxec.h.

This service will validate the length of this area against this minimum length

value.

rc_p

Returned parameter

Type: int *

The name of the area where the service stores the return code.

rsn_p

Returned parameter

Type: int *

The name of the area where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return and Reason Codes

On return from a call to this service, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return

and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) -

defines the return codes and reason codes” on page 173). For reason code

descriptions, also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

void * PIMA;

int * option_flags;

void * input_buffer_addr; int input_buffer_bytes_left;

void * output_buffer_addr; int output_buffer_bytes_left;

gxlpParse

Chapter 6. z/OS XML parser API: C/C++ 47

int rc, rsn;

gxlpParse(PIMA,

 option_flags,

 &input_buffer_addr, &input_buffer_bytes_left,

 &output_buffer_addr, &output_buffer_bytes_left,

 &rc, &rsn);

Usage notes

This callable service is a direct map to GXL1PRS (GXL4PRS). Refer to “Usage

notes” on page 92 of GXL1PRS (GXL4PRS) for usage information.

gxlpParse

48 z/OS V1R10.0 z/OS XML User’s Guide and Reference

gxlpQuery — query an XML document

Description

This service allows a caller to obtain the XML characteristics of a document. The

XML characteristics are either the default values, the values contained in an XML

declaration or a combination of both.

Performance Implications

There are no performance implications.

Syntax

 int gxlpQuery (void * work_area,

 long work_area_length,

 void * input_buffer,

 long input_buffer_length,

 GXLHQXD ** return_data,

 int * rc_p,

 int * rsn_p);

Parameters

work_area

Supplied parameter

Type: void *

The name of a work area. The work area must be aligned on a doubleword

boundary. If not on a doubleword boundary, results are unpredictable. See the

“Usage notes” on page 94 for additional details on the use of this area.

work_area_length

Supplied parameter

Type: long

The name of an area containing the length of the work area. The minimum

length of this area is declared as a constant GXLHXEC_MIN_QXDWORK_SIZE

in header file gxlhxec.h . This service validates the length of this area against

this minimum length value.

input_buffer

Supplied parameter

Type: void *

The name of an input buffer containing the beginning of the XML document to

process. See the “Usage notes” on page 94 for details.

input_buffer_length

Supplied parameter

Type: long

The name of an area containing the length of the input buffer.

return_data

Returned parameter

Type: GXLHQXD **

The pointer to where the service will return the address of the data which

describes the XML document characteristics. This return information will contain

values that are either extracted from the XML declaration or defaulted according

gxlpQuery

Chapter 6. z/OS XML parser API: C/C++ 49

to the XML standard. This return area is mapped by the header file gxlhqxd.h

(see “gxlhqxd.h (GXLYQXD) - mapping of the output from the query XML

declaration service” on page 172), and is located within the work area specified

by the work_area parameter. The caller must not free the work_area until it is

done referencing the data returned from this service.

rc_p

Returned parameter

Type: int *

The name of the area where the service stores the return code.

rsn_p

Returned parameter

Type: int *

The name of the area where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return and Reason Codes

On return from a call to this service, register 15 will contain the return code. The

return and reason code are both set as output parameters. The value of the reason

code is undefined when the return code has no associated reasons. Return and

reason codes are defined in header file gxlhxr.h (see “gxlhxr.h (GXLYXR) - defines

the return codes and reason codes” on page 173). For reason code descriptions,

also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

void * work_area;

long work_area_length = XEC_MEM_QIMA_SIZE;

void * input_buffer;

long input_buffer_length;

GXLHQXD * return_data;

int rc, rsn;

gxlpQuery(work_area, work_area_length, input_buffer, input_buffer_length, &return_data, &rc, &rsn);

Usage notes

This callable service is a direct map to GXL1QXD (GXL4QXD). Refer to “Usage

notes” on page 94 of GXL1QXD (GXL4QXD) for usage information.

gxlpQuery

50 z/OS V1R10.0 z/OS XML User’s Guide and Reference

gxlpTerminate — terminate a parse instance

Description

The gxlpTerminate callable service releases all resources obtained (including

storage) by the z/OS XML parser and resets the PIMA so that it can be re-initialized

or freed.

Performance Implications

There are no performance implications.

Syntax

 int gxlpTerminate (void * PIMA,

 int * rc,

 int * rsn);

Parameters

PIMA

Supplied parameter

Type: void *

The name of the Parse Instance Memory Area (PIMA) which has been

previously initialized with a call to the initialization service.

rc Returned parameter

Type: int *

The name of the area where the service stores the return code.

rsn

Returned parameter

Type: int *

The name of the area where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return and Reason Codes

On return from a call to this service, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return

and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) -

defines the return codes and reason codes” on page 173). For reason code

descriptions, also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

void * PIMA;

int rc, rsn;

gxlpTerminate (PIMA, &rc, &rsn);

Usage notes

This callable service is a direct map to GXL1TRM (GXL4TRM). Refer to “Usage

notes” on page 97 of GXL1TRM (GXL4TRM) for usage information.

gxlpTerminate

Chapter 6. z/OS XML parser API: C/C++ 51

OSR generator API

gxlpTerminate

52 z/OS V1R10.0 z/OS XML User’s Guide and Reference

gxluInitOSRG — initialize an OSR generator instance

Description

Initialize an OSR generator instance. This establishes a context within which the

OSR generator performs operations on schemas, Optimized Schema

Representations (OSRs), and StringID tables. This context is defined by the OSR

generator Instance Memory Area (OIMA).

Performance Implications

The OIMA must be initialized before any OSR generation operations are performed.

If operations are to be performed on different OSRs, the caller may enhance

performance by resetting the OIMA through a control operation (see

gxluControlOSRG), rather than terminating the generator instance and re-initializing.

There are implications for memory consumption that must be considered when

multiple OSRs are created from the same generator instance. See the usage notes

below.

Syntax

 int gxluInitOSRG (void * oima_p,

 unsigned long oima_l,

 int feature_flags,

 void * sys_svc_parm_p,

 int * rc_p,

 int * rsn_p)

Parameters

oima_p

Supplied and returned parameter

Type: void *

A pointer to an OSR generator Instance Memory Area (OIMA). This area must

be at least GXLHXEC_MIN_OIMA_SIZE bytes long. It is used as the work area

for the OSR generator.

oima_l

Supplied parameter

Type: unsigned long

The length of the OSR generator Instance Memory Area (OIMA) pointed to by

the oima_p parameter.

feature_flags

Supplied parameter

Type: int

Specify a value of zero for this parameter. This parameter is not used.

sys_svc_parm_p

Supplied parameter

Type: void *

A pointer to an area which is passed to all system service exits, handlers, and

resolvers. This provides for communication between the caller of the z/OS XML

OSR generator and its exit routines. Specify the NULL pointer if no parameter is

required for communication.

gxluInitOSRG

Chapter 6. z/OS XML parser API: C/C++ 53

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|

||
|
|
|
|
|
|

|

|
|

||

|
|
|

|
|

||

|
|

|
|

||

|

|
|

||

|
|
|
|

rc_p

Returned parameter

Type: int *

A pointer to an area where the service stores the return code.

rsn_p

Returned parameter

Type: int *

A pointer to an area where the utility stores the reason code. The reason code

is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return Value

The value returned by this utility is return code (see below).

Return and Reason Codes

On return from a call to this utility, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return

and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) -

defines the return codes and reason codes” on page 173). For reason code

descriptions, also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

#include <stdlib.h>

#include <gxlhosrg.h>

#include <gxlhxec.h>

void * oima_p;

unsigned long oima_l;

char handler_parms[128];

int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))

 { /* oima malloc succeeded */

 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,

 0,

 (void *)handler_parms,

 &rc, &rsn);

 /* Use the OSR generation instance to perform schema operations ... */

 } /* oima malloc succeeded */

Usage notes

When creating multiple OSRs, the best practice will usually be to initialize one

generator instance, and use it for all of the generation operations, with control

requests to reset the generator between OSRs. This will consume fewer CPU

cycles, and provide better overall performance than initializing and terminating a

generator instance for each OSR being created or operated upon. However, all

generated OSRs will remain in memory for the duration of the generator instance. If

memory constraints are a concern, or you plan to generate OSRs for either a large

number of schemas, or for schemas that are very large, you may need to terminate

and re-initialize the OSR generator.

gxluInitOSRG

54 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|

||

|

|
|

||

|
|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

gxluControlOSRG — perform an OSR generator control operation

Description

This is a general purpose utility which provides operations for controlling the z/OS

XML OSR generator. The operation performed is selected by setting the ctl_option

parameter using the constants defined in gxlhxoc.h and gxlhxec.h. These functions

include:

GXLHXEC_OSR_CTL_FIN

The caller has finished working with a particular OSR. Reset the necessary

structures so that the OIMA can be reused for subsequent generator

operations on a different OSR. Receive extended diagnostic information

about the current context of the OSR generator.

GXLHXEC_OSR_CTL_DIAG

The caller has finished working with a particular OSR. Receive extended

diagnostic information about the current context of the OSR generator.

Performance Implications

The finish-and-reset function allows the caller to re-initialize the OIMA to make it

ready to handle a new OSR. This re-initialization path enables the z/OS XML OSR

generator to avoid one-time initialization pathlength that’s performed by the

initialization service.

Syntax

 int gxluControlOSRG(void * oima_p,

 int ctl_operation,

 void * ctl_data_p,

 int * rc_p,

 int * rsn_p)

Parameters

oima_p

Supplied parameter

Type: void *

A pointer to an OSR generator Instance Memory Area (OIMA).

ctl_operation

Supplied parameter

Type: int

The name of the parameter containing an integer value representing one of the

following operations:

GXLHXEC_OSR_CTL_FIN

This indicates that the caller wants to end processing on the current

OSR. The OIMA is re-initialized to allow it to be used to process a new,

different OSR. This operation will also return the extended diagnostic

information area that is mapped by the gxlhosrd.h header. This includes

problem determination information relevant to the current context of the

OSR generator.

GXLHXEC_OSR_CTL_DIAG

This indicates that the caller wants to end processing on the current

OSR. This operation will return the extended diagnostic information

Chapter 6. z/OS XML parser API: C/C++ 55

|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|

||
|
|
|
|
|

|

|
|

||

|

|
|

||

|
|

|
|
|
|
|
|
|

|
|
|

area that is mapped by the gxlhosrd.h header. This includes problem

determination information relevant to the current context of the OSR

generator.

ctl_data_p

Supplied and returned parameter

Type: void *

A pointer to an area that will be used for a purpose that depends on the control

operation being performed:

GXLHXEC_OSR_CTL_FIN

A pointer to an area that will receive the address of the extended

diagnostic area mapped by gxlhosrd.h. If NULL is specified for this

parameter, no extended diagnostic information will be returned. See the

usage notes for more about how to use this area.

GXLHXEC_OSR_CTL_DIAG

A pointer to an area that will receive the address of the extended

diagnostic area mapped by gxlhosrd.h. If NULL is specified for this

parameter, no extended diagnostic information will be returned. See the

usage notes for more about how to use this area.

rc_p

Returned parameter

Type: int *

A pointer to an area where the service stores the return code.

rsn_p

Returned parameter

Type: int *

A pointer to an area where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return Value

The value returned by this service is return code (see below).

Return and Reason Codes

On return from a call to this utility, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return

and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) -

defines the return codes and reason codes” on page 173). For reason code

descriptions, also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

#include <stdlib.h>

#include <stdio.h>

#include <gxlhosrg.h>

#include <gxlhxec.h>

void * oima_p;

unsigned long oima_l;

char handler_parms[128];

56 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|

|
|

||

|
|

|
|
|
|
|

|
|
|
|
|

|
|

||

|

|
|

||

|
|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

GXLHOSRD * XDArea_p;

int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))

 { /* oima malloc succeeded */

 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,

 0,

 (void *)handler_parms,

 &rc, &rsn);

 } /* oima malloc succeeded */

/* Now perform operations using the generator instance. */

if ((oima_p > 0) && (rc == XRC_SUCCESS))

 { /* generator ininitialized */

/* generate or load an OSR, generate a StringID table, etc */

 gxluControlOSRG(oima_p,

 GXLHXEC_OSR_CTL_FIN,

 (void *)&XDArea_p,

 &rc, &rsn);

if (rc == XRC_SUCCESS)

 { /* reset succeeded */

if (XDArea_p->strID_RC != 0)

 { /* StringID exit failure */

 fprintf(stderr,”StringID exit failure: %08x\n”,

 XDArea_p->strID_RC);

 ...

 } /* StringID exit failure */

 } /* reset succeeded */

 ...

 } /* generator ininitialized */

Usage notes

The purpose of the finish-and-reset operation of this service is to reset the

necessary structures and fields within the OIMA to prepare the generator instance

for reuse without the overhead of full initialization. This reset operation uses fewer

CPU cycles than terminating and re-initializing from scratch. However, all schemas

that are loaded, and all OSRs and StringID tables that are generated, remain in

memory for the duration of the OSR generation instance. If you have a large

number of schemas to process, or if the schemas are very large in size, memory

constraints may become an issue. In this case, it will be necessary to terminate and

re-initialize the OSR generator instance.

The extended diagnostic area returned by the GXLHXEC_OSR_CTL_FIN and

GXLHXEC_OSR_CTL_DIAG operations are mapped by gxlhosrd.h. The structure in

this header contains assorted diagnostic information about the particular phase of

OSR generation that may have failed. The fields of this structure may be used for

the duration of the OSR generator instance, but must not be referenced after the

instance is terminated. Doing so may result in unpredictable results.

Chapter 6. z/OS XML parser API: C/C++ 57

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

gxluTermOSRG — terminate an OSR generator instance

Description

The gxlpTermOSRG utility releases all resources obtained by the z/OS XML OSR

generator. It also sets the eyecatcher in the OIMA to prevent it from being reused

by other OSR API functions, with the exception of re-initialilization by gxluInitOSRG.

Performance Implications

There are no performance implications.

Syntax

 int gxluTermOSRG(void * oima_p,

 int * rc_p,

 int * rsn_p)

Parameters

oima_p

Supplied parameter

Type: void *

A pointer to an OSR generator Instance Memory Area (OIMA).

rc_p

Returned parameter

Type: int *

A pointer to an area where the service stores the return code.

rsn_p

Returned parameter

Type: int *

A pointer to an area where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return Value

The value returned by this service is return code (see below).

Return and Reason Codes

On return from a call to this utility, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return

and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) -

defines the return codes and reason codes” on page 173). For reason code

descriptions, also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

#include <stdlib.h>

#include <stdio.h>

#include <gxlhosrg.h>

#include <gxlhxec.h>

58 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|
|
|
|

|
|

|

||
|
|
|

|

|
|

||

|

|
|

||

|

|
|

||

|
|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|

void * oima_p;

unsigned long oima_l;

char handler_parms[128];

int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))

 { /* oima malloc succeeded */

 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,

 0,

 (void *)handler_parms,

 &rc, &rsn);

 } /* oima malloc succeeded */

/* Now perform operations using the generator instance. */

if ((oima_p > 0) && (rc == XRC_SUCCESS))

 { /* generator ininitialized */

 /* generate or load an OSR, generate a StringID table, etc */

 gxluTermOSRG(oima_p,

 &rc, &rsn);

 /* Do not use any resources that the OSR generator */

 /* has allocated from here on. */

 } /* generator ininitialized */

Usage notes

This utility does not free the OSR Generator Instance Memory Area (OIMA). It is up

to the caller to free the OIMA after termination completes. gxluTermOSRG will,

however, free any binary OSR buffers, StringID tables, and extended diagnostic

areas that may have been allocated during the OSR generator instance. Once

termination has completed, you must not reference any of these areas, or any

extended diagnostic areas that may have been created during the generator

instance. It is the caller’s responsibility to create persistent copies of these

structures as needed while the generator instance is active.

Chapter 6. z/OS XML parser API: C/C++ 59

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

gxluLoadSchema — load a schema into the OSR generator

Description

This utility is used to load text schemas into the OSR generator. It is called once for

each schema that will be processed to create an Optimized Schema

Representation.

Performance Implications

There are no performance implications.

Syntax

 int gxluLoadSchema(void * oima_p,

 char * schema_resource_p,

 int * rc_p,

 int * rsn_p)

Parameters

oima_p

Supplied parameter

Type: void *

A pointer to an OSR generator Instance Memory Area (OIMA).

schema_resource_p

Supplied parameter

Type: char *

A pointer to the schema resource to process. This parameter must contain a

NULL terminated, IBM-1047 text string representing one of the following:

v The pathname of a file in the z/OS UNIX file system containing the schema

in text form.

v URI specifying the location of the schema text to load. URIs are indicated by

a scheme name, followed by a colon, followed by a relative URI reference.

See RFC 3986 (http://tools.ietf.org/html/rfc3986) for a complete description of

URIs.

Whether the resource passed is a URI or a pathname to a file, the name must

represent an absolute path. Relative paths cannot be processed.

Note: Although the URI or pathname to the schema being loaded must be an

IBM-1047 string, the schema itself must be encoded as a UTF-8

document.

rc_p

Returned parameter

Type: int *

A pointer to an area where the utility stores the return code.

rsn_p

Returned parameter

Type: int *

A pointer to an area where the utility stores the reason code. The reason code

is only relevant if the return code is not XRC_SUCCESS.

60 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|
|
|
|

|
|

|

||
|
|
|
|

|

|
|

||

|

|
|

||

|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

||

|

|
|

||

|
|

http://tools.ietf.org/html/rfc3986

All parameters in the parameter list are required.

Return Value

The value returned by this service is return code (see below).

Return and Reason Codes

On return from a call to this utility, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return

and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) -

defines the return codes and reason codes” on page 173). For reason code

descriptions, also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

#include <stdlib.h>

#include <stdio.h>

#include <gxlhosrg.h>

#include <gxlhxec.h>

void * oima_p;

unsigned long oima_l;

char handler_parms[128];

char schema_uri[URI_LEN] = “file:///u/user01/myschema.xsd”;

int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))

 { /* oima malloc succeeded */

 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,

 0,

 (void *)handler_parms,

 &rc, &rsn);

 } /* oima malloc succeeded */

/* Now perform operations using the generator instance. */

if ((oima_p > 0) && (rc == XRC_SUCCESS))

 { /* generator initialized */

 gxluLoadSchema(oima_p,

 schema_uri,

 &rc, &rsn);

 if (rc == XRC_SUCCESS)

 {/* schema load succeeded */

 /*generate an OSR from the loaded schema*/

 ...

 } /* schema load succeeded */

 ...

 } /* generator initialized */

Usage notes

Call this service iteratively to load one or more schemas that will be processed to

create an OSR. Once a schema has been loaded, the schema text buffer specified

by the schema_resource_p parameter may be re-used for other purposes.

Chapter 6. z/OS XML parser API: C/C++ 61

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

Make sure to load only UTF-8 schema documents in the OSR generator instance.

UTF-8 is the canonical form that the OSR generator requires, and schemas in other

encodings will not be processed.

62 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|

gxluSetStrIDHandler — specify the StringID handler for OSR

generation

Description

This utility allows the caller to specify a StringID handler service to the OSR

generator. The StringID handler utility allows the caller to avoid making StringID

calls at parse time for a number of symbols. This handler must be written in C.

Performance Implications

There are no performance implications.

Syntax

 int gxluSetStrIDHandler(void * oima_p,

 char * dll_name_p,

 char * func_name_p,

 int * rc_p,

 int * rsn_p)

Parameters

oima_p

Supplied parameter

Type: void *

A pointer to an OSR generator Instance Memory Area (OIMA).

dll_name_p

Supplied parameter

Type: char *

A pointer to the NULL terminated name of the DLL containing the StringID

handler executable. This string must be in the IBM-1047 code page. A NULL

string indicates that the current StringID handler should be unset, and StringIDs

no longer used during the creation of OSRs.

func_name_p

Supplied parameter

Type: char *

A pointer to the NULL terminated name of the StringID handler within the DLL.

This string must be in the IBM-1047 code page. If the dll_name_p parameter

above is NULL, this function name is ignored.

rc_p

Returned parameter

Type: int *

A pointer to an area where the utility stores the return code.

rsn_p

Returned parameter

Type: int *

A pointer to an area where the utility stores the reason code. The reason code

is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Chapter 6. z/OS XML parser API: C/C++ 63

|

|

|
|
|
|

|
|

|

||
|
|
|
|
|

|

|
|

||

|

|
|

||

|
|
|
|

|
|

||

|
|
|

|
|

||

|

|
|

||

|
|

|

Return Value

The value returned by this service is return code (see below).

Return and Reason Codes

On return from a call to this utility, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return

and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) -

defines the return codes and reason codes” on page 173). For reason code

descriptions, also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

#include <stdlib.h>

#include <stdio.h>

#include <gxlhosrg.h>

#include <gxlhxec.h>

void * oima_p;

unsigned long oima_l;

char handler_parms[128];

char dll_name[SIZE] = "dllpath/dllname.so";

char func_name[SIZE] = "strIDHandler";

int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))

 { /* oima malloc succeeded */

 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,

 0,

 (void *)handler_parms,

 &rc, &rsn);

 } /* oima malloc succeeded */

/* Now set a StringID handler that will be used to */

/* create StringIDs when OSRs are generated. */

if ((oima_p > 0) && (rc == XRC_SUCCESS))

 { /* generator initialized */

 gxluSetStrIDHandler (oima_p,

 dll_name, func_name,

 &rc, &rsn);

 if (rc == XRC_SUCCESS)

 { /* set handler succeeded */

 <continue processing using the StringID handler>

 ...

 } /* set handler succeeded */

 ...

 } /* generator initialized */

Usage notes

This handler differs from the other handlers and resolvers provided to the OSR

generator in that it must be written in C. Both the validating z/OS XML parser and

the OSR generator allow the caller to specify a StringID handler, and by

implementing this handler as a C DLL, the same source may be used in both

environments. A key difference is that this handler must be compiled and linked with

64 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

conventional C and Language Environment capabilities for the OSR generator

environment, while it must be built using Metal C for the parser.

The DLL containing the StringID handler will be loaded in order to obtain a function

pointer to it. The function pointer will be kept within the OIMA until a StringID is

needed during OSR generation. The DLL path must reside in one of the paths

specified in the LIBPATH environment variable.

This routine may be called more than once during an OSR generation instance to

change the StringID handler that the generator uses.

Chapter 6. z/OS XML parser API: C/C++ 65

|
|

|
|
|
|

|
|

gxluSetEntityResolver — specify the entity resolver for OSR

generation

Description

This utility allows the caller to specify an entity resolver to the OSR generator. This

resolver must be written in Java.

Performance Implications

There are no performance implications.

Syntax

 int gxluSetEntityResolver(void * oima_p,

 char * class_name_p,

 int * rc_p,

 int * rsn_p)

Parameters

oima_p

Supplied parameter

Type: void *

A pointer to an OSR generator Instance Memory Area (OIMA).

class_name_p

Supplied parameter

Type: char *

A pointer to the NULL terminated name of a Java class that implements the

XMLEntityResolver interface of the XML4J parser (see the usage notes below).

This string must be in the IBM-1047 code page. A NULL string indicates that the

current entity resolver should be unset, and the default resolver used during the

creation of the OSR.

rc_p

Returned parameter

Type: int *

A pointer to an area where the utility stores the return code.

rsn_p

Returned parameter

Type: int *

A pointer to an area where the utility stores the reason code. The reason code

is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return Value

The value returned by this service is return code (see below).

Return and Reason Codes

On return from a call to this utility, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

66 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|

|
|
|

|
|

|

||
|
|
|
|

|

|
|

||

|

|
|

||

|
|
|
|
|

|
|

||

|

|
|

||

|
|

|

|

|

|

|
|

reason code is undefined when the return code has no associated reasons. Return

and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) -

defines the return codes and reason codes” on page 173). For reason code

descriptions, also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

#include <stdlib.h>

#include <stdio.h>

#include <gxlhosrg.h>

#include <gxlhxec.h>

void * oima_p;

unsigned long oima_l;

char handler_parms[128];

char class_name[SIZE] = "xml/appl/handlers/EntityResolver";

int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))

 { /* oima malloc succeeded */

 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,

 0,

 (void *)handler_parms,

 &rc, &rsn);

 } /* oima malloc succeeded */

/* Now set an entity resolver that will be used during */

/* OSR generation. */

if ((oima_p > 0) && (rc == XRC_SUCCESS))

 { /* generator initialized */

 gxluSetEntityResolver(oima_p,

 class_name,

 &rc, &rsn);

 if (rc == XRC_SUCCESS)

 { /* set resolver succeeded */

 <continue processing using the entity resolver>

 ...

 } /* set resolver succeeded */

 ...

 } /* generator initialized */

Usage notes

Although this is a C interface, the entity resolver must be implemented in Java. This

resolver will be provided to the XML4J parser, which is used during the OSR

generation process. The resolver must implement the XMLEntityResolver interface

of the Xerces Native Interface (XNI), including the return of an XMLInputSource

object. See the XMLEntityResolver documentation at http://xerces.apache.org/
xerces2-j/javadocs/xni/index.html.

This routine may be called more than once during an OSR generation instance to

change the entity resolver that the generator uses.

Chapter 6. z/OS XML parser API: C/C++ 67

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

http://xerces.apache.org/xerces2-j/javadocs/xni/index.html
http://xerces.apache.org/xerces2-j/javadocs/xni/index.html

gxluLoadOSR — load an OSR into the OSR generator

Description

This utility is used to load an Optimized Schema Representation into the OSR

generator. Once loaded, the OSR may be processed using one of the OSR

generator operations.

Performance Implications

There are no performance implications.

Syntax

 int gxluLoadOSR(void * oima_p,

 void * osr_p,

 int osr_l,

 int * rc_p,

 int * rsn_p)

Parameters

oima_p

Supplied parameter

Type: void *

A pointer to an OSR generator Instance Memory Area (OIMA).

osr_p

Supplied parameter

Type: void *

A pointer to a buffer containing an OSR.

osr_l

Supplied parameter

Type: int

The length of a buffer containing an OSR.

rc_p

Returned parameter

Type: int *

A pointer to an area where the utility stores the return code.

rsn_p

Returned parameter

Type: int *

A pointer to an area where the utility stores the reason code. The reason code

is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return Value

The value returned by this service is return code (see below).

Return and Reason Codes

68 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|
|
|
|

|
|

|

||
|
|
|
|
|

|

|
|

||

|

|
|

||

|

|
|

||

|

|
|

||

|

|
|

||

|
|

|

|

|

|

On return from a call to this utility, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return

and reason codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) -

defines the return codes and reason codes” on page 173). For reason code

descriptions, also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

#include <stdlib.h>

#include <stdio.h>

#include <gxlhosrg.h>

#include <gxlhxec.h>

void * oima_p;

unsigned long oima_l;

char handler_parms[128];

char osrbuf[OSR_BUFFER_LEN];

int osrbuf_l;

int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))

 { /* oima malloc succeeded */

 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,

 0,

 (void *)handler_parms,

 &rc, &rsn);

 } /* oima malloc succeeded */

<acquire the OSR from a persistent location like a file ...>

/* Load an OSR to be processed. */

if ((oima_p > 0) && (rc == XRC_SUCCESS))

 { /* generator initialized */

 gxluLoadOSR(oima_p,

 (void *)osrbuf

 osrbuf_l,

 &rc, &rsn);

 if (rc == XRC_SUCCESS)

 { /* OSR load succeeded */

 <process the loaded OSR>

 ...

 } /* OSR load succeeded */

 ...

 } /* generator initialized */

Usage notes

Use this utility when you need to query an OSR that has already been created from

one or more human-readable schemas. This is useful, for instance, when a caller

needs access to a StringID table from an existing OSR. This allows the StringID

table to be used by the validating parser at parse time.

Chapter 6. z/OS XML parser API: C/C++ 69

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

gxluGenOSR — generate an Optimized Schema Representation (OSR)

Description

This utility generates an optimized representation of one or more XML schemas.

Performance Implications

There are no performance implications.

Syntax

 unsigned int gxluGenOSR(void * oima_p,

 void ** schema_osr_p_p,

 int * rc_p,

 int * rsn_p)

Parameters

oima_p

Supplied parameter

Type: void *

A pointer to an OSR generator Instance Memory Area (OIMA).

schema_osr_p_p

Returned parameter

Type: void **

A pointer to an area to receive the address of the optimized schema

representation generated by this utility. See the usage notes below for important

details about this parameter.

rc_p

Returned parameter

Type: int *

A pointer to an area where the utility stores the return code.

rsn_p

Returned parameter

Type: int *

A pointer to an area where the utility stores the reason code. The reason code

is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return Value

The value returned by this utility is the length of the OSR buffer returned to the

caller through the schema_osr_p parameter. If there is a problem during the

generation of the OSR, the value returned will be zero. See the usage notes below

for more information about this value and the OSR buffer returned.

Return and Reason Codes

Register 15 will contain the return value of this utility. The return and reason code

are both set as output parameters. The value of the reason code is undefined when

the return code has no associated reasons. Return and reason codes are defined in

70 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|
|

|
|

|

||
|
|
|
|

|

|
|

||

|

|
|

||

|
|
|

|
|

||

|

|
|

||

|
|

|

|

|
|
|
|

|

|
|
|

the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) - defines the return codes and

reason codes” on page 173). For reason code descriptions, also see Appendix B,

“Reason Codes Listed by Value,” on page 119.

Example

#include <stdlib.h>

#include <stdio.h>

#include <gxlhosrg.h>

#include <gxlhxec.h>

void * oima_p;

unsigned long oima_l;

char handler_parms[128];

char schema_uri[URI_LEN] = “file:///u/user01/myschema.xsd”;

void * osr_p;

int osr_l;

int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))

 { /* oima malloc succeeded */

 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,

 0,

 (void *)handler_parms,

 &rc, &rsn);

 } /* oima malloc succeeded */

/* Load a schema and create an OSR from it. */

if ((oima_p > 0) && (rc == XRC_SUCCESS))

 { /* generator initialized */

 gxluLoadSchema(oima_p,

 schema_uri,

 &rc, &rsn);

 if (rc == XRC_SUCCESS)

 { /* schema load succeeded */

 /* Generate the OSR */

 osr_l = gxluGenOSR(oima_p,

 &osr_p,

 &rc, &rsn);

 if (osr_l > 0) then

 { /* OSR generate succeeded */

 <write the OSR out to a persistent repository>

 <like a file or a database so that it can be>

 <used later for parsing a document>

 ...

 } /* OSR generate succeeded */

 ...

 } /* schema load succeeded */

 ...

 } /* generator initialized */

Usage notes

This utility generates Optimized Schema Representations in a manner similar to the

xsdosrg command (see Appendix E, “xsdosrg command reference,” on page 167). It

provides additional flexibility and control by allowing the caller to use the following

handlers to augment the default generator behavior:

Chapter 6. z/OS XML parser API: C/C++ 71

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

StringID handler

This handler generates and/or returns an integer identifier that serves as a

handle for a given string. These strings are most often the components of

qualified names that are encountered in the schema text during processing.

This must be implemented as a C routine, and built for the C Language

Environment. If no StringID handler is specified, then StringIDs will not be

used during the generation of the OSR. All qualified names and other

strings for which IDs could be used will instead be present in the OSR in

their text form. The same handler may be used by the validating parser

when built for the Metal C environment.

entity resolver

A Java routine that receives control when a reference to an external entity

is made from one schema to another through an include, import, or redefine

XML Schema construct. It acquires the external schema from an

appropriate source, and returns it to the OSR generator for further

processing. If no entity resolver is specified, the default entity resolver from

the XML4J parser is used.

One or both of these routines may be specified to the OSR generator through the

gxluSetStringID (“gxluSetStrIDHandler — specify the StringID handler for OSR

generation” on page 63) and gxluSetEntityResolver (“gxluSetEntityResolver —

specify the entity resolver for OSR generation” on page 66) utilities. Once set, the

generator will make use of them until they are changed to a different value.

This utility will allocate the buffer used to receive the generated OSR, and will

return the length of the buffer as its return value. The maximum length of an OSR

that will be returned is 2 GB. The buffer remains allocated for the duration of the

OSR generator instance, and gets freed when the instance is terminated. The caller

may use or copy the OSR to another location as long as the instance is active.

Referencing the OSR buffer after the generator instance has been terminated may

result in unpredictable results. This buffer may also be written to a permanent

location, such as a z/OS UNIX file or an MVS data set, so that it can be used again

at some point in the future.

72 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

gxluGenStrIDTbl — generate StringID table from an OSR

Description

This utility will extract generate and return the StringID table associated with the

current OSR for this generator instance. See the usage notes for a description of

how to make an OSR current.

Performance Implications

There are no performance implications.

Syntax

 int gxluGenStrIDTbl(void * oima_p,

 GXLHXSTR ** strid_tbl_p_p,

 int * rc_p,

 int * rsn_p)

Parameters

oima_p

Supplied parameter

Type: void *

A pointer to an OSR generator Instance Memory Area (OIMA).

strid_tbl_p_p

Supplied and returned parameter

Type: GXLHXSTR **

A pointer to an area that will receive the address of a table of containing the

StringIDs that are generated from the current OSR. See the usage notes below

for more details.

rc_p

Returned parameter

Type: int *

A pointer to an area where the utility stores the return code.

rsn_p

Returned parameter

Type: int *

A pointer to an area where the utility stores the reason code. The reason code

is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return Value

The value returned by this utility is the length of the StringID table returned to the

caller through the strid_tbl_p_p parameter. If StringIDs were not in use when the

current OSR was originally generated, the return value will be zero, and the pointer

specified by strid_tbl_p will remain unchanged. If there is a problem during the

generation of the StringID table, the value returned will be -1. See the usage notes

below for more information about this value, and the StringID table returned.

Return and Reason Codes

Chapter 6. z/OS XML parser API: C/C++ 73

|

|
|
|
|

|
|

|

||
|
|
|
|

|

|
|

||

|

|
|

||

|
|
|

|
|

||

|

|
|

||

|
|

|

|

|
|
|
|
|
|

|

Register 15 will contain the return value of this utility (see above). The return and

reason code are both set as output parameters. The value of the reason code is

undefined when the return code has no associated reasons. Return and reason

codes are defined in the header file gxlhxr.h (see “gxlhxr.h (GXLYXR) - defines the

return codes and reason codes” on page 173). For reason code descriptions, also

see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

#include <stdlib.h>

#include <stdio.h>

#include <gxlhosrg.h>

#include <gxlhxec.h>

void * oima_p;

unsigned long oima_l;

char handler_parms[128];

char osrbuf[OSR_BUFFER_LEN];

int osrbuf_l;

GXLHXSTR * strIDTbl_p;

int strIDTbl_l;

int osr_l;

int rc, rsn;

if (oima_p = malloc(GXLHXEC_MIN_OIMA_SIZE))

 { /* oima malloc succeeded */

 oima_l = GXLHXEC_MIN_OIMA_SIZE;

 gxluInitOSRG(oima_p, oima_l,

 0,

 (void *)handler_parms,

 &rc, &rsn);

 } /* oima malloc succeeded */

<acquire the OSR from a persistent location like a file>

/* Load the OSR to operate on. */

if ((oima_p > 0) && (rc == XRC_SUCCESS))

 { /* generator initialized */

 gxluLoadOSR(oima_p,

 (void *)osrbuf,

 osrbuf_l,,

 &rc, &rsn);

 if (rc == XRC_SUCCESS)

 { /* OSR load succeeded */

 /* Generate the OSR */

 strIDTbl_l = gxluGenSTRIDTbl(oima_p,

 &strIDTbl_p,

 &rc, &rsn);

 if (strIDTbl_l > 0) then

 { /* strID table generated */

 <write the StringID table out to a persistent>

 <repository like a file or a database so that>

 <it can be used later when parsing a document>

 ...

 } /* strID table generated */

 ...

 } /* OSR load succeeded */

 ...

 } /* generator initialized */

74 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes

The StringID table is generated from the OSR that has been made current through

either a gxluGenOSR or a gxluLoadOSR request. The actual length of the StringID

table is calculated during table generation, and cannot be known ahead of time. For

this reason, the gxluGenStrIDTbl service will return the address and length of the

generated table on success. The table remains allocated for the duration of the

OSR generator instance, and gets freed when the instance is terminated. The caller

may use or copy the StringID table to another location as long as the instance is

active. Referencing the StringID table after the generator instance has been

terminated may result in unpredictable results.

StringID tables may be generated from OSRs that were created either with or

without StringIDs. If no StringIDs were used when the OSR was originally

generated, this service will assign the StringID values to return in the table. Callers

who wish to control the values of StringIDs must use the StringID handler interface

at OSR generation time.

The format of the StringID table that the OSR generator creates is defined by the

gxlhxstr.h header file. See the definition of this header file below for more details.

Chapter 6. z/OS XML parser API: C/C++ 75

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

GXLPSYM31 (GXLPSYM64) — StringID handler

Description

This handler accepts an input string and performs a lookup for its corresponding

symbol, which is identical to the string itself. If the symbol has been located, the exit

returns the StringID associated with the symbol. If the string does not have a

defined symbol, a symbol is created for the string and a StringID is assigned to it.

Performance Implications

There are no performance implications.

Syntax

 int gxlpSym31(void ** sys_svc_p,

 char * string_p,

 int string_l,

 unsigned int * string_id_p,

 int ccsid,

 int * handler_diag_p,

 int * rc_p)

Parameters

sys_svc_p

Supplied parameter

Type: void **

A pointer to the system service parameter that was passed to the z/OS XML

OSR generator at initialization time.

string_p

Supplied parameter

Type: char *

The string to return an ID for. The length of the string is variable, and is

specified by the string_l parameter.

string_l

Supplied parameter

Type: int

An integer containing the length of the string pointed to by the string parameter.

string_id_p

Returned parameter

Type: unsigned int *

A pointer to an integer where the handler stores the numeric identifier for the

string. The range of valid values is 1 to 2 GB - 1.

ccsid

Supplied parameter

Type: int

The Coded Character Set IDentifier (CCSID) that identifies the character set of

the string. The z/OS XML parser will provide the same CCSID in this parameter

that the caller of the parser specified at parser initialization time.

handler_diag_p

Returned parameter

GXLPSYM31 (GXLPSYM64)

76 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|
|
|
|
|

|
|

|

||
|
|
|
|
|
|
|

|

|
|

||

|
|

|
|

||

|
|

|
|

||

|

|
|

||

|
|

|
|

||

|
|
|

|
|

Type: int *

A pointer to an integer where the handler can store any diagnostic information

(usually a reason code). This will be stored in the diagnostic area and made

available on the gxluControlOSRG call.

rc_p

Returned parameter

Type: int *

A pointer to an integer where the handler can store a return code. A return code

value of zero means success; any nonzero return code indicates failure.

 Return Codes

The z/OS XML OSR generator uses the convention that the handler will provide a

return code value of zero when successful. Any nonzero value indicates failure. If a

nonzero return code is provided by the exit, the z/OS XML OSR generator saves it

in the extended diagnostic area so that the caller of the parser has access to it by

calling gxluControlOSRG.

Example

None.

Default Implementation

There is no default implementation. If this handler is not specified by the caller,

StringIDs are not used by the z/OS XML OSR Generator.

GXLPSYM31 (GXLPSYM64)

Chapter 6. z/OS XML parser API: C/C++ 77

||

|
|
|

|
|

||

|
|

|

|
|
|
|
|

|
|

|
|
|

GXLPSYM31 (GXLPSYM64)

78 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Chapter 7. z/OS XML parser API: Assembler

How to invoke the z/OS XML System Services assembler API

This section provides information on how to invoke the z/OS XML System Services

assembler API.

Callers written in assembler can invoke the z/OS XML System Services assembler

API by binding the z/OS XML parser’s callable service stubs to their module. The

callable service stubs can be found in SYS1.CSSLIB. Alternatively, the addresses of

the APIs can be obtained from system control blocks. The following is a list of

offsets for the callable services first and second tables (all offsets are in hex):

1. +10 — Pointer to CVT (field FLCCVT in IHAPSA)

2. +220 — Pointer to the callable services first table (field CVTCSRT in CVT)

3. +48 — Pointer to the z/OS XML parser callable services second table (entry 19)

Note: Prior to z/OS V1R7, this field will point to the address of an undefined

callable service. In z/OS V1R7 and later releases, this field is zero until

the z/OS XML parser initialization routine fills it in. To avoid calling z/OS

XML System Services when it is not present, the caller first needs to

verify that it is running on V1R7 or later, and that this field in the callable

services first table is non-zero.

4. +nn — The offset for each callable service in hex is listed below.

The following stubs are provided for 31- and 64-bit mode callers:

 Table 18. Caller stubs and associated offsets

Stub Second Table offset (hex)

GXL1INI — 31-bit parser initialization 10

GXL1PRS — 31-bit parse 14

GXL1TRM — 31-bit parser termination 18

GXL1CTL — 31-bit parser control operation 1C

GXL1QXD — 31-bit query XML document 20

GXL1LOD — 31-bit load a function

GXL4INI — 64-bit parser initialization 28

GXL4PRS — 64-bit parse 30

GXL4TRM — 64-bit parser termination 38

GXL4CTL — 64-bit parser control operation 40

GXL4QXD — 64-bit query XML document 48

GXL4LOD — 64-bit load a function

Note: The 64-bit stubs are defined with 8 byte pointers.
The following assembler code is an example of how to call a z/OS XML parser

service. The example assumes the caller uses the CVT field names instead of hard

coding those offsets.

LLGT 15,CVTPTR R15L -> CVT, R15H = 0

L 15,CVTCSRT-CVT(15) Get the CSRTABLE

L 15,72(15) Get CSR slot 19 (zero based) for XML parser

L 15,16(15) Get address of GXL1INI from XML second table.

BALR 14,15 Branch to XML service.

© Copyright IBM Corp. 2008 79

|

|

|
|
|
|
|
|

z/OS XML parser Assembler API

This section lists the assembler callable services interface used for the z/OS XML

parser. The following rules apply to some or all of the callable services listed below:

v The 31- and 64-bit versions of the services were designed to work independently

of one another. For example, the following sequence of calls would not work:

GXL1INI (31-bit service) followed by GXL4PRS (64-bit service).

v The 31- and 64-bit versions of the services are documented together with any

differences for 64- bit shown in parenthesis, after its corresponding 31-bit

description.

v In AMODE 31, all address and length parameters of the z/OS XML parser API

are 4 bytes long. In AMODE 64, these fields are 8 bytes long.

v In AMODE 31, the parsed data stream produced by the z/OS XML parser

contains length fields that are all 31 bits (4 bytes) long. In AMODE 64, the field in

the buffer header representing the length of the output buffer used is 64-bits (8

bytes) long, while all record length fields in the data stream are 31-bit (4 byte)

values.

