IBM Data Language/l Disk Operating System/
Virtual Storage (DL/I DOS/VS)

Application Programming:
High Level Programming Interface

Version I Release 7

SH24-5009-02

IBM Data Language/l Disk Operating System/
Virtual Storage (DL/I DOS/VS)

Application Programming:
High Level Programming Interface

Version I Release 7

SH24-5009-02

— Note !

Before using this information and the product it supports, be sure to read the general information under FNotices’]

Third Edition (January 2003)

This edition applies to Version 1 Release 7 of IBM Data Language/l Disk Operating System/Virtual Storage (DL/I DOS/VS), and to all
subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Deutschland Entwicklung GmbH
Department 3248

Schoenaicher Strasse 220
D-71032 Boeblingen

Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s390id@de.ibm.com
FAX (Germany): 07031-16-3456
FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 2003. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices e Vi
Trademarks and Service Marks Vii
Preface iX
Related Publications: X
Summary of Changes Xi
Chapter 1. DL/I, Data Bases and the Application Programmer 1-1
Introduction 1-1
Getting Acquainted With DL/l and Data Bases 1-1
The Segment - the DL/I Unit of Information 1-1
Functions DL/I Performs on the Segment 1-2
The Data Base Hierarchy—Building on the Segment 1-2
Views of the Data Base 1-6
Preparingto Use DL/l 1-7
Operating Environments 1-7
Getting Acquainted With the DL/I High Level Programming Interface 1-9
The DL/I Commands for Performing the Functions 1-9
The DL/l Response to the Commands 1-13
Chapter 2. DL/I High Level Programming Interface 2-1
What itis 2-1
Coding Conventions 2-1
Elements of the Command Language 2-3
Syntax Description 2-3
1. Trigger—EXECUTE DLI 2-4
2. Function to be Performed 2-4
3. Specifyingthe PCB 2-5
4. Retrieving Key Feedback 2-5
5. Selection of Segments L 2-6
6. Command-Delimiter 2-11
7. Variable Length Segments (HDAM and HIDAM Data Bases Only) 2-11
8. FIRST and LAST Options 2-12
9. LOCKED e 2-14
10. OFFSET 2-15
11. Specifyingthe PSB 2-16
12. Specifying the Checkpointid 2-16
Syntax of the Command Language 2-16
Chapter 3. DL/l Application Program 3-1
Planning Your Program 3-1
A Checklist 3-1
General Considerations and Restrictions 3-1
Restrictions 3-6
Online Considerations and Restrictions 3-7
MPS Batch Considerations and Restrictions 3-7
DL/l Programming Techniques and Suggestions 3-8
Error Checking 3-8
Writing Your Program 3-8

© Copyright IBM Corp. 1980, 2003 i

iv

Entry to Batch and MPS Batch Programs 3-9

DIB 3-9
Status Codes 3-10
Using DIBKFBL 3-10
Obtaining the PSB (Online Only) 3-10
Releasing the PSB (Online Only) 3-10
Terminating the Program 3-11
Techniques and Suggestions 3-11
MPS Batch Considerations 3-12
Programming Examples 3-13
Executing Your Program 3-33
Translation 3-33
Compilation and Link-editing 3-33
Execution 3-36
Debugging Your Program 3-43
Problem Determination, 3-43
Execution Time Debugging Aids 3-44
Other Available DL/I Functions 3-48
Multiple Positioning 3-48
Chapter 4. DL/l HLPI Command Reference 4-1
DL/ HLPI Functions 4-1
GET NEXT 4-2
GET NEXT IN PARENT 4-4
GET UNIQUE 4-6
INSERT 4-7
REPLACE 4-10
DELETE 4-11
LOAD e 4-12
CHECKPOINT 4-14
Batch 4-14
MPS Batch and Online 4-14
MPS Batch Using MPS Restart 4-15
Restrictions on Using VSE Checkpoint/Restart 4-15
SCHEDULE 4-17
TERMINATE e 4-18
Glossary X-1

DL/I DOS/VS Application Programing: High Level Programming Interface

Figures

1-1.
1-2.

1-4.
2-1.
2-2.
2-3.

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.

3-8.

3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
3-15.

3-16.
X-1.

© Copyright IBM Corp. 1980, 2003

Physical Record - Segment Relationship (Example 1)
Physical Record - Segment Relationship (Example 2)
Expanded Data Base Structure
The DL/l Environments
Data Base to lllustrate AND and OR Example
Data Base Portion to lllustrate Coding Boolean Operators
Data Base to lllustrate FIRST and LAST examples
Syntax Summary Chart
Logical Data Base Record Structure
Inventory and Customer DataBases
PL/I Batch Program Using LOAD Command
COBOL Batch Program Using LOAD Command
PL/I Online Program Using GET Commands
COBOL Online Program Using GET Commands
PL/I Online Program Using INSERT, REPLACE, and DELETE
Commands
COBOL Online Program Using INSERT, REPLACE, and DELETE
Commands
PL/I Online Program Using SCHEDULE, TERMINATE, and
CHECKPOINT Commands
COBOL Online Program Using SCHEDULE, TERMINATE, and
CHECKPOINT Commands
COBOL Online HANDLE ABEND Program
PL/I Online HANDLE ABEND Program
COBOL Example of a Combined Checkpoint in an MPS Batch
Program Using MPS Restart
PL/I Example of Combined Checkpoint in an MPS Batch Program
Using MPS Restart
DL/I Status Codes
Assumed Data Base to lllustrate Single and Multiple Positioning
Representative DL/I Hierarchical Structure

Vi DL/ DOSIVS Application Programing: High Level Programming Interface

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement. IBM accepts no
responsibility for the content or use of non-IBM Web sites specifically mentioned in
this publication or accessed through an IBM Web site that is mentioned in this
publication.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Deutschland Informationssysteme GmbH
Department 0215

Pascal Str. 100

70569 Stuttgart

Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Trademarks and Service Marks

The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

CICS
IBM

© Copyright IBM Corp. 1980, 2003 Vil

viii DL/ DOS/VS Application Programing: High Level Programming Interface

Preface

This book provides information needed for the planning, writing, debugging, and
execution of data base application programs using the functions and facilities of
DL/I DOS/VS and the DL/I High Level Programming Interface, in conjunction with
the COBOL or PL/I Optimizer language. It is directed to thos writing such programs
and to those supporting such applications as part of the data base administration
and system programming functions.

DL/I DOS/VS is referred to in this publication as DL/I. The DL/l High Level
Programming Interface is abbreviated as DL/I HLPI.

It is assumed that you are familiar with DL/l to the extent that it is described in the
DL/I DOS/VS General Information manual. Because you have to use either
COBOL or PL/I Optimizer code with DL/I HLPI commands to make an executable
program, it is assumed that you are familiar with one of these languages. Only the
features of COBOL and PL/I that apply directly to DL/l applications are described in
the text and examples in this book.

Use of the DL/I High Level Programming Interface requires that the CICS/VS EXEC
translator be used for translation of the interface commands. Because of this
translation requirement, you must be familiar with CICS/VS to the extent of being
able to set up a job step to execute the translator.

If you are planning an online application, you must be familiar with CICS/VS.

This book is a guide while you are a new user of DL/l and the DL/l High Level
Programming Interface. Once you are proficient in their use, or if you are already
an experienced user of DL/I, it can be used as an application programming
reference manual. To accomplish these purposes, the book is divided into four
chapters.

e Chapter 1: DL/I, Data Bases, and the Application Programmer. This chapter
gives you an overview of DL/I and data bases, and an introduction to the DL/I
High Level Programming Interface and the way in which you use it to perform
the DL/I functions.

e Chapter 2: DL/I High Level Programming Interface. This chapter describes
the syntax of the DL/I High Level Programming Interface in detail. You should
read this chapter to familiarize yourself with the formats and functions before
you see them being used in the later chapters.

e Chapter 3: DL/I Application Program. This chapter guides you through the
process of planning, writing, executing, and debugging a DL/I application
program using the DL/l High Level Programming Interface. There are also
programming examples, in each host language, showing how the commands
are used in a sample application program.

e Chapter 4: DL/l HLPI Command Reference. This chapter consists of
reference material that you will use as you write application programs. It lists
each of the DL/I HLPI commands with all of the information you need to use
and code them.

A number of terms and phrases used in this guide to describe or explain DL/I and
DL/l data bases may be new to you or have new meanings in this context. In

© Copyright IBM Corp. 1980, 2003 iX

general, they will be explained the first time they are used. The most important
terms are defined in the glossary at the back of the book.

Related Publications:
DL/I VSE Release Guide, SC33-6211-05

DL/I DOS/VS Release Guide, SC33-6211-04
DL/l DOS/VS Data Base Administration, SH24-5011
DL/I DOS/VS Resource Definition and Utilities, SH24-5021
DL/I DOS/VS Interactive Resource Definition and Utilities, SH24-5029.
DL/I DOS/VS Recovery/Restart Guide, SH24-5030.
Other DL/l publications:
DL/I DOS/VS General Information, GH20-1246
DL/l DOS/VS Library Guide and Master Index, GH24-5008

DL/l DOS/VS Application Programming: High Level Programming Interface,
SH24-5009

DL/l DOS/VS Application Programming: CALL and RQDLI Interface,
SH12-5411

DL/I DOS/VS Guide for New Users, SH24-5001
DL/I DOS/VS Messages and Codes, SH12-5414
DL/I DOS/VS Diagnostic Guide, SH24-5002

X DL/I DOS/VS Application Programing: High Level Programming Interface

Summary of Changes

Summary of Changes
for SH24-5009-02
Version 1.7

This edition has been revised to include information concerning the use of the MPS
Restart Facility, Boolean AND and OR operators with the WHERE clause, and
inclusion of the Key Feedback option. Various additions, corrections, and
improvements are also included.

Summary of Changes
for SH24-509-01
Version 1.6

This edition has been revised to include changes in the title of this manual and in
the titles of other DL/I DOS/VS manuals produced for Version 1.6 of DL/I DOS/VS.
Miscellaneous changes also have been made for clarification of existing
information.

© Copyright IBM Corp. 1980, 2003 Xi

Xil DL/ DOSIVS Application Programing: High Level Programming Interface

Chapter 1. DL/I, Data Bases and the Application Programmer

This chapter gives you an overview of DL/l and data bases, and an introduction
to the DL/I High Level Programming Interface. If you have never used either
DL/l or the DL/I HLPI before, you should read this entire chapter. If you are
already an experienced DL/l user you can skim the first section, but you should
read the material in the second section before going further in the book. The
contents of the two sections are summarized here:

e Getting Acquainted With DL/I and Data Bases

DL/l data bases and their characteristics
functions that can be performed on data bases
views of the data base

DL/l operating environments

¢ Getting Acquainted With the DL/I High Level Programming Interface

— commands for performing the DL/I functions
— DL/I response to the commands

Introduction

Data Language/l Disk Operating System/Virtual Storage (DL/I DOS/VS) is a data
management control system developed to help you create, access, and maintain
large common data bases. You can use it in conjunction with the IBM Customer
Information Control System/Virtual Storage (CICS/VS) to create an online data base
environment.

The DL/l High Level Programming Interface (DL/I HLPI) is a simple, easy-to-use
method of performing all of the functions necessary for processing DL/l data bases
in a batch, multiple-partition support (MPS) batch, or CICS/VS online environment.
It consists of a series of commands similar to those in the CICS/VS command
language. You can code these commands as needed in application programs
written in either the COBOL or PL/I Optimizer language.

Getting Acquainted With DL/l and Data Bases

The Segment - the DL/l Unit of Information

The primary unit of data in a DL/I data base is called a segment. There may be a
number of different types of segments in a data base. In order for application
programs to distinguish between them, each segment type is assigned a name.
There may be any number of occurrences of a particular segment type stored in
the data base.

Most segment types are composed of one or more data fields that are related and
are normally processed together. A field can contain up to 256 bytes of data. The

© Copyright IBM Corp. 1980, 2003 1-1

Functions DL/I

The Data Base

maximum size of a segment can vary from 4068 bytes to 32766 bytes, depending
on the DL/l access method used.

Performs on the Segment

There are several functions that DL/l must be able to perform for you as your
application program processes information stored in data bases.

Loading

Before your application program can use a data base, data must be loaded into it in
the form of segments. This is done by executing a batch application program
whose only function is the initial loading of segments into the data base.

Retrieving
Once segments have been loaded, you can retrieve them by issuing one of three
different commands, called GET commands.

Inserting

It will often be necessary to add data to an existing data base by adding segments.
DL/l takes segments from the I/O areas that you specify in your program and
places them in the data base by following the commands you code in your
program, or by following rules established when the data base was defined.

Replacing
You may also need to update the data in a data base. DL/l takes the segments
from 1/O areas and uses them to replace segments stored in the data base.

Deleting
You will also need to delete segments from the data base when the information
they contain becomes obsolete or incorrect.

Checkpointing

When your application program reaches a point during its execution where you
want to make sure that all changes made to that point have been physically
entered in the data base, you will issue a command to take a checkpoint.

Scheduling

When operating in an online environment, you will normally be sharing data bases
with other online applications. In order to control simultaneous accesses to the
data bases, you will need to notify DL/I of your intention to use them by issuing a
scheduling command.

Terminating
When operating in an online environment, you will need to notify DL/I when you
have finished using a data base by issuing a terminating command.

Hierarchy—Building on the Segment

When working with a conventional file, you must be fully aware of the way in which
it is organized, the format of the records it contains, and of the physical
characteristics of the file (such as block size, record length, access method used,
and the location of the file). You must tailor your program to these formats and
characteristics. If any change is made to them, your program may also have to be
altered.

1-2 DLI DOSIVS Application Programing: High Level Programming Interface

On the other hand, in DL/I data bases:
¢ The data fields are grouped into segments.

e The segments are grouped into data base records. A data base record can be
made up of a number of different segment types.

e Data base records are grouped into a data base.

You need to be aware of the format of only those fields and segments that store
the data needed by your particular application. You do not need to know the
physical characteristics of the data base or where it is located. Most changes
made to the physical characteristics do not affect you, and your program does not
need to be altered.

The segments making up a DL/l data base record can be viewed as being
arranged into a hierarchical data structure. The upper part of Figure 1-1 shows a
physical record in a conventional file with the data elements labeled NAME,
ADDRESS, and PAYROLL. The same elements (segments) are shown in the
lower portion of the figure as they might be viewed by DL/l in the form of a
hierarchical data structure. The way the segments are physically stored may differ
significantly from the way the data is viewed as a data structure.

VSE DATA MANAGEMENT
PHYSICAL RECORD

NAME ADDRESS PAYROLL

DL/I
LOGICAL SEGMENTS

LENGTH = 12 BYTES

ADDRESS PAYROLL

LENGTH = 22 BYTES LENGTH = 5 BYTES

Figure 1-1. Physical Record - Segment Relationship (Example 1)

Another example of a conventional physical record is shown in
Again, the lower part of the figure illustrates a hierarchical data structure
that DL/I might make available to you. SKILL, NAME, EXPERIEN, and EDUCAT
are the segments that make up the data base records of the skills inventory data
base. Although not shown in [Figure 1-2 on page 1-4} there may be multiple

Chapter 1. DL/I, Data Bases and the Application Programmer 1-3

1-4

EXPERIEN and EDUCAT segments for each name, many names for each skill, and
many skills. |Figure 1-3 on page 1-5|illustrates this with a typical data base record
from the skills inventory data base. Notice that, because many employees may
have the same skill, multiple NAME segments exist under the first SKILL segment.
Similarly, multiple EDUCAT segments exist under each NAME segment, and
multiple EXPERIEN segments exist under two of the NAME segments.

VSE DATA MANAGEMENT
PHYSICAL RECORD

SKILL NAME EXPERIENCE EDUCATION

DL/I

LOGICAL SEGMENTS

Root First

Segment SKILL Level
Second

NAME Level g:zz
| Record
Third
EXPERIENCE EDUCATION Level)

Figure 1-2. Physical Record - Segment Relationship (Example 2)

DL/I DOS/VS Application Programing: High Level Programming Interface

13

12
EXPERIENCE

p7
10
SKILL
SKILL 1 ¢l ERk)
(ARTIST)
7%
Yy NAME
s NAME | (SMITH)
NAME (JONES)
(ADAMS)
20 23
16 M9 2 26
15 18 21 25
EDUCATION EXPERTENCE EDUCATION EDUCATION

Figure 1-3. Expanded Data Base Structure

The following summary of the characteristics of DL/l data bases introduces many of
the terms used in the rest of this guide:

Looking at |Figure 1-2 on page 1-4| you can see that all of the segments in the
data structure illustrated there seem to be dependent on one segment shown at
the top of the hierarchy. This segment (the SKILL segment) is called a root
segment.

A data base record is the hierarchical structure made up of all segments
dependent on the single root segment. There can be only one root segment
type in a data base record, and it can have only one occurrence in that data
base record. A data base record can consist of one to 255 segment types;
each, other than the root segment, having zero to n occurrences, as shown in
Figure 1-3 A data base record can have a maximum of 15 hierarchical levels.

[Figure 1-2 on page 1-4] shows three levels of hierarchy: SKILL is at the first
level, NAME at the second, and EXPERIEN and EDUCAT at the third.

A data base consists of one to n data base records, all having the same root
segment type.

The root segment always contains a key field (except for data bases using the
HSAM or simple HSAM organization). The value in the key field controls the
position of the data base record within the data base.

Segments lower in level in the hierarchy can also have key fields. These keys
may be used to sequence multiple occurrences of the same segment type
within a data base record.

Segments at hierarchical levels below the root segment are said to be
dependent on those above. In[Figure 1-2 on page 1-4, NAME is dependent
on the root segment SKILL. SKILL is the parent of NAME. NAME is a child of

Chapter 1. DL/I, Data Bases and the Application Programmer 1-5

SKILL. EXPERIEN and EDUCAT are dependent children of NAME. NAME is
the parent of both of them. NAME, EXPERIEN, and EDUCAT are all
dependent on SKILL. There can be zero to n dependent child segments per
parent.

e The segments in a hierarchical structure are always referenced in the
hierarchical sequence of top-to-bottom, left-to-right, front-to-back, as indicated
by the numbers 10 through 27 in [Figure 1-3 on page 1-5|

Views of the Data Base

1-6

Your application program may not need to refer to all of the segment types that
make up the hierarchical structure of a particular data base. Also, for security
reasons, it may be advisable to restrict your program's access to certain segment
types. In other words, your program needs only a particular view of the data base.
A view of a data base is the portion of the total hierarchical structure to which your
program has access. A data base view consists of only those segments and fields
to which your program is sensitive, as though the rest of the data base does not
exist.

Defining the views of each data base is a function of Data Base Administration
(DBA).

PCBs

A view of a data base is represented by a Program Communication Block (PCB).
Every data base accessed by your program has a PCB associated with it. You can
specify which PCB or view of the data base DL/l is to use in each data base
command. Other programs can use the same views of the data base.

PSBs

PCBs are grouped within a Program Specification Block (PSB) generated by DBA.

There is at least one PSB generated and cataloged in a core image library for each
application program that uses DL/I. You must tell DL/I which PSB your program is

to use before executing any data base commands.

DBDs

The information describing a data base record—the relationships between
segments, the physical auxiliary storage device used, and the access method used
by DL/I—is stored apart from both the data base and the application program in a
data base description (DBD) block. The DBD is a control block that is normally
generated once for each data base, and stored in a core image library.

DL/I DOS/VS Application Programing: High Level Programming Interface

Preparing to Use DL/I
DL/l is a program product that acts as an intermediary between your application
program and a data base or bases stored on auxiliary storage devices. [Figure 1-4
shows the environments in which DL/I operates; and the relationships
between DL/I, the data base, and your program.

Before your program can execute in conjunction with DL/I, several steps must be
performed by DBA:

¢ Generate DBDs for the data bases to be used
* Generate PSBs for your program

e Generate DL/I control blocks

e Prepare VSE/VSAM files

¢ Load the data bases to be used.

Now, the application program you have written in COBOL or PL/I can be translated,
compiled, link-edited, cataloged into a core image library, and executed.

Operating Environments
DL/l supports three operating environments: batch, multiple-partition support (MPS)
batch, and online. The differences in the ways in which you plan, write, and
execute your application program, depending on which environment it will be
executed in, are described in Chapter 3.

[Figure 1-4 on page 1-8|illustrates the differences between the three DL/I
application program environments. The DIB shown in the figure is a collection of
variables in your program into which DL/I returns status information.

Chapter 1. DL/I, Data Bases and the Application Programmer 1-7

DL/I Batch Environment DL/I CICS/VS Online Environment

VSE Partition VSE VSE Partition VSE
Core Image Core Image
Library CICS/vS Library
PSB
PSB PSB
DL/1 DL/1 5
Batch DL/1 Online DB | DL/1
Control Data Base Control Data Base
A A
y 4 v v
DIB [DIB|| | [DIB]| | [DIB]
Application CICS/VS| |CICS/VS| |CICS/VS
Program TASK TASK TASK

DL/I MPS Batch Environment

VSE Partition VSE Partition VSE Partition VSE
Core Image
CICS/VS Libraryg
4 PSB
PSB
DL/I DL/I DL/I
MPS Batch MPS Batch [#----------- -%» Online DL/1
Control Control Control Data Base
E < >
A \\\\ y ////, A
y Y v v v
DIB DIB
Application Application M?#ér M?k{ér CICS/VS
Program Program TASK TASK TASK

Figure 1-4. The DL/I Environments

1-8 DL/ DOS/VS Application Programing: High Level Programming Interface

Getting Acquainted With the DL/I High Level Programming Interface

The DL/l HLPI is your means of performing the DL/ functions that were described
earlier. It provides you with a set of easily coded commands that provide all of the
information that DL/l needs in order to execute those functions. This section shows
you what the commands look like, and how to use them in your program. More
detailed information on all aspects of the DL/I HLPI is given in Chapter 2 for your
use once you are familiar with the basic concepts.

The DL/I Commands for Performing the Functions

The DL/l HLPI commands are similar to those in the CICS/VS command language.
You code them in your application program at the points where you need to
perform their functions.

The syntax of the commands looks like this:
trigger function [options and arguments] command-delimiter

A unique identifier is required for DL/I to recognize that you have coded a
command. This identifier is called a trigger. The function portion of the command
tells DL/I what you want it to do. The information DL/I needs to perform that
function is provided in the form of options and arguments. The command-delimiter
signals the end of the command. An example of a command, as used in a PL/|
program, is:

EXECUTE DLI GET NEXT INTO(IOAREA)

trigger function option with command-
argument delimiter

GET Commands

The DL/l HLPI provides three commands, called GET commands, for you to use in
retrieving segments from data bases. They are GET NEXT, GET NEXT IN
PARENT, and GET UNIQUE.

GET NEXT Command

In order for you to sequentially retrieve segments from a data base, DL/l maintains
a position pointer that remembers your current position in the data base. Each time
you request DL/I to sequentially retrieve a segment, DL/I retrieves the segment
pointed to by the position pointer and updates the pointer to the next segment.

The GET NEXT command is designed to always get the next segment—the one
pointed to by the position pointer. If your program executed a continuous series of
GET NEXT commands, it would eventually retrieve, in hierarchical order, every
segment in your program's view of the data base.

A GET NEXT command as coded in a PL/I application program might look like this:
EXECUTE DLI GET NEXT INTO(AREA);

EXECUTE DLI is the trigger that indicates that this is a DL/l HLPI command. GET
NEXT names the function to be performed. INTO(AREA) is an option with an
argument that indicates the area, which you have previously defined in the host
language of your program, into which you want to transfer the data contained in the
segment that is retrieved. The “;” is the command-delimiter used in PL/l programs
to signal the end of a command (in a COBOL program, the command-delimiter

Chapter 1. DL/I, Data Bases and the Application Programmer 1-9

1-10

would be END-EXEC). If this was the first DL/ command to be executed in your
program, the segment that would appear in AREA would be the root segment of the
first data base record in the data base. If this was the skills inventory data base as
shown in|Figure 1-3 on page 1-5] this segment would be the SKILL segment for
ARTIST. The position pointer would then point to the NAME segment for ADAMS.
If the same GET NEXT command was executed again, that segment would appear
in AREA. The position pointer would then point to the first EXPERIEN segment of
ADAMS. Executing the GET NEXT again would retrieve that segment. This
process, if continued, would proceed through the data base from top-to-bottom,
left-to-right, front-to-back in hierarchical order.

GET NEXT IN PARENT Command

The GET NEXT IN PARENT command is a variation of the GET NEXT command.
As was described above, segments higher than others in the hierarchical structure
of a data base are called parent segments of those below them in the same
hierarchical path. The GET NEXT IN PARENT command makes it possible for you
to sequentially retrieve the data from all of the segments that are children of a
particular parent segment. The parentage that applies to this command is that
established by the last previous GET NEXT or GET UNIQUE command. For
instance, if the command

EXECUTE DLI GET NEXT SEGMENT(NAME) INTO(NAMEIO);

had just been successfully executed, a GET NEXT IN PARENT command would
use the NAME segment as the designated parent.

If the GET NEXT command shown above had been executed, the GET NEXT IN
PARENT commands

EXECUTE DLI GET NEXT IN PARENT SEGMENT(EXPERIEN) INTO(EXPRIO);
or
EXECUTE DLI GET NEXT IN PARENT SEGMENT(EDUCAT) INTO(EDUCIO);

would retrieve their respective segments. The first EXPERIEN segment under the
NAME segment would appear in EXPRIO, or the first EDUCAT segment under the
NAME segment would appear in EDUCIO.

GET UNIQUE Command

The final type of GET command is GET UNIQUE. You can use it to randomly
retrieve any segment in your program's view of the data base. Unlike the two GET
NEXT commands, it does not depend on the position pointer, and thus is able to
retrieve a segment from any location in the data base—even from levels higher in
the hierarchy than the position pointer was indicating before the GET UNIQUE
command was executed.

You must code the SEGMENT option and argument in a GET UNIQUE command
to indicate the segment type you want to retrieve. This is called unqualified
segment selection. The first occurrence of the named segment type is retrieved.

A GET UNIQUE command with unqualified segment selection might look like this:

EXECUTE DLI GET UNIQUE
SEGMENT (SKILL) INTO(SKILLIO);

If this were the first command in the program, this would retrieve the ARTIST
segment (see[Figure 1-3 on page 1-5) from the data base and place it in SKILLIO.

DL/I DOS/VS Application Programing: High Level Programming Interface

If this command were repeated, the CLERK segment would be retrieved and placed
in SKILLIO.

When you need to retrieve a specific occurrence of a segment type you must
qualify the segment selection. You do this by coding the WHERE option after the
SEGMENT option. The WHERE option provides the information that DL/l needs to
locate the specific segment that you want.

A GET UNIQUE command with qualified segment selection might look like this:

EXECUTE DLI GET UNIQUE
SEGMENT (SKILL) INTO(SKILLIO) WHERE(SKILCODE=SKILVAR);

SKILCODE is the name of a field in the SKILL segment. SKILVAR is the name of
a variable previously defined in the host language of your program.

In this example, the WHERE option specifies that the occurrence of the SKILL
segment type in which the SKILCODE field equals the value in SKILVAR will be
searched for and returned in the SKILLIO area if it is found.

After the successful execution of this command, the position pointer would point to
the segment following the SKILL segment that was retrieved. In
that would be the first NAME segment (ADAMS) under the SKILL
segment (ARTIST). A GET NEXT or GET NEXT IN PARENT command could be
used to retrieve that segment.

INSERT Command

The INSERT command is used to add new segments to an existing data base.
When the command is executed, DL/I takes the data from the area you specified
and adds the segment to the data base. An INSERT command looks like this:

EXECUTE DLI INSERT SEGMENT(EXPERIEN) FROM(EXPRIO);

Notice the option FROM. FROM is used in place of INTO to indicate that data is to
be transferred from an area in your program to the data base.

REPLACE Command

The REPLACE command replaces the data in a segment in the data base with
different data. Before executing a REPLACE command, your program must have
retrieved the existing data from the data base with a GET command. Your program
can then modify that data and execute the REPLACE command to place the
modified data in the data base. This is an example of a REPLACE command (the
preceding GET command is assumed):

EXECUTE DLI REPLACE SEGMENT(EXPERIEN) FROM(EXPRIO);

DELETE Command

The DL/l HLPI provides the DELETE command for use when you must delete a
segment from the data base because it contains data that is obsolete, extraneous,
or incorrect. Before your program executes a DELETE command, it must have
retrieved the segment to be deleted by executing one of the GET commands. The
DELETE command will then remove the named segment and all of its dependent
children from the data base. Because of this deletion of dependent children, you
must use caution when you issue a DELETE. An example of a DELETE command
looks like this (assuming that a GET command has been executed that specified
the same segment).

EXECUTE DLI DELETE SEGMENT(NAME) FROM(NAMEIO);

Chapter 1. DL/, Data Bases and the Application Programmer 1-11

1-12

The NAME segment and its dependent children—all of the EXPERIEN and
EDUCAT segments under it—would be removed from the data base.

LOAD Command

The DL/l HLPI LOAD command is used in a batch application program to initially
load segments into an empty data base. No other DL/I HLPI commands are
allowed in this program. The LOAD command may not be used in any other type
of application such as MPS batch or online.

Here is an example of a LOAD command:
EXECUTE DLI LOAD SEGMENT(SKILL) FROM(SEGDATA);

CHECKPOINT Command

If your program ends abnormally, any changes you made to the data base to that
point should be backed out (restored to their previous state) so that the data base
is not left in a partially updated condition for access by other application programs.
The backout is performed by a DL/I utility program in the batch environment and by
CICS/VS dynamic transaction backout in the MPS batch and online environments.

If your program is a long-running one, you can reduce the amount of backout that
might be necessary by taking checkpoints. When a logically complete set of
updates has been completed, and your program is about to begin another set of
updates, take a checkpoint by issuing the CHECKPOINT command. This signals
the back-out utility to stop at this point. You can then restart your program from the
same point to resume execution.

