

IBM Data Language/I Disk Operating System/
Virtual Storage (DL/I DOS/VS) IBM

Application Programming:
CALL and RQDLI Interfaces
Version 1 Release 7

 SH12-5411-06

IBM Data Language/I Disk Operating System/
Virtual Storage (DL/I DOS/VS) IBM

Application Programming:
CALL and RQDLI Interfaces
Version 1 Release 7

 SH12-5411-06

 Note !

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page vii.

Seventh Edition (December 2002)

This edition applies to Version 1, Release 7 (Version 1.7), of Data Language/I Disk Operating System/Virtual Storage (DL/I DOS/VS),
Program Number 5746-XX1, and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 22�
D-71�32 Boeblingen
Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s39�id@de.ibm.com
FAX (Germany): �7�31-16-3456
FAX (other countries): (+49)+7�31-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1973, 2002. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Trademarks and Service Marks. vii

Preface . ix
Related Publications: . ix

Summary of Changes . xi

Chapter 1. DL/I Application Programming . 1-1
Data Base Concepts . 1-1

Data Base Characteristics . 1-1
Preparing To Use DL/I . 1-5

Building a Data Base Description (DBD) . 1-5
Building a Program Specification Block (PSB) 1-6
Other Preparatory Steps . 1-6
Coding Conventions . 1-7

DL/I Application Program . 1-9
Entry To An Application Program . 1-9
Terminating the Application Program . 1-10
Program Communication Block (PCB) Mask 1-11
DL/I Batch Program Call . 1-15
DL/I Application Program for RPG II . 1-20
RQDLI Commands For DB Access . 1-21

Statements for SSA Specification . 1-24
SSA Specification in RPG-Like Format: (USSA and QSSA statement) . . 1-24
SSALIST-Option . 1-26
ELIST-Command . 1-27

DB (Data Base) File Definition . 1-28
Data Base Processing . 1-30

Data Base Loading . 1-30
Data Base Retrievals . 1-31
Data Base Updates . 1-31
Data Base Deletions . 1-32
Data Base Insertions . 1-33
Data Base Checkpoint . 1-33

Program Examples . 1-34
COBOL Batch Program Structure . 1-34
COBOL MPS Restart Example . 1-37
PL/I Batch Program Structure . 1-38
PL/I MPS Restart Example . 1-41
RPG II Batch Program Structure . 1-42

Assembler Language Batch Program Structure 1-49
Assembler MPS Batch Example . 1-52

Restrictions . 1-53
On COMREG Use . 1-53
On Overlay Programs . 1-53
Set Exit Abnormal (STXIT AB) Linkage . 1-53
Application Language Use in Batch or MPS Batch Programs 1-54
Mixing Batch PL/I and Other Languages Using DL/I 1-54
Boolean Operators and SSA Length . 1-54

 Copyright IBM Corp. 1973, 2002 iii

Job Control Statements for Batch and MPS Batch DL/I Application Programs . 1-55
Compile and Link-Edit . 1-55
Translator Output . 1-57
Batch and MPS Batch Application Program Execution 1-58

Chapter 2. DL/I Programming Reference Information 2-1
Definitions . 2-1
Call Functions . 2-1

GU (Get Unique)/GHU (Get Hold Unique) . 2-2
GN (Get Next)/GHN (Get Hold Next) . 2-3
GNP (Get Next Within Parent)/GHNP (Get Hold Next Within Parent) 2-4
DLET (Delete) . 2-6
REPL (Replace, Update, or Rewrite) . 2-7
ISRT (Load A New Data Base) . 2-7
ISRT (Add To An Existing Data Base) . 2-9

CHKP (Checkpoint) . 2-11
MPS Restart Facility . 2-12

Restrictions on Using VSE Checkpoint/Restart 2-13
General Programming Techniques and Suggestions 2-14
Problem Determination . 2-16

Initialization Errors . 2-16
Execution Errors . 2-16
Status Code Summary . 2-17
Abnormal Termination Messages . 2-25

Chapter 3. Online Programming Considerations 3-1
Obtaining the Address of the PCB: The Scheduling Call 3-2
Releasing a PSB in a CICS/VS Application Program: The Termination Call . . 3-4
Checking the Response to a DL/I Call in a CICS/VS Environment 3-5
Issuing the DL/I Call in a CICS/VS Environment 3-9
Online Application Coding Examples . 3-10

DL/I Requests in an ANS COBOL Program 3-10
DL/I Requests in a PL/I Program . 3-14
DL/I Requests in an Assembler Language Program 3-18

RQDLI Commands in an RPG II Program . 3-24
DL/I Application Program Coding in a CICS/VS Command Language

Environment . 3-26
CICS/VS Trace Table Entries for DL/I DOS/VS 3-27

Chapter 4. Optional DL/I Programming Functions 4-1
Command Codes . 4-2
Variable Length Segments . 4-6
Multiple Positioning With DL/I Calls . 4-7

Use of Multiple Positioning . 4-9
Mixing Calls With and Without Segment Search Arguments and Multiple

Positioning . 4-10
Secondary Indexing . 4-11
Field Level Sensitivity . 4-13
DL/I System and DSCD Calls . 4-15

Appendix A. /INSERT Statement in RPGII . A-1

Glossary . X-1

iv DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

 Figures

1-1. Physical Record - Segment Relationship (Example 1) 1-2
1-2. Physical Record - Segment Relationship (Example 2) 1-3
1-3. Expanded Data Base Structure . 1-4
1-4. DL/I Environment . 1-5
1-5. DL/I Batch Environment Compared to DOS/VSE 1-7
1-6. Application Program Data Base PCB Mask 1-11
1-7. RPG II PCB Mask. 1-13
1-8. Logical Data Base Record Structure 1-20
1-9. General COBOL Batch Program Structure 1-34

1-10. General PL/I Batch Program Structure 1-38
1-11. General RPG II Batch Program Structure 1-42
1-12. General Assembler Language Batch Program Structure 1-49
2-1. DL/I Status Codes . 2-18
2-2. PL/I Error Processing Routine Example 2-25
2-3. COBOL Error Processing Routine Example 2-26
2-4. RPG II Error Processing Routine Example 2-27
3-1. Online COBOL Application Program Examples (UIB used) (CICS/VS

Command Language Environment). 3-10
3-2. Online COBOL Application Program Examples (UIB not used)

(Macro Language Environment). 3-12
3-3. Online PL/I Application Program Examples (UIB used) (CICS/VS

Command Language Environment). 3-14
3-4. Online PL/I Application Program Examples (UIB not used) (Macro

Language Environment). . 3-16
3-5. Online Assembler Language Application Program Examples (UIB

used) (CICS/VS Command Language Environment) 3-18
3-6. Online Assembler Language Application Program Examples (UIB not

used) (Macro Language Environment) 3-20
3-7. Online RPG II Application Program Examples 3-24
4-1. Command Code Applicability by Function 4-4
4-2. Format of SSAs with Command Codes 4-5
4-3. Assumed Data Base to Illustrate Single and Multiple Positioning . . . 4-8
A-1. Format of the /INSERT Statement . A-1
X-1. Representative DL/I Hierarchical Structure X-1

 Copyright IBM Corp. 1973, 2002 v

vi DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594,
U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement. IBM accepts no
responsibility for the content or use of non-IBM Web sites specifically mentioned in
this publication or accessed through an IBM Web site that is mentioned in this
publication.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Deutschland Informationssysteme GmbH
Department �215
Pascal Str. 1��
7�569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Trademarks and Service Marks.
The following terms are trademarks of International Business Machine Corporation
in the United States, or other countries, or both:

 CICS
 DB2
 IBM

 Copyright IBM Corp. 1973, 2002 vii

viii DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

 Preface

This manual describes how to write a DL/I DOS/VS application program using the
DL/I call and request DL/I (RQDLI) interfaces. These application programs can be
executed in the batch, multiple partition support (MPS), or online environments.
The manual is intended for programmers, who code the application programs, and
data base administrators, who design the applications.

It is assumed that you are familiar with DL/I to the extent that it is described in the
DL/I DOS/VS General Information manual. It is also assumed that you are familiar
with one of the four programming languages DL/I supports. These languages
include: COBOL, PL/I, RPGII, and Assembler.

Dl/I is a data management control system that assists you in creating, accessing,
and maintaining large common data bases. DL/I canbe used in an online
teleprocessing environment in conjunction with the Customer Information Control
System (CICS/VS). Users of this manual should be familiar with the use of VSE
andCICS/VSif DL/I is to be used in the online or MPS environment.

This manual contains five main sections:

1. An overall view of how a DL/I application program is written, including batch
programming structure examples for each of the four languages.

2. A description of the call function codes and some general programming
techniques and suggestions.

3. In the online environment, programming considerations are presented along
with online coding examples for each of the four languages.

4. A description of optional DL/I programming functions, including such things as
command codes, multiple positioning with DL/I calls, secondary indexing, and
so on.

5. A Glossary of DL/I terms is also presented for your convience should you come
across a term or phrase you do not understand.

Because of the special nature of the RPG II language, a subchapter dealing with
RPG II specifics has been added to Chapter 1. Where applicable, RPG II
references have been made in the text.

 Related Publications:
DL/I VSE Release Guide, SC33-6211-05

DL/I DOS/VS Release Guide, SC33-6211-04

DL/I DOS/VS Data Base Administration, SH24-5011

DL/I DOS/VS Resource Definition and Utilities, SH24-5021

DL/I DOS/VS Interactive Resource Definition and Utilities, SH24-5029.

DL/I DOS/VS Recovery/Restart Guide, SH24-5030.

Other DL/I publications:

DL/I DOS/VS General Information, GH20-1246

DL/I DOS/VS Library Guide and Master Index, GH24-5008

 Copyright IBM Corp. 1973, 2002 ix

DL/I DOS/VS Application Programming: High Level Programming Interface,
SH24-5009

DL/I DOS/VS Application Programming: CALL and RQDLI Interface,
SH12-5411

DL/I DOS/VS Guide for New Users, SH24-5001

DL/I DOS/VS Messages and Codes, SH12-5414

DL/I DOS/VS Diagnostic Guide, SH24-5002

x DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Summary of Changes

Summary of Changes
for SH12-5411-6
Version 1.7

This edition has been revised to include information concerning the use of the MPS
Restart Facility. Various additions, corrections, and improvements are also
included.

Summary of Changes
for SH12-5411-5
Version 1.6

This edition has been revised to include information concerning the DL/I DOS/VS
Boolean Qualification Statements, changes in the System and GSCD title of this
manual and in the titles of other manuals produced for Version 1.6 of the DL/I
DOS/VS library. Various additions, System and GSCD Calls corrections, and
improvements are also included.

Boolean Qualification Statements
This support enables the application programmer to incorporate additional
qualification into call statements for the selection of specific segments by specifying
multiple qualification statements. The qualification statements can be logically
related to each other by using the Boolean AND and OR operators between them.

Summary of Changes
for SH12-5411-4
as updated by SN24-5630
Version 1.5

This Technical Newsletter includes information concerning the DL/I DOS/VS field
level sensitivity functional System and GSCD Calls enhancement, as well as
various additions. corrections, and improvements.

Field Level Sensitivity
This feature makes it possible for the user to specify only those fields in the
physical definition of a given segment that are to be included in the application's
view of that segment, while remaining insenitive to the other fields in the segment.

Summary of Changes
for SH12-5411-4
Version 1.4

This edition has been revised to include the following system changes and DL/I
DOS/VS functional enhancements. System and GSCD Calls

RPG II Support
Application programs written in RPG II can now access DL/I data bases in a
manner similar to programs written in COBOL, System and GSCD Calls PL/I, and
Assembler language.

 Copyright IBM Corp. 1973, 2002 xi

Extended DL/I Call Interface
This support, along with CICS/VS high level language support, eliminates the need
for application programs to reference internal CICS/VS control blocks. A new
parameter has been added to the PCB call to obtain the address of the DL/I User
Interface Block. This control block contains the information previously returned in
the TCA.

This enhancement is required for application programs written in RPG II. It may
also be used in programs written in COBOL, PL/I, and Assembler.

Intersystem Communication
CICS/VS intersystem communication support enables DL/I application programs to
access a data base that is resident on another CPU.

High Level Language Debugging for PL/I
This support for PL/I allows diagnostic information to be supplied by both PL/I and
DL/I. It is designed only for batch and MPS batch execution of DL/I, and does not
require any changes to the PL/I code.

Performance Improvements
Two enhancements have been added to program isolation. They are the “O”
procopt and MPS Batch Notification.

xii DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Chapter 1. DL/I Application Programming

Data Language/I Disk Operating System/Virtual Storage (DL/I DOS/VS, hereafter
referred to in this manual as DL/I) is a control system developed to help the user
implement data base applications. It may be used in conjunction with the IBM
Customer Information Control System/Virtual Storage (CICS/VS) to allow online
access to data bases.

Data Base Concepts
A data base may be likened to a conventional file in that both consist of a named
organized collection of data entered and maintained in one logical sequence for
processing by application programs. However, when an application program
processes records in a file, it must be tailored to the physical characteristics (block
size, record length, access method, etc.) of the file. The application programmer
must be aware of the format of all the fields in the record.

In DL/I, fields of data are grouped together in segments, and in turn segments may
be grouped into data base records. DL/I application programs may reference these
segments by name. A data base record may be made up of many different types
of segments. A particular application program need be concerned only with those
segments which contain the data needed for the application.

Data Base Characteristics
Figure 1-1 on page 1-2 shows a conventional data management physical record in
a file with its elements: NAME, ADDRESS, and PAYROLL. The segments, as
viewed by DL/I, are shown in the lower portion of this figure. They form a
hierarchical data structure. The physical storage of the segments may differ
significantly from the way the data is viewed as a data structure.

 Copyright IBM Corp. 1973, 2002 1-1

Figure 1-1. Physical Record - Segment Relationship (Example 1)

Each segment in the record usually contains several fields of data that are related
and typically processed together.

Another example of a conventional data management physical record is shown in
Figure 1-2 on page 1-3. Again, the lower portion of the figure shows the
hierarchical data structure that DL/I makes available to the application programmer.

1-2 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Figure 1-2. Physical Record - Segment Relationship (Example 2)

In the figure, assume that SKILL, NAME, EXPERIENCE, and EDUCATION are
segments of a skills inventory data base. What Figure 1-2 does not show is that
there can be multiple experience and education segments for each name, and
many names for each skill. To expand upon the data structure, Figure 1-3 on
page 1-4 shows a typical data base record within the skills inventory base. Notice
that multiple name segments exist under the skill segment, multiple education
segments exist under each name segment, and multiple experience segments
exist under two of the name segments.

 Chapter 1. DL/I Application Programming 1-3

Figure 1-3. Expanded Data Base Structure

This leads to the following summary of the characteristics of a DL/I data base.

� A data base may contain a maximum of 255 segment types. (Only four are
shown in Figure 1-2 on page 1-3: SKLILL, NAME, EXPERIENCE,
EDUCATION.)

� A data base may contain a maximum of 15 hierarchical levels. (Figure 1-2 on
page 1-3 shows three levels of hierarchy.)

� One root segment is allowed per data base record. (The root segment in
Figure 1-2 on page 1-3 is SKILL.)

� The root segment always has a key field associated with it. The key field of
the root controls the placement of the data base record in the data base.

� The lower-level segments in the hierarchy may also have key fields. These
keys may be used to sequence multiple occurrences of the same type of
segment within a data base record.

� Segments at lower levels are said to be dependent on those above. There
may be 0 to n dependent child segments per parent. (In Figure 1-3,
EXPERIENCE and EDUCATION are dependent segments of the parent
segment NAME. NAME, EXPERIENCE, and EDUCATION segments are
dependent segments of the parent segment SKILL, which is also the root
segment.)

� The term parent describes the reverse relationship to that of the dependent. In
Figure 1-3, SKILL is the parent of NAME, NAME is the parent of EXPERIENCE
and EDUCATION.

� A data base record (such as shown in Figure 1-3) may consist of 1 to n
segment occurrences.

� A data base may consist of 1 to n data base records.

1-4 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

� Segments within a hierarchical structure are always referenced in hierarchical
sequence of top-to-bottom, left-to-right, front-to-back, as indicated by the
numbers 10 through 27 in Figure 1-3.

Preparing To Use DL/I
DL/I is a program product that interfaces between the application program and the
data base stored on auxiliary storage. This section explains the steps that must be
taken before an application program can execute in conjunction with DL/I.
Figure 1-4 shows the environment in which DL/I operates.

Figure 1-4. DL/I Environment

Building a Data Base Description (DBD)
The descriptive information about a data base record—the segment relationships
and the physical device and data set description and access method used by
DL/I—is stored apart from the data base and application program in a data base
description (DBD) block. The DBD is a control block which is built using the DL/I
data base description macro and stored in a core image library. A DBD for a
particular data base must be completed before the data base can be created.

This operation must be done once for each data base and is the responsibility of
the data base administrator. A complete description of DBD generation is given in
DL/I DOS/VS Resource Definition and Utilities. DL/I DOS/VS Interactive Resource
Definition and Utilities describes online DBD generation using the Interactive Macro
Facility (IMF).

 Chapter 1. DL/I Application Programming 1-5

Building a Program Specification Block (PSB)
The PSB is a control block that is built using program specification block macros.
The PSB identifies which types of segments from the data base record can be
processed by a particular application program. The application program is then
said to be sensitive to these segments. The PSB also identifies the type of
processing to be performed (read only, update, load, etc.). This is referred to as
the processing option (PROCOPT). The PROCOPT can refer to an entire data
base or to a particular segment type. The PSB also contains an indicator that
shows whether the program processes one or more data bases. One PSB is built
for each application program. The definition of a PSB is the responsibility of the
data base administrator. A complete description of PSB generation is given in DL/I
DOS/VS Resource Definition and Utilities. DL/I DOS/VS Interactive Resource
Definition and Utilities describes online PSB generation using the Interactive Macro
Facility (IMF).

Other Preparatory Steps
The application program is written in the user-selected language (COBOL, PL/I,
RPG II, or Assembler) and then compiled, link-edited, and cataloged into a core
image library. For RPG II a translation step is required prior to compilation. One
final DL/I-connected step must be completed by the data base administrator before
the program can be executed under DL/I. Internal DL/I control blocks must be
created for the previously generated PSB and related DBDs. The created control
blocks are link-edited into a core image library ready for use by DL/I in conjunction
with the application program.

Each VSAM file to be processed by DL/I must first be processed by Access Method
Services with the specification DEFINE. This is a VSAM requirement. The
application program may then be executed in a DL/I environment.

Figure 1-5 on page 1-7 depicts two environments. One is the conventional
application program with its embedded file description and its direct use of VSE
data management. The second is the DL/I environment. In this case, the DL/I
control program loads both the application program to be executed and its
associated PSB from a core image library. The PSB contains the PCB(s) to be
used by the application program. The program communication block (PCB)
provides specific areas used by DL/I to advise the application program of results of
its calls, or RQDLI command in RPG II. The data management block (DMB)
referenced by the PSB is also loaded from the core image library. The DMB
describes all physical characteristics of a data base.

Restriction: Overlay structures are not supported for application programs
executing under DL/I. Refer to “Restrictions” later in this chapter with regard to the
use of the COBOL SORT verb, as its use produces an overlay structure.

1-6 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Figure 1-5. DL/I Batch Environment Compared to DOS/VSE

 Coding Conventions
The following conventions are followed in illustrating the format and coding of
control statements and the format of messages:

� The control statements are free form. Operation codes must begin after
column one. Operands must follow an operation code or prior operand. The
first operand must be separated from the operation code by at least one blank.
Each operand must be separated from the previous operand by a comma with
no intervening blanks. Operands may be continued on subsequent statements
by placing a nonblank character in column 72, and by continuing in column 16
on the continuation statement.

 Chapter 1. DL/I Application Programming 1-7

� Uppercase letters, stand-alone numbers, and punctuation marks must be coded
exactly as shown. The only exceptions to this convention are brackets [];
braces { }; ellipses ...; and subscripts. These are never coded.

� Lowercase letters and words and associated numbers represent variables for
which the specific information or specific values must be substituted.

� The symbol ␣ is used to indicate one blank position.

� Items or groups of items within brackets [] are optional; they may be omitted if
not required. Any item or group of items not within brackets must be coded.

� Stacked items, enclosed in braces { } represent alternative items. No more
than one of the stacked items may be coded.

� If an alternative item is underlined, that item is implied: that is, DL/I
automatically assumes that the underlined item is the choice if none of the
items is coded.

� Ellipses, ..., indicate that the preceding item or group of items can be coded
more than once in succession.

The following statement illustrates the coding conventions:

CALLDLI {CBLTDLI},([prmcount,]function,pcb-name,
 {ASMTDLI}
 i/o-area[,ssa...])

� CALLDLI must be coded, beginning after column one.

� From the two lines of parameters stacked within the braces ({CBLTDLI} and
{ASMTDLI}), one must be chosen.

� The opening parenthesis must be coded.

� The parameters with the brackets ([prmcount] and [ssa...]) are optional.

� The closing parenthesis must be coded.

1-8 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

DL/I Application Program
The communication between the application program and DL/I takes place in three
ways:

� On entry to and return from the application program.

� By defining a PCB mask in the application program for each data base
accessed.

� By issuing DL/I calls; or RQDLI commands and, optionally, defining DB-files in
RPG II.

Entry To An Application Program
In Figure 1-5 on page 1-7, when the system gives control to DL/I, the DL/I control
program in turn passes control to the application program (through the entry point
defined below). Register 1 contains an address which points to a list of the PCB
names used by the application program. The PCB names in the entry statement
must specified in the same sequence as specified in the PSB generation for the
application program. The sequence of PCBs in the linkage section or declaration
portion of the application program need not be the same as the sequence in the
entry statement.

COBOL: The following statement must be the first in the procedure division.

ENTRY 'DLITCBL' USING pcb-name-1, ..., pcb-name-n.

PL/I: The first statement of a PL/I program must be:

DLITPLI: PROCEDURE (pcb-pointer-1,...,pcb-pointer-n) OPTIONS(MAIN);

RPG II: In order to run an RPG II program using DL/I in batch mode, position 56
of the Header Specification must contain a “B.” If “B” is not specified, the Translator
does not perform any translate functions. For the DL/I control program to establish
addressability to the PCBs and pass control to the application program, an *ENTRY
PLIST must be the first entry in the Calculation Specifications.

The Translator will automatically generate the *ENTRY PLIST for a main program if
the programmer does not explicitly specifyit. However, the programmer must define
all data bases as DB-files in the File Description Specifications with corresponding
Continuation Lines (K-lines) specifying the PCBs. (For a detailed description of
DB-files and PCB specification, see “DB (Data Base) File Definition” in this
chapter.) The entry parameter list will contain a PARM statement for each PCB,
ordered according to the integers ‘ij’ as specified by PCBij in the K-line. If the
programmer chooses to specify the *ENTRY PLIST himself, the PCB names in the
PARM statements must be in the same sequence as in the PSB generation for the
program. The Translator will not check the contents of the list.

Assembler: The entry point to an Assembler language program that utilizes DL/I
may have any desired name. However, when control is passed to the application
program, register 1 contains the address of a variable-length fullword parameter list.
Each word in this list contains a PCB control block address which must be saved
by the application program. These addresses are in the same order as the PCB
statements were specified during PSB generation. The 0 bit in the high-order byte
of the last word in the parameter list should be reset to 0, unless only explicit calls
using the count field are issued, in which case the 0 bit should be set to 1. The

 Chapter 1. DL/I Application Programming 1-9

addresses in this list are subsequently used by the application program when
executing DL/I calls.

Register 15 contains the address of the application program entry point.
Additionally, registers 14 through 12 must be stored on entry to the application
program in an 18 fullword save area which is pointed to by register 13. Register 13
must then be set with the address of another 18 fullword save area prior to the
issuance of the first DL/I call. Generally, this is performed during program
initialization.

The following is an example of the intialization performed by an application
program:

 ANYNAME CSECT
 USING �,BASEREG
 SAVE (14,12)
 LR BASEREG,R15
 ST R13,SAVEAREA+4
 LA R13,SAVEAREA
 MVC PCB,�(R1)
 .
 .
 .
 SAVEAREA DC 18F'�'
 PARMLIST DC A(PARMCT)

FUNC DC A(DLIFUNC)
 PCB DC A(�)
 IOAREA DC A(DETSEGIN)
 DC A(SSANAME)
 .
 .
 .
 END

Terminating the Application Program
At the completion of processing of any application program, control must be
returned to DL/I as follows:

COBOL PL/I ASSEMBLER RPG II

GOBACK.

RETURN;

L 13,4(13)
RETURN (14,12)

GET R13 FROM SAVE AREA
RETURN TO DL/I

SETON LR

The GOBACK or RETURN statement in a batch program returns control to DL/I. In
RPG II control is returned to DL/I by setting on the Last Record (LR) Indicator,
specified in the calculation specifications. After DL/I resources are released and the
data bases are closed, DL/I subsequently returns control to VSE.

Notes:

1. The COBOL STOP RUN must not be used as control would not be returned to
DL/I to allow it to release its resources and close the data bases and log.

2. The Assembler macros CANCEL, DUMP, JDUMP, and EOJ must not be used
as control would not be returned to DL/I to allow it to release its resources and
close the data bases and log.

1-10 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Program Communication Block (PCB) Mask
The data base PCB provides specific areas used by DL/I to advise the application
program of the results of its calls, or RQDLI commands in RPG II. At execution
time, all PCB entries are controlled by DL/I. Accesses to PCB entries by the
application program are for read-only purposes. The application program should
not attempt to alter any of the values contained in the fields of the PCB.

As shown in Figure 1-6, the application program contains a mask of the PCB, but
the real PCB exists outside the application program. All PCBs used by a particular
application program are contained in a program specification block (PSB)
associated with that application program. In a batch DL/I environment, there is a
one-to-one relationship between PSBs and application programs; however, an
application program may use more than one PCB for a data base. A PSB and the
PCBs within it are created by the DL/I program specification block generation
procedure. The PSB object module resulting from PSB generation is placed in a
core image library.

Figure 1-6. Application Program Data Base PCB Mask

The following examples, which refer to Figure 1-1 on page 1-2, illustrate the
definition of the PCB mask in an application program. The numbers on the right of
the examples refer to the notes that follow.

COBOL: In a COBOL program each PCB mask is set up in the Linkage Section.

 Notes

�1 PCBNAME.
 �2 DBD-NAME PICTURE X(8).
 �2 SEG-LEVEL PICTURE XX.
 �2 STATUS-CODE PICTURE XX.
 �2 PROC-OPTIONS PICTURE XXXX.
 �2 RESERVE-DL/I PICTURE S9(5) COMPUTATIONAL.
 �2 SEG-NAME-FB PICTURE X(8).
 �2 LENGTH-FB-KEY PICTURE S9(5) COMPUTATIONAL.
 �2 NUMB-SENS-SEGS PICTURE S9(5) COMPUTATIONAL.
 �2 KEY-FB-AREA PICTURE X(17).

 1
 2
 3
 4
 5
 6
 7
 8
 9
 1�

 Chapter 1. DL/I Application Programming 1-11

PL/I: A unique pointer variable must be established for each PCB mask with the
attribute POINTER. This pointer is used to establish addressability to the actual
PCB data.

 ASSEMBLER:

RPG II: The PCB mask may be defined in either of two ways:

1. The following example (Figure 1-7 on page 1-13) shows a PCB structure which
is automatically generated by the Translator if a K-line is specified for a DB-file.
The numbers on the right refer to the notes that follow. Notes 6a, 8a, and 9a
are given separately for this example.

nnn is the pcb-length + 36 (pcb-length is taken from pcb-keylength of the K-line
of F-specs for DB-files).

Note 6a: RESBij overlays RESRij
Note 8a: KEYBij overlays KEYLij
Note 9a: SSGBij overlays SSGNij

2. If no K-line is specified in the F-specs for a DB-file, the user has to define the
proper PCB.

The user defines a data structure, using names of his choice, but following
precisely the layout of the automatically generated PCB.

 Notes

DECLARE PCB_POINTER POINTER;
DECLARE 1 PCBNAME BASED(PCB_POINTER),

2 DBD_NAME CHAR(8),
2 SEG_LEVEL CHAR(2),
2 STATUS_CODE CHAR(2),
2 PROC_OPTIONS CHAR(4),
2 RESERVE_DLI FIXED BIN(31,�),
2 SEG_NAME_FB CHAR(8),
2 LENGTH_FB_KEY FIXED BIN(31,�),
2 NUMB_SENS_SEGS FIXED BIN(31,�),
2 KEY_FB_AREA CHAR(17);

 1
 2
 3
 4
 5
 6
 7
 8
 9
 1�

 Notes

 PCBNAME DSECT
 DBPCBDBD DS CL8 DBD NAME
 DBPCBLEV DS CL2 LEVEL FEEDBACK
 DBPCBSTC DS CL2 STATUS CODES
 DBPCBPRO DS CL4 PROC OPTIONS
 DBPCBRSV DS F RESERVED
 DBPCBSFD DS CL8 SEGMENT NAME FEEDBACK
 DBPCBMKL DS F CURRENT LENGTH OF KEY
 � FEEDBACK AREA
 DBPCBNSS DS F NO OF SENSITIVE SEGMTS
 � IN PCB
 DBPCBKFD DS �CL KEY FEEDBACK AREA
 DBPCBNM DS �CL12 NAME KEY FEEDBACK
 DBPCBNMA DS �CL14 ADDRESS KEY FEEDBACK
 DBPCBNMP DS CL17 PAYROLL KEY FEEDBACK

 1
 2
 3
 4
 5
 6
 7
 8

 9

 1�

1-12 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Figure 1-7. RPG II PCB Mask.

Notes:

1. The name of the PCB refers to the entire structure of PCB entries and is used
in program statements. This name is not a field in the PCB. It is, for example,
the 01 level name in the COBOL mask in the above examples. In RPG II, it is
the data structure name of the PCB mask.

2. Name of data base description - This is the first field in the PCB and provides
the DBD name associated with a particular data base. It contains character
data and is 8 bytes long.

3. Segment hierarchy level indicator - DL/I loads this area with the level number of
the lowest segment encountered in its attempt to satisfy a program request.
When a retrieve operation is successfully completed, the level number of the
retrieved segment is placed in this indicator. If retrieval is unsuccessful, the
level number returned is that of the last segment, along the path to the desired
segment, that satisfied the search criteria. This field contains numeric
character data; it is 2 bytes long and is right-justified.

4. DL/I status code - A status code that indicates the results of a DL/I call is
placed in this field and remains in the field until another DL/I call uses this
PCB. (Specific status codes are discussed with their associated data base
calls in Chapter 2 “DL/I Programming Reference Information.”) This field

 Chapter 1. DL/I Application Programming 1-13

contains 2 bytes of character data. When a successful call is executed, this
field contains blanks or a warning status indication. This field should be tested
immediately following each call, as discussed in the section “Status Code
Summary” in Chapter 2.

5. DL/I processing options - This area contains a character code which tells DL/I
the kinds of calls that may be used by the program for data base processing.
This field is 4 bytes long. It is left-justified, with the remaining bytes filled with
blanks.

Possible values for the processing options are:

G GET call.

I INSERT call.

R REPLACE call.

D DELETE call.

A All, includes the above four functions.

P Required if command D is to be used on GET calls or INSERT calls. It
must also be specified for those segments retrieved by path call even if
their lowest level SSA has no D command code. It determines the
maximum length of the I/O area and is used in conjunction with G, I, and
A.

E Exclusive use of the data base or segment. It is used in conjunction with
G, I, R, D, and A.

L Load function for data base loading (except HIDAM).

LS Segments loaded in ascending sequence only. This load option is
required for HIDAM, and for HSAM and simple HSAM if key fields are
present in root segments.

O Inhibits all program isolation queuing made under the PCB in which this
PROCOPT appears. This option must be used with caution as the data
retrieved may have just been updated by another user and is subject to
being backed out if that user should abend. The O option must be used
in conjunction with options G or GP. For further detail, see DL/I DOS/VS
Data Base Administration.

The L and LS values are mutually exclusive with G, I, R, D, and A, for a single
PCB. A PROCOPT of G is implied when R or D is specified.

The only options available for HSAM and simple HSAM data bases are G, L,
and LS.

6. Reserved area for DL/I - DL/I uses ths 4-byte area for its own internal linkage
related to an application program. The first byte is used as a flag byte. See
“MPS (Multiple Partition Support) Considerations” in Chapter 3.

7. Segment name feedback area - DL/I fills this area with the name of the lowest
segment encountered in its attempt to satisfy a call. When a retrieve operation
is successful, the name of the retrieved segment is placed in this area. If
retrieval is unsuccessful, the name returned is that of the last segment, along
the path to the desired segment, that satisfied the search criteria. This field
contains 8 bytes of character data. This field may be useful in GN and GNP
calls. If the status code is AI (data management open error), the data set
filename is returned into this area.

1-14 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

8. Length of key feedback area - This 4-byte binary entry specifies the current
active length of the key feedback area described below. For restrictions on the
contents of binary fields in RPG II, see DOS/VS RPG II Language.

9. Number of sensitive segments - This 4-byte binary entry specifies the number
of segment types in the data base to which the application program is sensitive.

10. Key feedback area - DL/I places in this area the concatenated key of the lowest
segment encountered in its attempt to satisfy a call. The area must be long
enough to contain the maximum possible length of key fields along a
hierarchical path. When a key operation is successful, the key field of the
requested segment and the key field of each segment along the path to the
requested segment are concatenated and placed in this area. The key fields
are positioned from left to right, beginning with the root segment key field and
following the hierarchical path. When retrieval is unsuccessful, the key fields of
all segments along the path to the requested segment for which search criteria
were successful are placed in this area. Since data in the key feedback area is
not cleared prior to a DL/I call, the length of the key feedback area should be
used to obtain the valid key feedback data.

DL/I Batch Program Call
COBOL, PL/I and Assembler application programs communicate with DL/I using a
program call. In RPG II, communication with DL/I is established by using an
RQDLI (Request DL/I) command which is translated into a call statement by the
Translator. Therefore, “call” in this manual will imply “RQDLI command” for RPG II
applications, unless RQDLI is specifically mentioned.

Note: Because the syntax of RPG II is significantly different, RPG II is discussed
separately. See “DL/I Application Program for RPG II” later in this chapter. An
input/output call request is composed of a call statement with an argument list. The
argument list provides the information, which is assembled by the application
program, to describe a particular call function and the segment of data to be
operated upon. One segment may be operated upon with a single input/output
request (that is, one call statement).

One of the data fields in a segment is normally considered to be the key field.
Each segment type has a fixed or variable length and a format definition.

Examples of DL/I program calls for PL/I, COBOL, RPG II, and Assembler appear in
the “Program Examples” section of this chapter.

The general format of a DL/I call is as follows:

 For COBOL

CALL 'CBLTDLI' USING[parm-count,] call-function, db-pcb-name,i/o-area
 [,ssa...].

 For PL/I

CALL PLITDLI (parm-count,call-function,db-pcb-name,i/o-area[,ssa...]);

For RPG II: See “DL/I Application Program for RPG II” later in this chapter.

