

IBM Data Language/I Disk Operating System/
Virtual Storage (DL/I DOS/VS) IBM

Application and Data Base Design
Version 1 Release 7

 SH24-5022-01

IBM Data Language/I Disk Operating System/
Virtual Storage (DL/I DOS/VS) IBM

Application and Data Base Design
Version 1 Release 7

 SH24-5022-01

 Note !

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page ix.

Second Edition (December 2002)

This edition applies to Version 1 Release 7 of IBM Data Language/I Disk Operating System/Virtual Storage (DL/I DOS/VS), Program
Number 5746-XX1, and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 22�
D-71�32 Boeblingen
Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s39�id@de.ibm.com
FAX (Germany): �7�31-16-3456
FAX (other countries): (+49)+7�31-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1981, 2002. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Trademarks and Service Marks . ix

Preface . xi
Related Publications: . xii

Summary of Changes . xiii

Part 1. Introduction

Part 2. Application Design

Chapter 1. The Relationship of Data Base Design to Application Design . 1-1
Data Base Concepts and Terminology . 1-1
Data Base Structures . 1-3

Flat File . 1-4
Hierarchical . 1-4
Network . 1-5

Data Base Design . 1-6
Objectives . 1-6
Benefits of Good Design . 1-7
Consequences of Poor Design . 1-7
Data Base Design Tools . 1-7

An Application Design Procedure . 1-9
Preliminary Analysis . 1-9
Obtaining Application Requirements . 1-9
Application Analysis . 1-9
Creating Local Views From Requirements . 1-9
Combining Local Views Into a System View 1-9
Converting the System View to a Physical View 1-9
Implementing the Application . 1-9

Chapter 2. Preliminary Analysis . 2-1
Initial Application . 2-1
Adding an Application . 2-2

Chapter 3. Collecting Application Requirements 3-1
Interviews . 3-1

Organizing the Interviews . 3-1
Conducting the Interviews . 3-2

Existing Sources . 3-3
Questionnaires . 3-4
Documentation . 3-4
Reviewing the Requirements . 3-5

Chapter 4. Application Analysis . 4-1
Defining the Tasks . 4-1
Defining Programs to Accomplish the Tasks . 4-3

Requirements and Considerations . 4-4

 Copyright IBM Corp. 1981, 2002 iii

Defining Application Programs to Meet the Requirements 4-7
Naming Conventions . 4-7
Creating a Data Dictionary From the Requirements Listing 4-8
Analyzing Application Data . 4-8

Part 3. Data Base Design

Chapter 5. Creating Local Views From Requirements 5-1
The Three Step Process . 5-2

1. Isolating Repeating Data Elements . 5-2
2. Isolating Duplicate Values . 5-3
3. Grouping Data Elements With Their Keys 5-4

Building the Local Views . 5-4
Analyzing Associations . 5-4
Identifying Keys . 5-6
Using the Three Step Process . 5-7
1. Isolating Repeating Data Elements . 5-7
2. Isolating Duplicate Values . 5-8
3. Grouping Data Elements With Their Keys 5-10
Identifying Relationships (Mapping) . 5-10
Identifying Intersecting Attributes (Logical Relationship Candidates) 5-11
Identifying Alternate Processing Sequences (Secondary Indexing

Candidates) . 5-13
Considerations That Might Alter a Local View 5-13
Further Local View Examples . 5-14

Chapter 6. Combining Local Views Into a System View 6-1
Generating a System View . 6-1

Eliminating Redundancies . 6-2
Identifying Keys . 6-2
Removing Undesirable Associations . 6-3
Mapping Between Keys . 6-3
Intersection Data . 6-4
Intersecting Attributes . 6-4
Isolated Attributes . 6-4
Local Views as Input . 6-4
Combining Local Views . 6-7

Defining Implementation Requirements . 6-9
Performance Considerations . 6-9
Data Access Requirements . 6-9
Structural Considerations . 6-9
Security Requirements . 6-9
Recovery Requirements . 6-10

Chapter 7. Converting the System View to a Physical View 7-1
DL/I Data Base Organization and Access Methods 7-2

Sequential Organization (HS) . 7-3
Direct Organization (HD) . 7-5

Factors in the Choice of an Access Method . 7-7
Special Direct Access Considerations . 7-8
Implementation Requirements . 7-13
Choosing an Access Method . 7-15

iv DL/I DOS/VS Application and Data Base Design

Chapter 8. Implementing the Application . 8-1
Implementation Plan . 8-1
Implementation . 8-2

Appendix A. Appendix A: An Example of Application Design With Data
Bases . A-1

Inventory Data Base . A-1
Customer Data Base . A-2

Obtaining Application Requirements . A-2
Application Analysis . A-5

Defining the Tasks . A-5
Defining Programs to Accomplish the Tasks A-5
Naming Conventions Used in the Sample Application A-6
Creating a Data Dictionary From the Requirements Listing A-9

Creating Local Views From Requirements . A-10
Combining Local Views Into a System View . A-14
Converting the System View to a Physical View A-16

Appendix B. Appendix B: A Recommended Naming Convention B-1
Additional Conventions for DL/I . B-3

Glossary . X-1

Index . X-7

 Contents v

vi DL/I DOS/VS Application and Data Base Design

 Figures

1-1. Physical Record - DL/I Segment Relationship (Example 1) 1-2
1-2. Physical Record - DL/I Segment Relationship (Example 2) 1-2
1-3. Expanded Data Base Structure . 1-3
1-4. Flat File Structure . 1-4
1-5. Tree Structure . 1-5
1-6. “Network” Structure . 1-6
4-1. Current Roster . 4-2
4-2. Schedule of Classes . 4-2
4-3. Instructor Skills Report . 4-3
4-4. Instructor Schedules . 4-3
5-1. Current Roster Step 1 . 5-8
5-2. Current Roster Step 2 . 5-9
5-3. Current Roster Step 3 . 5-10
5-4. Education Data Structures . 5-12
5-5. Unidirectional Logical Relationship 5-12
5-6. Bidirectional Logical Relationships . 5-13
5-7. Schedule of Classes . 5-15
5-8. Class Schedule Conceptual Structure 5-15
5-9. Instructor Skills Report . 5-16

5-10. Instructor Skills Conceptual Structure 5-16
5-11. Instructor Schedules . 5-17
5-12. Instructor Schedules Conceptual Structure, Step 1 5-17
5-13. Instructor Schedules Conceptual Structure, Step 2 5-18
7-1. Medical and Purchasing Hierarchies 7-9
7-2. Logical Relationships Example . 7-9
7-3. Supplies and Purchasing Hierarchies 7-10
7-4. Program B and Program C Hierarchies 7-10
7-5. Patient Hierarchy . 7-11
7-6. Indexing a Root Segment . 7-12
7-7. Indexing a Dependent Segment . 7-12
7-8. Access Method Decision Tree . 7-16
A-1. Customer Data Local View . A-14
A-2. Customer Data and Inventory Local Views Combined A-15
A-3. System View as a Hierarchical Structure A-15

 Copyright IBM Corp. 1981, 2002 vii

viii DL/I DOS/VS Application and Data Base Design

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement. IBM accepts no
responsibility for the content or use of non-IBM Web sites specifically mentioned in
this publication or accessed through an IBM Web site that is mentioned in this
publication.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Deutschland Informationssysteme GmbH
Department �215
Pascal Str. 1��
7�569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Trademarks and Service Marks
The following terms are trademarks of International Business Machines Corporation
in the Unites States, or other countries, or both:

 CICS
 IBM

 Copyright IBM Corp. 1981, 2002 ix

x DL/I DOS/VS Application and Data Base Design

 Preface

This book describes a method of performing the task of application design when
DL/I DOS/VS and DL/I data bases are used. It is written for those responsible for
this type of application design, and assumes some previous knowledge and
experience in application design not involving data bases. Previous knowledge of
DL/I DOS/VS is not required.

DL/I DOS/VS is referred to in this publication as DL/I.

This book is organized to lead you step-by-step through the process of application
design for applications using DL/I. You should read it through from the beginning
before you use any of the information.

The book is divided into four parts, containing an introduction, eight chapters, and
two appendixes. Each chapter opens with an introduction that lists the content of
the chapter, describes its purpose, and introduces the subject matter.

“Part 1. Introduction”, introduces the contents of the book to the reader.

“Part 2. Application Design”, consists of four chapters:

� “Chapter 1. The Relationship of Data Base Design to Application Design”. This
chapter establishes a common base of knowledge by reviewing data base
concepts and terminology, data base structures, the importance of data base
design, and an application design procedure that provides an out line for the
rest of the book.

� “Chapter 2. Preliminary Analysis”. This chapter briefly reviews the process of
making a preliminary judgement on whether or not data bases should be used
in the application under consideration.

� “Chapter 3. Obtaining Application Requirements”. This chapter describes the
process of obtaining and documenting the objectives to be met by this
application, as defined by the end user's requirements.

� “Chapter 4. Application Analysis”. This chapter describes the process of
application analysis based on the documented application requirements. The
result is a decision on the number and type of programs necessary to
accomplish the goals of the application. The output will be analyzed application
data to be used in the next step of creating local views.

“Part 3. Data Base Design”, consists of three chapters:

� “Chapter 5. Creating Local Views From Requirements”. This chapter describes,
in detail, a process for creating local views for each of the programs that are to
be implemented for the application, using the requirements data previously
gathered and analyzed.

� “Chapter 6. Combining Local Views Into a System View”. This chapter
describes a method of combining the local views into an integrated structure;
taking into consideration data relationship, usage paths, and performance
considerations.

� “Chapter 7. Converting the System View to a Physical View”. This chapter
describes the DL/I data base organizations and access methods, and leads in

 Copyright IBM Corp. 1981, 2002 xi

choosing an access method, taking into account factors that influence the
choice.

“Part 4. Implementing the Application”, contains a single chapter:

� “Chapter 8. Implementing the Application”. This chapter gives suggestions for
generating an implementation plan for the application, and for carrying out the
plan.

“Appendix A. An Example of Application Design With Data Bases”. This appendix
is a walk-through of the design process described above, using the applications in
the sample programs shipped with DL/I.

“Appendix B. A Recommended Naming Convention”. This appendix describes a
recommended naming convention that provides naming consistency through the
entire installation.

A number of terms and phrases used in this book to describe DL/I and DL/I data
bases may be new to you or have new meanings in this context. In general, they
are explained the first time they are used. The most important terms are defined in
the glossary at the back of the book.

 Related Publications:
DL/I VSE Release Guide, SC33-6211-05

DL/I DOS/VS Release Guide, SC33-6211-04

DL/I DOS/VS Data Base Administration, SH24-5011

DL/I DOS/VS Resource Definition and Utilities, SH24-5021

DL/I DOS/VS Interactive Resource Definition and Utilities, SH24-5029.

DL/I DOS/VS Recovery/Restart Guide, SH24-5030.

Other DL/I publications:

DL/I DOS/VS General Information, GH20-1246

DL/I DOS/VS Library Guide and Master Index, GH24-5008

DL/I DOS/VS Application Programming: High Level Programming Interface,
SH24-5009

DL/I DOS/VS Application Programming: CALL and RQDLI Interface,
SH12-5411

DL/I DOS/VS Guide for New Users, SH24-5001

DL/I DOS/VS Messages and Codes, SH12-5414

DL/I DOS/VS Diagnostic Guide, SH24-5002

xii DL/I DOS/VS Application and Data Base Design

Summary of Changes

Summary of Changes
for SH24-5022-01
Version 1.7

This edition has been revised to include the titles of two new manuals that have
been added to the DL/I DOS/VS library for Version 1.7 of DL/I DOS/VS. Changes
also have been made to the titles of CICS/VS manuals listed in the Preface.
Miscellaneous additions, improvements, and corrections also have been made
throughout this manual.

 Copyright IBM Corp. 1981, 2002 xiii

xiv DL/I DOS/VS Application and Data Base Design

 Part 1. Introduction

Application design, as the term is used in this book, begins when the need for a
data processing application is recognized and ends with its successful
implementation. Application design includes the collection and analysis, of data
requirements, program design, and implementation.

It is difficult to implement a data base application successfully without application
design because of the wide ranging effect the use of data bases could have on the
whole business organization.

This book can be used as an aid in the design of any application that uses DL/I
data bases. It provides a method that has been used successfully. Following it as
a guide will help you to develop an efficient application that satisfies the needs of
your users.

 Copyright IBM Corp. 1981, 2002

DL/I DOS/VS Application and Data Base Design

 Part 2. Application Design

 Copyright IBM Corp. 1981, 2002

DL/I DOS/VS Application and Data Base Design

Chapter 1. The Relationship of Data Base Design to
Application Design

This chapter describes how the design of data bases is related to the design of
an application as a whole. The material is divided into four major sections:

1. Data Base Concepts and Terminology

2. Data Base Structures

3. Data Base Design

4. An Application Design Procedure.

The first section reviews data base concepts and terminology. The second
section compares three basic types of data base structure to DL/I data bases.
If you already have data base experience, you can skip both of these sections.
The third section describes the objectives and importance of good data base
design, and also mentions data base design tools that you can use to
supplement the design procedure described in this book. The final section
outlines an application design procedure that will help you integrate data base
design into the application design process. The rest of this book follows that
outline.

Data Base Concepts and Terminology
A data base is a way of organizing and controlling information so that it can be
used by any number of applications in an organization. It does this in ways that
minimize the amount of redundant data and provide independence between the
data and the way it is physically stored.

When working with a conventional file an application programmer must be fully
aware of the way in which it is organized, the format of the records it contains, and
of its physical characteristics (such as block size, record length, access method
used, and the location of the file). Application programs using this file must be
tailored to these formats and characteristics. If these characteristics are changed,
the programs may also have to be changed.

On the other hand, with DL/I data bases, an application programmer needs to be
aware of only those data elements needed by the particular application programs
for which he or she is responsible. The programmer does not need to know the
physical characteristics of the data base or where it is located. Most changes
made to the physical characteristics do not affect the programmer, and the
programs using the data base do not need to be altered.

The upper part of Figure 1-1 shows a physical record in a conventional file with the
data elements labeled NAME, ADDRESS, and PAYROLL. The same elements
(called segments in DL/I) might be viewed by DL/I as the data structure shown in
the lower portion of the figure. The way the segments are physically stored may
differ significantly from the way the data is viewed as a data structure.

 Copyright IBM Corp. 1981, 2002 1-1

Another example of a conventional physical record is shown in Figure 1-2. Again,
the lower part of the figure illustrates a data structure that DL/I might make
available. SKILL, NAME, EXPERIEN, and EDUCAT are the segments that make
up this structure (called a data base record in DL/I). Although not shown in
Figure 1-2, there may be multiple EXPERIEN and EDUCAT segments for each
name, many names for each skill, and many skills. Figure 1-3 is an expanded
example that illustrates this. Notice that, because many employees may have the
same skill, multiple NAME segments exist under the first SKILL segment. Similarly,
multiple EDUCAT segments exist under each NAME segment, and multiple
EXPERIEN segments exist under two of the NAME segments.

Figure 1-1. Physical Record - DL/I Segment Relationship (Example 1)

Figure 1-2. Physical Record - DL/I Segment Relationship (Example 2)

Before going on to describe ways in which data bases can be structured, we will
summarize the characteristics of DL/I data bases and introduce some terms used
with DL/I:

� Looking again at Figure 1-2, you can see that all of the segments shown in the
data structure are subordinate to the one segment at the top of the structure.
This top-most segment (the SKILL segment) is called a root segment.

� Segments at levels below the root segment are said to be dependent on those
above. In Figure 1-2, NAME is dependent on the root segment SKILL. SKILL
is the cprent of NAME. NAME is a child of SKILL. EXPERIEN and EDUCAT
are dependent children of NAME. NAME is the parent of both of them. There
can be many dependent child segments per parent.

1-2 DL/I DOS/VS Application and Data Base Design

� A data base record is the data structure made up of a root segment and all
segments dependent on it. There can be only one root segment type in a data
base record, and it can occur only once in that record. A data base record can
consist of many segment types; each, other than the root segment, having any
number of occurrences, as shown in Figure 1-3. A data base record can have
several levels in its structure. Figure 1-2 shows three levels: SKILL is at the
first level, NAME at the second, and EXPERIEN and EDUCAT at the third.

� A data base consists of any number of data base records, all having the same
root segment type.

� The root segment normally contains a key field. The value in the key field
controls the sequence of the data base record within the data base.

� Segments lower in level in the structure can also have key fields. These keys
can be used to sequence multiple occurrences of the same segment type
within a data base record.

� The segments in a DL/I data structure are always referenced by DL/I in the
hierarchical sequence of top-to-bottom, left-to-right, as indicated by the
numbers 10 through 27 in Figure 1-3.

Now we are ready to discuss the ways in which data bases can be represented as
conceptual structures.

Figure 1-3. Expanded Data Base Structure

Data Base Structures
There are many ways in which a data base can be structured. Three of them are
discussed in this section, as they apply to DL/I. They are called flat file,
hierarchical, and network structures. A DL/I data base could be organized in any of
the three ways, though the first would normally be used only as an intermediate

 Chapter 1. The Relationship of Data Base Design to Application Design 1-3

step in converting the conventional file organization of an existing application to a
DL/I implementation.

 Flat File
The method of organizing data that is most familiar is the list or table. Most of us
have used them all our lives. A common name for a stored list or table is “flat file.”
Figure 1-4 shows a portion of such a list, arranged in tabular form.

EMP-NUM EMP-NAME BIRTH DATE DEPT JOB DESCRIPTION

�1432 ADAMS, W. B. 9-2�-34 A1� SR. ENGINEER
49912 BATES, H. S. 5-1�-45 D33 TYPIST
33961 CHARLES, A. X. 12-15-56 C�2 SALESMAN

Figure 1-4. Flat File Structure

Each line in Figure 1-4 contains pertinent data about a particular employee and
can be thought of as a record about that employee. All of the information on a line
is related, and refers to that employee alone, but some of the items may not be
unique to the particular employee. The department number, for instance, will not
be unique to one person. It is possible that there may be more than one person
with the same name.

In order for the information about the employee to be meaningful, it must be
identified as being unique to that person. If two lines in the table contained exactly
the same information, we would not be able to distinguish one line from the other.
To make sure that we can tell one from the other, we have to include at least one
item of data about each person that is truly unique. In our table, this is the
employee number.

No two people working for a company have the same employee number. It
provides a way of identifying any employee from all others, and is called a key.
The person's birth date combined with his or her name might also be unique and
could be used as a key if desired. The key that we choose to use is called the
primary key. Any others may be used as secondary keys.

If we were to store the employee records on magnetic tape or other recording
medium, we would most likely store them in some kind of sequential order—one
record after another. The records in the table are shown in the alphabetical order
of the employee's last names. If stored, we would probably store them in the order
of the key—the employee number.

We could store this same information as a DL/I data base in any one of a number
of different ways, the simplest of which would be as a flat file.

 Hierarchical
You could, if you wished, structure many collections of data as flat files and define
them to DL/I as data bases. You could use DL/I to operate on these data bases.
But you would not be using DL/I as effectively as possible.

There is another familiar way of organizing data: the tree structure. An example is
the corporate organization chart. Figure 1-5 shows an example of a tree structure.

1-4 DL/I DOS/VS Application and Data Base Design

Figure 1-5. Tree Structure

A tree structure is also called a “hierarchical” structure. DL/I is designed to handle
hierarchical data base structures efficiently. Figure 1-5 is hierarchical in the sense
that each element except the topmost depends on the topmost or root element
(segment). The dependent elements are arranged in levels. In the figure, there
are three levels. Some of the elements are also dependent on other elements
above them. Any element immediately below another to which it is dependent is
called a child of that element. The element at the higher level is the cprent of all
those immediately below it in the same path. If you trace the paths between
blocks, you can see that each child can have only one parent on each level above
it. This child-to-one-parent relationship is significant.

 Network
The hierarchical structure just discussed can be used to represent the structure of
many data bases, but the fact that there can be only one parent for each
dependent element is sometimes a restriction that must be circumvented. For
instance, a family tree could not be expressed as a tree structure in the sense
being spoken of here, because it would require two parents at each level.

Many types of data have relationships within them that call for more than one
parent for some of the elements. For instance, in a bill-of-material application, a
particular product might contain part A. It might also contain sub-assemblies that
also contain part A. Both the product and the sub-assembly can be considered as
being parents of part A. A data base structure having this type of relationship
between elements is called a “network.”

DL/I is able to process data bases having this kind of structure. It relates elements
from different hierarchical data bases by using what are called logical relationships.
Figure 1-6 shows an example of this type of structure. Note that D, G, and I each
have two parents.

The next section describes the importance of good data base design in terms of
design objectives.

 Chapter 1. The Relationship of Data Base Design to Application Design 1-5

Figure 1-6. “Network” Structure

Data Base Design
This section lists objectives that every data base design should try to meet.
Benefits of good design and consequences of poor design are also listed.

 Objectives
You should clearly define and document your data base design objectives. These
objectives will differ from one application to another, but there are certain common
objectives that every data base design should have, such as:

� To efficiently meet the requirements of the application end users

� To provide for future change and growth with a minimal disruption

� To minimize the need for redundant data

� To make the application as independent as possible from data characteristics

� To prevent unauthorized access to the data

� To protect the accuracy of the data from hardware or software failure, and from
user errors.

1-6 DL/I DOS/VS Application and Data Base Design

Benefits of Good Design

Good data base design will not only meet end user's requirements, but will produce
other desirable effects such as:

� Management and end users support for future data base applications

� Freeing of resources for development of other data processing applications

� Minimizing the need for tuning the data base to get better performance

� Dependable data base recovery and restart following a malfunction.

Consequences of Poor Design
Poor data base design can have harmful effects that can limit the advantages of
using data bases. For example:

� A poorly designed data base may add to the cost of writing, debugging, and
maintaining the programs using it.

� It may also require more hardware because of more data redundancy or less
efficient use of storage.

� It may cause application programs to use more system time and resources.

� Changes and additions to the data base may require redesign.

Data Base Design Tools
The data base design section of this book provides you with a method of designing
the conceptual structures to be implemented as data bases. There are other tools
available that will supplement or replace that method. Among these are IBM
program products such as Data Base Design Aid, DB/DC Data Dictionary, Chained
File DL/I Bridge, and some industry application programs with data base design
aids that you may want to investigate.

The Data Base Design Aid and DB/DC Data Dictionary are described here briefly.
Sources of more detailed information are given at the end of each description.

 Chapter 1. The Relationship of Data Base Design to Application Design 1-7

Data Base Design Aid
This IBM program product is a collection of programs that performs a large part of
the conceptual data base design process. It uses your data requirements to
produce a conceptual model showing the minimum set of relationships required. It
identifies inconsistencies and omissions in the requirement specifications, lists
redundant data, and prints diagnostic and design analysis reports. When you're
satisfied with the conceptual model, you can use it to design your physical data
base.