Examples of CHECKPOINT commands are:
EXECUTE DLI CHECKPOINT ID(CHKPID);

and

EXECUTE DLI CHECKPOINT ID('CHKPOOG7');

where CHKPID is the name of an eight-byte character string that uniquely identifies
this checkpoint. Alternatively, the checkpoint ID can be coded in the command,
enclosed in single quotes as in the second example.

SCHEDULE Command

Before an online application can access DL/l data bases, it must schedule a PSB
for its use. The DL/l HLPI provides the SCHEDULE command for this purpose. It
is coded like this:

EXECUTE DLI SCHEDULE PSB(CUSTDB);

where CUSTDB is a constant naming one of the PSBs available to your application.

TERMINATE Command

When your online application has no further immediate need for a PSB, it should be
released so that it will be available for other applications that may be active. You
do this by issuing a DL/ TERMINATE command that looks like this:

EXECUTE DLI TERMINATE;

If your program needs to refer to a data base again at a later point, you must
reschedule a PSB with another SCHEDULE command at that time.

DL/I DOS/VS Application Programing: High Level Programming Interface

The DL/I Response to the Commands

To make DL/I status information available to your program, variables called the DL/I
Interface Block (DIB) are automatically defined in your program. The most
important of these is named DIBSTAT. In it, DL/I returns a two-character status
code. The status code makes it possible for you to check the results of each
command you issue, immediately following the execution of that command, so you
can be aware of the condition of the data base and take appropriate action where
needed.

Chapter 1. DL/, Data Bases and the Application Programmer 1-13

1-14 DL/ DOS/VS Application Programing: High Level Programming Interface

Chapter 2. DL/l High Level Programming Interface

This chapter describes the syntax of the DL/l High Level Programming Interface
commands and gives the purpose and use of each element of the syntax. You
should be thoroughly familiar with this material before reading the rest of this
book.

This chapter includes:

¢ a brief description of the DL/I HLPI
¢ the elements of the command language
e a summary of the syntax of the commands.

What it is

The DL/l High Level Programming Interface is an easy-to-use method of performing
all of the functions necessary for processing DL/l data bases in a batch, MPS
batch, or CICS/VS online environment. It is made up of a series of commands
similar in syntax to those in the CICS/VS command language. You can code these
commands as needed in an application program written in either the COBOL or
PL/I Optimizer language. Before compiling a program using the DL/l HLPI, you
must execute the CICS/VS EXEC translator, as a separate job step, to convert the
commands into statements appropriate to the host language.

Coding Conventions

The following conventions are followed in illustrating the format and coding of
commands, control statements, and messages:

¢ Commands and control statements are free form unless stated otherwise.
Where keywords, operands, and parameters are shown separated by commas,
no blanks may appear immediately before or after the comma. Where
keywords, operands, and parameters are shown separated by blanks, any
number of blanks may be used. For example:

DLI,progname,psbname

shows the use of commas, and
EXECUTE DLI TERMINATE;
shows the use of blanks.

» Uppercase letters, stand-alone numbers, and punctuation marks (including
parentheses) must be coded exactly as shown. For example:

END-EXEC
is coded as shown.

The only exceptions to this convention are brackets [], braces { }, ellipses ...,
and subscripts. These are never coded.

* Lowercase letters, words, and associated numbers represent variables for
which specific information or values must be substituted. For example:

© Copyright IBM Corp. 1980, 2003 2-1

2-2

SEGMENT (name)
where “name” must be replaced by the appropriate segment name.

The symbol b is used to indicate one blank position at points where confusion
might result if it was omitted.

Brackets [] indicate that the items or groups of items within them are optional,
they may be omitted if not required. For example:

[VARIABLE]
is optional.
Any item or group of items not within brackets must be coded.

All stacked items enclosed within braces { } represent alternatives, one of which
must be coded unless the braces are enclosed within brackets. No more than
one of the stacked items may be coded. For example:

{EXECUTE}
{(EXEC }

where one of the items must be coded.

If an alternative item is underlined, that item is the default: that is, DL/I
automatically assumes that the underlined item is the choice if none of the
items is coded. For example:

{PAUSE '}
{NOPAUSE}

where PAUSE is the default.

Ellipses, ..., indicate that the preceding item or group of items can be coded
more than once in succession, as necessary. For example:

[SEGMENT (name) FROM(reference)]...

where everything within the brackets is optional, but may be repeated if coded.

DL/I DOS/VS Application Programing: High Level Programming Interface

Elements of the Command Language

Syntax Description
The syntax of the DL/l High Level Programming Interface commands looks like this:

trigger function [options and arguments] command-delimiter

e Trigger identifies the statement to the translator as being a DL/I HLPI
command.

e Function names the operation the command is to perform.

e Options provide information needed to perform the particular operation named
by function.

e Arguments are included, within parentheses, with certain options to pass
names, constants, or variable values associated with the option.

e Command-delimiter identifies the end of the statement to the translator.

This is an example of a command as it would appear in a PL/I program:
EXECUTE DLI TERMINATE 5

trigger function command-
delimiter

Here is an example of another command as it would appear in a COBOL program:

EXECUTE DLI GET NEXT USING PCB(1) KEYFEEDBACK(SKILLCOD)
FEEDBACKLEN(10)
SEGMENT (SKILL) SEGLENGTH(8)
|]] WHERE (CODE=ARTIST) INTO(IOAREA? TND-EXET
trigger function options with arguments command-
delimiter

The rest of this section describes, in detail, the various parts that make up the
commands and their purposes in performing the functions called for by the
commands.

Every command must include a trigger, a function, and a command-delimiter. In
addition, most commands include options and arguments.

Each item in the list below represents a part of the syntax of DL/I| HLPI commands.

Each of these parts is described in a section of the text that follows. The numbers
in the left margin indicate the number of the section where that item is discussed.

Chapter 2. DL/l High Level Programming Interface 2-3

1) {EXECUTE} DLI
{EXEC)

2) GET NEXT
3) USING PCB(expression)

4) KEYFEEDBACK (reference)
FEEDBACKLEN (expression)

5) SEGMENT (name)

{INTO(reference)}
{FROM(reference) }

SEGLENGTH(expression)

WHERE (name op reference)
FIELDLENGTH(expression)

6) {; }
{END-EXEC}

7) VARIABLE

8) {FIRST}

{LAST }
9) LOCKED
10) OFFSET

11) PSB(name)

12) ID(expression)

1. Trigger—EXECUTE DLI

To identify a DL/I HLPI command to the translator, a unique identifier, called a
trigger, is required. You must code it at the beginning of every command. Either of
these forms is accepted:

{EXECUTE} DLI
{(EXEC }

These keywords are reserved for this use only. Do not use either combination of
them for any other purpose in your program.

2. Function to be Performed

2-4

Always coded next within a command is the function that defines the operation you
wish it to perform. The associated options and arguments coded with the function
provide all the information necessary to complete the operation. Each command
must have a function. The individual functions are discussed in detail in Chapter 4.

The functions that perform data base operations are:

* GET NEXT

e GET NEXT IN PARENT
* GET UNIQUE

* INSERT

* REPLACE

e DELETE

DL/I DOS/VS Application Programing: High Level Programming Interface

e LOAD
The function that takes a DL/l checkpoint is:
e CHECKPOINT
The functions that schedule and terminate PSBs in online operation are:

e SCHEDULE
* TERMINATE

3. Specifying the PCB
You can specify a particular PCB (view of a data base) to be used for performing a
data base function by coding the PCB option. If you do not specify the PCB option,
DL/l uses the first PCB defined in the currently scheduled PSB. If you do code the
PCB option, it must follow the function and looks like this:

USING PCB(expression)

“expression” in COBOL is any valid integer variable or integer constant.
“expression” in PL/I is any valid expression that converts to the integer data type.
The value of the expression must be a positive integer not greater than the number
of PCBs generated for the PSB. The first PCB is PCB(1), the second is PCB(2),
and so on.

4. Retrieving Key Feedback

You may optionally provide an area in your application program for DL/I key
feedback information. KEYFEEDBACK and FEEDBACKLEN can be specified with
GET commands to retrieve the concatenated key from the PCB into the area
referenced by KEYFEEDBACK. FEEDBACKLEN may be specified to tell HLP1 the
length of the area referenced by KEYFEEDBACK. If the KEYFEEDBACK area is
not large enough for the concatenated key as found in the PCB, as much of the
key as fits is moved into the user's area (truncated on the right). Before the move
id done, the length of the concatenated key is placed in a field called DIBKFBL in
the user DIB. In COBOL, FEEDBACKLEN must be specified whenever
KEYFEEDBACK is used. In PL/I, however, FEEDBACKLEN is optional; if it is not
specified, the default length of the area is used.

If you use the key feedback option, it must be coded after the function and before
the parent or object segment options. The key feedback option looks like this:

KEYFEEDBACK(reference) FEEDBACKLEN(expression)

where “reference” is the name of an area previously defined in the host language of
your application program where you want the key placed and “expression” in
COBOL is any valid integer variable or integer constant. “expression” in PL/I is any
valid expression that converts to the integer data type. If “expression” is variable, it
should be declared as a binary halfword value. Since KEYFEEDBACK and
FEEDBACKLEN are statement level parameters, they may be specified only once
in an EXEC call.

Note: If you specify FEEDBACKLEN as being larger than the user key feedback
area, it is possible to overlay storage.

Chapter 2. DL/l High Level Programming Interface 2-5

5. Selection of Segments

In each command that accesses a data base, you must specify to DL/l the segment
or segments that you want it to operate on (except in GET NEXT and GET NEXT
IN PARENT commands, where it is optional).

Parent Segments

A parent segment is a segment used to help identify the hierarchical path leading to
the segment at the lowest level in which you are interested (the object segment). A
maximum of 14 parent segments can be specified in one data base function
command corresponding to the 14 possible hierarchical levels above the lowest
level in a DL/l data base hierarchy. Parent segments, when specified, must be
coded in hierarchical order from top-to-bottom, the highest level parent segment
first. It is not necessary to specify a parent segment on every hierarchical level.
When you want data to be transferred for a parent segment, you must code the
INTO or FROM option (described below) following the SEGMENT option.

Parent segment selection looks like this:
SEGMENT (name)

where “name” is the name of a segment.

Object Segments

The object segment in a data base function command is the segment at the lowest
hierarchical level in which you are interested. You must specify at least an object
segment in every data base function command except GET NEXT and GET NEXT
IN PARENT, where it is optional. INTO or FROM (described below) must be coded
with the object segment selection specification in order to identify an I/O area for
the segment data. The object segment selection specification must be coded after
the last of any parent segment selection.

Object segment selection looks like this:
SEGMENT (name)

where “name” is the name of a segment.

Segment I/O Area

To indicate that you want a segment to be transferred to or from a segment 1/0O
area, you must code the INTO or FROM option following the corresponding
SEGMENT option in a data base command.

INTO is coded in commands that retrieve segments from the data base (GET
UNIQUE, GET NEXT, and GET NEXT IN PARENT) and placed into a segment 1/O
area. FROM is coded in commands that modify the data base (INSERT,
REPLACE, DELETE, and LOAD) with data from a segment I/O area.

The INTO or FROM argument identifies an area in your program large enough to
contain the segment being transferred.

You code INTO and FROM like this:
INTO(reference)

or

FROM(reference)

2-6 DL/ DOSIVS Application Programing: High Level Programming Interface

where “reference” is the name of an area previously defined in the host language of
your application program.

When data transfer is requested for one or more parent segments, that request is
known as a path call. Coding the SEGMENT option for a parent segment, without
also coding INTO or FROM, indicates that the named segment is to be used in
establishing the hierarchical path to the object segment named in the command,
but that you do not want data for that segment to be transferred. Within a
command, SEGMENT options both with and without FROM or INTO can be used.
Data is transferred for only those segments with FROM or INTO specified.

In case of a segment-not-found condition in a path call, data is transferred for all
segments in the path, for which FROM or INTO was specified, above that which
could not be found.

Processing option “P” must be specified during PSB generation for any segment to
be used in path calls. Otherwise, an AM status code is returned and the program
terminated.

You can insert multiple segments in a hierarchical path with one INSERT
command. However, this is not permitted if a logical child segment (see DL/I
DOS/VS Data Base Administration) is present in the path.

In a REPLACE command following an associated path call GET command, code
FROM for each segment to be replaced from those retrieved by the GET.

INTO is used in commands with the GET UNIQUE, GET NEXT, and GET NEXT IN
PARENT functions. FROM is used in commands with the INSERT, LOAD,
REPLACE, and DELETE functions.

Segment Length
The SEGLENGTH option defines the length of the segment named by the
SEGMENT option.

In an application program using COBOL as the host language, you must code the
SEGLENGTH option if you code the INTO or FROM option. The SEGLENGTH
requirement in an HLPI COBOL program is due to a COBOL language restriction.
This restriction makes it impossible to determine the declared length of an IDAREA
at application program execution time. Since PL/I does not have this restriction,
SEGLENGTH is optional in a PL/I program. If you do not code SEGLENGTH, the
length always defaults to the length of the area named in the INTO or FROM
option.

You code the SEGLENGTH option following the SEGMENT option, like this:
SEGLENGTH (expression)

“expression” in COBOL is any valid integer variable or integer constant.
“expression” in PL/I is any valid expression that converts to the integer data type. If
“expression” is a variable, it should be declared as a binary halfword value.

For fixed length segments, you are responsible for ensuring that the value of
SEGLENGTH, if specified, is the proper value. On a GET command, storage in
your application program can be overlaid if the I/O area is not large enough to
contain the retrieved segment. Invalid data can be placed in the data base if the
I/O area length is incorrectly specified in an INSERT or REPLACE command.

Chapter 2. DL/l High Level Programming Interface ~ 2-7

2-8

For variable length segments, SEGLENGTH defines the maximum segment length
plus the two-byte length field at the beginning of the data area. For GET
commands, it must be at least as large as the longest occurrence of the associated
segment that can be retrieved by the command.

For concatenated segments, SEGLENGTH also includes the lengths of the
concatenated key, the intersection data, the destination parent segment, and, for
variable length destination parent segments, the two byte length field. (See
“OFFSET.”)

Qualified Segment Selection
Qualified segment selection causes DL/I to search for an occurrence of a segment
that contains a field with data that meets the criteria you specify.

Any segment field defined to DL/l can be used in segment selection. However, for
performance reasons, qualification of root segments using fields other than the key
field should be avoided. DL/I has to scan the data base sequentially for such
requests. Qualification of dependent segments on non-key fields is often desirable
and should be used as required.

Qualified segment selection is coded after the associated SEGMENT option like
this:

WHERE (name op reference[{AND} name op reference]...)
{OR }
[FIELDLENGTH(expression[,expression]...)]

where “name” is the name of a field in the associated segment type. You can not
use a variable for name. The value that you specify for “op” must be one of the
following:

> (greater than)

< (less than)

= (equal to)

== (not equal to)

<= (less than or equal to)

>= (greater than or equal to)

=< (equal to or less than)

=> (not greater than)

=> (equal to or greater than)

=< (not less than)

In “reference,” you code a variable name previously defined in the host language of
your application program. Its length must be equal to the length of the field you
specified with “name.” The length value of this variable has a maximum of 255

bytes and is given by the FIELDLENGTH keyword which is described later in this
section.

Boolean operators are available in the HLPI commands to allow multiple
gualifications on a single segment type and therefore make HLPI commands more
versatile.

DL/I DOS/VS Application Programing: High Level Programming Interface

The Boolean operators AND and OR may be used in the WHERE clause to provide
you with Boolean logic capability in segment select qualification.

All relational statements connected by AND operators are considered a qualification
statement. An OR operator separates qualification statements. A qualification
statement can consist of one or more relational statements. To satisfy a WHERE
clause, a segment can satisfy any qualification statement. To satisfy any
gualification statement, the segment must satisfy all relational statements within that
gualification statement.

The qualification statement test is terminated as soon as a segment type that
satisfies a qualification statement is found in the data base. This procedure
continues for all WHERE clauses in a DL/I data base command, until the desired
segment is found.

The maximum of twelve relational conditions, connected by a maximum of eleven
Boolean operators in any combination of ANDs and ORs can be specified in a
single WHERE clause. Parentheses are not allowed within the WHERE clause and
Boolean operators AND and OR must be surrounded by blanks.

FIELDLENGTH is a variable that has a maximum length of 255 bytes and must be
specified when the host language is COBOL, but need not be coded when the host
language is PL/I. When not specified in PL/I, the value of FIELDLENGTH defaults
to the length of the “reference.”

Each “expression” for the FIELDLENGTH keyword corresponds one-to-one for each
“reference” in the WHERE clause. “expression” in COBOL is any valid integer
variable or integer constant. “expression” in PL/I is any valid expression that
converts to the integer data type. If “expression” is a variable, it should be declared
as a binary halfword value.

The WHERE option operates as follows: DL/l examines the data in the field you
name, in each occurrence of the segment type specified in the SEGMENT option,
and compares it with the value specified in “reference” according to the operator
coded in “op.” The Boolean AND and OR operators are analyzed to determine
further conditions on the selection. DL/I stops its examination when it finds a value
that satisfies the relationship or reaches the last occurrence of the named segment

type.
Segment Selection Examples

Example of Using AND and OR in a WHERE Statement
[Figure 2-1 on page 2-10|shows a portion of a data base to illustrate the use of the
Boolean operators AND and OR in a WHERE statement.

For this example, we will use a qualified segment selection as follows:
WHERE (TYPENO<C800 AND TYPENO>C700 AND DESCR=JOBS OR MONTHS>C100)

where C800, C700, C100, and JOBS are program-defined variables with respective
values of 800, 700, 100, and COMIC.

Within the WHERE clause, one or more relational conditions are connected by the
AND operator to form a qualification statement. The OR operator marks the
beginning of a new qualification statement.

Chapter 2. DL/l High Level Programming Interface 2-9

2-10

There are two qualification statements in the WHERE clause used in this example:

TYPENO<C800 AND TYPENO>C700 AND DESCR=JOBS (Statement 1)
OR MONTHS>C100 (Statement 2)

A segment is selected if it satisfies any qualification statement within the WHERE
clause. To satisfy a qualification statement, a segment must satisfy all the
relational conditions within the qualification statement.

EXPERIEN

TYPENO DESCR MONTHS

(Selected by
(Segment 1) 234 MOVIE 125 qualification
statement 2)

(Segment 2) 456 LAYOUT 80

(Selected by
(Segment 3) 789 COMIC 50 qualification
statement 1)

Figure 2-1. Data Base to lllustrate AND and OR Example

In the above example, if this WHERE clause is part of a GET NEXT command, and
if we are positioned in front of these three segment occurrences, the command
would retrieve the first EXPERIEN segment (Segment 1) because it satisfies the
second qualification statement (MONTHS>C100). The last EXPERIEN segment
(Segment 3) satisfies the first qualification statement (TYPENO<C800 AND
TYPENO>C700 AND DESCR=JOBS) and would be retrieved if the command is
repeated.

Figure 2-2 shows a portion of the data base to further illustrate the use of the
Boolean operators in a WHERE statement.

NAME
ADAMS JOHN P.
EXPERIEN
120 —
250 T

280

Figure 2-2. Data Base Portion to lllustrate Coding Boolean Operators

DL/I DOS/VS Application Programing: High Level Programming Interface

If we wanted to retrieve the EXPERIEN segment occurrence with type number 250
in the above data base example, we could code the following PL/I example:

DCL EXPRAREA CHAR(20) ;
DCL TYPENO1 CHAR(3) INIT('100');
DCL TYPENO2 CHAR(3) INIT('200');
EXEC DLI GET UNIQUE

SEGMENT (EXPERIEN)

INTO(EXPRAREA)

WHERE (TYPENO<TYPENO1 or TYPENO>TYPENQZ2);

If this command is repeated, the EXPERIEN segment with type number 280 would
be retrieved.

The following example illustrates parent and object segments and the use of the
INTO and WHERE options:

EXECUTE DL GET UNIQUE
SEGMENT (SKILL) WHERE(SKILCODE=SKILVAR) (parent segment)
SEGMENT (NAME) INTO(NAMEIO); (object segment)

6. Command-Delimiter
Every DL/l High Level Programming Interface command that you code must include
a command-delimiter to identify the end of the command to the translator. The
particular delimiter you code depends on which host language you are using.

For ANS COBOL programs, the command-delimiter looks like this:
END-EXEC

This allows the command to be included within a THEN clause without being the
only statement of the THEN clause.

In PL/I Optimizer programs, the command-delimiter is the semicolon, as with all
other PL/I statements.

7. Variable Length Segments (HDAM and HIDAM Data Bases Only)

Occasionally, particularly when processing descriptive text data, it is advantageous
to have segments of variable length. This results in a saving of storage space
since every segment doesn't have to be as long as the longest segment
anticipated. DL/I provides this variable length capability only for data bases using
the HDAM or HIDAM organization.

A variable length segment, as it appears in the segment 1/O area of your program,
contains, in its first two bytes, a binary value describing the segment size, followed
by the segment data. This two byte field describes the segment length as the
application program sees it, and includes the two bytes of the size field itself. The
minimum valid segment size is four bytes.

Your application program processes variable length segments in the same way as
fixed length segments, except that it must create and maintain the correct values in
the size fields of these segments.

Segment retrieval, including path calls, follows normal retrieval rules. If a field used
in qualified segment selection is not present because the segment is too short, a
segment may be retrieved that meets the qualification, but is not the segment you
intended.

Chapter 2. DL/l High Level Programming Interface 2-11

On a REPLACE command, if the segment length has not changed, a one-for-one
replacement takes place. Otherwise, you must change the value in the segment
size field.

On an INSERT command, the value in the size field must be at least the length
specified as a minimum value during DBD generation. If the value is less than that,
DL/I will transfer the amount you specified, but will store it in the data base as a
segment with a length equal to the minimum value. The size field value remains as
you specified it.

Since the segment size field is actually part of the segment, all starting positions
must be relative to the first position of the variable length segment, not the start of
your data.

You must identify each variable length segment each time you request data transfer

for it. You do this by coding
VARIABLE

before the associated SEGMENT option naming the segment.

If you request data transfer but do not specify VARIABLE, DL/l assumes the
segment is fixed length.

Do not code VARIABLE without specifying an associated INTO or FROM option.

The first two bytes of the segment I/O area contain the segment length except in

the case of concatenated segments (see “OFFSET"). A concatenated segment is
composed of two segments, of which only the second may be variable length. In
this case, VARIABLE must be specified for the concatenated segment.

8. FIRST and LAST Options

2-12

There are two options that affect which occurrence of a segment DL/l will operate
on. They are the FIRST and LAST options, and they are mutually exclusive. You
code them like this:

{FIRST}
{LAST }

The one that you choose must be coded before the associated SEGMENT option.

FIRST

The FIRST option tells DL/I to start with the first occurrence of the segment type
named in the SEGMENT option, under its parent, to satisfy this level of the
command. By using the FIRST option, it is possible to either back up to the first
occurrence of the segment type on which position is established or to back up to
the first occurrence of a segment defined earlier in the hierarchy, but in the same
path as the one on which position is established. The FIRST option overrides the
setting of the position pointer for the associated segment. FIRST is ignored if used
at the root level.

When coded in INSERT commands, FIRST applies only to segments having a
nonunique sequence field, or no sequence field and RULES=(,HERE) specified
during DBD generation. In the latter case, the rule is overridden by the FIRST
option.

DL/I DOS/VS Application Programing: High Level Programming Interface

You can code FIRST in commands with the GET NEXT, GET NEXT IN PARENT,
and INSERT functions.

LAST

The LAST option tells DL/I to start at the current pointer and find the last
occurrence of the segment type named in the SEGMENT option, under its parent,
to satisfy this level of the command. If you have specified qualified segment
selection, the segment operated on is the last one of that type that satisfies the
qualification. If segment selection is unqualified, the last occurrence of the segment
type under its parent is used. LAST is ignored if used at the root level.

When coded in INSERT commands, LAST applies only to segments having a
nonunique sequence field, or no sequence field and RULES=(,FIRST) or
RULES=(,HERE) specified during DBD generation. In the latter case, the rule is
overridden by the LAST option.

You can code LAST in commands with the GET UNIQUE, GET NEXT, GET NEXT
IN PARENT, and INSERT functions.

Examples of FIRST and LAST
[Figure 2-3 on page 2-14|shows a portion of a data base to illustrate the following
examples of the use of FIRST and LAST.

For the FIRST example, assume that the position pointer is pointing as shown by
“current position” in the figure. Execution of the command:

EXEC DLI GET NEXT
FIRST SEGMENT(ITEM) INTO(ITEMAREA);

will retrieve the first ITEM segment under ORDER number 6789 (ITEM 120).

Chapter 2. DL/l High Level Programming Interface 2-13

9. LOCKED

CUSTOMER

1234 CUSTOMER
5678
]
ORDER ORDER
6789 2300 |
2850 |
ITEM 10|
120 |
4050 |
250 |
4055 |
280 |
300 |
CURRENT
posTTIoN >L_470_|

500 |

Figure 2-3. Data Base to lllustrate FIRST and LAST examples

Following are two examples using the LAST option:

EXEC DLI GET UNIQUE USING PCB(1)
SEGMENT (CUSTOMER) WHERE (CUSTKEY=V5678)
LAST SEGMENT(ORDER) INTO(ORDAREA);

will retrieve the last ORDER under CUSTOMER number 5678 (ORDER number
4055).

LOCKED is meaningful only when there can be contention for a single occurrence
of a segment. That can happen only in an online or MPS batch environment when
Program lIsolation is active. (See DL/I DOS/VS Data Base Administration for a
description of Program Isolation.)

The LOCKED option tells DL/I that your application program needs to work with a
segment and that no other tasks can be allowed to modify that segment until it has
finished. This means that you can retrieve segments using the LOCKED option,
then retrieve them again later, knowing that they have not been altered by another
application. The “LOCK,” once established, remains in effect until the application
terminates or issues a CHECKPOINT or TERMINATE command. LOCKED can be
specified only if INTO is also specified for the associated segment.

2-14 DL/ DOS/VS Application Programing: High Level Programming Interface

10. OFFSET

You can code LOCKED in commands with the GET UNIQUE, GET NEXT, and
GET NEXT IN PARENT functions. LOCKED must be coded after the associated
SEGMENT option.

The LOCKED function activates the enqueing function that tells other online or
MPS batch PSBs that are attempting to get into your PSBs data base to line up
and wait. In order to avoid the delay that occurs when the other PSBs have to
wait, it is recommended that you issue a TERMINATE command (or a
CHECKPOINT command in MPS batch) as soon as possible to end the data base
LOCKED function.

You should also be aware that DL/I invokes a lockout function when enqueing is
active. The lockout function will detect when your PSB is LOCKED on data base B
and you are waiting to get into data base A while another PSB (in an MPS batch or
CICS/VS online environment) is LOCKED on data base A and is waiting to get into
data base B. In this instance, each PSB would be enqueued and holding its own
data base while waiting for the other PSB to terminate and release its data base.
Lockout will cause the last PSB enqueued to terminate and an appropriate
message to be returned to the user of the terminated job.

A logical data structure can be constructed from two or more physical data bases.
In this case, the physical data bases are linked together into a logical data base
through concatenated segments. A concatenated segment consists of two related
segment types from two different physical data bases. The first of these segment
types is called a logical child segment and the second a destination parent
segment.

Whenever a logical child segment is accessed in a logical data base, its data is
concatenated with the data from its destination parent segment in a single segment
I/O area, like this:

LOGICAL CHILD DESTINATION PARENT

CONCATENATED KEY INTERSECTION DATA [LL] DATA

| OFFSET >

where LL is the length field of the destination parent segment if it is a variable
length segment.

When data is transferred for a concatenated segment with a variable length
destination parent, you must specify in the command the offset to the destination
parent within the I/O area. The offset is the combined length of the logical child's
concatenated key and intersection data. This is required to allow DL/l to locate the
length field (LL) to be used in calculating the actual length of the concatenated
segment. You code the OFFSET option after the INTO or FROM for the
concatenated segment, like this:

OFFSET (expression)

“expression” in COBOL is any valid integer variable or integer constant.
“expression” in PL/I is any valid expression that converts to the integer data type.

Chapter 2. DL/l High Level Programming Interface 2-15

The value of “expression” must equal the combined length of the logical child's
concatenated key and intersection data—thus pointing to the LL field of the
destination parent.

OFFSET is to be coded only when VARIABLE and either INTO or FROM are coded
for the associated segment. OFFSET must be coded after the associated
SEGMENT option.

11. Specifying the PSB

In an online application program, the Program Specification Block (PSB) to be used
for subsequent data base operations must be scheduled to give you access to the
data base. You identify the PSB by naming it in the PSB option after the
SCHEDULE function in a SCHEDULE command. It looks like this:

PSB (name)

where “name” is the name of a PSB defined during PSB generation. It must not be
a variable. Because it is a constant, it need not be enclosed in quotes.

12. Specifying the Checkpoint Id

When you use the CHECKPOINT command to cause DL/l to commit all data base
changes made to that point by your application program, you can specify, with the
ID argument, the checkpoint identifier that you want associated with that
checkpoint.

You code the checkpoint identifier like this:
ID(expression)

where “expression” is any eight-character value enclosed in single quotes, or the
name of an eight-character value defined in your program.

Syntax of the Command Language

2-16

This section provides, in|Figure 2-4 on page 2-20} a chart summarizing the syntax
of all the DL/I HLPI commands. The information for each command appears in a
row that extends across both pages. The three GET commands are grouped
together at the top; the remaining data base function commands are grouped next;
and the CHECKPOINT, SCHEDULE, and TERMINATE commands are grouped at
the bottom.

The syntax for each individual command appears under the name of that command
in Chapter 4, with any notes that apply to that command. Notes that apply in
general appear below.

Notes:

1. Wherever the word “name” appears in the syntax of a command, the following
rules apply:

* You must code an identifier consisting of alphabetic and numeric characters
only, with the first character being alphabetic; or a literal string constant
enclosed in single quotes. Both are interpreted as being a literal string.

e A variable can be specified for “name” only on a LOAD command. In this
case, the identifier must be enclosed in a double set of parentheses to

DL/I DOS/VS Application Programing: High Level Programming Interface

indicate that it represents a variable rather than a constant. For example:
SEGMENT((VARNAME)).