 Chapter 1. DL/I Application Programming 1-15

 For Assembler:

 {ASMTDLI}
CALL {CBLTDLI}

In addition, register 13 must contain the address of an 18-fullword register save
area provided by the application program. Register 1 must contain the address of
the parameter list to be used with this call.

parm-count
The first parameter is the address of a 4-byte binary field containing the
number of other parameters that are in the list. Note that the value in the
count field does not include the count field itself. This parameter is required
for PL/I and is optional for other languages.

call-function
The second parameter contains the address of a 4-character field that
contains the DL/I code for the function to be performed. The application
program can request DL/I to perform the following functions:

The use and meaning of the call functions are explained in Chapter 2.

db-pcb-name
The third parameter is the address of the program communication block
(PCB) that is used for communication between DL/I and the application
program. There is one PCB, which is contained within the PSB, for each
data base being processed. More details of the use of the PCB are given in
the section “PCB Mask” earlier in this chapter.

i/o-area
The I/O area address is the fourth parameter in the call statement. The I/O
area is an area in the application program into which DL/I puts a requested
segment or from which DL/I takes a designated segment, or, for the
checkpoint call, from which it obtains the 8-character checkpoint identification.
The area must be as long as the longest segment to be processed. If path
calls are used, the area must be long enough to hold the largest
concatenated segment; that is, all segments involved in each path call. The
I/O area name points to the leftmost byte of the area. Segment data is
always left-justified within a common area. Because of the structure of PL/I,
i/o-area must be the name of a fixed-length character string, an area, a level
1 in a structure, or an array. If the user wishes to deal with substructures or
elements of an array, he should use the DEFINED or BASED attribute.

Meaning Function Codes

GET UNIQUE
GET NEXT
GET NEXT WITHIN PARENT
GET HOLD UNIQUE
GET HOLD NEXT
GET HOLD NEXT WITHIN PARENT
INSERT
DELETE
REPLACE
CHECKPOINT

‘GU␣␣’
‘GN␣␣’
‘GNP␣’
‘GHU␣’
‘GHN␣’
‘GHNP’
‘ISRT’
‘DLET’
‘REPL’
‘CHKP’

1-16 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

COBOL Example:

 IDENTIFICATION DIVISION.
 .
 .
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 �1 INPUT-AREA.

�2 KEY PICTURE X(6).
�2 FIELD PICTURE X(84).

PL/I Example:

DECLARE 1 INPUT_AREA,
2 KEY CHAR(6),
2 FIELD CHAR(84);

Assembler Example:

IOAREA DS �CL9�
 KEY DS CL6
 FIELD DS CL84

The length of these work areas is 90 bytes.

ssa
The addresses of one or more segment search arguments (SSAs) are the
final parameters in the call statement. When an application programmer
requests DL/I to perform data base functions, it is frequently necessary for
him to identify a particular segment by its name and the names of all parent
segments along the hierarchical path leading to the desired segment. These
values do not appear directly in the call statement argument provided to DL/I.
Instead, an SSA name is given that points to an area in the user's program
that contains the actual SSA values.

SSAs may be used with DL/I GET calls and, for path calls (see “Command
Codes” in Chapter 4), with DL/I REPLACE or DELETE calls. They are
required for DL/I INSERT calls.

The SSA may consist of three elements: the segment name, the command
code, and a segment qualification statement. The segment name provides
DL/I with enough information to define the type of segment. The command
code is optional and provides specification of functional variations applicable
to the call function. They are fully explained in Chapter 4. The segment
qualification statement is optional and contains information that DL/I uses to
test the value of the segment's key or data fields within the data base to
determine whether the segment meets the user's specifications. Using this
approach, DL/I performs the data base segment searching and the program
need process only those segments in which it is interested.

A segment qualification statement is composed of three parts: a segment
field name, a relational operator, and a comparative value. Boolean
qualification may be performed by connecting qualification statements
together with the AND and OR Boolean operators. Except where they are
used to fill out a field, there must be no blanks in this statement. The
complete qualification for each segment is contained between the left and
right parentheses.

 Chapter 1. DL/I Application Programming 1-17

An unqualified SSA is built using a 9-byte area with the segment name
occupying the leftmost 8 bytes and blank in position 9, as shown below.

When an unqualified SSA is used in a call statement, or an RQDLI command
in RPG II, it indicatesto DL/I the type of segment to be processed. It does not
identify a particular occurrence.

The second type of SSA is a qualified SSA. In this case, not only is the
segment type identified, but a particular occurrence or group of occurrences is
indicated. This is done by quoting the name of the key field for the segment
and a search value which must be satisfied.

The structure of an SSA, with the length in bytes of each section, is shown
below.

Segment Name ␣

8 1

Segment Name: must be 8 bytes long, with rightmost (trailing) blanks to fill out the
field as required. It is the segment name that pertains to a specific segment
type in the hierarchical structure of a data base record and which is defined
during data base generation.

Command Codes: The command codes are optional. They provide functional
variations to be applied to the call for that segment type. An asterisk (*)
following the segment name indicates the presence of one or more command
codes. A blank or a left parenthesis is the ending delimiter for command
codes.

Left Parenthesis, ‘(’: indicates the beginning of a segment qualification statement.
If the SSA is unqualified, the eight-byte segment name, or optional command
codes must be followed by a blank.

Qualification Statement: The presence of a qualification statement is indicated by
a left parenthesis following either the segment name or, if present, command
codes. Each qualification statement consists of at least one field name,
relational operator, and a comparative value. In case of a Boolean
expression, multiple field qualifications would exist.

Segment Field Name: is the name of a segment field that appears in the
description of that segment type in the DBD. The name is 8 characters long,
with rightmost blanks as required to fill 8 bytes. The named field may be
either the key field or a data field within a segment.

1-18 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

RO (Relational Operator): is a set of two characters that expresses the
manner in which the contents of the field referred to by the segment field
name are to be tested against the comparative value. The choice of the
relational operator does not affect the starting point of the search or the order
of the search.

Operator Meaning

␣= Equal to
=> Equal to or greater than
=< Equal to or less than
␣> Greater than
␣< Less than
¬= Not equal to.

Note: The operator characters above may be used in any order (for
example, => or >=).

Comparative Value: is the value against which the contents of the field
referred to by the segment field name is to be tested. The length of this field
must be equal to the length of the named field as defined in the DBD, that is,
it includes leading or trailing blanks (for alphameric) or zeros (usually needed
for numeric fields) as required. When using HDAM, do not use special
characters because a program check may occur in the randomizing module.
Further information on the randomizing module may be found in DL/I DOS/VS
Data Base Administration.

Boolean Operator or Right Parenthesis, ‘)’: Following the comparative value is
either a Boolean operator, relating this qualification statement to the next
qualification statement, or a right parenthesis as the ending delimiter
indicating the last qualification statement for this segment.

Boolean logic qualifications can be performed on each segment by specifying
multiple qualification statements. The qualification statements can be logically
related to each other by using the Boolean AND and OR operators between
them.

The logical AND is expressed by the EBCDIC character ‘&’ or ‘*’. The logical
OR is expressed by the EBCDID ‘+’ or ‘|’.

All Boolean statements connected by AND operators are considered a set of
qualification statements. An OR operator between two qualification
statements begins a new set of qualification statements. A set can consist of
one or more statements. To satisfy an SSA, a segment can satisfy any set of
qualification statements. To satisfy any set, the segment must satisfy all
statements within the set.

The qualification statement test is terminated as soon as a segment type that
satisfies the qualification test is found in the data base. This procedure continues
for all SSAs in a DL/I data base call, or RQDLI command in RPG II, until the
desired segment is found.

Assume that the generic name of the skill segment in Figure 1-8 on page 1-20 is
SKILLINV and its key field name is SKILCODE. Thus the SSA for a GET UNIQUE
call for the skill segment with skill code equal to artist appears as:

 SKILLINV(SKILCODE␣=ARTIST)

 Chapter 1. DL/I Application Programming 1-19

For retrieval or addition of a root segment, only one SSA must be provided.
Normally the retrieval or insertion of a dependent segment requires that multiple
SSAs be provided in the call request. Each SSA in the list describes a segment to
which the segment to be operated upon is dependent. The SSAs for a given DL/I
call must be in proper hierarchical relationship. Assume that the generic name of a
name segment-type is NAME, its key field name is NAME, and there are
employees with key field values of ADAMS, JONES, and SMITH whose parent is a
skill segment having a key field value of ARTIST. Retrieval is accomplished by two
segment search arguments with Boolean qualification on the second level included
within the parameter list of the DL/I call, or RQDLI command in RPG II:

 SKILLINV(SKILCODE␣=ARTIST)
 NAME␣␣␣␣(NAME=␣␣␣␣␣=ADAMS|NAME␣␣␣␣␣JONES)

Figure 1-8. Logical Data Base Record Structure

DL/I Application Program for RPG II
Access to DL/I is provided in RPG II by means of RQDLI commands (Request DL/I)
and, optionally,DB-files. The Translator translates the RQDLI commands into RPG
II call statements and parameter lists and the DB-file specifications into File
Description Specifications for SPECIAL files.

Note: The following syntax notation is used in the RPG II statement formats.

� | is used to separate alternatives, one of which has to be coded.
� (optional) is used to indicate that the construct is optional.
� uppercaseletters are used to indicate system-defined information.
� lowercase letters are used to indicate user-defined information.

1-20 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

RQDLI Commands For DB Access
The application program accesses a data base, which may be defined previously in
the File Description Specifications, with the help of RQDLI commands, which have
to be specified in the Calculation Specifications. An RQDLI command consists of
an RQDLI statement followed by optional ELEM, USSA, and QSSA statements.

The format of the RQDLI statement is as follows:

Position Contents

1-5 see the publication, DOS/VS RPG II Language
6 C
7-8 blank | Ln | SR
9-17 see the publication, DOS/VS RPG II Language
18-27 func-name
28-32 RQDLI
33-42 file-name (optional)
43-55 blank
56-57 indicator
58-59 blank
60-80 see the publication, DOS/VS RPG II Language

Note: No AN or OR lines are allowed with RQDLI commands.

func-name: The following function names may be used in an RQDLI statement:

The use and meaning is the same as explained in “call function” in this chapter.

file-name: The file-name specifies the data base to be accessed. If no
FROM|INTO option is explicitly specified in the RQDLI command, standard RPG
data transfer will be used.

standard RPG data transfer: Extracting input fields from records, or building
output records from fields. It is used if an RQDLI command requires a FROM or
INTO option, which is not explicitly specified. In this case the I/O operation is
executed in an RPG-like manner, namely using the record specification in the Input
Specifications for input operations (that is, using the extract fields routine via READ
statement instead of an explicit INTO option) or building the output record with the
help of Output Specifications (that is, using the build lines routines via EXCPT
instead of an explicit FROM option).

� GU
GHU

Get unique
Get hold unique

� GN
GHN

Get next
Get hold next

� GNP
GHNP

Get next within parent
Get hold next within parent

� DLET Delete
� REPL Replace
� ISRT Insert:

- load a new data base
- add to an existing data base

� PCB Schedule a PSB
� TERM Release a PSB
� CHKP Establish a checkpoint

 Chapter 1. DL/I Application Programming 1-21

With an RQDLI command, only the first record is put out to the specified file; if
more records are conditioned they will be ignored. In addition, the RQDLI
command causes all E-records with indicators on to be put out to the corresponding
non-DB files. The user must ensure that files are conditioned in accordance with
the RPG II rules for update files (read before write). A user-written EXCPT causes
output to only non-DB files, but DB files also must be conditioned so that no output
is attempted before a read. For standard data transfer, an EXCPT is automatically
generated.

Note: Using the RPG II standard data transfer for an input operation on a DL/I
data base, a READ will be issued even if the “record not found” condition is
encountered. That means that in any case the contents of the fields within the
record will be initiated with the information at which xREC is pointing.

indicator: An indicator must be reserved for use by the Translator. The user may
specify in the RQDLI command which indicator is to be used. If no indicator is
specified, the Translator will use indicator 13. The indicator should not be tested
since, on return from DL/I, the status is undefined.

An RQDLI statement may be followed by one or more ELEM, USSA, or QSSA
statements. The ELEM statements specify the FROM—INTO option, the PCB
option, and the SSA option. The SSAs can also be specified by USSA and QSSA
statements, which allow the definition of an SSA in RPG-like format. The
statements specifying the SSA list must be in the proper hierarchical sequence.

The CHKP RQDLI statement may be followed by ELEM statements specifying the
CHKPID option and the PCB option. No other ELEM statements are allowed.

An ELEM statement for the CHKPID option has the following format:

Position Contents

1-5 see the publication, DOS/VS RPG II Language
6 C
7-8 blank | SR | Ln
9-17 blank
18-27 CHKPID
28-32 ELEM
33-42 literal (see note)
43-48 var-name (see note)
49-52 optional entries (see note below and the publication, DOS/VS RPG II

Language)
53-59 blank
60-80 see the publication, DOS/VS RPG II Language)

Note: Entries in positions 33-42 and 43-52 are mutually exclusive. The
checkpoint identification can be specified either in positions 33-42 as an alphameric
literal (maximum length eight bytes) or in positions 43-48 as a variable referring to
an eight byte field. If no checkpoint identification is specified, the file-name, if any,
specified in the CHKP RQDLI statement is used as a default checkpoint
identification and for the PCB option if it is not explicitly specified and a K-line for a
PCB has been defined for the DB-file.

1-22 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

var-name: denotes the name of a variable that describes an RPG II field, array,
array-element, or data structure.

An ELEM statement for the FROM|INTO option has the following format:

Position Contents

1-5 see the publication, DOS/VS RPG II Language
6 C
7-8 blank | SR | Ln
9-17 blank
18-27 FROM|INTO
28-32 ELEM
33-42 blank
43-48 var-name
53-59 blank
60-80 see the publication, DOS/VS RPG II Language

If a FROM|INTO option is explicitly specified in an ELEM statement, the
input/output request is executed using the specified area, ignoring any record
definitions for the named DB-file in the Input or Output Specifications. If no
FROM|INTO option is used with an RQDLI command, the record area optionally
defined with the DB-file is loaded with the segment handled by the operation. The
record area (corresponding to a data base segment) may be described in the Input
or Output Specifications, depending on the requested function. The INTO option is
used with input operations, and the FROM option is used with output operations.

An ELEM statement for the PCB option has the following format:

Position Contents

1-5 see the publication, DOS/VS RPG II Language
6 C
7-8 blank | SR | Ln
9-17 blank
18-27 PCB
28-32 ELEM
33-42 blank
43-48 var-name(see note)
49-52 optional entries (see the publication, DOS/VS RPG II Language)
53-59 blank
60-80 see the publication, DOS/VS RPG II Language

The PCB option may be used to specify the PCB-address to which the RQDLI
request is directed. If not specified, the PCB-address is derived from the filename
specified with the RQDLI statement.

 Chapter 1. DL/I Application Programming 1-23

Statements for SSA Specification
There are two kinds of statements used to describe an SSA, which may be used
intermixed; either the SSA-option or the SSA specification in RPG-like format. In
addition, an SSALIST option together with an ELIST-command are provided for
ease of use. (The physical makeup of the SSA is fully described in “DL/I Batch
Program Call” in this chapter.)

SSA-option: The SSA is a var-name. It is the user's responsibility to define the
proper format and to put the correct values into it together with delimiters.

Note: The format of the area has to correspond exactly to the requirements as
specified for the SSA in “DL/I Batch Program Call.”

ELEM statements of this kind are characterized by the keyword SSA in factor 1 of
an ELEM statement and have the following format:

Position Contents

1-5 see the publication, DOS/VS RPG II Language
6 C
7-8 blank | SR | Ln
9-17 blank
18-27 SSA
28-32 ELEM
33-42 blank
43-48 var-name (see note)
49-52 optional entries (see the publication, DOS/VS RPG II Language)
53-59 blank
60-80 see the publication, DOS/VS RPG II Language

The area referred to by var-name must describe the SSA with all required entries
as defined under SSA in “DL/I Batch Program Call.”

Note: For USSA and QSSA statements, var-name must not be an array name.

SSA Specification in RPG-Like Format: (USSA and QSSA statement)
The statement contains all the relevant fields of an SSA in RPG-like format. The
Translator maps these fields into the proper DL/I format. For details see the
definition below.

 USSA Statement
For an unqualified SSA it is only necessary to specify either the segment-name in
quotes or a field containing the segment name in factor1 of the Calculation
Specifications in a USSA statement.

The proper area is provided by the Translator, and the segment will be moved into
it with the required blanks.

USSA statements for an unqualified SSA have the following format in the
Calculation Specifications:

1-24 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Position Contents

1-5 see the publication, DOS/VS RPG II Language
6 C
7-8 blank | SR | Ln
9-17 blank
18-27 segment-name
28-32 USSA
33-55 blank
56-57 command code (optional)
58-59 blank
60-80 see the publication, DOS/VS RPG II Language

segment-name: Either var-name containing the name of a segment (up to 8
characters) or the name of a segment in apostrophes.

command code: One or two command codes may be specified. For a more
detailed definition of command codes, see Chapter 4 “Command Codes.”

 QSSA Statement
A QSSA statement for a qualified SSA has the following format:

Position Contents

1-5 see the publication, DOS/VS RPG II Language
6 C
7-8 blank | SR | Ln
9-17 blank
18-27 segment-name
28-32 QSSA
33-42 segment-field-name
43-48 comparative-value
49-51 length of segment-field
52 blank
53 blank
54-55 relational-operator
56-57 command-code (optional)
58-59 blank
60-80 see the publication, OS/VS RPG II Language

segment-name: As above with unqualified SSA.

segment-field-name: Name of the segmanet-field in apostrophes or var-name
containing name of the segment-field (up to 8 characters). The length of the field
as defined in the DBD is specified by positions 49-51.

comparative-value: Var-name containing the value against which the contents of
the field referred to by the segment-field-name are to be tested. The length of the
contents of var-name should correspond to that defined in positions 49-51. This
information is used to generate the proper area. The length as specified must
correspond to the actual length of the field defined by the segment field name in
the DBD.

Note: When deleting segments within a packed key range, you must build your
own SSA with the comparative field packed in the SSA.

 Chapter 1. DL/I Application Programming 1-25

length: Length of the segment-field (in bytes) in the DBD.

position 52: A blank entry indicates that the field is alphameric. MOVEL is used
to put the comparative value into the generated SSA (possibly padded with blanks
to the right).

relational operator: The following relational operators may be used:

relational
operator meaning

EQ equal to
GE greater than or equal to
LE less than or equal to
GT greater than
LT less than
NE not equal to

command-code: One or two command codes may be specified for each SSA.
For a more detailed definition, see Chapter 4 “Command Codes.”

 SSALIST-Option
It is possible to specify in an ELEM statement the name of an SSA-list. This ELEM
statement has the following format:

Position Contents

1-5 see the publication, DOS/VS RPG II Language
6 C
7-8 blank | SR | Ln
9-17 blank
18-27 SSALIST
28-32 ELEM
33-42 name-of-SSA-list
43-52 blank
53-59 blank
60-80 see the publication, DOS/VS RPG II Language

The keyword SSALIST indicates that this statement stands for a list of statements
defined elsewhere in an ELIST. The Translator will expand the SSALIST-option by
the list of SSAs defined in the ELIST. The indicator in position 7-8 of the SSALIST
option is appended to each SSA. As default, the indicator in position 7-8 of the
RQDLI statement is used.

name-of-SSA-list: This name refers to the name of the ELIST defined in an
ELIST statement.

1-26 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

 ELIST-Command
The ELIST command defines the SSA list. The ELIST command consists of an
ELIST statement immediately followed by one or more statements specifying SSAs.
The ELIST statement has the following format:

Position Contents

1-5 see the publication, DOS/VS RPG II Language
6 C
7-8 blank | SR | Ln
9-17 blank
18-27 name-of-SSA-list
28-32 ELIST
33-59 blank
60-80 see the publication, DOS/VS RPG II Language

The statements specifying SSAs must be specified in the proper hierarchical
sequence. The format of the statements is the same as that used to describe the
SSA directly in the RQDLI commands.

Restriction: The SSALIST-option must not be used in an ELIST command.
Optionally, a DB-file may be specified to access DL/I.

 Chapter 1. DL/I Application Programming 1-27

DB (Data Base) File Definition
Each data base an application program wants to access may be defined in the File
Description Specifications. The File Description Specifications for such a DB-file
are only required if standard data transfer is intended for that DB-file and/or if use
is made of the possibility of defining the PCB for a DB-file via a K-line in the File
Description Specifications.

The File Description Specification for a DB-file has the following format:

Position Contents

1-5 see the publication, DOS/VS RPG II Language
 F
7-14 file-name
15 I | U | O
16 D | blank
17-18 blank
19 F | blank
20-23 blank
24-27 maximum-segment-length
28-39 blank
40-46 DB
47-74 blank
75-80 see the publication, DOS/VS RPG II Language

file-name: The file-name can be freely chosen; it is the name by which the
application refers to the data base.

maximum-segment-length: This length specifies the maximum length (in bytes)
of the segments of the data base which the application is going to access. This
length is used if no explicit FROM| INTO option is specified in an RQDLI command
referencing the specific DB-file. In this case the segment has to be defined as a
record in the Input or Output Specifications. If this length is omitted, a length of 80
is assumed.

Restrictions: Test indicators (positions 65 - 70) for numeric fields can not be
defined in the input specifications for a DL/I data base.

Notes:

1. If position 19 is blank, it will default to F.

2. Output Specifications for DB-files must be of type E (position 15=E), exception
records.

Additionally, for each DB File Description Specification, a continuation line may be
specified which defines the corresponding PCB. The continuation line has the
following format:

1-28 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Position Contents

1-5 see the publication, DOS/VS RPG II Language
6 F
7-23 blank
24-27 pcb-key-length (optional)
28-50 blank
51-52 blank
53 K
54-59 PCB
60-65 PCBij
66-74 blank
75-80 see the publication, DOS/VS RPG II Language

PCBij: This defines the program communication block (PCB) connected with the
DB file. ij ... establishes the relationship to the ordering of the PCBs in the PSB. ij
defines this data base PCB as the element ij of the ordered list of PCBs. This
ordering is used when the addressability of PCBs is established; ij may range
between 01 and 99.

pcb-key-length: This integer specifies the length (less than or equal to 256) of the
field in the data structure defining the PCB. If a K-line is specified, the Translator
automatically generates the definition of the data structure for the PCB and puts it
into the Input Specifications, with the names of the fields qualified by ij. The
general format and the naming conventions can be seen in Figure 1-7 on
page 1-13 in “Program Communication Block Mask,” in this chapter. If the K-lines
for several DB Files define the same PCBij name, only the first causes the PCB
data structure to be generated. The others are ignored and a warning message is
issued. However, when these file names are specified in RQDLI statements, this
PCBij name is used as the default value for the PCB option.

If no K-line is specified, it is the user's responsibility to define the proper PCB. For
more detailed information, see “Program Communication Block Mask,” in this
chapter.

Note: With the automatic generation of the PCB data structure, name clashes with
user-defined field names may occur.

The user should never write into PCB fields.

 Chapter 1. DL/I Application Programming 1-29

Data Base Processing
The contents of this section assume that the programming ground rules have been
established. This section deals with the processing of the segments of the data
base(s) used by an application.

Data Base Loading
A data base is loaded by a user-written application program issuing DL/I calls, or
RQDLI commands in RPG II, to insert data base records presorted by the key field
of the root segment. This is a requirement of simple HSAM, HSAM, simple HISAM,
HISAM, HIDAM, and HD primary index data bases. In an HSAM, HISAM, HIDAM,
or HD primary index data base, when a data base record is composed of more
than the root segment, all segments within the data base record must be presorted
by their hierarchical relationship and key field value and must be inserted in correct
hierarchical order. An HDAM or HD primary randomized data base can be created
from sorted or unsorted data base records.

The PROCOPT entry in the PSB for this program must be L or LS. The only DL/I
call which can be issued in such a program is ISRT.

Consider the process of inserting the segments of a skill inventory data base record
shown in Figure 1-8 on page 1-20 earlier in this chapter. First, the skill (root)
segment ARTIST is inserted. The name segment for ADAMS is inserted next.
Then the experience segment of ADAMS is inserted, followed by the education
segment of ADAMS. This continues with the name segment JONES, its experience
segment and education segment, then name segment SMITH and its education
segment. If this data base record represented the segments of data associated
with skill X, the segments to be inserted into the data base next would be those
associated with skill X + 1.

The INSERT function is used to create or load (recreate or reorganize) a data
base. Prior to the execution of a DL/I call to insert a segment, the segment to be
inserted must be moved into an I/O area and the proper list of SSAs must be
provided. For RPG II, an output DB-file and standard RPG data transfer may be
used.

Assume that, for creating the skill inventory data base, the segments of data
associated with ARTIST are to be loaded. The first four segments to be loaded
would be SKILL, NAME (ADAMS), EXPERIENCE (ADAMS), and EDUCATION
(ADAMS). For example, the associatedSSAs and I/O area contents for the third
DL/I INSERT call is as follows:

Experience Segment Insertion

[SSA1 - SKILLINV(SKILCODE␣=ARTIST)]
[SSA2 - NAME␣␣␣␣(NAME␣␣␣␣␣=ADAMS)]
 SSA3 - EXPERIEN␣

 ┌---┐
I/O Area - | Experience Code | Data Field | Data Field |
 └---┘

The SSAs of a DL/I call, or RQDLI command in RPG II, for inserting a segment into
a data base may describe the complete hierarchical path to the segment. It is not
necessary , however, to describe the complete path. When no SSA is specified,

1-30 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

DL/I loads the next segment into the position indicated by the position pointer (see
“Position Pointer” in Chapter 2). When creating a data base, therefore, it is only
necessary to supply the segment name of the segment being inserted. Notice that
the last segment search argument within each INSERT call does not and must not
include the qualification statement portion. The qualification information is taken
from the image of the segment in the I/O area.

Data Base Retrievals
The retrieval of segments within a data base is accomplished by the three GET call
functions: GET UNIQUE, GET NEXT, and GET NEXT WITHIN PARENT. GET
UNIQUE provides for the retrieval of a specific segment by direct reference into the
data base. GET NEXT provides for sequential segment retrieval. Usually the GET
NEXT function is used after a GET UNIQUE call or a GET NEXT call that has
provided positioning to a unique segment within the data base. However, a GET
NEXT may be used without positioning by a previous GET UNIQUE or GET NEXT.
If no position has been established within a data base when a GET NEXT call is
issued, the request is satisfied by proceeding from the beginning of the data base.

GET NEXT WITHIN PARENT allows sequential retrieval of all segments
subordinate to a parent segment. Using Figure 1-8 on page 1-20, an example
would be to retrieve all experience and education segments within the skill
inventory data base for a given skill code and employee name. The parent
segment is a unique name segment, and parentage must have been previously
established with a GET UNIQUE or GET NEXT request. Once all the experience
and education segments for a given skill code and employee name have been
retrieved by a succession of GET NEXT WITHIN PARENT requests, a further
attempt will result in a status code of GE being returned to the application program.
GE indicates that the end of subordinate segments for the particular skill code and
employee number has been reached.

In addition to direct retrieval of a unique segment and sequential retrieval of
segments, an ability to sequentially skip from one segment to another of a common
type is provided. Assume that it becomes necessary to retrieve all name segments
within a particular skill segment. However, it is not necessary to retrieve the
segments subordinate to each name segment (that is, experience and education
data segments). The first name segment is retrieved with a GET UNIQUE request.
The SSAs are:

 SSA1 - SKILLINV(SKILCODE␣=ARTIST)
 SSA2 - NAME␣␣␣␣␣

By changing the function to GET NEXT and repeating the above SSAs, all NAME
segments whose skill is ARTIST are retrieved. A status code of GE is returned if a
further attempt is made to retrieve when there are no more NAME segments for
ARTIST.

Data Base Updates
The updating of data within a segment of a data base is performed through the
REPLACE function. Before a DL/I call, or RQDLI command in RPG II, to replace a
segment may be executed, the segment to be updated must be retrieved through a
call with a GET function. The GET functions which may be specified are those
previously discussed, but must include the addition of a HOLD definition (GET
HOLD UNIQUE, GET HOLD NEXT, and GET HOLD NEXT WITHIN PARENT).
The REPLACE function must then be executed in the next call by this program to

 Chapter 1. DL/I Application Programming 1-31

the data base. Any intervening calls to the same data base, using the same PCB,
by this program cause the rejection of the subsequent REPLACE call. SSAs
should not appear with the REPLACE function unless command codes are being
used. The key field of the segment to be updated through the REPLACE function
must not be modified.

The following PL/I example shows the calls necessary to change the segments of
ARTIST from COMMERCIAL to COMMERCIAL CARTOON:

The first PL/I call statement is:

CALL PLITDLI (COUNT4,FUNCTION_GHU,DB_PCB,WORK_AREA,SSA1);

where:

SSA1 is SKILLINV(SKILCODE␣=ARTIST)

 ┌---------------------┐
I/O Area is then | ARTIST | COMMERCIAL |
 └---------------------┘

The program modifies the I/O area as follows:

 ┌-----------------------------┐
I/O Area is now | ARTIST | COMMERCIAL CARTOON |
 └-----------------------------┘

The second PL/I call statement is:

CALL PLITDLI (COUNT3,FUNCTION_REPL,DB_PCB,WORK_AREA);

With this call statement the SKILL segment is taken from the I/O area and placed
back in the data base.

For HSAM, updating can only be done by copying the data base from the input file
(DD1 in DBD generation) to the output file (DD2), omitting, modifying, or inserting
segments as required. The PSB for such a program requires two PCBs, one with
PROCOPT=G for reading and one with PROCOPT=L or LS for inserting.

Data Base Deletions
The deletion of an entire segment within a data base is performed through the
DELETE function. Before a DL/I call, or RQDLI command in RPG II, to delete a
segment may be executed, the segment to be deleted must be retrieved using one
of the GET HOLD calls. The DELETE function must be executed as the next call
to the data base and the same PCB; otherwise, the DELETE function is rejected.
The deletionof a parent segment causes deletion of all segments physically
subordinate to the deleted segment.

The following is an example of how to delete the skill segment (both key and data
fields) of ARTIST:

The first PL/I call statement is:

CALL PLITDLI (COUNT4,FUNCTION_GHU,DB_PCB,WORK_AREA,SSA1);

where:

1-32 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

SSA1 is SKILLINV(SKILCODE␣=ARTIST)

 ┌-----------------------------┐
I/O Area then contains | ARTIST | COMMERCIAL CARTOON |
 └-----------------------------┘

The second PL/I call statement is:

CALL PLITDLI (COUNT3,FUNCTION_DLET,DB_PCB,WORK_AREA);

 ┌-----------------------------┐
I/O Area still contains | ARTIST | COMMERCIAL CARTOON |
 └-----------------------------┘

As a result, the ARTIST segment and its dependent segments are deleted. That is,
name segment (ADAMS), experience segment (ADAMS), and education segment
(ADAMS) are deleted as well as all other name, experience, and education
segments under this root segment.

If another GET UNIQUE call is made to this particular skill segment immediately
after its deletion, a status code of GE (not found) is returned, but the I/O area, if not
blanked out, still contains the above data.

Data Base Insertions
The addition or insertion of a new segment (all fields) into an existing data base is
performed through the INSERT function. The techniques used for performing an
INSERT function to add a segment to an existing data base are identical to those
used with the INSERT function when creating a new data base. Remember that
the addition of a dependent level segment is not permitted unless all parent
segments in the complete hierarchical path already exist in the data base. An
example referring to figref refid=ldbr. would be the addition of an experience
segment subordinate to a particular name segment. The name segment must
already exist in the data base or be added before any experience segment
subordinate to that name segment may be added, otherwise a GE (not found)
status code is returned. (See Chapter 2 for rules governing the INSERT call.)

Data Base Checkpoint
The CHECKPOINT function is used to establish a point of reference, during the
execution of your program, which indicates all data base operations prior to this
point were completed satisfactorily. A checkpoint can be issued at any appropriate
points in your program as determined by you. It can be issued in batch, MPS
batch, or online tasks.

In case of a failure in the batch environment, the backout utility may be run to back
out data base changes occurring since the last checkpoint. For MPS batch and
online tasks, CICS/VS dynamic transaction backout will automatically back out data
base changes since the last checkpoint, when the CICS/VS journal is being used.

In order to provide a restart capability for MPS batch users, DL/I supports the use
of VSE checkpoint/restart in conjunction with the DL/I checkpoint facility. This
feature is only available to MPS batch programs running with MPS Restart active.
For more information about the MPS Restart Facility, see the DL/I DOS/VS
Recovery/Restart Guide.

 Chapter 1. DL/I Application Programming 1-33

 Program Examples

COBOL Batch Program Structure
Figure 1-9 illustrates in outline form the fundamental parts in the structure of a
COBOL batch program which, in this example, is to retrieve data from a detail file
to update a master data base. The following explanation relates to the reference
numbers along the left side of the figure.

Figure 1-9 (Page 1 of 2). General COBOL Batch Program Structure

REF.
NO.

ENVIRONMENT DIVISION.
 .
 .
DATA DIVISION.
WORKING-STORAGE SECTION.

77 FUNC-GU PICTURE XXXX VALUE 'GU '.
77 FUNC-GHU PICTURE XXXX VALUE 'GHU '.
77 FUNC-GN PICTURE XXXX VALUE 'GN '.

 1 77 FUNC-GHN PICTURE XXXX VALUE 'GHN '.
77 FUNC-GNP PICTURE XXXX VALUE 'GNP '.
77 FUNC-GHNP PICTURE XXXX VALUE 'GHNP'.
77 FUNC-REPL PICTURE XXXX VALUE 'REPL'.
77 FUNC-ISRT PICTURE XXXX VALUE 'ISRT'.
77 FUNC-DLET PICTURE XXXX VALUE 'DLET'.
77 FUNC-CHKP PICTURE XXXX VALUE 'CHKP'.
77 COUNT PICTURE S9(5)VALUE +4 COMPUTATIONAL.

 2 �1 UNQUAL-SSA.
�2 SEG-NAME PICTURE X(�8) VALUE ' '.

 �2 FILLER PICTURE X VALUE ' '.
 3 �1 QUAL-SSA-MAST.

�2 SEG-NAME-M PICTURE X(�8) VALUE 'ROOT '.
 �2 BEGIN-PAREN-M PICTURE X VALUE '('.

�2 KEY-NAME-M PICTURE X(�8) VALUE 'KEY '.
�2 REL-OPER-M PICTURE X(�2) VALUE ' ='.
�2 KEY-VALUE-M PICTURE X(�6) VALUE 'vvvvvv'.

 �2 END-PAREN-M PICTURE X VALUE ')'.
 �1 QUAL-SSA-DET.

�2 SEG-NAME-D PICTURE X(�8) VALUE 'ROOT '.
 �2 BEGIN-PAREN-D PICTURE X VALUE '('.

�2 KEY-NAME-D PICTURE X(�8) VALUE 'KEY '.
�2 REL-OPER-D PICTURE X(�2) VALUE ' ='.
�2 KEY-VALUE-D PICTURE X(�6) VALUE 'vvvvvv'.

 �2 END-PAREN-D PICTURE X VALUE ')'.
 4 �1 DET-SEG-IN.

 �2 --
 �2 --
 �1 MAST-SEG-IN.
 �2 --
 �2 --

1-34 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Figure 1-9 (Page 2 of 2). General COBOL Batch Program Structure

 5 LINKAGE SECTION.
 �1 DB-PCB-MAST.
 �2 MAST-DBD-NAME PICTURE X(8).

�2 MAST-SEG-LEVEL PICTURE XX.
�2 MAST-STAT-CODE PICTURE XX.