API entry points

The z/OS XML parser API contains 5 entry points for each addressing mode

(AMODE) type (31- or 64-bit):

v GXL1CTL (GXL4CTL) — perform a parser control operation

v GXL1INI (GXL4INI) — initialize a parse instance

v GXL1PRS (GXL4PRS) — parse an input stream

v GXL1QXD (GXL4QXD) — query an XML document

v GXL1TRM (GXL4TRM) — terminate a parse instance

v GXL1LOD (GXL4LOD) — load a function

Common register conventions

The following sections describe common register conventions used for all of the

z/OS XML parser’s callable services.

Input registers

When a caller invokes the z/OS XML parser, these registers have the following

meaning:

 Table 19. Input register conventions

Register Contents

1 Address of a standard parameter list containing 31 (64) bit

addresses.

14 Return address.

Output registers

When the z/OS XML parser returns to the caller, these registers have the following

meaning:

 Table 20. Output register conventions

Register Contents

0-1 Unpredictable

2-13 Unchanged

80 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Table 20. Output register conventions (continued)

Register Contents

14 Unpredictable

15 Return code (return code is also a parameter)

 Table 21. Output access register conventions

Access Register Contents

0-1 Unpredictable

2-13 Unchanged

14-15 Unpredictable

Environmental requirements

The following are environmental requirements for the caller of any z/OS XML parser

service:

Minimum authorization

any state and any PSW key

Dispatchable unit mode

Task or SRB

Cross memory mode

PASN=HASN=SASN or PASN^=HASN^=SASN

AMODE

31-bit (64-bit)

ASC mode

primary

Interrupt status

enabled for I/O and external interrupts

Locks no locks held

Control parameters

Control parameters and all data areas the parameter list points to must be

addressable from the current primary address space.

Using the recovery routine

z/OS XML provides an ARR recovery routine to assist with problem determination

and diagnostics. This is an optional routine and can be turned on and off as

desired. See“ARR recovery routine” on page 114 for more information.

Restriction: When running in either SRB mode or under an existing FRR routine,

the ARR recovery routine cannot be used.

Chapter 7. z/OS XML parser API: Assembler 81

GXL1CTL (GXL4CTL) — perform a parser control function

Description

This is a general purpose service which provides control functions for interacting

with the z/OS XML parser. The function performed is selected by setting the

ctl_option parameter using the constants defined in GXLYXEC. These functions

include:

XEC_CTL_FIN

The caller has finished parsing the document. Reset the necessary

structures so that the PIMA can be reused on a subsequent parse, and

return any useful information about the current parse.

XEC_CTL_FEAT

The caller wants to change the feature flags. A XEC_CTL_FIN function will

be done implicitly.

Note: Two feature flags, JST_OWNS_STORAGE and RECOVERY, are not

supported on GXL1CTL (GXL4CTL). Make sure that these feature

flags are turned to the ″off″ state before calling GXL1CTL

(GXL4CTL) to set the feature flags.

XEC_CTL_LOAD_OSR

The caller wants to load and use an Optimized Schema Representation

(OSR) for a validating parse.

Note: finish and reset processing is performed by all operations available through

this control service.

Performance Implications

The finish/reset function allows the caller to re-initialize the PIMA to make it ready to

handle a new XML document. This re-initialization path enables the z/OS XML

parser to preserve its existing symbol table, and avoid other initialization pathlength

that’s performed by calling GXL1INI (GXL4INI).

Syntax

 call gxl1ctl,(PIMA,

 ctl_option,

 ctl_data,

 return_code,

 reason_code)

Parameters

PIMA

Supplied parameter

Type: Character string

Length: Variable

The name of the Parse Instance Memory Area (PIMA which has been

previously initialized with a call to GXL1INI (GXL4INI)).

ctl_option

Supplied parameter

Type: Integer

Length: Fullword

GXL1CTL (GXL4CTL)

82 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|

|
|

The name of a fullword that contains an integer value representing one of the

following functions:

XEC_CTL_FIN

This indicates that the caller wants to end the current parse at the

current position in the XML document. The PIMA is re-initialized to allow

it to be used on a new parse request. To free up all resources

associated with the parse instance, the caller should use GXL1TRM

(GXL4TRM).

XEC_CTL_FEAT

This indicates that the caller wishes to re-initialize the z/OS XML parser,

as with the reset / finish function as above and in addition, reset the

feature flags used during the parse.

Note: The following feature flags are not supported on GXL1CTL

(GXL4CTL):

v XEC_FEAT_JST_OWNS_STORAGE

v XEC_FEAT_RECOVERY

v XEC_FEAT_VALIDATE

Make sure that these feature flags are turned to the OFF state before

calling GXL1CTL (GXL4CTL) to set the feature flags. If these features

need to be changed (for example, if switching between validating and

non-validing parses), the parse instance must be terminated and

re-initialized with the required feature settings.

XEC_CTL_LOAD_OSR

This indicates that the caller wants to load and use a given Optimized

Schema Representation (OSR) during a validating parse. When this

operation in chosen, the ctl_data parameter must also be utilized to

specify the required schema. This operation will also cause the z/OS

XML parser to perform reset and finish processing.

ctl_data

Supplied and returned parameter

Type: Address

Length: Fullword (Doubleword)

The name of a fullword (doubleword) that contains the address of an area as

defined by ctl_option:

XEC_CTL_FIN

This parameter must contain the address of a fullword (doubleword)

where the service will store the address of the diagnostic area, which is

mapped by macro GXLYXD. This provides additional information that

can be used to debug problems in data passed to the z/OS XML

parser. The diagnostic area resides within the PIMA, and will be

overlaid on the next call to the z/OS XML parser.

XEC_CTL_FEAT

This parameter must contain the address of a fullword (doubleword),

which is mapped by macro GXLYXFT. See “gxlhxft.h (GXLYXFT) -

mapping of the control feature input output area” on page 174 for more

information on this macro. A simplified form of the macro is provided

below:

XFT_FEAT_FLAG

XFT1_XD_PTR

GXL1CTL (GXL4CTL)

Chapter 7. z/OS XML parser API: Assembler 83

|
|

|

|

|

|
|
|
|
|
|

|
|

The XFT_FEAT_FLAGS parameter is an input parameter to the API and

contains the value of feature flags to be used in the subsequent parse. It is

defined as follows:

XEC_FEAT_STRIP_COMMENTS

This effectively strips comments from the document by not returning

any comments in the parsed data stream. Default: off.

XEC_FEAT_TOKENIZE_WHITESPACE

This sets the default token value for white space preceding markup in

the root element to an explicit white space value. Default: off – white

space is returned as character data.

XEC_FEAT_CDATA_AS_CHARDATA

This returns CDATA in records with a CHARDATA token type. The

content of these records may contain text that would normally have to

be escaped to avoid being handled as markup. Default: off.

XEC_FEAT_SOURCE_OFFSETS

This feature is used to include records in the parsed data stream which

contain offsets to the corresponding structures in the input document.

Default: off.

XEC_FEAT_FULL_END

This feature is used to expand the end tags to include the local name,

prefix and URI corresponding to the qname on the end tag. Default: off.

If none of the features are required, passing a fullword field containing zero will

turn them all off. Do not construct a parameter list with a zero pointer in it.

The XFT1_XD_PTR must contain the address of a fullword (doubleword) where

the service will store the address of the diagnostic area, which is mapped by

macro GXLYXD. This provides additional information that can be used to debug

problems in data passed to the z/OS XML parser. The diagnostic area resides

within the PIMA, and will be overlaid on the next call to the z/OS XML parser.

XEC_CTL_LOAD_OSR

 The schema specified must be in the Optimized Schema Representation

(OSR) form created through one of the interfaces to the OSR generation

utility. Once a schema has been loaded, it remains in use for all validating

parse requests until a different schema is provided by calling this service

again with a different schema OSR.

This parameter must contain the address of an area containing information

about the OSR to load. This area is mapped by macro GXLYXOSR. See

“gxlhxosr.h (GXLYXOSR) - mapping of the OSR control area” on page 174

for more information on this macro. Also, see the usage notes below for

details about how the information in this area is used.

return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the service stores the return code.

reason_code

Returned parameter

Type: Integer

GXL1CTL (GXL4CTL)

84 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

Length: Fullword

The name of a fullword where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return and Reason Codes

On return from a call to this service, register 15 will contain the return code. The

return and reason code are both set as output parameters. The value of the reason

code is undefined when the return code is 0 (XRC_SUCCESS). Return and reason

codes are defined in macro GXLYXR, and are dependent on the control function

specified by the caller. For reason code descriptions, also see Appendix B, “Reason

Codes Listed by Value,” on page 119.

Example

For an AMODE 31 example using this callable service, see “GXL1CTL example” on

page 182. For an AMODE 64 example using this callable service, see “GXL4CTL

example” on page 188.

Usage notes

The purpose of the finish/reset function of the GXL1CTL (GXL4CTL) service is to

perform the following:

v Reset the necessary structures and fields within the PIMA to effect a

re-initialization so that it can be reused without the overhead of full initialization.

v Allow the z/OS XML parser to return extended diagnostic information to the caller

in the event of a failure. This allows the caller to identify certain problems that

can be corrected.

v The ″finish and reset″ operation can be thought of as the most basic control

operation that is a functional subset of all control operations. It resets the state of

the parser to the original state immediately after the parse instance was first

initialized. This state includes the feature flags. If the caller initializes a parse

instance, then changes the feature settings with a feature control operation, and

still later performs a ″finish and reset″ control operation, the feature flags will

revert back to those settings at the time the parse instance was originally

initialized. If the caller wishes to retain the current feature settings during a

parser reset, they should simply perform another feature control operation with

the current feature set.

v The OSR load operation allows the caller to specify an OSR for the parser to

use, and to bind a handle to associate with to it. The GXLYXOSR macro provides

the interface for passing information to the parser about the OSR. See

Appendix F, “C/C++ header files and assembler macros,” on page 171 for more

details about how it is used. As mentioned above, ″finish and reset″ processing

will occur as a part of this load operation. However, the reset will occur through a

feature control operation, using the current feature set. In this way, the current

feature flags for the parse instance are not altered by the OSR load control

operation.

GXL1CTL (GXL4CTL)

Chapter 7. z/OS XML parser API: Assembler 85

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

GXL1INI (GXL4INI) — initialize a parse instance

Description

The GXL1INI (GXL4INI) callable service initializes the PIMA and records the

addresses of the caller’s system service routines (if any). The PIMA storage is

divided into the areas that will be used by the z/OS XML parser to process the input

buffer and produce the parsed data stream.

Performance Implications

The initialization of structures used by the z/OS XML parser in the PIMA is only

done once per parse and is therefore unlikely to affect performance. The caller may

choose to reuse the PIMA after each parse to eliminate the overhead of storage

allocation and the page faults that occur when referencing new storage. In this

case, a control operation is required to reset the necessary fields in the PIMA

before parsing can continue.

Syntax

 call gxl1ini,(PIMA,

 PIMA_len,

 ccsid,

 feature_flags,

 sys_svc_vector,

 sys_svc_parm,

 return_code,

 reason_code)

Parameters

PIMA

Supplied parameter

Type: Character string

Length: determined by the PIMA_len parameter

The name of the Parse Instance Memory Area (PIMA). The PIMA must be

aligned on a doubleword boundary, otherwise, results are unpredictable. See

the “Usage notes” on page 88 below for additional details on the use of this

area.

PIMA_len

Supplied parameter

Type: Integer

Length: Fullword (Doubleword)

The name of an area containing the length of the Parse Instance Memory Area.

This service validates the length of this area against a minimum length value.

The minimum length of the PIMA depends on whether or not validation will be

performed during the parse. This minimum length value can be found in:

v XEC_NVPARSE_MIN_PIMA_SIZE (non-validating parse)

v XEC_VPARSE_MIN_PIMA_SIZE (validating parse)

ccsid

Supplied parameter

Type: Integer

Length: Fullword

GXL1INI (GXL4INI)

86 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|

|

|

The Coded Character Set IDentifier (CCSID) that identifies the document’s

character set. The CCSID value in this parameter will override any character set

or encoding information contained in the XML declaration of the document. A

set of CCSID constants for supported encodings has been declared in

GXLYXEC. See Appendix L, “Supported encodings,” on page 253 for a full list

of supported encodings.

feature_flags

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains an integer value representing one or more

of the following z/OS XML parser features. OR these flags together as needed

to enable features. Choose any of the following:

v XEC_FEAT_STRIP_COMMENTS - effectively strip comments from the

document by not returning any comments in the parsed data stream.

v XEC_FEAT_TOKENIZE_WHITESPACE - set the default token value for

white space preceeding markup within the context of the root element to an

explicit white space value. Use this value in conjunction with the special

xml:space attribute to determine how such white space gets classified.

v XEC_FEAT_CDATA_AS_CHARDATA - return CDATA in records with a

CHARDATA token type. The content of these records may contain text that

would normally have to be escaped to avoid being handled as markup.

v XEC_FEAT_JST_OWNS_STORAGE - allocate storage as Job Step Task

(JST) related instead of task related. See the “Usage notes” on page 88

below for more information.

v XEC_FEAT_RECOVERY - this turns on the recovery routine.

Notes: The following only applies when the feature flag is ON:

– If running in SRB mode, an error message will be returned to the caller.

– If a parse request is made in SRB mode, the parse will fail.

– If there is an FRR, an error message will be returned to the caller during

the parse step.

v XEC_FEAT_SOURCE_OFFSETS - this includes records in the parsed data

stream which contain offsets to the corresponding structures in the input

document.

v XEC_FEAT_FULL_END - this expands the end tags to include the local

name, prefix and URI corresponding to the qname on the end tag.

v XEC_FEAT_VALIDATE - this initializes a parse instance that allows for

validation during parsing. See the usage notes below for details on validation.

Note: By using the values of off (zero), W3C XML compliant output is

generated. Turning on options XEC_FEAT_STRIP_COMMENTS,

XEC_FEAT_TOKENIZE_WHITESPACE and

XEC_FEAT_CDATA_AS_CHARDATA will cause the output to vary from

standard compliance.

If none of the features are required, pass the name of a fullword field containing

zero. Do not construct a parameter list with a zero pointer in it.

sys_svc_vector

Supplied parameter

Type: Structure

GXL1INI (GXL4INI)

Chapter 7. z/OS XML parser API: Assembler 87

|
|
|

|
|

|
|
|
|
|

Length: Variable

The name of a structure containing a count of entries that follow and then a list

of 31 (64) bit pointers to system service routines. Specify the name of a word

containing 0 if no services are provided. See the Chapter 8, “z/OS XML System

Services exit interface” chapter for more details.

sys_svc_parm

Supplied parameter

Type: Address

Length: Fullword (Doubleword)

The name of a parameter which is passed to all system service exits. This

provides for communication between the z/OS XML parser caller and its exit

routines. Specify the name of a location containing 0 if no parameter is required

for communication.

return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the service stores the return code.

reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return and Reason Codes

On return from a call to this service, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return

and reason codes are defined in macro GXLYXR. For reason code descriptions,

also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

For an AMODE 31 example using this callable service, see “GXL1INI example” on

page 183. For an AMODE 64 example using this callable service, see “GXL4INI

example” on page 189.

Usage notes

v The z/OS XML parser creates a variety of control blocks, tables, stacks, and

other structures in the Parse Instance Memory Area. The caller must provide an

area that is at least as large as constant XEC_MIN_PIMA_SIZE. In the event

that this area is not large enough to parse the input document, the z/OS XML

parser will allocate additional memory using either the default memory allocation

mechanism or the memory allocation exit that the caller has provided.

v When the PIMA is reused for subsequent parses, the same features, ccsid and

service exits will apply. If any of these values need to change, you should

GXL1INI (GXL4INI)

88 z/OS V1R10.0 z/OS XML User’s Guide and Reference

terminate the parse instance (call GXL1TRM (GXL4TRM)) and call GXL1INI

(GXL4INI) again with the options you require.

v When the XEC_FEAT_TOKENIZE_WHITESPACE feature is set, the default

classification for white space that precedes markup within the context of the root

element will be XEC_TOK_WHITESPACE. This token type is returned if either

the white space being parsed does not have an xml:space context, or if the

xml:space setting is ’default’. When the tokenize white space feature is not

enabled, or if the white space does not precede markup, this white space will be

returned in the parsed data stream containing character data with a token type of

XEC_TOK_CHAR_DATA.

v The XEC_FEAT_JST_OWNS_STORAGE feature only applies to callers running

in non-cross memory task mode who take the option of allowing the z/OS XML

parser to allocate additional storage as needed. This feature should be specified

when PIMAs are used on multiple tasks in order to prevent task termination from

causing storage extents to be freed before the z/OS XML parser is done using

them.

v Before requesting the initialization of a validating parse instance, the validation

function must be loaded – either through one of the methods that the system

provides, or by the z/OS XML load service. Failure to do so will result in an error

indicating that the function is not available. See the description of “GXL1LOD

(GXL4LOD) — load a z/OS XML function” on page 98 for more information.

v Be sure that the size of the PIMA provided is large enough for the XML

processing function, either validating or non-validating parse, that will be

performed. Also, make sure that there is an appropriate minimum PIMA size

constant defined for each in GXLYXEC.

v The performance of a validating parse will be best when the parsed document is

in the UTF-8 encoding. The other encodings supported by z/OS XML System

Services are also supported during a validating parse, but there is significant

additional overhead that will impact performance.

GXL1INI (GXL4INI)

Chapter 7. z/OS XML parser API: Assembler 89

|
|
|
|
|

|
|
|
|

|
|
|
|

GXL1PRS (GXL4PRS) — parse a buffer of XML text

Description

The GXL1PRS callable service parses a buffer of XML text and places the result in

an output buffer.

Performance Implications

Ideal performance will be obtained when the PIMA is sufficiently large to contain all

the needed data structures, and the input and output buffers are large enough to

process the entire XML document. During the parsing process, the z/OS XML

parser constructs persistent information in the PIMA that can be reused within a

parse instance. If the caller is going to process multiple documents that contain

similar sets of symbols (namespaces and local element and attribute names in

particular), then reusing the PIMA will improve performance during the processing of

subsequent documents. If this behavior is not required, the PIMA should be cleaned

up by calling GXL1TRM (GXL4TRM) and reinitialized by calling GXL1INI (GXL4INI)

before using the PIMA for another parse request.

Syntax

 call gxl1prs,(PIMA,

 option_flags,

 input_buffer_addr,

 input_buffer_bytes_left,

 output_buffer_addr,

 output_buffer_bytes_left,

 return_code,

 reason_code)

Parameters

PIMA

Supplied parameter

Type: Character string

Length: Variable

The name of the Parse Instance Memory Area (PIMA which has been

previously initialized with a call to GXL1INI (GXL4INI)).

option_flags

Supplied parameter

Type: Integer

Length: Fullword

Specify a word of zeroes for this parameter. In the future, this field will allow

options to be compatibly added to the service.

input_buffer_addr

Supplied and returned parameter

Type: Address

Length: Fullword (Doubleword)

The name of a fullword (doubleword) that contains the address of the buffer

with the XML text to parse. The z/OS XML parser updates this parameter to

provide important return information when control returns to the caller. See the

“Usage notes” on page 92 below for details.

GXL1PRS (GXL4PRS)

90 z/OS V1R10.0 z/OS XML User’s Guide and Reference

input_buffer_bytes_left

Supplied and returned parameter

Type: Integer

Length: Fullword (Doubleword)

The name of a fullword (doubleword) that contains the number of bytes in the

input buffer that have not yet been processed. The z/OS XML parser updates

this parameter to provide important return information when control returns to

the caller. See the “Usage notes” on page 92 for details.

output_buffer_addr

Supplied and returned parameter

Type: Address

Length: Fullword (Doubleword)

The name of a fullword (doubleword) that contains the address of the buffer

where the z/OS XML parser should place the parsed data stream. The z/OS

XML parser updates this parameter to provide important return information

when control returns to the caller. See the “Usage notes” on page 92 for details.

output_buffer_bytes_left

Supplied and returned parameter

Type: Integer

Length: Fullword (Doubleword)

The name of a fullword (doubleword) that contains the number of available

bytes in the output buffer. When the z/OS XML parser returns control to the

caller, this parameter will be updated to indicate the number of unused bytes in

the output buffer. This buffer must always contain at least a minimum number of

bytes as defined by the XEC_MIN_OUTBUF_SIZE constant, declared in macro

GXLYXEC. This service will validate the length of this area against this

minimum length value.

return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the service stores the return code.

reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return and Reason Codes

On return from a call to this service, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return

GXL1PRS (GXL4PRS)

Chapter 7. z/OS XML parser API: Assembler 91

and reason codes are defined in macro GXLYXR. For reason code descriptions,

also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

For an AMODE 31 example using this callable service, see “GXL1PRS example” on

page 185. For an AMODE 64 example using this callable service, see “GXL4PRS

example” on page 191.

Usage notes

v When the z/OS XML parser returns successfully to the caller, the input and

output buffer addresses will be updated to point to the byte after the last byte

successfully processed. The input_buffer_bytes_left and output_buffer_bytes_left

parameters will also be updated to indicate the number of bytes remaining in

their respective buffers. In the event of an error caused by a problem with the

document being parsed, the input buffer address will point to the byte of the input

stream where the problem was detected, and the associated bytesleft value will

indicate the same position in the buffer. An error record will be written to the

parsed data stream indicating the nature of the problem, and the output buffer

address and bytesleft fields will point to the next available byte, as in the success

case. See Chapter 4, “Parsing XML documents,” on page 11 for more information

about how input and output buffers are managed between the caller and z/OS

XML parser.

v In cases where parsing terminates because of an error, the z/OS XML parser will

often have partially processed an item from the input document before returning

to the caller. The caller has the option of retrieving the address of the diagnostic

area using the GXL1CTL (GXL4CTL) service. The XD_LastRC/XD_LastRsn

return/reason code combination will contain an indication of the item being

parsed. Retrieving the reason code in this manner is an example of the indirect

method for obtaining a specific reason code.

v The z/OS XML parser will always check that the output buffer length passed to it

is greater than the required minimum (XEC_MIN_OUTBUF_SIZE). If this

minimum length requirement is not met, the z/OS XML parser will return with a

return/reason code of XRC_FAILURE/XRSN_BUFFER_OUTBUF_SMALL.

Output buffer spanning will only occur if the caller meets the minimum output

buffer length requirement when the z/OS XML parser is invoked. Once parsing

begins, and the buffer info record has been written to the output buffer, buffer

spanning is enabled. The caller will then receive an end-of-output-buffer

indication when the end of the output buffer is reached. In addition, many

non-splittable records will be larger than the minimum output buffer size. If there

is not enough space in the output buffer for the first record, then

XRC_FAILURE/XRSN_BUFFER_OUTBUF_SMALL will be returned. Therefore,

it’s recommended that the output buffer sizes should be large enough to fit the

largest record that is expected to be encountered.

GXL1PRS (GXL4PRS)

92 z/OS V1R10.0 z/OS XML User’s Guide and Reference

GXL1QXD (GXL4QXD) — query an XML document

Description

This service allows a caller to obtain the XML characteristics of a document. The

XML characteristics are either the default values, the values contained in an XML

declaration or a combination of both.

Performance Implications

There are no performance implications.

Syntax

 call gxl1qxd,(work_area,

 work_area_length,

 input_buffer,

 input_buffer_length,

 return_data,

 return_code,

 reason_code)

Parameters

work_area

Supplied parameter

Type: Character string

Length: Variable

The name of a work area. The work area must be aligned on a doubleword

boundary. If not on a doubleword boundary, results are unpredictable. See the

“Usage notes” on page 94 below for additional details on the use of this area.

work_area_len

Supplied parameter

Type: Integer

Length: Fullword (Doubleword)

The name of an area containing the length of the work area. The minimum

length of this area is declared as a constant XEC_MIN_QXDWORK_SIZE in

macro GXLYXEC. This service validates the length of this area against this

minimum length value.

input_buffer

Supplied parameter

Type: Character string

Length: Variable

The name of an input buffer containing the beginning of the XML document to

process. See the “Usage notes” on page 94 below for details.

input_buffer_length

Supplied parameter

Type: Integer

Length: Fullword (Doubleword)

The name of an area containing the length of the input buffer.

GXL1QXD (GXL4QXD)

Chapter 7. z/OS XML parser API: Assembler 93

return_data

Returned parameter

Type: Address

Length: Fullword (Doubleword)

The name of a fullword (doubleword) where the service will return the address

of the data which describes the XML document characteristics. This return

information will contain values that are either extracted from the XML

declaration or defaulted according to the XML standard. This return area is

mapped by macro GXLYQXD (see “gxlhqxd.h (GXLYQXD) - mapping of the

output from the query XML declaration service” on page 172), and is located

within the work area specified by the work_area parameter. The caller must not

free the work_area until it is done referencing the data returned from this

service.

return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the service stores the return code.

reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return and Reason Codes

On return from a call to this service, register 15 will contain the return code. The

return and reason code are both set as output parameters. The value of the reason

code is undefined when the return code has no associated reasons. Return and

reason codes are defined in macro GXLYXR (see “gxlhxr.h (GXLYXR) - defines the

return codes and reason codes” on page 173). For reason code descriptions, also

see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

Usage notes

v The input buffer passed to this service must contain the beginning of the XML

document to process. It will look for any XML declaration that is present and

extract the version, encoding, and standalone value that are present. In the event

that the document does not contain an XML declaration, or a given value is

missing from the declaration, this service will return an appropriate default, as

specified by the XML standard. On success, the return data address for this

service will contain a pointer into the work area where the return data has been

collected.

v Unlike the GXL1PRS (GXL4PRS) or GXL1CTL (GXL4CTL) services that must be

performed within a parse instance, this service does not require any of the

internal resources that the z/OS XML parser creates in the PIMA during

GXL1QXD (GXL4QXD)

94 z/OS V1R10.0 z/OS XML User’s Guide and Reference

initialization. It does not advance the input pointer or modify the state of the

parse in any way. It is a simple standalone service that allows a caller to query

important information about the document before establishing a parse instance

and performing the parse.

v Buffer spanning is not supported by this service, as it is by GXL1PRS

(GXL4PRS). If either the input buffer or the work area are too small, this service

will terminate with an appropriate return/reason code.

v This service is useful for checking to see if a conversion to one of the supported

encodings is required before parsing the document.

v Encoding names supported include the IANA recommended names which have

corresponding IBM CCSID values.

GXL1QXD (GXL4QXD)

Chapter 7. z/OS XML parser API: Assembler 95

GXL1TRM (GXL4TRM) — terminate a parse instance

Description

The GXL1TRM callable service releases all resources obtained (including storage)

by the z/OS XML parser and resets the PIMA so that it can be re-initialized or freed.

Performance Implications

There are no performance implications.

Syntax

 call gxl1trm,(PIMA,

 return_code,

 reason_code)

Parameters

PIMA

Supplied parameter

Type: Character string

Length: Variable

The name of the Parse Instance Memory Area (PIMA which has been

previously initialized with a call to GXL1INI (GXL4INI)).

return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the service stores the return code.

reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return and Reason Codes

On return from a call to this service, register 15 will contain the return code. The

return and reason code are both also set as output parameters. The value of the

reason code is undefined when the return code has no associated reasons. Return

and reason codes are defined in macro GXLYXR. For reason code descriptions,

also see Appendix B, “Reason Codes Listed by Value,” on page 119.

Example

For an AMODE 31 example using this callable service, see “GXL1TRM example” on

page 186. For an AMODE 64 example using this callable service, see “GXL4TRM

example” on page 192.

GXL1TRM (GXL4TRM)

96 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Usage notes

Termination can be requested any time the caller gets control back from the z/OS

XML parser. This service does not free the Parse Instance Memory Area (PIMA) as

a part of termination. If the caller’s recovery gets control while a parse is still in

progress, the caller should invoke this termination service to clean up resources.

GXL1TRM (GXL4TRM)

Chapter 7. z/OS XML parser API: Assembler 97

GXL1LOD (GXL4LOD) — load a z/OS XML function

Description

Load a module that implements a z/OS XML function into storage.

Performance Implications

None.

Syntax

 call gxl1lod(function_code,

 function_data,

 return_code,

 reason_code)

Parameters

function_code

Supplied parameter

Type: Integer

Length: Fullword

This parameter identifies the z/OS XML function to load. It is the name of a

fullword that contains an integer value representing one of the following

functions:

XEC_LOD_VPARSE

The validating parse function.

See the GXLYXEC macro for the list of function code constants.

function_data

Supplied parameter

Type: Address

Length: Fullword (doubleword)

Specify a word of zeroes for this parameter.

return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the service stores the return code.

reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the service stores the reason code. The reason

code is only relevant if the return code is not XRC_SUCCESS.

 All parameters in the parameter list are required.

Return and Reason Codes

GXL1LOD (GXL4LOD)

98 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

|
|

|
|

|

||
|
|
|
|

|

|
|

||

||

|
|
|

|
|

|

|
|

||

||

|

|
|

||

||

|

|
|

||

||

|
|

|

|

On return from a call to this service, register 15 will contain the return code. The

return and reason code are both set as output parameters. The value of the reason

code is undefined when the return code is 0 (XRC_SUCCESS). Return and reason

codes are defined in macro GXLYXR, and are dependent on the control function

specified by the caller. For reason code descriptions, also see Appendix B, “Reason

Codes Listed by Value,” on page 119.

Usage notes

This load step is not required when performing a non-validating parse. This

operation is only required when using the validating parser. The caller does have

the option of loading the load module for the specified function without using this

service - either through the z/OS LOAD macro, or by putting it in LPA or the

extended LPA. Both the LOAD macro and calls to this service are not allowed when

running in an SRB. The use of either interface must be performed in the task before

entering SRB mode.

If the required z/OS XML function is made available, either by LOADing the

executable load module for it or putting the load module in LPA, this service is not

required. Documentation on the LOAD macro can be found in z/OS MVS

Programming: Assembler Services Reference, Volume 2, and information on how to

load modules into LPA can be found in z/OS MVS Initialization and Tuning Guide.

The load modules associated with each function are as follows:

 Table 22. Load modules

Function code Function performed Load module name

XEC_LOD_VPARSE validating parser function GXLIMODV

GXL1LOD (GXL4LOD)

Chapter 7. z/OS XML parser API: Assembler 99

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

||

|||

|||
|
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2A981/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7607-13&DT=20080119082809
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2A981/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7607-13&DT=20080119082809
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2E151/CCONTENTS?SHELF=IEA2BK80&DN=SA22-7591-06&DT=20080119071214

GXL1LOD (GXL4LOD)

100 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Chapter 8. z/OS XML System Services exit interface

The system services exit interface defines a series of exits that give the original

caller of the GXL1PRS (GXL4PRS) service control over the way the z/OS XML

parser acquires/releases resources, and over certain parser operations. The

interface is implemented as a vector of addresses to routines that perform these

operations. The first word in the vector is a count of the number of addresses which

follow — both NULL addresses indicating that a specific exit is not present, and

non–NULL addresses. If this count is zero, then the z/OS XML parser will use

default services. Similarly, an entry in the system service vector may be left NULL,

and the default service that corresponds to that entry will be used. For the storage

allocation and deallocation exits, either both or neither exit must be specified. The

addresses of the routines are 4 bytes when in AMODE 31 and 8 bytes when in

AMODE 64. The mapping macro GXLYXSV (see “gxlhxsv.h (GXLYXSV) - mapping

of the system service vector” on page 174) is available to help set up this structure.

Exit functions

The system services exit interface contains exits to perform the following functions:

v Allocate memory

v Free memory

v String identifier service — this is used to create a unique 4 byte numerical value

(StringID) that corresponds to a string parsed from the document. This exit allows

the caller to control the individual StringID values that the z/OS XML parser uses

and serves as an efficient mechanism to communicate these values between

caller and parser. If no StringID service is specified, StringIDs are not exploited

by the z/OS XML parser and the parsed data stream will contain only

length/value pairs for all parsed strings.

These exits are all passed the address of a system service work area. This work

area is storage that was obtained by the caller and can be used to store any

information which may make communication between the caller and the exits

easier.

Common register conventions

The following are common register conventions for all of the system service

interface exits:

Input registers

When the z/OS XML parser invokes an exit, these registers have the following

meaning:

 Table 23. System services input register conventions

Register Contents

1 Address of a standard parameter list containing 31 (64) bit

addresses.

13 Address of a 72 (144) byte save area.

14 Return address

© Copyright IBM Corp. 2008 101

Table 24. System services input access register conventions

Access Register Contents

0-15 Unpredictable

Output registers

When an exit returns to the z/OS XML parser, these registers have the following

meaning:

 Table 25. System services output register conventions

Register Contents

0-1 Unpredictable

2-13 Unpredictable

14 Return address

15 Unpredictable

 Table 26. System services output access register conventions

Register Contents

0-15 Unpredictable

The z/OS XML parser saves all general purpose and access registers prior to

calling the user exit. The user exit must simply return to the address in register 14.

The save area provided can be used for any needs of the exit.

Environmental requirements

The system services exit interface exits are called in the same environment in

which the z/OS XML parser was invoked. This means the following:

Minimum authorization

any state and any PSW key

Dispatchable unit mode

Task or SRB

Cross memory mode

Any PASN, any HASN, any SASN

AMODE

31-bit (64-bit)

ASC mode

primary

Interrupt status

enabled for I/O and external interrupts

Locks no locks held

Control parameters

Control parameters and all data areas the parameter list points to are

addressable from the current primary address space.

Restrictions

These exit routines must not call any of the services provided in the z/OS XML

parser API, either directly or indirectly.

102 z/OS V1R10.0 z/OS XML User’s Guide and Reference

These exit routines are required to use linkage OS. As a result, they will need to be

written in assembler and not C or C++.

The two storage exits, “GXLGST31 (GXLGST64) — get memory” on page 104 and

“GXLFST31 (GXLFST64) — free memory” on page 107, must be called together.

They cannot be called independently of one another.

Although the actual name of the entry points to each of these exit services may be

anything the caller wishes, the z/OS XML parser will call these services as if they

had the interfaces listed below.

Chapter 8. z/OS XML System Services exit interface 103

GXLGST31 (GXLGST64) — get memory

Description

This service allocates an area of memory of the size requested by the z/OS XML

parser. The z/OS XML parser requests memory in large quantities and manages

sub-allocations of this memory within the parser.

Performance Implications

There are no performance implications.

Syntax

 call gxlgst31,(sys_svc_parm,

 memory_addr,

 memory_len,

 exit_diag_code,

 return_code,

 reason_code)

Parameters

sys_svc_parm

Supplied parameter

Type: Address

Length: Fullword (Doubleword)

The address of the system service parameter (or zero) that was passed to the

z/OS XML parser at initialization time.

memory_addr

Returned parameter

Type: Address

Length: Fullword (Doubleword)

The address of a fullword (doubleword) where the memory allocation exit

should store the address of the allocated memory. If the caller wants to

terminate the parse, then it should set a nonzero return code.

memory_len

Supplied and Returned parameter

Type: Integer

Length: Fullword (Doubleword)

A fullword that contains the length of the memory area requested by the z/OS

XML parser. The exit is allowed to return an area of greater size and set this

parameter to the length returned.

exit_diag_code

Returned parameter

Type: Integer

Length: Fullword (Fullword)

GXLGST31 (GXLGST64)

104 z/OS V1R10.0 z/OS XML User’s Guide and Reference

The name of a fullword where the exit stores any diagnostic information (usually

a reason code). This is stored in the diagnostic area and made available on the

GXL1CTL (GXL4CTL) call.

return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the exit service stores the return code.

reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the exit service stores the reason code.

 Return and Reason Codes

The z/OS XML parser uses the convention that the exit will provide a return code

value of zero when successful. Any nonzero value indicates failure. If a nonzero

return code is provided by the exit, the z/OS XML parser does not look at the

reason code. Instead, the z/OS XML parser saves the reason code, along with the

return code and the diagnostic code, in the extended diagnostic area so that the

caller of the z/OS XML parser has access to it by calling GXL1CTL (GXL4CTL). The

z/OS XML parser will provide return and reason codes to the caller in the event of a

failure by the exit, or if the parser detects a problem with the storage returned from

the exit.

For reason code descriptions, see Appendix B, “Reason Codes Listed by Value,” on

page 119.

Example

For an AMODE 31 example using this exit service, see “GXLE1GTM (GXLGST31

example)” on page 198. For an AMODE 64 example using this exit service, see

“GXLE4GTM (GXLGST64 example)” on page 228. These examples are located in

SYS1.SAMPLIB .

Default Implementation

If the exit is not provided, then the subpool used will be as follows:

v If running in SRB or cross memory mode, subpool 129 will be used. This is JST

related and cannot be freed by unauthorized callers. The key will be the same as

the key at the time the z/OS XML parser is invoked.

v If running in task mode (PSATOLD not zero), with

PRIMARY=SECONDARY=HOME, then the subpool chosen will depend on the

authorization state of the caller and on the specification of the

XEC_FEAT_JST_OWNS_STORAGE feature on the GXL1INI (GXL4INI) call. If

the caller is running in key 0-7 or supervisor state, they will be considered

authorized.

– Authorized and JST requested — subpool 129

– Authorized and JST not requested — subpool 229

– Unauthorized and JST requested — subpool 131

GXLGST31 (GXLGST64)

Chapter 8. z/OS XML System Services exit interface 105

– Unauthorized and JST not requested — subpool 0

Note: If running on a subtask which is sharing subpool 0, then this storage

will be owned by the task that owns subpool 0.

These choices of subpool will eliminate the possibility of the z/OS XML parser

running in an authorized state while using problem key storage which could be

freed and reallocated.

The CONTROL setting will be AUTH for authorized callers. This prevents the

storage from being unallocated by an unauthorized caller in the same address

space. The storage will be allocated in the caller’s key.

For 64-bit callers, the ownership of the storage will be controlled by the setting of

the tcbtoken on the TTOKEN parameter:

v When running in SRB mode, the storage will be associated with the cross

memory owning task in the primary address space (generally the Job Step Task

(JST)).

v When running in Task mode with PRIMARY=SECONDARY=HOME, ownership of

the storage will be determined by the specification of the

XEC_FEAT_JST_OWNS_STORAGE feature on the GXL1INI (GXL4INI) call. If

JST ownership is requested, the TTOKEN of the JST will be used. Otherwise, the

TTOKEN of the caller’s task will be used.

v When running in Task mode in cross memory mode, the storage will be

associated with the cross memory owning task (generally the JST) in the primary

address space.

GXLGST31 (GXLGST64)

106 z/OS V1R10.0 z/OS XML User’s Guide and Reference

GXLFST31 (GXLFST64) — free memory

Description

This service frees an area of memory previously obtained by the GXLGST31

(GXLGST64) service.

Performance Implications

There are no performance implications.

Syntax

 call gxlfst31,(sys_svc_parm,

 memory_addr,

 memory_len,

 exit_diag_code,

 return_code

 reason_code)

Parameters

sys_svc_parm

Supplied parameter

Type: Address

Length: Fullword (Doubleword)

The address of the system service parameter that was passed to the z/OS XML

parser at initialization time.

memory_addr

Supplied parameter

Type: Address

Length: Fullword (Doubleword)

The address of a fullword (doubleword) that contains the address of the

memory to be freed.

memory_len

Supplied parameter

Type: Integer

Length: Fullword (Doubleword)

A fullword (doubleword) that contains the length of the memory to be freed.

Memory will always be freed in the same quantities under which it was

allocated.

exit_diag_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the exit can store any diagnostic information

(usually a reason code).

GXLFST31 (GXLFST64)

Chapter 8. z/OS XML System Services exit interface 107

return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the exit service stores the return code.

reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the exit service stores the reason code.

 Return and Reason Codes

The z/OS XML parser uses the convention that the exit will provide a return code

value of zero when successful. Any nonzero value indicates failure.

For reason code descriptions, see Appendix B, “Reason Codes Listed by Value,” on

page 119.

Example

For an AMODE 31 example using this exit service, see “GXLE1FRM (GXLFST31

example)” on page 194. For an AMODE 64 example using this exit service, see

“GXLE4FRM (GXLFST64 example)” on page 224. These examples are located in

SYS1.SAMPLIB .

Default Implementation

The z/OS XML parser will free all memory obtained. Memory is freed in the same

quantities under which it was allocated. See the MVS assembler services reference

(SA22-7606) for more details on the STORAGE macro.

GXLFST31 (GXLFST64)

108 z/OS V1R10.0 z/OS XML User’s Guide and Reference

GXLSYM31 (GXLSYM64) — StringID service

Description

This service accepts an input string and performs a lookup for its corresponding

symbol, which is identical to the string itself. If the symbol has been located, the exit

returns the StringID associated with the symbol. If the string does not have a

defined symbol, a symbol is created for the string and a StringID is assigned to it.

The StringID is then returned to the z/OS XML parser.

Performance Implications

There are no performance implications.

Syntax

 call gxlsym31,(sys_svc_parm,

 string,

 string_len,

 string_id,

 ccsid,

 exit_diag_code,

 return_code

 reason_code)

Parameters

sys_svc_parm

Supplied parameter

Type: Address

Length: Fullword (Doubleword)

The address of the system service parameter that was passed to the z/OS XML

parser at initialization time.

string

Supplied parameter

Type: Character string

Length: determined by the string_len parameter

The string to return an ID for. The length of the string is variable, and is

specified by the string_len parameter.

string_len

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the length of the string pointed to by the string

parameter.

string_id

Returned parameter

Type: Unsigned integer

Length: Fullword

GXLSYM31 (GXLSYM64)

Chapter 8. z/OS XML System Services exit interface 109

The numeric identifier for the string. The range of valid values is 1 to 2 GB - 1.

The value zero is reserved for use by the z/OS XML parser.

ccsid

Supplied parameter

Type: Integer

Length: Fullword

The Coded Character Set IDentifier (CCSID) that identifies the character set of

the string. The z/OS XML parser will provide the same CCSID in this parameter

that the caller of the parser specified at parser initialization time.

exit_diag_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the exit can store any diagnostic information

(usually a reason code). This will be stored in the diagnostic area and made

available on the GXL1CTL (GXL4CTL) call.

return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword containing the return code. A return code value of zero

means success; any nonzero return code indicates failure.

 Return Codes

The z/OS XML parser uses the convention that the exit will provide a return code

value of zero when successful. Any nonzero value indicates failure. If a nonzero

return code is provided by the exit, the z/OS XML parser saves it in the extended

diagnostic area so that the caller of the parser has access to it by calling GXL1CTL

(GXL4CTL).

Example

For an AMODE 31 example of using this exit service, see “GXLSYM31 example” on

page 203. For an AMODE 64 example of using this exit service, see “GXLSYM64

example” on page 234. These examples are located in SYS1.SAMPLIB .

