
z/OS

IBM Health Checker for z/OS User’s Guide

Version 1 Release 9

SA22-7994-05

���

z/OS

IBM Health Checker for z/OS User’s Guide

Version 1 Release 9

SA22-7994-05

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

389.

Sixth Edition, September 2007

This edition applies to Version 1 Releases 9 of z/OS (5694-A01) and to all subsequent releases and modifications

until otherwise indicated in new editions.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you

may address your comments to the following address:

 International Business Machines Corporation

 MHVRCFS, Mail Station P181

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

This was a team effort!

This book was a team effort:

It was put together with help from all the following people:

 Allen Carney

Bill Keller

Bill Schoen

Bobby Gardinor

Brian Thomas

Charles Mari

Chris Hastings

Daniel Acevedo

Dave Gill

Dave Stilwell

Dave Surman

David Hom

David Yackel

Debbie Beatrice

Don Goldie

Doug Zobre

Elpida Tzortzatos

Geoff Miller

Jason Grusauskas

Jim Becker

Jim Guilianelli

Joseph Marsh

Karen Ransom

Ken Jonas

Kevin Minerley

Luis Miranda

Mark Nelson

Marne Walle

Mary Anne Hogarty

Mike Phillips

Nicole Fagen

Pete Redmond

Peter Relson

Ralph Sharpe

Rob Snyder

Sharon Phillips

Shirley Jubinsky

Simala Qamar

Steve Partlow

Teresa Hood

Thomas Shaw

Yoan Johnson

Kristine Logan

© Copyright IBM Corp. 2006, 2007 iii

iv IBM Health Checker for z/OS User’s Guide

Contents

This was a team effort! . iii

Figures . xiii

Tables . xv

About This Document . xvii

Who should use this document xvii

Where to find more information xvii

z/OS information updates on the web xviii

Using LookAt to look up message explanations xviii

Summary of changes . xix

Part 1. Using IBM Health Checker for z/OS 1

Chapter 1. Introduction . 3

What is a check? . 4

Background for IBM’s checks . 5

Chapter 2. Setting up IBM Health Checker for z/OS 7

Software requirements for IBM Health Checker for z/OS 7

Allocate the HZSPDATA data set to save check data between restarts 8

Set up the HZSPRINT utility . 8

Define log streams to keep a record of the check output 8

Create security definitions . 10

Setting up security for the IBM Health Checker for z/OS started task 10

Setting up security for the HZSPRINT utility 11

Setting up security for IBM Health Checker for SDSF support 14

Create multilevel security definitions 14

Optionally create HZSPRMxx from the HZSPRM00 parmlib member 15

Start IBM Health Checker for z/OS 16

Obtain checks for IBM Health Checker for z/OS 17

Chapter 3. Working with check output 19

Hey! My system has been configured like this for years, and now I’m receiving

exceptions! . 21

Understanding system data issued with the check messages 21

Understanding exception messages 22

Evaluating check output and resolving exceptions 23

Approaches to automation with IBM Health Checker for z/OS 24

More automation ideas . 25

Using HZS exception messages for automation 26

Understanding check state and status 26

User controlled states . 28

IBM Health Checker for z/OS controlled states 28

ACTIVE(DISABLED) and INACTIVE(ENABLED) - understanding check state

combinations . 29

Check status . 29

Using the HZSPRINT utility . 29

Example of HZSPRINT output 31

HZSPRINT utility completion codes 31

Finding check message documentation with LookAt 33

© Copyright IBM Corp. 2006, 2007 v

||

Chapter 4. Managing checks 35

Making dynamic, temporary changes to checks 36

Using SDSF to manage checks 37

Using the MODIFY hzsproc command to manage checks 38

Making persistent changes to checks 44

Creating IBM Health Checker for z/OS policies 44

How IBM Health Checker for z/OS builds policies from policy statements 46

Can I put non-policy statements in my HZSPRMxx member? 50

Policy statement examples 50

Can I create policy statements using the MODIFY command? 51

Specifying the HZSPRMxx members you want the system to use 51

Syntax and parameters for HZSPRMxx and MODIFY hzsproc command . . . 53

Guidelines for HZSPRMxx parmlib members 54

Statements and parameters 56

Examples of DISPLAY output 72

Part 2. Developing Checks for IBM Health Checker for z/OS 75

Chapter 5. Planning checks 79

Identifying potential checks . 80

The life-cycle of a check - check terminology 80

What kind of check do you want to write? 81

Local checks . 81

Remote checks . 82

REXX checks . 83

Summary of checks - differences and similarities 84

Where to next? A road map for developing your check 86

Chapter 6. Writing local check routines 87

Sample local checks . 87

Local check routine basics . 87

Defining a local check to IBM Health Checker for z/OS 89

Programming considerations . 89

Environment . 89

Requirements . 90

Restrictions . 90

Gotchas . 90

Input Registers . 90

Output Registers . 90

Establishing a recovery routine for a check 91

Sample reentrant entry and exit linkage 91

Using the check parameter parsing service (HZSCPARS) 92

Using the HZSPQE data area in your local check routine 92

Function codes for local check routines 93

Issuing messages in your check routine with the HZSFMSG macro 95

Reporting check exceptions 96

Defining the variables for your messages 97

Using default HZSMGB data area format (MGBFORMAT=0) 98

Using HZSMGB data area format MGBFORMAT=1 101

The well-behaved local check routine - recommendations and recovery

considerations . 103

Debugging checks . 106

Chapter 7. Writing remote check routines 109

Sample checks . 109

Remote check routine basics 110

vi IBM Health Checker for z/OS User’s Guide

||
||
||
||
||

Programming considerations 111

Environment . 111

Requirements . 111

Restrictions . 111

Establishing a recovery routine for a check 111

Preparing for check definition - making sure IBM Health Checker for z/OS is up

and running . 112

Using ENF event code 67 to listen for IBM Health Checker for z/OS

availability . 112

Allocate a pause element token using IEAVAPE 113

Issue the HZSADDCK macro to define check defaults to IBM Health Checker

for z/OS . 113

Example of the HZSADDCK macro call for a remote check 115

Pause the remote check routine with IEAVPSE 115

Using HZSCHECK REQUEST=OPSTART and REQUEST=OPCOMPLETE to

communicate check start and stop to IBM Health Checker for z/OS 116

Using the check parameter parsing service (HZSCPARS) 116

Using the HZSPQE data area in your remote check routine 116

Release codes for remote check routines 117

Issuing messages in your check routine with the HZSFMSG macro 119

Reporting check exceptions 121

Defining the variables for your messages 122

Using default HZSMGB data area format (MGBFORMAT=0) 123

Using HZSMGB data area format MGBFORMAT=1 125

Recommendations and recovery considerations for remote checks 127

Debugging checks . 129

Chapter 8. Writing REXX checks 131

Sample REXX checks . 131

REXX check basics . 131

Using input data sets in a TSO-environment REXX check 135

Using REXXIN data sets . 135

REXXIN data set naming conventions 136

Using REXXOUT data sets . 136

REXXOUT data set naming conventions 137

Examples: Capturing error data in REXXOUT 137

Defining a REXX check to IBM Health Checker for z/OS 139

Issuing messages in your REXX check with the HZSLFMSG function 141

Reporting check exceptions 143

The well-behaved REXX check - recommendations and recovery

considerations . 144

Debugging REXX checks . 146

Chapter 9. Writing an HZSADDCHECK exit routine 147

Programming considerations for the HZSADDCHECK exit routine 149

Environment . 149

Input Registers . 150

Output Registers . 150

Defining multiple local or REXX checks in a single HZSADDCHECK exit

routine . 151

Dynamically adding local or REXX exec checks to IBM Health Checker for

z/OS . 151

Using operator commands to add checks to the system dynamically 152

Using a routine to add checks to the system dynamically 152

Debugging HZSADDCHECK exit routine abends 152

Creating product code that automatically registers checks at initialization 153

Contents vii

||
||
||
||
||
||
||
||
||
||
||
||
|
||
||

Creating product code that deletes checks as it goes down 153

Chapter 10. Creating the message input for your check 155

How messages and message variables are issued at check runtime 156

Planning your check messages 159

Planning your exception messages 159

Planning your information messages 160

Planning your report messages 160

Planning your debug messages 161

Decide what release your check will run on 161

Decide whether to translate your exception messages into other national

languages . 161

Rely on IBM Health Checker for z/OS to issue basic check information for

you . 162

Creating the message input data set 162

Examples of message input 163

Syntax of message input . 171

Message input tags . 172

Special formatting tags for the message input data set 180

How messages are formatted in the message buffer 182

Using symbols in the message input data set 184

Generating the compilable assembler CSECT for the message input data set 187

Support for translating messages to other languages 191

Guidelines for coding translatable exception message text lines 191

Part 3. Reference . 195

Chapter 11. IBM Health Checker for z/OS System REXX Functions 199

HZSLSTRT function . 200

Input variables . 200

Output variables . 200

HZSLSTRT return codes . 202

HZSLFMSG function . 203

Input variables . 203

HZSLFMSG return codes 212

HZSLSTOP function . 213

Input variables . 213

Output variables . 213

HZSLSTOP return codes . 215

Chapter 12. IBM Health Checker for z/OS HZS macros 217

HZSADDCK macro — HZS add a check 218

Description . 218

HZSFMSG macro — Issue a formatted check message 236

Description . 236

HZSQUERY macro — HZS Query 259

Description . 259

HZSCHECK macro — HZS Check command request 275

Description . 275

HZSCPARS macro — HZS Check Parameter Parsing 289

Description . 289

Chapter 13. IBM Health Checker for z/OS checks 301

ASM checks (IBMASM) . 302

ASM_NUMBER_LOCAL_DATASETS 302

ASM_PAGE_ADD . 303

viii IBM Health Checker for z/OS User’s Guide

||
||
||
||
||
||
||
||
||
||
||
||

ASM_PLPA_COMMON_SIZE 304

ASM_PLPA_COMMON_USAGE 304

ASM_LOCAL_SLOT_USAGE 305

Communications Server checks (IBMCS) 306

CSTCP_SYSTCPIP_CTRACE_TCPIPstackname 306

CSTCP_SYSPLEXMON_RECOV_TCPIPstackname 307

CSTCP_TCPMAXRCVBUFRSIZE_TCPIPstackname 308

CSVTAM_CSM_STG_LIMIT 309

CSVTAM_T1BUF_T2BUF_EE 310

CSVTAM_T1BUF_T2BUF_NOEE 311

CSVTAM_VIT_DSPSIZE . 311

CSVTAM_VIT_OPT_ALL . 312

CSVTAM_VIT_OPT_PSSSMS 313

CSVTAM_VIT_SIZE . 314

Consoles checks (IBMCNZ) . 314

CNZ_AMRF_Eventual_Action_Msgs 314

CNZ_Console_MasterAuth_Cmdsys 315

CNZ_Console_Mscope_And_Routcode 316

CNZ_Console_Routcode_11 316

CNZ_EMCS_Hardcopy_Mscope 317

CNZ_EMCS_Inactive_Consoles 318

CNZ_Syscons_Master . 318

CNZ_Syscons_Mscope . 319

CNZ_Syscons_PD_Mode 319

CNZ_Syscons_Routcode . 320

CNZ_Task_Table . 321

Contents supervision checks (IBMCSV) 321

CSV_APF_EXISTS . 321

CSV_LNKLST_NEWEXTENTS 322

CSV_LNKLST_SPACE . 324

CSV_LPA_CHANGES . 325

Global Resource Serialization checks (IBMGRS) 327

GRS_Mode . 327

GRS_SYNCHRES . 327

GRS_CONVERT_RESERVES 328

GRS_EXIT_PERFORMANCE 328

GRS_GRSQ_SETTING . 329

GRS_RNL_IGNORED_CONV 330

PDSE checks (IBMPDSE) . 331

PDSE_SMSPDSE1 . 331

RACF checks (IBMRACF) . 331

RACF_GRS_RNL . 331

RACF_SENSITIVE_RESOURCES 336

RACF_classname_ACTIVE 342

RACF_IBMUSER_REVOKED 344

RRS checks (IBMRRS) . 345

RRS_RMDataLogDuplexMode 345

RRS_RMDOffloadSize . 346

RRS_DUROffloadSize . 347

RRS_MUROffloadSize . 347

RRS_RSTOffloadSize . 348

RRS_ArchiveCFStructure 348

RSM checks (IBMRSM) . 349

RSM_HVSHARE . 349

RSM_MEMLIMIT . 350

RSM_MAXCADS . 351

Contents ix

||

||
||
||
||
||
||

||
||
||
||
||

||
||

RSM_AFQ . 351

RSM_REAL . 353

RSM_RSU . 353

SDUMP checks (IBMSDUMP) 354

SDUMP_AVAILABLE . 354

SDUMP_AUTO_ALLOCATION 355

Supervisor (IBMSUP) . 355

IEA_ASIDS . 355

IEA_LXS . 356

System logger checks (IBMIXGLOGR) 357

IXGLOGR_STAGINGDSFULL 357

IXGLOGR_ENTRYTHRESHOLD 358

IXGLOGR_STRUCTUREFULL 358

TSO/E (IBMTSOE) . 359

TSOE_USERLOGS . 359

TSOE_PARMLIB_ERROR 360

z/OS UNIX System Services checks (IBMUSS) 361

USS_AUTOMOUNT_DELAY 361

USS_FILESYS_CONFIG . 362

USS_MAXSOCKETS_MAXFILEPROC 363

USS_PARMLIB . 364

VSAM checks (IBMVSAM) . 366

VSAMRLS_DIAG_CONTENTION 366

VSAM_INDEX_TRAP . 367

VSAMRLS_SINGLE_POINT_FAILURE 368

VSM checks (IBMVSM) . 369

VSM_ALLOWUSERKEYCSA 369

VSM_CSA_LIMIT . 370

VSM_SQA_LIMIT . 371

VSM_PVT_LIMIT . 372

VSM_CSA_THRESHOLD 373

VSM_SQA_THRESHOLD 374

VSM_CSA_CHANGE . 375

Cross system coupling facility (XCF) checks (IBMXCF) 376

XCF_CF_CONNECTIVITY 376

XCF_FDI . 376

XCF_SFM_ACTIVE . 377

XCF_CLEANUP_VALUE . 377

XCF_CDS_SEPARATION 378

XCF_SYSPLEX_CDS_CAPACITY 379

XCF_TCLASS_HAS_UNDESIG 379

XCF_TCLASS_CONNECTIVITY 380

XCF_TCLASS_CLASSLEN 380

XCF_SIG_CONNECTIVITY 381

XCF_DEFAULT_MAXMSG 382

XCF_MAXMSG_NUMBUF_RATIO 382

XCF_SIG_PATH_SEPARATION 383

XCF_SIG_STR_SIZE . 383

XCF_CF_STR_PREFLIST 384

XCF_CF_STR_EXCLLIST 384

Appendix. Accessibility . 387

Using assistive technologies 387

Keyboard navigation of the user interface 387

z/OS information . 387

x IBM Health Checker for z/OS User’s Guide

||
||
||

||
||
||

||

Notices . 389

Programming Interface Information 390

Trademarks . 390

Index . 393

Contents xi

xii IBM Health Checker for z/OS User’s Guide

Figures

 1. IBM Health Checker for z/OS with a local check . 4

 2. Using LookAt to find check message documentation 33

 3. Creating a policy in multiple HZSPRMxx members 47

 4. Creating multiple policies in one HZSPRMxx member 48

 5. The parts of a local check . 82

 6. The parts of a remote check . 83

 7. The parts of a REXX check . 84

 8. Example of issuing a message with variables . 100

 9. Example of issuing a message with variables using MGBFORMAT=1 102

10. Example of issuing a message with variables . 124

11. Example of issuing a message with variables using MGBFORMAT=1 126

12. Inputs and outputs for creating a complete message table 156

13. Message and variable resolution at runtime . 157

14. Example of a setup data set that defines symbols used in the message input data set 186

© Copyright IBM Corp. 2006, 2007 xiii

||
||
||

xiv IBM Health Checker for z/OS User’s Guide

Tables

 1. Access required for printing check output from the message buffer using HZSPRINT 13

 2. User controlled states . 28

 3. States controlled by IBM Health Checker for z/OS 28

 4. Check state combinations . 29

 5. When do I use which interface to manage checks? 36

 6. F hzsproc command examples . 39

 7. Summary local, remote, and REXX checks . 84

 8. Important fields in the HZSPQE data area for a local check routine 92

 9. Summary of function codes for local checks . 94

10. Important fields in the HZSMGB data area for check message variables 100

11. Important fields in the HZSMGB1 data area for check message variables 102

12. Important fields in the HZSPQE data area for a remote check routine 117

13. Summary of release codes for remote checks . 118

14. Important fields in the HZSMGB data area for check message variables 125

15. Important fields in the HZSMGB1 data area for check message variables 126

16. Important HZSPQE information used in a REXX check from HZSLSTRT variables 134

17. A summary of message types for IBM Health Checker for z/OS 174

18. Variable input and output lengths and alignment: 177

19. Which variables allow maxlen? . 178

20. Description of <msgitem> classes required for all message explanations 179

21. How messages are formatted in the message buffer 183

22. A summary of pre-defined symbols that resolve when the check runs 184

23. A summary of pre-defined symbols that resolve when you generate the CSECT for the message

input data set . 185

24. HZSLSTRT input variable . 200

25. HZSLSTRT output variables . 200

26. HZSLFMSG input variables . 203

27. HZSLFMSG_REQUEST='CHECKMSG' input variables 203

28. HZSLFMSG_REQUEST='HZSMSG' input variables 205

29. HZSLFMSG_REQUEST='STOP' input variables 209

30. HZSLFMSG output varaibles . 210

31. HZSLSTOP input variable . 213

32. HZSLSTOP output variables . 213

33. Return and Reason Codes for the HZSADDCK Macro 231

34. Return and Reason Codes for the HZSFMSG Macro 255

35. Return and Reason Codes for the HZSQUERY Macro 272

36. Return and Reason Codes for the HZSCHECK Macro 286

37. Return and Reason Codes for the HZSCPARS Macro 300

38. Updated check names . 301

39. Systems Level ENQs that RACF_GRS_RNL checks 332

40. System Level ENQs that RACF_GRS_RNL checks 333

© Copyright IBM Corp. 2006, 2007 xv

||

||

||
||
||
||
||
||
||
||
||

xvi IBM Health Checker for z/OS User’s Guide

About This Document

This document presents the information you need to install, use, and develop

checks for IBM Health Checker for z/OS. IBM Health Checker for z/OS is a

component of MVS that identifies potential problems before they impact your

availability or, in worst cases, cause outages. It checks the current active z/OS and

sysplex settings and definitions for a system and compares the values to those

suggested by IBM or defined by you. It is not meant to be a diagnostic or

monitoring tool, but rather a continuously running preventative that finds deviations

from best practices. IBM Health Checker for z/OS produces output in the form of

detailed messages to let you know of both potential problems and suggested

actions to take.

This edition supports z/OS (5694-A01), and z/OS.e (5655-G52).

IBM Health Checker for z/OS is available for z/OS V1R4, V1R5, V1R6, and later

users. This document applies to z/OS R4, R5, R6, R7, R8, and R9.

Who should use this document

This document is intended for two separate audiences:

v People using IBM Health Checker for z/OS to find potential problems in their

installation. Part 1, “Using IBM Health Checker for z/OS,” on page 1 describes

how to setup IBM Health Checker for z/OS, work with check output and manage

checks. Part 3, “Reference,” on page 195 also includes information that an IBM

Health Checker for z/OS user will need, including check descriptions and IBM

Health Checker for z/OS framework HZS messages.

v People developing their own IBM Health Checker for z/OS checks. Part 2,

“Developing Checks for IBM Health Checker for z/OS,” on page 75 includes

information on planning checks, developing a check routine, developing

messages for your check, and getting your check into the IBM Health Checker

for z/OS framework. Part 3, “Reference,” on page 195 also includes information

about IBM Health Checker for z/OS macros for use in developing checks.

Where to find more information

Checks for IBM Health Checker for z/OS will be delivered both as an integrated part

of a z/OS release or separately, as PTFs. Many new and updated checks will be

distributed as PTFs, so that they are not dependent on z/OS release boundaries

and can be added at any time. For the most up-to-date information on checks

available, see the following Web site:

http://www.ibm.com/servers/eserver/zseries/zos/hchecker/check_table.html

IBM Health Checker for z/OS is also available for z/OS V1.4, V1.5, and V1.6 as a

z/OS Web download. Make sure that you review the PSP bucket as described in

the Web download program directory. There is required service that you must

install. This code is part of z/OS V1.4 and V1.5, which have reached end of service.

This code is provided without service for those releases. You can find the z/OS

Downloads page at:

//http://www.ibm.com/servers/eserver/zseries/zos/downloads/

Where necessary, this document references information in other documents, using

shortened versions of the document title. For complete titles and order numbers of

© Copyright IBM Corp. 2006, 2007 xvii

|
|
|
|
|
|

|

http://www.ibm.com/servers/eserver/zseries/zos/hchecker/check_table.html
http://www.ibm.com/servers/eserver/zseries/zos/downloads/

the documents for all products that are part of z/OS, see z/OS Information

Roadmap. The following table lists titles and order numbers for documents related

to other products.

z/OS information updates on the web

For the latest information updates that have been provided in PTF cover letters and

Documentation APARs for z/OS™ and z/OS.e, see the online document at:

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS.

This document is updated weekly and lists documentation changes before they are

incorporated into z/OS publications.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM®

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message explanations

for z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for AIX® and

Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations, using LookAt from a TSO/E

command line (for example, TSO/E prompt, ISPF, or z/OS UNIX® System

Services).

v Your Microsoft® Windows® workstation. You can install code to access IBM

message explanations on the z/OS Collection(SK3T-4269), using LookAt from a

Microsoft Windows command prompt (also known as the DOS command line).

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt Web

site.

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from a disk on your z/OS Collection(SK3T-4269), or from the LookAt

Web site (click Download, and select the platform, release, collection, and location

that suit your needs). More information is available in the LOOKAT.ME files

available during the download process.

xviii IBM Health Checker for z/OS User’s Guide

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

Summary of changes

Summary of changes

for SA22-7994-05

z/OS Version 1 Release 9

 The document contains information previously presented in IBM Health Checker for

z/OS: User’s Guide, SA22-7994-03, which supports z/OS Version 1 Releases 8.

This document includes new and changed sections:

v New information about “Understanding system data issued with the check

messages” on page 21.

v New SYSNAME parameter for use with the LOGSTREAM parameter of

HZSPRINT. See “Using the HZSPRINT utility” on page 29.

v Information on clearing parameter errors and understanding check deletion. See

“Using the MODIFY hzsproc command to manage checks” on page 38.

v Updates to “Policy statement examples” on page 50.

v New and updated parameters for the F hzsproc command and HZSPRMxx

parmlib member, including support for displaying policy information, and new

parameters for System REXX check support. See “Statements and parameters”

on page 56.

v Planning information for REXX exec checks. See:

– “What kind of check do you want to write?” on page 81

– “REXX checks” on page 83

v New recovery information for local and remote checks:

– “The well-behaved local check routine - recommendations and recovery

considerations” on page 103

– “Recommendations and recovery considerations for remote checks” on page

127

v New chapter on writing REXX exec checks. See Chapter 8, “Writing REXX

checks,” on page 131.

v Information on writing an optional HZSADDCHECK exit routine for local and

REXX exec checks separated into a new chapter, with support for REXX exec

checks added. See Chapter 9, “Writing an HZSADDCHECK exit routine,” on

page 147.

v New chapter on Chapter 11, “IBM Health Checker for z/OS System REXX

Functions,” on page 199, HZSLSTRT, HZSLFMSG, and HZSLSTOP.

v Support for REXX exec checks added to “HZSADDCK macro — HZS add a

check” on page 218.

v New and changed checks. See Chapter 13, “IBM Health Checker for z/OS

checks,” on page 301.

This document contains terminology, maintenance, and editorial changes, including

changes to improve consistency and retrievability.

Summary of changes

for SA22-7994-04

z/OS Version 1 Release 8

as updated April 2007

 The document contains information previously presented in IBM Health Checker for

z/OS: User’s Guide, SA22-7994-03, which supports z/OS Version 1 Release 8.

© Copyright IBM Corp. 2006, 2007 xix

This document contains terminology, maintenance, and editorial changes, including

changes to improve consistency and retrievability.

Summary of changes

for SA22-7994-03

z/OS Version 1 Release 8

 The document contains information previously presented in IBM Health Checker for

z/OS: User’s Guide, SA22-7994-02, which supports z/OS Version 1 Releases 4, 5,

6, and 7.

This document includes new and changed sections:

v Support for multiple IBM Health Checker for z/OS policies. See “Creating IBM

Health Checker for z/OS policies” on page 44.

v Updates to “Syntax and parameters for HZSPRMxx and MODIFY hzsproc

command” on page 53.

v Support for writing remote checks (checks that run in caller's address space).

See Chapter 7, “Writing remote check routines,” on page 109.

v New check parameter parsing service. See “Using the check parameter parsing

service (HZSCPARS)” on page 92 and “HZSCPARS macro — HZS Check

Parameter Parsing” on page 289.

v A local check HZSADDCHECK exit routine is now optional. You can also use

ADD or ADDREPLACE CHECK in an HZSPRMxx parmlib member to define

check defaults and add the check to IBM Health Checker for z/OS. See

– “Remote checks” on page 82

– “ADD or ADDREPLACE CHECK parameters” on page 66

– Chapter 9, “Writing an HZSADDCHECK exit routine,” on page 147

v Changes to <msglist> tags to take advantage of enhancements for checks

running on z/OS V1R8 and higher systems. See “Decide what release your

check will run on” on page 161 and “Message list tag - <msglist>” on page 172.

v Support for national language translation of check exception messages. See:

– “Decide whether to translate your exception messages into other national

languages” on page 161

– “<msgtext>” on page 175

– “Support for translating messages to other languages” on page 191

v New and changed checks:

– New “ASM checks (IBMASM)” on page 302

– New “Communications Server checks (IBMCS)” on page 306

– New and changed “RACF checks (IBMRACF)” on page 331

– New RRS check, “RRS_ArchiveCFStructure” on page 348

v Changes to macros supporting new functions:

– “HZSADDCK macro — HZS add a check” on page 218

– “HZSFMSG macro — Issue a formatted check message” on page 236

– “HZSQUERY macro — HZS Query” on page 259

– “HZSCHECK macro — HZS Check command request” on page 275

v New macro, “HZSCPARS macro — HZS Check Parameter Parsing” on page 289

Summary of changes

for SA22-7994-01

z/OS Version 1 Releases 4, 5, 6, and 7

as updated October 2005

xx IBM Health Checker for z/OS User’s Guide

The document contains information previously presented in IBM Health Checker for

z/OS: User’s Guide, SA22-7994-00, which supports z/OS Version 1 Releases 4, 5,

6, and 7.

This document includes new and changed sections:

v “Approaches to automation with IBM Health Checker for z/OS” on page 24

v “Finding check message documentation with LookAt” on page 33

v “Can I put non-policy statements in my HZSPRMxx member?” on page 50

v “Local check routine basics” on page 87

v “Issuing messages in your check routine with the HZSFMSG macro” on page 95

v “Defining the variables for your messages” on page 97

v “Dynamically adding local or REXX exec checks to IBM Health Checker for z/OS”

on page 151

v “Debugging checks” on page 106

v Chapter 10, “Creating the message input for your check,” on page 155

v “How messages and message variables are issued at check runtime” on page

156

This document contains terminology, maintenance, and editorial changes, including

changes to improve consistency and retrievability.

Summary of changes

for SA22-7994-02

z/OS Version 1 Releases 4, 5, 6, and 7

as updated January 2006

 The document contains information previously presented in IBM Health Checker for

z/OS: User’s Guide, SA22-7994-01, which supports z/OS Version 1 Releases 4, 5,

6, and 7.

This document includes new and changed sections:

v “Setting up security for the HZSPRINT utility” on page 11

v “Obtain checks for IBM Health Checker for z/OS” on page 17

v “System logger checks (IBMIXGLOGR)” on page 357

Summary of changes

for SA22-7994-01

z/OS Version 1 Releases 4, 5, 6, and 7

as updated October 2005

 The document contains information previously presented in IBM Health Checker for

z/OS: User’s Guide, SA22-7994-00, which supports z/OS Version 1 Releases 4, 5,

6, and 7.

This document includes new and changed sections:

v “Approaches to automation with IBM Health Checker for z/OS” on page 24

v “Finding check message documentation with LookAt” on page 33

v “Can I put non-policy statements in my HZSPRMxx member?” on page 50

v “Local check routine basics” on page 87

v “Issuing messages in your check routine with the HZSFMSG macro” on page 95

v “Defining the variables for your messages” on page 97

Summary of changes xxi

v “Dynamically adding local or REXX exec checks to IBM Health Checker for z/OS”

on page 151

v “Debugging checks” on page 106

v Chapter 10, “Creating the message input for your check,” on page 155

v “How messages and message variables are issued at check runtime” on page

156

This document contains terminology, maintenance, and editorial changes, including

changes to improve consistency and retrievability.

xxii IBM Health Checker for z/OS User’s Guide

Part 1. Using IBM Health Checker for z/OS

Chapter 1. Introduction . 3

What is a check? . 4

Background for IBM’s checks . 5

Chapter 2. Setting up IBM Health Checker for z/OS 7

Software requirements for IBM Health Checker for z/OS 7

Allocate the HZSPDATA data set to save check data between restarts 8

Set up the HZSPRINT utility . 8

Define log streams to keep a record of the check output 8

Create security definitions . 10

Setting up security for the IBM Health Checker for z/OS started task 10

Setting up security for the HZSPRINT utility 11

Security for printing check output from the message buffer 12

Security for printing check output from a log stream 14

Setting up security for IBM Health Checker for SDSF support 14

Create multilevel security definitions 14

Optionally create HZSPRMxx from the HZSPRM00 parmlib member 15

Start IBM Health Checker for z/OS 16

Obtain checks for IBM Health Checker for z/OS 17

Chapter 3. Working with check output 19

Hey! My system has been configured like this for years, and now I’m receiving

exceptions! . 21

Understanding system data issued with the check messages 21

Understanding exception messages 22

Evaluating check output and resolving exceptions 23

Approaches to automation with IBM Health Checker for z/OS 24

More automation ideas . 25

Using HZS exception messages for automation 26

Understanding check state and status 26

User controlled states . 28

IBM Health Checker for z/OS controlled states 28

ACTIVE(DISABLED) and INACTIVE(ENABLED) - understanding check state

combinations . 29

Check status . 29

Using the HZSPRINT utility . 29

Example of HZSPRINT output 31

HZSPRINT utility completion codes 31

Finding check message documentation with LookAt 33

Chapter 4. Managing checks 35

Making dynamic, temporary changes to checks 36

Using SDSF to manage checks 37

Using the MODIFY hzsproc command to manage checks 38

Cheat sheet: examples of MODIFY hzsproc commands 39

Why does my check reappear after I delete it? Understanding delete

processing . 40

But my check doesn’t reappear after ADDNEW - what happened to it? 41

Why can’t I re-add my HZSPRMxx parmlib defined check after I delete it?

More understanding of the delete processing... 41

How can I delete checks while IBM Health Checker for z/OS is

terminating? . 42

Using the category filter to manage checks 42

© Copyright IBM Corp. 2006, 2007 1

||

|
||

|
||
|
||

Making persistent changes to checks 44

Creating IBM Health Checker for z/OS policies 44

How IBM Health Checker for z/OS builds policies from policy statements 46

Define one policy in multiple HZSPRMxx parmlib members 46

Define multiple policies in one HZSPRMxx parmlib member 48

Some finer points of how policy values are applied 48

How IBM Health Checker for z/OS uses the dates on policy statements 49

Can I put non-policy statements in my HZSPRMxx member? 50

Policy statement examples 50

Can I create policy statements using the MODIFY command? 51

Specifying the HZSPRMxx members you want the system to use 51

Syntax and parameters for HZSPRMxx and MODIFY hzsproc command . . . 53

Guidelines for HZSPRMxx parmlib members 54

HZSPRMxx summary . 54

Parameter in IEASYSxx (or supplied by the operator) 54

IBM supplied defaults for HZSPRMxx 54

Syntax rules for HZSPRMxx 54

Statements and parameters 56

Examples of DISPLAY output 72

2 IBM Health Checker for z/OS User’s Guide

Chapter 1. Introduction

The objective of IBM Health Checker for z/OS is to identify potential problems

before they impact your availability or, in worst cases, cause outages. It checks the

current active z/OS and sysplex settings and definitions for a system and compares

the values to those suggested by IBM or defined by you. It is not meant to be a

diagnostic or monitoring tool, but rather a continuously running preventative that

finds potential problems. IBM Health Checker for z/OS produces output in the form

of detailed messages to let you know of both potential problems and suggested

actions to take. Note that these messages do not mean that IBM Health Checker

for z/OS has found problems that you need to report to IBM! IBM Health Checker

for z/OS output messages simply inform you of potential problems so that you can

take action on your installation.

There are several parts to IBM Health Checker for z/OS:

v The framework of the IBM Health Checker for z/OS is the interface that allows

you to run and manage checks. The framework is a common and open

architecture, supporting check development by IBM, independent software

vendors (ISVs), and users.

v Individual checks look for component, element, or product specific z/OS settings

and definitions, checking for potential problems. The specific component or

element owns, delivers, and supports the checks.

Checks can be either local, and run in the IBM Health Checker for z/OS address

space, or remote, and run in the caller's address space. So far, most IBM checks

are local.

Figure 1 on page 4 shows the various parts of IBM Health Checker for z/OS:

v The IBM Health Checker for z/OS address space, where the framework, currently

running local check routines, and other elements reside.

v The HZSPQE data area which contains all the information a check routine needs,

including the defaults defined for the check and any installation overrides to

those defaults.

v Installation overrides, which are changes the installation can make to check

default values, such as interval, parameters, or other values.

v The message table, which contains message data for the check output

messages that convey check results.

© Copyright IBM Corp. 2006, 2007 3

What is a check?

A check is actually a program or routine that identifies potential problems before

they impact your availability or, in worst cases, cause outages. A check is owned,

delivered, and supported by the component, element, or product that writes it.

Checks are separate from the IBM Health Checker for z/OS framework. A check

might analyze a configuration in the following ways:

v Changes in settings or configuration values that occur dynamically over the life of

an IPL. Checks that look for changes in these values should run periodically to

keep the installation aware of changes.

v Threshold levels approaching the upper limits, especially those that might occur

gradually or insidiously.

v Single points of failure in a configuration.

v Unhealthy combinations of configurations or values that an installation might not

think to check.

This document discusses the following IBM Health Checker for z/OS concepts:

Check values: Each check includes a set of pre-defined values, such as:

v Interval, or how often the check will run

v Severity of the check, which influences how check output is issued

v Routing and descriptor codes for the check

You can update or override some check values using either SDSF or statements in

the HZSPRMxx parmlib member or the MODIFY command. These are called

installation updates. You might do this if some check values are not suitable for

your environment or configuration.

Check output: A check issues its output as messages, which you can view using

SDSF, the HZSPRINT utility, or a log stream that collects a history of check output.

If a check finds a potential problem, it issues a WTO message. We will call these

messages exceptions. The check exception messages are issued both as WTOs

and also to the message buffer. The WTO version contains only the message text,

while the exception message in the message buffer includes both the text and

explanation of the potential problem found, including the severity, as well as

information on what to do to fix the potential problem.

IBM Health Checker
for z/OS address space

Framework Component, element,
or product checks

Local
check
routine

Check
routine

Check
routine

Check
routine

Check
routine

Check
routine

Installation overrides
Check loaded

Check output:
- SDSF
- HZSPRINT
- Log stream

Figure 1. IBM Health Checker for z/OS with a local check

4 IBM Health Checker for z/OS User’s Guide

Resolving check exceptions: To get the best results from IBM Health Checker for

z/OS, you should let it run continuously on your system so that you will know when

your system has changed. When you get an exception, you should resolve it using

the information in the check exception message or overriding check values, so that

you do not receive the same exceptions over and over.

Managing checks: You can use either SDSF, the HZSPRMxx parmlib member, or

the IBM Health Checker for z/OS MODIFY (F hzsproc) command to manage

checks. Managing checks includes:

v Printing check output from either SDSF, or using the HZSPRINT utility - see

Chapter 3, “Working with check output,” on page 19.

v Displaying check information

v Taking one time actions against checks, such as:

– Activating or deactivating checks

– Add new checks

– Refresh checks - Refresh processing first deletes a check from the IBM

Health Checker for z/OS and then adds it back to the system.

– Run checks

See “Cheat sheet: examples of MODIFY hzsproc commands” on page 39.

v Updating check values temporarily using SDSF or the MODIFY hzsproc

command. See “Making dynamic, temporary changes to checks” on page 36.

v Updating check values permanently using HZSPRMxx. See “Making persistent

changes to checks” on page 44.

Background for IBM’s checks

IBM Health Checker for z/OS check routines look at an installation’s configuration or

environment to look for potential problems. The values used by checks come from a

variety of sources including product documentation and web sites, such as:

v z/OS system test

v z/OS Service

v Parallel Sysplex Availability Checklist at: http://www.ibm.com/servers/eserver/
zseries/pso/

v ITSO Redbooks at: http://www.redbooks.ibm.com/

v System z Platform Test Report for z/OS and Linux Virtual Servers at:

http://www.ibm.com/servers/eserver/zseries/zos/integtst/

v Washington System Center Flashes at http://www.ibm.com/support/techdocs/.

For migration to a 64–bit environment, see whitepaper WP100269 “z/OS

Performance: Managing Processor Storage in a 64–bit environment”, and the

Washington System Center Flash 10086, “Software Capacity Planning: Migration

to 64 bit Mode”.

v Parallel Sysplex and z/OS publications:

– z/OS MVS Initialization and Tuning Reference, SA22-7592

– z/OS MVS Planning: Global Resource Serialization

– z/OS MVS Planning: Operations, SA22-7601

– z/OS MVS Setting Up a Sysplex, SA22-7625

– z/OS Security Server RACF Command Language Reference

– z/OS Security Server RACF Security Administrator’s Guide

– z/OS UNIX System Services Planning, GA22-7800

The description of each individual check contains the rationale behind the values

used by the check for comparison against your installation settings. See

Chapter 13, “IBM Health Checker for z/OS checks,” on page 301.

Chapter 1. Introduction 5

http://www.ibm.com/servers/eserver/zseries/pso/
http://www.ibm.com/servers/eserver/zseries/pso/
http://www.redbooks.ibm.com/
http://www.ibm.com/servers/eserver/zseries/zos/integtst/
http://www.ibm.com/support/techdocs/

You might find that the values that the check uses for comparison are not

appropriate for your installation or for a particular system. If that is the case, you

can either specify overrides to default values or suppress individual checks. See

Chapter 4, “Managing checks,” on page 35.

6 IBM Health Checker for z/OS User’s Guide

Chapter 2. Setting up IBM Health Checker for z/OS

The IBM Health Checker for z/OS framework provides a structure for checks to

gather system information and mechanisms to report their findings. The checks

compare the system environment and parameters to established settings to uncover

potential problems.

Checks are provided separately from the IBM Health Checker for z/OS framework

(see “Obtain checks for IBM Health Checker for z/OS” on page 17 for more

information on obtaining checks) and individual checks should be assessed for their

relevance to your installation. You can override parameters for some checks, and

you can override values or deactivate any individual check. See Chapter 4,

“Managing checks,” on page 35.

Use the following steps to set up and start IBM Health Checker for z/OS:

 1. “Software requirements for IBM Health Checker for z/OS”

 2. “Allocate the HZSPDATA data set to save check data between restarts” on

page 8

 3. “Set up the HZSPRINT utility” on page 8

 4. “Define log streams to keep a record of the check output” on page 8, as

needed

 5. “Create security definitions” on page 10

 6. Set up customization and security for SDSF support for IBM Health Checker

for z/OS in IBM Health Checker for z/OS Small Programming Enhancement in

z/OS SDSF Operation and Customization.

 7. “Create multilevel security definitions” on page 14

 8. “Optionally create HZSPRMxx from the HZSPRM00 parmlib member” on page

15

 9. “Start IBM Health Checker for z/OS” on page 16

10. “Obtain checks for IBM Health Checker for z/OS” on page 17

Software requirements for IBM Health Checker for z/OS

The IBM Health Checker for z/OS is shipped as part of z/OS V1R7 and z/OS V1R8.

IBM Health Checker for z/OS is also available for z/OS V1.4, V1.5, and V1.6 as a

z/OS Web download. Make sure that you review the PSP bucket as described in

the Web download program directory. There is required service that you must

install. This code is part of z/OS V1.4 and V1.5, which have reached end of service.

This code is provided without service for those releases. You can find the z/OS

Downloads page at:

//http://www.ibm.com/servers/eserver/zseries/zos/downloads/

IBM Health Checker for z/OS can run on a parallel sysplex, monoplex, or XCF local

mode environment running z/OS V1R4, V1R5, V1R6 or V1R7. Note that different

checks have different system level requirements - see Chapter 13, “IBM Health

Checker for z/OS checks,” on page 301 for check specific information.

© Copyright IBM Corp. 2006, 2007 7

|
|
|
|
|
|

|

http://www.ibm.com/servers/eserver/zseries/zos/downloads/

Allocate the HZSPDATA data set to save check data between restarts

Some checks use the HZSPDATA data set to save data required as part of their

processing between restarts of the system or IBM Health Checker for z/OS. To

allocate this data set, do the following:

1. Get the HZSALLCP sample JCL from SYS1.SAMPLIB.

2. Update the HZSALLCP JCL for the HZSPDATA data set. The data set must:

v Be fixed block

v Be sequential

v Have a logical record length of 4096

You must also specify a high level qualifier for the data set. In the following

example, we’re using the system name as part of the HZSPDATA data set

name:

//HZSALLCP JOB

//*

//HZSALLCP EXEC PGM=HZSAIEOF,REGION=4096K,TIME=1440

//HZSPDATA DD DSN=SYS1.sysname.HZSPDATA,DISP=(NEW,CATLG),

// SPACE=(4096,(100,400)),UNIT=SYSDA,

// DCB=(DSORG=PS,RECFM=FB,LRECL=4096)

//SYSPRINT DD DUMMY

Within the HZSPDATA DD statement, you can use any UNIT and VOLSER

values supported on your system to indicate where you want the system to

allocate the data set.

3. Retain the name of the HZSPDATA data set so you can specify it in the IBM

Health Checker for z/OS start up procedure, HZSPROC. See “Start IBM Health

Checker for z/OS” on page 16.

Set up the HZSPRINT utility

The HZSPRINT utility allows you to see check output in the message buffer or the

IBM Health Checker for z/OS log stream. HZSPRINT writes the current message

buffer for the target checks to SYSOUT. Do the following to set up the HZSPRINT

utility:

1. Get the JCL for the HZSPRINT utility from member HZSPRINT in

SYS1.SAMPLIB .

2. “Setting up security for the HZSPRINT utility” on page 11.

3. See “Using the HZSPRINT utility” on page 29.

Define log streams to keep a record of the check output

IBM Health Checker for z/OS retains only the check results from the last iteration of

a check in the message buffer. If you want to retain a historical record of check

results, which is a good idea, you must define and connect to a log stream. When

you have a log stream connected, the system writes check results to the log stream

every time a check completes.

Note that most of our instructions are for coupling facility log streams, which are

suggested.

Do the following to define log streams:

1. Plan for setting up log streams, including allocation of coupling facility and

DASD space. Careful planning of DASD and coupling facility space is important

because if the log stream fills up, no additional data will be written to it and data

8 IBM Health Checker for z/OS User’s Guide

will be lost. See the ″Planning for system logger applications″ section of z/OS

MVS Setting Up a Sysplex. Keep in mind the following:

v Define either:

– One log stream for each system.

– One log stream for multiple systems to use.

v HZS must be the first letters of log stream names and structures you define.

For example, you might define a log stream name of HZSLOG1.

v System logger requires at least a base sysplex configuration in your

installation.

v System logger requires SMS to be active, in at least a null configuration,

even if you do not use SMS to manage your volumes and data sets. See the

″Set up the SMS environment for DASD data sets″ section of z/OS MVS

Setting Up a Sysplex.

2. Set up security for log streams:

a. You will accomplish most of the security set up needed for the log stream

when you set up security for the IBM Health Checker for z/OS super User

ID in “Setting up security for the IBM Health Checker for z/OS started task”

on page 10.

b. The user who will be setting up log stream and structure definitions for the

IBM Health Checker for z/OS log stream using the IXCMIAPU Administrative

Data Utility program must have authorization to a number of resources. See

the Define Authorization for Setting Up Policies section of z/OS MVS Setting

Up a Sysplex.

c. See “Security for printing check output from a log stream” on page 14 to set

up security access for users to the HZSPRINT output, if you will be using

HZSPRINT to print log stream data.

3. Enable log streams in one of the following ways:

v Use the MODIFY command:

f hzsproc,logger=on,logstreamname=logstreamname

v Use the LOGGER parameter in the HZSPRMxx parmlib member:

LOGGER(ON) LOGSTREAMNAME(logstreamname)

4. To disable a log stream, issue the following MODIFY command:

f hzsproc,logger=off

The following examples show our log stream definitions:

v CFRM policy definition: The following example shows a log stream and

structure definition defined in the CFRM policy using the administrative data

utility, IXCMIAPU:

STRUCTURE NAME(HZS_HEALTHCHKLOG) SIZE(8000)

 PREFLIST(CF25, CF01C, CF1)

The value defined for SIZE should be no less than 8000 to ensure adequate

space for check data. For more information, see:

– ″Define the coupling facility structures attributes in the CFRM policy couple

data set″ inz/OS MVS Setting Up a Sysplex

– IBM recommends that you use the following web-based CFSizer tool to

estimate an appropriate structure size

http://www.ibm.com/servers/eserver/zseries/cfsizer

.

v LOGR policy definitions:

– The following example shows a coupling facility and log stream structure

definition in the LOGR policy using the administrative data utility, IXCMIAPU:

Chapter 2. Setting up IBM Health Checker for z/OS 9

|
|

|
|

|

http://www.ibm.com/servers/eserver/zseries/cfsizer

DEFINE STRUCTURE NAME(HZS_HEALTHCHKLOG)

 LOGSNUM(1)

 MAXBUFSIZE(65532)

 AVGBUFSIZE(1024)

DEFINE LOGSTREAM NAME(HZS.HEALTH.CHECKER.HISTORY)

 DESCRIPTION(HEALTH_CHECK_RPT)

 STRUCTNAME(HZS_HEALTHCHKLOG)

 STG_DUPLEX(NO)

 LS_DATACLAS(NO_LS_DATACLAS)

 LS_MGMTCLAS(NO_LS_MGMTCLAS)

 LS_STORCLAS(NO_LS_STORCLAS)

 LS_SIZE(4096)

 AUTODELETE(YES)

 RETPD(14)

 HIGHOFFLOAD(80)

 LOWOFFLOAD(0)

 DIAG(NO)

Note that the IBM Health Checker for z/OS structure and log stream names

must begin with HZS.

– The following example shows a DASD-only log stream definition in the CFRM

policy using the administrative data utility, IXCMIAPU. Note that the values

you define for a DASD-only log stream in your installation may be different.

DEFINE LOGSTREAM NAME (HZS.HEALTH.CHECKER.HISTORY)

 DASDONLY(YES)

 MAXBUFSIZE(64000)

 HIGHOFFLOAD(80)

 LOWOFFLOAD(20)

 STG_SIZE(2000)

 LS_SIZE(1000)

 LS_DATACLAS(lsdataclas)

 LS_STORCLAS(lsstorclas)

 STG_DATACLAS(stgdataclas)

 STG_STORCLAS(stgstorclas)

For more information on the LOGR couple data set, see ″Add information about

log streams and coupling facility structures to the LOGR policy″ section of z/OS

MVS Setting Up a Sysplex.

Create security definitions

Both IBM Health Checker for z/OS and users looking at check output need access

to resources. You must create security definitions to control access and maintain

security for these resources.