 �2 MAST-PROC-OPT PICTURE XXXX.
�2 FILLER PICTURE S9(5) COMPUTATIONAL.

 �2 MAST-SEG-NAME PICTURE X(8).
�2 MAST-LEN-KFB PICTURE S9(5) COMPUTATIONAL.
�2 MAST-NU-SENSEG PICTURE S9(5) COMPUTATIONAL.

 �2 MAST-KEY-FB PICTURE XXXXX.
 �1 DB-PCB-DETAIL.
 �2 DET-DBD-NAME PICTURE X(8).
 �2 DET-SEG-LEVEL PICTURE XX.
 �2 DET-STAT-CODE PICTURE XX.
 �2 DET-PROC-OPT PICTURE XXXX.

�2 FILLER PICTURE S9(5) COMPUTATIONAL.
 �2 DET-SEG-NAME PICTURE X(8).

�2 DET-LEN-KFB PICTURE S9(5) COMPUTATIONAL.
�2 DET-NU-SENSEG PICTURE S9(5) COMPUTATIONAL.

 �2 DET-KEY-FB PICTURE XXXXX.
 PROCEDURE DIVISION.

 6 ENTRY 'DLITCBL' USING DB-PCB-MAST, DB-PCB-DETAIL.
 .
 .

 7 CALL 'CBLTDLI' USING FUNC-GU, DB-PCB-DETAIL,
 DET-SEG-IN, QUAL-SSA-DET.
 .
 .

 8 CALL 'CBLTDLI' USING COUNT, FUNC-GHU, DB-PCB-MAST,
 MAST-SEG-IN, QUAL-SSA-MAST.
 .
 .

 9 CALL 'CBLTDLI' USING FUNC-GHN, DB-PCB-MAST,
 MAST-SEG-IN.
 .
 .

1� CALL 'CBLTDLI' USING FUNC-REPL, DB-PCB-MAST,
 MAST-SEG-IN.
 .
 .

11 GOBACK.

12 COBOL LANGUAGE INTERFACE

1. A 77 level or 01 level working storage entry defines each of the call functions
used by the batch program. Each picture clause is defined as 4 alphameric
characters and has a value assigned for each function (for example, ‘GU␣␣’). If
the optional count fieldwere to be included in the call statement, count values
could be initialized for each type of call. The COBOL copy function could be
used to include these standard descriptions into the program.

2. A 9-byte area is set up to be used in the calls that require an unqualified SSA.
Before the call is issued, a segment name is moved into this field. If a call
requires 2 or more unqualified SSAs, additional areas may be required.

3. An 01 level working storage entry defines each SSA used by an application
program.

 Chapter 1. DL/I Application Programming 1-35

A separate SSA structure is required for each segmewnt type accessed by the
program because the key-value fields should be different. Once the fields other
than key-value are initialized they need not be altered.

4. A 01 level working storage entry defines the program segment I/O area. This
area can be further defined with 02 entries. Separate I/O areas may be
allocated for each segment type prescribed, or a single area can be used.

5. A 01 level Linkage Section entry describes the data base PCB entry for every
input or output data base. It is through this linkage that a COBOL program
may access the status codes after a DL/I call. The individual fields in the PCB
are defined in the linkage section so that they may be referenced in the
program.

6. This is the standard entry point in the procedure division of a batch program.
After DL/I control has loaded the PSB for the program in the batch partition, it
gives control to the application program. The PSB contains all the PCBs used
by the program. The USING statement at the entry point to the batch program
must contain the same number of names in the same sequence as there are
PCBs in the PSB.

 7.
8. These are typical calls to retrieve data from a data base using a qualified

search argument. Before issuing the call, the key value of the SSA must be
initialized to specify the particular segment to be retrieved. Immediately
following the call a test should be made of the status-code field of the PCB to
determine if the call was successful. See “Problem Determination” in Chapter 2
of this manual.

 9.
10. This is a typical call to retrieve data from a data base using no SSA. This call

is also a hold call for a subsequent delete or replace operation.

11. This statement replaces data in the data base with data from a COBOL batch
program.

12. The GOBACK statement causes the batch program to return control to DL/I.

13. A language interface module (DLZLI000), which must be link-edited to the
batch program after compilation, provides a common interface to DL/I. The call
statement causes a V-type address constant (CBLTDLI) to be generated for the
language interface module. When the application program is link-edited, the
VSE automatic library look-up (AUTOLINK) feature retrieves the language
interface module from a relocatable library (system or private) and link-edits it
with the application program. If AUTOLINK is suppressed, an INCLUDE
statement must be present for the language interface module. You must also
include the following additional statements which link to ILBDSET0 (a COBOL
requirement), in the input to the linkage editor:

 INCLUDE DLZBPJRA
 ENTRY CBLCALLA

1-36 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

COBOL MPS Restart Example
A VSE checkpoint is issued automatically in COBOL programs each time a file is
processed a predetermined number of times. The number of times may be
specified by using the RERUN statement. To invoke a VSE checkpoint as part of a
combined checkpoint in COBOL, the following format is suggested:

 CBL XOPTS(CICS,DLI)...
 ID DIVISION
 PROGRAM-ID. DLZCBLMP
 .
 .
 .
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.

SELECT CHKPT-MSGS ASSIGN TO SYS1�1-UR-32�3-S.
 I-O-CONTROL.
� TAKE A VSE CHKPT ON EVERY WRITE TO CHKPT-MSGS
�

RERUN ON SYS1��-UT-24��-S
EVERY 1 RECORDS OF CHKPT-MSGS.

 DATA DIVISION.
 FILE SECTION.
 FD CHKPT-MSGS

LABEL RECORD OMITTED
RECORDING IS F
RECORD CONTAINS 72 CHARACTERS
DATA RECORD IS MSG-LINE.

 �1 MSG-LINE.
 �2 FILLER PIC X
 �2 ALL-71 PIC X(71).
 .
 .
 .
 WORKING-STORAGE SECTION.
 �1 INITMSG PIC X(72) VALUE ' READY FOR VSE CHECKPOINTS '.
 �1 CHKPTMSG PIC X(72) VALUE ' TAKING A VSE CHECKPOINT '.
 �1 CHKPTID PIC X(8) VALUE 'DL/ICHKP'.
 .
 .
 .
 PROCEDURE DIVISION.

OPEN OUTPUT CHKPT-MSGS.
� INITIALIZE CHECK MESSAGE FILE
�

WRITE MSG-LINE FROM INITMSG AFTER POSITIONING 2.
 .
 .
 .
� TAKE AN IMPLICIT VSE CHECKPOINT
�

WRITE MSG-LINE FROM INITMSG AFTER POSITIONING 2.
� TAKE A DL/I CHECKPOINT
�

CALL 'CBLTDLI' USING
 FUNC-CHKP,DB-PCB-DETAIL,CHKPTID
 .
 .
 .

In this example, a print file is defined so that a VSE checkpoint is invoked each
time a message is written to it. The initial message is necessary because COBOL
does not start issuing VSE checkpoints until the write statement after the first write

 Chapter 1. DL/I Application Programming 1-37

occurs. COBOL also issues a VSE checkpoint when the print file is closed at the
end of the program. This additional checkpoint does not affect MPS Restart.

Since the invocation of a VSE checkpoint in COBOL is automatic and the VSE
checkpoint ID is not available to the application program, it cannot be used as the
checkpoint ID on the DL/I checkpoint command.

When using MPS Restart, a VSE checkpoint must be coded before each DL/I
checkpoint in the application program. The two checkpoints together are referred
to as a combined checkpoint.

PL/I Batch Program Structure
Figure 1-10 illustrates in outline form the fundamental parts in the structure of a
PL/I batch program which, in this example, is to retrieve data from a detail file to
update a master data base. The following explanation relates to the reference
numbers along the left side of the figure.

Figure 1-10 (Page 1 of 2). General PL/I Batch Program Structure

REF.
NO.

 /� �/
 /� ENTRY POINT �/
 /� �/

 1 DLITPLI: PROCEDURE (DB_PTR_MAST,DB_PTR_DETAIL)
 OPTIONS (MAIN);
 /� �/
 /� DESCRIPTIVE STATEMENTS �/
 /� �/
 DCL DB_PTR_MAST POINTER;
 DCL DB_PTR_DETAIL POINTER;
 DCL FUNC_GU CHAR(4) INIT('GU ');
 DCL FUNC_GN CHAR(4) INIT('GN ');

 2 DCL FUNC_GHU CHAR(4) INIT('GHU ');
DCL FUNC_GHN CHAR(4) INIT('GHN ');
DCL FUNC_GNP CHAR(4) INIT('GNP ');
 DCL FUNC_GHNP CHAR(4) INIT('GHNP');
 DCL FUNC_ISRT CHAR(4) INIT('ISRT');
 DCL FUNC_REPL CHAR(4) INIT('REPL');
 DCL FUNC_DLET CHAR(4) INIT('DLET');
 DLC FUNC_CHKP CHAR(4) INIT('CHKP');
 DCL 1 QUAL_SSA STATIC UNALIGNED,

 3 2 SEG_NAME CHAR(8) INIT('ROOT '),
 2 SEG_QUAL CHAR(1) INIT('('),
 2 SEG_KEY_NAME CHAR(8) INIT('KEY '),

2 SEG_OPR CHAR(2) INIT(' ='),
 2 SEG_KEY_VALUE CHAR(6) INIT('vvvvvv'),
 2 SEG_END_CHAR CHAR(1) INIT(')');
 DCL 1 UNQUAL_SSA STATIC UNALIGNED,
 2 SEG_NAME_U CHAR(8) INIT('NAME '),

2 BLANK CHAR(1) INIT(' ');

 DCL 1 MAST_SEG_IO_AREA,

1-38 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Figure 1-10 (Page 2 of 2). General PL/I Batch Program Structure

 4 2 ---
 2 ---
 2 ---
 DCL 1 DET_SEG_IO_AREA,
 2 ---
 2 ---
 2 ---
 DCL 1 DB_PCB_MAST BASED (DB_PTR_MAST),
 2 MAST_DB_NAME CHAR(8),

2 MAST_SEG_LEVEL CHAR(2),
2 MAST_STAT_CODE CHAR(2),

 5 2 MAST_PROC_OPT CHAR(4),
2 FILLER FIXED BINARY (31,�),

 2 MAST_SEG_NAME CHAR(8),
2 MAST_LEN_KFB FIXED BINARY (31,�),
2 MAST_NO_SENSEG FIXED BINARY (31,�),

 2 MAST_KEY_FB CHAR(�);
 DCL 1 DB_PCB_DETAIL BASE (DB_PTR_DETAIL),
 2 DET_DB_NAME CHAR(8),
 2 DET_SEG_LEVEL CHAR(2),
 2 DET_STAT_CODE CHAR(2),

2 DET_PROC_OPT CHAR(4),
2 FILLER FIXED BINARY (31,�),
2 DET_SEG_NAME CHAR(8),
2 DET_LEN_KFB FIXED BINARY (31,�),
2 DET_NO_SENSEG FIXED BINARY (31,�),

 2 DET_KEY_FB CHAR(�);

 DCL THREE FIXED BINARY (31,�) INITIAL(3);
DCL FOUR FIXED BINARY (31,�) INITIAL(4);
DCL FIVE FIXED BINARY (31,�) INITIAL(5);

 6 DCL SIX FIXED BINARY (31,�) INITIAL(6);
 /� �/
 /� MAIN PART OF PL/I BATCH PROGRAM �/
 .

 7 CALL PLITDLI(FOUR,FUNC_GU,DB_PCB_DETAIL,
 DET_SEG_IO_AREA,QUAL_SSA);
 .

 8 CALL PLITDLI(FOUR,FUNC_GHU,DB_PCB_MAST,
 MAST_SEG_IO_AREA,QUAL_SSA);
 .

 9 CALL PLITDLI(THREE,FUNC_GHN,DB_PCB_MAST,
 MAST_SEG_IO_AREA;
 .

1� CALL PLITDLI(THREE,FUNC_REPL,DB_PCB_MAST,
 MAST_SEG_IO_AREA);
 .

11 RETURN;
 END DLITPLI;

12 PL/I LANGUAGE INTERFACE

1. This is the main entry point to a PL/I batch program. After the DL/I control
program has loaded and relocated the PSB for the program, it gives control to
this entry point. The PSB contains all the PCBs used by the program. The
entry point statement of the batch program must contain the same number of
names in the same sequence as there are PCBs in the PSB.

 Chapter 1. DL/I Application Programming 1-39

2. Each area defines one of the call functions used by the PL/I batch program.
Each character string is defined as four alphameric characters, with a value
assigned for each function (for example, ‘GU␣␣’). Other constants may be
defined in the same manner. Standard definitions could be stored in a source
library and included using a %INCLUDE statement.

3. A structure declaration defines each SSA used by the problem program. The
unaligned attribute is required for SSA data interchange with DL/I. The SSA
character string must reside contiguously in storage. Assignment of variables
to key values, for example, could result in the construction of an invalid SSA if
the key value has the aligned attribute.

A separate SSA structure is required for each segment type accessed by the
program because the key-value fields should be different. Once the fields other
than key-value are initialized, they should not have to be altered.

A 9-byte area should be reserved for use as an unqualified SSA. Before
issuing an unqualified call, a segment name is moved into this field.

4. The segment I/O areas are defined as structures.

5. One level 1 declarative (similar to COBOL's linkage section) describes as a
structure the data base PCB entry for each input or output data base. It is
through this description that a PL/I program may access the status codes after
a DL/I call.

 6.
7. This statement is used to identify a binary number (fullword) that represents the

parameter count of a call to DL/I. The parameter count value equals the
remaining number of arguments following the parameter count set off by
commas.

 8.
9. These are typical calls to retrieve data from a data base using a qualified SSA.

Prior to execution of the call the SEG_KEY_VALUE field of the SSA must be
initialized if a fully qualified SSA is required. For a call using an unqualified
SSA, the segment name field must be moved to one of the 9-byte
UNQUAL—SSA areas.

Immediately following the call the status code field of the PCB must be checked
to determine the results of the call. See “Problem Determination” in Chapter 2
of this manual.

10. This is a typical call to retrieve data from a data base using no SSA. This call
is also a HOLD call for subsequent delete or replace operation.

11. This call is used to replace data in the data base with data from a PL/I batch
program.

12. This RETURN statement causes the batch program to return control to DL/I.

1-40 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

13. A language interface module (DLZLI000), which must be link-edited to the
batch program, provides a common interface to DL/I. The call statement
causes a V-type address constant (PLITDLI) to be generated for the language
interface module. When the application program is link-edited, the VSE
automatic library look-up (AUTOLINK) feature retrieves the language interface
module from a VSE relocatable library (system or private) and link-edits it with
the application program. If AUTOLINK is suppressed, an INCLUDE statement
must be present for the language interface module. The user must also include
the following additional statements (a PL/I requirement) in the input to the
linkage editor:

 INCLUDE IBMBPJRA
 ENTRY PLICALLB

PL/I MPS Restart Example
The PL/I application program interface to a VSE checkpoint consists of a call to the
built-in function PLICKPT. An example is:

 DECLARE CHKPTID CHAR(8);
 DECLARE RETCODE FIXED BIN(31);
 .
 .
 .
CALL PLICKPT('',CHKPTID,'SYS1��,24��',RETCODE); /�ISSUE A VSE CHKPT�/
IF RETCODE > 4 THEN DO /�VSE CHKPT ERROR�/
PUT EDIT('ERROR DURING CHECKPOINT. RETCODE=',RETCODE)(A,F(2));

 STOP; /�ABNORMAL END�/
 END;
IF RETCODE = 4 THEN /�VSE RESTART OCCURRED�/
PUT EDIT('RESTARTED AT CHECKPOINT #',CHKPTID)(A);

EXEC DLI CHECKPOINT ID(CHKPTID); /�ISSUE A DL/I CHKP WITH VSE CHKPT ID�/
EXEC DLI GET UNIQUE SEGMENT(ROOT) /�REPOSITION DATA BASE�/
 INTO(IOAREA)

WHERE(KEYFIELD = LASTKEY);

When using MPS Restart, a VSE checkpoint must be coded before each DL/I
checkpoint in the application program. The two checkpoints together are referred
to as a combined checkpoint.

 Chapter 1. DL/I Application Programming 1-41

RPG II Batch Program Structure
Figure 1-11 illustrates in outline form the fundamental parts in the structure of an
RPG II batch program which, in this example, is to retrieve data from a detail file to
update a master data base. The following explanation relates to the reference
numbers along the right side of the figure.

Figure 1-11 (Part 1 of 6). General RPG II Batch Program Structure

1-42 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Figure 1-11 (Part 2 of 6). General RPG II Batch Program Structure

 Chapter 1. DL/I Application Programming 1-43

Figure 1-11 (Part 3 of 6). General RPG II Batch Program Structure

1-44 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Figure 1-11 (Part 4 of 6). General RPG II Batch Program Structure

 Chapter 1. DL/I Application Programming 1-45

Figure 1-11 (Part 5 of 6). General RPG II Batch Program Structure

1-46 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Figure 1-11 (Part 6 of 6). General RPG II Batch Program Structure

1. The user may specify any program name.

2. Specify B in position 56 to tell the Translator that this is an RPG II program
which will run under DL/I.

3. A data base may be defined as a DB-file. In this case the PCB can be
specified in a continuation line (K in position 53) to the DB-file specification.

4. The continuation line defines the PCB associated with the DB-file. In this case
the PCB will be automatically generated. The Translator will put the definition
into the Input Specifications as a data structure.

5. This is the segment definition of the DB-file MASTDB.

6. This data structure provides an I/O area for use by RQDLI commands without
referring to a File Description Specification.

7. This is an example of a user-defined PCB. It must have the same layout as
the automatically generated PCB; however, you may use names of your own
choice.

8. This data structure can be used to build a qualified SSA.

9. Since not all data bases are defined as DB-files, you must explicitly specify the
*ENTRY PLIST. After the DL/I control program has loaded the PSB, it gives
control to the RPG II program. The PSB contains all the PCBs used by the

 Chapter 1. DL/I Application Programming 1-47

program. Therefore, the PARM statements of the *ENTRY PLIST must specify
the PCBs in the same sequence they are specified in the PSB.

10. The following MOVE statements build a qualified SSA to be used in an SSA
option of the RQDLI command. Reference numbers 10-12 show typical
commands to retrieve data from a data base.

11. This RQDLI command explicitly uses the I/O area DETAR.

Immediately following the RQDLI command, you must check the status code
field of the PCB (by using compare operations, as illustrated in Figure 2-4) to
determine the results of the RQDLI command.

12. This MOVE statement specifies that a new value for KEYVAR will be used in
the following RQDLI command (reference number 12).

13. This RQDLI command does not use our I/O area. In this case the Translator
takes the information and adds it to the records defined in the Input
Specifications. This command is used to show how it is possible to specify a
qualified SSA in a QSSA statement.

14. This is a typical RQDLI command to retrieve data from a data base using no
SSA. This RQDLI command is also a HOLD RQDLI command for subsequent
delete or replace operations.

15. This RQDLI command is used to replace data in the data base with data from
an RPG II batch program. It uses MASTDB as defined in the Output
Specifications to define the I/O area.

16. SETON LR must be coded to return control to DL/I.

17. This is the segment definition for output of the MASTDB file.

Note: A language interface module (DLZLI000) must be link-edited to the
application program to provide a common interface to DL/I. When the application
program is link-edited, the VSE automatic library look-up (AUTOLINK) feature
retrieves the language interface module from a relocatable library (system or
private) and link-edits it with the application program. If AUTOLINK is suppressed,
an INCLUDE statement must be present for the language interface module.

1-48 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Assembler Language Batch Program Structure
Figure 1-12 illustrates, in outline form, the fundamental parts in the structure of an
Assembler language batch program which, in this example, is to retrieve data from
a detail file to update a master data base. The following explanation relates to the
references along the left side of the figure. Throughout this figure, CBLTDLI could
appear instead of ASMTDLI.

Figure 1-12 (Page 1 of 2). General Assembler Language Batch Program Structure

 PGMSTART CSECT
 USING �,R12
 SAVE (R14,R12)

 1 LR R12,R15
 ST R13,SAVEAREA+4
 LA R13,SAVEAREA
 �

 2 MVC DBPCBMST(8),�(R1)
 �
 MVC DLIFUNC,GU
 MVC PCB,DBPCBDET
 LA R1,DETSEGIO
 ST R1,IOAREA
 LA R1,SSANAME
 ST R1,SSA
 LA R1,PARMLIST

 3 CALL ASMTDLI
 �
 MVC DLIFUNC,GHU
 MVC PCB,DBPCBMST
 LA R1,MSTSEGIO
 ST R1,IOAREA
 MVI SSANAME+8,C' '
 LA R1,PARMLIST

 4 CALL ASMTDLI
 �
 MVC DLIFUNC,GHN
 MVI PARMCT+3,3
 LA R1,PARMLIST

 5 CALL ASMTDLI
 �
 MVC DLIFUNC,REPL
 LA R1,PARMLIST

 6 CALL ASMTDLI
 �
 L R13,4(R13)

 7 RETURN (R14,R12)
 � CONSTANT AREA
 �

 8 PARMLIST DC A(PARMCT)
 FUNC DC A(DLIFUNC)
 PCB DC A(�)
IOAREA DC A(�)
 SSA DC A(�)
 �

 9 DBPCBMST DC F'�'
 DBPCBDET DC F'�'
 �
 PARMCT DC F'4'
 DLIFUNC DC CL4' '
 GU DC CL4'GU '

 Chapter 1. DL/I Application Programming 1-49

Figure 1-12 (Page 2 of 2). General Assembler Language Batch Program Structure

1� GHU DC CL4'GHU '
 GHN DC CL4'GHN '
 REPL DC CL4'REPL'
 CHKP DC CL4'CHKP'
 �
 SSANAME DS �CL26
 ROOT DC CL8'ROOT '

11 DC CL1'('
 DC CL8'KEY '
 DC CL2' ='
 NAME DC CL6'vvvvvv'
 DC CL1')'
 �

12 MSTSEGIO DS CL1��
 DETSEGIO DS CL1��
 SAVEAREA DC 18F'�'
 �
 PCBNAME DSECT
 DBPCBDBD DS CL8 DBD NAME
 DBPCBLEV DS CL2 LEVEL FEEDBACK
 DBPCBSTC DS CL2 STATUS CODES
 DBPCBPRO DS CL4 PROC OPTIONS
DBPCBRSV DS F RESERVED
 DBPCBSFD DS CL8 SEGMENT NAME FEEDBACK
DBPCBMKL DS F CURRENT LENGTH OF KEY FEEDBACK
 � AREA
DBPCBNSS DS F NO OF SENSITIVE SEGMTS IN PCB
 DBPCBKFD DS CL6 KEY FEEDBACK AREA
 END

13 ASSEMBLER LANGUAGE INTERFACE

1. The entry point to the Assembler language program. See the discussion under
“Assembler” in the section “Entry to an Application Program” earlier in this
chapter. The base register 12 is used in this example.

2. When control is passed to the application program, register 1 contains the
address of a variable-length fullword parameter list. See the discussion under
“Assembler” in the section “Entry to an Application Program” earlier in this
chapter. As only explicit calls are issued in this example, there is no need to
reset the 0 bit from 1 to 0.

3. This is a typical call to retrieve data from the master data base using a qualified
search argument. All DL/I calls should be executed with the CALL macro
instruction. Prior to execution of the call statement register 1 must point to the
variable-length fullword parameter list. This may be done through operands of
the CALL macro instruction. If the user constructs his own parameter list, the
leftmost bit of the last entry in the list must be set to one unless a parameter
count is specified as shown in this example. Immediately following the call, the
status code of the PCB should be tested to determine the result of the call.
See “Problem Determination” in Chapter 2 of this manual.

4. This call (and calls 5 and 6) are to the detail data base and therefore the PCB
address and I/O area must be reloaded. This call has an unqualified SSA by
setting the left parenthesis in position 9 to blank.

5. This is a typical call to retrieve data from a data base, which, by setting the
parm-count to three, uses no SSA. This call is also a HOLD call for a
subsequent delete or replace.

1-50 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

6. This call is used to replace data in the detail data base.

7. The RETURN statement loads DL/I registers and causes the batch program to
return control to DL/I.

8. In this illustration, one variable-length parameter list is defined to process all
data base calls. The list contains pointers to the parameter count, DL/I call
function, PCB, I/O area, and SSA. The value in PARMCT determines the
length of the parameter list. In this case, the count of four indicates that the
following four addresses constitute the parameter list.

9. A fullword must be defined for every data base PCB. The Assembler language
program may access the status codes after a DL/I call using the PCB base
addresses.

10. The call functions are defined as 4-character constants.

11. The SSAs must be defined by the problem program.

12. An I/O area large enough to contain the largest segment of a data base must
be provided. In Figure 1-12 on page 1-49, it is assumed that the longest
segment does not exceed 100 bytes. As previously mentioned, an 18-fullword
register save area must be provided in the application program.

13. A language interface module (DLZLI000) must be link-edited to the batch
program after assembly to provide a common interface to DL/I. The call
statement causes a V-type address constant (ASMTDLI or CBLTDLI) to be
generated for the language interface module. When the application program is
link-edited, the VSE automatic library look-up (AUTOLINK) feature retrieves the
language interface module from a VSE relocatable library (system or private)
and link-edits it with the application program. If AUTOLINK is suppressed, an
INCLUDE statement must be present for the language interface module.

 Chapter 1. DL/I Application Programming 1-51

Assembler MPS Batch Example
Assembler language programs use the VSE checkpoint macro directly as shown in
the following example.

CHKPT1 DS �H COMBINED CHECKPOINT #1
LA R5,RESUME1 GET RESUME ADDRESS
CHKPT SYS1��,RSTRT ISSUE A VSE CHKPT - SYS1��

� IS TAPE, RSTRT IS ADDRESS
� OF RESTART ROUTINE
RESUME1 DS �H RESUME PROCESSING AFTER RESTART

LTR R�,R� CHECK RETURN CODE
BZ ERROR BRANCH IF ERROR
ST R�,CHKPTID USE VSE CHKPT ID ON DL/I CHKP
OI CHKPTID+3,X'F�' MAKE LAST DIGIT PRINTABLE
LA R1,CHKPPARM GET ADDRESS OF CHKP PARM LIST
CALL ASMTDLI ISSUE A DL/I CHKP
BAL R5,VERSTAT VERIFY DL/I STATUS CODE
LA R1,GUPARM GET ADDRESS OF GU PARM LIST
CALL ASMTDLI REPOSITION DATA BASE

 . CONTINUE PROCESSING
 .
RSTRTR DS �H RESTART ROUTINE

STXIT AB... REISSUE STXIT AND OTHER
 . RESTART PROCESSING
 .
 BR R5 RESUME PROCESSING
VERSTAT DS �H VERIFY DL/I STATUS CODE

CLC DBPCBSTC,BLANK IS STATUS CODE BLANKS?
BER R5 YES - RETURN TO CALLER
. NO - CHECK FOR POSSIBLE ERROR

ERROR DS �H VSE CHECKPOINT ERROR ROUTINE
 .
CHKPPARM DS �F
 DC A(CHKP) FUNCTION
CHKPPCB DS A PCB ADDRESS

DC XL1'8�' LAST PARM INDICATOR
 DC AL3(CHKPTID) I/O AREA
GUPARM DS �F
 DC A(GU) FUNCTION
GUPCB DS A PCB ADDRESS
 DC A(IOAREA) I/O AREA

DC XL1'8�' LAST PARM INDICATOR
 DC AL3(SSA) SSA
BLANKS DC CL2' ' BLANKS FOR STATUS CODE CHECK
CHKP DC CL4'CHKP' CHECKPOINT FUNCTION
GU DC CL4'GU ' GET UNIQUE FUNCTION
CKPALIGN DS �F CHKPTID FULLWORD ALIGNED FOR
� STORE INSTRUCTION
CHKPTID DC CL8' ' DL/I CHECKPOINT ID
IOAREA DS CL8� I/O BUFFER
SSA DS �F SSA
 .
 .

1-52 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

As shown in the example, you may want to use the VSE checkpoint ID as the
checkpoint ID for the DL/I checkpoint. This would provide a cross reference
between the normal checkpoint messages issued to SYSLOG as the result of
taking a VSE checkpoint and a DL/I checkpoint. However, this is not necessary for
MPS Restart.

When using MPS Restart, a VSE checkpoint must be coded before each DL/I
checkpoint in the application program. The two checkpoints together are referred
to as a combined checkpoint.

 Restrictions

On COMREG Use
Bytes 16 through 19 of the communication region are used by DL/I and therefore
must not be used by the application program.

On Overlay Programs
Overlay structures are not supported for application programs executed under DL/I.
Although the COBOL SORT verb automatically produces an overlay structure, the
restriction does not apply if the job control statements used to compile and link-edit
the program as shown below are used. (For COBOL programs that do not contain
the SORT verb, the INCLUDE DLZBPJRA statement may, alternatively, be placed
immediately before the ENTRY statement). The use of “PL/I-SORT” programs,
using the sort program product, is not affected by this restriction provided that an
overlay structure is not explicitly specified.

Set Exit Abnormal (STXIT AB) Linkage
The DL/I user has the option, through the use of the user program switch indicator
(UPSI), of permitting STXIT AB linkage to pass control to DL/I prior to abnormal
termination so that a controlled shutdown may occur. The DL/I system log and DL/I
data base are closed and a storage dump is provided. However, non-DL/I files are
not closed; this is a user responsibility.

If a COBOL application program is executing under DL/I control, any attempt by the
application program to execute the COBOL debug function may cause
unpredictable results. Therefore, no COBOL debug function (any COBOL option
which makes use of a STXIT routine) should be used if DL/I STXIT is used. Refer
to your COBOL publications for options which use STXIT linkages.

The High Level Language (HLL) Debugging facility makes the job of an application
programmer writing in PL/I easier by allowing diagnostic information to be supplied
by both PL/I and DL/I. When a program check is detected during application
program execution, a STXIT PC routine will be given control if STXIT support has
been requested of DL/I (UPSI bit 7 = 0 for batch, and always for MPS batch). This
facility applies only to batch and MPS batch execution of DL/I.

 Chapter 1. DL/I Application Programming 1-53

Application Language Use in Batch or MPS Batch Programs
If the program specified on the DL/I parameter statement was written in PL/I, then

� the PSB specified on the DL/I parameter statement must have PL/I as the
language. (See LANG parameter of the PSBGEN statement or DLZACT
TYPE=RPSB statement.)

� all of the program subroutines which use DL/I must be written in PL/I.

If the program specified on the DL/I parameter statement was not written in PL/I
then

� the PSB specified on the DL/I parameter statement must not have PL/I as the
language.

� all of the program subroutines which use DL/I may be any programming
language except PL/I.

Mixing Batch PL/I and Other Languages Using DL/I
Batch PL/I application programs must not call, or be called by, another non-PL/I
application program if both of them perform DL/I calls.

A PL/I program issuing DL/I calls cannot call a program written in Assembler,
COBOL, or RPG II if the called program also issues calls. Conversely, an
Assembler, COBOL, or RPG II program that issues DL/I calls cannot call a PL/I
program that also issues DL/I calls.

Mixing these two types of batch application programs can cause a program check
or other unpredictable results.

Boolean Operators and SSA Length
The length of a segment search argument (SSA) that can be transmitted to a
remote DL/I system is limited to 304 bytes. Boolean SSAs with a length of 304
bytes or less will be processed; those with a length greater than 304 bytes will be
rejected in the remote system, causing, the DL/I call to fail.

1-54 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Job Control Statements for Batch and MPS Batch DL/I Application
Programs

DL/I application programs cannot be processed in a compile-link-go environment.
Programs must first be compiled and link-edited to a core image library and then
executed as a separate job, as they run as a subprogram of the DL/I initialization
program. RPG II programs must be translated prior to compilation.

Compile and Link-Edit
COBOL

// JOB COBSAMPL
// OPTION CATAL

 PHASE COBSAMPL,�
 INCLUDE DLZBPJRA

// EXEC FCOBOL
 �
 �
 SOURCE DECK
 �
 �
 /�
 ENTRY CBLCALLA

// EXEC LNKEDT
 /&

PL/I

// JOB PLISAMPL
// OPTION CATAL

 PHASE PLISAMPL,�
// EXEC PLIOPT

 �
 �
 SOURCE DECK
 �
 �
 /�
 INCLUDE IBMBPJRA
 ENTRY PLICALLB

// EXEC LNKEDT
 /&

 Chapter 1. DL/I Application Programming 1-55

Assembler

// JOB ASSSAMPL
// OPTION CATAL

 PHASE ASSSAMPL,�
// EXEC ASSEMBLY

 �
 �
 SOURCE DECK
 �
 �
 /�

// EXEC LNKEDT
 /&

RPG II

The compilation of an RPG II program which is going to run under DL/I is a batch
operation with the following steps:

RPG II program——> Translator——> RPG II Compiler——> Appl.prog.
(with B specified in Col. 56 of Header
Specifications)

 (Auto report optional)

The RPG II program may optionally use Auto Report, to include RPG II program
pieces from libraries, etc.

The function of the Translator is to accept as input a source program, written in
RPG II, in which DL/I requests have been coded via RQDLI commands. The
Translator produces as output an equivalent source program in which the DL/I
requests have been translated into call statements together with READ and EXCPT
statements. At execution time the call statements invoke DL/I, passing appropriate
arguments.

The Translator is executed in a separate job step. The job step sequence for
compiling an application program is thus translate-compile-link edit. The Translator
requires a minimum of 96k bytes of virtual storage. Its phase name is RPGIXLTR.

The Translator reads its input from SYSIPT, produces its output (the translated
source program) on SYSPCH, or optionally on SYS002 or SYS003, and writes the
source listing, error messages, etc. on SYSLIST.

The RPG II Translator provides a number of options. They may be specified in the
// OPTION Job Control Statement.

The Translator options for RPG II in a DL/I batch environment are:

LIST | NOLIST
DUMP | NODUMP

Defaults are according to SYSGEN.

LIST: A listing of the source program is printed on SYSLST
DUMP: When unrecoverable errors occur, a dump is produced.
NODUMP: When unrecoverable errors occur, no dump is produced.

1-56 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

 Translator Output
The DB-file descriptions are translated into File Description Specifications for
SPECIAL files.

An RQDLI command not specifying a file-name or with an explicit FROM or INTO
option is translated into a call statement followed by PARM statements.

For standard data transfer (existing Input and/or Output Specifications and no
FROM or INTO option explicitly specified) the RQDLI command is translated into a
call statement followed by a READ statement for input, or an EXCPT statement for
output.

Additionally, the Translator generates data structures and fields together with
MOVE or Z-ADD statements to build the proper SSAs from the USSA and QSSA
statements, which are then used in the PARM statements of the generated call
statement.

Note: When link-editing an RPG II batch program using standard data transfer, an
unresolved external reference message for DFHEI1 will appear in the linkage editor
output listing unless the entry exists in the user's core image library. The reason
for this is that, in the case of standard data transfer, the RPG module contains
entry points DFHEI1 and RPGDLI for both CICS/VS and the batch environment
respectively.

If the leftmost two bits of the UPSI byte are 00 (either the standard setting, or set
by // UPSI 00), the Translator directs its output to SYSPCH.