Another benefit from using DBDA is that it standardizes gathering and recording of
requirements (see Chapter 3).

For more information on DBDA (Program Number 5746-XXQ), and how to use it,
see the Data Base Design Aid Designer's Guide.

DB/DC Data Dictionary
The DOS/VS DB/DC Data Dictionary is an IBM program product consisting of data
bases that store information about your installation's data processing resources,
and programs that operate on that data. These programs are used to store and
modify the data definitions, produce displays and reports of the stored data, and
produce definitions for the DL/I control block generation process.

The definitions stored in the dictionary data bases provide a consistent, controlled
source of information for use in all of the installation's applications, but are
especially valuable in the design of data bases. If you also use the Data Base
Design Aid, it can give you direct input to the dictionary.

The dictionary definitions can be much more than descriptions of data base
elements. You can include information about the use of data in the system, the
relationships among data elements, and the relationships between data elements
and business processes. These might include business entities such as personnel,
departments, data processing devices, and projects.

You can use the dictionary as a data base design aid:

� To get information that defines data elements

� To get information that defines relationships between data elements or other
business entities

� To get information about the number of times data elements are used

� To help eliminate duplicate data

� To control changes within data base systems.

For a description of the dictionary (Program Number 5746-XXC), see the DOS/VS
DB/DC Data Dictionary General Information Manual. For information on how to use
the dictionary, see the DOS/VS DB/DC Data Dictionary Applications Guide.

1-8 DL/I DOS/VS Application and Data Base Design

An Application Design Procedure
Data base design is of great importance in the successful implementation of a data
processing application that uses DL/I and DL/I data bases. However, good data
base design will not, by itself, ensure a successful implementation of the
application. The data base design process must be part of an organized
application design procedure that takes all aspects of the implementation into
consideration. This section outlines a procedure that does this. It is not the only
one that could be used, but it has been used successfully, and will give you a basis
for developing your own procedure. The rest of this book follows this outline.

 Preliminary Analysis
As you begin to consider a data processing application, you will need to make a
preliminary analysis to determine whether or not you should seriously consider
using data bases to implement it.

Obtaining Application Requirements
Application requirements are the results that the end users expect to receive from
implementation of the application. Your first major task is to obtain and organize
these requirements.

 Application Analysis
The next step is to analyze these requirements to determine what tasks will be
done by the application and to define programs to accomplish those tasks.

Creating Local Views From Requirements
For each of the programs that you defined that will use a data base, you must
develop a local view of the application requirements. A local view is a subset of all
of the data elements listed in the requirements that are used by the particular
program.

Combining Local Views Into a System View
The next step is to combine the local views generated for the individual programs
into an integrated structure that includes them all in an optimum arrangement—the
system view. This is the conceptual data base that will be implemented as a
physical data base.

Converting the System View to a Physical View
The conceptual system view is now converted into the form that will be physically
implemented, by taking into account such things as the choice of an access
method.

Implementing the Application
Next, you should develop an implementation plan. Once the plan is in place, the
final step is the actual implementation of the application, and its integration into the
operation of the data processing installation.

 Chapter 1. The Relationship of Data Base Design to Application Design 1-9

1-10 DL/I DOS/VS Application and Data Base Design

 Chapter 2. Preliminary Analysis

This chapter reviews the process of deciding whether or not data bases should
be used in your data processing installation and for your particular application.
There are two main topics:

 1. Initial Application

2. Adding an Application.

The first section reviews the process of determining whether or not a data
processing installation should install a data base system. The second section
shows you how to decide whether or not your application is a candidate for
implementation with data bases when your installation has DL/I already
installed.

How should you go about deciding whether or not a data processing application is
a candidate for using data bases? The final decision should be made after
application requirements have been collected, organized, and analyzed; however, a
preliminary analysis will show whether there are any factors that would make a
successful data base implementation unlikely or undesirable. It is assumed, in this
book, that DL/I has been installed in your installation—or is at least on order. This
chapter shows how the same considerations that should have influenced that
decision can influence your decision concerning your own data processing
application.

 Initial Application
Preliminary analysis determines whether two vital requirements can be met.
Without either of them, a data base installation is unlikely to succeed.

The first of these is the support of high-level management personnel in your
organization. It is needed because data base installation and use cut across many
areas of the organization and involve many aspects of the business.

The second is interest from the end users of data base applications. Without this
interest, the project is likely to be rejected by its users.

If both of these requirements can be met, the use of data bases is at least feasible
in your organization. At this point a team should be established to carry the
investigation further. After organizing themselves and defining their responsibilities,
the team should:

� Identify the objectives of the data base management system
� Examine and evaluate alternatives

 � Make recommendations.

Now, how can you use this procedure in making your own preliminary analysis for
the application you are responsible for? If yours is the first, or one of the first,
applications to be developed after DL/I has been added to the installation, the
process is virtually identical, on a smaller scale.

 Copyright IBM Corp. 1981, 2002 2-1

You must also have management support. In your case, the minimum should be
the management level of the involved user groups and the data processing
department. Without their support you will have a very difficult task. There will be
a need for management decisions and for use of management authority to ensure
support from all the areas, and to resolve the conflicts that may arise. If well
organized presentations do not result in this support early in the process, the
project should be stopped there until it can be obtained.

You must also have the interest and support of the end user groups that will be
using the application. With data base applications new to your installation, there
may be reluctance on the part of some end users to leave the existing, familiar
method of doing things. They may see changes in their jobs and their
responsibilities because of it. They may see loss of control over what they
presently control. Potential users should be shown how data bases can provide
better, faster service with more accurate and consistent results. They will be
interested in such things as the elimination of inconsistencies between reports and
the ability to obtain up-to-date information rapidly. Again, if this interest and
support is not there, the project should be delayed until it is.

If you don't feel that these two requirements can be met, you will have to enlist the
support of higher management, or recommend that the application be dropped or
implemented differently. Once you are satisfied that the requirements are fulfilled,
you can set up a team and begin the procedure described in the next chapter. The
team should include people from both the data processing and user groups.
Including user personnel assures their continued interest and support.

Adding an Application
If you are responsible for adding an application in an installation with DL/I already
installed, and with applications already operating, your preliminary analysis should
include a similar check on the two requirements listed above. If the previous
applications are successful, the support you need should be available. If the
previous applications have failed, you should understand why before continuing. If
management and user resistance seems too firmly imbedded, you should
recommend that the application be implemented another way, delayed, or
implemented in small steps.

2-2 DL/I DOS/VS Application and Data Base Design

Chapter 3. Collecting Application Requirements

This chapter describes the process of collecting the objectives to be met by
your application. It is divided into five major sections:

 1. Interviews

 2. Existing Sources

 3. Questionnaires

 4. Documentation

5. Reviewing the Requirements.

The first section discusses interviews as the main source of application
requirements. The second describes existing applications as secondary
sources. The third section mentions questionnaires as a supplement to
interviews. The next section describes the documentation of the requirement
data in a requirements listing that will serve several purposes, including
generation of a data dictionary. The last section discusses the review of the
documented requirements with the end users, as a check on their accuracy and
completeness.

Application requirements are the results expected from your application when it
becomes operational. Requirements must be collected from the end users.
Depending on the size and organization of your company, the application
requirements group may consist of one person, or it may be a team made up of a
number of members from several areas of interest—including representatives of the
end users. No matter how large the team is, there are several methods which can
be used to collect the requirements. This chapter describes them and how to
document the information obtained.

 Interviews

Organizing the Interviews
Interviews are the most important method of obtaining application requirements. If
the interviews are to be done by members of a team, each interview should be
conducted by a member of the data processing department and a member from a
user group (preferably not the user group being interviewed, to ensure objectivity).

 Copyright IBM Corp. 1981, 2002 3-1

Interviewing should begin with the manager of the user group or functional area.
This first interview provides an opportunity to learn the organizational structure of
the group and identifies the persons the manager feels should be interviewed at
lower levels, it helps to gain the cooperation of those interviewed at lower levels
since they know that their management is interested in their working with you, and
it provides an opportunity to learn the manager's view of the group's application
requirements. The interviews should then continue down through the structure,
learning the requirements as they are seen at each level. The person interviewed
at each level should identify the person or persons to be seen on the next lower
level.

Conducting the Interviews
It is important that the first step undertaken in each interview is the establishing of a
good relationship with the person being interviewed. Without this, the person is
much less likely to feel involved in the purpose of the interview, with the result that
important information may be missed or glossed over. The person being
interviewed may even be hostile to the idea of the application being implemented
with data bases involved; for fear that it may affect the job adversely, losing control
of data, or because previous experience with data processing applications has
been unsatisfactory. In any case, a hostile attitude may result in the omitting or
“forgetting” of important information. The person's attitude can be judged by
analyzing the answers given to questions about previous experience in using data
processing. If past experience seems to have been good, or if there has been no
past experience, the interviewee is likely to be interested and cooperative. If past
experience is described in terms of dissatisfaction, an effort must be made to ease
the fears that the present application will also be unsatisfactory. If this can't be
done, it would be a good idea to try to interview another person from this area at a
later date.

The attitude of the interviewers is also important. You should show interest in, and
enthusiasm for, the successful implementation of the application but you should not
seem overconfident or condescending. You should be interested in the person
being interviewed, the person's job and in the effect the implementation of the
application may have on that person's work. If it is true, you should assure that
person that the job will be made easier and that it will not be eliminated: two items
he may be concerned about.

3-2 DL/I DOS/VS Application and Data Base Design

If you show a genuine interest in the person's work, he or she will almost certainly
be willing to talk about it in detail, once started in the right direction. You can keep
the flow coming and on the right track with the proper choice and timing of
questions. Unfortunately, some people are so familiar with their jobs that they
forget how much of the day-to-day operational information they keep in their heads.
You will have to try to dig this out by asking for a step-by-step description of each
activity.

Have the person show you, and describe, any reports presently being used—either
manually generated or generated through data-processing. Discuss the items in
the reports to find which ones are truly needed and which do not seem to be
necessary at all. Find out if the person generates any data for existing data
processing applications. Also ask if he or she maintains any job related files for
personal use; either as data processing files, card files, or hand-written items.
These may be important indications of user requirements, and may be useful to
other users in the organization. Ask the person what information he or she would
like to have that is not presently available. If there are any of these, and the
application can include them, the person you are interviewing is more likely to
become an enthusiastic supporter of the implementation of the application; but don't
raise false hopes. Some items one person would like to have may be of no use to
any other user and might be too costly to implement.

Try to avoid using technical language that the person being interviewed may not
understand. It may confuse him or her and cause you to lose information or
rapport. This is an area where a non-data processing member of the interview
team can be of help. He or she can call a halt to jargon by asking for clarification
that the person being interviewed might be embarrassed to ask for. If the
interviewee uses jargon that you do not understand, be sure to get clarification
before going on.

 Existing Sources
A secondary source of application requirements is found in existing programs and
files. Each of these should be examined after the interviews have been completed.

You should literally “leave no stone unturned.” Look carefully for data items that are
used, but that were not mentioned in the interviews. These may be things that the
user never sees, but that are used in the generation of a report or as input to later
programs.

 Chapter 3. Collecting Application Requirements 3-3

The documentation of existing data processing systems should be examined for
user requirements that the users might not be aware of, even though they are
involved in producing reports or processing data. Constraints and other important
considerations may have been documented and later forgotten.

 Questionnaires
Questionnaires can be used as supplements to, but not as replacements for, the
interviews. These might be distributed to members of the user groups who were
not interviewed because of time and manpower constraints. They could ask for:

� A list of reports used

� A list of data items generated as input to files or programs

� Items the user does not presently see, but would like to see

� Any job related files of any type maintained by the user.

The next step is to document the information you have obtained.

 Documentation
Through the methods described above, you should be obtaining data on the
requirements of each of the user groups or functional areas affected by the
application. The types of data to be collected include:

� What the requirement is (a report listing certain information, for instance)

� How often the requirement must be met (once a week)

� How fast the system must respond (within eight hours)

� What actual data items are needed

� The format of the data items

� An estimate of the quantity of each data item

� Where the data will be stored (locally or on a remote system)

� Where the data will be processed (locally or remotely)

� Any special considerations or constraints.

3-4 DL/I DOS/VS Application and Data Base Design

If done thoroughly, you will accumulate a mass of data that will have to be
documented in some fashion to be usable. One way to do this is to number the
requirements and list each one on a separate page or pages. Assemble the pages
containing the requirements of each particular user group or functional area into a
numbered chapter. Assemble the chapters into a book with an index that shows
the group described by each chapter, and the requirements for each group. This
book is a summary of the entire application and provides a controlled, central
source of the data. If you keep it up-to-date, it will be a valuable tool for years to
come, in addition to being of vital importance as a source document for the rest of
the application design process.

Reviewing the Requirements
Now that you have collected and documented the requirements, you should review
them with the end users. This will help to ensure that the information is accurate
and complete. It will provide an opportunity to make sure that you and the end
users understood each other during the interview process.

You should do this review through repeat interviews, if possible. If not, copies of
the appropriate sections of the requirements listing should be given to the people
who were interviewed, with instructions on how you wish them to verify the
information. If the review turns up inaccuracies or problems, you should interview
the people directly involved to resolve the difficulty.

When the review has been completed, and both you and the end users are
satisfied that you have all the available information, you are ready to begin to use
your data. The next step is to perform an analysis of your application. The
requirements you have collected are input to that process, as described in the next
chapter.

 Chapter 3. Collecting Application Requirements 3-5

3-6 DL/I DOS/VS Application and Data Base Design

 Chapter 4. Application Analysis

This chapter shows you how to perform an application analysis, using the
documented application requirements. The analysis results produces number
and type of programs required by the application, and analyzed application data
to be used in the next step—creating local views. There are five main topics:

1. Defining the Tasks

2. Defining Programs to Accomplish the Tasks

3. Establishing Naming Conventions

4. Creating a Data Dictionary From the Requirements Listing

5. Analyzing Application Data.

The first section describes the break-down of the application into tasks. The
second section describes the definition of programs to accomplish those tasks.
The third section deals with the establishment of naming conventions to
minimize confusion and errors. The fourth section discusses the creation of a
data dictionary to maintain and control the application data, using the
information in the requirements listing. The last section deals with the analysis
of the application data, and its organization.

This chapter, and those following, uses as an example a company that provides
technical education to the employees of its customers. This education company
has a headquarters location and several local education centers in various cities.
Headquarters is responsible for developing all of the courses that the company
offers. Each of the education centers is responsible for scheduling classes and
enrolling students in them, at its own location.

The education company has a number of data processing applications—such as
payroll—implemented, but the one that will be used as an example is that
application directly involved with the courses the company offers. There may be
several offerings of a particular course at different education centers. Transistor
theory could be presented in New York, Chicago, and Boston. Each of these is a
separate class. A class is a single offering of a particular course on a specific date
at a particular education center. Circuit design in Chicago, starting on 1/23/84, for
instance.

Defining the Tasks
The application requirements have been collected for the course application
described above. Examination of the application requirements shows that there are
several individual data processing tasks, or business processes, needed to meet
those requirements. One of the requirements is for each education center to
produce, weekly, a current roster for each of its classes. The current roster is to
provide information about the class and the students enrolled in it. Headquarters
requires that the current rosters be in the format shown in the sample in
Figure 4-1.

 Copyright IBM Corp. 1981, 2002 4-1

 CHICAGO 1/�6/84

 TRANSISTOR THEORY 41837
 1� DAYS

INSTRUCTOR(S): BENSON, R.J. DATE: 1/16/84

STUDENT CUST LOCATION STATUS ABSENT GRADE

1.ADAMS, J.W. XYZ SOUTH BEND, IND CONF
2.BAKER, R.T. ACME BENTON HARBOR, MICH WAIT
3.DRAKE, R.A. XYZ SOUTH BEND, IND CANC

 �
 �
 �
 33.WILLIAMS, L.R. BEST CHICAGO, ILL CONF

CONFIRMED = 3�
WAIT LISTED = 1
CANCELED = 2

Figure 4-1. Current Roster

Another requirement is for a schedule of all the classes given each quarter. This is
generated and distributed monthly by headquarters. The schedule is sorted by
course code and printed in the format shown in Figure 4-2.

 COURSE SCHEDULE 1/�6/84

 COURSE: TRANSISTOR THEORY COURSE CODE: 41837
 LENGTH: 1� DAYS PRICE: $28�

 DATE LOCATION

 APRIL 16 BOSTON
 APRIL 23 CHICAGO
 �
 �
 �
 NOVEMBER 19 LOS ANGELES

Figure 4-2. Schedule of Classes

Another requirement is for each of the education centers to print a quarterly report
that lists the courses that each of its instructors is qualified to teach. The instructor
skills report is to be in the format shown in Figure 4-3.

4-2 DL/I DOS/VS Application and Data Base Design

INSTRUCTOR SKILLS REPORT 1/�6/84

 INSTRUCTOR COURSE CODE COURSE NAME

BENSON, R. J. 41837 TRANS THEORY
MORRIS, S. R. 41837 TRANS THEORY

 4185� CIRCUIT DESIGN
 41852 LOGIC THEORY
 �
 �
 �

REYNOLDS, P. W. 4184� MICRO PROG
 4185� CIRCUIT DESIGN

Figure 4-3. Instructor Skills Report

The final requirement is for a monthly report to be generated by headquarters that
shows the schedules for all of the instructors in the company, in the format shown
in Figure 4-4.

 INSTRUCTOR SCHEDULES 1/�6/84

INSTRUCTOR COURSE CODE ED CENTER DATE

BENSON, R. J. TRANS THEORY 41837 CHICAGO 1/16/84
 TRANS THEORY 41837 NEW YORK 3/�5/84
MORRIS, S. R. TRANS THEORY 41837 NEW YORK 1/�9/84

CIRCUIT DES 4185� CHICAGO 1/23/84
 LOGIC THEORY 41852 BOSTON 2/27/84
REYNOLDS, P. W. CIRCUIT DES 4185� LOS ANGELES 3/12/84

Figure 4-4. Instructor Schedules

You can use the application requirements listing that you generated for your
application to produce a similar break-down of the total application into tasks. They
may not, of course, all turn out to be reports. There are many other types of tasks
that may make up a data processing application. Once you have determined what
needs to be done, and have documented those tasks, you are ready for the next
step of defining the programs that are needed to accomplish them.

Defining Programs to Accomplish the Tasks
An application like that of the education company described above could be
implemented as one huge, complicated program. But it is apparent, once the tasks
have been defined, that such a program would be inefficient, costly to produce and
maintain, and wasteful of data processing resources. The various reports need to
be prepared at different times and places. For instance, one of the reports needs
to be prepared weekly, two monthly, and one quarterly. Also, two of the reports are
produced by headquarters and two are produced by the education centers.
Obviously, individual programs are needed. This section describes a method of
defining the programs to be used to accomplish the tasks of the application.

 Chapter 4. Application Analysis 4-3

Requirements and Considerations
There are many requirements and considerations that will influence your decision
on the number and type of programs needed to implement the application tasks
you have defined.

 Input Requirements
The requirements listing is the source of information about input requirements. For
instance, Figure 4-1 shows that the following data will be needed as input to
produce the current roster report:

� The location of the education center
� The name of the course
� The course number
� The length of the course
� The name(s) of the instructor(s)
� The starting date of the course
� The names of the students enrolled in the class
� The name of the company each student works for
� The location of the company
� The student's enrollment status
� The number of times the student has been absent
� The student's final grade.

The summary information in the lower left corner is generated by the program itself.
The date in the upper right corner is the date the program was run, and is
generated by a program function.

 Output Requirements
The output requirements are also determined from the requirements listing. If the
output is a report, note items that appear on the report that are not included in the
input items; such as the totals in Figure 4-1, or the date that the report is produced.
Note whether the output is a printed report or whether it is a display screen, a tape,
punched cards, or a disk file. Some tasks may require several outputs on different
mediums.

Frequency of Use
It is important to know how often the program will be used. This can influence the
type of program and how much attention should be given to its efficiency. A
program that is run once a year would probably be a batch program and would not
have to be optimized for fast execution. A program that is run every day should be
as efficient as possible. In the education company application the current roster
must be produced each week, the class schedule monthly, the instructor skills
report quarterly, and the instructor schedules monthly. Your application may have
a requirement for a real-time, online display or for a report that is produced once a
year for an annual summary.

Type of Access
What type of access does each task require: sequential or direct? If the data used
by the task is always, or usually, accessed sequentially depending on the value of
a particular data item (such as a name field sorted in alphabetical order), that data
will be stored and the program using it will be structured much differently than in
the case where individual data items are always accessed directly. For instance,
the education company course schedule makes use of information that is sorted in
order by course code. The program that produces this report might access the

4-4 DL/I DOS/VS Application and Data Base Design

data sequentially by course code. On the other hand, there might be a requirement
to be able to produce, on a display screen, the schedule of a particular instructor.
This program would need direct access to the information about the individual
instructors and their schedules.

Type of Processing
Also important in determining the number and type of programs needed is
information about the type of processing the task requires. Will the program read
the input data, but never add to or update it? Will the program only be involved
with updating the data? Must the program read the data, make decisions, and then
update the data depending on those decisions? Will the program be used to
initially load the data onto its storage medium, or will it add new data to that already
existing? Must the program delete data previously stored? Perhaps the task
requires that data be added in real-time, to keep it current. To do this, an online
program will be required. Perhaps data can be accumulated and added once a
month, with read-only access between updates. In this case, a batch program to
do the updating, and another program to do the reading would probably be needed.

Online vs Batch
You must also decide whether programs should be online or batch. Some of the
considerations have been mentioned above. In general, the following are some of
the reasons for implementing a task with a batch program:

� Low frequency of use
� Large amount of output
� Input data seldom changes
� Task has low priority
� Data does not have to be completely current
� Updating can be done in batches whenever convenient.

Some reasons for using an online program are:

� High frequency of use
� Small amount of output required at a given time
� Data changes frequently
� Data must be current
� Many end users must have access to data in real-time.

In the education company application, the instructor skills report could certainly
qualify for a batch program since it is produced quarterly and the data would
change infrequently. On the other hand, the program that updates the information
for the current roster would be a candidate for an online program since the student
data would change daily. An online program could also be used to extract
information on the schedule of individual instructors.

Distributed vs Local Processing
Where will the programs be run? If the company has more than one processor
installed, must the programs be capable of running on all of them? If the capability
for distributed data processing is available, which jobs should be run locally and
which remotely? If the education company has the facilities, the current rosters
could be run as local jobs at the individual education centers. The monthly course
schedule could be run at headquarters and distributed to the education centers.
Different types of data could be stored at different locations, but accessed from any
location.