You must do the following types of security setup:

v “Setting up security for the IBM Health Checker for z/OS started task”

v “Setting up security for the HZSPRINT utility” on page 11

v “Setting up security for IBM Health Checker for SDSF support” on page 14

Setting up security for the IBM Health Checker for z/OS started task

You must set up security for IBM Health Checker for z/OS the same way you would

for any other started task. To do this task with RACF, do the following steps:

1. Create a user ID for IBM Health Checker for z/OS and connect the superuser

user ID to a group. Define the user ID with:

v Superuser authority (UID(0))

v A home directory of HOME('/')

v A program of PROGRAM('/bin/sh')

10 IBM Health Checker for z/OS User’s Guide

|

|

For example, you might define the user ID as follows::

ADDUSER hcsuperid

 OMVS(UID(0) HOME(’/’) PROGRAM(’/bin/sh’))

 NOPASSWORD

ADDGROUP OMVSGRP OMVS(GID(46))

CONNECT hcsuperid GROUP(OMVSGRP)

For more information, see:

v Assigning superuser attributes in z/OS UNIX System Services Planning

v z/OS Security Server RACF Security Administrator’s Guide

v The ADDGROUP and ADDUSER sections of z/OS Security Server RACF

Command Language Reference

2. Associate the superuser User ID, hcsuperid, with the IBM Health Checker for

z/OS started task, HZSPROC. For example:

SETROPTS GENERIC(STARTED)

RDEFINE STARTED HZSPROC.* STDATA(USER(hcsuperid) GROUP(OMVSGRP))

SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

SETROPTS RACLIST(STARTED)

If you had already RACLISTed the STARTED class, the last statement would

have to be SETROPTS RACLIST(STARTED) REFRESH. For more information, see:

v z/OS Security Server RACF Security Administrator’s Guide and z/OS UNIX

System Services Planning.

v The RDEFINE and SETROPTS sections of z/OS Security Server RACF

Command Language Reference.

3. Give the IBM Health Checker for z/OS started task super User ID access to the

HZSPDATA data set on each system where you’ll run IBM Health Checker for

z/OS. For example, you might specify the following:

ADDSD ’SYS1.PRODSYS.HZSPDATA’ UACC(NONE)

PERMIT SYS1.PRODSYS.HZSPDATA CLASS(DATASET) ID(hcsuperid) ACCESS(UPDATE)

4. Give IBM Health Checker for z/OS started task super User ID READ access to

the HZSPRMxx parmlib member(s). For example, you might specify the

following:

ADDSD ’SYS1.PARMLIB’ UACC(NONE)

PERMIT ’SYS1.PARMLIB’ CLASS(DATASET) ID(hcsuperid) ACCESS(READ)

5. If you will be using a log stream, you must define UPDATE access for the IBM

Health Checker for z/OS started task super User ID to each

RESOURCE(logstreamname) CLASS(LOGSTRM). IBM Health Checker for

z/OS connects directly to the defined log stream or streams. For example, you

might specify the following:

RDEFINE LOGSTRM logstreamname UACC(NONE)

PERMIT logstreamname CLASS(LOGSTRM) ID(hcsuperid) ACCESS(UPDATE)

SETROPTS CLASSACT(LOGSTRM) RACLIST(LOGSTRM)

SETROPTS RACLIST(LOGSTRM)

If you had already RACLISTed the LOGSTRM class, the last statement would

have to be SETROPTS RACLIST(LOGSTRM) REFRESH.

See the ″LOGR parameters for administrative data utility section of z/OS MVS

Setting Up a Sysplex.

Setting up security for the HZSPRINT utility

IBM Health Checker for z/OS users can view check output in the message buffer or

log stream using HZSPRINT. HZSPRINT writes the check output for the target

checks to SYSOUT. If users in your installation will be using HZSPRINT to print

check output, you must authorize HZSPRINT users to the following resources:

Chapter 2. Setting up IBM Health Checker for z/OS 11

v To access check output from the message buffer, you must authorize users to

the following service resources:

– QUERY, which returns a list of checks and check status from the message

buffer.

– MESSAGES, which returns the output messages for a check or checks from

the message buffer.

See “Security for printing check output from the message buffer.”

v To access check output in IBM Health Checker for z/OS log stream or streams,

you must authorize users to the log stream names. See “Security for printing

check output from a log stream” on page 14.

To authorize HZSPRINT users to these service resources with RACF, you must

define profiles for them, as shown in the topics below.

Security for printing check output from the message buffer

Users accessing check output from the message buffer, must have authorization to

the QUERY and MESSAGES service resources using RACF profiles. The way you

define RACF profiles depends on:

v The way users specify the check name and check owner in the HZSPRINT

EXEC PARM= statement.

v The level of access you wish to give to the user.

Specifying check name and owner in the HZSPRINT EXEC PARM= statement:

Depending on what access level they have and what check output they want, users

can specify the exact check name and check owner in the EXEC statement to get

output from one check or they can use wildcard characters to get output for multiple

checks. The syntax for the HZSPRINT EXEC statement for printing check output

from the message buffer is as follows:

// EXEC PGM=HZSPRNT,PARM=’CHECK(checkowner,checkname)’

The following HZSPRINT EXEC statement examples show different ways users can

specify the checkname and the check owner to get different output:

v To get check output for all active checks, use the following EXEC statement:

// EXEC PGM=HZSPRNT,PARM=’CHECK(*,*)’

v To get check output for all the checks owned by IBMGRS, use the following

EXEC statement:

// EXEC PGM=HZSPRNT,PARM=’CHECK(IBMGRS,*)’

v To get check output for just one check, IBMGRS check GRS_Mode, use the

following EXEC statement:

// EXEC PGM=HZSPRNT,PARM=’CHECK(IBMGRS,GRS_Mode)’

v To get check output for all the checks named TRY_ME by any check owner, use

the following EXEC statement:

// EXEC PGM=HZSPRNT,PARM=’CHECK(*,TRY_ME)’

See Chapter 3, “Working with check output,” on page 19 for complete information

about using HZPRINT.

Determining the access level required for check name and owner

specification on the HZSPRINT EXEC statement: The table below shows the

access required for different user specifications of the check name and owner in the

HZSPRINT EXEC PARM= statement, including the resource name or names that

must be defined in the XFACILIT class for that particular specification. You must

also RACLIST the XFACILIT class in order for HZSPRINT to work, as shown in the

examples below the table.

12 IBM Health Checker for z/OS User’s Guide

Where we show two possible resource names you can define for a service

resource, the system accepts a match on either.

 Table 1. Access required for printing check output from the message buffer using HZSPRINT

Check specification

Access required for service

resource Resource name

CHECK(*,checkname)

CHECK(*,*)

QUERY: Read access to all

checks

HZS.sysname.QUERY

MESSAGES: Read access to

individual check

HZS.sysname.check_owner.MESSAGES

or

HZS.sysname.check_owner.check_name.MESSAGES

CHECK(checkowner,*) QUERY: Read access to all

checks for a specific owner

HZS.sysname.check_owner.QUERY

MESSAGES: Read access to

individual check

HZS.sysname.check_owner.MESSAGES

or

HZS.sysname.check_owner.check_name.MESSAGES

CHECK(checkowner,checkname) QUERY: Read access to

individual check

HZS.sysname.check_owner.QUERY

or

HZS.sysname.check_owner.check_name.QUERY

MESSAGES: Read access to

individual check

HZS.sysname.check_owner.MESSAGES

or

HZS.sysname.check_owner.check_name.MESSAGES

Defining RACF profiles for QUERY and MESSAGE service resources: For each

resource name identified in the first table, issue:

RDEFINE XFACILIT resourcename UACC(NONE)

PERMIT resourcename CLASS(XFACILIT) ID(hcprintid) ACCESS(READ)

Then, issue the following for the XFACILIT class:

SETROPTS CLASSACT(XFACILIT)

SETROPTS RACLIST(XFACILIT)

If you already RACLISTed the XFACILIT or FACILITY class, the very last statement

in the example above would have to be:

SETROPTS RACLIST(XFACILIT) REFRESH

Profile definition examples:

The following table shows examples of defining access profiles for the QUERY and

MESSAGES service resources in the XFACILIT class to allow a user ID to access

check output in HZSPRINT.

In these examples, hcprintid is the user ID of either a user or group you’re giving

access to.

v Access to output from all checks:

RDEFINE XFACILIT HZS.sysname.QUERY UACC(NONE)

PERMIT HZS.sysname.QUERY CLASS(XFACILIT) ID(hcprintid) ACCESS(READ)

RDEFINE XFACILIT HZS.sysname.check_owner.MESSAGES UACC(NONE)

PERMIT HZS.sysname.check_owner.MESSAGES CLASS(XFACILIT) ID(hcprint) ACCESS(READ)

SETROPTS CLASSACT(XFACILIT)

SETROPTS RACLIST(XFACILIT)

v Access to output from a specified check owner:

Chapter 2. Setting up IBM Health Checker for z/OS 13

RDEFINE XFACILIT HZS.sysname.check_owner.QUERY UACC(NONE)

PERMIT HZS.sysname.check_owner.QUERY CLASS(XFACILIT) ID(hcprintid) ACCESS(READ)

RDEFINE XFACILIT HZS.sysname.check_owner.check_name.MESSAGES UACC(NONE)

PERMIT HZS.sysname.check_owner.check_name.MESSAGES CLASS(XFACILIT) ID(hcprintid) ACCESS(READ)

SETROPTS CLASSACT(XFACILIT)

SETROPTS RACLIST(XFACILIT)

v Access to output from a particular check:

RDEFINE XFACILIT HZS.sysname.check_owner.check_name.QUERY UACC(NONE)

PERMIT HZS.sysname.check_owner.check_name.QUERY CLASS(XFACILIT) ID(hcprintid) ACCESS(READ)

RDEFINE XFACILIT HZS.sysname.check_owner.check_name.MESSAGES UACC(NONE)

PERMIT HZS.sysname.check_owner.check_name.MESSAGES CLASS(XFACILIT) ID(hcprintid) ACCESS(READ)

SETROPTS CLASSACT(XFACILIT)

SETROPTS RACLIST(XFACILIT)

For more information, see:

v z/OS Security Server RACF Security Administrator’s Guide and z/OS UNIX

System Services Planning .

v The PERMIT, RDEFINE and SETROPTS sections of z/OS Security Server RACF

Command Language Reference.

v “Using the HZSPRINT utility” on page 29 for information on using HZSPRINT.

Security for printing check output from a log stream

If you use an IBM Health Checker for z/OS log stream to collect check output, you

can use HZSPRINT to print the log stream data using one of the following

HZSPRINT EXEC statement examples:

// EXEC PGM=HZSPRINT,PARM=’LOGSTREAM(logstreamname)’

 OR

// EXEC PGM=HZSPRINT,PARM=’LOGSTREAM(logstreamname),CHECK(owner,name)’

 OR

// EXEC PGM=HZSPRINT,PARM=’LOGSTREAM(logstreamname),CHECK(owner,name),EXCEPTIONS’

To authorize HZSPRINT users to log stream check output, you must define a profile

in the LOGSTRM class for the log stream and assign READ access to users. When

you assign access to the log stream for an HZSPRINT user, you give the user

access to all check output in the log stream. HZSPRINT access to log streams is all

or nothing - you cannot restrict HZSPRINT access to particular check owners or

checks in log streams, as you can for check output in the message buffer.

The following profile example shows how you might define HZSPRINT access for a

user ID to check output in a log stream:

RDEFINE FACILITY log_stream_data_set_name UACC(NONE)

PERMIT log_stream_data_set_name CLASS(LOGSTRM) ID(hcprint) ACCESS(READ)

SETROPTS CLASSACT(LOGSTRM)

SETROPTS RACLIST(LOGSTRM) REFRESH

Setting up security for IBM Health Checker for SDSF support

Set up customization and security for SDSF support for IBM Health Checker for

z/OS using Protecting checks in z/OS SDSF Operation and Customization.

Create multilevel security definitions

If your system is a multilevel system environment and you are using multilevel

security labels to control access to resources, you must assign SECLABELs to the

IBM Health Checker for z/OS superuser User ID (hcsuperid), to each profile

protecting a check, and to the IBM Health Checker for z/OS log stream RACF

profile. For complete information on multilevel security, see z/OS Planning for

Multilevel Security and the Common Criteria and z/OS Security Server RACF

Security Administrator’s Guide.

Do the following:

14 IBM Health Checker for z/OS User’s Guide

v Assign a multilevel security label to the IBM Health Checker for z/OS superuser

User ID, hcsuperid, which you defined in“Setting up security for the IBM Health

Checker for z/OS started task” on page 10. Use the following to decide on a

SECLABEL setting for the log stream:

– If all your checks are assigned a SECLABEL of SYSLOW, assign a

SECLABEL of SYSLOW to the IBM Health Checker for z/OS superuser User

ID, hcsuperid. Assigning a SECLABEL of SYSLOW to the hcsuperid means

that any data object that the check touches must have a SECLABEL that

would pass the mandatory access check for the type of operation that is being

performed.

– If all the checks are above SYSLOW, you must assign a SECLABEL that will

dominate all the check SECLABELs to the hcsuperid.

– You can also assign a SECLABEL of SYSHIGH to the hcsuperid, which will

dominate all the check SECLABELs.

The following example enables the SECLABEL class and assigns a multilevel

security label of SYSLOW:

SETROPTS CLASSACT(SECLABEL) RACLIST(SECLABEL)

ALTUSER hcsuperid SECLABEL(SYSLOW)

v Assign a SECLABEL to each profile that protects a check. See Chapter 13, “IBM

Health Checker for z/OS checks,” on page 301 for the SECLABEL recommended

for each check. You’ll need to define access to one of the following set of

resources:

v HZS.sysname.check_owner.QUERY

HZS.sysname.check_owner.MESSAGES

or

v HZS.sysname.check_owner.check_name.QUERY

HZS.sysname.check_owner.check_name.MESSAGES

For example, you might define the following:

RALTER XFACILIT HZS.SYS1.IBMRACF.RACF_GRS_RNL.QUERY UACC(NONE) SECLABEL(SYSLOW)

RALTER XFACILIT HZS.SYS1.IBMRACF.RACF_GRS_RNL.MESSAGES UACC(NONE) SECLABEL(SYSLOW)

v Assign a SECLABEL to the IBM Health Checker for z/OS log stream RACF

profile. Use the following to decide on a SECLABEL setting for the log stream:

– If all your checks writing to the log stream are SYSLOW, assign a SECLABEL

of SYSLOW to the log stream RACF profile.

– If all the checks are above SYSLOW, you must assign a SECLABEL that will

dominate all the check SECLABELs to the log stream RACF profile.

– You can also assign a SECLABEL of SYSHIGH to the log stream RACF

profile, a SECLABEL which will dominate all the check SECLABELs.

For example, you might define the following:

RALTER FACILITY HZS.HEALTH.CHECKER.HISTORY UACC(NONE) SECLABEL(SYSLOW)

Optionally create HZSPRMxx from the HZSPRM00 parmlib member

You do not have to set up an HZSPRMxx parmlib member to get IBM Health

Checker up and running. And at first, you’ll want to run IBM Health Checker for

z/OS without modifying the HZSPRMxx member to see what check output you get

on your installation. Later, as you evaluate your check output, you should use an

HZSPRMxx parmlib member to make permanent updates in policy statements to

check values and parameters or to keep a check from running (deactivating the

check). Your HZSPRMxx parmlib member should include only:

v Policy statements, to make changes that are applied to checks that are added or

refreshed.

Chapter 2. Setting up IBM Health Checker for z/OS 15

v The LOGGER parameter, if you want to use a log stream:

LOGGER(ON) LOGSTREAMNAME(logstreamname)

Including other non-policy statements in your HZSPRMxx member will be

ineffective, because the parmlib member specified in the hzsproc procedure is

processed before any checks are added or begin running.

You can create the policy statements in your HZSPRMxx parmlib member using

input from:

v The sample syntax in the HZSPRM00 member in SYS1.PARMLIB.

v The Parameters accepted portion of each check description in Chapter 13, “IBM

Health Checker for z/OS checks,” on page 301.

v “Making persistent changes to checks” on page 44

Then you’ll specify the parmlib member you create in the IBM Health Checker for

z/OS procedure, hzsproc. See “Specifying the HZSPRMxx members you want the

system to use” on page 51.

Start IBM Health Checker for z/OS

To start IBM Health Checker for z/OS, you use the HZSPROC started procedure.

The HZSPROC JCL procedure looks as follows:

//HZSPROC JOB JESLOG=SUPPRESS

//HZSPROC PROC HZSPRM=’00’

//HZSSTEP EXEC PGM=HZSINIT,REGION=0K,TIME=NOLIMIT,

// PARM=’SET PARMLIB=&HZSPRM’

//HZSPDATA DD DSN=SYS1.&SYSNAME..HZSPDATA,DISP=OLD

// PEND

// EXEC HZSPROC

Note that although this looks like a batch job it is a started task. IBM Health

Checker for z/OS is set up this way in order to suppress messages to the JESLOG,

which might otherwise overflow your JESLOG data set.

1. Copy the sample IBM Health Checker for z/OS procedure, HZSPROC, into a

PROCLIB data set.

2. Update the procedure to:

v Make sure that the procedure includes the name of the HZSPDATA data set

defined in “Allocate the HZSPDATA data set to save check data between

restarts” on page 8.

v Make sure that the procedure includes the name of the HZSPRMxx member

defined in “Optionally create HZSPRMxx from the HZSPRM00 parmlib

member” on page 15.
//HZSPROC JOB JESLOG=SUPPRESS

//HZSPROC PROC HZSPRM=’00’

//HZSSTEP EXEC PGM=HZSINIT,REGION=0K,TIME=NOLIMIT,

// PARM=’SET PARMLIB=&HZSPRM’

//HZSPDATA DD DSN=SYS1.&SYSNAME..HZSPDATA,DISP=OLD

// PEND

// EXEC HZSPROC

If you convert started tasks to jobs in your installation, see ″Convert Procedures

to Jobs″ in the z/OS MVS JCL Reference. When you add a JOB statement for

HZSPRINT to the JCL, make sure to include JESLOG=SUPPRESS.

3. Update the COMMNDxx parmlib member with the IBM Health Checker for z/OS

procedure, as shown in the following example:

COM=’START hzsproc’

4. Start IBM Health Checker for z/OS:

16 IBM Health Checker for z/OS User’s Guide

v Start IBM Health Checker for z/OS with one or more HZSPRMxx parmlib

members using one of the following commands:

START hzsproc,HZSPRM=xx

or

START hzsproc,HZSPRM=(x1,...,xn)

Where xx is the suffix of the HZSPRMxx member you want to use.

v You can start IBM Health Checker for z/OS without specifying an

HZSPRMxx parmlib member using the following command:

START hzsproc

The system uses default HZSPRMxx member HZSPRM00 if you do not

specify a member on the HZSPRM= parameter.

In subsequent IPLs, the IBM Health Checker for z/OS procedure will start

automatically, as prompted in the COMMNDxx parmlib member. If you start

HZSPROC without specifying an HZSPRMxx member, the system uses

HZSPRM=00 as the default.

The very first time you start IBM Health Checker for z/OS, you might see a

message such as the following:

HZS0010I THE HZSPDATA DATA SET CONTAINS NO RECORDS

This output reflects the fact that the HZSPDATA data set as yet contains no data.

Obtain checks for IBM Health Checker for z/OS

Checks for the IBM Health Checker for z/OS are delivered both as an integrated

part of a z/OS release or separately, as PTFs. Many new and updated checks will

be distributed as PTFs, so that they are not dependent on z/OS release boundaries

and can be added at any time.

v For an up-to-date list of checks available, see

http://www.ibm.com/servers/eserver/zseries/zos/hchecker/check_table.html

v To obtain checks that have been provided in PTFs, use the Enhanced Preventive

Service Planning Tool, available at:

http://techsupport.services.ibm.com/390/psp_main.html

You can identify checks by selecting type Function and category Health

Checker.

For more information on PSP Buckets, see z/OS Planning for Installation.

See also “Dynamically adding local or REXX exec checks to IBM Health Checker

for z/OS” on page 151.

Current checks at the time this document was published are described in

Chapter 13, “IBM Health Checker for z/OS checks,” on page 301.

Chapter 2. Setting up IBM Health Checker for z/OS 17

http://www.ibm.com/servers/eserver/zseries/zos/hchecker/check_table.html
http://techsupport.services.ibm.com/390/psp_main.html

18 IBM Health Checker for z/OS User’s Guide

Chapter 3. Working with check output

Once you’ve set up IBM Health Checker for z/OS, started it, and obtained some

checks, you’ll want to look at your check output. Output from checks is in the form

of messages issued by check routines, as either:

v Exception messages issued when a check detects a potential problem or a

deviation from a suggested setting. See “Understanding exception messages” on

page 22.

v Information messages issued to the message buffer to indicate either a clean

check run (no exceptions found) or that a check is inappropriate in the current

environment and will not run.

v Reports issued to the message buffer, often as supplementary information for an

exception message.

You can view complete check output messages in the message buffer using the

following:

v The HZSPRINT utility to write the current message buffer for the target checks

to the specified SYSOUT data set. See “Set up the HZSPRINT utility” on page 8

and “Using the HZSPRINT utility” on page 29.

v SDSF - see “Using SDSF to manage checks” on page 37

v A log stream - see “Define log streams to keep a record of the check output” on

page 8

A check can issue a number of different messages, usually issuing at least one:

v When a check runs without finding an exception, it should issue an

informational message with that information to the message buffer. The following

example shows a clean check run case, viewed in the message buffer:

CHECK(IBMRSM,RSM_MAXCADS)

START TIME: 06/07/2005 10:55:38.139127

CHECK DATE: 20041006 CHECK SEVERITY: MEDIUM

CHECK PARM: THRESHOLD(80%)

IARH108I The current number of in use CADS entries is 17, which

represents 34% of the total allowed CADS entries of 50. The highest

usage of CADS entries during this IPL is 34%, or 17 total entries. This

is below the current IBMRSM supplied threshold of 80%.

END TIME: 06/07/2005 10:55:38.139653 STATUS: SUCCESSFUL

Note that the status of the check - STATUS: SUCCESSFUL.

v When a check is not appropriate for the current environment, it should issue

an informational message with that information to the message buffer:

CHECK(IBMCNZ,CNZ_SYSCONS_MASTER)

START TIME: 07/05/2005 14:45:22.739250

CHECK DATE: 20040816 CHECK SEVERITY: HIGH

HZS1003E CHECK(IBMCNZ,CNZ_SYSCONS_MASTER):

THE CHECK IS NOT APPLICABLE IN THE CURRENT SYSTEM ENVIRONMENT.

CNZHF1004I The system console is not present. The check is not

applicable in this environment.

END TIME: 07/05/2005 14:45:22.740948 STATUS: ENV N/A

v When a check finds an exception to a suggested value, or another potential

problem, the check issues an exception message. The exception message might

be accompanied by supporting information in report format. For an exception

© Copyright IBM Corp. 2006, 2007 19

message, the system issues a WTO with just the message text by default. The

system issues both the message text and details to the message buffer. The

example below shows the output from a check, including a report and an

exception message in the message buffer:

CHECK(IBMCNZ,CNZ_CONSOLE_MSCOPE_AND_ROUTCODE)

START TIME: 06/08/2005 09:49:17.410704

CHECK DATE: 20040816 CHECK SEVERITY: LOW

* Low Severity Exception *

CNZHF0003I One or more consoles are configured with a combination of

message scope and routing code values that are not reasonable.

 Explanation: One or more consoles have been configured to have a

 multi-system message scope and either all routing codes or all

 routing codes except routing code 11. Note: For active MCS and SMCS

 consoles, only the consoles active on this system are checked. For

 inactive MCS and SMCS consoles, all consoles are checked. All EMCS

 consoles are checked.

 System Action: The system continues processing.

 Operator Response: Report this problem to the system programmer.

 System Programmer Response: To view the attributes of all consoles,

 issue the following commands:

 DISPLAY CONSOLES,L

 DISPLAY EMCS,FULL,STATUS=L

 Update the MSCOPE or ROUTCODE parameters of MCS and SMCS consoles

 on the CONSOLE statement in the CONSOLxx parmlib member before the

 next IPL. For EMCS consoles (or to have the updates to MCS/SMCS

 consoles in effect immediately), you may update the message scope

 and routing code parameters by issuing the VARY CN system command

 with either the MSCOPE, DMSCOPE, ROUT or DROUT parameters. If an

 EMCS console is not active, find out which product activated it and

 contact the product owner. If the EMCS console is no longer

 needed, use the EMCS console removal service (IEARELEC) to remove

 the EMCS console definition.

 Problem Determination: n/a

 Source: Consoles (SC1CK)

 Reference Documentation:

 z/OS MVS Initialization and Tuning Reference

 z/OS MVS System Commands

 z/OS MVS Planning: Operations

 Automation: n/a

 Check Reason: Reduces the number of messages sent to a console in

 the sysplex

END TIME: 06/08/2005 09:49:17.451937 STATUS: EXCEPTION-LOW

In this section, we’ll cover the following:

v “Hey! My system has been configured like this for years, and now I’m receiving

exceptions!” on page 21

v “Understanding system data issued with the check messages” on page 21

v “Understanding exception messages” on page 22

v “Evaluating check output and resolving exceptions” on page 23

v “Approaches to automation with IBM Health Checker for z/OS” on page 24

v “Understanding check state and status” on page 26

v “Using the HZSPRINT utility” on page 29

v “Finding check message documentation with LookAt” on page 33

20 IBM Health Checker for z/OS User’s Guide

|

Hey! My system has been configured like this for years, and now I’m

receiving exceptions!

Some customers may be startled by the exception messages that IBM Health

Checker for z/OS issues on systems that have been running just fine the way they

were. But it’s really worth your time and attention to look over the exceptions and

evaluate your system, because IBM Health Checker for z/OS reflects suggestions to

improve your system’s availability and avoid problems. The checks reflect generally

accepted recommendations, but you will need to evaluate whether each suggestion

is appropriate for your system.

One important thing to note is that an exception does not imply that there is a

problem to report to IBM. Exceptions are a means for you to evaluate potential

availability impacts and take action. See “Evaluating check output and resolving

exceptions” on page 23 for how to resolve check exceptions.

Understanding system data issued with the check messages

In the examples of check messages in other topics, you probably noticed data

above and below the check messages - IBM Health Checker for z/OS issues this

system data to accompany each check message. Fields such as START TIME:,

CHECK DATE:, and END TIME: are not part of the message input specified by the

check developer. The system issues this data automatically, as appropriate.

The example below shows a subset of some system data you might see with a

check message. The system data is highlighted in bold:

CHECK(IBMRSM,RSM_MAXCADS)

START TIME: 06/07/2005 10:55:38.139127

CHECK DATE: 20041006 CHECK SEVERITY: MEDIUM

CHECK PARM: THRESHOLD(80%)

IARH108I The current number of in use CADS entries is 17, which

represents 34% of the total allowed CADS entries of 50. The highest

usage of CADS entries during this IPL is 34%, or 17 total entries. This

is below the current IBMRSM supplied threshold of 80%.

END TIME: 06/07/2005 10:55:38.139653 STATUS: SUCCESSFUL

Most of the system data fields you might see, such as START TIME: and END TIME:

are self-explanatory. However, the list below includes fields that might need a little

explanation:

CHECK(check_owner,check_name)

The CHECK field displays the owning component or product for the check, as

well as the check name. In this example, IBMRSM or RSM is the owner of the

check that issued this message.

CHECK SEVERITY: severity

This field displays the severity defined for the check that issued the message.

CHECK PARM: parameter

This field displays the parameters that are passed to the check routine when it

runs.

STATUS: status

The STATUS field shows the status of the check when it completed running.

There are many status values possible for a check, as shown in display output

Chapter 3. Working with check output 21

|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

or the message buffer. See the status field in message HZS0200I in z/OS MVS

System Messages, Vol 6 (GOS-IEA) for a list of all the possible values for the

check status.

ABENDED. TIME: time DIAG: sdwaabcc_sdwacrc

In the event that a check abends, the system will issue this line along with the

check message. In this line of data:

TIME: time

The time the check abended.

DIAG: sdwaabcc_sdwacrc

sdwaabcc is the abend code, and sdwacrc is the abend reason code.

sdwacrc will display zeros if there is no abend reason code for the abend.

See z/OS MVS System Codes for information on abends.

Understanding exception messages

Exception messages are the most important check output, because they identify

potential problems and suggest a solution.

v The complete explanation and details for exception messages are issued to the

message buffer, where you can view it with either SDSF, HZSPRINT, or in the log

stream.

v By default, the exception message text is also issued as a WTO, prefaced by an

HZS WTO message. The HZS message issued reflects the “SEVERITY” on page

65 and “WTOTYPE” on page 65 parameters defined for the check. (You can

update these parameters to control the severity and descriptor code for the

check.)

The following examples show how exception messages and exception message

WTOs will look on a system:

Exception message example 1 - An exception message as it appears in the

message buffer: The following example shows an exception message in the

message buffer. Note that IBM Health Checker for z/OS issues information both

before and after the exception message with data including the check owner and

name, the severity of the check, and the check parameter in use.

CHECK(IBMGRS,GRS_MODE)

START TIME: 06/12/2007 18:44:00.421390

CHECK DATE: 20050105 CHECK SEVERITY: LOW

CHECK PARM: STAR

ISGH0301E Global Resource Serialization is in RING mode. Global Resource

 Serialization STAR mode was expected.

Explanation: The check found an unexpected mode when global resource serialization

 star mode was expected. Use star mode for best performance in a parallel sysplex.

System Action: The system might perform significantly worse than if it was in star mode.

Operator Response: Contact your system programmer.

System Programmer Response: See z/OS MVS Planning: Global Resource Serialization for

 more information on converting to global resource serialization star mode.

Problem Determination: N/A

Source: Global resource serialization

Reference Documentation: z/OS MVS Planning: Global Resource Serialization

Automation: N/A

22 IBM Health Checker for z/OS User’s Guide

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Detecting Module: ISGHCGRS, ISGHCMSG

END TIME: 06/12/2007 18:44:02.003761 STATUS: EXCEPTION-LOW

Exception message example 2 - An exception WTO message on the system

console: The example below shows how the same check exception message WTO

looks on the system console. Note that IBM Health Checker for z/OS issues an

HZS message, HZS0002E, and then the check exception WTO appears as part of

that message:

B7VBID47 HZS0002E CHECK(IBMXCF,XCF_SFM_ACTIVE):

IXCH0514E The state of Sysplex Failure Management is NOT consistent

with the IBMXCF recommendation.

Exception message example 3 - An exception WTO message in the system

log: The example below shows the same check exception message WTO again,

this time on the system console. Note that IBM Health Checker for z/OS issues an

HZS message, HZS0002E, and then the check exception WTO appears as part of

that message:

031 01000000 HZS0002E CHECK(IBMXCF,XCF_SFM_ACTIVE): 882

882 01000000 IXCH0514E The state of Sysplex Failure Management is NOT consistent

882 01000000 with the IBMXCF recommendation.

Evaluating check output and resolving exceptions

The best way to use IBM Health Checker for z/OS is to run it continuously on your

system. But you must also evaluate check output, and resolve check exceptions.

The check exceptions will give you both the reason for the exception and the steps

to take to correct it. In the course of evaluating exceptions, you may need to review

the exception with a number of different people in your installation with the

expertise in the appropriate field. Resolving check exceptions will be an

installation-specific process, and you'll need to develop efficient ways to respond.

See also “Approaches to automation with IBM Health Checker for z/OS” on page

24.

Once you have evaluated a check exception, you can resolve it in one of the

following ways:

v Update your system as suggested by the check exception message, which is

the recommended approach. Then you will no longer receive the exception

message when the check runs again. You can verify that you have resolved the

exception by running the check again (R action character in SDSF or F

hzsproc,RUN,CHECK=(checkowner, checkname) and then looking at the output

in the message buffer. The check exception message will be gone from the

output if you have resolved the exception.

v Evaluate the parameters specifying the value or values that the check is looking

for. If a parameter is not appropriate for your system, update it so that you will no

longer receive an inappropriate exception message when the check runs. You will

also want to evaluate and possibly update the severity of the check to make sure

it is appropriate for your installation. See Chapter 4, “Managing checks,” on page

35.

v Ensure that the check will not run and produce exceptions by either:

– Putting the check into the Inactive state

– Deleting the check

See “Understanding check state and status” on page 26

It is very important that you resolve exception messages, so that when checks run

at their specified intervals, they will report only exceptions that require attention.

Chapter 3. Working with check output 23

|
|
|

|

Otherwise, your IBM Health Checker for z/OS output may contain a mixture of

messages that you regularly ignore and those reflecting a new potential problem.

This might make it more likely that you could miss a key exception message.

Messages for individual checks will be documented in the component or product

owning the message. For information about checks, including the name of the

document where a check's messages are documented, see Chapter 13, “IBM

Health Checker for z/OS checks,” on page 301.

Approaches to automation with IBM Health Checker for z/OS

Why automate with IBM Health Checker for z/OS? Because even with all our

planning and coding efforts, IBM Health Checker for z/OS is really only as good as

the quality and speed of the installation's response to the check exceptions it finds.

So what really matters is how quickly exception information gets routed to the right

person to resolve the exception. In most cases, the person who manages IBM

Health Checker for z/OS and sees check output first hand is not going to be the

right person to resolve all the exceptions that pop up. And since checks are spread

across components and products, you'll be routing the information to many different

people (no one person can handle the whole variety of check exceptions

effectively). In other words, you'll need an effective exception resolution process to

go with IBM Health Checker for z/OS, and automation can be an integral part of

that process.

There are numerous ways you can automate IBM Health Checker for z/OS and its

exception messages, depending on the products installed in your shop and a million

other variables. Here we'll describe our initial, simple approach to automating

responses to check messages on our test systems. See also “More automation

ideas” on page 25.

Our approach to automation on a test sysplex:

1. Automate start up: We set up our test systems so that IBM Health Checker for

z/OS starts automatically every time a system IPLs. We do this by specifying

the IBM Health Checker for z/OS procedure in the COMMNDxx parmlib member

as described in “Start IBM Health Checker for z/OS” on page 16.

2. Automate HZSPRINT to keep a record of check messages on each

system: We use System Automation running under NetView to automate

HZSPRINT. We code the HZSPRINT JCL so that it automatically prints the

messages from checks that found an exception. You can code the JCL for

HZSPRINT so that it prints the message buffer to a sequential data set or

simply to SYSOUT. Our JCL prints the message buffer data to a sequential data

set for any check that finds an exception, as shown in the following example:

//HZSPRINT JOB ’ACCOUNTING INFORMATION’,’HZSPRINT JOB’,

// CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)

//HZSPRINT EXEC PGM=HZSPRNT,TIME=1440,REGION=0M,

// PARM=(’CHECK(*,*)’,

// ’EXCEPTIONS’)

//SYSOUT DD DSN=HCHECKER.PET.CHKEXCPT.SEQ.REPORT,DISP=MOD

3. Automate HZSPRINT on each system to send e-mail messages: You can

add a step to the HZSPRINT JCL for each system that uses the Simple Mail

Transfer Protocol (SMTP) FTP command to send e-mail messages. To do this,

you must have SMTP set up - see z/OS Communications Server: IP User’s

Guide and Commands. We're using SMTP to send an e-mail alert whenever a

check finds an exception. To do this, we key off of the HZS exception messages

24 IBM Health Checker for z/OS User’s Guide

- see “Using HZS exception messages for automation” on page 26. This is only

one simple approach to automating responses to check exceptions - see also

“More automation ideas.”

More automation ideas

There are many ways to use IBM and vendor products to automate responses to

check output, including sending e-mail messages or setting off beepers. You've

seen one approach we're using on a test sysplex. But there are a lot of ways to

approach automation to help make sure you get the exception information to the

people who can quickly resolve exceptions. Here are some automation ideas to kick

around:

v Key automation off check severity: You can key your automation off check

severity, tailoring the response to different severities. Because checks are

classified as HIGH, MEDIUM, or LOW severity, you can tailor check response

based on the severity. For example, for HIGH severity check exceptions, you

might want to set off a beeper call, while for LOW and MEDIUM severity check

exceptions an email message would suffice.

Tailoring exception response depending on severity also means that each

installation will need to evaluate the severity setting of each check, to see if that

setting is appropriate for their environment. You can update the severity for a

check using either the MODIFY command, HZSPRMxx parmlib member, or

SDSF.

v Route exception alerts to either a generic on-call address or a product

expert: When you set up your automation to make beeper calls or send emails,

you can route the alerts either to a generic on-call address or to the expert for

the specific product or component getting the check exception.

– Routing to a generic on-call address makes automation setup faster, but could

perhaps slow down response, since the person on call might have to re-route

the information to an expert. To make responding easier, you can supply the

person on call with a list of product / component experts. To make this

approach work even better, you could create a run book for IBM Health

Checker for z/OS, with the procedures for responding to check exceptions.

– Routing alerts to specific product experts might make for faster responses to

check exceptions, but could make the automaton set up more time

consuming.

Each installation will have to carefully calculate the trade-offs in this equation to

make a decision about routing exception alerts.

v Automate by message using MPF exits: You can use an MPF installation exit

to key off message identifiers and do message-specific processing. For example,

using MPF exits you can:

– Modify the presentation of messages, such as color and intensity.

– Modify message routing, such as updating routing codes, changing the

console that messages are routed to, or redirecting message traffic.

– Suppress or automate message responses, such as filtering messages,

performing error thresholding, or deleting messages.

See IEAVMXIT -- Installation-Specified MPF Exits in z/OS MVS Installation Exits.

v Automate on a check basis using routing codes: You can update the routing

codes assigned for all the messages for a particular check to to modify message

routing. To update the routing codes, specify the ROUTCODE parameter on

either the MODIFY hzsproc command or in the HZSPRMxx parmlib member. See

Routing Codes in z/OS MVS System Messages, Vol 1 (ABA-AOM).

Chapter 3. Working with check output 25

v Put check output in a central place for responders: Whether they're routing

check output to the lucky on-call person or a product / component expert,

installations have to get the right information to the responder in order to take the

appropriate action. Emailing the check output is problematic because the volume

of check output can be very high. Instead, we're using HZSPRINT to write the

data to a data set. That way we'll be able to email the name of the data set to

the responder.

v Keep it simple: The goal of whatever automation method you pick is to get the

right information to the right person so that the exception can be corrected as

quickly as possible. To that end, keeping automation simple will make it easier to

set up, maintain, and respond to exceptions quickly.

Using HZS exception messages for automation

A check exception message WTO consists of an HZS header message, followed by

the check-specific exception message text, as shown in the system console

example below:

 HZS0001I CHECK(IBMUSS,USS_MAXSOCKETS_MAXFILEPROC)

 BPXH033E MAXSOCKETS value for AF_INET is too low.

The HZS header messages issued with exceptions are:

v HZS0001I: Exception information message: low severity or

WTOTYPE(INFORMATIONAL). Indicates that the check found a problem that will

not impact the system immediately, but that should be investigated.

v HZS0002E: Exception eventual action message: medium severity or

WTOTYPE(EVENTUAL). Indicates that the check found a medium severity

problem in an installation.

v HZS0003E: Exception critical eventual action message: high severity or

WTOTYPE(CRITICAL). Indicates that the check routine found a high-severity

problem in an installation.

v HZS0004I: Exception hardcopy message: hardcopy only informational severity or

WTOTYPE(HARDCOPY).

See z/OS MVS System Messages, Vol 6 (GOS-IEA) for a complete list of IBM

Health Checker for z/OS HZS messages.

To find the documentation for the check-specific messages (which are on the

second line of the WTO), such as BPXH033E shown above, look in either:

v Using LookAt - see “Finding check message documentation with LookAt” on

page 33.

v The check owner product or element documentation. For a list of documents

where you can find the messages documented for each check, see Chapter 13,

“IBM Health Checker for z/OS checks,” on page 301.

Understanding check state and status

Part of managing checks is understanding the check state and status shown for

checks in the check messages in the message buffer, SDSF or the

MODIFYhzsproc,DISPLAY output:

v State: Indicates whether a check will run at the next specified interval.

v Status: Describes the output of the check when it last ran.

For example:

v In the message buffer, system information displayed with the check message

includes check status:

26 IBM Health Checker for z/OS User’s Guide

CHECK(IBMCNZ,CNZ_CONSOLE_MSCOPE_AND_ROUTCODE)

START TIME: 06/08/2005 09:49:17.410704

CHECK DATE: 20040816 CHECK SEVERITY: LOW

* Low Severity Exception *

CNZHF0003I One or more consoles are configured with a combination of

message scope and routing code values that are not reasonable.

 .

 .

 .

 Check Reason: Reduces the number of messages sent to a console in

 the sysplex

END TIME: 06/08/2005 09:49:17.451937 STATUS: EXCEPTION-LOW

v In SDSF, information displayed about checks includes state and status:

NAME CheckOwner State Status

CNZ_AMRF_EVENTUAL_ACTION_MSGS IBMCNZ ACTIVE(ENABLED) SUCCESSFUL

CNZ_CONSOLE_MSCOPE_AND_ROUTCODE IBMCNZ INACTIVE(ENABLED) INACTIVE

CNZ_SYSCONS_ROUTCODE IBMCNZ ACTIVE(ENABLED) EXCEPTION-LOW

GRS_CONVERT_RESERVES IBMGRS ACTIVE(DISABLED) GLOBAL

v If you enter the f hzsproc,display,checks command to display check

information, you’ll receive output like the following. (Note that the check states

are explained at the bottom of the output.)

HZS0200I 10.56.19 CHECK SUMMARY 134

CHECK OWNER CHECK NAME STATE STATUS

IBMVSM VSM_CSA_CHANGE AE SUCCESSFUL

IBMRRS RRS_RSTOFFLOADSIZE AE SUCCESSFUL

IBMRRS RRS_DUROFFLOADSIZE AE SUCCESSFUL

IBMRRS RRS_MUROFFLOADSIZE AE SUCCESSFUL

IBMRRS RRS_RMDOFFLOADSIZE AE SUCCESSFUL

IBMRRS RRS_RMDATALOGDUPLEXMODE AE SUCCESSFUL

IBMCNZ CNZ_SYSCONS_MASTER AE SUCCESSFUL

IBMCNZ CNZ_SYSCONS_PD_MODE AE SUCCESSFUL

IBMCNZ CNZ_EMCS_INACTIVE_CONSOLES ADG SYS=J80

IBMCNZ CNZ_SYSCONS_ROUTCODE AE EXCEPTION-LOW

IBMCNZ CNZ_SYSCONS_MSCOPE AE SUCCESSFUL

IBMCNZ CNZ_EMCS_HARDCOPY_MSCOPE AE EXCEPTION-MED

 .

 .

 .

 A - ACTIVE I - INACTIVE

 E - ENABLED D - DISABLED

 G - GLOBAL CHECK + - ADDITIONAL WARNING MESSAGES ISSUED

Both of these examples show that the state and status for the highlighted check,

CNZ_SYSCONS_ROUTECODE, are as follows:

v The check state is AE or ACTIVE(ENABLED), which means that it will run at its

next scheduled interval.

v The check status is EXCEPTION-LOW, indicating that the check found a low

severity exception.

Check states: Each check state has two parts:

1. “User controlled states” on page 28

2. “IBM Health Checker for z/OS controlled states” on page 28

Check status: For check status, see “Check status” on page 29.

Chapter 3. Working with check output 27

User controlled states

 Table 2. User controlled states

Check state Description

Active or A An active check is one that has been added to IBM Health Checker for z/OS.

An active check will run at whatever interval was specified for the check in

the HZSADDCHECK exit routine or HZSPRMxx parmlib member, unless the

system disables it. The life of an active check lasts until it gets refreshed or

deleted.

A check becomes active when:

v It has been added to IBM Health Checker for z/OS in the active state.

v You specify ACTIVATE or UPDATE ACTIVE on the HZSPRMxx parmlib

member or the MODIFY command (F hzsproc).

Inactive or I An inactive check is not eligible to run. The check becomes inactive when

either:

v It has been added to IBM Health Checker for z/OS in the inactive state.

v You specify DEACTIVATE or UPDATE INACTIVE on the HZSPRMxx

parmlib member for the MODIFY command (F hzsproc).

IBM Health Checker for z/OS controlled states

 Table 3. States controlled by IBM Health Checker for z/OS

Check state Description

Enabled or E All checks are added to the system as enabled, and checks stay enabled

unless IBM Health Checker for z/OS disables them (see “Disabled state”).An

enabled check can be either active or inactive. An check will run if it is both

enabled and active, or eligible.

Disabled or D A disabled check is one that IBM Health Checker for z/OS has disabled

because of check routine or environmental problems such as:

v The check routine encounters multiple errors, such as 3 consecutive

abends.

v The Init function processing does not complete successfully.

v The installation environment is not appropriate for the check. For example,

the check might be looking for sysplex values when the installation is not

a sysplex environment or the check may require UNIX System Services at

a time when UNIX System Services is down.

v The parameters passed to the check are not valid.

v The check is a global one running on a different system. See “Global

state” on page 29.

A disabled check is not eligible to run.

You can get IBM Health Checker for z/OS to enable your check by fixing the

error causing the check to be disabled and then refreshing the check. If you

update the parameters passed to a check, you do not need to refresh the

check, because the system will re-enable the check automatically in order to

let it see if the parameters are now correct.

Some conditions causing a disabled check may resolve themselves. For

example, if a check is disabled because it is a global check that is already

running on a system in the sysplex, it will show up as disabled on other

systems. Then, when it is no longer running on the original system, the

system will enable the check on another system in the sysplex. Or, if a check

requires UNIX System Services to run, but UNIX System Services is down,

that check will be disabled until UNIX System Services comes up again. At

that point, the system will enable the check.

28 IBM Health Checker for z/OS User’s Guide

Table 3. States controlled by IBM Health Checker for z/OS (continued)

Check state Description

Global or G A global check is one which runs on one system but reports on sysplex-wide

values and practices. A global check shows up as disabled for all systems in

the sysplex, except for the one where it is actually running.

ACTIVE(DISABLED) and INACTIVE(ENABLED) - understanding check

state combinations

Checks have a two part state, which can sometimes seem contradictory. Basically,

however, it all boils down to whether a check is eligible to run or not. If a check is

eligible, it is both active and enabled, and running at its established interval. An

ineligible check will not run because it was either:

v Disabled by IBM Health Checker for z/OS because of errors or environmental

problems

v Deactivated by a user

v Both disabled and deactivated

 Table 4. Check state combinations

Eligible

states

 ACTIVE(ENABLED) or AE: Check is ready and able to run.

Ineligible

states

 ACTIVE(DISABLED) or AD: Check has been defined to IBM Health

Checker for z/OS and was running, but IBM Health Checker for z/OS found

errors and disabled the check (see “Disabled state” on page 28). The

check will not run.

 INACTIVE(ENABLED) or IE: A user has deactivated the check (see

“Inactive state” on page 28). From IBM Health Checker for z/OS’s point of

view, this check is in good standing and can run whenever the user

re-activates it. However, the check will not run.

 INACTIVE(DISABLED) or ID: The system disabled the check because of

system or environment errors (see “Disabled state” on page 28) and a user

deactivated it (see “Inactive state” on page 28). The check will not run.

Check status

There are many status values possible for a check, as shown in display output or

the message buffer. See the status field in message HZS0200I in z/OS MVS

System Messages, Vol 6 (GOS-IEA) for a list of all the possible values for the

check status.

Using the HZSPRINT utility

The HZSPRINT utility allows you to look at check output. HZSPRINT writes the

current message buffer for the target checks to SYSOUT for one check, multiple

checks, or all checks.

The following information assumes that you have already set up security for

HZSPRINT - see “Setting up security for the HZSPRINT utility” on page 11.

The SYS1.SAMPLIB JCL for the HZSPRINT utility is as follows:

//HZSPRINT EXEC PGM=HZSPRNT,TIME=1440,REGION=0M,

// PARM=(’CHECK(check_owner,check_name)’)

//* PARM=(’CHECK(check_owner,check_name)’,

//* ’EXCEPTIONS’)

//* PARM=(’LOGSTREAM(logstreamname)’)

Chapter 3. Working with check output 29

//* PARM=(’LOGSTREAM(logstreamname)’,

//* ’CHECK(owner,name)’)

//* PARM=(’LOGSTREAM(logstreamname)’,’EXCEPTIONS’,

//* ’CHECK(owner,name)’)

//* PARM=(’LOGSTREAM(logstreamname)’,’EXCEPTIONS’)

//* PARM=(’LOGSTREAM(logstreamname)’,’SYSNAME(sysname)’)

//* PARM=(’LOGSTREAM(logstreamname)’,’SYSNAME(sysname)’,

//* ’CHECK(owner,name)’)

//* PARM=(’LOGSTREAM(logstreamname)’,’EXCEPTIONS’,

//* ’SYSNAME(sysname)’,

//* ’CHECK(owner,name)’)

//* PARM=(’LOGSTREAM(logstreamname)’,’EXCEPTIONS’,

//* ’SYSNAME(sysname)’)

//SYSOUT DD SYSOUT=A,DCB=(LRECL=256)

HZSPRINT parameters:

’CHECK(check_owner,check_name)’

check_owner must be between 1-16 characters and check_name must be

between 1-32 characters. To find the check owner and check name, use either

the SDSF CK option or use the following MODIFY command:

F hzsproc,DISPLAY,CHECKS

You can also use wildcard characters ’*’ and ’?’ in both the check owner and

check name fields to get output from multiple checks. For example, to see the

output of all the checks on the system, you could use the following:

// PARM=’CHECK(*,*)’

An asterisk (*) represents any string having a length of zero or more characters.

A question mark (?) represents a position which contains any single character.

The system converts any lowercase letters to uppercase.