2. Wherever the word “expression” (abbreviated as “exp”) appears in the syntax of
a command (except the CHECKPOINT command), it is to be replaced by an
expression in the host language or by a positive integer value itself.
“expression” in COBOL is any valid integer variable or integer constant.
“expression” in PL/I is any valid expression that converts to the integer data
type. If a variable is specified for “expression,” it should be declared as
halfword binary.

For CHECKPOINT, “expression” should convert to an eight-byte character
string.

3. Wherever the word “reference” (abbreviated as “ref”) appears in the syntax of a
command, it is to be replaced by a name previously defined in the host
language of the application program.

4. The following examples illustrate the acceptable methods of specifying
arguments for the various command options.

¢ SEGMENT(name)
For GET, INSERT, REPLACE, DELETE, and LOAD:
SEGMENT (ARTIST)
or
SEGMENT('ARTIST')

where ARTIST is the name of a segment type defined to DL/I during data
base generation. It is not defined in the application program.

For LOAD only, this additional form is allowed:

SEGMENT ((SEGNAME))

where SEGNAME is defined in the application program as either
77 SEGNAME PIC X(8) VALUE 'ARTIST'. (coBoL)

or

DECLARE SEGNAME CHAR(8) INIT('ARTIST'); (PL/I)
e INTO(reference) or FROM(reference)

For GET commands:

INTO(INAREA)

where INAREA is defined in the application program as either
77 INAREA PIC X(nn). (cosoL)

or

DECLARE INAREA CHAR(nn); (PL/I)

For INSERT, REPLACE, DELETE, and LOAD:
FROM(OUTAREA)

where OUTAREA is defined in the application program in the same way as
INAREA.

nn is equal to the length of the segment to be processed.

Chapter 2. DL/l High Level Programming Interface 2-17

« SEGLENGTH(exp), FIELDLENGTH(exp), OFFSET(exp), PCB(exp), or
FEEDBACKLEN(exp)

For data base function commands:

SEGLENGTH(4)
FIELDLENGTH(4)
OFFSET (4)
PCB(4)
FEEDBACKLEN(4)

or

SEGLENGTH (NUM)
FIELDLENGTH (NUM)
OFFSET (NUM)
PCB(NUM)
FEEDBACKLEN (NUM)

where NUM is defined in the application program as either
77 NUM COMP PIC S9999 VALUE IS +4. (COBOL)

or

DECLARE NUM FIXED BIN(15) INIT(4); (PL/I)

 WHERE(name op reference {AND|OR}name op reference"...)
FIELDLENGTH(expression ,expression“...)"

For GET and INSERT commands:

WHERE (TYPENO<C800 AND TYPENO>C700 AND DESCR=JOBS
OR MONTHS>C100) FIELDLENGTH (3,3,8,3)

where TYPENO, DESCR, and MONTHS are the names of fields defined to
DL/I during data base generation. They are not defined in the application
program.

C800, C700, JOBS, and C100 are defined in the application program as
either:

(cosoL)
77 C800 PIC S999 COMP VALUE IS 800.
77 C700 PIC S999 COMP VALUE IS 700.
77 C160 PIC S999 COMP VALUE IS 100.
77 JOBS PIC X(nn) VALUE 'COMIC'.

or

(PL/T)
DECLARE (800 FIXED BIN(11) INIT (800);
DECLARE (€700 FIXED BIN(11) INIT (700);
DECLARE C100 FIXED BIN(11) INIT (100);
DECLARE JOBS CHAR(nn) INIT ('COMIC');

nn is equal to the length of the field as defined to DL/I. In the above
example, “(nn)” is “(8).”

FIELDLENGTH is a one-for-one integer description of the length of field of
C800, C700, JOBS, and C100.

2-18 DL/ DOS/VS Application Programing: High Level Programming Interface

e PSB(name)

For the SCHEDULE command:

PSB(PSBO1)

or

PSB('PSBO1')

where PSBO1 is the name of a PSB defined to DL/I during PSB generation.
e |D(expression)

For the CHECKPOINT command:

ID(CHKPID)

or

ID('CHKP1000")

where CHKPID is defined in the application program as either

77 CHKPID PIC X(8) VALUE 'CHKP1000'. (coBoL)

or

DECLARE CHKPID CHAR(8) INIT('CHKP1000'); (PL/I)
 KEYFEEDBACK(reference)

Using the KEYFEEDBACK keyword:

KEYFEEDBACK (SKILLKEY)

where SKILLKEY is defined in the application program as either:

01 SKILLKEY PIC X(nn). (COBOL)
or
DCL SKILLKEY CHAR(nn); (PL/1)

nn is less than or equal to the length of the concatenated key as defined to
DLII.

Chapter 2. DL/l High Level Programming Interface 2-19

Trigger Function PCB Option Key Feedback Option
{EXECUTE} DLI {GET NEXT} {USING PCB(exp)] [KEYFEEDBACK(ref) [FEEDBACKLEN(exp)])
{EXEC } {GN 3
{EXECUTE} DLI {GET NEXT IN PARENT} [KEYFEEDBACK{ref) [FEEDBACKLEN(exp)}]]
{EXEC) {GNP 3
{EXECUTE} OLI {GET UNIQUE} [USING PCB(exp)] [KEYFEEDBACK{ref) [FEEDBACKLEN(exp)]]
{EXEC } {Gu }

{EXECUTE} DL { INSERT} [USING PCB(exp)]
{EXEC 1} {ISRT }

{EXECUTE} DLI {REPLACE} [USING PCB(exp)]
{exec '} {REPL 1}

{EXECUTE} DLI {DELETE} [USING PCB(exp)]
{EXEC 1} {DLET }

{EXECUTE} OLI LOAD [USING PCB(exp)]
{EXEC 3

{EXECUTE} DL {CHECKPOINT}

{EXEC } {CHKP }

{EXECUTE} DL! {SCHEDULE}

{EXEC } {SCHD }

{EXECUTE} OL! {TERMINATE}

{EXEC } {TERM }

Figure 2-4 (Part 1 of 2). Syntax Summary Chart

2-20 DL/ DOS/VS Application Programing: High Level Programming Interface

Parent Segment(s) (0-14)

Object Segment

Delimiter

[[{FIRST}J[VARIABLE] SEGMENT(name)
{LAST }

[INTO(ref)[LOCKED][OFFSET(exp) [SEGLENGTH{exp)]]
[WHERE (name op ref[%égb%name op ref]...)
[FIELDLENGTH(exp[,exp]...)]]]...

[[{FIRST}][VARIABLE] SEGMENT(name)]
{LAST}

fNTO(ref) [LOCKED | [OFFSET (exp)][SEGLENGTH(exp)]
[WHERE (name op ref[{sgbgname op refl...)
[FIELDLENGTH(exp[,exp]...)1]...

{END-EXEC§

»

[[{FIRST} J[VARIABLE] SEGMENT(name)
{LAST }

[INTO(ref) [LOCKED][OFFSET(exp)][SEGLENGTH(exp)]]
[WHERE (name op ref{{AND}name op ref]...)
{oR }

[FIELDLENGTH{exp[,exp]...)]}]]..-

[{{FIRST} J[VARIABLE] SEGMENT (name)]
{LAST }

INTO(ref)[LOCKED{OFFSET(exp)][SEGLENGTH(exp)]
[WHERE (name op ref[{AND}name op ref]...)
{OR }

[FIELDLENGTH(exp{,exp}...)}]...

{END-EXEci

[[LAST][VARIABLE] SEGMENT(name)
[INTO(ref)[LOCKED][OFFSET(exp)] [SEGLENGTH(exp)]]
[WHERE (name op ref[{AND}name op ref]...)
[FIELDLENGTH(exp[,exgﬁ.%.)]]]...

[LAST][VARIABLE] SEGHENT(name)
INTO(ref)[LOCKED][OFFSET (exp)]{SEGLENGTH(exp)]
[WHERE (name op ref[ES:D%name op refl...)
[FIELDLENGTH(exp{.exp)...)]]...

{END-EXEC}
; }

[[{FIRST} J[VARIABLE] SEGMENT(name)
{LAST }

[FROM(ref) [SEGLENGTH(exp)]]
[WHERE {name op ref[{gsbgname op ref}...)

[FIELDLENGTH(exp[,exp]...}]1]...

[{FIRST}1[VARIABLE] SEGMENT(name)
{LAST }

FROM(ref) [OFFSET(exp)][SEGLENGTH(exp)]

{END-EXEC}
{; }

[[VARIABLE] SEGMENT(name)
FROM{ref)[OFFSET(exp)] [SEGLENGTH{exp)]]...

[VARIABLE] SEGMENT(name)
FROM(ref) [OFFSET (exp) J[SEGLENGTH(exp))

{END—EXEC%

[VARIABLE] SEGMENT(name)
FROM{ref)[SEGLENGTH(exp)]

{END-EXEcg

{VARIABLE] SEGMENT(name)
FROM{ref) [SEGLENGTH({exp))

{END-EXEC§

’

ID(exp)

{END-EXEci

PSB(name)

{END-EXEC%

’

{END-EXEC%

’

Figure 2-4 (Part 2 of 2). Syntax Summary Chart

Chapter 2. DL/l High Level Programming Interface

2-21

2-22 DL/ DOS/VS Application Programing: High Level Programming Interface

Chapter 3. DL/l Application Program

The material in this chapter is designed to help you through the process of
creating an application program that uses DL/l to access data bases. The
chapter is divided into four major sections that correspond to phases in the
production of a program:

e planning
e writing

e executing
e debugging

Planning Your Program

A Checklist

Things you will have to consider include:
¢ The functions your program is to perform and the data with which it will work.
e The names of the segments and fields that you will be using in your program.
e How many PCBs you will be using.

e The name of the PSB you will use. If you are writing an online program, there
may be more than one.

* The segments that your program is sensitive to that are of variable length.

¢ The access method you will be using for each data base, because there are
certain access method restrictions and requirements.

Most of this information will be obtained from those responsible for data base
administration in your installation. It is important that DBA be involved in the
planning stage of your application program. In addition to providing you with
information, it is a function of DBA to perform all the steps necessary to prepare
DL/I to work properly with your program. DBA will also have to be involved in
making the decisions concerning the possible use of other DL/l functions, such as
multiple positioning, as discussed later in this chapter, in the section “Other
Available DL/I Functions.”

General Considerations and Restrictions

Data Base Processing Methods
Data Base Administration will provide you with information on how your data base
can be processed.

Sequential Processing Only (HSAM)

e Root segments are stored in ascending order.

© Copyright IBM Corp. 1980, 2003 3-1

3-2

e Direct processing of root segments is possible, but expensive in terms of
resource consumption, and should be avoided.

Sequential or Direct Processing (HISAM and HIDAM)

e Sequential, skip sequential, or direct processing of root segments can all be
done with good performance.

Direct Processing Only (HDAM)
¢ Root segments are stored randomly.
e Direct processing of root segments is very efficient.
e Sequential processing of root segments in key sequence order cannot be done.

¢ Root segments can, however, be processed sequentially in the order in which
they are physically stored (which is different from key sequence).

Data Base Processing Considerations

Considerations that you should take into account in your planning, in respect to
each one of the major DL/I functions, are described here under the heading of the
function.

Loading

After a data base has been created as a DBA function, it must be loaded with the
initial data before it can be used. This loading is done by a batch application
program that uses the DL/I HLPI LOAD command to take data from the designated
segment I/O areas, after it has been built there, and load it into the data base in the
correct location. No DL/I HLPI commands other than LOAD can be used in this
program. The PSB for this program must have been generated with PROCOPT=L.
The LOAD command cannot be used in MPS batch and online programs.

If the access method specified for this data base is simple HSAM, HSAM, simple
HISAM, HISAM, or HIDAM; you must presort the data base records in ascending
order of the value of the key field of the root segments, and load them into the data
base in this order. If the access method is HSAM, HISAM, or HIDAM, and the data
base record is composed of more than the root segment, you must see that all of
the segments within the data base record have been presorted in order by their
hierarchical relationship and the value of their key fields, so that they can be loaded
into the data base in their hierarchical order. If the access method is HDAM,
presorting of root segments is optional, but dependent segments do have to be in
hierarchical order.

If the segments to be loaded have been sorted into hierarchical sequence, the load
program can:

¢ Read a segment to be loaded into a segment data area.

e Determine the name of the segment.

e Execute a LOAD command specifying the segment name and data area.

e Check the status code.

e If no error, continue the process until all segments are loaded.

Alternatively, once the name of the segment has been determined, the load
program could:

e Move the segment name into a variable defined in the program.

DL/I DOS/VS Application Programing: High Level Programming Interface

e Execute a LOAD command specifying the variable name rather than the
segment name in the SEGMENT option, as in this example:

EXECUTE DLI LOAD SEGMENT((SEGNAME)) FROM(SEGDATA);

where SEGNAME is the variable (identified by double parentheses) containing
the name of the segment to be loaded. The area identified by FROM must be
at least as large as the largest segment to be loaded from it.

e Continue as specified above.

SKILL

(ARTIST)

NAME
(SMITH)
NAME
(JONES)

NAME

(ADAMS)

EXPERIENCE EDUCATION EXPERIENCE EDUCATION EDUCATION

Figure 3-1. Logical Data Base Record Structure

Retrieving

You must be able to retrieve from a data base any segment to which your
application program is sensitive. The DL/l HLPI provides three command functions
for you to use in performing retrieval. They are: GET UNIQUE, GET NEXT, and
GET NEXT IN PARENT. GET UNIQUE is for use when you want to retrieve a
specific segment by direct reference into the data base. When you want to retrieve
segments sequentially, GET NEXT provides that function. Usually, you would want
to use GET NEXT after a previous GET UNIQUE or GET NEXT has established
position within the data base. However, GET NEXT can be used without position
having been previously established. In this case, the GET NEXT request is
satisfied by proceeding from the beginning of the data base. The GET NEXT IN
PARENT command makes it possible for you to sequentially retrieve all segments
subordinate to a chosen parent segment. For example, from the skills inventory
data base shown in Figure 3-1, you could retrieve all experience and education
segments for a given skill code and employee name. Parentage must have been
previously established to a unique name segment by a previous GET UNIQUE or
GET NEXT command. Once all the experience and education segments for the
given skill code and employee name have been retrieved by a series of GET NEXT

Chapter 3. DL/I Application Program 3-3

3-4

IN PARENT commands, execution of another GET NEXT IN PARENT will result in
status code GE being returned to your program. GE indicates that all segments
subordinate to the given skill code and employee name have been retrieved.

In addition to directly retrieving uniqgue segments and sequentially retrieving
segments, you can also skip sequentially from one segment to another of the same
type. For instance, assume that you need to retrieve all name segments for a
particular skill segment. It is not necessary to retrieve the segments subordinate to
each name segment (experience and education). The procedure is to retrieve the
first name segment with a GET UNIQUE command that looks like this in a PL/I
program (assuming that “SKILVAR” is defined in your program with the value
‘ARTIST):

EXEC DLI GET UNIQUE SEGMENT(SKILL) WHERE(SKILCODE=SKILVAR)
SEGMENT (NAME) INTO(NAMEIO);

Then, looping through the following GET NEXT command will retrieve all NAME
segments whose skill is artist.

EXEC DLI GET NEXT SEGMENT(SKILL) WHERE(SKILCODE=SKILVAR)
SEGMENT (NAME) INTO(NAMEIO);

Executing this command after the last NAME segment under ARTIST has been
retrieved will result in status code GE.

The WHERE clauses above can be expanded using the Boolean AND and OR
operators. This allows for more specific segment selectivity. Up to 11 of these
operators may be used in any single WHERE clause. This provides for up to 12
qualification conditions. If COBOL is the programming language, then the WHERE
clause must be followed by a FIELDLENGTH clause specifying the length of field in
each “reference” in the WHERE clause. If PL/I is used, the FIELDLENGTH clause
is optional. See “Qualified Segment Selection” in Chapter 2 of this manual for the
use of Boolean operators in the WHERE clause.

EXEC DLI GET NEXT SEGMENT(SKILL)
WHERE (SKILCODE>SKILVAR OR SKILCODE<SKILPROG
AND SKILEVEL=LVLOFSKL)
FIELDLENGTH(10,10,6)
SEGMENT (NAME) INTO(NAMEIO);

In this example, ARTIST is resident in the variable 10 byte field SKILVAR,
PROGRAMMER is resident in the variable 10 byte field SKILPROG, and EXPERT
is resident in the variable 6 byte field LVLOFSKL.

Updating

You must be able to modify the data contained in the data base in a given
segment. The DL/l HLPI command REPLACE provides this function. When you
code a REPLACE command in your program, you must be sure that one of the
three types of GET command is executed, to retrieve the segment that you intend
to update, before the REPLACE is executed. There can be no intervening
commands of any type, using the same PCB, to this data base. If there has been
an intervening command, the REPLACE command will be rejected. The key field, if
any, of the segment to be updated must not be modified.

As an example of updating, let's change the data in the skill segment of ARTIST
from COMMERCIAL to COMMERCIAL CARTOON. The GET command to retrieve
the ARTIST segment would look like this in a PL/I program (assuming that
SKILVAR is defined in your program with the value ‘ARTIST’):

DL/I DOS/VS Application Programing: High Level Programming Interface

EXEC DLI GET UNIQUE SEGMENT(SKILL) INTO(SKILLIO)
WHERE (SKILCODE=SKILVAR) ;

The 1/O area named SKILLIO will then contain the contents of the SKILL segment:

| ARTIST | COMMERCIAL |

Your program can now modify the data in the I/O area to look like this:

| ARTIST | COMMERCIAL CARTOON |

The command to replace the SKILL segment in the data base with the new data
looks like:

EXEC DLI REPLACE SEGMENT(SKILL) FROM(SKILLIO);

Note that HSAM data bases can only be updated by copying the entire data base
from the input file to the output file; omitting, modifying, or inserting segments as
required. The PSB for such a program must have two PCBs; one with
PROCOPT=G for reading the input file, and one with PROCOPT=L or LS for the
output file.

Deleting

You must be able to delete an entire segment from the data base. The DL/l HLPI
command DELETE provides this function. Before a DELETE command, you must
code one of the three types of GET command, to retrieve the segment you intend
to delete. There can be no intervening command of any type, using the same
PCB, to this data base. If there has been an intervening command, the DELETE
command will be rejected.

It is important for you to remember that the deletion of a parent segment results in
the deletion of all segments physically subordinate to the deleted segment, whether
your program is sensitive to them or not.

If a GET UNIQUE command tries to retrieve a particular segment immediately after
it was deleted, a status code GE is returned, indicating that the segment was not
found.

As an example, let's delete the SKILL segment containing the key and data fields
for artist. The command to retrieve the segment looks like this in a PL/l program:

EXEC DLI GET UNIQUE SEGMENT(SKILL) INTO(SKILLIO)
WHERE (SKILCODE=SKILVAR);

The SKILLIO area will contain:

ARTIST | COMMERCIAL CARTOON |

Now, when the command
EXEC DLI DELETE SEGMENT(SKILL) FROM(SKILLIO);

is executed, the ARTIST segment and all its dependent segments will be deleted.
That means that NAME segment ADAMS, EXPERIEN segment ADAMS, and
EDUCAT segment ADAMS are deleted; as well as NAME segment JONES and its
dependent EXPERIEN and EDUCAT segments, and NAME segment SMITH and its

Chapter 3. DL/I Application Program 3-5

Restrictions

dependent EDUCAT segment. Notice that deleting one SKILL segment deleted
every segment shown in [Figure 3-1 on page 3-3

Inserting
You must be able to insert a new segment into an existing data base. The DL/I
HLPI command INSERT provides this function.

Remember that you cannot add a dependent segment unless all parent segments
in the complete hierarchical path to it already exist in the data base. For example,
in|Figure 3-1 on page 3-3, no EXPERIEN segment subordinate to a particular
NAME segment can be added to the data base unless the NAME segment already
exists. Violation of this rule results in a GE (segment not found) status code.

The key value of a segment determines where it will be inserted in the data base.
Segments without key fields are inserted according to a rule established by DBA
when the DBD for the data base was defined. The possible rules are: FIRST,
LAST, and HERE. Segment types with non-unique keys (the same key value
occurring in more than one segment of the same type) are also inserted according
to a FIRST, LAST, or HERE rule established by DBA when the DBD was defined.
These rules are discussed in DL/I DOS/VS Data Base Administration.

Further information on rules governing the use of the INSERT command is provided
under “INSERT” in Chapter 4.

On Use of COMREG: Because bytes 16 through 19 of the communication region
are used by DL/I, you must not use them in your application program.

On Use of Overlay Programming: DL/l does not support the use of overlay
structures for application programs executing under its control. Although the
COBOL SORT verb automatically produces an overlay structure, this restriction
does not apply if the job control statements used to translate, compile, and link-edit
your program are as shown in the COBOL example for a batch or MPS batch
program in the section “Compilation and Link-Editing” in this chapter.

The use of “PL/I-SORT” programs, using the sort program product, is not affected
by this restriction, provided that an overlay structure is not explicitly specified.

On Use of Set Exit Abnormal (STXIT AB) Linkage: For batch applications you
have the option, through the use of the user program switch indicator (UPSI), of
permitting STXIT AB linkage to pass control to DL/I prior to abnormal termination,
so that a controlled shutdown can occur. The DL/l system log and DL/l data bases
are closed and a storage dump is provided. However, non-DL/I files are not
closed; that is your responsibility.

If your COBOL application program is executing under DL/I control, any attempt by
your program to execute the COBOL debug function can cause unpredictable
results. Therefore, you should not use any COBOL debug function (any COBOL
option that makes use of a STXIT routine) if DL/l STXIT is used. Refer to your
COBOL publications for options that use STXIT linkages.

On Mixed Use of Interfaces: Two DL/I interfaces are available for use in writing
application programs: the DL/l High Level Programming Interface and the DL/I
CALL interface. Either can be used in an application program written for the batch,

3-6 DL/ DOSIVS Application Programing: High Level Programming Interface

MPS batch, or CICS/VS online environment. Also, within the online environment,
either interface can be used with statements in the CICS/VS macro level or the
CICS/VS command level interface. However, statements in the two DL/I interfaces
must not both appear in the same program; nor should both interfaces be used in
different programs that exchange control during the life of a given task. This
means that if control is passed to programs other than the one that initially acquired
the PSB, these programs should access the DL/l data base using the same
interface as the original program.

On Host Language Use and Features: Certain features of the PL/I Optimizer
and ANS COBOL languages can not be used in application programs designed for
use with CICS/VS. These restrictions and other techniques are described in the
chapter “Programming Technigues and Restrictions” in the CICS/VS Application
Programmer's Reference Manual (Command Level)..

On Use of Reserved Keywords and Labels: Two pairs of keywords are reserved
for use as triggers by the translator and can be used only within DL/I HLPI
commands. They are:

e EXECUTE DLI
e EXEC DLI

The translator generates labels for the DIB, DL/I default values, and its own internal
variables. To avoid creating duplicately defined symbols, you must not define the
following:

e Labels beginning with the characters “DLZ"
e Labels beginning with the characters “DIB”
e Labels beginning with the characters “DFH”

The CICS/VS Application Programmer's Reference Manual (Command Level) lists
CICS reserved labels.

Online Considerations and Restrictions

You must be familiar with Customer Information Control System/Virtual Storage
(CICS/VS) programming fundamentals before attempting to plan an online DL/I
application program. The prerequisite CICS/VS publications are listed in the
preface of this manual.

DL/l data bases are accessed in a CICS/VS online environment using the same
DL/l HLPI commands as in the batch and MPS batch environments.

MPS Batch Considerations and Restrictions

Before planning an application program to be run in a Multiple Partition Support
(MPS) environment, you should be familiar with the MPS considerations and
restrictions described in DL/l DOS/VS Data Base Administration. Also, when using
CICS/VS Intersystem Communication support, DL/l application programs can
access a data base that is resident on another CICS/VS system. The applicaiton
program, except in the following situation, need not be aware of where the data
base is located. If your MPS batch application program is to run on a system
where Intersystem Communication support is active, it must not issue SCHEDULE
commands. Specific considerations and restrictions applying to the writing of your
MPS batch program are listed under “MPS Considerations” in the section “Writing
Your Program” later in this chapter.

Chapter 3. DL/l Application Program 3-7

DL/I Programming Techniques and Suggestions

Error Checking

The following items are programming techniques and suggestions that may be of
help in the planning stage of creating your DL/l application program.

1. As far as possible, try to construct the logic of your program in a manner that is
not highly dependent on the hierarchical structure of the data base.

2. Remember that deletion of a parent segment also deletes all of its children with
the same command, even though your program may not be sensitive to them.
If any information is required from those children, it must be retrieved from
them before the parent is deleted. DELETE is the only command that can
affect multiple segments without specifying parent segments.

3. The LOAD command is used to initially load a data base, and is used only for
that purpose. The “loading” of additional segment types in an existing data
base is done through the INSERT command. All programs after the first are
actually add-type programs and their planning and use should be coordinated
and reviewed by DBA to ensure that they perform adequately.

The CICS/VS EXEC translator scans each of the DL/I HLPI commands in your
program and reports any syntax errors. Your programming productivity is increased
through the detection of these errors before you actually compile your program.

During execution of your program, DL/l checks for errors that cannot be detected
by the translator and, depending on their type, reports them in the DIB as status
codes, or as system messages.

Errors detected by DL/l and reported as status codes are handled in two different
ways. The first group is returned to you in the status code field of the DIB
(DIBSTAT). You test for them in your program with code immediately following
each DL/I HLPI command and handle them in your program or call a generalized
handling routine, depending on the procedures established for your installation.

The other status code errors cannot be readily corrected under program control. In
a CICS/VS environment, they will result in a task ABEND. In the batch and MPS
batch environments, they will result in a program ABEND.

In the CICS/VS online environment, you can intercept status code abends by
coding EXEC CICS HANDLE ABEND at the beginning of your program. You can
access the abend code in your ABEND exit routine by coding EXEC CICS ASSIGN
ABCODE. The ABEND code that indicates HLPI status code abends is DHxx,
where “xx” is the corresponding DL/I status code. Your ABEND exit routine can
then attempt to correct the error and continue processing. Abends cannot be
intercepted in the batch and MPS batch environments.

Writing Your Program

3-8

This section will help you in the actual writing of your DL/I application program. In
general, the information applies to all of the possible operating environments.
Where this is not true, the exceptions are noted.

The detailed description of how to code and use each of the DL/I HLPI commands,
including the command syntax, is found in Chapter 4.

DL/I DOS/VS Application Programing: High Level Programming Interface

Entry to Batch and MPS Batch Programs

DIB

In the batch and MPS batch environments, when VSE gives control to DL/I, the
DL/I control program passes control on to your application program through an
entry point defined in your program. The method of defining the entry point is
different for each host language.

COBOL: The following statement must be the first in the procedure division of the
main procedure:

ENTRY 'DLITCBL'.

PL/I: There is no special requirement.

Each time your program executes a DL/l HLPI command, DL/I returns a status
code, and other information, to your program through the DL/I Interface Block (DIB).
The status code should be checked to ensure that the function was performed as
expected.

There is one DIB provided for each external procedure. The contents of the DIB, at
any given moment, reflects the status of the last DL/I HLPI command executed in
that procedure. DIB information required by an external procedure that has not
issued a DL/I HLPI command must be passed to that procedure by your application
program.

Labels that you can use to access the variables in the DIB are automatically
generated in your program by the translator. (These labels are reserved and you
must not redefine them in your program.)

The way the DIB variables are defined for each host language is shown below.

For COBOL:

DIBVER PICTURE X(2)
DIBSTAT PICTURE X(2)
DIBSEGM PICTURE X(8)
DIBFLAG PICTURE X(1)
DIBSEGLY ~ PICTURE X(2)
DIBKFBL PIC S9(4) compP

For PL/I:

DIBVER CHAR(2)
DIBSTAT CHAR(2)
DIBSEGM CHAR(8)
DIBFLAG CHAR(1)
DIBSEGLV CHAR(2)
DIBKFBL ~ FIXED BIN(15)

e DIBVER is the version of the translator used to translate the application
program.

e DIBSTAT is the DL/I status code.

* DIBSEGM is the name of the lowest level segment retrieved. DIBSEGM should
be ignored following a CHECKPOINT, SCHEDULE, or TERMINATE command.

e DIBFLAG is a flag indicating that an online task had to wait for a resource
owned by an MPS batch task (DIBFLAG = X'FF).

Chapter 3. DL/I Application Program 3-9

Status Codes

e DIBSEGLYV is the hierarchical level of the lowest level segment retrieved.
DIBSEGLYV should be ignored following a CHECKPOINT, SCHEDULE, or
TERMINATE command.

» DIBKFBL is the actual length of the concatenated key in the PCB when
KEYFEEDBACK is specified on the DL/I command.

After processing a given DL/l HLPI command, control is returned to your application
program at the next sequential instruction following the command. So that you can
check that the command has completed successfully, and has performed the
operation you intended on the data you specified, DL/I returns a two-character
status code in the DIB, as mentioned under “DIB” above.

The first thing that you should do in your program after each command is to test
DIBSTAT for the various status codes and take appropriate action. The status
codes that could be returned in DIBSTAT are GA, GB, GE, GK, Il, LB, NE, TG, and
bb.

The status codes that are returned for each command are listed with the individual
commands in Chapter 4. A complete list of status codes is shown as a table in
[Figure 3-5 on page 3-18| later in this chapter.

Using DIBKFBL

If DIBKFBL is greater than the FEEDBACKLEN parameter, the concatenated key is
truncated when it is moved into the user area. However, under PL/I,
FEEDBACKLEN can be allowed to default to the length of the KEYFEEDBACK
area.

Obtaining the PSB (Online Only)

The following information applies only in the CICS/VS online environment.

