

OS/390 IBM

Security Server
LDAP Client Application Development
Guide and Reference

 SC24-5878-01

OS/390 IBM

Security Server
LDAP Client Application Development
Guide and Reference

 SC24-5878-01

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix A, “Notices”
on page 109.

Acknowledgements

Some of the material contained in this document is a derivative of LDAP documentation provided with the University of Michigan
LDAP reference implementation (Version 3.3). Copyright  1992-1996, Regents of the University of Michigan, All Rights Reserved.

IBM obtained the JNDI HTML documentation files from Sun Microsystems, Inc.

Second Edition (September 1999)

This edition, SC24-5878-01, applies to Version 2 Release 8 of OS/390 Security Server (5647-A01), and to all subsequent releases
and modifications until otherwise indicated in new editions.

This edition replaces SC24-5878-00.

 Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . vii
Who Should Use This Book . vii
How This Book Is Organized . vii
Conventions Used in This Book . vii
Where to Find More Information . viii
Online Books . viii
How to Send Your Comments . viii

| Summary of Changes . ix
| New Information for Release 8 . ix
| Changed Information for Release 8 . ix

Chapter 1. LDAP Programming . 1
How LDAP Is Defined . 1
Data Model . 2
LDAP Names . 2
Function Overview . 3
Compiling, Linking, and Running a Program . 5
Using the API . 6

Basic Structure . 6
Performing an Operation . 7

Example: Adding an entry . 8
Example: Modifying an entry . 8
Example: Deleting an entire entry . 9
Example: Changing the RDN of an entry . 9
Example: Comparing an attribute value with its value in an entry in the directory 9
Example: Reading a directory entry's contents . 10
Example: Listing all sub-entries of an entry with associated objectClass attribute values 10
Example: Reading all objectClass attribute values for all entries below a given entry 10

Getting Results . 10
Error Processing . 11

Using ldap_get_errno() and ldap_result2error() . 11
Using ldap_err2string() and ldap_perror() . 12
Tracing . 13

Threadsafety . 13
Synchronous Versus Asynchronous Operation . 13
Example Program . 14
LDAP Client for Java . 20

Chapter 2. LDAP Routines . 21
LDAP Controls . 25
Session Controls . 25
Using RACF Data . 26
Deprecated LDAP APIs . 26

ldap_abandon . 27
ldap_add . 29
ldap_bind . 32
ldap_compare . 37
ldap_delete . 40
ldap_error . 42

 Copyright IBM Corp. 1999 iii

ldap_first_attribute . 46
ldap_first_entry/reference . 48
ldap_get_dn . 52
ldap_get_values . 54
ldap_init . 57
ldap_memfree . 69
ldap_message . 70
ldap_modify . 72
ldap_parse_result . 75
ldap_rename . 77
ldap_result . 80
ldap_search . 83
ldap_ssl . 88
ldap_url . 92
LDAP Header Files . 95

lber.h . 95
ldap.h . 96
ldapssl.h . 105

Appendix A. Notices . 109
Programming Interface Information . 110
Trademarks . 110

Glossary . 111

Bibliography . 115
IBM C/C++ Language Publication . 115
IBM OS/390 Security Server Publication . 115
IBM OS/390 Cryptographic Services Publication . 115

Index . 117

iv Application Development Guide and Reference

 Tables

1. LDAP API Functions . 4
2. LDAP Error Codes and Descriptions . 43
3. The optionValue Parameter Specifications . 58

 Copyright IBM Corp. 1999 v

vi Application Development Guide and Reference

About This Book

This book describes the Lightweight Directory Access Protocol (LDAP) client application development for
OS/390.

Who Should Use This Book

This document is intended for application programmers. Application programmers should be experienced
and have previous knowledge of directory services.

How This Book Is Organized

This book is divided into two chapters:

� Chapter 1, “LDAP Programming” on page 1 which describes how to use the LDAP client application
programming interface.

� Chapter 2, “LDAP Routines” on page 21 which describes each LDAP client routine.

Conventions Used in This Book

This book uses the following typographic conventions:

Bold Bold words or characters represent API names, attributes, status codes,
environment variables, parameter values, and system elements that you must
enter into the system literally, such as commands, options, or path names.

Italic Italic words or characters represent values for variables that you must supply.

Example font Examples and information displayed by the system appear in constant width
type style.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item one
or more times.

\ A backslash is used as a continuation character when entering commands
from the shell that exceed one line (255 characters). If the command
exceeds one line, use the backslash character \ as the last nonblank
character on the line to be continued, and continue the command on the next
line.

 Copyright IBM Corp. 1999 vii

Where to Find More Information

Where necessary, this book references information in other books, using shortened versions of the book
title. For complete titles and order numbers of the books for all products that are part of OS/390, see the
OS/390 Information Roadmap, GC28-1727. For a list of titles and order numbers of the books that are
useful for the LDAP Client, see “Bibliography” on page 115.

 Online Books

All the books belonging to the OS/390 DCE library are available as online publications. They are included
in the IBM OS/390 Collection, SK2T-6700.

All the books in the Online Library are viewable, without change, on these IBM operating platforms:
OS/390, VM, OS/2, DOS, and AIX/6000. The same book can be viewed on any of these platforms
using the IBM BookManager Library Readers for OS/2, Windows, and DOS, or any of the IBM
BookManager READ licensed programs for OS/390, VM, OS/2, Windows, DOS, or AIX/6000.

The booklet included with the Online Library provides details on accessing the OS/390 DCE online
publications.

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and high-quality information. If you
have any comments about this book or any other OS/390 documentation:

� Visit the home page at: http://www.ibm.com/s39�/os39�
� Fill out one of the forms at the back of the book and return it by mail, by fax, or by giving it to an IBM

representative.

viii Application Development Guide and Reference

| Summary of Changes

| Summary of Changes
| for SC24-5878-01
| OS/390 Version 2 Release 8

| This book contains information previously presented in OS/390 Security Server LDAP Client Application
| Development Guide and Reference, SC24-5878-00, which supports OS/390 Version 2 Release 7.

| The following summarizes the changes to that information.

| New Information for Release 8
| � Two methods of security are supported: simple authentication and certificate authentication.

| � The LDAP_OPT_V2_WIRE_FORMAT session option has been added.

| Changed Information for Release 8
| � The LDAP client and server are both packaged in the OS/390 Security Server and are always
| enabled.

| � The information in “LDAP Client for Java” on page 20 has been removed and a reference to the
| online HTML version of the information is provided.

| � The ldapdelete.c example program and the lber.h, ldap.h, and ldapssl.h header files have been
| updated.

| This book includes terminology, maintenance, and editorial changes that are not marked. Technical
| changes or additions to the text and illustrations, however, are indicated by a vertical line to the left of the
| change.

 Copyright IBM Corp. 1999 ix

x Application Development Guide and Reference

 Chapter 1. LDAP Programming

The Lightweight Directory Access protocol (LDAP) was defined in response to many complaints about the
complexity of interacting with an X.500 Directory Service using the full Directory Access Protocol (DAP). A
number of programmers at the University of Michigan proposed and implemented a lightweight version of
a directory access protocol. This work has grown into what is termed the LDAP protocol.

The LDAP support in OS/390 is for client access to Directory Services that accept the LDAP protocol.
The LDAP client allows programs running on OS/390 UNIX to enter and extract information into and from
a Directory Service. The OS/390 Security Server LDAP Server can be used to store and extract
information on OS/390 using the LDAP protocol. See the OS/390 Security Server LDAP Server
Administration and Usage Guide, SC24-5861 for more information.

| Regarding security, two authentication methods are supported: simple authentication and certificate
| authentication. With simple authentication, a user ID and password are sent (in the clear) from the client

to the server in order to establish who is contacting the LDAP server for information.

However, Secure Socket Layer (SSL) can be used to secure the socket connection between the client and
the server. SSL can be used to encrypt the user ID and password.

| With certificate authentication, the identity from the client certificate sent to the LDAP Server on an SSL
| socket connection is used to establish who is contacting the LDAP Server for information. Certificate
| authentication is also referred to as SASL external bind and is provided by the ldap_sasl_bind API.

This chapter focuses on the following topics:

� Defining the LDAP protocol
� The LDAP Data model, including the format of distinguished names in LDAP
� An overview of the functions supported by the LDAP client API on OS/390
� Details on compiling and link-editing a program that uses the LDAP client API
� Information on how to use the LDAP client APIs
� An example program which shows how the LDAP client API could be used as a Directory Service
� The LDAP Version 3 Client for Java

How LDAP Is Defined

The LDAP protocol is defined by a number of Internet Engineering Task Force (IETF) request for
comments (RFCs). This protocol is defined in IETF RFC 1777 Lightweight Directory Access Protocol.
Other RFCs of interest include:

� RFC 1778 - The String Representation of Standard Attribute Syntaxes
� RFC 1779 - A String Representation of Distinguished Names
� RFC 1960 - A String Representation of LDAP Search Filters
� RFC 1823 - The LDAP Application Program Interface
� RFC 2255 - The LDAP URL Format
� RFC 1738 - Uniform Resource Locators (URL)

IETF RFC 1823 defines a programming interface for using the LDAP protocol to communicate with a
Directory Service that accepts the LDAP protocol. The programming interface available on OS/390 is very
similar to the interface defined by RFC 1823.

IETF RFC 2251 Lightweight Directory Access Protocol (v3) defines the so-called LDAP Version 3
specification. LDAP Version 3 is what is implemented by the LDAP client interfaces for OS/390.

 Copyright IBM Corp. 1999 1

The LDAP protocol is defined using ASN.1 notation. The wire protocol is defined as the Basic Encoding
Rules (BER) encodings of the ASN.1-defined structures. Furthermore, these BER encoded messages are
defined to be carried over a TCP/IP socket connection to a server that accepts the LDAP protocol.

 Data Model

The LDAP data model is closely aligned with the X.500 data model. In this model, a Directory Service
provides a hierarchically organized set of entries. Each of these entries is represented by an object class
(or set of object classes). The object class of the entry determines the set of attributes which are required
to be present in the entry as well as the set of attributes that can optionally appear in the entry. An
attribute is represented by an attribute type and one or more attribute values. In addition to the attribute
type and values, each attribute has an associated syntax which describes the type of the attribute values.
Examples of attribute syntaxes include PrintableString and OctetString.

To summarize, the directory is made up of entries. Each entry contains a set of attributes. These
attributes can be single or multi-valued (have one or more values associated with them). The object class
of an entry determines the set of attributes that must and the set of attributes that may exist in the entry.
Refer to the OS/390 DCE Application Development Guide: Directory Services for more about the X.500
directory information model.

In XDS/XOM, a complex set of arrays of structures is used to represent a directory entry. In LDAP, this is
somewhat simplified. With the LDAP API, a set of C language utility routines is used to extract attribute
type and value information from directory entry information returned from an LDAP search operation.
Unlike XDS/XOM, attribute values are provided to the calling program in either null-terminated character
string form or in a simple structure that specifies a pointer and a length value. Further, attribute types are
provided to the program as null-terminated character strings instead of object identifiers.

 LDAP Names

The LDAP protocol (and API) uses so-called “typed” names to identify directory entries. In contrast, DCE
CDS and the Domain Name Service (DNS) use “untyped” names to identify entries. Each directory entry
is identifiable by its fully distinguished name. The distinguished name (DN) is constructed by catenating
the relative distinguished names (RDNs) of each entry in the directory hierarchy leading from the root of
the namespace to the entry itself. This is identical to the X.500 naming model. With LDAP, however, a
distinguished name is specified using a null-terminated character string instead of a complex set of nested
arrays of XOM structures. Note that an RDN can consist of multiple attribute type/value pairs.

Examples of LDAP RDNs include:

 c=US
 o=Acme International
 ou=Marketing+l=Virginia
 cn=Jane Doe

The same set of RDNs specified in the string format of X.500 names in DCE would appear as:

"c=US", "o=Acme International", "ou=Marketing;l=Virginia", and "cn=Jane Doe"

If each of these RDNs represented directory entries that appeared below the entry before it, the DN for the
lowest entry in the directory (using the DCE X.500 string form) would be:

/c=US/o="Acme International"/ou=Marketing;l=Virginia/cn="Jane Doe"

The LDAP format for this DN is a bit different:

2 Application Development Guide and Reference

cn=Jane Doe, ou=Marketing+l=Virginia, o=Acme International, c=US

An LDAP DN is specified as a null-terminated character string in a right-to-left fashion (right-to-left refers to
the ordering of RDNs from highest to lowest in the directory hierarchy). Note that embedded spaces are
taken as part of the attribute value for RDNs and do not require quotation marks. Also note that RDNs
are separated by commas (,) and attribute type/value pairs within an RDN are separated by plus (+) signs.
(Refer to IETF RFC 1779 for more information.)

 Function Overview

The LDAP client API is provided in a C/C++ DLL that is loaded at run time by applications that use the
LDAP API. Two forms of this DLL are provided, one for programs running under the OS/390 shell and
one for programs running from OS/390 Datasets. Refer to “Compiling, Linking, and Running a Program”
on page 5 for details on how to link-edit a program to use the proper form of the LDAP DLL.

Starting with OS/390 Release 7, the LDAP client DLLs are shipped in new locations in PDS and HFS.
| The PDS versions of the DLLs are installed into LPALIB. The HFS versions are installed to

/usr/lpp/ldapclient/lib. Symbolic links are set at installation to this new file system from /usr/lib, so HFS
usage of the LDAP client files should be unchanged.

The LDAP API consists of 53 C language functions. All function names begin with the prefix ldap_. The
functions can be broken down into six categories as shown in Table 1 on page 4.

For detailed information about each LDAP API see Chapter 2, “LDAP Routines” on page 21.

 Chapter 1. LDAP Programming 3

Following is a description of each type of function:

Initialization and Termination Functions
The initialization functions are used to initialize the LDAP programming
interface.

Table 1. LDAP API Functions

Category Function name

Initialization / Termination ldap_init
ldap_open
ldap_ssl_init, ldap_ssl_client_init, ldap_ssl_start
ldap_unbind, ldap_unbind_s

Primitive Operations ldap_abandon
ldap_add, ldap_add_s
ldap_add_ext, ldap_add_ext_s
ldap_bind, ldap_bind_s
ldap_compare, ldap_compare_s
ldap_compare_ext, ldap_compare_ext_s
ldap_delete, ldap_delete_s
ldap_delete_ext, ldap_delete_ext_s
ldap_modify, ldap_modify_s
ldap_modify_ext, ldap_modify_ext_s
ldap_modrdn, ldap_modrdn_s
ldap_rename, ldap_rename_s
ldap_result
ldap_sasl_bind, ldap_sasl_bind_s
ldap_search, ldap_search_s, ldap_search_st
ldap_search_ext, ldap_search_ext_s
ldap_simple_bind, ldap_simple_bind_s

Error Handling ldap_err2string
ldap_get_errno
ldap_perror
ldap_result2error

Results Processing ldap_count_attributes, ldap_first_attribute, ldap_next_attribute
ldap_count_entries, ldap_first_entry, ldap_next_entry
ldap_count_messages, ldap_count_references
ldap_count_values, ldap_get_values
ldap_count_values_len, ldap_get_values_len
ldap_first_message, ldap_first_reference
ldap_get_dn, ldap_get_entry_controls_np
ldap_explode_dn
ldap_msgid, ldap_msgtype
ldap_next_message, ldap_next_reference
ldap_parse_result, ldap_parse_reference_np
ldap_parse_sasl_bind_result

LDAP URL Processing ldap_is_ldap_url
ldap_url_parse
ldap_url_search, ldap_url_search_s, ldap_url_search_st

Utility Functions ldap_control_free, ldap_controls_free
ldap_memfree, ldap_msgfree
ldap_mods_free, ldap_free_urldesc
ldap_set_option, ldap_set_option_np, ldap_get_option
ldap_set_rebind_proc
ldap_value_free, ldap_value_free_len

4 Application Development Guide and Reference

Primitive Operations
Each primitive operation comes in two forms, an asynchronous as well as a
synchronous form. The synchronous form of the operation is specified by the
functions that have the _s suffix. An asynchronous LDAP operation allows
multiple operations to be initiated by the client program without waiting for the
completion of each individual operation. The results of these asynchronous
operations are obtained by calling ldap_result. The synchronous form of the
operation initiates the operation, waits for results, and returns the results to
the caller once the results are returned from the server.

Note that ldap_search provides the capability to read a single entry, list the
sub-entries below a given entry, and search whole sub-trees below a given
entry. In this way, all the primitive operations allowed by the XDS
programming interface are supported by the LDAP API.

Error Handling Functions
The error handling functions allow for extracting (and displaying) textual
information about any LDAP error code that may be returned to the
application program.

Results Processing Functions
The results processing functions are all used to interpret the results that come
back from an ldap_search operation.

LDAP URL Processing Functions
The LDAP URL processing functions work with LDAP-style URLs as specified
in RFC 1959 An LDAP URL Format. An LDAP URL can specify the
parameters necessary to perform an LDAP search operation. These routines
parse or use an LDAP URL to perform an LDAP search operation.

Utility Functions
Utility functions are provided for freeing storage that was allocated by the
LDAP API on behalf of the caller as well as for setting options that determine
certain runtime characteristics of the LDAP programming interface. An
example of an option that can be set is the debug level which allows tracing
to be selectively enabled and disabled at run time.

Compiling, Linking, and Running a Program

As previously stated, the LDAP programming interface is provided as a C/C++ DLL. The DLL will be
loaded at program run time so that calls to the functions in the interface can be made. In order to compile
and link-edit a program that uses the LDAP API, follow these guidelines:

 1. Put

#include <ldap.h>

in all C or C++ source files that make calls to the LDAP programming interface.

2. When compiling, be sure to specify -D_OPEN_THREADS on the compile of the modules that include
<ldap.h>.

3. When compiling, be sure to specify -W0,DLL on the compile of the modules that make calls to the
LDAP API.

4. When link-editing, be sure to specify the LDAP “exports” file in the set of files to be link-edited with the
program. When compiling a program to run under the OS/390 shell or to run from a PDS, this exports
file should be specified as /usr/lib/GLDCLDAP.x.

 Chapter 1. LDAP Programming 5

Note: Release 7 of the LDAP Server was the last release in which EUVCLDAP.x, EUVCLDAP,
ldap.x, and ldap.dll were available. Applications should use GLDCLDAP.x and GLDCLDAP during
link-edit and at run time.

5. When running the program, be sure that the LDAP DLL is accessible. When running under the
OS/390 shell, be sure that the LIBPATH environment variable includes /usr/lib. When running the

| program from an OS/390 dataset, the DLLs will be found in LPALIB.

| 6. If using SSL, follow these steps:

| a. Put

| #include <ldapssl.h>

| in all C or C++ source files.

| b. Ensure that STEPLIB or LIBPATH identifies the SGSKLOAD DLL.

| c. Specify /usr/lib/GSKSSL.x in the link-edit.

Here is an example of a Makefile that is used to build the LDAP example program which deletes an LDAP
entry. It shows one method of setting up the proper environment for building applications that use the
LDAP programming interface:

CFLAGS = -g -W�,DLL -D_OPEN_THREADS -Dmvs -DSSL
CC = c89

ldapdelete : ldapdelete.o
c89 -g -o ldapdelete ldapdelete.o /usr/lib/GLDCLDAP.x

LDAPDLET: ldapdelete.o
c89 -g -o "//'USER.LOAD(LDAPDLET)'" ldapdelete.o /usr/lib/GLDCLDAP.x

 touch LDAPDLET

Using the API

Using the LDAP programming interface is relatively easy compared to using the XDS/XOM programming
interface. Where the XDS/XOM interfaces required setting up some complex nested arrays of XOM
structures, many of the parameters for LDAP APIs are simplified to null-terminated character strings. The
following sections describe each of the basic parts of a program that uses the LDAP programming
interface.

 Basic Structure

The basic structure of a program that uses the LDAP programming interface is the following:

1. Initialize the LDAP programming interface and the connection to the directory server that accepts the
LDAP protocol using ldap_open() or ldap_init().

An example call to ldap_open() looks like:

LDAP Bld = ldap_open("yourhost.acmeInternational.com",
 LDAP_PORT);

The first parameter specifies the DNS host name where the directory server is running and the second
parameter specifies the TCP/IP port number that the directory server is listening on for LDAP
requests. Port 389 is the default port assigned for LDAP communication. The identifier LDAP_PORT
is set to 389.

2. Bind to the Directory Service to establish an identity with the directory server by using ldap_bind().

6 Application Development Guide and Reference

An example call to ldap_bind_s() looks like:

rc = ldap_bind_s(ld,
"cn=Jane Doe, ou=Marketing, o=Acme International, c=US",

 password,
 LDAP_AUTH_SIMPLE);

where password is a null-terminated character string presumably obtained from the user. The LDAP
handle returned from the ldap_open() call is used as the first parameter to the ldap_bind_s()
operation.

3. Perform LDAP operations such as add, modify, delete, compare and search using ldap_add(_s),
ldap_modify(_s), ldap_delete(_s), ldap_compare(_s), and ldap_search(_s) along with calls to
ldap_result() for obtaining results from asynchronous operations. Also, interpret the results obtained
using the LDAP results processing routines. When using LDAP Version 3 protocol, ldap_add_ext(_s),
ldap_delete_ext(_s), ldap_compare_ext(_s), and ldap_search_ext(_s) can be used.

Examples of calls to perform LDAP operations are provided in “Performing an Operation.” See “Getting
Results” on page 10 for examples of calls to ldap_result() as well as calls to the LDAP results
processing routines. When using LDAP Version 3 protocol, ldap_parse_result can be used.

4. When all LDAP operations are completed, unbind and de-initialize the LDAP programming interface
using ldap_unbind() or ldap_unbind_s(). Note that ldap_unbind_s() is identical in function to
ldap_unbind(). It is provided as a convenience to those programs that only do synchronous
operations so that the unbind does not appear to be an asynchronous operation. All unbind
operations are synchronous. Also note that after the ldap_unbind() or ldap_unbind_s() function
returns, the LDAP handle that was returned by ldap_open() or ldap_init() is no longer valid and must
not be used.

An example of ldap_unbind_s() looks like:

rc = ldap_unbind_s(ld);

This will unbind (if necessary) from the directory server and de-initialize the LDAP programming
interface. After the unbind operation completes, the LDAP handle that was passed into the
ldap_unbind_s() is no longer valid and must not be used. Its value should be discarded.

It is acceptable to perform more than one ldap_open() or ldap_init() within the same program. More than
one LDAP handle can be allocated at the same time. This, however, will cause multiple TCP/IP socket
connections to be opened from the client program at the same time. This is discouraged when accessing
only one directory server. When multiple directory servers are to be accessed, multiple LDAP handles can
be active simultaneously.

Performing an Operation

Each LDAP operation is performed by calling the associated LDAP API. Of the operations, ldap_add()
and ldap_modify() are the most complex to setup while ldap_search() is the most complex to interpret
the results. It is not surprising that these deal with adding (or changing) and retrieving directory entry
contents, respectively.

An example call to each LDAP operation will be shown here along with a short explanation of each
parameter's meaning. Refer to Chapter 2, “LDAP Routines” on page 21 for details on the parameters to
each LDAP function in the LDAP API.

 Chapter 1. LDAP Programming 7

Example: Adding an entry
modifications = (LDAPMod BB)malloc(sizeof(LDAPMod B)B4);
for(i=�; i<3; i++) {

modifications[i] = (LDAPMod B)malloc(sizeof(LDAPMod));
modifications[i]->mod_op = LDAP_MOD_ADD;

}
modifications[3] = NULL;

modifications[�]->mod_type = "objectClass";
modifications[�]->mod_values = (char BB)malloc(sizeof(char B)B2);
modifications[�]->mod_values[�] = "person";
modifications[�]->mod_values[1] = NULL;

modifications[1]->mod_type = "cn";
modifications[1]->mod_values = (char BB)malloc(sizeof(char B)B2);
modifications[1]->mod_values[�] = "John Doe";
modifications[1]->mod_values[1] = NULL;

modifications[2]->mod_type = "sn";
modifications[2]->mod_values = (char BB)malloc(sizeof(char B)B2);
modifications[2]->mod_values[�] = "Doe";
modifications[2]->mod_values[1] = NULL;
rc = ldap_add_s(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US",
 modifications);

The bulk of the work in calling ldap_add_s() is in setting up the modifications array. Once this array is
constructed, the call to ldap_add_s() is relatively simple. The modifications array represents all the
attributes (and associated values) that are to be present in the newly created entry. Note that if a binary
attribute value needs to be supplied, the pointer/length form of input should be used. In this case the
mod_op field of the attribute should be set to (LDAP_MOD_ADD ; LDAP_MOD_BVALUES). This
indicates that the value passed in is binary and in pointer/length form.

When data is supplied in a null-terminated character string, it is assumed to be data in the codeset of the
current locale. This data will be converted to ASCII (ISO8859-1) prior to being passed to the LDAP
server. No conversions are performed on values supplied in pointer/length format. The exception to this
is when the LDAP_OPT_UTF8_IO option is set to LDAP_OPT_ON. In this case, all null-terminated
strings are assumed to be UTF-8 strings on input and no translation is performed.

Example: Modifying an entry
modifications = (LDAPMod BB)malloc(sizeof(LDAPMod B)B4);
for(i=�; i<3; i++) {

modifications[i] = (LDAPMod B)malloc(sizeof(LDAPMod));
}
modifications[3] = NULL;

modifications[�]->mod_op = LDAP_MOD_DELETE;
modifications[�]->mod_type = "sn";
modifications[�]->mod_values = (char BB)malloc(sizeof(char B));
modifications[�]->mod_values[�] = NULL;

modifications[1]->mod_op = LDAP_MOD_ADD;
modifications[1]->mod_type = "email";
modifications[1]->mod_values = (char BB)malloc(sizeof(char B)B2);

8 Application Development Guide and Reference

modifications[1]->mod_values[�] = "johnd@acme.com";
modifications[1]->mod_values[1] = NULL;

modifications[2]->mod_op = LDAP_MOD_REPLACE;
modifications[2]->mod_type = "email";
modifications[2]->mod_values = (char BB)malloc(sizeof(char B)B2);
modifications[2]->mod_values[�] = "johnd@acmeInternational.com";
modifications[2]->mod_values[1] = NULL;
rc = ldap_modify_s(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US",
 modifications);

The same modifications array construct that was used for an add operation is used for performing a
modify operation. The difference is that the mod_op field can take on values of LDAP_MOD_ADD,
LDAP_MOD_CHANGE, or LDAP_MOD_DELETE. Just as for ldap_add(), LDAP_MOD_BVALUES can
be bitwise ORed onto the mod_op field to indicate that binary values are supplied. The same conversion
rules are applicable for ldap_modify() as were described for ldap_add().

Example: Deleting an entire entry
msgid = ldap_delete(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US");
msgtype = ldap_result(ld, msgid, 1, NULL, &res);

It is important to note that the delete operation will fail if the entry to be deleted contains any sub-entries
below it in the directory hierarchy. Deletion is not recursive. The example shows how the message ID
that is returned from the asynchronous call is passed to the ldap_result() function in order to wait for the
results of the operation.

Example: Changing the RDN of an entry
rc = ldap_modrdn_s(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US",
 "cn=Jonathan Doe",
 1);

Here, the RDN of the entry is changed. The X.500 data model states that the attribute types and values
that comprise the RDN of an entry are also part of the attribute types and values of the entry itself. When
the RDN of an entry is modified, it is the option of the program to specify whether the attribute values that
made up the old RDN be retained as attribute types and values of the renamed entry. The fourth
parameter is used to make this specification. In the example, the old RDN value is deleted.

Example: Comparing an attribute value with its value in an entry in the
directory
rc = ldap_compare_s(ld,

"cn=Jonathan Doe, ou=Marketing, o=Acme International, c=US",
 "email",
 "johnd@acmeInternational.com");

This operation compared the supplied value ("johnd@acmeInternational.com") to all the values of the
"email" attribute in the entry

"cn=Jonathan Doe, ou=Marketing, o=Acme International, c=US"

 Chapter 1. LDAP Programming 9

If any of the values match, LDAP_COMPARE_TRUE is returned. If none of the "email" attribute's values
match, then LDAP_COMPARE_FALSE is returned. If the attribute does not exist or some other error
occurs, an appropriate error code is returned.

Example: Reading a directory entry's contents
rc = ldap_search_s(ld,

"ou=Marketing, o=Acme International, c=US",
 LDAP_SCOPE_BASE,
 "(objectClass=B)",

NULL, �, &res);

Example: Listing all sub-entries of an entry with associated
objectClass attribute values
attrs[�] = "objectClass";
attrs[1] = NULL;
rc = ldap_search_s(ld,

"ou=Marketing, o=Acme International, c=US",
 LDAP_SCOPE_ONELEVEL,
 "(objectClass=B)",

attrs, �, &res);

Example: Reading all objectClass attribute values for all entries below
a given entry
attrs[�] = "objectClass";
attrs[1] = NULL;
rc = ldap_search_s(ld,

"ou=Marketing, o=Acme International, c=US",
 LDAP_SCOPE_SUBTREE,
 "(objectClass=B)",

attrs, �, &res);

The ldap_search_s() operations shown above exemplify a read, list, and search operation respectively, all
by using the ldap_search_s() programming interface. In the case of the list operation, the ldap_get_dn()
function can be used when looping over the returned results to extract just the distinguished name of the
sub-entries. Specifying NULL for the attributes parameter will result in all attribute types and values being
returned in the results sent to the client program.

 Getting Results

The LDAP results processing functions can be used to interpret the results returned from LDAP search
operations. Recall that the LDAP search operation is used to perform read and list operations as well.
When interpreting the results of a search operation it is usually necessary to loop over the returned
entries, for each entry loop over the set of returned attributes, and for each attribute, get the set of
attribute values for the attribute. The code to perform this results interpretation takes on a similar format
in each case.