Example of job control for output on SYSPCH:

// JOB T
// EXEC RPGIXLTR (Translator)
 �

� Source to be translated
 �
/�
/&

If the leftmost two bits of the UPSI byte are 01, the Translator directs its output to
SYS002. This method should be used if an RPG II compilation is to immediately
follow the Translator run. The RPG II compiler will then read its input from SYS002
instead of SYSIPT.

Example of job control output on SYS002:

// JOB TRPG
// UPSI �1
// EXEC RPGIXLTR
 �

� Source to be translated
 �
/�
// EXEC RPGII
/&

If the leftmost two bits of the UPSI byte are 10, the Translator directs its output to
SYS003. This method should be used if an Auto Report compilation is to

 Chapter 1. DL/I Application Programming 1-57

immediately follow the Translator run. Auto Report will then read its input from
SYS003 instead of SYSIPT.

Example of job control for output on SYS003:

// JOB TAR
// UPSI 1�
// EXEC RPGIXLTR
 �

� Source to be translated
 �
/�
// EXEC RPGAUTO
/&

Batch and MPS Batch Application Program Execution
When a DL/I application program is executed, it actually runs under control of DL/I.
The EXEC statement in the job stream names the DL/I initialization module rather
than the application program name.

DL/I Parameter Statement
The application program to be executed and the PSB it uses are identified in a
parameter statement that follows the EXEC statement.

The format of the parameter statement, beginning in column 1, is as follows:

 DLI,progname,psbname[,{buff}]
 {1 }
 [,HDBFR=({bufno}ffl,dbdname1,dbdname2,...])]],....“
 {32 }
 [,HSBFR=({indno},{ksdsbuf},[{esdsbuf}],dbdname3)]
 {3 } {2 } {2 }
 [,TRACE=modname][,ASLOG=YES]
 [,LOG=({TAPE},{PAUSE})]
 {DISK1}{NOPAUSE}
 {DISK2}

or, for MPS Restart:

DLR,progname,psbname

Parameters can be entered from SYSIPT or SYSLOG. However, continuation
statements, if required, can only be entered from SYSIPT. Continuation statements
are not permitted from SYSLOG.

Continuation is indicated by a nonblank character in column 72 of the statement
being continued. The parameter statement can be stopped in or before column 71
and continued in a continuation statement.

DLI
The DL/I function code is required for batch DL/I programs or MPS batch DL/I
programs that do not use the MPS Restart facility.

DLR
The DLR function code is required for MPS batch programs using the MPS
Restart facility. If DLR is specified as the function code for a batch DL/I
program, it will be treated exactly as if DLI had been specified. The DLR

1-58 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

function code must be used when the job is first started and not just when it is
restarted.

progname
specifies a one to eight alphameric character name of the application program
or utility to be executed.

psbname
specifies a one to seven alphameric character name of the PSB as indicated
in the PSB generation and referenced by the application program.

buff
specifies the number of data base subpools required for this execution which
can be a numeric value 1 to 255; if omitted, 1 is assumed. If no buffer pool
control options are specified, a subpool consists of 32 fixed-length buffers.
The buffer size is generally consistent with the VSAM data base control
interval size and may be 512 or any multiple of 512 bytes. The buffer size
value is determined at DL/I system initialization and is based on the value
specified in BFRPOOL, the number of data bases, and size of the VSAM
control intervals. A data base is assigned a subpool which contains buffers
that are equal to or greater in size than the size of the data base control
interval. Refer to DL/I DOS/VS Data Base Administration for buffer pool
information.

HDBFR
describes one DL/I subpool. Refer to DL/I DOS/VS Data Base Administration
for buffer pool information.

� bufno specifies the number of buffers to be allocated for this subpool and
is a numeric value from 2 to 32. If omitted for a specific subpool, 32 is
assumed. A specification exceeding 2 digits will cause an abnormal
termination.

� dbdname1,dbdname2,... specify the names of DBDs that are to be
allocated to this subpool. If no dbdnames are specified, this subpool is
used for DMBs not explicitly assigned; the parentheses around the
number of buffers are still required. The DBD name used should be the
physical DBD even though a logical DBD is being used.

HSBFR
defines VSAM buffer allocation for HISAM, SHISAM, and INDEX data bases.
Refer to DL/I DOS/VS Data Base Administration for buffer pool information.

� indno specifies the number of index buffers for a KSDS; if omitted, 3 is
assumed. A specification of 1 or 2 digits is permitted. A specification
exceeding 2 digits will cause an abnormal termination.

� ksdsbuf specifies the number of data buffers for a KSDS; if omitted, 2 is
assumed. A specification of 1 or 2 digits is permitted. A specification
exceeding 2 digits will cause an abnormal termination.

� esdsbuf specifies the number of data buffers for the ESDS (applies to
HISAM only); if omitted, 2 is assumed. A specification of 1 or 2 digits is
permitted. A specification exceeding 2 digits will cause an abnormal
termination.

� dbdname3 is the name of the HISAM, SHISAM, or INDEX DBD
referenced by the application program.

 Chapter 1. DL/I Application Programming 1-59

TRACE
indicates that tracing is to be active during this execution. See the DL/I
DOS/VS Diagnostic Guide, for details on tracing.

ASLOG=YES
specifies that asynchronous logging is to be used. See DL/I DOS/VS Data
Base Administration.

LOG
specifies the type of logging to be used.

TAPE indicates the log records are to be written to a tape device. It is the
default if the LOG parameter is omitted.

DISK1 indicates the log records are to be written on one disk extent with the
filename DSKLOG1.

DISK2 indicates that the log records are to be written on two disk extents. If
one disk extent becomes full, the extent is closed and the other extent is
used. DSKLOG1 is used first; then DSKLOG2. If DSKLOG2 becomes full,
logging will switch back to DSKLOG1 and continue to repeat the sequence.

PAUSE indicates that before reusing the only disk extent (DISK1) or before
switching to the next extent (DISK2), the operator is notified and the partition
waits for the operator's reply. PAUSE is the default if the second option in
the LOG parameter is omitted.

NOPAUSE indicates that reusing a log extent or switching log extents is done
without notifying the operator.

Note: The UPSI byte (bit 6=0) must be set to indicate that DL/I logging is
required. If anything other than the above parameters are specified an error
message is issued and the job is canceled.

UPSI Byte Settings for Batch DL/I
Several execution-time functions can be controlled by the UPSI setup. The format
of the UPSI statement is as follows:

 // UPSI x����xxx

The meanings of the bit settings are as follows:

Bit 0 = 0 Read parameter information via SYSIPT.

Bit 0 = 1 Read parameter information via SYSLOG.

Bits 1-4 Available for use by the application programmer.

Bit 5 = 0 Storage dump on set exit (STXIT) abnormal task termination if STXIT
active (that is, bit 7 = 0).

Bit 5 = 1 No storage dump on set exit (STXIT) abnormal task termination.

Bit 6 = 0 All data base modifications written on to the DL/I system log.

Bit 6 = 1 DL/I system log function inactive.

Bit 7 = 0 Set exit (STXIT) linkage to DL/I for abnormal task termination.

Bit 7 = 1 STXIT inactive.

Note that UPSI byte settings in the online environment have different meanings
than those for batch. Refer to DL/I DOS/VS Resource Definition and Utilities for
online UPSI byte setting information.

1-60 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

If you are unsure of the significance of these functions, consult your system
programmer or data base administrator.

UPSI Byte Settings for MPS
Bit 0 = 0 Read parameter information via SYSIPT.

Bit 0 = 1 Read parameter information via SYSLOG.

Bits 1-4 Available for use by the application programmer.

Bit 5 = 0 Storage dump on set exit (STXIT) abnormal termination.

Bit 5 = 1 No storage dump on (STXIT) abnormal termination.

Bits 6-7 Not used for MPS. Data base logging, normally controlled by UPSI bit 6
is controlled in the CICS/VS partition under MPS operation. STXIT
linkage to DL/I for abnormal task termination, normally controlled by UPSI
bit 7, as always active under MPS operation.

Job Control Statements
The following information tells you how to set up the job control statments for the
execution of your program.

Batch If data base changes are to be logged, either disk (batch only) or tape
logging may be specified on the DL/I parameter statement with the LOG parameter.
If the LOG parameter is omitted and UPSI byte bit 6 is 0, the default is tape
logging.

If tape logging is used, ASSGN and TLBL statements as shown below are required.
The log tape must have a standard label.

 // ASSGN SYS�11,cuu
 // TLBL LOGOUT

If disk logging is used, the DLBL statement as shown below is required. The log
file must have been previously defined with a DEFINE command because this is a
VSAM file.

 // DLBL {DSKLOG1},'cluster-name',,VSAM
 {DSKLOG2}

The execution job stream must contain DLBL or TLBL statements that define the
data base(s) that are to be processed. ASSGN and EXTENT statements are also
required for SHSAM and HSAM data bases. When initally loading a data base,
additional DLBL and EXTENT statements may also be required for system work
files. Consult your data base administrator for the details.

The EXEC statement specifies the DL/I initialization and the SIZE parameter.
Typically you will require a 512K virtual partition for execution with a SIZE
parameter of 256K. See VSE/Advanced Functions System Control Statements, for
details.

 // EXEC DLZRRC��,SIZE=xxxK

Shown below are illustrates the execution job control statements for a program
INVUPDT with a PSB of INVMSTR. It is assumed that the updates to the data
base will be logged and that HISAM is the access method for the data base.

 Chapter 1. DL/I Application Programming 1-61

The number of DLBL and EXTENT statements varies depending on the number of
data bases accessed and the DL/I access method used. See DL/I DOS/VS
Resource Definition and Utilities for more details.

The UPSI statement is optional and when set to all zeros, as shown, can be
omitted.

If the application program does retrievals only, or if the UPSI byte is used to turn off
data base logging, no log tape or disk is required.

 // JOB UPDATE
 // UPSI ��������
 // ASSGN SYS�11,182
 // TLBL LOGOUT
 // DLBL INVPRT1,'INVENTORY',99/365,VSAM
 // DLBL INVPRTZ,'INVENTORY-OFLOW',99/365,VSAM
 // EXEC DLZRRC��,SIZE=256K
 DLI,INVUPDT,INVMSTR
 .
 .

DATA CARDS IF REQUIRED
 .
 .
 /�
 /&

MPS Batch

The EXEC statement specifies the DL/I MPS initialization program and the SIZE
parameter. Typically, you will require a 256K virtual partition for execution with a
SIZE parameter of 256K. See VSE/Advanced Functions System Control
Statements, for details.

 // EXECDLZMPI��,SIZE=xxxK

Shown below are the execution job control statements for a program INVUPDT with
a PSB pf INVMSTR. For the MPS environment, data base logging is controlled in
the CICS/VS partition.

The UPSI statement is optional and when set to all zeros, as shown, it may be
omitted.

 // JOB UPDATE
 // UPSI ��������
 // EXEC DLZMPI��,SIZE=256K
 DLI,INVUPDT,INVMSTR
 .
 .

DATA CARDS IF REQUIRED
 .
 .
 /�
 /&

1-62 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

MPS Batch Using MPS Restart

Shown below are the execution job control statements for the same program using
MPS Restart. Included in this example are statements which assign a tape to
contain checkpoint records written by VSE checkpoints.

 // JOB UPDATE
 // MTC REW,28�
 // ASSGN SYS1��,28�
 // EXEC DLZMPI��,SIZE=256K
 DLR,INVUPDT,INVMSTR
 .
 .

DATA CARDS IF REQUIRED
 .
 .
 /�
 /&

The MPS Restart facility is invoked for an MPS batch job by using the DLR function
code, in the parameter input to DL/L. This function code (see above example)
replaces the DL/I function code used for normal batch and MPS batch jobs. The
DLR function code must be used when the job is first started and not just when it is
restarted.

Restarting an MPS Batch Program Using MPS Restart

The following steps are required to restart an MPS batch program after a failure:

1. Get the VSE checkpoint ID from the SYSLOG message.

a. If the individual MPS batch job failed, a message containing the correct
checkpoint ID for restart is issued by DL/I at the time of failure.

b. If there was a system failure, the message is issued when MPS is started
again in the online partition.

2. Use the VSE checkpoint ID on the VSE RSTRT job control statement. The
RSTRT statement is used instead of the EXEC statement when the job is
resubmitted for execution.

The job control statements in the following example will restart the program in the
previous job control example from checkpoint 0010. Note that the jobname must
be the same on the restart job as it was on the job that failed.

 // JOB UPDATE
 // MTC REW,28�
 // ASSGN SYS1��,28�
 // RSTRT SYS1��,��1�
 DLR,INVUPDT,INVMSTR
 .
 .

DATA CARDS IF REQUIRED
 .
 .
 /�
 /&

 Chapter 1. DL/I Application Programming 1-63

For additional information on the function, use, and restrictions of the VSE
checkpoint/restart facility, see theVSE/Advanced Functions Macro User's Guide.

Restart Considerations

� If an MPS batch program using MPS restart does not issue a combined
checkpoint before a failure, it must be started over from the beginning, using
the EXEC job control statement rather than the RSTRT statement. For an
individual job failure, this is indicated in the message issued at the time of
failure. For a system failure, no message is issued for such jobs when MPS is
started again in the online partition.

� The VSE restart facility requires the jobname to be the same on a restart job as
it was on the job that failed. It also requires that the VSE partition start and
end at the same addresses as when the job failed.

� During a VSE restart, a data check (tape checkpoint files) or end-of-file (disk
checkpoint files) may occur if the checkpoint ID specified is greater than the
actual number of checkpoints taken before the failure.

� On a restart, parameter input is ignored by DL/I, since the parameters were
already read and saved when the job first started. However, if the parameter
input statement was included on SYSIPT (instead of having been entered from
SYSLOG) when the job first started, it is important that one also be included
when the job is restarted. This is because DL/I will attempt to position SYSIPT
past the parameter input statement when the job is restarted.

1-64 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Chapter 2. DL/I Programming Reference Information

 Definitions
A number of terms and phrases used in the detailed explanation and description of
DL/I are either new to most readers, or have new meanings. To improve the
readability and understandability of this and other DL/I DOS/VS publications, the
significant and important terms and phrases are defined in the Glossary.

 Call Functions
The following ten call functions may be used in a DL/I call:

‘GU␣’ Get unique
‘GHU␣’ Get hold unique

‘GN␣’ Get next
‘GHN␣’ Get hold next

‘GNP␣’ Get next within parent
‘GHNP’ Get hold next within parent

‘DLET’ Delete

‘REPL’ Replace, update, or rewrite

‘ISRT’ Insert:
- Load a new data base
- Add to an existing data base.

‘CHKP’ Checkpoint

Because of the functional similarity between the GET calls with HOLD and the
same calls without HOLD, the two types are grouped together in the following
discussion. The only difference between them, in each case, is that the hold
function permits the following call to be a REPLACE or DELETE call. This function
is fully explained in the following sections on the REPLACE and DELETE calls. If a
HOLD call is not immediately followed by a DELETE or REPLACE call, (that is, it is
followed by a GET call without hold or by an INSERT call) the hold status is lost
and must be reestablished by another HOLD call before a REPLACE or DELETE
call can be processed.

To simplify the explanation, the two distinct uses of the INSERT call are treated
separately in the following discussion. The processing option specified by the DBA
for the PSB generation determines the use of the INSERT call in any particular
program.

The detailed discussion of the call functions below is, in each case, given under the
following five headings:

1. Function gives a brief description of what the call does.

2. SSAs or SSAs and Keys is a detailed explanation of the effect of inclusion or
exclusion of the various types of qualified and unqualified SSAs on the function.

 Copyright IBM Corp. 1973, 2002 2-1

3. Status Codes Returned is a discussion of which status codes are returned in
the PCB by DL/I as a result of each DL/I call, and what their significance is to
the programmer.

4. Position Pointer tells of the effect, if any, on the position pointer that normally
points to the next sequential segment as a result of a successful or an
unsuccessful call.

5. Parentage describes the relationship of one segment to another in the next
higher level of the hierarchy. It is the beginning point for the use of the get
next within parent (GNP) or get hold next within parent (GHNP) functions.

For details of logical relationships and the RULES parameter, which are mentioned
later in this chapter, refer to DL/I DOS/VS Data Base Administration.

GU (Get Unique)/GHU (Get Hold Unique)
1. Function: Randomly retrieves any sensitive segment in the data base. The GU

and GHU calls are the only calls that can establish position backward in the
data base.

 2. SSAs:

� May have no SSA or any number of SSAs up to the number of hierarchical
levels defined in the DBD.

� If no SSA is specified, the first segment (which is a root segment) in the
data base is retrieved.

� If a call of one unqualified SSA is specified, the first root segment in the
data base is retrieved, or if multiple SSAs are specified, the root segment
identified by the first SSA serves as the parent root segment for whichever
child is subsequently retrieved.

� If multiple SSAs are specified, the segment retrieved has a path of parents
as defined by the SSAs.

� If an unqualified SSA is specified, any occurrence of that segment type
under its parent will satisfy the call.

� If one or more SSAs are omitted from a multiple SSA path definition,
implied SSAs are generated:

– If the previous valid call established the same higher level path to a
segment represented by the missing SSA that the call is using (either
through missing parent SSAs or SSAs with the same qualification as
was incorporated in the prior call), then the implied SSA is developed to
position to the same segment as in the prior call.

– If the paths are different, then the implied SSA is developed as an
unqualified SSA.

3. Status Codes Returned:

GE No segment was found that satisfies the SSAs specified.
␣ The correct segment has been retrieved.
Ax For all other status codes the program should probably be terminated.

(See “Status Code Summary” in this chapter for a complete list of all
status codes.)

4. Position Pointer: After a successful GU or GHU call, the position pointer points
to the next logical segment in the data base. If the call was unsuccessful, the

2-2 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

position pointed to is unpredictable and remains so until the next successful
call.

5. Parentage: Parentage is set to the segment retrieved for any subsequent GNP
call. If the call was unsuccessful, the previous parentage (if any) is destroyed.

GN (Get Next)/GHN (Get Hold Next)
1. Function: Sequentially retrieves the next sensitive segment in a forward

direction in the data base, with or without the specification of one or more
qualified or unqualified SSAs. Sequential retrieval within a hierarchy always
proceeds from top to bottom, and from left to right.

2. SSAs: With no SSAs specified, the next sequential sensitive segment is
retrieved. The next sequential segment is the one that the position pointer was
pointing to at the completion of the last successful call.

Note: In HDAM, root segments are returned in physical sequence of data
base records rather than in root key sequence unless the randomizing module
was designed to maintain key sequence. If not, input or output sorting or
secondary indexing can be used if key sequencing is required.

� If a single, unqualified SSA is specified, the first occurrence of that segment
type found by searching in a forward direction from the current position is
retrieved.

� If one or more SSAs are specified, the path leading to the segment
retrieved is as defined by the SSAs. The last specified SSA always defines
the segment type that is retrieved.

� When unqualified SSAs are specified or when they are omitted completely
in a multiple SSA GN or GHN call, their presence or absence has no effect
on the operation. Only qualified SSAs plus the last SSA specified are used
by DL/I to determine the path and to retrieve the segment. In other words,
unspecified or unqualified SSAs for higher level segments in the hierarchy
indicate that any high level segment that is the parent of the correct lower
level specified or qualified segment will satisfy the call. It is suggested that
SSAs be specified however, because of the documentation, control, and
future change implications; these topics are discussed under “General
Programming Techniques and Suggestions” later in this chapter.

� When the last specified SSA is qualified, it defines, in the sense of the
relational operator, the unique segment that is to be retrieved. Higher level
qualified SSAs, in the same way, define the unique segments that are to
become a part of the path to the segment being retrieved.

3. Status Codes Returned:

GA A segment has been retrieved that is at a higher level in the hierarchy
than the previous segment retrieved for a call without SSAs. GA serves
as a warning that the position in the data base has changed with respect
to the path that existed previously.

GB The end of data base has been reached. No segment is retrieved. If,
however, the GN call specified a non-Boolean qualified root level SSA
with the segment field name referring to a key field (not a data field) and
the relational operator <, <=, or =, and the end of the data base was
reached without locating the segment, the status code is GE and not GB.
A Boolean qualified GN will result in a GB status code when the minimum
key value is greater than the maximum key value. Once the end of the

 Chapter 2. DL/I Programming Reference Information 2-3

data base is reached, processing can continue by issuing a GU call, or by
issuing any form of the GN call. However, if the status code is GE at the
end of the data base, the following GN call should be unqualified to allow
DL/I to search from the beginning of the data base. The GN call starts
searching again at the beginning of the data base for the next segment
that satisfies the conditions of the call. In this situation much time can be
wasted owing to the need to search through the whole data base.

GE The segment specified by one or more qualified SSAs was not found. A
Boolean qualified GN will result in a GE status code when the minimum
key value is less than the maximum key value. This could be because
the segment does not exist, that the segment specified cannot be found
by searching forward from the previous position established, or that the
current position pointer is pointing to a segment that is forward in the data
base of any possible existence of the specified segment. This status
code is also returned for a programming error, namely that of specifying
higher level qualified or unqualified SSAs for segments that differ from
one or more of the segments in the currently established parentage path.

GK A segment has been retrieved that has the same higher level path as the
previous segment processed but it is a different type of segment at the
same hierarchical level. This status code is returned only as a warning
for calls with no SSAs specified and merely indicates that the program is
working with a different segment type.

␣␣ Correct segment has been retrieved.

Ax For all other status codes the program should probably be terminated.
Status code AC, however, could indicate problems with keys and prior
positioning when specifying multiple SSAs of different types. (See “Status
Code Summary” in this chapter for a complete list of all status codes.)

4. Position Pointer: Following a GN or GHN call in which a segment was retrieved,
the position pointer points to the next segment in the data base. If the GB
status code (end of data base) was returned, it points to the first segment in
the data base. Following an unsuccessful call, the position pointed to is
unpredictable and remains so until the next successful call.

5. Parentage: Parentage is set to the segment retrieved for any subsequent GNP
call. If the GN or GHN call was unsuccessful, the previous parentage (if any) is
destroyed.

GNP (Get Next Within Parent)/GHNP (Get Hold Next Within Parent)
1. Function: Sequentially retrieves the next sensitive segment in a forward

direction within established parentage, with or without the specification of one
or more qualified or unqualified SSAs. Parentage must have been established
by a successful GU, GHU, GN, or GHN call either immediately before this call,
or at some prior time, provided no other call that changes parentage has
intervened.

 2. SSAs:

� With no SSAs specified, the next sequential sensitive segment within the
established parentage path is retrieved. The next segment is the one that
the position pointer was pointing to at the completion of the last successful
call.

2-4 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

� If a single, unqualified SSA is specified, the first occurrence of that segment
type found by searching in a forward direction within the established
parentage path is retrieved.

� If one or more SSAs are specified, the path leading to the retrieved
segment is as defined by the multiple SSAs.

The SSAs specified must be for segments at levels lower than the
previously established parentage. The last-specified SSA always defines
the segment type that is searched for.

� When unqualified SSAs are specified in a call with multiple SSAs, they
establish the first occurrence of the associated segment type as a part of
the path.

� Any missing SSAs between the previously established parentage and the
segment type to be retrieved (as specified in the last specified, or only,
SSA) are generated as unqualified SSAs. This has the effect of
establishing the first occurrence of the segment representing the missing
SSAs as a part of the path.

� When an SSA used in a call is qualified, it specifies, in the sense of the
relational operator, the unique segment that is to be retrieved, or the unique
segment that is to become a part of the path to the actual segment being
retrieved.

3. Status Codes Returned:

GA A segment has been retrieved, for a call without SSAs, that is at a higher
level in the hierarchy than the previous segment retrieved, but still below
the parentage previously established. This code serves as a warning that
the position in the data base has changed with respect to the path that
existed previously from the established parentage to the last retrieved
segment.

GE The segment specified by one or more qualified or unqualified SSAs
within the previously established parentage was not found by searching
forward from the established position. For calls with or without SSAs, the
segments beneath the established parentage have been exhausted
without retrieving a segment.

GK A segment has been retrieved that is within the previously established
parentage and has the same higher level path as the previously
processed segment, but it is a different type of segment at the same
hierarchical level. This status code is returned only for calls with no SSAs
specified. This status code merely indicates that the program is working
with a different segment type.

GP There has been no parentage established, or the segment specified in the
SSA is at a level in the hierarchy that is equal to or higher than the lowest
level that exists in the currently established parentage. The following
could be reasons for no parentage being established:

� No GU or GN calls have been issued to the data base.

� A GU call has been unsuccessful.

� The last established parent has just been deleted.

� These are probably application program problems.

 Chapter 2. DL/I Programming Reference Information 2-5

␣␣ The correct segment has been retrieved.

Ax For all other status codes the program should probably be terminated.
(See “Status Code Summary” in this chapter for a complete list of all
status codes.)

4. Position Pointer: If a segment was retrieved, the position pointer points to the
next segment in the data base. If the GE (no segment found) status code was
returned, it points to the segment that caused the no-segment-found condition
to be recognized. This is either a segment with a higher key than was
specified in one of the qualified SSAs, or is the first segment located outside of
the established parentage in a forward direction.

5. Parentage: Parentage is not established or changed.

 DLET (Delete)
1. Function: Deletes the last segment successfully retrieved from the data base by

a GHU, GHN, or GHNP call and also deletes all of that segment's physically
dependent segments or children at all levels beneath it, whether they are
sensitive segments or not. The previous GET call must immediately precede
the DLET call and must be a HOLD call, or the DLET call is rejected. The
previously retrieved segment and its dependent segments are removed from
the data base and cannot be retrieved or used as parents again.

2. SSAs: No segment search arguments (SSAs) are required. An unqualified SSA
is allowed to select the segment to be deleted from the path of segments just
retrieved using a path command code call (see Chapter 4). If only a single
segment was retrieved, an unqualified SSA is permitted to delete that segment.
In all other cases, an unqualified SSA gives a status code of DJ. A qualified
SSA gives a status code of AJ. When a Delete call with multiple SSAs is
issued, DL/I deletes the segment in the first SSA only. Only validity checking is
performed on the remaining SSAs.

3. Status Codes Returned:

␣␣ The segment and all of its dependent segments (if any) have been
successfully deleted.

Other For all other status codes the program should probably be terminated.
However, two status codes are of special interest because they
represent special editing and checking procedures that are performed
for the DLET call:

DJ No successful GET HOLD call immediately preceded the DLET
call.

DX The physical delete rule has been violated. If the segment is a
logical parent, it still has active logical children. If the segment is
a logical child, it has not been deleted through its logical path.

(See “Status Code Summary” in this chapter for a complete list
of all status codes.)

4. Position Pointer: The current position pointer is not changed by an
unsuccessful DLET call. After a successful deletion, the pointer may continue
to point to the next segment in the data base that follows the deleted segment
or, if dependent segments were also deleted, to the segment that follows the
last dependent segment deleted.

2-6 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

5. Parentage: Parentage is not changed by a DLET call unless the last
established parent is deleted; if so, parentage must be reestablished.

REPL (Replace, Update, or Rewrite)
1. Function: Replaces, updates, or rewrites the last segment successfully retrieved

from the data base by a GHU, GHN, or GHNP call. The previous retrieval call
must immediately precede the REPL call, and must be a HOLD call, or the
REPL call is rejected.

2. SSAs: No segment search arguments (SSAs) are required. Unqualified SSAs
are permitted when replacing a segment or segments retrieved using a path
command code call. If only a single segment was retrieved, an unqualified
SSA is permitted to replace that segment. In all other cases, an unqualified
SSA gives a status code of DJ. A qualified SSA gives a status code of AJ.

3. Status Codes Returned:

␣␣ Segment has been replaced successfully.

NI Segment being replaced contains a secondary index source field
which is a duplicate of one already reflected in the secondary index.
The segment was not replaced in the data base.

Other For all other status codes the program should probably be terminated.
However four status codes are of special interest because they
represent special editing and checking procedures that are performed
for the REPL call:

DA Segment key field has been changed.

DJ No successful GET HOLD call immediately preceded the REPL call.

RX The physical replace rule has been violated. The physical rule was
specified for the destination parent and an attempt was made to
change its data. When a destination parent has the physical rule it
must be replaced through the physical path.

V1 Invalid length for a variable length segment. (See “Status Code
Summary'' in this chapter for a complete list of all status codes.)

4. Position Pointer: The current position pointer is not changed by either a
successful or an unsuccessful REPL call. It continues to point to the next
segment in the data base following the replaced segment.

5. Parentage: Parentage is not changed by a REPL call.

ISRT (Load A New Data Base)
1. Function: A new data base is created with ISRT calls to load segments from

the I/O area after they have been built there. The PSB generated for each
individual program by the DBA determines if the ISRT is for new data base
loading or for adding to an existing data base.

2. SSAs and Keys:

� The ISRT call for each segment being loaded must have specified at least
one unqualified SSA that defines the type of segment.

� Before the segment load call is given, the segment must be built in the I/O
area and, if it has a key, its correct key must be placed in the proper
location in the I/O area.

 Chapter 2. DL/I Programming Reference Information 2-7

� When loading a logical child segment, the I/O area must contain the logical
parent's concatenated key, followed by the logical child segment.

� All segments with keys must be loaded in sequence by key.

� Segment types, as specified by their SSAs, may not be loaded out of
hierarchical order. Their parents must have been loaded before they can
be loaded.

� Multiple SSAs are permitted in a load operation, although they serve no
function. If multiple SSAs are present, the path defined by the multiple
SSAs is checked and must be a valid path, or the call is rejected. The last
SSA in a group of multiple SSAs must be unqualified.

� If segments without keys are loaded, they are loaded in the data base in
the same order in which their ISRT calls are processed.

3. Status Codes Returned:

LB The segment already exists in the data base; this was an attempt to
load a duplicate segment. This status code is only associated with
segment types with key fields.

LC The segment being loaded is out of sequence by key.

LD No parent exists for this segment: this status code usually indicates
that the segment types being loaded are out of sequence.

LE When multiple SSAs are specified in a load call, the segment types
specified by the multiple SSAs are out of sequence.

NI Segment inserted contains a secondary index source field which is a
duplicate of one already reflected in the secondary index. The
segment just inserted should be deleted. (Expect an NE status code
on the DLET call.)

NO Segment being loaded is a duplicate of the secondary index source
segment.

V1 Invalid length for a variable length segment.

␣␣ Segment was loaded successfully.

Other For all other status codes the program should probably be terminated.
(See “Status Code Summary'' in this chapter for a complete list of all
status codes.)

4. Position Pointer: In a load operation, the position pointer always points to the
next available space following the last segment successfully loaded. The next
segment loaded is placed in that space.

5. Parentage: Since only ISRT calls can be issued to a data base being loaded,
parentage has no significance and is not set.

2-8 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

ISRT (Add To An Existing Data Base)
1. Function: A new segment is randomly or sequentially inserted or added to an

existing data base from the I/O area after it has been built there. The PSB
generated for each individual program by the DBA determines if the ISRT is to
add to an existing data base or to load a new data base.

2. SSAs and Keys:

� For each segment being added, at least one unqualified SSA must be
specified that defines the type of segment being added.

� Before the ISRT call is issued, the segment being inserted must be built in
the I/O area and, if it has a key, its correct key must be placed in the
proper location in the I/O area.

� If the segment being inserted is a root segment, it is inserted in its correct
place in the data base as determined by its key taken from the I/O area.

� If the segment being inserted is not a root segment, but its immediate
parent has just been inserted, it too may be inserted as soon as it is built in
the I/O area by merely specifying its unqualified SSA in the ISRT call.

� When inserting a logical child segment through the physical path, the I/O
area must contain the logical parent's concatenated key, followed by the
logical child segment.

� When inserting a logical child segment through the logical path, the I/O
area must contain the physical parent's concatenated key followed by any
logical child data.

� If only one unqualified SSA is specified for the segment being inserted, the
position pointer must point to the right place in the data base so that the
segment's logical location in the data base can be found by searching
forward or backward in the current record.

� Segments that have no keys are always inserted following the last segment
of the same type unless the RULES parameter for the DBD generation for
this data base states FIRST or HERE, in which case the stated rule
applies. Segments having equal keys are also treated in this manner.

� If a complete set of qualified SSAs is specified for the segment being
inserted, it is inserted at its proper location in the data base.

� If multiple SSAs are specified for an insertion, they may be a mixture of
qualified and unqualified SSAs. However, the last SSA must be
unqualified.

� If unqualified SSAs are used to establish a path to an insertion, the first
occurrence of the segment type satisfies the SSA, providing the higher
level path to it is correct.

� If SSAs are omitted, the current position in the data base is used to
develop implied SSAs. If the current position in the data base is not correct
because higher level SSAs have changed the position in the data base,
then implied unqualified SSAs are developed for the first occurrence of the
segment type that falls within the newly established path.

 Chapter 2. DL/I Programming Reference Information 2-9

3. Status Codes Returned:

GE The path specified with multiple SSAs was not found. This status
code is normally associated with one or more qualified SSAs that
define the path to the insertion. However, it can be returned when
only unqualified SSAs are used, if no segment of the parent segment
type exists.

II The segment already exists. This is generally a duplicate segment
indication, although it could occur if an ISRT call were issued for a
segment without first establishing the proper path. The segment could
possibly match a segment with the same key in another hierarchy or
record.

IX An attempt was made to insert either a logical child segment or a
concatenated segment. In the case of the logical child segment, the
corresponding logical/physical parent segment does not exist. In the
case of the concatenated segment, either the insert rule was physical
and the logical/physical parent does not exist, or the insert rule is
virtual and the key of the logical/physical parent in the I/O area does
not match the concatenated key of the logical/physical parent.

NI Segment inserted contains a secondary index source field which is a
duplicate of one already reflected in the secondary index. The
segment just inserted should be deleted. (Expect an NE status code
on the DLET call.)

V1 Invalid length for a variable length segment.

␣␣ The segment was inserted in the proper place as specified by the
given or implied SSAs.

Other For all other status codes the program should probably be terminated.
(See “Status Code Summary'' in this chapter for a complete list of all
status codes.)

4. Position Pointer: After a successful ISRT call, the position pointer points to the
segment immediately following the segment just inserted. This could be
another segment of the same type if the segment was inserted in the middle of
a group of the same segment types by its key, or to the next segment type in
the hierarchy if the segment was inserted as the last segment of the group.

5. Parentage: Previously established parentage is not changed or affected
providing the segments being inserted are inserted below the lowest level
parent in the established parentage path. If a segment is inserted outside the
currently established path, then parentage is destroyed and must be
reestablished before GNP calls can be issued.

2-10 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

 CHKP (Checkpoint)
1. Function: For DL/I batch application programs, the CHKP call causes a

checkpoint record to be written on the DL/I log as an aid in restart processing.
The data base buffers will be written to secondary storage and a checkpoint log
record, with a user-supplied unique checkpoint identification, will be written to
the DL/I log. CHKP can be issued at any appropriate points in a program as
determined by the programmer and can be issued by batch, MPS, or DL/I
online tasks.

See the section “RQDLI Commands for DB Access” in Chapter 1 for details
concerning RPG II.

In case of a failure in a batch environment, DL/I the backout utility may be run
to back out data base changes occurring since the last checkpoint. The utility
will not back out data base changes committed before the last checkpoint. If
there are no checkpoint records on the log for the PSB of interest, backout will
proceed back to the scheduling record for this PSB.

For MPS and online tasks running with CICS/VS journalling active, a CHKP call
is in effect a CICS/VS sync point call with the exception that the task's PSB
scheduling status is not changed.