 Chapter 4. Application Analysis 4-5

 Resource Requirements
Also to be considered are any changes in resource requirements that may occur
because of the application. If these requirements are too great to be met within
budget and time restrictions, changes may have to be made in the implementation
of the application—using different types of programs or different ways of storing
data. Some of these areas are mentioned below.

 Processor Capability

� Does the installed processor(s) on which the programs will be run have
sufficient capacity to give the turn-around time desired?

� Is sufficient processing capability available in every location where the program
is to be run?

 Real Storage

� Is there sufficient installed real storage to meet the requirements with adequate
performance?

 Data Communications

� If programs are to be run online, has CICS/VS been installed, or is it planned?

 Hardware

� Will additional disk storage be required?
� Because of response time requirements, will faster auxiliary storage devices be

required?
� Will the amount of printed output require additional or faster printers?
� Will additional unit record equipment be needed?
� Are more, or different, tape drives needed?
� Will additional terminals be needed?

Data Management Support Requirements

� Will the installed data management support handle the requirements of this
application?

� If data bases are to be used, is DL/I installed or planned?

 Personnel

� Will additional personnel be required in the programming or operational areas?
� Will existing personnel require additional training?
� Will fewer people be required in some area or areas because of the

implementation of the application?

Data Base vs Conventional File-processing
Should the application, or some part of it, be implemented with programs that
access data stored in data bases, rather than conventional files? It may be that the
application does not lend itself to implementation with data bases. In that case,
conventional file-processing programs will be used. If data bases are feasible and
desirable, and DL/I is installed or planned, then the programs are candidates for
data base processing.

4-6 DL/I DOS/VS Application and Data Base Design

Defining Application Programs to Meet the Requirements
Now that you have reviewed and considered all the requirements and
considerations that might affect the number and type of programs needed to
implement your application, you are ready to separate it into manageable pieces.
The education company application might be divided as follows:

� The course schedule report will be a batch program run monthly at
headquarters.

� The instructor schedules report will be a batch program run monthly at
headquarters. There will also be an online program that can produce the
schedule of one or more individual instructors.

� The current roster report will be an online program run weekly at the individual
education centers to produce printed output. It will also produce output at
terminals at any time when requested. Input, such as updating and additions,
can be made through a terminal at any time.

� The instructor skills report will be a batch program run by each of the education
centers quarterly.

� All of these programs make use of data bases.

� There will also be batch programs to initially load the data bases.

 Naming Conventions
It is important, as you proceed, to adhere to the naming conventions established in
your installation. If there are no naming conventions in place, you should have
them established. Any convention that is logical and consistent can be used. The
Standards Manual for DOS/VSE describes one that should be considered. It is
summarized in Appendix B. The example of application design with data bases in
Appendix A follows the naming convention used with the sample programs shipped
with DL/I. It is described there. Whatever naming convention is used in your
installation, it should cover all aspects of programming from job names to the
names of the smallest data items and should be strictly adhered to. Use of a data
dictionary will help to assure this compliance.

You will make use of the naming convention when you create your data dictionary.
The next section tells you how to do that.

 Chapter 4. Application Analysis 4-7

Creating a Data Dictionary From the Requirements Listing
At this point, you should begin to create a data dictionary, if you have not already
done so.

A data dictionary is a single, consistent, controlled source of information about the
data used in a data processing installation. The material stored in the data
dictionary can be of many different kinds, such as:

� Characteristics of each item of data including its name, size, position, and
content.

� Relationships between data items including hierarchical location, pointers, and
indexing.

� “Where used” information about what programs and transactions use the data.
� “How used” information, indicating how the data can be changed or accessed

and any access limitations.
� Any other information desired about the data or the programs that use it.

You can create your own data dictionary or use an existing data dictionary product.
IBM offers a program product, DOS/VS DB/DC Data Dictionary, program number
5746-XXC, that provides many features, such as: a data definition interface,
storage of data definitions, displays and reports of the defined data, and production
of definitions for the DL/I control block generation process.

You should start the data dictionary by entering in it the data from the requirements
listing. Every data item in the requirements listing should have an entry in the data
dictionary. Use the naming convention discussed above, so that the names will be
consistent and meaningful.

An example of a simple, user-created data dictionary is shown in Appendix A, in
the section “Creating a Data Dictionary From the Requirements Listing.”

The data dictionary is the final tool you need for the task of analyzing application
data.

Analyzing Application Data
You are now ready to begin an analysis of the data you have collected and
organized. Generate an individual view of the data for each of the programs you
have defined. All programs need to have their inputs and outputs defined, and their
layouts specified. Any special considerations or processes need to be
documented. The final, analyzed and documented, data will be used by the
application programmer as input when creating the program.

Programs that make use of data stored in data bases need additional steps in the
analysis process. These are described in the following section, “Data Base
Design.”

4-8 DL/I DOS/VS Application and Data Base Design

Part 3. Data Base Design

 Copyright IBM Corp. 1981, 2002

DL/I DOS/VS Application and Data Base Design

Chapter 5. Creating Local Views From Requirements

This chapter shows you how to create a local view of the application data for
each process in the application. There are two main sections:

1. The Three Step Process

2. Building the Local Views.

The first section describes a three step process that will generate an optimized
organization of the particular portion of the application data that applies to this
business process. The second section describes a procedure for building the
local views, which includes use of the three step process.

It is here that application design for an application making use of DL/I and DL/I data
bases diverges from the procedures of traditional applications. At this point, it is
necessary to perform the design of the conceptual data structure or structures that
will be implemented as a data base or bases for your application. This section of
the book covers the whole process in several steps. The first step is the creation
of local views of the application data for each of the business processes in the
application, and is the subject of this chapter.

Some of the terms you will need to know to understand this material are described
here.

� A local view is a description of the data that an individual business process
requires. It includes a list of the data elements, a conceptual data structure
that shows how you've grouped data elements by the entities that they
describe, and the relationships between each of the groups of data elements.

� A group of data elements that describes a particular entity is called a data
aggregate. For example, from the education company application described in
the last chapter, the data elements STUSEQ#, STUNAME, CUST, LOCTN,
STATUS, ABSENCE, and GRADE all apply to a student. This group of data
elements is called the student data aggregate. STUSEQ#, STUNAME, CUST,
LOCTN, STATUS, ABSENCE, and GRADE are the names of data elements.

Data elements have values as well. For the student data elements the values
are a particular student's sequence number, name, company, company
location, status in the class, absences, and grade. The values of the data
elements in the data aggregate are not necessarily unique; all the students in
the class are described in the same terms. The combined values, however, of
a data aggregate occurrence are unique. No two students can have the same
values in all of these data elements.

� As you group data elements into data aggregates, you will look at the data
elements that make up each group and choose a data element that uniquely
identifies that group. Sometimes you have to use more than one data element
to uniquely identify an aggregate. The data element or group of data elements
in the aggregate that uniquely identifies the aggregate is called a key. When
the key is made up of two or more data elements it is called a concatenated
key.

 Copyright IBM Corp. 1981, 2002 5-1

� Once you have grouped data elements by the entity they describe, you can
determine the relationships between the aggregates. These relationships are
called mappings. Based on the mappings, you can design a conceptual data
structure for the business process. This data structure is a way of analyzing
the relationships between the data elements required by the business process.
It is not a data base. It will later be used as input for designing a data base.

The Three Step Process
By following the three steps introduced in this section you will develop a conceptual
data structure for a business process's data. This is not the only method that can
be used, but it is one that is effective. After this conceptual structure has been
used later in the design of the physical data base, it may have to be modified to
better suit the overall requirements of the application, while still meeting the
requirements of the business process it describes.

The three steps to the conceptual data structure of a local view are:

1. Isolate repeating data elements that appear in a single occurrence of the data
aggregate.

2. Isolate duplicate values that appear in multiple occurrences of the data
aggregate.

3. Group data elements with their controlling keys.

1. Isolating Repeating Data Elements
The first step requires that you:

� Make a sample of a single occurrence of each data aggregate you are
concerned with.

� List every data element that you associate with each of those aggregates.

� Assign a value to each of the data elements.

� If a data element can have multiple values in a single occurrence of the data
aggregate, note it as a multiple.

� Choose the data element or elements in each aggregate that best qualify as
keys. Identify them with asterisks.

5-2 DL/I DOS/VS Application and Data Base Design

To introduce the process, we will use a college class roster as a simple example.
For purposes of this example, assume there are four data aggregates as shown
below. The list for a single occurrence would look like this:

The data elements that contain multiple values must be isolated from the other data
elements. Do this by showing each data aggregate in a box, and by putting the
boxes containing the repeating data elements below the other boxes, like this:

Data Element Value

*Course number (CCODE) 1001
 Course name (CNAME) English literature

*Semester (SEMES) 1983-4
 Classroom (CROOM) 332

*Student number (SCODE) multiple
 Student name (SNAME) multiple

*Texts (TEXTS) multiple

Be sure to keep data elements with their controlling keys.

2. Isolating Duplicate Values
The second step requires that you make a sample of multiple occurrences of the
data aggregate, with values assigned, as shown here:

Now examine the list for data elements that have the same value in both
occurrences. These data elements must be isolated. This is done by moving their
boxes to a higher level, as shown here:

Data Element Value Value

*CCODE 1001 1001
 CNAME Eng lit Eng lit

*SEMES 1983-4 1984-5
 CROOM 332 235

*SCODE multiple multiple
 SNAME multiple multiple

*TEXTS multiple multiple

 Chapter 5. Creating Local Views From Requirements 5-3

You should choose identifying keys for any data elements that are left without keys
because of this shifting.

3. Grouping Data Elements With Their Keys
In each of the first two steps, you should have kept each data element in the same
group as its identifying key. The third step is a check that you have done that.
Check each data aggregate to make sure that each element is with the aggregate
that contains its controlling key. If not, move the element into that aggregate.
Check to see that all data elements that are identified by a concatenated key are
identified by every part of that concatenated key. If any are not identified by the
whole key, move them and the portions of the key that they are identified by out
into a separate group. For instance, consider a data aggregate containing data
elements CCODE, SEMES, SCODE, SNAME, and TEXTS. Elements CCODE,
SEMES, and SCODE are a concatenated key. Element SNAME is identified by the
whole concatenated key. Element TEXTS is identified by CCODE, but not by
SEMES or SCODE. Element TEXTS should be moved into a box of its own as a
new data aggregate, with TEXTS as the key. Where this block should be placed in
the data structure depends on a re-evaluation of steps one and two. An example
of this condition is shown later in this chapter, in the section called “Using the
Three Step Process.”

You are now ready to implement the process we have described, and build a local
view of the data for each business process.

Building the Local Views
The three step process described above is a tool that will help you in the design of
a conceptual data structure, but this is only part of a procedure that you can use to
accomplish the total design of a local view. This section gives you details about
that procedure, and shows you how the three step process fits into the procedure.

 Analyzing Associations
The first thing you need to be concerned with in the design of a local view of a
business process is the analysis of associations between the data elements that
are listed in the requirements for that process. We will use, as an example, the
class roster report requirement of the education company described in Chapter 4.

Let's analyze the associations within the class roster data aggregate. Two things
are required:

� Knowledge about the data elements

� A definition of identifier.

5-4 DL/I DOS/VS Application and Data Base Design

The knowledge about the data elements comes from the interviews that were
conducted with the end users, and from the requirements listing and data
dictionary.

The definition of identifier is:

Within a data aggregate, a data element A is the identifier of another data
element B if every value of A never has more than one value of B
associated with it.

A identifies B. For a given value of A, there can be only one possible value of B.

These are the data elements needed to fill the class roster report requirements:

 EDCNTR
 DATE
 CRSNAME
 CRSCODE
 LENGTH
 INSTR
 STUSEQ#
 STUNAME
 CUST
 LOCTN
 STATUS
 ABSENCE
 GRADE

Applying the definition and our knowledge of the class data aggregate, we see that

� Assuming that all courses can be given at all education centers, then EDCNTR
is not identified by any other data element.

� Although many classes can start on the same date, the starting date (DATE) of
a particular class is identified by either CRSNAME or CRSCODE.

� The name of the course (CRSNAME) is identified by CRSCODE.

� The course code (CRSCODE) is identified by CRSNAME.

� The length of the course (LENGTH) is identified by either CRSCODE or
CRSNAME.

� The name(s) of the instructor(s) (INSTR) is related to a class, but to no single
data element.

� Though assigned by the education center, the student sequence number
(STUSEQ#) isn't identified by EDCNTR, or any other data element, except
STUNAME.

� The name of the student (STUNAME) is identified by the STUSEQ#.

� The name and location of the student's company (CUST and LOCTN) are
related to the student, but not identified by any data element in the aggregate.

� The three remaining data elements (STATUS, ABSENCE, and GRADE) are all
identified by either STUNAME or STUSEQ#.

A data element may be identified by a combination of other data elements, rather
than, or in addition to, a single one. For instance, STUSEQ# is identified by

 Chapter 5. Creating Local Views From Requirements 5-5

STUNAME, as we just saw; but, for a particular class, it is also identified by the
combination of EDCNTR, DATE, and either CRSCODE or CRSNAME. INSTR is
also identified by this same combination, since it identifies a particular class the
instructor(s) will teach.

 Identifying Keys
As was mentioned above, a key is a data element or group of data elements that
uniquely identifies a data aggregate. These can be called primary keys. We can
also have keys that are used, not for unique identification, but to identify certain
properties. These are called secondary keys. The two types are discussed
separately below. Either type of key can be made up of a combination of data
elements to form a concatenated key.

 Primary Keys
The primary key is the data element or combination of data elements within a data
aggregate that is used to uniquely identify an occurrence of that data aggregate.
Its value is the value that is searched for when a request is made for a particular
occurrence of the data aggregate. Without the use of a unique key it would be
impossible to be sure that you had located the individual occurrence you had
requested.

Any data element that identifies at least one other data element is a candidate for
primary key. Turning again to the class data aggregate we see that EDCNTR,
DATE, CRSNAME, CRSCODE, STUSEQ#, and STUNAME are all possible
candidates. Remember that data elements can also be identified by combinations
of other data elements. Thus, such combinations as EDCNTR, DATE, and
CRSNAME or CRSCODE are also candidates. The choice of the primary key from
among the candidates is largely a matter of common sense applied to knowledge of
the business process. For instance, both STUNAME and STUSEQ# are
candidates, but STUNAME would not be a good choice because it is possible for
more than one student to have the same name. STUSEQ# is designed to be a
unique number for each student, so it would be the better choice.

The primary keys of the class roster data aggregates are indicated here by
asterisks, with the individual aggregates shown separately:

*EDCNTR
*DATE
*CRSCODE
 CRSNAME
 LENGTH

*STUSEQ#
 STUNAME
 CUST
 LOCTN
 STATUS
 ABSENCE
 GRADE

*INSTR

 Secondary Keys
A secondary key is not a key that uniquely identifies an occurrence of a data
aggregate. Instead, it identifies those occurrences that have a property named by
the key. A secondary key can be used to locate those occurrences. For instance,
if there was a requirement for a listing of all courses of a particular length,
establishing LENGTH as a secondary key would make it possible to address those
occurrences directly, without searching through every occurrence of the data
aggregate. Further information about the use of secondary keys will be found in
the section “Identifying Alternate Processing Sequences (Secondary Indexing
Candidates),” later in this chapter.

5-6 DL/I DOS/VS Application and Data Base Design

Now you are ready to make use of the three step process described earlier in this
chapter.

Using the Three Step Process
The three step process is used to develop a conceptual data structure for your local
view. The current roster requirement of the education company continues to serve
as the example that is used to illustrate the process.

1. Isolating Repeating Data Elements
The first step is to look at a single occurrence of the data aggregate for data
elements that repeat. Table 5-1 shows an occurrence of the class aggregate.

The data elements that are listed as multiple are the data elements that repeat.
Separate these repeating data elements by moving them to a lower level, keeping
data elements with their controlling keys.

The repeating data elements for a single class are STUSEQ#, STUNAME, CUST,
LOCTN, STATUS, ABSENCE, and GRADE. INSTR is also a repeating data
element because some classes require two instructors, although this class requires
only one.

When you isolate repeating data elements, you arrive at the structure shown in
Figure 5-1.

The asterisks in Figure 5-1 signify the data elements that make up the key. For
the class aggregate, it takes three data elements to make a key that will uniquely
identify the course.

After you have shifted repeating data elements, make sure that each element is in
the same group as its key. INSTR is separated from the group of data elements
describing students because the information about instructors is unrelated to the
information about students. For instance, the student sequence number does not
control who the instructor is.

The key of the topmost aggregate is complete within itself. The complete key of an
aggregate at a lower level consists of its own key concatenated with the keys of the
aggregates associated with it at higher levels. This is because a key at a lower
level means little if you don't know the keys of the higher aggregates. For

Table 5-1. Single Occurrence of Class Aggregate

Data Element Class Aggregate Occurrence

EDCNTR
DATE
CRSNAME
CRSCODE
LENGTH
INSTR
STUSEQ#
STUNAME
CUST
LOCTN
STATUS
ABSENCE
GRADE

CHICAGO
1/16/84
TRANSISTOR THEORY
41837
10 DAYS
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple

 Chapter 5. Creating Local Views From Requirements 5-7

Figure 5-1. Current Roster Step 1

example, if you knew that a student's sequence number was 4, some of the
information you would be able to find about the student associated with that
number would be meaningless if it were not associated with a particular class. But,
when the key for the student aggregate is concatenated with that for the course
aggregate (EDCNTR, DATE, and CRSCODE), the student information is uniquely
identified.

Figure 5-1 shows these aggregates with their corresponding keys:

� Course aggregate: EDCNTR, DATE, CRSCODE

� Student aggregate: EDCNTR, DATE, CRSCODE, STUSEQ#

� Instructor aggregate: EDCNTR, DATE, CRSCODE, INSTR.

2. Isolating Duplicate Values
The second step is to consider multiple occurrences of the aggregate, looking for
duplicate values. To choose the occurrences correctly, you need to think about
what information is actually contained in the data aggregate. The class aggregate
describes one offering of a particular course. We call this a class. There can be
several classes for one course. Each one is a separate occurrence of the
aggregate. Another course would have separate occurrences for each of its
classes. If there are any duplicate values, they would be most likely to show up in
occurrences of the same course. If we had to look at the course information in a
slightly different way, our choice might be different. For instance, if we had an
application that required the listing of all the classes associated with each course,
we might have a data aggregate made up of CRSCODE, CRSNAME, DATE, and
EDCNTR. In this case, each occurrence of the aggregate would be a different
course, so we could choose any two occurrences to look at. In our case, we will
look at two occurrences of course number 41837. Table 5-2 shows these
occurrences. There are several duplicate values in the figure.

5-8 DL/I DOS/VS Application and Data Base Design

The data elements that are listed as multiple are the data elements that repeat. The
values in these elements will not be the same. The aggregate will always be
unique for a particular class.

CRSCODE, CRSNAME, and LENGTH are the data elements that can have
duplicate values. Student status and grade could have duplicate values, but they
should not be separated because they are not meaningful values by themselves.
These values would not be used to identify a particular student. This becomes
clear when you remember to keep data elements with their controlling keys.

When you have compared the multiple occurrences and identified the data
elements with duplicate values, shift those elements to a higher level. If you need
to, choose a key for aggregates that do not then have keys.

When you isolate duplicate values, you arrive at the structure shown in Figure 5-2.

Table 5-2. Multiple Occurrences of Class Aggregate

Data Element List Occurrence #1 Occurrence #2

EDCNTR
DATE
CRSNAME
CRSCODE
LENGTH
INSTR
STUSEQ#
STUNAME
CUST
LOCTN
STATUS
ABSENCE
GRADE

CHICAGO
1/16/84
TRANS THEORY
41837
10 DAYS
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple

NEW YORK
3/12/84
TRANS THEORY
41837
10 DAYS
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple

Figure 5-2. Current Roster Step 2

 Chapter 5. Creating Local Views From Requirements 5-9

3. Grouping Data Elements With Their Keys
The third step is often a check on the first two steps. They may already have done
what this step requires.

This step is to make sure that each data element is in the group that contains its
controlling key, and that the data element is identified by the full key. If the data
element is identified by only part of the key, or by a data element that is not a key,
separate the data element and place with it the full key that does identify it.

In this example, CUST and LOCTN are not identified by the STUSEQ#. They are
related to the student, but they aren't identified by it. They identify the company
and company address of the student.

CUST and LOCTN are not identified by the course, the education center, or the
date. They are separate from all of these things. Since a student is only
associated with one CUST and LOCTN, but a CUST and LOCTN can have many
students attending classes, the CUST and LOCTN aggregate should be separated
from the STUDENT aggregate. Figure 5-3 shows what the structure looks like
when you separate CUST and LOCTN.

Figure 5-3. Current Roster Step 3

Where the customer and location information will be physically located is part of
data base design. Data structuring should only be concerned with separating any
inconsistent data elements from the rest of the data elements.

Identifying Relationships (Mapping)
Once you have arranged the data aggregates in a conceptual data structure,
document the mappings between the aggregates. A mapping between two data
aggregates is the quantitative relationship between them. The reason for recording
mappings is that they reflect the relationships between aggregates in the data
structure that you've developed. A data base structure can be constructed later
that will satisfy all of the local views, based on the mappings. In determining
mappings, it's easier to refer to the data aggregates by their keys, rather than by
their collected data elements.

5-10 DL/I DOS/VS Application and Data Base Design

For our purposes, there are three possible relationships between any two data
aggregates:

 � One-to-one

For each data aggregate A, there is only one occurrence of data aggregate B.
For example, for each instructor, there would be only one salary data
aggregate if that had been included in our application. Mapping notation shows
this as:

Instructor <--------> Salary

 � One-to-many

For each data aggregate A, there are two or more occurrences of data
aggregate B. For example, for each class, there are multiple students.
Mapping notation shows this as:

Class <-------->> Student

 � Many-to-many

Data aggregate B has many A data aggregates associated with it and data
aggregate A has many B data aggregates associated with it.

In a hierarchical data structure, a parent can have one or more children, but
each child can be associated with only one parent. The many-to-many
association does not fit into a hierarchy, because each child can be associated
with more than one parent. Many-to-many relationships occur between data
aggregates in separate business processes. A many-to-many relationship
indicates a conflict in the way those business processes need to process those
data aggregates. This is covered in the section “Identifying Intersecting
Attributes (Logical Relationship Candidates),” immediately following.

The mappings for the current roster are:

� Course <-------->> Class

For each course, there may be several classes scheduled, but a class is
associated with only one course.

� Class <-------->> Student

A class has many students enrolled in it, but a student may be in only one
class offering of this course.

� Class <-------->> Instructor

A class may have more than one instructor, but an instructor only teaches one
class at a time.

� Customer/location <-------->> Student

A customer may have several students attending a particular class, but each
student is only associated with one customer and location.