An example of this type of processing is:

10 Application Development Guide and Reference

rc = ldap_search_s(ld,
"ou=Marketing, o=Acme International, c=US",

 LDAP_SCOPE_SUBTREE,
 "(;(cn=JaneB)(cn=JonB))",

NULL, �, &res);
for(entry = ldap_first_entry(ld, res);
 entry!=NULL;

entry = ldap_next_entry(ld, entry)) {
dn = ldap_get_dn(ld, entry);
printf("Entry: %s\n", dn);
ldap_memfree(dn);
for(attrtype = ldap_first_attribute(ld, entry, &ber);

attrtype != NULL;
attrtype = ldap_next_attribute(ld, entry, ber)) {

values = ldap_get_values(ld, entry, attrtype);
 i=�;

while(values[i] != NULL) {
printf(" %s = %s\n", attrtype, values[i]);

 i++;
 }

ldap_value_free(values);
ldap_memfree(attrtype);

 }
}

As shown by the code fragment, after getting to the attribute type and values for the returned entry,
null-terminated character strings are used to represent the attribute type and values. This greatly
simplifies accessing Directory Service information.

The ldap_get_values() operation provides attribute values in the form of a null-terminated string. This
routine will convert the returned results into a null-terminated string in the codeset of the current locale.
The data is assured to be (ISO8859-1) coming from the LDAP server. If the data is binary data or
conversions should be avoided then the ldap_get_values_len() must be used. Data is supplied in
pointer/length format and no conversions are performed.

 Error Processing

There are four functions in the LDAP programming interface for handling errors returned from LDAP
operations. Each is used for a slightly different purpose but all accomplish the same goal of returning
error information to the calling program.

Using ldap_get_errno() and ldap_result2error()

The most basic error handling function in the LDAP API is ldap_get_errno(). This function simply returns
the most recent error condition that was logged by the LDAP programming interface against a given LDAP
handle. In the case of LDAP operations that result in errors, the error code value that was returned from
the directory server can be obtained by calling ldap_result2error(), passing in the LDAPMessage that
was returned from the LDAP operation.

There is a subtle difference between using ldap_get_errno() and ldap_result2error() for asynchronous
operations. For asynchronous operations, if an error occurs during the process of sending the request to
the directory server, you must use ldap_get_errno() to obtain the error value. Use the
ldap_result2error() call after a ldap_result() call has completed. In the case of synchronous operations,

 Chapter 1. LDAP Programming 11

either function can be used. In addition, the synchronous functions also return the error code value for the
programmer's convenience.

Be careful in a multithreaded environment when interpreting the error code. If an LDAP operation
completes on a separate thread before the error code value is examined on the current thread, the error
code value returned by ldap_get_errno() will be set to the result of the LDAP operation on the other
thread. Use the ldap_result2error() call in these cases.

Example: Retrieving the error code of an asynchronous operation request
msgid = ldap_delete(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US");
rc = ldap_get_errno(ld);
if (rc != LDAP_SUCCESS) {

/B process the error B/

}

Example: Retrieving the error code using ldap_result2error()
msgtype = ldap_result(ld, msgid, 1, NULL, &res);
rc = ldap_result2error(ld, res, �);
if (rc != LDAP_SUCCESS) {

/B process the error B/

}

Using ldap_err2string() and ldap_perror()

The ldap_err2string() function will, given an LDAP error code, return a null-terminated character string
that provides a textual description of the error.

Another function available in the LDAP programming interface is ldap_perror(). This function will obtain
the LDAP error code and issue a message containing the text returned by ldap_err2string() on the
standard error stream. Note that ldap_perror() will send output to the standard error stream even if the
LDAP error code is set to LDAP_SUCCESS (successful completion).

Be careful in a multithreaded environment when using ldap_perror(). If an LDAP operation completes on
a separate thread before ldap_perror() examines the error code value on the current thread, the error text
emitted by ldap_perror() will reflect the result of the LDAP operation on the other thread. Use the
ldap_result2error() and ldap_err2string() calls in these cases.

Example: Obtaining and using the character string representing the error code
rc = ldap_delete_s(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US"
);
if (rc != LDAP_SUCCESS) {

char BerrString = ldap_err2string(rc);

/B use the error code in a message or log file entry B/

}

12 Application Development Guide and Reference

Example: Sending the result of an operation to the standard error stream
rc = ldap_delete_s(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US");
if (rc != LDAP_SUCCESS) {

ldap_perror(ld, "Error on ldap_delete_s()");
}

 Tracing

Tracing can be enabled in the LDAP programming interface. This is done by one of two methods. The
first method is to use the ldap_set_option() API, specifying the option to be set as LDAP_OPT_DEBUG.
The second method for enabling tracing is to set the LDAP_DEBUG environment variable. The value for
LDAP_DEBUG should be an integer based on the set of trace classes that the user wishes to enable.
Consult the “Debug Levels” section of the ldap.h header file (“ldap.h” on page 96) for a specification of
these trace classes. Note that the LDAP_DEBUG environment variable can be used without recompiling
the client program and provides a means of enabling tracing without changing the client program. The
ldap_set_option() call can be used for limiting the areas of client program operation that should be
traced. Trace output is put on the standard error stream.

An example of enabling all trace classes using the LDAP_DEBUG environment variable (assuming the
program is running from the OS/390 shell) is to enter:

export LDAP_DEBUG=65535

on the OS/390 shell command line prior to running the client program. An example of enabling all trace
classes using the ldap_set_option() LDAP API is:

rc = ldap_set_option(ld, LDAP_OPT_DEBUG, LDAP_DEBUG_ANY);

Note: The example above assumes that LDAP_OPT_PROTOCOL_VERSION is set to
LDAP_VERSION2.

The call to ldap_set_option() can occur at any point after calling ldap_open or ldap_init and prior to
calling ldap_unbind() or ldap_unbind_s().

 Threadsafety

The LDAP programming interface is threadsafe. This is currently implemented by serializing all operations
that are made against a particular LDAP handle. Multiple operations can be safely initiated from multiple
threads in the client program. To have these operations sent to the directory server for possible parallel
processing by the server, asynchronous operations must be used. An alternative is to initialize multiple
LDAP handles. This alternative is not recommended as it will cause multiple open TCP/IP socket
connections between the client program and the directory server.

Synchronous Versus Asynchronous Operation

The asynchronous operations in the LDAP programming interface allow multiple operations to be started
from the LDAP client without first waiting for each operation to complete. This can be quite beneficial in
allowing multiple outstanding search operations from the client program. Searches which take less time to
complete can be returned without waiting for a more complicated search to complete.

However, there is some interplay with the threadsafety support. In order to allow LDAP operations to be
performed from multiple client program threads, operations are serialized. As ldap_result() is an LDAP
operation, if an ldap_result() is initiated on one client thread, any other ldap_result() initiated on another

 Chapter 1. LDAP Programming 13

client thread will be held up until the ldap_result() on the first thread has completed. So, in order to
effectively use asynchronous operations to the advantage of the client program, calls to ldap_result()
should be formulated to complete as quickly as possible so as not to hold up other LDAP operations
possibly initiated on other threads from being started. It is recommended that calls to ldap_result() be
made to wait for the first available result instead of waiting for specific results when running in a
multithreaded environment.

With synchronous operations, even though multiple operations can be initiated on separate threads, the
threadsafety support will serialize these requests at the client, prohibiting these requests from being
initiated to the server. To ensure that the operations are initiated to the server, asynchronous operations
should be used when running in an environment where multiple client program threads may be making
calls to the LDAP programming interface.

 Example Program

The following example program shows how the LDAP programming interface can be used to interact with
a Directory Service. This program can be used to delete an entry from the Directory.

| ??=ifdef __COMPILER_VER__
| ??=pragma filetag ("IBM-1�47")
| ??=endif

| /BBB/
| /B THIS FILE CONTAINS SAMPLE CODE. IBM PROVIDES THIS CODE ON AN B/
| /B 'AS IS' BASIS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS B/
| /B OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES B/
| /B OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. B/
| /BBB/

| /B
| B Copyright (c) 1995 Regents of the University of Michigan.
| B All rights reserved.
| B
| B Redistribution and use in source and binary forms are permitted
| B provided that this notice is preserved and that due credit is given
| B to the University of Michigan at Ann Arbor. The name of the University
| B may not be used to endorse or promote products derived from this
| B software without specific prior written permission. This software
| B is provided "as is" without express or implied warranty.
| B/

| /B ldapdelete.c - simple program to delete an entry using LDAP B/

| #include <stdio.h>
| #include <string.h>
| #include <strings.h>
| #include <stdlib.h>
| #include <ctype.h>
| #include <ldap.h>
| #include <locale.h>

| #ifndef TRUE
| #define TRUE 1
| #endif

| #ifndef FALSE

14 Application Development Guide and Reference

| #define FALSE �
| #endif

| static LDAP Bld;
| static char Bprog;
| static char Bbinddn = NULL;
| static char Bpasswd = NULL;
| static char Bldaphost = "localhost";
| static int ldapport = LDAP_PORT;
| static int not = FALSE;
| static int verbose = FALSE;
| static int contoper = FALSE;
| static int follow_referrals = LDAP_OPT_ON;
| static int deref = LDAP_DEREF_NEVER;
| static int ldapversion = LDAP_VERSION2;
| static int manageDsa = FALSE;
| static LDAPControl manageDsaIT = {
| "2.16.84�.1.11373�.3.4.2", /BOIDB/
| { �, NULL }, /Bno valueB/
| LDAP_OPT_ON /BcriticalB/
| };
| static LDAPControl BM_controls[2] = { &manageDsaIT, NULL};

| static void usage(char Bs);
| static int dodelete(LDAP Bld, char Bdn);
| int rebindproc(LDAP Bld, char BBdnp, char BBpwp, int Bmethodp, int freeit);

| main(int argc, char BBargv)
| {
| char Boptpattern = "nvRMZc?h:V:p:D:w:d:f:K:P:N:";
| int ssl = FALSE;
| char Bkeyfile = NULL, Bkeyfile_pw = NULL, Bkeyfile_dn = NULL;
| char Bp, buf[4�96];
| FILE B fp;
| int i, rc=LDAP_SUCCESS, port = FALSE;
| int debugLevel = �;
| int debugSpecified = FALSE;
| int failureReasonCode ;
| extern char Boptarg;
| extern int optind;

| setlocale(LC_ALL, "");

| if (prog = strrchr(argv[�], '/')) { /B Strip off any path info
| B on program name
| B/
| ++prog;
| }
| else {
| prog = argv[�];
| }

| not = verbose = contoper = ssl = port = FALSE;
| fp = NULL;

| while ((i = getopt(argc, argv, optpattern)) != EOF) {
| switch (i) {

 Chapter 1. LDAP Programming 15

| case 'V':
| ldapversion = atoi(optarg);
| if (ldapversion != LDAP_VERSION2 &&
| ldapversion != LDAP_VERSION3) {
| fprintf(stderr, "Incorrect version level supplied.\n");
| fprintf(stderr, "Supported values for the -V parameter"
| " are 2 and 3\n");
| exit(1);
| }
| break ;
| case 'c': /B continue even if error encountered B/
| contoper = TRUE;
| break;
| case 'h': /B ldap host B/
| ldaphost = strdup(optarg);
| break;
| case 'D': /B bind DN B/
| binddn = strdup(optarg);
| break;
| case 'w': /B password B/
| passwd = strdup(optarg);
| break;
| case 'f': /B read DNs from a file B/
| if ((fp = fopen(optarg, "r")) == NULL) {
| perror(optarg);
| exit(1);
| }
| break;
| case 'd':
| debugLevel = atoi(optarg);
| debugSpecified = TRUE;
| break;
| case 'p':
| ldapport = atoi(optarg);
| port = TRUE;
| break;
| case 'n': /B print deletes, don't actually do them B/
| not = TRUE;
| break;
| case 'R': /B don't automatically chase referrals B/
| follow_referrals = LDAP_OPT_OFF;
| break;
| case 'M':
| manageDsa = TRUE;
| break;
| case 'v': /B verbose mode B/
| verbose = TRUE;
| break;
| case 'K':
| keyfile = strdup(optarg);
| break;
| case 'P':
| keyfile_pw = strdup(optarg);
| break;
| case 'N':
| keyfile_dn = strdup(optarg);
| break;
| case 'Z':

16 Application Development Guide and Reference

| ssl = TRUE;
| break;
| case '?':
| default:
| usage(prog);
| exit(1);
| }
| }

| if (manageDsa && (ldapversion == LDAP_VERSION2)) {
| fprintf(stderr, "-M option requires version 3.\n");
| exit(1);
| }

| if (fp == NULL) {
| if (optind >= argc) {
| fp = stdin;
| }
| }

| if (!not) {
| if (ssl) {
| if (!port) {
| ldapport = LDAPS_PORT;
| }

| if (keyfile == NULL) {
| keyfile = getenv("SSL_KEYRING");
| if (keyfile != NULL) {
| keyfile = strdup(keyfile);
| }
| }

| if (verbose) {
| printf("ldap_ssl_client_init(%s, %s, �,"
| " &failureReasonCode)\n",
| keyfile ? keyfile : "NULL",
| keyfile_pw ? keyfile_pw : "NULL");
| }
| rc = ldap_ssl_client_init(keyfile, keyfile_pw, �,
| &failureReasonCode) ;
| if (rc != LDAP_SUCCESS) {
| fprintf(stderr,
| "ldap_ssl_client_init failed! rc == %d,"
| " failureReasonCode == %d\n",
| rc, failureReasonCode);
| exit(1) ;
| }
| if (verbose) {
| printf("ldap_ssl_init(%s, %d, %s)\n",
| ldaphost, ldapport,
| keyfile_dn ? keyfile_dn : "NULL");
| }
| ld = ldap_ssl_init(ldaphost, ldapport, keyfile_dn) ;
| if (ld == NULL) {
| fprintf(stderr, "ldap_ssl_init failed\n") ;
| perror(ldaphost) ;
| exit(1) ;

 Chapter 1. LDAP Programming 17

| }
| }
| else {
| if (verbose) {
| printf("ldap_init(%s, %d) \n", ldaphost, ldapport);
| }
| if ((ld = ldap_init(ldaphost, ldapport)) == NULL) {
| perror(ldaphost);
| exit(1);
| }
| }

| ldap_set_option_np(ld, LDAP_OPT_PROTOCOL_VERSION, ldapversion);
| if (debugSpecified) {
| ldap_set_option_np(ld, LDAP_OPT_DEBUG, debugLevel);
| }
| ldap_set_option_np(ld, LDAP_OPT_DEREF, deref);
| ldap_set_option_np(ld, LDAP_OPT_REFERRALS, follow_referrals);

| if (binddn != NULL) {
| ldap_set_rebind_proc(ld, (LDAPRebindProc)rebindproc);
| }

| if (ldapversion == LDAP_VERSION2 && binddn != NULL) {
| /B
| B Bind is required for LDAP V2 protocol,
| B but not for V3 (or later) protocols.
| B We also bind if a bind DN was specified.
| B/
| if (ldap_bind_s(ld, binddn, passwd, LDAP_AUTH_SIMPLE)
| != LDAP_SUCCESS) {
| ldap_perror(ld, "ldap_bind");
| exit(1);
| }
| }
| } /B ! not B/

| if (fp == NULL) {
| for (; (rc == LDAP_SUCCESS]] contoper) && optind < argc; ++optind) {
| rc = dodelete(ld, argv[optind]);
| }
| }
| else {
| rc = LDAP_SUCCESS;
| while ((rc == LDAP_SUCCESS]] contoper) &&
| fgets(buf, sizeof(buf), fp) != NULL) {
| buf[strlen(buf) - 1] = '\�'; /B remove trailing newline B/
| if (Bbuf != '\�') {
| rc = dodelete(ld, buf);
| }
| }
| }

| if (!not) {
| ldap_unbind(ld);
| }

18 Application Development Guide and Reference

| exit(rc);
| }

| static void usage(char Bs)
| {
| fprintf(stderr, "usage: %s [options] [-f file] < entryfile] dn ...]\n"
| , s);
| fprintf(stderr, "where:\n");
| fprintf(stderr, " dn\tdistinguished name of entry to delete\n");
| fprintf(stderr, " entryfile\tfile containing DNs to delete\n");
| fprintf(stderr, " \t\ton consecutive lines\n");
| fprintf(stderr, "options:\n");
| fprintf(stderr, " -?\t\tprint this text\n");
| fprintf(stderr, " -V version\tselect LDAP protocol version"
| " (2 or 3; default is 2)\n");
| fprintf(stderr, " -c\t\tcontinue even if error encountered\n");
| fprintf(stderr, " -n\t\tshow what would be done but don't actually"
| " delete\n");
| fprintf(stderr, " -v\t\trun in verbose mode (diagnostics to"
| " standard output)\n");
| fprintf(stderr, " -R\t\tdo not automatically follow referrals\n");
| fprintf(stderr, " -M\t\tTreat referral objects as normal entries."
| " (requires -V 3)\n");
| fprintf(stderr, " -d level\tset LDAP debugging level to 'level'\n");
| fprintf(stderr, " -f file\tperform sequence of deletes listed"
| " in 'file'\n");
| fprintf(stderr, " -D binddn\tbind dn\n");
| fprintf(stderr, " -w passwd\tbind passwd (for simple"
| " authentication)\n");
| fprintf(stderr, " -h host\tldap server\n");
| fprintf(stderr, " -p port\tport on ldap server\n");
| fprintf(stderr, " -Z\t\tuse a secure ldap connection for the"
| " operation\n");
| fprintf(stderr, " -K keyfile\tfile to use for keys/certificates\n");
| fprintf(stderr, " -P key_pw\tkeyfile password\n");
| fprintf(stderr, " -N key_dn\tCertificate Name in keyfile\n");
| }

| static int dodelete(LDAP Bld, char Bdn)
| {
| int rc;

| if (verbose) {
| printf("%sdeleting entry %s\n", not ? "!" : "", dn);
| }
| if (not) {
| rc = LDAP_SUCCESS;
| }
| else {
| rc = ldap_delete_ext_s(ld, dn,
| manageDsa ? M_controls : NULL,
| NULL);
| if (rc != LDAP_SUCCESS) {
| ldap_perror(ld, "ldap_delete");
| }
| else if (verbose) {
| printf("entry removed\n");
| }

 Chapter 1. LDAP Programming 19

| }

| return (rc);
| }

| int rebindproc(LDAP Bld, char BBdnp, char BBpwp, int Bmethodp,
| int freeit)
| {
| if (!freeit) {
| Bmethodp = LDAP_AUTH_SIMPLE;
| if (binddn != NULL) {
| Bdnp = strdup(binddn);
| Bpwp = strdup(passwd);
| }
| else {
| Bdnp = NULL;
| Bpwp = NULL;
| }
| }
| else {
| free(Bdnp);
| free(Bpwp);
| }
| return (LDAP_SUCCESS);
| }

LDAP Client for Java
| LDAP provides an industry-standard Java programming language interface to the LDAP Server directory
| services through the Java Naming and Directory Interface (JNDI). You can find the information about how
| to use the LDAP service provider interface (LDAP SPI) for JNDI in the online information in
| /usr/lpp/ldap/doc/ldappref.html that is packaged with the code. Open this file in your browser and
| choose the “LDAP Client for Java” heading in the table of contents.

20 Application Development Guide and Reference

 Chapter 2. LDAP Routines

This chapter describes the Lightweight Directory Access Protocol (LDAP) routines which are grouped
according to function. The LDAP routines provide access through TCP/IP to directory services which
accept the LDAP protocol. Also, the following header files are shown in this chapter:

� “lber.h” on page 95
� “ldap.h” on page 96
� “ldapssl.h” on page 105

For information on how to use the LDAP functions, including an example program, see Chapter 1, “LDAP
Programming” on page 1. For information on the LDAP Server, see OS/390 Security Server LDAP Server
Administration and Usage Guide.

Following is a summary of the LDAP routines:

ldap_abandon Abandons an asynchronous LDAP operation that is in progress. (See
“ldap_abandon” on page 27.)

ldap_abandon_ext Abandons an asynchronous operation with controls. (See “ldap_abandon” on
page 27.)

ldap_add Performs an asynchronous LDAP add operation. (See “ldap_add” on
page 29.)

ldap_add_ext Performs an asynchronous LDAP add operation with controls. (See
“ldap_add” on page 29.)

ldap_add_ext_s Performs a synchronous LDAP add operation with controls. (See “ldap_add”
on page 29.)

ldap_add_s Performs a synchronous LDAP add operation. (See “ldap_add” on page 29.)

ldap_bind Binds to an LDAP server asynchronously in order to perform directory
operations. (See “ldap_bind” on page 32.)

ldap_bind_s Binds to an LDAP server synchronously in order to perform directory
operations. (See “ldap_bind” on page 32.)

ldap_compare Performs an asynchronous LDAP compare operation. (See “ldap_compare”
on page 37.)

ldap_compare_ext Performs an asynchronous LDAP compare operation with controls. (See
“ldap_compare” on page 37.)

ldap_compare_ext_s Performs a synchronous LDAP compare operation with controls. (See
“ldap_compare” on page 37.)

ldap_compare_s Performs a synchronous LDAP compare operation. (See “ldap_compare” on
page 37.)

ldap_control_free Frees a single LDAPControl structure. (See “ldap_memfree” on page 69.)

ldap_controls_free Frees an array of LDAPControl structures. (See “ldap_memfree” on
page 69.)

ldap_count_attributes Counts the number of attributes in an entry returned as part of a search
result. (See “ldap_first_attribute” on page 46.)

ldap_count_entries Retrieves a count of the entries in a chain of search results. (See
“ldap_first_entry/reference” on page 48.)

 Copyright IBM Corp. 1999 21

ldap_count_messages Returns the number of messages in a result chain, as returned by
ldap_result. (See “ldap_message” on page 70.)

ldap_count_references Returns the number of continuation references in a chain of search results.
(See “ldap_first_entry/reference” on page 48.)

ldap_count_values Counts the number of values in an array of attribute values. (See
“ldap_get_values” on page 54.)

ldap_count_values_len Counts the number of pointers to values in an array of attribute values. (See
“ldap_get_values” on page 54.)

ldap_delete Performs an asynchronous LDAP delete operation. (See “ldap_delete” on
page 40.)

ldap_delete_ext Performs an asynchronous LDAP delete operation with controls. (See
“ldap_delete” on page 40.)

ldap_delete_ext_s Performs a synchronous LDAP delete operation with controls. (See
“ldap_delete” on page 40.)

ldap_delete_s Performs a synchronous LDAP delete operation. (See “ldap_delete” on
page 40.)

ldap_err2string Provides a textual description of an error message. (See “ldap_error” on
page 42.)

ldap_explode_dn Parses LDAP distinguished names. (See “ldap_get_dn” on page 52.)

ldap_first_attribute Begins stepping through an LDAP entry's attributes. (See
“ldap_first_attribute” on page 46.)

ldap_first_entry Retrieves the first entry in a chain of search results. (See
“ldap_first_entry/reference” on page 48.)

ldap_first_message Retrieves the first message in a result chain, as returned by ldap_result.
(See “ldap_message” on page 70.)

ldap_first_reference Retrieves the first continuation reference in a chain of search results. (See
“ldap_first_entry/reference” on page 48.)

ldap_free_urldesc Deallocates an LDAP URL description obtained from a call to
ldap_url_parse. (See “ldap_url” on page 92.)

ldap_get_dn Obtains LDAP distinguished names from an LDAP entry. (See “ldap_get_dn”
on page 52.)

ldap_get_entry_controls_np
Extracts server controls from an entry. (See “ldap_first_entry/reference” on
page 48.)

ldap_get_errno Retrieves the last error code set by an LDAP operation. (See “ldap_error” on
page 42.)

ldap_get_option Retrieves the current value of an LDAP option. (See “ldap_init” on page 57.)

ldap_get_values Retrieves attribute values from an LDAP entry in NULL-terminated character
strings. (See “ldap_get_values” on page 54.)

ldap_get_values_len Retrieves attribute values from an LDAP entry in pointer/length format. (See
“ldap_get_values” on page 54.)

ldap_init Initializes an LDAP context. (See “ldap_init” on page 57.)

22 Application Development Guide and Reference

ldap_is_ldap_url Checks whether a character string represents an LDAP Uniform Resource
Locator (URL). (See “ldap_url” on page 92.)

ldap_memfree Deallocates character strings allocated by the LDAP programming interface.
(See “ldap_memfree” on page 69.)

ldap_modify Performs an asynchronous LDAP modify operation. (See “ldap_modify” on
page 72.)

ldap_modify_ext Performs an asynchronous LDAP modify operation with controls. (See
“ldap_modify” on page 72.)

ldap_modify_ext_s Performs a synchronous LDAP modify operation with controls. (See
“ldap_modify” on page 72.)

ldap_modify_s Modifies LDAP entries synchronously. (See “ldap_modify” on page 72.)

ldap_modrdn Performs an asynchronous LDAP modify relative distinguished name (RDN)
operation. (See “ldap_rename” on page 77.)

ldap_modrdn_s Performs a synchronous LDAP modify RDN operation. (See “ldap_rename”
on page 77.)

ldap_mods_free Deallocates a NULL-terminated array of modification structures. (See
“ldap_modify” on page 72.)

ldap_msgfree Deallocates the memory allocated for a result. (See “ldap_result” on
page 80.)

ldap_msgid Retrieves the message ID associated with an LDAP message. (See
“ldap_result” on page 80.)

ldap_msgtype Retrieves the type of an LDAP message. (See “ldap_result” on page 80.)

ldap_next_attribute Retrieves the next attribute type name in an LDAP result. (See
“ldap_first_attribute” on page 46.)

ldap_next_entry Retrieves the next entry in a chain of search results to parse. (See
“ldap_first_entry/reference” on page 48.)

ldap_next_message Retrieves the next message in a result chain, as returned by ldap_result.
(See “ldap_message” on page 70.)

ldap_next_reference Retrieves the next continuation reference in a chain of search results. (See
“ldap_first_entry/reference” on page 48.)

ldap_open Initializes an LDAP context and opens a connection to an LDAP server under
that context. (See “ldap_init” on page 57.)

ldap_parse_reference_np Extracts information from a continuation reference. (See
“ldap_first_entry/reference” on page 48.)

ldap_parse_result Extracts information from results. (See “ldap_parse_result” on page 75.)

ldap_parse_sasl_bind_result
Extracts server credentials from SASL bind results. (See “ldap_parse_result”
on page 75.)

ldap_perror Prints an indication of the error on the standard error stream. (See
“ldap_error” on page 42.)

ldap_rename Performs an asynchronous LDAP rename operation. (See “ldap_rename” on
page 77.)

 Chapter 2. LDAP Routines 23

ldap_rename_s Performs a synchronous LDAP rename operation. (See “ldap_rename” on
page 77.)

ldap_result Waits for the result of an LDAP operation. (See “ldap_result” on page 80.)

ldap_result2error Interprets a result as returned by ldap_result or one of the synchronous
LDAP search operation routines. (See “ldap_error” on page 42.)

ldap_sasl_bind Binds to an LDAP server asynchronously in order to perform directory
operations using the Simple Authentication Security Layer (SASL). (See
“ldap_bind” on page 32.)

ldap_sasl_bind_s Binds to an LDAP server synchronously in order to perform directory
operations using the Simple Authentication Security Layer (SASL). (See
“ldap_bind” on page 32.)

ldap_search Performs an asynchronous LDAP search operation. (See “ldap_search” on
page 83.)

ldap_search_ext Performs an asynchronous LDAP search operation with controls. (See
“ldap_search” on page 83.)

ldap_search_ext_s Performs a synchronous LDAP search operation with controls. (See
“ldap_search” on page 83.)

ldap_search_s Performs a synchronous LDAP search operation. (See “ldap_search” on
page 83.)

ldap_search_st Performs a synchronous LDAP search operation allowing a timeout to be
specified to limit the time to wait for results. (See “ldap_search” on page 83.)

ldap_set_option Sets the value of an LDAP option. (See “ldap_init” on page 57.)

ldap_set_option_np Sets the value of an LDAP option. This API is nonportable. (See “ldap_init”
on page 57.)

ldap_set_rebind_proc Establishes a call-back function for rebinding during referrals chasing. (See
“ldap_bind” on page 32.)

ldap_simple_bind Binds to an LDAP server asynchronously using simple authentication in order
to perform directory operations. (See “ldap_bind” on page 32.)

ldap_simple_bind_s Binds to an LDAP server synchronously using simple authentication in order
to perform directory operations. (See “ldap_bind” on page 32.)

ldap_ssl_client_init Initializes the SSL library. (See “ldap_ssl” on page 88.)

ldap_ssl_init Initializes an SSL connection. (See “ldap_ssl” on page 88.)

ldap_ssl_start Creates a secure SSL connection. (See “ldap_ssl” on page 88.)

ldap_unbind Unbinds from an LDAP server asynchronously and deallocates an LDAP
handle. (See “ldap_bind” on page 32.)

ldap_unbind_s Unbinds from an LDAP server synchronously and deallocates an LDAP
handle. (See “ldap_bind” on page 32.)

ldap_url_parse Breaks down an LDAP URL into its component pieces. (See “ldap_url” on
page 92.)

ldap_url_search Initiates an asynchronous LDAP search based on an LDAP URL. (See
“ldap_url” on page 92.)

ldap_url_search_s Initiates a synchronous LDAP search based on an LDAP URL. (See
“ldap_url” on page 92.)

24 Application Development Guide and Reference

ldap_url_search_st Initiates a synchronous LDAP search based on an LDAP URL allowing a
timeout to be specified to limit the time to wait for results. (See “ldap_url” on
page 92.)

ldap_value_free Deallocates values returned by ldap_get_values. (See “ldap_get_values” on
page 54.)

ldap_value_free_len Deallocates values returned by ldap_get_values_len. (See
“ldap_get_values” on page 54.)