Default Implementation

There is no default implementation. If this exit is not specified by the caller,

StringIDs are not used by the z/OS XML parser. Length/value pairs representing all

strings from the XML text are passed through to the parsed data stream for return

to the caller. See “String Identifiers” on page 23 for more details about length/value

pairs and StringIDs in the parsed data stream.

GXLSYM31 (GXLSYM64)

110 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Chapter 9. Diagnosis and problem determination

The diagnostic facilities of this z/OS XML parser can be used to debug both the

operation of the z/OS XML parser itself and the input XML document. Since

well-formedness checking is an integral part of the parsing process, and since the

complexity of XML documents can be very high, the opportunity for encountering a

flaw in the input stream that is difficult to diagnose is significant. To assist in

diagnosis, the z/OS XML parser provides the following support:

v XMLDATA IPCS subcommand

v Diagnostic Area

v SLIP trap for reason codes from z/OS XML parser

v ARR recovery routine

XMLDATA IPCS subcommand

To make it easier to analyze z/OS XML System Services dumps, the XMLDATA

subcommand is provided for use with the IPCS formatter. To use the subcommand,

input the following under IPCS option 6:

COMMAND: XMLDATA address option

The address parameter is the address of the z/OS XML parser’s Parser Anchor

Block (PAB); this is a required parameter. The address parameter accepts both 31-

and 64-bit addresses. If you do not know the value for the address parameter, you

can place a ’0’ in the address field, and XMLDATA will try to locate the value for

you, for example: XMLDATA 0 TRACE. Although this method is not guaranteed to work,

it is still an available option.

The option parameter allows you to select what information you want to review

within the provided dump (see Table 27 for a list of options and their descriptions). If

nothing is provided for the option parameter, XMLDATA will use the default option

BASIC. The following table lists the options available for XMLDATA:

 Table 27. XMLDATA options

Option Description

BASIC Displays to the screen widely used dump information.

Such information includes the following: the PSW and any

general information during the abend; the value of the

registers; an API trace; a user input parameter list; feature

flags, return code and reason codes; and the last 64 bytes

of the input and output buffers.

PARAM Displays the parameter list values for the GXL1PRS or

GXL4PRS entry points.

© Copyright IBM Corp. 2008 111

|

|

|
|
|

|

|
|
|
|
|
|

|
|
|
|

||

||

||
|
|
|
|
|

||
|

Table 27. XMLDATA options (continued)

Option Description

BUFFER (inlen, outlen, fraglen) Displays the last inlen bytes of the input buffer ending at

where the parser abends, displays the last outlen bytes of

the output buffer and displays the first fraglen bytes of the

fragment buffer. The fragment buffer option is only

available for a non-validating dump. For a validating

dump, the input buffer option will not display the most

current bytes of data at where the z/OS XML parser

abends, but instead the input buffer option will display

from the beginning of the input buffer for inlen bytes that

has been loaded for parsing within the validating z/OS

XML parser. If the length value of zero is provided for a

specific buffer type, that specific buffer information will be

skipped. The inlen, outlen, and fraglen parameters are all

optional. For any that are not specified, the default is 128

bytes.

EXTENT Displays all available free and external extents’

information.

MISC Displays the status of each feature flag, input document

encoding, exit services, return code and reason codes.

TRACE (option) Displays the trace of the API calls. The option parameter

is optional. Providing ‘ADV’ in the option parameter

displays a more advanced API trace. Otherwise, a simple

API trace will be displayed. (Default is to display a simple

API trace).

PAB Displays all the defined fields in the PAB.

STRUCT (option, address) Displays the formatted control blocks including the z/OS

XML parser diagnostic area, element stack, default

attribute record, local name tree, prefix tree, namespace

tree and data buffer. The data buffer option is only

available if the dump is taken with the validation feature

flag turned on. The option parameter is required,

otherwise no control block will be displayed. The options

include the following: XD, XELE, XATT, LN, PFX, URI,

DBUF, respectively. The address parameter is optional

and is only available for local name, prefix, namespace

tree and data buffer option. For local name, prefix, and

namespace trees, if you do not want to display the tree

from the root node, then provide a child node address for

the tree to use as the root node. For data buffer, if you

want to display the details of a specific internal input

buffer, then provide a data buffer address. (For the

address parameter, the default for the trees is the tree

root node address.) If no options or addresses are

selected, a menu of all available options will be displayed.

MARKED Displays data that was parsed by the z/OS XML parser,

but has not yet been placed in the output buffer, due to

the interruption of an abend. This option is only available if

the dump is taken with the validation feature flag turned

off.

PMM Displays the formatted Module Map: PMM, Secondary

Table: PST, and System Control: PSC.

HELP Displays all available options and their descriptions.

112 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|

||

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|

||
|

||
|
|
|
|

||

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|

||
|

||
|

The following is an example of the XMLDATA subcommand:

XMLDATA 00002940121498028 PAB

Diagnostic Area

On the GXL1CTL (GXL4CTL) call, there is a diagnostic area where the z/OS XML

parser places information that can be useful when debugging a failure or incorrect

behavior in the parser. This area is mapped by macro GXLYXD. The diagnostic

area contains the following fields:

XD_Eye

Eyecatcher GXLYXD

XD_Version

The z/OS XML parser version number.

XD_PAB

Address of Parser Anchor Block for this parse instance.

XD_InBuff

Address of current input buffer.

XD_InBuffOffset

Offset into input buffer where the z/OS XML parser stopped.

XD_OutBuff

Address of current output buffer.

XD_OutBuffOffset

Offset into output buffer where the last valid entry can be found.

XD_LastRC

Return code from the last call to GXP1PRS (GXP4PRS) or GXL1CTL

(GXL4CTL).

XD_LastRSN

Reason code from the last call to GXP1PRS (GXP4PRS) or GXL1CTL

(GXL4CTL).

XD_StorageRC

Return code from call to STORAGE.

XD_StorageRsn

Reason code from call to STORAGE.

XD_Iarv64Rc

Return code from call to IARV64.

XD_Iarv64Rsn

Reason code from call to IARV64.

XD_StorExitRc

Return code from storage exit.

XD_StorExitRsn

Reason code from storage exit.

XD_StorExitDiag

The diag code from the storage exit.

XD_SymbolLength

Length of the symbol which was rejected by the user symbol exit routine.

XD_IFA_RC

The return code from the request to run on a ZAAP.

Chapter 9. Diagnosis and problem determination 113

|

|

|

SLIP trap for return codes from the z/OS XML parser

To obtain a dump on a specific reason code from any of the z/OS XML parser

callable services, use the release appropriate SLIP example in the following table:

 Table 28. SLIP examples by release

z/OS release SLIP example

V1.9 or lower SLIP SET,IF,A=SYNCSVCD,RANGE=(10?+220?+48?+8?+E),

DATA=(13G!!+b0,EQ,xxxxxxxx),

SDATA=(CSA,LPA,TRT,SQA,RGN,SUM),j=jobname,END

V1.10 SLIP SET,IF,A=SYNCSVCD,RANGE=(10?+220?+48?+8?+E),

DATA=(4G!+E8!+b0,EQ,xxxxxxxx),

SDATA=(CSA,LPA,TRT,SQA,RGN,SUM),j=jobname,END

where xxxxxxxx is the 8 digit (4 byte) reason code that is to be trapped and

j=jobname is the optional jobname that is expected to issue the error (for example,

j=IBMUSER).

ARR recovery routine

z/OS XML provides an ARR recovery routine to assist with problem determination

and diagnostics. This recovery routine can be turned on through an initialization

option when invoked through the assembler API. For callers of the C/C++ parser

API (gxlpParse), when running in Language Environment, the ARR recovery routine

is provided by default in most cases. For C or C++ callers who are running in either

SRB mode or under an existing FRR routine, the z/OS XML ARR will not be

provided, as it would not work properly in those environments.

If the z/OS XML parser abends, the z/OS XML ARR routine will get control and will

collect dumps and return to the caller with a XRC_FATAL return code. For

unauthorized callers, an IEATDUMP will be taken in data set

userid.GXLSCXML.DYYMMDD.THHMMSS.DUMP, where DYYMMDD is the date

and THHMMSS is the time the dump was taken. The task level ACEE is used to

obtain the userid. If there is no task level ACEE, the address space level ACEE is

used. If there is no address space level ACEE, a dump is not taken. For authorized

callers, an SDUMPX will be taken into a system dump data set.

If the user would like to continue parsing, he must terminate and re-initialize a PIMA

following any abend in the z/OS XML parser.

114 z/OS V1R10.0 z/OS XML User’s Guide and Reference

||
|
|

Chapter 10. System Admin: Servicing the z/OS XML parser

This chapter describes how to install fixes for both the non-validating and validating

z/OS XML parsers. Before you begin, you should know that the non-validating z/OS

XML parser resides in the LPA. However, the default location for the validating z/OS

XML parser is in SIEALNKE.

Note: The option is available to place the validating z/OS XML parser into LPA.

However, the instructions below assume it is located in SIEALNKE.
Also, before updating the code, it is recommended that you quiesce any

applications that might be using the z/OS XML parser. Otherwise, these applications

may receive parsing errors. Here are the steps to install fixes for the z/OS XML

parser:

1. Install the fix to the z/OS XML parser in either one of the two locations:

v SYS1.LPALIB (for the non-validating parser)

v SYS1.SIEALNKE (for the validating parser)

You can also install the fix in a temporary library.

Note: The next step assumes the fix is installed in one of the above locations.

If this is not the case, replace the above location in the instruction with

the name of the library where the fix is installed.

2. Issue operator command. For the non-validating parser:

SETPROG LPA,ADD,MODNAME=GXLINLPA,DSNAME=SYS1.LPALIB

For the validating parser:

SETPROG LPA,ADD,MODNAME=GXLIMODV,DSNAME=SYS1.SIEALNKE

Note: If a parse is in progress at the time of a z/OS XML parser code update,

and that parse requires that input or output buffers be spanned, a failure

will occur on the first call back to the parser when the caller has a new

input or output buffer. The caller has to terminate the parse instance in

this case, and begin the parse again within the context of a new parse

instance.

3. If you do a dynamic add of GXLINLPA or GXLIMODV, and are unsatisfied with

the fix, you can remove the new version with one of the following commands:

v For GXLINPA:

SETPROG LPA,DELETE,MODNAME=GXLINLPA,FORCE=YES,CURRENT

v For GXLIMODV:

SETPROG LPA,DELETE,MODNAME=GXLIMODV,FORCE=YES,CURRENT

Servicing the dynamic LPA exit

The z/OS XML parser’s dynamic LPA exit is an LPA routine itself. If this routine

requires service, do the following:

1. Install the fix to SYS1.LPALIB or a temporary directory.

Note: The next step assumes the fix is installed in SYS1.LPALIB. If this is not

the case, replace SYS1.LPALIB in the instruction with the name of the

library of where the fix is installed.

2. Issue the following operator commands :

© Copyright IBM Corp. 2008 115

|

|

|
|
|
|

|
|
|
|
|
|

|

|

|

|

|
|
|

|

|

|

|

|
|
|
|
|
|

|
|

|

|

|

|

|
|

|
|

|

|
|
|

|

SETPROG EXIT DELETE EXITNAME(CSVDYLPA) MODULE(GXLINDLX)

SETPROG EXIT ADD EXITNAME(CSVDYLPA) MODULE(GXLINDLX) DSNAME(SYS1.LPALIB)

116 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|

|

Appendix A. Return Codes Listed by Value

This section lists return codes by value and describes them.

 Hex Value Return Code Description

0000 XRC_SUCCESS The z/OS XML parser service was successful.

0004 XRC_WARNING The z/OS XML parser service has partial success.

0008 XRC_FAILURE Processing failed. Returned data areas and parms

valid.

000C XRC_NOT_WELL_FORMED The document is not-well-formed.

0010 XRC_FATAL Processing failed. Returned data areas or output

parameters cannot be relied on to contain valid data.

0014 XRC_LOAD_FAILED The load of the specified service failed. The return code

from the LOAD macro is returned in the reason code

field.

0018 XRC_NOT_VALID The document is not valid according to the specified

schema.

© Copyright IBM Corp. 2008 117

|

|

|

118 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Appendix B. Reason Codes Listed by Value

This section describes reason codes, listing them by hexadecimal value and

describing actions to correct the error.

 0000 XRSN_SUCCESS

The z/OS XML parser service was successful.

Action: None

1000 XRSN_PIMA_NOT_INITIALIZED

The PIMA passed to a z/OS XML parser service is unusable.

Action: The PIMA passed has not been initialized with a call to the

z/OS XML parser initialization service GXL1INI or GXL4INI or the PIMA

address is incorrect.

1001 XRSN_PIMA_SMALL

The length of the PIMA is too small.

Action: The PIMA passed on GXL1INI or GXL4INI must be at least as

big as the constant XEC_MIN_PIMA_SIZE equal to 0x20000 defined in

macro GXLYXEC.

1002 XRSN_PIMA_RESIDUAL_DATA

Initialization has already been done on this PIMA.

Action: The GXL1INI or GXL4INI service has been called to initialize

the PIMA, but the PIMA storage has already been initialized. You must

call GXL1TRM or GXL4TRM before the PIMA can be reinitialized to

guarantee that all resources have been cleaned up.

1004 XRSN_PIMA_INCONSISTENT_STATE

The z/OS XML parser exited without cleaning up.

Action: Attempt to collect a dump of the problem. The joblog for the

address space should contain a symptom dump which identifies the

abend code. If running from a user address space, allocate a

SYSMDUMP DD and recreate the problem. If running in some system

address space, use SLIP to get a dump of the abend. Contact your

system administrator for help in getting the dump and possibly

contacting IBM.

1005 XRSN_CTL_DATA_PARM_INVALID

The CTL_DATA parm is invalid.

Action: It is null, but is a required input parmameter for this feature flag.

Call the ctl function again, passing in the required parameter.

1006 XRSN_IMODV_NOT_LOADED

The validating parser has not been loaded.

Action: Invoke the GXL1LOD or GXL4LOD to load the validating parser.

Call initialization again, after a successful load.

© Copyright IBM Corp. 2008 119

1100 XRSN_STORAGE_31_GET_ERROR

Unable to allocate memory.

Action: If your application does not already call GXL1CTL after the

parse, add a call to GXL1CTL. The address returned by GXL1CTL

points to an area mapped by GXLYXD. Extract the return and reason

code from the XD area, pertaining to storage access failures that

occurred using the STORAGE macro. Contact your system

administrator for help in interpreting these values.

1101 XRSN_STORAGE_64_GET_ERROR

Unable to allocate memory.

Action: If your application does not already call GXL1CTL after the

parse, add a call to GXL1CTL. The address returned by GXL1CTL

points to an area mapped by GXLYXD. Extract the return and reason

code from the XD area, pertaining to storage access failures using the

IARV64 service. Contact your system administrator for help in

interpreting these values.

1140 XRSN_STORAGE_GET_EXIT_TOO_SMALL

The storage returned from get storage exit is too small.

Action: If your application does not already call GXL1CTL after the

parse, add a call to GXL1CTL. The address returned by GXL1CTL

points to an area mapped by GXLYXD. Extract the return and reason

code from the XD area, pertaining to storage exit failure. Contact your

system administrator for help in interpreting these values.

1143 XRSN_STORAGE_31_SFREE_ERROR

Single failure when attempting to free storage.

Action: Contact your system administrator.

1144 XRSN_STORAGE_31_MFREE_ERROR

Multiple failures when attempting to free storage.

Action: Contact your system administrator.

1145 XRSN_STORAGE_64_SFREE_ERROR

Single failure when attempting to free storage.

Action: Contact your system administrator.

1146 XRSN_STORAGE_64_MFREE_ERROR

Multiple failures when attempting to free storage.

Action: Contact your system administrator.

1147 XRSN_STORAGE_CORRUPTED_ERROR

Storage header has been corrupted.

Action: Contact your system administrator.

120 z/OS V1R10.0 z/OS XML User’s Guide and Reference

1148 XRSN_INPUT_BUFFER_ACCESS_ERROR

The user abended when trying to access the input buffer.

Action: Check the input buffer parameter and length passed into the

parser to be sure they are correct. If the input parameters are correct,

Contact your system administrator. .

1149 XRSN_INPUT_BUFFER_ACCESS_ERROR_ND

The user abended when trying to access the input buffer. No dump was

taken.

Action: Check the input buffer parameter and length passed into the

parser to be sure they are correct. If the input parameters are correct,

Contact your system administrator. .

1150 XRSN_OUTPUT_BUFFER_ACCESS_ERROR

The user abended when trying to access the output buffer.

Action: Check the output buffer parameter and length passed into the

parser to be sure they are correct. If the output parameters are correct,

Contact your system administrator. .

1151 XRSN_OUTPUT_BUFFER_ACCESS_ERROR_ND

The user abended when trying to access the output buffer. No dump

was taken.

Action: Check the output buffer parameter and length passed into the

parser to be sure they are correct. If the output parameters are correct,

Contact your system administrator. .

1152 XRSN_PIMA_ACCESS_ERROR

The user abended when trying to access the PIMA.

Action: Check the PIMA parameter and length passed into the parser to

be sure they are correct. If the PIMA parameters are correct, Contact

your system administrator. .

1153 XRSN_PIMA_ACCESS_ERROR_ND

The user abended when trying to access the PIMA. No dump was

taken.

Action: Check the PIMA parameter and length passed into the parser to

be sure they are correct. If the PIMA parameters are correct, Contact

your system administrator. .

1154 XRSN_UNKNOWN_ERROR

An unknown abend occurred.

Action: Contact your system administrator.

1155 XRSN_UNKNOWN_ERROR_ND

Unknown abend occurred and no dump was taken.

Action: Contact your system administrator.

1156 XRSN_STORAGE_OBTAIN_FAILED

A storage obtain request failed

Action: Contact your system administrator.

Appendix B. Reason Codes Listed by Value 121

1157 XRSN_STORAGE_OBTAIN_FAILED_ND

A storage obtain request failed, no dump taken

Action: Contact your system administrator.

1201 XRSN_PARM_ENCODING_SPEC_INVALID

The ccsid passed is not supported.

Action: The CCSID parameter on the call to GXL1INI or GXL4INI is not

one of the supported character encodings. Pass only permitted CCSID

parameters. See the documentation of the GXL1INI service for

supported ccsid constants.

1202 XRSN_PARM_FEATURE_FLAG_INVALID

Undefined feature flag is set

Action: The feature flag parameter passed to GXL1INI or GXL4INI or

GXL1CTL or GXL4CTL has an undefined bit set or a bit that is invalid

for this api set. You can only set features that are defined or supported

on the api.

1203 XRSN_PARM_UNSUPPORT_ENCODING

XML encoding string is not supported.

Action: The encoding string in the XML declaration is not supported.

Use only the supported encoding names.

1300 XRSN_BUFFER_INBUF_SMALL

The input buffer size is too small.

Action: The query service was not able to parse a complete XML

declaration. The caller needs to pass more of the document to the

service.

1301 XRSN_BUFFER_INBUF_END

The end of the input buffer has been reached.

Action: This is a normal reason code for spanning buffers.

1302 XRSN_BUFFER_OUTBUF_SMALL

The output buffer was too small to contain the next item.

Action: The caller must reset the parser, then parse the document

again from the beginning, passing in a larger output buffer.

1303 XRSN_BUFFER_OUTBUF_END

The end of the output buffer has been reached

Action: This is a normal reason code for spanning buffers.

1304 XRSN_BUFFER_INOUTBUF_END

The end of both buffers have been reached

Action: This is a normal reason code for spanning buffers.

122 z/OS V1R10.0 z/OS XML User’s Guide and Reference

1305 XRSN_STORAGE_GET_EXIT_ERROR

Application storage exit unable to allocate memory.

Action: If your application does not already call GXL1CTL after the

parse, add a call to GXL1CTL. The address returned by GXL1CTL

points to an area mapped by GXLYXD. Extract the return and reason

code from the XD area, pertaining to storage access failures. Contact

your system administrator for help in interpreting these values.

1307 XRSN_STORAGE_SFREE_EXIT_ERROR

User free storage exit has one failure.

Action: Contact your system administrator.

1308 XRSN_STORAGE_MFREE_EXIT_ERROR

User free storage exit has multiple failures.

Action: Contact your system administrator.

1309 XRSN_DYNAMIC_CODE_CHANGE

z/OS XML parser was re-installed.

Action: Caller needs to terminate the parser and restart with parser

initialization.

1310 XRSN_SYM_EXIT_ERROR

The symbol exit returned an error.

Action: Contact the owner of the symbol exit and have them debug the

problem.

1400 XRSN_DEALLOC_EXIT_MISSING

Allocation exit specified with deallocation exit

Action: The service exit specification on a call to GXL1INI or GXL4INI

contains an exit to allocate storage, but no exit to deallocate storage.

Either both or neither is required.

1401 XRSN_ALLOC_EXIT_MISSING

Deallocation exit specified with allocation exit

Action: The service exit specification on a call to GXL1INI or GXL4INI

contains an exit to deallocate storage, but no exit to allocate storage.

Either both or neither is required.

1403 XRSN_OPTN_UNKNOWN

Unsupported value set on the options parameter.

Action: Refer to the API documentation for the correct values to pass to

this service.

1404 XRSN_QXDWORK_AREA_SMALL

Query service work area length is too small.

Action: Pass a bigger area.

Appendix B. Reason Codes Listed by Value 123

1405 XRSN_INTERNAL_ERROR

Internal error in the z/OS XML parser.

Action: Contact your system administrator.

1407 XRSN_FEATURE_FLAG_INVALID_IN_ENV

The recovery feature flag is on, but the program either has an existing

FRR or is in SRB mode. This feature is not valid in these environments.

Action: Reinitialize the parse with the recovery feature flag turned off.

1408 XRSN_INVALID_OPTION

The operation being performed is not valid for this service.

Action: Refer to the API documentation to determine which parsing

services this option is valid for.

1500 XRSN_SVC_UNKNOWN

The code specified for the svc_code parameter is invalid.

Action: Refer to the API documentation for the correct values for the

svc_code parameter.

1501 XRSN_NO_OSR_SPECIFIED

No OSR has been loaded via a CTL call.

Action: Perform a CTL_LOAD_OSR operation via CTL with a nonzero

XSCH_OSR_PTR.

1502 XRSN_NO_SCHEMAS_SPECIFIED

Either the schema vector parameter passed was NULL, or the number

of schemas specified in the vector was zero.

Action: Pass in a valid schema vector that contains one or more text.

schemas to process.

1503 XRSN_NO_OSR_BUFFER_SPECIFIED

No OSR buffer was for generation.

Action: Pass in the address of a buffer to receive a generated OSR.

1504 XRSN_OSR_INVALID

The data within the OSR is invalid.

Action: Ensure that the correct address of the OSR is being passed.

2000 XRSN_COMMENT_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within

comment markup.

Action: Change the document to correct the error and retry.

2001 XRSN_CDATA_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within CDATA

markup.

Action: Change the document to correct the error and retry.

124 z/OS V1R10.0 z/OS XML User’s Guide and Reference

2002 XRSN_PI_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within

processing instruction markup.

Action: Change the document to correct the error and retry.

2003 XRSN_ATTR_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within attribute

markup.

Action: Change the document to correct the error and retry.

2004 XRSN_ENDTAG_NOT_REACHED

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended without

reaching the document element end tag.

Action: Change the document to correct the error and retry.

2006 XRSN_TAG_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within an

element start tag.

Action: Change the document to correct the error and retry.

2007 XRSN_NS_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within

namespace declaration markup.

Action: Change the document to correct the error and retry.

2008 XRSN_XML_DECL_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within the XML

declaration.

Action: Change the document to correct the error and retry.

2009 XRSN_DTD_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within doctype

declaration markup.

Action: Change the document to correct the error and retry.

2010 XRSN_SUBSET_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within internal

subset markup.

Action: Change the document to correct the error and retry.

Appendix B. Reason Codes Listed by Value 125

2011 XRSN_SUBSET_ELEM_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within an

element declaration.

Action: Change the document to correct the error and retry.

2012 XRSN_SUBSET_NOTATION_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within a

notation declaration.

Action: Change the document to correct the error and retry.

2013 XRSN_SUBSET_COMMENT_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within

comment markup.

Action: Change the document to correct the error and retry.

2015 XRSN_SUBSET_PEREF_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within a

parameter entity reference.

Action: Change the document to correct the error and retry.

2016 XRSN_SUBSET_ENTITY_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within an

entity declaration.

Action: Change the document to correct the error and retry.

2017 XRSN_SUBSET_ATTL_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within an

attribute list declaration.

Action: Change the document to correct the error and retry.

2018 XRSN_MARKUP_INCOMPLETE

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended within markup.

Action: Change the document to correct the error and retry.

2019 XRSN_DOC_ELEM_NOT_FOUND

The GXL1CTL (GXL4CTL) API was called with the finish option and the

input document was not complete. The document ended without finding

the document element.

Action: Change the document to correct the error and retry.

3000 XRSN_ATTR_DUPLICATE

Duplicate attributes were found.

Action: Change the document to correct the error and retry.

126 z/OS V1R10.0 z/OS XML User’s Guide and Reference

3001 XRSN_NS_DUPLICATE

Duplicate namespace declaration found.

Action: Change the document to correct the error and retry.

3002 XRSN_NS_ATTR_PREFIX_NOT_DECL

Namespace prefix on attribute not declared.

Action: Change the document to correct the error and retry.

3003 XRSN_NS_ELEM_PREFIX_NOT_DECL

Namespace prefix on element tag not declared.

Action: Change the document to correct the error and retry.

3004 XRSN_ENC_DETECTED_INVALID

Encoding detected during query is unsupported.

Action: During the query service, an unsupported byte sequence is

found at the beginning of the document.

3006 XRSN_CHAR_ERROR

Incorrectly encoded character found in the input stream.

Action: Contact your system administrator.

3007 XRSN_COMMENT_DASH_MISSING

Comment without starting dash found.

Action: Check the document for a comment markup missing a dash in

the beginning and correct the document.

3008 XRSN_COMMENT_CHAR_INVALID

Comment markup contains incorrect character.

Action: Change the document to correct the error and retry.

3009 XRSN_COMMENT_RIGHT_ANGLE_MISSING

Comment is missing the ending angle bracket at the end of the markup.

Action: Change the document to correct the error and retry.

3010 XRSN_CDATA_KEYWORD_INVALID

CDATA keyword expected but not found.

Action: Change the document to correct the error and retry.

3011 XRSN_CDATA_LEFT_BRACKET_MISSING

Left square bracket expected in CDATA markup.

Action: Change the document to correct the error and retry.

3013 XRSN_CDATA_CHAR_INVALID

A character was found that is not allowed within a CDATA section.

Action: Change the document to correct the error and retry.

Appendix B. Reason Codes Listed by Value 127

3017 XRSN_PI_CHAR_INVALID

A character was found that is not allowed within a Processing

Instruction.

Action: Change the document to correct the error and retry.

3018 XRSN_ATTR_NAME_CHAR_INVALID

A character was found that is not allowed within an attribute name.

Action: Change the document to correct the error and retry.

3019 XRSN_ATTR_LNAME_CHAR_INVALID

A character was found that is not allowed within an attribute local

name.

Action: Change the document to correct the error and retry.

3020 XRSN_ATTR_EQUAL_MISSING

An incorrect character was found after the attribute name, and the only

character allowed is ″=″.

Action: Change the document to correct the error and retry.

3021 XRSN_ATTR_QUOTE_MISSING

An incorrect character was found after the attribute ″=″ character, and

the only characters allowed here is either white space, or a single or

double quote.

Action: Change the document to correct the error and retry.

3022 XRSN_ATTR_VALUE_CHAR_INVALID

An incorrect character was found in an attribute value.

Action: Change the document to correct the error and retry.

3023 XRSN_ATTR_REF_CHAR_INVALID

An incorrect character was found in entity reference in an attribute

value.

Action: Change the document to correct the error and retry.

3024 XRSN_ATTR_REF_NAME_CHAR_INVALID

An incorrect character was found in entity reference in an attribute

value.

Action: Change the document to correct the error and retry.

3025 XRSN_ATTR_REF_VALUE_INVALID

Incorrect character found in character entity reference in an attribute

value.

Action: Change the document to correct the error and retry.

3026 XRSN_CONTNT_REF_CHAR_INVALID

An incorrect character was found in entity reference in element content.

Action: Change the document to correct the error and retry.

128 z/OS V1R10.0 z/OS XML User’s Guide and Reference

3027 XRSN_CONTNT_REF_NAME_INVALID

An incorrect character was found in entity reference in element content.

Action: Change the document to correct the error and retry.

3028 XRSN_CONTNT_REF_VALUE_INVALID

An incorrect character was found in character entity reference in

element content.

Action: Change the document to correct the error and retry.

3029 XRSN_MARKUP_INVALID

An incorrect character is found within markup.

Action: Change the document to correct the error and retry.

3030 XRSN_CONTNT_CHAR_INVALID

An incorrect character is found in element content

Action: Change the document to correct the error and retry.

3031 XRSN_TAG_ELEMNAME_INVALID

An incorrect character is found in an element tag name

Action: Change the document to correct the error and retry.

3032 XRSN_TAG_LNAME_INVALID

An incorrect character is found in an element tag name.

Action: Change the document to correct the error and retry.

3033 XRSN_TAG_CHAR_INVALID

An incorrect character is found in an element start tag.

Action: Change the document to correct the error and retry.

3034 XRSN_TAG_EMPTY_INVALID

An incorrect character is found after the ″/″ character to end the

element tag. The only character allowed is a greater than symbol to

end the empty element tag.

Action: Change the document to correct the error and retry.

3035 XRSN_ENDTAG_NAME_MISMATCH

At the element end tag, a mis-match element name is found compared

to the name of the start element

Action: Change the document to correct the error and retry.

3036 XRSN_ENDTAG_EMPTY_TAG_INVALID

An incorrect character is found in the element end tag after the element

name. The only characters allowed after the name is white space or the

greater than symbol.

Action: Change the document to correct the error and retry.

Appendix B. Reason Codes Listed by Value 129

3038 XRSN_NS_CHAR_INVALID

Incorrect character found in namespace URI.

Action: Change the document to correct the error and retry.

3039 XRSN_NS_WHITESPACE_CHAR_INVALID

Incorrect character in namespace declaration. Expecting either white

space or ″=″.

Action: Change the document to correct the error and retry.

3040 XRSN_NS_PFX_NAME_INVALID

An incorrect character is found in the prefix name portion of a

namespace declaration.

Action: Change the document to correct the error and retry.

3041 XRSN_NS_QUOTE_MISSING

Incorrect character in namespace declaration after the ″=″ character.

Expected a single or double quote or a white space character.

Action: Change the document to correct the error and retry.

3042 XRSN_NS_REF_CHAR_INVALID

An incorrect character was found in entity reference in a namespace

declaration.

Action: Change the document to correct the error and retry.

3043 XRSN_NS_REF_NAME_CHAR_INVALID

An incorrect character was found in entity reference in a namespace

declaration.

Action: Change the document to correct the error and retry.

3044 XRSN_NS_REF_VALUE_INVALID

Incorrect character found in character entity reference in a namespace

declaration.

Action: Change the document to correct the error and retry.

3045 XRSN_DTD_DOCTYPE_INVALID

Incorrect character found while parsing DOCTYPE keyword.

Action: Change the document to correct the error and retry.

3046 XRSN_XML_VER_VALUE_INVALID

An incorrect XML version number was specified. The only allowed

values are ″1.0″ or ″1.1″.

Action: Change the document to correct the error and retry.

3047 XRSN_XML_VER_KEYWORD_INVALID

The characters do not match the word ″version″

Action: Change the document to correct the error and retry.

130 z/OS V1R10.0 z/OS XML User’s Guide and Reference

3048 XRSN_XML_VER_EQUAL_MISSING

Expected white space or ″=″ character after ″version″.

Action: Change the document to correct the error and retry.

3049 XRSN_XML_VER_QUOTE_MISSING

An incorrect character is detected after the ″=″ where it is expected to

be a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

3050 XRSN_XML_CHAR_INVALID

In the XML Declaration after the close of the version value, an incorrect

character is detected.

Action: Change the document to correct the error and retry.

3051 XRSN_XML_NAME_CHAR_INVALID

Incorrect character in XML Declaration. Expected either ″s″ for

standalone, ″e″ for encoding, white space or ″?″.

Action: Change the document to correct the error and retry.

3052 XRSN_XML_ENC_KEYWORD_INVALID

The characters do not match the word ″encoding″.

Action: Change the document to correct the error and retry.

3053 XRSN_XML_ENC_EQUAL_MISSING

Expected white space or ″=″ character after ″encoding″.

Action: Change the document to correct the error and retry.

3054 XRSN_XML_ENC_QUOTE_MISSING

An incorrect character is detected after the ″=″ where it is expected to

be a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

3055 XRSN_XML_ENC_CHAR_INVALID

An incorrect character is detected in the XML Declaration encoding

value.

Action: Change the document to correct the error and retry.

3056 XRSN_XML_STD_KEYWORD_INVALID

The characters do not match the word ″standalone″

Action: Change the document to correct the error and retry.

3057 XRSN_XML_STD_VALUE_INVALID

An incorrect value for standalone was specified. The only allowed

values are ″yes″ or ″no″.

Action: Change the document to correct the error and retry.

Appendix B. Reason Codes Listed by Value 131

3058 XRSN_XML_STD_EQUAL_MISSING

Expected white space or ″=″ character after ″standalone″.

Action: Change the document to correct the error and retry.

3059 XRSN_XML_STD_QUOTE_MISSING

An incorrect character is detected after the ″=″ where it is expected to

be a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

3060 XRSN_XML_END_CHAR_INVALID

An incorrect character is detected at the end of the XML declaration,

where ″?>″ is expected.

Action: Change the document to correct the error and retry.

3061 XRSN_ENTITY_NOT_DEFINED

Entity not defined or not defined correctly.

Action: Change the document to correct the error and retry.

3062 XRSN_CHAR_INVALID

An incorrect character was detected in the document. Either white

space or ″<″ was expected.

Action: Change the document to correct the error and retry.

3063 XRSN_PROLOGUE_CHAR_INVALID

The initial character in the document was incorrect. Either white space

or ″<″ was expected. Possibly the document encoding does not match

the parser encoding specified during initialization.

Action: Change the document to correct the error and retry.

3064 XRSN_XML_DECL_NOT_ALLOWED

Any Characters other than BOM are not allowed before the XML

declaration in the XML document.

Action: Change the document to correct the error and retry.

3065 XRSN_MULTIPLE_DOC_ELEMENTS

Multiple elements were found at the document level. Only one is

allowed.

Action: Change the document to correct the error and retry.

3066 XRSN_ENTITY_LOOP_REF

An entity refers directly, or indirectly to itself. Recursion is not allowed.

Action: Change the document to correct the error and retry.

3067 XRSN_NS_URI_EMPTY

A non-default namespace declaration contains a URI value of zero

length and the XML version is 1.0.

Action: Change the document to correct the error and retry.

132 z/OS V1R10.0 z/OS XML User’s Guide and Reference

3068 XRSN_INVALID_CHAR_SEQ

An invalid character sequence found in the content portion of the

document.

Action: Change the document to correct the error and retry.

3069 XRSN_ENTITY_MARKUP_INCOMPLETE

Incomplete markup in entity.

Action: Change the document to correct the error and retry.

5000 XRSN_DTD_NAME_CHAR_INVALID

An incorrect character is detected after the root element name of the

document type declaration where only ″SYSTEM″, ″PUBLIC″, square

bracket, or greater than than characters are allowed.

Action: Change the document to correct the error and retry.

5001 XRSN_DTD_CHAR_INVALID

Incorrect character found in document type declaration.

Action: Change the document to correct the error and retry.

5002 XRSN_DTD_EXTERNALID_INVALID

The external ID keyword does not match the word ″SYSTEM″ or

″PUBLIC″.

Action: Change the document to correct the error and retry.

5003 XRSN_DTD_QUOTE_MISSING

Incorrect quotation delimiter after external identifier. It is expected to be

a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

5004 XRSN_DTD_FILENAME_INVALID

Incorrect character in external identifier filename.

Action: Change the document to correct the error and retry.

5005 XRSN_SUBSET_CHAR_INVALID

Incorrect character in internal subset of the DTD.

Action: Change the document to correct the error and retry.

5006 XRSN_SUBSET_MARKUP_INVALID

An incorrect character is detected within the markup keyword in the

internal subset of the doctype declaration.

Action: Change the document to correct the error and retry.

5007 XRSN_ELEM_CONTNT_CHAR_INVALID

An incorrect character is found in the element content portion of the

element type declaration located in the internal subset of the doctype

declaration.

Action: Change the document to correct the error and retry.

Appendix B. Reason Codes Listed by Value 133

5008 XRSN_ELEM_CHAR_INVALID

Incorrect character in element declaration in DTD.

Action: Change the document to correct the error and retry.

5009 XRSN_ELEM_LNAME_INVALID

An incorrect character is found in the element name portion of an

element declaration.

Action: Change the document to correct the error and retry.

5010 XRSN_ELEM_ELEMNAME_INVALID

An incorrect character is found in the element name portion of an

element declaration.

Action: Change the document to correct the error and retry.

5011 XRSN_NTTN_CHAR_INVALID

Incorrect character in notation declaration in DTD.

Action: Change the document to correct the error and retry.

5012 XRSN_NTTN_NAME_INVALID

An incorrect character is found in the notation declaration name.

Action: Change the document to correct the error and retry.

5013 XRSN_NTTN_ID_INVALID

The external or public identifier string in the notation declaration does

not match with the word ″SYSTEM″ or ″PUBLIC″.

Action: Change the document to correct the error and retry.

5014 XRSN_NTTN_QUOTE_MISSING

Incorrect quotation delimiter after external identifier. It is expected to be

a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

5015 XRSN_NTTN_FILENAME_INVALID

Incorrect character in notation identifier literal.

Action: Change the document to correct the error and retry.

5020 XRSN_PEREF_NAME_CHAR_INVALID

Incorrect character in parameter entity reference in DTD.

Action: Change the document to correct the error and retry.

5021 XRSN_ENTY_NAME_CHAR_INVALID

Incorrect character in entity declaration name in DTD.

Action: Change the document to correct the error and retry.

5022 XRSN_ENTY_CHAR_INVALID

Incorrect character in entity declaration in DTD.

Action: Change the document to correct the error and retry.

134 z/OS V1R10.0 z/OS XML User’s Guide and Reference

5023 XRSN_ENTY_VALUE_INVALID

Incorrect character in entity declaration value in DTD.

Action: Change the document to correct the error and retry.

5024 XRSN_ENTY_REF_CHAR_INVALID

An incorrect character was found in entity reference in an entity

declaration.

Action: Change the document to correct the error and retry.

5025 XRSN_ENTY_REF_NAME_INVALID

Incorrect character was found in entity reference in an entity

declaration.

Action: Change the document to correct the error and retry.

5026 XRSN_ENTY_REF_VALUE_INVALID

Incorrect character found in character entity reference in an entity

declaration.

Action: Change the document to correct the error and retry.

5027 XRSN_ENTY_QUOTE_MISSING

Incorrect quotation delimiter in entity declaration in DTD. It is expected

to be a single quote, double quote or a white space character.

Action: Change the document to correct the error and retry.

5028 XRSN_ENTY_EXTERNALID_INVALID

The external or public identifier string in the entity declaration does not

match with the word ″SYSTEM″ or ″PUBLIC″.

Action: Change the document to correct the error and retry.

5029 XRSN_ENTY_FILENAME_INVALID

Incorrect character in entity identifier value.

Action: Change the document to correct the error and retry.

5030 XRSN_ENTY_NDATA_INVALID

Incorrect character in entity NDATA declaration in DTD.

Action: Change the document to correct the error and retry.

5031 XRSN_ENTY_NDATA_NAME_INVALID

An incorrect character is found in the entity NDATA declaration name.

Action: Change the document to correct the error and retry.

5040 XRSN_ATTL_ELEMNAME_INVALID

An incorrect character is found in the attribute list declaration element

name in the DTD.

Action: Change the document to correct the error and retry.

Appendix B. Reason Codes Listed by Value 135

5041 XRSN_ATTL_CHAR_INVALID

An incorrect character is found in the attribute list declaration in the

DTD.

Action: Change the document to correct the error and retry.

5042 XRSN_ATTL_NAME_CHAR_INVALID

An incorrect character is found in the attribute list declaration attribute

name in the DTD.

Action: Change the document to correct the error and retry.

5043 XRSN_ATTL_LNAME_CHAR_INVALID

An incorrect character is found in the attribute list declaration attribute

name in the DTD.

Action: Change the document to correct the error and retry.

5044 XRSN_ATTL_TYPE_INVALID

Incorrect character in attribute list declaration type. The type must

match one of these strings:

″ID″,″IDREF″,″IDREFS″,″ENTITY″,″ENTITIES″,

″CDATA″,″NMTOKEN″,″NMTOKENS″ or ″NOTATION″.

Action: Change the document to correct the error and retry.

5045 XRSN_ATTL_ENUMLIST_CHAR_INVALID

Incorrect character is found in the attribute list declaration enumerated

list.

Action: Change the document to correct the error and retry.

5046 XRSN_ATTL_DEFVALUE_CHAR_INVALID

Incorrect character is found in attribute list declaration default. Expected

white space, ″#″, or a single or double quote

Action: Change the document to correct the error and retry.

5047 XRSN_ATTL_DEF_VALUE_INVALID

Incorrect character is found in attribute list declaration default value.

Expected ″REQUIRED″, ″IMPLIED″, or ″FIXED″.

Action: Change the document to correct the error and retry.

5048 XRSN_ATTL_QUOTE_MISSING

Incorrect character is found in attribute list declaration default value.

Expected single quote, double quote or white space.

Action: Change the document to correct the error and retry.

5049 XRSN_ATTL_REF_CHAR_INVALID

An incorrect character was found in entity reference in an attribute list

declaration.

Action: Change the document to correct the error and retry.

136 z/OS V1R10.0 z/OS XML User’s Guide and Reference

5050 XRSN_ATTL_REF_NAME_INVALID

An incorrect character was found in entity reference in an attribute list

declaration.

Action: Change the document to correct the error and retry.

5051 XRSN_ATTL_REF_VALUE_INVALID

Incorrect character found in character entity reference in an attribute list

declaration.

Action: Change the document to correct the error and retry.

Appendix B. Reason Codes Listed by Value 137

138 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Appendix D. Reason Codes Listed by Value

This section describes reason codes, listing them by hexadecimal value and

describing actions to correct the error.

 7001 XRSN_OIMA_NOT_INITIALIZED

The OIMA provided is unusable.

Action: Change the schema and retry.

7002 XRSN_OIMA_NOT_USABLE

The OIMA provided is unusable because a previous reset failed.

Action: Change the schema and retry.

7003 XRSN_OIMA_SMALL

The OIMA provided is too small.