SCHEDULE command

Before any DL/l data bases can be accessed in an online program, your program
must initiate the scheduling of a PSB. You do this with the DL/I HLPI SCHEDULE
command.

Releasing the PSB (Online Only)

The following information applies only in the CICS/VS online environment.

TERMINATE Command

You use the DL/I HLPI TERMINATE command to indicate to DL/I that all
modifications made to the data bases by the transaction to this point are committed
and cannot be backed out, and that you are releasing the PSB for use by another
task.

3-10 DL/ DOS/VS Application Programing: High Level Programming Interface

Terminating the Program

Batch and MPS Batch

In the batch and MPS batch environments, at the completion of the execution of
your program, control must be passed back to DL/I. This is done by coding an exit
statement in your program that will look like this, depending on the host language
you are using:

COBOL
GOBACK.

PL/I
RETURN;

The GOBACK or RETURN statement will return control to DL/l. After all DL/I
resources are released and the data bases are closed, DL/I returns control to VSE.

Note: STOP RUN can not be used in a COBOL program as an exit statement,
since control would not be returned to DL/I to allow it to release its resources and
close the data bases and log. However, it can be coded after GOBACK. This
prevents the compiler from giving a warning message and automatically generating
a STOP RUN.

Online
In the online environment, control is returned to DL/l by coding a CICS/VS
command or macro statement, as shown below:

Command Macro
COBOL EXEC CICS RETURN END-EXEC. DFHPC TYPE=RETURN
PL/I EXEC CICS RETURN; DFHPC TYPE=RETURN

Techniques and Suggestions
The following items are programming techniques and suggestions that may be of
help in the writing stage of creating your DL/l application program.

1. In general, use qualified segments wherever possible.

2. Do not omit parent segments in a command specifying multiple parent
segments if it can be avoided. This promotes flexibility and control as the
application and the data base grow or change:

 |If the hierarchical structure of the data base is changed, your specification
of all parent segments will ensure the integrity of your program's access to
the newly structured data base.

* |f you add the use of the multiple positioning feature to your program at a
later date, specification of all parent segments would be required then.

e Complete segment specification is a sound programming practice from a
documentation and debugging point of view.

3. It is possible to specify segments in a GET NEXT command in such a way that
DL/l would be forced to search to the end of the data base without retrieving
any segment. This is especially likely during program testing. If a large,
multivolume data base is being accessed, significant amounts of processing
time could be wasted. To prevent this possibility, use GET UNIQUE or GET
NEXT IN PARENT commands wherever practical.

Chapter 3. DL/ Application Program 3-11

4. When specifying multiple parent segments in a command, try to specify the root
segment, qualified on the key field and using the “equal” operator, wherever
possible. This will prevent unnecessary and time consuming searching of the
entire data base. The same applies when secondary indexing is used, except
that qualification should be on the indexed field instead of the key field.

5. The use of GET UNIQUE commands (rather than GET NEXT) is likely to
provide more flexibility for future application program and data base changes.

6. The GET UNIQUE command can be used to process a data base sequentially,
although it usually requires more processing time than comparable GET NEXT
commands.

7. A repeated GET NEXT command with one unqualified segment retrieves all
occurrences of that segment type in the data base until the end is reached.

8. Remember that parentage cannot be set or reset with a GET NEXT IN
PARENT command.

9. Any field defined to DL/l can be used for segment selection. However,
qualification of root segments with non-key fields should be avoided for
performance reasons since the data base must be scanned sequentially to
satisfy these requests.

10. After an unsuccessful GET NEXT command, the current position depends on
several factors. It is good practice to establish a known position with a GET
UNIQUE command in this case.

11. It is also good practice to include the SEGMENT option for intermediate levels
when using GET UNIQUE commands.

12. Of all the commands that should be fully qualified, it is most important with the
INSERT command. If not fully qualified, the INSERT command could insert the
segment in a position different from the one that you intended.

MPS Batch Considerations

3-12

If any online tasks must wait for a resource owned by an MPS batch task, the MPS
task will be informed of this fact on the next and all subsequent commands until a
DL/l checkpoint is executed. This condition is flagged by the setting of the DIB flag
byte (DIBFLAG) to X'FF'. (Note that making the resource available through an
action, other than a checkpoint, does not change the flag byte. The flag indicates
that a wait was required at some point, not necessarily that a task is currently
waiting.)

When using the MPS Restart facility, a VSE checkpoint must be coded before each
DL/I CHECKPOINT command in the application program. The two checkpoints
together are referred to as a “combined checkpoint.” No other DL/I commands may
be issued between the VSE checkpoint and the DL/l CHECKPOINT command.

DL/I DOS/VS Application Programing: High Level Programming Interface

Programming Examples

This section provides a number of examples showing how the DL/l HLPI
commands are used to perform data base operations. Since it is assumed that you
are familiar with the host language you have chosen for your application program,
only those parts of the examples that illustrate DL/I functions are shown. Not all
possible combinations of DL/I commands are included. Some of the examples are
taken from, or based on, the sample programs distributed with DL/I. (These
programs are described in the DL/l DOS/VS Guide for New Users.)
shows the physical and logical data bases involved.

Each example is shown as it would appear in each of the supported host
languages.

Chapter 3. DL/ Application Program 3-13

(011515 (ONATSLS)
WALT YOANIA
(WL121LS) (152951S)
W3LI W3LT $$340aY/IWYN
AYOLNIANI 43040 (97SISLS) (9ASISLS) ¥INOLSND
(W3LI (W3LI
_ 31NLTLSANS IUNLTLSANS _
404) 404)
(04024d1S) NOILYIO0T WALI JOANIA (2010515)
43040 NOILYI0T
YIAWOLSND ¥IWOLSND
(SIHISLS) (V1S9S1S) (019515) (2011515) (ans111s) (¥001715)
ROLSTH SNLYLS NOLLY)0' NOLLY)0T WaLI WLl (QNALSLS) 43040 HaLI
¥IWOLSNI 110349 ¥IWOLSNI W3LI AYOLNIANI 31N111SansS ¥IW0LSNI FE}<[0]
(1522S18) (WLIIdLS)
$$34aaY/IWYN W3LI
¥IWOLSND AYOLNIANI

3Sva VYiva ¥3IwoLsnd 1vIIvo

(WLIJDLS)
W3LI
Y3040
(0402d1S)
4IQI0
IWOLSND
(SIHISLS) (V1S2S1S) (20712515)
AYOLSIH SNLYLS NOIL¥201
43IN0LSND IRGERR ¥IWOLSND
(1522515)
$$340QY/IWYN
JIN0LSND

Svd v1iva d3Wolsnd

1Sva Y1va AYOLNIANI TvIIDO01

(2071S1S) (ansS121S)
NOILY)0T W3LI Amubﬁmmmv
W3LI 31NL11S49NS
(WLIIdLS)
W3LI
AYOLNIANI

asvd

V1va AYOLN3IANI

Figure 3-2. Inventory and Customer Data Bases

3-14 DL/ DOS/VS Application Programing: High Level Programming Interface

LOAD Command Examples

The examples of the use of the DL/I HLPI LOAD command

[page 3-16]and [Figure 3-4 on page 3-17) are taken from a batch program
(DLZCBL10 for COBOL or DLZPLI10 for PL/I) that loads the inventory data base
and the customer data base. The segments for these data bases are defined in
DBDs named STDIDBP and STDCDBP, respectively. PCBs for the two data bases
are in a PSB named STBICLD.

The 80-byte input data records for the two data bases are separated by a single
record having “CUSTOMER?” in the first eight bytes, like this:

....INVENTORY DATA....
....INVENTORY DATA....

CUSTOMER
....CUSTOMER DATA....
....CUSTOMER DATA....

Chapter 3. DL/ Application Program 3-15

*PROCESS XOPTS(DLI)...;
DLZPLI10: PROCEDURE OPTIONS(MAIN);

DCL SW_CUSTOMER FIXED BIN (8) INIT (0);

DCL INV_REC FIXED DEC (5) INIT (0);

DCL CUST_REC FIXED DEC (5) INIT (0);

DCL 1 SEG_NAME CHAR (8) INIT (' ')
DCL 1 WIO,

3 IO_LEFT CHAR (64),
3 I0_RIGHT CHAR (80);

DCL IO CHAR (144) DEFINED WIO POSITION (1);
DCL 1 I0_VAR,
3 SEG_LGT BIN (15,0),
3 101 CHAR (128);
DCL 1 WMSGE_LINE,
3 MSGE1 CHAR (6),
3 MSGE2 CHAR (60);
SEG_LGT=MAX_LGT; /*SET MAXIMUM VARIABLE LENGTH
DO; /* LOAD DATA BASES
IF SW_CUSTOMER = OFF THEN /* IS THIS CUSTOMER DATA?
DO; /* NO. LOAD INVENTORY DATA
EXEC DLI /* LOAD COMMAND

LOAD USING PCB(1)
SEGMENT ((SEG_NAME)) FROM(IO);

IF DIBSTAT = ' ' THEN /* WAS THERE A DL/I ERROR?
INV_REC = INV_REC + ONE; /* NO. COUNT INVENTORY RECORD
ELSE /* UNEXPECTED DL/I ERROR
DO;
MSGE1 = DIBSTAT;

MSGE2 = "UNEXPECTED DLI STATUS CODE-INV';
CALL END_NOK;

END;
END; /* END -- LOAD INVENTORY DATA
ELSE
DO; /* LOAD CUSTOMER DATA
IF SEG_NAME = 'STSCHIS' THEN /* VARIABLE LENGTH SEGMENT?
DO; /* YES. PUT DATA IN I/0 AREA
101 = SUBSTR(I0,1,SEG_LGT-TWO);
EXEC DLI /* LOAD COMMAND
LOAD USING PCB(2)
VARIABLE SEGMENT(STSCHIS) FROM(IO_VAR);
END; /* END -- VARIABLE SEGMENT
ELSE /* NOT THE VARIABLE SEGMENT
EXEC DLI /* LOAD COMMAND

LOAD USING PCB(2)
SEGMENT ((SEG_NAME)) FROM(IO);
IF DIBSTAT = ' ' THEN /* WAS THERE A DL/I ERROR?

CUST_REC = CUST_REC + ONE; /* NO. COUNT CUSTOMER RECORD
ELSE
DO; /* UNEXPECTED DL/I ERROR
MSGE1 = DIBSTAT;

MSGE2 = "UNEXPECTED DLI STATUS CODE-CUST';
CALL END_NOK;
END;
END; /* END -- LOAD CUSTOMER DATA
END; /* END -- LOAD DATA BASES

RETURN;

END_NOK: PROCEDURE;
* /* DISPLAY FAILURE MESSAGE

END;
END DLZPLI10;

Figure 3-3. PL/I Batch Program Using LOAD Command

3-16 DL/ DOS/VS Application Programing: High Level Programming Interface

*/
*/
*/
*/
*/

*/
*/
*/

%/
%/
%/
%/
%/
%/

*/
*/

*/
*/
*/

*/
*/

*/

CBL XOPTS(DLI)...
IDENTIFICATION DIVISION.
PROGRAM ID. DLZCBL10O.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

0

—

SW-CUSTOMER PIC 9 VALUE 0.

INV-REC PIC 9(5) VALUE O COMP-3.
CUST-REC PIC 9(5) VALUE O COMP-3.
SEG-NAME PIC X(8).

10.

02 10-LEFT PIC X(64).

02 10-RIGHT PIC X(80).

10-VAR.

02 SEG-LGT PIC 9(4) COMP.

02 101 PIC X(142).

MSGE-LINE.

02 MSGEL PIC X(6).

02 MSGE2 PIC X(60).

PROCEDURE DIVISION.
ENTRY 'DLITCBL'.

*

IF SW-CUSTOMER = 1
GO TO LOAD-CUSTOMER-DB
ELSE NEXT SENTENCE.

* LOAD INVENTORY DATA BASE

*

LOAD-INVENTORY-DB.

*

EXEC DLI
LOAD USING PCB(1)
SEGMENT ((SEG-NAME)) FROM(IO) SEGLENGTH(144)
END-EXEC.
IF DIBSTAT = ' ' ADD 1 TO INV-REC
GO TO READ-CARD
ELSE MOVE DIBSTAT TO MSGEL
MOVE 'UNEXPECTED DLI STATUS CODE-INV' TO MSGE2
PERFORM PRINT-MESSAGE
GO TO END-NOK.

* LOAD CUSTOMER DATA BASE

*

LOAD-CUSTOMER-DB.

IF SEG-NAME = 'STSCHIS'
MOVE I0 TO IO1
EXEC DLI
LOAD USING PCB(2)
SEGMENT ((SEG-NAME)) FROM(I0-VAR) SEGLENGTH(144)
END-EXEC.
ELSE
EXEC DLI
LOAD USING PCB(2)
VARIABLE SEGMENT(STSCHIS) FROM(IO) SEGLENGTH(144)
END-EXEC.
IF DIBSTAT = ' ' ADD 1 TO CUST-REC
GO TO READ-CARD
ELSE MOVE DIBSTAT TO MSGE1
MOVE 'UNEXPECTED DLI STATUS CODE-CUST' TO MSGE2
PERFORM PRINT-MESSAGE
GO TO END-NOK.
.

END-NOK.
* DISPLAY FAILURE MESSAGE

GOBACK.

Figure 3-4. COBOL Batch Program Using LOAD Command

Chapter 3. DL/l Application Program

3-17

GET Command Examples

The examples of the use of the DL/l HLPI GET UNIQUE, GET NEXT, and GET
NEXT IN PARENT commands are based on the online sample application
programs DLZPLI30 and DLZCBL30. These programs perform various DL/I
functions on the data bases loaded by the DLZPLI10 and DLZCBL10 sample
programs used in the LOAD command examples above. Figure 3-5 gives PL/I
examples. |Figure 3-6 on page 3-20| gives COBOL examples.

*PROCESS XOPTS(CICS,DLI)...;
DLZPLI30: PROCEDURE OPTIONS(MAIN);

DCL OFF BIT (1) INIT (0) STATIC;
DCL LISCUS_CALLED BIT (1) INIT (0);
DCL 1 SAVE_AREAS,

3 LOCSAV CHAR (6),

3 NUMSAV CHAR (6),

3 NUMBAK CHAR (6),

3 ITMSAV CHAR (2);
DCL 1 FILL_ORDSAV,

3 ..., ;
DCL 1 ORDSAV CHAR (12) DEFINED FILL_ORDSAV POSITION (1);
DCL 1 STSCCST,

K I ;
DCL 1 STScLoC,

3 ... ;
DCL 1 STPCORD,

KR, 3
DCL 1 STLCITM,

EXEC CICS /* HANDLE ABEND COMMAND */
HANDLE ABEND PROGRAM('DECODE');

EXEC DLI /* GET UNIQUE COMMAND */
GET UNIQUE USING PCB(1)
SEGMENT (STSCCST) INTO(STSCCST);

IF DIBSTAT -= ' ' THEN /* WAS THERE A DL/I ERROR? */

CALL REALER; /* YES. CALL ERROR ROUTINE */

ELSE /* NO. CONTINUE */
L]

EXEC DLI /* GET NEXT COMMAND */

GET NEXT USING PCB(1)
SEGMENT (STSCCST) INTO(STSCCST);

IF DIBSTAT -= ' ' & /* UNEXPECTED DL/I ERROR? */
DIBSTAT -= 'GB' THEN /* YES. CALL ERROR ROUTINE */
CALL REALER;
ELSE /* NO. CONTINUE */
L]
L]
EXEC DLI /* GET UNIQUE COMMAND */

GET UNIQUE USING PCB(2)
KEYFEEDBACK (NUMBAK) FEEDBACKLEN(6)/+KEY FEEDBACK NAME AND LENGTH*/

SEGMENT (STSCCST) WHERE(STQCCNO=NUMSAV) INTO(STSCCST)
SEGMENT (STSCLOC) INTO(STSCLOC);

IF DIBSTAT —= ' ' THEN /* UNEXPECTED DL/I ERROR? */
IF DIBSTAT = 'GE' & /* SEGMENT NOT FOUND AND NOT =/
LISCUS_CALLED = OFF THEN /* A RECURSIVE CALL */

Figure 3-5 (Part 1 of 2). PL/I Online Program Using GET Commands

3-18 DL/ DOS/VS Application Programing: High Level Programming Interface

EXEC DLI /% GET NEXT COMMAND */
GET NEXT USING PCB(2)
SEGMENT (STSCCST) WHERE (STQCCNO=NUMSAV) INTO(STSCCST)
SEGMENT (STSCLOC) INTO(STSCLOC) ;
IF DIBSTAT -= ' ' & /* UNEXPECTED DL/I ERROR? */
DIBSTAT -= 'GE' THEN /* YES. CALL ERROR ROUTINE */
CALL REALER;
ELSE /* NO. CONTINUE */
.
L)
EXEC DLI /% GET UNIQUE COMMAND */
GET UNIQUE USING PCB(2)
SEGMENT (STSCCST) WHERE (STQCCNO=NUMSAV) INTO(STSCCST)
SEGMENT (STSCLOC) WHERE (STQCLNO=LOCSAV) INTO(STSCLOC)
SEGMENT (STPCORD) WHERE (STQCODN=ORDSAV) INTO(STPCORD)
SEGMENT (STLCITM) INTO(STLCITM);
IF DIBSTAT -= ' ' THEN /* WAS THERE A DL/I ERROR? */
CALL REALER; /* YES. CALL ERROR ROUTINE */
ELSE /* NO. CONTINUE */
EXEC DLI /* GET NEXT COMMAND */
GET NEXT USING PCB(2)
SEGMENT (STSCCST) WHERE (STQCCNO=NUMSAV) INTO(STSCCST)
SEGMENT (STSCLOC) WHERE (STQCLNO=LOCSAV) INTO(STSCLOC)
SEGMENT (STPCORD) WHERE (STQCODN=ORDSAV) INTO(STPCORD)
SEGMENT (STLCITM) INTO(STLCITM);
IF DIBSTAT -= ' ' & /% UNEXPECTED DL/I ERROR? */
DIBSTAT -= 'GE' THEN /* YES. CALL ERROR ROUTINE +/
CALL REALER;
ELSE /* NO. CONTINUE */
L]
L]
EXEC DLI /% GET NEXT IN PARENT COMMAND */
GET NEXT IN PARENT USING PCB(2)
SEGMENT (STLCITM) INTO(STLCITM);
IF DIBSTAT -= ' ' & /% UNEXPECTED DL/I ERROR? */
DIBSTAT ~= 'GE' THEN /* YES. CALL ERROR ROUTINE */
CALL REALER;
ELSE /* NO. CONTINUE */
L]
REALER: PROCEDURE; /* HANDLE UNEXPECTED DL/I ERRORS#/

END REALER;
END DLZPLI30;

Figure 3-5 (Part 2 of 2). PL/I Online Program Using GET Commands

Chapter 3. DL/l Application Program

3-19

CBL XOPTS(CICS,DLI)...
ID DIVISION.
PROGRAM-ID. DLZCBL30.

01 SAVE-AREAS.
02 LOCSAV ~ PIC X(6).
02 ORDSAV.

02 NUMSAV PIC X(6).

02 NUMBAK PIC X(6).

02 ITMSAV ~ PIC XX.
01 STSCCST.

01 STSCLOC.
01 STPCORD.

01 STLCITM.
03

* HANDLE ABEND COMMAND
*
EXEC CICS
HANDLE ABEND PROGRAM('DECODE')
END=EXEC.
* GET UNIQUE COMMAND
*
EXEC DLI
GET UNIQUE USING PCB(1)
SEGMENT (STSCCST) INTO(STSCCST) SEGLENGTH(31)
END-EXEC.
IF DIBSTAT NOT = ' ' GO TO REALER.

* GET NEXT COMMAND
*
EXEC DLI
GET NEXT USING PCB(1)
SEGMENT (STSCCST) INTO(STSCCST) SEGLENGTH(31)
END-EXEC.
IF DIBSTAT = ' ' GO TO LSTCUS.
IF DIBSTAT NOT = 'GB' GO TO REALER.

* GET UNIQUE COMMAND
*
EXEC DLI
GET UNIQUE USING PCB(2)
KEYFEEDBACK (NUMBAK) FEEDBACKLEN(6)
SEGMENT (STSCCST) WHERE (STQCCNO=NUMSAV) INTO(STSCCST)
FIELDLENGTH(6) SEGLENGTH(106)
SEGMENT (STSCLOC) INTO(STSCLOC) SEGLENGTH(106)
END-EXEC.
IF DIBSTAT = ' ' NEXT SENTENCE
ELSE IF DIBSTAT = 'GE' GO TO LISCUS
ELSE GO TO REALER.

* GET NEXT COMMAND
*
EXEC DLI
GET NEXT USING PCB(2)
SEGMENT (STSCCST) WHERE (STQCCNO=NUMSAV) INTO(STSCCST)
FIELDLENGTH(6) SEGLENGTH(106)
SEGMENT(STSCLOC) INTO(STSCLOC) SEGLENGTH(106)
END-EXEC.
IF DIBSTAT = ' ' GO TO LSTLOC
ELSE IF DIBSTAT NOT = 'GE' GO TO REALER.
L]

Figure 3-6 (Part 1 of 2). COBOL Online Program Using GET Commands

3-20 DL/ DOS/VS Application Programing: High Level Programming Interface

* GET UNIQUE COMMAND

*
EXEC DLI
GET UNIQUE USING PCB(2)

SEGMENT (STSCCST) WHERE(STQCCNO=NUMSAV) INTO(STSCCST)

FIELDLENGTH(6) SEGLENGTH(166)

SEGMENT (STSCLOC) WHERE(STQCLNO=LOCSAV) INTO(STSCLOC)

FIELDLENGTH(6) SEGLENGTH(106)

SEGMENT (STPCORD) WHERE (STQCODN=ORDSAV) INTO(STPCORD)

FIELDLENGTH(12) SEGLENGTH(55)

SEGMENT (STLCITM) INTO(STLCITM) SEGLENGTH(94)

END-EXEC.
IF DIBSTAT NOT = ' ' GO TO REALER.

* GET NEXT COMMAND
*
EXEC DLI
GET NEXT USING PCB(2)

SEGMENT (STSCCST) WHERE (STQCCNO=NUMSAV) INTO(STSCCST)

FIELDLENGTH(6) SEGLENGTH(166)

SEGMENT (STSCLOC) WHERE(STQCLNO=LOCSAV) INTO(STSCLOC)

FIELDLENGTH(6) SEGLENGTH(106)

SEGMENT (STPCORD) WHERE (STQCODN=ORDSAV) INTO(STPCORD)

FIELDLENGTH(12) SEGLENGTH(55)

SEGMENT (STLCITM) INTO(STLCITM) SEGLENGTH(94)
END-EXEC.
IF DIBSTAT = ' ' GO TO LSTITM.
IF DIBSTAT NOT = 'GE' GO TO REALER.

L]
* GET NEXT IN PARENT COMMAND
*
EXEC DLI
GET NEXT IN PARENT USING PCB(2)
SEGMENT(STLCITM) INTO(STLCITM) SEGLENGTH(94)
END-EXEC.
IF DIBSTAT = ' ' GO TO MORITM.
IF DIBSTAT NOT = 'GE' GO TO REALER.

REALER.

*
* HANDLE UNEXPECTED DL/I ERRORS
*

L]

Figure 3-6 (Part 2 of 2). COBOL Online Program Using GET Commands

Chapter 3. DL/l Application Program

3-21

INSERT, REPLACE, and DELETE Command Examples

The examples of the use of the DL/I HLPI INSERT, REPLACE, and DELETE
commands are taken from, or based on, the online sample application programs
DLZPLI30 and DLZCBL30. These programs perform various DL/l functions on the
data bases loaded by the DLZPLI10 and DLZCBL10 sample programs used in the
LOAD command examples above. Figure 3-7 gives PL/I examples.
gives COBOL examples.

*PROCESS XOPTS(CICS,DLI)...;
DLZPLI30: PROCEDURE OPTIONS(MAIN);

DCL 1 SAVE_AREAS,
3 LOCSAV CHAR (6),
3 NUMSAV CHAR (6),
3 ITMSAV CHAR (2);

DCL 1 FILL_ORDSAV,
3 ... ;
DCL 1 ORDSAV CHAR (12) DEFINED FILL_ORDSAV POSITION (1);
DCL 1 STSCCST,
3 ..., ;
DCL 1 STSCLOC,
K I ;
DCL 1 STPCORD,
3 ... ;
DCL 1 STLCITM,
3 ... ;
L]
EXEC CICS
HANDLE ABEND PROGRAM('DECODE'); /* HANDLE ABEND COMMAND */
L]
EXEC DLI /* INSERT COMMAND */
INSERT USING PCB(1)
SEGMENT (STLCITM) FROM(STLCITM);
IF DIBSTAT —= ' ' THEN /* WAS THERE A DL/I ERROR? */
CALL REALER; /* YES. CALL ERROR ROUTINE =*/
ELSE /* NO. CONTINUE */
EXEC DLI /* INSERT COMMAND */
INSERT USING PCB(1)
SEGMENT (STSCCST) FROM(STSCCST)
SEGMENT (STSCLOC) FROM(STSCLOC)
SEGMENT (STPCORD) FROM(STPCORD) ;
IF DIBSTAT -= ' ' THEN /* WAS THERE A DL/I ERROR? */
CALL REALER; /* YES. CALL ERROR ROUTINE */
ELSE /* NO. CONTINUE */
EXEC DLI /* INSERT COMMAND */
INSERT USING PCB(1)
SEGMENT (STSCCST) WHERE (STQCCNO=NUMSAV)
SEGMENT (STSCLOC) WHERE (STQCLNO=LOCSAV)
SEGMENT (STPCORD) FROM(STPCORD) ;
IF DIBSTAT -= ' ' THEN /* WAS THERE A DL/I ERROR? */
CALL REALER; /* YES. CALL ERROR ROUTINE =/
ELSE /* NO. CONTINUE */

Figure 3-7 (Part 1 of 2). PL/I Online Program Using INSERT, REPLACE, and DELETE
Commands

3-22 DL/ DOS/VS Application Programing: High Level Programming Interface

EXEC DLI /* GET UNIQUE COMMAND FOR =/
GET UNIQUE USING PCB(1) /* FOLLOWING REPLACE COMMAND */
SEGMENT (STSCCST) WHERE (STQCCNO=NUMSAV)

SEGMENT (STSCLOC) WHERE (STQCLNO=LOCSAV)
SEGMENT (STPCORD) WHERE (STQCODN=ORDSAV) INTO(STPCORD)
SEGMENT (STLCITM) WHERE (STQCILI=ITMSAV) INTO(STLCITM);
EXEC DLI /* REPLACE COMMAND */
REPLACE USING PCB(1)
SEGMENT (STPCORD) FROM(STPCORD)
SEGMENT (STLCITM) FROM(STLCITM);
IF DIBSTAT == ' ' THEN /* WAS THERE A DL/I ERROR? */
CALL REALER; /* YES. CALL ERROR ROUTINE */

ELSE /* NO. CONTINUE */

EXEC DLI /* GET UNIQUE COMMAND FOR */
GET UNIQUE USING PCB(1) /* FOLLOWING DELETE COMMAND =/
SEGMENT (STSCCST) WHERE (STQCCNO=NUMSAV)

SEGMENT (STSCLOC) WHERE (STQCLNO=LOCSAV)
SEGMENT (STPCORD) WHERE (STQCODN=ORDSAV) INTO(STPCORD)
SEGMENT (STLCITM) WHERE(STQCILI=ITMSAV) INTO(STLCITM);

EXEC DLI /* DELETE COMMAND. ALSO */
DELETE USING PCB(1) /* DELETES STLCITM SEGMENT =/
SEGMENT (STPCORD) FROM(STPCORD) ;

IF DIBSTAT == ' ' THEN /* WAS THERE A DL/I ERROR? */

CALL REALER; /* YES. CALL ERROR ROUTINE */

ELSE /* NO. CONTINUE */

REALER: PROCEDURE; /* HANDLE UNEXPECTED DL/I ERRORS*/

END REALER;
END DLZPLI30;

Figure 3-7 (Part 2 of 2). PL/I Online Program Using INSERT, REPLACE, and DELETE

Commands

Chapter 3. DL/l Application Program

3-23

CBL XOPTS(CICS,DLI)...
ID DIVISION.
PROGRAM-ID. DLZCBL30.

01 SAVE-AREAS.
02 LOCSAV ~ PIC X(6).
02 ORDSAV.

02 NUMSAV PIC X(6).
02 ITMSAV ~ PIC XX.
01 STSCCST.

01 STSCLOC.
01 STPCORD.

01 STLCITM.

* HANDLE ABEND COMMAND
*
EXEC CICS
HANDLE ABEND PROGRAM('DECODE')
END-EXEC.

* INSERT COMMAND
*
EXEC DLI
INSERT USING PCB(1)
SEGMENT (STLCITM) FROM(STLCITM) SEGLENGTH(94)
END-EXEC.
IF DIBSTAT NOT = ' ' GO TO REALER.

* INSERT COMMAND
*
EXEC DLI
INSERT USING PCB(1)
SEGMENT (STSCCST) FROM(STSCCST) SEGLENGTH(106)
SEGMENT (STSCLOC) FROM(STSCLOC) SEGLENGTH(106)
SEGMENT (STPCORD) FROM(STPCORD) SEGLENGTH(55)
END-EXEC.
IF DIBSTAT NOT = ' ' GO TO REALER.

* INSERT COMMAND
*
EXEC DLI
INSERT USING PCB(1)
SEGMENT (STSCCST) WHERE (STQCCNO=NUMSAV) FIELDLENGTH(6)
SEGMENT (STSCLOC) WHERE (STQCLNO=LOCSAV) FIELDLENGTH(6)
SEGMENT (STPCORD) FROM(STPCORD) SEGLENGTH(55)
END-EXEC.
IF DIBSTAT NOT = ' ' GO TO REALER.