 LDAP Controls

Certain LDAP Version 3 operations can be extended with the use of controls. Controls can be sent to a
server, or returned to the client with any LDAP message. This type of control is called a server control.

The LDAP API also supports a client-side extension mechanism, which can be used to define client
controls. The client-side controls affect the behavior of the LDAP client library, and are never sent to the
server. Note that client-side controls are not defined for this client library. A common data structure is
used to represent both server-side and client-side controls:

typedef struct ldapcontrol {
 char �ldctl_oid;

struct berval ldctl_value;
 char ldctl_iscritical;
} LDAPControl, �PLDAPControl;

The LDAPControl fields have the following definitions:

ldctl_oid Specifies the control type, represented as a string.

ldctl_value Specifies the data associated with the control (if any). To specify a
zero-length value, set ldctl_value.bv_len to zero and ldctl_value.bv_val to
a zero-length string. To indicate that no data is associated with the control,
set ldctl_value.bv_val to NULL.

ldctl_iscritical Specifies whether the control is critical. If this field is nonzero (critical), the
operation is performed only if the control is appropriate for the operation and
it is recognized and supported by the server (or the client for client-side
controls). In this case, the control is used in performing the operation.

If this field is zero (noncritical), the control is used in performing the
operation only if it is appropriate for the operation and it is recognized and
supported by the server (or the client for client-side controls). Otherwise,
the control will be ignored.

Controls are specified on the LDAP API as lists of controls. Control lists are represented as a
NULL-terminated array of pointers to LDAPControl structures.

 Session Controls

Many of the LDAP Version 3 APIs which perform LDAP operations accept a list of controls (for example,
ldap_search_ext). Alternatively, a list of controls that affects each operation performed on a given LDAP
handle can be set using the ldap_set_option API. These are called session controls. Session controls
apply to the given operation when NULL is specified for the corresponding control list parameter on the
API. If a list of controls is specified for the control parameter on the API, these are used instead of the
session controls on the given operation. If session controls are set, but a specific request does not want
any controls, an empty list of controls should be specified for the control parameter. (This is different from
a NULL parameter; it is a pointer to an array containing a single NULL.)

 Chapter 2. LDAP Routines 25

Session controls also apply to the nonextended APIs which perform LDAP operations. So although
ldap_search, for example, does not accept control list parameters, it will include a server control on its
request if there was a server control set up through ldap_set_option.

Using RACF Data

There are some restrictions when updating information stored in RACF over the LDAP protocol. See the
information about accessing RACF information in the OS/390 Security Server LDAP Server Administration
and Usage Guide.

Deprecated LDAP APIs

Although the following APIs are still supported, their use is deprecated. Use of the newer replacement
APIs is strongly encouraged:

� ldap_ssl_start (use ldap_ssl_client_init and ldap_ssl_init)
� ldap_open (use ldap_init)
� ldap_bind (use ldap_simple_bind)
� ldap_bind_s (use ldap_simple_bind_s)
� ldap_modrdn (use ldap_rename)
� ldap_modrdn_s (use ldap_rename_s)
� ldap_result2error (use ldap_parse_result)
� ldap_perror (use ldap_parse_result)

26 Application Development Guide and Reference

 ldap_abandon

 ldap_abandon
 ldap_abandon
 ldap_abandon_ext

 Purpose

Abandon an asynchronous LDAP operation that is in progress.

 Format
#include <ldap.h>

int ldap_abandon(
 LDAP �ld,
 int msgid)

int ldap_abandon_ext(
 LDAP �ld,
 int msgid,
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

msgid The message ID of an outstanding LDAP operation as returned by a call to
an asynchronous operation such as ldap_search, ldap_modify and so on.

serverctrls Specifies a list of LDAP server controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about server
controls.

clientctrls Specifies a list of LDAP client controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about client
controls.

 Usage

The ldap_abandon and ldap_abandon_ext APIs are used to abandon or cancel an LDAP operation in
progress.

Both APIs check to see if the result of the operation has already been returned by the server. If it has, it
deletes it from the queue of pending received messages. If not, it sends an LDAP abandon operation to
the LDAP Server.

The result of an abandoned operation will not be returned from a future call to ldap_result.

Session controls set by the ldap_set_option API apply to both ldap_abandon and ldap_abandon_ext.
The ldap_abandon_ext API allows controls to be specified which override the session controls for the
given call.

 Chapter 2. LDAP Routines 27

 ldap_abandon

 Error Conditions

The ldap_abandon API returns 0 if it is successful, -1 otherwise. Use ldap_get_errno to retrieve the
error value. See “ldap_error” on page 42 for possible values.

The ldap_abandon_ext API returns LDAP_SUCCESS if successful, otherwise an error code is returned.

 Related Topics
ldap_result ldap_error

28 Application Development Guide and Reference

 ldap_add

 ldap_add
 ldap_add
 ldap_add_s
 ldap_add_ext
 ldap_add_ext_s

 Purpose

Perform an LDAP add operation.

 Format
#include <ldap.h>

int ldap_add(
 LDAP �ld,
 char �dn,
 LDAPMod �attrs[])

int ldap_add_s(
 LDAP �ld,
 char �dn,
 LDAPMod �attrs[])

int ldap_add_ext(
 LDAP �ld,
 char �dn,
 LDAPMod �attrs[],
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls,
 int �msgidp)

int ldap_add_ext_s(
 LDAP �ld,
 char �dn,
 LDAPMod �attrs[],
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

dn Specifies the distinguished name of the entry to add.

attrs A NULL-terminated array of the entry's attributes. The LDAPMod structure
is used to represent attributes, with the mod_type and mod_values fields
being used as described under ldap_modify, and the mod_op field being
used only if you need to specify the LDAP_MOD_BVALUES option.

 Chapter 2. LDAP Routines 29

 ldap_add

Otherwise, it should be set to 0. The LDAPMod structure is shown in
“ldap_modify” on page 72.

serverctrls Specifies a list of LDAP server controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about server
controls.

clientctrls Specifies a list of LDAP client controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about client
controls.

Output

msgidp This result parameter is set to the message ID of the request if the
ldap_add_ext API succeeds.

 Usage

Note that all entries except that specified by the last component in the given DN must already exist.

When data is supplied in a NULL-terminated character string, it is assumed to be data in the codeset of
the current locale. This data will be converted to UTF-8 prior to being passed to the LDAP server. No
conversions are performed on values supplied in pointer/length format (that is, those values specified in
berval structures and when LDAP_MOD_BVALUES is specified).

The ldap_add_ext API initiates an asynchronous add operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not. If successful,
ldap_add_ext places the message ID of the request in *msgidp. A subsequent call to ldap_result can be
used to obtain the result of the operation. The ldap_parse_result API is used to extract information from
the result, including any error information.

Similarly, the ldap_add API initiates an asynchronous add operation and returns the message ID of the
request it initiated. The result of this operation can be obtained by calling ldap_result, and result
information can be extracted by calling ldap_parse_result.

The synchronous ldap_add_ext_s and ldap_add_s APIs both return the resulting error code of the add
operation.

All four of the LDAP add APIs support session controls set by the ldap_set_option API. The
ldap_add_ext and ldap_add_ext_s APIs both allow LDAP Version 3 server controls and client controls to
be specified with the request which overrides the session controls.

 Error Conditions

The ldap_add API returns -1 in case of an error initiating the request. Use ldap_get_errno to retrieve the
error value. See “ldap_error” on page 42 for possible values.

The ldap_add_s, ldap_add_ext, and ldap_add_ext_s APIs return LDAP_SUCCESS if successful,
otherwise an error code is returned. See “ldap_error” on page 42 for possible values.

| If the add is directed to an OS/390 LDAP Server running with an SDBM database, the ldap_add APIs can
return LDAP_OTHER and have completed a partial update to an entry in RACF. The results will match
what would occur if the update were done using the RACF altuser command. If several RACF attributes
are being updated and one of them is in error, RACF reports on the error, but still updates the other
attributes. The RACF message text is also returned in the result.

30 Application Development Guide and Reference

 ldap_add

 Related Topics
ldap_modify

 Chapter 2. LDAP Routines 31

 ldap_bind

 ldap_bind
 ldap_sasl_bind
 ldap_sasl_bind_s
 ldap_simple_bind
 ldap_simple_bind_s
 ldap_unbind
 ldap_unbind_s
 ldap_set_rebind_proc
 ldap_bind (deprecated)
 ldap_bind_s (deprecated)

 Purpose

LDAP routines for binding and unbinding.

 Format
#include <ldap.h>

int ldap_sasl_bind(
 LDAP �ld,
 char �who,
 char �mechanism,

struct berval �cred,
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls,
 int �msgidp)

int ldap_sasl_bind_s(
 LDAP �ld,
 char �who,
 char �mechanism,

struct berval �cred,
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls,

struct berval ��servercredp)

int ldap_simple_bind(
 LDAP �ld,
 char �who,
 char �passwd)

int ldap_simple_bind_s(
 LDAP �ld,
 char �who,
 char �passwd)

int ldap_unbind(
 LDAP �ld)

int ldap_unbind_s(
 LDAP �ld)

void ldap_set_rebind_proc(
 LDAP �ld,

32 Application Development Guide and Reference

 ldap_bind

 LDAPRebindProc rebindproc)

int ldap_bind(
 LDAP �ld,
 char �who,
 char �cred,
 int method)

int ldap_bind_s(
 LDAP �ld,
 char �who,
 char �cred,
 int method)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

who Specifies the distinguished name of the entry as which to bind.

| cred Specifies the password used in association with the DN of the entry (who)
| as which to bind for simple authentication. Arbitrary credentials can be

passed using this parameter. In most cases, this is the DN's password.

When using a SASL bind, the format and content of the credentials depends
on the setting of the mechanism parameter.

mechanism Although a variety of mechanisms have been IANA (Internet Assigned
Numbers Authority) registered, the only mechanism supported by the library
at this time is the LDAP_MECHANISM_EXTERNAL mechanism,
represented by the string LDAP_MECHANISM_EXTERNAL.

The LDAP_MECHANISM_EXTERNAL mechanism indicates to the server
that information external to SASL should be used to determine whether the
client is authorized to authenticate. For this implementation, the system
providing the external information must be SSL. For example, if the client
sets dn and credential to NULL (the value of the pointers should be NULL),
with mechanism set to LDAP_MECHANISM_EXTERNAL, the client is
requesting that the server use the strongly authenticated identity to access
the directory.

method Selects the authentication method to use. Specify LDAP_AUTH_SIMPLE
for simple authentication. (Simple authentication is the only supported
method.)

passwd Specifies the password used in association with the DN of the entry as
which to bind.

serverctrls Specifies a list of LDAP server controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about server
controls.

clientctrls Specifies a list of LDAP client controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about client
controls.

 Chapter 2. LDAP Routines 33

 ldap_bind

rebindproc Specifies the pointer to a function that will be invoked to gather the
information necessary to bind to another LDAP Server.

Output

msgidp This result parameter is set to the message ID of the request if the
ldap_sasl_bind call succeeds.

servercredp This result parameter is set to the credentials returned by the server. If no
credentials are returned, it will be set to NULL.

 Usage

These APIs provide various interfaces to the LDAP bind operation. After the LDAP handle is initialized
with ldap_init or is initialized and a connection is made to an LDAP Version 2 server using ldap_open, an
LDAP bind operation must be performed before other operations can be attempted over the connection.
Both synchronous and asynchronous version of each variant of the bind API are provided.

When communicating with an LDAP server that supports the LDAP Version 3 protocol, bind is optional.
The absence of a bind will be interpreted by the LDAP Version 3 server as a request for unauthenticated
access. A bind is required by LDAP servers that only support the LDAP Version 2 protocol.

 Simple Authentication

The simplest form of the bind call is the synchronous API ldap_simple_bind_s. It takes the DN to bind
| as, as well as the password associated with that DN (supplied in passwd). It returns an LDAP error

indication (see “ldap_error” on page 42). The ldap_simple_bind call is asynchronous, taking the same
parameters but only initiating the bind operation and returning the message ID of the request it sent. The
result of the operation can be obtained by a subsequent call to ldap_result.

 General Authentication

The ldap_bind and ldap_bind_s routines are deprecated. They can be used when the authentication
method to use needs to be selected at run time. They both take an extra method parameter selecting the
authentication method to use. However, method must be set to LDAP_AUTH_SIMPLE, to select simple
authentication (the only supported method). The ldap_bind returns the message ID of the initiated
request. The ldap_bind_s API returns an LDAP error indication, or LDAP_SUCCESS on successful
completion.

 SASL Authentication

| The ldap_sasl_bind and ldap_sasl_bind_s APIs can be used to do simple and certificate authentication
over LDAP through the use of the Simple Authentication Security Layer (SASL). By setting mechanism to
LDAP_SASL_SIMPLE the SASL bind request will be interpreted as a request for simple authentication

| (that is, equivalent to using ldap_simple_bind or ldap_simple_bind_s). By setting mechanism to
| LDAP_MECHANISM_EXTERNAL, the SASL bind request will be interpreted as a request for certificate
| authentication.

With this implementation, the primary reason for using the SASL bind facility is to use the client
authentication mechanism provided by SSL to strongly authenticate to the directory server, using the
client's X.509 certificate. For example, the client application can use the following logic:

1. ldap_ssl_client_init (initialize the SSL library)
2. ldap_ssl_init (host, port, name), where name references a public/private key pair in the client's key

ring file

34 Application Development Guide and Reference

 ldap_bind

3. ldap_sasl_bind_s (ld, who=NULL, mechanism=LDAP_MECHANISM_EXTERNAL, cred=NULL...)

A server that supports this mechanism can then access the directory using the strongly authenticated
client identity (as extracted from the client's X.509 certificate).

By setting mechanism to a NULL pointer, the SASL bind request will be interpreted as a request for simple
authentication (that is, equivalent to using ldap_simple_bind or ldap_simple_bind_s).

 Unbinding

The ldap_unbind API is used to unbind from the directory, terminate the current association, and
deallocate the resources associated with the LDAP handle. Once it is called, any open connection to the
LDAP server is closed and the LDAP handle is not valid. The ldap_unbind_s and ldap_unbind APIs are
both synchronous, either can be called.

Rebinding While Following Referrals

When the LDAP client is returned a referral to a different LDAP Server, it may need to rebind to that
server. In order to do this, the client must have the proper credentials available to pass to the target
LDAP Server. Normally, these credentials are passed on the ldap_bind function invocation. During
referrals processing, however, this must be done when needed by the LDAP client. The rebind procedure
is called twice when attempting to rebind to an LDAP server: once to obtain the credentials for the user
and once to allow the rebind procedure to release any storage that was allocated by the first call to the
rebind procedure.

The rebindproc parameter is a pointer to a function that has the following prototype:

int ldapRebindProc(
 LDAP �ld,
 char ��dnp,
 char ��passwdp,
 int �authmethodp,

int freeit)

When the rebind procedure is invoked and the freeit input parameter is zero (0), the rebind procedure
should set the dnp, passwdp, and authmethodp fields before returning to the caller. The only supported
authentication method for rebinding is LDAP_AUTH_SIMPLE. LDAP_SUCCESS should be returned if the
fields were successfully returned to the caller, otherwise one of the error codes defined in ldap.h should
be returned by the rebind procedure to the caller. If the return code is not set to LDAP_SUCCESS, the
operation will be stopped and the specified error code will be returned to the original caller.

When the rebind procedure is invoked and the freeit input parameter is nonzero, the rebind procedure
should release any storage that was acquired by a previous call to the rebind procedure where the freeit
parameter was zero. When the freeit parameter field is nonzero, the dnp, passwdp, and authmethodp
parameters should be treated as input parameters.

If a rebind procedure is not established, then the client library will use unauthenticated access when
following referrals to additional servers.

 Chapter 2. LDAP Routines 35

 ldap_bind

 Error Conditions

The ldap_sasl_bind, ldap_simple_bind, ldap_unbind, and ldap_bind APIs return -1 in case of an error
initiating the request. Use ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for
possible values.

The ldap_sasl_bind_s, ldap_simple_bind_s, ldap_unbind_s, and ldap_bind_s APIs return
LDAP_SUCCESS if successful, otherwise an error code is returned. See “ldap_error” on page 42 for
possible values.

 Related Topics
ldap_open ldap_error

36 Application Development Guide and Reference

 ldap_compare

 ldap_compare
 ldap_compare
 ldap_compare_s
 ldap_compare_ext
 ldap_compare_ext_s

 Purpose

Perform an LDAP compare operation.

 Format
#include <ldap.h>

typedef struct berval {
unsigned long bv_len;

 char �bv_val;
};

int ldap_compare(
 LDAP �ld,
 char �dn,
 char �attr,
 char �value)

int ldap_compare_s(
 LDAP �ld,
 char �dn,
 char �attr,
 char �value)

int ldap_compare_ext(
 LDAP �ld,
 char �dn,
 char �attr,

struct berval �bvalue,
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls,
 int �msgidp)

int ldap_compare_ext_s(
 LDAP �ld,
 char �dn,
 char �attr,

struct berval �bvalue,
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls)

 Chapter 2. LDAP Routines 37

 ldap_compare

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

dn Specifies the distinguished name of the entry upon which to perform the
compare.

attr Specifies the attribute type to compare to the attribute found in the entry.

bvalue Specifies the attribute value to compare against the value in the entry. This
parameter is used in the ldap_compare_ext and ldap_compare_ext_s
APIs, and is a pointer to a berval structure (see “ldap_get_values” on
page 54), and is used to compare binary values.

value Specifies the attribute value to compare to the value found in the entry.
This parameter is used in the ldap_compare and ldap_compare_s APIs,
and is used to compare string attributes. Use ldap_compare_ext or
ldap_compare_ext_s if you need to compare binary values.

serverctrls Specifies a list of LDAP server controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about server
controls.

clientctrls Specifies a list of LDAP client controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about client
controls.

Output

msgidp This result parameter is set to the message ID of the request if the
ldap_compare_ext API succeeds.

 Usage

The ldap_compare_ext API initiates an asynchronous compare operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not. If successful,
ldap_compare_ext places the message ID of the request in *msgidp. A subsequent call to ldap_result
can be used to obtain the result of the operation. The ldap_parse_result API is used to extract
information from the result, including any error information. The error code indicates if the operation
completed successfully (LDAP_COMPARE_TRUE or LDAP_COMPARE_FALSE). Any other error code
indicates a failure performing the operation.

Similarly, the ldap_compare API initiates an asynchronous compare operation and returns the message
ID of the request it initiated. The result of the compare can be obtained by a subsequent call to
ldap_result, and result information can be extracted by calling ldap_parse_result.

The synchronous ldap_compare_s and ldap_compare_ext_s APIs both return the resulting error code of
the compare operation.

All four of the LDAP compare APIs support session controls set by the ldap_set_option API. The
ldap_compare_ext and ldap_compare_ext_s APIs both allow LDAP Version 3 server controls and client
controls to be specified with the request which overrides the session controls.

38 Application Development Guide and Reference

 ldap_compare

 Error Conditions

The ldap_compare API returns -1 in case of an error initiating the request. Use ldap_get_errno to
retrieve the error value. See “ldap_error” on page 42 for possible values.

The ldap_compare_s API returns LDAP_COMPARE_TRUE (if the entry contains the attribute value) or
LDAP_COMPARE_FALSE (if the entry does not contain the attribute value) if successful, otherwise an
error code is returned. See “ldap_error” on page 42 for possible values.

 Related Topics
ldap_error

 Chapter 2. LDAP Routines 39

 ldap_delete

 ldap_delete
 ldap_delete
 ldap_delete_s
 ldap_delete_ext
 ldap_delete_ext_s

 Purpose

Perform an LDAP delete operation.

 Format
#include <ldap.h>

int ldap_delete(
 LDAP �ld,
 char �dn)

int ldap_delete_s(
 LDAP �ld,
 char �dn)

int ldap_delete_ext(
 LDAP �ld,
 char �dn,
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls,
 int �msgidp)

int ldap_delete_ext_s(
 LDAP �ld,
 char �dn,
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

dn Specifies the distinguished name of the entry to be deleted.

serverctrls Specifies a list of LDAP server controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about server
controls.

clientctrls Specifies a list of LDAP client controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about client
controls.

40 Application Development Guide and Reference

 ldap_delete

Output

msgidp This result parameter is set to the message ID of the request if the
ldap_delete_ext API succeeds.

 Usage

Note that the entry to delete must be a leaf entry (that is, it must not have any children). Deletion of entire
subtrees in a single operation is not supported by LDAP. However, the sdelete example program

| provides example code on how deletion of a subtree of LDAP entries could be performed. The example
| programs can be found in the /usr/lpp/ldap/examples directory.

The ldap_delete_ext API initiates an asynchronous delete operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not. If successful,
ldap_delete_ext places the message ID of the request in *msgidp. A subsequent call to ldap_result can
be used to obtain the result of the operation. The ldap_parse_result API is used to extract information
from the result, including any error information. The error code indicates if the operation completed
successfully. The ldap_parse_result API is used to check the error code in the result.

Similarly, the ldap_delete API initiates an asynchronous delete operation and returns the message ID of
the request it initiated. The result of the delete can be obtained by a subsequent call to ldap_result, and
result information can be extracted by calling ldap_parse_result.

The synchronous ldap_delete_s and ldap_delete_ext_s perform LDAP delete operations and both return
the resulting error code of the compare operation.

All four of the LDAP delete APIs support session controls set by the ldap_set_option API. The
ldap_delete_ext and ldap_delete_ext_s APIs both allow LDAP Version 3 server controls and client
controls to be specified with the request which overrides the session controls.

 Error Conditions

The ldap_delete API returns -1 in case of an error initiating the request. Use ldap_get_errno to retrieve
the error value. See “ldap_error” on page 42 for possible values.

The ldap_delete_s API returns LDAP_SUCCESS if successful, otherwise an error code is returned. See
“ldap_error” on page 42 for possible values.

 Related Topics
ldap_error

 Chapter 2. LDAP Routines 41

 ldap_error

 ldap_error
 ldap_get_errno
 ldap_perror (deprecated)
 ldap_result2error (deprecated)
 ldap_err2string

 Purpose

LDAP protocol error handling routines.

 Format
#include <ldap.h>

int ldap_get_errno(
LDAP �ld)

void ldap_perror(
 LDAP �ld,
 char �s)

int ldap_result2error(
 LDAP �ld,
 LDAPMessage �res,
 int freeit)

char �ldap_err2string(
 int err)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

s Specifies the message prefix, which is prepended to the string form of the
error code held stored under the LDAP handle. The string form of the error
is the same string that would be returned by a call to ldap_err2string.

res Specifies an LDAP result that was returned by a previous call to
ldap_result or one of the synchronous LDAP search routines (see
“ldap_search” on page 83).

freeit Specifies whether to deallocate the res LDAP result. If nonzero, the res
parameter is deallocated as part of the call to ldap_result2error.

err Specifies the error to be described.

42 Application Development Guide and Reference

 ldap_error

 Usage

These APIs provide interpretation of the various error codes returned by the LDAP protocol and LDAP
library APIs.

It is sometimes inconvenient to pass the return code of an LDAP operation back to the caller in the case
of an error. Further, for asynchronous LDAP operations, no error code is returned by the call. In each of
these cases, the ldap_get_errno API can be used to retrieve the last set error code for the LDAP handle
that is passed on input.

Note: In multithreaded applications, the value returned by the ldap_get_errno routine is the last error set
by the last LDAP operation performed against the LDAP handle. It is possible for an LDAP operation on a
different thread to reset the error value stored under the LDAP handle before the original error code is
retrieved.

The ldap_perror API prints the message prefix followed by the result of a call to ldap_err2string
(ldap_get_errno(ld)) to the standard error stream.

Note: In multithreaded applications, the error text printed corresponds to the last error value set by the
last LDAP operation performed against the LDAP handle. It is possible for an LDAP operation on a
different thread to reset the error value stored under the LDAP handle before the original error text is
retrieved.

The ldap_result2error API takes res, a result as produced by ldap_result, or the synchronous LDAP
search operation routines and returns the corresponding error code.

The ldap_err2string API provides interpretation of the various error codes returned by the LDAP protocol
and LDAP library routines and returned by the ldap_get_errno API.

The ldap_err2string API is used to convert the numeric LDAP error code, as returned by
ldap_parse_result or ldap_parse_sasl_bind_result, or one of the synchronous APIs, into a
NULL-terminated character string that describes the error. Do not modify or attempt to deallocate this
string.

 Error Conditions

The possible values for an LDAP error code are listed in the following table.

Table 2 (Page 1 of 3). LDAP Error Codes and Descriptions

Value Text (English version) Detailed description

LDAP_SUCCESS Success The request was successful.

LDAP_OPERATIONS_ERROR Operations error An operations error occurred.

LDAP_PROTOCOL_ERROR Protocol error A protocol violation was detected.

LDAP_TIMELIMIT_EXCEEDED Timelimit exceeded An LDAP time limit was exceeded.

LDAP_SIZELIMIT_EXCEEDED Sizelimit exceeded An LDAP size limit was exceeded.

LDAP_COMPARE_FALSE Compare false A compare operation returned false.

LDAP_COMPARE_TRUE Compare true A compare operation returned true.

LDAP_STRONG_AUTH_NOT_SUPPORTED Strong authentication not supported The LDAP server does not support strong
authentication.

LDAP_STRONG_AUTH_REQUIRED Strong authentication required Strong authentication is required for the
operation.

LDAP_PARTIAL_RESULTS Partial results and referral received Partial results only returned.

LDAP_REFERRAL Referral returned Referral returned.

LDAP_ADMIN_LIMIT_EXCEEDED Administration limit exceeded Administration limit exceeded.

 Chapter 2. LDAP Routines 43

 ldap_error

Table 2 (Page 2 of 3). LDAP Error Codes and Descriptions

Value Text (English version) Detailed description

LDAP_UNAVAILABLE_CRITICAL_EXTENSION Critical extension not supported Critical extension is not supported.

LDAP_CONFIDENTIALITY_REQUIRED Confidentiality is required Confidentiality is required.

LDAP_SASLBIND_IN_PROGRESS SASL bind in progress An SASL bind is in progress.

LDAP_NO_SUCH_ATTRIBUTE No such attribute The attribute type specified does not exist in the
entry.

LDAP_UNDEFINED_TYPE Undefined attribute type The attribute type specified is not valid.

LDAP_INAPPROPRIATE_MATCHING Inappropriate matching Filter type not supported for the specified
attribute.

LDAP_CONSTRAINT_VIOLATION Constraint violation An attribute value specified violates some
constraint (for example, a postalAddress has
too many lines, or a line that is too long).

LDAP_TYPE_OR_VALUE_EXISTS Type or value exists An attribute type or attribute value specified
already exists in the entry.

LDAP_INVALID_SYNTAX Invalid syntax An attribute value that is not valid was
specified.

LDAP_NO_SUCH_OBJECT No such object The specified object does not exist in the
directory.

LDAP_ALIAS_PROBLEM Alias problem An alias in the directory points to a nonexistent
entry.

LDAP_INVALID_DN_SYNTAX Invalid DN syntax A DN that is syntactically not valid was
specified.

LDAP_IS_LEAF Object is a leaf The object specified is a leaf.

LDAP_ALIAS_DEREF_PROBLEM Alias dereferencing problem A problem was encountered when
dereferencing an alias.

LDAP_INAPPROPRIATE_AUTH Inappropriate authentication Inappropriate authentication was specified (for
example, LDAP_AUTH_SIMPLE was specified
and the entry does not have a userPassword
attribute).

LDAP_INVALID_CREDENTIALS Invalid credentials Invalid credentials were presented (for example,
the wrong password).

LDAP_INSUFFICIENT_ACCESS Insufficient access The user has insufficient access to perform the
operation.

LDAP_BUSY DSA is busy The DSA is busy.

LDAP_UNAVAILABLE DSA is unavailable The DSA is unavailable.

LDAP_UNWILLING_TO_PERFORM DSA is unwilling to perform The DSA is unwilling to perform the operation.

LDAP_LOOP_DETECT Loop detected A loop was detected.

LDAP_NAMING_VIOLATION Naming violation A naming violation occurred.

LDAP_OBJECT_CLASS_VIOLATION Object class violation An object class violation occurred (for example,
a “required” attribute was missing from the
entry).

LDAP_NOT_ALLOWED_ON_NONLEAF Operation not allowed on nonleaf The operation is not allowed on a nonleaf
object.

LDAP_NOT_ALLOWED_ON_RDN Operation not allowed on RDN The operation is not allowed on an RDN.

LDAP_ALREADY_EXISTS Already exists The entry already exists.

LDAP_NO_OBJECT_CLASS_MODS Cannot modify object class Object class modifications are not allowed.

LDAP_RESULTS_TOO_LARGE Results too large Results too large.

LDAP_AFFECTS_MULTIPLE_DSAS Affects multiple DSAs Affects multiple DSAs.

LDAP_OTHER Unknown error An unknown error occurred.

LDAP_SERVER_DOWN Can't contact LDAP server The LDAP library cannot contact the LDAP
server.

LDAP_LOCAL_ERROR Local error Some local error occurred. This is usually a
failed memory allocation.

LDAP_ENCODING_ERROR Encoding error An error was encountered encoding parameters
to send to the LDAP server.

LDAP_DECODING_ERROR Decoding error An error was encountered decoding a result
from the LDAP server.

44 Application Development Guide and Reference

 ldap_error

 Related Topics

Table 2 (Page 3 of 3). LDAP Error Codes and Descriptions

Value Text (English version) Detailed description

LDAP_TIMEOUT Timed out A timelimit was exceeded while waiting for a
result.

LDAP_AUTH_UNKNOWN Unknown authentication method The authentication method specified on a bind
operation is not known.

LDAP_FILTER_ERROR Bad search filter An invalid filter was supplied to ldap_search (for
example, unbalanced parentheses).

LDAP_USER_CANCELLED User cancelled operation The user cancelled the operation.