Action: Change the schema and retry.

7005 XRSN_OIMA_RESIDUAL_DATA

The OIMA is already initialized.

Action: Change the schema and retry.

7007 XRSN_JVM_START_FAILED

The Java Virtual Machine failed to start.

Action: Change the schema and retry.

7008 XRSN_JVM_STOP_FAILED

The Java Virtual Machine failed to stop.

Action: Change the schema and retry.

7009 XRSN_CTLOPTN_UNSUPPORTED

The operation specified for the control parameter is unsupported.

Action: Change the schema and retry.

7011 XRSN_JAVACLASS_NOT_FOUND

Java class not found by the ClassLoader.

Action: Change the schema and retry.

7019 XRSN_FUNC_NAME_NULL

The specified function name is null.

Action: Change the schema and retry.

7021 XRSN_DLL_OPEN_FAILED

Open for the specified DLL failed.

Action: Change the schema and retry.

© Copyright IBM Corp. 2008 139

7023 XRSN_FUNC_RETRIEVE_FAILED

Retrieve for the specified DLL function failed.

Action: Change the schema and retry.

7027 XRSN_JAVA_METHOD_NOT_FOUND

The Java method cannot be found in the class. See the diagnostic area

for the method name.

Action: Change the schema and retry.

7029 XRSN_JAVA_METHOD_CALL_FAILED

A Java method call failed.

Action: Change the schema and retry.

7031 XRSN_DLL_CLOSE_FAILED

Close for the specified DLL failed.

Action: Change the schema and retry.

7033 XRSN_JNI_METHOD_FAILED

A JNI method returned with an exception.

Action: Change the schema and retry.

7035 XRSN_OBJECT_NOT_CREATED

Failed to create a new Java object.

Action: Change the schema and retry.

7037 XRSN_SCHEMA_NOT_LOADED

No schemas have been loaded into the OSR generator.

Action: Change the schema and retry.

7039 XRSN_OIMAPTR_NOT_PROVIDED

No OIMA pointer has been specified.

Action: Change the schema and retry.

7043 XRSN_GEN_OSR_ASM_FAILED

OSR generation failed in the assemble phase.

Action: Change the schema and retry.

7045 XRSN_GEN_OSR_COMP_FAILED

OSR generation failed in the compile phase.

Action: Change the schema and retry.

7046 XRSN_GEN_OSR_FAILED

OSR generation failed.

Action: Change the schema and retry.

140 z/OS V1R10.0 z/OS XML User’s Guide and Reference

7049 XRSN_OSR_NOT_VALID

The OSR to load is not valid.

Action: Change the schema and retry.

7050 XRSN_OSR_MALLOC_FAILED

The OSR generator could not allocate memory.

Action: Change the schema and retry.

7051 XRSN_OSR_MFREE_FAILED

The OSR generator could not free memory.

Action: Change the schema and retry.

7055 XRSN_JAVAEXCEPTION_DIAG_FAILED

Could not save the Java exception in the diagnostic area.

Action: Change the schema and retry.

7057 XRSN_JAVAEXCEPTION_INCOMPLETE

The Java exception saved in the diagnostic area is incomplete.

Action: Change the schema and retry.

7059 XRSN_JAVARSNCODE_NOT_FOUND

Unable to obtain the reason code set by the Java exception.

Action: Change the schema and retry.

7061 XRSN_INCORRECT_SCHEMA_URI

The URI specified is incorrect.

Action: Change the schema and retry.

7063 XRSN_JAVARSNCODE_UNKNOWN

No specific reason code was set by Java.

Action: Change the schema and retry.

7065 XRSN_SCHEMA_URI_NOT_FOUND

The schema identified by the specified URI is not found.

Action: Change the schema and retry.

7067 XRSN_SCHEMA_LOAD_FAILED

Unable to load the specified schema.

Action: Change the schema and retry.

7069 XRSN_OSR_URI_NOT_FOUND

The OSR identified by the specified URI is not found.

Action: Change the schema and retry.

7071 XRSN_STRINGID_SYSSVC_NULL

The system service parameter specified is null.

Action: Change the schema and retry.

Appendix D. Reason Codes Listed by Value 141

7079 XRSN_JAVAERRORMESSAGE_INCOMPLETE

The Java error information saved in the diagnostic area is incomplete.

Action: Change the schema and retry.

7081 XRSN_SCHEMA_INCORRECT

The specified schema contains an error that caused an exception.

Action: Change the schema and retry.

7082 XRSN_SCHEMA_WARNING

The specified schema contains an error that caused a warning.

Action: Change the schema and retry.

7083 XRSN_JAVAERRORMESSAGE_DIAG_FAILED

The Java error information saved in the diagnostic area is not valid.

Action: Change the schema and retry.

7087 XRSN_OSR_UNSUPPORTED_FEATURE

An unsupported feature flag was specified.

Action: Change the schema and retry.

7089 XRSN_OSR_PARM_NOT_SPECIFIED

No OSR parameter was specified.

Action: Change the schema and retry.

7091 XRSN_SCHEMA_PARM_NOT_SPECIFIED

No schema parameter was specified.

Action: Change the schema and retry.

7093 XRSN_STRIDTBL_PARM_NOT_SPECIFIED

No stringID table parameter was specified.

Action: Change the schema and retry.

7095 XRSN_JAVAPROPERTY_MALFORMED_URL

A well-formed URL could not be constructed for the specified class.

Action: Change the schema and retry.

7097 XRSN_JAVAPROPERTY_CLASS_NOTFOUND

The OSR generator classes could not be found.

Action: Change the schema and retry.

7099 XRSN_CLSLOADER_ACCESS_FAILED

The OSR generator classes could not be loaded.

Action: Change the schema and retry.

7101 XRSN_CLSLOADER_INSTANTIATION_FAILED

The OSR generator classes could not be instantiated.

Action: Change the schema and retry.

142 z/OS V1R10.0 z/OS XML User’s Guide and Reference

7103 XRSN_OSR_NOT_LOADED

No OSRs have been loaded into the OSR generator.

Action: Change the schema and retry.

7107 XRSN_JVM_OUT_OF_MEMORY

The Java Virtual Machine is out of memory.

Action: Change the schema and retry.

7109 XRSN_JVM_STACK_OVERFLOW

The Java Virtual Machine stack overflow occurrs.

Action: Change the schema and retry.

7111 XRSN_JVM_INTERNAL_ERROR

Internal error has occurred in the Java Virtual Machine.

Action: Change the schema and retry.

7113 XRSN_JVM_UNKNOWN_ERROR

An unknown and seirous exception has occurred in the JVM.

Action: Change the schema and retry.

Appendix D. Reason Codes Listed by Value 143

144 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Appendix D. Reason Codes Listed by Value

This section describes reason codes, listing them by hexadecimal value and

describing actions to correct the error.

 8000 XRSN_XML_QUOTEREQUIREDINENTITYVALUE

An entity value must begin with a single or double quote.

Action: Change the document or schema to correct and retry.

8001 XRSN_XML_INVCHARINENTITYVALUE

An invalid XML character was found in the literal entity value.

Action: Change the document or schema to correct and retry.

8002 XRSN_XML_INVCHARINSYSTEMID

An invalid XML character was found in a system identifier.

Action: Change the document or schema to correct and retry.

8003 XRSN_XML_INVCHARINPUBLICID

An invalid XML character was found in a public identifier.

Action: Change the document or schema to correct and retry.

8004 XRSN_XML_INVCHARINDOCTYPEDECL

An invalid XML character was found in a document declaration.

Action: Change the document or schema to correct and retry.

8005 XRSN_XML_INVCHARININTERNALSUBSET

An invalid XML character found in the internal subset of the DTD.

Action: Change the document or schema to correct and retry.

8006 XRSN_XML_INVCHARINEXTERNALSUBSET

An invalid XML character found in the external subset of the DTD.

Action: Change the document or schema to correct and retry.

8007 XRSN_XML_INVCHARINIGNORESECT

An invalid XML character was found in the excluded conditional section.

Action: Change the document or schema to correct and retry.

8008 XRSN_XML_QUOTEREQUIREDINSYSTEMID

A system identifier must begin with either a single or double quote.

Action: Change the document or schema to correct and retry.

8009 XRSN_XML_SYSTEMIDUNTERMINATED

A system identifier must end with a matching quote.

Action: Change the document or schema to correct and retry.

© Copyright IBM Corp. 2008 145

8010 XRSN_XML_QUOTEREQUIREDINPUBLICID

A public identifier must begin with a single or double quote.

Action: Change the document or schema to correct and retry.

8011 XRSN_XML_PUBLICIDUNTERMINATED

A public identifier must end with a matching quote.

Action: Change the document or schema to correct and retry.

8012 XRSN_XML_PUBIDCHARILLEGAL

A public identifier character is not permitted.

Action: Change the document or schema to correct and retry.

8013 XRSN_XML_ENTITYVALUEUNTERMINATED

The literal value for the entity must end with a matching quote.

Action: Change the document or schema to correct and retry.

8014 XRSN_XML_SPACEREQDINDECL

White space is required after DOCTYPE in the document type

declaration.

Action: Change the document or schema to correct and retry.

8015 XRSN_XML_ROOTELEMENTTYPEREQUIRED

A root element type must appear after DOCTYPE in the document type

declaration.

Action: Change the document or schema to correct and retry.

8016 XRSN_XML_DOCTYPEDECLUNTERMINATED

A document type declaration for the root element type must end with a

″>″.

Action: Change the document or schema to correct and retry.

8017 XRSN_XML_PEREFERENCEWITHINMARKUP

A parameter entity reference cannot occur within markup in the internal

subset of the DTD.

Action: Change the document or schema to correct and retry.

8018 XRSN_XML_PEREFINCOMPLETEMARKUP

A parameter entity reference cannot occur within the internal subset of

the DTD.

Action: Change the document or schema to correct and retry.

8019 XRSN_XML_MARKUPNORECOGNIZEDINDTD

The markup declarations contained or pointed to by the document type

declaration must be well-formed.

Action: Change the document or schema to correct and retry.

146 z/OS V1R10.0 z/OS XML User’s Guide and Reference

8020 XRSN_XML_XMLSPACEDECLARATIONILLEGAL

The attribute declaration for xml:space must be given an enumerated

type whose only possible values are default and preserve.

Action: Change the document or schema to correct and retry.

8021 XRSN_XML_SPACEREQDETYPEINEDECL

A space is required before an element type.

Action: Change the document or schema to correct and retry.

8022 XRSN_XML_ETYPEREQDINELEMENTDECL

An element type is required in an element declaration.

Action: Change the document or schema to correct and retry.

8023 XRSN_XML_SPACEREQDINELEMENTDEC

White space is required after the element type in the element type

declaration.

Action: Change the document or schema to correct and retry.

8024 XRSN_XML_CONTENTSPECREQDINEDECL

A constraint is required after the element type in the element type

declaration.

Action: Change the document or schema to correct and retry.

8025 XRSN_XML_ELEMENTDECLUNTERMINATED

The declaration for an element must end with ″>″.

Action: Change the document or schema to correct and retry.

8026 XRSN_XML_OPENPARENORELEREQDINCHIL

A ″(″ or an element type is required in the declaration of an element.

Action: Change the document or schema to correct and retry.

8027 XRSN_XML_CLOSEDPARENREQDINCHIL

A ″)″ is required in the declaration.

Action: Change the document or schema to correct and retry.

8028 XRSN_XML_ELEMTYPEREQDINMIXEDCON

An element type is required in mixed content.

Action: Change the document or schema to correct and retry.

8029 XRSN_XML_CLOSEPARENTREQDINMIXEDCON

A ″)″ is required in the declaration of an element.

Action: Change the document or schema to correct and retry.

8030 XRSN_XML_MIXEDCONTENTUNTERMINATED

The mixed content model must end with ″)*″ when the types of child

elements are constrained.

Action: Change the document or schema to correct and retry.

Appendix D. Reason Codes Listed by Value 147

8031 XRSN_XML_SPACEREQDINATTLISTDECL

White space is required after !ATTLIST in an attribute list declaration.

Action: Change the document or schema to correct and retry.

8032 XRSN_XML_ELEMTYPEREQDINATTLISTDECL

An element type is required in an attribute list declaration.

Action: Change the document or schema to correct and retry.

8033 XRSN_XML_SPACEREQDINATTDEF

White space is required after !ATTLIST in an attribute list declaration.

Action: Change the document or schema to correct and retry.

8034 XRSN_XML_ATTRNAMEREQDINATTDEF

The attribute name must be specified in the attribute list declaration for

the element.

Action: Change the document or schema to correct and retry.

8035 XRSN_XML_SPACEREQDBATINATTDEF

White space is required before an attribute type in an attribute list

declaration.

Action: Change the document or schema to correct and retry.

8036 XRSN_XML_ATTTYPEREQDINATTDEF

The attribute type is required in the declaration of the attribute for the

element.

Action: Change the document or schema to correct and retry.

8037 XRSN_XML_SPACEREQDBDDINATTDEF

White space is required before the default declaration in an attribute list

declaration.

Action: Change the document or schema to correct and retry.

8038 XRSN_XML_DEFDECLREQDINATTDEF

The attribute default is required in the declaration in an attribute list

declaration.

Action: Change the document or schema to correct and retry.

8039 XRSN_XML_SPACEREQDANOTINNOTTYPE

White space must follow NOTATION in the attribute declaration.

Action: Change the document or schema to correct and retry.

8040 XRSN_XML_OPENPARENREQDINNOTTYPE

The ″(″ character must follow NOTATION in the attribute declaration.

Action: Change the document or schema to correct and retry.

148 z/OS V1R10.0 z/OS XML User’s Guide and Reference

8041 XRSN_XML_NAMEREQDINNOTTYPE

The notation name is required in the notation type list for the attribute

declaration.

Action: Change the document or schema to correct and retry.

8042 XRSN_XML_NOTTYPEUNTERMINATED

The notation type list must end with a ″)″ in the attribute declaration.

Action: Change the document or schema to correct and retry.

8043 XRSN_XML_NMTOKREQDINENUM

The name token is required in the enumerated type list for the attribute

declaration.

Action: Change the document or schema to correct and retry.

8044 XRSN_XML_ENUMUNTERMINATED

The enumerated type list must end with ″)″ in the attribute declaration.

Action: Change the document or schema to correct and retry.

8045 XRSN_XML_SPACEREQDINDEFDECL

White space must appear after FIXED in the attribute declaration.

Action: Change the document or schema to correct and retry.

8046 XRSN_XML_INCLUDESECTUNTERMINATED

The included conditional section must end with ″″.

Action: Change the document or schema to correct and retry.

8047 XRSN_XML_IGNORESECTUNTERMINATED

The excluded conditional section must end with ″″.

Action: Change the document or schema to correct and retry.

8048 XRSN_XML_NAMEREQDINPEREF

The entity name must immediately follow the ″%″ in the parameter

entity reference.

Action: Change the document or schema to correct and retry.

8049 XRSN_XML_SEMICOLONREQDINPEREF

The parameter entity reference must end with the semicolon delimiter.

Action: Change the document or schema to correct and retry.

8050 XRSN_XML_SPACEREQDBENINENTITYDECL

White space is required after ″

Action: Change the document or schema to correct and retry.

8051 XRSN_XML_SPACEREQDBPINPEDECL

White space is required between the ″

Action: Change the document or schema to correct and retry.

Appendix D. Reason Codes Listed by Value 149

8052 XRSN_XML_SPACEREQDBEINPEDECL

White space is required between the ″%″ and the entity name in the

parameter entity declaration.

Action: Change the document or schema to correct and retry.

8053 XRSN_XML_ENTITYNAMEREQINEDECL

The name of the entity is required in the entity declaration.

Action: Change the document or schema to correct and retry.

8054 XRSN_XML_SPACEREQDAENAMEINEDECL

White space is required between the entity name and the definition in

the entity declaration.

Action: Change the document or schema to correct and retry.

8055 XRSN_XML_SPACEREQDBNDATAINUEDECL

White space is required before NDATA in the declaration for the entity.

Action: Change the document or schema to correct and retry.

8056 XRSN_XML_SPACEREQDBNNAMEINUEDECL

White space is required between ″NDATA″ and the notation name in

the declaration for the entity.

Action: Change the document or schema to correct and retry.

8057 XRSN_XML_NOTATIONNAMEREQDINUEDECL

The notation name is required after NDATA in the declaration for the

entity.

Action: Change the document or schema to correct and retry.

8058 XRSN_XML_ENTITYDECLUNTERMINATED

The declaration for the entity must end with ″>″.

Action: Change the document or schema to correct and retry.

8059 XRSN_XML_EXTERNALIDREQD

The external entity declaration must begin with either SYSTEM or

PUBLIC.

Action: Change the document or schema to correct and retry.

8060 XRSN_XML_SPACEREQDBPLINEXTERNALID

White space is required between PUBLIC and the public identifier.

Action: Change the document or schema to correct and retry.

8061 XRSN_XML_SPACEREQDAPLINEXTERNALID

White space is required between the public identifier and the system

identifier.

Action: Change the document or schema to correct and retry.

150 z/OS V1R10.0 z/OS XML User’s Guide and Reference

8062 XRSN_XML_SPACEREQDBSLINEXTERNALID

White space is required between SYSTEM and the system identifier.

Action: Change the document or schema to correct and retry.

8063 XRSN_XML_URIFRAGINSYSTEMID

The fragment identifier should not be specified as part of the system

identifier.

Action: Change the document or schema to correct and retry.

8064 XRSN_XML_SPACEREQDBNNINNOTATIONDECL

White space is required after

Action: Change the document or schema to correct and retry.

8065 XRSN_XML_NOTATIONNAMEREQDINNOTDECL

The name of the notation is required in the notation declaration.

Action: Change the document or schema to correct and retry.

8066 XRSN_XML_SPACEREQDANNINNOTATIONDECL

White space is required after the notation name in the notation

declaration.

Action: Change the document or schema to correct and retry.

8067 XRSN_XML_NOTATIONDECLUNTERMINATED

The declaration for the notation must end with a ″>″.

Action: Change the document or schema to correct and retry.

8068 XRSN_XML_UNDECLAREDELEMINCONTSPEC

The content model of the element refers to the undeclared element.

Action: Change the document or schema to correct and retry.

8069 XRSN_XML_DUPLICATEATTDEF

There is a duplicate attribute definition found.

Action: Change the document or schema to correct and retry.

8070 XRSN_XML_ROOTELEMTMUSTMATCHDOCTDECL

The root element type must match the document type declaration.

Action: Change the document or schema to correct and retry.

8071 XRSN_XML_IMPROPERDECLNESTING

The replacement text of a parameter entity must include properly

nested declarations.

Action: Change the document or schema to correct and retry.

8072 XRSN_XML_WSINELEMCONTENTWHENSA

White space must not occur between elements declared in an external

parsed entity with element content in a standalone document.

Action: Change the document or schema to correct and retry.

Appendix D. Reason Codes Listed by Value 151

8073 XRSN_XML_REFTOEXTDECLAREDENTWHENSA

The reference to an entity declared in an external parsed entity is not

permitted in a standalone document.

Action: Change the document or schema to correct and retry.

8074 XRSN_XML_EXTENTITYNOTPERMITED

The reference to an external entity is not permitted in a standalone

document.

Action: Change the document or schema to correct and retry.

8075 XRSN_XML_ATTVALCHANGEDDURNORMWHENSA

The value of an attribute must not be changed by normalization in a

standalone document.

Action: Change the document or schema to correct and retry.

8076 XRSN_XML_DEFATTNOTSPECIFIED

An attribute has a default value and must be specified in a standalone

document.

Action: Change the document or schema to correct and retry.

8077 XRSN_XML_CONTENTINCOMPLETE

The content of an element type is incomplete.

Action: Change the document or schema to correct and retry.

8078 XRSN_XML_CONTENTINVALID

The content is invalid.

Action: Change the document or schema to correct and retry.

8079 XRSN_XML_ELEMENTNOTDECLARED

An element must be declared.

Action: Change the document or schema to correct and retry.

8080 XRSN_XML_ATTRIBUTENOTDECLARED

An attribute must be declared.

Action: Change the document or schema to correct and retry.

8081 XRSN_XML_ELEMENTALREADYDECLARED

An element type must not be declared more than once.

Action: Change the document or schema to correct and retry.

8082 XRSN_XML_IMPROPERGROUPNESTING

The replacement text of a parameter entity must include properly

nested pairs of parentheses.

Action: Change the document or schema to correct and retry.

8083 XRSN_XML_DUPTYPEINMIXEDCONTENT

A duplicate type found in a mixed content declaration.

Action: Change the document or schema to correct and retry.

152 z/OS V1R10.0 z/OS XML User’s Guide and Reference

8084 XRSN_XML_NOTATIONONEMPTYELEMENT

For compatibility, an attribute of type NOTATION must not be declared

on an element declared EMPTY.

Action: Change the document or schema to correct and retry.

8085 XRSN_XML_ENTITIESINVALID

Attribute value of type ENTITIES must be the name of one or more

unparsed entities.

Action: Change the document or schema to correct and retry.

8086 XRSN_XML_ENTITYINVALID

An attribute value of type ENTITY must be the name of an unparsed

entity.

Action: Change the document or schema to correct and retry.

8087 XRSN_XML_IDDEFTYPEINVALID

An ID attribute must have a declared default of #IMPLIED or

#REQUIRED.

Action: Change the document or schema to correct and retry.

8088 XRSN_XML_IDINVALID

An attribute value of type ID must be a name.

Action: Change the document or schema to correct and retry.

8089 XRSN_XML_IDNOTUNIQUE

An attribute value of type ID must be unique within the document.

Action: Change the document or schema to correct and retry.

8090 XRSN_XML_IDREFINVALID

An attribute value of type IDREF must be a name.

Action: Change the document or schema to correct and retry.

8091 XRSN_XML_IDREFSINVALID

An attribute value of type IDREFS must be one or more names.

Action: Change the document or schema to correct and retry.

8092 XRSN_XML_ATTVALUENOTINLIST

An attribute value is not in the list.

Action: Change the document or schema to correct and retry.

8093 XRSN_XML_NMTOKENINVALID

An attribute value of type NMTOKENS must be a name token.

Action: Change the document or schema to correct and retry.

8094 XRSN_XML_NMTOKENSINVALID

An attribute value for type NMTOKENS must be one or more name

tokens.

Action: Change the document or schema to correct and retry.

Appendix D. Reason Codes Listed by Value 153

8095 XRSN_XML_ELEMWITHIDREQD

An element with an ID is required.

Action: Change the document or schema to correct and retry.

8096 XRSN_XML_MORETHANONEIDATTR

A second attribute of type ID is not permitted.

Action: Change the document or schema to correct and retry.

8097 XRSN_XML_MORETHANONENOTATTR

A second attribute of type NOTATION is not permitted.

Action: Change the document or schema to correct and retry.

8098 XRSN_XML_DUPTOKENINLIST

The enumerated type list must not contain duplicate tokens.

Action: Change the document or schema to correct and retry.

8099 XRSN_XML_FIXATTVALUEINVALID

A FIXED attribute value is invalid.

Action: Change the document or schema to correct and retry.

8100 XRSN_XML_REQDATTNOTSPECIFIED

An attribute is required and must be specific for the element type.

Action: Change the document or schema to correct and retry.

8101 XRSN_XML_ATTDEFINVALID

The default value must meet the lexical type constraints declared for

the attribute.

Action: Change the document or schema to correct and retry.

8102 XRSN_XML_IMPROPERCONDSECTNESTING

The replacement text of the parameter entity must include properly

nested conditional sections.

Action: Change the document or schema to correct and retry.

8103 XRSN_XML_NOTATIONNOTDECLFORNOTTATT

The notation must be declared when referenced in the notation type list

for the attribute.

Action: Change the document or schema to correct and retry.

8104 XRSN_XML_NOTATIONNOTDECLFORUPEDECL

The notation must be declared when referenced in the unparsed entity

declaration.

Action: Change the document or schema to correct and retry.

8105 XRSN_XML_UNIQUENOTNAME

Only one notation declaration can declare a given name.

Action: Change the document or schema to correct and retry.

154 z/OS V1R10.0 z/OS XML User’s Guide and Reference

8106 XRSN_XML_REFTOEXTENTITY

The external entity reference is not permitted in an attribute value.

Action: Change the document or schema to correct and retry.

8107 XRSN_XML_PENOTDECLARED

The parameter entity was referenced but not declared.

Action: Change the document or schema to correct and retry.

8108 XRSN_XML_REFTOUNPENTITY

The unparsed reference is not permitted.

Action: Change the document or schema to correct and retry.

8109 XRSN_XML_RECURSIVEREFERENCE

A recursive reference was found.

Action: Change the document or schema to correct and retry.

8110 XRSN_XML_RECURSIVEPEREFERENCE

A recursive PE reference was found.

Action: Change the document or schema to correct and retry.

8111 XRSN_XML_ENCODINGNOTSUPPORTED

The encoding is not supported in the entity.

Action: Change the document or schema to correct and retry.

8112 XRSN_XML_ENCODINGREQD

A parsed entity not encoded in either UTF-8 or UTF-16 must contain an

encoding declaration.

Action: Change the document or schema to correct and retry.

8200 XRSN_IMP_UNABLETOCONVERTCHAR

Unable to convert an out of range unicode character.

Action: Change the document or schema to correct and retry.

8201 XRSN_IMP_INSUFFINPUTTODECCHAR

There is insufficient input to decode the character.

Action: Change the document or schema to correct and retry.

8202 XRSN_IMP_MISSING2NDHALFOFPAIR

A surrogate pair is missing its second half for a unicode character.

Action: Change the document or schema to correct and retry.

8203 XRSN_IMP_INVAL2NDHALFOFPAIR

An invalid second half of a surrogate pair for a unicode character was

found.

Action: Change the document or schema to correct and retry.

Appendix D. Reason Codes Listed by Value 155

8204 XRSN_IMP_INVAL1STHALFOFPAIR

An invalid first half of a surrogate pair for a unicode character was

found.

Action: Change the document or schema to correct and retry.

8205 XRSN_IMP_BOMREQD

A byte order mark is required.

Action: Change the document or schema to correct and retry.

8206 XRSN_IMP_INVUTF8SURENCODING

An invalid UTF-8 surrogate encoding found.

Action: Change the document or schema to correct and retry.

8207 XRSN_IMP_PARTIALMPCHARSEQ

A partial multipart character sequence found.

Action: Change the document or schema to correct and retry.

8208 XRSN_IMP_INCONSISTENTENC

An encoding name and byte stream contents are inconsistent.

Action: Change the document or schema to correct and retry.

8209 XRSN_IMP_INVUTF8CHARENC

An invalid UTF-8 character encoding was found.

Action: Change the document or schema to correct and retry.

8210 XRSN_IMP_RUNTIMEIOERROR

A runtime IO error has occurred.

Action: Change the document or schema to correct and retry.

8400 XRSN_DEM_ROOTELEMENTREQD

The root element is required in a well-formed document.

Action: Change the document or schema to correct and retry.

8401 XRSN_DEM_INVCHARINCDSECT

An invalid XML character was found in the CDATA section of the

document.

Action: Change the document or schema to correct and retry.

8402 XRSN_DEM_INVCHARINCONTENT

An invalid XML character was found in the element content of the

document.

Action: Change the document or schema to correct and retry.

8403 XRSN_DEM_INVCHARINMISC

An invalid XML character was found in the markup after the end of the

element content.

Action: Change the document or schema to correct and retry.

156 z/OS V1R10.0 z/OS XML User’s Guide and Reference

8404 XRSN_DEM_INVCHARINPROLOG

An invalid XML character was found in the prolog of a document.

Action: Change the document or schema to correct and retry.

8405 XRSN_DEM_CDENDINCONTENT

The character sequence must not appear in content unless used to

mark the end of a CDATA section.

Action: Change the document or schema to correct and retry.

8406 XRSN_DEM_CDSECTUNTERMINATED

The CDATA section must end with.

Action: Change the document or schema to correct and retry.

8407 XRSN_DEM_EQREQDINXMLDECL

The equal character must follow the keyword in the XML declaration.

Action: Change the document or schema to correct and retry.

8408 XRSN_DEM_QUOTEREQDINXMLDECL

This value in the XML declaration must be a quoted string.

Action: Change the document or schema to correct and retry.

8409 XRSN_DEM_XMLDECLUNTERMINATED

The XML declaration must end with ?>.

Action: Change the document or schema to correct and retry.

8410 XRSN_DEM_VERSIONINFOREQD

The version is required in the XML declaration.

Action: Change the document or schema to correct and retry.

8411 XRSN_DEM_MARKUPNOTRECINPROLOG

The markup in the document preceding the root element must be

well-formed.

Action: Change the document or schema to correct and retry.

8412 XRSN_DEM_MARKUPNORECINMISC

The markup in the document following the root element must be

well-formed.

Action: Change the document or schema to correct and retry.

8413 XRSN_DEM_SDDECLINVALID

The standalone document declaration must be yes or no.

Action: Change the document or schema to correct and retry.

8414 XRSN_DEM_ETAGREQD

End-tag is required.

Action: Change the document or schema to correct and retry.

Appendix D. Reason Codes Listed by Value 157

8415 XRSN_DEM_ELEMUNTERMINATED

The element must be followed by either attribute specifications, > or />.

Action: Change the document or schema to correct and retry.

8416 XRSN_DEM_EQREQDINATTR

The attribute name must be followed by the = character.

Action: Change the document or schema to correct and retry.

8417 XRSN_DEM_ATTRNOTUNQ

The attribute was already specified for the element.

Action: Change the document or schema to correct and retry.

8418 XRSN_DEM_ETAGUNTERM

The end-tag for the element must end with a > delimiter.

Action: Change the document or schema to correct and retry.

8419 XRSN_DEM_MARKUPNORECINCONT

The content of elements must consist of well-formed character data or

markup.

Action: Change the document or schema to correct and retry.

8420 XRSN_DEM_ELEMENTMISMATCH

The element must start and end within the same entity.

Action: Change the document or schema to correct and retry.

8421 XRSN_DEM_INVALCHARINATTRVAL

An invalid XML character was found in the attribute value.

Action: Change the document or schema to correct and retry.

8422 XRSN_DEM_INVALCHARINCOMM

An invalid XML character was found in the comment.

Action: Change the document or schema to correct and retry.

8423 XRSN_DEM_INVALCHARINPI

An invalid XML character was found in the processing instruction.

Action: Change the document or schema to correct and retry.

8424 XRSN_DEM_QUOTEREQDINATTRVAL

The value of an attribute must begin with either a single or double

quote character.

Action: Change the document or schema to correct and retry.

8425 XRSN_DEM_LESSTHANINATTRVAL

The value of the attribute must not contain the < character.

Action: Change the document or schema to correct and retry.

158 z/OS V1R10.0 z/OS XML User’s Guide and Reference

8426 XRSN_DEM_ATTRVALUNTERM

The attribute value must end with the matching quote character.

Action: Change the document or schema to correct and retry.

8427 XRSN_DEM_INVALCOMMSTART

The comment must begin with .

Action: Change the document or schema to correct and retry.

8430 XRSN_DEM_PITARGETREQD

The processing instruction must begin with the name of the target.

Action: Change the document or schema to correct and retry.

8431 XRSN_DEM_SPACEREQDINPI

A white space character is required between the processing instruction

target and the data.

Action: Change the document or schema to correct and retry.

8432 XRSN_DEM_PIUNTERMINATED

The processing instruction must end with ?>.

Action: Change the document or schema to correct and retry.

8433 XRSN_DEM_RESERVEDPITARGET

The processing instruction target matching [xX][mM][lL] is not allowed.

Action: Change the document or schema to correct and retry.

8434 XRSN_DEM_VERNOTSUPPORTED

The XML version specified is not supported.

Action: Change the document or schema to correct and retry.

8435 XRSN_DEM_DIGREQDINCHARREF

A decimal representation must immediately follow the &# in the

character reference.

Action: Change the document or schema to correct and retry.

8436 XRSN_DEM_HEXREQDINCHARREF

A hexadecimal representation must immediately follow the in the

character reference.

Action: Change the document or schema to correct and retry.

8437 XRSN_DEM_SEMICOLONREQDINCHARREF

The character reference must end with a semicolon delimiter.

Action: Change the document or schema to correct and retry.

8438 XRSN_DEM_INVCHARREF

The character reference contains an invalid character.

Action: Change the document or schema to correct and retry.

Appendix D. Reason Codes Listed by Value 159

8439 XRSN_DEM_NAMEREQDINREF

The entity name must immediately follow the & in the entity reference.

Action: Change the document or schema to correct and retry.

8440 XRSN_DEM_SEMICOLONREQDINREF

The reference to the entity must end with a semicolon delimiter.

Action: Change the document or schema to correct and retry.

8441 XRSN_DEM_EQREQDINTDECL

The = character is required in the text declaration.

Action: Change the document or schema to correct and retry.

8442 XRSN_DEM_QUOTEREQDINTDECL

The value in the text declaration must be a quoted string.

Action: Change the document or schema to correct and retry.

8443 XRSN_DEM_SPACEREQDINTDECL

White space is required between the version and the encoding

declaration.

Action: Change the document or schema to correct and retry.

8444 XRSN_DEM_TEXTDECLUNTERM

The text declaration must end with ?>.

Action: Change the document or schema to correct and retry.

8445 XRSN_DEM_ENCDECLREQD

The encoding is required in the text declaration.

Action: Change the document or schema to correct and retry.

8446 XRSN_DEM_ENCDECLINV

The encoding name is invalid.

Action: Change the document or schema to correct and retry.

8447 XRSN_DEM_ENTNOTDECL

A general entity was referenced but not declared.

Action: Change the document or schema to correct and retry.

8448 XRSN_DEM_COLONINNAME

Namespaces disallow a colon character except in element types or

attribute names.

Action: Change the document or schema to correct and retry.

8449 XRSN_DEM_TWOCOLONSQN

Namespaces allows only one colon character in element types or

attribute names.

Action: Change the document or schema to correct and retry.

160 z/OS V1R10.0 z/OS XML User’s Guide and Reference

8450 XRSN_DEM_PREFDECL

The namespace prefix was not declared.

Action: Change the document or schema to correct and retry.

8451 XRSN_DEM_PREFLEGAL

The namespace name for prefix xml is not bound to a legal namespace

name.

Action: Change the document or schema to correct and retry.

8452 XRSN_DEM_NSNAMEEMPTY

The namespace name declared for the prefix may not be empty.

Action: Change the document or schema to correct and retry.

8453 XRSN_DEM_NSRSRD

The namespace prefix is bound to the reserved namespace name.

Action: Change the document or schema to correct and retry.

8454 XRSN_DEM_NSPREFRSRD

The namespace prefix ″xmlns″ must not be declared.

Action: Change the document or schema to correct and retry.

8600 XRSN_VME_INVATTVALUE

The attribute value is not valid with respect to its type.

Action: Change the document or schema to correct and retry.

8601 XRSN_VME_INVATTVALUEFORFIXED

The attribute value is not valid with respect to its fixed value constraint.

Action: Change the document or schema to correct and retry.

8602 XRSN_VME_CONTENTFOREMPTYELEM

The element may not contain any character data or child elements

because the element type is EMPTY.

Action: Change the document or schema to correct and retry.

8603 XRSN_VME_NONWSCHARINELEMONLYCONT

The element cannot have non-white space character data because the

type’s content type is element-only.

Action: Change the document or schema to correct and retry.

8604 XRSN_VME_EXPELEMNOMATCH

An expected element match was not found.

Action: Change the document or schema to correct and retry.

8605 XRSN_VME_REQDELEMMISSING

The required element or one of its substitutions is required.

Action: Change the document or schema to correct and retry.

Appendix D. Reason Codes Listed by Value 161

8606 XRSN_VME_STRICTWCREQTDECL

The matching wildcard is strict, but no declaration can be found for the

element.

Action: Change the document or schema to correct and retry.

8607 XRSN_VME_EXPECTENDTAG

An end tag is expected. Invalid content is found. No child element is

expected at this point.

Action: Change the document or schema to correct and retry.

8608 XRSN_VME_ELEMNOTINCHOICE

An unexpected element was found. The element was not one of the

choices.

Action: Change the document or schema to correct and retry.

8609 XRSN_VME_ELEMDUP

A duplicate element or one of its substitutions was found.

Action: Change the document or schema to correct and retry.

8610 XRSN_VME_EMPTYTABINCOMPCONT

An empty element tag is not expected. The content of the element is

not complete.

Action: Change the document or schema to correct and retry.

8611 XRSN_VME_UNEXPECTEDENDELEM

An unexpected end element event is found. The content of the element

is incomplete.

Action: Change the document or schema to correct and retry.

8612 XRSN_VME_UNDECLATT

The attribute found is not allowed to appear in the element.

Action: Change the document or schema to correct and retry.

8613 XRSN_VME_REQDATTMISSING

The attribute must appear on the element.

Action: Change the document or schema to correct and retry.

8614 XRSN_VME_MULTIWILDIDS

ID values must be unique.

Action: Change the document or schema to correct and retry.

8615 XRSN_VME_WILDIDFORBID

The attribute is a wildcard ID. But there is already an attribute derived

from the ID among the attribute uses.

Action: Change the document or schema to correct and retry.

162 z/OS V1R10.0 z/OS XML User’s Guide and Reference

8616 XRSN_VME_NONNILLELEM

Attribute ″xsi:nil″ must not appear on the element, because the nillable

property is false.

Action: Change the document or schema to correct and retry.

8617 XRSN_VME_NILFORBIDWFIXEDVC

There must be no fixed value constraint for the element because

″xsi:nil″ is specified.

Action: Change the document or schema to correct and retry.

8618 XRSN_VME_XSITVALINV

The attribute value ″xsi:type″ of the element is not a valid QName.

Action: Change the document or schema to correct and retry.

8619 XRSN_VME_XSITVALDOESNOTEXIST

The value cannot be resolved to a type definition for the element.

Action: Change the document or schema to correct and retry.

8620 XRSN_VME_XSITYPEVALNOTALLOWED

The type is not validly derived from the type definition of the element.

Action: Change the document or schema to correct and retry.

8621 XRSN_VME_VCINVFORCURTYPE

The value constraint of the element is not a valid default value for the

type.

Action: Change the document or schema to correct and retry.

8622 XRSN_VME_FIXEDVCFAILURE

The value does not match the fixed value constraint value for the

element.

Action: Change the document or schema to correct and retry.

8623 XRSN_VME_IDREFMISSINGID

There is no ID/IDREF binding for IDREF.

Action: Change the document or schema to correct and retry.

8624 XRSN_VME_ELEMHASABSTYPE

The type definition cannot be abstract for the element.

Action: Change the document or schema to correct and retry.

8625 XRSN_VME_INVSIMPLECONT

Invalid value of element.

Action: Change the document or schema to correct and retry.

8626 XRSN_VME_DUPKEY

A duplicate key value was declared for an identity constraint.

Action: Change the document or schema to correct and retry.

Appendix D. Reason Codes Listed by Value 163

8627 XRSN_VME_DUPUNIQUE

A duplicate unique value was declared for an identity constraint.

Action: Change the document or schema to correct and retry.

8628 XRSN_VME_FIELDMULTMATCH

A field matches more than one value within the scope of its selector.

The fields must match unique values.

Action: Change the document or schema to correct and retry.

8629 XRSN_VME_KEYNOTENOUGHVALS

Not enough values were specified for a key identity constraint.

Action: Change the document or schema to correct and retry.

8630 XRSN_VME_IDCKEYREFMISSINGKEY

A keyref is missing a corresponding key.

Action: Change the document or schema to correct and retry.

8631 XRSN_VME_ABSELEMERROR

The abstract element cannot be used to validate the element content.

Action: Change the document or schema to correct and retry.

8632 XRSN_VME_UNEXPECTEDROOT

The root element is not defined in the schema.

Action: Change the document or schema to correct and retry.

8800 XRSN_DVE_SIMPLETYPEINVVAL

Simple type is invalid.

Action: Change the document or schema to correct and retry.

8801 XRSN_DVE_IDMULTVAL

There are multiple occurrences of the ID value.

Action: Change the document or schema to correct and retry.

8802 XRSN_DVE_FACETLENVAL

The value is not facet-valid with respect to the length for this type.

Action: Change the document or schema to correct and retry.

8803 XRSN_DVE_FACETMAXEXCVAL

The value is not facet-valid with respect to maxExclusive for this type.

Action: Change the document or schema to correct and retry.

8804 XRSN_DVE_FACETMAXINCVAL

The value is not facet-valid with respect to maxInclusive for this type.

Action: Change the document or schema to correct and retry.

164 z/OS V1R10.0 z/OS XML User’s Guide and Reference

8805 XRSN_DVE_FACETMAXLENVAL

The value is not facet-valid with respect to maxLength for this type.

Action: Change the document or schema to correct and retry.

8806 XRSN_DVE_FACETMINEXCVAL

The value is not facet-valid with respect to minExclusive for this type.

Action: Change the document or schema to correct and retry.

8807 XRSN_DVE_FACETMININCVAL

The value is not facet-valid with respect to minInclusive for this type.

Action: Change the document or schema to correct and retry.

8808 XRSN_DVE_FACETMINLENVAL

The value is not facet-valid with respect to minLength for this type.

Action: Change the document or schema to correct and retry.

8809 XRSN_DVE_FACETPATTERNVAL

The value is not facet-valid with respect to the pattern for this type.

Action: Change the document or schema to correct and retry.

8810 XRSN_DVE_FACETTOTDIGVAL

The value has a mismatch in total number of digits for the type.

Action: Change the document or schema to correct and retry.

8811 XRSN_DVE_FACETFRACTDIGVAL

The value has a mismatch in fraction digits for this type.

Action: Change the document or schema to correct and retry.

8812 XRSN_DVE_FACETENUMVAL

The value is not facet-valid with respect to the enumeration for this

type. It must be a value from the enumeration.

Action: Change the document or schema to correct and retry.

Appendix D. Reason Codes Listed by Value 165

166 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Appendix E. xsdosrg command reference

Name

xsdosrg - generate an optimized schema representation format

Synopsis

xsdosrg [-v] [-o output_file] [-l list_file] | (input_file [input_file ...])

Note: The l option signifies a lower case L, not an upper case I. The option

signifies lower case O, not zero.

Description

A z/OS UNIX shell command that creates an optimized representation from one or

more schemas which can be used by the z/OS XML System Services validating

parser.

Options

xsdosrg accepts the following command line switches:

-v This option produces verbose output during the generation of the OSR. This

is for problem determination purposes only.

-o This option identifies the name of the output file that will contain the

generated OSR.

-l This option identifies the list of file names containing the text schemas to

process.