Identifying Intersecting Attributes (Logical Relationship Candidates)
When a business process needs to associate data aggregates from different
structures, logical relationships can make that association possible.

Defining logical relationships lets you create a structure that doesn't exist as a
physical data base—but can be processed as though it does. When you relate
data aggregates in separate structures the data structure that's created from these

 Chapter 5. Creating Local Views From Requirements 5-11

logical relationships is called a logical structure. You do this by storing the data in
the path where it's accessed more frequently, and storing a pointer to the data in
the path through which it will be accessed less frequently.

If we draw the structure we have developed so far in a slightly different way, we
can identify two problem areas in it. In the re-structured view shown in
Figure 5-4, the STUDENT data aggregate is involved in relationships with two other
aggregates: CLASS and CUST. STUDENT can be identified by its association with
either CLASS (Class <--->> Student) or CUST (Customer <--->> Student).

Figure 5-4. Education Data Structures

Suppose the CUST aggregate is part of an existing data base; if so, you could
define a logical relationship between the CUST and STUDENT aggregates. You'd
then have the structures shown in Figure 5-5. The CUST/STUDENT structure
would be a logical structure.

Figure 5-5. Unidirectional Logical Relationship

This kind of logical relationship is called unidirectional, because the relationship is
“one-way.”

The other conflict you can see in Figure 5-4 is the one between COURSE and
INSTR. For one course there are several classes, and for one class there may be
several instructors,

COURSE<-------->>CLASS<-------->>INSTR

but each instructor is qualified to teach several courses.

INSTR<-------->>COURSE

You can resolve this conflict by using a bidirectional logical relationship. You could
store the INSTR aggregate in a separate structure, with a pointer to it stored in the
INSTR aggregate in the course structure; and you could store the COURSE
aggregate in the course structure, with a pointer to it in the COURSE aggregate in
the INSTR structure. This would give you the two structures shown in Figure 5-6.

5-12 DL/I DOS/VS Application and Data Base Design

Figure 5-6. Bidirectional Logical Relationships

Identifying Alternate Processing Sequences (Secondary Indexing
Candidates)

Secondary indexing makes it possible for a business process to identify a data
aggregate through the value of a data element other than the aggregate's primary
key. For example, suppose you are employed by the education company and need
to find out, from a terminal, whether a particular student is enrolled in a class. If
you aren't sure the student is enrolled in the class, you probably don't know the
student's sequence number; but the key for the STUDENT aggregate is STUSEQ#.
If you issue a request for an occurrence of the STUDENT aggregate, and identify
the occurrence you want by the student's name (STUNAME), instead of the
student's sequence number (STUSEQ#), DL/I might have to search through all
STUDENT aggregate occurrences to find that particular one. Assuming that the
STUDENT occurrences are stored in order of student sequence numbers, there's
no way for DL/I to know where the STUDENT occurrence you want is just by
having the STUNAME.

Using a secondary index in this example would be like making STUNAME the
primary key of the STUDENT aggregate for this business process. Other business
processes would still access this aggregate with STUSEQ# as the key.

To do this, you'd index the STUDENT aggregate on STUNAME in a secondary
index. When you do, and you indicate to DL/I that you're using a secondary index
for that aggregate, DL/I processes accesses of the aggregate as though the
indexed data element is the key.

Considerations That Might Alter a Local View
The local view that you create by using the procedure described in this chapter
represents the inherent structure of that view. It doesn't take into account any
considerations that might arise in the actual implementation of the business
process. Such considerations must be taken into account when the local view is
combined with other local views into a system view and then implemented as a
data base. The local view, as implemented, may differ from the one you have
created, in order to accommodate these considerations. In re-structuring your local
view for this purpose it may be necessary to create a structure that doesn't fit the
conditions of the three step process. This must be done with great care. Some of
the considerations you should be aware of are mentioned in the following sections.

 Chapter 5. Creating Local Views From Requirements 5-13

 Retrieval
Considerations involving the retrieval of data from the data base that might affect
the structuring of your local view include the following:

� For performance reasons, it might be necessary to include a data element in
more than one data aggregate.

� For security reasons, it might be necessary to move one or more data elements
into separate data aggregates.

� If certain data elements are always retrieved in a sequential order in relation to
each other, it may be expedient to change their position within the structure.

 Addition
Adding new data elements or data aggregates at any stage may require
re-structuring of your local view. You should try to anticipate this possibility and
design your views so that changes can be accommodated with the least amount of
re-structuring.

When you do add new data elements or data aggregates, you should repeat the
procedure described in this chapter to be sure that you don't inadvertently create
any of the problems it is designed to prevent.

 Replacement
It may be necessary to move data elements with information that requires frequent
replacement into positions in the structure that make them more accessible. This
will give better performance.

Be sure that data elements that require frequent replacement are not included in
more than one data aggregate. This eliminates making redundant replacements.

 Deletion
DL/I requires that when a data aggregate at a higher level in a hierarchical
structure is deleted, any aggregates associated with it at lower levels are also
deleted. To prevent loss of data, it may be necessary to modify your local view by
restructuring the position of certain data elements, or duplicating them in other
aggregates.

We will now re-enforce what we have been discussing by giving more examples of
the creation of local views.

Further Local View Examples
This section goes through three more examples of designing a local view, based on
the education company's application. These examples will not be discussed in
detail.

Schedule of Courses
Headquarters keeps a schedule of all courses given each quarter and distributes it
monthly. The schedule is sorted by course code and printed in the format shown in
Figure 5-7.

Note that the price of the course has been included.

5-14 DL/I DOS/VS Application and Data Base Design

 COURSE SCHEDULE 1/�6/84

 COURSE: TRANSISTOR THEORY COURSE CODE: 41837
 LENGTH: 1� DAYS PRICE: $28�

 DATE LOCATION

 APRIL 16 BOSTON
 APRIL 23 CHICAGO
 �
 �
 �
 NOVEMBER 19 LOS ANGELES

Figure 5-7. Schedule of Classes

Table 5-3 lists the data elements and two occurrences of the data aggregate.

Using one occurrence of the data aggregate, we can isolate repeating data
elements as shown in Figure 5-8.

Table 5-3. Class Schedule Data Elements

Data Elements Occurrence 1 Occurrence 2

CRSNAME
CRSCODE
LENGTH
PRICE
DATE
EDCNTR

TRANS THEORY
41837
10 DAYS
$280
multiple
multiple

MICRO PROG
41840
5 DAYS
$150
multiple
multiple

Figure 5-8. Class Schedule Conceptual Structure

Next, looking at two occurrences of the data aggregate we see that there are no
duplicate values, so the second step (isolating duplicate values) is not necessary.

All data elements are already grouped with their controlling keys, so the third step
is not needed either.

Now that we've developed a conceptual data structure we can determine the
mappings for the data aggregate.

 Chapter 5. Creating Local Views From Requirements 5-15

The mapping for this local view is:

Course <-------->> Class

Instructor Skills Report
Each of the education centers prints a report showing the courses that each of its
instructors is qualified to teach. The report is in the format shown in Figure 5-9.

INSTRUCTOR SKILLS REPORT 1/�6/84

 INSTRUCTOR COURSE CODE COURSE NAME

BENSON, R. J. 41837 TRANS THEORY
MORRIS, S. R. 41837 TRANS THEORY

 4185� CIRCUIT DESIGN
 41852 LOGIC THEORY
 �
 �
 �

REYNOLDS, P. W. 4184� MICRO PROG
 4185� CIRCUIT DESIGN

Figure 5-9. Instructor Skills Report

Table 5-4 shows the data elements and two occurrences of the data aggregate.

The result of isolating repeating data elements in one occurrence of the data
aggregate is shown in Figure 5-10.

Table 5-4. Instructor Skills Data Elements

Data Elements Occurrence 1 Occurrence 2

INSTR
CRSCODE
CRSNAME

BENSON, R. J.
multiple
multiple

MORRIS, S. R.
multiple
multiple

Figure 5-10. Instructor Skills Conceptual Structure

There are no duplicate values in two occurrences of the data aggregate, and all
data elements are with their controlling keys. Steps two and three are not
necessary.

The mapping for this local view is:

Instructor <-------->> Course

5-16 DL/I DOS/VS Application and Data Base Design

 Instructor Schedules
Headquarters produces a report showing the schedules for all the instructors.
Figure 5-11 illustrates its format.

 INSTRUCTOR SCHEDULES 1/�6/84

INSTRUCTOR COURSE CODE ED CENTER DATE

BENSON, R. J. TRANS THEORY 41837 CHICAGO 1/16/84

 TRANS THEORY 41837 NEW YORK 3/�5/84
MORRIS, S. R. TRANS THEORY 41837 NEW YORK 1/�9/84

CIRCUIT DES 4185� CHICAGO 1/23/84
 LOGIC THEORY 41852 BOSTON 2/27/84
REYNOLDS, P. W. CIRCUIT DES 4185� LOS ANGELES 3/12/84

Figure 5-11. Instructor Schedules

Table 5-5 lists the data elements and two occurrences of the data aggregate.

We can isolate repeating data elements in one occurrence of the data aggregate as
shown in Figure 5-12.

Table 5-5. Instructor Schedules Data Elements

Data Elements Occurrence 1 Occurrence 2

INSTR
CRSNAME
CRSCODE
EDCNTR
DATE

BENSON, R. J.
multiple
multiple
multiple
multiple

MORRIS, S. R.
multiple
multiple
multiple
multiple

Figure 5-12. Instructor Schedules Conceptual Structure, Step 1

In this example, CRSNAME and CRSCODE can be duplicated for one instructor or
for many instructors, for example, 41837 for Benson and 41850 for Morris and
Reynolds, so the second step is necessary to isolate duplicate values as shown in
Figure 5-13.

All data elements are grouped with their controlling keys in the current data
structure, so the third step is not needed.

 Chapter 5. Creating Local Views From Requirements 5-17

The mappings for this local view are:

Instructor <-------->> Course
Course <-------->> Class

Figure 5-13. Instructor Schedules Conceptual Structure, Step 2

Combining the requirements of the four examples presented in this chapter and
designing a structure for a system view of the application based on these
requirements is covered in the next chapter.

5-18 DL/I DOS/VS Application and Data Base Design

Chapter 6. Combining Local Views Into a System View

This chapter shows you how to combine the local views of the business
processes making up the application into an integrated structure called a
system view. There are two main sections:

1. Generating a System View

2. Defining Implementation Requirements.

The first section suggests a procedure for generating an optimum system view
from the local views. The second section shows how to define the
requirements that must be considered in the implementation of the system view
as an actual data base.

Having generated and documented a local view for each of the business processes
in your application, you must combine these conceptual structures into what is
called a system view. A system view is a conceptual data structure that integrates
the individual structures of the local views into an optimum arrangement for
physical implementation as a data base. The system view is used to define the
structure of the physical data base or bases required by the application, and the
ways in which they inter-relate. You will also generate a list of requirements that
will influence the decisions that must be made in the physical design.

Generating a System View
This part of the chapter describes a procedure for combining the local views into an
optimum system view structure. However, there are several operations involved in
the procedure that you should become familiar with first. These operations are
covered in the following sections.

The procedure for generating the system view involves drawing the individual data
elements of the local views as separate boxes, with the relationships between them
shown as arrows. The direction and number of the arrowheads define the
relationships. This is an extension of the method of showing the mapping between
data aggregates described in Chapter 5.

A single arrowhead

indicates a relationship in which a given value of A can have only one value of B
associated with it. If you know a value of A, you also know the corresponding
value of B. A identifies B. Doubling the arrowheads

indicates a relationship in which a given value of A can have zero, one, or many
values of B associated with it. If you know a value of A, you do not know that one
of the values of B corresponds to it. A does not identify B. By showing the
relationship in each direction, we can represent one-to-one, one-to-many,
many-to-one, and many-to-many relationships.

 Copyright IBM Corp. 1981, 2002 6-1

 Eliminating Redundancies
At each stage of combining the local view drawings, you should look for and
eliminate redundancies between data elements with single-arrow relationships. For
instance, if you see a configuration like this:

since A identifies B and B identifies C, this implies that A identifies C, and the
relationship between A and C is redundant. It can be removed, like this:

However, you must be careful that any relationships you remove are truly
redundant. There are situations where seeming redundancy is actually a different
problem. For instance, C might actually be two different data elements that had
erroneously been assigned the same name.

 Identifying Keys
As you combine the local views, you must identify, and pay close attention to, the
keys in the system view. They and the relationships between them are very
important in generating a system view that is an optimum view and will continue to
be such as the data base changes and grows in the future.

 Primary Keys
A primary key is a data element that uniquely identifies one or more other data
elements. Any data element in your system view with one or more single arrows
leaving it is a candidate for primary key. If there is more than one candidate, you
will have to choose one as the primary key. For convenience in later translating
your drawing into a hierarchical structure, draw keys of parent data aggregates
above the keys of dependent data aggregates. This will ensure that single arrows
between keys point up as often as possible. It will also ensure that the uppermost
key in the final drawing is the root key. A root key is a primary key with no single
arrows leaving it, going to another primary key. Make the primary keys and the
single arrow links between keys as obvious as possible—possibly by using color.

 Secondary Keys
A secondary key does not uniquely identify another data element. It identifies
occurrences of data elements having a certain property. Data elements that are
potential secondary keys are easy to identify in your system view. They will be
boxes with double arrows leaving them.

6-2 DL/I DOS/VS Application and Data Base Design

 Concatenated Keys
Concatenated keys are keys that are made up of two or more separate data
elements. When you come across them in drawing your system view, show all of
the data elements making up the key within one box. Then put each of the
component parts in separate boxes with single-arrow links from the box containing
the whole key, like this:

This ensures that each data element is identified by only one key data element. Be
sure that every data element associated with a key is identified by the whole key.

Removing Undesirable Associations
As you build your system view, check at each stage for undesirable associations
between data elements and keys. This is equivalent to the third step of the three
step process for generating local views (see Chapter 5). It consists of making sure
that every data element is grouped with its key and that it is identified by the full
key. If a data element is identified by only part of the key, or by a data element
that is not a key, the data element must be moved to a separate group and the key
that does identify it added there.

Mapping Between Keys
In Chapter 5 we introduced the concept of mapping to show the quantitative
relationships between data aggregates. Now, in the process of combining local
views into a system view, we need to consider the mappings between individual
data elements. The concept is the same and the mapping notation is similar.
However, there is one special case that you should take care to recognize and
avoid: there should not be any many-to-many relationships between data elements
that are primary keys. You should try to design your system view so that such
relationships won't appear in the future as the data base changes and grows.
Many-to-many mappings will be avoided by using this procedure: when a mapping
appears between keys in one direction, add the equivalent relationship in the
opposite direction.

If this creates a many-to-many mapping as it does here, and there is any possibility
that the added relationship might be used, introduce a concatenated key into the
system view to replace it, like this:

It is possible that data elements making up concatenated keys will not remain as
keys themselves in the final system view. In this case, they and the links to them
can be eliminated at that time.

 Chapter 6. Combining Local Views Into a System View 6-3

 Intersection Data
Occasionally you will find situations where data is related to the association
between other data elements. For example, a company might buy parts from
several other companies. Each vendor might charge a different price for the parts
it supplies. If you have a data element called PRICE, that data element isn't
associated with PART only or VENDOR only. You need both PART and VENDOR
to determine PRICE. PRICE is data that only has meaning in relation to the
association between PART and VENDOR. This type of information is called
intersection data. You can handle intersection data the same way you handle
many-to-many mapping between keys: create a new data aggregate containing the
intersection data, with the data elements it is associated with as its concatenated
key. Our example would look like this:

 Intersecting Attributes
Intersecting attributes may appear as you develop the system view. They are
non-key data elements with arrows pointing to them from more than one key. They
are candidates for logical relationships as described in the last chapter.

 Isolated Attributes
Isolated attributes are data elements not identified by any primary key. They will
appear as boxes with double-arrow links, but with no single arrows entering or
leaving. These may appear as a result of misinterpreting user's requirements, so
they should be evaluated carefully. If they are legitimate, they can be made a
repeating data element in a variable length aggregate, or can be made a solitary
key—a single data element aggregate.

Local Views as Input
The local views that you created for the business processes in your application are
the input to the procedure for generating a system view. In the education company
example of Chapter 5, there are four local views to be combined. Each of these is
summarized for reference.

6-4 DL/I DOS/VS Application and Data Base Design

Local View 1. Current Roster
Current Roster Data Elements:

Current Roster Conceptual Data Structure:

Current Roster Mappings:

Course <-------->> Class
Class <-------->> Student
Class <-------->> Instructor
Customer/location <-------->> Student

CRSNAME Course name
CRSCODE Course code
LENGTH Length of the course
EDCNTR Education center giving the class
DATE Date when the class starts
CUST Customer that employs the student
LOCTN Customer's location
INSTR Instructors for the class
STUSEQ# Student's sequence number
STUNAME Student's name
STATUS Student's enrollment status
ABSENCE Student's absences
GRADE Student's final course grade

Local View 2. Schedule of Classes
Schedule of Classes Data Elements:

CRSCODE Course code
CRSNAME Course name
LENGTH Length of the course
PRICE Charge for the course
EDCNTR Education center giving the class
DATE Date when the class starts

 Chapter 6. Combining Local Views Into a System View 6-5

Schedule of Classes Conceptual Data Structure:

Schedule of Classes Mappings:

Course <-------->> Class

Local View 3. Instructor Skills Report
Instructor Skills Report Data Elements:

Instructor Skills Report Conceptual Data Structure:

Instructor Skills Report Mappings:

Instructor <-------->> Course

INSTR Instructor
CRSCODE Course code
CRSNAME Course name

Local View 4. Instructor Schedules
Instructor Schedules Data Elements:

INSTR Instructor
CRSNAME Course name
CRSCODE Course code
EDCNTR Education center giving the class
DATE Date when the class starts

6-6 DL/I DOS/VS Application and Data Base Design

Instructor Schedules Conceptual Data Structure:

Instructor Schedules Mappings:

Instructor <-------->> Course
Course <-------->> Class

Combining Local Views

 Procedure
Now you are ready to take the local views and combine them, using the following
procedure:

1. Draw the first local view, using boxes and connecting arrows, as described
above. Draw concatenated keys as directed in the section on concatenated
keys, and make sure that all single-arrow links from them are to data elements
that are identified by the whole key. Draw only the relationships that are
required for this local view.

2. Distinguish the primary keys in some way.

3. Look at the relationships between primary keys and add the inverse
relationships where they are not already present. If this creates many-to-many
relationships between keys, decide whether the inverse relationship would be
used under any circumstances. If it would, create a new concatenated key
made up of the keys that are of concern. This concatenated key should be
drawn in the same way as any other concatenated key.

4. Look for redundant relationships and eliminate those that are truly redundant.

5. Merge another local view, handling it the same as the first, then repeat the
previous steps until all the local views have been merged into your drawing.

6. Locate the root keys (primary keys with no single arrows to other keys).
Redraw the system view with the root key on top, and dependent keys in
hierarchical order at lower levels. This should result in most single-arrow links
between keys pointing up. Mark the links between primary keys so that they
are obvious.

7. Look for isolated attributes and handle as described above in the section
“Isolated Attributes.”

8. Identify intersecting attributes (logical relationship candidates).

9. Redraw the diagram with each primary key and the data elements it identifies
as one large box.

 Chapter 6. Combining Local Views Into a System View 6-7

10. Identify the secondary keys. These are data elements with one or more
double-arrow links leaving them. Show these secondary key links on your final
drawing.

11. Add performance considerations by doing the following:

a. Identify all paths that involve high usage, need fast response time, or are
used in online programs.

b. Estimate the number of times per month each path will be used. Total the
number of times each individual relationship will be used (both directions if
indicated).

c. Estimate the size of each data aggregate as it appears in the final drawing.

d. Estimate the number of occurrences for each relationship indicated by
double arrowheads (one-to-many).

Evaluating this information may make restructuring of your system view
necessary.

12. When you are satisfied with the system view, check to see that each local view
is still handled correctly.

Now, we will illustrate the use of the procedure in an example.

 Example
The process is illustrated by combining the four local views of the education
company example. In the figures on the fold-out sheet at the back of the book,
asterisks and green color indicate primary keys. Relationships between primary
keys are indicated by solid green lines. Other relationships are shown as dotted
blue lines. Changes resulting from the combining of a local view with the preceding
diagram are shown in red.

Figure 6-1 on the fold-out sheet shows the current roster local view drawn as
described in step 1 above.

Figure 6-2 shows the result of merging local views 1 and 2 (schedule of classes).
The only change necessary is the addition of the PRICE data element to the course
aggregate.

Figure 6-3 shows the result of merging local view 3 (instructor skills) with the
previous drawing. A path from the instructor aggregate to the course aggregate
has been added.

There is no change when local view 4 (instructor schedules) is added. This view
makes use of existing paths.

CRSCODE is the root key since there are no single arrows from it to other primary
keys. It is not necessary to re-draw the diagram because the root is already on
top and most of the single arrows between keys point up. There are no isolated
attributes. There are no non-key intersecting attributes. Figure 6-4 shows the final
diagram re-drawn with each primary key and the data elements it identifies as one
large box. The double arrow link from INSTR to CRSCODE indicates that INSTR is
a secondary index candidate as described in Chapter 5. The two logical
relationship candidates are those discussed in Chapter 5. They are identified by
the separate arrows leading to different keys. Figure 6-5 shows how Figure 6-4
can be re-drawn as a DL/I hierarchical structure in a form that can be used later in

6-8 DL/I DOS/VS Application and Data Base Design

the task of physical implementation, described in the next chapter. But we have
one more thing to do before we go to that.

Defining Implementation Requirements
Now that you have combined the local views into a system view, you are almost
ready to pass the results of your work to data base administration. Data base
administration (DBA) is a function unique to data processing installations using a
data base management system such as DL/I. All tasks involved in the
implementation, administration, and control of DL/I and DL/I data bases are DBA
functions.

There is one more thing to do before data base administration takes over. In
addition to access to the requirements listing, the data dictionary, and your system
view, DBA will need one more item from you. This is a list of implementation
requirements to be considered in making the decisions for implementing the system
view as a data base. The following sections describe the major areas to cover.

 Performance Considerations
You should provide DBA with your best estimate of how many occurrences of each
data element will be stored, and how often each element will be accessed. This
will guide DBA in locating the high usage paths. It may be possible to design the
data base so that the performance in accessing these paths is maximized. Also,
an important performance consideration is the relative frequency of retrieving,
updating, inserting, and deleting the data elements. Online query programs will
need to be able to access certain data very rapidly. Special consideration should
be given to situations where certain information has a great deal of update or
change activity.

Data Access Requirements
DBA will want to know how each program will access root segments and how it will
access segments within data base records. The choice of an access method for
the data base is strongly influenced by the type of access (sequential or direct)
used for each of these types of segment.