LDAP_PARAM_ERROR Bad parameter to an ldap routine An ldap routine was called with a bad
parameter (for example, a NULL ld pointer,
etc.).

LDAP_NO_MEMORY Out of memory A memory allocation (for example, malloc) call
failed in an LDAP library routine.

LDAP_CONNECT_ERROR Connection error Connection error.

LDAP_NOT_SUPPORTED Not supported Not supported.

LDAP_CONTROL_NOT_FOUND Control not found Control not found.

LDAP_NO_RESULTS_RETURNED No results returned No results returned.

LDAP_MORE_RESULTS_TO_RETURN More results to return More results to return.

LDAP_URL_ERR_NOTLDAP URL doesn't begin with ldap:// The URL does not begin with ldap://.

LDAP_URL_ERR_NODN URL has no DN (required) The URL does not have a DN (required).

LDAP_URL_ERR_BADSCOPE URL scope string is invalid The URL scope string is not valid.

LDAP_URL_ERR_MEM can't allocate memory space Cannot allocate memory space.

LDAP_CLIENT_LOOP Client loop Client loop.

LDAP_REFERRAL_LIMIT_EXCEEDED Referral limit exceeded Referral limit exceeded.

LDAP_SSL_ALREADY_INITIALIZED ldap_ssl_client_init successfully called
previously in this process

The ldap_ssl_client_init was successfully called
previously in this process.

LDAP_SSL_INITIALIZE_FAILED Initialization call failed SSL Initialization call failed.

LDAP_SSL_CLIENT_INIT_NOT_CALLED Must call ldap_ssl_client_init before
attempting to use SSL connection

Must call ldap_ssl_client_init before attempting
to use SSL connection.

LDAP_SSL_PARAM_ERROR Invalid SSL parameter previously specified An SSL parameter that was not valid was
previously specified.

LDAP_SSL_HANDSHAKE_FAILED Failed to connect to SSL server Failed to connect to SSL server.

ldap_memfree ldap_parse_result

 Chapter 2. LDAP Routines 45

 ldap_first_attribute

 ldap_first_attribute
 ldap_count_attributes
 ldap_first_attribute
 ldap_next_attribute

 Purpose

Step through LDAP entry attributes.

 Format
#include <ldap.h>

int ldap_count_attributes(
 LDAP �ld,

LDAPMessage �entry);

char �ldap_first_attribute(
 LDAP �ld,
 LDAPMessage �entry,
 BerElement ��ber)

char �ldap_next_attribute(
 LDAP �ld,
 LDAPMessage �entry,
 BerElement �ber)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

entry The attribute information as returned by ldap_first_entry or
ldap_next_entry.

Output

ber Returns a pointer to a BerElement structure that is allocated to keep track of
its current position.

 Usage

Given an LDAP handle and an LDAPMessage, the ldap_count_attributes API returns the number of
attributes contained in the returned entry. In many cases, it is desirable to know the total number of
attributes contained in an LDAPMessage that was returned from an LDAP search operation.

The ldap_count_attributes API is designed to accept a pointer to the LDAPMessage structure returned
from calls to ldap_first_entry and ldap_next_entry.

The ldap_first_attribute and ldap_next_attribute APIs are used to step through the attributes in an
LDAP entry. The ldap_first_attribute API takes an entry as returned by ldap_first_entry or

46 Application Development Guide and Reference

 ldap_first_attribute

ldap_next_entry and returns a pointer to a buffer containing the name of the first attribute type in the
entry. This buffer must be deallocated when its use is completed using ldap_memfree.

The pointer returned in ber should be passed to subsequent calls to ldap_next_attribute and is used to
step through the entry's attributes. This pointer is deallocated by ldap_next_attribute when there are no
more attributes (that is, when ldap_next_attribute returns NULL). Otherwise, the caller is responsible for
deallocating the BerElement pointed to by ber when it is no longer needed by calling ldap_memfree.

The attribute names returned by ldap_first_attribute and ldap_next_attribute are suitable for inclusion in
a call to ldap_get_values or ldap_get_values_len to retrieve the attribute's values. Following is an
example:

for (attrtype=ldap_first_attribute (ld, entry, &ber);
attrtype != NULL;
attrtype=ldap_next_attribute (ld, entry, ber)) {
/B calls to ldap_get_values or ldap_get_values_len
B to parse the attribute values

 B/
 ldap_memfree (attrtype);
{

The ldap_next_attribute API returns a string that contains the name of the next type in the entry. This
string must be deallocated using ldap_memfree when its use is completed.

The ber parameter, as returned by ldap_next_attribute, is a pointer to a BerElement structure that was
allocated by ldap_first_attribute to keep track of the current position in the LDAP result. This pointer is
passed to ldap_next_attribute and is used to step through the entry's attributes. This pointer is
deallocated by ldap_next_attribute when there are no more attributes (that is, when ldap_next_attribute
returns NULL). Otherwise, the caller is responsible for deallocating the BerElement structure pointed to by
ber when it is no longer needed by calling ldap_memfree.

 Error Conditions

If an error occurs for ldap_first_attribute and ldap_next_attribute, NULL is returned. Use
ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for possible values.

The ldap_count_attributes API returns -1 in case of an error. Use ldap_get_errno to retrieve the error
value. See “ldap_error” on page 42 for possible values.

 Related Topics
ldap_first_entry/reference
ldap_get_values

ldap_memfree ldap_error

 Chapter 2. LDAP Routines 47

 ldap_first_entry/reference

 ldap_first_entry/reference
 ldap_first_entry
 ldap_next_entry
 ldap_first_reference
 ldap_next_reference
 ldap_count_entries
 ldap_count_references
 ldap_get_entry_controls_np
 ldap_parse_reference_np

 Purpose

LDAP result entry and continuation reference parsing and counting APIs.

 Format
#include <ldap.h>

LDAPMessage �ldap_first_entry(
 LDAP �ld,
 LDAPMessage �result)

LDAPMessage �ldap_next_entry(
 LDAP �ld,
 LDAPMessage �entry)

LDAPMessage �ldap_first_reference(
 LDAP �ld,
 LDAPMessage �result)

LDAPMessage �ldap_next_reference(
 LDAP �ld,
 LDAPMessage �ref,
 LDAPMessage �entry)

int ldap_count_entries(
 LDAP �ld,
 LDAPMessage �result)

int ldap_count_references(
 LDAP �ld,
 LDAPMessage �result)

int ldap_get_entry_controls_np(
 LDAP �ld,
 LDAPMessage �entry
 LDAPControl ���serverctrlsp)

48 Application Development Guide and Reference

 ldap_first_entry/reference

int ldap_parse_reference_np(
 LDAP �ld,
 LDAPMessage �ref,
 char ���referralsp,
 LDAPControl ���serverctrlsp,
 int freeit)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

entry Specifies a pointer to an entry returned on a previous call to
ldap_first_entry or ldap_next_entry.

result Specifies the result as returned by a call to ldap_result or to one the
synchronous LDAP search routines (see “ldap_search” on page 83).

serverctrlsp Specifies a pointer to a result parameter that is filled in with an allocated
array of controls copied out of the LDAPMessage message. The control
array should be freed by calling ldap_controls_free.

ref Specifies a pointer to a search continuation reference returned on a
previous call to ldap_first_reference or ldap_next_reference.

referralsp Specifies a pointer to a result parameter that is filled in with the contents of
the referrals field from the LDAPMessage message, indicating zero or more
alternate LDAP servers where the request should be retried. The referrals
array should be freed by calling ldap_value_free. NULL may be supplied
for this parameter to ignore the referrals field.

freeit Specifies a boolean value that determines if the LDAP result chain (as
specified by ref) is to be freed. Any nonzero value will result in the LDAP
result chain being freed after the requested information is extracted.
Alternatively, the ldap_msgfree API can be used to free the LDAP result
chain at a later time.

 Usage

These APIs are used to parse results received from ldap_result or the synchronous LDAP search
operation APIs.

 Processing Entries

The ldap_first_entry and ldap_next_entry APIs are used to step through and retrieve the list of entries
from a search result chain. When an LDAP operation completes and the result is obtained as described,
a list of LDAPMessage structures is returned. This is referred to as the search result chain. A pointer to
the first of these structures is returned by ldap_result and ldap_search_s.

The ldap_first_entry API parses results received from ldap_result or the synchronous LDAP search
operation routines and returns a pointer to the first entry in the result. If no entries were present in the
result, NULL is returned. This pointer should be supplied on a subsequent call to ldap_next_entry to get
the next entry, and so on until ldap_next_entry returns NULL. The ldap_next_entry API returns NULL
when there are no more entries.

 Chapter 2. LDAP Routines 49

 ldap_first_entry/reference

The ldap_next_entry API is used to parse results received from ldap_result or the synchronous LDAP
search operation routines. The ldap_next_entry API returns NULL when there are no more entries.

The entry returned from ldap_first_entry and ldap_next_entry is used in calls to other parsing routines,
such as ldap_get_dn and ldap_first_attribute. Following is an example:

for (entry=ldap_first_entry (ld, result);
entry != NULL;
entry=ldap_next_entry (ld, entry)) {
/B calls to ldap_get_dn or ldap_first_attribute and
B other routines to use the entry

 B/
{

The ldap_get_entry_controls_np API is used to retrieve an array of server controls returned in an
individual entry in a chain of search results.

Processing Continuation References

The ldap_first_reference and ldap_next_reference APIs are used to step through and retrieve the list of
continuation references from a search result chain. They will return NULL when no more continuation
references exist in the result set to be returned.

The ldap_first_reference API is used to retrieve the first continuation reference in a chain of search
results. It takes the result as returned by a call to ldap_result or ldap_search_s, ldap_search_st, or
ldap_search_ext_s and returns a pointer to the continuation reference in the result.

The pointer returned from ldap_first_reference should be supplied on a subsequent call to
ldap_next_reference to get the next continuation reference.

The ldap_parse_reference_np API is used to retrieve the list of alternate servers returned in an individual
continuation reference in a chain of search results. This API is also used to obtain an array of server
controls returned in the continuation reference.

Counting Entries and References

The ldap_count_entries API is used to parse results received from ldap_result or the synchronous
LDAP search operation routines in order to count the number of entries in the result. The number of
entries in the chain of search results is returned. It can also be used to count the number of entries that
remain in a chain if called with a message, entry, or continuation reference returned by
ldap_first_message, ldap_next_message, ldap_first_entry, ldap_next_entry, ldap_first_reference, or
ldap_next_reference, respectively.

The ldap_count_references API is used to count the number of continuation references returned. It can
also be used to count the number of continuation references that remain in a chain.

 Error Conditions

If an error occurs in ldap_first_entry, ldap_next_entry, ldap_first_reference, or ldap_next_reference,
NULL is returned. Use ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for
possible values.

The ldap_count_entries and ldap_count_references APIs return -1 in case of error. Use
ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for possible values.

50 Application Development Guide and Reference

 ldap_first_entry/reference

The ldap_get_entry_controls_np and ldap_parse_reference_np APIs return LDAP_SUCCESS if
successful, otherwise an error code is returned. See “ldap_error” on page 42 for possible values.

 Related Topics
ldap_result
ldap_search

ldap_first_attribute
ldap_get_values

ldap_get_dn

 Chapter 2. LDAP Routines 51

 ldap_get_dn

 ldap_get_dn
 ldap_get_dn
 ldap_explode_dn

 Purpose

LDAP DN handling routines.

 Format
#include <ldap.h>

char �ldap_get_dn(
 LDAP �ld,
 LDAPMessage �entry)

char ��ldap_explode_dn(
 char �dn,
 int notypes)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

entry Specifies attribute information as returned by ldap_first_entry or
ldap_next_entry.

dn Specifies the distinguished name of the entry to be parsed.

notypes Requests that only the relative distinguished name (RDN) values be
returned, not their types. For example, the DN cn=Bob, c=US would return
as either {“cn=Bob”, “c=US”, NULL} or {“Bob”, “US”, NULL} depending on
whether notypes was 0 or 1, respectively.

 Usage

The ldap_get_dn API takes an entry as returned by ldap_first_entry or ldap_next_entry, and returns a
copy of the entry's DN. Space for the DN is obtained on the caller's behalf and should be deallocated by
the caller using ldap_memfree.

The ldap_explode_dn API takes a DN as returned by ldap_get_dn and breaks it up into its component
parts. Each part is known as a relative distinguished name (RDN). The ldap_explode_dn API returns a
NULL-terminated array of character strings, each component of which contains an RDN from the DN. This
routine allocates memory that the caller must deallocate using ldap_value_free.

 Error Conditions

If an error occurs, NULL is returned. For the ldap_get_dn API, use ldap_get_errno to retrieve the error
value. See “ldap_error” on page 42 for possible values. For the ldap_explode_dn API, specific error
information is not available using ldap_get_errno. Possible errors are: NULL pointer passed into the
function, memory allocation error, or the string passed in was not parsable as a distinguished name.

52 Application Development Guide and Reference

 ldap_get_dn

 Related Topics
ldap_error ldap_first_entry ldap_value_free

 Chapter 2. LDAP Routines 53

 ldap_get_values

 ldap_get_values
 ldap_get_values
 ldap_get_values_len
 ldap_count_values
 ldap_count_values_len
 ldap_value_free
 ldap_value_free_len

 Purpose

LDAP attribute value handling APIs.

 Format
#include <ldap.h>

typedef struct berval {
unsigned long bv_len;

 char �bv_val;
};

char ��ldap_get_values(
 LDAP �ld,
 LDAPMessage �entry,
 char �attr)

struct berval ��ldap_get_values_len(
 LDAP �ld,
 LDAPMessage �entry,
 char �attr)

int ldap_count_values(
 char ��vals)

int ldap_count_values_len(
struct berval ��bvals)

void ldap_value_free(
 char ��vals)

void ldap_value_free_len(
struct berval ��bvals)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

54 Application Development Guide and Reference

 ldap_get_values

entry Specifies the LDAP entry from which to retrieve the attribute values.

attr Specifies the attribute type to retrieve. It may be an attribute type as
returned from ldap_first_attribute or ldap_next_attribute, or if the attribute
type is known it can simply be given.

vals Specifies a pointer to a NULL-terminated array of attribute values returned
by ldap_get_values.

bvals Specifies a pointer to a NULL-terminated array of pointers to berval
structures, as returned by ldap_get_values_len.

 Usage

These APIs retrieve and manipulate attribute values from an LDAP entry as returned by ldap_first_entry
or ldap_next_entry. The result of ldap_get_values is a NULL-terminated array of NULL-terminated
character strings that represent the attributes values. The ldap_get_values API converts the returned
results into a NULL-terminated string in the codeset of the current locale. The data is assumed to be
(UTF-8) coming from the LDAP server. If the data is binary data or conversions should be avoided then
the ldap_get_values_len API must be used.

The ldap_get_values API allocates memory that the caller must deallocate using ldap_value_free.

Use the ldap_get_values_len API if the attribute values are binary in nature and not suitable to be
returned as an array of NULL-terminated character strings. The ldap_get_values_len API returns a
NULL-terminated array of pointers to berval structures, each containing the length of and a pointer to a
value.

The ldap_get_values_len API allocates memory that the caller must deallocate using
ldap_value_free_len.

The ldap_count_values API counts values in an array of attribute values as returned by
ldap_get_values. The number of attribute values is returned.

The ldap_count_values_len API counts the number of values in a NULL-terminated array of pointers to
berval structures where each represents an attribute value. The number of attribute values is returned.

The ldap_value_free API deallocates an array of attribute values that was allocated by ldap_get_values.
Following is an example of its usage:

for (attrtype=ldap_first_attribute (ld, entry, &ber);
attrtype != NULL;
attrtype=ldap_next_attribute (ld, entry, ber)) {

 char Bvalues[];
values=ldap_get_values (ld, entry, attrtype);

 /B
B work with the attribute type and values

 B/
 ldap_value_free(values);
} ldap_memfree(attrtype);

The ldap_value_free_len API deallocates an array of attribute values that was allocated by
ldap_get_values_len. Following is an example of its usage:

 Chapter 2. LDAP Routines 55

 ldap_get_values

for (attrtype=ldap_first_attribute (ld, entry, &ber);
attrtype != NULL;
attrtype=ldap_next_attribute (ld, entry, ber)) {
struct berval Bbvals[];
bvals=ldap_get_values_len (ld, entry, attrtype);

 /B
B work with the attribute type and values

 B/
 ldap_value_free_len(bvals);
 ldap_memfree(attrtype);
}

 Error Conditions

| If no values are found or an error occurs in ldap_get_values or ldap_get_values_len, NULL is returned.
Use ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for possible values.

 Related Topics
ldap_first_entry/reference ldap_first_attribute ldap_error

56 Application Development Guide and Reference

 ldap_init

 ldap_init
 ldap_init
 ldap_open (deprecated)
 ldap_set_option
 ldap_set_option_np (nonportable)
 ldap_get_option

 Purpose

Initialize the LDAP library, open a connection to an LDAP Server, and get or set options for an LDAP
connection.

 Format
#include <ldap.h>

LDAP �ldap_init(
 char �host,
 int port)

LDAP �ldap_open(
 char �host,
 int port)

int ldap_set_option(
 LDAP �ld,
 int optionToSet,
 void �optionValue)

int ldap_set_option_np(
 LDAP �ld,
 int optionToSet,
 optionValue)

int ldap_get_option(
 LDAP �ld,
 int optionToGet,
 void �optionValue)

 Parameters
Input

host Specifies the name of the host on which the LDAP server is running. It can
contain a space-separated list of hosts in which to try to connect, and each
host may optionally be of the form host:port. If present, :port overrides the
port parameter to ldap_init or ldap_open. Following are some examples:

myhost.mycompany.com
myhost.mycompany.com:389 yourhost.yourcompany.com

If host is NULL, the LDAP Server is assumed to be running on the local
host.

 Chapter 2. LDAP Routines 57

 ldap_init

port Specifies the TCP/IP port number in which to connect. If the default
IANA-assigned port of 389 is desired, LDAP_PORT should be specified. To
use the default SSL port 636 for SSL connections, use LDAPS_PORT.

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

optionToSet Specifies which LDAP option's value should be set. See “Setting and
Getting Session Settings” on page 59 for the list of supported options.

optionToGet Specifies which LDAP option's value should be returned. See “Setting and
Getting Session Settings” on page 59 for the list of supported options.

optionValue Depending on the operation, protocol version, or both, optionValue specifies
the value, or address of the value, to be set through ldap_set_option or
ldap_set_option_np. For ldap_get_option, it specifies the address of the
storage in which to return the queried value. The following table details the
format of the optionValue parameter to be specified.

.

 Usage

The ldap_init API initializes a session with an LDAP server. The server is not actually contacted until an
operation is preformed that requires it, allowing various options to be set after initialization, but before
actually contacting the host. It allocates an LDAP handle which is used to identify the connection and
maintain per-connection information.

Table 3. The optionValue Parameter Specifications

| optionToSet or
| optionToGet

ldap_set_option
(Version 3)

ldap_set_option
(Version 2)

ldap_set_option_np ldap_get_option

LDAP_OPT_SIZELIMIT int * int int int *

LDAP_OPT_TIMELIMIT int * int int int *

LDAP_OPT_REFHOPLIMIT int * int int int *

LDAP_OPT_DEREF int * int int int *

LDAP_OPT_RESTART int (ON/OFF) int (ON/OFF) int (ON/OFF) int *

LDAP_OPT_REFFERALS int (ON/OFF) int (ON/OFF) int (ON/OFF) int *

LDAP_OPT_DEBUG int * int int int *

LDAP_OPT_SSL_CIPHER char * char * char * char **

LDAP_OPT_SSL_TIMEOUT int * int int int *

LDAP_OPT_REBIND_FN LDAPRebindProc * LDAPRebindProc * LDAPRebindProc * LDAPRebindProc **

LDAP_OPT_PROTOCOL_VERSION int * int * int int *

LDAP_OPT_SERVER_CONTROLS LDAPControl ** n/a LDAPControl ** LDAPControl ***

LDAP_OPT_CLIENT_CONTROLS LDAPControl ** n/a LDAPControl ** LDAPControl ***

LDAP_OPT_UTF8_IO int (ON/OFF) int (ON/OFF) int (ON/OFF) int *

| LDAP_OPT_V2_WIRE_FORMAT| int| int| int| int *

LDAP_OPT_HOST_NAME n/a n/a n/a char *

LDAP_OPT_ERROR_NUMBER n/a n/a n/a int *

LDAP_OPT_ERROR_STRING n/a n/a n/a char *

LDAP_OPT_EXT_ERROR n/a n/a n/a int *

Note: The ON and OFF in the table refer to LDAP_OPT_ON and LDAP_OPT_OFF, respectively.

58 Application Development Guide and Reference

 ldap_init

For SSL, the equivalent of ldap_init is ldap_ssl_init. The ldap_ssl_init API is used to initialize a secure
SSL session with a server. See “ldap_ssl” on page 88 for more information.

Although still supported, the use of ldap_open is deprecated. The ldap_open API allocates an LDAP
handle and opens a connection to the LDAP server. Use of ldap_init instead of ldap_open is
recommended.

For ldap_open, the ldap_ssl_start API starts a secure (SSL) connection to an LDAP server.

The ldap_init and ldap_open APIs return a handle that is passed to subsequent calls to ldap_bind,
ldap_search, and so on.

The ldap_set_option and ldap_set_option_np APIs modify the current value of an option used by the
LDAP programming interface. These options take on default values after ldap_open or ldap_init is called
and their current value can be retrieved using the ldap_get_option API. On successful completion, the
current value of the requested option is set to the value specified by the optionValue parameter with the
return code set to LDAP_SUCCESS.

| Environment Variables Affecting Session Settings

| There are three environment variables that can affect the session settings. One, LDAP_DEBUG, is
| discussed in “Tracing” on page 13. Setting the LDAP_DEBUG environment variable has the same effect
| as calling ldap_set_option to set the LDAP_OPT_DEBUG session option.

| The LDAP_VERSION environment variable can be used to establish the LDAP version to be used for a
| session. Setting the LDAP_VERSION environment variable has the same effect as calling
| ldap_set_option to set the LDAP_OPT_PROTOCOL_VERSION session option. Valid values for the
| LDAP_VERSION environment variable are 2 and 3. See “LDAP_OPT_PROTOCOL_VERSION” on
| page 65 for more information.

| The LDAP_V2_WIRE_FORMAT environment variable can be used to establish the wire format to be used
| for Version 2 data exchanged between the client library APIs and the target LDAP Server. Setting the
| LDAP_V2_WIRE_FORMAT environment variable has the same effect as calling ldap_set_option to set
| the LDAP_OPT_V2_WIRE_FORMAT session option. Valid values for the LDAP_V2_WIRE_FORMAT
| environment variable are UTF8 and ISO8859-1. See “LDAP_OPT_V2_WIRE_FORMAT” on page 66 for
| more information.

Setting and Getting Session Settings

The ldap_get_option, ldap_set_option, and ldap_set_option_np APIs can be used to:

� Get or set the maximum number of entries that can be returned on a search operation.
(LDAP_OPT_SIZELIMIT)

� Get or set the maximum number of seconds to wait for search results. (LDAP_OPT_TIMELIMIT)
� Get or set the maximum number of referrals in a sequence that the client can follow.

(LDAP_OPT_REFHOPLIMIT)
� Get or set the rules for following aliases at the server. (LDAP_OPT_DEREF)
� Get or set whether select system call should be restarted. (LDAP_OPT_RESTART)
� Get or set whether referrals should be followed by the client. (LDAP_OPT_REFERRALS)
� Get or set the debug options. (LDAP_OPT_DEBUG)
� Get or set the SSL ciphers to use. (LDAP_OPT_SSL_CIPHER)
� Get or set the SSL timeout for refreshing session keys. (LDAP_OPT_SSL_TIMEOUT)
� Get or set the address of application's rebind procedure. (LDAP_OPT_REBIND_FN)

 Chapter 2. LDAP Routines 59

 ldap_init

� Get or set the LDAP protocol version to use (Version 2 or Version 3).
(LDAP_OPT_PROTOCOL_VERSION)

� Get or set the default server controls. (LDAP_OPT_SERVER_CONTROLS)
� Get or set the default client library controls. (LDAP_OPT_CLIENT_CONTROLS)
� Get or set the format of textual data. (LDAP_OPT_UTF8_IO)

| � Get or set the format of textual data when using V2 protocol. (LDAP_OPT_V2_WIRE_FORMAT)
� Get the current host name (cannot be set). (LDAP_OPT_HOST_NAME)
� Get the error number (cannot be set). (LDAP_OPT_ERROR_NUMBER)
� Get the error string (cannot be set). (LDAP_OPT_ERROR_STRING)

If your LDAP application is based on the LDAP Version 2 APIs and uses the ldap_set_option or
ldap_get_option functions (that is, you are using ldap_open or your application uses ldap_init and
ldap_set_option to switch from the default of LDAP Version 3 to use the LDAP Version 2 protocol and
subsequently uses the ldap_set_option or ldap_get_option calls), see “ldap_set_option Syntax for LDAP
Version 2 Applications” on page 67 for important information.

For a description of the differences between the ldap_set_option API and the ldap_set_option_np
(nonportable) API, see “Comparing the ldap_set_option and ldap_set_option_np APIs” on page 68.

Additional details on specific options for ldap_get_option, ldap_set_option, and ldap_set_option_np are
provided in the following sections.

 LDAP_OPT_SIZELIMIT

Specifies the maximum number of entries that can be returned on a search operation.

Note: The actual size limit for operations is also bounded by the maximum number of entries that the
server is configured to return. Thus, the actual size limit will be the lesser of the value specified on this
option and the value configured in the LDAP Server. The default size limit is unlimited, specified with a
value of zero (thus deferring to the size limit setting of the LDAP Server). A value of zero (the default)
means no limit.

Examples:

int sizevalue=5�;
ldap_set_option(ld, LDAP_OPT_SIZELIMIT, (void B) &sizevalue); /B Version 3 protocol B/
 or
ldap_set_option(ld, LDAP_OPT_SIZELIMIT, (void B) sizevalue); /B Version 2 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_SIZELIMIT, (int) sizevalue);

ldap_get_option(ld, LDAP_OPT_SIZELIMIT, (void B) &sizevalue);

 LDAP_OPT_TIMELIMIT

Specifies the number of seconds to wait for search results. Note that the actual time limit for operations is
also bounded by the maximum time that the server is configured to allow. Thus, the actual time limit will
be the lesser of the value specified on this option and the value configured in the LDAP server. The
default is unlimited (specified with a value of zero).

Examples:

60 Application Development Guide and Reference

 ldap_init

int timevalue=5�;
ldap_set_option(ld, LDAP_OPT_TIMELIMIT, (void B) &timevalue); /B Version 3 protocol B/
 or
ldap_set_option(ld, LDAP_OPT_TIMELIMIT, (void B) timevalue); /B Version 2 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_TIMELIMIT, (int) timevalue);

ldap_get_option(ld, LDAP_OPT_TIMELIMIT, (void B) &timevalue);

 LDAP_OPT_REFHOPLIMIT

| Specifies the maximum number of servers to contact when chasing referrals. For subtree searches, this is
| the limit on the depth of nested search references, so the number of servers contacted might actually
| exceed this value. The default is 10.

Examples:

int hoplimit=7;
ldap_set_option(ld, LDAP_OPT_REFHOPLIMIT, (void B) &hoplimit); /B Version 3 protocol B/
 or
ldap_set_option(ld, LDAP_OPT_REFHOPLIMIT, (void B) hoplimit); /B Version 2 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_REFHOPLIMIT, (int) hoplimit);

ldap_get_option(ld, LDAP_OPT_REFHOPLIMIT, (void B) &hoplimit);

 LDAP_OPT_DEREF

Specifies alternative rules for following aliases at the server. The default is LDAP_DEREF_NEVER.

Supported values:

� LDAP_DEREF_NEVER 0 (default)
 � LDAP_DEREF_SEARCHING 1
 � LDAP_DEREF_FINDING 2
 � LDAP_DEREF_ALWAYS 3

The LDAP_DEREF_FINDING value means aliases should be dereferenced when locating the base object,
but not during a search.

Examples:

int deref = LDAP_DEREF_NEVER;
ldap_set_option(ld, LDAP_OPT_DEREF, (void B) &deref); /B Version 3 protocol B/
 or
ldap_set_option(ld, LDAP_OPT_DEREF, (void B) deref); /B Version 2 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_DEREF, (int) deref);

ldap_get_option(ld, LDAP_OPT_DEREF, (void B) &value);

 LDAP_OPT_RESTART

Specifies whether the select system call should be restarted when it is interrupted by the system. The
returned value will be one of LDAP_OPT_ON or LDAP_OPT_OFF (default).

Examples:

 Chapter 2. LDAP Routines 61

 ldap_init

int value;
ldap_set_option(ld, LDAP_OPT_RESTART, (void B) LDAP_OPT_ON); /B Version 2 or 3 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_RESTART, (int) LDAP_OPT_ON);

ldap_get_option(ld, LDAP_OPT_RESTART, (void B) &value);

 LDAP_OPT_REFERRALS

Specifies whether the LDAP library will automatically follow referrals returned by LDAP servers. It can be
set to one of the constants LDAP_OPT_ON or LDAP_OPT_OFF. By default, the LDAP client will follow
referrals.

Examples:

int value:
ldap_set_option(ld, LDAP_OPT_REFFERALS, (void B) LDAP_OPT_ON); /B Version 2 or 3 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_REFFERALS, (int) LDAP_OPT_ON);

ldap_get_option(ld, LDAP_OPT_REFFERALS, (void B) &value);

 LDAP_OPT_DEBUG

Specifies a bit map that indicates the level of debug trace for the LDAP library. The optionValue
| parameter can be specified as either an integer greater than or equal to zero or as any bitwise “ored” (|) or

“added” (+) combination of the identifiers:

 � LDAP_DEBUG_TRACE
 � LDAP_DEBUG_PACKETS
 � LDAP_DEBUG_ARGS
 � LDAP_DEBUG_CONNS
 � LDAP_DEBUG_BER
 � LDAP_DEBUG_FILTER
 � LDAP_DEBUG_CONFIG
 � LDAP_DEBUG_ACL
 � LDAP_DEBUG_STATS
 � LDAP_DEBUG_STATS2
 � LDAP_DEBUG_SHELL
 � LDAP_DEBUG_PARSE

In addition, LDAP_DEBUG_OFF or LDAP_DEBUG_ANY are accepted.