Therefore, if the task has a scheduled PSB in effect at the time the CHKP call
is issued, a PSB scheduling call is not required after the CHKP call. In fact, a
scheduling call issued under these circumstances would cause a scheduling
error. (See “Checking the Response to a DL/I Call in a CICS/VS Environment''
in Chapter 3.)

It is recommended that DL/I logging not be used for MPS and online tasks.
With DL/I logging active, a CHKP call causes data base buffers to be written to
secondary storage and a checkpoint log record to be written to the DL/I log, as
in the batch environment. However, these functions are not usable for
performing backout because batch backout cannot be used in an online
environment. Backout for an MPS or online DL/I task can only be performed
using CICS/VS dynamic transaction backout, which requires that CICS/VS
journalling be active.

The I/O area, when used for a CHKP call, is the area from which DL/I obtains
the eight-character checkpoint identification. (See the format of the DL/I call
under DL/I Batch Program Call in Chapter 1.) The 8-character checkpoint
identification may be any value. However, an EBCDIC character string is
recommended because the value is used in messages to the operator and/or
programmer. For batch and MPS tasks, the message issued by DL/I each time
an application program issues a CHKP call, DLZ105I, contains the checkpoint
identification, which should be noted and saved, because it may be required to
aid in backout and restart processing. For online tasks, DLZ105I is not written.
Therefore, online application programs must include their own provisions for
identifying where restart is to begin following a CHKP call.

DL/I provides a facility to restart MPS batch programs. This facility supports
the use of VSE checkpoint/restart with DL/I checkpoints. For additional
information on this facility, see “MPS Restart Facility.”

2. SSAs: SSAs have no effect during the CHKP call.

 Chapter 2. DL/I Programming Reference Information 2-11

3. Status Codes Returned:

XD An error occurred when the data base buffers were being written to
secondary storage. When using MPS Restart, this status code will not be
issued; instead, error message DLZ131I will be issued and the program
will be abnormally terminated.

XH Data base logging is not active.
XR A combined checkpoint failure occurred during MPS Restart processing.

This status code is issued when a VSE checkpoint is not taken before a
DL/I CHKP call, when the VSE checkpoint prior to a DL/I checkpoint fails,
or when a CICS/VS temporary storage error occurs during DL/I CHKP
processing.

␣␣ A checkpoint was successfully taken.

4. Position Pointer: Current position in the data base is lost upon return from a
CHKP call. If the PSB being used has more than one PCB defined, position is
lost across all PCBs and not just the PCB specified in the checkpoint call.
Position must be reestablished before issuing GET NEXT calls after a CHKP
call unless you wish to restart at the beginning of the data base.

5. Parentage: Parentage must be reestablished after a CHKP call.

MPS Restart Facility
In order to provide a restart capability for MPS batch users, DL/I supports the use
of VSE checkpoint/restart with DL/I checkpoint calls. A VSE checkpoint writes a
copy of the partition in which the checkpoint was issued to disk or tape. The VSE
RSTRT job control statement reloads this copy into the partition and passes control
to the restart address that was specified when the VSE checkpoint was issued. For
COBOL and PL/I programs using their respective VSE checkpoint interfaces, this
corresponds to the next program statement after the one which invokes the VSE
checkpoint.

MPS Restart provides the following functions:

� Combined Checkpoint Verification
MPS Restart verifies that a VSE checkpoint is issued immediately before each
DL/I CHKP call. This is called a combined checkpoint. A VSE checkpoint may
be issued in PL/I and COBOL by using the checkpoint interfaces provided by
those languages. It is recommended that the checkpoint ID returned by a VSE
checkpoint be used as the checkpoint ID on the following DL/I CHKP call in
PL/I and Assembler language programs. This is not possible in COBOL
because the returned checkpoint ID is not available to the application program.
Using the VSE checkpoint ID on the DL/I CHKP call provides a cross reference
between the VSE and DL/I checkpoint messages issued to SYSLOG.

See the “Program Examples'' section for examples on how to code combined
checkpoints.

� MPS Batch Reinitialization
The first DL/I call performed following a VSE restart must be a DL/I CHKP call.
This will be the normal sequence when VSE checkpoints are placed
immediately before each DL/I checkpoint. DL/I checkpoint processing will
automatically determine that a VSE restart has occurred and reinitialize the
MPS batch environment. Following a successful reinitialization, control will be
returned from the CHKP call to the application program as if from a normal
checkpoint and the program may continue processing.

2-12 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

� Checkpoint ID Notification and Verification
Besides the normal SYSLOG messages issued by VSE and DL/I when
checkpoints are taken, a message containing the checkpoint identifier (ID) of
the last successful combined checkpoint will be issued when a failure occurs.
For individual job failures, the message is issued at the time of the failure. For
system-wide failures, it is issued when MPS is started again in the online
partition. The checkpoint ID contained in this message must be specified as a
parameter on the VSE RSTRT job control statement when restarting an MPS
batch job. MPS Restart will verify whether the checkpoint ID used for restart is
the correct checkpoint ID. If it is not, DL/I will indicate the correct checkpoint ID
which must be used and cancel the job, allowing you to restart the job, using
the correct checkpoint ID.

For additional information on using the MPS Restart facility, see DL/I DOS/VS
Data Base Administration.

Restrictions on Using VSE Checkpoint/Restart
Certain restrictions exist on the use of VSE checkpoint/restart which you should be
aware of:

� VSAM files must be closed before a VSE checkpoint is issued (DL/I data bases
used by MPS programs are in the online partition and are not affected by this
restriction).

� RPG II does not support a VSE checkpoint interface. RPG II users will have to
write their own interface in another programming language (Assembler
language, for example) if the MPS Restart facility is to be used with RPG
programs.

� VSE Restart cannot be used to restart programs that failed because of program
logic errors. This is because a copy of the program, exactly as it was before it
failed, is loaded back into the partition during a restart.

For details on these and other restrictions, see VSE/Advanced Functions Macro
Reference, SC24-5211, and VSE/Advanced Functions Macro User's Guide,
SC24-5210.

 Chapter 2. DL/I Programming Reference Information 2-13

General Programming Techniques and Suggestions
1. In general, all calls should contain qualified SSAs whenever applicable and

wherever possible.

2. Do not omit SSAs, qualified or unqualified, in a multiple SSA call if it can be
avoided. This promotes flexibility and control as the application and the data
base grow or change:

� If the hierarchical structure of the data base is changed, the specification of
all SSAs ensures the integrity of the program's access to the newly
structured data base.

� If use of the multiple positioning feature is added to the program at a later
time, full specification of all SSAs would then be required.

� Specifying all SSAs is a sound programming practice from a documentation
and debugging point of view.

3. Try not to construct the logic of the program and the structure of the calls in a
manner that is heavily dependent on the hierarchical structure of the data base.

4. In a call parameter list, the parameter count, if specified, determines how many
parameters are actually used. This allows a common call routine to be written
for several types of calls, and the count field can be varied for each call issued.

5. It is usually a better programming practice to use qualified SSAs to retrieve the
segments required in the application instead of requesting the DBA to
incorporate sensitivity in the PSB to eliminate segments not required.

6. It is possible to construct SSAs in a GN call that could force DL/I to search to
the end of the data base without retrieving any segment. This could be
especially true during program testing. If a large, multivolume data base is
being accessed, such an operation could waste a significant amount of
processing time. To prevent this waste, use the GNP or GU calls wherever
possible or practical, especially when using qualified SSAs with relational
operations other than the equal operator.

7. When using multiple SSAs in a call, provide an SSA for the root segment
qualified for the key field and using the equal operator wherever possible, so
that unnecessary and time consuming processing of the entire data base can
be avoided. The same applies when secondary indexing (see Chapter 4) is
used, except that the qualification must be on the indexed field and not the key
field.

8. The use of GU (as opposed to GN) will probably provide more flexibility for
future application program and data base change.

9. The GU call can be used when processing a data base sequentially, although it
usually requires more processing time than a comparable GN.

10. Remember that the GN call can retrieve a segment from a different logical
record than was pointed to prior to issuing the call. A GA status code is
returned only if no SSA was specified. Sometimes it is good practice to save
the original root key and make a comparison after a GN call.

11. A repeated GN call with one unqualified SSA retrieves all occurrences of that
segment type in the data base until the end is reached.

12. Remember that parentage cannot be set or reset with a GNP call.

2-14 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

13. Since the GET HOLD calls do not increase processing time, and since the use
of a REPL or DLET call following a GET HOLD is optional, it is sometimes
more convenient programming to issue all GET calls with the HOLD option.

14. Remember that the deletion of a parent also deletes all of its children in the
same call, even if they are not sensitive. This is the only nonpath call that
affects multiple segments. If any information is required from those children,
they must be retrieved before the parent is deleted.

15. The ISRT call to load a data base initially is only used once to build the data
base. Thereafter, the “loading” of additional segment types is accomplished
through use of the ISRT (add) call.

16. Most comprehensive data bases are loaded in stages by segment type or by
groups of segment types. This requires multiple programs to accomplish the
loading. All programs after the first are actually add-type programs and may
have serious performance problems. These add-type programs used in a data
base loading procedure must be coordinated and reviewed with the DBA to
ensure that they perform adequately through the use of the various facilities
available to the DBA.

17. Consider loading or building the data base initially as a sequential data base
and having the DBA convert it to its ultimate access method once it is built.

18. Of all the calls that should be fully qualified, the ISRT (add) is the most
important. If not fully qualified, the ISRT call could insert the segment in a
position completely different from that which was originally intended by the
programmer.

 Chapter 2. DL/I Programming Reference Information 2-15

 Problem Determination
The following is a brief discussion of steps that you, as an application programmer,
can take when your program fails to run, abnormally terminates, or gives incorrect
results.

 Initialization Errors
Before your program receives control, DL/I must have correctly loaded and
initialized a nucleus and control blocks. If you suspect a problem in this area,
consult your system programmer or data base administrator. There are aids
available to them that will help them to determine if a problem does exist and to
isolate it. Check to see whether there have been any recent changes to DBDs,
PSBs, and the control blocks generated from them.

 Execution Errors
If initialization errors do not seem to be present, you should check the following:

1. The output from the compiler.

� All error messages should be resolved.

2. The output from the linkage editor.

� Are all external references resolved?

� Have all necessary modules been included?

� Was the Language Interface module (DLZLI000) correctly autolinked?

� Is the correct entry point specified?

3. Your job control statements.

� Is the information correct that describes the files that contain the data
bases? See your data base administrator.

� Are you using the UPSI bit settings correctly?

� Have you included the SIZE parameter in the EXEC statement and is its
value large enough to include your program?

� Have you included a DLI parameter statement in the correct format?

 4. Your program.

� Are the fields in your PCB masks correctly declared?

� Have you saved and restored registers correctly if using Assembler
Language?

� Does register 1 point to a fullword parameter list prior to issuing a DL/I call
in Assembler Language?

� If using a high-level language, are the literals you are using for arguments
in DL/I calls producing the results you expect? For instance, in PL/I, is the
parameter count being generated as a halfword rather than a fullword, and
is the function code producing the required four-byte field?

2-16 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

� If you need help in producing and interpreting a dump, see your system
programmer.

� Make full use of the information in the PCB if your program is producing
incorrect results. For more detailed information about the status codes, see
the status code summary below.

Status Code Summary
After processing a DL/I call, or RQDLI command in RPG II, control is returned to
the application program at the next sequential instruction following the call. DL/I
places a status code in the status code field of the PCB.

Figure 2-1 on page 2-18 provides a list of DL/I status codes and is given as a
quick reference for the DL/I application programmer. These status codes are
discussed in more detail below.

 Chapter 2. DL/I Programming Reference Information 2-17

Figure 2-1. DL/I Status Codes

2-18 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

 AB � AH

Two categories of status codes are listed in the table. The circled status codes
indicate situations that could be expected to occur during the execution of an
application program. The circled status codes should be treated as normal
situations rather than as errors. The results of the call are perfectly valid but the
data retrieved may not be what the application program expects. Immediately
following the call statement the application program should test for those circled
status codes that apply to the function just requested. See Figure 2-2 on
page 2-25, Figure 2-3 on page 2-26, and Figure 2-4 on page 2-27 for examples.

To handle all of the other status codes, it is recommended that a standard error
routine be made available by the DBA, that will print as much information as
possible prior to termination of the program. This would include all fields in the
PCB, the I/O area, etc. Most of the status codes in this category are usually
encountered during the debugging of an application program. The standard error
routine could be included in each program using COBOL COPY, PL/I %INCLUDE,
or /INSERT in RPG II (see Appendix A).

The following list gives more detailed information on each individual status code.

Note: When the first character of any of the following status codes is an N, this
indicates that an error occurred during an internal DL/I call issued by indexing
maintenance.

AB Error in call.

Explanation: On a data base call, segment I/O area is required but was not specified in the
call.

Action: Correct program.

AC Error in call.

Explanation: SSA(s) contains an error in hierarchical sequence.

Possible causes:

1. No segment name equal to that specified in SSA found within scope of this PCB.
2. Level at which this SSA appears is out of sequence with that specified by the PCB.
3. Two segments of the same level are specified in the same call.

Action: Correct program.

AD Error in call.

Explanation: An invalid function parameter was supplied.

Action: Correct program.

AH Error in call.

Explanation: No SSA(s) was specified in call. Call type requires at least one SSA; none
was specified.

Action: Specify SSA in call. Correct program.

 Chapter 2. DL/I Programming Reference Information 2-19

 AI � AO

AI I/O, system, or user error.

Explanation: Open error.

Possible causes:

1. Error in job control statements.
2. Data base being opened for other than load mode and has not been loaded.

Action: Check job control statements; ensure that filename is the same as the name
specified on the DATASET card of the DBD. The segment name area in the PCB has the
filename of the file which could not be opened.

AJ Error in call.

Explanation: SSA qualification format was invalid.

Possible causes:

1. Invalid relational operators
2. Missing right parenthesis
3. DLET call has qualified SSAs
4. REPL call has qualified SSAs
5. ISRT call has the last SSA qualified
6. Field in the SSA has the wrong length
7. Invalid command codes
8. Invalid Boolean connector.
9. Call interface SSA is longer than 304 bytes is being used in the ISC environment.

10. Column 9 of the SSA contains a value other than a blank, ‘*', or ‘('.
11. Path insert with logical child.

Action: Correct program.

AK Error in call.

Explanation: Possible causes are: the field name in the SSA parameter in a call statement
does not correspond to any field name specified in the DBD, or if using boolean qualification,
an invalid boolean operator was used.

Action: Correct program.

AM Error in call.

Explanation: Call function not compatible with processing option or segment sensitivity.

Action: Correct program, PSB, or system definition.

Possible causes:

1. Processing option of L and call function is not insert.

2. DLET, REPL, or ISRT call without corresponding segment sensitivity.

3. DLET or ISRT call for the root of a secondary data structure or any of its physical parent
segment types in the physical data base.

4. A secondary index is processed as a data base itself and attempts are made to delete or
insert a segment or to replace system-maintained fields.

5. Command code D used for a path retrieval call without path sensitivity.

6. An attempt was made to unload a secondary index using the HD unload utility.

AO I/O error.

Explanation: There is a SAM or VSE/VSAM I/O error.

Action: Check and correct.

2-20 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

 DA � II

DA Error in call.

Explanation: Segment key field has been changed on a REPL call.

Action: Correct.

DJ Error in call.

Explanation: No previous successful GET HOLD call.

Action: Check and correct.

DX Error in call.

Explanation: Violated delete rule. Review delete rule in SEGM statement of DBDGEN in
the DL/I DOS/VS Resource Definition and Utilities.

Action: Correct the program.

GA Call is completed.

Explanation: Crossed hierarchical boundary into higher level. (See “Call Functions'' earlier
in this chapter.) This status code is returned on unqualified GN calls only.

Action: None required.

GB Call is not completed.

Explanation: This is the end of the file; the position beyond the last segment is reached.

Action: None required.

GE Call is not completed.

Explanation: Segment has not been found (GET call). For an ISRT call, the parent of the
segment to be inserted was not found.

Action: None required.

GK Call is completed.

Explanation: Different segment type at same level returned. This status code is returned
on unqualified GN calls only.

Action: None required.

GP Error in call.

Explanation: No parent established (or parent deleted) for this GNP call, or the requested
segment level is not lower than the parent level.

Action: None required.

II Call is not completed.

Explanation: The segment that the user tried to insert already exists in the data base.

Possible causes:

� A segment with an equal physical twin sequence field already exists for the parent.

� A segment with an equal logical twin sequence field already exists for the parent.

� A logical parent has a logical child pointer, but the logical child does not have a logical
twin pointer and the segment being inserted is the second logical child for the logical
parent.

 Chapter 2. DL/I Programming Reference Information 2-21

 IX � KE

� A physical parent has a physical child pointer but the physical child does not have a twin
pointer (POINTER=NOTWIN was specified on the SEGM macro for the physical child
segment) and another segment of the same type already exists under the parent.

Action: Correct the error.

IX Call is not completed.

Explanation: Violated the insert rule. Review the insert rule in SEGM statement of
DBDGEN in the DL/I DOS/VS Resource Definition and Utilities.

Possible causes:

� Insert of logical child (insert rule of logical parent is physical) and the logical parent does
not exist.

� Insert of logical child and logical parent (insert rule is logical or virtual) and the logical
parent does not exist and, in the user I/O area, the key of the logical parent does not
match the corresponding key in the concatenated key in the logical child.

� Insert of logical child (insert rule of logical parent is virtual, and logical parent exists) and,
in the user I/O area, the key in the logical parent does not match the corresponding key
in the concatenated key in the logical child.

Action: Correct the program.

KA Numeric truncation error.

Explanation: During automatic conversion of a numeric field from one format to another
format, an intermediate or final field was not large enough to contain the significant digits in
the ‘from’ field.

Action: Correct program.

KB Character truncation error.

Explanation: During automatic length conversion of a character field, the ‘to' field was not
large enough to contain all the non-blank characters moved from the “from' field. The field is
moved left justified.

Action: Correct program.

KC Invalid packed decimal or zoned decimal format.

Explanation: During automatic conversion, a ‘from' field character was encountered that is
not a valid packed decimal or zoned decimal character.

Action: Correct invalid character.

KD Type conflict for conversion.

Explanation: This code should occur only if the user has supplied a field exit routine and a
field-to-field conversion was requested that was not supported by DL/I.

Action: Execute user's field exit routine.

KE NOREPL violation.

Explanation: The user attempted to modify a field that was not replace sensitive
(REPLACE=NO was specified in the SENFLD statement for PSBGEN). The call is not
completed.

Action: Correct program or specify REPLACE=YES.

2-22 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

 LB � NE

LB Call is not completed.

Explanation: The segment that the user tried to load already exists in the data base.

Possible causes:

� A segment with an equal physical twin sequence field already exists for the parent.

� A physical parent has a physical child pointer but the physical child does not have a twin
pointer (POINTER=NOTWIN was specified on the SEGM macro for the physical child
segment) and another segment of the same type already exists under the parent.

� A segment with an equal logical twin sequence field already exists for the parent.

Action: None required.

LC Call is not completed.

Explanation: Key field of segments is out of sequence.

Action: Check and correct.

LD Call is not completed.

Explanation: No parent has been loaded for this segment.

Action: Check and correct.

LE Call is not completed.

Explanation: Sequence of sibling segments is not the same as the sequence in the DBD.

Action: Check and correct.

NA Call is not completed.

Explanation: The user tried to replace data in an index source segment that is used in
search or subsequence fields of the index pointer segment, while the secondary index is
used as the processing sequence.

Action: Correct the program.

NE Error in some previous insert call or system error. The INSERT, DELETE,
or REPLACE call was completed, as if the NE status code were a warning.

Explanation: The user tried to delete or replace an index source segment or to insert an
index source segment that had not been physically removed because of logical relationship
requirements, and the corresponding index pointer segment could not be found.

Possible causes:

� During some previous insert call an index source segment was inserted with data in
search and subsequence fields equal to an already existing index source segment. An NI
status code had been returned with that call.

� Some error had occurred during reorganization of the data base.

Action:

� For DLET call, none. The index source segment which produced the duplicate key is
now removed.

� For REPL call, user determined. For example, delete the segment and reinsert it with
proper search and subsequence data.

 Chapter 2. DL/I Programming Reference Information 2-23

 NI � XH

NI VSE/VSAM open error or duplicate key for index data base.

Explanation: Check the error message printed on the system log device to get detailed
information on the error.

Possible causes for being unable to open the index data base are:

� Error in job control statements.

� Control interval size, keylength, or relative key position specified in the VSE/VSAM
DEFINE macro do not match the values specified for DBD generation.

� The processing option was L or LS but the data base was not empty or the data base
was empty and the processing option was not L or LS.

A possible cause for having a duplicate key is that an index source segment was inserted
with data in search and subsequence fields equal to an already existing index source
segment. The index source segment is inserted, the index pointer segment is not inserted.

Action: Delete the segment and insert it with a unique key. For a subsequent delete call for
the index source segment two different situations have to be distinguished:

1. If the index source segment just inserted and the one with the same search and
subsequence fields point to different index target segments, the delete call returns an NE
status code.

2. If the two index source segments point to the same index target segment, the first delete
call for one of the index source segments removes the index pointer segment created by
the first inserted index source segment. The second delete call for the remaining index
source results in an NE status code.

NO I/O error.

Explanation: An I/O error occurring during processing of an index, either in the index or
indexed data base. This status code is also returned when attempting an insertion of a
duplicate secondary index pointer segment at Load time.

Action: Check and correct.

RX Error in call.

Explanation: Violated replace rule. Review replace rule in SEGM statement of DBDGEN in
the DL/I DOS/VS Resource Definition and Utilities.

Action: Correct the program.

V1 Program error.

Explanation: Invalid length for variable length segment. The LL field of the variable length
segment is either too large or too small. The length of the segment must be equal or less
than the maximum length specified in the DBD. The length must be long enough to include
the entire sequence field.

Action: Correct the program.

XD I/O error.

Explanation: An error occurred when the data base buffers were being written out to
secondary storage during processing of a checkpoint (CHKP) call.

Action: Check and correct.

XH Call is not completed.

Explanation: Data base logging was inactive during checkpoint (CHKP) call processing.

Action: Ensure that data base logging is active during checkpoint call processing.

2-24 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

 XR � ␣␣

XR Error During Checkpoint Processing for MPS Restart

Explanation: For application programs using the MPS Restart facility, a DL/I checkpoint
was not taken for one of the following reasons:

1. A VSE checkpoint was not taken before the DL/I CHKP call.
2. The VSE checkpoint failed.
3. A Temporary Storage error occurred during DL/I CHKP processing.

Action: If the status code was returned because of failure or error, then correct the
situation described in the accompanying error message, otherwise, make sure that a VSE
checkpoint is coded before each DL/I CHKP in the program.

␣␣ Call completed.

Explanation: Your call was completed.

Action: Proceed.

Abnormal Termination Messages
DL/I also issues execution time error messages. For an explanation of these
messages and the required action, consult the DL/I DOS/VS Messages and Codes.

DLITPLI: PROCEDURE (MAST_PCB_PTR) OPTIONS (MAIN);
 .
 .
DCL �1 MAST_PCB UNALIGNED BASED (MAST_PCB_PTR),
 �2 --- ,
 �2 --- ,
 �2 STAT_CODE CHAR(2),
 �2 --- ,
 �2 --- ,
 �2 --- ;
 .
 .

CALL PLITDLI (COUNTS,FUN_GN,MAST_PCB,SEG_IO,SSA1,SSA2);
IF STAT_CODE=' ' THEN GOTO CONT;
IF STAT_CODE='GE' THEN GOTO NOT_FOUND;
IF STAT_CODE='GB' THEN GOTO END_OF_DB;

 GOTO ERROR;
CONT: .
 .
NOT_FOUND: .
 .
END_OF_DB: .
 .
ERROR: .
 .
 END DLITPLI;

Figure 2-2. PL/I Error Processing Routine Example

 Chapter 2. DL/I Programming Reference Information 2-25

IDENTIFICATION DIVISION.
 .
 .
LINKAGE SECTION.
�1 PCB-AREA.
 �2 --- .
 �2 --- .
 �2 STATUS-CODE PICTURE X(�2).
 �2 --- .
 �2 --- .
 �2 --- .
PROCEDURE DIVISION.

ENTRY 'DLITCBL' USING PCB-AREA.
 .
 .

CALL 'CBLTDLI' USING FUNC-GU,PCB-CU,PCB-AREA,SEG-IO,
 SSA1,SSA2.

IF STATUS-CODE = SPACES GO TO CONT.
IF STATUS-CODE = 'GE' GO TO NOT FOUND.
GO TO ERROR.

CONT. .
 .
 .
NOT-FOUND.
 .
 .
ERROR. .
 .
 .

Figure 2-3. COBOL Error Processing Routine Example

2-26 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Figure 2-4 (Part 1 of 3). RPG II Error Processing Routine Example

 Chapter 2. DL/I Programming Reference Information 2-27

Figure 2-4 (Part 2 of 3). RPG II Error Processing Routine Example

2-28 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Figure 2-4 (Part 3 of 3). RPG II Error Processing Routine Example

 Chapter 2. DL/I Programming Reference Information 2-29

2-30 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Chapter 3. Online Programming Considerations

Before attempting to write a CICS/VS-DL/I program you should be familiar with DL/I
DOS/VS batch programming concepts and Customer Information Control
System/Virtual Storage (CICS/VS) programming fundamentals. References to the
prerequisite publications are contained in the preface to this manual.

A programmer in a CICS/VS-DL/I environment accesses data bases in the same
manner as in the batch environment. Since the CICS/VS-DL/I user may share
access to DL/I data bases with other applications programs, the user has additional
responsibilities when writing a CICS/VS-DL/I program. This chapter discusses
these additional programming requirements and considerations. Where nothing to
the contrary is stated, batch and online requirements are the same.

The CICS/VS application programmer requests DL/I services by issuing a DL/I call,
or RQDLI command in RPG II, just as it is done in a batch environment. All call
function codes described for batch use are valid in the online environment.

In a CICS/VS environment, a single copy of a program can service multiple
transactions concurrently. Because of this multi-thread environment capability, all
DL/I associated storage areas such as PCB pointers, SSAs, and segment I/O areas
that are uniquely identified with a transaction must be located in storage that is also
uniquely identified with the transaction. This storage must either be obtained from
CICS/VS Dynamic Storage or be defined in the transaction work area.

The five steps to request DL/I services are:

1. Obtain addresses of PCBs for use by this transaction by issuing a DL/I call with
‘PCB ’ as the function code. This is described below, under “Obtaining the
Address of the PCB: The Scheduling Call.”

2. Acquire working storage for Assembler language programs; for COBOL, PL/I,
and RPG II this is automatically handled. For Assembler there are three ways
to reserve storage for the count field, function code field, I/O area, SSAs, and
parameter list.

a. The recommended approach is to reserve these in the transaction work
area.

b. You may issue one CICS/VS GETMAIN macro to hold all these areas.

c. The least efficient method is to issue one CICS/VS GETMAIN macro for
each area.

As with all CICS/VS GETMAIN operations, storage account areas must be
considered when techniques b and c are used.

3. Set the parameter count and function code as in the batch environment.

4. Furnish the PCB address provided by the ‘PCB ’ call previously issued.

5. Issue the call.

 Copyright IBM Corp. 1973, 2002 3-1

Obtaining the Address of the PCB: The Scheduling Call
Before accessing DL/I data bases, a CICS/VS program must issue a special DL/I
call to initiate scheduling of a PSB. It is the responsibility of the programmer to
determine the results of this call, details of which are given later under “Checking
the Response to a DL/I Call in a CICS/VS Environment”. The format of the
scheduling call is:

For COBOL:

CALL ‘CBLTDLI’ USING [parm-count,] call-function
 [,psbname [,uibparm]].

For PL/I:

CALL PLITDLI (parm-count,call-function[,psbname [,uibparm]]);

For Assembler:

CALLDLI {ASMTDLI},([parm-count,]call-function[,psbname [,uibparm]])
 {CBLTDLI}

parm-count
is the name of a binary fullword containing the parameter count. This count
equals 1, 2, or 3 depending on whether or not psbname and uibparm are
specified. The parm-count parameter is optional in Assembler and COBOL.

call-function
is the name of the field containing the 4-character function ‘PCB ’.

psbname
is the name of the 8-byte field containing the 1- to 7-character PSB
generation name, right padded with blanks, that the application program
accesses. If the uibparm is not used, this parameter is optional, and, if
omitted, the default is the first PSB name associated with the application
program name in the DL/I application control table generation.

Note: In order to indicate that a default PSB is to be scheduled when the
uibparm is specified in COBOL, PL/I, or Assembler, a psbname of ‘*␣’ must
be used.

uibparm
is the name of a fullword to which DL/I returns the address of the User
Interface Block. Use of this parameter is optional, but desirable in COBOL,
PL/I, and Assembler programs using the CICS/VS command language. RPG
II requires use of the User Interface Block. The User Interface Block (UIB) is
a control block used to pass to the user the address of the PCB list and the
scheduling and termination response and error codes. If this parameter is
omitted, the PCB list address and response and error codes will be returned
in fields in the CICS/VS task communication area (TCA).

3-2 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

For RPG II:

 PCB RQDLI in
 [PSBNAME ELEM psb-name]
 SET ELEM BUIB

in
indicator required in pos 56-57

psb-name
is the name of the PSB to be scheduled. It can be specified either as a
var-name (a variable psb-name containing the psbname as a character string,
as shown in [---] above) or as an alphameric literal constant

 PSBNAME ELEM ‘PSBNAM1’

where PSBNAM1 is the name of the PSB.

BUIB
refers to a field in DFHDUM that is the base of DLIUIB. User must specify
such a field in DFHDUM to establish the addressability of PCBs after a
scheduling call. (See Figure 3-7 on page 3-24.)

If no PSB name is explicitly specified, the Translator will generate a PSB name of
‘*␣’, which will cause the first PSB to be scheduled by default.

After a successful scheduling call, the field UIBPCBAL, or TCADLPCB if the UIB is
not used, or UAPCBL in RPG II, contains the address of a PCB list. The PCB list
consists of a series of 4-byte addresses that point to the PCBs within the PSB that
has been scheduled. The last address in the list is indicated by the high order bit
being 1.

 Chapter 3. Online Programming Considerations 3-3

Releasing a PSB in a CICS/VS Application Program: The Termination
Call

The TERM call is the mechanism through which a CICS/VS transaction
communicates to DL/I that all modifications made to the data bases by the
transaction to this point are committed and cannot be backed out.

When scheduling intent is used, the TERM call also releases any scheduling intent
caused by the PSB currently scheduled by the transaction.

Conversational programs should release the PSB before writing output onto a
terminal so that other transactions can use the PSB while the conversational
program is waiting for a response. Before issuing any other DL/I calls requesting
DL/I access to a data base, however, the application program must again schedule
the PSB using a scheduling call. If necessary, position in the data base must also
be reestablished.

When program isolation is used, the TERM call also releases any DL/I resources
currently enqueued by the transaction.

To release a PSB, the program issues a call of the following format:

For COBOL:

CALL ‘CBLTDLI’ USING [parm-count,] call-function.

For PL/I:

CALL PLITDLI (parm-count,call-function);

For Assembler:

CALLDLI {ASMTDLI},([parm-count,]call-function)
 {CBLTDLI}

Note: The contents of registers 1, 14, and 15 are altered.

parm-count
is the name of a fullword containing a binary value of 1.

call-function
is the name of a 4-byte field containing the value ‘TERM’ or ‘T’ and three
blanks.

For RPG II:

TERM RQDLI

Note: A “T”, or TERM call causes a CICS/VS synchronization point. Also, a
CICS/VS synchronization point causes a “T” call if a PSB is still scheduled by the
transaction. Refer to the section on “Recovery Services” in the CICS/VS System
Application Design Guide.

3-4 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Checking the Response to a DL/I Call in a CICS/VS Environment
In a CICS/VS transaction, after every DL/I call, the transaction should check the
status of the DL/I-CICS/VS interface. There are three types of DL/I calls that are
processed by the DL/I-CICS/VS interface: scheduling, termination, and data base.
The following paragraphs describe how to check the status of the interface after
each type of call. The check of the DL/I-CICS/VS interface should occur before
checking the DL/I status code returned in the PCB.

Include code immediately following the call to examine the field UIBFCTR, or
TCAFCTR (TCAFCRC in ANS COBOL) if the UIB is not used, or UFCTR in RPG II,
and, based on its contents, transfer control if necessary to an exception-handling
routine. The possible response codes in these fields are:

 Scheduling Call

Condition Response Code

NORESP - Normal Response X‘00’

INVREQ - Invalid Request X‘08’

NOTOPEN - Not open X‘0C’

NORESP
indicates that the requested function was completed normally and that the
field UIBPCBAL, or TCADLPCB if the UIB is not used, or UAPCBL in RPG II,
contains the address of the PCB list.

INVREQ
indicates that the field UIBDLTR, or TCADLTR if the UIB is not used, or
UDLTR in RPG II, contains one of the error codes that are listed together with
their explanations below:

X‘01’ PSB name, as provided in the scheduling call, is not in the PSB
directory.

X‘03’ The calling program has already successfully issued a scheduling
(PCB) call that has not been followed by a termination (TERM) call.

X‘05’ The PSB could not be initialized by DL/I online initialization.

X‘06’ The PSB in the scheduling call is not defined in the program's
application control table entry, or is too long, or is not delimited by a
blank.

X‘07’ A TERM call was issued when the task has already been terminated.

X‘08’ A data base CALL was issued when the task was not scheduled.

X‘09’ An MPS batch program attempted to issue a PCB call for a read-only
PSB or for a non-exclusive PSB if program isolation is active.

X‘FF’ The DL/I interface has been terminated or DL/I initialization failed.

NOTOPEN
indicates that one or more DBD entries associated with this PSB are stopped
or that a scheduling conflict with an MPS-scheduled task has occurred.
Stopped means that the data base is not available for use because of an
initialization error or an I/O error, or because it is closed. Conflict with an
MPS-scheduled task means that a task running under MPS in a batch
partition has:

 Chapter 3. Online Programming Considerations 3-5

1. Exclusive control of a segment type (PROCOPT=E) to which the PSB
your task is trying to schedule is sensitive.

2. Sensitivity to a segment type to which the PSB your task is trying to
schedule has specified exclusive control (PROCOPT=E).

3. Update sensitivity to a segment type (PROCOPT=I, D, R, or A) to which
the PSB your task is trying to schedule also has update sensitivity and
program isolation is not being used.

Field UIBDLTR, or TCADLTR if the UIB is not used, or UDLTR in RPG II,
contains one of the error codes listed with their explanation below:

X‘01’ One or more DBD entries associated with the PSB are stopped.
X‘02’ A scheduling conflict with a currently active MPS batch partition

occurred.

Note: A termination call is not required after an unsuccessful scheduling call
because no PSB resources were acquired.

 Termination Call

Condition Response Code

NORESP - Normal Response X‘00’

INVREQ - Invalid Request X‘08’

NORESP
indicates that the DL/I resources have been released.

INVREQ
indicates that the field UIBDLTR, or TCADLTR if the UIB is not used, or
UDLTR in RPG II, contains one of the error codes that are listed together with
their explanations below:

X‘07’ TERM requested but task not scheduled.
X‘FF’ The DL/I interface has been terminated or DL/I initialization failed.