 Structural Considerations
Be sure that DBA is aware of conditions in the system view that require the use of
logical relationships or secondary indexing. Plans to use variable length segments
or a segment edit/compression routine (see Chapter 7) must be made known. Any
of these will force DBA to make use of one of the direct access data base
organizations. Call attention to any other structural details in the system view that
were included for a specific, non-obvious purpose.

 Security Requirements
If there are any data elements that must be made secure from unauthorized
access, DBA must be made aware of these. Either data elements (fields) or data
aggregates (segments) can be made available to only those programs that are
authorized to access them.

Processing authority can also be controlled. DBA should be made aware of which
programs are to be allowed to process data by retrieving, inserting, updating, and

 Chapter 6. Combining Local Views Into a System View 6-9

deleting; and which are to be allowed to process data by only one or a combination
of these functions.

DBA can also protect data from being accessed by non-DL/I programs through
encryption of the data.

 Recovery Requirements
There may be special requirements regarding the planning and scheduling of data
base back-up, reorganization, and recovery that should be discussed with DBA at
this point. Important data that has a great deal of update activity is an example of
the type that requires special consideration in this area.

6-10 DL/I DOS/VS Application and Data Base Design

Chapter 7. Converting the System View to a Physical View

This chapter introduces you to the considerations and decisions involved in the
physical implementation of the system view of the application. It is a link
between application design and data base administration. There are two main
sections:

1. DL/I Data Base Organization and Access Methods

2. Factors in the Choice of an Access Method.

The first section describes the sequential and direct data base organizations
and the DL/I access methods associated with each of them. The second
section describes the factors that influence the selection of one of the access
methods for the physical implementation of the data base.

At this point you should have completed the design of the structure or structures
that make up the system view of the application. This is a conceptual structure and
represents the inherent properties of the data with little consideration for the way in
which it will be physically implemented as a data base. From this point on, the
physical design of the data base will be handled as a data base administration task.
Your system view and the implementation requirements that were discussed in the
last chapter will be used as input to that task.

This chapter provides the link between application design and data base
administration. The information in this chapter briefly describes the decisions that
must be made in performing the physical design, and the requirements and
considerations that influence those decisions. This information will help you to
understand how the design of the system view may influence the decisions, and
how the decisions may make it necessary for you to modify your system view. For
instance, if your system view involves two or more inter-related structures that
require the use of logical relationships for physical implementation, DBA has no
choice but to use a direct access method. On the other hand, if DBA chooses to
use a sequential access method for implementing your system view, it may be
necessary, for performance reasons, for you to change the position of certain data
aggregates in your system view.

Because this is the point at which DBA becomes directly involved in the physical
implementation of the structure you have designed, we will use specific DL/I terms
from now on, rather than the more generic terms we have used in connection with
your tasks. In DL/I:

� A data aggregate is called a segment.

� A data element is called a field.

� A physical implementation of a logical or conceptual structure is called a data
base.

 Copyright IBM Corp. 1981, 2002 7-1

DL/I Data Base Organization and Access Methods
The major decisions that must be made in the physical design of a data base are
the selection of the DL/I data base organization and corresponding access method
to be used in implementing the design. There are two DL/I data base organizations
and four basic types of DL/I access methods, plus two access methods that are
used in special cases. Data base administration makes these choices based on
the way in which the majority of programs that use the data base will access the
data.

In making these decisions, DBA will need information from you that will include
answers to questions like the following:

� How will each program access root segments?

– Direct access of individual segments

– Sequential access of segments

 – Both.

� If both, in what proportion?

� How will each program access the segments within each data base record?

– Direct access of individual segments

– Sequential access of segments

 – Both.

� If both, in what proportion?

Note: The segments within the data base record are the dependents of the root
segment.

� Will the program be capable of updating the data base, rather than simply
retrieving data?

� If yes, in which of the following ways:

– By adding new data base records?

– By deleting data base records?

– By adding new segments to existing data base records?

– By deleting segments from existing data base records?

– By modifying existing segments?

� What is the estimated frequency and amount of change in each of the
applicable cases in the list above?

It's important to note the distinction between accessing a data base record and
accessing segments within the record. A program might access data base records
sequentially, but once within a record, the program might access the segments
directly; or vice versa. These are two different requirements, and can influence the
choice of access method. The same distinction applies to updating a data base
record as opposed to updating a segment within the data base record.

7-2 DL/I DOS/VS Application and Data Base Design

Sequential Organization (HS)
The sequential organization is exactly what the name implies: the segments in the
data base are stored in hierarchical sequence, one after another. There is no need
for pointers in a sequential data base.

DL/I provides two sequential access methods, each of which also has a variation
having certain restrictions. The major difference between the two methods is that
one makes use of an index while the other doesn't:

� The Hierarchical Sequential Access Method, HSAM, can only process
segments (both root and dependent) sequentially.

� The Hierarchical Indexed Sequential Access Method, HISAM, processes
dependent segments sequentially but has an index to access root segments
(records) directly.

Some of the advantages of the sequential organization and access methods are:

� Fast sequential processing

� Direct processing of data base records with HISAM

� Low DL/I storage overhead because the sequential methods relate segments
by adjacency rather than with pointers

� HSAM provides support for data bases on tape.

Some disadvantages of the sequential organization and access methods are:

� Slower access to the rightmost segments in the hierarchy, because HSAM and
HISAM have to read through all of the other segments to reach them.

� HISAM requires frequent reorganization of the data base to reclaim space
formerly occupied by deleted segments, and to keep the logical records of a
data base record physically adjacent.

� HSAM data bases can't be updated; the old data base has to be read and the
changes interleaved as a new data base is created.

HSAM Access Method
HSAM is a hierarchical access method that can only handle sequential processing.
You can retrieve data from HSAM data bases, but you can't update the data.
Updating can only be done by interleaving modifications as a new data base is
created from the old.

HSAM is a useful access method when you are:

� Storing historical data

� Using the data base to collect data or statistics that will not need to be updated

� Always processing the data sequentially.

HSAM stores data base records in the sequence in which you submit them. They
and the segments they contain can only be processed sequentially—in the order in
which they were loaded. HSAM stores dependent segments in hierarchical
sequence.

HSAM data bases are very basic data bases. Since the data is stored in
hierarchical sequence, there is no need for pointers or indexes.

 Chapter 7. Converting the System View to a Physical View 7-3

Simple HSAM Access Method
Simple HSAM is similar to HSAM except that it contains only root segments. A
Simple HSAM data base cannot have a hierarchical structure. This access method
is used chiefly as a conversion aid, permitting existing conventional tape and direct
access storage device files to be used as data bases.

HISAM Access Method
HISAM is an access method that stores segments in hierarchical sequence with an
index to locate root segments. Segments are stored in a logical record until the
end of the logical record is reached. If there are still segments remaining in the
data base record, they are stored in an overflow data set.

HISAM is well-suited for:

� Sequential access of records

� Sequential access of dependent segments.

Even though your processing has some of the characteristics above, HISAM is not
necessarily a good choice if:

� You need to access dependents directly.

� There will be a high volume of insertions and deletions.

� A lot of the data base records exceed average size and have to use the
overflow data set. This is because the segments that go into the overflow data
set require additional I/O.

For data base records, HISAM data bases:

� Store records in key sequence

� Can locate a particular record with a key value by using the index.

For dependent segments, HISAM data bases:

� Start each HISAM data base record in a new logical record in the primary data
set

� Store any remaining segments from one or more logical records in the overflow
data set if the data base records won't fit in the primary data set.

Unlike the direct access methods, which are described below, HISAM doesn't make
space that is vacated during deletions available for automatic reuse. The data
base must be reorganized to make use of this space. The insertion of new
segment occurrences may cause existing segments to be moved in order to keep
the hierarchical sequence within the record. The space that is vacated when
segments are moved to the overflow data set during this process is reusable by
subsequent inserts, but space in the primary data set can only be reclaimed during
reorganization.

Simple HISAM Access Method
Simple HISAM is similar to HISAM except that it contains only root segments. A
Simple HISAM data base cannot have a hierarchical structure. This access method
is used chiefly as a conversion aid, permitting existing key sequenced data sets
(KSDS) to be accessed as data bases. Simple HISAM does not use an overflow
data set.

7-4 DL/I DOS/VS Application and Data Base Design

Direct Organization (HD)
Direct organization provides for the locating of any data base record in the data
base directly, without searching sequentially through the records from the
beginning. Direct access in DL/I is accomplished by using either a randomizing
routine or an index. DL/I can find any data base record that you want, independent
of the sequence of data base records in the data base. Direct access can give
good results with either direct or sequential processing.

Direct access uses pointers to maintain the hierarchical relationships between
segments of a data base record. By following pointers, DL/I can access a path of
segments without first passing through all segments in the preceding paths. In
direct access, pointers and addresses are maintained internally.

Some of the requirements that direct accessing satisfies are:

� Fast direct processing of roots using an index or a randomizing routine

� Good sequential processing of data base records using the index

� Fast access to a path of segments via pointers.

In addition, when you delete data from a direct access data base, the new space is
made available almost immediately. This provides efficient space utilization, and
means that you don't have to reorganize the data base often to take advantage of
unused space.

The larger DL/I overhead caused by the pointers is a disadvantage. However, if
direct access answers your data access requirements, it is more efficient than using
a sequential access method.

 Randomized Access
DL/I HD randomized access uses a randomizing routine to locate its root segments,
then chains dependent segments together in their hierarchical paths. HD
randomized access is efficient for a data base that will primarily use direct access.

The requirements that randomized access satisfies are:

� Direct access of root segments by root keys through a randomizing routine

� Direct access of paths of dependents

� Even distribution of data base records in storage

� New data base records and new segments are added by putting the new data
into the nearest available space

� The space created by the deletion of data base records and segments is
automatically reusable for other records or segments.

Randomized Access Characteristics: For root segments in a randomized
access data base, DL/I:

� Stores them at the location determined by the randomizing routine, rather than
in key sequence.

� Uses a randomizing routine to locate the root segments.

� Returns root segments in physical sequence, not key sequence, when root
segments are retrieved sequentially.

 Chapter 7. Converting the System View to a Physical View 7-5

With randomized access, dependent segments:

� Are stored anywhere, as close together as possible

� Are chained together with pointers within a data base record.

An Overview of How Randomized Access Works: When a data base record is
stored in an HD randomized data base, one or more direct address root anchor
points (RAPs) are kept at the beginning of each physical block. The RAP points to
a chain of root segments. This chain is made up of all root segments that the
randomizing routine assigns to this block and RAP. They are called synonyms.
HD randomized also keeps a pointer at the beginning of each physical block that
points to any free space in that block. When you insert a segment, DL/I uses this
pointer to locate free space in the physical block. To locate a root segment in a
randomized access data base, you provide DL/I with the root key. The randomizing
routine uses it to generate the relative physical block number and the RAP that
points to the chain of root segments. The RAP value specifies the location of the
first root within a physical block.

Although HD randomized can place roots and dependents anywhere in the space
allocated to the data base, it's good policy to choose HD options that keep roots
and dependents close together.

Randomized access performance can be very good. How good depends largely on
the randomizing routine you use. Performance also depends on other
implementation factors such as:

� The block size you use

� The number of RAPs per block

� The pattern for chaining together different segments through pointers

� The distribution of key values.

For sequential access of data base records by root key you must use a
randomizing routine that stores roots in physical key sequence, or a secondary
index.

 Indexed Access
DL/I HD indexed access is the method that is most efficient for an approximately
equal amount of direct and sequential processing. It is least efficient in the
sequential access of dependents. It uses a separate index data base to locate the
root segments of the data base records. Some specific requirements that it
satisfies are:

� Direct and sequential access of records by their root keys.

� Direct access of paths of dependents.

� New data base records and new segments are added by putting the new data
into the best available space, as determined by DL/I.

� The space created by the deletion of data base records and segments is
automatically reusable for other records or segments.

HD randomized access should be the first choice, but if not, indexed access can
answer most processing requirements that involve direct processing or an
approximately even mixture of direct and sequential processing.

7-6 DL/I DOS/VS Application and Data Base Design

Indexed Access Characteristics: With indexed access, root segments:

� Are initially loaded in key sequence

� Are stored wherever space is available after initial loading

� Are identified through the index, by the root key value that you supply.

With indexed access, dependent segments:

� Are stored anywhere, as close together as possible

� Are chained together with pointers within a data base record.

An Overview of How Indexed Access Works: Indexed access uses two data
bases: one, the primary data base, holds the data; the other is the index data base.
The index data base contains entries for all of the root segments in order of their
key fields. For each key entry, the index data base contains the address of that
root segment in the primary data base.

When you access a root, you supply the key of the root. HD indexed locates the
key in the index to find the address of the root, then goes to the primary data base
to locate the segment.

HD indexed chains dependent segments together so that when you access a
dependent segment, a pointer in each higher level segment locates the next
segment below it in the hierarchy.

When you process data base records directly, HD indexed locates the root through
the index, then locates the dependent segments of the root by using the pointers.

If you are going to process data base records sequentially, you can specify special
pointers in the DBD so that DL/I doesn't have to go to the index each time to locate
the next root segment. These pointers chain the roots together. If you don't chain
roots together, HD indexed always goes to the index to locate a root segment.
When you process data base records sequentially, HD indexed accesses roots in
key sequence in the index. This only applies to sequential processing. When you
access a root segment directly, HD indexed uses the index, instead of pointers, to
find the root segment you've requested.

Which access method should be used for a particular data base? We will discuss
some factors that influence that choice.

Factors in the Choice of an Access Method
As stated in the introduction to this chapter, the system view of the application
reflects the inherent properties of the data, and may need to be modified to reflect
the needs of the physical implementation of the data base. It was also stated that
the requirements of the application could influence physical design.

This section discusses some of those factors that influence the choice of an access
method. In Chapter 5, you were shown how to identify situations that require
logical relationships or secondary indexing for implementation. In Chapter 6, you
were shown how to define other implementation requirements. All of these, plus
other special direct access considerations will be discussed further, in relation to
their influence on the choice of access method. You will then be shown a method
DBA can use to select an access method that meets all of the requirements.

 Chapter 7. Converting the System View to a Physical View 7-7

Special Direct Access Considerations
DL/I provides several functions that are available for use only with the hierarchical
direct organization. If the design of your data base makes it desirable or necessary
to use one or more of these functions, DBA's choice of organization must be
hierarchical direct. These functions are described briefly in the following sections.
For complete details on each of them, see DL/I DOS/VS Data Base Administration.

 Logical Relationships
You were shown, in Chapter 5, how to recognize conditions that might arise in the
creation of local views that would be candidates for logical relationships. In DL/I,
logical relationships are a method of creating relationships between segments in
different hierarchies. Since these relationships don't physically exist, they are
called logical relationships.

Logical relationships:

1. Permit two application programs to process the same segment through different
hierarchical paths

2. Permit a segment's parent in one application's view to act as that same
segment's child in another application's view.

Accessing a Segment Through Different Paths: As an example of the first use,
we will use a program in a health care application for a medical clinic. This
application program processes data in a purchasing data base, but also requires
access to a segment in a patient data base.

� Another program, program A, processes information in the patient data base
about the patients at the clinic: the patients' illnesses and their treatments.

� Our program, program B, is an inventory program that processes information in
the purchasing data base about the medications that the clinic uses: the item,
the vendor, information about each shipment, and information about when and
under what circumstances each medication was given.

Figure 7-1 shows the hierarchies that Program A and Program B require for their
processing. They both need access to information contained in the TREATMNT
segment in the patient data base:

� The date that a particular medication was given

� The name of the medication

� The quantity given

� The doctor who prescribed the medication.

To Program B this isn't information about a patient's treatment; it's information
about the disbursement of a medication. To the purchasing data base, this is the
disbursement segment (DISBURSE). In Figure 7-1 the TREATMNT segment and
the DISBURSE segment contain the same information.

7-8 DL/I DOS/VS Application and Data Base Design

Figure 7-1. Medical and Purchasing Hierarchies

Instead of storing this information in both hierarchies, DBA can use a logical
relationship. A logical relationship solves the problem by storing a pointer from
where the segment is needed in one hierarchy to where the segment exists in the
other hierarchy. In this case, you can have a pointer in the DISBURSE segment to
the TREATMNT segment in the medical hierarchy. There are a number of
considerations involved in deciding which segment contains the pointer.
Performance is one. When DL/I receives a request for information in a DISBURSE
segment in the purchasing hierarchy, DL/I retrieves the TREATMNT segment in the
medical hierarchy pointed to by the DISBURSE segment. Figure 7-2 shows the
physical hierarchy that Program A would process and the logical hierarchy that
Program B would process. DISBURSE is a pointer segment to the TREATMNT
segment in Program A's hierarchy.

Figure 7-2. Logical Relationships Example

To define a logical relationship between segments in different hierarchies, DBA
creates a logical data base definition. A logical DBD defines a hierarchy that does
not physically exist, but can be processed as though it does. Program B would use
the logical structure shown in Figure 7-2 as though it were a physical structure.

Inverting a Parent/Child Relationship: As an example of the second use of
logical relationships (a segment's parent in one application program acts as that
segment's child in another program), consider the following situation:

� The inventory program (Program B above) processes information about
medications, using the medication (ITEM) as the root segment.

� A purchasing application program, Program C, processes information about
which vendors have sold which medications. Program C processes this
information using VENDOR as the root segment.

 Chapter 7. Converting the System View to a Physical View 7-9

Figure 7-3 shows the hierarchies for each of these application programs.

Figure 7-3. Supplies and Purchasing Hierarchies

DBA can use logical relationships to handle these requirements. In this example,
the ITEM segment in the purchasing hierarchy would contain a pointer to the actual
data stored in the ITEM segment in the supplies hierarchy. The VENDOR
segment, on the other hand, would actually be stored in the purchasing hierarchy.
The VENDOR segment in the supplies hierarchy would point to the VENDOR
segment stored in the purchasing hierarchy.

Figure 7-4 shows the modified hierarchies.

Figure 7-4. Program B and Program C Hierarchies

If you didn't use logical relationships in this situation, you would have to store the
same data in both paths. This redundant data would have to be updated in both
places each time it changed. In addition to the additional space required for
storage, there would be the possibility of inconsistent data during the period of
updating the two data bases.

 Secondary Indexes
Secondary indexing was mentioned in Chapter 5 as a means of solving the
problem of identifying a segment through the value of a data element other than the
primary key. Actually, there are two situations in which secondary indexing is
useful:

1. When an application program needs to retrieve a segment in a sequence other
than the one that has been defined by the segment's key field

2. When an application program needs to retrieve a segment based on a
condition that is found in a dependent of that segment.

Examples to illustrate these conditions use two application programs that process
the patient hierarchy shown in Figure 7-5. There are three segment types in this
hierarchy:

� PATIENT contains three fields: the patient's identification number, the patient's
name, and the patient's address. The patient number field is the key field.

7-10 DL/I DOS/VS Application and Data Base Design

� ILLNESS contains two fields: the date of the illness and the name of the illness.
The date of the illness is the key field.

� TREATMNT contains four fields: the date the medication was given, the name
of the medication, the quantity of the medication that was given, and the name
of the doctor who prescribed the medication. The date that the medication was
given is the key field.

Figure 7-5. Patient Hierarchy

Using a Different Key: As an example of the first case, suppose you have an
application program that processes requests to determine whether or not an
individual has ever been treated in the clinic. Obviously, you won't be able to
supply an identification number for that person, even though the patient's
identification number is the key field of the PATIENT segment.

If you issue a request for a PATIENT segment and identify the segment you want
by the patient's name instead of the patient's identification number, DL/I might have
to search through all of the PATIENT segments to find the PATIENT segment
you've requested. DL/I doesn't know where a particular PATIENT segment is just
by having the patient's name.

There is a way to make it possible for this application program to retrieve PATIENT
segments in the sequence of patients' names (rather than in the sequence of
patients' identification numbers). DBA can create a separate data base called a
secondary index. This data base is really an index to the patient name fields in the
PATIENT segments. The PATIENT index entries are in order by the patient
names. Using the index entries in the secondary index data base, DL/I can easily
locate a PATIENT segment when you supply the patient's name. DL/I goes directly
to the secondary index and locates the PATIENT index entry for the name you've
supplied. The index entry contains a pointer to the PATIENT segment in the
patient hierarchy. DL/I can determine whether or not a PATIENT segment for the
name you've supplied exists, and return the segment to the application program if it
does exist. If the requested segment doesn't exist, DL/I indicates this to the
application program by returning a “not-found.”

There are three terms involved in secondary indexing that you should know.

� The pointer segment is the index entry segment in the secondary data base.
DL/I uses the pointer segment to find the segment that you've requested in
your original hierarchy. In the example above, the pointer segment is the index
entry in the secondary index data base that points to the PATIENT segment in
the patient hierarchy.

� The source segment is the segment in your original hierarchy that contains
the field you're indexing. In the example above, the source segment is the
PATIENT segment in the patient hierarchy, since you're indexing on the name
field in that segment.

 Chapter 7. Converting the System View to a Physical View 7-11

� The target segment is the segment in your original hierarchy that the
secondary index points to; it's the segment that you want to retrieve.

In the example above, the target segment and the source segment happen to be
the same segment—the PATIENT segment in the patient hierarchy. The source
segment and the target segment can also be different segments. For instance, if
the field in the ILLNESS segment that contains the name of the illness was used as
the field to be indexed, then the ILLNESS segment would be the source segment.
You could create a list of all patients who had had each illness by using the index.
Figure 7-6 shows the relationship of the segments in this case.

Figure 7-6. Indexing a Root Segment

Dependent segments can be used as target segments just as root segments can.
If you do use a dependent segment as a target segment, you create what is called
an inverted structure. You have, in effect, created a new hierarchy. The segment
you index becomes the root segment, and its parent becomes a dependent. For
example, suppose you index the ILLNESS segment on a field in the TREATMNT
segment. In this case, the ILLNESS segment is the target segment, and the
TREATMNT segment is the source segment. Figure 7-7 shows the original
hierarchy and the apparent hierarchy created by the secondary index.

Figure 7-7. Indexing a Dependent Segment

Retrieving Segments Based on a Dependent's Qualification: As an example of
the second use of secondary indexing (retrieving a segment based on a condition
in a dependent of that segment), suppose that the medical clinic wants to print a
monthly report on the patients who have visited the clinic during that month. If the
application program that processes this request doesn't use a secondary index, the
program has to retrieve a PATIENT segment, then retrieve the ILLNESS segments
for that PATIENT segment. The program tests the date in the ILLNESS segments
to determine whether or not the patient has visited the clinic during the current
month, and prints the patient's name if the answer is yes. The program continues
retrieving PATIENT segments and ILLNESS segments until it has retrieved all the
PATIENT segments.