LDAP_OPT_DEBUG is a global option (it does not pertain to any particular LDAP handle), whereas the
other options pertain to a specific LDAP handle. For example, you can set the search time limit to 10
seconds for one server using one LDAP handle, but you could allow it to default to 0 (no time limit) for a
second server using a different LDAP handle. LDAP_OPT_DEBUG applies to all allocated LDAP
handles.

Examples:

62 Application Development Guide and Reference

 ldap_init

int debugvalue= LDAP_DEBUG_TRACE + LDAP_DEBUG_PACKETS;
ldap_set_option(ld, LDAP_OPT_DEBUG, (void B) &debugvalue); /B Version 3 protocol B/
 or
ldap_set_option(ld, LDAP_OPT_DEBUG, (void B) debugvalue); /B Version 2 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_DEBUG, (int) debugvalue);

ldap_get_option(ld, LDAP_OPT_DEBUG, (void B) &debugvalue);

Example turning all traces on:

int debugvalue=LDAP_DEBUG_ANY;
ldap_set_option(ld, LDAP_OPT_DEBUG, (void B) &debugvalue); /B Version 3 protocol B/
 or
ldap_set_option(ld, LDAP_OPT_DEBUG, (void B) LDAP_DEBUG_ANY); /B Version 2 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_DEBUG, (int) LDAP_DEBUG_ANY);

Example turning all tracing off:

int debugvalue=LDAP_DEBUG_OFF;
ldap_set_option(ld, LDAP_OPT_DEBUG, (void B) &debugvalue); /B Version 3 protocol B/
 or
ldap_set_option(ld, LDAP_OPT_DEBUG, (void B) LDAP_DEBUG_OFF); /B Version 2 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_DEBUG, (int) LDAP_DEBUG_OFF);

Example tracing just BER encodings and functional flow tracepoints:

int debugvalue=LDAP_DEBUG_BER + LDAP_DEBUG_TRACE;
ldap_set_option(ld, LDAP_OPT_DEBUG, (void B) &debugvalue); /B Version 3 protocol B/
 or
ldap_set_option(ld, LDAP_OPT_DEBUG, (void B) debugvalue); /B Version 2 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_DEBUG, (int) debugvalue);

Example tracing packets and connections:

int debugvalue=LDAP_DEBUG_PACKETS | LDAP_DEBUG_CONNS;
ldap_set_option(ld, LDAP_OPT_DEBUG, (void B) &debugvalue); /B Version 3 protocol B/
 or
ldap_set_option(ld, LDAP_OPT_DEBUG, (void B) debugvalue); /B Version 2 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_DEBUG, (int) LDAP_DEBUG_PACKETS | LDAP_DEBUG_CONNS);

 LDAP_OPT_SSL_CIPHER

Specifies a set of one or more ciphers to be used when negotiating the cipher algorithm with the LDAP
| Server. The value for this option is specified as the v3cipher_specs value supplied to the
| gsk_secure_soc_init function call in System SSL. Refer to the OS/390 Cryptographic Services System
| Secure Sockets Layer Programming Guide and Reference for a description of supported cipher
| specifications and ordering their precedence. The cipher is a concatenation of a set of strings. As a
| convenience, the following strings are defined in ldap.h.

Supported ciphers:

 � LDAP_SSL_RC4_MD5_EX "03"
 � LDAP_SSL_RC2_MD5_EX "06"
 � LDAP_SSL_RC4_SHA_US "05"

 Chapter 2. LDAP Routines 63

 ldap_init

 � LDAP_SSL_RC4_MD5_US "04"
 � LDAP_SSL_DES_SHA_US "09"
 � LDAP_SSL_3DES_SHA_US "0A"

Examples:

char Bcipher = "�9�A";
| char Bcipher2 = LDAP_SSL_3DES_SHA_US LDAP_SSL_DES_SHA_US;

ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, (void B) cipher); /B Version 2 or 3 protocol B/

| ldap_set_option_np(ld, LDAP_OPT_SSL_CIPHER, (char B) cipher2);

ldap_get_option(ld, LDAP_OPT_SSL_CIPHER, (void B) &cipher);

Note that ldap_get_option allocates storage for the returned cipher string. Use ldap_memfree to free
this storage.

 LDAP_OPT_SSL_TIMEOUT

Specifies in seconds the SSL inactivity timer. After the specified seconds, in which no SSL activity has
occurred, the SSL connection will be refreshed with new session keys. A smaller value may help increase
security, but will have an impact on performance. The default SSL timeout value is 43200 seconds.

Examples:

int value = 1��;
ldap_set_option(ld, LDAP_OPT_SSL_TIMEOUT, (void B) &value); /B Version 3 protocol B/
 or
ldap_set_option(ld, LDAP_OPT_SSL_TIMEOUT, (void B) value); /B Version 2 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_SSL_TIMEOUT, (int) value);

ldap_get_option(ld, LDAP_OPT_SSL_TIMEOUT, (void B) &value)

 LDAP_OPT_REBIND_FN

Specifies the address of a routine to be called by the LDAP library when the need arises to authenticate a
connection with another LDAP server. This can occur, for example, when the LDAP library is chasing a
referral. If a routine is not defined, referrals will always be chased anonymously. A default routine is not
defined.

Examples:

extern LDAPRebindProc proc_address;
LDAPRebingProc value;
ldap_set_option(ld, LDAP_OPT_REBIND_FN, (void B) &proc_address); /B Version 2 or 3 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_REBIND_FN, (LDAPRebindProc B) &proc_address);

ldap_get_option(ld, LDAP_OPT_REBIND_FN, (void B) &value);

64 Application Development Guide and Reference

 ldap_init

 LDAP_OPT_PROTOCOL_VERSION

Specifies the LDAP protocol to be used by the LDAP client library when connecting to an LDAP server.
Also used to determine which LDAP protocol is being used for the connection. For an application that
uses ldap_init to create the LDAP connection the default value of this option will be LDAP_VERSION3 for
communicating with the LDAP server. The default value of this option will be LDAP_VERSION2 if the
application uses the deprecated ldap_open API. In either case, the LDAP_OPT_PROTOCOL_VERSION
option can be used with ldap_set_option to change the default. The LDAP protocol version should be
reset prior to issuing the bind (or any operation that causes an implicit bind).

Examples:

version2 = LDAP_VERSION2;
version3 = LDAP_VERSION3;
int value;
/B Example for Version 3 application setting version to version 2 with ldap_set_option B/
ldap_set_option(ld, LDAP_OPT_PROTOCOL_VERSION, (void B) &version2);
/B Example of Version 2 application setting version to version 3 with ldap_set_option B/
ldap_set_option(ld, LDAP_OPT_PROTOCOL_VERSION, (void B) &version3);
/B Example for Version 3 application setting version to version 2 with ldap_set_option_np B/
ldap_set_option_np(ld, LDAP_OPT_PROTOCOL_VERSION, (int) LDAP_VERSION2);
/B Example of Version 2 application setting version to version 3 with ldap_set_option_np B/
ldap_set_option_np(ld, LDAP_OPT_PROTOCOL_VERSION, (int) LDAP_VERSION3);

ldap_get_option(ld, LDAP_OPT_PROTOCOL_VERSION, (void B) &value);

 LDAP_OPT_SERVER_CONTROLS

Specifies a default list of server controls to be sent with each request. The default list can be overridden
by specifying a server control, or list of server controls, on specific APIs. By default, there are no settings
for server controls. Controls are only applicable when using the Version 3 LDAP protocol.

Example:

LDAPControl BB ctrlArray;
 .
 .
 .
ldap_set_option(ld, LDAP_OPT_SERVER_CONTROLS, (void B) &ctrlArray);
 or
ldap_set_option_np(ld, LDAP_OPT_SERVER_CONTROLS, (LDAPControl BB) ctrlArray);

ldap_get_option(ld, LDAP_OPT_SERVER_CONTROLS, (void B) &ctrlArray);

Note that ldap_get_option returns a pointer to an array of LDAPControl structures. Use
ldap_controls_free to free the storage allocated for this array.

 LDAP_OPT_CLIENT_CONTROLS

Specifies a default list of client controls to be processed by the client library with each request. Since
client controls are not defined for this version of the library, the ldap_set_option and ldap_set_option_np
APIs can be used to define a set of default, noncritical client controls. If one or more client controls in the
set is critical, the entire list is rejected with a return code of
LDAP_UNAVAILABLE_CRITICAL_EXTENSION.

 Chapter 2. LDAP Routines 65

 ldap_init

 LDAP_OPT_UTF8_IO

Relative to the context LDAP handle, specifies the format of textual data exchanged (input/output)
between the calling application and the LDAP client library APIs. LDAP_OPT_ON indicates textual I/O is
in the UTF-8 codeset. LDAP_OPT_OFF indicates textual I/O is in the codeset of the current locale.
LDAP_OPT_OFF is the default.

Note: This setting is only applicable to LDAP operations that accept an LDAP handle as input. Other
LDAP operations (for example, ldap_init) require textual I/O to be in the codeset of the current locale.

Examples:

int value;
ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void B) LDAP_OPT_ON); /B Version 2 or 3 protocol B/
 or
ldap_set_option_np(ld, LDAP_OPT_UTF8_IO, (int) LDAP_OPT_ON);

ldap_get_option(ld, LDAP_OPT_UTF8_IO, (void B) &value.);

| LDAP_OPT_V2_WIRE_FORMAT

| Relative to the context LDAP handle, specifies the format of textual data to be exchanged between the
| LDAP client library APIs and the LDAP Server being contacted when using the Version 2 protocol.
| LDAP_OPT_V2_WIRE_FORMAT_ISO8859_1 indicates that textual data is exchanged in ISO8859-1
| format, which is the default for OS/390 LDAP Version 2 servers. LDAP_OPT_V2_WIRE_FORMAT_UTF8
| indicates that textual data is exchanged in UTF-8 format, which is the default for OS/390 LDAP Version 3
| servers. Also note that many non-OS/390 LDAP Version 3 servers expect to exchange data in UTF-8
| format, regardless of the protocol version. LDAP_OPT_V2_WIRE_FORMAT_UTF8 is the default in the
| OS/390 Release 8 version of the LDAP client library.

| Examples:

| int value;
| ldap_set_option(ld, LDAP_OPT_V2_WIRE_FORMAT, (void B) LDAP_OPT_V2_WIRE_FORMAT_ISO8859_1); /B V2 or V3 protocol B/
| or
| ldap_set_option_np(ld, LDAP_OPT_V2_WIRE_FORMAT, (int) LDAP_OPT_V2_WIRE_FORMAT_ISO8859_1);

| ldap_get_option (ld, LDAP_OPT_V2_WIRE_FORMAT, &value);

 LDAP_OPT_HOST_NAME

This is a read-only option that returns a pointer to the host name for the original connection (as specified
on ldap_init, ldap_ssl_init, or ldap_open).

Example:

char B hostname;
ldap_get_option(ld, LDAP_OPT_HOST_NAME, (void B) &hostname);

Use ldap_memfree to free the memory allocated for the returned host name.

 LDAP_OPT_ERROR_NUMBER

This is a read-only option that returns the error code associated with the most recent LDAP error that
occurred for the specified LDAP connection.

Example:

66 Application Development Guide and Reference

 ldap_init

int error;
ldap_get_option(ld, LDAP_OPT_ERROR_NUMBER, (void B) &error);

 LDAP_OPT_ERROR_STRING

This is a read-only option that returns the text message associated with the most recent LDAP error that
occurred for the specified LDAP connection.

Example:

char B error_string;
ldap_get_option(ld, LDAP_OPT_ERROR_STRING, (void B) &error_string);

Use ldap_memfree to free the memory allocated for the returned error string.

 LDAP_OPT_EXT_ERROR

This is a read-only option that returns the extended error code. For example, if an SSL error occurred
when attempting to invoke an ldap_search_s API, the actual SSL error can be obtained by using
LDAP_OPT_EXT_ERROR.

Example:

int exterror;
ldap_get_option(ld, LDAP_OPT_ERROR_EXTERROR, (void B) &exterror);

Returns errors reported by the SSL library.

 Error Conditions

If an error occurs, the ldap_init and ldap_open APIs return NULL.

For ldap_get_option, and ldap_set_option, and ldap_set_option_np, LDAP_PARM_ERROR can be
returned if the LDAP handle is not valid or if the requested option is not one of the accepted values.

ldap_set_option Syntax for LDAP Version 2 Applications

To maintain compatibility with older versions of the LDAP client library (before LDAP Version 3), the
ldap_set_option API expects the value of the following option values to be supplied, instead of the
address of the value, when the application is running as an LDAP Version 2 application:

 � LDAP_OPT_SIZELIMIT
 � LDAP_OPT_TIMELIMIT
 � LDAP_OPT_REFHOPLIMIT
 � LDAP_OPT_SSL_TIMEOUT
 � LDAP_OPT_DEREF
 � LDAP_OPT_DEBUG

The LDAP application is typically running as LDAP Version 2 when it uses ldap_open to create the LDAP
connection. The LDAP application is typically running as LDAP Version 3 when it uses ldap_init to create
the LDAP connection. Note that LDAP_OPT_PROTOCOL_VERSION can be used to toggle the protocol,
in which case the behavior of ldap_set_option changes.

 Chapter 2. LDAP Routines 67

 ldap_init

Comparing the ldap_set_option and ldap_set_option_np APIs

The ldap_set_option and ldap_set_option_np APIs support the same LDAP option value settings; they
differ only in the level of indirection required to specify certain settings. The ldap_set_option_np API is a
390-specific API and its intent is to provide an alternate programming interface for setting LDAP option
values. Furthermore, the rules for specifying values through ldap_set_option_np will not be subject to
change in future releases. Unlike ldap_set_option, the ldap_set_option_np API expects the value of the
following option values to be supplied, instead of the address of the value, regardless of the LDAP version
setting:

 � LDAP_OPT_SIZELIMIT
 � LDAP_OPT_TIMELIMIT
 � LDAP_OPT_REFHOPLIMIT
 � LDAP_OPT_SSL_TIMEOUT
 � LDAP_OPT_PROTOCOL_VERSION
 � LDAP_OPT_DEREF
 � LDAP_OPT_DEBUG

 Related Topics
ldap_bind

68 Application Development Guide and Reference

 ldap_memfree

 ldap_memfree
 ldap_memfree
 ldap_control_free
 ldap_controls_free

 Purpose

Free storage allocated by the LDAP library.

 Format
#include <ldap.h>

void ldap_memfree(
 char �mem)

void ldap_control_free(
 LDAPControl �ctrl)

void ldap_controls_free(
 LDAPControl ��ctrls)

 Parameters
Input

mem Specifies the pointer to a character string that was previously allocated by
the LDAP client library and is no longer needed by the application.

ctrl Specifies the address of an LDAPControl structure.

ctrls Specifies the address of an LDAPControl list, represented as a
NULL-terminated array of pointers to LDAPControl structures.

 Usage

In many of the LDAP programming interface calls, memory is allocated by the programming interface and
returned to the application. It is the responsibility of the application to deallocate this storage when the
storage is no longer needed by the application. Due to the possibility of the LDAP programming interface
and the application using different heaps for dynamic storage allocation, the ldap_memfree API is
provided for programs to use to deallocate storage that was allocated by the LDAP programming interface.
It should be used to deallocate all character strings that were allocated by the programming interface and
returned to the application.

For those LDAP APIs that allocate an LDAPControl structure, the ldap_control_free API can be used.

For those LDAP APIs that allocate an array of LDAPControl structures, the ldap_controls_free API can
be used.

 Chapter 2. LDAP Routines 69

 ldap_message

 ldap_message
 ldap_first_message
 ldap_next_message
 ldap_count_messages

 Purpose

Step through the list of messages of a result chain, as returned by ldap_result.

 Format
#include <ldap.h>

LDAPMessage �ldap_first_message(
 LDAP �ld,
 LDAPMessage �result)

LDAPMessage �ldap_next_message(
 LDAP �ld,
 LDAPMessage �msg)

int ldap_count_messages(
 LDAP �ld,
 LDAPMessage �result)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

result Specifies the result returned by a call to ldap_result or one of the
synchronous search routines (see “ldap_search” on page 83).

msg Specifies the message returned by a previous call to ldap_first_message
or ldap_next_message.

 Usage

These routines are used to step through the list of messages in a result chain, as returned by ldap_result.
For search operations, the result chain may actually include:

� Continuation reference messages
 � Entry messages
� A single result message

The ldap_count_messages API is used to count the number of messages returned. The ldap_msgtype
API can be used to distinguish between the different message types. Unlike ldap_first_entry,
ldap_first_message will return either of the three types of messages. The other routines will return the
specific type (referral or entry), skipping the others.

70 Application Development Guide and Reference

 ldap_message

The ldap_first_message and ldap_next_message APIs will return NULL when no more messages exist
in the result set to be returned. NULL is also returned if an error occurs while stepping through the
entries. When such an error occurs, ldap_errno can be used to obtain the error code.

In addition to returning the number of messages contained in a chain of results, the
ldap_count_messages API can be used to count the number of messages that remain in a chain if called
with a message, entry, or reference returned by ldap_first_message, ldap_next_message,
ldap_first_entry, ldap_next_entry, ldap_first_reference and ldap_next_reference.

 Error Conditions

If an error occurs in ldap_first_message or ldap_next_message, the ldap_get_errno API can be used
to obtain the error code.

If an error occurs in ldap_count_messages, -1 is returned, and ldap_get_errno can be used to obtain
the error code. See “ldap_error” on page 42 for a description of possible error codes.

 Related Topics
ldap_result

 Chapter 2. LDAP Routines 71

 ldap_modify

 ldap_modify
 ldap_modify
 ldap_modify_ext
 ldap_modify_s
 ldap_modify_ext_s
 ldap_mods_free

 Purpose

Perform various LDAP modify operations.

 Format
#include <ldap.h>

typedef struct ldapmod {
 int mod_op;
 char �mod_type;
 union {
 char ��modv_strvals;

struct berval ��modv_bvals;
 } mod_vals;

struct ldapmod �mod_next;
} LDAPMod;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify(
 LDAP �ld,
 char �dn,
 LDAPMod �mods[])

int ldap_modify_ext(
 LDAP �ld,
 char �dn,
 LDAPMod �mods[],
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls,
 int �msgidp)

int ldap_modify_s(
 LDAP �ld,
 char �dn,
 LDAPMod �mods[])

int ldap_modify_ext_s(
 LDAP �ld,
 char �dn,
 LDAPMod �mods[],
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls)

72 Application Development Guide and Reference

 ldap_modify

void ldap_mods_free(
 LDAPMod ��mods,
 int freemods)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

dn Specifies the distinguished name (DN) of the entry to be modified.

mods A NULL-terminated array of modifications to make to the entry. Each
element of the mods array is a pointer to an LDAPMod structure.

The mod_op field is used to specify the type of modification to perform and
should be one of LDAP_MOD_ADD, LDAP_MOD_DELETE, or
LDAP_MOD_REPLACE. The mod_type and mod_values fields specify the
attribute type to modify and a NULL-terminated array of values to add,
delete, or replace respectively. The mod_next field is used only by the
LDAP library and should be ignored by the client.

If you need to specify a non-NULL-terminated character string value (for
example, to add a photo or audio attribute value), you should set mod_op to
the logical OR of the operation as above (for example,
LDAP_MOD_REPLACE) and the constant LDAP_MOD_BVALUES. In this
case, mod_bvalues should be used instead of mod_values, and it should
point to a NULL-terminated array of berval structures, as defined in the
lber.h header file and described in “ldap_get_values” on page 54.

For LDAP_MOD_ADD modifications, the given values are added to the
entry, creating the attribute if necessary. For LDAP_MOD_DELETE
modifications, the given values are deleted from the entry, removing the
attribute if no values remain. If the entire attribute is to be deleted, the
mod_values field should be set to NULL. For LDAP_MOD_REPLACE
modifications, the attribute will have the listed values after the modification,
having been created if necessary, and deleting any existing values not in
the supplied set. All modifications are performed in the order in which they
are listed.

freemods Specifies whether to deallocate the mods pointer. If freemods is nonzero,
the mods pointer itself is deallocated as well.

serverctrls Specifies a list of LDAP server controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about server
controls.

clientctrls Specifies a list of LDAP client controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about client
controls.

Output

msgidp This result parameter is set to the message ID of the request if the
ldap_modify_ext API succeeds.

 Chapter 2. LDAP Routines 73

 ldap_modify

 Usage

The various modify APIs are used to perform an LDAP modify operation.

The ldap_modify_ext API initiates an asynchronous modify operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not. If successful,
ldap_modify_ext places the message ID of the request in msgidp. A subsequent call to ldap_result can
be used to obtain the result of the operation. The ldap_parse_result API is used to extract information
from the result, including any error information.

The ldap_modify API initiates an asynchronous modify operation and returns the message ID of the
request it initiated. The result of this operation can be obtained by calling ldap_result, and result
information can be extracted by calling ldap_parse_result.

For ldap_modify and ldap_modify_s, when data is supplied in a NULL-terminated character string, it is
assumed to be data in the codeset of the current locale. This data will be converted to UTF-8 prior to
being passed to the LDAP Server. No conversions are performed on values supplied in pointer/length
format (that is, those values specified in berval structures and when LDAP_MOD_BVALUES is specified).
All four of the LDAP modify APIs support session controls set by the ldap_set_option API. The
ldap_modify_ext and ldap_modify_ext_s APIs both allow LDAP Version 3 server controls and client
controls to be specified with the request which overrides the session controls.

Depending on how the NULL-terminated array of LDAPMod structures was allocated by the application,
the ldap_mods_free API may or may not be useful. This API is offered as a convenience function for
cleaning up previously allocated storage. When invoked, each pointer in the NULL-terminated array is
deallocated and then, if freemods is nonzero, the mods pointer is also deallocated.

 Error Conditions

The ldap_modify_s and ldap_modify_ext_s APIs return LDAP_SUCCESS if successful, otherwise an
error code is returned. See “ldap_error” on page 42 for possible values.

The ldap_modify and ldap_modify_ext APIs return -1 in case of an error initiating the request. Use
ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for possible values.

If the LDAP server is running with an SDBM database, the ldap_modify APIs can return LDAP_OTHER
and have completed a partial update to an entry in RACF. The results will match what would occur if the
update were done using the RACF altuser command. If several RACF attributes are being updated and
one of them is in error, RACF reports on the error, but still updates the other attributes. The RACF
message text is also returned in the result.

 Related Topics
ldap_add ldap_error

74 Application Development Guide and Reference

 ldap_parse_result

 ldap_parse_result
 ldap_parse_result
 ldap_parse_sasl_bind_result

 Purpose

LDAP APIs for extracting information from results returned by other LDAP API routines.

 Format
#include <ldap.h>

int ldap_parse_result(
 LDAP �ld,
 LDAPMessage �res,
 int �errcodep,
 char ��matcheddnp,
 char ��errmsgp,
 char ���referralsp,
 LDAPControl ���servctrlsp,
 int freeit)

int ldap_parse_sasl_bind_result(
 LDAP �ld,
 LDAPMessage �res,

struct berval ��servercredp,
 int freeit)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

res Specifies the result of an LDAP operation as returned by ldap_result or one
of the synchronous LDAP API operation calls.

errcodep Specifies a pointer to the result parameter that will be filled in with the LDAP
error code field from the LDAPMessage message. The LDAPResult
message is produced by the LDAP server, and indicates the outcome of the
operation. NULL can be specified for errcodep if the LDAPResult message
is to be ignored.

matcheddnp Specifies a pointer to a result parameter. When
LDAP_NO_SUCH_OBJECT is returned as the LDAP error code, this result
parameter will be filled in with a distinguished name (DN) indicating how
much of the name in the request was recognized by the server. NULL can
be specified for matcheddnp if the matched DN is to be ignored. The
matched DN string should be freed by calling ldap_memfree.

errmsgp Specifies a pointer to a result parameter that is filled in with the contents of
the referrals field from the LDAPMessage message. The error message
string should be freed by calling ldap_memfree.

 Chapter 2. LDAP Routines 75

 ldap_parse_result

referralsp Specifies a pointer to a result parameter that is filled in with the contents of
the referrals field from the LDAPMessage message, indicating zero or more
alternate LDAP servers where the request should be retried. The referrals
array should be freed by calling ldap_value_free. NULL may be supplied
for this parameter to ignore the referrals field.

serverctrlsp Specifies a pointer to a result parameter that is filled in with an allocated
array of controls copied out of the LDAPMessage message. The control
array should be freed by calling ldap_controls_free.

freeit Specifies a boolean value that determines if the LDAP result (as specified
by res) is to be freed. Any nonzero value will result in res being freed after
the requested information is extracted. Alternatively, the ldap_msgfree API
can be used to free the result at a later time.

servercredp Specifies a pointer to a result parameter. For SASL bind results, this result
parameter will be filled in with the credentials returned by the server for
mutual authentication (if returned). The credentials, if returned, are returned
in a berval structure. NULL may be supplied to ignore this field.

 Usage

The ldap_parse_result API is used to:

� Obtain the LDAP error code field associated with an LDAPMessage message.
� Obtain the portion of the DN that the server recognizes for a failed operation.
� Obtain the text error message associated with the error code returned in an LDAPMessage message.
� Obtain the list of alternate servers from the referrals field.
� Obtain the array of controls that may be returned by the server.

The ldap_parse_sasl_bind_result API is used to obtain server credentials, as a result of an attempt to
perform mutual authentication. Both ldap_parse_result and ldap_parse_sasl_bind_result APIs ignore
messages of type LDAP_RES_SEARCH_ENTRY and LDAP_RES_SEARCH_REFERENCE when looking
for a result message to parse. They both return LDAP_SUCCESS if the result was successfully located
and parsed, and an LDAP error code if not successfully parsed.

 Error Conditions

The parse APIs return an LDAP error code if they encounter an error parsing the result. See “ldap_error”
on page 42 for possible values.

 Related Topics

ldap_error ldap_result

76 Application Development Guide and Reference

 ldap_rename

 ldap_rename
 ldap_rename
 ldap_rename_s
 ldap_modrdn (deprecated)
 ldap_modrdn_s (deprecated)

 Purpose

Perform an LDAP rename operation.

 Format
#include <ldap.h>

int ldap_rename(
 LDAP �ld,
 char �dn,
 char �newrdn,
 char �newparent,
 int deleteoldrdn,
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls,
 int �msgidp)

int ldap_rename_s(
 LDAP �ld,
 char �dn,
 char �newrdn,
 char �newparent,
 int deleteoldrdn,
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls)

int ldap_modrdn(
 LDAP �ld,
 char �dn,
 char �newrdn,
 int deleteoldrdn)

int ldap_modrdn_s(
 LDAP �ld,
 char �dn,
 char �newrdn,
 int deleteoldrdn)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

 Chapter 2. LDAP Routines 77

 ldap_rename

dn Specifies the distinguished name (DN) of the entry whose DN is to be
changed. When specified with the deprecated ldap_modrdn and
ldap_modrdn_s APIs, dn specifies the distinguished name (DN) of the
entry whose relative distinguished name (RDN) is to be changed.

newrdn Specifies the new RDN to give the entry.

newparent Specifies the new parent, or superior entry. If this parameter is NULL, only
the RDN of the entry is changed. The root DN may be specified by passing
a zero-length string, "". The newparent parameter should always be NULL
when using Version 2 of the LDAP protocol; otherwise the server's behavior
is undefined.

deleteoldrdn If nonzero, this indicates that the old RDN value should be deleted from the
entry. If zero, the attribute value is retained in the entry. With respect to
the ldap_rename and ldap_rename_s APIs, this parameter only has
meaning if newrdn is different from the old RDN.

serverctrls Specifies a list of LDAP server controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about server
controls.

clientctrls Specifies a list of LDAP client controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about client
controls.

Output

msgidp This result parameter is set to the message ID of the request if the
ldap_rename API succeeds.

 Usage

In LDAP Version 2, the ldap_modrdn and ldap_modrdn_s APIs were used to change the name of an
LDAP entry. They could only be used to change the least significant component of a name (the RDN or
relative distinguished name). LDAP Version 3 provides the Modify DN protocol operation that allows more
general name change access. The ldap_rename and ldap_rename_s APIs are used to change the
name of an entry or to move a subtree of entries to a new location in the directory, and the use of the
ldap_modrdn and ldap_modrdn_s APIs is deprecated.

The ldap_rename API initiates an asynchronous modify DN operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not. If successful,
ldap_rename places the message ID of the request in msgidp. A subsequent call to ldap_result can be
used to obtain the result of the operation. The ldap_parse_result API is used to extract information from
the result, including any error information.

The synchronous ldap_rename_s API returns the result of the operation, either the constant
LDAP_SUCCESS if the operation was successful, or another LDAP error code if it was not.

The LDAP rename APIs support session controls set by the ldap_set_option API.

The ldap_modrdn and ldap_modrdn_s APIs perform an LDAP modify RDN operation. They both
change the lowest level RDN of an entry. When the RDN of the entry is changed, the value of the old
RDN can be retained as an attribute type and value in the entry if desired. This is for keeping the entry
inside the set of entries that match search filters which reference the attribute type of the RDN. The
ldap_modrdn API returns the message ID of the request it initiated. The result of this operation can be
obtained by calling ldap_result.