Note: For TERM calls, only the first (high-order) digit is considered.

Data Base Call

Condition Response Code
NORESP - Normal Response X‘00’
INVREQ - Invalid Request X‘08’

NORESP
indicates that the DL/I interface completed the call.

INVREQ
indicates that the field UIBDLTR, or TCADLTR if the UIB is not used, or
UDLTR in RPG II, contains one of the error codes that are listed together with
their explanations below:

X‘08’ A DL/I call was made but the task has not scheduled a PSB.
X‘FF’ The DL/I interface has been terminated or DL/I initialization failed.

If a DL/I task abnormal termination occurs during online processing, control is not
returned to the application program and the transaction is terminated with a
CICS/VS message. In that message, the numeric part of the code that follows the
word ABEND corresponds to the numeric portion of the applicable DL/I message
number as listed in DL/I DOS/VS Messages and Codes. The code normally begins

3-6 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

with D but it begins with E if the termination cannot be noted on the transient data
destination CSMT.

MPS (Multiple Partition Support) Considerations
An online program will receive a return code from a PCB call if it conflicts with an
MPS batch job, instead of waiting. In this case, UIBFCTR, or TCAFCTR
(TCAFCRC in ANS COBOL) if the UIB is not used, or UFCTR in RPG II, will
contain X‘0C’ and UIBDLTR, or TCADLTR if the UIB is not used, or UDLTR in RPG
II, will contain X‘02’. When the data base is not open, the fields will contain X‘0C’
and X‘01’, respectively.

If any online tasks must wait for a resource owned by a batch MPS task, the MPS
task will be informed on the next and all subsequent calls until a DL/I checkpoint is
issued. (Note that making the resource available through some other action makes
no difference. The passback indicates that a wait was required, not necessarily
that a task is currently waiting.) This condition is flagged by setting the high-order
bit of the first byte of the “JCB Address” field in the PCB to a one (X‘80’). The
application program must test for this condition by examining the field in the PCB
mask that is reserved for DL/I. In COBOL, it is labeled “RESERVE-DL/I”; in PL/I,
“RESERVE_DL/I”; in RPG II, “RESRij”; and in Assembler, “DBPCBRSV”. See the
section “Program Communication Block (PCB) Mask” in Chapter 1.

MPS batch jobs not using program isolation or MPS Restart are permitted to issue
PCB and TERM calls, or PCB and TERM RQDLI commands in RPG II. This allows
tasks conflicting with the batch job to run before the batch job completes.
However, the following restrictions apply:

1. The first PCB call is issued automatically by DL/I so before an MPS batch job
issues its first PCB call, it must issue a TERM call.

2. The PSB name used by an MPS batch job in a PCB call must always be the
one specified in the DL/I parameter statement. The PCB addresses are the
same as at the start of the application program. These addresses should be
used after a PCB call.

3. The format of the PCB and TERM calls are the same as in online execution
except the CALL macro is used instead of CALLDLI.

4. The user must not issue PCB calls and TERM calls for a read-only PSB.

5. There is no feedback information passed to the program. The MPS batch
program request handler intercepts the return code, and if it is non-zero, it will
ABEND the batch job.

6. After an MPS batch job has successfully issued its own PCB call, it is
considered to be an online task from a scheduling viewpoint.

Notes:

1. If PCB and TERM calls are used by MPS batch jobs, jobs must not be run in
the normal DL/I batch environment or in any environment using Program
Isolation or MPS Restart. Also, the use of these calls is not upward compatible
with IMS/VS; that is, these calls are not permitted in batch IMS/VS.

2. DL/I application programs can access a data base that is resident on another
CICS/VS system via the CICS/VS Intersystem Communication Support. If an
MPS batch application is to access a remote data base using Intersystem
Communication or MPS Restart, the program must not issue PCB or TERM

 Chapter 3. Online Programming Considerations 3-7

calls. PCB calls would receive an abnormal return code of X‘08’ in TCAFCTR
(TCAFCRC in ANS COBOL), or UFCTR in RPG II; and X‘09’ in TCADLTR, or
UDLTR in RPG II. If issued in the MPS Restart environment, an error message
will be issued and the batch partition will be cancelled.

Storage Considerations: MPS programs using Program Isolation with update intent
for segments should issue frequent checkpoints to avoid using more storage that is
necessary.

Storage is obtained within the CICS/VS partition in blocks of 2K each time Program
Isolation requires additional storage to maintain segment locks. Without the use of
checkpoints, the longer an MPS program using Program Isolation runs, the more
storage it needs. By taking frequent checkpoints, however, the storage currently
used to lock segments is freed for reuse by Program Isolation.

Note: Storage once allocated for Program Isolation usage, is never returned to
VSE. The amount of storage allocated at any time represents the ‘high water mark’
for the total time that CICS/VS has been active. The effects of a long running MPS
job could therefore be felt long after the job has completed.

3-8 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Issuing the DL/I Call in a CICS/VS Environment
DL/I data base services are available to CICS/VS application programs through call
statements, or RQDLI commands in RPG II. The call statement formats for ANS
COBOL and PL/I are similar. For Assembler language application programs, a
CALLDLI macro instruction is used. The general formats of the DL/I calls are as
follows:

For COBOL:

CALL ‘CBLTDLI’ USING [parm-count,] call-function, db-pcb-name,
 i/o-area[, ssa...].

For PL/I:

CALL PLITDLI (parm-count,call-function,db-pcb-name,i/o-area[,ssa...]);

For RPG II:

The format of RQDLI commands in RPG II is the same as in the batch environment
(see Chapter 1, “RQDLI commands for DB Access”).

For Assembler:

CALLDLI {ASMTDLI}[,([parm-count,]call-function,db-pcb-name,
 {CBLTDLI}
 i/o-area[,ssa...])]

parm-count
is the name of a binary fullword containing the parameter count. For COBOL
and Assembler it is optional.

call-function
is the name of the field containing the 4-character DL/I call function desired.

db-pcb-name
is the name of the PCB (or DSECT if Assembler).

i/o-area
is the name of the I/O area.

ssa...
are the names of the SSAs; these parameters are optional.

Notes:

1. If no parameters are specified in an Assembler language CALLDLI macro
instruction, register 1 is assumed to contain the address of a parameter list.

2. In Assembler language, the following format may be used as an alternative:

CALLDLI {ASMTDLI}, MF=(E, {(register)})
 {CBLTDLI} { address }

Register contains the address of the parameter list. Address is the address of
the parameter list.

Register 13 must contain the address of a 72-byte user-provided save area.
The CALLDLI macro alters the contents of registers 1, 14, and 15.

3. If the application program makes a DL/I data base call without previously
making a successful scheduling call, a 1-byte response code (X‘08’) is placed
in the field UIBFCTR, or TCAFCTR (TCAFCRC in ANS COBOL) if the UIB is

 Chapter 3. Online Programming Considerations 3-9

not used, or UFCTR in RPG II, indicating an invalid request. If the call is
accepted, the field is set to binary zeros. However, the user must still check
the DL/I PCB status code.

Online Application Coding Examples
The following examples assume the application programmer has a thorough
understanding of CICS/VS coding requirements and techniques. The examples,
therefore, only illustrate the use of the DL/I portions of the application programs.

DL/I Requests in an ANS COBOL Program
The PCB addresses must be obtained upon program entry by issuing a scheduling
call. After CICS/VS returns control to the application program, the programmer
moves the contents of UIBPCBAL, or TCADLPCB if the UIB is not used, to the BLL
pointer which is the base for the layout of the PCB pointers in the Linkage Section.
The programmer then moves the addresses of the PCBs to their BLL pointers to
provide the base addresses for the PCBs. When this has been done, the program
is in the same state as a DL/I DOS/VS batch application program in which the
following statement has been executed.

ENTRY ‘DLITCBL’ USING PCB1,PCB2.

Figure 3-1 gives examples of writing DL/I requests in an ANS COBOL program
when the UIB is being used. Figure 3-2 on page 3-12 gives examples when the
UIB is not used. Only a few of the possible combinations of operands are shown.

WORKING-STORAGE SECTION.
�1 SEGMENT-AREA.

�2 KEY PICTURE X(8).
�2 NAME PICTURE X(2�).

 .
 .
�1 SSA.

�2 SEGMENT-NAME PICTURE X(8).
�2 LEFT-PAR PICTURE X(1).
�2 FIELD-NAME PICTURE X(8).
�2 RO PICTURE X(2).
�2 COMP-VALUE PICTURE X(n).
�2 RIGHT-PAR PICTURE X(1).

77 FUNCTION PICTURE X(4).
77 PSBNAME PICTURE X(8) VALUE ‘CBOLPSB ’.
 .
 .
LINKAGE SECTION.
�1 BLLCELLS.

�2 FILLER PICTURE S9(8) COMP.
�2 UIB-PTR PICTURE S9(8) COMP.
�2 B-PCB-PTRS PICTURE S9(8) COMP.
�2 B-PCB1 PICTURE S9(8) COMP.
�2 B-PCB2 PICTURE S9(8) COMP.

�1 UIB COPY UIB.

Figure 3-1 (Part 1 of 2). Online COBOL Application Program Examples (UIB used)
(CICS/VS Command Language Environment).

3-10 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

� THE FOLLOWING IS THE EXPANSION OF UIB
�1 UIB.

�2 UIBPCBAL PICTURE S9(8) COMP.
 �2 UIBFCTR PICTURE X(1).
 �2 UIBDLTR PICTURE X(1).
�1 PCB-PTRS.

�2 PCB1-PTR PICTURE S9(8) COMP.
�2 PCB2-PTR PICTURE S9(8) COMP.

�1 PCB1.
�2 DBD1-NAME PICTURE X(8).

 .
 .
�1 PCB2.

�2 DBD2-NAME PICTURE X(8).
 .
 .
PROCEDURE DIVISION.
 .
 .
� DO DL/I SCHEDULING

MOVE ‘PCB ’ TO FUNCTION.
CALL ‘CBLTDLI’ USING FUNCTION, PSBNAME, UIB-PTR.
IF UIBFCTR NOT EQUAL TO LOW-VALUES GO TO SCHEDULING-ERROR.
MOVE UIBPCBAL TO B-PCB-PTRS.
MOVE PCB1-PTR TO B-PCB1.
MOVE PCB2-PTR TO B-PCB2.

 .
 .
� SET UP FOR GU CALL

MOVE ‘ROOT’ TO SEGMENT-NAME.
MOVE ‘(’ TO LEFT-PAR.
MOVE ‘KEY’ TO FIELD-NAME.
MOVE ‘= ’ TO RO.
MOVE KEYI TO COMP-VALUE.
MOVE ‘)’ TO RIGHT-PAR.
MOVE ‘GU’ TO FUNCTION.
CALL ‘CBLTDLI’ USING FUNCTION, PCB1, SEGMENT-AREA, SSA.
IF UIBFCTR NOT EQUAL TO LOW-VALUES GO TO INTERFACE-ERROR.
IF STATUS-CODE IN PCB1 = ‘GE’ GO TO NOT-FOUND.
IF STATUS-CODE IN PCB1 NOT EQUAL TO ‘ ’ GO TO CALL-ERROR.

 .
 .

Figure 3-1 (Part 2 of 2). Online COBOL Application Program Examples (UIB used)
(CICS/VS Command Language Environment).

 Chapter 3. Online Programming Considerations 3-11

WORKING STORAGE SECTION.
77 PCB-FUNCTION PICTURE X(4) VALUE ‘PCB ’.
77 PSBNAME PICTURE X(8) VALUE ‘CBOLPSB ’.
77 GU-FUNCTION PICTURE X(4) VALUE ‘GU ’.
LINKAGE SECTION.
�1 DFHBLLDS COPY DFHBLLDS.

�2 B-PCB-PTRS PICTURE S9(8) COMPUTATIONAL.
�2 B-PCB1 PICTURE S9(8) COMPUTATIONAL.
�2 B-PCB2 PICTURE S9(8) COMPUTATIONAL.

�1 DFHCSADS COPY DFHCSADS.
�1 DFHTCADS COPY DFHTCADS.
� TWA DEFINITIONS
 �2 SEGMENT-AREA.

�3 KEY PICTURE X(8).
�3 NAME PICTURE X(2�).

 .
 .
 �2 SSA.

�3 SEGMENT-NAME PICTURE X(8).
�3 LEFT-PAR PICTURE X(1).
�3 FIELD-NAME PICTURE X(8).
�3 RO PICTURE X(2).
�3 COMP-VALUE PICTURE X(n).
�3 RIGHT-PAR PICTURE X(1).

�1 PCB-PTRS.
�2 PCB1-PTR PICTURE S9(8) COMPUTATIONAL.
�2 PCB2-PTR PICTURE S9(8) COMPUTATIONAL.

�1 PCB1.
�2 DBD1-NAME PICTURE X(8).

 .
 .
�1 PCB2.

�2 DBD2-NAME PICTURE X(8).
 .
 .
PROCEDURE DIVISION.

MOVE CSACDTA TO TCACBAR.
 .
 .
� DO DL/I SCHEDULING

CALL ‘CBLTDLI’ USING PCB-FUNCTION, PSBNAME.
IF TCAFCRC NOT EQUAL TO LOW-VALUES GO TO SCHEDULING-ERROR.

MOVE TCADLPCB TO B-PCB-PTRS.
MOVE PCB1-PTR TO B-PCB1.
MOVE PCB2-PTR TO B-PCB2.

 .
 .

Figure 3-2 (Part 1 of 2). Online COBOL Application Program Examples (UIB not used)
(Macro Language Environment).

3-12 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

� SET UP FOR GU CALL
MOVE ‘ROOT’ TO SEGMENT-NAME.
MOVE ‘(’ TO LEFT-PAR.
MOVE ‘KEY’ TO FIELD-NAME.
MOVE ‘= ’ TO RO.
MOVE KEYI TO COMP-VALUE.
MOVE ‘)’ TO RIGHT-PAR.
CALL ‘CBLTDLI’ USING GU-FUNCTION, PCB1, SEGMENT-AREA, SSA.
IF TCAFCRC NOT EQUAL TO LOW-VALUES GO TO INTERFACE-ERROR.
IF STATUS-CODE IN PCB1 = ‘GE’ GO TO NOT-FOUND.
IF STATUS-CODE IN PCB1 NOT EQUAL TO ‘ ’ GO TO CALL-ERROR.

 .
 .

Figure 3-2 (Part 2 of 2). Online COBOL Application Program Examples (UIB not used)
(Macro Language Environment).

 Chapter 3. Online Programming Considerations 3-13

DL/I Requests in a PL/I Program
The PCB addresses must be obtained upon program entry by issuing a scheduling
call. When CICS/VS returns control to the application program, the base address
of a structure of PCB pointers is in UIBPCBAL, or TCADLPCB if the UIB is not
used. The PL/I programmer must move the address to the based
 variable for his declared structure of PCB pointers. He then loads the pointers to
all PCBs from this structure. When this has been done, the program is in the same
state as a DL/I DOS/VS batch application program in which the following statement
has been executed.

DLITPLI: PROCEDURE (pcbname1,...) OPTIONS (MAIN);

The PL/I programmer may then make DL/I requests. Examples of these are shown
in Figure 3-3 when the UIB is used and in Figure 3-4 on page 3-16 when the UIB
is not used.

TEST: PROC OPTIONS (MAIN, RE-ENTRANT);
% INCLUDE DLIUIB;
/� PRODUCES THE FOLLOWING: �/
/� �/
/� DCL UIBPTR POINTER; �/
/� DCL 1 UIB BASED (UIBPTR), �/
/� 2 UIBPCBAL PTR, �/
/� 2 UIBFCTR CHAR(1), �/
/� 2 UIBDLTR CHAR(1); �/
/� �/
DCL 1 PCB_PTRS BASED (UIBPCBAL),

2 PCB1_PTR POINTER,
2 PCB2_PTR POINTER;

DCL B_PCB1 POINTER;
DCL B_PCB2 POINTER;
DCL 1 PCB1 BASED (B_PCB1),

2 DBD_NAME CHAR (8),
 .
 .
 .
DCL 1 PCB2 BASED (B_PCB2),

2 DBD_NAME CHAR (8),
 .
 .
 .
DCL 1 SEGMENT_AREA,

2 KEY CHAR (8),
2 NAME CHAR (2�),

 .
 .
 .

Figure 3-3 (Part 1 of 2). Online PL/I Application Program Examples (UIB used) (CICS/VS
Command Language Environment).

3-14 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

DCL 1 SSA,
2 SEGMENT_NAME CHAR (8),
2 LEFT_PAR CHAR (1),
2 FIELD_NAME CHAR (8),
2 RO CHAR (2),
2 COMP_VALUE CHAR (n),
2 RIGHT_PAR CHAR (1);

DCL PCB_FUNCTION CHAR (4) STATIC INIT (‘PCB ’);
DCL GU_FUNCTION CHAR (4) STATIC INIT (‘GU ’);
DCL PSBNAME CHAR (8) STATIC INIT (‘PLIPSB ’);
DCL COUNT FIXED BIN (31);
 .
 .
 .
/�DO DL/I SCHEDULING �/
 COUNT=3;

CALL PLITDLI (COUNT, PCB_FUNCTION, PSBNAME, UIBPTR);
IF UIBFCTR ¬= _‘��������’B THEN GO TO SCHEDULING_ERROR;
B_PCB1 = PCB1_PTR;
B_PCB2 = PCB2_PTR;

 .
 .
 .
/� SET UP FOR GU CALL �/

SEGMENT_NAME = ‘ROOT’;
LEFT_PAR = ‘(’;
FIELD_NAME = ‘KEY’;
RO = ‘= ’;
COMP_VALUE = KEYI;
RIGHT_PAR = ‘)’;

 COUNT=4;
CALL PLITDLI (COUNT, GU_FUNCTION, PCB1, SEGMENT_AREA, SSA);
IF UIBFCTR ¬= _‘��������’B THEN GO TO INTERFACE_ERROR;
IF PCB1.STATUS_CODE = ‘GE’ THEN GO TO NOT_FOUND;
IF PCB1.STATUS_CODE ¬= ‘ ’ THEN GO TO STATUS_ERROR;

 .
 .
 .

Figure 3-3 (Part 2 of 2). Online PL/I Application Program Examples (UIB used) (CICS/VS
Command Language Environment).

 Chapter 3. Online Programming Considerations 3-15

TEST: PROC OPTIONS (MAIN, RE-ENTRANT);
%INCLUDE DFHCSADS; /�CSA DEFINITION �/
%INCLUDE DFHTCADS; /�TCA DEFINITION �/

2 DUMMY CHAR(1); /�DUMMY VARIABLE TO ADD SEMICOLON TO LAST
DECLARTION IN DFHTCADS, AS THIS IS NOT
SUPPLIED, TO ALLOW FOR TWA DEFINITION. �/

DCL B_PCB_PTRS POINTER;
DCL 1 PCB_PTRS BASED (B_PCB_PTRS),

2 PCB1_PTR POINTER,
2 PCB2_PTR POINTER;

DCL B_PCB1 POINTER;
DCL B_PCB2 POINTER;
DCL 1 PCB1 BASED (B_PCB1),

2 DBD_NAME CHAR (8),
 .
 .
 .

DCL 1 PCB2 BASED (B_PCB2),
2 DBD_NAME CHAR (8),

 .
 .
 .
 DCL 1 SEGMENT_AREA,

2 KEY CHAR (8),
2 NAME CHAR (2�),

 .
 .
 .
 DCL 1 SSA,

2 SEGMENT_NAME CHAR (8),
2 LEFT_PAR CHAR (1),
2 FIELD_NAME CHAR (8),
2 RO CHAR (2),
2 COMP_VALUE CHAR (n),
2 RIGHT_PAR CHAR (1);

DCL PCB_FUNCTION CHAR (4) STATIC INIT (‘PCB ’);
DCL GU_FUNCTION CHAR (4) STATIC INIT (‘GU ’);
DCL PSBNAME CHAR (8) STATIC INIT (‘PLIPSB ’);

DCL COUNT FIXED BIN (31);
 .
 .
 .

Figure 3-4 (Part 1 of 2). Online PL/I Application Program Examples (UIB not used)
(Macro Language Environment).

3-16 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

/� DO DL/I SCHEDULING �/
 COUNT=2;

CALL PLITDLI (COUNT, PCB_FUNCTION, PSBNAME);
IF TCAFCTR ¬= ‘��������’B THEN GO TO SCHEDULING_ERROR;

 B_PCB_PTRS= TCADLPCB;
B_PCB1 = PCB1_PTR;
B_PCB2 = PCB2_PTR;

 .
 .
 .
/� SET UP FOR GU CALL �/

SEGMENT_NAME = ‘ROOT’;
LEFT_PAR = ‘(’;
FIELD_NAME = ‘KEY’;
RO = ‘= ’;
COMP_VALUE = KEYI;
RIGHT_PAR = ‘)’;

 COUNT=4;
CALL PLITDLI (COUNT, GU_FUNCTION, PCB1,SEGMENT_AREA, SSA);
IF TCAFCTR ¬= ‘��������’B THEN GO TO INTERFACE_ERROR;
IF PCB1.STATUS_CODE = ‘GE’ THEN GO TO NOT_FOUND;
IF PCB1.STATUS_CODE ¬= ‘ ’ THEN GO TO STATUS_ERROR;

 .
 .
 .

Figure 3-4 (Part 2 of 2). Online PL/I Application Program Examples (UIB not used)
(Macro Language Environment).

 Chapter 3. Online Programming Considerations 3-17

DL/I Requests in an Assembler Language Program
The application programmer must first obtain the PCB addresses. The examples in
Figure 3-5 and Figure 3-6 on page 3-20 show the options available to the
application programmer in a few of the acceptable combinations. Figure 3-5 gives
examples when the UIB is used and Figure 3-6 on page 3-20 when the UIB is not
used. Note that the application program must be quasi-reentrant.

DFHEISTG DSECT
UIBPTR DS A
SEGAREA DS �CLn
KEY DS CL4
NAME DS CL2�
 .
 .
 .
SSA DS �CLn DL/I SSA
SEGNAME DS CL8
LPAR DS CL1
FLDNAME DS CL8
RO DS CL2
COMPVAL DS CLn
RPAR DS CL1
 .
 .
 .
 DLIUIB
� PRODUCES THE FOLLOWING:
�
� DLIUIB DSECT
� UIB DS �F EXTENDED CALL USER INTFC BLK
� UIBPCBAL DS A PCB ADDRESS LIST
� UIBRCODE DS �XL2 DL/I INTERFACE RETURN CODES
� UIBFCTR DS X RETURN CODE
� UIBDLTR DS X ADDITIONAL INFORMATION
� DS �F LEN IS FULL WORD MULTIPLE
� UIBLEN EQU �-UIB LENGTH OF UIB
START DFHEIENT
 .
 .
 .
� DO DL/I SCHEDULING
 CALLDLI ASMTDLI,(PCB,PSBNAME,UIBPTR)
 USING UIB,R7
 L R7,UIBPTR
 CLI UIBFCTR,X‘��’
 BNE SCHERROR
 L R4,UIBPCBAL
 USING PCBADRS,R4
 L R5,PCB1ADR
 USING PCB1,R5
 L R6,PCB2ADR
 USING PCB2,R6

Figure 3-5 (Part 1 of 2). Online Assembler Language Application Program Examples (UIB
used) (CICS/VS Command Language Environment)

3-18 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

 .
 .
 .
 .

� SET UP FOR GU CALL
 MVC SEGNAME,=CL8‘ROOT’
 MVI LPAR,C‘(’
 MVC FLDNAME,=CL8‘KEY’
 MVC RO,=C‘= ’
 MVC COMPVAL,KEYI
 MVI RPAR,C‘)’
 CALLDLI ASMTDLI (GU,PCB1,SEGAREA,SSA)
 CLI UIBFCTR,X‘��’
 BNE INTERROR
 CLC PCB1STC,=C‘GE’
 BE NOTFOUND
 CLC PCB1STC,=C‘ ’
 BNE STCERROR
 .
 .
 .
 .
PCB DC CL4‘PCB’
GU DC CL4‘GU’
PSBNAME DC CL8‘ASOLPSB ’
PCBPTRS DSECT
PCB1ADR DS A ADR OF 1ST PCB IN PSB
PCB2ADR DS A ADR OF 2ND PCB IN PSB
�
� CONTINUE FOR AS MANY PCBS IN PSB
�
PCB1 DSECT
PCB1DBDN DS CL8 DBD NAME
PCB1LEV DS CL2 SEGMENT LEVEL
PCB1STC DS CL2 STATUS CODE
PCB1PRO DS CL4 PROCESSING OPTIONS
 DS F RESERVED
PCB1SFD DS CL8 SEGMENT NAME
PCB1KFDL DS F CURRENT LENGTH OF KEY
� FEEDBACK AREA
PCB1NSS DS F NO OF SENSITIVE
� SEGMENTS IN PCB
PCB1KFD DS CL255 KEY FEEDBACK AREA
�
� CONTINUE FOR AS MANY PCBS IN PSB
�
PCB2 DSECT
PCB2DBD DS CL8
 .
 .
 .

Figure 3-5 (Part 2 of 2). Online Assembler Language Application Program Examples (UIB
used) (CICS/VS Command Language Environment)

 Chapter 3. Online Programming Considerations 3-19

EXAMPLE CSECT
R� EQU �
R1 EQU 1
R3 EQU 3
R4 EQU 4
R9 EQU 9
R12 EQU 12
R13 EQU 13

BALR R3,R� LOAD BASE REGISTER (R3)
USING �,R3 ...AND TELL ASSEMBLER
USING DFHTCADS,R12 TELL ASSEMBLER ABOUT TCA
USING DFHCSADS,R13 ...AND CSA ADDRESSABILITY

� .
� ESTABLISH ADDRESSABILITY TO OTHER CICS/VS AREAS
� AS REQUIRED BY THE APPLICATION PROGRAM
� .
� ----- SET UP AND ISSUE SCHEDULING (PCB) CALL
� (MF=E FORM OF CALLDLI MACRO DEMONSTRATED)

LA R1,COUNT SET DL/I COUNT PARAMETER
ST R1,COUNTADR ...ADR IN CALL PARM LIST
LA R1,PCB GET ADR OF PCB FUNCTION CODE
ST R1,FUNADR ...AND STORE IT IN PARM LIST

� ----- OPTIONALLY SPECIFY NAME OF PSB TO BE SCHEDULED
LA R1,PSBNAME GET ADR OF NAME OF PSB TO SCHED
ST R1,PCBADR ...AND STORE IT IN PARM LIST
MVC COUNT,=F‘2’ SET PARM COUNT = 2

� IF PSB NAME WAS NOT SPECIFIED
� ...COUNT SHOULD BE SET TO ONE

LA R1,DLIPARMS POINT R1 AT PARM LIST
ST R13,CSASAVE SAVE CSA ADR PRIOR TO MF=E

� ...CALLDLI MACRO FORMAT USAGE
LA R13,CALLSAVE PUT ADR OF SAVE AREA IN R13

� ...PRIOR TO USING MF=E CALLDLI
� ...MACRO FORMAT (CSA ADR LOST)

CALLDLI ASMTDLI,MF=(E,(1)) ISSUE PCB CALL (MF=E FORMAT)
L R13,CSASAVE RECOVER CSA ADR AFTER MF=E

� ...CALLDLI MACRO FORMAT USAGE
� ----- CHECK SUCCESS OF SCHEDULING CALL
 CLI TCAFCTR,X‘��’ CALL SUCCESSFUL?

BNE SCHERROR ...NO, GO DETERMINE PROBLEM
� ----- SCHEDULE CALL OK, ESTABLISH ADDRESSABILITY TO PCBS

L R9,TCADLPCB GET ADR OF PCB ADDRESSES
USING PCBADRS,R9 ...AND TELL ASSEMBLER
L R4,PCB1ADR GET ADR OF 1ST PCB IN PSB
USING PCB1,R4 ...AND TELL ASSEMBLER

� .

Figure 3-6 (Part 1 of 4). Online Assembler Language Application Program Examples (UIB
not used) (Macro Language Environment)

3-20 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

� ESTABLISH ADDRESSABILITY TO THE REMAINING PCBS IN THE PSB
� AND CONTINUE WITH APPLICATION PROGRAM LOGIC
� .
� ----- INITIALIZE SSAS

MVC COMCODE1,=C‘�--’ SET NULL COMMAND CODE IN 1ST SSA
MVI RP1,C‘)’ ...AND ENDING RIGHT PAREN

� .
� CONTINUE TO INITIALIZE THE REMAINING SSAS
� .
� ----- SET UP TO RETRIEVE A SEGMENT

MVC SEGNAME1,=CL8‘ROOT’ PUT SEG NAME IN SSA
MVI LP1,C‘(’ MAKE NAME QUALIFIED
MVC KEYNAME1,=CL8‘SEQ’ ...PUT KEY FIELD NAME

 MVC RO1,=C‘= ’ ...RELATIONAL OPERATOR
MVC KEY1,=CL5‘����1’ ...AND KEY FIELD VALUE IN SSA
MVC COUNT,=F‘4’ INDICATE 4 PARMS USED IN CALL

 CALLDLI ASMTDLI,(COUNT,GU,PCB1,SEGIO,SSA1)
� ----- CHECK FOR CALL ACCEPTANCE

CLI TCAFCTR,X‘��’ WAS CALL ACCEPTED?
BNE CALLERR ...NO, GO DETERMINE REASON

� .
� CALL WAS ACCEPTED. CHECK DL/I PCB STATUS CODE
� AND CONTINUE APPLICATION PROGRAM LOGIC
� .
 DFHPC TYPE=RETURN
� ----- DL/I CALL ERROR ROUTINES
CALLERR DS �H
SCHERROR DS �H
� .
� AT THIS POINT THE PROGRAM CAN DETERMINE THE REASON FOR
� THE ERROR BY EXAMINING THE FIELD ‘TCADLTR’. IN MOST
� CASES A CICS/VS ABEND SHOULD BE ISSUED
� .
 DFHPC TYPE=RETURN
� ----- DL/I ONLINE FUNCTION CODE CONSTANTS
� (COULD BE A COPY BOOK)
PCB DC CL4‘PCB’
GU DC CL4‘GU’
GHU DC CL4‘GHU’
GN DC CL4‘GN’
GHN DC CL4‘GHN’
GNP DC CL4‘GNP’
GHNP DC CL4‘GHNP’
REPL DC CL4‘REPL’
ISRT DC CL4‘ISRT’
DLET DC CL4‘DLET’
TERM DC CL4‘TERM’
� ----- MISCELLANEOUS PROGRAM CONSTANTS
PSBNAME DC CL8‘PIPSBA1 ’ NAME OF PSB TO BE SCHEDULED
TWALEN DC A(TWASTOP-TWASTART) LENGTH OF TWA REQUIRED
� .

Figure 3-6 (Part 2 of 4). Online Assembler Language Application Program Examples (UIB
not used) (Macro Language Environment)

 Chapter 3. Online Programming Considerations 3-21

� OTHER PROGRAM CONSTANTS
� .
� ----- CICS/VS DSECTS
 COPY DFHCSADS
 COPY DFHTCADS
� ----- TWA STARTS HERE
TWASTART EQU �
CSASAVE DS F CSA ADR SAVE AREA FOR MF=E CALLS
CALLSAVE DS 18F REG SAVE AREA FOR MF=E CALLS
DLIPARMS DS �F DL/I CALL PARM LIST
� FOR USER CREATED CALL PARM LISTS
COUNTADR DS A ADR OF PARM COUNT VALUE
FUNADR DS A ADR OF FUNCTION CODE
PCBADR DS A ADR OF PCB USED WITH CALL
IOADR DS A ADR OF SEGMENT I/O AREA USED
SSA1ADR DS A ADR OF 1ST SSA USED IN CALL
SSA2ADR DS A ADR OF 2ND SSA USED IN CALL
� .
� .
� ----- SSAS (COULD BE COPY BOOKS)
SSA1 DS �CL29
SEGNAME1 DS CL8 SEGMENT NAME
COMCODE1 DS CL3 COMMAND CODE AREA OF SSA
LP1 DS CL1 LEFT PAREN‘(’
KEYNAME1 DS CL8 SEGMENT KEY FIELD NAME
RO1 DS CL2 RELATIONAL OPERATOR
KEY1 DS CL6 KEY FIELD VALUE
RP1 DS CL1 SSA ENDING RIGHT PAREN
� ----- MISCELLANEOUS WORKING STORAGE AREAS
COUNT DS F NUMBER OF PARMS IN LIST
SEGIO DS �CL4� A SEGMENT I/O AREA (COPY BOOK?)
ROOTKEY DS CL6 ROOT KEY FIELD IN ROOT SEGMENT
� .
� DEFINITIONS OF OTHER FIELDS IN SEGMENT
� .
� .
� DEFINITIONS OF OTHER WORKING STORAGE AREAS
� REQUIRED BY PROGRAM
� .
TWASTOP EQU � END OF TWA
� ----- DSECT USED TO ESTABLISH ADDRESSABILITY TO PCBS
� (COULD BE A COPY BOOK FOR EACH PSB IN INSTALLATION)
PCBADRS DSECT
PCB1ADR DS A ADR OF 1ST PCB IN PSB
PCB2ADR DS A ADR OF 2ND PCB IN PSB
� .

Figure 3-6 (Part 3 of 4). Online Assembler Language Application Program Examples (UIB
not used) (Macro Language Environment)

3-22 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

� CONTINUE FOR AS MANY PCBS IN PSB
� .
PCB1 DSECT (COULD BE CONTINUATION OF PSB COPY BOOK)
PCB1DBDN DS CL8 DBD NAME
PCB1LEV DS CL2 LEVEL FEEDBACK
PCB1STC DS CL2 STATUS CODE
PCB1PRO DS CL4 PROCESSING OPTIONS
 DS F RESERVED
PCB1SFD DS CL8 SEGMENT NAME FEEDBACK
PCB1KFDL DS F CURRENT LENGTH OF KEY FEEDBACK
PCB1NSS DS F NUMBER OF SENSITIVE SEGMENTS
PCB1KFD DS CL255 KEY FEEDBACK AREA
� .
� CONTINUE FOR AS MANY PCBS IN PSB
� .
� .
� COPY OTHER CICS/VS DSECTS AS REQUIRED BY PROGRAM
� .
 END EXAMPLE

Figure 3-6 (Part 4 of 4). Online Assembler Language Application Program Examples (UIB
not used) (Macro Language Environment)

 Chapter 3. Online Programming Considerations 3-23

RQDLI Commands in an RPG II Program
The following lists all the peculiarities for RPG II applications using DL/I under
CICS/VS.

1. File Description Specifications for DB-files may be specified and have the same
format as in a batch environment. Their implication on the RQDLI command for
standard data transfer is the same.

The RQDLI commands have the same format as those specified for the batch
environment in Chapter 1.

Exception: For a scheduling call (func-name=PCB), additionally a SET option
and a PSB-name option are supported.

2. �ENTRY PLIST for DL/I under CICS/VS

In addition to the PARMs required by CICS/VS, additional parameters for
DLIUIB, the PSB, and PCBs have to be specified by the user. The bases for
those parameters must also be specified in DFHDUM, in the same order as in
the �ENTRY PLIST.

An example of an online RPG II application program is given in Figure 3-7.