Operands

xsdosrg contains the following operands:

input_file

The name of the file containing the text version of an XML schema. At least

one input file must be specified, either with this operand, or through the file

list operand.

list_file

A list of schema names in text form that will be used to create the optimized

schema representation. The text in this file must be in the current local

codepage so that the command can open each file in the list.

output_file

The output_file operand is the name of the file that will contain the

optimized schema representation. This file name defaults to out.osr if no

name is specified.

Example

xsdosrg -o myschema.osr myschema.xsd

© Copyright IBM Corp. 2008 167

|

|

|
|

|

|
|

|

|
|

|
|

|
|
|

|
|

|

||
|

||
|

||
|

|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

Environment variables

See “Setting up the environment” on page 14 for information on setting and using

environment variables.

Localization

xsdosrg uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

See Appendix F of the z/OS UNIX System Services Command Reference for

descriptions of these environment variables.

Files

None.

Usage notes

One or more schemas may be processed by the xsdosrg command into a single

optimized schema representation. Multiple schema names may be specified either

directly on the command line or using the file list operand with the -l option. Use

either the input file operand or the list option to specify a list of schemas to process.

Do not use both methods on the same command invocation.

This command provides a simplified interface to the OSR generation utility. See

“gxluGenOSR — generate an Optimized Schema Representation (OSR)” on page

70, which allows greater control over the behavior of the generation process and

the characteristics of the generated OSR.

The codepage of the text contained in the list file for the -l option is managed in the

same way as any other z/OS UNIX System Services command (for example, cp).

The localization variables above and file tags may be used to set the proper code

page so that file names can be handled properly.

Exit values

The following list contains the exit values generated by this command:

0 success

4 no schema specified

16 OSR creation failed

Portability

Not applicable.

xsdosrg

168 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

||

||

||

|
|

|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/bpxza590/CCONTENTS

Related information

gxluGenOSR is a C routine that also invokes the OSR generator. It provides greater

control over the behavior of the generation process and the characteristics of the

generated OSR. See “gxluGenOSR — generate an Optimized Schema

Representation (OSR)” on page 70 for more information.

xsdosrg

Appendix E. xsdosrg command reference 169

|
|

|
|
|
|

170 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Appendix F. C/C++ header files and assembler macros

The z/OS XML System Services API includes several sets of structures, variables

and constants that the caller uses to provide input to and receive output from the

assorted processing services of the API. These definitions are contained in parallel

sets of C/C++ header files and assembler macros. The header files are named

gxlh*.h, and are found in the /usr/include directory. The assembler macros are

named GXLY* and are installed in SYS1.MACLIB.

The names of the C/C++ and assembler macros are similar. For example, the

output buffer record mapping is contained in /usr/include/gxlhxeh.h, while the

assembler version of the same mapping is in SYS1.MACLIB(GXLYXEH). In addition

to the parallel nature of these headers and macros, the C/C+ headers come in

regular Language Environment run-time and Metal C versions. Both versions have

the same file names, but the Language Environment run-time versions are in

/usr/include, while the Metal C versions are in /usr/include/metal. See

Chapter 6, “z/OS XML parser API: C/C++,” on page 35 for more details about these

differences.

All of the core parser services have C/C++ interfaces (both Language Environment

C and Metal C) and assembler interfaces. In addition, there are a set of utility

services to generate Optimized Schema Representations (OSRs) from text

schemas. These utility services are implemented in Language Environment C/C++

and Java. As a result, there are Language Environment C/C++ headers that have

no corresponding assembler macro or Metal C version.

These are the header file and assembler macros of the z/OS XML processing API.

The header file names are listed first, followed by the assembler macro names in

parentheses (if there is a corresponding macro).

gxlhxml.h - main z/OS XML header file

This is the main z/OS XML C/C++ header file that a caller should include in order to

use the z/OS XML C/C++ API. It contains prototypes for all of the API entry points,

as well as include statements for all of the other header files that are required for

the API. The Metal C version of this header also includes logic to call either the 31

or 64 bit version of the requested API, depending on the addressing mode of the

caller.

There is no corresponding assembler version of this header file.

gxlhxeh.h (GXLYXEH) - mapping of the output buffer record

This mapping describes the form of the parsed data stream returned from the z/OS

XML parser. It contains the following:

v A structure describing the fixed portion of a record in the data stream. This

includes the record type and assorted flags describing the characteristics of the

record.

v A structure to map the length value pairs (if there are any) that make up the

variable portion of the record.

v A structure describing the format of string identifiers (StringIDs) used to represent

the strings associated with a record when the StringIDs feature is enabled.

© Copyright IBM Corp. 2008 171

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|

|
|

v Structures to map the special records that represent buffer information (data

stream metadata), error information, and auxiliary information.

The items defined in this mapping provide a complete interface for the caller to

make use of the parsed data stream returned from a parse request. See Chapter 4,

“Parsing XML documents,” on page 11for more a more detailed explanation of the

z/OS XML parsed data stream.

gxlhxec.h (GXLYXEC) - constants definitions

This header and assembler macro contain constant values that are a key part of the

z/OS XML API. They include the following:

v Record/token types. These identify the semantic meaning of a record in the

parsed data stream.

v Feature flags. These are the z/OS XML parser features that the caller enables

when making an initialization or control request.

v Minimum work area sizes for the z/OS XML parser and query XML declaration

services. There are unique minimum work area sizes for the z/OS XML parser,

depending on whether or not validation is required.

v The minimum output buffer size.

v The allowable option flag values for the control function service.

v Assorted OSR generator constants.

v CCSID constants for all of the encodings that z/OS XML supports.

v Type identifiers for the data contained in source offset information records.

This is the header (macro) that contains all of the well known and required values

for the z/OS XML API.

gxlhqxd.h (GXLYQXD) - mapping of the output from the query XML

declaration service

This header (macro) contains the structure that describes the information returned

from the Query XML Declaration (QXD) service. It also contains constants that

enumerate the allowable values for certain fields of the structure. The types of data

returned in this area include the following:

v The type of encoding that the service was able to auto-detect. This is not a

CCSID, but an indication as to whether the document is in UCS, UTF, or

EBCDIC form. It also gives an indication of whether the document is big-endian

or little-endian for certain encoding types.

v The CCSID of the document that the service was able to auto-detect. This value

is suitable to pass to the z/OS XML parser initialization service to let the z/OS

XML parser know the encoding of the document.

Note: The QXD service is capable of detecting CCSIDs that are not supported

by the z/OS XML parser.

v The version and release number from the ″version″ keyword value in the XML

declaration.

v The CCSID from the ″encoding″ keyword value in the XML declaration. It may be

the case that the detected encoding does not match the CCSID from the XML

declaration. This could happen if the document has been transcoded from the

original encoding to the detected encoding. If this is the case, the auto-detected

value is the CCSID that should be used when initializing the parser.

172 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|

|

|

|

|

|
|

|
|

|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

v Flags indicating which keyword values in the XML declaration were actually

present.

v A flag to indicate how the auto-detected encoding value was determined. In

certain cases, it’s not possible to actually detect the encoding based on the bytes

examined. In this case, the XML spec requires a parser to treat the document as

if it were UTF-8 encoded, and this is what the QXD service will provide in the

auto-detect value. A flag will be set in the flags field to indicate that the encoding

was actually undetected, and that the encoding returned is the default UTF-8

value.

v The overall length of the XML declaration.

See “gxlpQuery — query an XML document” on page 49 or “GXL1QXD (GXL4QXD)

— query an XML document” on page 93 for more details about how to acquire and

use this data area.

gxlhxd.h (GXLYXD) - mapping of extended diagnostic area

This header (macro) contains the structure describing the extended diagnostic area

that is returned when there is a failure in the z/OS XML parser. It is returned

whenever the caller requests a control operation through the gxlpControl

(GXL1CTL/GXL4CTL) service. The particular area that it is used to map depends

on the control operation performed:

v *XEC_CTL_FIN (finish, and reset the parser) – this header (macro) maps the

area pointed to directly by the ctl_data_p parameter of the gxlpControl

(GXL1CTL/GXL4CTL) service.

v *XEC_CTL_FEAT (reset the parser with different features) – this header (macro)

maps the area pointed to by the XFT_XD_PTR field of the GXLHXFT (GXLYXFT)

structure.

v *XEC_CTL_LOAD_OSR (reset the parser and load an OSR for validation) – this

header (macro) maps the area pointed to by the XOSR_XD_PTR field of the

GXLHXOSR (GXLYXOSR) structure.

This mapping contains several types of key information that are of use for problem

determination. Some of the more useful fields include the following:

v The address of the main parser anchor block. This is not generally useful for a

caller, but is important for IBM service purposes.

v The input and output buffer addresses, and the current offsets into each. This

shows which data the z/OS XML parser was processing at the time of the error.

v The size of the last memory allocation request made by the z/OS XML parser.

v Return and reason codes from the last memory allocation request made by the

z/OS XML parser.

v Return and reason codes from system service exits (if exits are provided by the

caller).

v Return code from the last request to switch to a specialty engine.

gxlhxr.h (GXLYXR) - defines the return codes and reason codes

This contains all of the return and reason codes returned by z/OS XML. Each return

and reason code has a descriptive comment. Also included is a reason code mask -

*XRSN_REASON_MASK that is used to facilitate access to the low order 2 bytes of

the reason code full word.

Appendix F. C/C++ header files and assembler macros 173

|
|

|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|

|
|

|
|

|

|
|

|
|
|
|

gxlhxsv.h (GXLYXSV) - mapping of the system service vector

Maps the area used to make assorted exit routines available to the z/OS XML

parser. A complete description of the exits that can be specified and how to provide

them can be found in Chapter 8, “z/OS XML System Services exit interface,” on

page 101.

gxlhxft.h (GXLYXFT) - mapping of the control feature input output area

This structure describes the area that is passed in to and back from the gxlpControl

(GXL1CTL/GXL4CTL) service through the ctl_data_p (ctl_data) parameter. It is used

to map this area when the caller is changing the parser feature settings by

specifying the *XEC_CTL_FEAT value for the ctl_operation (ctl_option) parameter.

This structure includes an integer (fullword) value that contains the required

features to reset. There are some features that cannot be reset, and which require

that the parse instance to be terminated and re-initialized. This structure also

contains the address of a fullword area in which the z/OS XML parser will place a

pointer to the extended diagnostic area. This is the area that is mapped by gxlhxd.h

(GXLYXD).

See the description of the ctl_data_p parameter in “gxlpControl — perform a parser

control function” on page 37, or the ctl_data parameter in “GXL1CTL (GXL4CTL) —

perform a parser control function” on page 82 for more details about the use of this

structure.

gxlhxosr.h (GXLYXOSR) - mapping of the OSR control area

This structure describes the area that is passed in to and back from the gxlpControl

(GXL1CTL/GXL4CTL) service through the ctl_data_p parameter. It should be used

to map this area when the caller is loading an OSR for a validating parse by

specifying the *XEC_CTL_LOAD_OSR value for the ctl_operation (ctl_option)

parameter.

This structure holds the address of a buffer that contains the OSR, plus an optional

name string that will be associated with the OSR. This name is currently optional,

but it is recommended that every different OSR loaded be given a unique name.

This can be useful for problem determination purposes in the event of an error. This

structure also contains the address of a fullword area in which the parser will place

a pointer to the extended diagnostic area. This is the area that is mapped by

gxlhxd.h (GXLYXD).

See the description of the ctl_data_p parameter in “gxlpControl — perform a parser

control function” on page 37, or the ctl_data parameter in “GXL1CTL (GXL4CTL) —

perform a parser control function” on page 82 for more details about the use of this

structure.

gxlhxosrg.h - OSR generator prototypes

This header contains includes for all of the OSR generator utility services, as well

as the prototypes for those services. There are no Metal C or assembler macro

versions of this header file.

174 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

gxlhxosrd.h - mapping of the OSR generator diagnostic area

This header contains the structure that maps the extended diagnostic area returned

from the OSR generator utility – similar to the way that gxlhxd.h (GXLYXD)

describes the extended diagnostic area returned by the z/OS XML parser. Some of

the more useful fields include the following:

v The address of the OSR generator Instance Memory Area (OIMA).

v The last return and reason code issued by the OSR generator.

v The last return and reason code issued by the StringID exit.

v An area containing a Java exception that may have been the cause of the failure.

Some of the OSR generator is implemented in Java, so this area will contain the

exception information when an error occurs in the Java code.

There are no Metal C or assembler macro versions of this header file.

gxlhxstr.h - StringID table

StringIDs are numeric values that are substituted for certain character strings that

are encountered during the parse process. They can save space in the parsed data

stream, and possibly improve performance if there are large numbers of repeated

strings in the XML document being parsed. This can be the case with documents

that make heavy use of namespaces with long URIs.

A caller may specify a StringID exit for the OSR generator to use, such that when a

string is encountered, it will call the exit to either generate a new ID, if the string

hasn’t been seen before, or return an existing ID for strings which have been

previously encountered. As the generator acquires these StringIDs, it saves them

away in a table, and substitutes them for the strings that they represent within the

OSR. The z/OS XML parser implements a similar behavior when it parses an XML

document using StringIDs.

It will often be the case that the caller needs to use the same set of StringIDs at

OSR generation time, and when a validating parse is performed with that OSR. The

OSR generator API contains the gxluGenStrIDTbl service that allows the caller to

extract the StringID table from the OSR so that the table can be imported by the

StringID exit used during the parse process. See “gxluGenStrIDTbl — generate

StringID table from an OSR” on page 73 for more details about how this service

works.

This header file contains the structure definitions that describe the format of the

StringID table that is exported from the OSR generator. The table is broken down

into a fixed portion that contains information about the table, and a variable length

portion containing the individual entries of the table. These are the structures that

the StringID exit service can use to import the StringID table in preparation for a

validating parse.

There are no Metal C or assembler macro versions of this header file.

Appendix F. C/C++ header files and assembler macros 175

|
|

|
|
|
|

|

|

|

|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

176 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Appendix G. Java file

The following Java file is provided with z/OS XML System Services.

gxljxr.java - return and reason code declarations

This Java file contains return and reason code declarations for the OSR generator.

/***

* *

* Name: GXLJXR.JAVA *

* *

* Description: OSR generator reason codes *

* *

* LICENSED MATERIALS - PROPERTY OF IBM *

* *

* 5694-A01 *

* *

* EXTERNAL CLASSIFICATION: PI *

* END OF EXTERNAL CLASSIFICATION: *

* *

* COPYRIGHT IBM CORP. 2007 *

* *

* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, *

* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP *

* SCHEDULE CONTRACT WITH IBM CORP. *

* *

* STATUS = HBB7740 *

* *

* Change Activity: *

* *

* $LM=VALIDATE,HBB7740,070721,PDGL: OSR Generator Retcode *

* *

***/

package com.ibm.zos.xml;

/** OSR generator reason codes */

public class GXLJXR

{

/***/

/** OSR generator reason codes */

/***/

/** The OIMA provided is unusable. */

public static final int GXLJXRSN_OIMA_NOT_INITIALIZED = 0x7001;

/** The OIMA provided is unusable because a previous

 reset failed. */

public static final int GXLJXRSN_OIMA_NOT_USABLE = 0x7002;

/** The OIMA provided is too small. */

public static final int GXLJXRSN_OIMA_SMALL = 0x7003;

/** The OIMA is already initialized. */

public static final int GXLJXRSN_OIMA_RESIDUAL_DATA = 0x7005;

/** The Java Virtual Machine failed to start. */

public static final int GXLJXRSN_JVM_START_FAILED = 0x7007;

/** The Java Virtual Machine failed to stop. */

public static final int GXLJXRSN_JVM_STOP_FAILED = 0x7008;

/** The operation specified for the control parameter

 is unsupported. */

public static final int GXLJXRSN_CTLOPTN_UNSUPPORTED = 0x7009;

/** Java class not found by the ClassLoader. */

public static final int GXLJXRSN_JAVACLASS_NOT_FOUND = 0x7011;

/** The specified function name is null. */

public static final int GXLJXRSN_FUNC_NAME_NULL = 0x7019;

/** Open for the specified DLL failed. */

public static final int GXLJXRSN_DLL_OPEN_FAILED = 0x7021;

© Copyright IBM Corp. 2008 177

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/** Retrieve for the specified DLL function failed. */

public static final int GXLJXRSN_FUNC_RETRIEVE_FAILED = 0x7023;

/** The Java method cannot be found in the class.

 See the diagnostic area for the method name. */

public static final int GXLJXRSN_JAVA_METHOD_NOT_FOUND = 0x7027;

/** A Java method call failed. */

public static final int GXLJXRSN_JAVA_METHOD_CALL_FAILED = 0x7029;

/** Close for the specified DLL failed. */

public static final int GXLJXRSN_DLL_CLOSE_FAILED = 0x7031;

/** A JNI method returned with an exception. */

public static final int GXLJXRSN_JNI_METHOD_FAILED = 0x7033;

/** Failed to create a new Java object. */

public static final int GXLJXRSN_OBJECT_NOT_CREATED = 0x7035;

/** No schemas have been loaded into the OSR generator. */

public static final int GXLJXRSN_SCHEMA_NOT_LOADED = 0x7037;

/** No OIMA pointer has been specified. */

public static final int GXLJXRSN_OIMAPTR_NOT_PROVIDED = 0x7039;

/** OSR generation failed in the assemble phase. */

public static final int GXLJXRSN_GEN_OSR_ASM_FAILED = 0x7043;

/** OSR generation failed in the compile phase. */

public static final int GXLJXRSN_GEN_OSR_COMP_FAILED = 0x7045;

/** OSR generation failed. */

public static final int GXLJXRSN_GEN_OSR_FAILED = 0x7046;

/** The OSR to load is not valid. */

public static final int GXLJXRSN_OSR_NOT_VALID = 0x7049;

/** The OSR generator could not allocate memory. */

public static final int GXLJXRSN_OSR_MALLOC_FAILED = 0x7050;

/** The OSR generator could not free memory. */

public static final int GXLJXRSN_OSR_MFREE_FAILED = 0x7051;

/** Could not save the Java exception in the diagnostic area. */

public static final int GXLJXRSN_JAVAEXCEPTION_DIAG_FAILED = 0x7055;

/** The Java exception saved in the diagnostic area

 is incomplete. */

public static final int GXLJXRSN_JAVAEXCEPTION_INCOMPLETE = 0x7057;

/** Unable to obtain the reason code set by the Java exception. */

public static final int GXLJXRSN_JAVARSNCODE_NOT_FOUND = 0x7059;

/** The URI specified is incorrect. */

public static final int GXLJXRSN_INCORRECT_SCHEMA_URI = 0x7061;

/** No specific reason code was set by Java. */

public static final int GXLJXRSN_JAVARSNCODE_UNKNOWN = 0x7063;

/** The schema identified by the specified

 URI is not found. */

public static final int GXLJXRSN_SCHEMA_URI_NOT_FOUND = 0x7065;

/** Unable to load the specified schema. */

public static final int GXLJXRSN_SCHEMA_LOAD_FAILED = 0x7067;

/** The OSR identified by the specified

 URI is not found. */

public static final int GXLJXRSN_OSR_URI_NOT_FOUND = 0x7069;

/** The system service parameter specified is null. */

public static final int GXLJXRSN_STRINGID_SYSSVC_NULL = 0x7071;

/** The Java error information saved in the

 diagnostic area is incomplete. */

public static final int GXLJXRSN_JAVAERRORMESSAGE_INCOMPLETE = 0x7079;

/** The specified schema contains an error that caused

 an exception. */

public static final int GXLJXRSN_SCHEMA_INCORRECT = 0x7081;

/** The specified schema contains an error that caused

 a warning. */

public static final int GXLJXRSN_SCHEMA_WARNING = 0x7082;

/** The Java error information saved in the diagnostic

 area is not valid. */

public static final int GXLJXRSN_JAVAERRORMESSAGE_DIAG_FAILED = 0x7083;

/** An unsupported feature flag was specified. */

public static final int GXLJXRSN_OSR_UNSUPPORTED_FEATURE = 0x7087;

/** No OSR parameter was specified. */

public static final int GXLJXRSN_OSR_PARM_NOT_SPECIFIED = 0x7089;

/** No schema parameter was specified. */

178 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

public static final int GXLJXRSN_SCHEMA_PARM_NOT_SPECIFIED = 0x7091;

/** No stringID table parameter was specified. */

public static final int GXLJXRSN_STRIDTBL_PARM_NOT_SPECIFIED = 0x7093;

/** A well-formed URL could not be constructed for

 the specified class. */

public static final int GXLJXRSN_JAVAPROPERTY_MALFORMED_URL = 0x7095;

/** The OSR generator classes could not be found. */

public static final int GXLJXRSN_JAVAPROPERTY_CLASS_NOTFOUND = 0x7097;

/** The OSR generator classes could not be loaded. */

public static final int GXLJXRSN_CLSLOADER_ACCESS_FAILED = 0x7099;

/** The OSR generator classes could not be instantiated. */

public static final int GXLJXRSN_CLSLOADER_INSTANTIATION_FAILED = 0x7101;

/** No OSRs have been loaded into the OSR generator. */

public static final int GXLJXRSN_OSR_NOT_LOADED = 0x7103;

/** The Java Virtual Machine is out of memory. */

public static final int GXLJXRSN_JVM_OUT_OF_MEMORY = 0x7107;

/** The Java Virtual Machine stack overflow occurrs. */

public static final int GXLJXRSN_JVM_STACK_OVERFLOW = 0x7109;

/** Internal error has occurred in the Java Virtual Machine. */

public static final int GXLJXRSN_JVM_INTERNAL_ERROR = 0x7111;

/** An unknown and seirous exception has occurred in the JVM. */

public static final int GXLJXRSN_JVM_UNKNOWN_ERROR = 0x7113;

}

Appendix G. Java file 179

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

180 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Appendix H. Callable services examples - AMODE 31

© Copyright IBM Corp. 2008 181

|

|

|

GXL1CTL example

The following code calls the GXL1CTL service to change the feature bits for the

z/OS XML parser. For the callable service, see “GXL1CTL (GXL4CTL) — perform a

parser control function” on page 82. AMODE 64 callers use “GXL4CTL example” on

page 188.

**

* Setup parameter list to call GXL1CTL. *

* Then call GXL1CTL. *

**

* Call GXL1CTL(PIMA, (00)

* CTL_Option, (04)

* CTL_Data, (08)

* Return_Code, (12)

* Reason_Code) (16)

*

 LA R9,SAMPLE_PIMA_PTR

 L R9,0(R9)

 ST R9,Parser_Parm

 SLR R4,R4

 LA R10,SAMPLE_CTL_OPTION

 ST R10,Parser_Parm+4

 LA R10,SAMPLE_CTL_DATA

 ST R10,Parser_Parm+8

 LA R10,SAMPLE_CTL_RC

 ST R10,Parser_Parm+12

 LA R10,SAMPLE_CTL_RSN

 ST R10,Parser_Parm+16

 LLGT R15,CVTPTR

 L R15,CVTCSRT-CVT(R15)

 L R15,72(R15)

 L R15,28(R15)

 LA R1,Parser_Parm

 BALR R14,R15

 :

**

* Description of the SAMPLE Structure:

* **

SAMPLE DSECT Memory storage area

SAMPLE_HEADER DS 0D

SAMPLE_EYE_CATCHER DS CL8 eye-catcher string

SAMPLE_RETCODE DS 1F

SAMPLE_RSNCODE DS 1F

SAMPLE_PIMA_PTR DS 1F

SAMPLE_PIMA_LEN DS 1F

SAMPLE_INIT_FEAT DS 1F

SAMPLE_INIT_RC DS 1F

SAMPLE_INIT_RSN DS 1F

SAMPLE_CTL_OPTION DS 1F

SAMPLE_CTL_DATA DS 1F

SAMPLE_CTL_RC DS 1F

SAMPLE_CTL_RSN DS 1F

SAMPLE_TERM_RC DS 1F

SAMPLE_TERM_RSN DS 1F

SAMPLE_FLAGS1 DS 1F

SAMPLE_FLAGS2 DS 1F

SAMPLE_END DS 0X

**

NULL_Value DC 1D’0’

CCSID DS 1F

PARSER_PARM DS 8A

GXL1CTL example

182 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

GXL1INI example

The following code initializes the PIMA and records the addresses of the caller’s

system service routines (if any). For the callable service, see “GXL1INI (GXL4INI)

— initialize a parse instance” on page 86. AMODE 64 callers use “GXL4INI

example” on page 189.

**

* Setup parameter list to call GXL1INI. *

* Then call GXL1INI. *

**

* Call GXL1INI(PIMA, (00)

* PIMA_LEN, (04)

* CCSID, (08)

* Feature_Flags, (12)

* Sys_SVC_Vector, (16) Will be set to NULL

* Sys_SVC_parm, (20) Will be set to NULL

* Return_Code, (24)

* Reason_Code) (28)

*

 LA R9,SAMPLE_PIMA_PTR

 L R9,0(R9)

 ST R9,Parser_Parm

 LA R10,SAMPLE_PIMA_LEN

 ST R10,Parser_Parm+4

 SLR R4,R4

 LA R10,XEC_ENC_IBM_037(R4)

 ST R10,CCSID

 LA R10,CCSID

 ST R10,Parser_Parm+8

 LA R10,SAMPLE_INIT_FEAT

 ST R10,Parser_Parm+12

 LA R10,NULL_Value

 ST R10,Parser_Parm+16

 ST R10,Parser_Parm+20

 LA R10,SAMPLE_INIT_RC

 ST R10,Parser_Parm+24

 LA R10,SAMPLE_INIT_RSN

 ST R10,Parser_Parm+28

 LLGT R15,CVTPTR

 L R15,CVTCSRT-CVT(R15)

 L R15,72(R15)

 L R15,16(R15)

 LA R1,Parser_Parm

 BALR R14,R15

 :

**

* Description of the SAMPLE Structure:

* **

SAMPLE DSECT Memory storage area

SAMPLE_HEADER DS 0D

SAMPLE_EYE_CATCHER DS CL8 eye-catcher string

SAMPLE_RETCODE DS 1F

SAMPLE_RSNCODE DS 1F

SAMPLE_PIMA_PTR DS 1F

SAMPLE_PIMA_LEN DS 1F

SAMPLE_INIT_FEAT DS 1F

SAMPLE_INIT_RC DS 1F

SAMPLE_INIT_RSN DS 1F

SAMPLE_CTL_OPTION DS 1F

SAMPLE_CTL_DATA DS 1F

SAMPLE_CTL_RC DS 1F

SAMPLE_CTL_RSN DS 1F

SAMPLE_TERM_RC DS 1F

SAMPLE_TERM_RSN DS 1F

SAMPLE_FLAGS1 DS 1F

GXL1INI example

Appendix H. Callable services examples - AMODE 31 183

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SAMPLE_FLAGS2 DS 1F

SAMPLE_END DS 0X

**

NULL_Value DC 1D’0’

CCSID DS 1F

PARSER_PARM DS 8A

GXL1INI example

184 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|
|
|

|

GXL1PRS example

The following code parses a buffer of XML text and places the result in an output

buffer. For the callable service, see “GXL1PRS (GXL4PRS) — parse a buffer of

XML text” on page 90. AMODE 64 callers use “GXL4PRS example” on page 191.

*/***

*/ PARSE

*/**

* CALL GXL1PRS(PIMA,OPTION_FLAGS,INBUF_PTR,INBUF_LEN,OUTBUF_PTR,

* OUTBUF_LEN,RC,RSN);

 L @02,PARM_PTR(,@03_PARM_PTR_PTR)

 L @10,PIMA_PTR(,@02)

 ST @10,@AL00001

 LA @10,OPTION_FLAGS(,@02)

 ST @10,@AL00001+4

 LA @10,INBUF_PTR(,@02)

 ST @10,@AL00001+8

 LA @10,INBUF_LEN(,@02)

 ST @10,@AL00001+12

 LA @10,OUTBUF_PTR(,@02)

 ST @10,@AL00001+16

 LA @02,OUTBUF_LEN(,@02)

 ST @02,@AL00001+20

 LA @10,RC

 ST @10,@AL00001+24

 LA @02,RSN

 ST @02,@AL00001+28

 OI @AL00001+28,X’80’

 L @10,CS$CVT

 L @02,CS$CSRT+544(,@10)

 L @10,CS$CSRFT+72(,@02)

 L @15,GXLST31+20(,@10)

 LA @01,@AL00001

 BALR @14,@15

* PARSE_RC = RC;

 L @02,PARM_PTR(,@03_PARM_PTR_PTR)

 L @10,RC

 ST @10,PARSE_RC(,@02)

* PARSE_RSN = RSN;

 L @10,RSN

 ST @10,PARSE_RSN(,@02)

* END DO_PARSE;

*

GXL1PRS example

Appendix H. Callable services examples - AMODE 31 185

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

GXL1TRM example

The following code releases all resources obtained (including storage) by the z/OS

XML parser and resets the PIMA so that it can be re-initialized. For the callable

service, see “GXL1TRM (GXL4TRM) — terminate a parse instance” on page 96.

AMODE 64 callers use “GXL4TRM example” on page 192.

**

* Setup parameter list to call GXL1TRM. *

* Then call GXL1TRM. *

**

* Call GXL1TRM(PIMA, (00)

* Return_Code, (04)

* Reason_Code) (08)

*

 LA R10,SAMPLE_PIMA_PTR

 L R10,0(R10)

 ST R10,Parser_Parm

 LA R10,SAMPLE_TERM_RC

 ST R10,Parser_Parm+4

 LA R10,SAMPLE_TERM_RSN

 ST R10,Parser_Parm+8

 LLGT R15,CVTPTR

 L R15,CVTCSRT-CVT(R15)

 L R15,72(R15)

 L R15,24(R15)

 LA R1,Parser_Parm

 BALR R14,R15

 :

**

* Description of the SAMPLE Structure:

* **

SAMPLE DSECT Memory storage area

SAMPLE_HEADER DS 0D

SAMPLE_EYE_CATCHER DS CL8 eye-catcher string

SAMPLE_RETCODE DS 1F

SAMPLE_RSNCODE DS 1F

SAMPLE_PIMA_PTR DS 1F

SAMPLE_PIMA_LEN DS 1F

SAMPLE_INIT_FEAT DS 1F

SAMPLE_INIT_RC DS 1F

SAMPLE_INIT_RSN DS 1F

SAMPLE_CTL_OPTION DS 1F

SAMPLE_CTL_DATA DS 1F

SAMPLE_CTL_RC DS 1F

SAMPLE_CTL_RSN DS 1F

SAMPLE_TERM_RC DS 1F

SAMPLE_TERM_RSN DS 1F

SAMPLE_FLAGS1 DS 1F

SAMPLE_FLAGS2 DS 1F

SAMPLE_END DS 0X

**

NULL_Value DC 1D’0’

CCSID DS 1F

PARSER_PARM DS 8A

GXL1TRM example

186 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Appendix I. Callable services examples - AMODE 64

© Copyright IBM Corp. 2008 187

GXL4CTL example

The following code calls the GXL4CTL service to change the feature bits for the

z/OS XML parser. For the callable service, see “GXL1CTL (GXL4CTL) — perform a

parser control function” on page 82. AMODE 31 callers use “GXL1CTL example” on

page 182.

**

* Setup parameter list to call GXL4CTL. *

* Then call GXL4CTL. *

**

* Call GXL4CTL(PIMA, (00)

* CTL_Option, (08)

* CTL_Data, (16)

* Return_Code, (24)

* Reason_Code) (32)

*

 LA R9,SAMPLE_PIMA_PTR

 LG R9,0(R9)

 STG R9,Parser_Parm

 SLGR R4,R4

 LA R10,SAMPLE_CTL_OPTION

 STG R10,Parser_Parm+8

 LA R10,SAMPLE_CTL_DATA

 STG R10,Parser_Parm+16

 LA R10,SAMPLE_CTL_RC

 STG R10,Parser_Parm+24

 LA R10,SAMPLE_CTL_RSN

 STG R10,Parser_Parm+32

 LLGT R15,CVTPTR

 L R15,CVTCSRT-CVT(R15)

 L R15,72(R15)

 LG R15,64(R15)

 LA R1,Parser_Parm

 BALR R14,R15

 :

**

* Description of the SAMPLE Structure:

* **

SAMPLE DSECT Memory storage area

SAMPLE_HEADER DS 0D

SAMPLE_EYE_CATCHER DS CL8 eye-catcher string

SAMPLE_RETCODE DS 1F

SAMPLE_RSNCODE DS 1F

SAMPLE_PIMA_PTR DS 1D

SAMPLE_PIMA_LEN DS 1F

SAMPLE_INIT_FEAT DS 1F

SAMPLE_INIT_RC DS 1F

SAMPLE_INIT_RSN DS 1F

SAMPLE_CTL_OPTION DS 1F

SAMPLE_CTL_DATA DS 1F

SAMPLE_CTL_RC DS 1F

SAMPLE_CTL_RSN DS 1F

SAMPLE_TERM_RC DS 1F

SAMPLE_TERM_RSN DS 1F

SAMPLE_FLAGS1 DS 1F

SAMPLE_FLAGS2 DS 1F

SAMPLE_END DS 0X

**

NULL_Value DC 1D’0’

CCSID DS 1F

PARSER_PARM DS 16A

GXL4CTL example

188 z/OS V1R10.0 z/OS XML User’s Guide and Reference

GXL4INI example

The following code initializes the PIMA and records the addresses of the caller’s

system service routines (if any). For the callable service, see “GXL1INI (GXL4INI)

— initialize a parse instance” on page 86. AMODE 31 callers use “GXL1INI

example” on page 183.

**

* Setup parameter list to call GXL4INI. *

* Then call GXL4INI. *

**

* Call GXL4INI(PIMA, (00)

* PIMA_LEN, (08)

* CCSID, (16)

* Feature_Flags, (24)

* Sys_SVC_Vector, (32) Will be set to NULL

* Sys_SVC_parm, (40) Will be set to NULL

* Return_Code, (48)

* Reason_Code) (56)

*

 LA R9,SAMPLE_PIMA_PTR

 LG R9,0(R9)

 STG R9,Parser_Parm

 LA R10,SAMPLE_PIMA_LEN

 STG R10,Parser_Parm+8

 SLGR R4,R4

 LA R10,XEC_ENC_IBM_037(R4)

 ST R10,CCSID

 LA R10,CCSID

 STG R10,Parser_Parm+16

 LA R10,SAMPLE_INIT_FEAT

 STG R10,Parser_Parm+24

 LA R10,NULL_Value

 STG R10,Parser_Parm+32

 STG R10,Parser_Parm+40

 LA R10,SAMPLE_INIT_RC

 STG R10,Parser_Parm+48

 LA R10,SAMPLE_INIT_RSN

 STG R10,Parser_Parm+56

 LLGT R15,CVTPTR

 L R15,CVTCSRT-CVT(R15)

 L R15,72(R15)

 LG R15,40(R15)

 LA R1,Parser_Parm

 BALR R14,R15

 :

**

* Description of the SAMPLE Structure:

* **

SAMPLE DSECT Memory storage area

SAMPLE_HEADER DS 0D

SAMPLE_EYE_CATCHER DS CL8 eye-catcher string

SAMPLE_RETCODE DS 1F

SAMPLE_RSNCODE DS 1F

SAMPLE_PIMA_PTR DS 1D

SAMPLE_PIMA_LEN DS 1F

SAMPLE_INIT_FEAT DS 1F

SAMPLE_INIT_RC DS 1F

SAMPLE_INIT_RSN DS 1F

SAMPLE_CTL_OPTION DS 1F

SAMPLE_CTL_DATA DS 1F

SAMPLE_CTL_RC DS 1F

SAMPLE_CTL_RSN DS 1F

SAMPLE_TERM_RC DS 1F

SAMPLE_TERM_RSN DS 1F

SAMPLE_FLAGS1 DS 1F

GXL4INI example

Appendix I. Callable services examples - AMODE 64 189

SAMPLE_FLAGS2 DS 1F

SAMPLE_END DS 0X

**

NULL_Value DC 1D’0’

CCSID DS 1F

PARSER_PARM DS 16A

GXL4INI example

190 z/OS V1R10.0 z/OS XML User’s Guide and Reference

GXL4PRS example

The following code parses a buffer of XML text and places the result in an output

buffer. For the callable service, see “GXL1PRS (GXL4PRS) — parse a buffer of

XML text” on page 90. AMODE 31 callers use “GXL1PRS example” on page 185.

*/*** */

/ DO_PARSE */

*/*** */

*

*DO_PARSE:

* PROCEDURE;

DO_PARSE STM @14,@12,@SA00004

 STMH @14,@12,@SH00004

* CALL GXL4PRS(PIMA,OPTION_FLAGS,INBUF_PTR,INBUF_LEN,OUTBUF_PTR,

* OUTBUF_LEN,RC,RSN);

 LG @02,PARM_PTR(,@03_PARM_PTR_PTR)

 LG @10,PIMA_PTR(,@02)

 STG @10,@AX00001

 LA @10,OPTION_FLAGS(,@02)

 STG @10,@AX00001+8

 LA @10,INBUF_PTR(,@02)

 STG @10,@AX00001+16

 LA @10,INBUF_LEN(,@02)

 STG @10,@AX00001+24

 LA @10,OUTBUF_PTR(,@02)

 STG @10,@AX00001+32

 LA @02,OUTBUF_LEN(,@02)

 STG @02,@AX00001+40

 LA @10,RC

 STG @10,@AX00001+48

 LA @02,RSN

 STG @02,@AX00001+56

 L @10,CS$CVT

 LLGTR @10,@10

 L @02,CS$CSRT+544(,@10)

 LLGTR @02,@02

 L @10,CS$CSRFT+72(,@02)

 LLGTR @10,@10

 LG @15,GXLST64+48(,@10)

 LA @01,@AX00001

 BASR @14,@15

* PARSE_RC = RC;

 LG @02,PARM_PTR(,@03_PARM_PTR_PTR)

 L @10,RC

 ST @10,PARSE_RC(,@02)

* PARSE_RSN = RSN;

 L @10,RSN

 ST @10,PARSE_RSN(,@02)

* END DO_PARSE;

*

@EL00004 DS 0H

@EF00004 DS 0H

@ER00004 LMH @14,@12,@SH00004

 LM @14,@12,@SA00004

 BR @14

GXL4PRS example

Appendix I. Callable services examples - AMODE 64 191

GXL4TRM example

The following code releases all resources obtained (including storage) by the z/OS

XML parser and resets the PIMA so that it can be re-initialized. For the callable

service, see “GXL1TRM (GXL4TRM) — terminate a parse instance” on page 96.

AMODE 31 callers use “GXL1TRM example” on page 186.

**

* Setup paramter list to call GXL4TRM. *

* Then call GXL4TRM. *

**

* Call GXL4TRM(PIMA, (00)

* Return_Code, (08)

* Reason_Code) (16)

*

 LA R10,SAMPLE_PIMA_PTR

 LG R10,0(R10)

 STG R10,Parser_Parm

 LA R10,SAMPLE_TERM_RC

 STG R10,Parser_Parm+8

 LA R10,SAMPLE_TERM_RSN

 STG R10,Parser_Parm+16

 LLGT R15,CVTPTR

 L R15,CVTCSRT-CVT(R15)

 L R15,72(R15)

 LG R15,56(R15)

 LA R1,Parser_Parm

 BALR R14,R15

 :

**

* Description of the SAMPLE Structure:

* **

SAMPLE DSECT Memory storage area

SAMPLE_HEADER DS 0D

SAMPLE_EYE_CATCHER DS CL8 eye-catcher string

SAMPLE_RETCODE DS 1F

SAMPLE_RSNCODE DS 1F

SAMPLE_PIMA_PTR DS 1D

SAMPLE_PIMA_LEN DS 1F

SAMPLE_INIT_FEAT DS 1F

SAMPLE_INIT_RC DS 1F

SAMPLE_INIT_RSN DS 1F

SAMPLE_CTL_OPTION DS 1F

SAMPLE_CTL_DATA DS 1F

SAMPLE_CTL_RC DS 1F

SAMPLE_CTL_RSN DS 1F

SAMPLE_TERM_RC DS 1F

SAMPLE_TERM_RSN DS 1F

SAMPLE_FLAGS1 DS 1F

SAMPLE_FLAGS2 DS 1F

SAMPLE_END DS 0X

**

NULL_Value DC 1D’0’

CCSID DS 1F

PARSER_PARM DS 16A

GXL4TRM example

192 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Appendix J. Exit examples - AMODE 31

© Copyright IBM Corp. 2008 193

GXLE1FRM

(GXLFST31 example)

Restrictions: The following restrictions apply to this example:

v This sample was designed to be a basic example of a memory service exit, and

was not designed with other system considerations in mind, such as the z/OS

XML parser running in cross memory mode, SRB mode, or in a different key, for

instance.

v This sample is not designed to work with any other service exits. The exit

workarea is assumed to be used by this memory service exit only. (Note that

both GXLGST31 and GXLFST31 services are considered as one service exit). As

a result, this memory service exit can only work independently, with no other

service exits running.

The following code frees an area of memory passed by the z/OS XML parser. For

the exit service, see “GXLFST31 (GXLFST64) — free memory” on page 107.

AMODE 64 callers use “GXLE4FRM (GXLFST64 example)” on page 224.

Register 14 is used to store the return address, which must be kept intact in order

to exit this subroutine correctly.

This example assumes register one, which is passed in from the caller, contains the

address of the parameter list. The following input variables are used in the example:

SYS_SVC_PARM

Address of storage area that the caller of the z/OS XML parser wants to

pass on to the exit.

MEMORY_LEN

Contain the length of the memory area requested to be free.

The following output variables are used in the example:

MEMORY_ADDR

The address of the memory to be freed.

EXIT_DIAG_CODE

Contains diagnostic information.

XSM_DC_INVALID_EYECATCHER_STR

Eye catcher is incorrect.

XSM_DC_FAIL_FREE_MEM31

Fail to release storage memory.

RETCODE

XSM_RC_FAILURE

Unable to free memory

XSM_RC_SUCCESS

The storage macro released the allocated memory successfully

(greater than zero if deallocation failed).

EXIT_DIAG_CODE

XSM_DC_INVALID_EYECATCHER_STR

Eye catcher is incorrect.

XSM_DC_FAIL_FREE_MEM31

Fail to release storage memory.