78 Application Development Guide and Reference

 ldap_rename

 Error Conditions

The ldap_rename and ldap_modrdn APIs return -1 in case of an error initiating the request. Use
ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for possible values.

The ldap_rename_s and ldap_modrdn_s APIs return LDAP_SUCCESS if successful, otherwise an error
code is returned. See “ldap_error” on page 42 for possible values.

 Related Topics
ldap_error ldap_result

 Chapter 2. LDAP Routines 79

 ldap_result

 ldap_result
 ldap_result
 ldap_msgfree
 ldap_msgtype
 ldap_msgid

 Purpose

Wait for the result of an asynchronous LDAP operation, free the results of an operation (synchronous and
asynchronous), obtain LDAP message types, and obtain the message ID of an LDAP message.

 Format
#include <sys/time.h> /� for struct timeval definition �/
#include <ldap.h>

int ldap_result(
 LDAP �ld,
 int msgid,
 int all,

struct timeval �timeout,
 LDAPMessage ��result)

int ldap_msgfree(
 LDAPMessage �msg)

int ldap_msgtype(
 LDAPMessage �msg)

int ldap_msgid(
 LDAPMessage �msg)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

msgid Contains an invocation identifier returned when an operation was initiated.
Provide the msgid if the result of a specific operation is required, otherwise
supply LDAP_RES_ANY.

all For search responses, selects whether a single entry of the search should
be returned or all results of the search should be returned.

A search response is made up of zero or more search entries followed by a
search result. If all is set to 0, search entries will be returned one at a time
as they come in, through separate calls to ldap_result . If all is nonzero,
the search response will only be returned in its entirety, that is, after all
entries and the final search result have been received. Specify
LDAP_MSG_RECEIVED to indicate that all results retrieved so far should
be returned in the result chain.

80 Application Development Guide and Reference

 ldap_result

timeout Specifies blocking for ldap_result. If timeout is not NULL, it specifies a
maximum interval to wait for the selection to complete. If timeout is NULL,
the select blocks indefinitely until the result for the operation identified by
the msgid is received. To poll, the timeout parameter should be non-null,
pointing to a zero-valued timeval structure.

msg Pointer to a result or entry returned from ldap_result or from one of the
synchronous LDAP search routines (see “ldap_search” on page 83).

Output

result Contains the result of the asynchronous operation identified by msgid. This
result should be passed to the LDAP parsing routines. See
“ldap_first_entry/reference” on page 48.

The type of the result is returned in the return code. The possible result
types returned are:

 LDAP_RES_BIND
 LDAP_RES_SEARCH_ENTRY
 LDAP_RES_SEARCH_RESULT
 LDAP_RES_MODIFY
 LDAP_RES_ADD
 LDAP_RES_DELETE
 LDAP_RES_MODRDN
 LDAP_RES_COMPARE
 LDAP_RES_SEARCH_REFERENCE
 LDAP_RES_EXTENDED
 LDAP_RES_ANY

 Usage

The ldap_result API is used to wait for and return the result of an operation previously initiated by one of
the LDAP asynchronous operation routines (for example, ldap_search and ldap_modify). Those routines
return an invocation identifier upon successful initiation of the operation or -1 in case of an error. The
invocation identifier is picked by the library and is guaranteed to be unique between calls to ldap_bind
and ldap_unbind, or ldap_unbind_s. This identifier can be used to request the result of a specific
operation from ldap_result using the msgid parameter.

The ldap_result API allocates memory for results that it receives. The memory can be deallocated by
calling ldap_msgfree.

The ldap_msgfree API is used to deallocate the memory allocated for a result by ldap_result or the
synchronous LDAP search operation routines (for example, ldap_search_s and ldap_url_search_s). It
takes a pointer to the result to be deallocated and returns the type of the message it deallocated.

The ldap_msgtype API returns the type of LDAP message, based on the LDAP message passed as input
(through the msg parameter).

The ldap_msgid API returns the message ID associated with the LDAP message passed as input
(through the msg parameter).

 Chapter 2. LDAP Routines 81

 ldap_result

 Error Conditions

The ldap_result API returns -1 if an error occurs. Use ldap_get_errno to retrieve the error value. Zero
is returned if the timeout specified was exceeded. In either of these cases, the result value is
meaningless.

 Related Topics
ldap_search

82 Application Development Guide and Reference

 ldap_search

 ldap_search
 ldap_search
 ldap_search_s
 ldap_search_ext
 ldap_search_ext_s
 ldap_search_st

 Purpose

Perform various LDAP search operations.

 Format
#include <sys/time.h> /� for struct timeval definition �/

#include <ldap.h>

int ldap_search(
 LDAP �ld,
 char �base,
 int scope,
 char �filter,
 char �attrs[],
 int attrsonly)

int ldap_search_s(
 LDAP �ld,
 char �base,
 int scope,
 char �filter,
 char �attrs[],
 int attrsonly,
 LDAPMessage ��res)

int ldap_search_ext(
 LDAP �ld,
 char �base,
 int scope,
 char �filter,
 char �attrs[],
 int attrsonly,
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls,

struct timeval �timeout,
 int sizelimit,
 int �msgidp)

int ldap_search_ext_s(
 LDAP �ld,
 char �base,
 int scope,
 char �filter,
 char �attrs[],
 int attrsonly,
 LDAPControl ��serverctrls,
 LDAPControl ��clientctrls,

 Chapter 2. LDAP Routines 83

 ldap_search

struct timeval �timeout,
 int sizelimit,
 LDAPMessage ��res)

int ldap_search_st(
 LDAP �ld,
 char �base,
 int scope,
 char �filter,
 char �attrs[],
 int attrsonly,

struct timeval �timeout,
 LDAPMessage ��res)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

base Specifies the distinguished name of the entry at which to start the search. It
should be in the text format described by IETF RFC 1779 A String
Representation of Distinguished Names. Following is an example:

cn=Jane Doe, o=Your Company, c=US

scope Specifies the scope of the search and must be one of the following:

LDAP_SCOPE_BASE to search the entry named by base itself
LDAP_SCOPE_ONELEVEL to search the entry's immediate children
LDAP_SCOPE_SUBTREE to search the entry and all its descendents

filter A string representation of the filter to apply in the search. Simple filters can
be specified as attributetype=attributevalue. More complex filters are
specified using a prefix notation according to the following BNF:

<filter> ::= '(' <filtercomp> ')'
<filtercomp> ::= <and> ; <or> ; <not> ; <simple>
<and> ::= '&' <filterlist>
<or> ::= ';' <filterlist>
<not> ::= '!' <filter>
<filterlist> ::= <filter> ; <filter> <filterlist>
<simple> ::= <attributetype> <filtertype> <attributevalue>
<filtertype> ::= '=' ; '˜=' ; '<=' ; '>='

The “˜=” construct is used to specify approximate matching. The
representation for <attributetype> and <attributevalue> are as described in
IETF RFC 1778, The String Representation of Standard Attribute Syntaxes.
In addition, <attributevalue> can be a single asterisk (*) to achieve an
attribute existence test, or can contain text and asterisks (*) interspersed to
achieve substring matching.

For example, the filter

mail=B

finds any entries that have a mail attribute. The filter

mail=B@student.of.life.edu

finds any entries that have a mail attribute ending in the specified string. To
put parentheses in a filter, escape them with a backslash (\) character. See

84 Application Development Guide and Reference

 ldap_search

IETF RFC 1558 A String Representation of LDAP Search Filters for a more
complete description of allowable filters.

A more complicated example is:

(&(cn=JaneB)(sn=Doe))

attrs Specifies a NULL-terminated array of character string attribute types to
return from entries that match filter. If NULL is specified, all attributes are
returned.

attrsonly Specifies attribute information. If nonzero, only attribute types are returned.
If zero, both attribute types and attribute values are returned.

timeout Specifies blocking for ldap_search_st. If timeout is not NULL, it specifies a
maximum interval to wait for the selection to complete. If timeout is NULL,
the select blocks indefinitely until the result for the operation identified by
the msgid is received. To poll, the timeout parameter should be non-null,
pointing to a zero-valued timeval structure.

For the ldap_search_ext and ldap_search_ext_s APIs, this function
specifies both the local search timeout value and the operation time limit
that is sent to the server within the search request.

serverctrls Specifies a list of LDAP server controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about server
controls.

clientctrls Specifies a list of LDAP client controls. This parameter may be set to
NULL. See “LDAP Controls” on page 25 for more information about client
controls.

sizelimit Specifies the maximum number of entries to return from the search. Note
that the server may set a lower limit which is enforced at the server.

Output

res Specifies the result of an LDAP operation as returned by ldap_result or one
of the synchronous LDAP API operation calls.

msgidp This result parameter is set to the message ID of the request if the
ldap_modify_ext API succeeds.

 Usage

The ldap_search_ext API initiates an asynchronous search operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not. If successful,
ldap_search_ext places the message ID of the request in *msgidp. A subsequent call to ldap_result can
be used to obtain the results from the search. The ldap_parse_result API is used to extract information
from the result, including any error information. In addition, use ldap_first_entry, ldap_next_entry,
ldap_first_attribute, ldap_next_attribute, ldap_get_values, and ldap_get_values_len to examine
results from a search.

Similar to ldap_search_ext, the ldap_search API initiates an asynchronous search operation and returns
the message ID of the operation it initiated. The result of this operation can be obtained by calling
ldap_result, and result information can be extracted by calling ldap_parse_result.

The ldap_search_s API does a synchronous search (that is, not returning until the operation completes).

 Chapter 2. LDAP Routines 85

 ldap_search

The ldap_search_st API does a synchronous search allowing the specification of a maximum time to wait
for results. The API returns when results are complete or after the timeout has passed, whichever is
sooner.

All five of the LDAP search APIs support session controls set by the ldap_set_option API. The
ldap_search_ext and ldap_search_ext_s APIs both allow LDAP Version 3 server controls and client
controls to be specified with the request which overrides the session controls.

For ldap_search, ldap_search_s, and ldap_search_st, note that both read and list functionality are
subsumed by these APIs. Use a filter like objectclass=B and a scope of LDAP_SCOPE_BASE to
emulate read or LDAP_SCOPE_ONELEVEL to emulate list.

The ldap_search_ext_s, ldap_search_s, and ldap_search_st APIs allocate storage returned by the res
parameter. Use ldap_msgfree to deallocate this storage.

There are three options in the session handle ld which potentially affect how the search is performed.
They are:

LDAP_OPT_SIZELIMIT A limit on the number of entries to return from the search. A value of zero
means no limit. Note that the value from the session handle is ignored
when using the ldap_search_ext or ldap_search_ext_s functions.

LDAP_OPT_TIMELIMIT A limit on the number of seconds to spend on the search. A value of zero
means no limit. Note that the value from the session handle is ignored
when using the ldap_search_ext or ldap_search_ext_s APIs.

LDAP_OPT_DEREF One of LDAP_DEREF_NEVER (0x00), LDAP_DEREF_SEARCHING,
(0x01), LDAP_DEREF_FINDING (0x02), or LDAP_DEREF_ALWAYS
(0x03), specifying how aliases should be handled during the search. The
LDAP_DEREF_SEARCHING value means aliases should be dereferenced
during the search but not when locating the base object of the search. The
LDAP_DEREF_FINDING value means aliases should be dereferenced
when locating the base object but not during the search.

These options are set and queried using the ldap_set_option and ldap_get_option APIs, respectively.

Reading an Entry

LDAP does not support a read operation directly. Instead, this operation is emulated by a search with
base set to the DN of the entry to read, scope set to LDAP_SCOPE_BASE, and filter set to
(objectclass=B). The attrs parameter optionally contains the list of attributes to return.

Listing the Children of an Entry

LDAP does not support a list operation directly. Instead, this operation is emulated by a search with base
set to the DN of the entry to list, scope set to LDAP_SCOPE_ONELEVEL, and filter set to
(objectclass=B). The attrs parameter optionally contains the list of attributes to return for each child
entry. If only the distinguished names of child entries are desired, the attrs parameter should specify a
NULL-terminated array of one character string which has the value dn.

86 Application Development Guide and Reference

 ldap_search

 Error Conditions

The ldap_search and ldap_search_ext APIs return -1 in case of an error initiating the request. Use
ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for possible values.

The ldap_search_s, ldap_search_ext_s, and ldap_search_st APIs return LDAP_SUCCESS if
successful, otherwise an error code is returned. See “ldap_error” on page 42 for possible values.

 Related Topics
ldap_result ldap_error

 Chapter 2. LDAP Routines 87

 ldap_ssl

 ldap_ssl
 ldap_ssl_client_init
 ldap_ssl_init
 ldap_ssl_start (deprecated)

 Purpose

Routines for initializing the Secure Socket Layer (SSL) function for an LDAP application, and creating a
secure (SSL) connection to an LDAP Server.

 Format
#include <ldap.h>

#include <ldapssl.h>

int ldap_ssl_client_init(
 char �keyring,
 char �keyring_pw,
 int ssl_timeout,
 int �pSSLReasonCode)

LDAP �ldap_ssl_init(
 char �host,
 int port,
 char �name)

int ldap_ssl_start(
 LDAP �ld,
 char �keyring,
 char �keyring_pw,
 char �name)

 Parameters
Input

ld Specifies the LDAP pointer returned by a previous call to ldap_ssl_init,
ldap_init or ldap_open.

host Specifies the name of the host on which the LDAP Server is running. The
host parameter may contain a blank-separated list of hosts to try to connect
to, and each host may optionally be of the form host:port. If present, the
:port overrides the ldap_ssl_init port parameter. If the host parameter is
NULL, the LDAP Server will be assumed to be running on the local host.

port Specifies the port number to which to connect. If the default IANA-assigned
SSL port of 636 is desired, LDAPS_PORT should be specified.

keyring Specifies the name of a key database file. The key database file typically
contains one or more certificates of certificate authorities (CAs) that are
trusted by the client. These types of X.509 certificates are also known as
trusted roots. A key database file can also be used to store the client's
private key or keys and associated client certificate or certificates. A private

88 Application Development Guide and Reference

 ldap_ssl

key and associated client certificate are required only if the LDAP Server is
configured to require client and server authentication. If the LDAP Server is
configured to provide only server authentication, a private key and client
certificate are not required.

Note: Although still supported, use of the ldap_ssl_start API is
discouraged (its use has been deprecated). Any application using the
ldap_ssl_start API should only use a single key database file (per
application process).

A fully-qualified path and file name is recommended. If a file name without
a fully-qualified path is specified, the LDAP library will look in the current
directory for the file. The key database specified here must have been
created using the GSKKYMAN utility.

For more information on using GSKKYMAN to manage the contents of a
key database file, see the OS/390 Security Server LDAP Server
Administration and Usage Guide and the OS/390 Cryptographic Services
System Secure Sockets Layer Programming Guide and Reference.

keyring_pw Specifies the password that is used to protect the contents of the key
database file. This password is important since it protects the private key
stored in the key database file. The password was specified when the key
database file was initially created. A NULL pointer to the password is
accepted.

name Specifies the name, or label, associated with the client private key/certificate
pair in the key database file. It is used to uniquely identify a private
key/certificate pair, as stored in the key database file, and may be
something like: Digital ID for Fred Smith.

If the LDAP Server is configured to perform only Server Authentication, a
client certificate is not required (and name can be set to NULL). If the
LDAP Server is configured to perform Client and Server Authentication, a
client certificate is required. The name can be set to NULL if a default
certificate/private key pair has been designated as the default (using
GSKKYMAN). Similarly, name can be set to NULL if there is a single
certificate/private key pair in the designated key database file.

ssl_timeout Specifies the SSL timeout value in seconds. The timeout value controls the
frequency with which the SSL protocol stack regenerates session keys. If
ssl_timeout is set to 0, the default value SSLV3_CLIENT_TIMEOUT will be
used. Otherwise, the value supplied will be used, provided it is less than or
equal to 86,400 (number of seconds in a day). If ssl_timeout is greater than
86,400, LDAP_PARAM_ERROR is returned.

pSSLReasonCode Specifies a pointer to the SSL Reason Code, which provides additional
information in the event that an error occurs during initialization of the SSL
stack (when ldap_ssl_client_init is invoked). See “ldapssl.h” on page 105
for reason codes that can be returned.

 Usage

The ldap_ssl_client_init API is used to initialize the SSL protocol stack for an application process. It
should be invoked once, prior to making any other LDAP calls. Once ldap_ssl_client_init has been
successfully invoked, any subsequent invocations will return a return code of
LDAP_SSL_ALREADY_INITIALIZED.

 Chapter 2. LDAP Routines 89

 ldap_ssl

The ldap_ssl_init API is the SSL equivalent of ldap_init. It is used to initialize a secure SSL session with
a server. Note that the server is not actually contacted until an operation is performed that requires it,
allowing various options to be set after initialization. Once the secure connection is established for the ld,
all subsequent LDAP messages that flow over the secure connection are encrypted, including the
ldap_simple_bind parameters, until ldap_unbind is invoked.

The ldap_ssl_init API returns a session handle, a pointer to an opaque data structure that should be
passed to subsequent calls that pertain to the session. These subsequent calls will return NULL if the
session cannot actually be established with the server. Use ldap_get_option to determine why the call
failed.

The LDAP session handle returned by ldap_ssl_init (and ldap_init) is a pointer to an opaque data type
representing an LDAP session. The ldap_get_option and ldap_set_option APIs are used to access and
set a variety of session-wide parameters. See “ldap_init” on page 57 for more information about
ldap_get_option and ldap_set_option.

Note that when connecting to an LDAP Version 2 Server, one of the ldap_simple_bind or ldap_bind
calls must be completed before other operations can be performed on the session (with the exception of
ldap_get_options or ldap_set_options). The LDAP Version 3 protocol does not require a bind operation
before performing other operations.

Although still supported, the use of the ldap_ssl_start API is now deprecated. The ldap_ssl_client_init
and ldap_ssl_init APIs should be used instead. The ldap_ssl_start API starts a secure connection
(using SSL) to an LDAP Server. The ldap_ssl_start API accepts the ld from an ldap_open and performs
an SSL handshake to a server. The ldap_ssl_start API must be invoked after ldap_open and prior to
ldap_bind. Once the secure connection is established for the ld, all subsequent LDAP messages that
flow over the secure connection are encrypted, including the ldap_bind parameters, until ldap_unbind is
invoked.

The following scenario depicts the recommended calling sequence where the entire set of LDAP
transactions are protected by using a secure SSL connection, including the DN and password that flow on
the ldap_simple_bind:

rc = ldap_ssl_client_init (keyfile, keyfile_pw, timeout);
ld = ldap_ssl_init(ldaphost, ldapport, label);
rc = ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, &ciphers);
rc = ldap_simple_bind_s(ld, binddn, passwd);

... additional LDAP API calls

rc = ldap_unbind(ld);

Note that the sequence of calls for the deprecated APIs is ldap_open or ldap_init, ldap_ssl_start,
followed by ldap_bind.

The following ciphers are attempted for the SSL handshake by default, in the order shown.

 RC4_MD5_EXPORT
 RC2_MD5_EXPORT
 RC4_SHA_US
 RC4_MD5_US
 DES_SHA_US
 3DES_SHA_US

See “ldap_init” on page 57 for more information on setting the ciphers to be used.

90 Application Development Guide and Reference

 ldap_ssl

 Options

Options are supported for controlling the nature of the secure connection. These options are set using the
ldap_set_option API.

To specify the number of seconds for the SSL session-level timer, use:

ldap_set_option(ld,LDAP_OPT_SSL_TIMEOUT, &timeout)

where timeout specifies timeout in seconds. When timeout occurs, SSL re-establishes the session keys
for the session for increased security.

To specify a specific cipher, or set of ciphers, to be used when negotiating with the server, use
ldap_set_option to define a sequence of ciphers. For example, the following defines a sequence of three
ciphers to be used when negotiating with the server. The first cipher that is found to be in common with
the server's list of ciphers is used.

ldap_set_option(ld, LDAP_OPT_SSL_CIPHER,
(void B) LDAP_SSL_3DES_SHA_US LDAP_SSL_RC4_MD5_US);

The following ciphers are defined in ldap.h:

#define LDAP_SSL_RC4_MD5_EX “03”
#define LDAP_SSL_RC2_MD5_EX “06”
#define LDAP_SSL_RC4_SHA_US “05”
#define LDAP_SSL_RC4_MD5_US “04”
#define LDAP_SSL_DES_SHA_US “09”
#define LDAP_SSL_3DES_SHA_US “0A”

For more information on ldap_set_option, see “ldap_init” on page 57.

 Notes

The ldapssl.h file contains return codes that are specific for ldap_ssl_client_init, ldap_ssl_init and
ldap_ssl_start.

The SSL versions of these utilities include RSA software.

 Related Topics
ldap_init

 Chapter 2. LDAP Routines 91

 ldap_url

 ldap_url
 ldap_is_ldap_url
 ldap_url_parse
 ldap_free_urldesc
 ldap_url_search
 ldap_url_search_s
 ldap_url_search_st

 Purpose

LDAP Uniform Resource Locator (URL) routines.

 Format
#include <sys/time.h> /� for struct timeval definition �/

#include <ldap.h>

int ldap_is_ldap_url(
 char �url)

int ldap_url_parse(
 char �url,
 LDAPURLDesc ��ludpp)

typedef struct ldap_url_desc {
char �lud_host; /� LDAP host to contact �/
int lud_port; /� port on host �/
char �lud_dn; /� base for search �/
char ��lud_attrs; /� NULL-terminate list of attributes �/
int lud_scope; /� a valid LDAP_SCOPE_... value �/
char �lud_filter; /� LDAP search filter �/
char �lud_string; /� for internal use only �/

 } LDAPURLDesc;

void ldap_free_urldesc(
 LDAPURLDesc �ludp)

int ldap_url_search(
 LDAP �ld,
 char �url,
 int attrsonly)

int ldap_url_search_s(
 LDAP �ld,
 char �url,
 int attrsonly,
 LDAPMessage ��res)

92 Application Development Guide and Reference

 ldap_url

int ldap_url_search_st(
 LDAP �ld,
 char �url,
 int attrsonly,

struct timeval �timeout,
 LDAPMessage ��res)

 Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_open,
ldap_ssl_init, or ldap_init.

url Specifies the LDAP URL.

ludp Specifies the URL description.

attrsonly Specifies attribute information. Set to 1 to request attributes types only.
Set to 0 to request both attribute types and attribute values.

timeout Specifies blocking for ldap_search_st. If timeout is not NULL, it specifies a
maximum interval to wait for the selection to complete. If timeout is NULL,
the select blocks indefinitely until the result for the operation identified by
the msgid is received. To poll, the timeout parameter should be non-null,
pointing to a zero-valued timeval structure.

ludpp Points to the LDAP URL description, as returned by ldap_url_parse.

Output

ludpp Points to the LDAP URL description, as returned by ldap_url_parse.

res On successful completion of the search, res is set to point to a set of
LDAPMessage structures. These should be parsed with ldap_first_entry
and ldap_next_entry.

 Usage

These routines support the use of LDAP URLs (Uniform Resource Locators). LDAP URLs look like this:

ldap://hostport[:port]/dn[?attributes[?scope[?filter]]]

where:

� hostport is a DNS-style host name and port is an optional port number
� dn is the base DN to be used for an LDAP search operation
� attributes is a comma separated list of attributes to be retrieved
� scope is one of these three strings:

base one sub (default=base)

� filter is an LDAP search filter as used in a call to ldap_search

For example,

ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich

is an LDAP URL describing a one level search at the LDAP server running on host ldap.itd.umich.edu
listening on the default LDAP port (389) using base distinguished name c=US, requesting only the
organization and description attributes and applying the search filter o=umich.

URLs that are wrapped in angle brackets (<>) or preceded by URL: are also tolerated. An example of
URL:ldapurl is:

 Chapter 2. LDAP Routines 93

 ldap_url

URL:ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich

An example of <URL:ldapurl> is:

<URL:ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich>

The ldap_is_ldap_url API returns a nonzero value if url looks like an LDAP URL (as opposed to another
type of URL). Use the ldap_url_parse API routine if a more thorough check is needed.

Use the ldap_url_parse API to check the URL more thoroughly than the ldap_is_ldap_url API. The
ldap_url_parse API breaks down an LDAP URL passed in url into its component pieces. If successful,
LDAP_SUCCESS is returned, an LDAP URL description is allocated, filled in, and ludpp is set to point to
it.

The ldap_free_urldesc API deallocates storage allocated by ldap_url_parse.

The ldap_url_search API initiates an asynchronous LDAP search based on the contents of the url string.
This routine acts just like ldap_search except that many search parameters are pulled out of the URL.

The ldap_url_search_s API initiates a synchronous LDAP search based on the contents of the url string.
This routine acts just like ldap_search_s except that many search parameters are pulled out of the URL.

The ldap_url_search_st API initiates a synchronous LDAP search based on the contents of the url string
and specifies a timeout. This routine acts just like ldap_search_st except that many search parameters
are pulled out of the URL.

 Notes

For search operations, if hostport is omitted, host and port for the current connection are used. If hostport
is specified, and is different from the host and port combination used for the current connection, the
search is directed to hostport, instead of using the current connection. In this case, the underlying referral
mechanism is used to bind to hostport.

If the LDAP URL does not contain a search filter, the filter defaults to objectClass=B.

 Error Conditions

If an error occurs for ldap_url_parse, one of the following values is returned:

LDAP_URL_ERR_NOTLDAP URL doesn't begin with ldap://

LDAP_URL_ERR_NODN URL has no DN (required)

LDAP_URL_ERR_BADSCOPE URL scope string is invalid

LDAP_URL_ERR_MEM can't allocate memory space

The ldap_url_search API returns -1 in case of an error initiating the request. Use ldap_get_errno to
retrieve the error value. See “ldap_error” on page 42 for possible values.

The ldap_url_search_s and ldap_url_search_st APIs return LDAP_SUCCESS if successful, otherwise
an error code is returned. See “ldap_error” on page 42 for possible values.

 Related Topics
ldap_search

94 Application Development Guide and Reference

LDAP Header Files

This section contains a description of the header files supplied with the LDAP client. These files are
| located in the /usr/lpp/ldapclient/include directory. To include these files in your applications, enclose

the header file name within angle brackets in your source code. For example, to include the ldap.h
header file, use:

#include <ldap.h>

 lber.h

The lber.h header file contains additional definitions for selected LDAP routines. It is included
automatically by the ldap.h header file. This header defines additional constants, types, and macros that
are used with the LDAP APIs.

The following shows the contents of the lber.h header file:

| ??=ifdef __COMPILER_VER__
| ??=pragma filetag ("IBM-1�47")
| ??=endif

| /B @(#)36 1.4.4.3 src/libraries/libcommon/ber/lber.h, ldap.libs, os39�r8ldap 4/11/99 13:13:�4 B/

| /B
| B Licensed Materials - Property of IBM
| B 5647-A�1
| B (C) Copyright IBM Corp. 1997, 1999
| B
| B/

| /B
| B Copyright (c) 199� Regents of the University of Michigan.
| B All rights reserved.
| B
| B Redistribution and use in source and binary forms are permitted
| B provided that this notice is preserved and that due credit is given
| B to the University of Michigan at Ann Arbor. The name of the
| B University may not be used to endorse or promote products
| B derived from this software without specific prior written
| B permission. This software is provided "as is" without express
| B or implied warranty.
| B/

| #ifndef _LBER_H
| #define _LBER_H

| /B structure for returning a sequence of octet strings + length B/
| struct berval {
| unsigned long bv_len;
| char Bbv_val;
| };

| typedef struct berelement BerElement;
| #define NULLBER ((BerElement B) �)

| #endif /B _LBER_H B/

 Chapter 2. LDAP Routines 95

 ldap.h

The ldap.h header file contains definitions for the LDAP routines. It has the following format:

#include <ldap.h>

It is a mandatory include file for all applications working with the LDAP APIs. This header defines
constants, types, and macros that are used with the interface.