I�THE LAYOUT IN DFHDUM MUST EXACTLY CORRESPOND TO THE
I�LAYOUT OF THE �ENTRY PLIST STARTING WITH DFHDUM
IDFHDUM DS
I 1 4 SELPTR
I 5 8 BUIB
I 9 12 BPSB
I 13 16 BPCB�1
I 17 2� BPCB�2
I
IPCB�1 DS
I
IPCB�2 DS
I
I� USER MUST SPECIFY THE PROPER LAYOUT OF THE PCBS
I� PSB DEFINES THE ADDRESSLIST OF THE PCBADDRESSES
IPSB DS
I 1 4 PCB�1P
I 5 8 PCB�2P
I/INSERT .DLIUIB
I� THE FOLLOWING DATA STRUCTURE FOR THE UIB CONTROL BLOCK WILL
I� BE INSERTED FROM THE LIBRARY BY THE TRANSLATOR
IDLIUIB DS
I
 1 4 UPCBAL
I 5 5 UFCTR
I 6 6 UDLTR
I
I� END OF THE INSERTED UIB CONTROL BLOCK
C� USER HAS TO SPECIFY AT LEAST THE PARAMETERS AFTER DFHDUM

Figure 3-7 (Part 1 of 3). Online RPG II Application Program Examples

3-24 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

C �ENTRY PLIST
C PARM DFHEIB
C PARM DFHCOM
C PARM DFHDUM
C PARM DLIUIB
C PARM PSB
C PARM PCB�1
C PARM PCB�2
C� BEFORE ACCESSING THE DATA BASE THE FOLLOWING
C� STATEMENTS MUST BE CODED BY THE USER
C PCB RQDLI 13
C SET ELEM BUIB
C PSBNAME ELEM ‘PSBNAM1’
C� PSBNAME OPTION MUST BE SPECIFIED IN
C� AN ELEM STATEMENT
C� THIS ESTABLISHES THE ADDRESSABILITY OF THE DATA STRUCTURE
C� DLIUIB AND ITS FIELDS
C� WITH THE HELP OF A MOVE STATEMENT THE ADDRESS OF THE PCBADDRESS
C� LIST IS PUT INTO THE BASE OF THE DS DEFINING THE ADDRESSLIST
C MOVE UPCBAL BPSB
C CALL ‘ILNSAD’
C� CHECK CICS/VS INTERFACE RESPONSE
C TESTB‘�1234567’UFCTR 1�
C 1� GOTO NORESP
C TESTB‘4’ UFCTR 1�
C TESTB‘5’ UFCTR 11
C 1�N11 GOTO INVREQ
C 1� 11 GOTO NOTOPEN
C� DATA STRUCTURE CONTAINING THE ADDRESS LIST OF THE PCBS IS
C� NOW ADDRESSABLE.IN THIS CASE PSBNAM1 CONTAINS ONLY
C� PCB�1
C� ESTABLISH THE ADDRESSABILITY FOR PCB�1 BY MOVE STATEMENT
C� FOLLOWED BY CALL TO ILNSAD
C MOVE PCB�1P BPCB�1
C CALL ‘ILNSAD’
C� NOW THE USER CAN ACCESS THE DATA BASE PCB�1
C GU RQDLI 13
C PCB ELEM PCB�1
C INTO ELEM IOAREA2��
C� CONTINUE WITH PROGRAM
C TERM RQDLI
C� NOW PCB�1 CAN NO LONGER BE ADDRESSED
C...........
C� BEFORE ACCESSING A NEW DATA BASE THE FOLLOWING
C� STATEMENTS MUST BE CODED BY THE USER
C PCB RQDLI 13
C SET ELEM BUIB
C PSBNAME ELEM ‘PSBNAM2’
C� PSBNAME OPTION MUST BE SPECIFIED IN
C� AN ELEM STATEMENT

Figure 3-7 (Part 2 of 3). Online RPG II Application Program Examples

 Chapter 3. Online Programming Considerations 3-25

C� THIS ESTABLISHES THE ADDRESSABILITY OF THE DATA STRUCTURE
C� DLIUIB AND ITS FIELDS
C MOVE UPCBAL BPSB
C CALL ‘ILNSAD’
C� DATA STRUCTURE CONTAINING THE ADDRESS LIST OF THE PCBS IS
C� NOW ADDRESSABLE.IN THIS CASE PSBNAM2 CONTAINS ONLY
C� PCB�2
C� ESTABLISH THE ADDRESSABILITY FOR PCB�2 BY MOVE STATEMENT
C� FOLLOWED BY CALL TO ILNSAD
C MOVE PCB�1P BPCB�2
C CALL ‘ILNSAD’
C� NOW THE USER CAN ACCESS THE DATA BASE PCB�2
C GU RQDLI 13
C PCB ELEM PCB�2
C
C TERM RQDLI
C� NOW USER CAN NO LONGER ACCESS PCB�2
C� BEFORE ACCESSING A NEW DATABASE THE FOLLOWING
C� STATEMENTS MUST BE CODED BY THE USER
C PCB RQDLI 13
C SET ELEM BUIB
C PSBNAME ELEM ‘PSBNAM3’
C� PSBNAME OPTION MUST BE SPECIFIED IN
C� AN ELEM STATEMENT (PSBNAM3 SCHEDULES PCB�1 AND PCB�2)
C� THIS ESTABLISHES THE ADDRESSABILITY OF THE DATA STRUCTURE
C� DLIUIB AND ITS FIELDS
C MOVE UPCBAL BPSB
C CALL ‘ILNSAD’
C� DATA STRUCTURE CONTAINING THE ADDRESS LIST OF THE PCBS IS
C� NOW ADDRESSABLE.IN THIS CASE PSBNAM3 CONTAINS
C� PCB�1 AND PCB�2
C� ESTABLISH THE ADDRESSABILITY FOR BOTH BY MOVE STATEMENTS
C� FOLLOWED BY CALL TO ILNSAD
C MOVE PCB�1P BPCB�1
C MOVE PCB�2P BPCB�2
C CALL ‘ILNSAD’
C� NOW THE USER CAN ACCESS THE DATA BASES PCB�1 AND PCB�2
C GU RQDLI 13
C PCB ELEM PCB�2
C
C� CONTINUE WITH PROGRAM

Figure 3-7 (Part 3 of 3). Online RPG II Application Program Examples

DL/I Application Program Coding in a CICS/VS Command Language
Environment

The following steps should be observed when coding a DL/I application program in
a CICS/VS command language environment:

1. The DL/I I/O area, SSA, COUNT, and FUNCTION should be coded in the
WORKING-STORAGE SECTION of a COBOL program and in AUTOMATIC
storage of a PL/I program.

2. In application programs not using the UIB, addressability must be established
to the TCA to execute the Schedule and TERM calls. To establish this
addressability in COBOL, the copy books DFHBLLDS, DFHCSADS, and
DFHTCADS must be in the LINKAGE SECTION. Also, the COBOL statement

3-26 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

MOVE CSACDTA TO TCACBAR is required to prime the BLL cell for the TCA.
To establish this addressability in PL/I, the copy books DFHCSADS and
DFHTCADS must be included in the program before the Schedule call.

3. The list of PCB addresses and PCBs must be coded in the LINKAGE
SECTION of a COBOL program and in BASED storage of a PL/I program.

If these three steps are followed, there is no need to code any CICS/VS macros
and therefore, no need to execute the macro-level language preprocessor. See
Figure 3-1 on page 3-10, Figure 3-3 on page 3-14, and Figure 3-5 on page 3-18
for examples.

CICS/VS Trace Table Entries for DL/I DOS/VS
The following describes the entries placed by DL/I DOS/VS in the CICS/VS trace
table. For a complete description of the CICS/VS trace table, refer to the CICS/VS
Application Programmer's Reference Manual. For a description of the terms and
acronyms used in the internal control blocks, refer to DL/I DOS/VS Diagnostic
Guide.

 Entry ID Type of
Request

Reserved TCA ID
Number

Trace
Information

Bytes 0 1-2 3-4 5-7 8-15

 Resource Name R14 Contents Time of Day

Bytes 16-23 24-27 28-31

Byte Meaning

0 Trace code X'F8'indicating DL/I trace entry.
1-2 A code indicating the type of request that was made. There are three

type-of -request codes:

'S' - occurring at the completion of a scheduling call.
'D' - occurring at the completion of a data base call.
'T' - occurring at the completion of a termination call.

3-4 Reserved
5-7 The 3-byte task id field contains the CICS/VS transaction id (packed

decimal 1-99999)
8-15 An eight-byte field containing data unique to each type of request. The

details for each type of request are shown below. Two trace entries are
written in the trace table for 'S' and 'D' requests. One trace entry is written
for 'T' requests.

16-23 An eight-byte field containing the resource name. This field is blank for DL/I
24-27 A four-byte field containing an address of a DL/I control block or module.

Contents of this field are unique to each type of request. The details for
each type are shown below.

28-31 Unsigned binary integer representing time-of-day in units of 32
microseconds.

 Chapter 3. Online Programming Considerations 3-27

 Trace Information
‘S’ Type of Request:

PSBNAME = name of the PSB being scheduled
L/R = Type of data base

‘ ’ = local data base
‘+’ = remote data base
‘�’ = local and remote data base

Exit cond = see complete list of exit conditions in DL/I DOS/VS Diagnostic Guide.

‘D’ Type of Request:

Call Function Code = see list of call function codes in Chapter 2
DL/I status = see list of DL/I status codes in Chapter 2
Exit cond Exit cond = see complete list of exit conditions in DL/I DOS/VS

Diagnostic Guide

Note: If a data base call is issued when the task is not scheduled or if any DL/I
call is issued when the DL/I is not active, the data base name is replaced by
‘*ERROR**’, andthe PCB status is replaced by ‘=>’. In the first case, the DL/I
status code is X‘0808’. In the second case, theDL/I status code is X‘08FF’.

Mnemonic Exit
Cond

Meaning

SUCESS NO
PSB RESCHD
PSBERR
PSBATH
ILLEGAL
DLIDWN
NOTOPN
MPSCFL
UNDEFN

00 00
08 01
08 03
08 05
08 06
08 09
08 FF
0C 01
0C 02
XX XX

Successfully scheduled PSB not in directory (PDIR) Task
already scheduled PSB initialization error PSB not in
program ACT entry Illegal MPS scheduling call DL/I not
active Data base not opened or stopped Scheduling conflict
with MPS task Undefined return code.

3-28 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

‘T’ Type of Request:

Code Description

ABEND The task ended abnormally while scheduled

CANCEL The task was canceled by operator intervention

DEADLK The task was ended abnormally by DL/I to resolve a program isolation
scheduling deadlock

GETVIS The task was ended abnormally by DL/I due to a lack of space for
program isolation queue elements

RETERM TERM call issued when task was not scheduled

SYNCPT Termination was caused by a CICS/VS sync point call

USER User issued a DL/I TERM or ‘T ’ call

Exit cond = see complete list of exit conditions in DL/I DOS/VS Diagnostic Guide.

Register 14 Contents Field
‘S’ Type of Request

Entry Description
#1 Address of DL/I System Contents Directory (SCD)
#2 Address of CICS/VS TCA for task

‘D’ Type of Request

Entry Description
#1 Address of DL/I call parameter list
#2 Address of PCB

‘T’ Type of Request

Entry Description
#1 Address of DL/I Program Request Handler

 Chapter 3. Online Programming Considerations 3-29

3-30 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Chapter 4. Optional DL/I Programming Functions

This chapter describes several additional capabilities which DL/I makes available to
application programs:

 � Command codes
� Variable length segments

 � Multiple positioning
 � Secondary indexing
� Field level sensitivity.
� DL/I System and GSCD calls

These optional facilities provide the experienced user with more powerful and
sophisticated techniques for organizing and processing data base structures.

The advantages and disadvantages should be evaluated before making a decision
to use these features in an application, since the application program in question,
other applications, and the overall DL/I system may be affected. Multiple
positioning requires earlier planning for PSB generation; secondary indexing
requires both PSB generation and DBD generation planning and implementation,
and can have significant performance considerations; field level sensitivity requires
both PSB and DBD generation planning and implementation; and the system calls
are specific to DL/I and are not supported by IMS/VS.

You should be familiar with the information presented in chapters 1 through 3 of
this manual before attempting any of the optional facilities described in this chapter.
Additionally, for secondary indexing, you should be familiar with the related
information in DL/I DOS/VS Data Base Administration.

 Copyright IBM Corp. 1973, 2002 4-1

 Command Codes
In Chapter 1, the basic function of the segment search argument (SSA) was
defined as identifying a specific data base segment called by an application
program. The rules governing the use of SSAs by each DL/I functional call are
covered in that discussion. The rules governing the use of qualified and unqualified
SSAs in RPG II are also discussed in Chapter 1, “DL/I Application Program for
RPG II.”

The command codes are an optional addition to the SSA and provide specification
of functional variations applicable to the call function. The command codes and
their meanings are:

Code Meaning

L Under the parent already established, retrieve the last occurrence of this
segment type that satisfies the qualification statement; or, if unqualified,
retrieve the last occurrence of this segment type under its parent. If
command code ‘L’ is used at the root level, it is disregarded. When used with
ISRT calls, the command code only applies to segments with a nonunique
sequence field or with no sequence field and with RULES=(,FIRST) or
RULES=(,HERE), in which case the rule is overridden.

F Start with the first occurrence of this segment type under its parent in
attempting to satisfy this level of the call. With single positioning, it is possible
to either back up to the first occurrence of the segment type on which position
is established or to back up to the first occurrence of a segment defined
earlier in the hierarchy but in the same path as the one on which position is
established. With multiple positioning, the ‘F’ command code can be effective
in any prior path where position has been established.

When used with ISRT calls, the command code only applies to segments with
a nonunique sequence field or with no sequence field and with
RULES=(,HERE), in which case that rule is overridden.

Command code ‘F’ is disregarded if it is used at the root level or with GU or
GHU calls, in the latter case because a GU or GHU call leads to the same
result.

D For retrieval calls with multiple SSAs, move the segment which satisfies the
particular SSA in which this command code is present to the user's I/O area.
This allows the retrieval in a single call of multiple segments in a hierarchical
path. This type of call is referred to as a path call. The first through the last
segment retrieved are concatenated in the user's I/O area. Intermediate
SSAs may be present without the ‘D’ command code. If so, these segments
are not moved to the user's I/O area. The segment name in the PCB is that
of the lowest level segment retrieved, or the last level satisfied in the call in
case of a not-found condition. Higher level segments having the ‘D’
command code are placed in the user's I/O area even in the not-found case.
The ‘D’ is not necessary for the last SSA in the call, since the segment which
satisfies the last level is always moved to the user's I/O area. Processing
option P must be specified in the PSB generation for any segment for which
command code ‘D’ is to be used for retrieval calls. Note that the way in which
segments are retrieved is not affected by the ‘D’ command code. The only
effect is to move all segments with the ‘D’ command code into the I/O area.

4-2 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

For INSERT calls, the ‘D’ command code allows the insertion in a single call
of multiple segments in a hierarchical path. The first segment type in the path
to be inserted is designated by the ‘D’ command code. The SSAs for lower
level segments in the path need not have the ‘D’ command code set. This
use of the ‘D’ command code is not permitted if a logical child segment (see
DL/I DOS/VS Data Base Administration) is present in the path.

N When a REPLACE call follows a path retrieval call, it is assumed that all
segments in the path are being replaced. If any of the segments have not
been changed, and, therefore, need not be replaced, the ‘N’ command code
may be set at their levels to inform DL/I not to attempt to replace the
segments at these levels of the path.

Q The ‘Q’ command code causes DL/I to lock the segment(s) returned by the
call to prevent modification by another task.

It provides a facility which permits segments to be enqueued (locked) when
the application needs to examine a number of segments and, at the same
time, prevent any of them from being modified while the others are being
examined. The application can obtain the segments using the ‘Q’ command
code and then retrieve them again with the assurance that none of them can
be modified until the application terminates or issues a checkpoint.

In IMS, the ‘Q’ command code is always followed by a one-byte field. In
order to be compatible with this format, DL/I requires that the ‘Q’ command
code always be followed by the character ‘A’ (as:QA). This means that the
second byte after the ‘Q’ must contain another command code, a left
parenthesis, or a blank. For example, when used in combination with
command code ‘D’ either of the following forms of coding would be
acceptable:

 �QAD
 �DQA

Note: The ‘Q’ command code will be ignored by DL/I unless the segment for
which it was specified is actually returned to the user (that is: it was used in
an SSA with command code ‘D’ or in the lowest level SSA).

U The ‘U’ command code prevents the position from being moved from a
segment during a search of its hierarchical dependents. It indicates that no
occurrences of the segment type specified in the SSA (other than the
segment type upon which position is already established) under the current
occurrences of the parent segment type will be used to satisfy the call. If the
segment has a unique sequence field, use of this code is equivalent to
qualifying the SSA such that it is equal to the current value of the key field.

If position is moved to a level above that at which the ‘U’ code is issued when
a call is being satisfied, the code has no effect for the segment type whose
parent changed position. In short, if no dependents exist for the segment at
which the ‘U’ code is specified, the next higher level segment will be retrieved
to satisfy the call. While looking for dependents in this new path, the ‘U’
would then be ignored. Except for key feedback information, there will be no
indication that the segment returned is not a dependent of the segment where
position was originally held.

The ‘U’ code is especially useful when dependents that are unkeyed or
nonunique keyed segments are being processed. The position on a specific
occurrence of an unkeyed or nonunique keyed segment can be held by use of
this code.

 Chapter 4. Optional DL/I Programming Functions 4-3

The ‘U’ command is disregarded if it is used at the lowest level SSA in the
call or if the SSA is qualified. If used with command code ‘F’ or ‘L’, the ‘U’
command code is disregarded at that level and all lower levels of SSAs for
that call. Also, if the SSA or data base position is such that the command
code can not be used, it will be ignored.

V The ‘V’ command code is the same as the ‘U’ command code, except that the
command code is automatically set at all higher levels in the call. This means
that DL/I, in attempting to satisfy this call, cannot move from the existing
position at the level at which the ‘V’ is specified, unless the command code is
disregarded. See the ‘U’ command code for the condition under which it will
be disregarded.

The codes L, D, and Q or F, D, and Q may be used in the same SSA, in any order.

Figure 4-1 indicates which command codes are applicable to which functions. If
the command code is used with a function where it is not applicable, it has no
effect but no error status code is returned.

A = Applicable
D = Disregarded

Figure 4-2 on page 4-5 shows the format of the SSA with the command code.

If command codes are used the ninth character of the SSA must be an asterisk,
followed by one or more command codes. These may be used with either a
qualified or unqualified SSA.

Note: For IMS compatibility, a blank or ‘C’ appearing in position 10 with an
asterisk (*) in position 9 will also be accepted. The asterisk will be ignored and the
‘C’ or blank will act as a normal delimiter and any qualification will be accepted.

If no command code is required for a particular SSA then the ‘(’ or ‘␣’ must appear
in position 9 as described in Chapter 1, or a null (dummy) command code of one or
more dashes must begin in position 10.

Note: The null command code may be used to keep the format of SSAs
consistent throughout an application program. During execution of the program a
given SSA can then be used for different purposes at different points in the
program by replacing the null command code with the appropriate command code
characters.

Figure 4-1. Command Code Applicability by Function

Command
Code

GU
GHU

GN
GHN

GNP
GHNP

DLET

REPL

ISRT

CHKP

D
F
L
N
Q
U
V

A
D
A
D
A
A
A

A
A
A
D
A
A
A

A
A
A
D
A
A
A

D
D
D
D
D
D
D

D
D
D
A
D
D
D

A
A
A
D
D
A
A

D
D
D
D
D
D
D

4-4 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Figure 4-2. Format of SSAs with Command Codes

 Chapter 4. Optional DL/I Programming Functions 4-5

Variable Length Segments
DL/I DOS/VS can process variable length segments. This feature is intended for
use in processing variable length text of descriptive data. A complete discussion of
this feature can be found in the DL/I DOS/VS Data Base Administration.

Variable length segments are supported for HDAM and HIDAM data bases only.
The application program processes variable length segments in the same way as
fixed length segments, except that the manipulation of the length field is the
responsibility of the application programmer.

The format of the variable length segment in the user input/output area contains, in
the first 2 bytes, the binary value describing the segment size, followed by user
data. This 2-byte field describes the segment length as the user sees it, including
the size field itself. The minimum value valid in this field is 4.

Segment retrieval, including path call, follows normal retrieval rules. If all or any
part of a field is not present because the segment is shorter than the fields defined
within it, DL/I calls using SSAs qualified by these fields produce a GE status code.
After the segment has been accessed, replacement of existing data may occur with
a REPL call. If the segment length has not changed, a one-for-one replacement
takes place. If the length of the data changes, either increasing or decreasing, the
user must change the value in the segment size field. For an insert operation,
segment size is placed in the appropriate field, followed by the corresponding
quantity of data, and the ISRT call is issued. Specification in the size field at
execution time of a value less than either 4, or any length greater than 4 that was
specified as minimum during DBD generation, is ignored. In that case the segment
is written with a length equal to the greater of 4 or the specified minimum, but the
segment size field remains unaltered.

Since the segment size field is actually part of the segment, all starting positions
must be related to the first position of the variable length segment, not the start of
the user data. The existence, alignment, and content of any defined data fields
which follow the required 2-byte binary field describing the segment length are the
responsibility of the user.

4-6 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Multiple Positioning With DL/I Calls
Two alternatives are provided by DL/I regarding the current position in the data
base, namely single or multiple positioning. This option is specified during PSB
generation.

When single positioning is specified for a PCB, DL/I maintains only one position in
that data base for that PCB. This is the position that is used in attempting to
satisfy all subsequent GN (GET NEXT) calls.

If multiple positioning is specified, DL/I maintains a unique position in each
hierarchical path in the data base, that is, for different segment types under the
same parent.

With single positioning, whenever a segment is obtained, position for all dependent
segments and all segments on the same level is cleared. The position clearing
procedure is done for not-found conditions also. With multiple positioning,
whenever a segment is obtained, position for all dependent segments is cleared,
but position for segments at the same level is maintained. The control blocks in
either case are the same (multiple positioning does not require more storage).
There is no significant performance difference, even though in some cases multiple
positioning requires slightly more processing time.

DL/I attempts to satisfy GN calls from the existing position by analyzing segments
in a forward direction only. Since multiple positioning allows position to be
maintained at each level in all hierarchical paths under the current parent position
rather than at each level in only one hierarchical path, the GN call is satisfied using
the existing position established on the path of the hierarchy in which the GN call is
qualified. If the GN call is not qualified, DL/I uses the position established on a
path by the prior call.

The only effect multiple positioning has on GU (GET UNIQUE) and INSERT calls is
when these calls have missing SSAs in the hierarchical path. The missing levels
are completed by the system according to the rules for GET calls.

DELETE and REPLACE calls are not affected by single or multiple positioning.
Rather, the effect is on the GET HOLD calls, as described above, since a GET
HOLD call must be issued prior to a DELETE or REPLACE call.

The following examples compare the results of single and multiple positioning,
using the data base in Figure 4-3 on page 4-8.

 Chapter 4. Optional DL/I Programming Functions 4-7

Figure 4-3. Assumed Data Base to Illustrate Single and Multiple Positioning

4-8 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Use of Multiple Positioning
Multiple positioning may be useful for application program development in two
general types of situations.

1. Increased Data Independence: Multiple positioning allows the user to develop
application programs using GN or GNP (GET NEXT WITHIN PARENT) calls
and INSERT and GU calls with missing levels in a manner independent of the
relative order of segment types defined at the same level in the data base
structure. Hence, if performance could be improved by changing the relative
order of segment types, and all application programs that access the segment
types use multiple positioning, then the change could be made with no impact
on previously produced application programs. It should be noted, however, that
this ability depends on the proper use of the calls relevant to multiple
positioning (GN, GNP and incompletely specified INSERT and GU calls).
Multiple positioning also presents an increased responsibility for the application
programmer to keep track of all positions maintained by DL/I. Other
alternatives exist to decrease an application program's exposure to future
changes, for instance increased use of explicit call specifications when
possible. These alternatives may require additional application program coding.
Such trade-offs must be determined in the user's own environment.

2. Parallel Processing of Dependent Segment Types: When an application
program needs to process dependent segment occurrences in parallel, that is,
to switch alternately from one dependent segment type to another under a
parent, the program may specify multiple positioning. An alternative parallel
processing technique would be to give the program two or more PCBs using
the same data base. Under this alternative, the program processes the data
base as though it were two or more different data bases. This approach may
be more useful if the way a segment is updated depends on the analysis of
other subsequent segments. The use of multiple PCBs may decrease the
number of GET HOLD calls required, but may increase the number of other
calls required to maintain proper positioning in two or more data bases.
Internal control block processing also increases with each added PCB. The
decision to choose multiple positioning or multiple PCBs for application
programming must be evaluated in the user's own environment.

It should be emphasized strongly that multiple positioning uses position differently
from single positioning. If an application program changes from one option to the
other, the user must not assume the same results will be produced. An application
program must be developed for one alternative or the other.

 Chapter 4. Optional DL/I Programming Functions 4-9

Mixing Calls With and Without Segment Search Arguments and
Multiple Positioning

The multiple positioning feature is intended to be used for DL/I requests which
specify SSAs, therefore providing for parallel processing and increased data
independence. However, retrieval calls without SSAs also may be used when
multiple positioning is specified to accomplish a sequential retrieval of segment
occurrences independent of segment types, if the following considerations are
observed:

1. Certain restrictions apply when GET calls without SSAs are mixed with DL/I
requests that specify SSAs in processing a single data base record.

Example (using Figure 4-3):

CALL Result with
 Multiple Positioning

GU A(KEY=A1) Retrieves A1
GN C Retrieves C11
GN B Retrieves B11
GN B Retrieves B12
GN Unpredictable

The GN calls may not attempt to retrieve occurrences of the C segment type
because a position has already been established on this segment type using
the multiple positioning feature. The result of the call is unpredictable.

2. When segment types have previously been processed with GET calls not
specifying SSAs, a position is established on the last retrieved segment type
and its parent (hierarchical path). Multiple positions are no longer maintained.

CALL Result with
 Multiple Positioning

GU A(KEY=A1) Retrieves A1
GN C Retrieves C11
GN B Retrieves B11
GN C Retrieves C12
GN Retrieves E121
GN B Unpredictable

Multiple positions on B are no longer maintained. The result of the GN B call is
unpredictable.

It should be noted that although the mixed use of GET calls with and without SSAs
in processing a single logical data base record may be valid for some types of
parallel processing, it may decrease the degree of data independence created by
the use of multiple positioning. The implications of the two restrictions stated above
should be carefully considered before application programming is based upon
mixed use of retrieval with and without SSAs within a single data base record. If
possible, GET calls without SSAs should be limited to GNP calls to avoid potentially
inconsistent retrieval situations.

4-10 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

 Secondary Indexing
Secondary indexing is a data base structuring technique which ordinarily would
concern only the data base administrator of a DL/I installation.

However, in those installations which employ secondary indexing, two factors make
it desirable that the experienced application programmers have some familiarity
with the secondary indexing facility. First, secondary indexes are used to establish
alternate entries to physical or logical data bases for application programs. The
existence of a secondary index on a segment can affect the manner in which DL/I
processes the SSAs for that segment. Second, secondary indexes can be
processed as data bases themselves.

A complete discussion of secondary indexing can be found in the DL/I DOS/VS
Data Base Administration, that addresses the access methods and the design and
implementation (as opposed to processing) aspects of data base structures. This is
the necessary context for a discussion of secondary indexing, and the application
analyst or programmer who is interested in this facility is referred to that document
for the information. The discussion which follows simply summarizes the
characteristics of secondary indexing and describes the effect of secondary
indexing on data base processing.

An index data base is an auxiliary data base used to locate data in a HDAM, HD
randomized, or HIDAM data base. HIDAM and HD primary index always have one
INDEX data base which is called a primary index and which indexes only on the
sequence field of the root segment. All other indexes are secondary indexes, and
they may index segment types at any level of the data base structure including root
segments. HSAM, HISAM and INDEX data bases cannot be indexed.

Logical data bases can have secondary indexes, that is, secondary indexes existing
for a physical data base that participates in a logical relationship can be used when
accessing the logical data base. However, if a segment other than the root
segment of the physical data base is indexed and accessed through this index, the
application program cannot be sensitive to any logically related segments.

Unlike primary indexes as used with HIDAM, secondary indexes can:

� Index any field or combination of fields (not necessarily contiguous) in a
segment of a HIDAM, HD, or HDAM data base at any level.

� Carry, in addition to the indexed data from the indexed data base and pointers,
other source data which consists of system-maintained copies of data from the
indexed data base.

� Include user-maintained data in addition to the system-maintained data.

� Be created as sparse indexes through a system-provided function for
suppressing the creation of an index entry for certain data base records by
allowing user options and/or entries.

� Be processed as data bases themselves, in addition to serving as alternative
access paths to a data base. When processed as data bases, only GET and
REPLACE calls are allowed, with the REPLACE calls only being used to
change user-maintained data.

 Chapter 4. Optional DL/I Programming Functions 4-11

A secondary index can be used:

� To sequentially process all or a part of a data base in an order which is
different from its primary processing sequence.

� To sequentially process a data base as if its structure had been inverted, that
is, the data base appears to be a differently structured data base.

� To randomly retrieve and process single segments faster than with the primary
addressing scheme, if the secondary index provides a unique identification of
the requested segment.

� As a data base itself in order to perform scan processing in the index rather
than in the indexed data base.

� To access a segment in a data base based on data located in one of its
dependent segments in the same physical data base.

An indexed field may be referenced in an SSA, using a specific field name, that is,
the name specified in the XDFLD statement during DBD generation, with the result
that the index rather than the data base is inspected in order to satisfy a call. In
this case the secondary index must be designated as main processing sequence of
the data base. This is done by the PROCSEQ operand in the PSB generation for
an application program. Depending on the level of the indexed segment, this may
involve an automatic structure inversion of the indexed data base. The inverted
structure must be reflected in the PSB control statements. Any HDAM, HIDAM, or
HD data base can be inverted and processed using a secondary index, provided
the applicable restrictions are observed. This processing mode requires careful
design considerations. The names of the indexed fields must be defined with
appropriate DBD statements. DL/I will ensure that the user is sensitive to the index
source segment, that is, the indexed data, before allowing use of the referenced
index in an SSA.

4-12 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Field Level Sensitivity
The field level sensitivity feature makes it possible for the user to specify only those
fields in the physical definition of a given segment that are to be included in his
application's view of that segment, while remaining insensitive to the other fields in
the segment. The locations of the chosen fields within the new view of the
segment may also be different from their locations within the physical definition.
This makes it possible for different application programs to have entirely different
views of the same segment. This specification is done at PSB generation time and
causes DL/I to automatically map the chosen fields from the physical segment into
the user's view, during execution.

In addition, the following capabilities are made available through field level
sensitivity support:

� Virtual fields - it is possible to identify fields in the user's view of a segment that
don't exist in the physical segment.

� Automatic data format conversion - it is possible to have DL/I automatically
change the format of the physical data to another chosen format in the user's
view, for a particular application program.

� User field exit routine - it is possible to specify a user-written routine that will be
given control each time a given field is retrieved or stored.

� Dynamic segment expansion - it is possible to add fields to a segment in the
user's view, without reloading the data base or re-compiling other application
programs that access the segment.

 Virtual Fields
At PSB generation time, fields may be identified in a user's view of a segment that
do not exist in the physical segment. At the same time, an initial value may be
assigned to the field and/or the name of a user-written routine, that can be used to
create the field, may be specified. If both an initial value and a routine are
specified, DL/I will insert the initial value in the user's view of the field before the
routine is called during a GET procedure for the field. If a routine is specified, it will
be called on both GETs and PUTs involving the field. See “User Field Exit
Routine” later in this chapter for further detail.

Automatic Data Format Conversion
If the type of data to be maintained in a given field was defined during DBD
generation, that data can be automatically converted to another type for a particular
application program. This is accomplished through field level sensitivity support by
specifying a different data type in the SENFLD macro at PSB generation time, for
the user's view of the field. The data types that may be specified are:

‘X’ - hexadecimal
‘H’ - halfword binary
‘F’ - fullword binary
‘P’ - packed decimal
‘Z’ - zoned decimal
‘C’ - character
‘E’ - floating point (short)
‘D’ - floating point (long)
‘L’ - floating point (extended).

 Chapter 4. Optional DL/I Programming Functions 4-13

The automatic conversions that are supported are:

from To

X H, F, P, or Z
H X, F, P, or Z
F X, H, P, or Z
P X, H, F, or Z
Z X, H, F, or P
C C (length conversion only)

Conversion of data types E, D, and L is not supported.

Notes:

1. Conversion status codes
Errors detected during the process of automatic data format conversion will set
status codes as follows:

When significant digits are lost during the conversion of a numeric field
because the “to.” field was too small, status code “KA” is set.

When non-blank characters are lost during the conversion of a character field
because the “to” field was too small, status code “KB” is set.

When a “from” field character is detected as being an invalid packed decimal or
zoned decimal character, status code “KC” is set.

Status code “KD” is returned when the user has supplied a field exit routine
(see User Field Exit Routine, below) and a conversion was requested that is
not supported by DL/I.

2. For more detailed information, see DL/I DOS/VS Resource Definition and
Utilities.

User Field Exit Routine
At PSB generation time, the name of a user-written routine may be specified. This
must be the name by which the routine is cataloged in the DOS/VSE core image
library. The routine will be given control whenever the associated field is
referenced in either a GET or a PUT access.

The routine may be used to perform data type conversions not supported by DL/I,
to create values for virtual fields, or to correct a conversion problem. If the user
routine corrects the problem, it should reset the status code to blank. Setting the
code to a non-blank will result in the termination of the request with a status code
of Kx, where ‘x’ is the code set by the user routine.

Dynamic Segment Expansion
Fields may be added to a segment in the physical data base without unloading and
reloading the data base, and without re-compiling other application programs that
access the segment. This is accomplished by fulfilling certain requirements during
DBD generation and PSB generation. For a complete discussion, see the DL/I
DOS/VS Resource Definition and Utilities.

4-14 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Further Field Sensitivity Considerations
� SSAs - Field information supplied in an SSA should be in the format of the

user's view of the field. The field identified in the SSA, and any subfields that
the application is sensitive to, will be converted to the physical view before the
compare is done. Any fields overlapping either end of the field identified in the
SSA will not be converted.

� Key feedback area - The information returned in the key feedback area will be
unconverted.

DL/I System and DSCD Calls
The DL/I system calls can be used to control the DL/I system. These system calls
are supported only for CICS/VS online programs written in assembler language and
use the DL/I CALLDLI macro interface.

The GSCD (get SCD) call can be used to obtain buffer pool statistics in a batch
environment. This call returns the address of the system contents directory SCD
control block, which contains pointers to the major control blocks and entry point
addresses of the primary DL/I modules. The GSCD call may be issued in an
assembler language or PL/I program.

For more information about the DL/I system and GSCD calls, see DL/I DOS/VS
Data Base Administration.

 Chapter 4. Optional DL/I Programming Functions 4-15

4-16 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Appendix A. /INSERT Statement in RPGII

/INSERT may be used to include data structures, program pieces, etc. from source
statement libraries. The inserted text must be untranslated source and must not
itself contain /INSERT statements.