* GET UNIQUE COMMAND FOR FOLLOWING REPLACE COMMAND
*

EXEC DLI
GET UNIQUE USING PCB(1)
SEGMENT (STSCCST) WHERE(STQCCNO=NUMSAV) FIELDLENGTH(6)
SEGMENT (STSCLOC) WHERE(STQCLNO=LOCSAV) FIELDLENGTH(6)
SEGMENT (STPCORD) WHERE (STQCODN=ORDSAV) INTO(STPCORD)
FIELDLENGTH(12) SEGLENGTH(55)
SEGMENT (STLCITM) WHERE(STQCILI=ITMSAV) INTO(STLCITM)
FIELDLENGTH(2) SEGLENGTH(94)

END-EXEC.

.

Figure 3-8 (Part 1 of 2). COBOL Online Program Using INSERT, REPLACE, and
DELETE Commands

3-24 DL/ DOS/VS Application Programing: High Level Programming Interface

* REPLACE COMMAND
*
EXEC DLI
REPLACE USING PCB(1)
SEGMENT (STPCORD) FROM(STPCORD) SEGLENGTH(55)
SEGMENT (STLCITM) FROM(STLCITM) SEGLENGTH(94)
END-EXEC.
IF DIBSTAT NOT = ' ' GO TO REALER.

.
L)
* GET UNIQUE COMMAND FOR FOLLOWING DELETE COMMAND
*
EXEC DLI
GET UNIQUE USING PCB(1)
SEGMENT (STSCCST) WHERE (STQCCNO=NUMSAV) FIELDLENGTH(6)
SEGMENT (STSCLOC) WHERE (STQCLNO=LOCSAV) FIELDLENGTH(6)
SEGMENT (STPCORD) WHERE (STQCODN=ORDSAV) INTO(STPCORD)
FIELDLENGTH(12) SEGLENGTH(55)
SEGMENT (STLCITM) WHERE(STQCILI=ITMSAV) INTO(STLCITM)
FIELDLENGTH(2) SEGLENGTH(94)
END-EXEC.

* DELETE COMMAND
*
EXEC DLI
DELETE USING PCB(1)
SEGMENT (STPCORD) FROM(STPCORD) SEGLENGTH(55)
END-EXEC.
IF DIBSTAT NOT = ' ' GO TO REALER.

REALER.

*

* HANDLE UNEXPECTED DL/I ERRORS
*

Figure 3-8 (Part 2 of 2). COBOL Online Program Using INSERT, REPLACE, and
DELETE Commands

Chapter 3. DL/ Application Program 3-25

SCHEDULE, TERMINATE, and CHECKPOINT Command
Examples

The examples of the use of the DL/I HLPI SCHEDULE, TERMINATE, and
CHECKPOINT commands are taken from, or based on, the online sample
application programs DLZPLI30 and DLZCBL30. These programs perform various
DL/l functions on the data bases loaded by the DLZPLI10 and DLZCBL10 sample
programs used in the LOAD command examples above. Figure 3-9 gives PL/I
examples. |Figure 3-10 on page 3-27|gives COBOL examples.

*PROCESS XOPTS(CICS,DLI)...;
DLZPLI30: PROCEDURE OPTIONS(MAIN);

EXEC CICS
HANDLE ABEND PROGRAM('DECODE'); /* HANDLE ABEND COMMAND */
L]
L]
EXEC DLI /* SCHEDULE COMMAND */

SCHEDULE PSB(STBCUSR) ;

EXEC DLI /* CHECKPOINT COMMAND */
CHECKPOINT ID('CHCKPTO1');

EXEC DLI /* TERMINATE COMMAND */
TERMINATE;
EXEC DLI /* SCHEDULE COMMAND */

SCHEDULE PSB(STBCUSU) ;

EXEC DLI /* TERMINATE COMMAND */
TERMINATE;

END DLZPLI30;

Figure 3-9. PL/I Online Program Using SCHEDULE, TERMINATE, and CHECKPOINT
Commands

3-26 DL/ DOS/VS Application Programing: High Level Programming Interface

CBL XOPTS(CICS,DLI)...
ID DIVISION.
PROGRAM-ID. DLZCBL30.

EXEC CICS
HANDLE ABEND PROGRAM('DECODE')
END-EXEC.

EXEC DLI
SCHEDULE PSB(CBBCUSR)
END-EXEC.

EXEC DLI
CHECKPOINT ID('CHCKPTO1')
END-EXEC.

EXEC DLI
TERMINATE
END-EXEC.

EXEC DLI
SCHEDULE PSB(CBBCUSU)
END-EXEC.

EXEC DLI
TERMINATE
END-EXEC.

Figure 3-10. COBOL Online Program Using SCHEDULE, TERMINATE, and CHECKPOINT
Commands

HANDLE ABEND Command Examples

In the CICS/VS online environment, you can intercept DL/l abends by coding an
EXEC CICS HANDLE ABEND command at the beginning of your program (see
[Figure 3-5 on page 3-18|through Figure 3-10). This command causes all task

abends to be intercepted and control passed to the specified abend processing

program on task abend.

[Figure 3-11 on page 3-2§ gives an example of an abend processing program
using COBOL and [Figure 3-12 on page 3-29|gives an example using PL/I.

These examples of an abend processing program select DL/I HLPI abend codes,
which begin with ‘DHxx’, and use the DL/I status code (the ‘xx’ in the abend code)
to select a message that describes the cause of the abend.

Chapter 3. DL/ Application Program 3-27

CBL APOST,LIB,SUPMAP,CLIST,SXREF,XOPTS(CICS,DLI)
ID DIVISION.
PROGRAM-ID. DECODE.
REMARKS. INTERCEPTS DL/I ABENDS AND ISSUES MESSAGE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.

01 MSGAB PIC X(72) VALUE ' NO SEGMENT I/0 AREA '.
01 MSGAC PIC X(72) VALUE ' HIERARCHICAL ERROR .
01 MSGAD PIC X(72) VALUE ' INVALID FUNCTION SPECIFIED'.
01 MSGAH PIC X(72) VALUE ' NO SEGMENT SPECIFIED ‘.
L]
L]
01 MSGXH PIC X(72) VALUE ' LOGGING NOT ACTIVE '.
01 MSGXX PIC X(72) VALUE ' NO TEXT FOR THIS ABCODE ‘.
01 MSG PIC X(72) VALUE ' '.

01 MSGABEND.
02 FILLER PIC X(19) VALUE ' DL/I ABEND CODE = '.
02 STATCD PIC X(2) VALUE SPACES.
02 FILLER PIC X(51) VALUE ' '.
01 ABCODE.
02 DLICODE PIC X(2) VALUE SPACES.
02 DLISTAT PIC X(2) VALUE SPACES.
PROCEDURE DIVISION.
EXEC CICS ASSIGN ABCODE (ABCODE) END-EXEC.
IF DLICODE = 'DH'
MOVE DLISTAT TO STATCD
EXEC CICS SEND TEXT FROM(MSGABEND) LENGTH(72)
ACCUM END-EXEC
GO TO DHAB
ELSE GO TO END-RUT.
DHAB.
IF DLISTAT = 'AB'
MOVE MSGAB TO MSG
GO TO END-RUT.
DHAC.
IF DLISTAT = 'AC'
MOVE MSGAC TO MSG
GO TO END-RUT.
DHAD.
IF DLISTAT = 'AD'
MOVE MSGAD TO MSG
GO TO END-RUT.
DHAH.
IF DLISTAT = 'AH'
MOVE MSGAH TO MSG
GO TO END-RUT.

DHXH.
IF DLISTAT = 'XH'
MOVE MSGXH TO MSG
GO TO END-RUT.
DHXX.
MOVE MSGXX TO MSG.
END-RUT.
EXEC CICS SEND TEXT FROM(MSG) LENGTH(72)
ACCUM END-EXEC.
EXEC CICS SEND PAGE END-EXEC.
EXEC CICS RETURN END-EXEC.
STOP RUN.

Figure 3-11. COBOL Online HANDLE ABEND Program

3-28 DL/ DOS/VS Application Programing: High Level Programming Interface

* PROCESS MACRO,WORKFILE(3330),AG,ESD,MAP,STG,SIZE(MAX),NIS,
OFFSET,LC(60) ,XOPTS(CICS,DLI,LC(70));

/ /
/% NAME: DECODE */
/* */
/* FUNCTION: INTERCEPT HLPI ABENDS AND ISSUE A DESCRIPTIVE */
/* MESSAGE */
/* */
/ /
%SKIP(2) 3

DECODE: PROCEDURE OPTIONS(MAIN);

2SKIP(2);
/**/
/* DESCRIPTIVE STATEMENTS */
/ /
%SKIP(2);

DCL 1 MSGAB CHAR(42) INIT(' NO SEGMENT I/O AREA IN COMMAND');
DCL 1 MSGAC CHAR(42) INIT(' HIERARCHICAL ERROR IN COMMAND');

DCL 1 MSGAD CHAR(42) INIT(' INVALID FUNCTION SPECIFIED');

DCL 1 MSGAH CHAR(42) INIT(' COMMAND DOES NOT HAVE SEGMENT KEYWORD');
L]

DCL 1 MSGXH CHAR(42) INIT(' LOGGING NOT ACTIVE DURING CKPT');

DCL 1 MSG__ CHAR(42) INIT(' NO TEXT FOR THIS STATUS CODE');

DCL 1 MSG CHAR(72) INIT(' ');

DCL 1 MSGABEND,

3 PT1 CHAR(33) INIT(' DL/I ABEND INTERCEPTED - CODE = ')
3 MSTAT CHAR(2),
3 PT3 CHAR(37) INIT(' ');
DCL 1 ABCODE,
3 DLICODE CHAR(2),
3 DLISTAT CHAR(2);
%SKIP(2);
DCL STG BUILTIN;
DCL ADDR BUILTIN;
DCL LOW BUILTIN;
%PAGE ;
/ /
/* PROCESS STATEMENTS */
/ /
%SKIP(2);
EXEC CICS ASSIGN ABCODE (ABCODE);
IF DLICODE = 'DH' THEN
DO;
MSTAT = DLISTAT;
EXEC CICS SEND TEXT FROM(MSGABEND) LENGTH(72) ACCUM;
SELECT (DLISTAT);
WHEN ('AB') MSG = MSGAB;
WHEN ('AC') MSG = MSGAC;
WHEN ('AD') MSG = MSGAD;
WHEN ('AH') MSG = MSGAH;

L]
WHEN ('XH') MSG = MSGXH;
OTHERWISE ~ MSG = MSG__;
END;

EXEC CICS SEND TEXT FROM(MSG) LENGTH(72) ACCUM;
END;
EXEC CICS SEND PAGE;
EXEC CICS RETURN;
END DECODE;

Figure 3-12. PL/I Online HANDLE ABEND Program

Chapter 3. DL/l Application Program

3-29

CHECKPOINT Command Examples Using MPS Restart

[Figure 3-13 on page 3-31] gives COBOL examples of checkpoints in an MPS batch
program running with MPS Restart active. PL/I examples are given in
When using MPS Restart, a VSE checkpoint must be coded before
each DL/I checkpoint in the application program. The two checkpoints together are

referred to as a “combined checkpoint.” No other DL/I commands may be issued
between the VSE checkpoint and the DL/I CHKP command.

3-30 DL/ DOS/VS Application Programing: High Level Programming Interface

CBL XOPTS(CICS,DLI)...
ID DIVISION.
PROGRAM-ID.DLZCBLMP.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CHKPT-MSGS ASSIGN TO SYS101-UR-3203-S.
I-0-CONTROL.
* TAKE A VSE CHKPT ON EVERY WRITE TO CHKPT-MSGS
*
RERUN ON SYS100-UT-2400-S
EVERY 1 RECORDS OF CHKPT-MSGS.
DATA DIVISION.
FILE SECTION.
FD CHKPT-MSGS
LABEL RECORD OMITTED
RECORDING IS F
RECORD CONTINAS 72 CHARACTERS
DATA RECORD IS MSG-LINE.
01 MSG-LINE.
02 FILLER PIC X.
02 ALL-71 PIC X(71).

WORKING-STORAGE SECTION.

01 INITMSG PIC X(72) VALUE ' READY FOR VSE CHECKPOINTS '.
01 CHKPTMSG PIC X(72) VALUE ' TAKING A VSE CHECKPOINT'.
01 CHKPTIO PIC X(8) VALUE ' DL/I CHKP'.

L]
L]
PROCEDURE DIVISION.
OPEN OUTPUT CHKPT-MSGS.
* INITIALIZE CHECKPOINT MESSAGE FILE
*
WRITE MSG-LINE FROM INITMSG AFTER POSITIONING 2.
L]

TAKE AN IMPLICIT VSE CHECKPOINT

* %k

WRITE MSG-LINE FROM CHKPTMSG AFTER POSITIONING 2.
TAKE A DL/I CHECKPOINT

* ok

EXEC DLI

CHECKPOINT ID(CHKPTID)
END-EXEC.

L]

Note: In this example, a print file is defined so that a VSE

checkpoint is issued each time a message is written to it. The

initial message is necessary because COBOL does not start issuing

VSE checkpoints until the write statement after the first write

occurs. COBOL will also issue a VSE checkpoint when the print file is
closed a the end of the program, but this additional checkpoint will

not affect the function of MPS Restart. Since the COBOL-VSE checkpoint
interface is implicit and the VSE checkpoint ID is not available to the
application program, it cannot be used as the checkpoint ID on the

DL/I CHKP command.

Figure 3-13. COBOL Example of a Combined Checkpoint in an MPS Batch Program Using

MPS Restart

Chapter 3. DL/l Application Program

3-31

*PROCESS XOPTS(CICS,DLI)...;
DLZPLIMP: PROCEDURE OPTIONS(MAIN);

DECLARE CHKPTID CHAR(8);
DECLARE RETCODE FIXED BIN(31);

CALL PLICKPT('',CHKPTID,'SYS100,2400',RETCODE); /* ISSUE A VSE CHKPT */
IF RETCODE > 4 THEN /* VSE CHKPT ERROR */
DO;
PUT EDIT ('ERROR DURING CHECKPOINT. RETCODE=',RETCODE) (A,F(2));
STOP; /* ABNORMAL END */
END;
IF RETCODE = 4 THEN /* VSE RESTART OCCURRED */
PUT EDIT('RESTARTED AT CHECKPOINT #',CHKPTID) (A);
EXEC DLI

CHECKPOINT ID(CHKPTID); /* ISSUE A DL/I CHKP WITH VSE CHKPT ID =/

END DLZPLIMP;

Note: In the above program example, the VSE checkpoint ID (CHKPTID) is
used as the checkpoint ID for the DL/I CHKP command. This provides a
cross reference between the normal checkpoint messages issued to SYSLOG
as the result of taking VSE and DL/l checkpoints. While this is the
recommended procedure for PL/I programs, it is not mandatory when

using the MPS Restart facility.

Figure 3-14. PL/I Example of Combined Checkpoint in an MPS Batch Program Using MPS
Restart

3-32 DL/ DOS/VS Application Programing: High Level Programming Interface

Executing Your Program

Translation

This section will present information that will help you in preparing your DL/I
application program for execution. Examples of the necessary steps and the job
control statements needed to perform them are included. Where particular
information does not apply to one or more of the possible operating environments,
the exceptions will be noted.

Translator
The DL/l HLPI commands that you coded in your application program must be
translated into calls to DL/I in the host language of your application program.

The translation is done by the CICS/VS EXEC translator. The translator is
executed as a separate job step before compilation of your program. CICS/VS
supplies cataloged procedures you can use to set up the translation step. They are
described in the CICS/DOS/VS Installation and Operations Guide.

The translator generates an initialization call at the beginning of each external
procedure. It also generates, for each external procedure, the labels for the DIB
fields and other fields that may be needed by statements subsequently generated.

The translator searches your code for triggers corresponding to the XOPTS options
specified on the PROCESS (PL/I) or CBL (COBOL) statements at the beginning of
your program. (See CICS/VS Application Programmer's Reference Manual
(Command Level) for details on translator options.)

Possible triggers are:

{EXECUTE CICS} {EXECUTE DLI}
(EXEC CICS} {EXEC ~ DLI}

Either type of command, or both, may be present in an online program.

When the translator recognizes a DL/l HLPI command, it scans the command
looking for proper syntax. If an error is found, a message is printed. The translator
proceeds to generate one or more CALL statements to DL/I. The translator
replaces the command you coded in your program with the calls and parameter
lists.

Compilation and Link-editing

The output of the translator must be compiled by the appropriate host language
compiler and link-edited into a VSE core image library for execution as a separate
job. DL/I application programs cannot be executed in a compile-link-go
environment, since they run as a subprogram of the DL/I initialization program.

The appropriate DL/l or CICS/VS interface module must be link-edited with your
program. The module to be included is determined by the host language and the
operating environment.

Batch and MPS batch programs must also have an entry statement included in the
input to the linkage editor.

Chapter 3. DL/ Application Program 3-33

The following examples illustrate job control statements needed for various
combinations of environment and host language. Further examples and use of
translator cataloged procedures appear in the CICS/DOS/VS Installation and
Operations Guide.

For COBOL:
Online

// JOB COBSAMPL
// DLBL IJSYSPH,'COBOL TRANSLATION',yy/ddd
// EXTENT SYSPCH,balance of extent information
ASSGN SYSPCH,DISK,VOL=volid,SHR
// EXEC DFHECP1§,SIZE=...
CBL LIB,XOPTS(CICS,DLI)

SOURCE DECK

/*

CLOSE SYSPCH,PUNCH

// DLBL IJSYSIN,'COBOL TRANSLATION',yy/ddd

// EXTENT SYSIPT

ASSGN SYSIPT,DISK,VOL=volid,SHR

// OPTION SYM,ERRS,NODECK,CATAL
PHASE COBSAMPL,*
INCLUDE DFHECI

// EXEC FCOBOL,SIZE=...

// EXEC LNKEDT

/&

// JOB RESET

CLOSE SYSIPT,00C

/&

Batch and MPS batch

// JOB COBSAMPL
// DLBL IJSYSPH,'COBOL TRANSLATION',yy/ddd
// EXTENT SYSPCH,balance of extent information
ASSGN SYSPCH,DISK,VOL=volid,SHR
// EXEC DFHECP1$,SIZE=...
CBL LIB,XOPTS(DLI)
L]

SOURCE DECK
/*
CLOSE SYSPCH,PUNCH
// DLBL IJSYSIN,'COBOL TRANSLATION',yy/ddd
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=volid,SHR
// OPTION SYM,ERRS,NODECK,CATAL
PHASE COBSAMPL,*
INCLUDE DLZLICBL
INCLUDE DLZBPJRA
// EXEC FCOBOL,SIZE=...
ENTRY CBLCALLA
// EXEC LNKEDT
/&
// JOB RESET
CLOSE SYSIPT,00C
/&

For PL/I:
Online

3-34 DL/ DOS/VS Application Programing: High Level Programming Interface

// JOB PLISAMPL
// DLBL IJSYSPH,'PL/I TRANSLATION',yy/ddd

// EXTENT SYSPCH,balance of extent information

ASSGN SYSPCH,DISK,VOL=volid,SHR
// EXEC DFHEPP1$,SIZE=...
*PROCESS INCLUDE,XOPTS(CICS,DLI);

L]
SOURCE DECK
L]
L]
/*
CLOSE SYSPCH,PUNCH
// DLBL IJSYSIN,'PL/I TRANSLATION',yy/ddd
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=volid,SHR
// OPTION CATAL
PHASE PLISAMPL,=
INCLUDE DFHPL1I
// EXEC PLIOPT,SIZE=...
// EXEC LNKEDT
/&
// JOB RESET
CLOSE SYSIPT,00C
/&

Batch and MPS batch

// JOB PLISAMPL
// DLBL IJSYSPH,'PL/I TRANSLATION',yy/ddd

// EXTENT SYSPCH,balance of extent information

ASSGN SYSPCH,DISK,VOL=volid,SHR
// EXEC DFHEPP1$,SIZE=...
*PROCESS INCLUDE,XOPTS(DLI);

SOURCE DECK
L]
L]
/*
CLOSE SYSPCH,PUNCH
// DLBL IJSYSIN,'PL/I TRANSLATION',yy/ddd
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=volid,SHR
// OPTION CATAL
PHASE PLISAMPL,*
// EXEC PLIOPT,SIZE=...
INCLUDE DLZLIPLI
INCLUDE IBMBPJRA
ENTRY DLZLIPLI
// EXEC LNKEDT
/&
// JOB RESET
CLOSE SYSIPT,00C
/&

Chapter 3. DL/l Application Program

3-35

Execution

Online
An online DL/I application is executed by entering its assigned transaction 1D
through a terminal, as with any other online task.

Assignment of the transaction ID and other CICS/VS table requirements are
described in DL/I DOS/VS Data Base Administration.

Batch and MPS Batch

Once your compiled application program is link-edited into a VSE core image library
with the appropriate modules, as shown in the job control statements above, it is
ready for execution as a subprogram under the DL/I initialization program. The
EXEC statement in your job stream names the DL/l initialization module rather than
your application program.

Parameter Statement

The name of your application program to be executed and the PSB it uses are
identified in a parameter statement that follows the EXEC statement in the job
control statement stream.

The format of the DL/I parameter statement, beginning in column one, looks like
this:

{DLI},progname,psbname[, 1]
{DLR} }
(0]

{buf
{1

[,HDBFR=({bufno}[,dbdnamel,dbdname2,...1)]11[,...]
{32
{i

}
[,HSBFR=({indno}, {ksdsbuf}, [{esdsbuf}],dbdname3)][,...]
3 1t{z 1} {2 }
[, TRACE=modname] [,ASLOG=YES]
[,LOG=({TAPE },{PAUSE 1})]
{DISK1} {NOPAUSE}
{DISK2}

Parameters can be entered from SYSIPT or SYSLOG. However, continuation
statements, if required, can be entered only from SYSIPT. Continuation statements
are not permitted from SYSLOG.

Continuation is indicated by a nonblank character in column 72 of the statement
being continued. The parameter statement can be stopped in or before column 71,
and continued in a continuation statement.

DLI
The DLI function code is required for batch DL/I programs or MPS batch DL/I
programs that do not use the MPS Restart facility.

DLR
The DLR function code is required for MPS batch programs using the MPS
Restart facility. If DLR is specified as the function code for a non-MPS batch
program, it will be treated exactly as if DLI had been specified.

Note: The only valid parameters for the DLR funciton code are PROGNAME
and PSBNAME.

3-36 DL/ DOS/VS Application Programing: High Level Programming Interface

progname
specifies a one to eight alphameric character name of the application program
or utility to be executed.

psbname
specifies a one to seven alphameric character name of the PSB as named in
the PSB generation.

buff
specifies the number (1 to 255) of data base subpools required for this
execution; if omitted, 1 is assumed. If no buffer pool control options are
specified, a subpool consists of 32 fixed-length buffers. The buffer size is
generally consistent with the VSE/VSAM data base control interval size and
may be 512 or any multiple of 512 bytes. The buffer size value is determined
at DL/l system initialization and is based on the value specified in BFRPOOL,
the number of data bases, and size of the VSE/VSAM control intervals. A data
base is assigned a subpool containing buffers that are equal to or greater in
size than the size of the data base control interval. See DL/l DOS/VS Data
Base Administration for buffer pool information.

HDBFR
describes one DL/l subpool. See DL/l DOS/VS Data Base Administration for
buffer pool information.

* bufno specifies the number (2 to 32) of buffers to be allocated for this
subpool. If omitted for a specific subpool, 32 is assumed. A specification
exceeding 2 digits will cause an abnormal termination.

¢ dbdnamel, dbdnamez2,...specify the names of DBDs that are to be
allocated to this subpool. If no dbdnames are specified, this subpool is
used for DMBs not explicitly assigned; the parentheses around the number
of buffers are still required. The DBD name used should be the physical
DBD even though a logical DBD is being used.

HSBFR
defines VSE/VSAM buffer allocation for HISAM, SHISAM, and INDEX data
bases. See DL/I DOS/VS Data Base Administration for buffer pool information.

 indno specifies the number of index buffers for a KSDS; if omitted, 3 is
assumed. A specification of 1 or 2 digits is permitted. A specification
exceeding 2 digits will cause an abnormal termination.

e ksdsbuf specifies the number of data buffers for a KSDS; if omitted, 2 is
assumed. A specification of 1 or 2 digits is permitted. A specification
exceeding 2 digits will cause an abnormal termination.

» esdsbuf specifies the number of data buffers for the ESDS (applies to
HISAM only); if omitted, 2 is assumed. A specification of 1 or 2 digits is
permitted. A specification exceeding 2 digits will cause an abnormal
termination.

¢ dbdname3 is the name of the HISAM, SHISAM, or INDEX DBD referenced
by the application program.

TRACE
indicates that tracing is to be active during this execution. See the DL/I
DOS/VS Diagnostic Guide for details on tracing.

Chapter 3. DL/ Application Program 3-37

ASLOG=YES
specifies that asynchronous logging is to be used. See DL/I DOS/VS Data
Base Administration for asynchronous logging information.

LOG
specifies the type of logging to be used.

TAPE
indicates the log records are to be written to a tape device. It is the default
if the LOG parameter is omitted.

DISK1
indicates the log records are to be written on one disk extent with the
filename DSKLOGL1.

DISK2
indicates that the log records are to be written on two disk extents. If one
disk extent becomes full, the extent is closed and the other extent is used.
DSKLOGL1 is used first; then DSKLOG2. If DSKLOG2 becomes full,
logging will switch back to DSKLOG1 and continue to repeat the sequence.

PAUSE
indicates that before reusing the only disk extent (DISK1) or before
switching to the next extent (DISK2), the operator is notified and the
partition waits for the operator's reply. PAUSE is the default if the second
option in the LOG parameter is omitted.

NOPAUSE
indicates that reusing a log extent or switching log extents is done without
notifying the operator.

Note: The UPSI byte (bit 6=0) must be set to indicate DL/I logging is required. If
anything other than the above parameters are specified, an error message is
issued and the job is canceled.

UPSI
You can control certain execution-time functions through use of the UPSI byte
settings that you can set by including this statement in the job control stream:

// UPSI XXXXXXXX

where the meanings of the settings of these bits are as described below for each
operating environment.

3-38 DL/ DOS/IVS Application Programing: High Level Programming Interface

Batch

Bit 0 = Read parameter information via SYSIPT.
= 1 Read parameter information via SYSLOG.
Bits 1-4 Available for use by the application program.
Bit 5 = 0 Storage dump on set exit (STXIT) abnormal
termination if STXIT active (that is, bit 7 = 0).
= 1 No storage dump on set exit (STXIT) abnormal
termination.
Bit 6 = 0 All data base modifications written to the DL/I
system log.
= 1 DL/I system log function inactive.
Bit 7 = 0 Set exit (STXIT) linkage to DL/I for abnormal
task termination.
= 1 STXIT inactive.
MPS batch
Bit 0 = Read parameter information via SYSIPT.
= 1 Read parameter information via SYSLOG.
Bits 1-4 Available for use by the application program.
Bit 5 = 0 Storage dump on set exit (STXIT) abnormal
task termination.
= 1 No storage dump on set exit (STXIT) abnormal task
termination.
Bits 6-7 Not used for MPS. Data base logging, normally

controlled by UPSI bit 6, is controlled in the
CICS/VS partition under MPS operation. STXIT
linkage to DL/I for abnormal task termination,
normally controlled by UPSI bit 7, is always
active under MPS operation.

Online The UPSI byte is set at system initialization as a system programming
function.

If you are unsure of the significance of these functions, the system programming or
data base administration personnel in your installation can provide more
information.

Job Control Statements
The following information tells you how to set up the job control statements for the
execution of your program.

Batch: If data base changes are to be logged, either disk (batch environment
only) or tape logging must be specified on the DL/I parameter statement with the
LOG parameter. If the LOG parameter is omitted and UPSI byte bit 6=0, the
default is tape logging.

If tape logging is used, ASSGN and TLBL statements as shown below are required.
The log tape must have a standard label.

Chapter 3. DL/ Application Program 3-39

3-40

// ASSGN SYSO11l,cuu
// TLBL LOGOUT

If disk logging is used, the DLBL statement as shown below is required. The log
file must have been previously defined with a DEFINE command because this is a
VSAM file.

// DLBL {DSKLOG1}, 'cluster-name',,VSAM
{DSKLOG2}

The execution job stream must contain DLBL or TLBL statements that define the
data base(s) to be processed. ASSGN and EXTENT statements are also required
for SHSAM and HSAM data bases. When initially loading a data base, additional
DLBL and EXTENT statements may also be required for system work files.
Consult data base administration for the details.

The EXEC statement specifies the DL/l initialization program and the SIZE
parameter. Typically you will require a 512K virtual partition for execution with a
SIZE parameter of 256K. See VSE/Advanced Functions System Control
Statements, for details.

// EXEC DLZRRCOO, SIZE=xxxK

Shown below are the execution job control statements for a program INVUPDT with
a PSB of INVMSTR. It is assumed that the updates to the data base will be logged
and that HISAM is the access method for the data base.

The number of DLBL statements varies depending on the number of data bases
accessed and the DL/l access method used. See DL/l DOS/VS Resource
Definition and Utilities for more details. The information in the DLBL statements
defining the data bases must be the same as assigned in the DBDs for those data
bases by DBA.

The UPSI statement is optional and when set to all zeros, as shown, can be
omitted.

If the application program does retrievals only, or if the UPSI byte is used to turn off
data base logging, no log tape or disk is required.

//JOB UPDATE

// UPSI 00000000

// ASSGN SYS011,182

// TLBL LOGOUT

// DLBL INVPRT1, ' INVENTORY',99/365,VSAM

// DLBL INVPRTZ, ' INVENTORY-OFLOW',99/365,VSAM
// EXEC DLZRRCOO,SIZE=...

DLI,INVUPDT,INVMSTR

DATA CARDS IF REQUIRED

/*
/&

MPS Batch: The EXEC statement specifies the DL/I initialization program and the
SIZE parameter. Typically you will require a 512K virtual partition for execution
with a SIZE parameter of 256K. See VSE/Advanced Functions System Control
Statements, for details.