 CHECK(*,*) is the default setting for HZSPRINT. If you do not specify CHECK,

you will get CHECK(*,*) to see the output of all checks. Note that using

CHECK(*,*) will only work if you have access to all the checks. See “Setting up

security for the HZSPRINT utility” on page 11.

,EXCEPTIONS

Optional parameter EXCEPTIONS lets you limit the output in SYSOUT to

messages from checks that wrote at least one check exception message. For

example, to see the output of all checks that found exceptions, use the

following:

// PARM=’CHECK(*,*),EXCEPTIONS’

,LOGSTREAM(log_stream_name)

Optional parameter LOGGER specifies that you want to print the specified log

stream.

SYSNAME(system_name)

Optional parameter SYSNAME lets you limit the output in SYSOUT to

output from checks running on the specified system. system_name is the

name of a system where the checks were executed. You can specify the

SYSNAME parameter only with LOGSTREAM.

 You can use wildcard characters ’*’ and ’?’ in the system_name field to

specify that you want check output from multiple systems.

 The default for SYSNAME is SYSNAME(*), which will give you output for

specified checks from all the systems in the sysplex.

If you want to allocate a data set for HZSPRINT output:

30 IBM Health Checker for z/OS User’s Guide

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

|
|

v The data set must be:

– Fixed length, blocked records. For example, RECFM=FBA or RECFM=FBM

– Logical record length of 256

v Add the name of the output data set allocated above to the HZSPRINT JCL. For

example:

//SYSOUT DD DISP=SHR,DSNAME=D10.HCHECKER.REPORT.FEB2505,DCB=(LRECL=256)

v Note that the first character of each line of HZSPRINT output is a carriage

control character.

Example of HZSPRINT output

The following shows a portion of the HZSPRINT output for a request that includes

output for all checks with exceptions:

**

* *

* HZSU001I IBM Health Checker for z/OS Check Messages *

* Filter: CHECK(*,*) *

* Filter: Only checks with exception(s) *

* *

**

**

* *

* Start: CHECK(IBMUSS,USS_MAXSOCKETS_MAXFILEPROC) *

* *

**

CHECK(IBMUSS,USS_MAXSOCKETS_MAXFILEPROC)

START TIME: 03/30/2005 11:31:06.593289

CHECK DATE: 20040808 CHECK SEVERITY: LOW

CHECK PARM: 64000,64000

BPXH003I z/OS UNIX System Services is configured using OMVS=(00) which

correspond to the BPXPRMxx suffixes. The IBMUSS specification for IBM

Health Checker for z/OS USS_MAXSOCKETS_MAXFILEPROC is 64000,64000.

 .

 .

 .

END TIME: 03/30/2005 11:31:08.457023 STATUS: EXCEPTION-LOW

**

* *

* End: CHECK(IBMUSS,USS_MAXSOCKETS_MAXFILEPROC) *

* *

**

HZSPRINT utility completion codes

The following list shows the completion codes returned by the HZSPRINT utility in

system message IEF142I:

Completion code

Description

0 Success

400

No matches - the HZSPRINT utility could not match your request with checks.

401

HZSPRINT could not retrieve all messages from requested checks.

402

Some records were missing.

Chapter 3. Working with check output 31

403

HZSPRINT could not write all the message buffers.

404

The log stream specified was empty.

800

No input parameters were specified for this check.

801

Missing CHECK(, which is required on S HZSPRINT command.

802

Incorrect check owner specified. checkowner must be between 1-16 characters.

803

Incorrect check name specified. checkname must be between 1-32 characters.

804

Comma missing between checkowner and checkname in the HZSPRINT JCL.

805

Missing the closing parenthesis in CHECK(checkowner,checkname).

806

Incorrect log stream name specified.

811

No log stream was specified in the JCL.

812

The log stream specified was incorrect.

813

The check specified was bad.

814

No system name was specified in the SYSNAME parameter.

815

The system name specified in the SYSNAME parameter was incorrect.

816

The SYSNAME parameter is not allowed as specified - you can only specify

SYSNAME with the LOGSTREAM parameter.

1200

The HZSPRINT utility was not authorized to retrieve the requested information.

For example, the XFACILIT class may not have been RACLISTed. Check the

security definitions described in “Setting up security for the HZSPRINT utility” on

page 11.

1201

The system could not open the specified SYSOUT data set. Check the

SYSOUT data set requirements in “Set up the HZSPRINT utility” on page 8.

1202

Unexpected logical record length on the specified SYSOUT data set.

1203

IBM Health Checker for z/OS is not active.

1204

HZSPRINT encountered an error with the log stream.

1205

The SYSOUT data set specified is not allocated.

1206

The specified SYSOUT data set is partitioned.

1601 -1603

Internal error. Contact the IBM Support Center.

32 IBM Health Checker for z/OS User’s Guide

Finding check message documentation with LookAt

To find check message documentation use component message documents or use

message explanations directly from the LookAt Web site at http://www.ibm.com/
eserver/zseries/zos/bkserv/lookat/. Because checks, along with their output

messages, might be added by PTFs between releases of component message

documents, LookAt will contain the most up to date message information. The

check message ID is on the second line of the WTO for a check message, as

shown for check message BPXH033E below:

 HZS0001I CHECK(IBMUSS,USS_MAXSOCKETS_MAXFILEPROC)

 BPXH033E MAXSOCKETS value for AF_INET is too low.

From the LookAt Web site, specify the check message ID and select the

appropriate z/OS release. (Only releases z/OS V1R7 and higher will contain check

message documentation.)

The example below shows how we have selected z/OS V1R7 to search for SDUMP

check exception message IEAH701I. LookAt will take directly into the message

documentation for IEAH701I.

 If you don't find a particular message in a z/OS release, choose the button on the

bottom to search in APARs and ++HOLDs for all releases. You may find the

message there because some checks will be released APARs between releases.

Figure 2. Using LookAt to find check message documentation

Chapter 3. Working with check output 33

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

34 IBM Health Checker for z/OS User’s Guide

Chapter 4. Managing checks

Managing checks includes tasks such as:

v Updating or overriding values defined for checks or check output, such as check

interval, check severity, or check message routing code or WTO type

v Making checks active or inactive

v Requesting that the system process HZSPRMxx parmlib members

v Deleting checks

v Displaying check information

You can manage checks with the following interfaces:

v Make dynamic, temporary changes to checks such as deactivating, adding,

running, or temporarily updating check values, using:

SDSF. See “Using SDSF to manage checks” on page 37.

MODIFY command. See “Making dynamic, temporary changes to checks” on

page 36.

v Make persistent changes to checks that persist across check refreshes and

restart of IBM Health Checker for z/OS using policies. You can define policies by

specifying policy statements to be in your HZSPRMxx parmlib member or

members, specifying the parmlib member is in the list of parmlib members being

used at the start IBM Health Checker for z/OS, and activating the policy. See

“Making persistent changes to checks” on page 44.

© Copyright IBM Corp. 2006, 2007 35

Table 5. When do I use which interface to manage checks?

How long will the

change be in effect? Task Recommended interface

Dynamic, temporary

changes

See “Making dynamic,

temporary changes to

checks.”

I want to look at check output SDSF or HZSPRINT

I want to issue one-time actions against checks,

including:

v Adding and deleting checks

v Displaying checks

v Refreshing checks

v Running checks

SDSF or MODIFY hzsproc

I want to experiment with temporary updates to

check values, such as:

v Interval

v Severity

v Category

v Check message routing codes

These changes will last until the check is refreshed.

SDSF or MODIFY

hzsproc,UPDATE

Persistent changes

See “Making persistent

changes to checks” on

page 44.

I want to make changes that will persist across

IBM Health Checker for z/OS restarts, such as

permanent updates to check values on policy

statements, adding local checks from the

HZSPRMxx parmlib member, or turning on log

stream support for IBM Health Checker for z/OS

HZSPRMxx statements, and then

make sure that parmlib member(s)

are in the list of parmlib members to

be applied at IBM Health Checker

for z/OS restart.

Making dynamic, temporary changes to checks

If you want to make dynamic, temporary check updates, use either:

v SDSF- see “Using SDSF to manage checks” on page 37.

v The MODIFY command - See “Cheat sheet: examples of MODIFY hzsproc

commands” on page 39.

You can :

v Take one time only actions against checks, such as:

– Adding and deleting checks

– Displaying checks

– Refreshing checks

– Running checks

v Update check values with changes that last until the next refresh of the check or

checks, including:

– Activating and deactivating checks

– Updating check values. For example, using SDSF and the MODIFY

commands, you can update check values, such as interval, severity, category,

or check message routing codes.

Check values changed this way will last just until the check is refreshed. The

system will not apply the changed values to any new checks that you add later.

SDSF or MODIFY commands are great for testing check value updates, but to

make permanent changes you should create a policy statement to apply the

changes to all refreshed and added checks and persist across IBM Health

Checker for z/OS restarts. See “Creating IBM Health Checker for z/OS policies”

on page 44.

36 IBM Health Checker for z/OS User’s Guide

Using SDSF to manage checks

For IBM Health Checker for z/OS, SDSF provides the CK command to display and

manage checks.

Using SDSF you can issue one-time or temporary actions against active checks,

including:

v Viewing check output

v Changing check states

v Adding and deleting new checks

v Displaying check information

v Running checks

v Making temporary updates to check values in use, such as check interval,

category, severity, or check message routing code. These updates will last until

the check is refreshed.

Like all SDSF primary displays, CK can also be accessed from a pull-down when

SDSF is running as an ISPF dialog. To display the IBM Health Checker for z/OS CK

action characters, use the SET ACTION SHORT or SET ACTION LONG command.

You can also:

v See just exceptions, using the CK E command instead of CK.

v Browse a check using the S action character: When you are running SDSF

under ISPF, you can also use the SB or SE action characters to browse the

output with ISPF browse or edit.

v Limit the checks shown with the S command. For example, S ABC* would show

all checks that start with ABC. Reset the checks shown by typing S without

parameters.

v Filter checks shown using the filter option on the left hand side at the top of the

screen. In this example, we filter for checks with names starting with CSV on

system JA0:

Chapter 4. Managing checks 37

You can turn filtering off by using the FILTER OFF command on the command

line.

v Sort checks reporting exceptions in descending order using SDSF command

SORT RESULT D.

v Display checks using the D or DL commands next to the check.

You can get sysplex-wide information about checks using SDSF’s server and

WebSphere MQ.

For complete information on the SDSF CK command, see the following:

v See the information on security for the CK function in z/OS SDSF Operation and

Customization.

v SDSF online help for information about the columns and all the functions related

to the CK panel, such as action characters, overtypeable columns, and

commands.

v See how to customize CK columns in z/OS SDSF Operation and Customization.

Using the MODIFY hzsproc command to manage checks

MODIFY (F hzsproc) commands are useful for making dynamic, temporary changes

to checks. See “Syntax and parameters for HZSPRMxx and MODIFY hzsproc

command” on page 53 for complete syntax information. In this section, we’ll cover

the following:

v “Cheat sheet: examples of MODIFY hzsproc commands” on page 39

v “Why does my check reappear after I delete it? Understanding delete processing”

on page 40

v “But my check doesn’t reappear after ADDNEW - what happened to it?” on page

41

38 IBM Health Checker for z/OS User’s Guide

v “How can I delete checks while IBM Health Checker for z/OS is terminating?” on

page 42

v “Using the category filter to manage checks” on page 42

Cheat sheet: examples of MODIFY hzsproc commands

The following examples of MODIFY (F hzsproc) commands are useful for making

dynamic, temporary changes to checks. See “Syntax and parameters for

HZSPRMxx and MODIFY hzsproc command” on page 53 for complete syntax

information.

 Table 6. F hzsproc command examples

Action Command example

Run checks Run all checks that have an owner that is 6 characters long beginning with IBM:

F hzsproc,RUN,CHECK=(ibm???,*)

This is a one time action issued against the checks involved.

Activate checks Activate checks that belong to any of the categories A or B:

F hzsproc,ACTIVATE,CHECK=(*,*),CATEGORY=(ANY,A,B)

See “Using the category filter to manage checks” on page 42. This is a one time action issued

against the checks involved.

Deactivate checks Deactivate checks that belong both to categories B and C:

F hzsproc,DEACTIVATE,CHECK=(*,*),CATEGORY=(ALL,B,C)

This is a one time action issued against the checks involved.

Disable checks You cannot disable a check, the system will disable a check in response to check routine or

environmental problems. See “IBM Health Checker for z/OS controlled states” on page 28.

Enable checks You cannot enable a check, the system enables a check after you solve whatever problem led

the system to disable it in the first place. See “IBM Health Checker for z/OS controlled states”

on page 28.

Delete a check Delete a check:

F hzsproc,DELETE,CHECK=(IBMRACF,RACF_GRS_RNL)

This is a one time action issued against the check or checks involved. When you delete a

check using the MODIFY command, your check will come back to run again whenever

ADDNEW processing occurs. (ADDNEW processing refreshes all checks.) If you want a check

to be deleted and stay deleted, use the DELETE parameter on a policy statement. See “Why

does my check reappear after I delete it? Understanding delete processing” on page 40.

Undelete a check Undelete a check:

F hzsproc,ADDNEW

This is a one time action issued against all checks that are eligible to run.

Update a check v Update a check to high severity:

F hzsproc,UPDATE,CHECK=(IBMRACF,RACF_GRS_RNL),SEVERITY=HIGH

v Update all checks with a check owner that starts with ″a″ and a name that starts with ″b″ to

have:

– WTOTYPE of informational

– INTERVAL of one hour

F hzsproc,UPDATE,CHECK=(a*,b*),WTOTYPE=INFORMATIONAL,INTERVAL=01:00

These updates lasts until the check involved is refreshed.

Chapter 4. Managing checks 39

Table 6. F hzsproc command examples (continued)

Action Command example

Clearing a check

parameter error

There are lots of checks that do not accept parameters (see Chapter 13, “IBM Health Checker

for z/OS checks,” on page 301). If you do have a check that you have defined with parameters

when it does not accept parameters, you can clear the parameter error by issuing the following

command to update the check with a null parameter string:

F hzsproc,UPDATE,CHECK=(checkowner,checkname),PARM()

Add HZSPRMxx

parmlib members

v Add HZSPRMxx parmlib members to the list of members that IBM Health Checker for z/OS

is using:

F hzsproc,ADD,PARMLIB=(suffix1,suffix2,...suffixn)

v Replace the list of parmlib members that IBM Health Checker for z/OS is using:

F hzsproc,REPLACE,PARMLIB=(suffix1,suffix2,...suffixn)

REPLACE,PARMLIB does the following:

– Sets the list of HZSPRMxx parmlib member suffixes to the list specified on the REPLACE

parameter.

– Wipes out any existing policy statements.

– Processes the statements in the parmlib members in the list, applying them to existing

checks.

– Processes the policy statements and applies the statements to new checks.

Activate a policy or

Switch between

policies

Activate an IBM Health Checker for z/OS:

F hzsproc,ACTIVATE,POLICY=policyname

Why does my check reappear after I delete it? Understanding

delete processing

The F hzsproc,DELETE command is a onetime action issued against a check. That

means that if you issue the F hzsproc,DELETE command to delete a check, it will

probably reappear to run the very next time something kicks off ADDNEW

processing. No matter how it’s kicked off, ADDNEW processing tries to refresh all

checks, bringing any temporarily deleted check back in the process. In this section,

we’ll explain a bit about how delete processing works. But the bottom line is this: If

you really want to delete a check permanently, do it in a policy statement.

We’ll use a scenario to explain why your check keeps coming back. But first, you’ll

need to understand that all the relevant facts about a check routine are contained in

a check definition contained in either:

v An HZSADDCHECK exit routine

v An HZSPRMxx parmlib member, created with the ADD | ADDREPLACE CHECK

command

When a command or other request kicks off ADDNEW processing, the system adds

or reactivates the check as defined in the check definition.

1. Okay, let’s say that:

v CHECK(A,B) is added to the system by HZSADDCHECK exit routine AEXIT.

v CHECK(C,D) is added to the system in the HZSPRMxx parmlib member with

the ADD | ADDREPLACE CHECK command.

2. Now, let’s say that someone issues a MODIFY command or non-policy parmlib

statement that deletes CHECK(A,B). When delete processing completes:

v CHECK(A,B) is in the deleted status

v CHECK(C,D) is eligible to run

3. Now, something kicks off ADDNEW processing, such as a request to refresh

CHECK(C,D). A refresh request consists of a delete of the check, followed by

an ADDNEW request.

40 IBM Health Checker for z/OS User’s Guide

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

4. The ADDNEW command reactivates CHECK(C,D) as defined in the HZSPRMxx

member. But ADDNEW processing also runs the AEXIT HZSADDCHECK exit

routine, and AEXIT adds CHECK(A,B) back to the system, or undeletes it.

Deleted CHECK(A,B) is back! ADDNEW processing kicked off for one check

reactivates all checks as defined in check definitions in either HZSADDCHECK

exit routines or HZSPRMxx parmlib members.

So, if you really want to delete a check permanently, use a policy statement in

an HZSPRMxx member, such as:

ADDREPLACE POLICY STMT(DEL1) DELETE Check(A,B)

Then issue F hzsproc,ADD,PARMLIB=xx to add the HZSPRMxx member containing

the new policy statement to the list of members containing the IBM Health Checker

for z/OS policy.

Now, when something kicks off ADDNEW processing, the system will reactivate all

the undeleted check definitions, bringing back CHECK(C,D) but not CHECK(A,B).

Note that ADDNEW processing is staged, so that the system will first process all

check definitions to add all the checks, bringing back CHECK(A,B). Then however,

the system also applies the policy statements, including the statement that deletes

CHECK(A,B). In the end, CHECK(A,B) stays deleted when you put the delete in the

policy.

But my check doesn’t reappear after ADDNEW - what happened

to it?

When ADDNEW processing is kicked off, all checks added by either the

HZSADDCHECK exit routines or in the HZSPRMxx parmlib member are candidates

for being refreshed as part of the ADDNEW processing. Candidates for refresh are

checks that are not deleted by policy statements and that do not already exist. If

ADDNEW does not bring back your check from deletion, the problem is probably

one of the following:

v You have a policy statement in your policy that deletes that check.

v The exit routine that added the check the last time has been updated and no

longer adds your check.

v The exit routine that added the check the last time has been removed from the

HZSADDCHECK exit.

Why can’t I re-add my HZSPRMxx parmlib defined check after I

delete it? More understanding of the delete processing...

Here is a possible common mistake: Lets say that you defined a System REXX

check in the HZSPRMxx parmlib member using the F hzsproc,ADD |

ADDREPLACE,CHECK command. Then, you deleted it using the DELETE

command. But now you want to bring it back again, so you issue the ADD,CHECK

command. But the command fails, with a message telling you the check already

exists, even though it will not appear in SDSF or display output. That is because

you deleted the check, but the check definition is still lurking there in the

HZSPRMxx parmlib member, and is still loaded in the system. What you need to do

to get your check to run again is to put an ADDREPLACE,CHECK statement

containing the check definition into a parmlib member, and issue the F

hzsproc,ADD,PARMLIB,CHECKS. Your check will now be ready to run.

Chapter 4. Managing checks 41

|
|
|
|
|
|

|
|

|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

How can I delete checks while IBM Health Checker for z/OS is

terminating?

While IBM Health Checker for z/OS is in the process of terminating, you may get a

message that the system is waiting for checks to complete before termination itself

can complete:

HZS0020E WAITING FOR CHECKS TO COMPLETE

The wait might be longer if you have System REXX checks running on the system.

But if you try to speed up the process of IBM Health Checker for z/OS termination

by deleting checks using the F hzsproc,DELETE command, you will find that neither

that command nor most other F hzsproc commands work during the termination

process.

However, you can use the following command to delete all the checks during

termination of IBM Health Checker for z/OS:

F hzsproc,DELETE,CHECK(*.*),FORCE=YES

Make sure that the FORCE=YES option is what you want:

v FORCE=YES issued against a remote check will result in a non-retriable abend.

v FORCE=YES will delete checks that are still in the process of running.

The only other F hzsproc command that will work during the termination process is

the F hzsproc,DISPLAY,CHECKS command.

Using the category filter to manage checks

When you have many checks, you can use categories to make it easier to manage

or display information.

v Use the ADDCAT, REPCAT, and REMCAT parameters:

– ADDCAT lets you add the specified check to a category

– REPCAT lets you replace a category for a check

– REMCAT lets you remove a check from a category

v Use the CATEGORY filter to filter actions against checks by category.

For example, you might put checks into categories such as shift and offshift, global,

or exception. Then you can perform actions such as activate, deactivate or run a

group of checks with one command. All categories are user-defined; IBM does not

define any categories for checks.

The following examples shows how you can use categories in the HZSPRMxx

member and in the MODIFY command to manage checks:

1. First, I add a number of checks to a new category, DEBUG in the HZSPRMxx.

/* add some checks to category debug */

ADD POLICY STMT(POL1) UPDATE CHECK(IBMUSS,USS_FILESYS_CONFIG)

 ADDCAT(DEBUGCAT)

ADD POLICY STMT(POL2) UPDATE CHECK(IBMCNZ,CNZ_TASK_TABLE)

 ADDCAT(DEBUGCAT)

 .

 .

 .

ADD POLICY STMT(POL17) UPDATE CHECK(IBMGRS,*)

 ADDCAT(DEBUGCAT)

This takes some time, but it will save time in step 2 on page 43.

42 IBM Health Checker for z/OS User’s Guide

|
|
|
|
|

|

|
|
|
|
|

|
|

|

|

|

|

|
|

2. Now I want to put all the checks from category DEBUG into debug mode. I only

want to do this temporarily, so I do this with a MODIFY command. I can do this

without specifying all those long check names by using the category filter:

F hzsproc,UPDATE,CHECKS=(*,*),CATEGORY=(DEBUGCAT),DEBUG=ON

But there’s more you can do with the CATEGORY filter! The syntax of the filter is:

CATEGORY=([{ANY|EVERY|EXCEPT|ONLY},][category1[,...,categoryn]])

I can assign checks to multiple categories, and sort them out on the CATEGORY

filter using ONLY, ANY, EVERY, and EXCEPT:

ANY

Checks that are in any of the specified categories

EVERY

Checks that are in every specified category

EXCEPT

Checks that are not in any of the specified categories

ONLY

Checks that are in every one of the specified categories and that have only as

many categories as are specified. For example, a check assigned to three

categories would not match if the CATEGORY=ONLY statement on this

MODIFY command specified two categories.

 ONLY is the default, but for the sake of clarity, we recommend that you specify

the category option that you want.

For example, in the following scenario, I have checks ONE, TWO, THREE, FOUR,

and FIVE in the following categories:

 Category SHIFT1 SHIFT2 IMPORTANT RACF GRS CONSOLES

Checks ONE

THREE

FOUR

FIVE

TWO ONE

TWO

FOUR

ONE

TWO

THREE FOUR

FIVE

So if I create a policy statement in my HZSPRMxx member to change existing and

future checks to LOW severity in every category except category IMPORTANT:

ADD POLICY STMT(LOWCAT) UPDATE CHECK(*,*)

 CATEGORY(EXCEPT,IMPORTANT)

 SEVERITY(LOW)

This will affect only checks that are not in the IMPORTANT category, which will be

checks THREE and FIVE.

Using these categories and checks, the following table shows how a bunch of

category filters map to checks affected in our scenario:

 CATEGORY filter checks affected

CATEGORY=(ANY,SHIFT1) ONE, THREE, FOUR, FIVE

CATEGORY=(ANY,IMPORTANT) ONE, TWO, FOUR

CATEGORY=(ANY,SHIFT1,SHIFT2) ONE, TWO, THREE, FOUR, FIVE

CATEGORY=(EVERY,SHIFT1,CONSOLES) FOUR, FIVE

CATEGORY=(EVERY,SHIFT1,IMPORTANT,CONSOLES) FOUR

CATEGORY=(EXCEPT,IMPORTANT) THREE, FIVE

CATEGORY=(ONLY,SHIFT1) None

CATEGORY=(ONLY,SHIFT1,CONSOLES) FIVE

Chapter 4. Managing checks 43

Making persistent changes to checks

You can make changes to checks that persist across check refreshes and restart of

IBM Health Checker for z/OS using statements in the HZSPRMxx parmlib member.

The HZSPRMxx parmlib member should include only the following kinds of

changes:

v Defining policies by specifying policy statements in your HZSPRMxx parmlib

member or members, specifying the parmlib member is in the list of parmlib

members being used at the start IBM Health Checker for z/OS, and activating the

policy. See “Creating IBM Health Checker for z/OS policies.”

v Defining local installation-written check defaults to the system and adding them to

IBM Health Checker for z/OS using the ADD | ADDREPLACE CHECK statement

in an HZSPRMxx parmlib member. See

“ADD or ADDREPLACE CHECK parameters” on page 66.

v Turning log stream support for IBM Health Checker for z/OS on or off using the

LOGGER parameter in an HXSPRMxx parmlib member. See “LOGGER

parameter” on page 61.

Creating IBM Health Checker for z/OS policies

An IBM Health Checker for z/OS policy lets you manage checks by applying

persistent changes to checks. A policy is the place to put any check changes you

want to make persistent and to have applied to checks you add in the future.

Starting with z/OS V1R8, you can create multiple policies and switch between them.

(Systems at the z/OS V1R4 through R7 with IBM Health Checker for z/OS support

installed can have only one policy per system.)

An IBM Health Checker for z/OS policy simply consists of a set of policy

statements in an HZSPRMxx member or members currently in use for a system.

The system applies the information in your active IBM Health Checker for z/OS

policy to all existing checks and to any new checks you add. IBM Health Checker

for z/OS processes information from the active policy every time checks are added

or refreshed, every time you activate a new policy, and whenever you restart IBM

Health Checker for z/OS.

When we use the term IBM Health Checker for z/OS restart, we mean either:

v Restarting IBM Health Checker for z/OS after it terminates

v Starting of IBM Health Checker for z/OS on a subsequent IPL

To ensure that a policy is remembered and applied at IBM Health Checker for z/OS

restarts, specify the HZSPRMxx members containing the policy in the IBM Health

Checker for z/OS procedure, hzsproc and use the following command to activate

the policy you wish to make the current policy:

F hzsproc,ACTIVATE,POLICY=policyname

If you have multiple policies, you can switch between them using the same

F hzsproc,ACTIVATE,POLICY=policyname command.

On each policy statement, you update check values for a check or set of checks,

specifying updates that you wish to apply permanently. You can also use policy

statements to permanently delete checks or to remove another policy statement.

v

– ADD POLICY creates a new policy statement.

44 IBM Health Checker for z/OS User’s Guide

– ADDREPLACE POLICY specifies that the system either add or replace the

following policy statement, as appropriate. If the policy statement is new, the

system will add it. If the policy statement exists already, the system will

replace it with the one specified.

– REMOVE POLICY removes an existing policy statement.

If you do not specify a policy name on your policy statement, the system assigns

the statement to the default policy name, which is DEFAULT.

The syntax of the policy statements is as follows:

 {ADD | ADDREPLACE}

 ,POLICY[=policyname][,STATEMENT=name],UPDATE,filters[,update_options],REASON=reason,DATE={date|(date,NOCHECK)}

 |

 ,POLICY[=policyname][,STATEMENT=name],DELETE,filters,REASON=reason,DATE={date|(date,NOCHECK)}

REMOVE,POLICY[=policyname],STATEMENT=name

v The syntax of the UPDATE options you can use to update check values on a

policy statement is as follows:

UPDATE,filters

 [,ACTIVE|INACTIVE]

 [,ADDCAT=(cat1,...,cat16)]

 [,DATE={date | (date,NOCHECK)}]

 [,DEBUG={OFF|ON}]

 [,VERBOSE={NO|YES}]

 [,DESCCODE=(desccode1,...,desccoden)]

 [,INTERVAL={ONETIME|hhh:mm}]

 [,EXCEPTINTERVAL={SYSTEM|HALF|hhh:mm}]

 [,PARM=parameter,REASON=reason,DATE={date | (date,NOCHECK)}]

 [,REASON=reason]

 [,REPCAT=(cat1[,cat2[,...,cat16]])]

 [,REMCAT=(cat1[,cat2[,...,cat16]])]

 [,ROUTCODE=(routcode1,...,routcoden)]

 [,SEVERITY={HIGH|MEDIUM|LOW|NONE}]

 [,WTOTYPE={CRITICAL|EVENTUAL|INFORMATIONAL|HARDCOPY|NONE}]

 [,REXXTIMELIMIT=timelimit]

v You can filter the update or deletions requested on a policy statement by check,

category, or owning exit routine.

See “Syntax and parameters for HZSPRMxx and MODIFY hzsproc command” on

page 53 for complete syntax details.

When you create an IBM Health Checker for z/OS policy and specify that the

system use it, the system applies the values immediately to the existing checks.

Then, when you add new checks that meet the policy statement criteria, the values

will be applied to those checks as well.

Use the following procedure to create an IBM Health Checker for z/OS policy that

persists across restarts:

1. Specify the policy statements in an HZSPRMxx member or members. If you do

not specify a policy name when you define a policy statement, the system

assigns a default policy name of DEFAULT to the statement.

2. To add the HZSPRMxx member(s) immediately to the list of parmlib members

that IBM Health Checker for z/OS processes values from, issue the

F hzsproc,ADD PARMLIB command.

3. Activate the policy that you want as the current active policy using the

F hzsproc,ACTIVATE POLICY=policy command. If you do not activate a policy,

the system uses policy statements assigned to policy DEFAULT, if there are any.

Otherwise, if you do not activate a policy and have no policy statements

assigned to policy DEFAULT, you will not have a policy in effect.

Chapter 4. Managing checks 45

|

The system applies the values in the active policy to the specified active checks

immediately, and re-applies them every time the checks are added or refreshed

until an IBM Health Checker for z/OS restart.

4. Refresh all the checks, so that only the values for the current active policy are

in use. Use the F hzsproc,REFRESH,CHECK=(*,*). See “Some finer points of how

policy values are applied” on page 48 for why this is necessary.

5. To make sure your policy persists across IBM Health Checker for z/OS restarts,

specify the HZSPRMxx members containing your policy in either:

v The START hzsproc command in the COMMANDxx parmlib member

v The IBM Health Checker for z/OS procedure, hzsproc

See “Specifying the HZSPRMxx members you want the system to use” on page

51.

We’ll cover the following policy topics:

v “How IBM Health Checker for z/OS builds policies from policy statements”

v “Can I put non-policy statements in my HZSPRMxx member?” on page 50

v “Policy statement examples” on page 50

v “Can I create policy statements using the MODIFY command?” on page 51

v “Specifying the HZSPRMxx members you want the system to use” on page 51

How IBM Health Checker for z/OS builds policies from policy

statements

Because a policy is really just a collection of policy statements, there is a lot of

flexibility in the way you can define your policy or policies. For example, you can:

v “Define one policy in multiple HZSPRMxx parmlib members”

v “Define multiple policies in one HZSPRMxx parmlib member” on page 48

v Use a combination of both approaches

The system applies policy statements from the active policy to checks in exactly the

order they occur in the HZSPRMxx members, and in the order in which you specify

the HZSPRMxx members you want the system to use.

Define one policy in multiple HZSPRMxx parmlib members

The following picture shows an example of how policy statements for a single policy

(DAY) can be spread between two different parmlib members, HZSPRM01 and

HZSPRM02:

46 IBM Health Checker for z/OS User’s Guide

Now, if I specify START hzsproc,HZSPRM=(01,02), and activate policy DAY, the

system builds the policy from all the policy statements it finds in HZSPRM01 and

HZSPRM02, preserving the order in which they were found. When the system

applies the policy, it also processes the policy statements in that same order. In this

case, statement 03 HZSPRM02 contradicts the update to the interval made in

HZSPRM01. Since HZSPRM02 is specified second on the START command, the

second interval update is processed and applied last, and so wins out. The final

value for interval is 02:00, or once every two hours rather than once a minute.

You can display the complete contents of the DAY policy from any HZSPRMxx

parmlib members in use by issuing the following command:

F hzsproc,DISPLAY,POLICY=DAY,DETAIL

The output might look as follows:

HZS202I 11.03.45 POLICY DETAIL 511

POLICY DAY STMT: 01 ORIGIN: HZSPRM01 DATE: 20060501

 UPDATE CHECK(IBM,CHECKA)

 REASON: Change to verbose mode

 VERBOSE: YES

POLICY DAY STMT: 02 ORIGIN: HZSPRM01 DATE: 20060501

 UPDATE CHECK(IBM,CHECKA)

 REASON: Change the interval

 INTERVAL: 00:01

POLICY DAY STMT: 03 ORIGIN: HZSPRM02 DATE: 20060501

 UPDATE CHECK(IBM,CHECKA)

 REASON: Change the interval again

 INTERVAL: 02:00

POLICY DAY STMT: 04 ORIGIN: HZSPRM02 DATE: 20060501

 UPDATE CHECK(IBM,CHECKA)

 REASON: Turn Debug mode on

 DEBUG: ON

HZSPRM01

Policy DAY

CHECKA

VERBOSE(YES)

INTERVAL(02:00)

DEBUG=ON

HZSPRM01

ADD POLICY(DAY) STATEMENT(01) UPDATE CHECK(IBM,CHECKA) VERBOSE(YES)...

ADD POLICY(DAY) STATEMENT(02) UPDATE CHECK(IBM,CHECKA) INTERVAL=00:01...

HZSPRM01

ADD POLICY(DAY) STATEMENT(01) UPDATE CHECK(IBM,CHECKA) VERBOSE(YES)...

ADD POLICY(DAY) STATEMENT(02) UPDATE CHECK(IBM,CHECKA) INTERVAL=00:01...

HZSPRM02

ADD POLICY(DAY) STATEMENT(03) UPDATE CHECK(IBM,CHECKA) INTERVAL=02:00...

ADD POLICY(DAY) STATEMENT(04) UPDATE CHECK(IBM,CHECKA) DEBUG=ON...

Figure 3. Creating a policy in multiple HZSPRMxx members

Chapter 4. Managing checks 47

Note that the output of the detail command display shows the HZSPRMxx parmlib

member that a policy statement comes from.

Define multiple policies in one HZSPRMxx parmlib member

The following picture shows an example of how IBM Health Checker for z/OS

assembles three different policies from policy statements in a single HZSPRMxx

member. Note that the statement that omits a policy name is assigned to policy

DEFAULT:

Some finer points of how policy values are applied

Generally, all you need to know about the way the system applies policy statement

values to checks is that when you activate a policy using the F hzsproc ACTIVATE

POLICY=policy command, the system applies the values in the active policy to the

specified active checks immediately, and re-applies them every time the checks are

added or refreshed until IBM Health Checker for z/OS restart. However, there are

some nuances to how this works:

REPLACE PARMLIB command nuances: When you issue the following

REPLACE PARMLIB commands to replace the existing policy statements, the

system starts replace processing by deleting all existing policy statements, and then

adding the policy statements in the parmlib members specified in the REPLACE

command:

v REPLACE PARMLIB=xx

v REPLACE PARMLIB=xx,POLICY

v REPLACE PARMLIB=xx,ALL

These commands will not reset the active policy, but even the active policy will be

affected by this processing.

ACTIVATE POLICY command nuances: Let's look at an example using the

policy statements shown in Figure 4.

HZSPRM01

Policy DAY

CHECKA

VERBOSE(YES)

INTERVAL(00:01)

Policy NIGHT

CHECKA

DEBUG(ON)

INTERVAL(00:02)

Policy DEFAULT

CHECKA

SEVERITY(HIGH)

ADD POLICY(DAY) STATEMENT(01) UPDATE CHECK(IBM,CHECKA) VERBOSE(YES)...

ADD POLICY(DAY) STATEMENT(02) UPDATE CHECK(IBM,CHECKA) INTERVAL=00:01...

ADD POLICY(NIGHT) STATEMENT(01) UPDATE CHECK(IBM,CHECKA) DEBUG(ON)...

ADD POLICY(NIGHT) STATEMENT(02) UPDATE CHECK(IBM,CHECKA) INTERVAL(00:02)...

ADD POLICY STATEMENT(01) UPDATE CHECK(IBM,CHECKA) SEVERITY(HIGH)...

Figure 4. Creating multiple policies in one HZSPRMxx member

48 IBM Health Checker for z/OS User’s Guide

1. After I've created HZSPRM01 as it appears in Figure 4 on page 48, I issue the

F hzsproc,ADD PARMLIB command to add HZSPRM01 to the list of parmlib

members I want IBM Health Checker to use.

2. Here's where things get interesting. By default, the active IBM Health Checker

for z/OS policy is DEFAULT, unless I specify otherwise. That means that if I

want the DEFAULT policy to be the active one, I can now either issue the

F hzsproc,ACTIVATE,POLICY=DEFAULT command or do nothing - I get DEFAULT

as the active policy either way. The system applies the values for policy

DEFAULT to check CHECKA immediately, upgrading its default severity to

HIGH. The system reapplies this values every time CHECKA is refreshed.

3. Now I want to switch to my DAY policy, so I issue the

F hzsproc,ACTIVATE,POLICY=DAY command. When I do the activate, the system

immediately applies the DAY policy values to policy CHECKA. But until I refresh

CHECKA, values applied to CHECKA include both DAY values and any

DEFAULT values that policy DAY does not contradict. This means that the

pre-refresh values currently in use for CHECKA after I activate policy DAY

include:

v SEVERITY(HIGH) from DEFAULT

v VERBOSE(YES) from DAY

v INTERVAL(00:01) from DAY

4. But I wanted only the DAY values applied to CHECKA! What do I do? I refresh

CHECKA using command F hzsproc,REFRESH,CHECK=(IBM,CHECKA). After

refresh, my values for CHECKA include only DAY values:

v VERBOSE(YES) from DAY

v INTERVAL(00:01) from DAY

Refreshing CHECKA resets all the values to their default setting except for the

active DAY policy values.

5. Wait, there's more. Now I want to switch to policy NIGHT, so I issue my

F hzsproc ACTIVATE POLICY=NIGHT command. Until I refresh CHECKA, values

applied to CHECKA will also include some DAY and some NIGHT values:

v VERBOSE(YES) from DAY

v DEBUG(ON) from NIGHT

v INTERVAL(00:02) from NIGHT

Notice that NIGHT value INTERVAL(00:02) overrides the DAY interval of 00:01.

6. When I refresh CHECKA, I get just the NIGHT values:

v DEBUG(ON) from NIGHT

v INTERVAL(00:02) from NIGHT

How IBM Health Checker for z/OS uses the dates on policy

statements

When you specify a policy statement, you must include a date. The system checks

this date against the date that the check was added to the system, the add-check

date. If the policy statement date is older than the add-check date, then it means

that the policy statement might have been written against an older version of the

check and thus might no longer be appropriate. For that reason, the system will not

apply a policy statement whose date is older than the check date. We call this a

policy date exception.

You can display the checks to which an outdated policy statement would have

applied using the following MODIFY command:

F hzsproc,DISPLAY,CHECKS(*,*),POLICYEXCEPTIONS

You can display the outdated policy statements using the following MODIFY

command:

Chapter 4. Managing checks 49

F hzsproc,DISPLAY,POLICY=policyname,OUTDATED

The system will also issue message HZS0420E if it finds a policy with a date older

than a check it applies to:

HZS0420E nnn CHECKS HAVE BEEN FOUND FOR WHICH AT LEAST ONE MATCHING

POLICY STATEMENT HAD A DATE OLDER HAN THE CHECK DATE.

THE POLICY STATEMENTS WERE NOT APPLIED TO THOSE CHECKS.

THE FIRST CASE IS

CHECK(checkowner,checkname)

MATCHED BY POLICY STATEMENT stmt.

This message tells the installation to reevaluate the policy statement for the

updated check.

If you want to bypass the comparison of dates between the policy statement and

the check, use the DATE(yyyymmdd,NOCHECK) parameter on the policy statement

in HZSPRMxx. You might use the NOCHECK parameter, for example, to bypass

verification so that you do not have to update the policy statement date for changes

to a check. The following example shows the use of NOCHECK on a policy

statement:

ADDREPLACE POLICY(policyname) STMT(GLOBAL)

 UPDATE CHECK(IBMGRS,GRS_CONVERT_RESERVES)

 ADDCAT (GLOBAL) REASON(’GRS_CONVERT_RESERVES in global category’)

 DATE(20050901,NOCHECK)

v When date is specified with NOCHECK, the policy statement is applied to the

matching check or checks.

v When date is specified without NOCHECK, and the date for the matching check

is equal to or older than the specified policy statement date, the system applies

the policy statement. If a matching check date is newer than the policy statement

date, the system does not apply the policy statement.

Can I put non-policy statements in my HZSPRMxx member?

Your HZSPRMxx member should include only policy statements, the LOGGER

parameter, and ADD | ADDREPLACE CHECK statements. Policy statements are

appropriate because the system applies them every time IBM Health Checker for

z/OS starts up, as well as when checks are added or refreshed. On the other hand,

the system applies non-policy statements, such as UPDATE, ADDNEW, or

DISPLAY, only to currently active checks, and the statements are applied just once.

This means that including non-policy statements in your HZSPRMxx member will be

ineffective. Non-policy statements that are in your HZSPRMxx member will not be

part of your IBM Health Checker for z/OS policy.

Policy statement examples

v The basic syntax for a policy statement that updates a check should look

something like this:

ADDREPLACE POLICY STMT(statement_name) UPDATE CHECK(check_owner,check_name)

options REASON(’reason_for_change’) DATE(yyyymmdd)

The ADDREPLACE POLICY statement is identified by the statement name

defined in the STMT parameter. If you have already defined a policy statement

with the same name, the system replaces it with the new policy statement, as

long as the DATE specified is more current than the existing one. For this

reason, be careful when you specify ADDREPLACE with a policy statement

name that already exists, because you'll most likely be overwriting the old policy

statement with your new one.

50 IBM Health Checker for z/OS User’s Guide

|
|

|
|

|
|
|
|
|
|
|

v Make all checks low severity except for UNIX System Services checks:

ADDREPLACE POLICY STMT(�LOW�) UPDATE CHECK(*,*)

SEVERITY(LOW) (’Make all checks low severity to start’) DATE(20061130)

ADDREPLACE POLICY STMT(�USSMED�) UPDATE CHECK(IBMUSS,*)

SEVERITY(MEDIUM) REASON(’Make all USS checks medium severity’) DATE(20061130)

– Policy statement �LOW� makes all checks low severity

– Policy statement �USSMED� then makes the UNIX System Services checks

medium severity

v Update the severity value for all IBMGRS checks:

ADDREPLACE POLICY STMT(POL4) UPDATE CHECK(IBMGRS,*)

 SEVERITY(HIGH) REASON(’change policy’) DATE(20050901)

The system applies the values to all:

– Existing IBMGRS checks

– New IBMGRS checks added later

These same values will be applied to all IBMGRS checks every time they are

refreshed or added.

v Apply the following changes to all checks:

– Apply a severity of HIGH

– Apply a WTO type of IMMEDIATE

– Use additional descriptor code 16

– Use routing codes 126,127
ADDREPLACE POLICY STMT(POL3) CHECK(*,*) UPDATE SEVERITY(HIGH)

 WTOTYPE(IMMEDIATE) DESCCODE(16) ROUTCODE(126,127)

 REASON(Updating all my checks) DATE(20050920)

v Delete a check:

ADDREPLACE POLICY STMT(DEL1) DELETE Check(IBMRACF,RACF_GRS_RNL)

We recommend that you delete checks in your policy, see “Why does my check

reappear after I delete it? Understanding delete processing” on page 40 for

details.

Can I create policy statements using the MODIFY command?

We recommend against creating policy statements using the MODIFY command

because the system will not remember changes you made using MODIFY when

IBM Health Checker for z/OS is restarted. The policy is the place to put permanent

check changes that you want to have applied to any checks you add in the future.

Use HZSPRMxx to create a permanent policy for IBM Health Checker for z/OS.

All the policy statements you create in the HZSPRMxx parmlib member or members

you specify that the system is using add up to the single IBM Health Checker for

z/OS policy.

Specifying the HZSPRMxx members you want the system to use

HZSPRMxx members can be specified when starting IBM Health Checker for z/OS

or dynamically to direct the system to process the corresponding parmlib member.:

v To specify the HZSPRMxx members at startup time, specify the two digit suffix

of an HZSPRMxx member in one of the following commands:

START hzsproc,HZSPRM=xx

 or

START hzsproc,HZSPRM=(x1,...,xn)

Chapter 4. Managing checks 51

|

|
|
|
|
|

|

|
|

In this example, hzsproc is the name of the IBM Health Checker for z/OS

procedure. Note that if you issue the START hzsproc without specifying a parmlib

member suffix on the HZSPRM= parameter in either the start command or the

IBM Health Checker for z/OS procedure, the system uses the default member,

HZSPRM00.

The IBM Health Checker for z/OS procedure as shipped contains the following:

//HZSPROC JOB JESLOG=SUPPRESS

//HZSPROC PROC HZSPRM=’00’

//HZSSTEP EXEC PGM=HZSINIT,REGION=0K,TIME=NOLIMIT,

// PARM=’SET PARMLIB=&HZSPRM’

//HZSPDATA DD DSN=SYS1.&SYSNAME..HZSPDATA,DISP=OLD

// PEND

// EXEC HZSPROC

The value for PARM= must resolve to SET PARMLIB=(suffix1,...,suffixn). You

can also use an ADD or REPLACE command in place of SET, because the

command is issued during the initialization phase.

v To specify HZSPRMxx members dynamically while IBM Health Checker for

z/OS is running, use one of the following modify commands:

F hzsproc,ADD PARMLIB=(suffix1,suffix2,...suffixn)

F hzsproc,REPLACE PARMLIB=(suffix1,suffix2,...suffixn)

where suffixn is the two digit suffix of an HZSPRMxx member.

52 IBM Health Checker for z/OS User’s Guide

Syntax and parameters for HZSPRMxx and MODIFY hzsproc command

The syntax for both the HZSPRMxx parmlib members and the MODIFY

hzsproc,parameters command (F hzsproc,parameters) follows. You can use the

same parameters and syntax for both the HZSPRMxx parmlib member and the F

hzsproc,parameters command. However, if you want to be consistent with the way

commands and parmlib members are specified:

v Command syntax: Issue the F hzsproc,parameters command as shown in our

syntax diagram.

v HZSPRMxx syntax: To specify parameters in an HZSPRMxx member:

– Use parentheses where we show an equal sign. For example:

- X=Y should be X(Y)

- X=(Y) should be X(Y)
– Separate parameters with blanks instead of commas. For example, command

UPDATE,CHECK=(IBMAAA,CHECKA)

should be as follows in HZSPRMxx:

UPDATE CHECK(IBMAAA,CHECKA)

See “Guidelines for HZSPRMxx parmlib members” on page 54 for more

information.

Parameters take effect for different durations:

v The following parameters are one time actions which are applied immediately.

We recommend that you use the MODIFY command for these:

– ADDNEW

– DELETE

– DISPLAY

– REFRESH

– RUN

– STOP

– ADD, or REPLACE,PARMLIB - Note that you can only specify these

parameters on the MODIFY command. They are not valid in a HZSPRMxx

member.

v The following parameters are applied immediately and remain in effect until the

check is refreshed. We recommend that you use the MODIFY command for

these:

– UPDATE

– ACTIVATE

– DEACTIVATE

v The ADD, ADDREPLACE, or REMOVE POLICY parameters are applied

immediately, and are applied again whenever a check is added or refreshed. We

recommend that you use policy statements only in an HZSPRMxx parmlib

member. See “Creating IBM Health Checker for z/OS policies” on page 44.

v The ADD and ADDREPLACE CHECK parameters are applied immediately and

remain in effect as long as the parmlib member in which they are defined is in

use. See “ADD or ADDREPLACE CHECK parameters” on page 66.

Using wildcard characters in MODIFY hzsproc and HZSPRMxx: When you have

many checks, you can simplify management by using wildcards. You can use

wildcard characters * and ?. An asterisk (*) represents any string having a length of

zero or more characters. A question mark (?) represents a position which may

contain any single character. For example, the following command specifies that all

checks with an owner that is 6 characters long beginning with IBM be run:

Chapter 4. Managing checks 53

F hzsproc,RUN,CHECK=(ibm???,*)

The following HZSPRMxx POLICY statement specifies that a new policy be added

that will update all IBMUSS owned checks to a severity of HIGH.

ADD POLICY STMT(POL5) UPDATE CHECK(IBMUSS,*) SEVERITY(HIGH)

Guidelines for HZSPRMxx parmlib members

The following sections contain guidance for creating an HZSPRMxx parmlib

member for IBM Health Checker for z/OS:

HZSPRMxx summary

The following summarizes HZSPRMxx characteristics:

Default member supplied by IBM?

No

Required or optional?

Optional

Directly affects performance?

No

Read at IPL or at command?

S hzsproc or F hzsproc command.

Allows listing of parameters at IPL or command?

Yes through F hzsproc,DISPLAY command

Response to errors:

Syntax error

Error message is issued

Read errors

Error message is issued

Unsupported parameters

Error message is issued

Support for system symbols?