GXLE1FRM (GXLFST31 example)

194 z/OS V1R10.0 z/OS XML User’s Guide and Reference

* SYSSTATE is used to initialize some variables used by storage macro

 SYSSTATE ASCENV=P,AMODE64=,ARCHLVL=,OSREL=

 SYSSTATE ASCENV=,AMODE64=,ARCHLVL=2,OSREL=

GXLE1FRM CSECT Set up control section

GXLE1FRM AMODE 31 Address mode of module

GXLE1FRM RMODE ANY Residence of module

 USING DATA+0,R12 Relative Branching

 ENTRY GXLE1FRM external entry point

 STM R14,R12,12(R13) Save regs

 LARL R12,DATA Load DATA Address

 J MSTART Jump to mainline of code

EYECATCH DS 0H

 DC CL8’GXLE1FRM’

MSTART DS 0H

* Establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,R1

* Establish addressability for the XSM DSECT to the SYS_SVC_PARM

 USING XSM,R2

* Check if the XSM eye catcher string matches correctly *

 L R2,SYS_SVC_PARM_PTR

 L R2,SYS_SVC_PARM(,R2)

 CLC XSM_EYE_CATCHER,EYECHAR

 JE PROCEED

**

* Eye catcher is invalid in the XSM structure, so we not *

* sure if the data in the XSM structure is still valid, *

* exiting subroutine, and return to the caller *

**

 L R8,RETCODE_PTR

 LHI R9,XSM_RC_FAILURE

 ST R9,RETCODE(,R8)

 L R10,EXITDIAGCODE_PTR

 LHI R9,XSM_DC_INVALID_EYECATCHER_STR

 ST R9,EXIT_DIAG_CODE(,R10)

 J EXIT

**

* The XSM structure is intact and eye catcher is correct *

* Set the dynamic area pointer to register 11 *

**

PROCEED DS 0H

* Setting up the parameter list passed in by the caller *

 XR R7,R7

 ST R7,RETCODE(,R8)

 ST R7,XSM_DIAG_CODE

* Call the Storage Release macro to free the memory *

 L R7,MEMORY_LEN_PTR

 L R7,MEMORY_LEN(,R7)

 L R5,MEMORY_ADDR_PTR

 L R5,MEMORY_ADDR(,R5)

 DROP R1

 LR R8,R1 Backup Reg1 Parameter address

GXLE1FRM (GXLFST31 example)

Appendix J. Exit examples - AMODE 31 195

* After storage macro finished, register 15 will contain the

* return code of the macro. Zero if deallocation is successful,

* or greater than zero if failed to deallocate the memory

 STORAGE RELEASE,COND=YES,LENGTH=(R7),ADDR=(R5)

* Make sure the storage release is successful *

 LR R1,R8 Restore Reg1 Parameter address

* Establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,R1

 L R7,RETCODE_PTR

 ST R15,RETCODE(,R7) reg15 is the macro return code

 XR R9,R9

 CR R15,R9

 JE EXIT

* Memory deallocation failed *

 LHI R10,XSM_DC_FAIL_FREE_MEM31

 L R9,EXITDIAGCODE_PTR

 ST R10,EXIT_DIAG_CODE(,R9)

**

* EXITING THE FREE MEMORY SERVICE EXIT ROUTINE *

**

QUITMEM DS 0H

 ST R10,XSM_DIAG_CODE

EXIT DS 0H

 DROP R1,R2

 LM R14,R12,12(R13)

 BSM 0,R14

DATA DS 0F

 DC A(GXLE1FRM)

EYECHAR DC CL8’XSMEYECA’

**

* The end of the Free Memory Service Exit subroutine *

**

**

* Description of the XSM Structure: *

* The XSM structure is including the XSM Header, eye catcher *

* string, and the dynamic area pointer that points to the empty *

* storage area space for the dynamic storage area *

* o XSM Header: Contain all sub-variables within the XSM *

* structure before the dynamic area *

* o Eye Catcher: A string used to identify if this chunk of *

* memory is allocated and referenced correctly *

* o Dynamic Area: managed by the dynamic area pointer and is *

* used for storing local variables and uses *

**

XSM DSECT Memory storage area

XSM_HEADER DS 0D

XSM_EYE_CATCHER DS CL8 eye-catcher string

XSM_DIAG_CODE DS 1F exit diagnostic code

XSM_TOTAL_SIZE DS 1F sys_svc_parm total size

XSM_NULL DS 1F

XSM_DYN_AREA_PTR31 DS 1F 31bit address of dynamic area

XSM_HEADER_END DS 0X

**

GXLE1FRM (GXLFST31 example)

196 z/OS V1R10.0 z/OS XML User’s Guide and Reference

* Description of the Parameters: *

* Input: SYS_SVC_PARM - Address that was passed to the parser *

* at initialization time *

* MEMORY_LEN - Contain the length of the memory area *

* requested to be free *

* Output: MEMORY_ADDR - The Address of the memory to be freed *

* EXIT_DIAG_CODE - Contain diagnostic information *

* RETCODE - XSM_RC_FAILURE if unable to free memory *

* EXIT_DIAG_CODE - XSM_DC_INVALID_EYECATCHER_STR *

* XSM_DC_FAIL_FREE_MEM31 *

**

PARMLIST DSECT

SYS_SVC_PARM_PTR DS 1F

MEMORY_ADDR_PTR DS 1F

MEMORY_LEN_PTR DS 1F

EXITDIAGCODE_PTR DS 1F

RETCODE_PTR DS 1F

RSNCODE_PTR DS 1F

SYS_SVC_PARM EQU 0

MEMORY_ADDR EQU 0

MEMORY_LEN EQU 0

EXIT_DIAG_CODE EQU 0

RETCODE EQU 0

RSNCODE EQU 0

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

**

* EXIT DIAGNOSTIC CODE *

**

* Eye Catcher string is incorrect

XSM_DC_INVALID_EYECATCHER_STR EQU 1

* Memory length passed into subroutine is out of bound

XSM_DC_FAIL_FREE_MEM31 EQU 5

**

* RETURN CODE *

**

XSM_RC_FAILURE EQU 1

 END

GXLE1FRM (GXLFST31 example)

Appendix J. Exit examples - AMODE 31 197

GXLE1GTM

(GXLGST31 example)

Restrictions: The following restrictions apply to this example:

v This sample was designed to be a basic example of a memory service exit, and

was not designed with other system considerations in mind, such as the z/OS

XML parser running in cross memory mode, SRB mode, or in a different key, for

instance.

v This sample is not designed to work with any other service exits. The exit

workarea is assumed to be used by this memory service exit only. (Note that

both GXLGST31 and GXLFST31 services are considered as one service exit). As

a result, this memory service exit can only work independently, with no other

service exits running.

The following code allocates an area of memory of the size requested by the z/OS

XML parser. For the exit service, see “GXLGST31 (GXLGST64) — get memory” on

page 104. AMODE 64 callers use “GXLE4GTM (GXLGST64 example)” on page

228.

Register 14 is used to store the return address, which must be kept intact in order

to exit this subroutine correctly.

This example assumes register one, which is passed in from the caller, contains the

address of the parameter list. The following input variables are used in the example:

SYS_SVC_PARM

Address that was passed to the z/OS XML parser at initialization time.

MEMORY_LEN

Contains the length of the memory area requested by the z/OS XML parser.

The following output variables are used in the example:

MEMORY_ADDR

The address of the allocated memory.

EXIT_DIAG_CODE

Contains diagnostic information.

XSM_DC_INVALID_EYECATCHER_STR

Eye catcher is incorrect.

XSM_DC_INVALID_GET_MEM_LEN

Memory length is out of bound.

XSM_DC_FAIL_ALLOCATE_MEM31

Storage memory allocation failed.

RETCODE

XSM_RC_FAILURE

Unable to allocate memory.

XSM_RC_SUCCESS

The storage macro allocated the memory successfully (greater than

zero if allocation failed).
* SYSSTATE is used to initialize some variables used by storage macro

 SYSSTATE ASCENV=P,AMODE64=,ARCHLVL=,OSREL=

 SYSSTATE ASCENV=,AMODE64=,ARCHLVL=1,OSREL=

GXLE1GTM CSECT Set up control section

GXLE1GTM AMODE 31 Address mode of module

GXLE1GTM (GXLGST31 example)

198 z/OS V1R10.0 z/OS XML User’s Guide and Reference

GXLE1GTM RMODE ANY Residence of module

 USING DATA+0,R12 Relative Branching

 ENTRY GXLE1GTM external entry point

 STM R14,R12,12(R13) Save regs

 LARL R12,DATA Load DATA Address

 J MSTART Jump to mainline of code

EYECATCH DS 0H

 DC CL8’GXLE1GTM’

MSTART DS 0H

* Establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,R1

* Establish addressability for the XSM DSECT to the SYS_SVC_PARM

 USING XSM,R2

* Check if the XSM eye catcher string matches correctly *

 L R2,SYS_SVC_PARM_PTR

 L R2,SYS_SVC_PARM(,R2)

 CLC XSM_EYE_CATCHER,EYECHAR

 JE PROCEED

**

* Eye catcher is invalid in the XSM structure, so we not *

* sure if the data in the XSM structure is still valid, *

* exiting subroutine, and return to the caller *

**

 L R8,RETCODE_PTR

 LHI R9,XSM_RC_FAILURE

 ST R9,RETCODE(,R8)

 L R10,EXITDIAGCODE_PTR

 LHI R9,XSM_DC_INVALID_EYECATCHER_STR

 ST R9,EXIT_DIAG_CODE(,R10)

 J EXIT

**

* The XSM structure is intact and eye catcher is correct *

**

PROCEED DS 0H

* Setting up the parameter list passed in by the caller *

 XR R3,R3

 L R4,RETCODE_PTR

 ST R3,RETCODE(,R4)

 ST R3,XSM_DIAG_CODE

* Check to see if a valid memory length is provided *

 L R3,MEMORY_LEN_PTR

 ICM R7,15,MEMORY_LEN(R3)

 JP ALLOCMEM

**

* Incorrect memory length is found, exiting subroutine *

**

 LHI R8,XSM_RC_FAILURE

 ST R8,RETCODE(,R4) reg4 is RETCODE_PTR

 L R9,EXITDIAGCODE_PTR

 LHI R8,XSM_DC_INVALID_GET_MEM_LEN

 ST R8,EXIT_DIAG_CODE(,R9)

GXLE1GTM (GXLGST31 example)

Appendix J. Exit examples - AMODE 31 199

J QUITMEM

* Start allocating memory and check if the allocation is OK *

ALLOCMEM DS 0H

 DROP R1

 LR R8,R1 Backup Reg1 Parameter address

* After storage macro finished, register 15 will contain the

* return code of the macro. Zero if allocation is successful,

* or greater than zero if failed to allocate memory

 STORAGE OBTAIN,COND=YES,LENGTH=(R7),ADDR=(R10)

**

* Check if allocated memory returns a successful return code *

**

 LR R1,R8 Restore Reg1 Parameter address

* Establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,R1

 L R9,MEMORY_ADDR_PTR

 ST R10,MEMORY_ADDR(,R9)

 L R7,RETCODE_PTR

 ST R15,RETCODE(,R7) reg15 is the macro return code

 XR R4,R4

 CR R15,R4

 JE EXIT

**

* Memory allocation failed, exiting subroutine *

**

 LHI R8,XSM_DC_FAIL_ALLOCATE_MEM31

 L R9,EXITDIAGCODE_PTR

 ST R8,EXIT_DIAG_CODE(,R9)

* EXITING THE GET MEMORY SERVICE EXIT ROUTINE *

QUITMEM DS 0H

 ST R8,XSM_DIAG_CODE

EXIT DS 0H

 DROP R1,R2

 LM R14,R12,12(R13)

 BSM 0,R14

DATA DS 0F

 DC A(GXLE1GTM)

EYECHAR DC CL8’XSMEYECA’

* The end of the Get Memory Service Exit subroutine *

**

* Description of the XSM Structure: *

* The XSM structure is including the XSM Header, eye catcher *

* string, and the dynamic area pointer that points to the empty *

* storage area space for the dynamic storage area *

* o XSM Header: Contain all sub-variables within the XSM *

* structure before the dynamic area *

* o Eye Catcher: A string used to identify if this chunk of *

* memory is allocated and referenced correctly *

* o Dynamic Area: managed by the dynamic area pointer and is *

GXLE1GTM (GXLGST31 example)

200 z/OS V1R10.0 z/OS XML User’s Guide and Reference

* used for storing local variables and uses *

**

XSM DSECT Memory storage area

XSM_HEADER DS 0D

XSM_EYE_CATCHER DS CL8 eye-catcher string

XSM_DIAG_CODE DS 1F exit diagnostic code

XSM_TOTAL_SIZE DS 1F sys_svc_parm total size

XSM_NULL DS 1F

XSM_DYN_AREA_PTR31 DS 1F 31bit address of dynamic area

XSM_HEADER_END DS 0X

* Description of the Parameters: *

* Input: SYS_SVC_PARM - Address of storage area that the caller *

* of the parser wants to pass on to the exit *

* MEMORY_LEN - Contain the length of the memory area *

* requested by the parser *

* Output: MEMORY_ADDR - The Address of the allocated memory *

* EXIT_DIAG_CODE - Contain diagnostic information *

* XSM_DC_INVALID_EYECATCHER_STR *

* XSM_DC_INVALID_GET_MEM_LEN *

* XSM_DC_FAIL_ALLOCATE_MEM31 *

* RETCODE - XSM_RC_FAILURE if failed to allocate memory *

PARMLIST DSECT

SYS_SVC_PARM_PTR DS 1F

MEMORY_ADDR_PTR DS 1F

MEMORY_LEN_PTR DS 1F

EXITDIAGCODE_PTR DS 1F

RETCODE_PTR DS 1F

RSNCODE_PTR DS 1F

SYS_SVC_PARM EQU 0

MEMORY_ADDR EQU 0

MEMORY_LEN EQU 0

EXIT_DIAG_CODE EQU 0

RETCODE EQU 0

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

**

* EXIT DIAGNOSTIC CODE *

**

* Eye Catcher string is incorrect

XSM_DC_INVALID_EYECATCHER_STR EQU 1

* Memory length passed into subroutine is out of bound

XSM_DC_INVALID_GET_MEM_LEN EQU 2

* Memory allocation failed to allocate storage in gxle1gtm

XSM_DC_FAIL_ALLOCATE_MEM31 EQU 3

**

GXLE1GTM (GXLGST31 example)

Appendix J. Exit examples - AMODE 31 201

* RETURN CODE *

**

XSM_RC_FAILURE EQU 1

 END

GXLE1GTM (GXLGST31 example)

202 z/OS V1R10.0 z/OS XML User’s Guide and Reference

GXLSYM31 example

Restrictions: The following restrictions apply to this example:

v This example was designed to be a basic example of a StringID service exit. It

was not designed with other system considerations in mind, such as the z/OS

XML parser running in cross memory mode, SRB mode, or in a different key, for

instance.

v This example is not designed to work with any other service exits. The exit

workarea is assumed to be used by this StringID service exit only. As a result,

this StringID service exit can only work independently, with no other service exits

running.

Note: This exit example is divided into the following 3 modules:

v “GXLE1INI” on page 204

v “GXLE1IDI (GXLSYM31 example module)” on page 209

v “GXLE1IDR” on page 217

For the exit service, see “GXLSYM31 (GXLSYM64) — StringID service” on page

109. AMODE 64 callers use “GXLSYM64 example” on page 234.

GXLSYM31 example

Appendix J. Exit examples - AMODE 31 203

GXLE1INI

 This example module does the following:

v Validates the caller specification and determines whether to use user defined or

default values for storage size.

v Initializes all variables in XSI. (XSI is the data structure for the StringID sample

exit).

Register 14 is used to store the return address, which must be kept intact in order

to exit this subroutine correctly.

This example module assumes register one, which is passed in from the caller,

contains the address of the parameter list. The following input variables are used in

the example:

STRID_AREA_ADDR

Address of the XSI storage area.

STRID_AREA_LEN

Total length of the XSI Storage area.

STRID_MAX_NUM

The maximum number of StringIDs allowed.

SYM_MAX_SIZE

The maximum string length for each symbol.

The following output variables are used in this example module:

RETCODE

XSI_RC_FAILURE

If the storage area failed to initialize.

XSI_RC_SUCCESS

If the storage area successfully initialized.

DIAG_CODE

Contains diagnostic information.

XSI_DC_SYMBOL_STORAGE_TOO_SMALL

Storage size is too small.
GXLE1INI CSECT Set up control section

GXLE1INI AMODE 31 Address mode of module

GXLE1INI RMODE ANY Residence of module

 USING DATA+0,R12 Relative Branching

 ENTRY GXLE1INI external entry point

 BAKR R14,0 Save register/psw status

 LARL R12,DATA Load DATA Address

 J IDSTART Jump to mainline of code

EYECATCH DS 0H

 DC CL8’GXLE1INI’

IDSTART DS 0H

**

*** MAINLINE CODE STARTS HERE ***

**

*** GXLE1INI.PLX - INITIALIZE XSI MACROS’ DSECTS ***

**

* below will calculate the minimum storage area size allowed

* inorder for StringID service exit to function correctly

GXLE1INI

204 z/OS V1R10.0 z/OS XML User’s Guide and Reference

* XSI_DYN_AREA_SIZE + length(XSI_HEADER) + length(XSI_NODE_HEADER)

* Accumulating the minimum required size for storage area to

* initialize into register 9

 LHI R9,XSI_DYN_AREA_SIZE

 AHI R9,XSI_HEADER_SIZE

 AHI R9,XSI_NODE_HEADER_SIZE

 AHI R9,1 Minimum of one byte of string to be stored

* Establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,R1

* Check if the allocation size is enough or not

 L R7,STRID_AREA_LEN_PTR

 L R4,STRID_AREA_LEN(,R7)

* Check if the user given storage area size has enough space

 CLR R4,R9 reg9 is the accumulated value for minimum size

 JNL MAXVALUE

* The storage size is too small for the StringID initialization

 LHI R6,XSI_RC_FAILURE

 L R5,RET_CODE_PTR

 ST R6,RET_CODE(,R5)

 LHI R6,XSI_DC_SYMBOL_STORAGE_TOO_SMALL

 L R5,DIAG_CODE_PTR

 ST R6,DIAG_CODE(,R5)

 J EXITING

MAXVALUE DS 0H

* see if caller provided a maximum number of StringID allowed in

* this StringID service exit samples, if not provided, a default

* value will be used instead

 L R5,STRID_MAX_NUM_PTR

 ICM R2,15,STRID_MAX_NUM(R5)

 JZ ID_DEF

* A valid StringID maximum number is provided

 LR R5,R2 reg2 is user defined max num of strid allowed

 J SYM_MAX

* StringID maximum number is not provided, so default value is used

ID_DEF DS 0H

 LHI R5,XSI_DEFAULT_MAX_ID#

* see if caller provided a maximum string size allowed in this

* StringID service exit samples, if not provided, a default

* string size will be used instead

SYM_MAX DS 0H

 L R8,SYM_MAX_SIZE_PTR

 ICM R6,15,SYM_MAX_SIZE(R8)

 JZ SYM_DEF

* A valid maximum string size is provided

 LR R2,R6 reg6 is user defined maximum string length

 J INITIAL

* The default value of the maximum string size is used

SYM_DEF DS 0H

 LHI R2,XSI_DEFAULT_SYM_MAX_SIZE

* Begin to initialize the StringID storage area

INITIAL DS 0H

* Establish addressability for the XSI DSECT to the SYS_SVC_PARM

 USING XSI,R3

GXLE1INI

Appendix J. Exit examples - AMODE 31 205

L R9,STRID_AREA_ADDR_PTR

 L R3,STRID_AREA_ADDR(,R9)

* Initialize all StringID Storage area header values

 LR R7,R5 reg5 is maximum number of StringID allowed

 MVC XSI_EYE_CATCHER,EYECHAR

 ST R2,XSI_SYM_MAX_SIZE reg2 is max length of each string

 SLR R8,R8

 ST R8,XSI_DIAG_CODE

* StringID value starts at number one index

 LHI R9,1

 ST R9,XSI_NEXT_ID#

 ST R7,XSI_MAX_ID# reg7 is max number of StringID allowed

 ST R4,XSI_TOTAL_SIZE reg6 is StringID storage area size

* Setting up the dynamic area pointer

 LR R2,R7 reg7 is maximum number of StringID allowed

 MHI R2,XSI_LENGTH_ID_LIST multiply by length(XSI_ID_LIST)

 AHI R2,XSI_HEADER_SIZE

* add 7 then bitwise and with ’7FFFFFF8’ to ensure the dynamic

* area is starting at double word boundary

 LHI R5,7

 ALR R5,R3 reg3 is the StringID storage area address

 ALR R5,R2 reg2 is size of XSI_header + max # of StringID

 N R5,DW_BDRY

 ST R5,XSI_DYN_AREA31

* current free pointer is after all XSI header, StringID

* array list, and dynamic area

 LHI R7,XSI_DYN_AREA_SIZE

 AL R7,XSI_DYN_AREA31

 ST R7,XSI_CURR_FREE@31

* Calculate the amount of free space that is left in the storage area

 LR R2,R3 reg3 is the StringID storage area address

 LCR R2,R2

 AL R2,XSI_CURR_FREE@31

 SLR R4,R2 reg6 is the total StringID storage area size

 ST R4,XSI_FREE_SPACE

* Set the XSI_TREE_HEAD@ to NULL, which means the tree is empty

 ST R8,XSI_TREE_HEAD@31 reg8 is set to zero/NULL

 LHI R8,XSI_RC_SUCCESS

 L R5,RET_CODE_PTR

 ST R8,RET_CODE(,R5)

 J EXITING

*** EXITING THE StringID INITIALIZATION ROUTINE ***

EXITING DS 0H

 DROP R1,R3

 PR

DATA DS 0F

 DC A(GXLE1INI)

DW_BDRY DC X’7FFFFFF8’

EYECHAR DC CL8’XSIEYECA’

R0 EQU 0

R1 EQU 1

R2 EQU 2

GXLE1INI

206 z/OS V1R10.0 z/OS XML User’s Guide and Reference

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

**

* Description of the XSI Structure: *

* The XSI structure is including the XSI Header, StringID array *

* list, the dynamic area, and end with empty storage area space *

* for the StringID tree *

* o XSI Header: Contain information for the XSI Structure to *

* operate correctly (space management) *

* o StringID list: List of pointers that indexed by StringID *

* and each ptr point to the corresponding *

* leaf node within the StringID tree *

* o Dynamic Area: Used by ASAENTRY where all local variables, *

* stacks, and storage usage will take up the *

* storage space within the dynamic area *

* o Empty Storage: managed by the XSI header and is used for *

* storing the tree structure for StringID *

**

XSI DSECT StringID storage area

XSI_HEADER DS 0D

XSI_EYE_CATCHER DS CL8 eye-catcher string

XSI_SYM_MAX_SIZE DS 1F max string len for symbol

XSI_DIAG_CODE DS 1F exit diagnostic code

XSI_NEXT_ID# DS 1F next usable StringID num

XSI_MAX_ID# DS 1F max num of StringID nodes

XSI_TOTAL_SIZE DS 1F sys_svc_parm total size

XSI_FREE_SPACE DS 1F space left for data

XSI_CURR_FREE DS 1F

XSI_CURR_FREE@31 DS 1F 31bit current @ of free space

XSI_TREE_NULL DS 1F

XSI_TREE_HEAD@31 DS 1F 31bitlocation of tree head

XSI_DYN_AREA DS 1F

XSI_DYN_AREA31 DS 1F 31bitaddress of dynamic area

XSI_HEADER_END DS 0X

XSI_ID_LIST_NULL DS 1F

XSI_ID_LIST31 DS 1F 31bit ID list for quick search

XSI_HEADER_SIZE EQU XSI_HEADER_END-XSI_HEADER

**

* Description of the Parameters: *

* Input: STRID_AREA_PTR - Pointer to the XSI storage area *

* STRID_AREA_LEN - total length of the XSI Storage area *

* STRID_MAX_NUM - the maximum number of StringID allowed *

* SYM_MAX_SIZE - maximum string length for each symbol *

* Output: DIAG_CODE - XSI_DC_XXX provide detail to retcode *

* RETCODE - XSI_RC_FAILURE if string cannot be inserted *

* XSI_RC_SUCCESS if string inserted ok *

**

PARMLIST DSECT

STRID_AREA_ADDR_PTR DS 1F

STRID_AREA_LEN_PTR DS 1F

STRID_MAX_NUM_PTR DS 1F

SYM_MAX_SIZE_PTR DS 1F

RET_CODE_PTR DS 1F

GXLE1INI

Appendix J. Exit examples - AMODE 31 207

DIAG_CODE_PTR DS 1F

**

* EXIT DIAGNOSTIC CODE *

**

* the storage size is too small for initialization

XSI_DC_SYMBOL_STORAGE_TOO_SMALL EQU 17

* Default Maximum Constant values

XSI_DYN_AREA_SIZE EQU 4096

XSI_DEFAULT_MAX_ID# EQU 800

XSI_DEFAULT_SYM_MAX_SIZE EQU 256

**

* RETURN CODE *

**

XSI_RC_SUCCESS EQU 0

XSI_RC_FAILURE EQU 1

STRID_AREA_ADDR EQU 0

STRID_AREA_LEN EQU 0

STRID_MAX_NUM EQU 0

SYM_MAX_SIZE EQU 0

RET_CODE EQU 0

DIAG_CODE EQU 0

XSI_NODE_HEADER_SIZE EQU 24

XSI_LENGTH_ID_LIST EQU 8

 END

GXLE1INI

208 z/OS V1R10.0 z/OS XML User’s Guide and Reference

GXLE1IDI

(GXLSYM31 example module)

 This example module does the following:

v Search for an identical string in the tree.

v Inserts a string into a tree and returns a unique StringID. This is done as follows:

1. Check first to make sure the length of the string is within the maximum

symbol buffer size.

2. Inserts the string into the root if the tree is empty or searches down the tree

to find the appropriate empty leaf node.

3. When the insert node location is found, it’s address will be passed to the

INSERT_STRING subroutine. The subroutine will create a new leaf node and

then insert the string.

4. Return the StringID if the string inserted successfully.

Note: This is the actual exit pointed to in the SYS_SVC_VECTOR table.

Register 14 is used to store the return address, which must be kept intact in order

to exit this subroutine correctly.

This example module assumes register one, which is passed in from the caller,

contains the address of the parameter list. The following input variables are used in

the example module:

SYS_SVC_PARM

Address of storage area that the caller of the z/OS XML parser wants to

pass to the exit. It also contains the XSI structure information.

STR The string that will be inserted into the tree.

STRLEN

Length of the current string needed to be inserted. Length is derived from

the number of bytes of the characters in the string.

CCSID

Identifier for the string’s character set.

The following output variables are used in the example module:

STRID The index of the inserted or found string.

EXIT_DIAG_CODE

Contains diagnostic information.

XSI_DC_INCORRECT_PARM_STRLEN

String length is out of bound.

XSI_DC_OUT_OF_STORAGE_SPACE

Allocated storage is full.

XSI_DC_INCORRECT_EYE_CATCHER

Eye catcher is incorrect.

XSI_DC_MAX_OUT_ID_LIST_ENTRIES

StringID list is full.

RETCODE

XRC_FAILURE

Failed to insert or search for STR.

GXLE1IDI (GXLSYM31 example module)

Appendix J. Exit examples - AMODE 31 209

XRC_SUCCESS

String was inserted or found.
GXLE1IDI CSECT Set up control section

GXLE1IDI AMODE 31 Address mode of module

GXLE1IDI RMODE ANY Residence of module

 USING DATA+0,R12 Relative Branching

 ENTRY GXLE1IDI external entry point

 STM R14,R12,12(R13) Save regs

 LARL R12,DATA Load DATA Address

 J IDSTART Jump to mainline of code

EYECATCH DS 0H

 DC CL8’GXLE1IDI’

IDSTART DS 0H

* Establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,R7

* Establish addressability for the XSI DSECT to the SYS_SVC_PARM

 USING XSI,R6

* Check if the XSI eye catcher string matches correctly *

 LR R7,R1

 L R3,SYS_SVC_PARM_PTR

 L R6,SYS_SVC_PARM(,R3)

 CLC XSI_EYE_CATCHER,EYECHAR

 JE PROCEED

**

* Eye catcher is invalid in the XSI structure, so we not *

* sure if the data in the XSI structure is still valid, *

* exiting subroutine, and return to the caller *

**

 LHI R5,XSI_RC_FAILURE

 L R9,RETCODE_PTR

 ST R5,RETCODE(,R9)

 LHI R5,XSI_DC_INCORRECT_EYE_CATCHER

 L R9,DIAGCODE_PTR

 ST R5,EXIT_DIAG_CODE(,R9)

 J EXITIDI

**

*** MAINLINE CODE STARTS HERE: ***

**

*** GXLE1IDI.PLX - Insert/Search String & return StringID ***

**

**

* The XSI structure is intact and eye catcher is correct *

* Set the dynamic area pointer to register 11 *

**

PROCEED DS 0H

 L R11,XSI_DYN_AREA31

 USING DATD,R11

**

* - If string length and string contain the valid information *

* then gxle1idi will proceed and continue to insert the string *

* into the tree and return the appropriate StringID value *

**

 L R3,STRLEN_PTR

 ICM R8,15,STRLEN(R3) Check if string length is zero

 JNP LEN_INV

* Check if strlen is greater then the maximum allowed string length

 CL R8,XSI_SYM_MAX_SIZE

GXLE1IDI (GXLSYM31 example module)

210 z/OS V1R10.0 z/OS XML User’s Guide and Reference

JH LEN_INV

* If the StringID list is not empty, search before insert

 ICM R2,15,XSI_TREE_HEAD@31

 JNZ SEARCH_TREE

* If StringID list is empty, insert string

 LA R9,XSI_TREE_HEAD@31

 ST R9,INSERTION_ADDR_PTR

 J INSERT_STRING

* Value of the string length is invalid, exiting the subroutine

LEN_INV DS 0H

 LHI R5,XSI_RC_FAILURE

 L R3,RETCODE_PTR

 ST R5,RETCODE(,R3)

 LHI R5,XSI_DC_INCORRECT_PARM_STRLEN

 L R3,DIAGCODE_PTR

 ST R5,EXIT_DIAG_CODE(,R3)

 J EXITING

**

* *

* INSERT_STRING - Insert string into tree and return the StringID *

* *

* The string will be pushed into the tree and the index *

* of the list will be saved as an unique StringID, *

* immediately upon the procedure checked the valid string *

* and string Length data. *

* *

* Input: STR_PTR - The string that will be inserted into the tree *

* *

* STR_LEN - The length of the string that is loaded into R8 *

* *

* INSERTION_ADDR_PTR - address of a pointer to the location *

* where the new node will go *

* *

* XSI - user control area header variables *

* *

* Output: STRID - the index of the inserted string *

* *

* RETCODE - XRC_FAILURE if string cannot be inserted *

* XRC_SUCCESS if string inserted ok *

* *

**

INSERT_STRING DS 0H

* plus 1 is for adding a NULL character at the end of each

* string so user can know when the end of string reaches

 LR R9,R8 reg8 is the string length

 LHI R10,25 24 is length of XSI_NODE_HEADER, 1 is NULL

 ALR R9,R10

 ST R9,NEW_NODE_SIZE

* check if the StringID reaches it’s maximum allowed value

 L R3,XSI_NEXT_ID#

 CL R3,XSI_MAX_ID#

 JNH ID_OK

* The next available StringID has reached the maximum ID limit

 LHI R5,XSI_RC_FAILURE

 L R3,RETCODE_PTR

 ST R5,RETCODE(,R3)

 LHI R5,XSI_DC_MAX_OUT_ID_LIST_ENTRIES

 L R3,DIAGCODE_PTR

 ST R5,EXIT_DIAG_CODE(,R3)

 J EXITING

GXLE1IDI (GXLSYM31 example module)

Appendix J. Exit examples - AMODE 31 211

ID_OK DS 0H

* check if the storage area has enough space for the new node

 L R5,XSI_FREE_SPACE

 C R5,NEW_NODE_SIZE

 JNL SPACE_OK

* Amount of free space is not enough to store the new node

 LHI R5,XSI_RC_FAILURE

 L R3,RETCODE_PTR

 ST R5,RETCODE(,R3)

 LHI R5,XSI_DC_OUT_OF_STORAGE_SPACE

 L R3,DIAGCODE_PTR

 ST R5,EXIT_DIAG_CODE(,R3)

 J EXITING

* If XSI Storage contain enough free space and StringID hasn’t

* reach the limit yet, then start inserting the string into the

* empty leaf node

SPACE_OK DS 0H

* Establish addressability for the XSI_NODE DSECT to the StringID Tree

 USING XSI_NODE,R9

 L R9,XSI_CURR_FREE@31

* Set the left/right node to NULL

 XR R4,R4

 ST R4,XSI_NODE_LEFT31

 ST R4,XSI_NODE_RIGHT31

* Assign the next available StringID to the node

 LR R4,R3 reg3 contains the StringID

 ST R4,XSI_NODE_StringID

 ST R8,XSI_NODE_STRLEN Insert the string length

* Move the string from the parameter into the tree node

 L R14,STRID_PTR

 ST R4,STRID(,R14) reg4 is next available StringID #

 LA R10,XSI_NODE_STRING

 L R2,STR_PTR

 LR R4,R8 reg8 is the string length

* check the string length to see if it’s greater than 256 characters

 CHI R4,256

 JNH STR_256

* MVC the string in loops for each 256 characters

MVC_STR DS 0H

 MVC 0(256,R10),0(R2) copy 256 chars at a time

 LHI R14,256

 ALR R10,R14 move Reg10 256chars to right

 ALR R2,R14 move Reg2 256chars to right

 SLR R4,R14 Subtract string length by 256

 CHI R4,256 check if string length still > 256

 JH MVC_STR

* Copy string into XSI tree node only if the string length or what

* is left to copy from the string is less than 256 characters

STR_256 DS 0H

 LR R15,R4

 BCTR R15,R0

 EX R15,STRCOPY

* add null at the end of the string for higher level programming uses

 XR R4,R4

 STC R4,XSI_NODE_STRING(R8) reg8 is original string length

* Setting the address of the new tree node to the StringID list

GXLE1IDI (GXLSYM31 example module)

212 z/OS V1R10.0 z/OS XML User’s Guide and Reference

LR R4,R3 reg3 is the current insertion StringID #

 SLL R4,3

 ST R9,XSI_ID_LIST31-8(R4)

* re-calculate the total amount of the XSI free space

 L R10,NEW_NODE_SIZE

 SLR R5,R10 reg5 is the old free space

 ST R5,XSI_FREE_SPACE

* Increment the XSI_NEXT_ID# value by one

 LHI R15,1

 ALR R3,R15

 ST R3,XSI_NEXT_ID#

* assign parent node pointer to point to this new node

 L R3,INSERTION_ADDR_PTR

 ST R9,INSERTION_PTR(,R3)

 ALR R9,R10

 ST R9,XSI_CURR_FREE@31

* Insertion of a new string to the tree is completed

 LHI R5,XSI_RC_SUCCESS

 L R3,RETCODE_PTR

 ST R5,RETCODE(,R3)

 L R3,DIAGCODE_PTR

 L R5,EXIT_DIAG_CODE(,R3)

 J EXITING

**

* *

* SEARCH_TREE - search the tree for input string and return the *

* StringID if found or call INSERT_STRING to create *

* a new node for the new string *

* *

* Iteratively going down the tree base on the string to *

* determine going left or right leaf. If no identical *

* string is found, then INSERT_STRING will be called or *

* the identified string will be returned with its StringID *

* *

* Input: The input parameters passed to the program. *

* *

* Output: STRID - the index of the inserted or found string *

* *

* RETCODE - XRC_SUCCESS if string is found within tree *

* *

**

SEARCH_TREE DS 0H

 LR R9,R2 reg2 is the current searching node address

* Establish addressability for the XSI_NODE DSECT to the StringID Tree

 USING XSI_NODE,R9

 L R0,STR_PTR

 LG R1,STRLEN_PTR

LOOP_IN DS 0H

* string compare and decide to branch toward left or right leaf

 LA R14,XSI_NODE_STRING

 L R15,XSI_NODE_STRLEN

* CLCL requires to use the registers in pair, so R0 contains the

* string characters while R1 requires to contain the string length.

* So CLCL will knows how many characters in the string to be compared

 CLCL R0,R14

 JH RIGHT_TREE

 JL LEFT_TREE

* String is found in the StringID tree and its corresponding

GXLE1IDI (GXLSYM31 example module)

Appendix J. Exit examples - AMODE 31 213

* StringID will be saved and returned

 L R4,STRID_PTR

 L R10,XSI_NODE_StringID

 ST R10,STRID(,R4)

 LHI R5,XSI_RC_SUCCESS

 L R3,RETCODE_PTR

 ST R5,RETCODE(,R3)

 L R3,DIAGCODE_PTR

 L R5,EXIT_DIAG_CODE(,R3)

 J EXITING

LEFT_TREE DS 0H

* Check if the left leaf is empty, if empty then go insert string,

* if not empty, then branch to the left leaf and continue searching

 ICM R2,15,XSI_NODE_LEFT31

 JNZ GO_LEFT

* Left leaf node is empty, so insert the new string into it

 LA R10,XSI_NODE_LEFT31

 ST R10,INSERTION_ADDR_PTR

 J INSERT_STRING

GO_LEFT DS 0H

 LR R9,R2

 J LOOP_IN

RIGHT_TREE DS 0H

* Check if the right leaf is empty, if empty then go insert string,

* if not empty, then branch to the right leaf and continue searching

 ICM R2,15,XSI_NODE_RIGHT31

 JNZ GO_RIGHT

* Right leaf node is empty, so insert the new string into it

 LA R10,XSI_NODE_RIGHT31

 ST R10,INSERTION_ADDR_PTR

 J INSERT_STRING

GO_RIGHT DS 0H

 LR R9,R2

 J LOOP_IN

*** EXITING THE StringID SERVICE EXIT ROUTINE ***

EXITING DS 0H

 ST R2,XSI_DIAG_CODE

EXITIDI DS 0H

 DROP R6,R7,R9

 LM R14,R12,12(R13)

 BSM 0,R14

DATA DS 0F

 DC A(GXLE1IDI)

STRCOPY MVC 0(0,R10),0(R2)

EYECHAR DC CL8’XSIEYECA’

DATD DSECT

 DS 36F

 DS 0D

* Size of new node being inserted: node header + var string length

NEW_NODE_SIZE DS F

* insertion pointer is needed when new node is being inserted and

* their parent node’s ptr address will be saved in this insertion

* pointer. When the new node is created and initialized with data,

GXLE1IDI (GXLSYM31 example module)

214 z/OS V1R10.0 z/OS XML User’s Guide and Reference

* the address in insertion_ptr will be assigned to point to the

* new node, completing the insertion process of new node into tree

INSERTION_ADDR_PTR DS A

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

**

* Description of the XSI Structure: *

* The XSI structure is including the XSI Header, StringID array *

* list, the dynamic area, and end with empty storage area space *

* for the StringID tree *

* o XSI Header: Contain information for the XSI Structure to *

* operate correctly (space management) *

* o StringID list: List of pointers that indexed by StringID *

* and each ptr point to the corresponding *

* leaf node within the StringID tree *

* o Dynamic Area: Used by ASAENTRY where all local variables, *

* stacks, and storage usage will take up the *

* storage space within the dynamic area *

* o Empty Storage: managed by the XSI header and is used for *

* storing the tree structure for StringID *

**

XSI DSECT StringID storage area

XSI_HEADER DS 0D

XSI_EYE_CATCHER DS CL8 eye-catcher string

XSI_SYM_MAX_SIZE DS 1F max string len for symbol

XSI_DIAG_CODE DS 1F exit diagnostic code

XSI_NEXT_ID# DS 1F next usable StringID num

XSI_MAX_ID# DS 1F max num of StringID nodes

XSI_TOTAL_SIZE DS 1F sys_svc_parm total size

XSI_FREE_SPACE DS 1F space left for data

XSI_CURR_NULL DS 1F

XSI_CURR_FREE@31 DS 1F 31bit current @ of free space

XSI_TREE_NULL DS 1F

XSI_TREE_HEAD@31 DS 1F 31bitlocation of tree head

XSI_DYN_NULL DS 1F

XSI_DYN_AREA31 DS 1F 31bitaddress of dynamic area

XSI_HEADER_END DS 0X

XSI_ID_LIST_NULL DS 1F

XSI_ID_LIST31 DS 1F 31bit ID list for quick search

**

* StringID Tree Node Header *

**

XSI_NODE DSECT

XSI_NODE_HEADER DS 0D

XSI_NODE_LEFT_NULL DS 1F

XSI_NODE_LEFT31 DS 1F 31bit LESS THAN PARENT NODE

XSI_NODE_RIGHT_NULL DS 1F

XSI_NODE_RIGHT31 DS 1F 31bit GREATER THAN PARENT NODE

XSI_NODE_StringID DS 1F STRING ID VALUE

GXLE1IDI (GXLSYM31 example module)

Appendix J. Exit examples - AMODE 31 215

XSI_NODE_STRLEN DS 1F LENGTH OF THE STRING

XSI_NODE_HEADER_END DS 0X

XSI_NODE_STRING DS C THE ACTUAL STRING

**

* Description of the Parameters: *

* Input: SYS_SVC_PARM - Contain the XSI structure information *

* STR - The string that will be inserted into the tree *

* STRLEN - Length of the current string needed to insert *

* Length is in number of bytes of the characters *

* CCSID - Identifier that identify character set of string *

* Output: STRID - the index of the inserted string *

* EXIT_DIAG_CODE - XSI_DC_XXX provide detail to retcode *

* RETCODE - XRC_FAILURE if failed to insert/search for str *

* XRC_SUCCESS if string inserted/found *

**

PARMLIST DSECT

SYS_SVC_PARM_PTR DS 1F

STR_PTR DS 1F

STRLEN_PTR DS 1F

STRID_PTR DS 1F

CCSID_PTR DS 1F

DIAGCODE_PTR DS 1F

RETCODE_PTR DS 1F

**

* EXIT DIAGNOSTIC CODE *

**

* String length passed into gxle1idi is out of bound

XSI_DC_INCORRECT_PARM_STRLEN EQU 11

* Tries to insert new string, but allocated storage is full

XSI_DC_OUT_OF_STORAGE_SPACE EQU 12

* Eye Catcher string is incorrect

XSI_DC_INCORRECT_EYE_CATCHER EQU 15

* StringID list is max out with entries,requires larger list size

XSI_DC_MAX_OUT_ID_LIST_ENTRIES EQU 16

**

* RETURN CODE *

**

XSI_RC_SUCCESS EQU 0

XSI_RC_FAILURE EQU 1

SYS_SVC_PARM EQU 0

STR EQU 0

STRLEN EQU 0

STRID EQU 0

CCSID EQU 0

EXIT_DIAG_CODE EQU 0

RETCODE EQU 0

INSERTION_PTR EQU 0

 END

GXLE1IDI (GXLSYM31 example module)

216 z/OS V1R10.0 z/OS XML User’s Guide and Reference

GXLE1IDR

 This example module uses the input StringID to access a table and returns the

address and length of the string associated with the StringID. The string is saved in

the storage pointed to by SYS_SVC_PARM during the initialization of the parser

(GXL1INI) and in StringID processing (GXLE1INI).