DL/I DOS/VS Application Programing: High Level Programming Interface

// EXEC DLZMPIOO,SIZE=xxxK

Shown below are the execution job control statements for a program INVUPDT with
a PSB of INVMSTR. For the MPS environment, data base logging is controlled in
the CICS/VS partition.

The UPSI statement is optional and when set to all zeros, as shown, can be
omitted.

//JOB UPDATE

// UPSI 00000000

/] EXEC DLZMPIOO,SIZE=...
DLI,INVUPDT,INVMSTR

DATA CARDS IF REQUIRED

/*
/&

MPS Batch Using MPS Restart: Shown below are the execution job control
statements for the same program using MPS Restart. Included in this example are
statements which assign a tape to contain certain checkpoint records written by
VSE checkpoints.

// JOB UPDATE

[/l MTC REW, 280

// ASSGN SYS100,280

/] EXEC DLZMPI0O,SIZE=...
DLR, INVUPDT, INVMSTR

DATA CARDS IF REQUIRED

/*
/&

The MPS Restart facility is invoked for an MPS batch job by using the DLR function
code in the parameter input to DL/I. This function code (see above example)
replaces the DLI function code used for normal batch and MPS batch jobs. The
DLR function code must be used when the job is first started and not just when it is
restricted.

Restarting an MPS Batch Program Using MPS Restart: The following steps are
required to restart an MPS batch program after a failure:
1. Get the VSE checkpoint ID from the SYSLOG message.

a. If the individual MPS batch job failed, a message containing the correct
checkpoint ID for restart is issued by DL/I at the time of failure.

b. If there was a system failure, the message is issued when MPS is started
again in the online partition.

2. Use the VSE checkpoint ID on the VSE RSTRT job control statement. The
RSTRT statement is used instead of the EXEC statement when the job is
resubmitted for execution.

Chapter 3. DL/ Application Program 3-41

3-42

The job control statements in the following example will restart the program in the
previous job control example from checkpoint 0010. Note that the jobname must
be the same on the restart job as it was on the job that failed.

// JOB UPDATE

/l MTC REW,280

// ASSGN SYS100,280
// RSTRT SYS100,0010
DLR, INVUPDT, INVMSTR

DATA CARDS IF REQUIRED

/*
/&

For additional information on the function, use, and restrictions of the VSE
checkpoint/restart facility, see the VSE/Advanced Functions Application
Programming: User's Guide.

Restart Considerations:

e If an MPS batch program using MPS Restart does not issue a combined
checkpoint before a failure, it must be started over from the beginning using the
EXEC job control statement rather than the RSTRT statement. For an
individual job failure, this is indicated in the message issued at the time of
failure. For a system failure, no message is issued for such jobs when MPS is
started again in the online partition.

e The VSE restart facility requires the jobname to be the same on a restart job as
it was on the job that failed. It also requires that the VSE partition start and
end at the same addresses as when the job failed.

e During a VSE restart, a data check (tape checkpoint files) or end-of-file (disk
checkpoint files) may occur if the checkpoint ID specified is greater than the
actual number of checkpoints taken before the failure.

¢ On a restart, parameter input is ignored by DL/I, since the parameters were
already read and saved when the job first started. However, if the parameter
input statement was included on SYSIPT (instead of having been entered from
SYSLOG) when the job first started, it is important that one also be included
when the job is restarted. This is because DL/l will attempt to position SYSIPT
past the parameter input statement when the job is restarted.

DL/I DOS/VS Application Programing: High Level Programming Interface

Debugging Your Program

This section presents information that will help you in the task of debugging your
DL/l application program. In general, the information applies to all of the possible
operating environments. Where this is not true, the exceptions will be noted.

Problem Determination

The following is a brief discussion of steps that you, as an application programmer,
can take when your program fails to run, abnormally terminates, or gives incorrect
results.

Initialization Errors

Before your program receives control, DL/I must have correctly loaded and
initialized a nucleus and control blocks. If you suspect a problem in this area,
consult your system programming or data base administration functions. Aids are
available to them that will help to determine if a problem does exist and to isolate it.
Check to see whether there have been any recent changes to DBDs, PSBs, and
the control blocks generated from them.

Execution Errors
If initialization errors do not seem to be present, you should check the following:

1. The output from the translator.
e All error messages should be resolved.

2. The output from the compiler.
e All error messages should be resolved.

3. The output from the linkage editor.
e Are all external references resolved?
e Have all necessary modules been included?
* |s the correct entry point specified?
e For online programs, check that the first module in the link-edit map is
DFHEPI (PL/l) or DFHECI (COBOL).

4. Your job control statements.
¢ |s the information correct that describes the files that contain the data
bases? See data base administration.
e Are you using the UPSI bit settings correctly?
e Have you included the SIZE parameter in the EXEC statement and is its
value large enough to include your program?
e Have you included a DL/I parameter statement in the correct format?

5. Your program.

* Are the literals you are using for arguments in DL/I commands producing
the results you expect?

e |f you need help in producing and interpreting a dump, see your system
programmer.

e Make full use of the information in the DIB if your program is producing
incorrect results. For more detailed information about the status codes, see
the status code summary below.

Chapter 3. DL/ Application Program 3-43

Execution Time Debugging Aids

3-44

Status Codes

After processing a DL/l HLPI command, control is returned to your program at the
next sequential instruction following the command, unless its execution caused an
abend. DL/I places a status code in the status code field of the DIB (DIBSTAT) to
indicate the result of the execution of the command.

[Figure 3-15 on page 3-46| provides a list of DL/I status codes and is given as a
quick reference. These status codes are discussed in detail in DL/l DOS/VS
Messages and Codes.

Two categories of status codes are listed in [Figure 3-15 on page 3-46. The
starred status codes will be returned in DIBSTAT. They do not necessarily indicate
errors, since the results of the command may be perfectly valid even though the
data operated on may not be what you expected. You can test for these codes in
your program and proceed accordingly.

All of the other status codes indicate conditions that would cause your program to
abend. In that case, the status code would be returned in message DLZ037I.

Note: While DL/I is performing index maintenance, it makes internal DL/I calls. If
an error occurs in one of these calls, DL/I replaces the first character of the status
code returned for that call with “N.” This serves as notice to you that an error has
occurred, but not in one of the commands executed in your program.

Key Feedback Length

If KEYFEEDBACK was specified, you can check DIBKFBL against the feedback
length specified (FEEDBACKLEN) or defaulted (the KEYFEEDBACK area length)
under PL/I. If truncation occurred, use the key feedback area to verify that you are
following the right path.

Abnormal Termination Messages
DL/I also issues execution time error messages. For an explanation of these
messages and the required action, consult the DL/I DOS/VS Messages and Codes.

PL/I Diagnostic Information

Your debugging job can be made easier, when the host language of your
application program is PL/I, by making use of diagnostic information supplied by
both PL/I and DL/I. In batch and MPS batch applications, when a program check is
detected during application program execution, a STXIT PC routine will be given
control if you have requested STXIT support of DL/I (UPSI bit 7 = 0 for batch, and
always for MPS batch).

CICS/VS Execution Diagnostic Facility (EDF)

If your application program runs in the CICS/VS online environment, the CICS/VS
Execution Diagnostic Facility (EDF) is available for your use. This interactive
debug tool allows you to see, in EXEC command format, what the program is doing
at execution time. Use of EDF should enhance your programming productivity for
programs using DL/l HLPI and CICS/VS commands.

Note: EDF requires the entry DLZHLPI in the CICS/VS Program Processing Table
(PPT) to process the HLPI commands.

DL/I DOS/VS Application Programing: High Level Programming Interface

EDF:

¢ Displays each command or selected commands and options before the
command is executed.

¢ Allows temporary modification of command arguments before execution.

¢ Displays each command or selected commands and options after the command
is executed.

¢ Displays, and allows modification to, DIB fields and the program's working
storage (including 1/O areas) on request.

¢ Allows redisplay of the last ten commands executed.

For more information on EDF, refer to the CICS/VS Application Programmer's
Reference Manual (Command Level).

Chapter 3. DL/ Application Program 3-45

COMMANDS =
o
v
o
;J
= olz @«
p-d =105
w w| o o
& Z 5l
< s w
w o s ja] s
o w Z L w| O Z w
(o] 2 - 2| o Ole
Q ol={E w 3 Zilwn
Zlx|x @] <2<
v [Z|EjEjw]o ~g|22igiz!s
2 13lz|zik|Slolel5|lsisiolt
u ©
<«]Sl gl 2 c
o wlwlwhw o) S To|wo|x|O
o gloloja|lc| 2l 2l0|n{—Ojw|= DESCRIPTION
AB XpXPX[X]I XXX X SEGMENT I/0 AREA REQUIRED, NONE SPECIFIED IN COMMAND
AC XXX X | X X HIERARCHICAL ERROR IN SEGMENT SELECTION
AD X XX P X INVALID FUNCTION PARAMETER
AH EX X X COMMAND REQUIRES SEGMENT SELECTION, NONE PROVIDED
Al XIXIXiX)X | X1 X X DATA MANAGEMENT OPEN ERROR
Ad XIX|IX{X|XIX]X X INVALID QUALIFIED SEGMENT SELECTION FORMAT
AK X| XX I XX | X INVALID FIELD NAME IN COMMAND
; COMMAND FUNCTION NOT COMPATIBLE WITH PROCESSING OPTION OR
AM XXX XXX X SEGMENT OR PATH SENSITIVITY ’
A [XIXEXIX{IXIXIX X /0 ERROR
DA X X SEGMENT KEY FIELD HAS BEEN CHANGED
DJ XX X NO PRECEDING SUCCESSFUL GET COMMAND
DX X X VIOLATED DELETE RULE
GA #xlx * CROSSED HIERARCHICAL BOUNDARY INTO HIGHER LEVEL (RETURNED
ONLY ON COMMANDS WITHOUT SEGMENT SELECTION)
GB * Pt END OF DATA SET, LAST SEGMENT REACHED
GE i%|%|% * MR SEGMENT OR PARENT SEGMENT NOT FOUND
GK e * DIFFERENT SEGMENT TYPE AT SAME LEVEL RETURNED
(RETURNED ON UNQUALIFIED COMMANDS ONLY}
GP % X A GNP COMMAND AND NO PARENT ESTABLISHED, OR REQUESTED
SEGMENT LEVEL NOT LOWER THAN PARENT LEVEL
1 * SEGMENT TO INSERT ALREADY EXISTS IN DATA BASE OR IS NON-UNIQUE
IX X X VIOLATED INSERT RULE
KA XEX[X|X)X XX X NUMERIC TRUNCATION ERROR DURING CONVERSION
KB XIX|IXIXEXIX}X X CHARACTER TRUNCATION ERROR DURING CONVERSION
KC XIXIX|IX[X{X[X X INVAL!D PACKED/ZONED DECIMAL CHARACTER DURING CONVERSION
KD XXX XX |[X|X X TYPE CONFLICT DURING CONVERSION
KE X X REPLACE VIOLATION
LB * SEGMENT TO INSERT ALREADY EXISTS IN DATA BASE OR IS NON~UNIQUE
LC X KEY FIELD OF SEGMENTS OUT OF SEQUENCE
LD X NO PARENT FOR THIS SEGMENT HAS BEEN LOADED
LE X SEQUENCE QOF SIBLING SEGMENT NOT THE SAME AS DBD SEQUENCE
NA X X DATA IN SEARCH OR SUBSEQUENCE FIELD HAS BEEN CHANGED
NE W n * * * INDEX MAINTENANCE CANNOT FIND SEGMENT
NI XiX{X|X ‘ X INDEX MAINTENANCE UNABLE TO OPEN INDEX DATA BASE
XXX X DUPLICATE KEY FOUND FOR INDEX DATA BASE
NO XX | XX X 1/O ERROR
X LOADING DUPLICATE SECONDARY INDEX POINTER SEGMENT
RX X X VIOLATED REPLACE RULE
TA X X! PSB NOT IN DIRECTORY
* indicates status code returned in DIB.
X indicates status code that could be expected as an error situation.

Figure 3-15 (Part 1 of 2). DL/I Status Codes

3-46

DL/I DOS/VS Application Programing: High Level Programming Interface

COMMANDS >
©
w
lid
s
Q
2
£ 21515
w wlo|y
ol S
< alsolx
w o g o ;
o |w z ot w|o 3 w
[e] 2 — Z wiklp |
(&) o} ; % w o|3l«lz Z|ln
v |z w|o a2 poll ol
Zluwfw - 4
S (Sizlzikl<g cl¥lolgis| 19
~ wigojEiotwlE Ols
g [HlF|Fldaj<lplulriec|ES]x
- (wliwlwiwiw|olz|lxiolwlole|Q
w |o|lojojalcialSioln(-|Oo|lw|= DESCRIPTION
TC X X TASK ALREADY SCHEDULED
TE X X PSB INITIALIZATION ERROR
TF X X PSB NOT AUTHORIZED
TG * TERMINATE ATTEMPTED WHEN PSB NOT SCHEDULED
TH XX {X{X|X|X]|X|X X DATA BASE COMMAND ATTEMPTED WHEN PSB NOT SCHEDULED
Ti ! X X INVALID PATH {NSERT
TJ X[Xix IxIx [xX|{x{x|[x|x X DL/I NOT ACTIVE
TK Pl X x| DATA BASE NOT ACTIVE
TL i X X SCHEDULING CONFLICT WITH MPS TASK
TN] XXX IX XXX]|X XX X [X INVALID SYSTEM DIB ADDRESS
TO X X PATH REPLACE ERROR
TP | xIxX X {x x|x|{x|x X INVALID PCB INDEX
V1 b [xix X INVALID LENGTH FOR VARIABLE LENGTH SEGMENT
V2 XX XXX IX|X X SEGLENGTH MISSING OR INVALID
v3 | x|x}x X X FIELD LENGTH MISSING OR INVALID
V4 | XXX [X]|X]|X]X X INVALID LENGTH FOR VARIABLE LENGTH SEGMENT
VB | X|X|X X X X INVALID OFFSET
Ve | Xix|x X KEY FEEDBACK LENGTH MISSING OR INVALID
XD X ERROR DURING DATA BASE BUFFER WRITE OQUT
XH X DATA BASE LOGGING NOT ACTIVE
XR X ERROR DURING CHECKPOINT PROCESSING FOR MPS RESTART
- 3NE S8 SR S8 48 28 JR ZE AR JK JE 2 COMMAND COMPLETED SUCCESSFULLY

* Indicates status code returned in DIB.
X Indicates status code that could be expected as an error situation.
For more intormation on the DL/1 Status Codes, refer to DL/ DOS/VS Messages and Codes.

Figure 3-15 (Part 2 of 2). DL/l Status Codes

Chapter 3. DL/ Application Program 3-47

Other Available DL/I Functions

There are several optional functions available to provide you with more powerful
and sophisticated techniques for organizing and processing data bases. However,
most of these require that you be an experienced DL/l user in order to take full
advantage of them. They have both advantages and disadvantages that should be
carefully evaluated before deciding to use them in your application, since your
program, other applications, and the overall DL/l system may be affected. Most of
these functions are handled as a DBA function, but one, multiple positioning, is an
application programming function and is discussed here. Use of multiple
positioning requires earlier planning for PSB generation, so you must consult with
DBA in the planning stage.

Multiple Positioning

DL/I provides two alternative methods of maintaining the current position in the data
base. These options are called “single” and “multiple” positioning. The choice is
specified during PSB generation.

When single positioning is specified for a PCB, DL/l maintains only one position in
that data base for that PCB. This is the position that is used in attempting to
satisfy all subsequent GET NEXT commands.

If multiple positioning is specified, DL/I maintains a unique position in each
hierarchical path in the data base.

With single positioning, whenever a segment is obtained, no position is maintained
for its dependent segments or any other segments on the same level. Also, no
position is maintained under “not-found” conditions. With multiple positioning,
whenever a segment is obtained, no position is maintained for its dependent
segments, but position for the segments at the same level is maintained. The
control blocks are the same in each case (multiple positioning does not require
more storage). There is no significant performance difference, even though in
some cases multiple positioning requires slightly more processing time.

DL/l attempts to satisfy GET NEXT commands from the existing position by
analyzing segments in a forward direction only. Since multiple positioning allows
position to be maintained at each level in all hierarchical paths under the current
parent position, rather than at each level in only one hierarchical path, the GET
NEXT command is satisfied using the existing position established on the path for
which the GET NEXT command is qualified. If the GET NEXT command is not
qualified, DL/I uses the position established on a path by the prior command.

3-48 DL/ DOS/VS Application Programing: High Level Programming Interface

Al

B12 B23
C12 B22 C21
B11
11 B21
| | |
[D112 [E112
D111 E111 E121 D221 E221

Figure 3-16. Assumed Data Base to lllustrate Single and Multiple Positioning

The only effect multiple positioning has on GET UNIQUE and INSERT commands

occurs when these commands have missing segment selection specifications in the
hierarchical path. The missing levels are completed by the system according to the
rules for GET commands.

DELETE and REPLACE commands are not affected by the choice between single
and multiple positioning. Rather, any effect is on the GET commands, as described
above, since a GET command must be issued prior to a DELETE or REPLACE
command.

The following examples compare the results of single and multiple positioning,

using the data base in Figure 3-16.

Chapter 3. DL/l Application Program

3-49

3-50

Command Sequence

Result with
Single Positioning

Result with
Multiple Positioning

Example 1:

GET UNIQUE A (KEY=A1) Al Al
GET NEXT B B11 B11
GET NEXT C Cl1 Cl1
GET NEXT B B21 B12
GET NEXT C Cc21 C12
Example 2:

GET UNIQUE A (KEY=A1) Al Al
GET NEXT C Cl1 Cl1
GET NEXT B B21 B11
GET NEXT B B22 B12
GET NEXT C Cc21 C12
Example 3:

GET UNIQUE A (KEY=A1) Al Al
GET NEXT B B11 B11
GET NEXT C Cl1 Cl1
GET NEXT D D111 D111
GET NEXT E E111 E111
GET NEXT B B21 B12
GET NEXT D D221 D112
GET NEXT C C under next A C12
GET NEXT E E under next A E121

Multiple positioning may be useful to you in your application program in two general
types of situations.

1. Increased Data Independence. Multiple positioning allows you to develop
application programs using GET NEXT or GET NEXT IN PARENT commands,
and INSERT and GET UNIQUE commands with missing levels; in a manner
independent of the relative order of segment types defined at the same level in
the data base structure. This means that if performance could be improved by
changing the relative order of segment types, and all application programs that
access the segment types use multiple positioning, then the change could be
made with no impact on previously produced application programs. It should
be noted, however, that this ability depends on the proper use of the
commands relevant to multiple positioning (GET NEXT, GET NEXT IN
PARENT, and incompletely specified INSERT and GET UNIQUE commands).
Multiple positioning also adds to your responsibility in that you must keep track
of all positions maintained by DL/I. Other alternatives exist to decrease an
application program's exposure to future changes. For instance: increased use
of explicit command specifications whenever possible. These alternatives may
require additional application program coding. Such trade-offs must be
determined by you in your own environment.

2. Parallel Processing of Dependent Segment Types. When your application
program needs to process dependent segment occurrences in parallel (to
switch alternately from one dependent segment type to another under a parent)
the program may specify multiple positioning to accomplish this processing. An
alternative parallel processing technique would be to give the program two or
more PCBs using the same data base. Under this alternative, the program
processes the data base as though it were two or more different data bases.

DL/I DOS/VS Application Programing: High Level Programming Interface

This approach may be more useful if the way a segment is updated depends
on the analysis of other subsequent segments. The use of multiple PCBs may
decrease the number of GET commands required, but may increase the
number of other commands required to maintain proper positioning in the two
or more data bases. Internal control block processing also increases with each
added PCB. You must make the decision on whether to use multiple
positioning or multiple PCBs by evaluating your own environment.

Remember that multiple positioning maintains position differently from single
positioning. If an application program changes from one option to the other, you
must not assume the same results will be produced. An application program must
be developed for one alternative or the other.

The multiple positioning feature is intended to be used with DL/l requests that
specify segment selection, thereby providing for parallel processing and increased
data independence. However, retrieval commands without segment selection may
also be used when multiple positioning is specified, to accomplish a sequential
retrieval of segment occurrences independent of segment types, if the following
considerations are observed:

1. Certain restrictions apply when GET commands without segment selection are
mixed with DL/I requests that do specify segment selection in processing a
single data base record.

Example (using [Figure 3-16 on page 3-49):

Command Result with
Multiple Positioning
GET UNIQUE A (KEY=A1) Retrieves Al
GET NEXT C Retrieves C11
GET NEXT B Retrieves B11
GET NEXT B Retrieves B12
GET NEXT Unpredictable

The GET NEXT commands may not attempt to retrieve occurrences of the C
segment type because a position has already been established on this segment
type using the multiple positioning feature. The result of the command is
unpredictable.

2. When segment types have previously been processed with GET commands not
specifying segment selection, a position is established on the last retrieved
segment type and its parent (hierarchical path). Multiple positions are no
longer maintained.

Command Result with
Multiple Positioning
GET UNIQUE A (KEY=A1) Retrieves Al
GET NEXT C Retrieves C11
GET NEXT B Retrieves B11
GET NEXT C Retrieves C12
GET NEXT Retrieves E121
GET NEXT B Unpredictable

Multiple positions on B are no longer maintained. The result of the GET NEXT
B command is unpredictable.

It should be noted that although the mixed use of GET commands, with and
without segment selection, in processing a single logical data base record may

Chapter 3. DL/ Application Program 3-51

be valid for some types of parallel processing, it may decrease the degree of
data independence created by the use of multiple positioning. You should
carefully consider the implications of the two restrictions stated above before
basing any application programming on mixed use of retrieval with and without
segment selection within a single data base record. If possible, GET
commands without segment selection should be limited to GET NEXT IN
PARENT commands to avoid potentially inconsistent retrieval situations.

3-52 DL/ DOS/VS Application Programing: High Level Programming Interface

Chapter 4. DL/l HLPI Command Reference

The material in this chapter is reference material having to do with the individual
DL/I HLPI commands. It presents, for each command:

e function

e syntax

e segment selection and keys
e status codes

e position pointer

e parentage

DL/l HLPI Functions

The following reference material provides detailed information about each of the
DL/I HLPI commands under six headings:

1.
2.
3.

Function tells you what the command is designed to do.
Syntax tells you how to code the command in your program.

Segment selection or segment selection and keys tells you of the effect of the
inclusion or omission of qualified and unqualified segment selection
specifications.

. Status codes tells you which status codes are returned in the DIB by DL/l as a

result of each command, and what their significance is to you. The status
codes representing conditions that would cause your application to abend are
listed separately. In this case, the status code would be returned in message
DLZ037I.

. Position pointer tells you what effect, if any, the command has on the position

pointer that normally points to the next sequential segment, following the
successful or unsuccessful execution of the command.

. Parentage tells you what effect, if any, the successful or unsuccessful

execution of the command has on the establishment of parentage. The
operation of subsequent GET NEXT IN PARENT commands depends on
previously established parentage.

© Copyright IBM Corp. 1980, 2003 4-1

GET NEXT

1. Function: You can use this command to sequentially retrieve the next sensitive

segment from a data base in a forward direction. Sequential retrieval within a
data base hierarchy always proceeds from top-to-bottom, and from left-to-right.

. Syntax: The syntax for the GET NEXT command looks like this:

{EXECUTE} DLI {GET NEXT} [USING PCB(exp)]
{EXEC } {GN }
[KEYFEEDBACK (ref) [FEEDBACKLEN (exp)]]

[[{FIRST}][VARIABLE]SEGMENT (name)
{LAST }

[INTO(ref) [LOCKED] [OFFSET (exp)] [SEGLENGTH (exp)]]
[WHERE (name op ref[{AND}name op ref]...)
{OR }

[FIELDLENGTH(exp[,exp]...)11]...

[[{FIRST}][VARIABLE]SEGMENT (name)]
{LAST }

INTO(ref) [LOCKED] [OFFSET (exp)] [SEGLENGTH (exp)]
[WHERE (name op ref[{AND}name op ref]...)
{OR }

[FIELDLENGTH(exp[,exp]...)1]...

{5 }

{END-EXEC}
Note: If a parent segment is specified, an object segment must also be
specified.

. Segment selection: If you do not specify segment selection, the next

sequential sensitive segment is retrieved. The next sequential segment is the
one that the position pointer was pointing to at the completion of the last
successful command.

Note: In HDAM, root segments are returned in physical sequence of data
base records, rather than in root key sequence, unless the randomizing module
was designed to maintain key sequence. Input or output sorting or secondary
indexing can be used if key sequencing is required.

 If you specify a single unqualified segment, the first occurrence of that
segment type found by searching in a forward direction from the current
position is retrieved.

* If you specify segment selection for one or more segments, the path
leading to the segment retrieved is defined by the segments. The last
segment type specified is retrieved.

* |t is suggested that segment selection be specified because of
documentation, control, and future change considerations. (See
“Techniques and Suggestions,” in Chapter 3.) However, the presence or
absence of unqualified parent segments has no effect on the operation.
Only qualified parent segments and the object segment are used by DL/l to
determine the path and retrieve the object segment. In other words,
missing or unqualified parent segments indicate that any correct path to the
object segment will satisfy the command.

4-2 DL/ DOSIVS Application Programing: High Level Programming Interface

e When the object segment is qualified, it defines the segment occurrence
that is to be retrieved. Qualified parent segments define the segment
occurrences that are to become a part of the path to the object segment.

e Do not code VARIABLE without specifying an associated INTO or FROM
option.

4. Status codes:

GA
A command with no segments specified has retrieved a segment that is at
a higher level in the hierarchy than the previous segment retrieved. GA
serves as a warning that the position in the data base has changed with
respect to the path that existed previously.

GB
The end of the data base has been reached. No segment was retrieved.
If, however, the GET NEXT command specified a qualified root segment
with the field name referring to a key field (not a data field) and the
relational operator was B, B=, =B, 6B or =; and the end of the data base
was reached without locating the segment, the status code would be GE
instead of GB. At the end of the data base, you can continue processing
by issuing a GET UNIQUE or GET NEXT command. However, if the status
code returned for the command that reached the end of the data base was
GE, a following GET NEXT command should not specify a qualified
segment, so that DL/l will begin at the start of the data base. The GET
NEXT command will then start searching from the beginning of the data
base for the next segment that satisfies the conditions of the command.
You must remember that, unless a segment satisfying these conditions is
found, the whole data base will be searched.

GE

You specified a qualified segment that was not found. This could be
because the segment does not exist, because the segment specified
cannot be found by searching forward from the previous established
position, or because the current position pointer is pointing to a segment
that is forward in the data base of any possible existence of the specified
segment. This status code is also returned for the programming error of
specifying higher level qualified or unqualified segments that differ from one
or more of the segments in the currently established parentage path.

GK
A segment has been retrieved that has the same higher level path as the
previous segment processed, but is a different type of segment at the same
hierarchical level. This status code is returned only as a warning for calls
with no segment specified and merely indicates that the program is working
with a different segment type.

bb The correct segment was retrieved.

Other
If the status code is other than one of those listed above, DL/l will report
the code in message DLZ0371, then terminate your program.

See “Status Codes” in Chapter 3 for a complete list of status codes.

5. Position Pointer: Following a GET NEXT command in which a segment was
retrieved, the position pointer points to the next segment in the data base. If

Chapter 4. DL/l HLPI Command Reference 4-3

the GB status code (end-of-data-base) was returned, it points to the first
segment in the data base. Following an unsuccessful command, the position
pointed to is unpredictable and remains so until the next successful command.

. Parentage: Parentage is set to the segment retrieved, and can be used by a

subsequent GET NEXT IN PARENT command. If this command was
unsuccessful, the previous parentage, if any, is destroyed.

GET NEXT IN PARENT

4-4

1. Function: You can use this command to sequentially retrieve the next sensitive

segment from a data base in a forward direction, under the established
parentage.

. Syntax: The syntax for the GET NEXT IN PARENT command looks like this:

{EXECUTE} DLI {GET NEXT IN PARENT} [USING PCB(exp)]
{EXEC } {GNP }
[KEYFEEDBACK (ref) [FEEDBACKLEN(exp)]]

[[{FIRST}] [VARIABLE]SEGMENT (name)
{LAST }

[INTO(ref) [LOCKED] [OFFSET (exp)] [SEGLENGTH (exp)]1]
[WHERE (name op ref[{AND}name op ref]...)
{OR }

[FIELDLENGTH(exp[,exp]...)]]...

[[{FIRST}] [VARIABLE]SEGMENT (name)]
{LAST }

INTO(ref) [LOCKED] [OFFSET (exp)] [SEGLENGTH (exp)]
[WHERE (name op ref[{AND}name op ref]...)
{OR }

[FIELDLENGTH(exp[,exp]...)]]...
{5 }
{END-EXEC}

Note: Parentage must have been established by a successful GET UNIQUE
or GET NEXT command either immediately before the present one, or at some
prior time, provided no other command that changes parentage has intervened.

3. Segment selection:

* |f you do not specify a segment, the next sequential segment under the
established parentage path is retrieved. The next segment is the one that
the position pointer was pointing to at the completion of the last successful
command.

 If you specify a single unqualified segment, the first occurrence of that
segment type found by searching in a forward direction within the
established parentage path is retrieved.

* When you specify unqualified parent segments in a command with multiple
parent segments, they establish the first occurrence of the associated
segment type as a part of the path.

e |f you omit parent segments between the previously established parentage
and the object segment, DL/I generates unqualified segment selection for

DL/I DOS/VS Application Programing: High Level Programming Interface

these segments. This has the effect of establishing the first occurrence of
those parent segments as a part of the path.

e When the object segment is qualified, it defines the segment occurrence
that is to be retrieved. Qualified parent segments define the segment
occurrences that are to become a part of the path to the object segment.

e Do not code VARIABLE without specifying an associated INTO or FROM
option.

4. Status codes:

GA
A command with no segments specified has retrieved a segment that is at
a higher level in the hierarchy than the previous segment retrieved, but still
below the parentage segment previously established. This code serves as
a warning that the position of the data base has changed with respect to
the path that previously existed from the established parentage to the last
segment retrieved.