Yes. See What are system symbols? in z/OS MVS Initialization and Tuning

Reference.

Support for concatenated parmlib?

Yes

Parameter in IEASYSxx (or supplied by the operator)

None.

IBM supplied defaults for HZSPRMxx

The checks provide the default information that you can place in HZSPRMxx to

override check defaults. See Chapter 13, “IBM Health Checker for z/OS checks,” on

page 301 for check default information.

Syntax rules for HZSPRMxx

Follow the rules in General syntax rules in z/OS MVS Initialization and Tuning

Reference.

The following rules also apply to the creation of HZSPRMxx parmlib members:

v Enter data only in columns 1 through 71. Do not enter data in columns 72

through 80; the system ignores these columns.

54 IBM Health Checker for z/OS User’s Guide

v Comments may appear in columns 1-71 and must begin with ″/*″ and end with

″*/″.

Chapter 4. Managing checks 55

Statements and parameters

ACTIVATE,filters

ADDNEW

DEACTIVATE,filters

DELETE,filters[,FORCE={NO | YES}]

DISPLAY

 {

 [CHECKS[,filters][,LOCALE=(HZSPROC|REMOTE|REXX|NOTHZSPROC)][,SUMMARY|,DETAIL][,ANY|,NOTDELETED|,DELETED][,POLICYEXCEPTIONS][,EXCEPTIONS][,DIAG]]

 |

 [filters[,LOCALE=(HZSPROC|REMOTE|REXX|NOTHZSPROC)][,SUMMARY|,DETAIL][,ANY|,NOTDELETED|,DELETED][,POLICYEXCEPTIONS][,EXCEPTIONS][,DIAG]]

 |

 [POLICY[=policyname][,STATEMENT=name][,SUMMARY|,DETAIL]}

 [,CHECK=(check_owner,check_name)[,SUMMARY|,DETAIL][,OUTDATED]

 |

 [STATUS]

 |

 POLICIES

 }

LOGGER=

 [OFF|ON|ON,LOGSTREAMNAME=logstreamname]

REFRESH,filters

RUN,filters

STOP

UPDATE,filters

 [,ACTIVE|INACTIVE]

 [,ADDCAT=(cat1,...,cat16)]

 [,DATE={date | (date,NOCHECK)}]

 [,DEBUG={OFF|ON}]

 [,VERBOSE={NO|YES}]

 [,DESCCODE=(desccode1,...,desccoden)]

 [,INTERVAL={ONETIME|hhh:mm}]

 [,EXCEPTINTERVAL={SYSTEM|HALF|hhh:mm}]

 [,PARM=parameter,REASON=reason,DATE={date | (date,NOCHECK)}]

 [,REASON=reason]

 [,REPCAT=(cat1[,cat2[,...,cat16]])]

 [,REMCAT=(cat1[,cat2[,...,cat16]])]

 [,REXXTIMELIMIT=timelimit]

 [,ROUTCODE=(routcode1,...,routcoden)]

 [,SEVERITY={HIGH|MEDIUM|LOW|NONE}]

 [,WTOTYPE={CRITICAL|EVENTUAL|INFORMATIONAL|HARDCOPY|NONE}]

{ADD | ADDREPLACE},CHECK=(check_owner,check_name)

 ,{CHECKROUTINE=routinename

 | EXEC=execname

 ,REXXHLQ=hlq

 [,REXXTIMELIMIT=timelimitvalue]

 { [,REXXTSO=YES]

 | [,REXXTSO=NO

 [,REXXIN={NO | YES}

]

 }

 }

 ,MESSAGETABLE=msgtablename

 ,SEVERITY={HIGH|MEDIUM|LOW}

 ,INTERVAL={ONETIME|hhh:mm}

 ,DATE=date

 ,REASON=reason

 [,PARM=parameter]

 [,GLOBAL}

 [,ACTIVE|INACTIVE]

 [,EXCEPTINTERVAL={SYSTEM|HALF|hhh:mm}]

 [,USS={NO|YES}]

 [,VERBOSE={NO|YES}]

 [,ENTRYCODE=entrycode | 0]

ADD,PARMLIB=(suffix1...suffixn)

REPLACE,PARMLIB=(suffix1...suffixn)

 [,{CHECKS|POLICY|ALL}]

ACTIVATE,POLICY=policyname

56 IBM Health Checker for z/OS User’s Guide

|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

{ADD | ADDREPLACE}

 ,POLICY[=policyname][,STATEMENT=name],UPDATE,filters[,update_options],REASON=reason,DATE={date|(date,NOCHECK)}

 |

 ,POLICY[=policyname][,STATEMENT=name],DELETE,filters,REASON=reason,DATE={date|(date,NOCHECK)}

REMOVE,POLICY[=policyname],STATEMENT=name

The parameters are:

filters

Filters specify which check or checks you wish to take an action against. You

can specify wildcard characters * and ? for filters. An asterisk (*) represents any

string having a length of zero or more characters. A question mark (?)

represents a position which may contain any single character.

 The syntax of the filters is as follows:

CHECK=(check_owner,check_name)

EXITRTN=exit routine

CATEGORY=([{ANY|EVERY|EXCEPT|ONLY},][category1[,...,categoryn]])

CHECK=(check_owner,check_name)

check_owner specifies the 1-16 character check owner name. check_name

specifies the 1-32 character check name. CHECK is a required filter,

except for the DISPLAY,CHECKS,filters command.

EXITRTN=exit routine

EXITRTN specifies the HZSADDCHECK exit routine that added the

check(s) to IBM Health Checker for z/OS.

CATEGORY=([{ANY|EVERY|EXCEPT|ONLY},][category1[,...,categoryn]])

Filter checks by user defined category, see “Using the category filter to

manage checks” on page 42. The CATEGORY filters can be one of the

following:

ANY

Checks that are in any of the specified categories

EVERY

Checks that are in every specified category

EXCEPT

Checks that are not in any of the specified categories

ONLY

Checks that are in every one of the specified categories and that have

only as many categories as are specified. For example, a check

assigned to three categories would not match if the CATEGORY=ONLY

statement on this MODIFY command specified two categories.

 ONLY is the default, but for the sake of clarity, we recommend that you

specify the category option that you want.

ACTIVATE

ACTIVATE,filters

Sets the specified check or checks to the active state. If the check is eligible to

run, ACTIVATE will cause the check to run immediately and reset the interval

for the check. You must specify filter CHECK=(check_owner,check_name) with

ACTIVATE. Other filters are optional. See “filters.”

 ACTIVATE, filters is equivalent to the UPDATE,filters,ACTIVE command. See

“UPDATE ACTIVE and INACTIVE parameters ” on page 62.

ADDNEW

Chapter 4. Managing checks 57

ADDNEW

ADDNEW adds checks to IBM Health Checker for z/OS.

v For checks defined and added by a HZSADDCHECK exit routine, ADDNEW

calls the HZSADDCHECK exit to add checks to IBM Health Checker for z/OS

v For checks defined and added in an HZSPRMxx parmlib member (using the

ADD|ADDREPLACE,CHECK parameters), ADDNEW processes the

definitions in parmlib to add checks to IBM Health Checker for z/OS

The system does the following ADDNEW processing for each added check:

v Applies any installation updates in the policy to the default values for the

check.

v Loads the check routine, if this is a local check.

v Loads the message table, if it is a local or a REXX exec check.

All checks that are added to IBM Health Checker for z/OS are scheduled to run

unless they are not eligible to be run. If a check delete is pending when the

ADDNEW parameter is processed, the check will not run until delete processing

is complete.

 You can use ADDNEW to undelete a check that has been deleted. See “Why

does my check reappear after I delete it? Understanding delete processing” on

page 40.

DEACTIVATE

DEACTIVATE,filters

DEACTIVATE disables running of the specified check until ACTIVATE is

specified. You must specify filter CHECK=(check_owner,check_name) with

DEACTIVATE. Other filters are optional. See “filters” on page 57.

 DEACTIVATE is the same as the UPDATE,filters,INACTIVE command. See

“UPDATE ACTIVE and INACTIVE parameters ” on page 62.

DELETE

DELETE,filters[,FORCE={NO | YES}]

Remove the specified check(s) from the IBM Health Checker for z/OS. If

specified check or checks are running when the command is issued, the system

waits until they are finished running before deleting them. You must specify filter

CHECK=(check_owner,check_name) with DELETE. Other filters are optional.

See “filters” on page 57.

 You can undelete a deleted check using the ADDNEW parameter. See “Why

does my check reappear after I delete it? Understanding delete processing” on

page 40 for more information about DELETE processing.

FORCE={NO | YES}

Specifies whether or not you want to force deletion of a check even if the

check is running. FORCE=NO is the default.

 You should use FORCE=YES only as a last resort after trying the DELETE

parameter with FORCE=NO because:

v FORCE=YES will cause a check to be interrupted in the middle of its

processing:

– FORCE=YES issued against a local check will result in a non-retriable

abend on the third try.

58 IBM Health Checker for z/OS User’s Guide

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

– FORCE=YES issued against a remote or REXX exec check will result

in a non-retriable abend.

v FORCE=YES will delete checks that are still in the process of running.

DISPLAY

 DISPLAY issues messages with information specified. The different options

display the information as follows:

 DISPLAY

 {

 [CHECKS[,filters][,LOCALE=(HZSPROC|REMOTE|REXX|NOTHZSPROC)][,SUMMARY|,DETAIL][,ANY|,NOTDELETED|,DELETED][,POLICYEXCEPTIONS][,EXCEPTIONS][,DIAG]]

 |

 [filters[,LOCALE=(HZSPROC|REMOTE|REXX|NOTHZSPROC)][,SUMMARY|,DETAIL][,ANY|,NOTDELETED|,DELETED][,POLICYEXCEPTIONS][,EXCEPTIONS][,DIAG]]

 |

 [POLICY[=policyname][,STATEMENT=name][,SUMMARY|,DETAIL]}

 [,CHECK=(check_owner,check_name)[,SUMMARY|,DETAIL][,OUTDATED]

 |

 [STATUS]

 |

 POLICIES

 }

CHECKS

CHECKS displays information about checks.

filters

You must specify filter CHECK=(check_owner,check_name) with DISPLAY,

unless you specify DISPLAY,CHECKSfilters. Other filters are optional. See

“filters” on page 57.

LOCALE=(HZSPROC | REMOTE | REXX | NOHZSPROC)

Specifies whether you want to display local or remote checks:

v HZSPROC specifies that you want to display only local checks that run in

the hzsproc address space.

v REMOTE specifies that you want to display only remote checks that run

in the caller's address space.

v REXX specifies that you want to display only REXX exec checks running

under System REXX.

v NOTHZSPROC specifies that you want to display both remote and REXX

exec checks, but not local checks.

If you do not specify LOCALE, the system displays both local and remote

checks.

SUMMARY

IBM Health Checker for z/OS issues message HZS200I with summary

information about the specified checks. See “Example of DISPLAY

SUMMARY message output” on page 72. For each check matching the

specified criteria, the following information is returned:

v Check owner

v Check name

v The name of any category the check is a member of

v The current status of the check.

SUMMARY is the default.

DETAIL

IBM Health Checker for z/OS issues message HZS0201I (See “Example of

DISPLAY DETAIL message output” on page 73) with detailed information

about the specified check including:

v Check name

Chapter 4. Managing checks 59

|
|

|

|

||
|

||
|
|

|

|
|
|

|
|

|
|

v Check owner

v The name of any category the check is a member of

v The Date and time the check was last executed

v The current status of the check

v The check values, such as severity, routing codes, and descriptor codes.

ANY

Displays information about both deleted and non-deleted checks. ANY is

the default.

NOTDELETED

Displays information about checks that have not been deleted.

DELETED

Displays information about checks that have been deleted.

POLICYEXCEPTIONS

Display information about checks for which a policy statement matching the

check was not applied because the date on the policy statement is older

than the check date.

EXCEPTIONS

Display information about checks that completed with a non-zero return

value.

DIAG

Displays additional diagnostic data such as the check routine address and

message table address. See “″Example of DISPLAY DIAG message

output″” on page 74.

POLICY

Displays the specified policy statements. You can filter DISPLAY POLICY

by:

v Policy name

v Policy statement name

v Check owner or name

Output is displayed in message HZS0202I for DETAIL (“Example of

DISPLAY POLICY DETAIL message output” on page 74) or HZS0204I

(“Example of DISPLAY POLICY SUMMARY message output” on page 74)

for SUMMARY.

POLICY=policyname

Specifies the name of the policy whose policy statements you wish to

display. If you do not specify policyname , the system displays the

current active policy statements. If policyname contains wildcards, the

system displays all applicable policies and their statements, with a

blank line separating each policy.

STATEMENT=name

STATEMENT specifies the name of the policy statement whose policy

statements you wish to display..

CHECK=(check_owner,check_name)

check_owner specifies the 1-16 character check owner name .

check_name specifies the 1-32 character check name. The system

displays the policy statements that apply to the specified checks.

STATUS

Displays status information about IBM Health Checker for z/OS and checks

in message HZS0203I (see “Example of DISPLAY STATUS message

output” on page 74), including the following information:

60 IBM Health Checker for z/OS User’s Guide

v Number of checks that are eligible to run

v Number of active checks that are running

v Number of checks that are not eligible to run

v Number of deleted checks

v ASID of the IBM Health Checker for z/OS address space

v The log stream name and its status

v The current HZSPRMxx parmlib suffix list

POLICIES

Displays the names of all policies defined for IBM Health Checker for z/OS.

LOGGER

LOGGER=

 [OFF|ON|ON,LOGSTREAMNAME=logstreamname]

Use the LOGGER parameter to connect to and use a pre-defined log stream

whenever a check generates output.

LOGGER=ON,LOGSTREAMNAME=logstreamname

The first time you use the LOGGER parameter to connect to the log stream

for IBM Health Checker for z/OS, you must specify a log stream name. The

log stream name must begin with HZS and must follow system logger

naming rules. See z/OS MVS Setting Up a Sysplex for information on

setting up and managing a log stream.

 The system rejects this parameter if the log stream is already in use without

any errors. If a log stream is in use with errors when you use the LOGGER

parameter, the system disconnects from the current log stream.

 After initially specifying LOGGER=ON,LOGSTREAMNAME=logstreamname,

you can use LOGGER=ON and LOGGER=OFF to toggle use of the log

stream on and off.

LOGGER=ON

Connects to and begins using the log stream for check routine messages.

v LOGGER=ON is rejected if a log stream has not already been provided.

v LOGGER=ON has no effect if the log stream is already in use without

any errors.

LOGGER=OFF

Stops using the log stream for check routine messages. LOGGER=OFF is

the default.

REFRESH

REFRESH,filters

Refreshes the specified check or checks. Refresh processing first deletes a

check from the IBM Health Checker for z/OS and does the ADDNEW function

(“ADDNEW parameter” on page 57).

 When you issue a command with the REFRESH parameter on it, the system

processes the policy statements and applies any changes to check values that

the policy statements contain. See “How IBM Health Checker for z/OS builds

policies from policy statements” on page 46.

 You must specify filter CHECK=(check_owner,check_name) with REFRESH.

Other filters are optional. See “filters” on page 57.

Chapter 4. Managing checks 61

|
|

RUN,filters

Run the specified check(s) immediately, one time. Specifying RUN does not

reset the check interval. You must specify filter

CHECK=(check_owner,check_name) with RUN. Other filters are optional. See

“filters” on page 57.

STOP

Stop IBM Health Checker for z/OS. Do not use STOP unless absolutely

necessary; every time you STOP the IBM Health Checker for z/OS address

space, that address space identifier (ASID) becomes unavailable.

 To start IBM Health Checker for z/OS, use one of the following commands:

v START hzsproc

v START hzsproc,HZSPRM=xx

UPDATE

UPDATE,filters

 [,ACTIVE|INACTIVE]

 [,ADDCAT=(cat1,...,cat16)]

 [,DATE={date | (date,NOCHECK)}]

 [,DEBUG={OFF|ON}]

 [,VERBOSE={NO|YES}]

 [,DESCCODE=(desccode1,...,desccoden)]

 [,INTERVAL={ONETIME|hhh:mm}]

 [,EINTERVAL={SYSTEM|HALF|hhh:mm}]

 [,PARM=parameter,REASON=reason,DATE={date | (date,NOCHECK)}]

 [,REASON=reason]

 [,REPCAT=(cat1[,cat2[,...,cat16]])]

 [,REXXTIMELIMIT=timelimit]

 [,REMCAT=(cat1[,cat2[,...,cat16]])]

 [,ROUTCODE=(routcode1,...,routcoden)]

 [,SEVERITY={HIGH|MEDIUM|LOW|NONE}]

 [,WTOTYPE={CRITICAL|EVENTUAL|INFORMATIONAL|HARDCOPY|NONE}]

UPDATE allows you to temporarily update the current default or override values

for the specified checks. Values updated are in effect until the next refresh for

specified checks. You cannot update checks that are deleted or have a delete

pending against. Note that adding or removing the check from a category does

not effect the current check implementations.

 You must specify filter CHECK=(check_owner,check_name) with UPDATE.

Other filters are optional. See “filters” on page 57.

 If an UPDATE request does not actually change anything, the system takes no

action in response to the request. For example, if you use an UPDATE request

to make the severity HIGH for a check whose severity is already HIGH, the

system does not process the request, and nothing is done.

ACTIVE | INACTIVE

Use the ACTIVE and INACTIVE parameters to change the state of the

check. See “Understanding check state and status” on page 26. These

parameters are equivalent to “ACTIVATE parameter” on page 57 and

“DEACTIVATE parameter” on page 58.

ADDCAT=(cat1,...,catn)

ADDCAT adds specified checks into each of the listed categories.

DATE={date | (date,NOCHECK)}

DATE specifies when the values for a check were last updated. The date is

specified in the format yyyymmdd. If the date specified on the UPDATE

parameter is earlier than the date for the check, the system does not

62 IBM Health Checker for z/OS User’s Guide

|
|

process the values specified on the UPDATE parameter because the

UPDATE statement may no longer be appropriate for the check.

NOCHECK

IBM Health Checker for z/OS verifies the date for the UPDATE

statement, making sure that it is equal to or newer than the date for the

check that the statement applies to. Use NOCHECK to bypass date

verification so that you do not have to update the UPDATE statement

date for minor changes to a check.

 If you use the NOCHECK parameter, you must use parentheses on the

DATE parameter. For example, you can specify either DATE=date or

DATE=(date,NOCHECK).

DEBUG={OFF|ON}

DEBUG specifies the debug mode desired:

v OFF specifies that debug mode is off, which is the default.

v ON specifies that you want to run with debug mode on. Turning debug

mode ON lets you see debug messages, if the check produces any,

which are designed to help a product or installation debug a check

routine or to display additional check information. Debug messages are

only issued when the check is in debug mode. See the individual check

descriptions in Chapter 13, “IBM Health Checker for z/OS checks,” on

page 301 to see if a check issues additional information when you

specify DEBUG=ON.

Using SDSF to view check output in the message buffer when the debug

mode is ON allows you to see the message IDs of debug messages.

Debug mode ON will not take effect until you re-run the check or checks.

For example, after you issue a command to turn debug mode ON, you

could issue the command with the RUN parameter, which will run the

check or checks with debug mode ON.

For a REXX exec check, DEBUG must be ON for the check to write data

or error messages to an output data set.

VERBOSE={NO|YES}

VERBOSE specifies the verbose mode desired:

v NO specifies that you do not want to run in verbose mode.

v YES specifies that you want to run in verbose mode. Running in verbose

mode you see additional messages about non-exception conditions, if the

check supports verbose mode. These messages are only issued when

the check is in verbose mode. See the individual check descriptions in

Chapter 13, “IBM Health Checker for z/OS checks,” on page 301 to see if

a check supports issues additional messages if you specify

VERBOSE=YES.

Verbose mode does not take effect until you re-run the check or checks.

For example, after you issue a command to turn verbose mode on, you

could issue the F hzsproc command with the RUN parameter to run the

check or checks with verbose mode on.

DESCCODE=(desccode1[,...,desccoden])

DESCCODE specifies descriptor code(s) in addition to the system default

descriptor code used when an exception message is issued by the

specified check. (See “WTOTYPE” on page 65 for a list of the message

types and corresponding default descriptor codes.) For example, if you

specify DESCODE=(7) for a low severity check, the system uses descriptor

Chapter 4. Managing checks 63

|
|

code 7 in addition to the default descriptor code of 12 for the check. See

Valid combinations for descriptor codes in z/OS MVS System Messages,

Vol 1 (ABA-AOM).

 If you do not specify DESCCODE or if you specify DESCCODE=0, the

system uses just the system-default descriptor code when the exception

message is issued.

INTERVAL={ONETIME|hhh:mm}

INTERVAL specifies how often the check should run:

v ONETIME specifies that the check should run only once, kicked off by

refresh processing.

v hhh:mm provides a specific interval for the check to run. The check will

run at refresh time and periodically afterwards at the interval specified.

hhh indicates the number of hours, from 0 to 999. mm indicates the

number of minutes, from 0 to 59.

The specified interval time starts ticking away when a check finishes

running.

EXCEPTINTERVAL={SYSTEM | HALF | hhh:mm}

EXCEPTINTERVAL specifies how often the check should run after the

check has found an exception. This parameter allows you to specify a

shorter check interval for checks that have found an exception.

v SYSTEM, which is the default, specifies that the EXCEPTINTERVAL is

the same as the INTERVAL.

v HALF specifies that the exception interval is defined to be half of the

normal interval. For example, the exception interval will be set to 30

seconds, if the normal interval is set to 1 minute.

Note that if you change the INTERVAL parameter for a check, the system

will also recalculate the exception interval.

v hhh:mm provides a specific exception interval for the check. After raising

an exception, the check will run at the exception interval specified. hhh

indicates the number of hours, from 0 to 999. mm indicates the number

of minutes, from 0 to 59.

The specified exception interval time starts ticking away when a check

finishes running.

PARM=parameter

PARM specifies the check specific parameters being passed to the check.

The value for parameter can be 1-256 text characters. You can specify

these characters as:

v A single value enclosed in single quotes.

v Multiple values, where either each value is enclosed in single quotes or

the group of values is enclosed is single quotes. The system will

separate these values from each other by a comma. For example, both

PARM=’p1,p2,p3’ and PARM=(’p1’,’p2’,’p3’) will both resolve to a

parameter value of p1,p2,p3.

You can also specify PARM with a null parameter string, PARM=(), to

remove all parameters and clear a parameter error for a check that does

not accept parameters.You must specify the REASON and DATE

parameters when you specify PARM.

 When you issue a command with the PARM parameter, the check runs

immediately.

64 IBM Health Checker for z/OS User’s Guide

|
|
|

REASON=reason

REASON specifies the unique reason the check specific parameters are

being overridden. The value for reason can be 1-126 text characters. You

can specify these characters as:

v A single value enclosed in single quotes.

v Multiple values, where either each value is enclosed in single quotes or

the group of values is enclosed is single quotes. The system will

separate these values from each other by a blank. For example, both

REASON=’r1 r2 r3’ and REASON=(’r1’,’r2’,’r3’) will both resolve to a

reason of r1 r2 r3.

REMCAT=(cat1,...,catn)

REMCAT removes the specified checks from the categories listed.

REPCAT=(cat1,...,catn)

REPCAT removes the specified checks from any existing categories they

belong to and adds them to the categories listed.

REXXTIMELIMIT=timelimit

REXXTIMELIMIT specifies an optional input parameter that is the number of

seconds to which the execution of an iteration of the exec is to be limited. A

value of 0 is treated the same as no time limit. The default is that there is

no time limit.

ROUTCODE=(routcode1,...,routcoden)

ROUTCODE specifies the routing codes to be used when an exception

message is issued by the specified check. If ROUTCODE is not specified,

or if ROUTCODE=0 is specified, the system uses the system-default routing

codes for exception messages.

SEVERITY={HIGH | MEDIUM | LOW | NONE}

SEVERITY overrides the default check severity. The severity you pick

determines how the exception messages the check routine issues with the

HZSFMSG service are written.

v HIGH indicates that the check routine is checking for high-severity

problems. All exception messages that the check issues with the

HZSFMSG service will be issued to the console as critical eventual

action messages. HZS0003E is issued, which includes message text

defined by the check owner.

v MEDIUM indicates that the check routine is looking for medium-severity

problems. All exception messages the check issues with HZSFMSG will

be issued to the console as eventual action messages. HZS0002E is

issued which includes message text defined by the check owner.

v LOW indicates that the check is looking for low-severity problems. All

exception messages the check issues with HZSFMSG will be issued to

the console as informational messages. HZS0001I is issued which

includes message text defined by the check owner.

v NONE indicates that you’re assigning no severity to this check. Exception

messages issued by the check with HZSFMSG are issued to the

hardcopy log, rather than the console. HZS0004I is issued which

includes message text defined by the check owner.

WTOTYPE={CRITICAL|EVENTUAL|INFORMATIONAL|HARDCOPY|NONE}

WTOTYPE specifies the type of WTO that should be issued when the

check finds an exception. This parameter includes all WTOs issued by a

check.

CRITICAL

Specifies that the system issue an critical eventual action message

Chapter 4. Managing checks 65

|
|
|
|
|

(with a descriptor code of 11) when the check finds an exception. This

is the default if SEVERITY(HIGH) is specified or defaulted to.

EVENTUAL

Specifies that the system issue an eventual action message (with a

descriptor code of 3) when the check finds an exception. This is the

default if SEVERITY(MEDIUM) is specified or defaulted to.

INFORMATIONAL

Specifies that an informational message with a descriptor code of 12

should be issued when an exception is found. This is the default if

SEVERITY(LOW) is specified or defaulted.

HARDCOPY

Specifies that the system issue the message to the hardcopy log. This

is the default if SEVERITY(NONE) is specified.

NONE

Specifies that no WTO be issued when the check finds an exception.

{ADD | ADDREPLACE},CHECK

{ADD | ADDREPLACE},CHECK=(check_owner,check_name)

 ,{CHECKROUTINE=routinename

 | EXEC=execname

 ,REXXHLQ=hlq

 [,REXXTIMELIMIT=timelimitvalue]

 { [,REXXTSO=YES]

 | [,REXXTSO=NO

 [,REXXIN={NO | YES}

]

 }

 }

 ,MESSAGETABLE=msgtablename

 ,SEVERITY={HIGH|MEDIUM|LOW}

 ,INTERVAL={ONETIME|hhh:mm}

 ,DATE=date

 ,REASON=reason

 [,PARM=parameter]

 [,GLOBAL}

 [,ACTIVE|INACTIVE]

 [,EXCEPTINTERVAL={SYSTEM|HALF|hhh:mm}]

 [,USS={NO|YES}]

 [,VERBOSE={NO|YES}]

 [,ENTRYCODE=entrycode | 0]

Allows you to add or replace a check definition in an HZSPRMxx parmlib

member. The parameters correspond to the parameters in the HZSADDCK

macro.

ADD

Allows you to add a check definition to an HZSPRMxx parmlib member. If

you use ADD,CHECK to add a check that has already been defined, the

request is rejected. When a check that was added in this way is

subsequently deleted, the check definition still remains. ADDNEW or

REFRESH command processing will bring the check back exactly as it was

defined.

ADDREPLACE

Specifies that the system either add or replace the check definition, as

appropriate. If the check defiinition is new, the system will add it. If the

check definition exists already, the system will replace it with the one

specified.

66 IBM Health Checker for z/OS User’s Guide

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

CHECKROUTINE=routinename | EXEC=execname

Use CHECKROUTINE or EXEC to specify the type of check you are adding

or replacing.

v CHECKROUTINE=routinename specifies that you are defining a local or

remote assembler check. Required parameter specifies a module name

for the check you are adding or replacing. The system gives control to

the entry point of this module to run the check. The check routine module

must be in an APF-authorized library.

v EXEC=execname specifies that you are defining a REXX exec check.

Required parameter specifies an exec name for the check you are

adding or replacing. The exec does not have to be in an APF-authorized

library.

REXXHLQ=hlq

When EXEC=execname is specified, REXXHLQ is a required input

parameter specifying the high level qualifier for data sets(s) to be made

available to the REXX exec. See “Using REXXOUT data sets” on page 136

for information on how the system determines the name of your input or

output data set.

REXXTIMELIMIT=timelimit

When EXEC is specified, REXXTIMELIMIT specifies an optional input

parameter that is the number of seconds to which the execution of an

iteration of the exec is to be limited. A value of 0 is treated the same as no

time limit. The default is NO_TIMELIMIT.

REXXTSO=YES

Specifies that you are adding or replacing a TSO REXX exec check. A TSO

check runs in a TSO environment and can use TSO services. See

Chapter 8, “Writing REXX checks,” on page 131 for more information.

 REXXTSO=YES is the default.

REXXTSO=NO

Specifies that you are adding or replacing a non-TSO REXX exec check. A

non-TSO check does not run in a TSO environment, and cannot use TSO

services. See Chapter 8, “Writing REXX checks,” on page 131 for more

information.

REXXIN={NO | YES}

Specifies whether or not a non-TSO check requires a sequential input

data set.

 You can specify REXXIN(YES) only for a non-TSO REXX exec check

defined with REXXTSO(NO). See “Using REXXOUT data sets” on page

136 for information on how the system determines the name of your

input set for information for a non-TSO check..

 REXXIN=NO is the default.

MESSAGETABLE=msgtablename

Required parameter specifies the module name of the message table that

will be used when generating messages for the check you are adding or

replacing. The message table must be built using HZSMSGEN. The

message table module must be in an APF-authorized library.

SEVERITY={HIGH | MEDIUM | LOW | NONE}

Required parameter SEVERITY defines default check severity for the check

Chapter 4. Managing checks 67

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|
|

|

you are adding or replacing. The severity you pick determines how the

exception messages the check routine issues with the HZSFMSG service

are written.

v HIGH indicates that the check routine is checking for high-severity

problems. All exception messages that the check issues with the

HZSFMSG service will be issued to the console as critical eventual

action messages. HZS0003E is issued, which includes message text

defined by the check owner.

v MEDIUM indicates that the check routine is looking for medium-severity

problems. All exception messages the check issues with HZSFMSG will

be issued to the console as eventual action messages. HZS0002E is

issued which includes message text defined by the check owner.

v LOW indicates that the check is looking for low-severity problems. All

exception messages the check issues with HZSFMSG will be issued to

the console as informational messages. HZS0001I is issued which

includes message text defined by the check owner.

v NONE indicates that you’re assigning no severity to this check. Exception

messages issued by the check with HZSFMSG are issued to the

hardcopy log, rather than the console. HZS0004I is issued which

includes message text defined by the check owner.

INTERVAL={ONETIME|hhh:mm}

Required parameter INTERVAL specifies how often the check you are

adding or replacing should run:

v ONETIME specifies that the check should run only once, kicked off by

refresh processing.

v hhh:mm provides a specific interval for the check to run. The check will

run at refresh time and periodically afterwards at the interval specified.

hhh indicates the number of hours, from 0 to 999. mm indicates the

number of minutes, from 0 to 59.

The specified interval time starts ticking away when a check finishes

running.

DATE=date

Required parameter DATE specifies when you define the check you are

adding or replacing. The date is specified in the format yyyymmdd. If the

date specified on the ADDREPLACE parameter is earlier than the original

date for the check, the system does not process the values specified on the

ADDREPLACE parameter because it may no longer be appropriate for the

check. When the date provided on a matching UPDATE, POLICY UPDATE

or POLICY DELETE statement is older than this date, that policy statement

is not applied to this check.

REASON=reason

Required parameter REASON specifies what the check routine validates.

The value for reason can be 1-126 text characters. You can specify these

characters as:

v A single value enclosed in single quotes.

v Multiple values, where either each value is enclosed in single quotes or

the group of values is enclosed is single quotes. The system will

separate these values from each other by a blank. For example, both

REASON=’r1 r2 r3’ and REASON=(’r1’,’r2’,’r3’) will both resolve to a

reason of r1 r2 r3.

PARM=parameter

PARM specifies the check specific parameters being passed to the check

68 IBM Health Checker for z/OS User’s Guide

you are adding or replacing. The value for parameter can be 1-256 text

characters. You can specify these characters as:

v A single value enclosed in single quotes.

v Multiple values, where either each value is enclosed in single quotes or

the group of values is enclosed is single quotes. The system will

separate these values from each other by a comma. For example, both

PARM=’p1,p2,p3’ and PARM=(’p1’,’p2’,’p3’) will both resolve to a

parameter value of p1,p2,p3.

GLOBAL

Specifies that the check you are adding or replacing is global, which means

that it runs on one system but reports on sysplex-wide values and

practices. If you do not specify GLOBAL, the systems assumes that the

check is local, which means that it will run on each system in the sysplex

where it is active and enabled.

ACTIVE | INACTIVE

Use the ACTIVE and INACTIVE parameters to specify the state of the

check you are adding or replacing. See “Understanding check state and

status” on page 26. These parameters are equivalent to “ACTIVATE

parameter” on page 57 and “DEACTIVATE parameter” on page 58.

EXCEPTINTERVAL={SYSTEM | HALF | hhh:mm}

EXCEPTINTERVAL specifies how often the check you are adding or

replacing should run after the check has found an exception. This

parameter allows you to specify a shorter check interval for checks that

have found an exception.

v SYSTEM, which is the default, specifies that the EXCEPTINTERVAL is

the same as the INTERVAL.

v HALF specifies that the exception interval is defined to be half of the

normal interval. For example, the exception interval will be set 30

seconds, if the normal interval is set to 1 minute.

Note that if you change the INTERVAL parameter for a check, the system

will also recalculate the exception interval.

v hhh:mm provides a specific exception interval for the check. After raising

an exception, the check will run at the exception interval specified. hhh

indicates the number of hours, from 0 to 999. mm indicates the number

of minutes, from 0 to 59.

The specified exception interval time starts ticking away when a check

finishes running.

USS={NO | YES}

USS specifies whether the check uses z/OS UNIX System Services.

v NO, which is the default, specifies that your check does not require z/OS

UNIX System Services.

v YES specifies that your check requires z/OS UNIX System Services. If

you specify USS=YES, the following occurs:

– IBM Health Checker for z/OS will wait for this check to complete

before shutting down z/OS UNIX System Services

– This check will not run if z/OS UNIX System Services is down.

To avoid the delay of waiting for z/OS UNIX System Services to shut

down and your check not running if z/OS UNIX System Services is not

up, do not specify USS=YES unless your check really needs z/OS UNIX

System Services.

Chapter 4. Managing checks 69

VERBOSE={NO|YES}

VERBOSE specifies the verbose mode desired for the check you are

adding or replacing:

v NO specifies that you do not want to run in verbose mode.

v YES specifies that you want to run in verbose mode. Running in verbose

mode you see additional messages about non-exception conditions.

These messages are only issued when the check is in verbose mode.

Verbose mode does not take effect until you re-run the check or checks.

For example, after you issue a command to turn verbose mode on, you

could issue the F hzsproc command with the RUN parameter to run the

check or checks with verbose mode on.

ENTRYCODE=entrycode

ENTRYCODE specifies an optional unique check entry value needed when

a check routine contains multiple checks. This value is passed to the check

routine in the field Pqe_EntryCode in mapping macro HZSPQE.

ADD,PARMLIB

ADD,PARMLIB=(suffix1...suffixn)

Adds one or more HZSPRMxx parmlib member suffixes to the list of suffixes

the system uses to obtain check values. The system immediately processes the

statements in the added parmlib members.

REPLACE,PARMLIB

REPLACE,PARMLIB=(suffix1...suffixn)

 [,{CHECKS|POLICY|ALL}]

Replaces the list of HZSPRMxx parmlib members with the specified parmlib

member suffixes. REPLACE,PARMLIB first deletes applicable statements that

had been processed from the current HZSPRMxx parmlib members and then

replaces and processes the statements in the parmlib members specified in the

list of suffixes. The system then applies the statements to any new checks.

 You can use SET,PARMLIB as a synonym for REPLACE,PARMLIB.

CHECKS

Specifies that you want to delete check definitions added with ADD or

ADDREPLACE CHECK statements when you issue this command to

replace the list of HZSPRMxx parmlib members.

POLICY

Specifies that you want to delete existing POLICY statements and then add

those in the parmlib members specified in the REPLACE,PARMLIB

command. POLICY is the default.

ALL

Specifies that you want to replace both checks added with ADD |

ADDREPLACE,CHECK and existing policy statements with those specified

in the REPLACE,PARMLIB command. The system begins by deleting the

checks added with ADD|ADDREPLACE CHECK and existing policy

statements before replacing them.

ACTIVATE,POLICY

ACTIVATE,POLICY=policyname

Activates the specified policy, making it the current, active policy. The policy

stays in effect as the current active policy until you issue another

ACTIVATE,POLICY=policyname command to activate a different policy.

70 IBM Health Checker for z/OS User’s Guide

|

|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

After you activate a policy, if you want to ensure that only the values from the

new policy will be applied to checks, you must refresh all the relevant checks.

Until you refresh the checks, the values being applied to checks will still include

any values from the previous policy that are not contradicted by the new policy.

See “Some finer points of how policy values are applied” on page 48.

{ADD | ADDREPLACE} ,POLICY

{ADD | ADDREPLACE}

 ,POLICY[=policyname][,STATEMENT=name],UPDATE,filters[,update_options],REASON=reason,DATE={date|(date,NOCHECK)}

 |

 ,POLICY[=policyname][,STATEMENT=name],DELETE,filters,REASON=reason,DATE={date|(date,NOCHECK)}

Add or replace a policy statement in a policy. The check values in the policy or

policy statement are applied whenever a check is added or refreshed. The

check values on a new or replaced policy statement are applied when that

policy statement is added or replaced.

 You must specify the “REASON parameter” on page 72 and “DATE parameter”

on page 72 when you specify ADD, ADDREPLACE, or REMOVE,POLICY.

 We recommend that you use the ADD | ADDREPLACE POLICY statements in

the HZSPRMxx parmlib member rather than in the MODIFY command,

because:

v It is easy to exceed the number of characters allowed for a command with

the POLICY statements.

v Changes made in the parmlib member will be applied at each restart of IBM

Health Checker for z/OS.

ADD

Add the new policy statement that follows.

ADDREPLACE

Specifies that the system either add or replace the following policy

statement, as appropriate. If the policy statement is new, the system will

add it. If the policy statement exists already, the system will replace it with

the one specified.

POLICY=policyname

The name of the policy in which you are adding or replacing policy

statements. If you do not specify a policy name, the system assigns a

default name of DEFAULT for your policy. Use the DISPLAY POLICY

command to find the name of a policy.

STATEMENTNAME | STATEMENT | STMT =stmtname

STATEMENTNAME specifies the name of the policy statement. If you do

not specify the STATEMENTNAME parameter, the system creates a

decimal number name for your statement. For example, the system might

create a statement name such as 1 or 2 for a statement. The number can

be more than one digit.

UPDATE

Create a policy statement that will update the specified check or checks.

You must specify the REASON and DATE parameters. See the “″UPDATE

parameter″” on page 62.

DELETE

Create a policy statement that will delete the specified check or checks. You

must specify the REASON and DATE parameters.

Chapter 4. Managing checks 71

filters

You must specify filter CHECK=(check_owner,check_name) with ADD |

ADDREPLACE POLICY. Other filters are optional. See “filters” on page 57.

REASON=reason

See the “REASON parameter” on page 64.

DATE={date | (date,NOCHECK)}

DATE specifies when the policy statement was created. The date is

specified in the format yyyymmdd. If the date specified on the policy

statement is earlier than the date for the check, the system does not

process the values specified on the policy statement because the policy

statement may no longer be appropriate for the updated check.

NOCHECK

By default, IBM Health Checker for z/OS verifies the date for the policy

statement, making sure that it is equal to or newer than the date for the

check that the statement applies to. Use NOCHECK to bypass date

verification so that you do not have to update the policy statement date

for minor changes to a check.

REMOVE ,POLICY

REMOVE,POLICY[=policyname],STATEMENT=name

Remove a policy statement. The check values on the policy statements are

applied whenever a check is added or refreshed. The check values on a new or

replaced policy or policy statement are applied when that policy statement is

added or replaced.

REMOVE

Remove the named policy statement.

POLICY=policyname

The name of the policy for which you are removing a policy statement. If

you do not specify a policy name, the system assigns a default name of

DEFAULT for your policy. Use the DISPLAY POLICY command to find the

name of a policy.

STATEMENTNAME | STATEMENT | STMT =stmtname

STATEMENTNAME specifies the name of the policy statement.

You can use wildcard characters in POLICY and STATEMENTNAME. The

command is applied to all matching policies and policy statements. For

example:

v POLICY=*,STMT=01 would remove all 01 statements from all policies.

v POLICY=POL1,STMT=S* would remove from policy POL1 all statements with

names beginning with S.

v POLICY=*,STMT=S* would remove all policy statements starting with S from

all policies.

Examples of DISPLAY output

Example of DISPLAY SUMMARY message output: The following output is

displayed in response to the f hzsproc,display,checks command:

HZS0200I 10.31.08 CHECK SUMMARY FRAME LAST F E SYS=SY1

CHECK OWNER CHECK NAME STATE STATUS

IBMUSS USS_MAXSOCKETS_MAXFILEPROC AE EXCEPTION-LOW

IBMUSS USS_AUTOMOUNT_DELAY AD ENV N/A

72 IBM Health Checker for z/OS User’s Guide

IBMUSS USS_FILESYS_CONFIG AE SUCCESSFUL

IBMRACF RACF_SENSITIVE_RESOURCES AE + EXCEPTION-HIGH

IBMRACF RACF_GRS_RNL AE + SUCCESSFUL

IBMCNZ CNZ_SYSCONS_MASTER AE SUCCESSFUL

IBMCNZ CNZ_SYSCONS_PD_MODE AE SUCCESSFUL

IBMCNZ CNZ_EMCS_INACTIVE_CONSOLES AEG SUCCESSFUL

IBMCNZ CNZ_SYSCONS_ROUTCODE AE EXCEPTION-LOW

IBMCNZ CNZ_SYSCONS_MSCOPE AE EXCEPTION-MED

IBMCNZ CNZ_EMCS_HARDCOPY_MSCOPE AE SUCCESSFUL

IBMCNZ CNZ_CONSOLE_ROUTCODE_11 AE EXCEPTION-LOW

IBMCNZ CNZ_AMRF_EVENTUAL_ACTION_MSGS AE EXCEPTION-LOW

IBMCNZ CNZ_CONSOLE_MSCOPE_AND_ROUTCODE AE EXCEPTION-LOW

IBMCNZ CNZ_CONSOLE_MASTERAUTH_CMDSYS AE SUCCESSFUL

IBMCNZ CNZ_TASK_TABLE AE SUCCESSFUL

IBMGRS GRS_EXIT_PERFORMANCE AE SUCCESSFUL

IBMGRS GRS_CONVERT_RESERVES AEG EXCEPTION-LOW

IBMGRS GRS_SYNCHRES AE SUCCESSFUL

IBMGRS GRS_MODE AEG SUCCESSFUL

IBMSDUMP SDUMP_AUTO_ALLOCATION AE EXCEPTION-MED

IBMSDUMP SDUMP_AVAILABLE AE SUCCESSFUL

IBMVSM VSM_SQA_THRESHOLD AE SUCCESSFUL

IBMVSM VSM_CSA_LIMIT AE SUCCESSFUL

IBMVSM VSM_PVT_LIMIT AE SUCCESSFUL

IBMVSM VSM_SQA_LIMIT AE SUCCESSFUL

IBMVSM VSM_CSA_THRESHOLD AE SUCCESSFUL

IBMVSM VSM_CSA_CHANGE AE SUCCESSFUL

IBMRSM RSM_HVSHARE AE SUCCESSFUL

IBMRSM RSM_MEMLIMIT AE EXCEPTION-LOW

IBMRSM RSM_MAXCADS AE SUCCESSFUL

IBMRSM RSM_RSU AE SUCCESSFUL

IBMRSM RSM_REAL AE EXCEPTION-LOW

IBMRSM RSM_AFQ AE SUCCESSFUL

 A - ACTIVE I - INACTIVE

 E - ENABLED D - DISABLED

 G - GLOBAL CHECK + - ADDITIONAL WARNING MESSAGES ISSUED

Example of DISPLAY DETAIL message output: The following output is displayed

in response to a f hzsproc,display,checks,check=(IBMRSM,RSM_MEMLIMIT),detail

command:

HZS0201I 09.20.29 CHECK DETAIL

CHECK(IBMRSM,RSM_MEMLIMIT)

 STATE: ACTIVE(ENABLED) STATUS: EXCEPTION-LOW

 EXITRTN: IARHCADC

 LAST RAN: 05/01/2006 09:14 NEXT SCHEDULED: (NOT SCHEDULED)

 INTERVAL: ONETIME

 EXCEPTION INTERVAL: SYSTEM

 SEVERITY: LOW

 WTOTYPE: INFORMATIONAL

 SYSTEM DESCCODE: 12

 THERE ARE NO PARAMETERS FOR THIS CHECK

 REASON FOR CHECK: Performance may be impacted

 MODIFIED BY: N/A

 DEFAULT DATE: 20041006

 ORIGIN: HZSADDCK

 LOCALE: HZSPROC

 DEBUG MODE: OFF VERBOSE MODE: NO

Chapter 4. Managing checks 73

Example of DISPLAY DIAG message output: The following output is displayed in

response to a f hzsproc,display,check(IBMGRS,grs_mode),detail,diag command.

The output shows diagnostic information such as the address of the check routine

and message table:

HZS0201I 09.22.18 CHECK DETAIL

 CHECK(IBMGRS,GRS_MODE)

 STATE: ACTIVE(DISABLED) GLOBAL STATUS: SUCCESSFUL

 EXITRTN: ISGHCADC

 LAST RAN: 05/01/2006 09:14 NEXT SCHEDULED: (DISABLED)

 INTERVAL: ONETIME

 EXCEPTION INTERVAL: SYSTEM

 SEVERITY: LOW

 WTOTYPE: INFORMATIONAL

 SYSTEM DESCCODE: 12

 DEFAULT PARAMETERS: STAR

 REASON FOR CHECK: GRS should run in STAR mode to improve

 performance.