Register 14 is used to store the return address, which must be kept intact in order

to exit this subroutine correctly.

This example module assumes register one, which is passed in from the caller,

contains the address of the parameter list. The following input variables are used in

the example module:

SYS_SVC_PARM

Address of storage area that the caller of the z/OS XML parser wants to

pass to the exit. It also contains the XSI structure information.

STRID StringID used for indexing the list.

The following output variables are used in the example module:

STR_ADDR

Address of string from requested StringID.

STRLEN

The length of the string found by StringID.

DIAG_CODE

Contains diagnostic information.

XSI_DC_INCORRECT_StringID_OUTOFBOUND

STRID length is out of bound.

XSI_DC_INCORRECT_ID_LOCATION_ERROR

StringID does not match.

XSI_DC_INCORRECT_EYE_CATCHER

Eye catcher is incorrect.

RETCODE

XSI_RC_FAILURE

The string cannot be retrieved.

XSI_RC_SUCCESS

The string was retrieved successfully.

GXLE1IDR CSECT Set up control section

GXLE1IDR AMODE 31 Address mode of module

GXLE1IDR RMODE ANY Residence of module

 USING DATA+0,R12 Relative Branching

 ENTRY GXLE1IDR external entry point

 STM R14,R12,12(R13) Save regs

 LARL R12,DATA Load DATA Address

 J IDSTART Jump to mainline of code

EYECATCH DS 0H

 DC CL8’GXLE1IDR’

IDSTART DS 0H

* Establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,R1

* Establish addressability for the XSI DSECT to the SYS_SVC_PARM

GXLE1IDR

Appendix J. Exit examples - AMODE 31 217

USING XSI,R6

* Check if the XSI eye catcher string matches correctly *

 L R5,SYS_SVC_PARM_PTR

 L R6,SYS_SVC_PARM(,R5)

 CLC XSI_EYE_CATCHER,EYECHAR

 JE PROCEED

**

* Eye catcher is invalid in the XSI structure, so we not *

* sure if the data in the XSI structure is still valid, *

* exiting subroutine, and return to the caller *

**

 LHI R5,XSI_RC_FAILURE

 L R2,RETCODE_PTR

 ST R5,RETCODE(,R2)

 LHI R5,XSI_DC_INCORRECT_EYE_CATCHER

 L R2,DIAGCODE_PTR

 ST R5,DIAG_CODE(,R2)

 J EXITIDR

**

*** MAINLINE CODE STARTS HERE: ***

**

*** GXLE1IDR.PLX - Search & Retrieve String from StringID ***

**

**

* The XSI structure is intact and eye catcher is correct *

* Set the dynamic area pointer to register 11 *

**

PROCEED DS 0H

**

* If string ID contain a valid index, gxlp1idr will proceed and *

* retrieve the corresponding string from the tree *

**

 L R2,STRID_PTR

 ICM R4,15,STRID(R2)

 JZ BAD_ID

 CL R4,XSI_NEXT_ID#

 JL RETRIEVE

* The StringID value is out of bound

BAD_ID DS 0H

 LHI R7,XSI_RC_FAILURE

 L R5,RETCODE_PTR

 ST R7,RETCODE(,R5)

 LHI R2,XSI_DC_INCORRECT_StringID_OUTOFBOUND

 L R5,DIAGCODE_PTR

 ST R2,DIAG_CODE(,R5)

 J EXITING

RETRIEVE DS 0H

 LR R5,R4 reg4 contains the next available StringID #

 SLL R5,3 multiply the number of StringID by 8

* Establish addressability for the XSI_NODE DSECT to the StringID Tree

 USING XSI_NODE,R3

 L R3,XSI_ID_LIST31-8(R5)

 CL R4,XSI_NODE_StringID check if the StringID is correct

 JE DONE

* The value of the StringID in the tree is not consistent with

GXLE1IDR

218 z/OS V1R10.0 z/OS XML User’s Guide and Reference

* the value in the StringID list, exiting subroutine

 LHI R4,XSI_RC_FAILURE

 L R2,RETCODE_PTR

 ST R4,RETCODE(,R2)

 LHI R2,XSI_DC_INCORRECT_ID_LOCATION_ERROR

 L R4,DIAGCODE_PTR

 ST R2,DIAG_CODE(,R4)

 J EXITING

* Successful in finding the StringID

DONE DS 0H

 L R5,STR_ADDR_PTR

 LA R8,XSI_NODE_STRING

 ST R8,STR_ADDR(,R5) Store the string pointer

 L R5,STRLEN_PTR

 L R9,XSI_NODE_STRLEN

 ST R9,STRLEN(,R5) Store the string length

* Set the return code to successful and return back to caller

 LHI R2,XSI_RC_SUCCESS

 L R7,RETCODE_PTR

 ST R2,RETCODE(,R7)

 L R4,DIAGCODE_PTR

 ST R2,DIAG_CODE(,R4)

 J EXITING

*** EXITING THE StringID SERVICE EXIT ROUTINE ***

EXITING DS 0H

 ST R2,XSI_DIAG_CODE

EXITIDR DS 0H

 DROP R1,R3,R6

 LM R14,R12,12(R13)

 BSM 0,R14

DATA DS 0F

 DC A(GXLE1IDR)

EYECHAR DC CL8’XSIEYECA’

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

**

* Description of the XSI Structure: *

* The XSI structure is including the XSI Header, StringID array *

* list, the dynamic area, and end with empty storage area space *

* for the StringID tree *

* o XSI Header: Contain information for the XSI Structure to *

* operate correctly (space management) *

* o StringID list: List of pointers that indexed by StringID *

GXLE1IDR

Appendix J. Exit examples - AMODE 31 219

* and each ptr point to the corresponding *

* leaf node within the StringID tree *

* o Dynamic Area: Used by ASAENTRY where all local variables, *

* stacks, and storage usage will take up the *

* storage space within the dynamic area *

* o Empty Storage: managed by the XSI header and is used for *

* storing the tree structure for StringID *

**

XSI DSECT StringID storage area

XSI_HEADER DS 0D

XSI_EYE_CATCHER DS CL8 eye-catcher string

XSI_SYM_MAX_SIZE DS 1F max string len for symbol

XSI_DIAG_CODE DS 1F exit diagnostic code

XSI_NEXT_ID# DS 1F next usable StringID num

XSI_MAX_ID# DS 1F max num of StringID nodes

XSI_TOTAL_SIZE DS 1F sys_svc_parm total size

XSI_FREE_SPACE DS 1F space left for data

XSI_CURR_NULL DS 1F

XSI_CURR_FREE@31 DS 1F 31bit current @ of free space

XSI_TREE_NULL DS 1F

XSI_TREE_HEAD@31 DS 1F 31bitlocation of tree head

XSI_DYN_NULL DS 1F

XSI_DYN_AREA31 DS 1F 31bitaddress of dynamic area

XSI_HEADER_END DS 0X

XSI_ID_LIST_NULL DS 1F

XSI_ID_LIST31 DS 1F 31bit ID list for quick search

**

* StringID Tree Node Header *

**

XSI_NODE DSECT

XSI_NODE_HEADER DS 0D

XSI_NODE_LEFT_NULL DS 1F

XSI_NODE_LEFT31 DS 1F 31bit LESS THAN PARENT NODE

XSI_NODE_RIGHT_NULL DS 1F

XSI_NODE_RIGHT31 DS 1F 31bit GREATER THAN PARENT NODE

XSI_NODE_StringID DS 1F STRING ID VALUE

XSI_NODE_STRLEN DS 1F LENGTH OF THE STRING

XSI_NODE_HEADER_END DS 0X

XSI_NODE_STRING DS C THE ACTUAL STRING

**

* Description of the Parameters: *

* Input: SYS_SVC_PARM - Contain the XSI structure information *

* STRID - String ID used for indexing the list *

* Output: STR_ADDR - address of string from requested StringID *

* STRLEN - the length of the string found by StringID *

* DIAG_CODE - XSI_DC_XXX details to return code *

* (Set only if error found) *

* RETCODE - XSI_RC_FAILURE if string cannot be retrieved*

* XSI_RC_SUCCESS if string retrieved ok *

**

PARMLIST DSECT

SYS_SVC_PARM_PTR DS 1F

STR_ADDR_PTR DS 1F

STRLEN_PTR DS 1F

STRID_PTR DS 1F

DIAGCODE_PTR DS 1F

RETCODE_PTR DS 1F

**

* EXIT DIAGNOSTIC CODE *

**

* Caller tries to retrieve string, but StringID is out of bound

XSI_DC_INCORRECT_StringID_OUTOFBOUND EQU 13

* After gxle1idr obtained the pointer to the tree node, the string

GXLE1IDR

220 z/OS V1R10.0 z/OS XML User’s Guide and Reference

* ID is not matching with the StringID passed in from parameter

XSI_DC_INCORRECT_ID_LOCATION_ERROR EQU 14

* Eye Catcher string is incorrect

XSI_DC_INCORRECT_EYE_CATCHER EQU 15

**

* RETURN CODE *

**

XSI_RC_SUCCESS EQU 0

XSI_RC_FAILURE EQU 1

SYS_SVC_PARM EQU 0

STR_ADDR EQU 0

STRLEN EQU 0

STRID EQU 0

DIAG_CODE EQU 0

RETCODE EQU 0

 END

GXLE1IDR

Appendix J. Exit examples - AMODE 31 221

GXLE1IDR

222 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Appendix K. Exit examples - AMODE 64

© Copyright IBM Corp. 2008 223

GXLE4FRM

(GXLFST64 example)

Restrictions: The following restrictions apply to this example:

v This sample was designed to be a basic example of a memory service exit, and

was not designed with other system considerations in mind, such as the z/OS

XML parser running in cross memory mode, SRB mode, or in a different key, for

instance.

v This sample is not designed to work with any other service exits. The exit

workarea is assumed to be used by this memory service exit only. (Note that

both GXLGST64 and GXLFST64 services are considered as one service exit). As

a result, this memory service exit can only work independently, with no other

service exits running.

The following code frees an area of memory passed by the z/OS XML parser. For

the exit service, see “GXLFST31 (GXLFST64) — free memory” on page 107.

AMODE 31 callers use “GXLE1FRM (GXLFST31 example)” on page 194.

Register 14 is used to store the return address, which must be kept intact in order

to exit this subroutine correctly.

This example assumes register one, which is passed in from the caller, contains the

address of the parameter list. The following input variables are used in the example:

SYS_SVC_PARM

Address that was passed to the z/OS XML parser at initialization time.

MEMORY_LEN

Contains the length of the memory area requested to be free.

The following output variables are used in the example:

MEMORY_ADDR

The address of the memory to be freed.

EXIT_DIAG_CODE

Contains diagnostic information.

XSM_DC_INVALID_EYECATCHER_STR

Eye catcher is incorrect.

XSM_DC_FAIL_FREE_MEM64

Fail to release storage memory.

RETCODE

XSM_RC_FAILURE

Unable to free memory.

XSM_RC_SUCCESS

The iarv64 macro released the allocated memory successfully

(greater than zero if deallocation failed).

RSNCODE

Contains the reason code generated by the IARV64 macro.
* SYSSTATE is used to initialize some variables used by iarv64 macro

 SYSSTATE ASCENV=P,AMODE64=,ARCHLVL=,OSREL=

 SYSSTATE ASCENV=,AMODE64=YES,ARCHLVL=,OSREL=

 SYSSTATE ASCENV=,AMODE64=,ARCHLVL=2,OSREL=

GXLE4FRM CSECT Set up control section

GXLE4FRM AMODE 64 Address mode of module

GXLE4FRM (GXLFST64 example)

224 z/OS V1R10.0 z/OS XML User’s Guide and Reference

GXLE4FRM RMODE ANY Residence of module

 USING DATA+0,G64R12 Relative Branching

 ENTRY GXLE4FRM external entry point

 STMG G64R14,G64R12,8(G64R13)

 LARL G64R12,DATA Load DATA Address

 J MSTART Jump to mainline of code

EYECATCH DS 0H

 DC CL8’GXLE4FRM’

MSTART DS 0H

* Establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,G64R1

* Establish addressability for the XSM DSECT to the SYS_SVC_PARM

 USING XSM,G64R2

* Check if the XSM eye catcher string matches correctly *

 LG G64R2,SYS_SVC_PARM_PTR

 LG G64R2,SYS_SVC_PARM(,G64R2)

 CLC XSM_EYE_CATCHER,EYECHAR

 JE PROCEED

**

* Eye catcher is invalid in the XSM structure, so we not *

* sure if the data in the XSM structure is still valid, *

* exiting subroutine, and return to the caller *

**

 LG G64R7,RETCODE_PTR

 LGHI G64R10,XSM_RC_FAILURE

 ST G64R10,RETCODE(,G64R7)

 LG G64R7,EXITDIAGCODE_PTR

 LGHI G64R10,XSM_DC_INVALID_EYECATCHER_STR

 ST G64R10,EXIT_DIAG_CODE(,G64R7)

 J EXIT

**

* The XSM structure is intact and eye catcher is correct *

* Set the dynamic area pointer to register 10 *

**

PROCEED DS 0H

 LG G64R10,XSM_DYN_AREA_PTR

 USING DATD,G64R10

* Setting up the parameter list passed in by the caller *

 XGR G64R3,G64R3

 LG G64R6,RETCODE_PTR

 ST G64R3,RETCODE(,G64R6)

 ST G64R3,XSM_DIAG_CODE

**

* Call the Storage Detach macro to free the memory *

**

 LG G64R3,MEMORY_ADDR_PTR

 LG G64R3,MEMORY_ADDR(,G64R3)

 STG G64R3,MEMPTR

 DROP G64R1

 LGR G64R4,G64R1 Backup Reg1 Parameter address

* After iarv64 macro finished, register 15 will contain the

* return code of the macro. Zero if deallocation is successful,

* or greater than zero if failed to deallocate the memory

 IARV64 REQUEST=DETACH,COND=YES,RSNCODE=V64RSN, +

GXLE4FRM (GXLFST64 example)

Appendix K. Exit examples - AMODE 64 225

MEMOBJSTART=MEMPTR,MF=(E,IARV64L,COMPLETE)

* Make sure the storage release is successful *

 LGR G64R1,G64R4 Restore Reg1 Parameter Address

* Establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,G64R1

 XGR G64R8,G64R8

 LG G64R5,RETCODE_PTR

 ST G64R15,RETCODE(,G64R5) r15 is macro retcode

 CGR G64R15,G64R8

 JE EXIT

* Memory deallocation failed *

 LG G64R5,RSNCODE_PTR

 MVC RSNCODE(,G64R5),V64RSN

 LGHI G64R4,XSM_DC_FAIL_FREE_MEM64

 LG G64R3,EXITDIAGCODE_PTR

 ST G64R4,EXIT_DIAG_CODE(,G64R3)

**

* EXITING THE FREE MEMORY SERVICE EXIT ROUTINE *

**

EXITMEM DS 0H

 ST G64R4,XSM_DIAG_CODE

EXIT DS 0H

 DROP G64R1,G64R2

 LMG G64R14,G64R12,8(G64R13)

 BR G64R14

DATA DS 0F

 DC A(GXLE4FRM)

EYECHAR DC CL8’XSMEYECA’

**

* The end of the Free Memory Service Exit subroutine *

**

DATD DSECT

 DS 0D

MEMPTR DS D

V64RSN DS F

 IARV64 MF=(L,IARV64L)

**

* Description of the XSM Structure: *

* The XSM structure is including the XSM Header, eye catcher *

* string, and the dynamic area pointer that points to the empty *

* storage area space for the dynamic storage area *

* o XSM Header: Contain all sub-variables within the XSM *

* structure before the dynamic area *

* o Eye Catcher: A string used to identify if this chunk of *

* memory is allocated and referenced correctly *

* o Dynamic Area: managed by the dynamic area pointer and is *

* used for storing local variables and uses *

**

XSM DSECT Memory storage area

XSM_HEADER DS 0D

XSM_EYE_CATCHER DS CL8 eye-catcher string

XSM_DIAG_CODE DS 1F exit diagnostic code

GXLE4FRM (GXLFST64 example)

226 z/OS V1R10.0 z/OS XML User’s Guide and Reference

XSM_TOTAL_SIZE DS 1F sys_svc_parm total size

XSM_DYN_AREA_PTR DS 1D 64bit address of dynamic area

XSM_HEADER_END DS 0X

**

* Description of the Parameters: *

* Input: SYS_SVC_PARM - Address that was passed to the parser *

* at initialization time *

* MEMORY_LEN - Contain the length of the memory area *

* requested to be free *

* Output: MEMORY_ADDR - The Address of the memory to be freed *

* EXIT_DIAG_CODE - Contain diagnostic information *

* RETCODE - XSM_RC_FAILURE if unable to free memory *

* EXIT_DIAG_CODE - XSM_DC_INVALID_EYECATCHER_STR *

* XSM_DC_FAIL_FREE_MEM64 *

* RSNCODE - Reason code generated by the IARV64 macro *

**

PARMLIST DSECT

SYS_SVC_PARM_PTR DS 1D

MEMORY_ADDR_PTR DS 1D

MEMORY_LEN_PTR DS 1D

EXITDIAGCODE_PTR DS 1D

RETCODE_PTR DS 1D

RSNCODE_PTR DS 1D

SYS_SVC_PARM EQU 0

MEMORY_ADDR EQU 0

MEMORY_LEN EQU 0

EXIT_DIAG_CODE EQU 0

RETCODE EQU 0

RSNCODE EQU 0

G64R0 EQU 0

G64R1 EQU 1

G64R2 EQU 2

G64R3 EQU 3

G64R4 EQU 4

G64R5 EQU 5

G64R6 EQU 6

G64R7 EQU 7

G64R8 EQU 8

G64R9 EQU 9

G64R10 EQU 10

G64R11 EQU 11

G64R12 EQU 12

G64R13 EQU 13

G64R14 EQU 14

G64R15 EQU 15

**

* EXIT DIAGNOSTIC CODE *

**

* Eye Catcher string is incorrect

XSM_DC_INVALID_EYECATCHER_STR EQU 1

* Memory de-allocation failed to free storage in gxle1frm

XSM_DC_FAIL_FREE_MEM64 EQU 6

**

* RETURN CODE *

**

XSM_RC_FAILURE EQU 1

 END

GXLE4FRM (GXLFST64 example)

Appendix K. Exit examples - AMODE 64 227

GXLE4GTM

(GXLGST64 example)

Restrictions: The following restrictions apply to this example:

v This sample was designed to be a basic example of a memory service exit, and

was not designed with other system considerations in mind, such as the z/OS

XML parser running in cross memory mode, SRB mode, or in a different key, for

instance.

v This sample is not designed to work with any other service exits. The exit

workarea is assumed to be used by this memory service exit only. (Note that

both GXLGST64 and GXLFST64 services are considered as one service exit). As

a result, this memory service exit can only work independently, with no other

service exits running.

The following code allocates an area of memory for the size requested by the z/OS

XML parser. For the exit service, see “GXLGST31 (GXLGST64) — get memory” on

page 104. AMODE 31 callers use “GXLE1GTM (GXLGST31 example)” on page

198.

Register 14 is used to store the return address, which must be kept intact in order

to exit this subroutine correctly.

This example assumes register one, which is passed in from the caller, contains the

address of the parameter list. The following input variables are used in the example:

SYS_SVC_PARM

Address that was passed to the z/OS XML parser at initialization time.

MEMORY_LEN

Contains the length of the memory area requested by the z/OS XML parser.

The following output variables are used in the example:

MEMORY_ADDR

The address of the allocated memory.

EXIT_DIAG_CODE

Contains diagnostic information.

XSM_DC_INVALID_EYECATCHER_STR

Eye catcher is incorrect.

XSM_DC_INVALID_GET_MEM_LEN

Memory length is out of bound.

XSM_DC_FAIL_ALLOCATE_MEM64

Storage memory allocation failed.

RETCODE

XSM_RC_FAILURE

Unable to allocate memory.

XSM_RC_SUCCESS

The iarv64 macro allocated the memory successfully (greater than

zero if allocation failed).

RSNCODE

Contains the reason code generated by the IARV64 macro.

GXLE4GTM (GXLGST64 example)

228 z/OS V1R10.0 z/OS XML User’s Guide and Reference

* SYSSTATE is used to initialize some variables used by iarv64 macro

 SYSSTATE ASCENV=P,AMODE64=,ARCHLVL=,OSREL=

 SYSSTATE ASCENV=,AMODE64=YES,ARCHLVL=,OSREL=

 SYSSTATE ASCENV=,AMODE64=,ARCHLVL=2,OSREL=

GXLE4GTM CSECT Set up control section

GXLE4GTM AMODE 64 Address mode of module

GXLE4GTM RMODE ANY Residence of module

 USING DATA+0,G64R12 Relative Branching

 ENTRY GXLE4GTM external entry point

 STMG G64R14,G64R12,8(G64R13)

 LARL G64R12,DATA Load DATA Address

 J MSTART Jump to mainline of code

EYECATCH DS 0H

 DC CL8’GXLE4GTM’

MSTART DS 0H

* Establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,G64R1

* Establish addressability for the XSM DSECT to the SYS_SVC_PARM

 USING XSM,G64R2

* Check if the XSM eye catcher string matches correctly *

 LG G64R2,SYS_SVC_PARM_PTR

 LG G64R2,SYS_SVC_PARM(,G64R2)

 CLC XSM_EYE_CATCHER,EYECHAR

 JE PROCEED

**

* Eye catcher is invalid in the XSM structure, so we not *

* sure if the data in the XSM structure is still valid, *

* exiting subroutine, and return to the caller *

**

 LG G64R7,RETCODE_PTR

 LGHI G64R10,XSM_RC_FAILURE

 ST G64R10,RETCODE(,G64R7)

 LG G64R7,EXITDIAGCODE_PTR

 LGHI G64R10,XSM_DC_INVALID_EYECATCHER_STR

 ST G64R10,EXIT_DIAG_CODE(,G64R7)

 J EXIT

**

* The XSM structure is intact and eye catcher is correct *

* Set the dynamic area pointer to register 10 *

**

PROCEED DS 0H

 LG G64R10,XSM_DYN_AREA_PTR

 USING DATD,G64R10

* Setting up the parameter list passed in by the caller *

 XGR G64R6,G64R6

 LG G64R3,RETCODE_PTR

 ST G64R6,RETCODE(,G64R3)

 ST G64R6,XSM_DIAG_CODE

* Check to see if a valid memory length is provided *

 LG G64R7,MEMORY_LEN_PTR

 LG G64R5,MEMORY_LEN(,G64R7)

 LTGR G64R5,G64R5

GXLE4GTM (GXLGST64 example)

Appendix K. Exit examples - AMODE 64 229

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

JNZ ALLOCMEM

**

* Incorrect memory length is found, exiting subroutine *

**

 LGHI G64R4,XSM_RC_FAILURE

 ST G64R4,RETCODE(,G64R3) reg3 is RETCODE_PTR

 LGHI G64R4,XSM_DC_INVALID_GET_MEM_LEN

 LG G64R3,EXITDIAGCODE_PTR

 ST G64R4,EXIT_DIAG_CODE(,G64R3)

 J EXITMEM

* Start allocating memory and check if the allocation is OK *

ALLOCMEM DS 0H

* Change allocation size into megabytes’ segment

 LGR G64R8,G64R5 reg5 is the memory length

 ALG G64R8,SIZENUM

 SRLG G64R8,G64R8,20

 STG G64R8,NUMSEGS

* Calling epar to obtain the ASVTENTY index for the ASCB addr

 EPAR G64R8 Obtain the ASCB index into reg8

 LLGFR G64R8,G64R8

 SLAG G64R8,G64R8,2 Multiply r8 by 4bytes for fixed(32)

* Setting up TTOKEN for the IARV64 Get Storage Marco

 USING PSA,0

 LLGT G64R7,FLCCVT Obtain CVT Addr from PSA

 USING CVT,G64R7

 LLGT G64R7,CVTASVT Load ASVT Address

 USING ASVT,G64R7

 LLGT G64R7,ASVTENTY(G64R8) Load ASCB Address

 USING ASCB,G64R7

 LLGT G64R7,ASCBXTCB Load TCB Address

 USING TCB,G64R7

 LLGT G64R7,TCBSTCB Load STCB Address

 USING STCB,G64R7

 MVC TOKN(16),STCBTTKN Copy TTOKEN to local TOKN

 DROP G64R1

 LGR G64R4,G64R1 Backup Reg1 Parameter Address

* After iarv64 macro finished, register 15 will contain the

* return code of the macro. Zero if allocation is successful,

* or greater than zero if failed to allocate memory

 IARV64 REQUEST=GETSTOR,COND=YES,SEGMENTS=NUMSEGS,

 RSNCODE=V64RSN,ORIGIN=MEMPTR,MF=(E,IARV64L,COMPLETE)

 LGR G64R1,G64R4 Restore Reg1 Parameter Address

* Establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,G64R1

**

* Check if allocated memory returns a successful return code *

**

 XGR G64R7,G64R7

 LG G64R5,RETCODE_PTR

 ST G64R15,RETCODE(,G64R5) r15 is macro retcode

 CGR G64R15,G64R7

 JE FINISH

**

* Memory allocation failed, exiting subroutine *

GXLE4GTM (GXLGST64 example)

230 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

**

 LG G64R5,RSNCODE_PTR

 MVC RSNCODE(,G64R5),V64RSN

 LGHI G64R4,XSM_DC_FAIL_ALLOCATE_MEM64

 LG G64R9,EXITDIAGCODE_PTR

 ST G64R4,EXIT_DIAG_CODE(,G64R9)

 J EXITMEM

* Memory allocation is successful! *

FINISH DS 0H

 LG G64R3,MEMORY_ADDR_PTR

 MVC MEMORY_ADDR(,G64R3),MEMPTR

 LG G64R5,MEMORY_LEN_PTR

 SLLG G64R9,G64R8,20

 STG G64R9,MEMORY_LEN(,G64R5)

 J EXIT

* EXITING THE GET MEMORY SERVICE EXIT ROUTINE *

EXITMEM DS 0H

 ST G64R4,XSM_DIAG_CODE

EXIT DS 0H

 DROP G64R1,G64R2

 LMG G64R14,G64R12,8(G64R13)

 BR G64R14

DATA DS 0F

 DC A(GXLE4GTM)

SIZENUM DC FD’1048575’

EYECHAR DC CL8’XSMEYECA’

* The end of the Get Memory Service Exit subroutine *

DATD DSECT

 DS 0D

NUMSEGS DS D

MEMPTR DS D

TOKN DS CL16

V64RSN DS F

 IARV64 MF=(L,IARV64L)

**

* Description of the XSM Structure: *

* The XSM structure is including the XSM Header, eye catcher *

* string, and the dynamic area pointer that points to the empty *

* storage area space for the dynamic storage area *

* o XSM Header: Contain all sub-variables within the XSM *

* structure before the dynamic area *

* o Eye Catcher: A string used to identify if this chunk of *

* memory is allocated and referenced correctly *

* o Dynamic Area: managed by the dynamic area pointer and is *

* used for storing local variables and uses *

**

XSM DSECT Memory storage area

XSM_HEADER DS 0D

XSM_EYE_CATCHER DS CL8 eye-catcher string

XSM_DIAG_CODE DS 1F exit diagnostic code

XSM_TOTAL_SIZE DS 1F sys_svc_parm total size

XSM_DYN_AREA_PTR DS 1D 64bit address of dynamic area

XSM_HEADER_END DS 0X

GXLE4GTM (GXLGST64 example)

Appendix K. Exit examples - AMODE 64 231

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

**

* Description of the Parameters: *

* Input: SYS_SVC_PARM - Address that was passed to the parser *

* at initialization time *

* MEMORY_LEN - Contain the length of the memory area *

* requested by the parser *

* Output: MEMORY_ADDR - The Address of the allocated memory *

* EXIT_DIAG_CODE - Contain diagnostic information *

* RETCODE - XSM_RC_FAILURE if failed to allocate memory*

* EXIT_DIAG_CODE - XSM_DC_INVALID_EYECATCHER_STR *

* XSM_DC_INVALID_GET_MEM_LEN *

* XSM_DC_FAIL_ALLOCATE_MEM64 *

* RSNCODE - Reason code generated by the IARV64 macro *

**

PARMLIST DSECT

SYS_SVC_PARM_PTR DS 1D

MEMORY_ADDR_PTR DS 1D

MEMORY_LEN_PTR DS 1D

EXITDIAGCODE_PTR DS 1D

RETCODE_PTR DS 1D

RSNCODE_PTR DS 1D

SYS_SVC_PARM EQU 0

MEMORY_ADDR EQU 0,8,C’A’

MEMORY_LEN EQU 0

EXIT_DIAG_CODE EQU 0

RETCODE EQU 0

RSNCODE EQU 0

G64R0 EQU 0

G64R1 EQU 1

G64R2 EQU 2

G64R3 EQU 3

G64R4 EQU 4

G64R5 EQU 5

G64R6 EQU 6

G64R7 EQU 7

G64R8 EQU 8

G64R9 EQU 9

G64R10 EQU 10

G64R11 EQU 11

G64R12 EQU 12

G64R13 EQU 13

G64R14 EQU 14

G64R15 EQU 15

**

* EXIT DIAGNOSTIC CODE *

**

* Eye Catcher string is incorrect

XSM_DC_INVALID_EYECATCHER_STR EQU 1

* Memory length passed into subroutine is out of bound

XSM_DC_INVALID_GET_MEM_LEN EQU 2

* Memory allocation failed to allocate storage in gxle4gtm

XSM_DC_FAIL_ALLOCATE_MEM64 EQU 4

* Memory de-allocation failed to free storage in gxle1frm

**

* RETURN CODE *

**

XSM_RC_FAILURE EQU 1

**

* MACROS INCLUDED FOR OBTAINING TTOKEN USED BY IARV64 *

**

 CVT DSECT=YES

GXLE4GTM (GXLGST64 example)

232 z/OS V1R10.0 z/OS XML User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

IHAASVT

 IKJTCB

 IHASTCB

 IHAASCB

 IHAPSA

 END

GXLE4GTM (GXLGST64 example)

Appendix K. Exit examples - AMODE 64 233

|
|
|
|
|
|

GXLSYM64 example

Restrictions: The following restrictions apply to this example:

v This example was designed to be a basic example of a StringID service exit. It

was not designed with other system considerations in mind, such as the z/OS

XML parser running in cross memory mode, SRB mode, or in a different key, for

instance.

v This example is not designed to work with any other service exits. The exit

workarea is assumed to be used by this StringID service exit only. As a result,

this StringID service exit can only work independently, with no other service exits

running.

Note: This exit example is divided into the following 3 modules:

v “GXLE4INI” on page 235

v “GXLE4IDI (GXLSYM64 example module)” on page 240

v “GXLE4IDR” on page 248

For the exit service, see “GXLSYM31 (GXLSYM64) — StringID service” on page

109. AMODE 31 callers use “GXLSYM31 example” on page 203.

GXLSYM64 example

234 z/OS V1R10.0 z/OS XML User’s Guide and Reference

GXLE4INI

 This example module does the following:

v Validates the caller specification and determines whether to use user defined or

default values for storage size.

v Initializes all variables in XSI. (XSI is the data structure for the StringID sample

exit).

Register 14 is used to store the return address, which must be kept intact in order

to exit this subroutine correctly.

This example module assumes register one, which is passed in from the caller,

contains the address of the parameter list. The following input variables are used in

the example module:

STRID_AREA_ADDR

Address of the XSI storage area.

STRID_AREA_LEN

Total length of the XSI Storage area.

STRID_MAX_NUM

The maximum number of StringIDs allowed.

SYM_MAX_SIZE

The maximum string length for each symbol.

The following output variables are used in the example module:

RETCODE

XSI_RC_FAILURE

The storage area failed to initialize.

XSI_RC_SUCCESS

The storage area successfully initialized.

DIAG_CODE

Contains diagnostic information.

XSI_DC_SYMBOL_STORAGE_TOO_SMALL

Storage size is too small.

GXLE4INI CSECT Set up control section

GXLE4INI AMODE 64 Address mode of module

GXLE4INI RMODE ANY Residence of module

 USING DATA+0,G64R12 Relative Branching

 ENTRY GXLE4INI external entry point

 BSM G64R14,0 Set G64R14 for later PR

 BAKR G64R14,0 Save register/psw status

 LARL G64R12,DATA Load DATA Address

 J IDSTART Jump to mainline of code

EYECATCH DS 0H

 DC CL8’GXLE4INI’

IDSTART DS 0H

**

*** MAINLINE CODE STARTS HERE ***

**

*** GXLE1INI.PLX - INITIALIZE XSI MACROS’ DSECTS ***

**

GXLE4INI

Appendix K. Exit examples - AMODE 64 235

* below will calculate the minimum storage area size allowed

* inorder for StringID service exit to function correctly

* XSI_DYN_AREA_SIZE + length(XSI_HEADER) + length(XSI_NODE_HEADER)

* Accumulating the minimum required size for storage area to

* initialize into register 3

 LGHI G64R3,XSI_DYN_AREA_SIZE

 AGHI G64R3,XSI_HEADER_SIZE

 AGHI G64R3,XSI_NODE_HEADER_SIZE

 AGHI G64R3,1 Minimum of one byte of string to be stored

* Establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,G64R1

* Check if the allocation size is enough or not

 LG G64R10,STRID_AREA_LEN_PTR

 L G64R8,STRID_AREA_LEN(,G64R10)

* Check if the user given storage area size has enough space

 CLGR G64R8,G64R3 reg3 is accumulated value for minimum size

 JNL MAXVALUE

* The storage size is too small for the StringID initialization

 LGHI G64R6,XSI_RC_FAILURE

 LG G64R5,RET_CODE_PTR

 ST G64R6,RET_CODE(,G64R5)

 LGHI G64R6,XSI_DC_SYMBOL_STORAGE_TOO_SMALL

 LG G64R5,DIAG_CODE_PTR

 ST G64R6,DIAG_CODE(,G64R5)

 J EXITING

MAXVALUE DS 0H

* see if caller provided a maximum number of StringID allowed in

* this StringID service exit samples, if not provided, a default

* value will be used instead

 LG G64R5,STRID_MAX_NUM_PTR

 ICM G64R2,15,STRID_MAX_NUM(G64R5)

 JZ ID_DEF

* A StringID maximum number is provided

 LLGFR G64R7,G64R2 reg2 is user defined max # of strid allowed

 J SYM_MAX

* StringID maximum number is not provided, so default value is used

ID_DEF DS 0H

 LGHI G64R7,XSI_DEFAULT_MAX_ID#

* see if caller provided a maximum string size allowed in this

* StringID service exit samples, if not provided, a default

* string size will be used instead

SYM_MAX DS 0H

 LG G64R5,SYM_MAX_SIZE_PTR

 ICM G64R2,15,SYM_MAX_SIZE(G64R5)

 JZ SYM_DEF

* A valid maximum string size is provided

 LLGFR G64R6,G64R2 reg2 is user defined maximum string length

 J INITIAL

* The default value of the maximum string size is used

SYM_DEF DS 0H

 LGHI G64R6,XSI_DEFAULT_SYM_MAX_SIZE

* Begin to initialize the StringID storage area

INITIAL DS 0H

* Establish addressability for the XSI DSECT to the SYS_SVC_PARM

GXLE4INI

236 z/OS V1R10.0 z/OS XML User’s Guide and Reference

USING XSI,G64R3

 LG G64R3,STRID_AREA_ADDR_PTR

 LG G64R3,STRID_AREA_ADDR(,G64R3)

* Initialize all StringID Storage area header values

 MVC XSI_EYE_CATCHER,EYECHAR

 ST G64R6,XSI_SYM_MAX_SIZE reg6 is max length of each string

 XGR G64R6,G64R6

 ST G64R6,XSI_DIAG_CODE

* StringID value starts at number one index

 LHI G64R9,1

 ST G64R9,XSI_NEXT_ID#

 ST G64R7,XSI_MAX_ID# reg7 is max num of StringID allowed

 ST G64R8,XSI_TOTAL_SIZE reg8 is StringID storage area size

* Setting up the dynamic area pointer

 MGHI G64R7,XSI_LENGTH_ID_LIST reg7 is XSI_MAX_ID#

 LLGFR G64R2,G64R7 reg7 is max num of StringID allowed times 8

 LGHI G64R9,XSI_HEADER_SIZE

 ALGR G64R2,G64R9

* add 7 then bitwise and with ’FFFFFFFFFFFFFFF8’ to ensure the

* dynamic area is starting at double word boundary

 LGHI G64R5,7

 ALGR G64R5,G64R2 reg2 is size of XSI_header + max # of strid

 ALGR G64R5,G64R3 reg3 is the StringID storage area address

 NG G64R5,DW_BDRY

 STG G64R5,XSI_DYN_AREA

* current free pointer is after all XSI header, StringID

* array list, and dynamic area

 LGHI G64R9,XSI_DYN_AREA_SIZE

 LGR G64R2,G64R5

 ALGR G64R2,G64R9

 STG G64R2,XSI_CURR_FREE@

* Calculate the amount of free space that is left in the storage area

 LLGFR G64R5,G64R8 reg8 is total StringID storage area size

 LGR G64R7,G64R2

 SLGR G64R7,G64R3 reg3 is the StringID storage area address

 SLGR G64R5,G64R7

 ST G64R5,XSI_FREE_SPACE

* Set the XSI_TREE_HEAD@ to NULL, which means the tree is empty

 XGR G64R2,G64R2

 STG G64R2,XSI_TREE_HEAD@ reg2 is set to zero/NULL

 LGHI G64R6,XSI_RC_SUCCESS

 LG G64R5,RET_CODE_PTR

 ST G64R6,RET_CODE(,G64R5)

 J EXITING

*** EXITING THE StringID INITIALIZATION ROUTINE ***

EXITING DS 0H

 DROP G64R1,G64R3

 PR

DATA DS 0F

 DC A(GXLE4INI)

* One megabyte in size substract by one (1048576 minus 1)

SIZE DC FD’1048575’

DW_BDRY DC X’FFFFFFFFFFFFFFF8’

GXLE4INI

Appendix K. Exit examples - AMODE 64 237

EYECHAR DC CL8’XSIEYECA’

G64R0 EQU 0

G64R1 EQU 1

G64R2 EQU 2

G64R3 EQU 3

G64R4 EQU 4

G64R5 EQU 5

G64R6 EQU 6

G64R7 EQU 7

G64R8 EQU 8

G64R9 EQU 9

G64R10 EQU 10

G64R11 EQU 11

G64R12 EQU 12

G64R13 EQU 13

G64R14 EQU 14

G64R15 EQU 15

**

* Description of the XSI Structure: *

* The XSI structure is including the XSI Header, StringID array *

* list, the dynamic area, and end with empty storage area space *

* for the StringID tree *

* o XSI Header: Contain information for the XSI Structure to *

* operate correctly (space management) *

* o StringID list: List of pointers that indexed by StringID *

* and each ptr point to the corresponding *

* leaf node within the StringID tree *

* o Dynamic Area: Used by ASAENTRY where all local variables, *

* stacks, and storage usage will take up the *

* storage space within the dynamic area *

* o Empty Storage: managed by the XSI header and is used for *

* storing the tree structure for StringID *

**

XSI DSECT StringID storage area

XSI_HEADER DS 0D

XSI_EYE_CATCHER DS CL8 eye-catcher string

XSI_SYM_MAX_SIZE DS 1F max string len for symbol

XSI_DIAG_CODE DS 1F exit diagnostic code

XSI_NEXT_ID# DS 1F next usable StringID num

XSI_MAX_ID# DS 1F max num of StringID nodes

XSI_TOTAL_SIZE DS 1F sys_svc_parm total size

XSI_FREE_SPACE DS 1F space left for data

XSI_CURR_FREE@ DS 1D 64bit current @ of free space

XSI_TREE_HEAD@ DS 1D 64bit location of tree head

XSI_DYN_AREA DS 1D 64bit address of dynamic area

XSI_HEADER_END DS 0X

XSI_ID_LIST DS 1D 64bit ID list for quick search

XSI_HEADER_SIZE EQU XSI_HEADER_END-XSI_HEADER

**

* Description of the Parameters: *

* Input: STRID_AREA_PTR - Pointer to the XSI storage area *

* STRID_AREA_LEN - total length of the XSI Storage area *

* STRID_MAX_NUM - the maximum number of StringID allowed *

* SYM_MAX_SIZE - maximum string length for each symbol *

* Output: DIAG_CODE - XSI_DC_XXX provide detail to retcode *

* RETCODE - XSI_RC_FAILURE if string cannot be inserted *

* XSI_RC_SUCCESS if string inserted ok *

**

PARMLIST DSECT

STRID_AREA_ADDR_PTR DS 1D

STRID_AREA_LEN_PTR DS 1D

STRID_MAX_NUM_PTR DS 1D

GXLE4INI

238 z/OS V1R10.0 z/OS XML User’s Guide and Reference

SYM_MAX_SIZE_PTR DS 1D

RET_CODE_PTR DS 1D

DIAG_CODE_PTR DS 1D

**

* EXIT DIAGNOSTIC CODE *

**

* the storage size is too small for initialization

XSI_DC_SYMBOL_STORAGE_TOO_SMALL EQU 17

* Default Maximum Constant values

XSI_DYN_AREA_SIZE EQU 4096

XSI_DEFAULT_MAX_ID# EQU 800

XSI_DEFAULT_SYM_MAX_SIZE EQU 256

**

* RETURN CODE *

**

XSI_RC_SUCCESS EQU 0

XSI_RC_FAILURE EQU 1

STRID_AREA_ADDR EQU 0

STRID_AREA_LEN EQU 0

STRID_MAX_NUM EQU 0

SYM_MAX_SIZE EQU 0

RET_CODE EQU 0

DIAG_CODE EQU 0

XSI_NODE_HEADER_SIZE EQU 24

XSI_LENGTH_ID_LIST EQU 8

 END

GXLE4INI

Appendix K. Exit examples - AMODE 64 239

GXLE4IDI

(GXLSYM64 example module)

 This example module does the following:

v Search for an identical string in the tree.

v Inserts a string into a tree and returns a unique StringID. This is accomplished as

follows:

1. Check first to make sure the length of the string is within the maximum

symbol buffer size.

2. Inserts the string into the root if the tree is empty or searches down the tree

to find the appropriate empty leaf node.

3. When the insert node location is found, it’s address will be passed to the

INSERT_STRING subroutine. The subroutine will create a new leaf node and

then insert the string.

4. Return the StringID if the string inserted successfully.

Note: This is the actual exit pointed to in the SYS_SVC_VECTOR table.

Register 14 is used to store the return address, which must be kept intact in order

to exit this subroutine correctly.