GE
A qualified or unqualified segment within the previously established
parentage was not found by searching forward from the established
position, or the segments beneath the established parentage have been
exhausted without locating the specified segment.

GK
A segment has been retrieved that is within the previously established
parentage and has the same higher level path as the previously processed
segment, but is a different type of segment at the same hierarchical level.
This status code is returned only for commands with no segment specified.
The code merely indicates that the program is now working with a different
segment type.

bb The correct segment was retrieved.

Other
If the status code is other than one of those listed above, DL/l will report
the code in message DLZ0371, then terminate your program.

See “Status Codes” in Chapter 3 for a complete list of status codes.

5. Position Pointer: If a segment was retrieved, the position pointer points to the
next segment in the data base. If the GE (ho-segment-found) status code was
returned, it points to the segment that caused the no-segment-found condition
to be recognized. This is either a segment with a higher key than was
specified in a qualified segment, or is the first segment located outside of the
established parentage in a forward direction.

6. Parentage: Parentage is not changed or affected.

Chapter 4. DL/l HLPI Command Reference 4-5

GET UNIQUE

1. Function: You can use this command to randomly retrieve any sensitive

segment in the data base. The GET UNIQUE command is the only command
that has this random access capability. Because of it, GET UNIQUE can be
used to reposition the position pointer to any sensitive segment.

. Syntax: The syntax for the GET UNIQUE command looks like this:

{EXECUTE} DLI {GET UNIQUE} [USING PCB(exp)]
{EXEC } {GU }
[KEYFEEDBACK (ref) [FEEDBACKLEN(exp)]]

[[LAST] [VARIABLE]SEGMENT (name)
[INTO(ref) [LOCKED] [OFFSET (exp)] [SEGLENGTH (exp)]]
[WHERE (name op ref[{AND}name op ref]...)
{OR }
[FIELDLENGTH(exp[,exp]...)]1]...
[LAST] [VARIABLE] SEGMENT (name)
INTO(ref) [LOCKED] [OFFSET (exp)] [SEGLENGTH (exp)]

[WHERE (name op ref[{AND}name op ref]...)
{OR }

[FIELDLENGTH(exp[,exp]...)1]...

{5 }
{END-EXEC}
Note: To establish position at the beginning of the data base, issue a GET

UNIQUE command specifying unqualified segment selection for the root
segment type.

3. Segment selection:

e You can specify any humber of segment types up to the number of
hierarchical levels defined in the PCB.

 If you specify one unqualified segment type, the object segment under the
first root segment in the data base is retrieved. If you specify multiple
segments, the root segment identified by the first segment becomes the
parent root segment for the child subsequently retrieved.

¢ |f you specify multiple segments, the object segment retrieved has the path
defined by the parent segments.

¢ |f you specify an unqualified segment, the first occurrence of that segment
type is retrieved.

e |f you omit one or more parent segments, DL/l will generate implied
segment selection for the missing levels.

— If the previous command established the same path as the path to the
object segment of this command, unspecified segments in the path will
be qualified as in the previous command.

— If the previous command established a different path than the path to
the object segment in this command, unspecified segments in the path
will be unqualified.

e Do not code VARIABLE without specifying an associated INTO or FROM
option.

4-6 DL/ DOSIVS Application Programing: High Level Programming Interface

4. Status codes:

GE
No segment was found that satisfies the segment selection specified.

bb The correct segment was retrieved.

Other
If the status code is other than one of those listed above, DL/I will report
the code in message DLZ0371, then terminate your program.

See “Status Codes” in Chapter 3 for a complete list of status codes.

5. Position pointer: After a successful GET UNIQUE command, the position
pointer points to the next logical segment in the data base. If the call was
unsuccessful, the position pointer is set to the position beyond the segment that
caused the GE status, and remains so until the next successful execution of a
command that sets the pointer. For this reason, if the status code is GE, you
may want to cause your program to execute such a command to reestablish
position.

6. Parentage: Parentage is set to the segment retrieved, and can be used by a
subsequent GET NEXT IN PARENT command. If this command was
unsuccessful, the previous parentage, if any, is destroyed.

INSERT

1. Function: You can use this command to add a new segment to an existing
data base; either randomly or sequentially, after you have built it in an I/O area.
The PSB generated by DBA determines that the command is to add data to an
existing data base, rather than to load a new one.

2. Syntax: The syntax for the INSERT command looks like this:
{EXECUTE} DLI {INSERT} [USING PCB(exp)]

{EXEC '} {ISRT }
[[{FIRST}][VARIABLE]SEGMENT (name)
{LAST }

[FROM(ref) [SEGLENGTH (exp)]]
[WHERE (name op ref[{AND}name op ref]...)
{OR }

[FIELDLENGTH(exp[,exp]...)]1]1...

[{FIRST}] [VARIABLE]SEGMENT (name)
{LAST }

FROM(ref) [OFFSET (exp)] [SEGLENGTH (exp)]

{; }
{END-EXEC}

Notes:
a. FROM and WHERE must not be specified for the same parent segment.

b. For a path call INSERT command, data must be transferred (using the
FROM option) for all segments between the highest level parent segment
with FROM specified, and the object segment.

Chapter 4. DL/l HLPI Command Reference 4-7

4-8

3. Segment Selection and Keys:

Note: For details about logical relationships and the RULES parameter, which
are mentioned below, refer to DL/I DOS/VS Data Base Administration.

At least unqualified segment selection must be specified for each segment
being added.

If a complete set of qualified segments is specified for the segment being
inserted, it is inserted at its designated location in the data base.

If multiple parent segments are specified for an insertion, they may be a
mixture of qualified and unqualified segments. However, the last segment
must be unqualified.

If unqualified parent segments are used to establish a path to an insertion,
the first occurrence of the segment type satisfies the path definition.

If parent segments are omitted, the current position in the data base is
used to develop implied segment selection. If the current position in the
data base is not correct because higher level segment selection has
changed the position in the data base, then implied unqualified segments
are developed for the first occurrence of the segment type that falls within
the newly established path.

Before the INSERT command is issued, the segment being inserted must
be built in its /O area, and, if it has a key, its correct key must be placed in
the proper location in the I/O area.

If the segment being inserted is a root segment, the correct place for its
insertion in the data base is determined by the key taken from its I/O area.

If the segment being inserted is not a root segment, but its immediate
parent has just been inserted, it may be inserted as soon as it is built in the
I/O area merely by specifying unqualified segment selection for it in the
INSERT command.

When inserting a logical child segment through the physical path, the 1/0
area must contain the logical parent's concatenated key, followed by the
logical child segment.

When inserting a logical child segment through the logical path, the 1/0
area must contain the physical parent's concatenated key, followed by any
logical child data.

If an unqualified segment is being inserted, the position pointer must point
to the right place in the data base so that the segment's logical location in
the data base can be found by searching forward or backward in the
current record.

Segments that have no keys are always inserted following the last segment
of the same type unless the DBD generated for this data base states
RULES=FIRST or HERE, in which case the specified rule applies.
Segments having equal keys are also treated in this manner.

Do not code VARIABLE without specifiying an associated INTO or FROM
option.

DL/I DOS/VS Application Programing: High Level Programming Interface

4. Status codes:

GE

NE

bb

The path specified by multiple parent segments was not found. This status
code is normally associated with one or more qualified parent segments
that define the path to its insertion. However, it can be returned when only
unqualified segments are used, if no segment of the parent segment type
exists.

The segment already exists. This code generally indicates a duplicate
segment, although it could occur if an INSERT command was issued for a
segment before a proper path had been established for it. The segment
could possibly match a segment with the same key in another hierarchy or
record. The command is not completed.

During some previous insert call, an index source segment was inserted
with data in search and subsequence fields equal to an already existing
index source segment. An NI status code had been returned with that call.

The segment was inserted in the proper place as specified by the given or
implied segment selection specification.

Other

If the status code is other than one of those listed above, DL/l will report
the code in message DLZ0371, then terminate your program.

See “Status Codes” in Chapter 3 for a complete list of status codes.

5. Position pointer: After a successful INSERT command, the position pointer
points to the segment immediately following the segment just inserted. This
could be another segment of the same type if the segment was inserted in the
middle of a group of the same segment types by its key, or to the next segment
type in the hierarchy if the segment was inserted as the last segment of the

group.

6. Parentage: Previously established parentage is not changed or affected,
providing the segments being inserted are inserted below the lowest level
parent in the established parentage path. If a segment is inserted outside the
currently established path, then parentage is destroyed and must be
reestablished before GET NEXT IN PARENT commands can be issued.

Chapter 4. DL/l HLPI Command Reference ~ 4-9

REPLACE

1. Function: You can use this command to replace, update, or rewrite the last
segment successfully retrieved from the data base by a GET UNIQUE, GET
NEXT, or GET NEXT IN PARENT command using the same PCB.

2. Syntax: The syntax for the REPLACE command looks like this:

{EXECUTE} DLI {REPLACE} [USING PCB(exp)]
{EXEC } {REPL '}

[[VARIABLE] SEGMENT (name)
FROM(ref) [OFFSET (exp)] [SEGLENGTH (exp)1]...

[VARIABLE]SEGMENT (name)
FROM(ref) [OFFSET (exp)] [SEGLENGTH (exp)]

{; }
{END-EXEC}

Notes:

a. The segment being replaced must be successfully retrieved by a GET
command before the REPLACE command is executed, or the REPLACE

command will be rejected. Only one REPLACE command can be executed

for each GET command.

b. No other DL/I commands using the same PCB can be executed between
the GET and the associated REPLACE command.

c. Only segments specified in the associated GET command can be specified
in the REPLACE command.

d. Not all of the segments specified in the associated GET command have to
be replaced.

e. DIBSEGM and DIBSEGLYV are not updated by the REPLACE command.

f. Do not code VARIABLE without specifying an associated INTO or FROM
option.

3. Segment selection: Use unqualified segment selection to specify the segment
or segments to be replaced, from those just retrieved by a GET command.

4. Status codes:

NE
An index source segment was replaced, but a corresponding index pointer
segment could not be found.

bb Segment was successfully replaced.

Other
If the status code is other than one of those listed above, DL/l will report
the code in message DLZ0371, then terminate your program.

See “Status Codes” in Chapter 3 for a complete list of status codes.

5. Position Pointer: The current position pointer is not changed by either a

successful or an unsuccessful REPLACE command. It continues to point to the

next segment in the data base following the replaced segment.

6. Parentage: Parentage is not changed by a REPLACE command.

4-10 DL/ DOS/VS Application Programing: High Level Programming Interface

DELETE

1. Function: You can use this command to delete the last segment successfully

retrieved from the data base by a GET UNIQUE, GET NEXT, or GET NEXT IN
PARENT command using the same PCB.

. Syntax: The syntax for the DELETE command looks like this:

{EXECUTE} DLI {DELETE} [USING PCB(exp)]
{EXEC } {DLET }

[VARIABLE]SEGMENT (name)
FROM(ref) [SEGLENGTH (exp)]
{; }

{END-EXEC}

Notes:

a. The segment being deleted must be successfully retrieved by a GET
command before the DELETE command is executed, or the DELETE
command will be rejected. Only one DELETE command can be executed
for each GET command.

b. No other DL/I commands using the same PCB can be executed between
the GET and the associated DELETE command.

¢. This command deletes all of the deleted segment's physically dependent
segments or children at all levels beneath it, whether they are sensitive
segments or not. The previously retrieved segment and its dependent
segments are removed from the data base and cannot be retrieved or used
as parents again.

d. Do not code VARIABLE without specifying an associated INTO or FROM
option.

. Segment selection: You must use unqualified segment selection to specify the

segment to be deleted, from the segments just retrieved by a GET command.

. Status codes:

NE
An attempt was made to delete an index source segment and the
corresponding index pointer segment could not be found. The cause could
be an error during reorganization of the data base or previous insertion of
an index source segment with data in search and subsequence fields equal
to an already existing index source segment.

bb The segment specified, and all of its dependent segments (if any) have
been successfully deleted.

Other
If the status code is other than one of those listed above, DL/l will report
the code in message DLZ0371, then terminate your program.

See “Status Codes” in Chapter 3 for a complete list of status codes.

. Position Pointer: The current position pointer is not changed by an

unsuccessful DELETE command. After a successful deletion, the pointer may
continue to point to the next segment in the data base after the deleted
segment or, if dependent segments were also deleted, to the segment after the
last dependent segment deleted.

Chapter 4. DL/l HLPI Command Reference 4-11

6. Parentage: Parentage is not changed by a DELETE command unless the last

established parent is deleted; if so, parentage must be reestablished.

LOAD

. Function: You create a new data base by writing an application program

containing LOAD commands that load segments from their segment 1/O areas
after being built there. The PSB generated for the program as a DBA function
specifies that the program is loading a new data base, as opposed to adding to
an existing one.

. Syntax: The syntax for the LOAD command looks like this:

{EXECUTE} DLI LOAD [USING PCB(exp)]
{EXEC }

[VARIABLE]SEGMENT (name)
FROM(ref) [SEGLENGTH (exp)]

{; }
{END-EXEC}

Notes:
a. The LOAD command can only be used in batch programs.

b. Segment name can be a variable, in which case it must be enclosed in
double parentheses. For example: SEGMENT((VARNAME)).

. Segment selection and keys:

Note: For details about logical relationships, which are mentioned below, refer
to DL/I DOS/VS Data Base Administration.

» Before your program executes a LOAD command, the segment you intend
to load with that command must have been built in its I1/O area. If the
segment has a key, its correct value must have been placed in the proper
location in the 1/O area.

e When you load a logical child segment, the 1/O area must contain the
logical parent's concatenated key, followed by the logical child segment to
be inserted.

¢ You must load all segments having keys in sequence by key value.

¢ When you load segments that do not have keys, they are loaded in the
data base in the order in which their LOAD commands are processed.

¢ Dependent segment types, as specified by segment selection, must be
loaded in hierarchical order. Their parent segments must have been
loaded before you can load them.

4-12 DL/ DOS/VS Application Programing: High Level Programming Interface

4. Status codes:

LB
The segment you are trying to load already exists in the data base. You
cannot load a duplicate segment. This status code only applies to segment
types having key fields.

bb The segment was loaded successfully.

Other
If the status code is other than one of those listed above, DL/I will report
the code in message DLZ0371, then terminate your program.

See “Status Codes” in Chapter 3 for a complete list of status codes.

5. Position pointer: When a LOAD command is executed, the position pointer
points to the next available space following the last segment successfully
loaded. The next segment loaded will be placed in that space.

6. Parentage: Since only LOAD commands can be issued to a data base being
loaded, parentage is not significant, and is not set.

Chapter 4. DL/l HLPI Command Reference 4-13

CHECKPOINT

Batch

1. Function: The CHECKPOINT command is used to establish a point of
reference, during the execution of your program, that indicates that all data
base operations prior to that point were completed satisfactorily.

CHECKPOINT can be issued at any appropriate points in your program as
determined by you. It can be issued in batch, MPS batch, or online tasks. The
exact operations performed when the CHECKPOINT is executed are different
in the different environments.

In DL/I batch application programs, the CHECKPOINT command causes a
checkpoint record to be written on the DL/I log as an aid in restart processing. The
data base buffers will be written to the data base and a checkpoint log record, with
a user supplied unique checkpoint identification, will be written to the DL/I log.

The eight-character checkpoint identification just mentioned may be any value.
However, an EBCDIC character string is recommended because the value is used
in messages to the operator and/or programmer. Each time a batch application
program issues a CHECKPOINT command, DL/I issues a message, DLZ105I, that
contains the checkpoint identification. This id should be noted and saved, because
it may be required to aid in backout and restart processing.

In case of a failure in the batch environment, the backout utility may be run to back
out data base changes occurring since the last checkpoint. The utility will not back
out data base changes occurring before the last checkpoint.

MPS Batch and Online

For MPS batch and online tasks running with CICS/VS journaling active, a
CHECKPOINT command is, in effect, a CICS/VS sync point call with the exception
that the task's PSB scheduling status is not changed. Therefore, if an online task
has a scheduled PSB in effect at the time the CHECKPOINT command is issued, a
PSB SCHEDULE command is not required after it. In fact, a SCHEDULE
command issued under these circumstances would cause a scheduling error.

It is recommended that DL/I logging not be used for MPS batch and online tasks.
With DL/l logging active, a CHECKPOINT command causes data base buffers to
be written to secondary storage and a checkpoint log record to be written to the
DL/l log, as in the batch environment. However, these functions are not usable for
performing backout because batch backout cannot be used in an online
environment. Backout for an MPS batch or online DL/I task can only be performed
using CICS/VS dynamic transaction backout, which requires that CICS/VS
journaling be active.

For MPS batch tasks, the message DLZ105I is written as for a batch program. For
online tasks, DLZ105I is not written. Therefore, online application programs must
include their own provisions for identifying where restart is to begin following a
CHECKPOINT command.

4-14 DL/ DOS/VS Application Programing: High Level Programming Interface

MPS Batch Using MPS Restart

In order to provide a restart capability for MPS batch users, DL/I supports the use
of VSE checkpoint/restart in conjunction with the DL/I| CHECKPOINT command. A
VSE checkpoint writes a copy of the partition in which the checkpoint was issued to
disk or tape. The VSE RSTRT job control statement reloads this copy into the
partition and passes control to the restart address that was specified when the VSE
checkpoint was issued. For COBOL and PL/I programs using their respective VSE
checkpoint interfaces, this corresponds to the next program statement after the one
which invokes the VSE checkpoint.

MPS Restart provides the following functions:
e Combined Checkpoint Verification

MPS Restart verifies that a VSE checkpoint is issued immediately before each
DL/l checkpoint command. This is called a combined checkpoint. A VSE
checkpoint may be issued in PL/I and COBOL by using the checkpoint
interfaces provided by those languages. See the “Programming Examples”
section of this book for examples of how to code combined checkpoints.

¢ MPS Batch Reinitialization

The first DL/I command executed following a VSE restart must be a DL/I
checkpoint command. This will be the normal sequence when VSE
checkpoints are placed immediately before each DL/l checkpoint. The DL/I
checkpoint command will automatically determine that a VSE restart has
occurred and reinitialize the MPS batch environment. Following successful
reinitialization, the checkpoint command will return control to the application
program as if from a normal checkpoint and the program may continue
processing.

e Checkpoint ID Notification and Verification

Besides the normal SYSLOG messages issued by VSE and DL/l when
checkpoints are taken, a message containing the checkpoint identifier (ID) of
the last successful combined checkpoint will be issued when a failure occurs.
For individual job failures, the message is issued at the time of the failure. For
system-wide failures, it is issued when MPS is started again in the online
partition. The checkpoint ID contained in this message must be specified as a
parameter on the VSE RSTRT job control statement when restarting an MPS
batch job. MPS Restart will verify whether the checkpoint ID used for restart is
the correct one. If it is not, DL/l will indicate the correct checkpoint ID which
must be used and will cancel the job. This allows you to restart the job again,
using the correct checkpoint ID.

For additional information on using the MPS Restart facility, see DL/I DOS/VS
Data Base Administration.

Restrictions on Using VSE Checkpoint/Restart
Certain restrictions exist on the use of VSE checkpoint/restart. For example, VSAM
files must be closed before a VSE checkpoint is issued. DL/l data bases used by
MPS programs are in the online partition and are not affected by this restriction.

Also, VSE restart cannot be used to restart programs which failed because of

program logic errors. This is because a copy of the program, exactly as it was
before it failed, is loaded back into the partition during a restart.

Chapter 4. DL/I HLPI Command Reference 4-15

4-16

For details on these and other restrictions, see the VSE/Advanced Functions
Application Programming: Reference, and the VSE/Advanced Functions
Application Programming: User's Guide.

1.

Syntax: The syntax for the CHECKPOINT command looks like this:

{EXECUTE} DLI {CHECKPOINT}
{EXEC '} {CHKP }

ID(exp)
{5 }
{END-EXEC}
Note: Under MPS Restart, since a DL/l checkpoint will always be issued after
a VSE checkpoint has been taken, it is recommended that the VSE checkpoint
ID also be used as the DL/I checkpoint ID in PL/I programs. This is not
possible in COBOL since the VSE checkpoint ID is not returned to the
application program as it is in PL/I. Using the VSE checkpoint ID on the DL/I
CHKP command provides a cross reference between the VSE and DL/I
checkpoint messages issued to SYSLOG.

. Segment selection: No segments are specified in the CHECKPOINT

command.

. Status codes:

bb A checkpoint was successfully taken.

Other
If the status code is other than a 83, DL/I will report the code in message
DLZ037I, then terminate your program.

See “Status Codes” in Chapter 3 for a complete list of status codes.

. Position Pointer: Current position in the data base is lost upon return from a

CHECKPOINT command. If the PSB being used has more than one PCB
defined, position is lost across all PCBs and not just the PCB used in the
checkpoint command. Position must be reestablished (usually by a GET
UNIQUE command) before continuing with data base processing after a
CHECKPOINT command.

. Parentage: Parentage has to be reestablished after a CHECKPOINT

command.

DL/I DOS/VS Application Programing: High Level Programming Interface

SCHEDULE

1. Function: In an online application, you must schedule a PSB before you issue
any DL/I HLPI data base function commands. You use the SCHEDULE
command for this purpose.

2. Syntax: The syntax for the SCHEDULE command looks like this:

{EXECUTE} DLI {SCHEDULE}
{EXEC '} {SCHD }

PSB (name)

{; }
{END-EXEC}

Note: The SCHEDULE command can only be used in online programs.
3. Segment selection: No segments are specified in the SCHEDULE command.
4. Status codes:

bb The PSB was successfully scheduled.

Other
If the status code is other than a 88, DL/I will report the code in message
DLZ037I, then terminate your program.

See “Status Codes” in Chapter 3 for a complete list of status codes.
5. Position pointer: Position is not established by the SCHEDULE command.
6. Parentage: Parentage is not established by the SCHEDULE command.

Chapter 4. DL/l HLPI Command Reference 4-17

TERMINATE

1. Function: You use the TERMINATE command in an online application to

indicate to DL/I that all modifications made to the data bases by the transaction
to this point are committed and cannot be backed out, and that you are
releasing the PSB for use by another task.

Note: A TERMINATE command causes a CICS/VS synchronization point.
Also, a CICS/VS synchronization point causes a TERMINATE if a PSB is still
scheduled by the transaction. Refer to the CICS/VS Recovery and Restart
Guide.

. Syntax: The syntax for the TERMINATE command looks like this:

{EXECUTE} DLI {TERMINATE}
{(EXEC) {TERM }

{; }
{END-EXEC}

Note: The TERMINATE command can only be used in online programs.

. Segment selection: No segments are specified in the TERMINATE command.

. Status codes:

TG
A TERMINATE command was issued when a PSB had not previously been
scheduled for the task.

bb The command was successfully completed.

Other
If the status code is other than one of those listed above, DL/l will report
the code in message DLZ0371, then terminate your program.

See “Status Codes” in Chapter 3 for a complete list of status codes.

5. Position pointer: Paosition is not established by the TERMINATE command.
6. Parentage: Parentage is not established by the TERMINATE command.

4-18 DL/ DOS/VS Application Programing: High Level Programming Interface

Glossary

A number of terms and phrases used in describing DL/I
DOS/VS are either new to most readers, or have new
meanings. To improve the readability and your
understanding of this and other DL/I DOS/VS

publications, the significant and important terms are
defined in this Glossary. Some of the definitions refer
to the representative DL/I hierarchical structure shown
in Figure X-1.

Figure X-1. Representative DL/I Hierarchical Structure

ACB. (1) Application control blocks (DL/l). (2) Access
method control block (VSAM).

ACBGEN. Application control block generation.

access method control block (ACB).. A control block
that links a program to a VSAM data set.

access method services. A multifunction utility
program that defines VSAM data sets (or files) and
allocates space for them, and lists data set records and
catalog entries.

ACT. Application control table.

addressed direct access. In systems with VSAM, the
retrieval or storage of a data record identified by its
relative byte address, independent of the record's
location relative to the previously retrieved or stored
record. (See also keyed direct access, addressed
sequential access, keyed sequential access, and
relative byte address.)

addressed sequential access. The retrieval or
storage of a VSAM data record relative to the previously
retrieved or stored record. (See also keyed sequential

AO?l --------------- A002 Cevel 1
A\ 4 c
v v v
B03 D F
B02 ‘ F
Bgl F Level 2
A\ 4 A\ 4
c7 C2 E
C5 Level 3

access, addressed direct access, and keyed direct
access.)

aggregate. See data aggregate.
anchor point (AP). See root anchor point.

application control blocks. The control blocks
created from the output of DBDGEN and PSBGEN,
e.g., a DMB of an internal PSB created by the ACB
utility program.

application control block generation (ACBGEN).
The process by which application control blocks are
created.

application control table (ACT). A DL/I online table
describing those CICS application programs that utilize
DL/I.

argument. (1) (1ISO)% An independent variable. (2)
(ISO)% Any value of an independent variable . (3)
Information, such as names, constants, or variable
values included within the parentheses in a DL/I
command.t

1 International Organization for Standardization, Technical Committee 97/Subcommittee 1.

© Copyright IBM Corp. 1980, 2003

X-1

attribute. A property of an entity expressing a value.
Synonymous with field.

backout. The process of removing all the data base
updates performed by an application program that has
terminated abnormally. See also dynamic backout.

batch checkpoint/restart. The facility that enables
batch processing programs to synchronize checkpoints
and to be restarted at a user-specified checkpoint.

batch processing. A processing environment in which
data base transactions requested by applications are
accumulated and then processed periodically against a
data base.

Boolean operator. (1) (ISO)2 An operator, each of the
operands of which and the result of which, take one of
two values. (2) An operator that represents
symbolically relationships, such as AND, OR, and NOT,
between entities.

business process. A defined function of a business
enterprise usually interrelated through information
requirements with other business processes. For
example, personnel management is the business
process responsible for employee welfare from pre-hire
through retirement. It is related to the accounting
business process through payroll.

CA. Control area.

call. (1) (1ISO)2 The action of bringing a computer
program, a routine, or a subroutine into effect, usually
by specifying the entry conditions and jumping to an
entry point. (2) (ISO)2 In computer programming, to
execute a call. (3) The instruction in the COBOL, PLI/I,
or Assembler program that requests DL/l services. For
RPG Il, see RQDLI command. See also command.

control area (CA). A collection of control intervals.
Used by VSAM to distribute free space.

checkpoint. A time at which significant system
information is written on the system log, and optionally,
the system shut down.

child. Synonymous with child segment.

child segment. A segment one level below the
segment which is its parent, with a direct path back up
to the parent. Depending on the structure of the data
base, a parent may have many children; however, a
child has only one parent segment. Referring to
[Figure X-1 on page X-1}

¢ All the B, D, and F segments are children of A-001.

e C-5 and C-7 are children of B-01 (and A-001) but
not children of the other B segments.
e B-02 has no children.

See also logical child and physical child.
Cl. Control interval.

combined checkpoint. In MPS batch programs, a
VSE checkpoint followed immediately by a DL/I CHKP
command. The two checkpoints together form one
logical checkpoint, and allow the use of the VSE restart
facility to restart MPS batch programs.

command. The statement in DL/l High Level
Programming Interface (HLPI) that requests services for
application programs written in COBOL or PL/l. See
also call.

command code. An optional addition to the SSA that
provides specification of a function variation applicable
to the call function.

concatenated key. The key constructed to access a
particular segment. It consists of the key fields,
including that of the root segment and successive
children down to the accessed segment.

control interval (Cl). (1) A fixed length amount of
auxiliary storage space in which VSAM stores records
and distributes free space. (2) The unit of information
transmitted to or from auxiliary storage by VSAM.

data aggregate. A group of data elements that
describe a particular entity. Synonymous with segment.
See also data element.

data base (DB). (1) (ISO)2 A set of data, part of the
whole of another set of data, and consisting of at least
one file, that is sufficient for a given purpose or for a
given data processing system. (2) A collection of data
records comprised of one or more data sets. (3) A
collection of interrelated or independent data items
stored together without unnecessary redundancy to
serve one or more applications. See physical data
base and logical data base.

data base administration (DBA). The tasks
associated with defining the rules by which data is
accessed and stored. The typical tasks of data base
administration are outlined in DL/I DOS/VS Data Base
Administration.

data base administrator (DBA). The person in an
installation who has the responsibility (full or part time)
for technically supporting the use of DL/I.

2 International Organization for Standardization, Technical Committee 97/Subcommittee 1.

X-2 DL/ DOSIVS Application Programing: High Level Programming Interface

data base description (DBD). A description of the
physical characteristics of a DL/I data base. One DBD
is generated and cataloged in a core image library for
each data base that is used in the installation. It
defines the structure, segment keys, physical
organization, names, access method, devices, etc., of
the data base.

data base integrity. The protection of data items in a
data base while they are available to any application
program. This includes the isolation of the effects of
concurrent updates to a data base by two or more
application programs.

data base organization. The physical arrangement of
related data on a storage device. DL/l data base
organizations are hierarchical direct (HD) and
hierarchical sequential (HS). See hierarchical direct
organization and hierarchical sequential organization.

data base record. A collection of DL/I data elements
called segments hierarchically related to single root
segments.

Referring to [Figure X-1 on page X-1} A-001, B-01, C-5,
C-7, B-02, B-03, C-2, D, E, F, F, F constitute a data
base record.

data base reorganization. The process of unloading
and reloading a data base to optimize physical segment
adjacency, or to modify the DBD.

data communication (DC). A program that provides
terminal communications and automatic scheduling of
application programs based on terminal input. For
example, CICS/DOS/VS.

data dictionary. (1) A centralized repository of
information about data, such as its meaning,
relationship to other data, usage, and format. (2) A
program to assist in effectively planning, controlling, and
evaluating the collection, storage, and use of data. For
example, DOS/VS DB/DC Data Dictionary.

data element. The smallest unit of data that can be
referred to. Synonymous with field. See also data
aggregate.

data field. Synonymous with field.

data independence. (1) The concept of separating the
definitions of logical and physical data such that
application programs do not depend on where or how
physical units of data are stored. (2) The reduction of
application program modification in data storage
structure and access strategy.

data management block (DMB). The data
management block is created from a DBD by the
application control blocks creation and maintenance
utility, link edited, and cataloged in a core image library.