But with a secondary index, you can make that program's processing much simpler.
To do this, DBA indexes the PATIENT segment on the date field in the ILLNESS
segment. DL/I recognizes the name of the field that you're indexing the PATIENT

7-12 DL/I DOS/VS Application and Data Base Design

segment on, and the name of the segment that contains the index field. The
application program can then issue a request to DL/I for a PATIENT segment and
qualify the request with the date in the ILLNESS segment.

In this example, the PATIENT segment is the target segment; it's the segment that
you want to retrieve. The ILLNESS segment is the source segment; it contains the
information that you want to use to qualify your request for PATIENT segments.
The index segment in the secondary data base is the pointer segment. It points to
the PATIENT segment.

Variable Length Segments
Variable length segments are used by application programs to process variable
length text or descriptive data. They can also be used, in some cases, to make
more efficient use of secondary storage space.

Variable length segments are defined as such by DBA when the segment type is
defined in the DBD generation procedure. This definition causes a two-byte size
field to be included as the first field in the data portion of the segment. It is the
responsibility of the application program to determine the size of each occurrence
of the segment, and load that value into the size field.

Since this function of DL/I is only available with the hierarchical direct organization,
your use of variable length segments forces DBA to choose one of the HD access
methods for implementing the data base.

You would use a variable length segment when the data to be included in a
particular field may vary with each occurrence of the segment. For instance, if a
segment had been included in the health care application to list the symptoms the
doctor had found for the patient's illness, it would be a likely candidate for a
variable length segment. This is shown with a couple of examples of the contents
of this field:

SEVERE HEADACHE WITH NAUSEA.

COMPOUND FRACTURE, LEFT ULNA. LACERATIONS OF
LEFT HAND AND FOREARM.

 Segment Edit/Compression
The segment edit/compression exit facility of DL/I makes it possible for the user to
supply a program routine that will edit a variable length segment as it comes from
or goes to the data base. The routine can be made to encode data for security
purposes, to format data for application programs, and to compress the data to
remove redundant characters. You will not be directly involved with segment
edit/compression in your tasks, other than to suggest its use when you have
specified variable length segments.

 Implementation Requirements
It is the responsibility of DBA to create a data base or bases that will best serve the
interests of the corporation. This sometimes involves compromises between the
needs of individual applications. The requirements of your application may be
completely separate from those of other applications, but it is likely that DBA must
consider your requirements in relation to existing or possible future applications.

Before making final decisions regarding the implementation of your system view as
a data base, DBA will consider the list of implementation requirements you defined

 Chapter 7. Converting the System View to a Physical View 7-13

in Chapter 5. Some of the ways in which implementation requirements can
influence these decisions are listed here:

 � Performance considerations

– DBA will locate the high usage paths and try to optimize the performance of
programs using them. To do this, it may be necessary to rearrange the
hierarchy.

– Online query programs require fast response. This may require a
rearrangement of the hierarchy, and may force the choice of access
method.

– Data bases with a great deal of inserting or deleting may force the use of
one of the direct access methods to improve performance and to eliminate
the need for frequent data base reorganization to recover unused space.

– The type of processing that is most frequent may force the choice of
access method for performance reasons.

� Data access requirements

– If access of both root and dependent segments is to be sequential, DBA
may choose the HSAM access method.

– If access of roots is largely direct, but dependents are accessed
sequentially, DBA may choose HISAM.

– If access of both root and dependent segments is primarily direct, DBA may
choose the randomized access direct method.

– If there are approximately equal amounts of direct and sequential
processing, DBA may choose the indexed access direct method.

– If online access is required, HSAM or SHSAM may not be chosen.

 � Structural considerations

Use of logical relationships, secondary indexing, variable length segments,
or the segment edit/compression exit will force DBA to choose one of the
direct access methods.

 � Security requirements

– To prevent unauthorized access to data, DBA must use the DL/I segment
or field level sensitivity facilities. It might be decided that it would be better
to move a field or segment to a different location in the hierarchy to
facilitate this.

– DBA will assign processing authority to each individual application program
depending on the type of processing you have specified for that program:
retrieving, inserting, updating, deleting, or some combination of these.

– Encryption can be used to prevent non-DL/I programs from making use of
information stored in DL/I data bases. Encryption can be done through the
use of a segment edit/compression exit routine. This facility is not available
for the sequential access methods, so they could not be used if encryption
was required.

 � Recovery requirements

Conditions, such as frequent or voluminous updating, may require special
procedures for back-up and recovery.

7-14 DL/I DOS/VS Application and Data Base Design

Choosing an Access Method
DBA will choose an organization and access method for implementing the data
base or bases that your application needs by putting to use:

� The information on requirements that you have supplied

� Knowledge of the requirements of other applications

� Knowledge of the requirements, restrictions, and functions of DL/I.

The decision tree shown in Figure 7-8 illustrates a method DBA can use in making
this choice. The tree is an aid, but the final decision must be influenced by a study
of all the factors listed above.

 Chapter 7. Converting the System View to a Physical View 7-15

Figure 7-8. Access Method Decision Tree

7-16 DL/I DOS/VS Application and Data Base Design

Chapter 8. Implementing the Application

This chapter gives you suggestions on how to generate an implementation plan
that will provide an orderly phasing in of an application. It also gives
suggestions for carrying out the plan. There are two main sections:

 1. Implementation Plan

 2. Implementation.

The first section gives suggestions for generating an implementation plan for the
application, addressing such items as which programs need to be available
together, the phases in implementation that will provide the smoothest and most
successful introduction of the application, and contingency plans. The second
section gives suggestions for carrying out the plan, and some pitfalls to be
aware of.

 Implementation Plan
If this is a new installation, you should devise an implementation plan for the
application while the design of the data base is being completed and DL/I is being
installed. If the application is a large or complicated one, implementation should be
done in phases. On the other hand, the phases you choose should be large
enough so that each one accomplishes a useful portion of the whole application.
The process is like building a wall one brick at a time.

The first step in developing the plan is to decide which requirements are closely
enough related to make it necessary to implement them together. The relationship
could be one of function or it could be through use of common data elements. The
requirements listing that you created after collecting application requirements will be
your primary source of this information. You included in one chapter of that listing
all of the requirements of a particular user group or functional area. This means
that all of the requirements in a chapter are candidates for grouping into a module
to be implemented in a phase. Examining the listing for a particular chapter, you
can pick those that should be implemented together, but you may find some that

 Copyright IBM Corp. 1981, 2002 8-1

can be left for a later phase, or that can be implemented with requirements from
other functional areas because of common data element usage.

To identify those requirements from different functional areas that should be
considered as candidates for implementation in the same phase, use the data
dictionary. Look at the where-used information for each entry in the data dictionary.
All requirements that appear in that field for a particular data element can be
considered for implementation in the same phase.

At this point, the detailed design of the data base(s) should be complete, program
design should be firm, and planning for any special data collection or conversion
activities should be done.

The last step is to decide which modules will be implemented in each phase, and to
make an outline of the order and timing of the implementation.

It is vitally important that the phase you choose to implement first be a success.
The users will base their judgment of the application on how this first segment of it
turns out. If it goes well, and fulfills their requirements and expectations, they will
be enthusiastic and cooperative when it comes time for the next phase. If this first
phase fails to meet requirements and expectations, the word will be spread, and all
users will be skeptical and uncooperative toward implementation of the rest of the
application.

To help ensure the success of the first phase, it should be easy to implement and
should be useful. By “easy to implement” we mean:

� All the requirements have been accurately documented

� The technical approach is known and presents no problems

� Trained personnel are available

� The required data already exists

� Installation of new hardware isn't needed.

To appear useful to the user, the phase must reduce the workload, provide the
information faster than previous methods, or provide previously unavailable
information or functions.

If the first phase is a success, and if the results of it are visible to other user groups
and management, the rest of the implementation of the application will be
accomplished much more easily; however, you should, as part of your
implementation plan, decide on contingency plans that will allow you to be flexible
in the implementation, and to recover if something goes wrong.

 Implementation
Even though you have a complete, well thought-out plan for implementing your
application, it is not likely that you will be able to follow it exactly. There are
equipment and human resource problems to contend with. Time estimates may
have been wrong. Data that was scheduled to be available at a certain time may
not be available. New hardware that is required may be delayed in delivery or
installation. This is where your contingency plans come into play. It is vital that
you do not begin implementation of the application until you have covered every
possible difficulty.

8-2 DL/I DOS/VS Application and Data Base Design

Your implementation schedule should have some built-in slack to help absorb
unexpected difficulties or misjudgments of time necessary for certain steps. Do not
allow yourself to be rushed during the implementation of the first phase if this is at
all possible. If the implementation is completely new, you should install it and test it
thoroughly before transferring it to production status. If the application is to replace
an existing application, you must run in parallel during the testing period. This may
be expensive and complicated, but is extremely important, especially if the
application involves a vital business function.

You should work closely with the end users as the testing proceeds and you
approach production status. Be sure that they are satisfied with the results and
performance before you go to production. You should track the application after it
is in production for a long enough period to make sure that it is working smoothly.
Set up procedures and lines of communication to ensure that problems and
difficulties are reported quickly and accurately.

Once the first phase is running smoothly, the rest can be implemented step-by-step
according to your plan.

You have completed the application and data base design process. The users can
now reap the benefits of that design in their daily work.

 Chapter 8. Implementing the Application 8-3

8-4 DL/I DOS/VS Application and Data Base Design

Appendix A. Appendix A: An Example of Application Design
With Data Bases

This appendix is an example of the application design process described in the
body of the book. The application implemented in the sample programs
shipped with DL/I is used in this walk-through of the procedure. The data base
design procedure described in Part 2 is used to design the necessary data
bases.

The sample application documented in this appendix is for a fictitious company (a
wholesale distribution firm) that offers a wide variety of electronic components. The
components are purchased from various vendors and sold to customers. Most
customer orders arrive by telephone. Because of this and the growth in the
number of orders and variety of items, an upgrade of the existing inventory control
and customer order applications was necessary. It was decided to build a new
system which integrated these applications utilizing the DL/I data base approach.

Some objectives for the new application were:

 � Implement:

– Inventory control with its associated purchase order processing

– Customer order processing

� Provide central control of inventory, purchase orders, and customer orders

� Provide accurate status information on items in stock, on order, and delivered

� Provide accurate entry of both purchase orders and customer orders with
respect to items in stock

� Provide a base for online processing of orders and inquiries.

The implementation of this system will be the common thread throughout the
examples used in this appendix.

Inventory Data Base
Information about items in stock is managed by the inventory control department.
All data will be stored in the Inventory data base. This data base consists of one
record for each item the company stocks. Each record identifies:

� Standard information for all items

� Stock location information for those items that are in stock

� Purchase information for those items that need restocking.

 Copyright IBM Corp. 1981, 2002 A-1

Customer Data Base
Information about customer orders is managed by the sales department.
 All order data will be stored in the Customer data base. It consists of one record
for each customer order. Each record identifies:

� Standard information for each order and customer
� Order detail information for each ordered item
� Shipment information for this order.

A link is required to the Inventory data base because it is necessary to know which
parts are on order by each customer and vice versa.

Obtaining Application Requirements
The process of obtaining application requirements was completed and the following
documentation was included in the requirements listing:

 Customer Listing
Requirement: Listing of all data for every customer, in approximately the format
shown below.

 Input Data:

 Customer number
 Customer name
 Customer contact
 Customer address
 Customer locations
 Name
 Number
 Address
 Contact
 Customer orders
 Order date
 Order number
 Reference data
 Item count

Total order amount
Inventory item number
Line item number

 Quantity ordered
 Quantity shipped

Quantity back ordered
 Item amount

Customer order history
 Order date
 Order number
 Reference data
 Item count
 Order amount
 Order status
 Credit limit
 Credit balance

A-2 DL/I DOS/VS Application and Data Base Design

 Report Format:

LIST OF CUSTOMER DATA BASE

NAME: COMPANY X, INC. NUMBER: �����1
CONTACT: MR. JOHN SMITH
STREET: 1� MAIN STREET CITY: NEW YORK, NY 1��1�
REGION: EASTERN REGION CONTACT: MR. JOHN DOE
STREET: 69 BROAD STREET CITY: PHILADELPHIA, PA 11�2�

�1/29/8� ORDER NO.: 1��5�� DESC.: FIRST 198� ORDER
ITEM NO. DESCRIPTION ORDERED SHIPPED BACK ORD.
���1�� INTEGRATED CIRCUIT ����4� ����4� ������
DOLLAR AMOUNT: $ 4��.��

REGION: WESTERN REGION CONTACT: MR. JAMES SMITH
STREET: 5296 BATTLESHIP BLVD. CITY: SAN DIEGO, CA 9321�

�5/1�/8� ORDER NO.: 1�2�5� DESC.: SECOND 198� ORDER
ITEM NO. DESCRIPTION ORDERED SHIPPED BACK ORD.
���2�� TRANSISTOR ����18 �����8 ����1�
���3�� RESISTOR ����17 ����17 ������
DOLLAR AMOUNT: $ 88.��

CREDIT BALANCE: $ 1���.�� AMOUNT LAST ORDER: $ 14���.��
LAST ORDER DATA: ORDER SHIPPED COMPLETE AND ON TIME

 Frequency: Daily

 Response: Overnight

 Inventory Listing
Requirement: Listing of complete inventory data, in approximately the format
shown below.

 Input Data:

 Item number
 Item description

Quantity on hand
Quantity on order

 Quantity reserved
 Unit price

Unit of issue
 Vendor information
 Number
 Name
 Address
 Contact

Substitute item number
Inventory location number

 Appendix A. Appendix A: An Example of Application Design With Data Bases A-3

 Report Format:

LIST OF INVENTORY DATA BASE

ITEM NO.: ���1�� DESCRIPTION: INTEGRATED CIRCUIT
UNIT COST: $ 1�.�� QTY ON HAND: ����25 QTY ON ORDER: ��2���
OPEN ORDERS: DATE ORDER NO. ORDERED SHIPPED
 �5/1�/8� 1�215� ���1�� ����5�
VENDOR NAME: COMPANY A, INC. CONTACT: MR. JOHN ROE
STREET: 2�7 SOUTH STREET CITY: ANYTOWN, NY 1352�
WAREHOUSE LOCATION: 12-2 SUBSTITUTE ITEM NO.: ���5��

 Frequency: Daily

 Response: Overnight

Interactive Order Entry and Query
Requirement: An interactive order entry and order query system with the following
requirements:

1. Must provide order entry for new customer and new location, existing customer
and new location, and existing customer and existing location.

2. Customer can have one or many locations placing orders. Each location can
place zero or many orders. The entry operator assigns order number, order
date, and order description. Order consists of item numbers and quantities.
Maximum of five items per order. Maximum quantity per item is 9,999.

3. Display complete order information in format similar to customer listing above.
4. Order entry causes automatic update of inventory and notes need for back

order.
5. Query can be based on order date, customer name or number, or location

name or number.
6. Query can be for complete order, status of items, customer and location

information for specific order, orders associated with specific customer location,
and locations associated with a specific customer.

 Input Data:

 Customer number
 Customer name
 Customer contact
 Customer address
 Customer locations
 Name
 Number
 Address
 Contact
 Customer orders
 Order date
 Order number
 Reference data
 Item count

Total order amount
Inventory item number
Line item number

 Quantity ordered
 Quantity shipped

A-4 DL/I DOS/VS Application and Data Base Design

Quantity back ordered
 Item amount

Customer order history
 Order date
 Order number
 Reference data
 Item count
 Order amount
 Order status
 Credit limit
 Credit balance
 Item number
 Item description

Quantity on hand
Quantity on order

 Quantity reserved
 Unit price

Unit of issue
 Vendor information
 Number
 Name
 Address
 Contact

Substitute item number
Inventory location number

Report Format: To be determined

 Frequency: Online

Response: As fast as possible

 Application Analysis

Defining the Tasks
From the requirements listing, we see that the following tasks must be
implemented:

1. A listing of all data for every customer, in a format similar to that shown in the
listing.

2. A listing of all inventory data, in a format similar to that shown in the listing.

3. An interactive order entry and inquiry system to fulfill the listed requirements.

Defining Programs to Accomplish the Tasks
After defining and analyzing the requirements and considerations as described in
Chapter 4, it was decided that the customer and inventory data listing tasks could
be accomplished by one program. The interactive order entry and inquiry system
would be a single program.

 Appendix A. Appendix A: An Example of Application Design With Data Bases A-5

Naming Conventions Used in the Sample Application
The naming conventions used in the sample application observe the following
format:

Example:

Thus: The name STDCX1C represents the VSAM cluster definition for Index 1 of
the CUSTOMER data base within the Sample Transaction set of applications.

Naming Conventions - Application Area

A-6 DL/I DOS/VS Application and Data Base Design

Naming conventions - Categories

Naming Conventions - Applications

 Appendix A. Appendix A: An Example of Application Design With Data Bases A-7

Naming Conventions - DBD

Note: The names of the segments and data elements shown in all data base
examples are as they will be used in the final online application. Therefore, some
names used in the early examples are not consistent with the naming conventions
described.

A-8 DL/I DOS/VS Application and Data Base Design

Creating a Data Dictionary From the Requirements Listing
Notice that the third position of the names in the following data dictionary listing has
not been filled in. This is because, at this stage of the design, we don't know for
sure what category each will finally fall into as the design progresses. When the
design is complete, the correct category designation from the list in the naming
convention can be added.

Name Description Length (bytes)

ST_IINO Item Number 6 (key)
ST_IIDS Description 25
ST_IIQH Quantity on hand 6
ST_IIQO Quantity on order 6
ST_IIQR Quantity reserved 6
ST_IIPR Unit price 6 (3 dec. places)
ST_IIUN Unit of issue 1
ST_IVNO Vendor Number 6 (key)
ST_IVNM Vendor Name 25
ST_IVA1 Loc. Address Line 1 25
ST_IVA2 Loc. Address Line 2 25
ST_IVA3 Loc. Address Line 3 25
ST_ISNO Sub. Item Number 6 (key)
ST_ILNO Inventory Loc. No. 6 (key)
ST_ILQT Quantity 6
ST_CCNO Customer Number 6 (key)
ST_CCNM Customer Name 25
ST_CCA1 Cust. Address Line 1 25
ST_CCA2 Cust. Address Line 2 25
ST_CCA3 Cust. Address Line 3 25
ST_CLNO Location Number 6
ST_CLNM Location Name 25
ST_CLA1 Loc. Address Line 1 25
ST_CLA2 Loc. Address Line 2 25
ST_CLA3 Loc. Address Line 3 25
ST_CODN Order Date (yr-mo-day)

and Order Number
12

ST_CORF Order Reference Data 25
ST_COIC Order Item Count 2
ST_COAM Order Amount 12
ST_CIIN Inventory Item Number 6
ST_CILI Line Item Number 2
ST_CIQO Quantity Ordered 6
ST_CIQS Quantity Shipped 6
ST_CIQB Quantity Back Ordered 6
ST_CIAM Item Amount 12
ST_CSCL Credit Limit 12
ST_CSBL Credit Balance 12
ST_CHDN Order Date (yr-mo-day)

and Order Number
12

ST_CHRF Order Reference Data 25
ST_CHIC Order Item Count 2
ST_CHAM Order Amount 12
ST_CHOS Order Status 77

 Appendix A. Appendix A: An Example of Application Design With Data Bases A-9

Creating Local Views From Requirements
We are now ready to create local views using the data from the requirements listing
and data dictionary. For simplicity, only the last four characters of the data element
names will be used.

First, we will divide the data elements into data aggregates, name each aggregate
according to the naming convention, and select a key for each aggregate (the key
may change or be eliminated as the design proceeds).

� From the inventory data we have four aggregates:

– Inventory Item (___IITM), made up of

 IINO (key)
 IIDS
 IIQH
 IIQO
 IIQR
 IIPR
 IIUN

– Vendor (___IVND), made up of

 IVNO (key)
 IVNM
 IVA1
 IVA2
 IVA3

– Substitute Item (___ISUB), made up of

 ISNO (key)

– Inventory Location (___ILOC), made up of

 ILNO (key)
 ILQT

� From the customer data we have six aggregates:

– Customer Name and Address (___CCST), made up of

 CCNO (key)
 CCNM
 CCA1
 CCA2
 CCA3

– Customer Location (___CLOC), made up of

 CLNO (key)
 CLNM
 CLA1
 CLA2
 CLA3

A-10 DL/I DOS/VS Application and Data Base Design

– Customer Order(___CORD), made up of

 CODN (key)
 CORF
 COIC
 COAM

– Order Item (___CITM), made up of

 CILI (key)
 CIIN
 CIQO
 CIQS
 CIQB
 CIAM

– Customer Status (___CSTA), made up of

 CSCL (key)
 CSBL

– Customer History (___CHIS), made up of

 CHDN (key)
 CHRF
 CHIC
 CHAM
 CHOS

Note: For simplicity, in most of the examples in the rest of this appendix, the
names of the aggregates will be used instead of listing all of the data elements.

Now we can lump together all of the data that applies to the inventory application
as though it were one aggregate, like this:

 Appendix A. Appendix A: An Example of Application Design With Data Bases A-11

Using the format of the printout in the requirements listing and the data dictionary,
we can tabulate occurrences of the inventory aggregate as shown here:

Performing the first step of the three step procedure, isolating repeating data
elements, shows that since the IVND, ISUB, and ILOC aggregates can all have
possible repeating data elements, we must move them to a lower level than the
IITM aggregate.

Looking at the two occurrences of the inventory aggregate shows that there are no
duplicate values between the occurrences, so the second step is not applicable.

Checking the keys we previously assigned shows that the data elements are all
with their identifying keys, so the third step is also not necessary.

Putting all of the customer data into one aggregate, we get:

Data Element List Occurrence #1 Occurrence #2

IINO
IIDS
IIQH
IIQO
IIQR
IIPR
IIUN
IVNO
IVNM
IVA1
IVA2
IVA3
ISNO
ILNO
ILQT

00100
INTEGRATED CIRCUIT
002500
002000
000025
010000
1
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple

00200
TRANSISTOR
003000
005000
000500
006750
1
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple

A-12 DL/I DOS/VS Application and Data Base Design

Tabulating two occurrences of the customer aggregate gives us this:

The CLOC, CORD, CITM, and CHIS aggregates can all have repeating values in
their data elements so, in the first step, they must be moved down.

A little thought shows that the CORD and CITM aggregates can have repeating
values under one occurrence of the CLOC aggregate, so they must be moved to a
lower level under the CLOC aggregate.