 MODIFIED BY: N/A

 DEFAULT DATE: 20050105

 ORIGIN: HZSADDCK

 LOCALE: HZSPROC

 DEBUG MODE: OFF VERBOSE MODE: NO

 INTERNAL DIAGNOSTICS - CHECK TOKEN: 01020038.7FD94000

 ROUTINE: ISGHCGRS-7F038300 MSGTBL: ISGHCMSG-7F0343B8 FUNC: DELETE

 LAST CPU TIME: 0.070 MAX CPU TIME: 0.070

Example of DISPLAY POLICY SUMMARY message output: The following output

is displayed in response to a f hzsproc,display,policy,stmt=* command:

 HZS0204I 11.03.45 POLICY SUMMARY FRAME LAST F E SYS=SY1

 STMT TYPE CHECK OWNER CHECK NAME

 GRSMODE_SEVERITY UPD IBMGRS GRS_MODE

Example of DISPLAY POLICY DETAIL message output: The following output is

displayed in response to a f hzsproc,display,policy,stmt=*,detail command:

 HZS0202I 11.04.44 POLICY DETAIL FRAME LAST F E SYS=SY1

 POLICY STMT: GRSMODE_SEVERITY ORIGIN: HZSPRMOO DATE: 20050105

 UPDATE CHECK(IBMGRS,GRS_MODE)

 REASON: update check to high severity

 SEVERITY: HIGH

Example of DISPLAY STATUS message output: The following output is displayed

in response to a f hzsproc,display,status or f hzsproc,display command:

HZS0203I 10.27.07 HZS INFORMATION FRAME LAST F E SYS=SY1

OUTSTANDING EXCEPTIONS-13:

 (SEVERITY NONE: 0 LOW: 8 MEDIUM: 2 HIGH: 3)

ELIGIBLE CHECKS: 33 (CURRENTLY RUNNING: 0)

INELIGIBLE CHECKS: 1 DELETED CHECKS: 0

ASID: 002C LOG STREAM: - NOT DEFINED

74 IBM Health Checker for z/OS User’s Guide

Part 2. Developing Checks for IBM Health Checker for z/OS

Chapter 5. Planning checks 79

Identifying potential checks . 80

The life-cycle of a check - check terminology 80

What kind of check do you want to write? 81

Local checks . 81

Remote checks . 82

REXX checks . 83

Summary of checks - differences and similarities 84

Where to next? A road map for developing your check 86

Chapter 6. Writing local check routines 87

Sample local checks . 87

Local check routine basics . 87

Defining a local check to IBM Health Checker for z/OS 89

Programming considerations . 89

Environment . 89

Requirements . 90

Restrictions . 90

Gotchas . 90

Input Registers . 90

Output Registers . 90

Establishing a recovery routine for a check 91

Sample reentrant entry and exit linkage 91

Using the check parameter parsing service (HZSCPARS) 92

Using the HZSPQE data area in your local check routine 92

Function codes for local check routines 93

Issuing messages in your check routine with the HZSFMSG macro 95

Reporting check exceptions 96

Defining the variables for your messages 97

Using default HZSMGB data area format (MGBFORMAT=0) 98

Using HZSMGB data area format MGBFORMAT=1 101

The well-behaved local check routine - recommendations and recovery

considerations . 103

Debugging checks . 106

Chapter 7. Writing remote check routines 109

Sample checks . 109

Remote check routine basics 110

Programming considerations 111

Environment . 111

Requirements . 111

Restrictions . 111

Establishing a recovery routine for a check 111

Preparing for check definition - making sure IBM Health Checker for z/OS is up

and running . 112

Using ENF event code 67 to listen for IBM Health Checker for z/OS

availability . 112

Allocate a pause element token using IEAVAPE 113

Issue the HZSADDCK macro to define check defaults to IBM Health Checker

for z/OS . 113

Example of the HZSADDCK macro call for a remote check 115

Pause the remote check routine with IEAVPSE 115

© Copyright IBM Corp. 2006, 2007 75

||
||
||
||
||

Using HZSCHECK REQUEST=OPSTART and REQUEST=OPCOMPLETE to

communicate check start and stop to IBM Health Checker for z/OS 116

Using the check parameter parsing service (HZSCPARS) 116

Using the HZSPQE data area in your remote check routine 116

Release codes for remote check routines 117

Issuing messages in your check routine with the HZSFMSG macro 119

Reporting check exceptions 121

Defining the variables for your messages 122

Using default HZSMGB data area format (MGBFORMAT=0) 123

Using HZSMGB data area format MGBFORMAT=1 125

Recommendations and recovery considerations for remote checks 127

Debugging checks . 129

Chapter 8. Writing REXX checks 131

Sample REXX checks . 131

REXX check basics . 131

Using input data sets in a TSO-environment REXX check 135

Using REXXIN data sets . 135

REXXIN data set naming conventions 136

Using REXXOUT data sets . 136

REXXOUT data set naming conventions 137

Examples: Capturing error data in REXXOUT 137

Defining a REXX check to IBM Health Checker for z/OS 139

Issuing messages in your REXX check with the HZSLFMSG function 141

Reporting check exceptions 143

The well-behaved REXX check - recommendations and recovery

considerations . 144

Debugging REXX checks . 146

Chapter 9. Writing an HZSADDCHECK exit routine 147

Programming considerations for the HZSADDCHECK exit routine 149

Environment . 149

Input Registers . 150

Output Registers . 150

Defining multiple local or REXX checks in a single HZSADDCHECK exit

routine . 151

Dynamically adding local or REXX exec checks to IBM Health Checker for

z/OS . 151

Using operator commands to add checks to the system dynamically 152

Using a routine to add checks to the system dynamically 152

Debugging HZSADDCHECK exit routine abends 152

Creating product code that automatically registers checks at initialization 153

Creating product code that deletes checks as it goes down 153

Chapter 10. Creating the message input for your check 155

How messages and message variables are issued at check runtime 156

Planning your check messages 159

Planning your exception messages 159

Planning your information messages 160

Planning your report messages 160

Planning your debug messages 161

Decide what release your check will run on 161

Decide whether to translate your exception messages into other national

languages . 161

Rely on IBM Health Checker for z/OS to issue basic check information for

you . 162

76 IBM Health Checker for z/OS User’s Guide

||
||
||
||
||
||
||
||
||
||
||
||
|
||
||

Creating the message input data set 162

Examples of message input 163

Exception message example 163

Information message example 165

Report message example 166

Debug message example 170

Message list tagging example 170

Syntax of message input . 171

Message input tags . 172

Copyright information . 172

Message list tag - <msglist> 172

Message instance tag - <msg> 173

Message number tag - <msgnum> 174

Message text (<msgtext>) and message variable (<mv>) tags 175

Message item tag - <msgitem> 178

Special formatting tags for the message input data set 180

How messages are formatted in the message buffer 182

Extra fields issued to the message buffer for exception messages . . . 183

Using symbols in the message input data set 184

Using pre-defined system symbols 184

Defining your own symbols for check messages 185

Generating the compilable assembler CSECT for the message input data set 187

Support for translating messages to other languages 191

Guidelines for coding translatable exception message text lines 191

Part 2. Developing Checks for IBM Health Checker for z/OS 77

78 IBM Health Checker for z/OS User’s Guide

Chapter 5. Planning checks

The IBM Health Checker for z/OS is a component of MVS that provides the

framework for checking z/OS system and sysplex configuration parameters and the

system environment to help determine places where an installation is deviating from

suggested settings or where there might be configuration problems. IBM provides a

set of check routines in IBM Health Checker for z/OS, but vendors, consultants, and

system programmers can add other check routines.

The objective of a check is to identify potential problems before they impact your

availability or, in worst cases, cause outages. The output of a check is messages

and reports that help an installation analyze the health of a system.

Here is a list of some of the kinds of things you can write a check to look for:

v Changes in configuration values that occur dynamically over the life of an IPL.

Checks that look for changes in these values should run periodically to keep the

installation aware of changes accruing since the last IPL, to help ensure a

cleaner IPL the next time.

v Threshold levels approaching the upper limits, especially those that might occur

gradually or insidiously.

v Single points of failure in a configuration.

v Unhealthy combinations of configurations or values that an installation might not

think to check.

v Monitoring checks that create reports of collected data.

A check routine:

v Defines the severity of exceptions it finds and suggests a fix for the exception.

v Defines a timer interval for the check.

v May have default values overridden by installation updates.

v Communicates check results by issuing messages to a buffer associated with the

check.

The following are examples of situations customers uncovered running IBM Health

Checker for z/OS at different times:

v Configuration abnormalities in what was believed to be a stable system.

v Unexpected values on a system. Investigation revealed changes had been

correctly made to that system, but not replicated on other systems.

v Default configurations that were never optimized for performance.

v Outdated settings that didn’t support all current applications.

v Mismatched naming conventions that could have led to an outage.

v Dynamic changes accruing over the life of the IPL that can cause problems.

Hints for planning your checks:

v Keep in mind that each check should only check for one thing. This will make it

much easier for the installation to resolve exceptions that the check finds and

override defaults.

v If you are writing a check that will flag a default or common valid configuration

setting as an exception, you should:

– Make sure that the HZSADDCHECK exit routine for your check specifies the

INACTIVE parameter on the HZSADDCK macro. INACTIVE specifies that the

check should not run until the installation changes the state to active. See

© Copyright IBM Corp. 2006, 2007 79

Chapter 9, “Writing an HZSADDCHECK exit routine,” on page 147 and

“HZSADDCK macro — HZS add a check” on page 218.

– Include information in your check output about why the check user is getting

an exception message for a default or common valid setting. See Chapter 10,

“Creating the message input for your check,” on page 155.

For those of you who would like to develop your own checks, there are sample

checks, including the source code, on the IBM Health Checker for z/OS Web page:

http://www-03.ibm.com/servers/eserver/zseries/zos/hchecker/

You can use these checks, which you can install and execute, as a good reference

and starting point for developing checks. The samples include:

v A local check routine that includes two checks: a check that runs one time and

a check that runs at intervals.

v An HZSADDCHECK exit routine to add local checks to the system.

v A message input data set for generating the message table.

Identifying potential checks

Look for potential checks in the following areas:

v System history can provide an insight to potential checks.

v Past system outages or conditions that produced an alert usually indicate a

situation that could be detected by an appropriate check.

v Support call documentation can reveal common configuration problems and

values.

v Product documentation may reveal settings that you wish to check in real time.

v Single and multisystem configuration situations.

Within those areas, look for check routine candidates from the following:

v Configuration problems or dynamic installation changes, including common initial

setup errors and single points of failure.

v Configuration values do not reflect recommended settings. For example, the

CNZ_SYSCONS_MSCOPE check ensures that MVS system consoles are

defined to have local message scope, which is recommended.

v Defaults that no longer reflect the current recommendations.

v Configuration recommendations that may have changed as a result of new

functions introduced.

v Installation values approaching configuration limits

v Display output, such as the existing Coupling Facility Structure/Status report,

which can help you identify checks.

The life-cycle of a check - check terminology

We’ll use the following terms throughout this document:

v Check iteration: An instance of a check routine that does the check processing

and clean up phases of a check routine. Only one iteration of a particular check,

identified by the check and owner name, can run at a time. During refresh

processing, a check is reset to its first iteration.

v Check life-cycle: The life-cycle of a check is one full cycle of a check, from

initialization through delete. Then, when a check is added to the system as part

of refresh processing, the life of the check starts all over again.

80 IBM Health Checker for z/OS User’s Guide

http://www.ibm.com/servers/eserver/zseries/zos/hchecker/

v Installation updates: The installation can update or override some of the default

check values you define in the check definition using:

– SDSF

– The MODIFY command

– Policy statements in the HZSPRMxx parmlib member

The installation might update some check values to make the check more

suitable for their environment or configuration. See Chapter 4, “Managing

checks,” on page 35.

v Refresh process: Refresh processing first deletes one or more checks from the

IBM Health Checker for z/OS and then add the same checks back to the system.

The system does the following for each refreshed check:

– Applies any installation updates to the default values for the check.

– Clears the 2K work area (PQEChkWork)

– Resets the check’s iteration count to one.

– Starts the initialization phase for the check, if the check is defined as active.

For a local check , you can have multiple checks in a single check routine. When

you refresh some, but not all, of the checks in a check routine, the system does

refresh processing only for the specified checks.

Refresh processing is kicked off in response to:

– Refresh request (E action character) from the SDSF CK panel. See “Using

SDSF to manage checks” on page 37.

– The MODIFY (F) hcproc,REFRESH operator command. See “Syntax and

parameters for HZSPRMxx and MODIFY hzsproc command” on page 53.

What kind of check do you want to write?

You can develop the following basic types of checks:

v “Local checks”

v “Remote checks” on page 82

v “REXX checks” on page 83

Each type of check issues the same kind of messages for IBM Health Checker for

z/OS users.

Local checks

Local checks are written in assembler and run in the IBM Health Checker for z/OS

address space, hzsproc. Because the local check runs in the IBM Health Checker

address space, writing a local check is simpler than a remote check, but the data

you can access might be a little more limited than you can access from a remote

check running in the caller's address space. Make sure that your check can access

the data it needs from the IBM Health Checker for z/OS address space and that it

does not require any potentially disruptive actions, such as I/O intensive operations,

serialization, or waits. This is important because if your check hangs in the hzsproc

address space, it can affect the performance of IBM Health Checker for z/OS and

all the other checks.

Local checks must be APF authorized.

The following figure shows the parts of a local check. The shaded items show the

parts that a check developer must provide:

Chapter 5. Planning checks 81

|

|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

Remote checks

Remote checks are written in assembler and run as tasks in the address space of

the caller. For example, a remote check might run in a server address space so that

it can more easily obtain the necessary data about the server space and also more

easily read data from data sets.

You should write a remote check when:

v You need a check to run in a specific address space, or you cannot access the

data you need for your check from the IBM Health Checker for z/OS address

space

v Your check requires potentially disruptive actions, such as I/O intensive

operations, serialization, or waits. This is important because if your check hangs

in the hzsproc address space, it can affect the performance of IBM Health

Checker for z/OS and all the other checks.

Local and remote check routines share a basic structure, but there are enough

differences between them that you'll need to know before you start writing whether

you are writing a local or a remote check. A remote check requires synchronization

and communication between the remote check routine and IBM Health Checker for

z/OS.

IBM Health Checker for z/OS tracks remote checks for you. If the caller's address

space where the remote check is running goes down, IBM Health Checker for z/OS

treats the check as if it had been deleted. If the IBM Health Checker for z/OS

address space terminates, upon restart it restarts any remote checks that were

defined to the system when the address space terminated, unless they have been

explicitly deleted.

IBM Health Checker for z/OS
address space

Message
table

Local
check
routine

HZSPQE
data
area

Installation
overrides

optional
HZSADDCHECK

exit
routine

Figure 5. The parts of a local check

82 IBM Health Checker for z/OS User’s Guide

|

|
|
|
|

|

|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

A remote check need not be APF authorized, but, if not, must be permitted by

RACF or other security product.

The following figure shows the parts of a remote check. The shaded items show

the parts that a check developer must provide:

REXX checks

A REXX check runs in a System REXX address space in an APF authorized

environment defined by System REXX. You identify it as a REXX check on the

REXX(YES) parameter when defining the check to the system.

A REXX check makes it easy to issue system commands (using the AXRCMD

function) and to analyze the output of commands issued. REXX also makes it easy

to read data sets or to issue system commands, and parse the retrieved information

You can run System REXX checks in TSO and non-TSO environments.

See System REXX in z/OS MVS Programming: Authorized Assembler Services

Guide for information about the AXRCMD function and coding REXX execs in TSO

and non-TSO environments.

The following figure shows the parts of a REXX check. The shaded items show the

parts that a check developer must provide:

IBM Health Checker for z/OS
address space

Caller’s address space

Message
table

Remote
check
routine

HZSADDCK

HZSPQE
data
area

Installation
overrides

Figure 6. The parts of a remote check

Chapter 5. Planning checks 83

|

|
|
|

|
|

|
|
||

|

|
|
|

|
|
|

|

|
|
|

|
|
|

Summary of checks - differences and similarities

The following table shows some of the differences between local and remote

checks:

 Table 7. Summary local, remote, and REXX checks

Local checks Remote checks REXX checks

How do I know which type of check to write?

Write an local check to look at system

storage or use assembler services. A local

check runs in the IBM Health Checker for

z/OS address space, so make sure your

check can access the data it needs from

there, and does not require a potentially

disruptive action, such as a wait. (If your

check hangs in the hzsproc address

space, it can affect the performance of

IBM Health Checker for z/OS and all the

other checks.)

Write a local check to look at system

storage or use assembler services.

A local check has the advantage of

receiving IBM Health Checker for z/OS

recovery support.

Write a remote check to look at system

storage or use assembler services. A

remote check runs in the caller's address

space, and is a good choice if:

v Your check needs to access data that is

hard to reach from the IBM Health

Checker for z/OS address space.

v Your check requires potentially disruptive

actions, such as I/O intensive

operations, serialization, or waits.

Write a REXX check to take advantage of

the ease in issuing system commands

(using the AXRCMD function) and

analyzing the output of commands issued.

It is easy in a System REXX check to

handle I/O. For example, from a REXX

check, it is very easy to parse parameters

into multiple variables and to read from and

write to REXXIN and REXXOUT data sets.

Where does the check run?

In the IBM Health Checker for z/OS

address space.

In the caller's address space. In a System REXX address space.

What kind of recovery support does the system provide for my check?

Message
table

HZSPQE
data
area

Installation
overrides

IBM Health Checker for z/OS
address space

System REXX

REXX
check

HZS_PQE
variables

Figure 7. The parts of a REXX check

84 IBM Health Checker for z/OS User’s Guide

|

|
|
|
|

|

|
|

||

|||

|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
||

|

Table 7. Summary local, remote, and REXX checks (continued)

Local checks Remote checks REXX checks

If the check routine abends, the system

handles the abend and continues trying to

call the check on subsequent iterations.

If the check routine abends, it is up to the

application to provide recovery to handle

the abend.

If the task that issues the HZSADDCK

macro defining the check terminates for

any reason, including an abend that is not

re-tried, the system treats the check as if it

is deleted.

If the REXX check abends, the system will

mark the check as no longer running for

that iteration.

How do I define a check?

Do one of the following:

v For testing purposes, define the check

defaults in HZSPRMxx using

ADD|ADDREPLACE CHECK.

v Create a separate HZSADDCHECK exit

routine that issues the HZSADDCK

service to describe check defaults. You

must then add the check to IBM Health

Checker for z/OS by adding the exit

routine to the HZSADDCHECK exit.

Check routine defines itself by issuing the

HZSADDCK macro describing check

defaults.

Do one of the following:

v Define the check defaults in HZSPRMxx

using ADD|ADDREPLACE CHECK.

v You can also create a separate

assembler HZSADDCHECK exit routine

that issues the HZSADDCK service to

describe check defaults. You must then

add the check to IBM Health Checker for

z/OS by adding the exit routine to the

HZSADDCHECK exit.

Multiple checks per check routine supported?

Yes - Consolidation of multiple checks in

one check routine for a product or element

supported and recommended.

Yes - Consolidation of multiple checks in

one check routine is supported. Since you

must manage the storage for remote

checks, whether or not there is any benefit

to grouping checks into a single routine

depends on how you manage the storage.

Note that each remote check, even when

grouped in one check routine, must run in

a separate task.

Yes - Consolidation of multiple checks in

one check exec is supported.

What prompts the processing phase for the check routine?

Function codes in the HZSPQE data area

for local check routines.

Release codes from the IEAVPSE service

for remote check routines.

The check invokes HZSLSTRT to initialize

the check environment, and HZSLSTOP to

indicate that check processing is complete.

Need to synchronize the check routine and the system?

No - see Chapter 6, “Writing local check

routines,” on page 87

Yes - see Chapter 7, “Writing remote check

routines,” on page 109

No - see Chapter 8, “Writing REXX

checks,” on page 131

Who loads the message table module for the check into storage?

IBM Health Checker for z/OS The remote check routine IBM Health Checker for z/OS

How many checks can I run at a time?

The system can process 20 checks at a time. Processing a check can mean either:

v Running a local check

v Starting a remote check

Once a remote check has been started, it can run on its own and is not subject to the

limitation of 20. Thus there is no intrinsic limit to the number of remote checks that can

be run at a time.

See System REXX in z/OS MVS

Programming: Authorized Assembler

Services Guide.

How does delete processing work?

When a check is deleted through either

refresh processing or when a user deletes

the check, your check will come back to

run again whenever ADDNEW or refresh

processing occurs, unless you use the

DELETE parameter in the active policy.

When a check is deleted, through either

refresh processing or when a user deletes

the check, the check is marked as deleted

and does not come back at subsequent

refresh or ADDNEW processing. The delete

request is passed to the remote check in a

release code and depending on the type of

delete release code, the check routine can

re-define itself.

A REXX check is not called for delete

processing. When a check is deleted

through either refresh processing or when

a user deletes the check, your check will

come back to run again whenever

ADDNEW or refresh processing occurs,

unless you use the DELETE parameter in

the active policy.

Chapter 5. Planning checks 85

|

|||

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|||

|

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

Where to next? A road map for developing your check

To create a IBM Health Checker for z/OS check for your component or product, you

must do the following:

1. Write a check routine that gathers information, compares current values with

suggested settings or looks for configuration problems, and issues messages

with the results of the check.

v For a local check, see Chapter 6, “Writing local check routines,” on page 87.

v For a remote check, see Chapter 7, “Writing remote check routines,” on page

109.

v If you are writing a REXX check, see Chapter 8, “Writing REXX checks,” on

page 131.

2. Create a message table for the check output. The message table defines the

check output messages issued by the check routine. See Chapter 10, “Creating

the message input for your check,” on page 155.

3. Provide documentation about check-specific installation overrides to allow the

installation to override the default check values defined when the check was

added. See Chapter 13, “IBM Health Checker for z/OS checks,” on page 301.

86 IBM Health Checker for z/OS User’s Guide

|

Chapter 6. Writing local check routines

A local check runs in the IBM Health Checker for z/OS address space, hzsproc. To

learn about the differences between local and remote checks and deciding which

type you want to write, see “Remote checks” on page 82.

In this chapter, we'll cover the following:

v “Sample local checks”

v “Local check routine basics”

v “Defining a local check to IBM Health Checker for z/OS” on page 89

v “Programming considerations” on page 89

v “Sample reentrant entry and exit linkage” on page 91

v “Using the check parameter parsing service (HZSCPARS)” on page 92

v “Using the HZSPQE data area in your local check routine” on page 92

v “Function codes for local check routines” on page 93

v “Issuing messages in your check routine with the HZSFMSG macro” on page 95

v “Defining the variables for your messages” on page 97

v “The well-behaved local check routine - recommendations and recovery

considerations” on page 103

v “Debugging checks” on page 106

v Chapter 9, “Writing an HZSADDCHECK exit routine,” on page 147

Sample local checks

Of course you're going to read this entire chapter to understand everything you

need to know about writing a local check routine. But we also have what you're

really looking for - assembler samples in SYS1.SAMPLIB:

v HZSSADCK - Sample HZSADDCHECK exit routine.

v HZSSCHKR - Sample local check routine.

v HZSSMSGT - Sample message input.

These and more check samples on the IBM Health Checker for z/OS Web page:

http://www-03.ibm.com/servers/eserver/zseries/zos/hchecker/

Local check routine basics

A check routine is a program that gathers installation information and looks for

problems, and then issues the check results in messages. IBM Health Checker for

z/OS writes the check exception messages as WTOs or to the message buffer. The

check routine runs in the IBM Health Checker for z/OS address space, which has

superuser authority (UID(0)).

When IBM Health Checker for z/OS calls the check routine, register 1 points to a

parameter list containing the address of the HZSPQE data area for the check (as

well as the address of the 4K dynamic work area). The HZSPQE for a check

contains:

v The defaults defined for the check.

v A 2K check work area and a pointer to a 4K dynamic work area.

v A function code indicating why the check was called.

v Any installation update values.

© Copyright IBM Corp. 2006, 2007 87

http://www.ibm.com/servers/eserver/zseries/zos/hchecker/

The check routine should not update the HZSPQE data area except for the 2K

check work area. See “Using the HZSPQE data area in your local check routine” on

page 92.

We recommend that you keep the check routine very simple. At a high level, your

check will consist of:

1. Reentrant entry and exit linkage (“Sample reentrant entry and exit linkage” on

page 91) and other setup.

2. Handling of input parameters, if any, for your check when the system indicates

that parameter data has changed. See “Using the check parameter parsing

service (HZSCPARS)” on page 92.

3. The meat of the check - checking for potential problems on a system.

4. Issuing messages using the HZSFMSG macro (“Issuing messages in your

check routine with the HZSFMSG macro” on page 95)

5. Defining your message variables in the HZSMGB data area (“Defining the

variables for your messages” on page 97)

Limit a check to looking at one setting or one potential problem. Limiting the

scope of a check will make it easier for the installation using the check to:

v Resolve any exceptions that the check finds by either fixing the exception,

overriding the setting, or deactivating the check.

v Set appropriate override values for check defaults such as severity or interval.

Do not set return and reason codes for your check routine. The system will

return a result for you in the PQE_Result field when you use HZSFMSG

REQUEST=CHECKMSG macro request (for exception messages) or the

HZSFMSG REQUEST=STOP macro request (to stop the check). Do not set this

field in your check routine.

Use the 2K check work area: Use the 2K check work area in field PQEChkWork

for data you want to retain through check iterations for the life of the check, until the

check is refreshed or deleted. Using the 2K check work area allows you to avoid

obtaining additional resources for your check routine. Prior to the Init function code

call, the system sets the 2K work area to zeros.

Use the 4K dynamic work area: Use the 4K dynamic work area for data you want

to last for only one function code call. The check routine can find the address of the

4K dynamic work area in:

v Register 0 on entry to the check routine.

v The second word of the parameter list pointed to by Register 1

v Field PQE_DynamicAreaAddr in the HZSPQE data area

Using the 4K dynamic work area allows you to avoid obtaining additional resources

for your check routine. However, you cannot rely on the contents of this area being

set to a specific value between check function calls or check iterations.

If you do obtain additional resources for your check routine besides the 2K

and 4K work area, the storage must be either:

v Obtained and freed in the same function code processing.

v Owned by the jobstep task and freed no later than PQE_Function_Code_Delete

processing.

For complete information on managing virtual storage in a program, see z/OS MVS

Programming: Authorized Assembler Services Guide

Local check routine

88 IBM Health Checker for z/OS User’s Guide

The PQEChkWork field should be the only field your check routine writes to

in the HZSPQE data area. The check routine can write to the 2K PQEChkWork

field in the HZSPQE data area, and the system saves the entire area for

subsequent calls to the check routine. The system clears the 2K PQEChkWork user

area before calling the check with the PQE_Function_Code_Init function code.

Changes made to any other HZSPQE fields are not saved between function codes.

You can also, of course, write to the 4K dynamic work area pointed to by field

PQE_DynamicAreaAddr.

Group checks for a single element or product in a single check routine. You

can group multiple uniquely named checks for a single element or product in a

single check routine. This can help to reduce system overhead and simplify

maintenance. If you are using an HZSADDCHECK exit routine to add your local

checks to the system, you should also use a single exit routine to add related

checks to the system. Code your check routine to look for the entry code passed in

field PQE_Entry_Code, (from the ENTRYCODE parameter on the HZSADDCK call

or HZSPRMxx parmlib member) and pass control to processing for the check

indicated. Note that the IBM Health Checker for z/OS will not verify the uniqueness

of the entry codes you define for your checks.

When you group local checks together in a single check routine, each check still

gets its own HZSPQE data area. Checks cannot communicate with each other.

Do not attempt to communicate between individual checks. Even though you

may have placed all of your check routines in the same module, do not rely on

communication between them. Each check is intended to stand by itself.

Defining a local check to IBM Health Checker for z/OS

Starting with z/OS V1R8, there are two ways to add your local check to the system:

v After you've written your check, use the ADD | ADDREPLACE CHECK parameter

in an HZSPRMxx parameter to define check defaults and add the check. See

“ADD or ADDREPLACE CHECK parameters” on page 66.

v Write an authorized HZSADDCHECK exit routine running in the IBM Health

Checker for z/OS address space, as described in Chapter 9, “Writing an

HZSADDCHECK exit routine,” on page 147. The HZSADDCHECK exit routine

describes the information about your local check or checks. The

HZSADDCHECK exit routine invokes the HZSADDCK macro to:

– Identify the check, providing values such as the check owner, check name,

check routine name, and message table name.

– Specifies the default values for the check, such as the check interval, check

parameter, and check severity.

Programming considerations

Environment

IBM Health Checker for z/OS calls the check routine in primary mode from the IBM

Health Checker for z/OS address space.

v Minimum authorization: Authorized

v Address space: IBM Health Checker for z/OS

v State: Supervisor

v Dispatchable unit mode: Task

Local check routine

Chapter 6. Writing local check routines 89

v Cross memory mode: PASN=SASN=HASN

v AMODE: 31

v ASC mode: Primary

v Key: System defined. The system will choose a key for a check and use it for all

function code calls to the check routine. The key will match the key in field

TCBPKF.

v Interrupt status: Enabled for I/O and external interrupts

v Locks: No locks held

v Control parameters: Control parameters are in the IBM Health Checker for z/OS

address space

Requirements

v Many installations are multilevel secure systems, and check developers must be

aware of the multilevel system environment..

v The check routine must be able to handle the IBM Health Checker for z/OS

function or release codes:

– “Function codes for local check routines” on page 93

– “Release codes for remote check routines” on page 117

See “The well-behaved local check routine - recommendations and recovery

considerations” on page 103.

v The check routine load module and message table must reside in an

APF-authorized library. The system will treat them as reentrant.

Restrictions

None

Gotchas

v If your check routine gets an abend X'290', reason code xxxx4007, it could mean

that the routine is not in an APF authorized library.

v The check routine is reentrant, so your check routine must use the LIST and

EXECUTE forms of the any z/OS macros with parameter lists, including the HZS

macros.

Input Registers

When a check receives control the contents of the registers are as follows:

Register Contents

Register 0 Address of the 4K dynamic work area

Register 1 Address of an 8 byte parameter list containing:

v The 4 byte address of the HZSPQE for the check

v The 4 byte address of the 4K dynamic work area
Register 13 Address of a 144 byte save area

Register 14 Return address

Register 15 Address of the check routine

Output Registers

When a check returns control, the contents of the registers are as follows:

Register Contents

Register 0 - 15

The check routine does not have to place any information in this

Local check routine

90 IBM Health Checker for z/OS User’s Guide

register, and does not have to restore its contents to what they

were when the exit routine received control

Establishing a recovery routine for a check

Establishing an ESTAEX or IEAARR routine in the check routine will provide

recovery from errors encountered during check execution. See Writing recovery

routines in z/OS MVS Programming: Assembler Services Guide.

The check routine continues to be invoked at the interval defined unless three

consecutive calls fail, in which case the check is placed in a disabled state.

See “The well-behaved local check routine - recommendations and recovery

considerations” on page 103.

Sample reentrant entry and exit linkage

The following sample shows how to code the reentrant entry and exit linkage for a

check routine called THECHECK:

THECHECK CSECT

THECHECK AMODE 31

THECHECK RMODE 31

 USING THECHECK,15

* The check routine is not required to save regs

 LA 12,STATAREA

 DROP 15

 USING STATAREA,12

 LR 15,0 Copy dynamic area for use

 USING DYNAREA,15

 ST 14,RETURN_ADDR Save return address

* Chain saveareas (even though we did not save regs)

 ST 0,8(,13) Chain new area to previous

 ST 13,4(,15) Chain previous area to new

 LR 13,15 4K dynamic area address

 DROP 15

 USING DYNAREA,13

 L 2,0(,1) Access PQE address

 USING HZSPQE,2

*

* Code should use relative branch for maximum addressability

*

*

* Examine PQE for entry code, check function, PQEChkWork, etc.

* Write messages using HZSFMSG

*

* The check routine is not required to restore regs

 L 14,RETURN_ADDR Restore return reg

 BR 14 Return

STATAREA DS 0D Static area

 LTORG literals

 HZSPQE ,

* Room for 4096 bytes using the input area in reg 0

DYNAREA DSECT

SAVEAREA DS CL72

RETURN_ADDR DS A

 HZSFMSG MF=(L,FMSGL),PLISTVER=MAX HZSFMSG list form

DYNAREA_LEN EQU *-DYNAREA

 END

Local check routine

Chapter 6. Writing local check routines 91

Using the check parameter parsing service (HZSCPARS)

If your local or remote check includes parameters, you can use the HZSCPARS

check parameter parsing service to parse parameters. When HZSCPARS finds a

parameter error, it issues appropriate error messages for you using the

REASON=PARSxxxx reason values on the HZSFMSG macro. This means that your

check routine does not have to issue error messages for parameter errors. See

“HZSFMSG macro — Issue a formatted check message” on page 236 for

explanations of all the REASON=PARSxxxx values.

Your check routine can also use REASON=PARSxxxx on HZSFMSG

REQUEST=HZSMSG to issue parsing error messages in the course of doing their

own parameter parsing.

You will use HZSCPARS REQUEST=PARSE in your check routine to allocate a

parameter area, mapped by mapping macro HZSZCPAR, that describes the parsed

parameters for the check. You can free this parameter area using HZSCPARS

REQUEST=FREE . For a local check, if you do not free the parameter area, the

system will delete the parameter area upon return from the check routine.

See “HZSCPARS macro — HZS Check Parameter Parsing” on page 289 for

complete information.

Note that your check routine must still issue the HZSFMSG REQUEST=STOP

request when HZSCPARS it finds a parameter error - see “″Check function code for

local checks″” on page 94 and “″INITRUN and RUN release codes for remote

checks″” on page 118.

Using the HZSPQE data area in your local check routine

The HZSPQE data area contains all the information a check routine needs,

including the defaults defined in the HZSADDCHECK exit routine and any

installation overrides to those defaults. The HZSPQE contains a number of

sections, but some of the most important are:

v The PQE_DynamicAreaAddr, which contains the address of the 4K dynamic user

area.

v PQEChkParms, which shows the current values for the check.

v PQEChkWork, which is the 2K check work area.

The table below shows the structure and some of the most important fields in the

HZSPQE data area.

 Table 8. Important fields in the HZSPQE data area for a local check routine

Field name Meaning

PQEHeader section - contains general control block information.

PQE_DynamicAreaAddr The address of a 4K dynamic work area. The system does not clear this work area before or after

a function code call. Use the 4K dynamic work area for data you want to last for only one function

code call. You cannot rely on the contents of this area being set to a specific value between check

function calls or check iterations. This field does not apply to remote checks.

PQEStatus section - contains status information about the check.

PQE_ CleanupInDifferentTaskThanCheck

This bit indicates that the cleanup function is executing under a different task than the check

function. If this bit is on, and the task that ran the check function obtained a resource owned by

the current task, the local check routine does not need to use the cleanup function to free the

resource. See “Function codes for local check routines” on page 93. This bit applies only to local

checks.

Local check routine

92 IBM Health Checker for z/OS User’s Guide

Table 8. Important fields in the HZSPQE data area for a local check routine (continued)

Field name Meaning

PQE_Function_Code This field indicates the function code for the check. The check routine receives control in response

to one of the following function codes: PQE_Function_Code_Init, PQE_Function_Code_Check,

PQE_Function_Code_Cleanup, or PQE_Function_Code_Delete. This bit applies only to local

checks. Release code information for remote checks is mapped by the HZSZCONS mapping

macro - see “Release codes for remote check routines” on page 117.

PqeChkInfo section - contains the defaults defined in the HZSADDCHECK exit routine for the check

PQE_Entry_Code Contains the identifer (entry code) assigned for the check in the HZSADDCHECK exit routine. The

entry code is used when a check routine contains multiple checks.

PqeChkParms section - contains the installation overrides for default parameters for the check from HZSPRMxx and the

Modify command (F hzsproc).

PQE_LookAtParms A bit indicating that the parameters have changed. If this bit is on, the check routine should read

the PQE_ParmArea and PQE_PARMLen fields in PQE_Function_Code_Check processing.

PQE_Verbose A byte indicating whether the check is in verbose mode.

PQE_Debug A byte indicating whether the check is in debug mode.

PQE_ParmLen Contains the length of the parameter area. Quotes surrounding the PARMS value in an operator

command or HZSPRMxx statement are not included in the resulting length. For example,

PARMS(’THE_PARM’) will result in a length of 8.

PQE_ParmArea The area containing the user parameters. Quotes surrounding the PARMS value in an operator

command or HZSPRMxx statement are not included.

PQEChkWork section - 2K check work area used and mapped by the check routine as needed. The system zeros the 2K user

PQEChkWork user area before calling the check with function code PQE_Function_Code_Init. A check routine can both write and

read from this field, and the system will retain this information for subsequent calls to the check routine. Changes made to any other

HZSPQE fields are not saved between function calls.

Function codes for local check routines

IBM Health Checker for z/OS invokes a local check routine with a function code to

indicate why it was called. All the function code calls will run under the same

jobstep task, but you cannot assume that any of these function codes will run in

the same task as a preceding function.

In general:

v PQE_Function_Code_Init (Init function) is called once for the life of the check

(which lasts until the check is deleted).

v PQE_Function_Code_Check (Check function) is called at the specified interval

for the check

v PQE_Function_Code_Cleanup (Cleanup function) is called right after the Check

function

v PQE_Function_Code_Delete (Delete function) is called once at the end of the life

of the check.

The following table summarizes the function codes provided by IBM Health Checker

for z/OS, showing what the check should do for each PQE_Function_Code_ and

when IBM Health Checker for z/OS invokes it:

Local check routine

Chapter 6. Writing local check routines 93

|
|
|

|
|

Table 9. Summary of function codes for local checks

Function Check and system actions When is it

invoked?

Init What should the check do? For PQE_Function_Code_Init, the check routine

should validate that the environment is suitable for the check. If it is not, issue

the HZSFMSG REQUEST=STOP macro to stop the check. If you obtain

additional storage for the check, obtain it in Init processing and obtain it in

jobstep-task owned storage. (You cannot assume that each function code runs

under the same task.)

v Refresh

v When a check is

added

v When a check

transitions to the

active enabled

state What does the system do? The system does the following setup steps to

prepare for multiple check iteration:

v Initializes the HZSPQE data area with default and override values for the

check.

v Passes the default and installation overrides to the check in the HZSPQE

data area for the check.

v Obtains 2K of workarea storage mapped by field PQEChkWork. This storage

is zeroed for Init processing and lasts for the life of the check.

v Obtains 4K of dynamic work area pointed to by field

PQE_DynamicAreaAddr. The contents of this work area are not set to any

particular value and are not preserved across check iterations.

Check What should the check do? For PQE_Function_Code_Check, the check

routine should:

1. Check to see if the PQE_LookatParm bit is set on, indicating either that this

is the first iteration of the check, or that the installation has changed the

check parameters since the last iteration. If the bit is on, validate the

parameters in the PQE_UserParmArea of the HZSPQE data area.

If the check finds bad installation parameters, it should:

a. Issue an error message indicating what the problem is.

b. Issue the HZSFMSG REQUEST=STOP,REASON=BADPARM macro

request to stop the check. See “HZSFMSG macro — Issue a formatted

check message” on page 236.
2. Check for the setting or potential problem it was designed to report on.

3. Report check results using the HZSFMSG service to issue exception

messages, reports, and other messages that tell the installation the results

of and how to respond to conditions found by the check. You can issue a

particular message multiple times in a check routine.

For an exception message, issue the HZSFMSG REQUEST=CHECKMSG

request. See “Issuing messages in your check routine with the HZSFMSG

macro” on page 95.

v After Init function

v At specified check

interval

v When check run

is requested.

v When a check

parameter

changes.

What does the system do?

v If a check abends for three iterations in a row, the system stops calling the

check, which will not run again until it is refreshed or its parameter is

changed.

v Obtains 4K of dynamic work area pointed to by field PQE_DynamicAreaAddr

. The contents of this work area are not set to any particular value and are

not preserved across check iterations.

Local check routine

94 IBM Health Checker for z/OS User’s Guide

Table 9. Summary of function codes for local checks (continued)

Function Check and system actions When is it

invoked?

Cleanup What should the check do? For PQE_Function_Code_Cleanup, the check

routine should clean up anything that you want cleaned between check

iterations. For example, cleanup anything that you are not cleaning up in

Check processing, or that must be cleaned up if Check processing abends.

If you obtained resources owned by the current task during check function

processing, check the PQE_CleanupInDifferentTaskThanCheck bit. If the bit is

on, the system has already cleaned up the resources for you.

v After Check

function

What does the system do? The system obtains 4K of dynamic work area

pointed to by field PQE_DynamicAreaAddr. The contents of this work area are

not set to any particular value and are not preserved across check iterations.

Delete What should the check do? For PQE_Function_Code_Delete, the check

routine should free any storage obtained during Init or Check processing that

has not yet been freed.

v Delete

v Refresh

v When the check

transitions out of

the active enabled

state. For

example, when

the check issues

HZSFMSG with

the STOP

request.

v When the IBM

Health Checker

for z/OS address

space stops.

What does the system do? The system:

v Obtains 4K of dynamic work area pointed to by field PQE_DynamicAreaAddr

. The contents of this work area are not set to any particular value and are

not preserved across check iterations.

v Stops calling the check.

Issuing messages in your check routine with the HZSFMSG macro

To issue a message with check results in your check routine, you must use the

HZSFMSG macro (“HZSFMSG macro — Issue a formatted check message” on

page 236). This section only covers using the HZSFMSG macro to issue a

message, but a message also consists of a few other ingredients. When your check

runs, the system assembles the message from the following:

v The actual text and explanation for your check messages are defined in your

message input data set, see Chapter 10, “Creating the message input for your

check,” on page 155.

v The variables for your check messages are defined in the HZSMGB data area

from your check routine. See “Defining the variables for your messages” on page

97.

You can issue the following kinds of messages in your check routine:

v Exception messages and other check results messages (CHECKMSG request).

For an overview of the various message types, see Table 17 on page 174.

v IBM Health Checker for z/OS messages (HZSMSG request)

v IBM Health Checker for z/OS messages that indicate that the check is stopped

(STOP request). If your check routine issues HZSFMSG with the STOP request,

it prompts the system to call the delete function code for the check.

You can issue a particular message multiple times in a single iteration of a check -

a check routine should always issue an exception message to report an error.

Check messages are important because they report the results of the check to an

installation. Each check should issue at least:

Local check routine

Chapter 6. Writing local check routines 95

v One or more messages for any exception found to the setting the check is

looking for.

v A message indicating that no exceptions were found, when appropriate.

If an HZSFMSG macro call is incorrect, the system issues system abend X'290'

with a unique reason code and creates a logrec error record. The system checks

the following for each HZSFMSG call:

v To see that the HZSMGB data area (input to checks describing message

identifiers and variables) is complete

v That the message is in the message table

v That the number of inserts provided on the call exactly matches the number

required to complete the message

v That each variable definition is between 1-256 characters long

The reason codes for system abend X'290' describe the message error. See z/OS

MVS System Codes.

HZSFMSG updates the PQE_Result field in the HZSPQE as follows:

v For a specified severity of HIGH, the system sets the check result to 12

v For a specified severity of MEDIUM, the system sets the check result to 8

v For a specified severity of LOW, the system sets the check result to 4

PQE_Result is set to 0 when the check is called. See “Examples” on page 256.

For information on coding the message texts and explanation for messages, see

Chapter 10, “Creating the message input for your check,” on page 155.

Reporting check exceptions

When a check detects a system condition or setting that runs counter to the values

that the check is looking for, the check should issue an exception message to report

the exception. For an exception message, the system displays both the message

text and the entire message explanation in the message buffer. The message

should include a detailed explanation of the error and the appropriate action that

the installation should take to resolve the condition. If you are writing a check that

checks for a setting that conflicts with the default for the setting, you should include

in your check output information about why the check user is getting an exception

message for a default setting.

Along with an exception message, IBM Health Checker for z/OS will issue a line

showing the severity and the return code for the check. The check will continue to

run at the defined intervals, reporting the exception each time until the exception

condition is resolved.

The following example shows an exception message issued to the message buffer:

CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)

START TIME: 05/25/2005 09:42:56.690844

CHECK DATE: 20040703 CHECK SEVERITY: HIGH

* High Severity Exception *

IRRH204E The RACF_SENSITIVE_RESOURCES check has found one or

more potential errors in the security controls on this system.

 Explanation: The RACF security configuration check has found one or

 more potential errors with the system protection mechanisms.

 System Action: The check continues processing. There is no effect on

 the system.

Local check routine

96 IBM Health Checker for z/OS User’s Guide

Operator Response: Report this problem to the system security

 administrator and the system auditor.

 System Programmer Response: Examine the report that was produced by

 the RACF check. Any data set which has an "E" in the "S" (Status)

 column has excessive authority allowed to the data set. That

 authority may come from a universal access (UACC) or ID(*) access

 list entry which is too permissive, or if the profile is in WARNING

 mode. If there is no profile, then PROTECTALL(FAIL) is not in

 effect. Any data set which has a "V" in the "S" (Status) field is

 not on the indicated volume. Remove these data sets from the list

 or allocate the data sets on the volume.

 Asterisks ("****") in the UACC, WARN, and ID(*) columns indicate

 that there is no RACF profile protecting the data set. Data sets

 which do not have a RACF profile are flagged as exceptions, unless

 SETROPTS PROTECTALL(FAIL) is in effect for the system.

 If a valid user ID was specified as a parameter to the check, that

 user’s authority to the data set is checked. If the user has an

 excessive authority to the data set, that is indicated in the USER

 column. For example, if the user has ALTER authority to an

 APF-authorized data set, the USER column contains "<Read" to

 indicate that the user has more than READ authority to the data set.

 Problem Determination: See the RACF System Programmer’s Guide and

 the RACF Auditor’s Guide for information on the proper controls for

 your system.

 Source:

 RACF System Programmer’s Guide

 RACF Auditor’s Guide

 Reference Documentation:

 RACF System Programmer’s Guide

 RACF Auditor’s Guide

 Automation: None.

 Check Reason: Sensitive resources should be protected.

END TIME: 05/25/2005 09:43:13.717882 STATUS: EXCEPTION-HIGH

 APF-authorized data set, the USER column contains "

The Check Reason: field display the default reason in an exception message without

installation parameter overrides.

Defining the variables for your messages

The variable information for your check messages is defined in the HZSMGB data

area by your check routine. The check routine defines information about variables

and points to the HZSMGB data area for variable values. There are two HZSMGB

formats you can use to map your keywords:

v MGBFORMAT=0: Requires you to point to a separately defined area in storage

where the length and value of the variable are defined, mapped by MGB_InsertD.

See “Using default HZSMGB data area format (MGBFORMAT=0)” on page 98.

v MGBFORMAT=1: Allows you to specify the length and address of the variables

in HZSMGB fields MGB1_MsgInsertDesc_Length and

MGB1_MsgInsertDesc_Addr in the MGB1_MsgInsertDesc mapping. See “Using

HZSMGB data area format MGBFORMAT=1” on page 101.

Local check routine

Chapter 6. Writing local check routines 97

Figure 13 on page 157 shows how messages with variables get resolved at check

runtime.

Use the following guidelines in defining variables for your messages:

Match up the number of variables in the HZSMGB data area and the message

input data set, because if you end up with a mismatch, your check will abend

when it issues the HZSFMSG macro to issue the message. Look in the logrec error

record or z/OS MVS System Codes to find the description of the reason code

issued with the abend.

To keep text on the same line, replace blank characters, X'40', with the required

blank character X'44'.

If I use the same variable twice in a message, do I have to define it twice in

the HZSMGB data area? Yes, every time you use a variable, even if you use the

same variable several times in the same message, you must point to separate

entries in the MGB_Inserts field for each variable instance. However, each of the

entries for an identical variable can point to the same area in storage where the

variable length and value are specified for the variable.

Can I build the HZSMGB information for all my check messages once at

initialization and then reuse them whenever the check runs? Tempting idea, but

no. The problem with this method is that there’s no guarantee that the HZSPQE

data area for the check will be in the same place for any given run of your check.

Although the contents of the PQEChkWork section are the same for every run of

the check, it’s location is not. Thus if you try to point within your PQEChkWork area

for variable information, the offset will be the same, but the full address probably

will not be.

On the other hand, if you are pointing into either your check routine module or an

area that you GETMAINed at initialization to build your HZSMGB data area, those

areas will stay the same, and so the build once/use multiple times approach might

work. But this is a tricky maneuver.

In the HZSMGB data area, variables do not have variable names. You insert the

length (MGB_MsgILen field) and value (MGB_MsgIVal field) for a variable without

using the variable name you use in the check routine.

Can I have a null variable? You can indeed have a null variable by defining a

variable length of zero in the MGB_MsgILen field.

What happens if I make a mistake updating HZSMGB? If you make a mistake

while updating HZSMGB so that your variable values are not compatible with the

variable attributes in the message output at check runtime, your check will most

likely abend with system abend code X'290' and a reason code that describes the

error. The system also writes a record to SYS1.LOGREC that provides additional

detail in the variable recording area (VRA).

Using default HZSMGB data area format (MGBFORMAT=0)

Figure 8 on page 100 shows an example of how you define the message variables

in your check routine:

�1� shows an example of defining the message number in the

MGB_MessageNumber.

Local check routine

98 IBM Health Checker for z/OS User’s Guide

�2� shows an example of filling in the MGB_InsertCnt field with the number of

variables for your message.

�3� shows an example of putting the address of one variable into the MGB_Inserts

field. This address points to the area in storage where the length and value of the

variable are defined, mapped by MGB_InsertD.

�4� shows an example of defining the length and value of the variable in the

MGB_MsgILen and MGB_MsgIVal fields for the variable in storage. These fields are

in the MGB_InsertD mapping.

�5� shows an example of issuing a message. Note that this example shows a local

message. For a remote check, the HZSFMSG macro must include the

REMOTE=YES, HANDLE=handle, and MSGTABLE=msgtable parameters.

�6� shows how the variable address, length, and value are defined to be stored in

the HZSMGB data area or in storage.

�7� shows an example of creating an area big enough in the HZSMGB for the

information about all your variables. To create enough room for all your variables,

use the formula HZSMGB_LEN + (n-1)*L’MGB_inserts where n is the number of

inserts. HZSMGB_LEN by itself will provide room for only one insert.

Figure 8 on page 100 shows check routine code that defines variable data in the

HZSMGB:

Local check routine

Chapter 6. Writing local check routines 99

Important fields in the HZSMGB data area include:

 Table 10. Important fields in the HZSMGB data area for check message variables

Field name Meaning

MGB_MessageNumber

MGB_ID

Fullword field containing the value identifying each message. These fields are the same - there are

two names for this field. This field corresponds to the xreftext value for each message. For

example, the xreftext value for a message is coded as follows:

<msgnum xreftext="001">TESTMSG1I</msgnum>

MGB_InsertCnt Fullword field containing the number of variables (or inserts) to follow.