The following shows the contents of the ldap.h header file:

| ??=ifdef __COMPILER_VER__
| ??=pragma filetag ("IBM-1�47")
| ??=endif

| /B %Z%%M% %I% %W% %G% %U% B/
| /B
| B Licensed Materials - Property of IBM
| B 5647-A�1
| B (C) Copyright IBM Corp. 1997, 1999
| B
| B/

| /B
| B Copyright (c) 199� Regents of the University of Michigan.
| B All rights reserved.
| B
| B Redistribution and use in source and binary forms are permitted
| B provided that this notice is preserved and that due credit is given
| B to the University of Michigan at Ann Arbor. The name of the
| B University may not be used to endorse or promote products
| B derived from this software without specific prior written
| B permission. This software is provided "as is" without express
| B or implied warranty.
| B/

| #ifndef _LDAP_H
| #define _LDAP_H

| #ifdef __cplusplus
| extern "C" {
| #endif

| #ifdef _WIN32
| #include <winsock.h>
| #else
| #include <sys/time.h>
| #endif

| #include <lber.h>

| #define LDAP_VERSION2 2
| #define LDAP_VERSION3 3
| #ifdef LDAPV3
| #define LDAP_VERSION LDAP_VERSION3
| #else
| #define LDAP_VERSION LDAP_VERSION2
| #endif

96 Application Development Guide and Reference

| /B For compatibility w/Netscape implementation of ldap_version(). B/
| #define LDAP_SECURITY_NONE �

| #define LDAP_PORT 389
| #define LDAPS_PORT 636

| #define LDAP_MAX_ATTR_LEN 1��

| /B possible result types a server can return B/
| #define LDAP_RES_BIND �x61L /B application + constructed B/
| #define LDAP_RES_SEARCH_ENTRY �x64L /B application + constructed B/
| #define LDAP_RES_SEARCH_RESULT �x65L /B application + constructed B/
| #define LDAP_RES_MODIFY �x67L /B application + constructed B/
| #define LDAP_RES_ADD �x69L /B application + constructed B/
| #define LDAP_RES_DELETE �x6bL /B application + constructed B/
| #define LDAP_RES_MODRDN �x6dL /B application + constructed B/
| #define LDAP_RES_COMPARE �x6fL /B application + constructed B/
| #define LDAP_RES_SEARCH_REFERENCE �X73L /B application + constructed B/
| #define LDAP_RES_EXTENDED �X78L /B application + constructed B/
| #define LDAP_EXTENDED_RES_NAME �X8aL /B context specific+primitiveB/
| #define LDAP_EXTENDED_RES_VALUE �X8bL /B context specific+primitiveB/
| #define LDAP_RES_REFERRAL �Xa3L /B context specific+constructedB/
| #define LDAP_RES_ANY (-1L)

| /B authentication methods available B/
| #define LDAP_AUTH_SIMPLE �x8�L /B context specific + primitive B/
| #define LDAP_AUTH_SASL_3� �xa3L
| #define LDAP_SASL_SIMPLE ""

| /B search scopes B/
| #define LDAP_SCOPE_BASE �x��
| #define LDAP_SCOPE_ONELEVEL �x�1
| #define LDAP_SCOPE_SUBTREE �x�2

| /B bind constants B/
| #define LDAP_MECHANISM_EXTERNAL "EXTERNAL"

| /B for modifications B/
| typedef struct ldapmod {
| int mod_op;
| #define LDAP_MOD_ADD �x��
| #define LDAP_MOD_DELETE �x�1
| #define LDAP_MOD_REPLACE �x�2
| #define LDAP_MOD_BVALUES �x8�
| char Bmod_type;
| union {
| char BBmodv_strvals;
| struct berval BBmodv_bvals;
| } mod_vals;
| #define mod_values mod_vals.modv_strvals
| #define mod_bvalues mod_vals.modv_bvals
| struct ldapmod Bmod_next;
| } LDAPMod;

| /B
| B options that can be set/gotten

 Chapter 2. LDAP Routines 97

| B/
| #define LDAP_OPT_SIZELIMIT �x��
| #define LDAP_OPT_TIMELIMIT �x�1
| #define LDAP_OPT_REFERRALS �x�������2
| #define LDAP_OPT_DEREF �x�3
| #define LDAP_OPT_RESTART �x�������4
| #define LDAP_OPT_REFHOPLIMIT �x�5
| #define LDAP_OPT_DEBUG �x�6

| #define LDAP_OPT_SSL_CIPHER �x�7
| #define LDAP_OPT_SSL_TIMEOUT �x�8

| #define LDAP_OPT_REBIND_FN �x�9
| #define LDAP_OPT_SSL �x�A
| #define LDAP_OPT_PROTOCOL_VERSION �x11
| #define LDAP_OPT_SERVER_CONTROLS �x12
| #define LDAP_OPT_CLIENT_CONTROLS �x13
| #define LDAP_OPT_HOST_NAME �x3�
| #define LDAP_OPT_ERROR_NUMBER �x31
| #define LDAP_OPT_ERROR_STRING �x32
| #define LDAP_OPT_EXT_ERROR �x33

| #define LDAP_OPT_UTF8_IO �xE�
| #define LDAP_OPT_SSL_CERTIFICATE_DN �xE1

| #define LDAP_OPT_V2_WIRE_FORMAT �xE2

| #define LDAP_OPT_V2_WIRE_FORMAT_ISO8859_1 �x��
| #define LDAP_OPT_V2_WIRE_FORMAT_UTF8 �x�1

| #define LDAP_OPT_LCS �x�F

| /B option value for no size limit or no time limit on searches B/
| #define LDAP_NO_LIMIT �

| /B option values for binary options B/
| #define LDAP_OPT_ON �x�1
| #define LDAP_OPT_OFF �x��

| /B option values for dereferencing aliases B/
| #define LDAP_DEREF_NEVER �
| #define LDAP_DEREF_SEARCHING 1
| #define LDAP_DEREF_FINDING 2
| #define LDAP_DEREF_ALWAYS 3

| /B default limit on nesting of referrals B/
| #define LDAP_DEFAULT_REFHOPLIMIT 5

| /B Debug levels B/
| #define LDAP_DEBUG_OFF �x��������
| #define LDAP_DEBUG_TRACE �x�������1
| #define LDAP_DEBUG_PACKETS �x�������2
| #define LDAP_DEBUG_ARGS �x�������4
| #define LDAP_DEBUG_CONNS �x�������8
| #define LDAP_DEBUG_BER �x������1�
| #define LDAP_DEBUG_FILTER �x������2�
| #define LDAP_DEBUG_MESSAGE �x������4�
| #define LDAP_DEBUG_ACL �x������8�

98 Application Development Guide and Reference

| #define LDAP_DEBUG_STATS �x�����1��
| #define LDAP_DEBUG_THREAD �x�����2��
| #define LDAP_DEBUG_REPL �x�����4��
| #define LDAP_DEBUG_PARSE �x�����8��
| #define LDAP_DEBUG_PERFORMANCE �x����1���
| #define LDAP_DEBUG_RDBM �x����2���
| #define LDAP_DEBUG_REFERRAL �x����4���
| #define LDAP_DEBUG_ERROR �x����8���
| #define LDAP_DEBUG_SYSPLEX �x���1����
| #define LDAP_DEBUG_MULTISERVER �x���2����
| #define LDAP_DEBUG_LDAPBE �x���4����
| #define LDAP_DEBUG_STRBUF �x���8����
| #define LDAP_DEBUG_ANY �xffffffff

| /B options for SSL ciphers B/
| #define LDAP_SSL_RC4_MD5_EX "�3"
| #define LDAP_SSL_RC2_MD5_EX "�6"
| #define LDAP_SSL_RC4_SHA_US "�5"
| #define LDAP_SSL_RC4_MD5_US "�4"
| #define LDAP_SSL_DES_SHA_US "�9"
| #define LDAP_SSL_3DES_SHA_US "�A"

| /B
| B possible error codes we can return
| B/

| #define LDAP_SUCCESS �x��
| #define LDAP_OPERATIONS_ERROR �x�1
| #define LDAP_PROTOCOL_ERROR �x�2
| #define LDAP_TIMELIMIT_EXCEEDED �x�3
| #define LDAP_SIZELIMIT_EXCEEDED �x�4
| #define LDAP_COMPARE_FALSE �x�5
| #define LDAP_COMPARE_TRUE �x�6
| #define LDAP_STRONG_AUTH_NOT_SUPPORTED �x�7
| #define LDAP_STRONG_AUTH_REQUIRED �x�8
| #define LDAP_PARTIAL_RESULTS �x�9

| #define LDAP_REFERRAL �X�a
| #define LDAP_ADMIN_LIMIT_EXCEEDED �X�b
| #define LDAP_UNAVAILABLE_CRITICAL_EXTENSION �X�c
| #define LDAP_CONFIDENTIALITY_REQUIRED �x�d
| #define LDAP_SASLBIND_IN_PROGRESS �x�e

| #define LDAP_NO_SUCH_ATTRIBUTE �x1�
| #define LDAP_UNDEFINED_TYPE �x11
| #define LDAP_INAPPROPRIATE_MATCHING �x12
| #define LDAP_CONSTRAINT_VIOLATION �x13
| #define LDAP_TYPE_OR_VALUE_EXISTS �x14
| #define LDAP_INVALID_SYNTAX �x15

| #define LDAP_NO_SUCH_OBJECT �x2�
| #define LDAP_ALIAS_PROBLEM �x21
| #define LDAP_INVALID_DN_SYNTAX �x22
| #define LDAP_IS_LEAF �x23
| #define LDAP_ALIAS_DEREF_PROBLEM �x24

 Chapter 2. LDAP Routines 99

| #define LDAP_INAPPROPRIATE_AUTH �x3�
| #define LDAP_INVALID_CREDENTIALS �x31
| #define LDAP_INSUFFICIENT_ACCESS �x32
| #define LDAP_BUSY �x33
| #define LDAP_UNAVAILABLE �x34
| #define LDAP_UNWILLING_TO_PERFORM �x35
| #define LDAP_LOOP_DETECT �x36

| #define LDAP_NAMING_VIOLATION �x4�
| #define LDAP_OBJECT_CLASS_VIOLATION �x41
| #define LDAP_NOT_ALLOWED_ON_NONLEAF �x42
| #define LDAP_NOT_ALLOWED_ON_RDN �x43
| #define LDAP_ALREADY_EXISTS �x44
| #define LDAP_NO_OBJECT_CLASS_MODS �x45
| #define LDAP_RESULTS_TOO_LARGE �x46

| #define LDAP_AFFECTS_MULTIPLE_DSAS �X47

| #define LDAP_OTHER �x5�
| #define LDAP_SERVER_DOWN �x51
| #define LDAP_LOCAL_ERROR �x52
| #define LDAP_ENCODING_ERROR �x53
| #define LDAP_DECODING_ERROR �x54
| #define LDAP_TIMEOUT �x55
| #define LDAP_AUTH_UNKNOWN �x56
| #define LDAP_FILTER_ERROR �x57
| #define LDAP_USER_CANCELLED �x58
| #define LDAP_PARAM_ERROR �x59
| #define LDAP_NO_MEMORY �x5a
| #define LDAP_CONNECT_ERROR �x5b
| #define LDAP_NOT_SUPPORTED �x5c
| #define LDAP_CONTROL_NOT_FOUND �x5d
| #define LDAP_NO_RESULTS_RETURNED �x5e
| #define LDAP_MORE_RESULTS_TO_RETURN �x5f

| #define LDAP_URL_ERR_NOTLDAP �x6�
| #define LDAP_URL_ERR_NODN �x61
| #define LDAP_URL_ERR_BADSCOPE �x62
| #define LDAP_URL_ERR_MEM �x63

| #define LDAP_CLIENT_LOOP �x64
| #define LDAP_REFERRAL_LIMIT_EXCEEDED �x65

| #define LDAP_SSL_ALREADY_INITIALIZED �x7�
| #define LDAP_SSL_INITIALIZE_FAILED �x71
| #define LDAP_SSL_CLIENT_INIT_NOT_CALLED �x72
| #define LDAP_SSL_PARAM_ERROR �x73
| #define LDAP_SSL_HANDSHAKE_FAILED �x74
| #define LDAP_SSL_GET_CIPHER_FAILED �x75
| #define LDAP_SSL_NOT_AVAILABLE �x76

| #define LDAP_NO_EXPLICIT_OWNER �x8�
| #define LDAP_NO_EXPLICIT_ACL �x81

| /B
| B This structure represents both ldap messages and ldap responses.
| B These are really the same, except in the case of search responses,
| B where a response has multiple messages.

100 Application Development Guide and Reference

| B/

| typedef struct ldapmsg LDAPMessage;
| #define NULLMSG ((LDAPMessage B) NULL)

| /B
| B structure representing an ldap connection
| B/
| typedef struct ldap LDAP;

| /B
| B type for ldap_set_rebind_proc()
| B/
| typedef int (BLDAPRebindProc)(struct ldap Bld, char BBdnp,
| char BBpasswdp, int Bauthmethodp, int freeit);

| /B
| B types for ldap URL handling
| B/
| typedef struct ldap_url_desc {
| char Blud_host;
| int lud_port;
| char Blud_dn;
| char BBlud_attrs;
| int lud_scope;
| char Blud_filter;
| char Blud_string; /B for internal use only B/
| } LDAPURLDesc;
| #define NULLLDAPURLDESC ((LDAPURLDesc B)NULL)

| typedef struct _LDAPVersion {
| int sdk_version;
| int protocol_version;
| int SSL_version;
| int security_level;
| char ssl_max_cipher[65] ;
| char ssl_min_cipher[65] ;
| } LDAPVersion;

| typedef struct _LDAPControl {
| char Bldctl_oid;
| struct berval ldctl_value;
| int ldctl_iscritical;
| } LDAPControl;

| /B Function prototypes B/
| #ifndef _NO_PROTO
| #define LDAP_P(x) x
| #else
| #define LDAP_P(x) ()
| #endif

| int ldap_abandon (LDAP Bld, int msgid);
| int ldap_abandon_ext (LDAP Bld, int msgid,
| LDAPControl BBserverctrls,
| LDAPControl BBclientctrls);
| int ldap_add (LDAP Bld, char Bdn, LDAPMod BBattrs);

 Chapter 2. LDAP Routines 101

| int ldap_add_s (LDAP Bld, char Bdn, LDAPMod BBattrs);
| int ldap_add_ext (LDAP Bld, char Bdn, LDAPMod BBattrs,
| LDAPControl BBserverctrls,
| LDAPControl BBclientctrls,
| int Bmsgidp);
| int ldap_add_ext_s (LDAP Bld, char Bdn, LDAPMod BBattrs,
| LDAPControl BBserverctrls,
| LDAPControl BBclientctrls);
| int ldap_bind (LDAP Bld, char Bwho, char Bpasswd,
| int authmethod);
| int ldap_bind_s (LDAP Bld, char Bwho, char Bcred,
| int method);
| int ldap_simple_bind (LDAP Bld, char Bwho, char Bpasswd);
| int ldap_simple_bind_s (LDAP Bld, char Bwho, char Bpasswd);
| void ldap_set_rebind_proc (LDAP Bld,
| LDAPRebindProc rebindproc);
| int ldap_compare (LDAP Bld, char Bdn, char Battr,
| char Bvalue);
| int ldap_compare_s (LDAP Bld, char Bdn, char Battr,
| char Bvalue);
| int ldap_compare_ext (LDAP Bld, char Bdn, char Battr,
| struct berval Bbvalue,
| LDAPControl BBserverctrls,
| LDAPControl BBclientctrls,
| int Bmsgidp);
| int ldap_compare_ext_s (LDAP Bld, char Bdn, char Battr,
| struct berval Bbvalue,
| LDAPControl BBserverctrls,
| LDAPControl BBclientctrls);
| int ldap_delete (LDAP Bld, char Bdn);
| int ldap_delete_s (LDAP Bld, char Bdn);
| int ldap_delete_ext (LDAP Bld, char Bdn,
| LDAPControl BBserverctrls,
| LDAPControl BBclientctrls,
| int Bmsgidp);
| int ldap_delete_ext_s (LDAP B ld, char Bdn,
| LDAPControl BBserverctrls,
| LDAPControl BBclientctrls);
| int ldap_result2error (LDAP Bld, LDAPMessage Br, int freeit);
| char Bldap_err2string (int err);
| void ldap_perror (LDAP Bld, char Bs);
| int ldap_get_errno (LDAP Bld);
| int ldap_modify (LDAP Bld, char Bdn, LDAPMod BBmods);
| int ldap_modify_s (LDAP Bld, char Bdn, LDAPMod BBmods);
| int ldap_modify_ext (LDAP Bld, char Bdn, LDAPMod BBmods,
| LDAPControl BBserverctrls,
| LDAPControl BBclientctrls,
| int Bmsgidp);
| int ldap_modify_ext_s (LDAP Bld, char Bdn, LDAPMod BBmods,
| LDAPControl BBserverctrls,
| LDAPControl BBclientctrls);
| int ldap_modrdn (LDAP Bld, char Bdn, char Bnewrdn,
| int deleteoldrdn);
| int ldap_modrdn_s (LDAP Bld, char Bdn, char Bnewrdn,
| int deleteoldrdn);
| LDAP Bldap_open (char Bhost, int port);
| LDAP Bldap_init (char Bdefhost, int defport);
| int ldap_set_option (LDAP Bld, int optionToSet,

102 Application Development Guide and Reference

| void BoptionValue);
| int ldap_set_option_np (LDAP Bld, int optionToSet, ...);
| int ldap_get_option (LDAP Bld, int optionToGet,
| void BoptionValue);
| int ldap_version (LDAPVersion Bversion);
| LDAPMessage Bldap_first_entry (LDAP Bld, LDAPMessage Bchain);
| LDAPMessage Bldap_next_entry (LDAP Bld, LDAPMessage Bentry);
| int ldap_count_entries (LDAP Bld, LDAPMessage Bchain);
| int ldap_get_entry_controls_np(LDAP Bld, LDAPMessage Bentry,
| LDAPControl BBBserverctrlsp);
| LDAPMessage Bldap_first_message (LDAP Bld, LDAPMessage Bchain);
| LDAPMessage Bldap_next_message (LDAP Bld, LDAPMessage Bchain);
| int ldap_count_messages (LDAP Bld, LDAPMessage Bchain);
| LDAPMessage Bldap_first_reference (LDAP Bld, LDAPMessage Bres);
| LDAPMessage Bldap_next_reference (LDAP Bld, LDAPMessage Bres);
| int ldap_count_references (LDAP Bld, LDAPMessage Bresult);
| int ldap_parse_reference_np(LDAP Bld, LDAPMessage Bref, char BBBreferralsp,
| LDAPControl BBBserverctrlsp, int freeit);
| char Bldap_get_dn (LDAP Bld, LDAPMessage Bentry);
| char BBldap_explode_dn (char Bdn, int notypes);
| char BBldap_explode_rdn (char Brdn, int notypes);
| char Bldap_dn2ufn (char Bdn);
| char Bldap_first_attribute (LDAP Bld, LDAPMessage Bentry,
| BerElement BBber);
| char Bldap_next_attribute (LDAP Bld, LDAPMessage Bentry,
| BerElement Bber);
| int ldap_count_attributes (LDAP Bld, LDAPMessage Bentry);
| char BBldap_get_values (LDAP Bld, LDAPMessage Bentry,
| char Btarget);
| struct berval BBldap_get_values_len (LDAP Bld,
| LDAPMessage Bentry, char Btarget);
| int ldap_count_values (char BBvals);
| int ldap_count_values_len (struct berval BBvals);
| void ldap_value_free (char BBvals);
| void ldap_value_free_len (struct berval BBvals);
| int ldap_result (LDAP Bld, int msgid, int all,
| struct timeval Btimeout, LDAPMessage BBresult);
| int ldap_msgfree (LDAPMessage Blm);
| int ldap_msgid (LDAPMessage Bres);
| int ldap_msgtype (LDAPMessage Bres);
| int ldap_search (LDAP Bld, char Bbase, int scope, char Bfilter,
| char BBattrs, int attrsonly);
| int ldap_search_s (LDAP Bld, char Bbase, int scope,
| char Bfilter, char BBattrs, int attrsonly,
| LDAPMessage BBres);
| int ldap_search_st (LDAP Bld, char Bbase, int scope,
| char Bfilter, char BBattrs, int attrsonly,
| struct timeval Btimeout, LDAPMessage BBres);
| int ldap_search_ext (LDAP Bld, char Bbase, int scope, char Bfilter,
| char BBattrs, int attrsonly,
| LDAPControl BBserverctrls,
| LDAPControl BBclientctrls,
| struct timeval Btimeoutp,
| int sizelimit, int Bmsgidp);
| int ldap_search_ext_s (LDAP Bld, char Bbase, int scope, char Bfilter,
| char BBattrs, int attrsonly,
| LDAPControl BBserverctrls,
| LDAPControl BBclientctrls,

 Chapter 2. LDAP Routines 103

| struct timeval Btimeoutp,
| int sizelimit,
| LDAPMessage BBres);
| int ldap_unbind (LDAP Bld);
| int ldap_unbind_s (LDAP Bld);
| void ldap_mods_free (LDAPMod BBmods, int freemods);
| void ldap_control_free (LDAPControl Bctrl);
| void ldap_controls_free (LDAPControl BBctrls);
| void ldap_memfree (char Bmem);
| int ldap_is_ldap_url (char Burl);
| int ldap_url_parse (char Burl, LDAPURLDesc BBludpp);
| void ldap_free_urldesc (LDAPURLDesc Bludp);
| int ldap_url_search (LDAP Bld, char Burl, int attrsonly);
| int ldap_url_search_s (LDAP Bld, char Burl, int attrsonly,
| LDAPMessage BBres);
| int ldap_url_search_st (LDAP Bld, char Burl, int attrsonly,
| struct timeval Btimeout, LDAPMessage BBres);

| int ldap_set_cipher(LDAP Bld, char BuserString);

| int ldap_ssl_start (LDAP Bld, char Bkeyfile, char Bkeyfile_pw,
| char Bkeyfile_dn);

| int ldap_ssl_client_init (char Bkeyfile, char Bkeyfile_pw,
| int sslTimeout, int BpSSLReasonCode);
| LDAP Bldap_ssl_init (char Bhost, int port, char Bkeyfile_dn);

| int ldap_sasl_bind (LDAP Bld, char Bdn, char Bmechansim,
| struct berval Bcredentials,
| LDAPControl BBserverctrls,
| LDAPControl BBclientctrls,
| intB msgidp);
| int ldap_sasl_bind_s (LDAP Bld, charB dn, char Bmechansim,
| struct berval Bcredentials,
| LDAPControl BBserverctrls,
| LDAPControl BBclientctrls,
| struct berval BBservercredp);
| int ldap_rename (LDAPB ld, char Bdn, char Bnewdn, char Bnewparent,
| int deleteoldrdn,
| LDAPControl BBserverctrls, LDAPControl BBclientctrls,
| int Bmsgidp);
| int ldap_rename_s (LDAPB ld,char Bdn, char Bnewdn, char Bnewparent,
| int deleteoldrdn,
| LDAPControl BBserverctrls, LDAPControl BBclientctrls);
| int ldap_parse_result (LDAPB ld, LDAPMessage Bresult, int Berrcodep,
| char BBmatcheddnp, char BBerrmsgp,
| char BBBreferralsp, LDAPControl BBBserverctrlsp,
| int freeint);
| int ldap_parse_sasl_bind_result (LDAPB ld, LDAPMessage Bresult,
| struct berval BBservercredp,
| int freeit);
| int ldap_parse_extended_result(LDAP Bld, LDAPMessage Bres,
| char BBresultoidp, struct berval BBresultdata, int freeit);

| #ifdef __cplusplus
| }
| #endif

104 Application Development Guide and Reference

| #endif /B _LDAP_H B/

 ldapssl.h

The ldapssl.h header file contains definitions for the LDAP SSL routines. It is an include for all
applications working with the LDAP SSL APIs. This header defines constants that are used with this
interface. The following shows the contents of the ldapssl.h header file:

| ??=ifdef __COMPILER_VER__
| ??=pragma filetag ("IBM-1�47")
| ??=endif

| /B @(#)43 1.3.3.9 ldapssl.h, ldap.libs, os39�r8ldap 4/11/99 14:47:35 B/

| /B
| B Licensed Materials - Property of IBM
| B 5647-A�1
| B (C) Copyright IBM Corp. 1997, 1999
| B
| B/

| #ifndef _LDAPSSL_H
| #define _LDAPSSL_H

| /B
| Return values returned from ldap_ssl_client_init(), ldap_ssl_init()
| and ldap_ssl_start()
| B/

| #define LDAP_SSL_INITIALIZE_OK � /B Successful Completion B/
| #define LDAP_SSL_KEYFILE_IO_ERROR 1 /B Attention: Keyring io error B/
| #define LDAP_SSL_KEYFILE_OPEN_FAILED 2 /B Attention: Keyring open errorB/
| #define LDAP_SSL_KEYFILE_BAD_FORMAT 3 /B Attention: Keyring format badB/
| #define LDAP_SSL_KEYFILE_BAD_PASSWORD 4 /B Attention: Keyring pw bad B/
| #define LDAP_SSL_KEYFILE_BAD_MALLOC 5 /B Error: Malloc failed B/
| #define LDAP_SSL_KEYFILE_NOTHING_TO_WRITE 6
| #define LDAP_SSL_KEYFILE_WRITE_FAILED 7
| #define LDAP_SSL_KEYFILE_NOT_FOUND 8
| #define LDAP_SSL_KEYFILE_BAD_DNAME 9 /B Error: Distinguished name badB/
| #define LDAP_SSL_KEYFILE_BAD_KEY 1�
| #define LDAP_SSL_KEYFILE_KEY_EXISTS 11
| #define LDAP_SSL_KEYFILE_BAD_LABEL 12
| #define LDAP_SSL_KEYFILE_DUPLICATE_NAME 13
| #define LDAP_SSL_KEYFILE_DUPLICATE_KEY 14
| #define LDAP_SSL_KEYFILE_DUPLICATE_LABEL 15
| #define LDAP_SSL_ERR_INIT_PARM_NOT_VALID 1�� /B Error: Cipher spec bad B/
| #define LDAP_SSL_INIT_HARD_RT 1�1 /B Attention: No keyring file
| or password B/
| #define LDAP_SSL_INIT_SEC_TYPE_NOT_VALID 1�2 /B Error: Security type bad B/
| #define LDAP_SSL_INIT_V2_TIMEOUT_NOT_VALID 1�3 /B Error:V2 timeout value badB/
| #define LDAP_SSL_INIT_V3_TIMEOUT_NOT_VALID 1�4 /B Error:V3 timeout value badB/
| #define LDAP_SSL_KEYFILE_CERT_EXPIRED 1�5 /B Error:Certificate expired B/

| /B
| Return codes. These are returned as an LDAP_OPT_EXTERROR, using
| ldap_get_option(), when an SSL-related error has occurred.

 Chapter 2. LDAP Routines 105

| Use ldap_get_option() with LDAP_OPT_EXTERROR to get a more detailed SSL
| error code whenever LDAP_SSL_HANDSHAKE_FAILED is returned from an
| LDAP call
| to use the new #defines listed above.
| B/

| #define LDAP_SSL_SOC_BAD_V2_CIPHER -4�
| #define LDAP_SSL_SOC_BAD_V3_CIPHER -41
| #define LDAP_SSL_SOC_BAD_SEC_TYPE -42
| #define LDAP_SSL_SOC_BAD_SEC_TYPE_COMBINATION -1�2
| #define LDAP_SSL_SOC_NO_READ_FUNCTION -43
| #define LDAP_SSL_SOC_NO_WRITE_FUNCTION -44

| #define LDAP_SSL_ERROR_NO_CIPHERS -1
| #define LDAP_SSL_ERROR_NO_CERTIFICATE -2
| #define LDAP_SSL_ERROR_BAD_CERTIFICATE -4
| #define LDAP_SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE -6
| #define LDAP_SSL_ERROR_IO -1�
| #define LDAP_SSL_ERROR_BAD_MESSAGE -11
| #define LDAP_SSL_ERROR_BAD_MAC -12
| #define LDAP_SSL_ERROR_UNSUPPORTED -13
| #define LDAP_SSL_ERROR_BAD_CERT_SIG -14
| #define LDAP_SSL_ERROR_BAD_CERT -15
| #define LDAP_SSL_ERROR_BAD_PEER -16
| #define LDAP_SSL_ERROR_PERMISSION_DENIED -17
| #define LDAP_SSL_ERROR_SELF_SIGNED -18
| #define LDAP_SSL_ERROR_BAD_MALLOC -2�
| #define LDAP_SSL_ERROR_BAD_STATE -21 /B V3 B/
| #define LDAP_SSL_ERROR_SOCKET_CLOSED -22
| #define LDAP_SSL_ERROR_LDAP_SSL_INITIALIZATION_FAILED -23
| #define LDAP_SSL_ERROR_HANDLE_CREATION_FAILED -24
| #define LDAP_SSL_ERROR_UNKNOWN_ERROR -99

/B
All #defines below this comment are slated for removal; all code should
be changed
to use the new #defines listed above.
--
B/

| /B
| Return values returned from ldap_ssl_client_init(), ldap_ssl_init()
| and ldap_ssl_start()
| B/

| #define SKIT_INITIALIZE_OK � /B Successful Completion B/
| #define SKIT_KEYFILE_IO_ERROR 1 /B Warning: keyring io error B/
| #define SKIT_KEYFILE_OPEN_FAILED 2 /B Warning: keyring open error B/
| #define SKIT_KEYFILE_BAD_FORMAT 3 /B Warning: keyring format bad B/
| #define SKIT_KEYFILE_BAD_PASSWORD 4 /B Warning: Keyring password bad B/
| #define SKIT_KEYFILE_BAD_MALLOC 5 /B Error: Malloc failed B/
| #define SKIT_KEYFILE_NOTHING_TO_WRITE 6
| #define SKIT_KEYFILE_WRITE_FAILED 7
| #define SKIT_KEYFILE_NOT_FOUND 8
| #define SKIT_KEYFILE_BAD_DNAME 9 /B Error: distinquish name bad B/
| #define SKIT_KEYFILE_BAD_KEY 1�

106 Application Development Guide and Reference

| #define SKIT_KEYFILE_KEY_EXISTS 11
| #define SKIT_KEYFILE_BAD_LABEL 12
| #define SKIT_KEYFILE_DUPLICATE_NAME 13
| #define SKIT_KEYFILE_DUPLICATE_KEY 14
| #define SKIT_KEYFILE_DUPLICATE_LABEL 15
| #define SKIT_ERR_INIT_PARM_NOT_VALID 1�� /B Error: cipher spec bad B/
| #define SKIT_INIT_HARD_RT 1�1 /B Warning: no keyring file or pwB/
| #define SKIT_INIT_SEC_TYPE_NOT_VALID 1�2 /B Error: security type bad B/
| #define SKIT_INIT_V2_TIMEOUT_NOT_VALID 1�3 /B Error: V2 timeout value bad B/
| #define SKIT_INIT_V3_TIMEOUT_NOT_VALID 1�4 /B Error: V3 timeout value bad B/
| #define SKIT_KEYFILE_CERT_EXPIRED 1�5 /B Error: Certificate expired B/

| /B
| Return codes. These are returned as an LDAP_OPT_EXTERROR, using
| ldap_get_option(), when an SSL-related error has occurred.

| Use ldap_get_option() with LDAP_OPT_EXTERROR to get a more detailed SSL
| error code whenever LDAP_SSL_HANDSHAKE_FAILED is returned from an LDAP
| call to use the new #defines listed above.
| B/

| #define SKIT_SOC_BAD_V2_CIPHER -4�
| #define SKIT_SOC_BAD_V3_CIPHER -41
| #define SKIT_SOC_BAD_SEC_TYPE -42
| #define SKIT_SOC_BAD_SEC_TYPE_COMBINATION -1�2
| #define SKIT_SOC_NO_READ_FUNCTION -43
| #define SKIT_SOC_NO_WRITE_FUNCTION -44

| #define SKIT_ERROR_NO_CIPHERS -1
| #define SKIT_ERROR_NO_CERTIFICATE -2
| #define SKIT_ERROR_BAD_CERTIFICATE -4
| #define SKIT_ERROR_UNSUPPORTED_CERTIFICATE_TYPE -6
| #define SKIT_ERROR_IO -1�
| #define SKIT_ERROR_BAD_MESSAGE -11
| #define SKIT_ERROR_BAD_MAC -12
| #define SKIT_ERROR_UNSUPPORTED -13
| #define SKIT_ERROR_BAD_CERT_SIG -14
| #define SKIT_ERROR_BAD_CERT -15
| #define SKIT_ERROR_BAD_PEER -16
| #define SKIT_ERROR_PERMISSION_DENIED -17
| #define SKIT_ERROR_SELF_SIGNED -18
| #define SKIT_ERROR_BAD_MALLOC -2�
| #define SKIT_ERROR_BAD_STATE -21 /B V3 B/
| #define SKIT_ERROR_SOCKET_CLOSED -22
| #define SKIT_ERROR_SKIT_INITIALIZATION_FAILED -23
| #define SKIT_ERROR_HANDLE_CREATION_FAILED -24
| #define SKIT_ERROR_UNKNOWN_ERROR -99

| #endif /B _LDAPSSL_H B/

 Chapter 2. LDAP Routines 107

108 Application Development Guide and Reference

 Appendix A. Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10594-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

 Copyright IBM Corp. 1999 109

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Programming Interface Information

This OS/390 Security Server LDAP Client Application Development Guide and Reference documents
intended Programming Interfaces that allow the customer to write programs to obtain services of OS/390
LDAP.

 Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States
and/or other countries:

IBM
AIX/6000
BookManager

IBMLink
Library Reader
OS/2

OS/390
RACF

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through The
Open Group.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States and/or other countries.

Other company, product or service names may be the trademarks or service marks of others.

110 Application Development Guide and Reference

 Glossary

This glossary defines new LDAP Server terms and
abbreviations used in this book If you do not find the
term you are looking for, refer to the index or to the IBM
Dictionary of Computing, SC20-1699.

This glossary includes terms and definitions from:

� IBM Dictionary of Computing, SC20-1699.

� Information Technology—Portable Operating
System Interface (POSIX), from the POSIX series of
standards for applications and user interfaces to
open systems, copyrighted by the Institute of
Electrical and Electronics Engineers (IEEE).

� American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI).

� Information Technology Vocabulary, developed by
Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1.SC1).

� CCITT Sixth Plenary Assembly Orange Book,
Terms and Definitions and working documents
published by the International Telecommunication
Union, Geneva, 1978.

� Open Software Foundation (OSF).

A
API. Application program interface.

application program interface (API). A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
the licensed program.

attribute. Information of a particular type concerning
an object and appearing in an entry that describes the
object in the directory information base (DIB). It
denotes the attribute’s type and a sequence of one or
more attribute values, each accompanied by an integer
denoting the value’s syntax.

B
binding. A relationship between a client and a server
involved in a remote procedure call.

C
CDS. Cell Directory Service.

Cell Directory Service (CDS). A DCE component. A
distributed replicated database service that stores
names and attributes of resources located in a cell.
CDS manages a database of information about the
resources in a group of machines called a DCE cell.

certificate. Used to prove your identity. A secure
server must have a certificate and a public-private key
pair. A certificate is issued and signed by a Certificate
Authority (CA).

client. A computer or process that accesses the data,
services, or resources of another computer or process
on the network. Contrast with server.

cipher. A method of transforming text in order to
conceal its meaning.

D
data hierarchy. A data structure consisting of sets and
subsets such that every subset of a set is of lower rank
than the data of the set.

data model. (1) A logical view of the organization of
data in a database. (2) In a database, the user's
logical view of the data in contrast to the physically
stored data, or storage structure. (3) A description of
the organization of data in a manner that reflects
information structure of an enterprise.

database. A collection of data with a given structure
for accepting, storing, and providing, on demand, data
for multiple users.

DCE. Distributed Computing Environment.

directory. (1) A logical unit for storing entries under
one name (the directory name) in a CDS namespace.
Each physical instance of a directory is called a replica.
(2) A collection of open systems that cooperates to hold
a logical database of information about a set of objects
in the real world.

directory schema. The set of rules and constraints
concerning directory information tree (DIT) structure,
object class definitions, attribute types, and syntaxes
that characterize the directory information base (DIB).

directory service. The directory service is a central
repository for information about resources in a
distributed system.

 Copyright IBM Corp. 1999 111

distinguished name (DN). One of the names of an
object, formed from the sequence of RDNs of its object
entry and each of its superior entries.

Distributed Computing Environment (DCE). A
comprehensive, integrated set of services that supports
the development, use, and maintenance of distributed
applications. DCE is independent of the operating
system and network; it provides interoperability and
portability across heterogeneous platforms.

DN. Distinguished name.

E
environment variable. A variable included in the
current software environment that is available to any
called program that requests it.

L
LDAP. Lightweight Directory Access Protocol.

Lightweight Directory Access Protocol (LDAP). A
client/server protocol for accessing a directory service.

O
object class. An identified family of objects that share
certain characteristics. An object class can be specific
to one application or shared among a group of
applications. An application interprets and uses an
entry’s class-specific attributes based on the class of
the object that the entry describes.

P
private key. Used for the encryption of data. A secure
server keeps its private key secret. A secure server
sends clients its public key so they can encrypt data to
the server. The server then decrypts the data with its
private key.

programming interface. The supported method
through which customer programs request software
services. The programming interface consists of a set
of callable services provided with the product.

protocol. A set of semantic and syntactic rules that
determines the behavior of functional units in achieving
communication.

public key. Used for the encryption of data. A secure
server makes its public key widely available so that its
clients can encrypt data to send to the server. The
server then decrypts the data with its private key.

R
RDN. Relative distinguished name.

referral. An outcome that can be returned by a
directory system agent that cannot perform an operation
itself. The referral identifies one or more other directory
system agents more able to perform the operation.

relative distinguished name (RDN). A component of
a DN. It identifies an entry distinctly from any other
entries which have the same parent.

S
SASL. Simple Authentication Security Layer.

schema. See directory schema.

Secure Sockets Layer (SSL) security. A facility used
to protect LDAP access.

server. On a network, the computer that contains
programs, data, or provides the facilities that other
computers on the network can access. Contrast with
client.

Simple Authentication Security Layer (SASL).
Refers to a method of binding using SSL authentication
and the client's certificate identity.

SSL. Secure Sockets Layer.

T
thread. A single sequential flow of control within a
process.

X
X.500. The CCITT/ISO standard for the open systems
interconnection (OSI) application-layer directory. It
allows users to register, store, search, and retrieve
information about any objects or resources in a network
or distributed system.

X/OPEN Directory Service (XDS). An application
program interface that DCE uses to access its directory
service components. XDS provides facilities for adding,
deleting, and looking up names and their attributes.
The XDS library detects the format of the name to be
looked up and directs the calls it receives to either GDS
or CDS. XDS uses the X/OPEN object management
(XOM) API to define and manage its information.

X/OPEN object management (XOM). An interface for
creating, deleting, and accessing objects containing
information. It is an object-oriented architecture: each

112 Application Development Guide and Reference

object belongs to a particular class, and classes can be
derived from other classes inheriting the characteristics
of the original classes. The representation of the object

is transparent to the programmer; the object can be
manipulated only through the XOM interface.

XOM. The X/OPEN Object Management API.

 Glossary 113

114 Application Development Guide and Reference

 Bibliography

This bibliography provides a list of publications that are useful when using the LDAP programming interface. The
complete title, order number, and a brief description is given for each publication.

IBM C/C++ Language Publication

� IBM OS/390 C/C++ Programming Guide,
SC09-2362

This book describes how to develop applications in
the C/C++ language in OS/390.

IBM OS/390 Security Server Publication

� OS/390 Security Server LDAP Server Administration
and Usage Guide, SC24-5861

This book describes how to install, configure, and
run the stand-alone LDAP daemon (SLAPD). It is
intended for administrators who will maintain the
server and database.

IBM OS/390 Cryptographic Services Publication

� OS/390 Cryptographic Services System Secure
Sockets Layer Programming Guide and Reference,
SC24-5877

Contains guidance and reference information that
an application programmer needs to use the

System Secure Sockets Layer (SSL) callable
programming interfaces. SSL is a communications
layer that provides data privacy and integrity, as
well as server and client authentication based on
public key certificates.

 Copyright IBM Corp. 1999 115

116 Application Development Guide and Reference

 Index

A
abandoning LDAP operation 27
accessing RACF information 26
adding LDAP entry 8, 29
APIs (Application Program Interfaces)

See routines
Application Program Interfaces (APIs)

See routines
asynchronous LDAP operations 13
attribute values

comparing 9
counting 54
retrieving 54

attributes
counting 46
LDAP 2
stepping through 46
type 2

authentication, certificate 1
authentication, simple 1

B
bibliography 115
binding to Directory Service 6
binding to LDAP server 32
books, related 115
breaking down LDAP URL 92

C
C programming language

utility routines 2
C/C++ programming language

LDAP DLL 3
call-back function 32
canceling LDAP operation 27
certificate authentication 1
changing entry name 77
changing LDAP entries 72
changing RDN 9, 77

LDAP
modifying 77

character string, deallocating 69
checking for LDAP URL 92
classes, LDAP SPI 20
client API, LDAP 3
client control 25
comparing LDAP entries 37
compiling program 5
continuation references, retrieving 48

controls
LDAP 25, 48
session 25

conventions used in book vii
counting attributes 46
counting continuation references 48
counting LDAP entries 48
counting LDAP handles 54
counting LDAP values 54
creating SSL connection 88

D
data model

LDAP 2
data structure

client and server controls 25
datasets, OS/390 3
de-initializing LDAP API 7
deallocating array of LDAP values 54
deallocating character strings 69
deallocating LDAP handle 32
deallocating LDAP URL description 92
deallocating LDAP values 54
deallocating memory 80
deallocating storage 5, 69
deallocating structures 72
definitions of terms 111
deleting LDAP entries 9, 40
deprecated APIs

ldap_bind 32
ldap_bind_s 32
ldap_modrdn 77
ldap_modrdn_s 77
ldap_open 57
ldap_perror 42
ldap_result2error 42
listing of 26

describing error message 42
directory

access protocol, LDAP 1
entry

naming 2
Directory Service

extracting information from
using LDAP 1

JNDI interface 20
distinguished name (DN)

getting from LDAP entry 52
parsing 52
specifying with LDAP 2

 Copyright IBM Corp. 1999 117

DLL (dynamic link library)
See dynamic link library (DLL)

DN
See distinguished name (DN)

documentation, related 115
dynamic link library (DLL)

C/C++ 3

E
entries 2
entry

LDAP 2
environment variables 59
error code, returning 42
error handling

LDAP 4, 5, 11
error message, describing 42
errors

printing indication of 42
retrieving 42

establishing call-back function 32
extracting information 1
extracting information from results 75

F
first LDAP entry, getting 48
freeing array of LDAP values 54
freeing character strings 69
freeing LDAP handle 32
freeing LDAP URL description 92
freeing LDAP values 54
freeing memory 80
freeing storage 5, 69
freeing structures 72
function, call-back 32
functions, utility

LDAP 4, 5

G
getting error codes 42
getting first LDAP entry 48
getting LDAP attribute values 54
getting LDAP DNs 52
getting LDAP handles to attribute values 54
getting next attribute type name 46
getting next LDAP entry 48
getting option 57
glossary of terms 111

H
handling errors

LDAP 4, 5

header files
lber.h 95
ldap.h 96
ldapssl.h 105

I
initialization functions

LDAP 4
initializing LDAP context 57
initializing SSL 88
interface

programming, information 110
programming, LDAP 1

interpreting LDAP results 42
interpreting results

LDAP 5, 10

J
Java Naming and Directory Interface (JNDI)

using 20
JNDI (Java Naming and Directory Interface)

See Java Naming and Directory Interface (JNDI)

L
lber.h header file 95
LDAP (Lightweight Directory Access Protocol)

See Lightweight Directory Access Protocol (LDAP)
LDAP service provider interface (SPI)

description 20
LDAP SPI (service provider interface)

See LDAP service provider interface (SPI)
ldap_abandon API 27
ldap_abandon_ext API 27
ldap_add 7
ldap_add API 29
ldap_add_ext API 29
ldap_add_ext_s API 29
ldap_add_s 8
ldap_add_s API 29
ldap_bind 6
ldap_bind API 32
ldap_bind_s 6
ldap_bind_s API 32
ldap_compare 7
ldap_compare API 37
ldap_compare_ext API 37
ldap_compare_ext_s API 37
ldap_compare_s 9
ldap_compare_s API 37
ldap_control_free API 69
ldap_controls_free API 69
ldap_count_attributes API 46

118 Application Development Guide and Reference

ldap_count_entries API 48
ldap_count_messages API 70
ldap_count_references API 48
ldap_count_values API 54
ldap_count_values_len API 54
LDAP_DEBUG 13
ldap_delete 7, 9
ldap_delete API 40
ldap_delete_ext API 40
ldap_delete_ext_s API 40
ldap_delete_s API 40
ldap_err2string 12
ldap_err2string API 42
ldap_explode_dn API 52
ldap_first_attribute API 46
ldap_first_entry API 48
ldap_first_message API 70
ldap_first_reference API 48
ldap_free_urldesc API 92
ldap_get_dn API 52
ldap_get_entry_controls_np API 48
ldap_get_errno 11
ldap_get_errno API 42
ldap_get_option API 57
ldap_get_values API 54
ldap_get_values_len API 54
ldap_init 6
ldap_init API 57
ldap_is_ldap_url API 92
ldap_memfree API 69
ldap_modify 7
ldap_modify API 72
ldap_modify_ext API 72
ldap_modify_ext_s API 72
ldap_modify_s 8
ldap_modify_s API 72
ldap_modrdn API 77
ldap_modrdn_s 9
ldap_modrdn_s API 77
ldap_mods_free API 72
ldap_msgfree API 80
ldap_msgid API 80
ldap_msgtype API 80
ldap_next_attribute API 46
ldap_next_entry API 48
ldap_next_message API 70
ldap_next_reference API 48
ldap_open 6
ldap_open API 57
ldap_parse_reference_np API 48
ldap_parse_result API 75
ldap_parse_sasl_bind_result API 75
ldap_perror 12
ldap_perror API 42
ldap_rename API 77

ldap_rename_s API 77
ldap_result 5, 13
ldap_result API 80
ldap_result2error 11
ldap_result2error API 42
ldap_sasl_bind API 32
ldap_sasl_bind_s API 32
ldap_search 5, 7
ldap_search API 83
ldap_search_ext API 83
ldap_search_ext_s API 83
ldap_search_s 10
ldap_search_s API 83
ldap_search_st API 83
ldap_set_option 13
ldap_set_option API 57
ldap_set_option_np API 57
ldap_set_rebind_proc API 32
ldap_simple_bind API 32
ldap_simple_bind_s API 32
ldap_ssl_client_init API 88
ldap_ssl_init API 88
ldap_ssl_start API 88
ldap_unbind 7
ldap_unbind API 32
ldap_unbind_s 7
ldap_unbind_s API 32
ldap_url_parse API 92
ldap_url_search API 92
ldap_url_search_s API 92
ldap_url_search_st API 92
ldap_value_free API 54
ldap_value_free_len API 54
ldap.h header file 96
ldapdelete.c 14
ldapssl.h header file 105
Lightweight Directory Access Protocol (LDAP)

adding entry 8
API functions 3
asynchronous operation 13
changing RDN of entry 9
client for Java 20
comparing attribute values 9
defining 1
deleting entry 9
error handling 11
example program 14
header files

lber.h 95
ldap.h 96
ldapssl.h 105

interface routines
abandoning operation 27
adding entry 29
binding to server 32
checking for URL 92
comparing entries 37

 Index 119

Lightweight Directory Access Protocol (LDAP)
(continued)

interface routines (continued)
controls 25
counting attributes 46
counting continuation references 48
counting entries 48
counting pointers 54
counting values 54
creating SSL connection 88
deallocating array of values 54
deallocating character strings 69
deallocating memory 80
deallocating storage 69
deallocating structures 72
deallocating URL description 92
deallocating values 54
deleting entries 40
deprecated routines 26
describing error message 42
establishing call-back function 32
extracting information from results 75
freeing array of values 54
freeing memory 80
freeing storage 69
freeing structures 72
freeing URL description 92
freeing values 54
getting option 57
initializing context 57
initializing LDAP context 57
initializing SSL 88
modifying entries 72
modifying entry name 77
modifying RDN 77
obtaining DNs 52
obtaining message ID 80
obtaining message type 80
opening connection 57
parsing DNs 52
parsing URL 92
printing error 42
rebinding 32
retrieving array of server controls 48
retrieving attribute values 54
retrieving error codes 42
retrieving first entry 48
retrieving list of continuation references 48
retrieving next attribute type name 46
retrieving next entry 48
retrieving pointers to attribute values 54
returning error code 42
returning result 80
searching entries 83
searching entries with timeout 83
searching for URL 92
searching for URL with timeout 92

Lightweight Directory Access Protocol (LDAP)
(continued)

interface routines (continued)
session controls 25
setting option 57
stepping through attributes 46
stepping through messages 70
unbinding 32
waiting for result 80

ldapdelete.c 14
listing all sub-entries 10
modifying entry 8
program structure 6
programming 1
reading attribute values 10
reading entry's contents 10
results, getting 10
synchronous operation 13
threadsafety 13
using the API 6

linking program 5
listing sub-entries 10

M
Makefile

example 6
message

stepping through list of 70
model, data

LDAP 2
modifying entry name 77
modifying LDAP entries 8, 72
modifying RDN 77
multiple operations 13

N
name

typed 2
nonportable API 57

O
object

class 2
obtaining LDAP DNs 52
obtaining LDAP message ID 80
obtaining LDAP message type 80
opening LDAP connection 57
option, setting value of LDAP 57
organization of book vii
OS/390 datasets 3
OS/390 shell 3

120 Application Development Guide and Reference

P
parsing information from results 75
parsing LDAP DNs 52
parsing LDAP URL 92
primitive operations

LDAP 4, 5
printing LDAP error 42
processing errors 11
processing results

LDAP 4, 5
processing URLs

LDAP 4, 5
programming interface

LDAP 1
programming interface information 110
protocol

LDAP 1
publications, related 115

R
RACF (Resource Access Control Facility)

See Resource Access Control Facility (RACF)
RDN (relative distinguished name)

See relative distinguished name (RDN)
reading attribute values 10
reading entry's contents 10
rebinding 32
referrals 32
relative distinguished name (RDN)

changing 9
examples of LDAP RDNs 2
LDAP

modifying 77
using with LDAP 2

removing LDAP entries 40
Resource Access Control Facility (RACF) 26
results processing

LDAP 4, 5
results, extracting information from 75
results, getting with LDAP 10
retrieving array of server controls 48
retrieving error codes 42
retrieving first LDAP entry 48
retrieving LDAP attribute values 54
retrieving LDAP entry count 48
retrieving next attribute type name 46
retrieving next LDAP entry 48
retrieving option 57
retrieving pointers to attribute values 54
returning LDAP error code 42
returning LDAP result 80
routines

ldap_abandon 27
ldap_abandon_ext 27

routines (continued)
ldap_add 29
ldap_add_ext 29
ldap_add_ext_s 29
ldap_add_s 29
ldap_bind 32
ldap_bind_s 32
ldap_compare 37
ldap_compare_ext 37
ldap_compare_ext_s 37
ldap_compare_s 37
ldap_control_free 69
ldap_controls_free 69
ldap_count_attributes 46
ldap_count_entries 48
ldap_count_messages 70
ldap_count_reference 48
ldap_count_values 54
ldap_count_values_len 54
ldap_delete 40
ldap_delete_ext 40
ldap_delete_ext_s 40
ldap_delete_s 40
ldap_err2string 42
ldap_explode_dn 52
ldap_first_attribute 46
ldap_first_entry 48
ldap_first_message 70
ldap_first_reference 48
ldap_free_urldesc 92
ldap_get_dn 52
ldap_get_entry_controls_np 48
ldap_get_errno 42
ldap_get_option 57
ldap_get_values 54
ldap_get_values_len 54
ldap_init 57
ldap_is_ldap_url 92
ldap_memfree 69
ldap_modify 72
ldap_modify_ext 72
ldap_modify_ext_s 72
ldap_modify_s 72
ldap_modrdn 77
ldap_modrdn_s 77
ldap_mods_free 72
ldap_msgfree 80
ldap_msgid 80
ldap_msgtype 80
ldap_next_attribute 46
ldap_next_entry 48
ldap_next_message 70
ldap_next_reference 48
ldap_open 57
ldap_parse_reference_np 48
ldap_parse_result 75

 Index 121

routines (continued)
ldap_parse_sasl_bind_result 75
ldap_perror 42
ldap_rename 77
ldap_rename_s 77
ldap_result 80
ldap_result2error 42
ldap_search 83
ldap_search_ext 83
ldap_search_ext_s 83
ldap_search_s 83
ldap_search_st 83
ldap_set_option 57
ldap_set_option_np 57
ldap_set_rebind_proc 32
ldap_simple_bind 32
ldap_simple_bind_s 32
ldap_ssl_client_init 88
ldap_ssl_init 88
ldap_ssl_start 88
ldap_unbind 32
ldap_unbind_s 32
ldap_url_parse 92
ldap_url_search 92
ldap_url_search_s 92
ldap_url_search_st 92
ldap_value_free 54
ldap_value_free_len 54

routines, C utility 2
running program 5

S
search

using LDAP 5
search results, counting 48
searching for LDAP URL 92
searching LDAP entries 83
searching LDAP entries with timeout 83
Secure Sockets Layer (SSL)

creating connection 88
initializing 88

security
supported by LDAP 1

server control 25
server, LDAP

binding to 32
unbinding from 32

service provider interface (SPI), LDAP
See LDAP service provider interface (SPI)

session settings 59
setting LDAP option 57
shell, UNIX 3
simple authentication 1
SPI (service provider interface), LDAP

See LDAP service provider interface (SPI)

SSL (Secure Sockets Layer)
See Secure Sockets Layer (SSL)

standard error stream 13, 42
starting SSL 88
stepping through LDAP attributes 46
storage

deallocating 69
freeing 5

structure, LDAP program 6
sub-entries, listing 10
synchronous LDAP operations 13

T
TCP/IP

See Transmission Control Protocol/Internet Protocol
(TCP/IP)

termination functions
LDAP 4

terms, glossary of 111
threadsafety

LDAP API 13
tracing

disabling 5
enabling 5, 13

Transmission Control Protocol/Internet Protocol
(TCP/IP)

LDAP use of 21
typed names 2

U
unbinding from LDAP server 32
unbinding LDAP API 7
Universal Resource Locator (URL)

breaking down LDAP 92
checking for 92
deallocating LDAP 92
searching for LDAP 92

URL
See Universal Resource Locator (URL)

URL processing
LDAP 4, 5

utility functions
LDAP 4, 5

utility routines, C 2

W
waiting for LDAP result 80

X
X.500, naming concepts 2

122 Application Development Guide and Reference

 Readers' Comments

OS/390
Security Server
LDAP Client Application Development
Guide and Reference

Publication No. SC24-5878-01

You may use this form to report errors, to suggest improvements, or to express your opinion on
the appearance, organization, or completeness of this book.

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

 Note

Report system problems to your IBM representative or the IBM branch office serving you.
U.S. customers can order publications by calling the IBM Software Manufacturing Solutions at
1-800-879-2755.

In addition to using this postage-paid form, you may send your comments by:

Would you like a reply? YES NO If yes, please tell us the type of response you prefer.

 Electronic address:

 FAX number:

 Mail: (Please fill in your name and address below.)

Name Address

Company or Organization

Phone No.

Date:

FAX 1-607-752-2327 Internet pubrcf@vnet.ibm.com
IBM Mail USIB2L8Z@IBMMAIL IBMLink GDLVME(PUBRCF)

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC24-5878-01 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department G60
International Business Machines Corporation
Information Development
1701 North Street
ENDICOTT NY 13760-5553

Fold and Tape Please do not staple Fold and Tape

SC24-5878-01

IBM

Program Number: 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC24-5878-�1

S
pine inform

ation:

IB
M

O
S/390 Security Server

L
D

A
P

 C
lient A

pplication D
evelopm

ent G
uide and R

eference

	Contents
	Tables
	About This Book
	Who Should Use This Book
	How This Book Is Organized
	Conventions Used in This Book
	Where to Find More Information
	Online Books
	How to Send Your Comments

	Summary of Changes
	New Information for Release 8
	Changed Information for Release 8

	Chapter 1. LDAP Programming
	How LDAP Is Defined
	Data Model
	LDAP Names
	Function Overview
	Compiling, Linking, and Running a Program
	Using the API
	Basic Structure

	Performing an Operation
	Example: Adding an entry
	Example: Modifying an entry
	Example: Deleting an entire entry
	Example: Changing the RDN of an entry
	Example: Comparing an attribute value with its value in an entry in the directory
	Example: Reading a directory entry's contents
	Example: Listing all sub-entries of an entry with associated objectClass attribute values
	Example: Reading all objectClass attribute values for all entries below a given entry

	Getting Results
	Error Processing
	Using ldap_get_errno() and ldap_result2error()
	Example: Retrieving the error code of an asynchronous operation request
	Example: Retrieving the error code using ldap_result2error()

	Using ldap_err2string() and ldap_perror()
	Example: Obtaining and using the character string representing the error code
	Example: Sending the result of an operation to the standard error stream

	Tracing

	Threadsafety
	Synchronous Versus Asynchronous Operation
	Example Program
	LDAP Client for Java

	Chapter 2. LDAP Routines
	LDAP Controls
	Session Controls
	Using RACF® Data
	Deprecated LDAP APIs
	ldap_abandon
	Purpose
	Format
	Parameters
	Usage
	Error Conditions
	Related Topics

	ldap_add
	Purpose
	Format
	Parameters
	Usage
	Error Conditions
	Related Topics

	ldap_bind
	Purpose
	Format
	Parameters
	Usage
	Simple Authentication
	General Authentication
	SASL Authentication
	Unbinding
	Rebinding While Following Referrals
	Error Conditions
	Related Topics

	ldap_compare
	Purpose
	Format
	Parameters
	Usage
	Error Conditions
	Related Topics

	ldap_delete
	Purpose
	Format
	Parameters
	Usage
	Error Conditions
	Related Topics

	ldap_error
	Purpose
	Format
	Parameters
	Usage
	Error Conditions
	Related Topics

	ldap_first_attribute
	Purpose
	Format
	Parameters
	Usage
	Error Conditions
	Related Topics

	ldap_first_entry/reference
	Purpose
	Format
	Parameters
	Usage
	Processing Entries
	Processing Continuation References
	Counting Entries and References
	Error Conditions
	Related Topics

	ldap_get_dn
	Purpose
	Format
	Parameters
	Usage
	Error Conditions
	Related Topics

	ldap_get_values
	Purpose
	Format
	Parameters
	Usage
	Error Conditions
	Related Topics

	ldap_init
	Purpose
	Format
	Parameters
	Usage
	Environment Variables Affecting Session Settings
	Setting and Getting Session Settings
	LDAP_OPT_SIZELIMIT
	LDAP_OPT_TIMELIMIT
	LDAP_OPT_REFHOPLIMIT
	LDAP_OPT_DEREF
	LDAP_OPT_RESTART
	LDAP_OPT_REFERRALS
	LDAP_OPT_DEBUG
	LDAP_OPT_SSL_CIPHER
	LDAP_OPT_SSL_TIMEOUT
	LDAP_OPT_REBIND_FN
	LDAP_OPT_PROTOCOL_VERSION
	LDAP_OPT_SERVER_CONTROLS
	LDAP_OPT_CLIENT_CONTROLS
	LDAP_OPT_UTF8_IO
	LDAP_OPT_V2_WIRE_FORMAT
	LDAP_OPT_HOST_NAME
	LDAP_OPT_ERROR_NUMBER
	LDAP_OPT_ERROR_STRING
	LDAP_OPT_EXT_ERROR
	Error Conditions
	ldap_set_option Syntax for LDAP Version 2 Applications
	Comparing the ldap_set_option and ldap_set_option_np APIs
	Related Topics

	ldap_memfree
	Purpose
	Format
	Parameters
	Usage

	ldap_message
	Purpose
	Format
	Parameters
	Usage
	Error Conditions
	Related Topics

	ldap_modify
	Purpose
	Format
	Parameters
	Usage
	Error Conditions
	Related Topics

	ldap_parse_result
	Purpose
	Format
	Parameters
	Usage
	Error Conditions
	Related Topics

	ldap_rename
	Purpose
	Format
	Parameters
	Usage
	Error Conditions
	Related Topics

	ldap_result
	Purpose
	Format
	Parameters
	Usage
	Error Conditions
	Related Topics

	ldap_search
	Purpose
	Format
	Parameters
	Usage
	Reading an Entry
	Listing the Children of an Entry
	Error Conditions
	Related Topics

	ldap_ssl
	Purpose
	Format
	Parameters
	Usage
	Options
	Notes
	Related Topics

	ldap_url
	Purpose
	Format
	Parameters
	Usage
	Notes
	Error Conditions
	Related Topics

	LDAP Header Files
	lber.h
	ldap.h
	ldapssl.h

	Appendix A. Notices
	Programming Interface Information
	Trademarks

	Glossary
	Bibliography
	IBM C/C++ Language Publication
	IBM OS/390 Security Server Publication
	IBM OS/390 Cryptographic Services Publication

	Index