Data Element List Occurrence #1 Occurrence #2

CCNO
CCNM
CCA1
CCA2
CCA3
CSCL
CSBL
CLNO
CLNM
CLA1
CLA2
CLA3
CODN
CORF
COIC
COAM
CIIN
CILI
CIQO
CIQS
CIQB
CIAM
CHDN
CHRF
CHIC
CHAM
CHOS

000001
COMPANY X, INC.
MR. JOHN SMITH
10 MAIN STREET
NEW YORK, NY 10010
000000015000
000000001000
000010
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple

000002
COMPANY Y, INC.
MR. HENRY ADAMS
104 ELM STREET
SOMECITY, NY 13990
000000025000
000000014980
000002
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple

 Appendix A. Appendix A: An Example of Application Design With Data Bases A-13

Since there can be many items under a single order, the CITM aggregate must be
moved to a level under the CORD aggregate, like this:

Looking at the two occurrences of the customer data aggregate shows that there
are no duplicate values, so the second step is unnecessary.

The data elements are all with their keys, so the last step is also unnecessary.

Combining Local Views Into a System View
We will combine the two local views into a system view by using the procedure
described in Chapter 6.

Note: For the sake of simplicity, in the illustrations that follow, the data elements
identified by a given primary key are shown in a box with that key. The single
arrow links from the key to those data elements are assumed.

Figure A-1. Customer Data Local View

Figure A-1 shows the customer data local view drawn according to the procedure.
This view is straightforward. The adding of the inventory view is also
straightforward except for the fact that the inventory item aggregate in the inventory
view must have a path to the order item aggregate in the customer data view.

The combined local views are shown in Figure A-2.

A-14 DL/I DOS/VS Application and Data Base Design

Figure A-2. Customer Data and Inventory Local Views Combined

The system view will be implemented as two separate data bases with the logical
relationship link between them. The two root keys will be CCNO and IINO. There
are no isolated attributes. The only logical relationship candidate is the one
between the views. There are no secondary key candidates. Figure A-3 shows
the system view re-drawn as a hierarchical structure as DBA might look at it.

Figure A-3. System View as a Hierarchical Structure

 Appendix A. Appendix A: An Example of Application Design With Data Bases A-15

Converting the System View to a Physical View
The details of the decisions regarding the choice of organization and access
method, and of the physical implementation of the system view, are too extensive
to be included here. That phase of the design is a DBA function and is described
in DL/I DOS/VS Data Base Administration.

A-16 DL/I DOS/VS Application and Data Base Design

Appendix B. Appendix B: A Recommended Naming
Convention

This appendix summarizes a naming convention recommended in the
Standards Manual for DOS/VSE.

The Standards Manual for DOS/VSE describes and recommends an
installation-wide naming convention that covers all possible situations in the
DOS/VSE environment. Those parts of the convention that are most significant to
you in your work are summarized here.

Acronym Description Valid Contents

S General system Alpha
PP Project code Alpha
f Frequency of run Numeric 0-daily 1-weekly 2-monthly

3-quarterly 4-yearly 5-as needed
6-one time job

J Job Alpha-assigned in sequence A-Z. If
more than 26 jobs/project, divide
into two projects.

n Program number Numeric-in sequence within job 0-9.
If only one program/job, then it is
always 0.

mm Phase number Numeric-in sequence 00-99.
r Filename sequence

number
Numeric-in sequence 0-9.

 or
 Procedure component

sequence number
Numeric-in sequence 0-9.

d...d Descriptive file name Alphameric - 1-8 character
description of job.

 Copyright IBM Corp. 1981, 2002 B-1

 Job Name
 Job SPPfJ

EXAMPLE

 Description Acronym Content

 General system S P
 Project code PP CK

Frequency of run f 1
 Job J A

Putting this all together, the job name is PCK1A.

 Program Name
The program name is the phase name used at link-edit time to catalog the phase
into a core image library. It is also the term generally used when referencing this
program for any reason.

 Program SPPfJn��

EXAMPLE

 Description Acronym Content

 General System S P
 Project Code PP CK

Frequency of run f 1
 Job J A
 Program n 1
 Constant �� ��

Putting this all together, the program name is PCK1A100.

 Phase Name
The phase name is the same as the program name unless there are multiple
phases in a program. In that case, the last two digits are used to designate the
phase number. The root or first phase is always the same as the program name.
It always ends in “00.”

 Phase SPPfJnmm

EXAMPLE

 Description Acronym Content

 General System S P
 Project Code PP CK

Frequency of run f 1
 Job J A
 Program n 1
 Phase number mm �1

Putting this all together, the phase name is PCK1A101. Since the last two digits
are not “00,” you know that this is not the root phase of this program. The root
phase would be named PCK1A100.

B-2 DL/I DOS/VS Application and Data Base Design

Additional Conventions for DL/I
All data base jobs and programs will utilize the convention described, but a
modification is required to define names that identify data base related components
such as DBDs, PSBs, segments, fields, filenames, and file-IDs. (DL/I terms such
as DBD and PSB are defined in the glossary.)

The first three positions of these names (ZBB) will identify them as data base
components. The “Z” is a constant that is only used for data bases. The “BB” is
unique for each data base and will identify all elements addressing that data base.

The fourth position of the names (ZBBC) is a category code to identify the specific
element being named. The contents of this position are as follows:

C Real logical child segment
D DBD or filename or file-ID
F Field
P PSB
Q Sequence (key) field
S Segment
U Duplicate data field in index segment
V Virtual logical child segment
W Destination parent segment
Z User data field in index segment.

The fifth thru eighth positions of a name (ZBBCXXXX) will vary depending on the
type of element. The values for these positions are specified in the following
sub-sections.

 DBD
 � ZBBDttt -

 where
 ttt=

DBP Physical DBD
DBL Logical DBD
XnP Index DBD (n is 0 thru 9)

Example: Physical DBD for the Personnel/Payroll data base in the Administration
System - ZPRDDBP.

Note: The DBD name can be one to seven alphameric characters. The at-sign
(@) must not be used.

 Filename
 � ZBBDvvv -

 where
 vvv=

DBC Cluster for physical DBD
DBI Index for physical DBD
DBD Data for physical DBD
XnC Cluster for index DBD (n is 0 thru 9)
XnI Index for index DBD (n is 0 thru 9)
XnD Data for index DBD (n is 0 thru 9)

 Appendix B. Appendix B: A Recommended Naming Convention B-3

Example: Filename for the VSAM cluster of a physical DBD - ZPRDDBC.

Note: The filename can be one to seven alphameric characters.

 File-Id
 � ZBBDvvv0.d...d -

 where
 vvv=

Same as filename value
and

 d...d=
Alphabetic description of file content

Example: VSAM cluster name for physical DBD - ZPRDDBC0.HIDAM.

 PSB
 � ZBBPnnn -

 where
 nnn=

Numeric sequence within a data base

 Example: ZPRP003.

Note: The PSB name can be one to seven alphameric characters. The at-sign
(@) must not be used.

 Segment
 � ZBBSGddd -

 where
 Gddd=

G—Alphanumeric segment identifier for this segment that is unique
within a data base.
ddd—Alphabetic abbreviation describing contents of this segment type.
This is project/content oriented rather than dependent on the physical
structure.

Example: The tax segment of the Personnel/Payroll data base - ZPRSTTAX.

Note: The segment name can be one to eight alphameric characters.

 Field
 � ZBBFGddd -

 where
 Gddd=

G—Same segment identifier as segment in which field occurs.
ddd—Alphabetic abbreviation describing content.

Example: The number-of-exemptions field in the tax segment - ZPRFTEXS.

Note: The field name can be one to eight alphameric characters.

B-4 DL/I DOS/VS Application and Data Base Design

 Glossary

ACB. Application control block.

ACBGEN. Application control block generation.

ACT. Application control table.

aggregate. See data aggregate.

application control blocks. The control blocks
created from the output of DBDGEN and PSBGEN,
e.g., a DMB of an internal PSB created by the ACB
utility program.

application control block generation (ACBGEN).
The process by which application control blocks are
created.

application control table (ACT). A DL/I online table
describing those CICS/VS application programs that
utilize DL/I.

attribute. A property of an entity. It contains a value.
Synonymous with field.

batch processing. A processing environment in which
data base transactions requested by applications are
accumulated and then processed periodically against a
data base.

business process. A defined function of a business
enterprise, usually interrelated through information
requirements with other business processes. Example:
Personnel management is the business process
responsible for employee welfare from pre-hire to
retirement. Related to the accounting business process
through payroll.

child. Synonymous with child segment.

child segment. A segment one or more levels below
the segment which is its parent, but with a direct path
back up to the parent. Depending on the structure of
the data base, a parent may have many children;
however, a child has only one parent segment.
Referring to Figure G-1:

� all the B, C, D, E, and F segments are children of
A-001.

� C-5 and C-7 are children of B-01 (and A-001), but
not children of the other B segments.

� B-02 has no children.

See also logical child and physical child.

concatenated key. The key constructed to access a
particular segment. It consists of the key fields,
including that of the root segment and successive
children down to the accessed segment.

data aggregate. A group of data elements that
describe a particular entity. Synonymous with segment.
See also data element.

data base (DB). (1) (ISO)1 A set of data, part of the
whole of another set of data, and consisting of at least
one file, that is sufficient for a given purpose or for a
given data processing system. (2) A collection of data
records comprised of one or more data sets. (3) A
collection of interrelated or independent data items
stored together without unnecessary redundancy to
serve one or more applications. See physical data
base and logical data base.

data base administration (DBA). The tasks
associated with defining the rules by which data is
accessed and stored. The typical tasks of data base
administration are outlined in the DL/I DOS/VS Data
Base Administration, SH24-5011.

data base administrator (DBA). A person in an
installation who has the responsibility (full or part time)
for technically supporting the use of DL/I.

data base definition (DBD). A description of the
physical characteristics of a DL/I data base. One DBD
is generated and cataloged in a core image library for
each data base that is used in the installation. It
defines the structure, segment keys, physical
organization, names, access method, devices, etc., of
the data base.

data base integrity. The protection of data items in a
data base while they are available to any application
program. This includes the isolation of the effects of
concurrent updates to a data base by two or more
application programs.

data base organization. The physical arrangement of
related data on a storage device. DL/I data base
organizations are hierarchical direct (HD) and
hierarchical sequential (HS). See hierarchical direct
organization and hierarchical sequential organization.

data base record. A collection of DL/I data elements
called segments hierarchically related to a single root
segment.

1 International Organization for Standardization, Technical Committee 97/Subcommittee 1

 Copyright IBM Corp. 1981, 2002 X-1

data dictionary. (1) A centralized repository of
information about data, such as: its meaning,
relationship to other data, usage, and format. (2) A
program to assist in effectively planning, controlling, and
evaluating the collection, storage, and use of data. For
example, DOS/VS DB/DC Data Dictionary.

data element. The smallest unit of data that can be
referred to. Synonymous with field. See also data
aggregate.

data field. Synonymous with field.

data independence. (1) The concept of separating
the definitions of logical and physical data such that
application programs do not depend on where or how
physical units of data are stored. (2) The reduction of
application program modification in data storage
structure and access strategy.

data management block (DMB). The data
management block is created from a DBD by the
application control blocks creation and maintenance
utility, link edited, and cataloged in a core image library.
The DMB describes all physical characteristics of a data
base. Before an application program using DL/I
facilities can be run, one DMB for each data base
accessed, plus a PSB for the program itself, must be
cataloged in a core image library. The DMBs and the
associated PSB are automatically loaded into main
storage from the core image library at the beginning of
the application program execution (their loading is
controlled by the parameter information supplied to DL/I
at the beginning of program execution).

data set. A named organized collection of logically
related records. They may be organized sequentially,
as in the case of DOS/VSE SAM, or in key entry
sequence, as in the case of VSE/VSAM. Synonymous
with file.

DB. Data base.

DBA. (1) Data base administration (2) Data base
administrator.

DBD. Data base description.

DBDGEN. Data base definition generation—the
process by which a DBD is created.

DB/DC. Data base/data communication.

DC. Data communication.

dependent segment. A DL/I segment that relies on at
least the root segment (and other dependent segments)
for its full hierarchical meaning. Synonymous with child
segment.

destination parent. The physical or logical parent
segment reached by the logical child path.

device independence. The concept of writing
application programs such that they do not depend on
the physical characteristics of the device on which data
is stored.

direct access. The retrieval or storage of a VSAM
data record independent of the record's location relative
to the previously retrieved or stored record.

DMB. Data management block.

entity. An item about which information is stored. It
has properties that can be recorded. Information about
an entity is a record.

entry sequenced data set (ESDS). A VSAM data set
whose records are physically in the same order as they
were put in the data set. It is processed by addressed
direct access or addressed sequential access and has
no index. New records are added at the end of the
data set.

ESDS. Entry sequenced data set.

field. (1) a unique or nonunique area (as defined
during DBDGEN) within a segment that is the smallest
unit of data that can be referred to. See also key field.
(2) Any designated portion of a segment.

field level sensitivity. The ability of an application
program to access data at the field level. See
sensitivity.

forward. Movement in a direction from the beginning
of the data base to the end of the data base, accessing
each record in ascending root key sequence, and
accessing the dependent segments of each root
segment from top to bottom and from left to right.
Referring to Figure G-1, forward accessing of all
segments shown would be in the following sequence:

A-001, B-01, C-5, C-7, B-02, B-03, C-2, D, E, F, F, F,
A-002.

HD. Hierarchical direct.

HDAM. Hierarchical direct access method.

HIDAM. Hierarchical indexed direct access method.

HIDAM index. A data base that consists of logical DL/I
records each containing an image of the key field of a
HIDAM root segment. A HIDAM index data base
consists of one VSAM KSDS (keyed sequenced data
set).

hierarchical direct access method (HDAM). Provides
for direct access to a DL/I data base in the HD

X-2 DL/I DOS/VS Application and Data Base Design

organization. Segments are stored in VSAM control
intervals and are referenced by a relative byte address.
Root segments are accessed through a randomizing
routine. An HDAM data base consists of one VSAM
entry sequenced data set (ESDS).

hierarchical direct organization. An organization of
DL/I segments of a data base that are related by direct
addresses and may be accessed through an HD
randomizing routine or an index.

hierarchical indexed direct access method
(HIDAM). Provides for indexed access to a DL/I data
base in the HD organization. Segments are stored in
VSAM control intervals and are referenced by a relative
byte address. Root segments are accessed through a
HIDAM index data base. A HIDAM data base consists
of one VSAM Entry Sequenced Data Set (ESDS).

hierarchical indexed sequential access method
(HISAM). Provides for indexed access to a DL/I data
base. A HISAM data base consists of one VSAM key
sequenced data set (KSDS) and one VSAM entry
sequenced data set (ESDS).

hierarchic sequence. The sequence of segment
occurrences in a data base record defined by traversing
the hierarchy from top to bottom, front to back, and left
to right.

hierarchical sequential access method (HSAM). The
segments of a DL/I HSAM physical data base record
are arranged in sequential order with the root segments
followed by the dependent segments. HSAM data
bases are accessed by the DOS/VSE sequential access
method (SAM).

hierarchical sequential organization. An organization
of DL/I segments of a data base that are related by
physical adjacency.

hierarchy. (1) An arrangement of data segments
beginning with the root segment and proceeding
downward to dependent segments. (2) A "tree"
structure.

HISAM. Hierarchical indexed sequential access
method.

HS. Hierarchical sequential.

HSAM. Hierarchical sequential access method.

index data set. An ordered collection of DL/I index
entries consisting of a key and a pointer used by VSAM
to sequence and locate the records of a key sequenced
data set (KSDS). Organized as a balanced tree of
levels of index.

index pointer segment. The segment that contains
the data and pointers used to index the index target
segments.

index record. A system-created collection of VSAM
index entries that are in collating sequence by the key
in each of the entries.

index segment. The segment in the index data base
that contains a pointer to the segment containing data
(the indexed segment). Synonymous with index pointer
segment.

index source segment. The segment containing the
data from which the indexing segment is built.

index target segment. The segment pointed to by a
secondary index entry, that is, by an index pointer
segment.

indexed segment. A segment that is located by an
index. Synonymous with index target segment.

intersection data. Any user data in a logical child
segment that does not include the logical parent's
concatenated key.

key. (1) The field in a segment used to store segment
occurrences in sequential order. (2) A field used to
search for a segment. (3) Synonymous with key field
and sequence field.

Note: A segment may or may not have a key, that is,
a sequence field. All root segments, except for HSAM
and simple HSAM data bases, must have keys. DL/I
ensures that multiple segments of the same type that
have keys are maintained in strict ascending sequence
by key. The key may be located anywhere within a
segment; it must be in the same location in all
segments of the same type within a data base. The
maximum sizes for keys are 236 alphameric characters
for root segments, and 255 for all dependent segments.
Keys provide a convenient way to retrieve a specific
occurrence of a segment type, maintains the
uniqueness and sequential integrity of multiples of the
same segment type, and determine under which
segment of a group of multiples new dependent
segments are to be inserted. Keys should normally be
prescribed for all segment types; the exception being if
there will never be multiples of a particular type or if a
particular segment type will never have dependents.

level. Level is the depth in the hierarchical structure at
which a segment is located. Roots are always the
highest level and the segments at the bottom of the
structure are the lowest level. The maximum number of
levels in a a DL/I data base is 15. For purposes of
documentation and reference, the levels are numbered
from 1 to 15, with the root segments being level number
1. Referring to Figure G-1:

 Glossary X-3

� Three levels are shown.

� The A segments (roots) are at the highest level
(level 1).

� The C and E segments are at the lowest level (level
3).

local view. A description of the data that an individual
business process requires. See system view.

logical. When used in reference to DL/I components,
logical means that the component is treated according
to the rules of DL/I rather than physically as it may
exist, or as it may be organized, on a physical storage
device. For example, a logical DL/I record (a root
segment and all of its dependent segments grouped)
might be contained on several physical records or
blocks on a storage device; and because of prior
insertions and deletions, the segments might be in
different physical sequence than that by which they are
retrieved logically for the application program by DL/I.

logical child. A pointer segment that establishes an
access path between its physical parent and its logical
parent. It is a physical child of its physical parent; it is a
logical child of its logical parent. See also logical parent
and logical relationship.

logical data base. A data base composed of one or
more physical data bases representing a hierarchical
structure derived from relationships between data
segments that can be different from the physical
structure.

logical data base record. (1) A set of hierarchically
related segments of one or more segment types. As
viewed by the application program, the logical data
base record is always a hierarchic tree structure of
segments. (2) All of the segments that exist
hierarchically dependent on a given root segment, and
that root segment.

logical data structure. A hierarchic structure of
segments that is not based solely on the physical
relationship of the segments. See also logical
relationships.

logical parent. The segment a logical child points to.
A logical parent segment can also be a physical parent.
See also logical child and logical relationship.

logical relationship. A user defined path between two
segments; that is, between logical parent and logical
child, which is independent of any physical path.
Logical relationships can be defined between segments
in the same physical data base hierarchy or in different
hierarchies.

logical twin. All occurrences of one type of logical
child with a common logical parent. Contrast with
physical twin. See also twin segment.

parent. Synonymous with parent segment.

parent segment. (1) A segment that has one or more
dependent segments. Contrast with child. (2) A parent
is the opposite of a child, or dependent segment, in that
dependent segments exist directly beneath it at lower
levels. A parent may also itself be a child. Referring to
Figure G-1:

� A-001 is the parent of all B, C, D, E, and F
segments.

� D is a parent of E; yet a child of A.

� B-02 is not a parent.

� None of the level-3 segments are parents.

path. The chain of segments within a record that leads
to the currently retrieved segment. The formal path
contains only one segment occurrence from each level
from the root down to the segment for which the path
exists.

PCB. Program communication block.

physical child. A segment type that is dependent on a
segment type defined at the next higher level in the
data base hierarchy. All segment types, except the root
segment, are physical children because each is
dependent on at least the root segment. See also child
segment.

physical data base. An ordered set of physical data
base records.

physical data base record. A physical set of
hierarchically related segments of one or more segment
types.

physical data structure. A hierarchy representing the
arrangement of segment types in a physical data base.

physical parent. A segment that has a dependent
segment type at the next lower level in the physical
data base hierarchy. See also parent.

physical segment. The smallest unit of accessible
data.

physical twins. All occurrences of a single physical
child segment type that have the same (single
occurrence) physical parent segment type. Contrast
with logical twins. See also twin segment.

pointer. A physical or symbolic identifier of a unique
target.

X-4 DL/I DOS/VS Application and Data Base Design

primary key. The data element or combination of data
elements within a data aggregate that uniquely identifies
an occurrence of that data aggregate. See secondary
key.

program communication block (PCB). Every data
base accessed in an application program has a PCB
associated with it. The PCB actually exists in DL/I and
its fields are accessed by the application program by
defining their names within the application program.

program specification block (PSB). A PSB is
generated for each application program that uses DL/I
facilities. The PSB is associated with the application
program for which it was generated and contains a PCB
for each data base that is to be accessed by the
program. Once it is generated, the PSB is cataloged in
a core image library, and subsequently processed by a
utility along with the associated DBDs to produce the
updated PSB and DMBs; all of these are cataloged in a
core image library for subsequent use by the application
program during execution.

PSB. Program specification block.

PSBGEN. PSB generation—the process by which a
program specification block is created.

RAP. Root anchor point.

record. A data base record is made up of at least a
unique root segment, and all of its dependent
segments. See also data base record.

Referring to Figure G-1: A-001, B-01,C-5, C-7, B-02,
B-03, C-2, D, E, F,F,F constitute a data base record.

root anchor point (RAP). A DL/I pointer in an HDAM
control interval pointing to a (chain of) root segment(s).

root segment. The highest level (level 1) segment in a
record. A root segment must have a key unless the
organization is HSAM or simple HSAM. The sequence
of the root segments constitutes the fundamental
sequence of the data base. There can be only one root
segment per record. Dependent segments cannot exist
without a parent root segment; but a root segment can
exist without any dependent segments.

secondary index. Secondary indexes can be used to
establish alternate entries to physical or logical data
bases for application programs. They can also be
processed as data bases themselves. See also
secondary index data base.

secondary index data base. An index used to
establish accessibility to a physical or logical data base
by a path different from the one provided by the data
base definition. It contains index pointer segments.

secondary key. A data element or combination of
data elements within a data aggregate that identifies
those occurrences of the aggregate that have a
property named by the key. Used to locate those
occurrences. See primary key.

segment. A segment is a group of similar or related
data that can be accessed by the application program
with one I/O function call. There may be a number of
segments of the same type within a record.

segment name. A segment name is assigned to each
segment type. Segment names for the different
segment types must be unique within a data base.
Synonymous with segment type.

segment occurrence. One instance of a set of similar
segments.

segment type. Different segment types may have
different lengths, but within each single type, all
segments must be the same length (unless variable
length segments have been specified by DBA).