* Issue a message with two inserts *

 SYSSTATE ARCHLVL=1

* save regs, get dynamic storage, chain saveareas, set usings

 LA 2,TheMGBArea

 ST 2,TheMGBAddr

 USING HZSMGB,2

 �1� MVC MGB_MessageNumber,=F’1’ Message 1

 �2� MVC MGB_insert_cnt,=F’2’ Two inserts

 LA 3,Insert1Area Address of first insert

 �3� ST 3,MGB_Inserts Save insert address

 LA 3,Insert2Area Address of second insert

 USING MGB_MsgInsertD,3

 �4� MVC MGB_MsgILen,=AL2(L’Insert2Val) Insert length

 MVC MGB_MsgIVal(L’Insert2Val),MyMod Insert value

 DROP 3

 ST 3,MGB_Inserts+4 Save insert address

 �5� HZSFMSG REQUEST=CHECKMSG,MGBADDR=TheMGBAddr, *

 RETCODE=LRETCODE,RSNCODE=LRSNCODE, *

 MF=(E,FMSGL)

 DROP 2

*

* Place code to check return/reason codes here

*

* free dynamic storage, restore regs

 BR 14

MyMod DC CL8’MYMODULE’

�6�

* Area for first insert

Insert1Area DS 0H

Insert1Len DC AL2(L’Insert1Val)

Insert1Val DC C’CSA ’

 LTORG ,

 HZSZCONS , Return code information

 HZSMGB , Insert mapping

DYNAREA DSECT

LRETCODE DS F

LRSNCODE DS F

* Area for 2 inserts (HZSMGB_LEN accounts for one, so

* we add one more "length of MGB_Inserts")

TheMGBAddr DS A

�7�

TheMGBArea DS CL(HZSMGB_LEN+1*L’MGB_Inserts)

* Area for second insert

Insert2Area DS 0H

Insert2Len DS AL2(L’Insert2Val)

Insert2Val DC X’00950000’

 HZSFMSG MF=(L,FMSGL),PLISTVER=MAX

DYNAREA_LEN EQU *-DYNAREA

Figure 8. Example of issuing a message with variables

Local check routine

100 IBM Health Checker for z/OS User’s Guide

Table 10. Important fields in the HZSMGB data area for check message variables (continued)

Field name Meaning

MGB_Inserts

MGB_InsertAddr

These fields are the same - there are two names for this field.

This field contains an array of pointers, each of which contains the address in storage of an area

for a specific variable. This area is mapped by Mgb_MsgInsertD.

MGB_MsgInsertD A structure in the HZSMGB data area that describes the length and value of the variable:

v MGB_MsgILen, which is a 2 byte field containing the length of the variable.

v MGB_MsgIVal, which contains the value of the variable.

Using HZSMGB data area format MGBFORMAT=1

�1� shows an example of defining the message number in the

MGB1_MessageNumber field.

�2� shows an example of filling in the MGB1_Insert_Cnt field with the number of

variables for your message.

�3� shows examples of defining the length and address of the variable in the

MGB1_MsgInsertDesc_Length and MGB1_MsgInsertDesc_Addr fields for the

variable in storage. These fields are in the MGB1_MsgInsertDesc mapping.

�4� shows an example of issuing a message. Note that this example shows a local

message. For a remote check, the HZSFMSG macro must include the

REMOTE=YES, HANDLE=handle, and MSGTABLE=msgtable parameters.

�5� shows how the variable address, length, and value are defined to be stored in

the HZSMGB data area or in storage.

�6� shows an example of creating an area big enough in the HZSMGB1 for the

information about all your variables. To create enough room for all your variables,

use the formula HZSMGB1_LEN1 + (n)*MGB1_MsgInsertDesc_Len where n is the

number of inserts.

Figure 9 on page 102 shows check routine code that defines variable data in the

HZSMGB data area using MGBFORMAT=1:

Local check routine

Chapter 6. Writing local check routines 101

Important fields in the HZSMGB data area include:

 Table 11. Important fields in the HZSMGB1 data area for check message variables

Field name Meaning

MGB1_MessageNumber

MGB1_ID

Fullword field containing the value identifying each message. These fields are the same - there are

two names for this field. This field corresponds to the xreftext value for each message. For

example, the xreftext value for a message is coded as follows:

<msgnum xreftext="001">TESTMSG1I</msgnum>

MGB1_InsertCnt Fullword field containing the number of variables (or inserts) to follow.

MGB1_MsgInsertDesc_Length The length of the variable. For a null variable, use a length of zero.

* Issue a message with two inserts *

 SYSSTATE ARCHLVL=2

* save regs, get dynamic storage, chain saveareas, set usings

 LA 2,TheMGBArea

 ST 2,TheMGBAddr

 USING HZSMGB1,2

�1� MVC MGB1_MessageNumber,=F’1’ Message 1

�2� MVC MGB1_insert_cnt,=F’2’ Two inserts

 DROP 2

 PUSH USING

 USING MGB1_MsgInsertDesc,TheMSGInsertDesc1

�3� MVC MGB1_MsgInsertDesc_Length,=AL2(L’Insert1Val) Insert length

 LA 15,Insert1Val

 ST 15,MGB1_MsgInsertDesc_Addr Insert address

 POP USING

 PUSH USING

 USING MGB1_MsgInsertDesc,TheMGBInsertDesc2

 MVC MGB1_MsgInsertDesc_Length,=AL2(L’Insert2Val) Insert length

 LA 15,Insert2Val

 ST 15,MGB1_MsgInsertDesc_Addr Insert address

 POP USING

�4� HZSFMSG REQUEST=CHECKMSG,MGBADDR=TheMGBAddr, *

 MGBFORMAT=1, *

 RETCODE=LRETCODE,RSNCODE=LRSNCODE, *

 MF=(E,FMSGL)

*

* Place code to check return/reason codes here

*

* free dynamic storage, restore regs

 BR 14

�5�

* Area for first insert

Insert1Val DC C’CSA ’

* Area for second insert

Insert2Val DC X’00950000’

 LTORG ,

 HZSZCONS , Return code information

 HZSMGB , Insert mapping

DYNAREA DSECT

LRETCODE DS F

LRSNCODE DS F

TheMGBAddr DS A

* Area for 2 inserts

�6�

TheMGBArea DS CL(HZSMGB_LEN1)

TheMSGInsertDesc1 DS CL(MGB1_MsgInsertDesc_Len)

TheMSGInsertDesc2 DS CL(MGB1_MsgInsertDesc_Len)

HZSFMSG MF=(L,FMSGL),PLISTVER=MAX

DYNAREA_LEN EQU *-DYNAREA

Figure 9. Example of issuing a message with variables using MGBFORMAT=1

Local check routine

102 IBM Health Checker for z/OS User’s Guide

Table 11. Important fields in the HZSMGB1 data area for check message variables (continued)

Field name Meaning

MGB1_MsgInsertDesc_Addr The address of the variable. For a null variable, you need not set this field.

The well-behaved local check routine - recommendations and recovery

considerations

Make your check clean up after itself, because the system won’t do it for you:

IBM Health Checker for z/OS does not perform end-of-task cleanup for your check

on a regular basis. Check routines should track resources, such as storage

obtained, ENQs, locks, and latches, in the PQE_ChkWork field.

Release resources within the same function code processing: Whenever

possible, the check routine should release resources within the same function code

processing that it obtained. Releasing resources in a different function code call is

error prone, because you cannot assume that the cleanup function processing will

run under the same task as the Check function. If the Cleanup function does not

run under the same task as Check function, it means that the task under which the

Check function was running has been terminated.

Have your check stop itself when the environment is inappropriate: If your

check routine encounters an environmental condition that will prevent the check

from returning useful results, your check routine should stop itself and not run again

until environmental conditions change and your code requests it to run. Your check

should do the following to respond to an inappropriate environment:

1. Issue an information message to describe why the check is not running. For

example, you might issue the following message to let check users know that

the environment is not appropriate for the check, and when the check will run

again:

The server is down.

When the server is available, the check will run again.

2. Issue the HZSFMSG service to stop itself:

HZSFMSG REQEST=STOP,REASON=ENVNA

3. Make sure that your product or check includes code that can detect a change in

the environment and start running the check again when appropriate. To start

running the check, issue the following HZSCHECK service:

HZSCHECK REQUEST=RUN,CHECKOWNER=checkowner,CHECKNAME=checkname

If the environment is still not appropriate when your code runs the check, it can

always stop itself again.

Your check should not add itself in an inappropriate environment: If you use a

HZSADDCHECK exit routine to add your checks to the system, note that some

checks or product code might add or delete checks to the system in response to

changes in system environmental conditions. For example, if a check or product

detects that a system environment is inappropriate for the check, it might then add

only the checks useful in the current environment by invoking the HZSADDCHCK

registration exit with an ADDNEW request (from the HZSCHECK service, the F

hzsproc command, or in the HZSPRMxx parmlib member. You should add similar

code to your HZSADDCHECK exit routine to make sure that your checks don't run

if they will not return useful results in the current environment. This code might:

v Delete checks that do not apply in the current environment

Local check routine

Chapter 6. Writing local check routines 103

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

v Run a check so that it can check the environment and disable itself if it is

inappropriate in the current environment. Consider supporting a check PARM so

the installation may indicate the condition is successful and not an error.

If your check can never be valid for the current IPL, consider not even adding it

from your HZSADDCHECK exit routine when you detect that situation. For example,

if a check is relevant only when in XCF LOCAL mode but the system is not in that

mode (and cannot change to that mode), there is no reason even to add the check.

Have your check stop itself for bad parameters: If your check routine is passed

a bad parameter, it should stop itself using the HZSFMSG service:

HZSFMSG REQUEST=STOP,REASON=BADPARM

This request will also issue predefined HZS1001E error message to indicate what

the problem is. The check routine will not be called again until it is refreshed or its

parameters are changed. REQUEST=STOP prevents the check from running again

and sets the results in the PQE_Result field of HZSPQE. The system sets the result

field based on the severity value for the check. See “Issuing messages in your

check routine with the HZSFMSG macro” on page 95 for examples and complete

information.

Plan recovery for abends: Your check routine should be designed to handle

abends. If on three consecutive check iterations:

v HZSFMSG issues abend X'290'

v The check abends and its recovery does not retry

then the system renders the check inactive until the check is refreshed, or

parameters for the check are changed. If the check routine has obtained a resource

that needs to be released under the same function code processing, but the check

routine abends, a recovery routine can release that resource. IBM suggests that

you use either an ESTAEX or IEAARR recovery routine.

In some cases you may not want your check to be stopped when an abend occurs

because some abend causing conditions might simply clear with time. For example,

if your check abends as a result of getting garbled data from an unserialized

resource, such as a data area in the midst of an MVC, your check should provide

its own recovery to:

v Retry the check a pre-determined number of times.

v If the check fails again, the check should stop running, but not stop itself.

This allows the check to try running again at the next specified interval, with every

chance of success this time.

Take advantage of verbose and debug modes in your check: IBM Health

Checker for z/OS has support for the following modes:

v Debug mode, which tells the system to output extra messages designed to help

you debug your check. IBM Health Checker for z/OS outputs some extra

messages in debug mode, and some checks do also. When a check runs in

debug mode, each message line is prefaced by a message ID, which can be

helpful in pinpointing the problem. For example, report messages are not

prefaced by message IDs unless a check is running in debug mode.

There are two ways to issue extra messages in debug mode:

– Use conditional logic such that when in debug mode (when field

PQE_DEBUG in mapping macro HZSPQE has the value PQE_DEBUG_ON),

your check issues additional messages.

Local check routine

104 IBM Health Checker for z/OS User’s Guide

|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|

– Code debug type messages - see “Planning your debug messages” on page

161

Users can turn on debug mode using the DEBUG=ON parameter in the

MODIFY hzsproc command, in HZSPRMxx, or by overtyping the DEBUG field in

SDSF to ON.

v Verbose mode, which tells the system to output messages with additional detail

about non-exception information found by the check. (RACF checks, for example,

issue additional detail in verbose mode.) To issue extra messages in verbose

mode, use conditional logic such that when in verbose mode (when field

PQE_VERBOSE in mapping macro HZSPQE has the value

PQE_VERBOSE_YES), your check issues additional messages.

Users can turn on verbose mode using the VERBOSE=YES parameter in the

F hzsproc command or in HZSPRMxx.

Look for logrec error records when you test your check: When testing your

check, be sure to look for logrec error records. The system issues abend X'290' if

the system encounters an error while a message is being issued, and issues a

logrec error record and a description of the problem in the variable recording area

(VRA).

Save time, save trouble - test your check with these commands: When you

have written your check, test it with the following commands to find some of the

most common problems people make in writing checks:

F hzsproc,UPDATE,CHECK(check_owner,check_name),DEBUG=ON

F hzsproc,UPDATE,CHECK(check_owner,check_name),PARM=parameter,REASON=reason,DATE=date

F hzsproc,DELETE,CHECK(check_owner,check_name),FORCE=YES

F hzsproc,DISPLAY,CHECK(check_owner,check_name),DETAIL

Avoid disruptive practices in your check routine: The IBM Health Checker for

z/OS philosophy is to keep check routines very simple. IBM recommends that

checks read but not update system data and try to avoid disruptive behavior such

as:

v Modifying system control blocks

v I/O intensive operations, such as reading a data set

v Serialization

v Waits (directly or by services you call)

v Creating new tasks

v Creating new address spaces

We’re recommending against these practices because they require more overhead,

complicate your check routine, and, more seriously, can affect the performance of

other system functions. In addition, these practices can affect the running of other

checks, since only 20 local check routines can be in control concurrently. But you’ll

need to decide what’s appropriate on a check by check basis. An ENQ, for

example, serializing on a control block, can indeed affect the performance of other

functions that might need that control block. However, the downside of not

serializing is that a check might get information that is not consistent. You must

weigh the cost to customers of the chance of getting inconsistent data versus the

costs of using an ENQ in terms of system performance and IBM Health Checker for

z/OS processing.

See also “Debugging checks” on page 106.

Local check routine

Chapter 6. Writing local check routines 105

|
|
|
|
|
|
|

Debugging checks

Naturally, we hope you’ll never need this section and that all your checks will run

perfectly the very first time. However, if you do run into trouble, this section will help

you debug your check routine and HZSADDCHECK exit routine.

Was my check added to the system? Use the F hzsproc,DISPLAY

CHECK(checkowner,checkname) to display the check you're adding to the system. If

your check shows up, it was successfully added to the system. If it does not show

up, it was not added to the system.

You can also check the return code from the HZSADDCK invocation in your

HZSADDCHECK exit routine (for local checks) or check routine (for remote checks).

A return code greater than 4 often indicates that there was a problem adding the

check to the system. See “HZSADDCK macro — HZS add a check” on page 218.

Turn on debug mode: Running in debug mode can help you debug your check,

because in debug mode:

v Each message line is prefaced by a message ID, which can be helpful in

pinpointing the problem. For example, report messages are not prefaced by

message IDs unless a check is running in debug mode.

v Debug messages, which may contain information about the error, are issued only

when the check is in debug mode.

You can turn on debug mode for a check that is not running properly using the

DEBUG parameter in the MODIFY hzsproc command, in HZSPRMxx, or by

overtyping the DEBUG field in SDSF to ON.

Create a recovery routine for your check routine if you need additional

diagnostic data for your check routine. See “Establishing a recovery routine for a

check” on page 91.

Debug HZSFMSG abends: If the system finds an error in a HZSFMSG macro call

to issue a message, the system issues system abend X’290’ with a unique reason

code and creates a logrec error record. See the information for abend X'290' in

z/OS MVS System Codes for a description of the abend reason codes.

If the abend is caused by an incorrect macro call, the system issues the following

accompanying information:

v Logrec error record. Use EREP to view logrec errors, see ″Using EREP to Obtain

Records from the Logrec Log Stream ″ in z/OS MVS Diagnosis: Tools and

Service Aids.

v A symptom dump written to the console and to the system log

v A SYSMDUMP, if you add a SYSMDUMP DD statement to hzsproc, the IBM

Health Checker for z/OS procedure.

Note that the contents and data set disposition of your SYSMDUMP depends on

the DISP= option you use on the DD statement. See ″Preallocate Data Sets for

SYSMDUMP Dumps″ in z/OS MVS Diagnosis: Tools and Service Aids.

v There may be additional diagnostic data in the register at time of the abend that

can help with debugging. See “HZSFMSG ABEND Codes” on page 252 for the

kinds of diagnostic data that may be available.

If your check routine has a recovery routine, the SDWA for the recovery routine

will contain these registers in the SDWAGRSV field.

If the abend is caused by the system, the system issues an SVC dump.

Local check routine

106 IBM Health Checker for z/OS User’s Guide

Where is my check routine? I need to locate it for debugging. If you do not

receive an abend for a problem, you can locate a local check routine and message

table (to use in a SLIP trap, for example) using the DIAG parameter on the F

hzsproc,DISPLAY command. For example, you can use the f

hzsproc,display,check(IBMGRS,grs_mode),detail,diag command. Note the

diagnostic information, including the location of the check routine and message

table in the output example below:

HZS0201I 13.06.05 CHECK DETAIL 716

CHECK(IBMGRS,GRS_MODE)

 STATE: ACTIVE(ENABLED) GLOBAL STATUS: SUCCESSFUL

 EXITRTN: ISGHCADC

 LAST RAN: 07/06/2005 12:49 NEXT SCHEDULED: (NOT SCHEDULED)

 INTERVAL: ONETIME SEVERITY: LOW

 WTOTYPE: INFORMATIONAL

 SYSTEM DESCCODE: 12

 DEFAULT PARAMETERS: STAR

 REASON FOR CHECK: GRS should run in STAR mode to improve

 performance.

 MODIFIED BY: N/A

 DEFAULT DATE: 20050105

 DEBUG MODE: OFF

 INTERNAL DIAGNOSTICS - CHECK TOKEN: 01020038.7FE9F000

 ROUTINE: ISGHCGRS-7F2B4BC8 MSGTBL: ISGHCMSG-7F222120 FUNC: CLEANUP

 LAST CPU TIME: 0.041 MAX CPU TIME: 0.041

Where is my HZSADDCHECK exit routine? If you need to locate the address of

your HZSADDCHECK exit routine for a local check, to set a SLIP trap, for example,

use the display command following:

DISPLAY PROG,EXIT,EXITNAME=HZSADDCHECK_exit_routine,DIAG

The system issues message CSV464I displaying information about the exit,

including the exit entry point address, the load point address of the exit routine

module, and other diagnostic information for exit routine.

Using SLIP traps for debugging: If you need to set a SLIP trap for either your

check routine or HZSADDCHECK exit routine, we suggest that you set a SLIP trap

on any error event in the IBM Health Checker for z/OS address space instead of

setting it on an abend X'290'. This will give you the information you need to handle

both the X'290' abend and any other unexpected problem.

Use the two hints directly above this one to find the addresses of your check

routine and HZSADDCHECK exit routine, for use in setting SLIP traps.

Local check routine

Chapter 6. Writing local check routines 107

108 IBM Health Checker for z/OS User’s Guide

Chapter 7. Writing remote check routines

A remote check runs as a task in the caller's address space. To learn about the

differences between local and remote checks and deciding which type you want to

write, see “Remote checks” on page 82.

A IBM Health Checker for z/OS check gathers information about the system

environment and parameters, compares them to suggested settings or looks for

configuration problems, and then informs customers of the results through detailed

messages. Because remote checks run in the caller's address space (rather than

the IBM Health Checker for z/OS address space) you must ensure communication

between the remote check routine and IBM Health Checker for z/OS.

To learn about the differences between local and remote checks and deciding which

type you want to write, see “Remote checks” on page 82.

In this chapter, we'll cover the following:

v “Sample checks”

v “Remote check routine basics” on page 110

v “Programming considerations” on page 111

v “Preparing for check definition - making sure IBM Health Checker for z/OS is up

and running” on page 112

v “Allocate a pause element token using IEAVAPE” on page 113

v “Issue the HZSADDCK macro to define check defaults to IBM Health Checker for

z/OS” on page 113

v “Pause the remote check routine with IEAVPSE” on page 115

v “Using HZSCHECK REQUEST=OPSTART and REQUEST=OPCOMPLETE to

communicate check start and stop to IBM Health Checker for z/OS” on page 116

v “Using the check parameter parsing service (HZSCPARS)” on page 116

v “Using the HZSPQE data area in your remote check routine” on page 116

v “Release codes for remote check routines” on page 117

v “Issuing messages in your check routine with the HZSFMSG macro” on page 119

v “Defining the variables for your messages” on page 122

v “Recommendations and recovery considerations for remote checks” on page 127

v “Debugging checks” on page 129

Sample checks

Of course you're going to read this entire chapter to understand everything you

need to know about writing a check routine. But we also have what you're really

looking for - assembler samples in SYS1.SAMPLIB:

v HZSSMSGT - Sample message input.

v HZSSRCHK - Sample remote check routine.

These and more check samples on the IBM Health Checker for z/OS Web page:

http://www-03.ibm.com/servers/eserver/zseries/zos/hchecker/

© Copyright IBM Corp. 2006, 2007 109

http://www.ibm.com/servers/eserver/zseries/zos/hchecker/

Remote check routine basics

A check routine is a program that gathers installation information and looks for

problems, and then issues the check results in messages. IBM Health Checker for

z/OS writes the check exception messages as WTOs or to the message buffer. The

remote check routine can run anywhere with any authority, with access granted by

RACF XFACILIT class profiles.

When IBM Health Checker for z/OS calls the remote check routine, it passes the

check a release code and the check can issue the HZSCHECK

REQUEST=OPSTART service request to obtain a copy of the HZSPQE data area

of the check. The HZSPQE data area for a check contains:

v The defaults defined for the check.

v A 2K check work area

v Any installation update values.

The check routine should not update the HZSPQE data area except for the 2K

check work area. See “Using the HZSPQE data area in your local check routine” on

page 92.

We recommend that you keep the check routine very simple. At a high level, your

remote check will consist of:

1. Handling of input parameters, if any, for your check when the system indicates

that parameter data has changed. See “Using the check parameter parsing

service (HZSCPARS)” on page 92.

2. The meat of the check - checking for potential problems on a system.

3. Issuing messages using the HZSFMSG macro (“Issuing messages in your

check routine with the HZSFMSG macro” on page 95)

4. Defining your message variables in the HZSMGB data area (“Defining the

variables for your messages” on page 97)

Limit a check to looking at one setting or one potential problem. Limiting the

scope of a check will make it easier for the installation using the check to:

v Resolve any exceptions that the check finds by either fixing the exception,

overriding the setting, or deactivating the check.

v Set appropriate override values for check defaults such as severity or interval.

Do not set return and reason codes for your check routine. The system will

return a result for you in the PQE_Result field when you use HZSFMSG

REQUEST=CHECKMSG macro request (for exception messages) or the

HZSFMSG REQUEST=STOP macro request (to stop the check). Do not set this

field in your check routine.

Use the 2K check work area: Use the 2K check work area in field PQEChkWork

for data you want to retain through check iterations for the life of the check, until the

check is refreshed or deleted. Using the 2K check work area allows you to avoid

obtaining additional resources for your check routine. Prior to the Init function code

call, the system sets the 2K work area to zeros.

The PQEChkWork field should be the only field your check routine writes to

in the HZSPQE data area. The check routine can write to the 2K PQEChkWork

field in the HZSPQE data area, and the check can save the PQEChkWork user

area for subsequent calls by issuing the HZSCHECK REQUEST=OPCOMPLETE.

The system clears the 2K PQEChkWork user area before calling the check with the

HZS_Remote_Function_InitRun release code. Changes made to any other

HZSPQE fields are not saved between function codes.

Remote check routine

110 IBM Health Checker for z/OS User’s Guide

Group checks for a single element or product in a single check routine. You

can group multiple uniquely named checks for a single element or product in a

single check routine. This can help to reduce system overhead and simplify

maintenance. If you are using an HZSADDCHECK exit routine to add your local

checks to the system, you should also use a single exit routine to add related

checks to the system. Code your check routine to look for the entry code passed in

field PQE_Entry_Code, (from the ENTRYCODE parameter on the HZSADDCK call)

and pass control to processing for the check indicated. Note that the IBM Health

Checker for z/OS will not verify the uniqueness of the entry codes you define for

your checks.

Do not attempt to communicate between individual checks. Even though you

may have placed all of your check routines in the same module, do not rely on

communication between them. Each check is intended to stand by itself.

Programming considerations

Environment

For a remote check, the environment is up to you because it will be running in your

address space rather than the IBM Health Checker for z/OS address space. Read

the environment and requirements information for the IBM Health Checker for z/OS

macros that your check issues. See Chapter 12, “IBM Health Checker for z/OS HZS

macros,” on page 217.

Requirements

v Minimum authorization for your remote check task is problem state, PSW key

8-15. When problem state and key 8-15 and not APF authorized, or when

SECCHECK=ALL is specified, The caller must be authorized for control access to

any of the following:

– XFACILIT class resource HZS.sysname.ADD

– XFACILIT class resource HZS.sysname.checkowner.ADD

– XFACILIT class resource HZS.sysname.checkowner.checkname.ADD

v Many installations are multilevel secure systems, and check developers must be

aware of the multilevel system environment.

v The check routine must be able to handle the IBM Health Checker for z/OS

release codes. See “Release codes for remote check routines” on page 117.

v Each remote check must run in its own task, even If you group remote checks

together in one check routine.

Restrictions

None

Establishing a recovery routine for a check

Establishing an ESTAEX or IEAARR routine in the check routine provides recovery

from errors encountered during check execution. See Writing recovery routines in

z/OS MVS Programming: Assembler Services Guide.

If the task that issues the HZSADDCK macro defining check defaults terminates for

any reason, including an abend that is not re-tried, the system treats the check as if

it is deleted.

Remote check routine

Chapter 7. Writing remote check routines 111

Preparing for check definition - making sure IBM Health Checker for

z/OS is up and running

A remote check can only define itself when IBM Health Checker for z/OS is up and

running. There are two ways to determine whether IBM Health Checker for z/OS is

up and running:

v An APF-authorized remote check can use the ENFREQ LISTEN service to

specify a listen exit for ENF event code 67 that tells the check routine that IBM

Health Checker for z/OS is up and running. Then, when the remote check routine

is assured that IBM Health Checker for z/OS is up and running, it can issue the

HZSADDCK macro to define itself.

v An unauthorized remote check cannot use the ENFREQ LISTEN service, so it

must periodically re-try the HZSADDCK macro until IBM Health Checker for z/OS

is up and running.

Using ENF event code 67 to listen for IBM Health Checker for z/OS

availability

If your remote check is authorized, it can use the ENFREQ LISTEN service to see

when IBM Health Checker for z/OS is up and running. On the ENFREQ service,

you specify the specific event for which you would like to listen (IBM Health

Checker for z/OS availability) and the listener user exit routine that is to receive

control after the specified event occurs. The listener user exit specified receives

control when IBM Health Checker for z/OS comes up and notifies the remote check

routine, which can then define itself using HZSADDCK.

To listen for ENF event code 67, you must specify the qualifying events on the

BITQUAL parameter, which specifies a 32-byte field, a hexadecimal constant, or a

register containing the address of a 32-byte field containing a bit-mapped qualifier

that further defines the event. The qualifiers are mapped by mapping macro

HZSZENF. The defined BITQUAL values are:

Qualifier

Information type

X'80000000'

IBM Health Checker for z/OS is available. Field Enf067_BitQual_Available in the

HZSZENF mapping macro.

X'40000000'

IBM Health Checker for z/OS has terminated and is not available. Field

Enf067_BitQual_NotAvailable in the HZSZENF mapping macro.

Note that it is possible that IBM Health Checker for z/OS will not be up any longer

by the time the check routine issues the HZSADDCK routine to define the check to

the system. In this case, if the check was using ENFREQ to LISTEN, it should

return to listening again. If the check was periodically re-trying the HZSADDCK

macro, it should go on trying.

If the check routine decides it is no longer interested in knowing if IBM Health

Checker for z/OS is up or not, it can issue the ENFREQ REQUEST=DELETE

request to delete the listen request.

For information about ENFREQ and listener exits, see:

v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

Remote check routine

112 IBM Health Checker for z/OS User’s Guide

v Listening for system events in z/OS MVS Programming: Authorized Assembler

Services Guide

Allocate a pause element token using IEAVAPE

To aid in synchronization between the remote check task and IBM Health Checker

for z/OS, you must allocate a pause element token (PET). The PET is used as

follows:

v You provide the PET to the system when the check routine issues an

HZSADDCK service. When the routine issues an HZSCHECK service, the

system returns the PET that the check routine needs to use when it pauses.

v IBM Health Checker for z/OS uses the PET to tell the check to start running

(using the IEAVRLS service)

Use the IEAVAPE service in your remote check routine to allocate a PET. Note that

you can only use a PET in one pause/release cycle. Once a task is paused and

released, you'll need the updated PET returned by IEAVPSE to pause the check

routine next time.

You must always specify a value of IEA_UNAUTHORIZED for the auth_level

parameter when your remote check issues the IEAVAPE service, even if the calling

program is authorized.

See z/OS MVS Programming: Assembler Services Reference IAR-XCT for the

IEAVAPE and IEAVPSE services and Synchronizing tasks in the z/OS MVS

Programming: Assembler Services Guide.

Issue the HZSADDCK macro to define check defaults to IBM Health

Checker for z/OS

A remote check does not require a separate HZSADDCHECK exit routine to identify

and describe your check. All you have to do to define (identify, describe, and add) a

check to IBM Health Checker for z/OS is issue the HZSADDCK macro.

IBM Health Checker for z/OS assigns a handle to a remote check. The handle

identifies the remote check task to IBM Health Checker for z/OS for many different

check functions that require coordination between the remote check and IBM Health

Checker for z/OS. The handle is returned by IBM Health Checker for z/OS when

the remote check routine issues the HZSADDCK service to define the check. Each

time the check defines itself, the check routine, IBM Health Checker for z/OS

assigns a new handle to the check routine. The check routine uses the handle to

identify itself each time it starts a check iteration, issues a function code, issues a

check message (HZSFMSG service) or other IBM Health Checker for z/OS service

request (HZSCPARS, HZSCHECK), and completes a check iteration.

You must ensure that the remote check task has the authorization to define itself as

a remote check. Authorization requires either:

v That the remote check task be APF authorized

v That the calling program has CONTROL access to the SAF resource

HZS.sysname.checkowner.checkname.ADD in the XFACILIT class.

IBM Health Checker for z/OS processes the default values for the check from the

HZSADDCK macro call, and applies any installation updates to the defaults.

Remote check routine

Chapter 7. Writing remote check routines 113

Use the following guidelines in defining defaults for your check on the HZSADDCK

macro call in your remote check routine:

v The CHECKOWNER field should reflect both the company and component

or product name: For quick identification of checks, we suggest that the owner

field include a company identifier and component or product name. For example,

CHECKOWNER name IBMGRS reflects both the company and component that

owns the check.

v Define a meaningful CHECKNAME for your check: Create a meaningful,

descriptive name for your check. Your CHECKNAME should start with a

component or product prefix so that you can easily identify where a check comes

from. In addition, using the prefix ensures that all the checks for a particular

component or product will be grouped together in an SDSF check display, if

supported on your system. For example, IBM’s virtual storage management

(VSM) checks all start with VSM. (See Chapter 13, “IBM Health Checker for z/OS

checks,” on page 301.)

v Specify REMOTE=YES to indicate that the HZSADDCK macro call comes from

a remote check routine.

v Define an output field for the remote check HANDLE: To coordinate functions

between the remote check routine and IBM Health Checker for z/OS, the system

returns an identifying handle in the HANDLE parameter on the HZSADDCK

macro. You must use this handle when your issue the HZSFMSG macro to issue

a check message, a function code, and other processes.

v Specify the PETOKEN parameter: For a remote check routine, you must

specify the PET returned from the IEAVAPE macro call issued previously in the

check routine.

v Using the DATE parameters: The HZSADDCK DATE parameter specifies when

the setting or value being checked was defined. This will alert customers to

check the installation updates for this check. An installation update also has an

associated date, and when the installation update date is older than the DATE

parameter specified on HZSADDCK, the system:

– Does not apply the update

– Issues a message to inform the installation of the circumstance.

If you change your check, you should update the HZSADDCK DATE parameter

only if you want to make sure that the installation takes a look at your check

again to make sure any installation updates are still appropriate.

v Assign a severity to your check based on the problems your check is

looking for and how critical they are. The severity you choose will determine

how the system handles the exception messages that your check routine issues

with the HZSFMSG service:

– SEVERITY(HIGH) indicates that the check routine is checking for

high-severity problems in an installation. All exception messages that the

check issues with the HZSFMSG service will be issued to the console as

critical eventual action messages.

– SEVERITY(MEDIUM) indicates that the check is looking for problems that will

degrade the performance of the system. All exception messages the check

issues with HZSFMSG will be issued to the console as eventual action

messages.

– SEVERITY(LOW) indicates that the check is looking for problems that will not

impact the system immediately, but that should be investigated. All exception

messages the check issues with HZSFMSG will be issued to the console as

informational messages.

Installations can update the SEVERITY value in the HZSADDCHECK exit routine

using either the SEVERITY or WTOTYPE parameter in an installation update.

Remote check routine

114 IBM Health Checker for z/OS User’s Guide

v Selecting an INTERVAL and EINTERVAL for your check: Keep the following in

mind when selecting an interval for a check:

– The INTERVAL parameter specifies how often the check will run. But you can

also specify an exception interval (EINTERVAL), which lets you specify a

more frequent interval for the check to run if it has raised an exception.

– A check INTERVAL must be 1 minute or longer.

– The specified INTERVAL or EINTERVAL time starts ticking away when a

check finishes running.

v Specify whether your check requires UNIX System Services: Use the USS

keyword to specify whether your check requires z/OS UNIX System Services.

Any check that uses UNIX System Services such as DUB should specify

USS=YES. If you specify USS=YES for a check, the system will run the check

only when UNIX System Services are available.

Example of the HZSADDCK macro call for a remote check

HZSADDCK CHECKNAME=RNAME,

 CHECKOWNER=ROWNER,

 REMOTE=YES,

 HANDLE=RHANDLE,

 PETOKEN=RPETOKEN,

 DATE=RDATE2,

 REASON=RREASON,

 REASONLEN=RREASONLEN,

 SEVERITY=LOW,

 INTERVAL=TIMER,

 HOURS=RHOURS,MINUTES=RMINUTES,

 RETCODE=RetCode,

 RSNCODE=RsnCode

*

* Place code to check return/reason codes here

*

ROWNER DC CL16’IBMABC’

RNAME DC CL32’A_CHECK’

RDATE DC CL8’20060112’

RREASON DC CL32’Verify widgets are present.’

RREASONLEN DC A(L’RREASON)

RHOURS DC H’1’

RMINUTES DC H’0’

 HZSZCONS Return code information

DYNAREA DSECT

RHANDLE DS CL16

RPETOKEN DS CL16

RRETCODE DS F

RRSNCODE DS F

 HZSADDCK MF=(L,ADDCKL),PLISTVER=MAX

For complete information, see “HZSADDCK macro — HZS add a check” on page

218.

Pause the remote check routine with IEAVPSE

Use the IEAVPSE service in a remote check routine to pause the check routine task

after one processing phase is finished and wait for IBM Health Checker for z/OS to

tell it when to resume running. When you issue IEAVPSE to pause the remote

check routine, the service returns an updated pause element token (PET). You must

use the updated PET the next time you pause the remote check routine.

Remote check routine

Chapter 7. Writing remote check routines 115

See z/OS MVS Programming: Assembler Services Reference IAR-XCT for the

IEAVAPE and IEAVPSE services and Synchronizing tasks in the z/OS MVS

Programming: Assembler Services Guide.

Using HZSCHECK REQUEST=OPSTART and REQUEST=OPCOMPLETE

to communicate check start and stop to IBM Health Checker for z/OS

A remote check routine must use the HZSCHECK macro REQUEST=OPSTART or

OPCOMPLETE to communicate to IBM Health Checker for z/OS when the check is

starting or stopping itself because the check has completed an iteration:

HZSCHECK REMOTE=YES,

 HANDLE=handle,

 REQUEST=OPSTART or REQUEST=OPCOMPLETE

For information, see “HZSCHECK macro — HZS Check command request” on

page 275.

Using the check parameter parsing service (HZSCPARS)

If your local or remote check includes parameters, you can use the HZSCPARS

check parameter parsing service to parse parameters. When HZSCPARS finds a

parameter error, it issues appropriate error messages for you using the

REASON=PARSxxxx reason values on the HZSFMSG macro. This means that your

check routine does not have to issue error messages for parameter errors. See

“HZSFMSG macro — Issue a formatted check message” on page 236 for

explanations of all the REASON=PARSxxxx values.

Your check routine can also use REASON=PARSxxxx on HZSFMSG

REQUEST=HZSMSG to issue parsing error messages in the course of doing their

own parameter parsing.

You will use HZSCPARS REQUEST=PARSE in your check routine to allocate a

parameter area, mapped by mapping macro HZSZCPAR, that describes the parsed

parameters for the check. You can free this parameter area using HZSCPARS

REQUEST=FREE . For a local check, if you do not free the parameter area, the

system will delete the parameter area upon return from the check routine.

See “HZSCPARS macro — HZS Check Parameter Parsing” on page 289 for

complete information.

Note that your check routine must still issue the HZSFMSG REQUEST=STOP

request when HZSCPARS it finds a parameter error - see “″Check function code for

local checks″” on page 94 and “″INITRUN and RUN release codes for remote

checks″” on page 118.

Using the HZSPQE data area in your remote check routine

The HZSPQE data area contains all the information a check routine needs,

including the defaults defined in the HZSADDCHECK exit routine and any

installation overrides to those defaults. The HZSPQE contains a number of

sections, but some of the most important are:

v PQEChkParms, which shows the current values for the check.

v PQEChkWork, which is the 2K check work area.

The table below shows the structure and some of the most important fields in the

HZSPQE data area.

Remote check routine

116 IBM Health Checker for z/OS User’s Guide

Table 12. Important fields in the HZSPQE data area for a remote check routine

Field name Meaning

PqeChkInfo section - contains the defaults defined in the HZSADDCHECK exit routine for the check

PQE_Entry_Code Contains the identifer (entry code) assigned for the check in the HZSADDCHECK exit routine. The

entry code is used when a check routine contains multiple checks.

PqeChkParms section - contains the installation overrides for default parameters for the check from HZSPRMxx and the

Modify command (F hzsproc).

PQE_LookAtParms A bit indicating that the parameters have changed. If this bit is on, the check routine should read

the PQE_ParmArea and PQE_PARMLen fields in PQE_Function_Code_Check processing.

PQE_Verbose A byte indicating whether the check is in verbose mode.

PQE_Debug A byte indicating whether the check is in debug mode.

PQE_ParmLen Contains the length of the parameter area. Quotes surrounding the PARMS value in an operator

command or HZSPRMxx statement are not included in the resulting length. For example,

PARMS(’THE_PARM’) will result in a length of 8.

PQE_ParmArea The area containing the user parameters. Quotes surrounding the PARMS value in an operator

command or HZSPRMxx statement are not included.

PQEChkWork section - 2K check work area used and mapped by the check routine as needed. The system zeros the 2K user

PQEChkWork user area before calling the check with function code PQE_Function_Code_Init. A check routine can both write and

read from this field, and the system will retain this information for subsequent calls to the check routine. Changes made to any other

HZSPQE fields are not saved between function calls.

Release codes for remote check routines

When IBM Health Checker for z/OS unpauses a remote check task that issued the

IEAVPSE service, the remote check receives a release code that tells the remote

check routine why it was called. Remote checks should always check the release

code on being unpaused (IEAVRLS service) by the system. The equates for the

release codes are provided in the HZSZCONS mapping macro. The release codes

are similar to the function codes that local checks use.

For remote checks, the release codes include:

v The INITRUN function is invoked once for the life of the check (which lasts until

the check is deleted or deactivated), to do initialization processing and run the

check for the first time. In the HZSZCONS mapping macro, this release code is

HZS_Remote_Function_InitRun.

v The RUN function is called to indicate that the remote check should run and do

check cleanup after the initial run (INITRUN) of the check, at the specified

interval. In the HZSZCONS mapping macro, this release code is

HZS_Remote_Function_Run.

v Delete functions:

– The DELETE function indicates that a user issued a DELETE request on

either UPDATE or POLICY STMT in the HZSPRMxx parmlib member on or a

F hzsproc command. In the HZSZCONS mapping macro, this release code is

HZS_Remote_Function_Delete.

– The DELETE_REFRESH function indicates that IBM Health Checker for z/OS

deleted the check as part of refresh processing. In the HZSZCONS mapping

macro, this release code is HZS_Remote_Function_DeleteRefresh.

– The DELETE_TERM function indicates that the system deleted the check

when the IBM Health Checker for z/OS address space went down. In the

HZSZCONS mapping macro, this release code is

HZS_Remote_Function_DeleteTerm.

Remote check routine

Chapter 7. Writing remote check routines 117

|
|
|

|
|

v The RESTART function indicates that IBM Health Checker for z/OS has been

restarted so that the remote check can re-define itself (using the HZSADDCK

macro). In the HZSZCONS mapping macro, this release code is

HZS_Remote_Function_Restart.

v The DEACTIVATE function indicates that the remote check has been deactivated.

In the HZSZCONS mapping macro, this release code is

HZS_Remote_Function_Deactivate.

The following table summarizes the release codes for remote checks, showing what

the check should do for each one and when IBM Health Checker for z/OS invokes

them:

 Table 13. Summary of release codes for remote checks

Release code Check and system actions When is it invoked?

INITRUN and

RUN

What should the check do? The check routine should:

v Issue HZSCHECK REQUEST=OPSTART.

v Validate that the environment is suitable for the check. If it is not, issue the HZSFMSG

REQUEST=STOP macro to stop the check.

v Check to see if the PQE_LookatParm bit is set on, indicating either that this is the first

iteration of the check, or that the installation has changed the check parameters since

the last iteration. If the bit is on, validate the parameters in the PQE_ParmArea field of

the HZSPQE data area.

If the check finds bad installation parameters, it should:

1. Issue an error message indicating what the problem is.

2. Issue the HZSFMSG REQUEST=STOP,REASON=BADPARM macro request to

stop the check. See “HZSFMSG macro — Issue a formatted check message” on

page 236.
v For INITRUN, obtain any first-time-called resources needed for the check.

v Perform the check, including issuing exception messages (HZSFMSG service), reports

and other messages. You can issue a particular message multiple times in a check

routine.

v Clean up anything that you want cleaned between check iterations.

v Issue HZSCHECK REQUEST=OPCOMPLETE

v Issue IEAVPSE to pause the check and to look at the release code upon being

released..

v Refresh

v When a check is

added

v When a check

transitions to the

active enabled state

v At specified check

interval

v When a check

parameter changes

What does the system do? The system does the following setup steps to prepare for

multiple check iteration:

v Initializes the HZSPQE data area with default and override values for the check.

v Passes the default and installation overrides to the check in the HZSPQE data area

for the check.

v Obtains 2K of workarea storage mapped by field PQEChkWork. This storage is zeroed

for Init processing and lasts for the life of the check.

DELETE What should the check do? The check should:

v Issue HZSCHECK REQUEST=OPSTART

v Free all storage resources, including the message table, and any storage obtained

during INITRUN or RUN

v Issue HZSCHECK REQUEST=OPCOMPLETE

v The check should deallocate its pause element token using IEAVDPE and terminate.

A user deletes the

check using F hzsproc

or the HZSPRMxx

parmlib member.

What does the system do? The system stops calling the check.

Remote check routine

118 IBM Health Checker for z/OS User’s Guide

Table 13. Summary of release codes for remote checks (continued)

Release code Check and system actions When is it invoked?

DELETE_

REFRESH

What should the check do? IBM Health Checker for z/OS deleted the check as part of

refresh processing. The check should:

v Issue HZSCHECK REQUEST=OPSTART

v Free all storage resources, including the message table, and any storage obtained

during INITRUN or RUN

v Issue HZSCHECK REQUEST=OPCOMPLETE

v Load the check routine and message table into storage that will persist as long as the

check needs them.

v Issue the IEAVAPE service to allocate a PET, if it had not already obtained one.

v Issue HZSADDCK to re-define itself and get a new handle.

v Issue IEAVPSE to pause the check and to look at the release code upon being

released.

v Refresh

What does the system do? The system stops calling the check and creates the

HZSDPQE for the remote check. Then, upon receiving the HZSADDCK redefining the

check, it starts calling the check again.

DELETE_ TERM What should the check do? The system deleted the check when the IBM Health

Checker for z/OS address space went down. The check should:

v Issue HZSCHECK REQUEST=OPSTART

v Free all storage resources, including the message table, and any storage obtained

during INITRUN or RUN

v Issue HZSCHECK REQUEST=OPCOMPLETE

v Issue IEAVPSE to pause the check and to look at the release code upon being

released.

v When the IBM

Health Checker for

z/OS address space

goes down

What does the system do? The system stops calling the check.

RESTART What should the check do? The IBM Health Checker for z/OS address space has been

restarted. (This release code does not indicate that the check is restarting.) The check

should:

v Load the check routine and message table into storage that will persist as long as the

check needs them.

v Issue the IEAVAPE to allocate a PET, if it had not already obtained one.

v Issue HZSADDCK to re-define itself and get a new handle.

v Issue IEAVPSE to pause the check and to look at the release code upon being

released.

v When the IBM

Health Checker for

z/OS address space

is restarted

What does the system do? Continues to initialize IBM Health Checker for z/OS.

DEACTIVATE What should the check do? A user deactivated the check using the F hzsproc

command or the HZSPRMxx parmlib member. The check routine should:

v Issue HZSCHECK REQUEST=OPSTART

v Free all storage resources, including the message table, and any storage obtained

during INITRUN or RUN

v Issue HZSCHECK REQUEST=OPCOMPLETE

v Issue IEAVPSE to pause the check and to look at the release code upon being

released.

v Refresh

v When the check

transitions out of the

active enabled state.

For example, when

the check issues

HZSFMSG with the

STOP request.

v When the IBM

Health Checker for

z/OS address space

stops.

What does the system do? The system stops calling the check.

Issuing messages in your check routine with the HZSFMSG macro

To issue a message with check results in your check routine, you must use the

HZSFMSG macro (“HZSFMSG macro — Issue a formatted check message” on

page 236). This section only covers using the HZSFMSG macro to issue a

message, but a message also consists of a few other ingredients. When your check

runs, the system assembles the message from the following:

v The actual text and explanation for your check messages are defined in your

message input data set, see Chapter 10, “Creating the message input for your

check,” on page 155.

Remote check routine

Chapter 7. Writing remote check routines 119

v The variables for your check messages are defined in the HZSMGB data area

from your check routine. See “Defining the variables for your messages” on page

97.

You can issue the following kinds of messages in your check routine:

v Exception messages and other check results messages (CHECKMSG request).

For an overview of the various message types, see Table 17 on page 174.

v IBM Health Checker for z/OS messages (HZSMSG request)

v IBM Health Checker for z/OS messages that indicate that the check is stopped

(STOP request). If your check routine issues HZSFMSG with the STOP request,

it prompts the system to call the delete function code for the check.

You can issue a particular message multiple times in a single iteration of a check -

a check routine should always issue an exception message to report an error.

For a remote check, the HZSFMSG macro call must:

v Specify REMOTE=YES

v Specify the handle that identifies the check to IBM Health Checker for z/OS on

the HANDLE parameter. The system assigns and returns the handle to the

remote check when the check issues the HZSADDCHK macro to define the

check to the system. See “Issue the HZSADDCK macro to define check defaults

to IBM Health Checker for z/OS” on page 113.

v Specify the location of the message table for the check in the MSGTABLE

parameter. (Local checks do not have to specify the location of the message

table because both the check and the message table are in the IBM Health

Checker for z/OS address space.)

Note that a remote check must also load the message table into storage.

For example, a remote check might issue a check exception message with the

following HZSFMSG macro call:

HZSFMSG REQUEST=CHECKMSG,MGBADDR=Addr_Of_MGB1,

 MGBFORMAT=1,

 REMOTE=YES,HANDLE=CK_Handle,

 MsgTable=Addr_Of_MsgTable,

 MF=(E,HZSFMSG_List)

Check messages are important because they report the results of the check to an

installation. Each check should issue at least:

v One or more messages for any exception found to the setting the check is

looking for.

v A message indicating that no exceptions were found, when appropriate.

If an HZSFMSG macro call is incorrect, the system issues system abend X'290'

with a unique reason code and creates a logrec error record. The system checks

the following for each HZSFMSG call:

v To see that the HZSMGB data area (input to checks describing message

identifiers and variables) is complete

v That the message is in the message table

v That the number of inserts provided on the call exactly matches the number

required to complete the message

v That each variable definition is between 1-256 characters long

The reason codes for system abend X'290' describe the message error. See z/OS

MVS System Codes.

HZSFMSG updates the PQE_Result field in the HZSPQE as follows:

v For a specified severity of HIGH, the system sets the check result to 12

Remote check routine

120 IBM Health Checker for z/OS User’s Guide

v For a specified severity of MEDIUM, the system sets the check result to 8

v For a specified severity of LOW, the system sets the check result to 4

PQE_Result is set to 0 when the check is called. See “Examples” on page 256.

For information on coding the message texts and explanation for messages, see

Chapter 10, “Creating the message input for your check,” on page 155.

Reporting check exceptions

When a check detects a system condition or setting that runs counter to the values

that the check is looking for, the check should issue an exception message to report

the exception. For an exception message, the system displays both the message

text and the entire message explanation in the message buffer. The message

should include a detailed explanation of the error and the appropriate action that

the installation should take to resolve the condition. If you are writing a check that

checks for a setting that conflicts with the default for the setting, you should include

in your check output information about why the check user is getting an exception

message for a default setting.