Note: For RPG II the /INSERT statement is a facility of the Translator and,
therefore, the inserted text is untranslated source. For COBOL, PL/I, and
Assembler, COPY or INCLUDE is a language facility and, therefore, the inserted
text is translated source.

sublibrary-name
Name of the sublibrary from which the insertion should be made. If no sublibrary is
specified the name is defaulted to R.

book-name
Name of sublibrary member to be inserted.

Function of the /INSERT Statement
Inserts the contents of the book specified by book-name, from the sublibrary
specified by sublibrary-name, in place of the /INSERT statement.

Figure A-1. Format of the /INSERT Statement

Position Contents

1-5 see the publication, DOS/VS RPG II Language
6 H|F|E|L|I|C|O
7-13 /INSERT
14 blank
15 sublibrary-name|blank
16 �
17-24 book-name
25-49 blank
50-74 comment
75-80 see the publication, DOS/VS RPG II Language

 Copyright IBM Corp. 1973, 2002 A-1

A-2 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

 Glossary

A number of terms and phrases used in describing DL/I
DOS/VS are either new to most readers, or have new
meanings. To improve the readability and your
understanding of this and other DL/I DOS/VS

publications, the significant and important terms are
defined in this Glossary. Some of the definitions refer
to the representative DL/I hierarchical structure shown
in Figure X-1.

Figure X-1. Representative DL/I Hierarchical Structure

ACB. (1) Application control blocks (DL/I). (2) Access
method control block (VSAM).

ACBGEN. Application control block generation.

access method control block (ACB).. A control block
that links a program to a VSAM data set.

access method services.. A multifunction utility
program that defines VSAM data sets (or files) and
allocates space for them, and lists data set records and
catalog entries.

ACT. Application control table.

addressed direct access. In systems with VSAM, the
retrieval or storage of a data record indentified by its
relative byte address, independent of the record's
location relative to the previously retrieved or stored
record. (See also keyed direct access, addressed
sequential access, keyed sequential access, and
relative byte address.)

addressed sequential access. The retrieval or
storage of a VSAM data record relative to the previously
retrieved or stored record. (See also keyed sequential

access, addressed direct access, and keyed direct
access.)

aggregate. See data aggregate.

anchor point (AP). See root anchor point.

application control blocks. The control blocks
created from the output of DBDGEN and PSBGEN,
e.g., a DMB of an internal PSB created by the ACB
utility program.

application control block generation (ACBGEN).
The process by which application control blocks are
created.

application control table (ACT). A DL/I online table
describing those CICS application programs that utilize
DL/I.

argument. (1) (ISO)1 An independent variable. (2)
(ISO)1 Any value of an independent variable . (3)
Information, such as names, constants, or variable
values included within the parentheses in a DL/I
command.

1 International Organization for Standardization, Technical Committee 97/Subcommittee 1.

 Copyright IBM Corp. 1973, 2002 X-1

attribute. A property of an entity expressing a value.
Synonymous with field.

backout. The process of removing all the data base
updates performed by an application program that has
terminated abnormally. See also dynamic backout.

batch checkpoint/restart. The facility that enables
batch processing programs to synchronize checkpoints
and to be restarted at a user-specified checkpoint.

batch processing. A processing environment in which
data base transactions requested by applications are
accumulated and then processed periodically against a
data base.

Boolean operator. (1) (ISO)1 An operator, each of the
operands of which and the result of which, take one of
two values. (2) An operator that represents
symbolically relationships, such as AND, OR, and NOT,
between entities.

business process. A defined function of a business
enterprise usually interrelated through information
requirements with other business processes. For
example, personnel management is the business
process responsible for employee welfare from pre-hire
through retirement. It is related to the accounting
business process through payroll.

CA. Control area.

call. (1) (ISO)1 The action of bringing a computer
program, a routine, or a subroutine into effect, usually
by specifying the entry conditions and jumping to an
entry point. (2) (ISO)1 In computer programming, to
execute a call. (3) The instruction in the COBOL, PL/I,
or Assembler program that requests DL/I services. For
RPG II, see RQDLI command. See also command.

control area (CA). A collection of control intervals.
Used by VSAM to distribute free space.

checkpoint. A time at which significant system
information is written on the system log, and optionally,
the system shut down.

child. Synonymous with child segment.

child segment. A segment one level below the
segment which is its parent, with a direct path back up
to the parent. Depending on the structure of the data
base, a parent may have many children; however, a
child has only one parent segment. Referring to Figure
G-1:

� All the B, D, and F segments are children of A-001.
� C-5 and C-7 are children of B-01 (and A-001) but

not children of the other B segments.
� B-02 has no children.

See also logical child and physical child.

CI. Control interval.

command. The statement in DL/I High Level
Programming Interface (HLPI) that requests services for
application programs written in COBOL or PL/I. See
also call.

command code. An optional addition to the SSA that
provides specification of a function variation applicable
to the call function.

concatenated key. The key constructed to access a
particular segment. It consists of the key fields,
including that of the root segment and successive
children down to the accessed segment.

control interval (CI). (1) A fixed length amount of
auxilary storage space in which VSAM stores records
and distributes free space. (2) The unit of information
transmitted to or from auxillary storage by VSAM.

data aggregate. A group of data elements that
describe a particular entity. Synonymous with segment.
See also data element.

data base (DB). (1) (ISO)1 A set of data, part of the
whole of another set of data, and consisting of at least
one file, that is sufficient for a given purpose or for a
given data processing system. (2) A collection of data
records comprised of one or more data sets. (3) A
collection of interrelated or independent data items
stored together without unnecessary redundancy to
serve one or more applications. See physical data
base and logical data base.

data base administration (DBA). The tasks
associated with defining the rules by which data is
accessed and stored. The typical tasks of data base
administration are outlined in DL/I DOS/VS Data Base
Administration.

data base administrator (DBA). The person in an
installation who has the responsibility (full or part time)
for technically supporting the use of DL/I.

data base description (DBD). A description of the
physical characteristics of a DL/I data base. One DBD
is generated and cataloged in a core image library for
each data base that is used in the installation. It
defines the structure, segment keys, physical
organization, names, access method, devices, etc., of
the data base.

data base integrity. The protection of data items in a
data base while they are available to any application
program. This includes the isolation of the effects of
concurrent updates to a data base by two or more
application programs.

X-2 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

data base organization.. The physical arrangment of
related data on a storage device. DL/I data base
organizations are hierarchical direct (HD) and
hierarchical sequential (HS). See hierarchical direct
organization and hierarchical sequential organization.

data base record. A collection of DL/I data elements
called segments hierarchically related to single root
segments. Referring to Figure G-1, A-001, B-01, C-5,
C-7, B-02, B-03, C-2, D, E, F, F, F constitute a data
base record.

data base reorganization. The process of unloading
and reloading a data base to optimize physical segment
adjacency, or to modify the DBD.

data communication (DC). A program that provides
terminal communications and automatic scheduling of
application programs based on terminal input. For
example, CICS/DOS/VS.

data dictionary. (1) A centralized repository of
information about data, such as its meaning,
relationship to other data, usage, and format. (2) A
program to assist in effectively planning, controlling, and
evaluating the collection, storage, and use of data. For
example, DOS/VS DB/DC Data Dictionary.

data element. The smallest unit of data that can be
referred to. Synonymous with field. See also data
aggregate.

data field. Synonymous with field.

data independence. (1) The concept of separating the
definitions of logical and physical data such that
application programs do not depend on where or how
physical units of data are stored. (2) The reduction of
application program modification in data storage
structure and access strategy.

data management block (DMB). The data
management block is created from a DBD by the
application control blocks creation and maintenance
utility, link edited, and cataloged in a core image library.
The DMB describes all physical characteristics of a data
base. Before an application program using DL/I
facilities can be run, one DMB for each data base
accessed, plus a PSB for the program itself, must be
cataloged in a core image library. The DMBs and the
associated PSB are automatically loaded into main
storage from the core image library at the beginning of
the application program execution (their loading is
controlled by the parameter information supplied to DL/I
at the beginning of program execution).

data set. A named organized collection of logically
related records. They may be organized sequentially,
as in the case of DOS/VSE SAM, or in key entry
sequence, as in the case of VSE/VSAM. Synonymous
with file.

data set group (DSG). A control block linking together
a data base with the data sets comprising this DL/I data
base.

DB. Data base.

DBA. (1) Data base administration. (2) Data base
administrator.

DBD. Data base description.

DBDGEN. Data base description generation -- the
process by which a DBD is created.

DB/DC. Data base/data communication.

DC. Data communication.

dependent segment. A DL/I segment that relies on at
least the root segment (or on another segment at a
level immediately above its own) for its full hierarchical
meaning. Synonymous with child segment.

destination parent. The physical or logical parent
segment reached by the logical child path.

device independence. The concept of writing
application programs such that they do not depend on
the physical characteristics of the device on which data
is stored.

DIB. DL/I interface block.

direct access. The retrieval or storage of a VSAM
data record independent of the record's location relative
to the previously retrieved or stored record. (See also
address direct access and keyed direct access).
Contrast with sequential access.

distributed data. The ability of DL/I application
programs to access a data base that is resident on
another processor.

distributed free space. See free space.

DL/I interface block (DIB). Variables automatically
defined in an application program using HLPI to receive
information passed to the program by DL/I during
execution. Contrast with PCB mask.

DMB. Data management block.

DSG. Data set group.

DTF. Define the file -- a control block that connect a
program to a SAM data set.

dynamic backout. A process that automatically
cancels all activities performed by an application
program that terminates abnormally.

 Glossary X-3

entity. A item about which information is stored. It has
properties that can be recorded. Information about an
entity is a record.

entry sequenced data set (ESDS). A VSAM data set
whose records are physically in the same order as they
were put in the data set. It is processed by addressed
direct access or addressed sequential access and has
no index. New records are added at the end of the
data set.

ESDE. Entry sequenced data set.

exclusive intent. The scheduling intent type that
prevents an application program from being scheduled
concurrently with another application program. See
scheduling intent.

FDB. field description block.

field. (1) (ISO)1 In a record, a specified area used for
a particular catagory of data, for example, in which a
salary rate is recorded. (2) a unique or nonuique area
(as defined during DBDGEN) within a segment that is
the smallest unit of data that can be referred to. (3) any
designated portion of a segment. (4) see also key field.

field level sensitivity. The ability of an application
program to access data at the field level. See
sensitivity.

file. (ISO)00 A set of related records treated as a unit.
See also data set.

forward. Movement in a direction from the beginning
of the data base to the end of the data base, accessing
each record in ascending root key sequence, and
accessing the dependent segments of each root
segment from top to bottom and from left to right.
Referring to Figure G-1, forward accessing of all the
segments shown would be in the following sequence:
A-001, B-01, C-5, C-7, B-02, B-03, C-2, D, E, F, F, F,
A-002.

free space. Space available in a VSAM data set for
inserting new records. The space is distributed
throughout a key sequenced data set (KSDS) or left at
the end of an entry sequenced data set (ESDS).
Synonymous with distributed free space.

free space anchor point. A fullword at the beginning
of a control interval pointing to the first free space
element in this CI.

free space element. In HD data bases, the portions of
direct access storage not occupied by DL/I segments
are called and marked as free space elements.

FSA. free space anchor point.

FSE. free space element.

HD. Hierarchical direct.

HDAM. Hierarchical direct access method.

HIDAM. Hierarchical indexed direct access method

HIDAM index. A data base that consists of logical DL/I
records, each containing an image of the key field of a
HIDAM root segment. A HIDAM index data base
consists of one VSAM KSDS (keyed sequenced data
set).

hierarchic sequence. The sequence of segment
occurrences in a data base record defined by traversing
the hierarchy from top to bottom, front to back, and left
to right.

hierarchical direct access method (HDAM). Provides
for direct access to a DL/I data base in the HD
organization. Segments are stored in VSAM control
intervals and are referenced by a relative byte address.
Root segments are accessed through a randomizing
routine. An HDAM data base consists of one VSAM
entry sequence data set (ESDS).

hierarchical direct organization. An organization of
DL/I segments of a data base that are related by direct
addresses and may be accessed through an HD
randomizing routine or an index.

hierarchical indexed direct access method
(HIDAM). Provides for indexed access to a DL/I data
base in the HD organization. Segments are stored in
VSAM control intervals and are referenced by a relative
byte address. Root segments are accessed through a
HIDAM index data base. A HIDAM data base consists
of one VSAM Entry Sequenced Data Set (ESDS) and
its associated index.

hierarchical indexed sequential access method
(HISAM). Provides for indexed access to a DL/I data
base. A HISAM data base consists of one VSAM key
sequenced data set (KSDS) and one VSAM entry
sequenced data set (ESDS).

hierarchical sequential access method (HSAM). The
segments of a DL/I HSAM physical data base record
are arranged in sequential order with the root segments
followed by the dependent segments. HSAM data
bases are accessed by the DOS/VSE sequential access
method (SAM).

hierarchical sequential organization. An organization
of DL/I segments of a data base that are related by
physical adjacency.

hierarchy. (1) An arrangement of data segments
beginning with the root segment and proceeding
downward to dependent segments. (2) A“tree”
structure.

X-4 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

high level programming interface (HLPI). A DL/I
facility providing services to application programs written
in either COBOL or PL/I Optimizer language through
commands.

HISAM. Hierarchical indexed sequential access
method.

HLPI. High level programming interface.

HS. Hierarchical sequential.

HSAM. Hierarchical sequential access method.

index data base. An ordered collection of DL/I index
entries (segments) consisting of a key and a pointer
used by VSAM to sequence and locate the records of a
key sequenced data set (KSDS). Organized as a
balanced tree of levels of index.

index data set. Synonymous with index data base.

index pointer segment. The segment that contains
the data and pointers used to index the index target
segments.

index record. A system-created collection of VSAM
index entries that are in collating sequence by the key
in each of the entries.

index segment. The segment in the index data base
that contains a pointer to the segment containing data
(the indexed segment). Synonymous with index pointer
segment.

index set. The set of VSAM index levels above the
sequence set. An entry in a record in one of these
levels contains the highest key entered in an index
record in the next lower level and a pointer that
indicates the record's physical location.

index source segment. The segment containing the
data from which the indexing segment is built.

index target segment. The segment pointed to by a
secondary index entry, that is, by an index pointer
segment.

indexed segment. A segment that is located by an
index. Synonymous with index target segment.

intersection data. Any user data in a logical child
segment that does not include the logical parent's
concatenated key.

inverted file. In information retrieval, a method of
organizing a cross-index file in which a key identifies a
record. The items pertinent to that key are indicated.

key. (1) (ISO)1 One or more characters within a set of
data that contains information about that set, including

its identification. (2) The field in a segment used to
store segment occurrences in sequential order. (3) A
field used to search for a segment. See primary key
and secondary key. (4) Synonymous with key field and
sequence field.

Note: A segment may or may not have a key, that is, a
sequence field. All root segments, except for HSAM
and simple HSAM data bases, must have keys. DL/I
ensures that multiple segments of the same type that
have keys are maintained in strict ascending sequence
by key. The key may be located anywhere within a
segment; it must be in the same location in all
segments of the same type within a data base. The
maximum sizes for keys are 236 alphameric characters
for root segments and 255 for all dependent segments.
Keys provide a convenient way to retrieve a specific
occurrence of a segment type, maintain the uniqueness
and sequential integrity of multiples of the same
segment type, and determine under which segment of a
group of multiples new dependent segments are to be
inserted. Keys should normally be prescribed for all
segment types; the exceptions being if there will never
be multiples of a particular type or if a particular
segment type will never have dependents.

key field. The field is a segment used to store
segment occurrences in sequential ascending order. A
key field is also a search field. Synonymous with key
and sequence field.

key sequenced data set (KSDS). A VSAM file whose
records are loaded in key sequence and controlled by
an index. See also keyed direct access and keyed
sequential access.

keyed direct access. The retrieval or storage of a
data record by use of an index that relates the record's
key to its physical location in the VSAM data set,
independent of the record's location relative to the
previously retrieved or stored record. See also
addressed direct access, keyed sequential access, and
addressed sequential access.

keyed sequential access. The retrieval or storage of
a VSAM data record in its collating sequence relative to
the previously retrieved or stored record, by the use of
an index that specifies the collating sequence of the
records by key. See also addressed sequential access,
keyed direct access, and keyed sequential access.

KSDS. Key sequenced data set.

level. (1) (ISO)1 The degree of subordination of an
item in a hierarchic arrangement. (2) Level is the
depth in the hierarchical structure at which a segment is
located. Roots are always the highest level and the
segments at the bottom of the structure are the lowest
level. The maximum number of levels in a DL/I data
base is 15. For purposes of documentation and
reference, the levels are numbered from 1 to 15, with

 Glossary X-5

the root segments being level number 1. Referring to
Figure G-1:

� Three levels are shown.
� The A segments (roots) are at the highest level

(Level 1).
� The C and E segments are at the lowest level

(Level 3).

local system. (1) A specific system in a multisystem
environment. Contrast with remote system. (2) The
system in a multisystem environment on which the
application program is executing. The local application
may process data from data bases located on both the
same (local) system and another (remote) system.

local view. A description of the data that an individual
business process requires. See system view.

logical. When used in reference to DL/I components,
logical means that the component is treated according
to the rules of DL/I rather than physically as it may
exist, or as it may be organized, on a physical storage
device. For example, a logical DL/I record (a root
segment and all of its dependent segments grouped)
might be contained on several physical records or
blocks on a storage device, and because of prior
insertions and deletions, the segments might be in a
different physical sequence than that by which they are
retrieved logically for the application program by DL/I.

logical child. A pointer segment that establishes an
access path between its physical parent and its logical
parent. It is a physical child of its physical parent; it is a
logical child of its logical parent. See also logical parent
and logical relationship.

logical data base. A data base composed of one or
more physical data bases representing a hierarchical
structure derived from relationships between data
segments that can be different from the physical
structure.

logical data base record. (1) A set of hierarchically
related segments of one or more segment types. As
viewed by the application program, the logical data
base record is always a hierarchic tree structure of
segments. (2) All of the segments that exist
hierarchically dependent on a given root segment, and
that root segment.

logical data structure. A hierarchic structure of
segments that is not based solely on the physical
relationship of the segments. See also logical
relationships.

logical parent. The segment a logical child points to.
A logical parent segment can also be a physical parent.
See also logical child and logical relationship.

logical relationship. A user defined path between two
segments; that is, between logical parent and logical
child, which is independent of any physical path.
Logical relationships can be defined between segments
in the same physcial data base hierarchy or in different
hierarchies.

logical twins. All occurrences of one type of logical
child with a common logical parent. Contrast with
physical twin. See also twin segment.

MPS. Multiple partition support

multiple partition support (MPS). Multiple partition
support provides a centralized data base facility to
permit multiple applications in different partitions to
access DL/I data bases concurrently. MPS follows
normal DL/I online conventions in that two programs
cannot both update the same segment type in a data
base concurrently. (With program isolation, two
programs can concurrently update the same segment
type; however, they cannot concurrently update the
same segment. See program isolation.) However, two
or more programs can retrieve from a data base while
another program updates it. If one program has
exclusive use of a data base, no other program can
update it or retrieve from it.

multiple SSA. A series of segment search arguments
(SSAs) included in a DL/I call to identify a specific
segment or path. See also segment search argument.

object segment. The segment at the lowest
hierarchical level specified in a particular command.
See also path call.

online. A operating environment in which DL/I is used
with CICS/DOS/VS (or another data communication
program) to permit end-users of application programs to
access and store information in a data base through
terminals.

option. A command keyword used to qualify the
requested function.

parent. Synonymous with parent segment.

parent segment. (1) A segment that has one or more
dependent segments. Contrast with child. (2) A parent
is the opposite of a child, or dependent segment, in that
dependent segments exist directly beneath it at lower
levels. A parent may also itself be a child. Referring to
Figure G-1:

� A-001 is the parent of all B, C, D, E, and F
segments.

� D is a parent of E, yet a child of A.

� B-02 is not a parent.

� None of the level 3 segments are parents.

X-6 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

parentage. Extablishment in a program of a particular
parent as the beginning point for the use of the get next
in parent (GNP) or get hold next in parent (GHNP)
functions. Parentage can only be established by
issuing successful GU, GHU, GN, or GHN calls, or GET
UNIQUE or GET NEXT commands.

PATH. The chain of segments within a record that
leads to the currently retrieved segment. The formal
path contains only one segment occurrence from each
level from the root down to the segment for which the
path exists. The exact path for each retrieved segment
is returned in the following fields of the PCB:

Field 2 Segment hierarchy level indicator
Field 6 Segment name feedback area
Field 7 Length of key feedback area
Field 9 Key feedback area, containing the

concatenated keys in the path.

Referring to Figure G-1:

� The path to C-5 is A-001, B-01.

� The path to C-7 is the same as the path to C-5.

� There is no path to A-002 because it is a root
segment.

path call. (1) The retrieval or insertion of multiple
segments in a hierarchical path in a single call, by using
the D command code and multiple SSAs. (2) The
retrieval, replacement, or insertion of data for multiple
segments in a hierarchical path in a single command,
by using the FROM or INTO options specifying an I/O
area for each parent segment desired. The object
segment is always retrieved, replaced, or inserted.

PCB. Program communication block.

PCB mask. A skeleton data base PCB in the
application program by which the program views a
hierarchical structure and into which DL/I returns the
results of the application's calls.

physical child. A segment type that is dependent on a
segment type defined at the next higher level in the
data base hierarchy. All segment types, except the root
segment, are physical children because each is
dependent on at least the root segment. See also child
segment.

physical data base. An ordered set of physical data
base records.

physical data base record. A physical set of
hierarchically related segments of one or more segment
types.

physical data structure. A hierarchy representing the
arrangement of segment types in a physical data base.

physical parent. A segment that has a dependent
segment type at the next lower level in the physical
data base hierarchy. See also parent.

physical segment. The smallest unit of accessible
data.

physical twins. All occurrences of a single physical
child segment type that have the same (single
occurrence) physical parent segment type. Contrast
with logical twins. See also twin segment.

PI. Program isolation

pointer. A physical or symbolic identifier of a unique
target.

position pointer. For most call functions, a position
pointer exists before, during, and after the completion of
the function. The pointer indicates the next segment in
the data base that can be retrieved sequentially. It is
normally set by the successful completion of the call
function. Referring to Figure G-1:

� If A-001 has just been retrieved, it points to B-01.

� If a new segment C-6 has just been inserted, it
points to C-7.

� If the D segment has been deleted (E will be
deleted along with it), it points to the first F
segment.

� If the last F segment has just been retrieved, it
points to A-002.

During PSB generation, it is possible to specify either
single or multiple positioning.

primary key. The data element, or combination of
data elements, within a segment that uniquely identifies
an occurrence of that segment. See key and secondary
key.

program communication block (PCB). Every data
base accessed in an application program has a PCB
associated with it. The PCB actually exists in DL/I and
its fields are accessed by the application program by
defining their names within the application program as
follows:

COBOL The PCB names are defined in the linkage
section.

PL/I The PCB names are defined under a
pointer variable.

Assembler The PCB names are defined in a DSECT.

RPG II The PCB names are automatically
generated by the translator, or may be
defined by the user.

There are nine fields in a PCB:

1. Data base name

 Glossary X-7

2. Segment hierarchy level indicator
3. DL/I results status code
4. DL/I processing options
5. Reserved for DL/I
6. Segment name feedback area
7. Length of key feedback area
8. Number of sensitive segments
9. Key feedback area.

Program Isolation (PI). A facility that isolates all data
base activity of an application program from all other
application programs active in the system until that
application program commits, by reaching a
synchronization point, that the data it has modified or
created is valid.

This concept makes it possible to dynamically backout
the data base activities of an application program that
terminates abnormally without affecting the integrity of
the data bases controlled by DL/I. It does not affect the
activity performed by other application programs
processing concurrently in the system.

program specification block (PSB). A PSB is
generated for each application program that uses DL/I
facilities. The PSB is associated with the application
program for which it was generated and contains a PCB
for each data base that is to be accessed by the
program. Once it is generated, the PSB is cataloged in
a core image library, and subsequently processed by a
utility along with the associated DBDs to produce the
updated PSB and DMBs; all of these are cataloged in a
core image library for subsequent use by the application
program during execution.

PSB. Program specification block

PSBGEN. PSB generation -- the process by which a
program specification block is created.

qualified call. A DL/I call that contains at least one
segment search argument (SSA). See also segment
search argument.

qualified segment selection. The identification of a
specific occurrence of a given segment type in a
command, by using the WHERE option in the command
for the desired segment. Contrast with qualified SSA.

qualified SSA. A qualified segment search argument
contains both a segment name that identifies the
specific segment type, and segment qualification that
identifies the unique segment within the type for which
the call function is to be performed. See also segment
search argument and multiple SSA.

RAP. Root anchor point.

RBA. Relative byte address.

read-only intent. The scheduling intent type that
allows a program to be scheduled with any number of
other programs except those with exclusive intent. No
updating occurs. See scheduling intent.

record. A data base record is made up of at least a
unique root segment, and all of its dependent
segments. See data base record.

relative byte address (RBA). The displacement of a
stored record or control interval from the beginning of
the storage space allocated to the VSAM data set to
which it belongs.

remote system. In a multisystem environment, the
system containing the data base that is being used by
an application program resident on another (local)
system Contrast with local system.

root anchor point (RAP). A DL/I pointer in an HDAM
control interval that points to a root segment or a chain
of root segments.

root segment. The highest level (level 1) segment in a
record. A root segment must have a key unless the
organization is HSAM or simple HSAM. The sequence
of the root segments constitutes the fundamental
sequence of the data base. There can be only one root
segment per record. Dependent segments cannot exist
without a parent root segment but a root segment can
exist without any dependent segments.

RQDLI COMMAND. The instruction in the RPG II
program used to request DL/I services.

scheduling intent. An application program attribute
defined in the PSB that specifies how the program
should be scheduled if multiple programs are
contending for scheduling. See exclusive intent,
read-only intent, and update intent.

search field. In a given DL/I call, a field that is
referred to by one or more segment search arguments
(SSAs).

secondary index. Secondary indexes can be used to
establish alternate entries to physical or logical data
bases for application programs. They can also be
processed as data bases themselves. See also
secondary index data base.

secondary index data base. An index used to
establish accessibility to a physical or logical data base
by a path different from the one provided by the data
base definition. It contains index pointer segments.

secondary key. A data element, or combination of
data elements, within a segment that identifies -- and is
used to locate -- those occurrences of the segment that
have a property named by the key. See key and
primary key.

X-8 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

segment. A segment is a group of similar or related
data that can be accessed by the application program
with one I/O function call. There may be a number of
segments of the same type within a record.

segment name. A segment name is assigned to each
segment type. Segment names for the different
segment types must be unique within a data base. The
segment name is used by the application programmer
when constructing a qualified or unqualified SSA prior to
issuing a call for a specific segment. Synonymous with
segment type.

segment occurrence. One instance of a set of similar
segments.

segment search argument (SSA). Describes the
segment type, or specific segment within a segment
type, that is to be operated on by a DL/I call. See also
multiple SSA, qualified SSA, and unqualified SSA.

segment selection. The specifying of parent and
object segments by name in a command. Selection
may be either qualified or unqualified. Contrast with
segment search argument.

segment type. A user-defined category of data.
Referring to Figure G-1, there are six different types of
segments; A through F.

Different segment types may have different lengths, but
within each single type, all segments must be the same
length (unless variable length segments have been
specified by the DBA). Synonymous with segment
name.

sensitivity. (1) A DL/I capability that ensures that only
data segments or fields predefined as
C<DC<Dsensitive'' are available for use by a particular
application program. The sensitivity concept also
provides a degree of control over data security,
inasmuch as users can be prevented from accessing
particular segments or fields from a logical data base.
(2) Sensitivity to the various segments and fields that
constitute a data base is controlled, on a
program-by-program basis, when the PSB for each
program is generated. For example, a program is said
to be sensitive to a segment type when it can access
that segment type. When a program is not sensitive to
a particular segment type, it appears to the program as
if that segment type does not exist at all in the data
base. Segment sensitivity applies to types of segments,
not to specific segments within a type, and to all
segment types in the path to the lowest level sensitive
segment type.

sequence field. Synonymous with Key field.

sequence set. The lowest level of a VSAM index. It
immediately controls the order of records in a key

sequenced data set (KSDS). A sequence set entry
contains the key of the highest keyed record stored in a
control interval of the data set and a pointer to the
control interval's physical location. A sequence set
record also contains a pointer to the physical location of
each free control interval in the fan-out of the record.

sequential processing. Processing or searching
through the segments in a data base in a forward
direction (see also forward).

simple HISAM. A hierarchical indexed sequential
access method data base containing only one segment
type.

source segment. A segment containing the data used
to construct the secondary index pointer segment. See
also secondary index data base.

SSA. Segment Search Argument

status code. Each DL/I request for service returns a
status code that reflects the exact results of the
operation. The first operation that a program should
perform immediately following a DL/I request is to test
the status code to ensure that the function requested
was successful. Following a command, the status code
is returned in the DIB at the label DIBSTAT. Following
a call, the status code is returned in field 3 of the PCB.

sync(h) point. Synonymous with synchronization
point.

synchronization point. A logical point in time during
the execution of an application program where the
changes made to the data bases by the program are
committed and will not be backed out. Synonymous
with sync point or synch point.

A synchronization point is created by:

� a DL/I CHECKPOINT command or CHKP call
� a DL/I TERMINATE command or TERM call
� a CICS/VS synch point request
� an end of task (online) or an end of program

(MPS-batch).

system view. A conceptual data structure that
integrates the individual data structures associated with
local views into an optimum arrangement for physical
implimentation as a data base. See local view.

transaction. A specific set of input data that triggers
the execution of a specific process or job.

twin segments. All child segments of the same
segment type that have a particular instance of the
same parent type. See also physical twins and logical
twins.

twins. Synonymous with twin segments.

 Glossary X-9

unqualified call. A DL/I call that does not contain a
segment search argument.

unqualified segment selection. The identification of a
given segment type in a command without specifying a
particular occurrence of that segment type (without
using the WHERE option). As a general rule,
unqualified segment selection retrieves the first
occurrence of the specified segment type. Contrast
with unqualified SSA.

unqualified SSA. An unqualified SSA contains only a
segment name that identifies the specific type of
segment for which the I/O function is to be performed.
As a general rule, the use of an unqualified SSA
retrieves the first occurrence of the specified type of
segment. See also segment search argument.

update intent. The scheduling intent type that permits
application programs to be scheduled with any number
of other programs except those with exclusive intent.
See scheduling intent.

X-10 DL/I DOS/VS Application Programming: CALL and RQDLI Interfaces

Communicating Your Comments to IBM

IBM Data Language/I Disk Operating System/
Virtual Storage (DL/I DOS/VS)
Application Programming:
CALL and RQDLI Interfaces
Version 1 Release 7

Publication No. SH12-5411-06

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of the book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF form and either send it
postage-paid in the United States, or directly to:

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

� If you prefer to send comments by FAX, use this number:

 – (Germany): 07031-16-3456
– (Other countries): (+49)+7031-16-3456

� If you prefer to send comments electronically, use this network ID:

INTERNET: s390id@de.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

IBM Data Language/I Disk Operating System/
Virtual Storage (DL/I DOS/VS)
Application Programming:
CALL and RQDLI Interfaces
Version 1 Release 7

Publication No. SH12-5411-06

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? � Yes � No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction � � � � �

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SH12-5411-06 IBM

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

Fold and Tape Please do not staple Fold and Tape

SH12-5411-06

IBM

File Number: S370/S390-50
Program Number: 5746-XX1

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH12-5411-�6

	Contents
	Figures
	Notices
	Trademarks and Service Marks.

	Preface
	Related Publications:

	Summary of Changes
	Chapter 1. DL/I Application Programming
	Data Base Concepts
	Data Base Characteristics

	Preparing To Use DL/I
	Building a Data Base Description (DBD)
	Building a Program Specification Block (PSB)
	Other Preparatory Steps
	Coding Conventions

	DL/I Application Program
	Entry To An Application Program
	Terminating the Application Program
	Program Communication Block (PCB) Mask
	DL/I Batch Program Call
	DL/I Application Program for RPG II
	RQDLI Commands For DB Access

	Statements for SSA Specification
	SSA Specification in RPG-Like Format: (USSA and QSSA statement)
	USSA Statement
	QSSA Statement

	SSALIST-Option
	ELIST-Command

	DB (Data Base) File Definition
	Data Base Processing
	Data Base Loading
	Data Base Retrievals
	Data Base Updates
	Data Base Deletions
	Data Base Insertions
	Data Base Checkpoint

	Program Examples
	COBOL Batch Program Structure
	COBOL MPS Restart Example
	PL/I Batch Program Structure
	PL/I MPS Restart Example
	RPG II Batch Program Structure

	Assembler Language Batch Program Structure
	Assembler MPS Batch Example

	Restrictions
	On COMREG Use
	On Overlay Programs
	Set Exit Abnormal (STXIT AB) Linkage
	Application Language Use in Batch or MPS Batch Programs
	Mixing Batch PL/I and Other Languages Using DL/I
	Boolean Operators and SSA Length

	Job Control Statements for Batch and MPS Batch DL/I Application Programs
	Compile and Link-Edit
	Translator Output
	Batch and MPS Batch Application Program Execution
	DL/I Parameter Statement
	UPSI Byte Settings for Batch DL/I
	UPSI Byte Settings for MPS
	Job Control Statements

	Chapter 2. DL/I Programming Reference Information
	Definitions
	Call Functions
	GU (Get Unique)/GHU (Get Hold Unique)
	GN (Get Next)/GHN (Get Hold Next)
	GNP (Get Next Within Parent)/GHNP (Get Hold Next Within Parent)
	DLET (Delete)
	REPL (Replace, Update, or Rewrite)
	ISRT (Load A New Data Base)
	ISRT (Add To An Existing Data Base)

	CHKP (Checkpoint)
	MPS Restart Facility
	Restrictions on Using VSE Checkpoint/Restart

	General Programming Techniques and Suggestions
	Problem Determination
	Initialization Errors
	Execution Errors
	Status Code Summary
	Abnormal Termination Messages

	Chapter 3. Online Programming Considerations
	Obtaining the Address of the PCB: The Scheduling Call
	Releasing a PSB in a CICS/VS Application Program: The Termination Call
	Checking the Response to a DL/I Call in a CICS/VS Environment
	MPS (Multiple Partition Support) Considerations

	Issuing the DL/I Call in a CICS/VS Environment
	Online Application Coding Examples
	DL/I Requests in an ANS COBOL Program
	DL/I Requests in a PL/I Program
	DL/I Requests in an Assembler Language Program

	RQDLI Commands in an RPG II Program
	DL/I Application Program Coding in a CICS/VS Command Language Environment

	CICS/VS Trace Table Entries for DL/I DOS/VS
	Trace Information
	Register 14 Contents Field

	Chapter 4. Optional DL/I Programming Functions
	Command Codes
	Variable Length Segments
	Multiple Positioning With DL/I Calls
	Use of Multiple Positioning
	Mixing Calls With and Without Segment Search Arguments and Multiple Positioning

	Secondary Indexing
	Field Level Sensitivity
	Virtual Fields
	Automatic Data Format Conversion
	User Field Exit Routine
	Dynamic Segment Expansion
	Further Field Sensitivity Considerations

	DL/I System and DSCD Calls

	Appendix A. /INSERT Statement in RPGII
	Glossary