Referring to Figure G-1, there are six different types of
segments: A through F. Synonymous with segment
name.

sensitivity. (1) A DL/I capability that ensures that only
data segments or fields predefined as "sensitive" are
available for use by a particular application program.
The sensitivity concept also provides a degree of
control over data security, inasmuch as users can be
prevented from accessing particular segments or fields
from a logical data base. (2) Sensitivity to the various
segments and fields that constitute a data base is
controlled, on a program-by-program basis, when the
PSB for each program is generated. For example, a
program is said to be sensitive to a segment type when
it can access that segment type. When a program is
not sensitive to a particular segment type, it appears to
the program as if that segment type does not exist at all
in the data base. Segment sensitivity applies to types
of segments, not to specific segments within a type, and
to all segment types in the path to the lowest level
sensitive segment type.

sequence field. Synonymous with key field.

sequential processing. Processing or searching
through the segments in a data base in a forward
direction. See also forward.

simple HISAM. A hierarchical indexed sequential
access method data base containing only one segment
type.

source segment. A segment containing the data used
to construct the secondary index pointer segment. See
also secondary index data base.

 Glossary X-5

system view. A conceptual data structure that
integrates the individual structures of local views into an
optimum arrangement for physical implementation as a
data base. See local view.

transaction. A specific set of input data that triggers
the execution of a specific process or job.

twin segments. All child segments of the same
segment type that have a particular instance of the
same parent type. See also physical twins and logical
twins.

twins. Synonymous with twin segments.

X-6 DL/I DOS/VS Application and Data Base Design

 Index

 Index

A
access

indexed 7-6
randomized 7-5

application analysis 4-1—4-8
analyzing data 4-8
creating a data dictionary 4-8
defining programs 4-3—4-7

example 4-7
method 4-3—4-7
requirements and considerations 4-4—4-7

defining tasks 4-1
naming conventions 4-7

additional for DL/I B-3
in sample application A-6
introduction 4-7
recommended B-1—B-4

application design 1-1—4-8
link to data base administration 7-1
procedure 1-9

application analysis 1-9
combining local views 1-9
converting to physical view 1-9
creating local views 1-9
implementing application 1-9
obtaining application requirements 1-9
preliminary analysis 1-9

application design with data bases example A-1—A-16
application requirements 3-1—3-5

definition 3-1
documentation 3-4

requirements listing 3-5
types of data 3-4

example 4-1
education company 4-1
sample program A-2

existing sources 3-3
interviews 3-1—3-3

conducting 3-2
organizing 3-1

questionnaires 3-4
reviewing 3-5
setting up a team 3-1

B
building local views 5-4—5-18
business process

definition 4-1

C
Chained File DL/I Bridge 1-7
child

definition 1-2, 1-5
choosing an access method 7-7—7-16

direct access considerations 7-8
logical relationships 7-8
secondary indexes 7-10

implementation requirements 7-13
data access requirements 7-14
performance considerations 7-14
recovery requirements 7-14
security requirements 7-14
structural considerations 7-14

class data aggregate 5-4, 5-5
class schedule

combining local view 6-8
defining application programs 4-7
distributed vs local processing 4-5
frequency of use 4-4
local view as input 6-5
requirement for 4-2
type of access 4-4

combining local views 6-1—6-10
concatenated key

data elements identified by whole 5-4
definition 5-1, 5-7, 6-3
intersection data 6-4
introducing to avoid many-to-many mapping 6-3

conceptual data structure 5-1
design of 5-1
included in local view 5-1
not a data base 5-2

conceptual structure
data base as 1-3
system view as 7-1

controlling key 5-10
conventional file

compared to data base 1-1
implementation compared to data base 1-3
physical record 1-1
processing vs data base processing 4-6

converting system view to physical view 7-1—7-16
choice of access method 7-7—7-16
data base organization and access

methods 7-2—7-7
DBA decisions 7-2

dependent segment access 7-2
root segment access 7-2
updating data 7-2

direct organization 7-5

 Copyright IBM Corp. 1981, 2002 X-7

 Index

converting system view to physical view (continued)
sequential organization 7-3

cprent
definition 1-2, 1-5

current roster
analyzing associations 5-4
combining local view 6-8
defining application programs 4-7
distributed vs local processing 4-5
frequency of use 4-4
grouping data elements with keys 5-10
input requirements 4-4
isolating duplicate values 5-8
isolating repeating data elements 5-3, 5-7
local view as input 6-5
mappings 5-11
online vs batch 4-5
primary keys 5-6
report requirements 5-5
requirement for 4-1

D
data aggregate

class 5-4, 5-5
correspondence to segment 7-1
definition 5-1

data base
as conceptual structure 1-3
compared to conventional file 1-1
definition 1-1, 1-3, 7-1
implementation compared to conventional file 1-3
physical implementation of conceptual structure 7-1
processing vs conventional file processing 4-6

data base administration
choice of organization and access method 7-15
decisions 7-2
definition 6-9
implementation requirements and data base design

decisions 7-13
link to application design 7-1
physical implementation 7-1
task of physical data base design 7-1

data base back-up 6-10
data base design

benefits of good 1-7
consequences of poor 1-7
creating local views 5-1—5-18
objectives 1-6
process 5-1—7-16
tools 1-7

Data Base Design Aid 1-8
DB/DC Data Dictionary 1-8
Documentation Aid 1-7

Data Base Design Aid 1-7, 1-8

data base record
compared to physical record 1-2
definition 1-2, 1-3
levels in 1-3

data base structures 1-3—1-6
flat file 1-4
hierarchical 1-4—1-5
network 1-5—1-6

data communications requirements 4-6
data dictionary

as design tool 1-7
DB/DC 1-7

description 1-8
definition 4-8
knowledge about data elements 5-5
use in implementation plan 8-2
use in sample application A-9
user created 4-8, A-9

data element
correspondence to field 7-1
included in local view 5-1
knowledge of required 1-1
values 5-1

data encryption 6-10
data management support requirements 4-6
data structure

as data base record 1-3
compared to physical record 1-1

DB/DC Data Dictionary 1-7, 1-8, 4-8
DBA

See data base administration
DBD B-3

naming convention B-3
decision tree chart 7-15
defining programs 4-3—4-7

example 4-7
requirements and considerations 4-4—4-7

data base vs conventional file processing 4-6
distributed vs local processing 4-5
frequency of use 4-4
input requirements 4-4
online vs batch 4-5
output requirements 4-4
resource requirements 4-6
type of access 4-4
type of processing 4-5

dependent segment
definition 1-2
in data base record 1-3

direct access 4-4
direct organization 7-5—7-7

advantages 7-5
definition 7-5
disadvantage 7-5
indexed access 7-6
pointers 7-5

X-8 DL/I DOS/VS Application and Data Base Design

 Index

direct organization (continued)
randomized access 7-5

DL/I
characteristics of data bases 1-2
terms 1-2

DL/I sample application A-1—A-16
Documentation Aid 1-7
double arrow link

example 6-8
isolated attributes 6-4
secondary key candidates 6-2

E
education company

applications 4-1
class data aggregate 5-1
class schedule 4-2
current roster 4-1
education centers 4-1
headquarters 4-1
instructor schedules 4-3
instructor skills 4-2
logical relationships 5-12
secondary indexing 5-13

encryption of data 6-10
example of application design with data

bases A-1—A-16

F
field 7-1

correspondence to data element 7-1
file

conventional 1-1
compared to data base 1-1
implementation compared to data base 1-3
physical record 1-1
processing vs data base processing 4-6

flat 1-4
flat file 1-4

as data base 1-4
definition 1-4

G
grouping data elements with keys 5-4, 5-10

H
hardware requirements 4-6
HD options 7-6
health care application 7-8

patient data base 7-8
purchasing data base 7-8

hierarchical sequence
definition 1-3

hierarchical sequence (continued)
sequential organization 7-3

hierarchical structure 1-4—1-5
compared to network 1-5
definition 1-4, 1-5

high usage paths 6-9
HISAM 7-3, 7-4

disadvantages 7-4
method of data storage 7-4
uses 7-4

HSAM 7-3
method of data storage 7-3
uses 7-3

I
identifier 5-5

definition 5-5
implementation phase

first to implement 8-2
requirements for success 8-2

implementation requirements
data access requirements 6-9
defining 6-9
performance considerations 6-9
recovery requirements 6-10
security requirements 6-9
structural considerations 6-9

implementing an application 8-1—8-3
implementation 8-2

first phase 8-3
schedule 8-3

implementation plan 8-1
developing 8-1
implementation in phases 8-1, 8-2

index data base 7-6, 7-7
indexed access

characteristics 7-7
how it works 7-7

index data base 7-7
pointers 7-7
primary data base 7-7

index data base 7-6
method of data storage 7-7
uses 7-6

instructor schedules
combining local view 6-8
defining application programs 4-7
frequency of use 4-4
local view as input 6-6
online vs batch 4-5
requirement for 4-3
type of access 4-5

instructor skills
combining local view 6-8
defining application programs 4-7

 Index X-9

 Index

instructor skills (continued)
frequency of use 4-4
local view as input 6-6
online vs batch 4-5
requirement for 4-2

intersecting attributes 6-4
definition 6-4

intersection data 6-4
definition 6-4

interviews 3-1—3-3
conducting 3-2

attitude of interviewers 3-2
causes of hostile attitude 3-2
establishing a good relationship 3-2
getting detail 3-3

organizing 3-1
setting up a team 3-1
with lower levels 3-2
with management 3-2

inverse relationships between primary keys 6-7
inverted structure

definition 7-12
isolated attributes 6-4

definition 6-4
isolating duplicate values 5-3—5-4, 5-8
isolating repeating data elements 5-2—5-3, 5-7

K
key

concatenated key 5-1
definition 5-1, 6-3

controlling 5-4
definition 1-4, 5-1
grouping data elements with 5-4, 5-10
identifying 6-2

concatenated 6-3
primary 6-2
secondary 6-2

primary key 1-4, 5-6
avoiding many-to-many relationships

between 6-3
candidate 6-2
definition 1-4, 6-2
identifying 5-6
root key 6-2

secondary key 1-4, 5-6
definition 1-4, 6-2
identifying 5-6

key field
definition 1-3

L
level

definition 1-3, 1-5

link
double arrow 6-2

example 6-8
isolated attributes 6-4
secondary key candidates 6-2

single arrow 6-2
between keys in color 6-2
with concatenated keys 6-3

local view
building 5-4—5-18

analyzing associations 5-4
considerations that might alter 5-13
examples 5-14—5-18
identifying alternate processing sequences 5-13
identifying intersecting attributes 5-11
identifying keys 5-6—5-7
identifying relationships (mapping) 5-10
logical relationship candidates 5-11
secondary indexing candidates 5-13
using the three step process 5-7—5-10

considerations that might alter 5-13
addition 5-14
deletion 5-14
replacement 5-14
retrieval 5-14

definition 5-1
examples 5-14—5-18

class schedules 5-14
instructor schedules 5-17
instructor skills 5-16

identifying alternate processing sequences 5-13
identifying intersecting attributes 5-11
identifying relationships 5-10

definition 5-10
logical relationship candidates 5-11
mapping 5-10

definition 5-10
many-to-many 5-11
one-to-many 5-11
one-to-one 5-11

secondary indexing candidates 5-13
logical data base definition 7-9
logical relationship candidate 6-8
logical relationships

accessing through different path 7-8
as direct access considerations 7-8
as structural considerations 6-9
bidirectional 5-12
candidates 6-8
definition 1-5, 5-11
inverting parent/child relationship 7-9
logical structure 5-12
redundant data 7-10
unidirectional 5-12
use in health care application 7-9
use of pointers 5-12

X-10 DL/I DOS/VS Application and Data Base Design

 Index

logical relationships (continued)
uses 7-8

logical structure 5-12
definition 5-12

M
many-to-many mapping

procedure for avoiding 6-3
many-to-many relationships

avoiding between primary keys 6-3
procedure 6-3

between data aggregates 5-11
between data elements 6-1
between primary keys 6-7
not allowed in hierarchy 5-11

many-to-one relationships
between data elements 6-1

mapping
between keys 6-3
definition 5-2, 5-10
many-to-many 6-3

procedure for avoiding 6-3
multiple occurrences of data aggregate 5-3, 5-8

choosing 5-8
multiple values of data element 5-2, 5-3, 5-7

N
naming conventions

introduction 4-7
recommended B-1—B-4

additional for DL/I B-3
used in sample application A-6

network structure 1-5—1-6
compared to hierarchical 1-5
definition 1-5

O
one-to-many relationships

between data aggregates 5-11
between data elements 6-1

one-to-one relationships
between data aggregates 5-11
between data elements 6-1

P
performance considerations

in system view 6-8
procedure 6-8

personnel requirements 4-6
physical data base 5-11, 6-1, 7-1
pointer

affect on performance 7-6
dependent segments chained by 7-6, 7-7

pointer (continued)
fast access to path of segments 7-5
in bidirectional logical relationships 5-12
in direct access 7-5
in indexed access 7-7
in indexing 7-11
in logical relationships 5-12, 7-9
maintained internally 7-5
not used in sequential organization 7-3
overhead 7-5
placement for logical relationships 7-9
segment 7-9, 7-11
special in indexed access 7-7
to free space 7-6

pointer segment 7-11
preliminary analysis 2-1—2-2

adding an application 2-2
how to use for first application 2-1

interest from end users 2-2
setting up a team 2-2
support of management 2-1

initial application 2-1
interest from end users 2-1
setting up a team 2-1
support of management 2-1

primary key
candidate 5-6, 6-2
definition 1-4, 5-6, 6-2

processing authority control 6-9
processor capability requirements 4-6
PSB B-3

naming convention B-4

R
randomized access

characteristics 7-5
how it works 7-6

chain of root segments 7-6
free space 7-6
HD options 7-6
physical block number 7-6
randomizing routine 7-6
root anchor point 7-6
synonyms 7-6

method of data storage 7-5
performance 7-6
uses 7-5

randomizing routine 7-6
for sequential access 7-6

real storage requirements 4-6
recommended naming convention B-1—B-4

additional for DL/I B-3
DBD B-3
field B-4
file-id B-4

 Index X-11

 Index

recommended naming convention (continued)
filename B-3
job name B-2
phase name B-2
program name B-2
PSB B-4
segment B-4

record 1-4
recovery requirements 6-10
redundancies

eliminating 6-2
relationships 6-1

many-to-many 6-1
many-to-one 6-1
one-to-many 6-1
one-to-one 6-1

reorganization requirements 6-10
requirements listing

definition 3-5
for sample application A-2
knowledge about data elements 5-5
source of input requirements 4-4
source of output requirements 4-4
use in implementation plan 8-1
using to create data dictionary 4-8
using to define tasks 4-3

root
definition 1-5

root anchor point 7-6
root key

definition 6-2
root segment

definition 1-2
in data base record 1-3
key field in 1-3

S
sample application A-1—A-16

application analysis A-5—A-9
creating a data dictionary A-9
defining programs A-5
defining tasks A-5
naming convention A-6

combining local views A-14—A-15
creating local views A-10—A-14

three step process A-12
customer data base A-2
inventory data base A-1
objectives A-1
obtaining application requirements A-2
system view to physical view A-16

secondary index candidate 6-8
secondary indexing

as direct access considerations 7-10
as structural considerations 6-9

secondary indexing (continued)
data base 7-11
definition 5-13
retrieving segments based on dependent's

qualification 7-12
terms 7-11

pointer segment 7-11
source segment 7-11
target segment 7-12

uses 7-10
using a different key 7-11

secondary key
definition 1-4, 5-6, 6-2

segment 7-1
compared to physical record 1-1
correspondence to data aggregate 7-1
dependent 1-2

definition 1-2
root 1-2

definition 1-2
key field in 1-3

segment edit/compression 7-13
segment edit/compression routine 6-9
segment type

definition 1-3
sequential access 4-4
sequential order

records stored in 1-4
sequential organization 7-3—7-4

advantages 7-3
definition 7-3
disadvantages 7-3
HISAM 7-4
HSAM 7-3
simple HISAM 7-4
simple HSAM 7-4

SHISAM 7-4
SHSAM 7-4
simple HISAM 7-4
simple HSAM 7-4
single arrow link

between keys in color 6-2
with concatenated keys 6-3

single occurrence of data aggregate 5-2, 5-7
source segment 7-11
Standards Manual for DOS/VSE 4-7, B-1
synonym 7-6
system view 6-1—6-10

combining local views 6-7—6-9
example 6-8—6-9
procedure 6-7—6-8

defining implementation requirements 6-9—6-10
definition 6-1
eliminating redundancies 6-2
generating 6-1—6-9

operations 6-1—6-7

X-12 DL/I DOS/VS Application and Data Base Design

 Index

system view (continued)
identifying keys 6-2

concatenated 6-3
primary 6-2
secondary 6-2

intersecting attributes 6-4
intersection data 6-4
isolated attributes 6-4
local views as input 6-4
mapping between keys 6-3
procedure 6-3
relationships 6-1

many-to-many 6-1
many-to-one 6-1
one-to-many 6-1
one-to-one 6-1

removing undesirable associations 6-3

T
target segment 7-12
three step process 5-2—5-4

grouping data elements with keys 5-2, 5-4, 5-10
introduction 5-2
isolating duplicate values 5-2, 5-3, 5-8
isolating repeating data elements 5-2, 5-7
using 5-7—5-10

tools, data base design 1-7
tree structure 1-5

See also hierarchical structure
definition 1-5

U
undesirable associations

removing 6-3

V
variable length segments 6-9, 7-13

size field 7-13
uses 7-13

 Index X-13

Communicating Your Comments to IBM

IBM Data Language/I Disk Operating System/
Virtual Storage (DL/I DOS/VS)
Application and Data Base Design
Version 1 Release 7

Publication No. SH24-5022-01

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of the book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF form and either send it
postage-paid in the United States, or directly to:

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

� If you prefer to send comments by FAX, use this number:

 – (Germany): 07031-16-3456
– (Other countries): (+49)+7031-16-3456

� If you prefer to send comments electronically, use this network ID:

INTERNET: s390id@de.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

IBM Data Language/I Disk Operating System/
Virtual Storage (DL/I DOS/VS)
Application and Data Base Design
Version 1 Release 7

Publication No. SH24-5022-01

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? � Yes � No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction � � � � �

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SH24-5022-01 IBM

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

Fold and Tape Please do not staple Fold and Tape

SH24-5022-01

IBM

File Number: S370/S390-50
Program Number: 5746-XX1

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH24-5�22-�1

	Contents
	Figures
	Notices
	Trademarks and Service Marks

	Preface
	Related Publications:

	Summary of Changes
	Part 1. Introduction
	Part 2. Application Design
	Chapter 1. The Relationship of Data Base Design to Application Design
	Data Base Concepts and Terminology
	Data Base Structures
	Flat File
	Hierarchical
	Network

	Data Base Design
	Objectives
	Benefits of Good Design
	Consequences of Poor Design
	Data Base Design Tools
	Data Base Design Aid
	DB/DC Data Dictionary

	An Application Design Procedure
	Preliminary Analysis
	Obtaining Application Requirements
	Application Analysis
	Creating Local Views From Requirements
	Combining Local Views Into a System View
	Converting the System View to a Physical View
	Implementing the Application

	Chapter 2. Preliminary Analysis
	Initial Application
	Adding an Application

	Chapter 3. Collecting Application Requirements
	Interviews
	Organizing the Interviews
	Conducting the Interviews

	Existing Sources
	Questionnaires
	Documentation
	Reviewing the Requirements

	Chapter 4. Application Analysis
	Defining the Tasks
	Defining Programs to Accomplish the Tasks
	Requirements and Considerations
	Input Requirements
	Output Requirements
	Frequency of Use
	Type of Access
	Type of Processing
	Online vs Batch
	Distributed vs Local Processing
	Resource Requirements
	Data Base vs Conventional File-processing

	Defining Application Programs to Meet the Requirements

	Naming Conventions
	Creating a Data Dictionary From the Requirements Listing
	Analyzing Application Data

	Part 3. Data Base Design
	Chapter 5. Creating Local Views From Requirements
	The Three Step Process
	1. Isolating Repeating Data Elements
	2. Isolating Duplicate Values
	3. Grouping Data Elements With Their Keys

	Building the Local Views
	Analyzing Associations
	Identifying Keys
	Primary Keys
	Secondary Keys

	Using the Three Step Process
	1. Isolating Repeating Data Elements
	2. Isolating Duplicate Values
	3. Grouping Data Elements With Their Keys
	Identifying Relationships (Mapping)
	Identifying Intersecting Attributes (Logical Relationship Candidates)
	Identifying Alternate Processing Sequences (Secondary Indexing Candidates)
	Considerations That Might Alter a Local View
	Retrieval
	Addition
	Replacement
	Deletion

	Further Local View Examples
	Schedule of Courses
	Instructor Skills Report
	Instructor Schedules

	Chapter 6. Combining Local Views Into a System View
	Generating a System View
	Eliminating Redundancies
	Identifying Keys
	Primary Keys
	Secondary Keys
	Concatenated Keys

	Removing Undesirable Associations
	Mapping Between Keys
	Intersection Data
	Intersecting Attributes
	Isolated Attributes
	Local Views as Input
	Local View 1. Current Roster
	Local View 2. Schedule of Classes
	Local View 3. Instructor Skills Report
	Local View 4. Instructor Schedules

	Combining Local Views
	Procedure
	Example

	Defining Implementation Requirements
	Performance Considerations
	Data Access Requirements
	Structural Considerations
	Security Requirements
	Recovery Requirements

	Chapter 7. Converting the System View to a Physical View
	DL/I Data Base Organization and Access Methods
	Sequential Organization (HS)
	HSAM Access Method
	Simple HSAM Access Method
	HISAM Access Method
	Simple HISAM Access Method

	Direct Organization (HD)
	Randomized Access
	Indexed Access

	Factors in the Choice of an Access Method
	Special Direct Access Considerations
	Logical Relationships
	Secondary Indexes
	Variable Length Segments
	Segment Edit/Compression

	Implementation Requirements
	Choosing an Access Method

	Chapter 8. Implementing the Application
	Implementation Plan
	Implementation

	Appendix A. Appendix A: An Example of Application Design With Data Bases
	Inventory Data Base
	Customer Data Base
	Obtaining Application Requirements
	Customer Listing
	Inventory Listing
	Interactive Order Entry and Query

	Application Analysis
	Defining the Tasks
	Defining Programs to Accomplish the Tasks
	Naming Conventions Used in the Sample Application
	Creating a Data Dictionary From the Requirements Listing

	Creating Local Views From Requirements
	Combining Local Views Into a System View
	Converting the System View to a Physical View

	Appendix B. Appendix B: A Recommended Naming Convention
	Job Name
	Program Name
	Phase Name
	Additional Conventions for DL/I
	DBD
	Filename
	File-Id
	PSB
	Segment
	Field

	Glossary
	Index