Along with an exception message, IBM Health Checker for z/OS will issue a line

showing the severity and the return code for the check. The check will continue to

run at the defined intervals, reporting the exception each time until the exception

condition is resolved.

The following example shows an exception message issued to the message buffer:

CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)

START TIME: 05/25/2005 09:42:56.690844

CHECK DATE: 20040703 CHECK SEVERITY: HIGH

* High Severity Exception *

IRRH204E The RACF_SENSITIVE_RESOURCES check has found one or

more potential errors in the security controls on this system.

 Explanation: The RACF security configuration check has found one or

 more potential errors with the system protection mechanisms.

 System Action: The check continues processing. There is no effect on

 the system.

 Operator Response: Report this problem to the system security

 administrator and the system auditor.

 System Programmer Response: Examine the report that was produced by

 the RACF check. Any data set which has an "E" in the "S" (Status)

 column has excessive authority allowed to the data set. That

 authority may come from a universal access (UACC) or ID(*) access

 list entry which is too permissive, or if the profile is in WARNING

 mode. If there is no profile, then PROTECTALL(FAIL) is not in

 effect. Any data set which has a "V" in the "S" (Status) field is

 not on the indicated volume. Remove these data sets from the list

 or allocate the data sets on the volume.

 Asterisks ("****") in the UACC, WARN, and ID(*) columns indicate

 that there is no RACF profile protecting the data set. Data sets

 which do not have a RACF profile are flagged as exceptions, unless

 SETROPTS PROTECTALL(FAIL) is in effect for the system.

 If a valid user ID was specified as a parameter to the check, that

 user’s authority to the data set is checked. If the user has an

Remote check routine

Chapter 7. Writing remote check routines 121

excessive authority to the data set, that is indicated in the USER

 column. For example, if the user has ALTER authority to an

 APF-authorized data set, the USER column contains "<Read" to

 indicate that the user has more than READ authority to the data set.

 Problem Determination: See the RACF System Programmer’s Guide and

 the RACF Auditor’s Guide for information on the proper controls for

 your system.

 Source:

 RACF System Programmer’s Guide

 RACF Auditor’s Guide

 Reference Documentation:

 RACF System Programmer’s Guide

 RACF Auditor’s Guide

 Automation: None.

 Check Reason: Sensitive resources should be protected.

END TIME: 05/25/2005 09:43:13.717882 STATUS: EXCEPTION-HIGH

 APF-authorized data set, the USER column contains "

The Check Reason: field display the default reason in an exception message without

installation parameter overrides.

Defining the variables for your messages

The variable information for your check messages is defined in the HZSMGB data

area by your check routine. The check routine defines information about variables

and points to the HZSMGB data area for variable values. There are two HZSMGB

formats you can use to map your keywords:

v MGBFORMAT=0: Requires you to point to a separately defined area in storage

where the length and value of the variable are defined, mapped by MGB_InsertD.

See “Using default HZSMGB data area format (MGBFORMAT=0)” on page 123.

v MGBFORMAT=1: Allows you to specify the length and address of the variables

in HZSMGB fields MGB1_MsgInsertDesc_Length and

MGB1_MsgInsertDesc_Addr in the MGB1_MsgInsertDesc mapping. See “Using

HZSMGB data area format MGBFORMAT=1” on page 125.

Figure 13 on page 157 shows how messages with variables get resolved at check

runtime.

Use the following guidelines in defining variables for your messages:

Match up the number of variables in the HZSMGB data area and the message

input data set, because if you end up with a mismatch, your check will abend

when it issues the HZSFMSG macro to issue the message. Look in the logrec error

record or z/OS MVS System Codes to find the description of the reason code

issued with the abend.

To keep text on the same line, replace blank characters, X'40', with the required

blank character X'44'.

If I use the same variable twice in a message, do I have to define it twice in

the HZSMGB data area? Yes, every time you use a variable, even if you use the

same variable several times in the same message, you must point to separate

Remote check routine

122 IBM Health Checker for z/OS User’s Guide

entries in the MGB_Inserts field for each variable instance. However, each of the

entries for an identical variable can point to the same area in storage where the

variable length and value are specified for the variable.

Can I build the HZSMGB information for all my check messages once at

initialization and then reuse them whenever the check runs? Tempting idea, but

no. The problem with this method is that there’s no guarantee that the HZSPQE

data area for the check will be in the same place for any given run of your check.

Although the contents of the PQEChkWork section are the same for every run of

the check, it’s location is not. Thus if you try to point within your PQEChkWork area

for variable information, the offset will be the same, but the full address probably

will not be.

On the other hand, if you are pointing into either your check routine module or an

area that you GETMAINed at initialization to build your HZSMGB data area, those

areas will stay the same, and so the build once/use multiple times approach might

work. But this is a tricky maneuver.

In the HZSMGB data area, variables do not have variable names. You insert the

length (MGB_MsgILen field) and value (MGB_MsgIVal field) for a variable without

using the variable name you use in the check routine.

Can I have a null variable? You can indeed have a null variable by defining a

variable length of zero in the MGB_MsgILen field.

What happens if I make a mistake updating HZSMGB? If you make a mistake

while updating HZSMGB so that your variable values are not compatible with the

variable attributes in the message output at check runtime, your check will most

likely abend with system abend code X'290' and a reason code that describes the

error. The system also writes a record to SYS1.LOGREC that provides additional

detail in the variable recording area (VRA).

Using default HZSMGB data area format (MGBFORMAT=0)

Figure 10 on page 124 shows an example of how you define the message variables

in your check routine:

�1� shows an example of defining the message number in the

MGB_MessageNumber.

�2� shows an example of filling in the MGB_InsertCnt field with the number of

variables for your message.

�3� shows an example of putting the address of one variable into the MGB_Inserts

field. This address points to the area in storage where the length and value of the

variable are defined, mapped by MGB_InsertD.

�4� shows an example of defining the length and value of the variable in the

MGB_MsgILen and MGB_MsgIVal fields for the variable in storage. These fields are

in the MGB_InsertD mapping.

�5� shows an example of issuing a message. Note that this example shows a local

message. For a remote check, the HZSFMSG macro must include the

REMOTE=YES, HANDLE=handle, and MSGTABLE=msgtable parameters.

Remote check routine

Chapter 7. Writing remote check routines 123

�6� shows how the variable address, length, and value are defined to be stored in

the HZSMGB data area or in storage.

�7� shows an example of creating an area big enough in the HZSMGB for the

information about all your variables. To create enough room for all your variables,

use the formula HZSMGB_LEN + (n-1)*L’MGB_inserts where n is the number of

inserts. HZSMGB_LEN by itself will provide room for only one insert.

Figure 10 shows check routine code that defines variable data in the HZSMGB:

Important fields in the HZSMGB data area include:

* Issue a message with two inserts *

 SYSSTATE ARCHLVL=1

* save regs, get dynamic storage, chain saveareas, set usings

 LA 2,TheMGBArea

 ST 2,TheMGBAddr

 USING HZSMGB,2

 �1� MVC MGB_MessageNumber,=F’1’ Message 1

 �2� MVC MGB_insert_cnt,=F’2’ Two inserts

 LA 3,Insert1Area Address of first insert

 �3� ST 3,MGB_Inserts Save insert address

 LA 3,Insert2Area Address of second insert

 USING MGB_MsgInsertD,3

 �4� MVC MGB_MsgILen,=AL2(L’Insert2Val) Insert length

 MVC MGB_MsgIVal(L’Insert2Val),MyMod Insert value

 DROP 3

 ST 3,MGB_Inserts+4 Save insert address

 �5� HZSFMSG REQUEST=CHECKMSG,MGBADDR=TheMGBAddr, *

 RETCODE=LRETCODE,RSNCODE=LRSNCODE, *

 MF=(E,FMSGL)

 DROP 2

*

* Place code to check return/reason codes here

*

* free dynamic storage, restore regs

 BR 14

MyMod DC CL8’MYMODULE’

�6�

* Area for first insert

Insert1Area DS 0H

Insert1Len DC AL2(L’Insert1Val)

Insert1Val DC C’CSA ’

 LTORG ,

 HZSZCONS , Return code information

 HZSMGB , Insert mapping

DYNAREA DSECT

LRETCODE DS F

LRSNCODE DS F

* Area for 2 inserts (HZSMGB_LEN accounts for one, so

* we add one more "length of MGB_Inserts")

TheMGBAddr DS A

�7�

TheMGBArea DS CL(HZSMGB_LEN+1*L’MGB_Inserts)

* Area for second insert

Insert2Area DS 0H

Insert2Len DS AL2(L’Insert2Val)

Insert2Val DC X’00950000’

 HZSFMSG MF=(L,FMSGL),PLISTVER=MAX

DYNAREA_LEN EQU *-DYNAREA

Figure 10. Example of issuing a message with variables

Remote check routine

124 IBM Health Checker for z/OS User’s Guide

Table 14. Important fields in the HZSMGB data area for check message variables

Field name Meaning

MGB_MessageNumber

MGB_ID

Fullword field containing the value identifying each message. These fields are the same - there are

two names for this field. This field corresponds to the xreftext value for each message. For

example, the xreftext value for a message is coded as follows:

<msgnum xreftext="001">TESTMSG1I</msgnum>

MGB_InsertCnt Fullword field containing the number of variables (or inserts) to follow.

MGB_Inserts

MGB_InsertAddr

These fields are the same - there are two names for this field.

This field contains an array of pointers, each of which contains the address in storage of an area

for a specific variable. This area is mapped by Mgb_MsgInsertD.

MGB_MsgInsertD A structure in the HZSMGB data area that describes the length and value of the variable:

v MGB_MsgILen, which is a 2 byte field containing the length of the variable.

v MGB_MsgIVal, which contains the value of the variable.

Using HZSMGB data area format MGBFORMAT=1

�1� shows an example of defining the message number in the

MGB1_MessageNumber field.

�2� shows an example of filling in the MGB1_Insert_Cnt field with the number of

variables for your message.

�3� shows examples of defining the length and address of the variable in the

MGB1_MsgInsertDesc_Length and MGB1_MsgInsertDesc_Addr fields for the

variable in storage. These fields are in the MGB1_MsgInsertDesc mapping.

�4� shows an example of issuing a message. Note that this example shows a local

message. For a remote check, the HZSFMSG macro must include the

REMOTE=YES, HANDLE=handle, and MSGTABLE=msgtable parameters.

�5� shows how the variable address, length, and value are defined to be stored in

the HZSMGB data area or in storage.

�6� shows an example of creating an area big enough in the HZSMGB1 for the

information about all your variables. To create enough room for all your variables,

use the formula HZSMGB1_LEN1 + (n)*MGB1_MsgInsertDesc_Len where n is the

number of inserts.

Figure 11 on page 126 shows check routine code that defines variable data in the

HZSMGB data area using MGBFORMAT=1:

Remote check routine

Chapter 7. Writing remote check routines 125

Important fields in the HZSMGB data area include:

 Table 15. Important fields in the HZSMGB1 data area for check message variables

Field name Meaning

MGB1_MessageNumber

MGB1_ID

Fullword field containing the value identifying each message. These fields are the same - there are

two names for this field. This field corresponds to the xreftext value for each message. For

example, the xreftext value for a message is coded as follows:

<msgnum xreftext="001">TESTMSG1I</msgnum>

MGB1_InsertCnt Fullword field containing the number of variables (or inserts) to follow.

MGB1_MsgInsertDesc_Length The length of the variable. For a null variable, use a length of zero.

* Issue a message with two inserts *

 SYSSTATE ARCHLVL=2

* save regs, get dynamic storage, chain saveareas, set usings

 LA 2,TheMGBArea

 ST 2,TheMGBAddr

 USING HZSMGB1,2

�1� MVC MGB1_MessageNumber,=F’1’ Message 1

�2� MVC MGB1_insert_cnt,=F’2’ Two inserts

 DROP 2

 PUSH USING

 USING MGB1_MsgInsertDesc,TheMSGInsertDesc1

�3� MVC MGB1_MsgInsertDesc_Length,=AL2(L’Insert1Val) Insert length

 LA 15,Insert1Val

 ST 15,MGB1_MsgInsertDesc_Addr Insert address

 POP USING

 PUSH USING

 USING MGB1_MsgInsertDesc,TheMGBInsertDesc2

 MVC MGB1_MsgInsertDesc_Length,=AL2(L’Insert2Val) Insert length

 LA 15,Insert2Val

 ST 15,MGB1_MsgInsertDesc_Addr Insert address

 POP USING

�4� HZSFMSG REQUEST=CHECKMSG,MGBADDR=TheMGBAddr, *

 MGBFORMAT=1, *

 RETCODE=LRETCODE,RSNCODE=LRSNCODE, *

 MF=(E,FMSGL)

*

* Place code to check return/reason codes here

*

* free dynamic storage, restore regs

 BR 14

�5�

* Area for first insert

Insert1Val DC C’CSA ’

* Area for second insert

Insert2Val DC X’00950000’

 LTORG ,

 HZSZCONS , Return code information

 HZSMGB , Insert mapping

DYNAREA DSECT

LRETCODE DS F

LRSNCODE DS F

TheMGBAddr DS A

* Area for 2 inserts

�6�

TheMGBArea DS CL(HZSMGB_LEN1)

TheMSGInsertDesc1 DS CL(MGB1_MsgInsertDesc_Len)

TheMSGInsertDesc2 DS CL(MGB1_MsgInsertDesc_Len)

HZSFMSG MF=(L,FMSGL),PLISTVER=MAX

DYNAREA_LEN EQU *-DYNAREA

Figure 11. Example of issuing a message with variables using MGBFORMAT=1

Remote check routine

126 IBM Health Checker for z/OS User’s Guide

Table 15. Important fields in the HZSMGB1 data area for check message variables (continued)

Field name Meaning

MGB1_MsgInsertDesc_Addr The address of the variable. For a null variable, you need not set this field.

Recommendations and recovery considerations for remote checks

Recovery needed for your check routine is basically the same as for any other

program - the following recommendations are not, for the most part, unique to

writing a check routine.

Make your check clean up after itself, because the system won’t do it for you:

IBM Health Checker for z/OS does not perform any end-of-task cleanup for your

check. Check routines should track resources, such as storage obtained, ENQs,

locks, and latches, in the PQE_ChkWork field.

Have your check stop itself when the environment is inappropriate: If your

check routine encounters an environmental condition that will prevent the check

from returning useful results, your check routine should stop itself and not run again

until environmental conditions change and your code requests it to run. Your check

should do the following to respond to an inappropriate environment:

1. Issue an information message to describe why the check is not running. For

example, you might issue the following message to let check users know that

the environment is not appropriate for the check, and when the check will run

again:

The server is down.

When the server is available, the check will run again.

2. Issue the HZSFMSG service to stop itself:

HZSFMSG REQEST=STOP,REASON=ENVNA

3. Make sure that your product or check includes code that can detect a change in

the environment and start running the check again when appropriate. To start

running the check, issue the following HZSCHECK service:

HZSCHECK REQUEST=RUN,CHECKOWNER=checkowner,CHECKNAME=checkname

If the environment is still not appropriate when your code runs the check, it can

always stop itself again.

Your check should not add itself in an inappropriate environment: If you use a

HZSADDCHECK exit routine to add your checks to the system, note that some

checks or product code might add or delete checks to the system in response to

changes in system environmental conditions. For example, if a check or product

detects that a system environment is inappropriate for the check, it might then add

only the checks useful in the current environment by invoking the HZSADDCHCK

registration exit with an ADDNEW request (from the HZSCHECK service, the F

hzsproc command, or in the HZSPRMxx parmlib member. You should add similar

code to your HZSADDCHECK exit routine to make sure that your checks don't run

if they will not return useful results in the current environment. This code might:

v Delete checks that do not apply in the current environment

v Run a check so that it can check the environment and disable itself if it is

inappropriate in the current environment. Consider supporting a check PARM so

the installation may indicate the condition is successful and not an error.

If your check can never be valid for the current IPL, consider not even adding it

from your HZSADDCHECK exit routine when you detect that situation. For example,

Remote check routine

Chapter 7. Writing remote check routines 127

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

if a check is relevant only when in XCF LOCAL mode but the system is not in that

mode (and cannot change to that mode), there is no reason even to add the check.

Have your check stop itself for bad parameters: If your check routine is passed

a bad parameter, it should stop itself using the HZSFMSG service:

HZSFMSG REQUEST=STOP,REASON=BADPARM

This request will also issue predefined HZS1001E error message to indicate what

the problem is. The check routine will not be called again until it is refreshed or its

parameters are changed. REQUEST=STOP prevents the check from running again

and sets the results in the PQE_Result field of HZSPQE. The system sets the result

field based on the severity value for the check. See “Issuing messages in your

check routine with the HZSFMSG macro” on page 95 for examples and complete

information.

Take advantage of verbose and debug modes in your check: IBM Health

Checker for z/OS has support for the following modes:

v Debug mode, which tells the system to output extra messages designed to help

you debug your check. IBM Health Checker for z/OS outputs some extra

messages in debug mode, and some checks do also. When a check runs in

debug mode, each message line is prefaced by a message ID, which can be

helpful in pinpointing the problem. For example, report messages are not

prefaced by message IDs unless a check is running in debug mode.

There are two ways to issue extra messages in debug mode:

– Use conditional logic such that when in debug mode (when field

PQE_DEBUG in mapping macro HZSPQE has the value PQE_DEBUG_ON),

your check issues additional messages.

– Code debug type messages - see “Planning your debug messages” on page

161

Users can turn on debug mode using the DEBUG=ON parameter in the

MODIFY hzsproc command, in HZSPRMxx, or by overtyping the DEBUG field in

SDSF to ON.

v Verbose mode, which tells the system to output messages with additional detail

about non-exception information found by the check. (RACF checks, for example,

issue additional detail in verbose mode.) To issue extra messages in verbose

mode, use conditional logic such that when in verbose mode (when field

PQE_VERBOSE in mapping macro HZSPQE has the value

PQE_VERBOSE_YES), your check issues additional messages.

Users can turn on verbose mode using the VERBOSE=YES parameter in the

F hzsproc command or in HZSPRMxx.

Plan recovery for your check: Your check routine should be designed to handle

abends. If the task that issues the HZSADDCK macro defining check defaults

terminates for any reason, including an abend that is not re-tried, the system treats

the check as if it is deleted.

In some cases you may not want your check to be stopped when an abend occurs

because some abend causing conditions might simply clear with time. For example,

if your check abends as a result of getting garbled data from an unserialized

resource, such as a data area in the midst of an MVC, your check should provide

its own recovery to:

v Retry the check a pre-determined number of times.

v If the check fails again, the check should stop running, but not stop itself.

Remote check routine

128 IBM Health Checker for z/OS User’s Guide

|
|

|
|

|

|
|
|
|
|
|
|

This allows the check to try running again at the next specified interval, with every

chance of success this time.

Look for logrec error records when you test your check: When testing your

check, be sure to look for logrec error records. The system issues abend X'290' if

the system encounters an error while a message is being issued, and issues a

logrec error record and a description of the problem in the variable recording area

(VRA).

Save time, save trouble - test your check with these commands: When you

have written your check, test it with the following commands to find some of the

most common problems people make in writing checks:

F hzsproc,UPDATE,CHECK(check_owner,check_name),DEBUG=ON

F hzsproc,UPDATE,CHECK(check_owner,check_name),PARM=parameter,REASON=reason,DATE=date

F hzsproc,DELETE,CHECK(check_owner,check_name),FORCE=YES

F hzsproc,DISPLAY,CHECK(check_owner,check_name),DETAIL

Avoid modifying system control blocks in your check routine: The IBM Health

Checker for z/OS philosophy is to keep check routines very simple. IBM

recommends that checks read but not update system data and try to avoid

disruptive behavior such as modifying system control blocks.

See also “Debugging checks.”

Debugging checks

Naturally, we hope you’ll never need this section and that all your checks will run

perfectly the very first time. However, if you do run into trouble, this section will help

you debug your check routine and HZSADDCHECK exit routine.

Was my check added to the system? Use the F hzsproc,DISPLAY

CHECK(checkowner,checkname) to display the check you're adding to the system. If

your check shows up, it was successfully added to the system. If it does not show

up, it was not added to the system.

You can also check the return code from the HZSADDCK invocation in your

HZSADDCHECK exit routine (for local checks) or check routine (for remote checks).

A return code greater than 4 often indicates that there was a problem in adding the

check to the system. See “HZSADDCK macro — HZS add a check” on page 218.

Turn on debug mode: Running in debug mode can help you debug your check,

because in debug mode:

v Each message line is prefaced by a message ID, which can be helpful in

pinpointing the problem. For example, report messages are not prefaced by

message IDs unless a check is running in debug mode.

v Debug messages, which may contain information about the error, are issued only

when the check is in debug mode.

You can turn on debug mode for a check that is not running properly using the

DEBUG parameter in the MODIFY hzsproc command, in HZSPRMxx, or by

overtyping the DEBUG field in SDSF to ON.

Create a recovery routine for your check routine if you need additional

diagnostic data for your check routine. See “Establishing a recovery routine for a

check” on page 111.

Remote check routine

Chapter 7. Writing remote check routines 129

|
|
|
|
|
|
|

Debug HZSFMSG abends: If the system finds an error in a HZSFMSG macro call

to issue a message, the system issues system abend X’290’ with a unique reason

code and creates a logrec error record. See the information for abend X'290' in

z/OS MVS System Codes for a description of the abend reason codes.

If the abend is caused by an incorrect macro call, the system issues the following

accompanying information:

v Logrec error record. Use EREP to view logrec errors, see ″Using EREP to Obtain

Records from the Logrec Log Stream ″ in z/OS MVS Diagnosis: Tools and

Service Aids.

v A symptom dump written to the console and to the system log

v A SYSMDUMP, if you add a SYSMDUMP DD statement to hzsproc, the IBM

Health Checker for z/OS procedure.

Note that the contents and data set disposition of your SYSMDUMP depends on

the DISP= option you use on the DD statement. See ″Preallocate Data Sets for

SYSMDUMP Dumps″ in z/OS MVS Diagnosis: Tools and Service Aids.

v There may be additional diagnostic data in the register at time of the abend that

can help with debugging. See “HZSFMSG ABEND Codes” on page 252 for the

kinds of diagnostic data that may be available.

If your check routine has a recovery routine, the SDWA for the recovery routine

will contain these registers in the SDWAGRSV field.

If the abend is caused by the system, the system issues an SVC dump.

Remote check routine

130 IBM Health Checker for z/OS User’s Guide

Chapter 8. Writing REXX checks

A REXX check consists of an exec containing one or more remote checks coded in

REXX language instructions. This code is interpreted and executed by System

REXX and runs in a System REXX address space, in an APF authorized

environment defined by System REXX. You can identify your check as a REXX

check by using the REXX(YES) parameter in the check definition.

Use the following documents for guidance on coding in the REXX language:

v z/OS TSO/E REXX User’s Guide

v z/OS TSO/E REXX Reference

v System REXX in z/OS MVS Programming: Authorized Assembler Services Guide

In this chapter, we'll cover the following:

v “Sample REXX checks”

v “REXX check basics”

v “Using input data sets in a TSO-environment REXX check” on page 135

v “Using REXXIN data sets” on page 135

v “Using REXXOUT data sets” on page 136

v “Defining a REXX check to IBM Health Checker for z/OS” on page 139

v “Issuing messages in your REXX check with the HZSLFMSG function” on page

141

v “The well-behaved REXX check - recommendations and recovery considerations”

on page 144

v “Debugging REXX checks” on page 146

Sample REXX checks

Of course you're going to read this entire chapter to understand everything you

need to know about writing a REXX check. But we also have what you're really

looking for - REXX check samples in SYS1.SAMPLIB:

v - Sample REXX checks.

v HZSSMSGT - Sample message input, which is common to all check types.

REXX check basics

You can use System REXX services to write a REXX check to gather installation

information and look for problems, most likely by reading data set(s) and using the

AXRCMD function to issue a system command and looking at its output, and then

issuing the check results in messages. IBM Health Checker for z/OS may also write

check exception messages as WTOs.

A REXX check runs in a System REXX address space.

You can write your REXX checks for two environments: TSO and non-TSO. Writing

a check for a TSO environment gives you a dynamic TSO environment to work

with. Example HZSSXCHK in SYS1.SAMPLIB shows code for both a TSO and a

non-TSO environment check.

See System REXX in z/OS MVS Programming: Authorized Assembler Services

Guide for more information about writing and running REXX execs on z/OS.

© Copyright IBM Corp. 2006, 2007 131

|

|

|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|
|

|
|

|

|
|

|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|

|
|

We recommend that you keep the REXX check very simple. At a high level, your

REXX check will:

1. Invoke the HZSLSTRT function to indicate that the exec has started running and

place some check information from the HZSPQE data area into REXX variables.

2. Look at the HZS_PQE_ENTRY_CODE REXX variable set by IBM Health

Checker for z/OS from the check definition to identify the REXX check being

called when an exec contains more than one REXX check.

3. Start processing the REXX check.

4. If desired, look for the function code set by IBM Health Checker for z/OS (in

HZS_PQE_FUNCTION_CODE). If the function code is INITRUN for a first

iteration of a REXX check, the REXX check sets the HZS_PQE_CHKWORK

field to nulls and the REXX check should do any necessary set up.

5. The REXX check should validate input parameters, if any, for the REXX check

when the system indicates that parameter data has changed. Use the

HZSLSTRT REXX function output variable, HZS_PQE_LOOKATPARMS, to see

whether check parameters have changed since the last time the REXX check

ran. (Check parameters are contained in HZSLSTRT output variable

HZS_PQE_PARMAREA.) When the HZS_PQE_LOOKATPARMS variable is set

on, it indicates that check parameters have been changed since the last time

the REXX check ran. Use the HZSLFMSG REXX function input variables to

report parameter errors found by the REXX check. See “HZSLFMSG function”

on page 203.

6. Now for the guts of the REXX check - check for potential problems on a system.

7. Issue messages or handle parameter and other errors the REXX check

encounters using the HZSLFMSG function. HZSLFMSG is the interface to the

HZSFMSG macro - see “HZSFMSG macro — Issue a formatted check

message” on page 236. HZSLFMSG sets or modifies the status for the REXX

check.

8. Invoke the HZSLSTOP function to indicate the REXX check has completed

running.

REXX checks only run when System REXX is up and running: If System REXX

is not available, your REXX checks will not run because these checks run in a

System REXX address space. To add your REXX check, see “Defining a REXX

check to IBM Health Checker for z/OS” on page 139.

Defining the environment for a REXX check: A REXX check runs in a System

REXX address space in an environment defined and controlled by System REXX.

IBM Health Checker for z/OS runs your REXX check using the AXREXX service.

REXX checks run under the security assigned to the IBM Health Checker for z/OS

procedure, hzsproc. See System REXX in z/OS MVS Programming: Authorized

Assembler Services Guide for information.

The system loads the message table for your REXX check into the IBM Health

Checker for z/OS address space.

Information that every REXX check starts out with: When IBM Health Checker

for z/OS calls the REXX check, it sets the following HZSLSTART function variables

for the REXX check to use:

v HZS_HANDLE, which identifies the remote REXX check in order to synchronize

processing between the REXX check and IBM Health Checker for z/OS. This is

important because a REXX check is a remote check - it runs in a System REXX

address space. The system uses this handle as input within the HZSLSTRT,

REXX checks

132 IBM Health Checker for z/OS User’s Guide

|
|

|
|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

HZSLFMSG, and HZSLSTOP functions. The REXX check should never alter this

field and probably will never even need to reference it.

v HZS_PQE_ENTRY_CODE, which identifies the check being called, for a REXX

check containing more than one check.

v HZS_PQE_FUNCTION_CODE, which indicates whether the REXX check is

being called for the first time (INITRUN) or for a subsequent iteration (RUN).

Limit a REXX check to looking at one setting or one potential problem.

Limiting the scope of a REXX check will make it easier for the installation using the

REXX check to:

v Resolve any exceptions that the REXX check finds by either fixing the exception,

overriding the setting, or deactivating the REXX check.

v Set appropriate override values for REXX check defaults such as severity or

interval.

Do not set a return code in your REXX check: IBM Health Checker for z/OS

ignores any return code set by your REXX check. When you use the HZSLFMSG

function, the system will return information in the RESULT and HZSLFMSG_RSN

variables.

Use the 2K check work area: Use the 2K check work area

(HZS_PQE_CHKWORK variable made available by the HZSLSTRT function) to

hold data that you want to retain through check iterations for the life of the REXX

check. Prior to the INITRUN function code call, the system sets the 2K work area to

null. The HZS_PQE_CHKWORK variable is the only HZSLSTRT variable your

REXX check should write to. The system saves the HZS_PQE_CHKWORK

contents when the REXX check invokes the HZSLSTOP System REXX function,

and then sets the area to null when any of the following occur

v The REXX check is to run for the first time

v The check is REFRESHed

v The check becomes either INACTIVE or DISABLED for any reason besides

invalid parameters

If your REXX check does obtain additional resources, allocation of a data set,

for example, the REXX check must release these resources before it completes. A

REXX check is not called for cleanup or delete, as a local check is, so that when

the REXX check runs again there is no guarantee it will execute in the address

space or under the same task. The REXX check must also release resources when

a non-exception condition, such as a time-out or cancel, occurs.

Using the IBM Health Checker for z/OS System REXX functions: Use the

System REXX functions listed below in your REXX check. Note that a check is

marked in error if ANY of the HZSLxxxx functions fail with a return code 8 or higher.

See the individual HZSLxxxx function return codes in Chapter 11, “IBM Health

Checker for z/OS System REXX Functions,” on page 199 to determine the cause of

an error.

v Invoke HZSLSTRT to indicate that the REXX check has started to run. This

function sets REXX variables containing the HZSPQE information for the REXX

check, such as check definition values. This function is used at the very start of

the REXX check. Do not alter any HZSLSTRT variables except for the

HZS_PQE_CHKWORK work area. Some of the most important HZSLSTRT

variables you use in a REXX check include:

REXX checks

Chapter 8. Writing REXX checks 133

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

Table 16. Important HZSPQE information used in a REXX check from HZSLSTRT variables

Field name Meaning

HZS_PQE_FUNCTION_CODE Contains the function code for the REXX check. The REXX check

receives control in response to either the RUN or INITRUN function

code. The system sets this field on entry to the REXX check.

HZS_PQE_ENTRY_CODE Contains the identifer (entry code) assigned for the REXX check in the

check definition. The entry code is used when a REXX exec contains

multiple checks. The system sets this field on entry to the REXX check.

HZS_HANDLE Identifies the remote REXX check in order to synchronize processing

between the REXX check and IBM Health Checker for z/OS. This is

important because a REXX check is a remote check - it runs in a

System REXX address space. The REXX check uses this handle as

input to the HZSLSTRT, HZSLFMSG, and HZSLSTOP functions. The

system sets this field on entry to the REXX check.

HZS_PQE_LOOKATPARMS A bit indicating that the parameters have changed. If this bit is on, the

REXX check should read the HZS_PQE_PAREMAREA and

HZS_PQE_PARMLEN variables.

HZS_PQE_VERBOSE A byte indicating whether the REXX check is in verbose mode.

HZS_PQE_DEBUG A byte indicating whether the REXX check is in debug mode.

HZS_PQE_PARMAREA The area containing the user parameters. Quotes surrounding the

PARMS value in an operator command or HZSPRMxx statement are

not included.

HZS_PQE_CHKWORK 2K check work area used and mapped by the REXX check as needed.

The system zeros the 2K check work area before calling the REXX

check with function code RUN. A REXX check can both write and read

from this field, and the system will retain this information for subsequent

calls to the check. Changes made to any other variables are not saved

between function calls.

See “HZSLSTRT function” on page 200 for all of the REXX variables returned.

v Invoke HZSLFMSG to:

– Issue REXX check messages and IBM Health Checker for z/OS messages.

You will invoke this function multiple times in your REXX check. See “Issuing

messages in your REXX check with the HZSLFMSG function” on page 141

– Report a problem with the check - use HZSLFMSG to report the problem and

change the check state. You can also stop the REXX check in case of an

error found, such as bad parameters or an inappropriate environment for the

check.

You use the HZSLFMSG function to issue a message and define variables, but

you define the actual text and explanation for your REXX check messages in

your message input data set - see “HZSLFMSG function” on page 203 and

Chapter 10, “Creating the message input for your check,” on page 155.

v Invoke HZSLSTOP to indicate that the REXX check has completed an iteration.

The REXX check invokes this function at the end of the REXX check. This

function saves HZS_PQE_CHKWORK for the next REXX check iteration.

All of the REXX functions return a return code (RESULT variable) and reason code

(HZSLnnnn_RSN variable). These functions also include many other useful input

and output variables. See Chapter 11, “IBM Health Checker for z/OS System REXX

Functions,” on page 199 for complete information on these functions.

Give grouped REXX checks individual entry codes: Multiple REXX checks can

use a single REXX exec. When you do this, each individual REXX check still gets

its own HZSPQE area, and you must define a unique entry code for each individual

check. This ensures that the REXXIN and REXXOUT data sets for each REXX

check are unique - the system uses the entry code in the data set name suffix.

Code your REXX check to look for the entry code passed in the HZSLSTART

REXX checks

134 IBM Health Checker for z/OS User’s Guide

||

||

||
|
|

||
|
|

||
|
|
|
|
|

||
|
|

||

||

||
|
|

||
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

function HZS_PQE_ENTRY_CODE variable, and pass control to processing for the

REXX check indicated. You define the entry code for each REXX check with the

ENTRYCODE parameter in the check definition on the HZSADDCK call or

HZSPRMxx parmlib member.Note that the IBM Health Checker for z/OS will not

verify the uniqueness of the entry codes you define for your REXX checks.

The following example shows how a REXX check uses entry codes to route control

to individual checks:

/***/

/* Check the entry code to determine which check to process */

/***/

 IF HZS_PQE_ENTRY_CODE = 1 THEN

 DO

 Call Process_HZS_SAMPLE_REXXIN_CHECK

 END

 IF HZS_PQE_ENTRY_CODE = 2 THEN

 DO

 Call Process_HZS_SAMPLE_REXXTSO_CHECK

 END

 EXIT

If you are using HZSADDCHECK exit routines to add your REXX checks to the

system, you should also use a single exit routine to add related checks to the

system. See “Defining a REXX check to IBM Health Checker for z/OS” on page

139.

Do not attempt to communicate between individual REXX checks. Even though

you may have placed all of your REXX checks in the same exec, do not rely on

communication between them. Each REXX check is intended to stand by itself and

has a unique severity, reason, parameters, HZSPQE data area, and entry code.

Using input data sets in a TSO-environment REXX check

A REXX check running in a TSO environment (REXXTSO(YES)) can allocate and

read from or write to any data set that it can access When there is a lot of input

parameter data, we recommend that the check parameter be the name of the data

set and the exec would allocate and read from that data set to access its

parameters. For example, lets say a TSO REXX check is defined with the PARMS

parameter, as follows:

PARMS(’DSN(IBMUSER.HZSSXCHK.DATA)’)

Based on the data set specified in PARMS, the REXX check uses data set

IBMUSER.HZSSXCHK.DATA as its input data set.

In order to get consistent results from your REXX checks, IBM suggests that the

exec has exclusive access to the input data set. If the system cannot allocate or

use a requested input data set, the REXX check does not run successfully.

Using REXXIN data sets

An exec running in a non-TSO environment can use the REXXIN data set to read

data from. You must specify REXXTSO(NO) and REXXIN(YES) in the check

definition in order to use a REXXIN data set. Typically, a check would use a

REXXIN data set when it has a lot of input parameter data.

TSO environment REXX checks can use input data sets, see “Using input data sets

in a TSO-environment REXX check.”

REXX checks

Chapter 8. Writing REXX checks 135

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|
|
|

|
|

In order to get consistent results from your REXX checks, IBM suggests that the

exec has exclusive access to the REXXIN data set. If the system cannot allocate or

use a requested REXXIN data set, the REXX check does not run successfully.

REXXIN data set naming conventions

If you specify REXXIN(YES), the system allocates and names your REXXIN input

data set using the following REXX check definition information:

1. REXXHLQ(hlq)

2. EXEC(execname)

3. REXXIN(YES)

4. ENTRYCODE(entrycode)

For example, let's say a non-TSO REXX check is defined with the following

parameters:

EXEC(HZSSXCHK)

REXXHLQ(IBMUSER)

REXXIN(YES)

ENTRYCODE(1)

The REXXIN data set name that the system uses is

IBMUSER.HZSSXCHK.REXXIN.E1. If you did not define an entry code for this

REXX check, the REXXIN data set name would be IBMUSER.HZSSXCHK.REXXIN

Using REXXOUT data sets

Both TSO environment (REXXTSO(YES)) and non-TSO (REXXTSO(NO))

environment REXX checks can use REXXOUT data sets to diagnose REXX check

problems. The REXXOUT data set is provided when the check is in debug mode

and is intended to capture data used to debug the check. When a REXXOUT data

set is provided, System REXX writes data to the REXXOUT data set every time:

v You code the SAY or TRACE keyword in your REXX exec. For example, if your

REXX check finds an error in parameters or when issuing a message

(HZSLFMSG function), you might want to capture data such as HZSLFMSG

return and reason codes, system diagnostic information, abend reason codes

and details of user errors.

v When your REXX check receives a TSO error message

v When your REXX check receives a System REXX message

If your REXX check is not running in debug mode, this output is lost. To place a

REXX check in DEBUG mode, use the following command example:

F hzsproc,UPDATE,CHECK=(checkowner,checkname),DEBUG=ON

From SDSF, you can also place a REXX check in debug mode by over-typing the

DEBUG field to ON.

REXX check exception, information, and report messages are written to the

message buffer rather than the REXXOUT data set.

The system will allocate the REXXOUT data set for you based on the naming

conventions for your environment, if it is not already allocated when the REXX

check runs. However, you must ensure that IBM Health Checker for z/OS address

space has the authority to allocate the data set. If the system cannot exclusively

allocate or use the REXXOUT data set, the REXX check will not run successfully.

REXX checks

136 IBM Health Checker for z/OS User’s Guide

|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|

|

|
|

|

|
|

|
|

|
|
|
|
|

REXXOUT data set naming conventions

For both TSO (REXXTSO(YES)) and non-TSO (REXXTSO(NO)) environment

REXX checks, the system allocates REXXOUT data sets for use using the

following:

1. REXXHLQ(hlq) from the check definition

2. EXEC(execname) from the check definition

3. REXXOUT

4. ENTRYCODE(entrycode) from the REXX check definition, if defined

For example, let's say a REXX check is defined with the following parameters:

EXEC(HZSSXCHK)

REXXHLQ(IBMUSER)

ENTRYCODE(1)

The REXXOUT data set name that the system uses is

IBMUSER.HZSSXCHK.REXXOUT.E1. If you did not define an entry code for this

REXX check, the REXXOUT data set name would

beIBMUSER.HZSSXCHK.REXXOUT.

Examples: Capturing error data in REXXOUT

The following examples show code that captures error data in REXXOUT. Note that

before writing the error detail to REXXOUT, the REXX checks first determine

whether the check is in debug mode by looking at the HZS_PQE_DEBUG variable.

Example 1 - Using HZSLFMSG to capture bad parameter data in REXXOUT:

The following example shows a TSO REXX check which requires a REXXIN data

set, the name of which is specified PARMS parameter. If the REXX check finds that

the parameter in PARMS is invalid, it uses the SAY keyword to capture error

information in a REXXOUT data set allocated by the system when the check is in

debug mode:

Process_HZS_SAMPLE_REXXTSO_CHECK:

/***/

/* Process parameters for HZS_SAMPLE_REXXTSO_CHECK */

/***/

/* */

/* For our example, */

/* - assume that the required PARMAREA string is DSN(value) where */

/* value is the name of a sequential data set that contains data */

/* to be processed by this check. We use TSO services to do the */

/* validation. */

/* */

/***/

 ADDRESS TSO "Alloc "HZS_PQE_PARMAREA" SEQ OLD"

 IF RC ^= 0 THEN

 DO

 HZSLFMSG_REQUEST = "STOP"

 HZSLFMSG_REASON = "BADPARM"

 HZSLFMSG_RC = HZSLFMSG()

 IF HZS_PQE_DEBUG = 1 THEN

 DO /* Report debug detail in REXXOUT */

 SAY "PARMS: ||"HZS_PQE_PARMAREA"||"

 SAY "HZSLFMSG RC" HZSLFMSG_RC

 SAY "HZSLFMSG RSN" HZSLFMSG_RSN

 SAY "SYSTEMDIAG" HZSLFMSG_SYSTEMDIAG

 END

 EXIT /* The check is not performed */

 END

REXX checks

Chapter 8. Writing REXX checks 137

|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

In this example, we write the return and reason codes from HZSLFMSG and

system diagnostic information to REXXOUT to help debug the parameter

problem.See “HZSLFMSG function” on page 203 for complete information about

HZSLFMSG input and output variables.

Example 2 - Capturing HZSLFMSG message function error data in REXXOUT:

The following example from a non-TSO REXX check shows how to capture error

data when the message function, HZSLFMSG, completes with a RESULT of 8:

/***/

/* */

/* When the message service detects a user error, HZSLFMSG result */

/* will be 8. */

/* */

/* HZSLSFMSG_RSN = 000008xx A user error was detected */

/* */

/* HZSLSFMSG_RSN = 0000089F See HZSLFMSG_USERRSN. */

/* HZSLSFMSG_USERRSN The reason for the user error. */

/* See ABEND REASON CODES in HZSLFMSG */

/* */

/* HZSLFMSG_ABENDRESULT contains diagnostic detail about user */

/* errors */

/* */

/* Check looks for debug mode on, and if on, writes SAY messages */

/* with debug detail in REXXOUT data set. */

/* */

/***/

 IF HZS_PQE_DEBUG = 1 THEN

 DO /* place debug detail in REXXOUT */

 SAY "PARMS: ||"HZS_PQE_PARMAREA"||"

 SAY "HZSLFMSG RC" HZSLFMSG_RC

 SAY "HZSLFMSG RSN" HZSLFMSG_RSN

 SAY "SYSTEMDIAG" HZSLFMSG_SYSTEMDIAG

 SAY "USER RSN" HZSLFMSG_UserRsn

 SAY "USER RESULT" HZSLFMSG_AbendResult

 END

In this example, we write the return and reason codes from HZSLFMSG, system

diagnostic information, the user error detail, and abend reason code to REXXOUT

to help debug the HZSLFMSG error.See “HZSLFMSG function” on page 203 for

complete information about HZSLFMSG input and output variables.

See the information for abend X'290' in z/OS MVS System Codes for a description

of the abend reason codes for IBM Health Checker for z/OS.

Example 3: Capturing TRACE data in REXXOUT: The following REXXOUT output

data was created by placing the TRACE ALL REXX instruction in SYS1.SAMPLIB

check HZSSXCHK, and running the checks with DEBUG(ON):

 905 *-* ADDRESS TSO "Alloc DSN("DataSetName") OLD"

 >>> "Alloc DSN(’IBMUSER.HZSSXCHK.DATA’) OLD"

IKJ56228I DATA SET IBMUSER.HZSSXCHK.DATA NOT IN CATALOG OR CATALOG CAN NOT BE AC

IKJ56701I MISSING DATA SET NAME+

IKJ56701I MISSING NAME OF DATA SET TO BE ALLOCATED

 +++ RC(12) +++

 963 *-* ERROR:

 964 *-* FAILURE:

 965 *-* NOVALUE:

 966 *-* HALT:

 967 *-* ERR1 = "An Error has occurred on line: "Sigl

 968 *-* ERR2 = sourceline(sigl)

 969 *-* Say Err1

An Error has occurred on line: 905

 970 *-* Say "Line "Sigl" text: "Err2

Line 905 text: ADDRESS TSO "Alloc DSN("DataSetName") OLD"

REXX checks

138 IBM Health Checker for z/OS User’s Guide

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

971 *-* ADDRESS TSO "FREE DSN("DataSetName")"

 >>> "FREE DSN(’IBMUSER.HZSSXCHK.DATA’)"

IKJ56247I DATA SET IBMUSER.HZSSXCHK.DATA NOT FREED, IS NOT ALLOCATED

 +++ RC(12) +++

 972 *-* HZSLFMSG_REQUEST = "STOP" /* Disable the check

 973 *-* HZSLFMSG_REASON = "ERROR"

 974 *-* HZSLFMSG_DIAG = Right(RC,16,0) /* report the decimal rc in the

e and the check display detail

 977 *-* HZSLFMSG_RC = HZSLFMSG()

 978 *-* IF HZS_PQE_DEBUG = 1

 - THEN

 979 *-* DO /* Report debug detail in REXXOU

 980 *-* SAY "PARMS: "HZS_PQE_PARMAREA

PARMS: DSN(IBMUSER.HZSSXCHK.DATA)

 981 *-* SAY "HZSLFMSG RC" HZSLFMSG_RC

HZSLFMSG RC 0

 982 *-* SAY "HZSLFMSG RSN" HZSLFMSG_RSN

HZSLFMSG RSN 0

 983 *-* SAY "SYSTEMDIAG" HZSLFMSG_SYSTEMDIAG

SYSTEMDIAG N/A

 984 *-* END

 985 *-* EXIT /* The check is not performed */

Defining a REXX check to IBM Health Checker for z/OS

After you've written your REXX check, use the ADD | ADDREPLACE CHECK

parameter in an HZSPRMxx parameter to define check defaults and add the check.

Do this as follows:

1. Create a parmlib member.

2. Use the ADD | ADDREPLACE CHECK parameter to define the new System

REXX check definition. For example:

ADDREPLACE CHECK(IBMSAMPLE,HZS_SAMPLE_REXXTSO_CHECK)

 EXEC(HZSSXCHK)

 REXXHLQ(IBMUSER)

 REXXTSO(YES)

 MSGTBL(HZSSMSGT)

 ENTRYCODE(2)

 PARMS(’DSN(MY.PARMLIB)’)

 SEVERITY(LOW)

 INTERVAL(0:05)

 EINTERVAL(SYSTEM)

 DATE(20061219)

 REASON(’A sample check to demonstrate an ’,

 ’exec check using TSO services.’)

See “ADD or ADDREPLACE CHECK parameters” on page 66.

3. Use the ADD,PARMLIB command to add the new parmlib member containing

the REXX check definition. For example:

F hzsproc,ADD,PARMLIB=xx

You can also write an authorized HZSADDCHECK exit routine running in the IBM

Health Checker for z/OS address space, as described in Chapter 9, “Writing an

HZSADDCHECK exit routine,” on page 147. The HZSADDCHECK exit routine

describes the information about your REXX check or checks.

You can specify the following parameters for REXX checks in either the

ADDREPLACE CHECK parameter in HZSPRMxx or their equivalents in the

HZSADDCK macro:

v EXEC(execname) - This parameter, required for a REXX check defined in the

HZSPRMxx parmlib member, specifies the name of the REXX exec containing

REXX checks

Chapter 8. Writing REXX checks 139

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|
|
|

|
|
|

|
|

the REXX check or checks. This parameter tells the system that you are defining

a REXX check. For an assembler check, you would specify the

CHECKROUTINE(checkname).

If you define your REXX check with the HZSADDCK macro in an

HZSADDCHECK exit routine, the equivalent of EXEC(execname) is the

REXX=YES,EXEC=execname parameters.

v REXXHLQ(hlq) - This parameter, required for a REXX check, specifies the high

level qualifier for any input or output data set for the check.

v REXXTIMELIMIT(timelimit) - Specifies an optional input parameter that is the

number of seconds to which the execution of an iteration of the exec is to be

limited. A value of 0 is treated the same as no time limit. The default is that this

is no time limit.

v REXXTSO(YES | NO) - This parameter, optional for a REXX check, specifies

whether the check runs in a TSO environment or a non-TSO environment. The

default is REXXTSO(YES).

– REXXIN(YES | NO) - This parameter, optional for a REXX check, specifies

whether or not a non-TSO check requires an sequential input data set. The

name of the REXXIN data set will consist of the high level qualifier specified

in the HLQ parameter, the exec name specified in the EXEC parameter, and

an optional entry code specified in the ENTRYCODE parameter.

You can only specify REXXIN(YES) if you also specify REXXTSO(NO).

If you modify the definition for your REXX check, the changes will take effect the

next time the check runs.

Gotcha - Don't make a typo when defining your REXX check! When you define

your REXX check in a HZSPRMxx parmlib member using the ADD|ADDREPLACE

CHECK parameters, do it carefully, because it is a nuisance to delete check

definitions created using parmlib members.

because you can't delete the check definition, even if you delete all the checks. And

creating multiple definitions for the same REXX check may cause an error when the

check is added or refreshed.