This example module assumes register one, which is passed in from the caller,

contains the address of the parameter list. The following input variables are used in

the example module:

SYS_SVC_PARM

Address of storage area that the caller of the z/OS XML parser wants to

pass to the exit. It also contains the XSI structure information.

STR The string that will be inserted into the tree.

STRLEN

Length of the current string needed to be inserted. Length is derived from

the number of bytes of the characters in the string.

CCSID

Identifier for the string’s character set.

The following output variables are used in the example module:

STRID The index of the inserted or found string.

EXIT_DIAG_CODE

Contains diagnostic information.

XSI_DC_INCORRECT_PARM_STRLEN

String length is out of bound.

XSI_DC_OUT_OF_STORAGE_SPACE

Allocated storage is full.

XSI_DC_INCORRECT_EYE_CATCHER

Eye catcher is incorrect.

XSI_DC_MAX_OUT_ID_LIST_ENTRIES

StringID list is full.

RETCODE

XRC_FAILURE

Failed to insert or search for STR.

GXLE4IDI (GXLSYM64 example module)

240 z/OS V1R10.0 z/OS XML User’s Guide and Reference

XRC_SUCCESS

STR was inserted or found.
GXLE4IDI CSECT Set up control section

GXLE4IDI AMODE 64 Address mode of module

GXLE4IDI RMODE ANY Residence of module

 USING DATA+0,G64R12 Relative Branching

 ENTRY GXLE4IDI external entry point

 STMG G64R14,G64R12,8(G64R13) Save regs

 LARL G64R12,DATA Load DATA Address

 J IDSTART Jump to mainline of code

EYECATCH DS 0H

 DC CL8’GXLE4IDI’

IDSTART DS 0H

* Establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,G64R7

* Establish addressability for the XSI DSECT to the SYS_SVC_PARM

 USING XSI,G64R6

* Check if the XSI eye catcher string matches correctly *

 LGR G64R7,G64R1

 LG G64R6,SYS_SVC_PARM_PTR

 LG G64R6,SYS_SVC_PARM(,G64R6)

 CLC XSI_EYE_CATCHER,EYECHAR

 JE PROCEED

**

* Eye catcher is invalid in the XSI structure, so we not *

* sure if the data in the XSI structure is still valid, *

* exiting subroutine, and return to the caller *

**

 LGHI G64R9,XSI_RC_FAILURE

 LG G64R8,RETCODE_PTR

 ST G64R9,RETCODE(,G64R8)

 LGHI G64R11,XSI_DC_INCORRECT_EYE_CATCHER

 LG G64R10,DIAGCODE_PTR

 ST G64R11,EXIT_DIAG_CODE(,G64R10)

 J EXITIDI

**

*** MAINLINE CODE STARTS HERE: ***

**

*** GXLE1IDI.PLX - Insert/Search String & return StringID ***

**

**

* The XSI structure is intact and eye catcher is correct *

* Set the dynamic area pointer to register 11 *

**

PROCEED DS 0H

 LG G64R11,XSI_DYN_AREA

 USING DATD,G64R11

**

* - If string length and string contain the valid information *

* then gxle1idi will proceed and continue to insert the string *

* into the tree and return the appropreiate StringID value *

**

 LG G64R5,STRLEN_PTR

 ICM G64R8,15,STRLEN(G64R5) Check if string length is zero

 JZ LEN_INV

* Check if strlen is greater then the maximum allowed string length

 CL G64R8,XSI_SYM_MAX_SIZE

GXLE4IDI (GXLSYM64 example module)

Appendix K. Exit examples - AMODE 64 241

JH LEN_INV

* If the StringID list is not empty, search before insert

 LG G64R2,XSI_TREE_HEAD@

 LTGR G64R2,G64R2

 JNZ SEARCH_TREE

* If StringID list is empty, insert string

 LA G64R9,XSI_TREE_HEAD@

 STG G64R9,INSERTION_ADDR_PTR

 J INSERT_STRING

* Value of the string length is invalid, exiting the subroutine

LEN_INV DS 0H

 LGHI G64R5,XSI_RC_FAILURE

 LG G64R3,RETCODE_PTR

 ST G64R5,RETCODE(,G64R3)

 LGHI G64R2,XSI_DC_INCORRECT_PARM_STRLEN

 LG G64R3,DIAGCODE_PTR

 ST G64R2,EXIT_DIAG_CODE(,G64R3)

 J EXITING

**

* *

* INSERT_STRING - Insert string into tree and return the StringID *

* *

* The string will be pushed into the tree and the index *

* of the list will be saved as an unique StringID, *

* immediately upon the procedure checked the valid string *

* and string Length data. *

* *

* Input: STR_PTR - The string that will be inserted into the tree *

* *

* STR_LEN - The length of the string that is loaded into R8 *

* *

* INSERTION_ADDR_PTR - address of a pointer to the location *

* where the new node will go *

* XSI - user control area header variables *

* *

* Output: STRID - the index of the inserted string *

* *

* RETCODE - XRC_FAILURE if string cannot be inserted *

* XRC_SUCCESS if string inserted ok *

* *

**

INSERT_STRING DS 0H

* plus 1 is for adding a NULL character at the end of each

* string so user can know when the end of string reaches

 LGHI G64R5,25 24 is length of XSI_NODE_HEADER, 1 is NULL

 ALR G64R5,G64R8 reg8 is the string length

 LLGFR G64R5,G64R5

 STG G64R5,NEW_NODE_SIZE

* check if the StringID reaches it’s maximum allowed value

 L G64R4,XSI_NEXT_ID#

 CL G64R4,XSI_MAX_ID#

 JNH ID_OK

* The next available StringID has reached the maximum ID limit

 LGHI G64R3,XSI_RC_FAILURE

 LG G64R5,RETCODE_PTR

 ST G64R3,RETCODE(,G64R5)

 LGHI G64R2,XSI_DC_MAX_OUT_ID_LIST_ENTRIES

 LG G64R3,DIAGCODE_PTR

 ST G64R2,EXIT_DIAG_CODE(,G64R3)

 J EXITING

GXLE4IDI (GXLSYM64 example module)

242 z/OS V1R10.0 z/OS XML User’s Guide and Reference

ID_OK DS 0H

* check if the storage area has enough space for the new node

 L G64R5,XSI_FREE_SPACE

 LGFR G64R9,G64R5

 CLG G64R9,NEW_NODE_SIZE

 JNL SPACE_OK

* Amount of free space is not enough to store the new node

 LGHI G64R5,XSI_RC_FAILURE

 LG G64R3,RETCODE_PTR

 ST G64R5,RETCODE(,G64R3)

 LGHI G64R2,XSI_DC_OUT_OF_STORAGE_SPACE

 LG G64R3,DIAGCODE_PTR

 ST G64R2,EXIT_DIAG_CODE(,G64R3)

 J EXITING

* If XSI Storage contain enough free space and StringID hasn’t

* reach the limit yet, then start inserting the string into the

* empty leaf node

SPACE_OK DS 0H

* Establish addressability for the XSI_NODE DSECT to the StringID Tree

 USING XSI_NODE,G64R9

 LG G64R9,XSI_CURR_FREE@

* Set the left/right node to NULL

 XGR G64R15,G64R15

 STG G64R15,XSI_NODE_LEFT

 STG G64R15,XSI_NODE_RIGHT

* Assign the next available StringID to the node

 LR G64R2,G64R4 reg4 contains the StringID

 ST G64R2,XSI_NODE_StringID

 ST G64R8,XSI_NODE_STRLEN Insert the string length

* Move the string from the parameter into the tree node

 LG G64R14,STRID_PTR

 LA G64R10,XSI_NODE_STRING

 ST G64R2,STRID(,G64R14) reg4 is next available StringID #

 LLGFR G64R2,G64R8 reg8 is the string length

 LG G64R3,STR_PTR

* check the string length to see if it’s greater than 256 characters

 CGHI G64R2,256

 JNH STR_256

* MVC the string in loops for each 256 characters

MVC_STR DS 0H

 MVC 0(256,G64R10),0(G64R3) copy 256 chars at a time

 LGHI G64R14,256

 ALGR G64R10,G64R14 move Reg10 256chars to right

 ALGR G64R3,G64R14 move Reg3 256chars to right

 SLGR G64R2,G64R14 Subtract string length by 256

 CGHI G64R2,256 check if string length still > 256

 JH MVC_STR

* Copy string into XSI tree node only if the string length or what

* is left to copy from the string is less than 256 characters

STR_256 DS 0H

 LGR G64R15,G64R2

 BCTGR G64R15,0

 EX G64R15,STRCOPY

* add null at the end of the string for higher level programming uses

 LLGFR G64R2,G64R8 reg8 is original string length

 XGR G64R3,G64R3

 STC G64R3,XSI_NODE_STRING(G64R2)

GXLE4IDI (GXLSYM64 example module)

Appendix K. Exit examples - AMODE 64 243

* Setting the address of the new tree node to the StringID list

 LLGFR G64R10,G64R4 reg3 is the current insertion StringID #

 SLAG G64R10,G64R10,3

 STG G64R9,XSI_ID_LIST-8(G64R10)

* re-calculate the total amount of the XSI free space

 LG G64R2,NEW_NODE_SIZE

 LGFR G64R10,G64R5 reg5 is the old free space

 SLGR G64R10,G64R2

 LR G64R5,G64R10

 ST G64R5,XSI_FREE_SPACE

* Increment the XSI_NEXT_ID# value by one

 LGHI G64R10,1

 ALR G64R4,G64R10

 ST G64R4,XSI_NEXT_ID#

* assign parent node pointer to point to this new node

 LG G64R10,INSERTION_ADDR_PTR

 STG G64R9,INSERTION_PTR(,G64R10)

 ALGR G64R9,G64R2

 STG G64R9,XSI_CURR_FREE@

* Insertion of a new string to the tree is completed

 LGHI G64R3,XSI_RC_SUCCESS

 LG G64R5,RETCODE_PTR

 ST G64R3,RETCODE(,G64R5)

 LG G64R5,DIAGCODE_PTR

 L G64R2,EXIT_DIAG_CODE(,G64R5)

 J EXITING

**

* *

* SEARCH_TREE - search the tree for input string and return the *

* StringID if found or call INSERT_STRING to create *

* a new node for the new string *

* *

* Iteratively going down the tree base on the string to *

* determine going left or right leaf. If no identical *

* string is found, then INSERT_STRING will be called or *

* the identified string will be returned with its StringID *

* *

* Input: The input parameters passed to the program. *

* *

* Output: STRID - the index of the inserted or found string *

* *

* RETCODE - XRC_SUCCESS if string is found within tree *

* *

**

SEARCH_TREE DS 0H

 LGR G64R9,G64R2 reg2 is the current searching node address

* Establish addressability for the XSI_NODE DSECT to the StringID Tree

 USING XSI_NODE,G64R9

 LG G64R0,STR_PTR

 LG G64R1,STRLEN_PTR

LOOP_IN DS 0H

* string compare and decide to branch toward left or right leaf

 LA G64R14,XSI_NODE_STRING

 LLGF G64R15,XSI_NODE_STRLEN

* CLCL requires to use the registers in pair, so R0 contains the

* string characters while R1 requires to contain the string length.

* So CLCL will knows how many characters in the string to be compared

GXLE4IDI (GXLSYM64 example module)

244 z/OS V1R10.0 z/OS XML User’s Guide and Reference

CLCL G64R0,G64R14

 JH RIGHT_TREE

 JL LEFT_TREE

* String is found in the StringID tree and its corresponding

* StringID will be saved and returned

 LG G64R5,STRID_PTR

 L G64R10,XSI_NODE_StringID

 ST G64R10,STRID(,G64R5)

 LGHI G64R4,XSI_RC_SUCCESS

 LG G64R5,RETCODE_PTR

 ST G64R4,RETCODE(,G64R5)

 LG G64R5,DIAGCODE_PTR

 L G64R2,EXIT_DIAG_CODE(,G64R5)

 J EXITING

LEFT_TREE DS 0H

* Check if the left leaf is empty, if empty then go insert string,

* if not empty, then branch to the left leaf and continue searching

 LG G64R2,XSI_NODE_LEFT

 LTGR G64R2,G64R2

 JNZ GO_LEFT

* Left leaf node is empty, so insert the new string into it

 LA G64R10,XSI_NODE_LEFT

 STG G64R10,INSERTION_ADDR_PTR

 J INSERT_STRING

GO_LEFT DS 0H

 LGR G64R9,G64R2

 J LOOP_IN

RIGHT_TREE DS 0H

* Check if the right leaf is empty, if empty then go insert string,

* if not empty, then branch to the right leaf and continue searching

 LG G64R2,XSI_NODE_RIGHT

 LTGR G64R2,G64R2

 JNZ GO_RIGHT

* Right leaf node is empty, so insert the new string into it

 LA G64R10,XSI_NODE_RIGHT

 STG G64R10,INSERTION_ADDR_PTR

 J INSERT_STRING

GO_RIGHT DS 0H

 LGR G64R9,G64R2

 J LOOP_IN

*** EXITING THE StringID SERVICE EXIT ROUTINE ***

EXITING DS 0H

 ST G64R2,XSI_DIAG_CODE

EXITIDI DS 0H

 DROP G64R6,G64R7,G64R9

 LMG G64R14,G64R12,8(G64R13)

 BR G64R14

DATA DS 0F

 DC A(GXLE4IDI)

STRCOPY MVC 0(0,G64R10),0(G64R3)

EYECHAR DC CL8’XSIEYECA’

DATD DSECT

GXLE4IDI (GXLSYM64 example module)

Appendix K. Exit examples - AMODE 64 245

DS 0D

* Size of new node being inserted: node header + var string length

NEW_NODE_SIZE DS FD

* insertion pointer is needed when new node is being inserted and

* their parent node’s ptr address will be saved in this insertion

* pointer. When the new node is created and initialized with data,

* the address in insertion_ptr will be assigned to point to the

* new node, completing the insertion process of new node into tree

INSERTION_ADDR_PTR DS AD

G64R0 EQU 0

G64R1 EQU 1

G64R2 EQU 2

G64R3 EQU 3

G64R4 EQU 4

G64R5 EQU 5

G64R6 EQU 6

G64R7 EQU 7

G64R8 EQU 8

G64R9 EQU 9

G64R10 EQU 10

G64R11 EQU 11

G64R12 EQU 12

G64R13 EQU 13

G64R14 EQU 14

G64R15 EQU 15

**

* Description of the XSI Structure: *

* The XSI structure is including the XSI Header, StringID array *

* list, the dynamic area, and end with empty storage area space *

* for the StringID tree *

* o XSI Header: Contain information for the XSI Structure to *

* operate correctly (space management) *

* o StringID list: List of pointers that indexed by StringID *

* and each ptr point to the corresponding *

* leaf node within the StringID tree *

* o Dynamic Area: Used by ASAENTRY where all local variables, *

* stacks, and storage usage will take up the *

* storage space within the dynamic area *

* o Empty Storage: managed by the XSI header and is used for *

* storing the tree structure for StringID *

**

XSI DSECT StringID storage area

XSI_HEADER DS 0D

XSI_EYE_CATCHER DS CL8 eye-catcher string

XSI_SYM_MAX_SIZE DS 1F max string len for symbol

XSI_DIAG_CODE DS 1F exit diagnostic code

XSI_NEXT_ID# DS 1F next usable StringID num

XSI_MAX_ID# DS 1F max num of StringID nodes

XSI_TOTAL_SIZE DS 1F sys_svc_parm total size

XSI_FREE_SPACE DS 1F space left for data

XSI_CURR_FREE@ DS 1D 64bit current @ of free space

XSI_TREE_HEAD@ DS 1D 64bit location of tree head

XSI_DYN_AREA DS 1D 64bit address of dynamic area

XSI_HEADER_END DS 0X

XSI_ID_LIST DS 1D 64bit ID list for quick search

**

* StringID Tree Node Header *

**

XSI_NODE DSECT

XSI_NODE_HEADER DS 0D

XSI_NODE_LEFT DS 1D 64bit LESS THAN PARENT NODE

XSI_NODE_RIGHT DS 1D 64bit GREATER THAN PARENT NODE

XSI_NODE_StringID DS 1F STRING ID VALUE

GXLE4IDI (GXLSYM64 example module)

246 z/OS V1R10.0 z/OS XML User’s Guide and Reference

XSI_NODE_STRLEN DS 1F LENGTH OF THE STRING

XSI_NODE_HEADER_END DS 0X

XSI_NODE_STRING DS C THE ACTUAL STRING

**

* Description of the Parameters: *

* Input: SYS_SVC_PARM - Contain the XSI structure information *

* STR - The string that will be inserted into the tree *

* STRLEN - Length of the current string needed to insert *

* Length is in number of bytes of the characters *

* CCSID - Identifier that identify character set of string *

* Output: STRID - the index of the inserted string *

* EXIT_DIAG_CODE - XSI_DC_XXX provide detail to retcode *

* RETCODE - XRC_FAILURE if failed to insert/search for str *

* XRC_SUCCESS if string inserted/found *

**

PARMLIST DSECT

SYS_SVC_PARM_PTR DS 1D

STR_PTR DS 1D

STRLEN_PTR DS 1D

STRID_PTR DS 1D

CCSID_PTR DS 1D

DIAGCODE_PTR DS 1D

RETCODE_PTR DS 1D

* EXIT DIAGNOSTIC CODE *

**

* String length passed into gxle1idi is out of bound

XSI_DC_INCORRECT_PARM_STRLEN EQU 11

* Tries to insert new string, but allocated storage is full

XSI_DC_OUT_OF_STORAGE_SPACE EQU 12

* Eye Catcher string is incorrect

XSI_DC_INCORRECT_EYE_CATCHER EQU 15

* StringID list is max out with entries,requires larger list size

XSI_DC_MAX_OUT_ID_LIST_ENTRIES EQU 16

**

* RETURN CODE *

**

XSI_RC_SUCCESS EQU 0

XSI_RC_FAILURE EQU 1

SYS_SVC_PARM EQU 0

STR EQU 0

STRLEN EQU 0

STRID EQU 0

CCSID EQU 0

EXIT_DIAG_CODE EQU 0

RETCODE EQU 0

INSERTION_PTR EQU 0

 END

GXLE4IDI (GXLSYM64 example module)

Appendix K. Exit examples - AMODE 64 247

GXLE4IDR

 This example module uses the input StringID to access a table and returns the

address & length of the string associated with the StringID. The string is saved in

the storage pointed to by SYS_SVC_PARM during the initialization of the parser

(GXL1INI) and in StringID processing (GXLE1INI).

Register 14 is used to store the return address, which must be kept intact in order

to exit this subroutine correctly.

This example module assumes register one, which is passed in from the caller,

contains the address of the parameter list. The following input variables are used in

the example module:

SYS_SVC_PARM

Address of storage area that the caller of the z/OS XML parser wants to

pass to the exit. It also contains the XSI structure information.

STRID StringID used for indexing the list.

The following output variables are used in the example module:

STR_ADDR

Address of string from requested StringID.

STRLEN

The length of the string found by StringID.

DIAG_CODE

Contains diagnostic information.

XSI_DC_INCORRECT_StringID_OUTOFBOUND

STRID length is out of bound.

XSI_DC_INCORRECT_ID_LOCATION_ERROR

StringID does not match.

XSI_DC_INCORRECT_EYE_CATCHER

Eye catcher is incorrect.

RETCODE

XSI_RC_FAILURE

The string cannot be retrieved.

XSI_RC_SUCCESS

The string was retrieved successfully.

GXLE4IDR CSECT Set up control section

GXLE4IDR AMODE 64 Address mode of module

GXLE4IDR RMODE ANY Residence of module

 USING DATA+0,G64R12 Relative Branching

 ENTRY GXLE4IDR external entry point

 STMG G64R14,G64R12,8(G64R13) Save regs

 LARL G64R12,DATA Load DATA Address

 J IDSTART Jump to mainline of code

EYECATCH DS 0H

 DC CL8’GXLE4IDR’

IDSTART DS 0H

* establish addressability for the PARMLIST DSECT to the PARMLIST

 USING PARMLIST,G64R1

* establish addressability for the XSI DSECT to the SYS_SVC_PARM

GXLE4IDR

248 z/OS V1R10.0 z/OS XML User’s Guide and Reference

USING XSI,G64R6

* Check if the XSI eye catcher string matches correctly *

 LG G64R5,SYS_SVC_PARM_PTR

 LG G64R6,SYS_SVC_PARM(,G64R5)

 CLC XSI_EYE_CATCHER,EYECHAR

 JE PROCEED

**

* Eye catcher is invalid in the XSI structure, so we not *

* sure if the data in the XSI structure is still valid, *

* exiting subroutine, and return to the caller *

**

 LGHI G64R9,XSI_RC_FAILURE

 LG G64R8,RETCODE_PTR

 ST G64R9,RETCODE(,G64R8)

 LGHI G64R11,XSI_DC_INCORRECT_EYE_CATCHER

 LG G64R10,DIAGCODE_PTR

 ST G64R11,EXIT_DIAG_CODE(,G64R10)

 J EXITIDR

**

*** MAINLINE CODE STARTS HERE: ***

**

*** GXLE4IDR.PLX - Search & Retrieve String from StringID ***

**

**

* The XSI structure is intact and eye catcher is correct *

**

PROCEED DS 0H

**

* If string ID contain a valid index, gxlp1idr will proceed and *

* retrieve the corresponding string from the tree *

**

 LG G64R3,STRID_PTR

 ICM G64R5,15,STRID(G64R3)

 JZ BAD_ID

 CL G64R5,XSI_NEXT_ID#

 JL RETRIEVE

* The StringID value is out of bound

BAD_ID DS 0H

 LGHI G64R5,XSI_RC_FAILURE

 LG G64R3,RETCODE_PTR

 ST G64R5,RETCODE(,G64R3)

 LGHI G64R2,XSI_DC_INCORRECT_StringID_OUTOFBOUND

 LG G64R3,DIAGCODE_PTR

 ST G64R2,EXIT_DIAG_CODE(,G64R3)

 J EXITING

RETRIEVE DS 0H

 LLGFR G64R3,G64R5 reg5 contains the next available StringID #

 SLAG G64R3,G64R3,3 multiply the number of StringID by 8

* establish addressability for the XSI_NODE DSECT to the StringID Tree

 USING XSI_NODE,G64R4

 LG G64R4,XSI_ID_LIST-8(G64R3)

 CL G64R5,XSI_NODE_StringID check if the StringID is correct

 JE DONE

* The value of the StringID in the tree is not consistent with

* the value in the StringID list, exiting subroutine

GXLE4IDR

Appendix K. Exit examples - AMODE 64 249

LGHI G64R3,XSI_RC_FAILURE

 LG G64R5,RETCODE_PTR

 ST G64R3,RETCODE(,G64R5)

 LGHI G64R2,XSI_DC_INCORRECT_ID_LOCATION_ERROR

 LG G64R3,DIAGCODE_PTR

 ST G64R2,EXIT_DIAG_CODE(,G64R3)

 J EXITING

* Successful in finding the StringID

DONE DS 0H

 LG G64R5,STR_ADDR_PTR

 LA G64R7,XSI_NODE_STRING

 STG G64R7,STR_ADDR(,G64R5) Store the string pointer

 LG G64R2,STRLEN_PTR

 L G64R7,XSI_NODE_STRLEN

 ST G64R7,STRLEN(,G64R2) Store the string length

* Set the return code to successful and return back to caller

 LGHI G64R7,XSI_RC_SUCCESS

 LG G64R5,RETCODE_PTR

 ST G64R7,RETCODE(,G64R5)

 LG G64R5,DIAGCODE_PTR

 L G64R2,EXIT_DIAG_CODE(,G64R5)

 J EXITING

*** EXITING THE StringID SERVICE EXIT ROUTINE ***

EXITING DS 0H

 ST G64R2,XSI_DIAG_CODE

EXITIDR DS 0H

 DROP G64R1,G64R4,G64R6

 LMG G64R14,G64R12,8(G64R13)

 BR G64R14

DATA DS 0F

 DC A(GXLE4IDR)

EYECHAR DC CL8’XSIEYECA’

G64R0 EQU 0

G64R1 EQU 1

G64R2 EQU 2

G64R3 EQU 3

G64R4 EQU 4

G64R5 EQU 5

G64R6 EQU 6

G64R7 EQU 7

G64R8 EQU 8

G64R9 EQU 9

G64R10 EQU 10

G64R11 EQU 11

G64R12 EQU 12

G64R13 EQU 13

G64R14 EQU 14

G64R15 EQU 15

**

* Description of the XSI Structure: *

* The XSI structure is including the XSI Header, StringID array *

* list, the dynamic area, and end with empty storage area space *

* for the StringID tree *

* o XSI Header: Contain information for the XSI Structure to *

* operate correctly (space management) *

* o StringID list: List of pointers that indexed by StringID *

* and each ptr point to the corresponding *

GXLE4IDR

250 z/OS V1R10.0 z/OS XML User’s Guide and Reference

* leaf node within the StringID tree *

* o Dynamic Area: Used by ASAENTRY where all local variables, *

* stacks, and storage usage will take up the *

* storage space within the dynamic area *

* o Empty Storage: managed by the XSI header and is used for *

* storing the tree structure for StringID *

**

XSI DSECT StringID storage area

XSI_HEADER DS 0D

XSI_EYE_CATCHER DS CL8 eye-catcher string

XSI_SYM_MAX_SIZE DS 1F max string len for symbol

XSI_DIAG_CODE DS 1F exit diagnostic code

XSI_NEXT_ID# DS 1F next usable StringID num

XSI_MAX_ID# DS 1F max num of StringID nodes

XSI_TOTAL_SIZE DS 1F sys_svc_parm total size

XSI_FREE_SPACE DS 1F space left for data

XSI_CURR_FREE@ DS 1D 64bit current @ of free space

XSI_TREE_HEAD@ DS 1D 64bit location of tree head

XSI_DYN_AREA DS 1D 64bit address of dynamic area

XSI_HEADER_END DS 0X

XSI_ID_LIST DS 1D 64bit ID list for quick search

**

* StringID Tree Node Header *

**

XSI_NODE DSECT

XSI_NODE_HEADER DS 0D

XSI_NODE_LEFT DS 1D 64bit LESS THAN PARENT NODE

XSI_NODE_RIGHT DS 1D 64bit GREATER THAN PARENT NODE

XSI_NODE_StringID DS 1F STRING ID VALUE

XSI_NODE_STRLEN DS 1F LENGTH OF THE STRING

XSI_NODE_HEADER_END DS 0X

XSI_NODE_STRING DS C THE ACTUAL STRING

**

* Description of the Parameters: *

* Input: SYS_SVC_PARM - Contain the XSI structure information *

* STRID - String ID used for indexing the list *

* Output: STR_ADDR - address of string from requested StringID *

* STRLEN - the length of the string found by StringID *

* EXIT DIAG_CODE - XSI_DC_XXX details to return code *

* (Set only if error found) *

* RETCODE - XSI_RC_FAILURE if string cannot be retrieved*

* XSI_RC_SUCCESS if string retrieved ok *

**

PARMLIST DSECT

SYS_SVC_PARM_PTR DS 1D

STR_ADDR_PTR DS 1D

STRLEN_PTR DS 1D

STRID_PTR DS 1D

DIAGCODE_PTR DS 1D

RETCODE_PTR DS 1D

**

* EXIT DIAGNOSTIC CODE *

**

* Caller tries to retrieve string, but StringID is out of bound

XSI_DC_INCORRECT_StringID_OUTOFBOUND EQU 13

* After gxle1idr obtained the pointer to the tree node, the string

* ID is not matching with the StringID passed in from parameter

XSI_DC_INCORRECT_ID_LOCATION_ERROR EQU 14

* Eye Catcher string is incorrect

XSI_DC_INCORRECT_EYE_CATCHER EQU 15

**

* RETURN CODE *

GXLE4IDR

Appendix K. Exit examples - AMODE 64 251

**

XSI_RC_SUCCESS EQU 0

XSI_RC_FAILURE EQU 1

SYS_SVC_PARM EQU 0

STR_ADDR EQU 0

STRLEN EQU 0

STRID EQU 0

EXIT_DIAG_CODE EQU 0

RETCODE EQU 0

 END

GXLE4IDR

252 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Appendix L. Supported encodings

The following table displays the encodings supported by z/OS XML System

Services. Displayed in the table are the code page names, associated CCSID and

equate names. Assembler callers use equate names without the ″GXLH″ prefix.

Rule: If you require a different encoding, you must first convert to one of the below

before invoking the z/OS XML parser.

 Table 29. Code page CCSID values

Code page CCSID Equate Names

UTF-8 1208 GXLHXEC_ENC_UTF_8

UTF-16 (big endian) 1200 GXLHXEC_ENC_UTF_16

EBCDIC/IBM-037 37 GXLHXEC_ENC_IBM_037

EBCDIC/IBM-273 273 GXLHXEC_ENC_IBM_273

EBCDIC/IBM-277 277 GXLHXEC_ENC_IBM_277

EBCDIC/IBM-278 278 GXLHXEC_ENC_IBM_278

EBCDIC/IBM-280 280 GXLHXEC_ENC_IBM_280

EBCDIC/IBM-284 284 GXLHXEC_ENC_IBM_284

EBCDIC/IBM-285 285 GXLHXEC_ENC_IBM_285

EBCDIC/IBM-297 297 GXLHXEC_ENC_IBM_297

EBCDIC/IBM-500 500 GXLHXEC_ENC_IBM_500

EBCDIC/IBM-871 871 GXLHXEC_ENC_IBM_871

EBCDIC/IBM-1047 1047 GXLHXEC_ENC_IBM_1047

EBCDIC/IBM-1140 1140 GXLHXEC_ENC_IBM_1140

EBCDIC/IBM-1141 1141 GXLHXEC_ENC_IBM_1141

EBCDIC/IBM-1142 1142 GXLHXEC_ENC_IBM_1142

EBCDIC/IBM-1143 1143 GXLHXEC_ENC_IBM_1143

EBCDIC/IBM-1144 1144 GXLHXEC_ENC_IBM_1144

EBCDIC/IBM-1145 1145 GXLHXEC_ENC_IBM_1145

EBCDIC/IBM-1146 1146 GXLHXEC_ENC_IBM_1146

EBCDIC/IBM-1147 1147 GXLHXEC_ENC_IBM_1147

EBCDIC/IBM-1148 1148 GXLHXEC_ENC_IBM_1148

EBCDIC/IBM-1149 1149 GXLHXEC_ENC_IBM_1149

© Copyright IBM Corp. 2008 253

|

254 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Appendix M. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/systems/z/os/zos/bkserv/

© Copyright IBM Corp. 2008 255

http://www.ibm.com/systems/z/os/zos/bkserv/

256 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the products and/or the programs described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 257

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming Interface information

This publication documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of z/OS XML System Services.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 BookManager MVS

C/MVS OS/390

C/370 RACF

CICS Resource Link

IBM SP

IBMLink VTAM

Language Environment z/OS

Library Reader zSeries

Library Server z/VM

Adobe, Acrobat, and PostScript are either registered trademarks or trademarks of

Adobe Systems Incorporated in the United States, other countries, or both.

IBM, the IBM logo, ibm.com and DB2 are registered trademarks of International

Business Machines Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

W3C is a trademark (registered in numerous countries) of the World Wide Web

Consortium; marks of W3C are registered and held by its host institutions MIT,

ERCIM, and Keio.

258 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Other company, product, and service names may be trademarks or service marks

of others.

Acknowledgments

Contact your system administrator.

Notices 259

260 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Index

A
accessibility 255

B
B2B 1

business-to-business 1

C
callable service

GXL1CTL (GXL4CTL) 82

GXL1INI (GXL4INI) 86

GXL1LOD (GXL4LOD) 98

GXL1PRS (GXL4PRS) 90

GXL1QXD (GXL4QXD) 93

GXL1TRM (GXL4TRM) 96

gxlpControl 37

gxlpInit 41

gxlpLoad 44

gxlpParse 46

gxlpQuery 49

gxlpTerminate 51

D
data macros 9, 15

data model 15

diagnosis and problem determination 111

XMLDATA IPCS subcommand 111

diagnostic area 113

disability 255

Document Type Definition 1

DTD 1

DTDs
processing 29

E
encoding support 31

entity references
resolving 29

example
GXLSYM64 234

examples
GXL1CTL 182

GXL1INI 183

GXL1PRS 185

GXL1TRM 186

GXL4CTL 188

GXL4INI 189

GXL4PRS 191

GXL4TRM 192

GXLFST31 194

GXLFST64 224

GXLGST31 198

examples (continued)
GXLGST64 228

GXLSYM31 203

exit service
GXLFST31(GXLFST64) 107

GXLGST31(GXLGST64) 104

GXLPSYM31 (GXLPSYM64) 76

GXLSYM31 (GXLSYM64) 109

G
GXL1CTL

example 182

GXL1INI
example 183

GXL1PRS
example 185

GXL1TRM
example 186

GXL4CTL
example 188

GXL4INI
example 189

GXL4PRS
example 191

GXL4TRM
example 192

GXLFST31
example 194

GXLFST64
example 224

GXLGST31
example 198

GXLGST64
example 228

GXLHXEC_CTL_LOAD_OSR 39

GXLHXEC_FEAT_FULL_END 42

GXLSYM31
example 203

GXLSYM64
example 234

H
header files 15

headers 9

HTML 1

I
info record

attribute flag 23

Aux info record 19

compatibility
31-bit 23

64-bit 23

default XML structures 21

© Copyright IBM Corp. 2008 261

info record (continued)
entities 21

error record 19

extended end element record 22

interactions with other features 22

parsed data stream 18

invoking the z/OS XML System Services APIs 79

K
keyboard 255

L
length/value pairs 23

load function
assembler interface 98

C/C++ interface 44

LookAt message retrieval tool x

M
managing memory resources 32

memory
free 107

get 104

message retrieval tool, LookAt x

multithreaded environment
using the parser 30

N
namespace

declarations 30

namespaces 1

Notices 257

O
OIMA 53

Optimized Schema Representations 13

OSR generator
control operation

C/C++ interface 55

entity resolver
C/C++ interface 66

generate OSR
C/C++ interface 70

generate StringID table
C/C++ interface 73

load OSR
C/C++ interface 68

load schema
C/C++ interface 60

StringID handling
C/C++ interface 63

OSR generator instance
initialize

C/C++ interface 53

OSR generator instance (continued)
terminate

C/C++ interface 58

OSRs 13

output buffer 15

P
parse instance

initialize
assembler interface 86

terminate
assembler interface 96

C/C++ interface 51

parser
initialize

C/C++ interface 41

parser control function
perform

assembler interface 82

C/C++ interface 37

parsing XML documents 11

publications
on CD-ROM ix

softcopy ix

R
reason code

obtaining a dump 114

reason codes
listed by value 119, 139, 145

record forms 24

0 25

1 25

2 25

3 26

record header 16

record type
values 26

record types 17

recovery considerations 31

recovery routine 114

return codes
listed by value 117

S
Schema, XML 1

servicing the dynamic LPA exit 115

servicing the parser 115

setting up OSR environment 14

shortcut keys 255

SLIP trap 114

spanning buffers 28

splitting multibyte characters 29

splitting records 29

string identifiers 23

string representation
default 23

StringID handler 76

262 z/OS V1R10.0 z/OS XML User’s Guide and Reference

StringID service 109

System Services Exit Interface 101

common register conventions 101

input registers 101

output registers 102

environmental requirements 102

exit functions 101

restrictions 102

T
tasks

(noun, gerund phrase)
steps 12

performing validating parse
steps 13

U
utility

gxluControlOSRG 55

gxluGenOSR 70

gxluGenStrIDTbl 73

gxluInitOSRG 53

gxluLoadOSR 68

gxluLoadSchema 60

gxluSetEntityResolver 66

gxluSetStrIDHandler 63

gxluTermOSRG 58

W
W3C 1

World Wide Web Consortium 1

X
XEC_FEAT_FULL_END 39, 84, 87

XEC_FEAT_VALIDATE 87

XML document
query

assembler interface 93

C/C++ interface 49

XML Schema 1

XMLDATA IPCS subcommand 111

xsdosrg
command description 167

xsdosrg command 167

Z
z/OS

publications
on CD-ROM ix

softcopy ix

z/OS XML parser 1, 2

z/OS XML System Services 2

Index 263

264 z/OS V1R10.0 z/OS XML User’s Guide and Reference

Readers’ Comments — We’d Like to Hear from You

z/OS

XML System Services User’s Guide and Reference

 Publication No. SA23-1350-03

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SA23-1350-03

SA23-1350-03

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

MHVRCFS, Mail Station P181

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5655-G52

Printed in USA

SA23-1350-03

	Contents
	Tables
	About this document
	Who should use this document
	Where to find more information
	Softcopy publications
	IBM Systems Center publications
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS

	Summary of changes
	Chapter 1. Introduction
	What is XML?
	z/OS XML System Services

	Chapter 2. Overview of z/OS XML System Services
	z/OS XML System Services features
	z/OS XML System Services functions
	Querying XML documents
	Parsing XML documents without validation
	Parsing XML documents with validation

	Document processing model
	Output buffer format
	Optimized Schema Representation
	String Identifiers
	Memory management
	Dynamic LPA support
	Enable offload to specialty engines

	Chapter 3. Querying XML documents
	Header files and data macros

	Chapter 4. Parsing XML documents
	Steps for parsing XML documents without validation
	Steps for parsing XML documents with validation
	Using Optimized Schema Representations
	Setting up the environment
	Usage tips

	Header files and data macros
	Parsed data model
	Common record header
	Record (token) types

	Metadata records
	Buffer info record
	Error info record
	Aux info record
	Entities and default XML structures
	Interactions with other features

	Extended end element record
	Default attribute flag
	31- and 64-bit compatibility

	Length/Value pairs
	String Identifiers
	Record forms
	Record form 0
	Record form 1
	Record form 2
	Record form 3

	Field values by record type
	Spanning buffers
	Splitting records
	Splitting multibyte characters

	Processing DTDs
	Resolving entity references
	Namespace declarations
	Using the z/OS XML parser in a multithreaded environment

	Chapter 5. Additional usage considerations
	Recovery considerations
	Encoding support
	EBCDIC encoding considerations

	Managing memory resources
	Using return and reason codes

	Chapter 6. z/OS XML parser API: C/C++
	Setting XPLINK compiler option
	Support for the Metal C compiler option
	Where to find the header files, DLLs and side decks
	Using the recovery routine
	z/OS XML XL C/C++ API
	gxlpControl — perform a parser control function
	gxlpInit — initialize the z/OS XML parser
	gxlpLoad — load a z/OS XML function
	gxlpParse — parse a buffer of XML text
	gxlpQuery — query an XML document
	gxlpTerminate — terminate a parse instance

	OSR generator API
	gxluInitOSRG — initialize an OSR generator instance
	gxluControlOSRG — perform an OSR generator control operation
	gxluTermOSRG — terminate an OSR generator instance
	gxluLoadSchema — load a schema into the OSR generator
	gxluSetStrIDHandler — specify the StringID handler for OSR generation
	gxluSetEntityResolver — specify the entity resolver for OSR generation
	gxluLoadOSR — load an OSR into the OSR generator
	gxluGenOSR — generate an Optimized Schema Representation (OSR)
	gxluGenStrIDTbl — generate StringID table from an OSR
	GXLPSYM31 (GXLPSYM64) — StringID handler

	Chapter 7. z/OS XML parser API: Assembler
	How to invoke the z/OS XML System Services assembler API
	z/OS XML parser Assembler API
	API entry points
	Common register conventions
	Input registers
	Output registers
	Environmental requirements

	Using the recovery routine
	GXL1CTL (GXL4CTL) — perform a parser control function
	GXL1INI (GXL4INI) — initialize a parse instance
	GXL1PRS (GXL4PRS) — parse a buffer of XML text
	GXL1QXD (GXL4QXD) — query an XML document
	GXL1TRM (GXL4TRM) — terminate a parse instance
	GXL1LOD (GXL4LOD) — load a z/OS XML function

	Chapter 8. z/OS XML System Services exit interface
	Exit functions
	Common register conventions
	Input registers
	Output registers
	Environmental requirements
	Restrictions

	GXLGST31 (GXLGST64) — get memory
	GXLFST31 (GXLFST64) — free memory
	GXLSYM31 (GXLSYM64) — StringID service

	Chapter 9. Diagnosis and problem determination
	XMLDATA IPCS subcommand
	Diagnostic Area
	SLIP trap for return codes from the z/OS XML parser
	ARR recovery routine

	Chapter 10. System Admin: Servicing the z/OS XML parser
	Servicing the dynamic LPA exit

	Appendix A. Return Codes Listed by Value
	Appendix B. Reason Codes Listed by Value
	Appendix D. Reason Codes Listed by Value
	Appendix D. Reason Codes Listed by Value
	Appendix E. xsdosrg command reference
	Name
	Synopsis
	Description
	Options
	Operands
	Example
	Environment variables
	Localization
	Files
	Usage notes
	Exit values
	Portability
	Related information

	Appendix F. C/C++ header files and assembler macros
	gxlhxml.h - main z/OS XML header file
	gxlhxeh.h (GXLYXEH) - mapping of the output buffer record
	gxlhxec.h (GXLYXEC) - constants definitions
	gxlhqxd.h (GXLYQXD) - mapping of the output from the query XML declaration service
	gxlhxd.h (GXLYXD) - mapping of extended diagnostic area
	gxlhxr.h (GXLYXR) - defines the return codes and reason codes
	gxlhxsv.h (GXLYXSV) - mapping of the system service vector
	gxlhxft.h (GXLYXFT) - mapping of the control feature input output area
	gxlhxosr.h (GXLYXOSR) - mapping of the OSR control area
	gxlhxosrg.h - OSR generator prototypes
	gxlhxosrd.h - mapping of the OSR generator diagnostic area
	gxlhxstr.h - StringID table

	Appendix G. Java file
	gxljxr.java - return and reason code declarations

	Appendix H. Callable services examples - AMODE 31
	GXL1CTL example
	GXL1INI example
	GXL1PRS example
	GXL1TRM example

	Appendix I. Callable services examples - AMODE 64
	GXL4CTL example
	GXL4INI example
	GXL4PRS example
	GXL4TRM example

	Appendix J. Exit examples - AMODE 31
	GXLE1FRM (GXLFST31 example)
	GXLE1GTM (GXLGST31 example)
	GXLSYM31 example

	Appendix K. Exit examples - AMODE 64
	GXLE4FRM (GXLFST64 example)
	GXLE4GTM (GXLGST64 example)
	GXLSYM64 example

	Appendix L. Supported encodings
	Appendix M. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface information
	Trademarks
	Acknowledgments
	Contact your system administrator.

	Index
	Readers’ Comments — We'd Like to Hear from You