The DMB describes all physical characteristics of a data
base. Before an application program using DL/I
facilities can be run, one DMB for each data base
accessed, plus a PSB for the program itself, must be
cataloged in a core image library. The DMBs and the
associated PSB are automatically loaded into main
storage from the core image library at the beginning of
the application program execution (their loading is
controlled by the parameter information supplied to DL/I
at the beginning of program execution).

data set. A named organized collection of logically
related records. They may be organized sequentially,
as in the case of DOS/VSE SAM, or in key entry
sequence, as in the case of VSE/VSAM. Synonymous
with file.

data set group (DSG). A control block linking together
a data base with the data sets comprising this DL/I data
base.

DB. Data base.

DBA. (1) Data base administration. (2) Data base
administrator.

DBD. Data base description.

DBDGEN. Data base description generation -- the
process by which a DBD is created.

DB/DC. Data base/data communication.
DC. Data communication.

dependent segment. A DL/l segment that relies on at
least the root segment (or on another segment at a
level immediately above its own) for its full hierarchical
meaning. Synonymous with child segment.

destination parent. The physical or logical parent
segment reached by the logical child path.

device independence. The concept of writing
application programs such that they do not depend on
the physical characteristics of the device on which data
is stored.

DIB. DL/l interface block.

direct access. The retrieval or storage of a VSAM
data record independent of the record's location relative
to the previously retrieved or stored record. (See also
address direct access and keyed direct access).
Contrast with sequential access.

distributed data. The ability of DL/l application
programs to access a data base that is resident on
another processor.

distributed free space. See free space.

Glossary X-3

DL/l interface block (DIB). Variables automatically
defined in an application program using HLPI to receive
information passed to the program by DL/l during
execution. Contrast with PCB mask.

DMB. Data management block.
DSG. Data set group.

DTF. Define the file -- a control block that connects a
program to a SAM, DAM, ISAM, or some other data set.

dynamic backout. A process that automatically
cancels all activities performed by an application
program that terminates abnormally.

entity. A item about which information is stored. It has
properties that can be recorded. Information about an
entity is a record.

entry sequenced data set (ESDS). A VSAM data set
whose records are physically in the same order as they
were put in the data set. It is processed by addressed
direct access or addressed sequential access and has
no index. New records are added at the end of the
data set.

ESDS. Entry sequenced data set.

exclusive intent. The scheduling intent type that
prevents an application program from being scheduled
concurrently with another application program. See
scheduling intent.

FDB. field description block.

field. (1) (ISO)3 In a record, a specified area used for
a particular category of data, for example, in which a
salary rate is recorded. (2) a unique or nonunigue area
(as defined during DBDGEN) within a segment that is
the smallest unit of data that can be referred to. (3) any
designated portion of a segment. (4) see also key field.

field level sensitivity. The ability of an application
program to access data at the field level. See
sensitivity.

file. (1SO)3 A set of related records treated as a unit.
See also data set.

forward. Movement in a direction from the beginning
of the data base to the end of the data base, accessing
each record in ascending root key sequence, and
accessing the dependent segments of each root
segment from top to bottom and from left to right.
Referring to |Figure X-1 on page X-1 forward accessing
of all the segments shown would be in the following

sequence: A-001, B-01, C-5, C-7, B-02, B-03, C-2, D,
E, F, F, F, A-002.

free space. Space available in a VSAM data set for
inserting new records. The space is distributed
throughout a key sequenced data set (KSDS) or left at
the end of an entry sequenced data set (ESDS).
Synonymous with distributed free space.

free space anchor point. A fullword at the beginning
of a control interval pointing to the first free space
element in this CI.

free space element. In HD data bases, the portions of
direct access storage not occupied by DL/I segments
are called and marked as free space elements.

FSA. free space anchor point.

FSE. free space element.

HD. Hierarchical direct.

HDAM. Hierarchical direct access method.

HIDAM. Hierarchical indexed direct access method

HIDAM index. A data base that consists of logical DL/I
records, each containing an image of the key field of a
HIDAM root segment. A HIDAM index data base
consists of one VSAM KSDS (keyed sequenced data
set).

hierarchic sequence. The sequence of segment
occurrences in a data base record defined by traversing
the hierarchy from top to bottom, front to back, and left
to right.

hierarchical direct access method (HDAM). Provides
for direct access to a DL/I data base in the HD
organization. Segments are stored in VSAM control
intervals and are referenced by a relative byte address.
Root segments are accessed through a randomizing
routine. An HDAM data base consists of one VSAM
entry sequence data set (ESDS).

hierarchical direct organization. An organization of
DL/l segments of a data base that are related by direct
addresses and may be accessed through an HD
randomizing routine or an index.

hierarchical indexed direct access method

(HIDAM). Provides for indexed access to a DL/l data
base in the HD organization. Segments are stored in
VSAM control intervals and are referenced by a relative
byte address. Root segments are accessed through a
HIDAM index data base. A HIDAM data base consists

3 International Organization for Standardization, Technical Committee 97/Subcommittee 1.

X-4 DL/ DOSIVS Application Programing: High Level Programming Interface

of one VSAM Entry Sequenced Data Set (ESDS) and
its associated index.

hierarchical indexed sequential access method
(HISAM). Provides for indexed access to a DL/l data
base. A HISAM data base consists of one VSAM key
sequenced data set (KSDS) and one VSAM entry
sequenced data set (ESDS).

hierarchical sequential access method (HSAM). The
segments of a DL/l HSAM physical data base record
are arranged in sequential order with the root segments
followed by the dependent segments. HSAM data
bases are accessed by the DOS/VSE sequential access
method (SAM).

hierarchical sequential organization. An organization
of DL/l segments of a data base that are related by
physical adjacency.

hierarchy. (1) An arrangement of data segments
beginning with the root segment and proceeding
downward to dependent segments. (2) A “tree”
structure.

high level programming interface (HLPI). A DL/
facility providing services to application programs written
in either COBOL or PL/I Optimizer language through
commands.

HISAM. Hierarchical indexed sequential access
method.

HLPI. High level programming interface.
HS. Hierarchical sequential.
HSAM. Hierarchical sequential access method.

index data base. An ordered collection of DL/l index
entries (segments) consisting of a key and a pointer
used by VSAM to sequence and locate the records of a
key sequenced data set (KSDS). Organized as a
balanced tree of levels of index.

index data set. Synonymous with index data base.

index pointer segment. The segment that contains
the data and pointers used to index the index target
segments.

index record. A system-created collection of VSAM
index entries that are in collating sequence by the key
in each of the entries.

index segment. The segment in the index data base
that contains a pointer to the segment containing data

(the indexed segment). Synonymous with index pointer
segment.

index set. The set of VSAM index levels above the
sequence set. An entry in a record in one of these
levels contains the highest key entered in an index
record in the next lower level and a pointer that
indicates the record's physical location.

index source segment. The segment containing the
data from which the indexing segment is built.

index target segment. The segment pointed to by a
secondary index entry, that is, by an index pointer
segment.

indexed segment. A segment that is located by an
index. Synonymous with index target segment.

intersection data. Any user data in a logical child
segment that does not include the logical parent's
concatenated key.

inverted file. In information retrieval, a method of
organizing a cross-index file in which a key identifies a
record. The items pertinent to that key are indicated.

key. (1) (ISO)4 One or more characters within a set of
data that contains information about that set, including
its identification. (2) The field in a segment used to
store segment occurrences in sequential order. (3) A
field used to search for a segment. See primary key
and secondary key. (4) Synonymous with key field and
sequence field.

Note: A segment may or may not have a key, that is,
a sequence field. All root segments, except for HSAM
and simple HSAM data bases, must have keys. DL/I
ensures that multiple segments of the same type that
have keys are maintained in strict ascending sequence
by key. The key may be located anywhere within a
segment; it must be in the same location in all
segments of the same type within a data base. The
maximum sizes for keys are 236 alphameric characters
for root segments and 255 for all dependent segments.
Keys provide a convenient way to retrieve a specific
occurrence of a segment type, maintain the uniqueness
and sequential integrity of multiples of the same
segment type, and determine under which segment of a
group of multiples new dependent segments are to be
inserted. Keys should normally be prescribed for all
segment types; the exceptions being if there will never
be multiples of a particular type or if a particular
segment type will never have dependents.

key field. The field is a segment used to store
segment occurrences in sequential ascending order. A

4 International Organization for Standardization, Technical Committee 97/Subcommittee 1.

Glossary X-5

key field is also a search field. Synonymous with key
and sequence field.

key sequenced data set (KSDS). A VSAM file whose
records are loaded in key sequence and controlled by
an index. See also keyed direct access and keyed
sequential access.

keyed direct access. The retrieval or storage of a
data record by use of an index that relates the record's
key to its physical location in the VSAM data set,
independent of the record's location relative to the
previously retrieved or stored record. See also
addressed direct access, keyed sequential access, and
addressed sequential access.

keyed sequential access. The retrieval or storage of
a VSAM data record in its collating sequence relative to
the previously retrieved or stored record, by the use of
an index that specifies the collating sequence of the
records by key. See also addressed sequential access,
keyed direct access, and keyed sequential access.

KSDS. Key sequenced data set.

level. (1) (ISO)5 The degree of subordination of an
item in a hierarchic arrangement. (2) Level is the
depth in the hierarchical structure at which a segment is
located. Roots are always the highest level and the
segments at the bottom of the structure are the lowest
level. The maximum number of levels in a DL/I data
base is 15. For purposes of documentation and
reference, the levels are numbered from 1 to 15, with
the root segments being level number 1. Referring to
[Figure X-1 on page X-1}

¢ Three levels are shown.

e The A segments (roots) are at the highest level
(Level 1).

e The C and E segments are at the lowest level
(Level 3).

local system. (1) A specific system in a multisystem
environment. Contrast with remote system. (2) The
system in a multisystem environment on which the
application program is executing. The local application
may process data from data bases located on both the
same (local) system and another (remote) system.

local view. A description of the data that an individual
business process requires. See system view.

logical. When used in reference to DL/I components,
logical means that the component is treated according
to the rules of DL/I rather than physically as it may
exist, or as it may be organized, on a physical storage
device. For example, a logical DL/I record (a root

segment and all of its dependent segments grouped)
might be contained on several physical records or
blocks on a storage device, and because of prior
insertions and deletions, the segments might be in a
different physical sequence than that by which they are
retrieved logically for the application program by DLI/I.

logical child. A pointer segment that establishes an
access path between its physical parent and its logical
parent. It is a physical child of its physical parent; it is a
logical child of its logical parent. See also logical parent
and logical relationship.

logical data base. A data base composed of one or
more physical data bases representing a hierarchical
structure derived from relationships between data
segments that can be different from the physical
structure.

logical data base record. (1) A set of hierarchically
related segments of one or more segment types. As
viewed by the application program, the logical data
base record is always a hierarchic tree structure of
segments. (2) All of the segments that exist
hierarchically dependent on a given root segment, and
that root segment.

logical data structure. A hierarchic structure of
segments that is not based solely on the physical
relationship of the segments. See also logical
relationships.

logical parent. The segment a logical child points to.
A logical parent segment can also be a physical parent.
See also logical child and logical relationship.

logical relationship. A user defined path between two
segments; that is, between logical parent and logical
child, which is independent of any physical path.
Logical relationships can be defined between segments
in the same physical data base hierarchy or in different
hierarchies.

logical twins. All occurrences of one type of logical
child with a common logical parent. Contrast with
physical twin. See also twin segment.

MPS. Multiple partition support

MPS Restart facility. The capability to restart an MPS
batch job when a system or application program failure
occurs using VSE checkpoint/restart in conjunction with
the DL/l checkpoint facility.

multiple partition support (MPS). Multiple partition
support provides a centralized data base facility to
permit multiple applications in different partitions to

5 International Organization for Standardization, Technical Committee 97/Subcommittee 1.

X-6 DL/ DOSIVS Application Programing: High Level Programming Interface

access DL/I data bases concurrently. MPS follows
normal DL/I online conventions in that two programs
cannot both update the same segment type in a data
base concurrently. (With program isolation, two
programs can concurrently update the same segment
type; however, they cannot concurrently update the
same segment. See program isolation.) However, two
or more programs can retrieve from a data base while
another program updates it. If one program has
exclusive use of a data base, no other program can
update it or retrieve from it.

multiple SSA. A series of segment search arguments
(SSAs) included in a DL/I call to identify a specific
segment or path. See also segment search argument.

object segment. The segment at the lowest
hierarchical level specified in a particular command.
See also path call.

online. A operating environment in which DL/I is used
with CICS/DOS/VS (or another data communication
program) to permit end-users of application programs to
access and store information in a data base through
terminals.

option. A command keyword used to qualify the
requested function.

parent. Synonymous with parent segment.

parent segment. (1) A segment that has one or more
dependent segments. Contrast with child. (2) A parent
is the opposite of a child, or dependent segment, in that
dependent segments exist directly beneath it at lower
levels. A parent may also itself be a child. Referring to
[Figure X-1 on page X-1}

e A-001 is the parent of all B, C, D, E, and F
segments.

e D is a parent of E, yet a child of A.

e B-02 is not a parent.

¢ None of the level 3 segments are parents.

parentage. Establishment in a program of a particular
parent as the beginning point for the use of the get next
in parent (GNP) or get hold next in parent (GHNP)
functions. Parentage can only be established by
issuing successful GU, GHU, GN, or GHN calls, or GET
UNIQUE or GET NEXT commands.

PATH. The chain of segments within a record that
leads to the currently retrieved segment. The formal
path contains only one segment occurrence from each
level from the root down to the segment for which the
path exists. The exact path for each retrieved segment
is returned in the following fields of the PCB:

Field 2
Field 6

Segment hierarchy level indicator

Segment name feedback area

Field 7
Field 9

Length of key feedback area

Key feedback area, containing the
concatenated keys in the path.

Referring to [Figure X-1 on page X-1f

e The path to C-5 is A-001, B-01.

e The path to C-7 is the same as the path to C-5.

e There is no path to A-002 because it is a root
segment.

path call. (1) The retrieval or insertion of multiple
segments in a hierarchical path in a single call, by using
the D command code and multiple SSAs. (2) The
retrieval, replacement, or insertion of data for multiple
segments in a hierarchical path in a single command,
by using the FROM or INTO options specifying an 1/0
area for each parent segment desired. The object
segment is always retrieved, replaced, or inserted.

PCB. Program communication block.

PCB mask. A skeleton data base PCB in the
application program by which the program views a
hierarchical structure and into which DL/l returns the
results of the application's calls.

physical child. A segment type that is dependent on a
segment type defined at the next higher level in the
data base hierarchy. All segment types, except the root
segment, are physical children because each is
dependent on at least the root segment. See also child
segment.

physical data base. An ordered set of physical data
base records.

physical data base record. A physical set of
hierarchically related segments of one or more segment

types.

physical data structure. A hierarchy representing the
arrangement of segment types in a physical data base.

physical parent. A segment that has a dependent
segment type at the next lower level in the physical
data base hierarchy. See also parent.

physical segment. The smallest unit of accessible
data.

physical twins. All occurrences of a single physical
child segment type that have the same (single
occurrence) physical parent segment type. Contrast
with logical twins. See also twin segment.

Pl. Program isolation

pointer. A physical or symbolic identifier of a unique
target.

Glossary X-7

position pointer. For most call functions, a position
pointer exists before, during, and after the completion of
the function. The pointer indicates the next segment in
the data base that can be retrieved sequentially. It is
normally set by the successful completion of the call
function. Referring to [Figure X-1 on page X-1f

e If A-001 has just been retrieved, it points to B-01.

e If a new segment C-6 has just been inserted, it
points to C-7.

¢ |If the D segment has been deleted (E will be
deleted along
with it), it points to the first F segment.

¢ If the last F segment has just been retrieved, it
points to A-002.

During PSB generation, it is possible to specify either
single or multiple positioning.

primary key. The data element, or combination of
data elements, within a segment that uniquely identifies
an occurrence of that segment. See key and secondary
key.

program communication block (PCB). Every data
base accessed in an application program has a PCB
associated with it. The PCB actually exists in DL/I and
its fields are accessed by the application program by
defining their names within the application program as
follows:

COBOL The PCB names are defined in the linkage
section.
PL/ The PCB names are defined under a

pointer variable.
Assembler The PCB names are defined in a DSECT.

RPG I The PCB names are automatically

generated by the translator, or may be
defined by the user.

There are nine fields in a PCB:

Ay

. Data base name

. Segment hierarchy level indicator
. DL/I results status code

. DL/I processing options

. Reserved for DL/I

Segment name feedback area

. Length of key feedback area

. Number of sensitive segments

. Key feedback area.

©ONOUAWN

Program lIsolation (PI). A facility that isolates all data
base activity of an application program from all other
application programs active in the system until that
application program commits, by reaching a
synchronization point, that the data it has modified or
created is valid.

This concept makes it possible to dynamically backout
the data base activities of an application program that

terminates abnormally without affecting the integrity of
the data bases controlled by DL/I. It does not affect the
activity performed by other application programs
processing concurrently in the system.

program specification block (PSB). A PSB is
generated for each application program that uses DL/I
faciliies. The PSB is associated with the application
program for which it was generated and contains a PCB
for each data base that is to be accessed by the
program. Once it is generated, the PSB is cataloged in
a core image library, and subsequently processed by a
utility along with the associated DBDs to produce the
updated PSB and DMBs; all of these are cataloged in a
core image library for subsequent use by the application
program during execution.

PSB. Program specification block

PSBGEN. PSB generation -- the process by which a
program specification block is created.

qualified call. A DL/l call that contains at least one
segment search argument (SSA). See also segment
search argument.

qualified segment selection. The identification of a
specific occurrence of a given segment type in a
command, by using the WHERE option in the command
for the desired segment. Contrast with qualified SSA.

qualified SSA. A qualified segment search argument
contains both a segment name that identifies the
specific segment type, and segment qualification that
identifies the unique segment within the type for which
the call function is to be performed. See also segment
search argument and multiple SSA.

RAP. Root anchor point.
RBA. Relative byte address.

read-only intent. The scheduling intent type that
allows a program to be scheduled with any number of
other programs except those with exclusive intent. No
updating occurs. See scheduling intent.

record. A data base record is made up of at least a
unique root segment, and all of its dependent
segments. See data base record.

relative byte address (RBA). The displacement of a
stored record or control interval from the beginning of
the storage space allocated to the VSAM data set to
which it belongs.

remote system. In a multisystem environment, the
system containing the data base that is being used by
an application program resident on another (local)
system Contrast with local system.

X-8 DL/ DOSIVS Application Programing: High Level Programming Interface

root anchor point (RAP). A DL/I pointer in an HDAM
control interval that points to a root segment or a chain
of root segments.

root segment. The highest level (level 1) segment in a
record. A root segment must have a key unless the
organization is HSAM or simple HSAM. The sequence
of the root segments constitutes the fundamental
sequence of the data base. There can be only one root
segment per record. Dependent segments cannot exist
without a parent root segment but a root segment can
exist without any dependent segments.

RQDLI COMMAND. The instruction in the RPG Il
program used to request DL/I services.

scheduling intent. An application program attribute
defined in the PSB that specifies how the program
should be scheduled if multiple programs are
contending for scheduling. See exclusive intent,
read-only intent, and update intent.

search field. In a given DL/I call, a field that is
referred to by one or more segment search arguments
(SSAs).

secondary index. Secondary indexes can be used to
establish alternate entries to physical or logical data
bases for application programs. They can also be
processed as data bases themselves. See also
secondary index data base.

secondary index data base. An index used to
establish accessibility to a physical or logical data base
by a path different from the one provided by the data
base definition. It contains index pointer segments.

secondary key. A data element, or combination of
data elements, within a segment that identifies -- and is
used to locate -- those occurrences of the segment that
have a property named by the key. See key and
primary key.

segment. A segment is a group of similar or related
data that can be accessed by the application program
with one I/O function call. There may be a number of
segments of the same type within a record.

segment name. A segment name is assigned to each
segment type. Segment names for the different
segment types must be unique within a data base. The
segment name is used by the application programmer
when constructing a qualified or unqualified SSA prior to
issuing a call for a specific segment. Synonymous with
segment type.

segment occurrence. One instance of a set of similar
segments.

segment search argument (SSA). Describes the
segment type, or specific segment within a segment

type, that is to be operated on by a DL/l call. See also
multiple SSA, qualified SSA, and unqualified SSA.

segment selection. The specifying of parent and
object segments by name in a command. Selection
may be either qualified or unqualified. Contrast with
segment search argument.

segment type. A user-defined category of data.
Referring to [Eigure X-1 on page X-1} there are six
different types of segments; A through F.

Different segment types may have different lengths, but
within each single type, all segments must be the same
length (unless variable length segments have been
specified by the DBA). Synonymous with segment
name.

sensitivity. (1) A DL/l capability that ensures that only
data segments or fields predefined as “sensitive” are
available for use by a particular application program.
The sensitivity concept also provides a degree of
control over data security, inasmuch as users can be
prevented from accessing particular segments or fields
from a logical data base. (2) Sensitivity to the various
segments and fields that constitute a data base is
controlled, on a program-by-program basis, when the
PSB for each program is generated. For example, a
program is said to be sensitive to a segment type when
it can access that segment type. When a program is
not sensitive to a particular segment type, it appears to
the program as if that segment type does not exist at all
in the data base. Segment sensitivity applies to types
of segments, not to specific segments within a type, and
to all segment types in the path to the lowest level
sensitive segment type.

sequence field. Synonymous with Key field.

sequence set. The lowest level of a VSAM index. It
immediately controls the order of records in a key
sequenced data set (KSDS). A sequence set entry
contains the key of the highest keyed record stored in a
control interval of the data set and a pointer to the
control interval's physical location. A sequence set
record also contains a pointer to the physical location of
each free control interval in the fan-out of the record.

sequential processing. Processing or searching
through the segments in a data base in a forward
direction (see also forward).

simple HISAM. A hierarchical indexed sequential
access method data base containing only one segment

type.

source segment. A segment containing the data used
to construct the secondary index pointer segment. See
also secondary index data base.

SSA. Segment Search Argument

Glossary X-9

status code. Each DL/I request for service returns a
status code that reflects the exact results of the
operation. The first operation that a program should
perform immediately following a DL/I request is to test
the status code to ensure that the function requested
was successful. Following a command, the status code
is returned in the DIB at the label DIBSTAT. Following
a call, the status code is returned in field 3 of the PCB.

sync(h) point. Synonymous with synchronization
point.

synchronization point. A logical point in time during
the execution of an application program where the
changes made to the data bases by the program are
committed and will not be backed out. Synonymous
with sync point or synch point.

A synchronization point is created by:

¢ a DL/l CHECKPOINT command or CHKP call

e a DL/ TERMINATE command or TERM call

¢ a CICS/VS synch point request

¢ an end of task (online) or an end of program
(MPS-batch).

system view. A conceptual data structure that
integrates the individual data structures associated with
local views into an optimum arrangement for physical
implementation as a data base. See local view.

transaction. A specific set of input data that triggers
the execution of a specific process or job.

twin segments. All child segments of the same
segment type that have a particular instance of the
same parent type. See also physical twins and logical
twins.

twins. Synonymous with twin segments.

unqualified call. A DL/I call that does not contain a
segment search argument.

unqualified segment selection. The identification of a
given segment type in a command without specifying a
particular occurrence of that segment type (without
using the WHERE option). As a general rule,
unqualified segment selection retrieves the first
occurrence of the specified segment type. Contrast
with unqualified SSA.

unqualified SSA. An unqualified SSA contains only a
segment name that identifies the specific type of
segment for which the 1/O function is to be performed.
As a general rule, the use of an unqualified SSA
retrieves the first occurrence of the specified type of
segment. See also segment search argument.

update intent. The scheduling intent type that permits
application programs to be scheduled with any number
of other programs except those with exclusive intent.
See scheduling intent.

UPSI. User program switch indicator. A special 8 bit
byte that allows each bit to be set by the user as “1” or
“0.” Bits may be read by a program to determine what
the user wants to do.

X-10 DL/ DOS/VS Application Programing: High Level Programming Interface

Communicating Your Comments to IBM

IBM Data Language/l Disk Operating System/
Virtual Storage (DL/I DOS/VS)

Application Programming:

High Level Programming Interface

Version 1 Release 7

Publication No. SH24-5009-02

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of the book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.
¢ If you prefer to send comments by mail, use the RCF form and either send it
postage-paid in the United States, or directly to:

IBM Deutschland Entwicklung GmbH
Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

¢ If you prefer to send comments by FAX, use this number:

— (Germany): 07031-16-3456
— (Other countries): (+49)+7031-16-3456

¢ If you prefer to send comments electronically, use this network ID:
INTERNET: s390id@de.ibm.com

Make sure to include the following in your note:

¢ Title and publication number of this book
e Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

IBM Data Language/l Disk Operating System/
Virtual Storage (DL/I DOS/VS)

Application Programming:

High Level Programming Interface

Version 1 Release 7

Publication No. SH24-5009-02

Overall, how satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Overall satisfaction O O O m] O
How satisfied are you that the information in this book is:
Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Accurate O O O o O
Complete O O O m] O
Easy to find O O O m] O
Easy to understand O O O m] m]
Well organized O O O m] O
Applicable to your tasks O O O m] O

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? O Yes O No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments

in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers' Comments — We'd Like to Hear from You

SH24-5009-02

Fold and Tape

Please do not staple

[

i
<.||
ML
®

Fold and Tape

Cut or Fold
Along Line

IBM Deutschland Entwicklung GmbH
Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

PLACE
POSTAGE
STAMP
HERE

Fold and Tape

SH24-5009-02

Please do not staple

Fold and Tape

Cut or Fold
Along Line

File Number: S370/4300-50
Program Number: 5746-XX1

Printed in the United States of America
@ on recycled paper containing 10%
recovered post-consumer fiber.

	Contents
	Figures
	Notices
	Trademarks and Service Marks

	Preface
	Related Publications:

	Summary of Changes
	Chapter 1. DL/I, Data Bases and the Application Programmer
	Introduction
	Getting Acquainted With DL/I and Data Bases
	The Segment - the DL/I Unit of Information
	Functions DL/I Performs on the Segment
	Loading
	Retrieving
	Inserting
	Replacing
	Deleting
	Checkpointing
	Scheduling
	Terminating

	The Data Base Hierarchy—Building on the Segment
	Views of the Data Base
	PCBs
	PSBs
	DBDs

	Preparing to Use DL/I
	Operating Environments

	Getting Acquainted With the DL/I High Level Programming Interface
	The DL/I Commands for Performing the Functions
	GET Commands
	GET NEXT Command
	GET NEXT IN PARENT Command
	GET UNIQUE Command
	INSERT Command
	REPLACE Command
	DELETE Command
	LOAD Command
	CHECKPOINT Command
	SCHEDULE Command
	TERMINATE Command

	The DL/I Response to the Commands

	Chapter 2. DL/I High Level Programming Interface
	What it is
	Coding Conventions

	Elements of the Command Language
	Syntax Description
	1. Trigger—EXECUTE DLI
	2. Function to be Performed
	3. Specifying the PCB
	4. Retrieving Key Feedback
	5. Selection of Segments
	Parent Segments
	Object Segments
	Segment I/O Area
	Segment Length
	Qualified Segment Selection
	Segment Selection Examples
	Example of Using AND and OR in a WHERE Statement

	6. Command-Delimiter
	7. Variable Length Segments (HDAM and HIDAM Data Bases Only)
	8. FIRST and LAST Options
	FIRST
	LAST
	Examples of FIRST and LAST

	9. LOCKED
	10. OFFSET
	11. Specifying the PSB
	12. Specifying the Checkpoint Id

	Syntax of the Command Language

	Chapter 3. DL/I Application Program
	Planning Your Program
	A Checklist
	General Considerations and Restrictions
	Data Base Processing Methods
	Data Base Processing Considerations
	Loading
	Retrieving
	Updating
	Deleting
	Inserting

	Restrictions
	Online Considerations and Restrictions
	MPS Batch Considerations and Restrictions
	DL/I Programming Techniques and Suggestions
	Error Checking

	Writing Your Program
	Entry to Batch and MPS Batch Programs
	DIB
	Status Codes
	Using DIBKFBL
	Obtaining the PSB (Online Only)
	SCHEDULE command

	Releasing the PSB (Online Only)
	TERMINATE Command

	Terminating the Program
	Batch and MPS Batch
	Online

	Techniques and Suggestions
	MPS Batch Considerations
	Programming Examples
	LOAD Command Examples
	GET Command Examples
	INSERT, REPLACE, and DELETE Command Examples
	SCHEDULE, TERMINATE, and CHECKPOINT Command Examples
	HANDLE ABEND Command Examples
	CHECKPOINT Command Examples Using MPS Restart

	Executing Your Program
	Translation
	Translator

	Compilation and Link-editing
	Execution
	Online
	Batch and MPS Batch
	Parameter Statement
	UPSI
	Job Control Statements

	Debugging Your Program
	Problem Determination
	Initialization Errors
	Execution Errors

	Execution Time Debugging Aids
	Status Codes
	Key Feedback Length
	Abnormal Termination Messages
	PL/I Diagnostic Information
	CICS/VS Execution Diagnostic Facility (EDF)

	Other Available DL/I Functions
	Multiple Positioning

	Chapter 4. DL/I HLPI Command Reference
	DL/I HLPI Functions
	GET NEXT
	GET NEXT IN PARENT
	GET UNIQUE
	INSERT
	REPLACE
	DELETE
	LOAD
	CHECKPOINT
	Batch
	MPS Batch and Online
	MPS Batch Using MPS Restart
	Restrictions on Using VSE Checkpoint/Restart

	SCHEDULE
	TERMINATE

	Glossary