If you do make a mistake, you can do one of the following to resolve the problem:

v Issue the following command, which will first delete all existing check definitions

and then add the definitions found in the specified parmlib members:

F hzsproc,REPLACE,PARMLIB=(suffix1,suffix2,...suffixn),CHECKS

v If you make a mistake when defining a REXX check in an HZSADDCHECK exit

routine, you must delete the check (by creating a policy statement that deletes

the check) and then delete the erroneous exit using SETPROG. You can then

add the corrected HZSADDCHECK exit routine again.

v Stop and start IBM Health Checker for z/OS to delete the check definition.

v If you make a mistake when defining a check in an HZSADDCHECK exit routine,

you must delete the check (for example, by creating a policy statement that

deletes the check) and then delete the erroneous exit routine using SETPROG.

You can then add the corrected HZSADDCHECK exit routine again.

Why does IBM Health Checker for z/OS make it so hard to delete a check

definition? Because if you delete your check definition, you lose all the history of the

check and may find it more difficult to re-define it.

REXX checks

140 IBM Health Checker for z/OS User’s Guide

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|
|
|
|

|
|
|

|

|
|

|

|
|
|
|

|

|
|
|
|

|
|
|

Issuing messages in your REXX check with the HZSLFMSG function

This section covers issuing messages from your REXX check. For information on

coding the message texts and explanation for messages, see Chapter 10, “Creating

the message input for your check,” on page 155.

REXX check messages are important because they report the results of the check

to an installation. Each REXX check should issue at least:

v One or more messages for any exception found to the setting the check is

looking for.

v A message indicating that no exceptions were found, when appropriate.

See “Planning your check messages” on page 159.

To issue a message with check results in your REXX check, you must use the

HZSLFMSG function (“HZSLFMSG function” on page 203).

You'll use the HZSLFMSG function to:

v Issue one of the following requests:

– HZSLFMSG_REQUEST="CHECKMSG" request - Indicates that you want to

issue a check specific message, such as an exception or report message. You

use the HZSLFMSG interface to issue a message and define variables, but

the actual text and explanation for your check messages are assembled by

the HZSMSGEN REXX exec from the message input data set. See

Chapter 10, “Creating the message input for your check,” on page 155.

– HZSLFMSG_REQUEST="HZSMSG" request - Indicates that you want to

issue an IBM Health Checker for z/OS message. IBM Health Checker for

z/OS provides the message text for an HZSMSG request.

– HZSLFMSG_REQUEST="STOP" request - Indicates that the system should

stop calling this check . The message text is provided by IBM Health Checker

for z/OS.

v Indicate the message number you want to issue with a

HZSLFMSG_MESSAGENUMBER=msgnum input variable.

v Define the number of variables and the variables themselves for a message with

the HZSLFMSG_INSERT input variable.

v The HZSLFMSG_RC output variable reports the return code for the HZSLFMSG

function.

The following example shows how a REXX check uses the HZSLFMSG function to

issue an exception message.

REXX checks

Chapter 8. Writing REXX checks 141

|
|

|
|
|

|
|

|
|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

/*** ****************************/

/* Build and write exception message */

/* */

/* In the sgml source HZSSMSGT message number 1, has 4 variables */

/* */

/* symbol output input */

/* name format format */

/* ------ ------ ------ */

/* num-avail hex a fullword hex value is expected */

/* num-inuse decimal a fullword hex value is expected */

/* num-avail hex a fullword hex value is expected */

/* num-inuse decimal a fullword hex value is expected */

/* summary char text (char) */

/* */

/***/

 HZSLFMSG_REQUEST = "CHECKMSG" /* A message table request */

 HZSLFMSG_MESSAGENUMBER = 1 /* write message 1 */

 HZSLFMSG_INSERT.0 = 5 /* 5 input values are provided */

 HZSLFMSG_INSERT.1 = ’0000000A’x /* a fullword hex value */

 HZSLFMSG_INSERT.2 = ’0000000A’x /* a fullword hex value */

 HZSLFMSG_INSERT.3 = ’00000020’x /* a fullword hex value */

 HZSLFMSG_INSERT.4 = ’00000020’x /* a fullword hex value */

 HZSLFMSG_INSERT.5 = ’My summary text’ /* a character string */

 HZSLFMSG_RC = HZSLFMSG()

 IF HZS_PQE_DEBUG = 1 THEN

 DO

 SAY "HZSLFMSG RC" HZSLFMSG_RC

 SAY "HZSLFMSG RSN" HZSLFMSG_RSN

 SAY "SYSTEMDIAG" HZSLFMSG_SYSTEMDIAG

 IF HZSLFMSG_RC = 8 THEN

 DO

 SAY "USER RSN" HZSLFMSG_UserRsn

 SAY "USER RESULT" HZSLFMSG_AbendResult

 END

 END

In this example:

v HZSLFMSG_INSERT.x is a message insert text. The text provided in the insert

should be compatible with the class attribute of the associated message variable

in the message input data set. A class attribute of hex, decimal or timestamp in

the message input data set will treat the insert data as a hexadecimal string.

v Variable HZSLFMSG_INSERT.1 expects to receive hexadecimal data. In the

message input data set, variable 1 has a class attribute of hex:

<mv class="hex">variable 1

Note that decimal text also converts hexadecimal values to decimal text. For

example, lets say that variable in the message input data set has a class attribute

of:

 <mv class=“decimal">variable 1</mv>

In that case, the REXX check might use the following HZSLFMSG input variable:

HZSLFMSG_INSERT.1 = ’0A’’X /* The decimal value 10 is displayed */

In general, the REXX values you use will be text and usually do not require

additional translation.

If an HZSLFMSG function call is incorrect, the system issues system abend X'290'

with a unique reason code and creates a logrec error record. The abend and

reason code are included in the check display output. The system checks the

following for each HZSLFMSG call:

v That the message is in the message table

REXX checks

142 IBM Health Checker for z/OS User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

|

|
|
|

|

|

|

|
|

|
|
|
|
|

v That the number of inserts provided on the call exactly matches the number

required to complete the message

v That each variable definition is between 1-256 characters long

The reason codes for system abend X'290' describe the message error. See z/OS

MVS System Codes.

Reporting check exceptions

When a check detects a system condition or setting that runs counter to the values

that the check is looking for, the check should issue an exception message to report

the exception. For an exception message, the system displays both the message

text and the entire message explanation in the message buffer. The message

should include a detailed explanation of the error and the appropriate action that

the installation should take to resolve the condition. If you are writing a check that

checks for a setting that conflicts with the default for the setting, you should include

in your check output information about why the check user is getting an exception

message for a default setting.

Along with an exception message, IBM Health Checker for z/OS will issue a line

showing the severity and the return code for the check. The check will continue to

run at the defined intervals, reporting the exception each time until the exception

condition is resolved.

The following example shows an exception message issued to the message buffer:

CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)

START TIME: 05/25/2005 09:42:56.690844

CHECK DATE: 20040703 CHECK SEVERITY: HIGH

* High Severity Exception *

IRRH204E The RACF_SENSITIVE_RESOURCES check has found one or

more potential errors in the security controls on this system.

 Explanation: The RACF security configuration check has found one or

 more potential errors with the system protection mechanisms.

 System Action: The check continues processing. There is no effect on

 the system.

 Operator Response: Report this problem to the system security

 administrator and the system auditor.

 System Programmer Response: Examine the report that was produced by

 the RACF check. Any data set which has an "E" in the "S" (Status)

 column has excessive authority allowed to the data set. That

 authority may come from a universal access (UACC) or ID(*) access

 list entry which is too permissive, or if the profile is in WARNING

 mode. If there is no profile, then PROTECTALL(FAIL) is not in

 effect. Any data set which has a "V" in the "S" (Status) field is

 not on the indicated volume. Remove these data sets from the list

 or allocate the data sets on the volume.

 Asterisks ("****") in the UACC, WARN, and ID(*) columns indicate

 that there is no RACF profile protecting the data set. Data sets

 which do not have a RACF profile are flagged as exceptions, unless

 SETROPTS PROTECTALL(FAIL) is in effect for the system.

 If a valid user ID was specified as a parameter to the check, that

 user’s authority to the data set is checked. If the user has an

 excessive authority to the data set, that is indicated in the USER

REXX checks

Chapter 8. Writing REXX checks 143

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

column. For example, if the user has ALTER authority to an

 APF-authorized data set, the USER column contains "<Read" to

 indicate that the user has more than READ authority to the data set.

 Problem Determination: See the RACF System Programmer’s Guide and

 the RACF Auditor’s Guide for information on the proper controls for

 your system.

 Source:

 RACF System Programmer’s Guide

 RACF Auditor’s Guide

 Reference Documentation:

 RACF System Programmer’s Guide

 RACF Auditor’s Guide

 Automation: None.

 Check Reason: Sensitive resources should be protected.

END TIME: 05/25/2005 09:43:13.717882 STATUS: EXCEPTION-HIGH

 APF-authorized data set, the USER column contains "

The Check Reason: field display the default reason in an exception message without

installation parameter overrides.

 See “Issuing a REXX check exception message” on page 142 for an example of

how to issue an exception message from a REXX check.

The well-behaved REXX check - recommendations and recovery

considerations

Follow the rules for REXX execs: A well behaved REXX check will adhere to all

the rules for writing a REXX exec. See:

v z/OS MVS Programming: Authorized Assembler Services Guide

v z/OS TSO/E REXX User’s Guide

v z/OS TSO/E REXX Reference. See the topic on conditions and condition traps

for recovery information.

Release any system resources obtained: A REXX check should release any

resources it obtains, such as a data set, for example, before the REXX check stops

running. The REXX check must also include logic that releases resources when an

unexpected non-exception condition, such as a time-out or CANCEL, occurs. For

information about how System REXX manages unexpected conditions, see:

v System REXX in z/OS MVS Programming: Authorized Assembler Services Guide

v The section on conditions and condition traps in z/OS TSO/E REXX Reference.

The following example shows how our SYS1.SAMPLIB check, HZSSXCHK, frees

resources for an unexpected condition:

/***/

/* */

/* HZS_SAMPLE_REXXTSO_CHECK unexpected conditions: */

/* SYNTAX, ERROR, FAILURE, NOVALUE and HALT are specified by the */

/* SIGNAL function and receive control when an unexpected event */

/* occurs. */

/* */

/* - Report the line in error */

/* - Free the input data set if it is allocated */

/* - DISABLE the check and exit */

/* */

REXX checks

144 IBM Health Checker for z/OS User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

/***/

 SYNTAX:

 ERROR:

 FAILURE:

 NOVALUE:

 HALT:

ERR1 = "An Error has occurred on line: "Sigl

ERR2 = sourceline(sigl)

Say Err1

Say "Line "Sigl" text: "Err2

ADDRESS TSO "FREE DSN("DataSetName")"

HZSLFMSG_REQUEST = "STOP" /* Disable the check */

HZSLFMSG_REASON = "ERROR"

HZSLFMSG_DIAG = Right(RC,16,0) /* report the decimal rc in the

 HZS1002E message and the check

 display detail */

HZSLFMSG_RC = HZSLFMSG()

IF HZS_PQE_DEBUG = 1 THEN

 DO /* Report debug detail in REXXOUT */

 SAY "PARMS: "HZS_PQE_PARMAREA

 SAY "HZSLFMSG RC" HZSLFMSG_RC

 SAY "HZSLFMSG RSN" HZSLFMSG_RSN

 SAY "SYSTEMDIAG" HZSLFMSG_SYSTEMDIAG

 END

 EXIT /* The check is not performed */

Have your REXX check stop itself when the environment is inappropriate: If

your check encounters an environmental condition that will prevent the check from

returning useful results, your check should stop itself and not run again until

environmental conditions change and your code requests it to run. Your check

should do the following to respond to an inappropriate environment:

1. Issue the HZSLFMSG function to stop itself:

HZSLFMSG_REQUEST = "STOP"

HZSLFMSG_REASON = "ENVNA"

HZSLFMSG_RC = HZSLFMSG()

2. Issue an information message to describe why the check is not running. For

example, you might issue the following message to let check users know that

the environment is not appropriate for the check, and when the check will run

again:

The server is down.

When the server is available, the check will run again.

3. Make sure that your product or check includes code that can detect a change in

the environment and start running the check again when appropriate. To start

running the check, issue the following HZSCHECK service:

HZSCHECK REQUEST=RUN,CHECKOWNER=checkowner,CHECKNAME=checkname

If the environment is still not appropriate when your code runs the check, it can

always stop itself again.

Save time, save trouble - test your check with these commands: When you

have written your check, test it with the following commands to find some of the

most common problems people make in writing checks:

F hzsproc,UPDATE,CHECK(check_owner,check_name),DEBUG=ON

F hzsproc,UPDATE,CHECK(check_owner,check_name),PARM=parameter,REASON=reason,DATE=date

F hzsproc,DELETE,CHECK(check_owner,check_name),FORCE=YES

F hzsproc,DISPLAY,CHECK(check_owner,check_name),DETAIL

REXX checks

Chapter 8. Writing REXX checks 145

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

Debugging REXX checks

Naturally, we hope you’ll never need this section and that all your checks will run

perfectly the very first time. However, if you do run into trouble, the following tips

can help:

Look at the documentation for System REXX errors: System REXX may put out

some clues to the problem you are having with your checks. Look at the following

documentation as appropriate:

v See System REXX abend code X'050' information in z/OS MVS System Codes.

v See the System REXX messages in AXR messages in z/OS MVS System

Messages, Vol 1 (ABA-AOM).

v See AXREXX Return and reason codes in z/OS MVS Programming: Authorized

Assembler Services Reference ALE-DYN.

Look for clues to any REXX check problems in the system console log, the logrec

data set, and the message buffer.

Make sure your REXX check writes debug information to REXXOUT when

running in debug mode: When your REXX check runs in debug mode, the system

will write information that can help in check debugging to a REXXOUT data set, if

allocated. Information includes TSO error messages, System REXX error

messages, and any information you write with the SAY keyword. See “Using

REXXOUT data sets” on page 136.

Turn on debug mode: Writing code to capture great debug information in

REXXOUT won't help if you don't put the REXX check in debug mode. When a

REXX check runs in debug mode the system invokes the REXX check with a

REXXOUT dataset. When a REXX check is not in debug mode, the system invokes

the REXX check with no REXXOUT dataset, and the debug mode output is not

saved

You can turn on debug mode for a REXX check using the DEBUG parameter in the

MODIFY hzsproc command, in HZSPRMxx, or by overtyping the DEBUG field in

SDSF to ON.

Unexpected data in your REXXOUT data set? If your check is running in debug

mode, make sure the REXX check has exclusive access to the REXXOUT output

data set. See “Using REXXOUT data sets” on page 136.

REXX checks

146 IBM Health Checker for z/OS User’s Guide

|
|

|
|
|

|
|
|

|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

Chapter 9. Writing an HZSADDCHECK exit routine

For a local or REXX exec check, you can optionally add your check to the system

using an authorized HZSADDCHECK exit routine running in the IBM Health

Checker for z/OS address space. The HZSADDCHECK exit routine describes the

information about your local or REXX exec check or checks. The HZSADDCHECK

exit routine invokes the HZSADDCK macro to:

v Identify the check, providing values such as the check owner, check name, check

routine name, and message table name.

v Specifies the default values for the check, such as the check interval, check

parameter, and check severity.

Note that you can also add a check to the system using the ADD | ADDREPLACE

CHECK parameter in an HZSPRMxx parameter to define check defaults for a local

or REXX exec check. This is the method of choice for REXX exec check. See

“ADD or ADDREPLACE CHECK parameters” on page 66.

You cannot add remote checks to the system with a HZSADDCHECK exit routine.

See “Issue the HZSADDCK macro to define check defaults to IBM Health Checker

for z/OS” on page 113.

To reduce system overhead and simplify maintenance, we suggest that you create

one HZSADDCHECK exit routine for all the checks for your component or product.

Sample HZSADDCHECK exit routine

For a sample HZSADDCHECK exit routine, look for HZSSADCK in

SYS1.SAMPLIB.

 When the HZSADDCHECK exit calls the exit routines to add checks to the system,

the system processes the default values from the HZSADDCK macro call, and

applies any installation updates to the defaults.

Use the following guidelines in defining defaults for your check in the

HZSADDCHECK exit routine:

v Use the “HZSADDCK macro — HZS add a check” on page 218 in your

HZSADDCHECK exit routine to describe your check. This section also includes

“Examples” on page 234.

v The CHECKOWNER field should reflect both the company and component

or product name: For quick identification of checks, we suggest that the owner

field include a company identifier and component or product name. For example,

CHECKOWNER name IBMGRS reflects both the company and component that

owns the check.

v Define a meaningful CHECKNAME for your check: Create a meaningful,

descriptive name for your check. Your CHECKNAME should start with a

component or product prefix so that you can easily identify where a check comes

from. In addition, using the prefix ensures that all the checks for a particular

component or product will be grouped together in an SDSF check display, if

supported on your system. For example, IBM’s virtual storage management

(VSM) checks all start with VSM. (See Chapter 13, “IBM Health Checker for z/OS

checks,” on page 301.)

© Copyright IBM Corp. 2006, 2007 147

|
|
|
|

|
|
|

v Using the DATE parameters: The HZSADDCK DATE parameter specifies when

the setting or value being checked was defined. This will alert customers to

check the installation updates for this check. An installation update also has an

associated date, and when the installation update date is older than the DATE

parameter specified on HZSADDCK, the system:

– Does not apply the update

– Issues a message to inform the installation of the circumstance.

If you change your check, you should update the HZSADDCK DATE parameter

only if you want to make sure that the installation takes a look at your check

again to make sure any installation updates are still appropriate.

v Assign a severity to your check based on the problems your check is

looking for and how critical they are. The severity you choose will determine

how the system handles the exception messages that your check routine issues

with the HZSFMSG service:

– SEVERITY(HIGH) indicates that the check routine is checking for

high-severity problems in an installation. All exception messages that the

check issues with the HZSFMSG service will be issued to the console as

critical eventual action messages.

– SEVERITY(MEDIUM) indicates that the check is looking for problems that will

degrade the performance of the system. All exception messages the check

issues with HZSFMSG will be issued to the console as eventual action

messages.

– SEVERITY(LOW) indicates that the check is looking for problems that will not

impact the system immediately, but that should be investigated. All exception

messages the check issues with HZSFMSG will be issued to the console as

informational messages.

Installations can update the SEVERITY value in the HZSADDCHECK exit routine

using either the SEVERITY or WTOTYPE parameter in an installation update.

v Selecting an INTERVAL and EINTERVAL for your check: Keep the following in

mind when selecting an interval for a check:

– The INTERVAL parameter specifies how often the check will run. But you can

also specify an exception interval (EINTERVAL), which lets you specify a

more frequent interval for the check to run if it has raised an exception.

– A check INTERVAL must be 1 minute or longer.

– The specified INTERVAL or EINTERVAL time starts ticking away when a

check finishes running.

v Specify parameters for your REXX exec check: For a REXX exec check, there

are some special HZSADDCK keywords:

– EXEC(execname) - This parameter, required for a REXX check defined in the

HZSPRMxx parmlib member, specifies the name of the REXX exec containing

the REXX check or checks. This parameter tells the system that you are

defining a REXX check. For an assembler check, you would specify the

CHECKROUTINE(checkname).

If you define your REXX check with the HZSADDCK macro in an

HZSADDCHECK exit routine, the equivalent of EXEC(execname) is the

REXX=YES,EXEC=execname parameters.

– REXXHLQ(hlq) - This parameter, required for a REXX check, specifies the

high level qualifier for any input or output data set for the check.

– REXXTIMELIMIT(timelimit) - Specifies an optional input parameter that is the

number of seconds to which the execution of an iteration of the exec is to be

limited. A value of 0 is treated the same as no time limit. The default is that

this is no time limit.

HZSADDCHECK exit routine

148 IBM Health Checker for z/OS User’s Guide

|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

– REXXTSO(YES | NO) - This parameter, optional for a REXX check, specifies

whether the check runs in a TSO environment or a non-TSO environment.

The default is REXXTSO(YES).

- REXXIN(YES | NO) - This parameter, optional for a REXX check, specifies

whether or not a non-TSO check requires an sequential input data set. The

name of the REXXIN data set will consist of the high level qualifier

specified in the HLQ parameter, the exec name specified in the EXEC

parameter, and an optional entry code specified in the ENTRYCODE

parameter.

You can only specify REXXIN(YES) if you also specify REXXTSO(NO).

v Specify whether your check requires UNIX System Services: Use the USS

keyword to specify whether your check requires UNIX System Services. Any

check that uses UNIX System Services such as DUB should specify USS=YES.

If you specify USS=YES for a check, the system will run the check only when

UNIX System Services are available.

v Specify an ENTRYCODE for your check if there are multiple checks in a

check routine: Use the ENTRYCODE parameter to specify a unique entry code

for a specific check if multiple checks invoke the same check routine or REXX

check. The routine or REXX exec must contain logic to determine which check

the system is calling by checking the entrycode. The entrycode is passed to the

check routine in the field Pqe_EntryCode in the HZSPQE mapping macro.

v Making your HZSADDCHECK exit routine reentrant: Your HZSADDCHECK

exit routine will be reentrant, so you must use the LIST and EXECUTE forms of

the HZSADDCK macro and any other z/OS macros with parameter lists.

Programming considerations for the HZSADDCHECK exit routine

Environment

IBM Health Checker for z/OS calls the HZSADDCHECK exit routine in primary

mode from the IBM Health Checker for z/OS address space.

v Address space: IBM Health Checker for z/OS

v Dispatchable unit mode: Task

v Cross memory mode: PASN=SASN=HASN

v AMODE: 31

v ASC mode: Primary

v Key: System defined. The system will give control to the exit routine in the same

key in which it gives control to the check routine.

v State: Supervisor

v Interrupt status: Enabled for I/O and external interrupts

v Locks: No locks held

v Control parameters: Control parameters are in the IBM Health Checker for z/OS

address space

Note that HZSADDCHECK exit routines are loaded in common. The exit routine

should be a single csect load module.

The message table is loaded in Health Check private, it should be a single csect

load module.

HZSADDCHECK exit routine

Chapter 9. Writing an HZSADDCHECK exit routine 149

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

Input Registers

When an HZSADDCHECK exit routine receives control, the contents of the

registers are as follows:

Register Contents

Register 0 - 12

Not applicable

Register 13 Points to the address of a 72 byte save area

Register 14 - 15

Not applicable

When an HZSADDCHECK exit routine receives control, the contents of the access

registers (ARs) are as follows:

Register Contents

Register 0 - 12

Not applicable

Register 13 Points to the address of a 72 byte save area

Register 14 - 15

Not applicable

Output Registers

When a HZSADDCHECK exit routine returns control, the contents of the registers

must be:

Register Contents

Register 0 - 1 The exit routine does not have to place any information in this

register, and does not have to restore its contents to what they

were when the exit routine received control

Register 2 - 13

Unchanged

Register 14 - 15

The exit routine does not have to place any information in this

register, and does not have to restore its contents to what they

were when the exit routine received control.

When a HZSADDCHECK exit routine returns control, the contents of the access

registers (ARs) must be:

Register Contents

Register 0 - 1 The exit routine does not have to place any information in this

register, and does not have to restore its contents to what they

were when the exit routine received control

Register 2 - 13

Unchanged

Register 14 - 15

The exit routine does not have to place any information in this

register, and does not have to restore its contents to what they

were when the exit routine received control

HZSADDCHECK exit routine

150 IBM Health Checker for z/OS User’s Guide

Defining multiple local or REXX checks in a single HZSADDCHECK

exit routine

To reduce system overhead and simplify maintenance, you can and should define

multiple uniquely-named checks in a single HZSADDCHECK exit routine. Defining

multiple checks in one HZSADDCHECK exit routine will streamline the identification

and registration process for a component or product, so that you need only one

HZSADDCHECK exit routine and one check routine for your checks.

If you put multiple checks in one check routine (which is recommended), use the

ENTRYCODE parameter on HZSADDCK to assign an entry code to each check.

For a non-REXX check, the entry code is passed to the check routine in the

PQE_ENTRY_CODE field in the HZSPQE mapping macro. For a REXX check, it is

passed to the check exec in REXX variable HZS_PQE_ENTRY_CODE.

Note that the IBM Health Checker for z/OS will not verify the uniqueness of the

entry codes you define for your checks.

Dynamically adding local or REXX exec checks to IBM Health Checker

for z/OS

Once you’ve written the check routine and the HZSADDCHECK exit routine for your

checks, you must then add the checks to IBM Health Checker for z/OS so that the

system can run the check. To do this, you must add the HZSADDCHECK exit

routine to the HZSADDCHECK exit and then have the system call the exit to run

the exit routine. There are two approaches to this step:

v When your check is ready for production, you will add the code to your product

or component to activate your checks when your product starts. See “Creating

product code that automatically registers checks at initialization” on page 153.

v For testing purposes, you can add the HZSADDCHECK exit routine to the

system dynamically with either operator commands or in a program, as we will

show in this section. See:

– “Using operator commands to add checks to the system dynamically” on page

152

– “Using a routine to add checks to the system dynamically” on page 152

You can also simply define the check defaults and values directly in an

HZSPRMxx parmlib member and bypass the HZSADDCHECK exit routine

entirely. See “ADD or ADDREPLACE CHECK parameters” on page 66.

Once you have added your check to the system using one of these methods, you

can use a command such as the following to verify that it is there:

F hzsproc,DISPLAY CHECK(checkowner,checkname),DETAIL

Once a check has been added to the system, it will remain active and will run at the

specified interval until:

v A user explicitly deactivates or deletes the check, issuing a MODIFY command

for example. See “Making dynamic, temporary changes to checks” on page 36.

v IBM Health Checker for z/OS disables a check because of check routine or

environmental problems. See “IBM Health Checker for z/OS controlled states” on

page 28.

HZSADDCHECK exit routine

Chapter 9. Writing an HZSADDCHECK exit routine 151

|
|
|
|
|

|

Using operator commands to add checks to the system dynamically

1. Make the check routine, HZSADDCHECK exit routine, and message table

available to either:

v The LNKLST set being used by the IBM Health Checker for z/OS address

space

v The current LNKLST if the IBM Health Checker for z/OS address space is not

currently active

If the check routine, HZSADDCHECK exit routine, and message table belong in

SYS1.LINKLIB, one way you can make them available to LNKLST is to:

a. Copy them into SYS1.LINKLIB

b. Update LLA to indicate that the new parts are available by adding a

statement to a CSVLLAxx parmlib member containing the name of the parts

for your check. For example, you might update a CSVLLAxx parmlib

member with the following statement:

 LIBRARIES(SYS1.LINKLIB) MEMBERS(checkroutine,hzsaddcheckexitroutine,messagemod)

c. Issue the MODIFY LLA,UPDATE=xx command to have the system use the

updated CSVLLAxx parmlib member.
2. Issue the SETPROG command to add the HZSADDCHECK exit routine to the

HZSADDCHECK exit. The following example shows how we add the exit

routine, HCEXIT, to the HZSADDCHECK exit:

SETPROG EXIT,ADD,EXITNAME=HZSADDCHECK,MODNAME=HCEXIT

Note that instead of using SETPROG, you can place the analogous EXIT

statement in a PROGxx parmlib member and issue the SET PROG=xx command.

3. Issue the MODIFY command to add all new checks to the system:

 F hzsproc,ADDNEW

Using a routine to add checks to the system dynamically

The following example shows the logic of a routine that:

v �1� Adds exit routine, HCEXIT, to the HZSADDCHECK exit.

v �2� Issues the HZSCHECK service to call the HZSADDCHECK exit to run the

exit routine.
 CSVDYNEX REQUEST=ADD,

 �1�

 EXITNAME==CL16’HZSADDCHECK’,

 MODNAME==CL8’HCEXIT’,

 MESSAGE=ERROR,

 RETCODE=RC,

 RSNCODE=RS

 IF rc < 8 THEN

�2�

HZSCHECK REQUEST=ADDNEW,

 RetCode=RC,

 RsnCode=RS

Debugging HZSADDCHECK exit routine abends

For an HZSADDCHECK exit routine abend, If your HZSADDCHECK exit routine

abends, the exit routine becomes inactive and the system issues message CSV430I

identifying the exit routine and the abend so that you can debug the problem.

HZSADDCHECK exit routine

152 IBM Health Checker for z/OS User’s Guide

Creating product code that automatically registers checks at

initialization

In Chapter 9, “Writing an HZSADDCHECK exit routine,” on page 147, we talked

about registering checks for testing purposes. Ultimately, however, you’ll probably

want your component or product to automatically look for and activate any new

checks when it initializes. We’re doing this for some of our IBM products by making

check registration part of the initialization processing for the product. Add code

similar to the following to define the HZSADDCHECK exit routine to IBM Health

Checker for z/OS and look for and activate new checks:

CSVDYNEX REQUEST=ADD

 EXITNAME=HZSADDCHECK, /* HEALTH CHECKER name */

 MODNAME=IBMHCADC, /* check defintition

 exit routine */

 MESSAGE=ERROR,

 RetCode=HCRetCode,

 RsnCode=HCRsnCode

IF HCRetCode = 0 Then /* Tell Health Checker to */

HZSCHECK REQUEST=ADDNEW, /* Look for new checks */

 RetCode=HCRetCode,

 RsnCode=HCRsnCode

Creating product code that deletes checks as it goes down

If your component or product brings the system down with it, (GRS or RACF, for

example), you do not need to do any deletion or check clean up. However, if your

product or component does occasionally come up and down (USS, for example)

you might want to delete the checks and the HZSADDCHECK exit routine as you

come down.

The following example shows the kind of code you would add to delete the check

HZSADDCHECK exit routine and delete the check:

CSVDYNEX REQUEST=DELETE,

 EXITNAME=HZSADDCHECK, /* Health Checker Name */

 MODNAME=IBMHCADC, /* Delete exit routine */

 FORCE=YES,

 RetCode=HCRetCode,

 RsnCode=HCRsnCode

HZSCHECK REQUEST=DELETE, /* Tell Health Checker to */

 /* delete IBMABC checks */

 CHECKOWNER=IBMABC,

 CHECKNAME=*

 RetCode=HCRetCode,

 RsnCode=HCRsnCode

HZSADDCHECK exit routine

Chapter 9. Writing an HZSADDCHECK exit routine 153

HZSADDCHECK exit routine

154 IBM Health Checker for z/OS User’s Guide

Chapter 10. Creating the message input for your check

Check messages are the output of your check routine - they communicate the

results uncovered by a check to the user. Your check messages should:

v Report any exceptions to the values and settings the check is looking for and

convey recommendations for actions to take to correct the exception. Depending

on what the check is designed to do, an exception message may report risks to

system performance, function, availability, or integrity. A check should also report

dynamic changes since the last IPL that pose a potential problem, and which

might make the next IPL slower or error-prone.

v Report that the check found no exceptions, if appropriate.

v If the setting the check is looking for conflicts with existing default settings,

explain why the check user is getting an exception message for a default setting.

v Create report messages that displays data that the check collects.

To code messages for each check, you must do the following:

1. Plan your check messages to be easy to understand, use, and automate. See

“Planning your check messages” on page 159.

2. Create a message input data set that contains both message texts and

explanations for checks. See “Creating the message input data set” on page

162.

3. Optionally create a setup data set customized for your checks. The setup

data set contains entries for symbols, frequently used text strings used in

messages, and for the books you reference in your message explanation.

(Every message must contain a reference to a book for more information.) See

“Defining your own symbols for check messages” on page 185

4. Generate the messages into a compilable assembler CSECT using a JCL

procedure using the HZSMSGEN REXX exec. The HZSADDCHECK exit routine

passes the name of the message table for a check to IBM Health Checker for

z/OS. See “Generating the compilable assembler CSECT for the message input

data set” on page 187.

5. Compile the message CSECT to create the message table module, which

you will ship with the compiled check routine and HZSADDCHECK exit routine,

if you have one for the check. Make sure that you link edit the message table

as reentrant. In addition, Make sure that the message table is in a single

separate module, rather than mainline code, to make maintenance and

corrections easier. The message table is loaded into IBM Health Checker for

z/OS in private.

6. From your check routine:

v Use the HZSFMSG macro to issue messages . See “Issuing messages in

your check routine with the HZSFMSG macro” on page 95.

v Define the variables for your messages. In your check routine, you will

define and store message variable data into the HZSMGB data area. See

“Defining the variables for your messages” on page 97. You can have up to

20 message variables per message, each used one time only.

v Remote checks must load the message table into storage.

The following figure shows how all the parts fit together in the process of creating a

message table:

© Copyright IBM Corp. 2006, 2007 155

|
|
|
|
|
|
|

How messages and message variables are issued at check runtime

When a check runs, it issues messages using the HZSFMSG macro to relate the

results of the check. Most of the data for the messages comes from the generated

and compiled message table. However, if a message issues dynamic variables

(<mv></mv> tags), the variables work as follows:

v The values for the variables must be defined in the HZSMGB data area for the

check, which contains an array of pointers to variables.

v The address for the HZSMGB data area for a check is specified on the

MGBADDR parameter of the HZSFMSG macro. For example:

HZSFMSG REQUEST=CHECKMSG,MGBADDR=MGB_PTR

v The message input data set describes the attributes of the variable, which

determine how the variable is formatted. See “Variables for message text” on

page 175.

v At runtime, when the HFSFMSG macro is issued, the IBM Health Checker for

z/OS gets the text of the message variable from the address pointed to in the

MGB_MsgInsertAddr field in data area HZSMGB.

Figure 13 on page 157 shows how messages with variables get resolved at check

runtime.

Figure 12. Inputs and outputs for creating a complete message table

creating message input

156 IBM Health Checker for z/OS User’s Guide

F
ig

ur
e

13
.

M
es

sa
ge

an

d
va

ria
bl

e
re

so
lu

tio
n

at

ru

nt
im

e

creating message input

Chapter 10. Creating the message input for your check 157

creating message input

158 IBM Health Checker for z/OS User’s Guide

Planning your check messages

If you’ve used IBM Health Checker for z/OS, you know that the messages issued

by the check are the most important part of the check, because they notify

installations of potential problems and suggested fixes for those problems.

You can issue several types of messages in your check routine. Use the following

sections to plan for the types of messages your check will issue:

v “Planning your exception messages”

v “Planning your information messages” on page 160

v “Planning your report messages” on page 160

v “Planning your debug messages” on page 161

In addition, the system issues predefined environment and parameter error when

a check issues the HZSFMSG REQUEST=STOP service after finding a parameter

or environmental error that prevents the check from running. You do not have to

define these messages in your message table - when you issue the HZSFMSG

REQUEST=STOP service, the system issues an IBM Health Checker for z/OS

HZS100xE error message. See “The well-behaved local check routine -

recommendations and recovery considerations” on page 103 and

“Recommendations and recovery considerations for remote checks” on page 127

for information.

The system also issues parameter parser error messages - see the HZSFMSG

REASON=PARSnnnn parameters in “HZSFMSG macro — Issue a formatted check

message” on page 236.

You must decide the following when planning your messages:

v “Decide what release your check will run on” on page 161

v “Decide whether to translate your exception messages into other national

languages” on page 161

v “Rely on IBM Health Checker for z/OS to issue basic check information for you”

on page 162

Planning your exception messages

Your check will issue exception messages when a check detects a deviation from a

suggested setting. See “Understanding exception messages” on page 22 for how

an exception message looks to users.

v The message text of an exception message is a WTO and should be designed

to alert an installation to a condition that requires the attention of a system

programmer. The audience for this exception WTO is the operator, so it should

simply include enough information to identify the system resource that requires

attention. For example, the following exception message text explains just

enough to let operators know what kind of a problem the check has uncovered

and who they might need to contact:

IRRH204E The RACF_SENSITIVE_RESOURCES check has found one or

more potential errors in the security controls on this system.

Both for quick identification and to facilitate automation, IBM Health Checker for

z/OS precedes the message text WTO with a HZS000xx message that displays

the check name and exception severity.

v The message details for an exception message, with its multiple categories

such as explanation, operator response, and system programmer response, is

issued to the message buffer. The explanation should provide details about what

the check was looking for, the exception condition it found, and the impact that

creating message input

Chapter 10. Creating the message input for your check 159

the condition might have on the system. The audience for the explanation is the

system programmer, who will appreciate very specific input on how to correct the

problem in the system programmer response. For example, your exception

system programmer response might include correct command syntax. You might

also include a pointer to documentation about a suggested solution, although

ideally you can outline a complete solution right in the system programmer

response in the message buffer.

See Table 20 on page 179 for the categories you'll need to include in your

exception message details.

See “Exception message example” on page 163.

Planning your information messages

Your check can issue non-exception informational messages for the following

reasons:

v Every exception message requires an informational message for the clean-run,

no-exceptions-found case.

v Use an information message to report that the check cannot run because of

parameter errors, or because it is inappropriate for the current installation

environment. If you issue an informational message for a check that has stopped

itself because of parameter errors, describe the correct syntax of the parameters.

v Use an informational message as a report title. The report title informational

message should describe the report message, including the variables.

The explanation details that you code in your message table for informational

messages should be as complete possible, because no one wants to have to look

the message up to figure out what to do. Go ahead, you've got the whole message

buffer to explain your message! For example, you should include:

v The message explanation

v The product source of the message

v Any system action, even if it’s just that the system continues processing

v The operator response, which is to notify the system programmer.

v The system programmer response, with details on any problem with, for

example, parameters in error.

v The detecting module for the message, information that might be helpful for your

support people.

See “Information message example” on page 165.

Planning your report messages

A report message is a tabular form message issued to the message buffer, often to

display supplementary information for an exception message. A report message

give you more control over the formatted message output than any other check

message type. Use a report message if your check has a lot of data to display

about an exception to avoid issuing multiple exception WTO messages for a single

check iteration. (WTOs can be a performance/resource issue.)

Your check should issue a report message before the exception message it

supplements. In addition, your check should issue an informational title message

before the report that includes the entire explanation for the report, including the

meaning of variables, because a report message is not documented anywhere.

There is no message number associated with a report message in the message

buffer (except in debug mode viewed in SDSF).

creating message input

160 IBM Health Checker for z/OS User’s Guide

The key rule for reports issued by checks is to make sure your report can stand

on its own. In other words, for the sake of IBM Health Checker for z/OS users,

make sure that your report is as clear and self-explanatory as possible.

See “Report message example” on page 166.

Planning your debug messages

Your check can issue debug messages to display extra information about the check

to aid in testing and diagnosis when the check is in debug mode. See “The

well-behaved local check routine - recommendations and recovery considerations”

on page 103 for information about using debug mode. For a debug message, only

the message text (<msgtext> field) is issued to the message buffer. See also

“Debug message example” on page 170.

Decide what release your check will run on

The release your check will run on determines a couple of things about how you

define your messages, particularly the message list, in the message input data set.

So you must determine in advance whether:

v If your check runs only on z/OS V1R8 or higher level systems, and you want to

use function that apply only to z/OS V1R8 systems or higher (see “Message list

tag - <msglist>” on page 172 for R8 enhancments), specify your message list

with a rules level of 2:

<msglist xreftext="csectname" rules="2">

v If your check will run on z/OS V1R7 or lower level systems, you must specify a

rules level of:

<msglist xreftext="csectname" rules="1">

You can also use a rules level of 1 on a z/OS V1R8 or higher system, as long as

you do not use V1R8 enhancements in your message list.

See “Message list tag - <msglist>” on page 172 for complete information.

Decide whether to translate your exception messages into other

national languages

If you want to translate your check exception messages into other national

languages, there are a couple of things you will need to keep in mind as you code

your exception message texts. For example in order to be translated, message

texts must be 71 characters or less, so you must break up the WTO exception

message text lines with <lines></lines> tags. For complete information about

calculating line lengths for your exception message text and how to break up lines,

see “<msgtext>” on page 175. For information on using MMS, see Translating

messages in z/OS MVS Programming: Assembler Services Guide.

IBM Health Checker for z/OS can generate the skeletons for your exception

messages at the same time you generate the message input data set CSECT using

the HZSMSGEN exec, see “Support for translating messages to other languages”

on page 191.

creating message input

Chapter 10. Creating the message input for your check 161

Rely on IBM Health Checker for z/OS to issue basic check information

for you

You should never need to issue basic information about your check such as check

name, because IBM Health Checker for z/OS will automatically issue this kind of

information about your check in both the message buffer and, for exception

messages, in the WTO.

v In the message buffer, IBM Health Checker for z/OS issues information for all

messages such as check owner and name, check date, start time, and end time.

An exception message also includes additional information about values defined

for the check, such as the check reason, check parameters in use (if any). See

“″Exception message example 1″” on page 22 and “Exception message example”

on page 163.

v

v In a WTO for the exception message, IBM Health Checker for z/OS prefixes the

exception with an HZS message stating the check owner and name:

SYS1 HZS0002E CHECK(IBMXCF,XCF_SFM_ACTIVE):

IXCH0514E The state of Sysplex Failure Management is NOT consistent

with the IBMXCF recommendation.

Creating the message input data set

Sample message input data set

For a sample message input data set, see the IBM Health Checker for z/OS

Web page:

http://www-03.ibm.com/servers/eserver/zseries/zos/hchecker/

 In the message input data set, you’ll provide both the message text and the

explanation for each message.

v For exception messages, the entire message, including text and detail

(<msgtext> and all the <msgitem> tags), will appear in the message buffer,

viewable using either HZSPRINT or SDSF. However, only the message text

(<msgtext> tag) is included in the WTO. In the message text, convey the

potential problem uncovered. In the detailed explanation, convey the suggested

solution to the problem.

v For non-exception messages, only the message text will appear in the message

buffer.

The finished message input data set will be an interface which installations can

automate.

This section covers the following:

v “Examples of message input” on page 163

v “Syntax of message input” on page 171

– “Special formatting tags for the message input data set” on page 180

– “How messages are formatted in the message buffer” on page 182

– “Using symbols in the message input data set” on page 184

creating message input

162 IBM Health Checker for z/OS User’s Guide

http://www.ibm.com/servers/eserver/zseries/zos/hchecker/

Examples of message input

Exception message example

The following shows an example of a complete check exception message formatted

as it would be in the message buffer. The suffix of E indicates that the reported

situation will require eventual action.

CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)

START TIME: 05/25/2005 09:42:56.690844

CHECK DATE: 20040703 CHECK SEVERITY: HIGH

* High Severity Exception *

IRRH204E The RACF_SENSITIVE_RESOURCES check has found one or

more potential errors in the security controls on this system.

 Explanation: The RACF security configuration check has found one or

 more potential errors with the system protection mechanisms.

 System Action: The check continues processing. There is no effect on

 the system.

 Operator Response: Report this problem to the system security

 administrator and the system auditor.

 System Programmer Response: Examine the report that was produced by

 the RACF check. Any data set which has an "E" in the "S" (Status)

 column has excessive authority allowed to the data set. That

 authority may come from a universal access (UACC) or ID(*) access

 list entry which is too permissive, or if the profile is in WARNING

 mode. If there is no profile, then PROTECTALL(FAIL) is not in

 effect. Any data set which has a "V" in the "S" (Status) field is

 not on the indicated volume. Remove these data sets from the list

 or allocate the data sets on the volume.

 Asterisks ("****") in the UACC, WARN, and ID(*) columns indicate

 that there is no RACF profile protecting the data set. Data sets

 which do not have a RACF profile are flagged as exceptions, unless

 SETROPTS PROTECTALL(FAIL) is in effect for the system.

 If a valid user ID was specified as a parameter to the check, that

 user’s authority to the data set is checked. If the user has an

 excessive authority to the data set, that is indicated in the USER

 column. For example, if the user has ALTER authority to an

 APF-authorized data set, the USER column contains "<Read" to

 indicate that the user has more than READ authority to the data set.

 Problem Determination: See the RACF System Programmer’s Guide and

 the RACF Auditor’s Guide for information on the proper controls for

 your system.

 Source:

 RACF System Programmer’s Guide

 RACF Auditor’s Guide

 Reference Documentation:

 RACF System Programmer’s Guide

 RACF Auditor’s Guide

 Automation: None.

 Check Reason: Sensitive resources should be protected.

Message input data set

Chapter 10. Creating the message input for your check 163

END TIME: 05/25/2005 09:43:13.717882 STATUS: EXCEPTION-HIGH

 APF-authorized data set, the USER column contains "

Note that fields such as START TIME:, CHECK DATE:, Check Reason: and END TIME:

are not part of the message input specified by the check developer. The system

issues these automatically, as appropriate. See “Extra fields issued to the message

buffer for exception messages” on page 183 for more information.

You must code your message input with tags. The following example shows how

the example message, IRRH204E, looks coded in the tag format. This example also

shows the use of a symbol, &hzsckname;, for the check name - see “Using

pre-defined system symbols” on page 184 for more information.

<msglist xreftext="csectname" rules="1">

<msg class="Exception">

<msgnum xreftext="204">IRRH204E</msgnum>

<msgtext>

The &hzsckname; check has found one or

<lines>

more potential errors in the security controls on this system.

</lines>

</msgtext>

<msgitem class="explanation"><p>

The RACF security configuration check has found one or more

potential errors with the system protection mechanisms.

</p></msgitem>

<msgitem class="sysact"><p>

The check continues processing. There is no effect on the system.

</p></msgitem>

<msgitem class="oresp"><p>

Report this problem to the system security administrator and the

system auditor.

</p></msgitem>

<msgitem class="spresp"><p>

Examine the report that was produced by the RACF check. Any data

set which has an "E" in the "S" (Status) column has excessive authority

allowed to the data set. That authority may come from a universal access

(UACC) or ID(*) access list entry which is too permissive, or if the

profile is in WARNING mode. If there is no profile, then

PROTECTALL(FAIL) is not in effect.

Any data set which has a "V" in the "S" (Status) field is not on

the indicated volume. Remove these data sets from the list or allocate

the data sets on the volume.

</p>

<p>Asterisks ("****") in the UACC, WARN, and ID(*) columns indicate that

there is no RACF profile protecting the data set. Data sets which

do not have a RACF profile are flagged as exceptions, unless

SETROPTS PROTECTALL(FAIL) is in effect for the system.

</p>

<p>If a valid user ID was specified as a parameter to the check, that

user’s authority to the data set is checked. If the user has an

excessive authority to the data set, that is indicated in the USER

column. For example, if the user has ALTER authority to an

APF-authorized data set, the USER column contains

"<Read" to indicate

that the user has more than READ authority to the data set.

</p></msgitem>

<msgitem class="probd"><p>

See the RACF System Programmer’s Guide and the RACF Auditor’s

Guide for information on the proper controls for your system.

</p></msgitem>

<msgitem class="source"><p>

<lines>

RACF System Programmer’s Guide

RACF Auditor’s Guide

Message input data set

164 IBM Health Checker for z/OS User’s Guide

</lines>

</p></msgitem>

<msgitem class="refdoc"><p>

<lines>

RACF System Programmer’s Guide

RACF Auditor’s Guide

</lines>

</p></msgitem>

<msgitem class="automation"><p>

None.

</p></msgitem>

<msgitem class="module"><p>

IRRHCR00

</p></msgitem>

<msgitem class="rcode"><p>

</p></msgitem>

<msgitem class="dcode"><p>

</p></msgitem>

</msg>

 .

 .

 .

</msglist>

Note that tags <msgitem class=″rcode″> and <msgitem class=″dcode″> are coded

in the message input data set, but are not displayed in the message buffer.

Information message example

The following example shows an information message text as it would appear in the

message buffer:

CHECK(IBMCNZ,CNZ_CONSOLE_MASTERAUTH_CMDSYS)

START TIME: 06/01/2005 09:43:42.219863

CHECK DATE: 20040816 CHECK SEVERITY: LOW

CNZHS0002I At least one active console has MASTER authority and command

association to system JA0.

END TIME: 06/01/2005 09:43:42.225214 STATUS: SUCCESSFUL

The following example shows how the example message looks coded in the tag

format. Note that the same message explanation tags are required in an information

message as are in an exception message, although they do not show up in the

message buffer and they do not appear in this example. This example also shows

the use of a symbol, &hzssysname;, for the system name - see “Using pre-defined

system symbols” on page 184 for more information.

<msglist xreftext="csectname" rules="1">

<msg class=information>

<msgnum xreftext=201>CNZHS0002I</msgnum>

<msgtext>

At least one active console has MASTER authority and command

association to system &hzssysname;.

</msgtext>

<msgitem class="explanation"><p>

n/a</p>

</msgitem>

<msgitem class="sysact"><p>

n/a</p>

</msgitem>

<msgitem class="oresp"><p>

n/a</p>

</msgitem>

<msgitem class="spresp"><p>

n/a</p>

</msgitem>

Message input data set

Chapter 10. Creating the message input for your check 165

<msgitem class="probd"><p>

n/a</p>

</msgitem>

<msgitem class="source"><p>

n/a</p>

</msgitem>

<msgitem class="refdoc"><p>

n/a</p>

</msgitem>

<msgitem class="automation"><p>

n/a</p>

</msgitem>

<msgitem class="module"><p>

n/a</p>

</msgitem>

<msgitem class="rcode"><p>

n/a</p>

</msgitem>

<msgitem class="dcode"><p>

n/a</p>

</msgitem>

</msg>

 .

 .

 .

</msglist>

Report message example

v A report message: The following example shows a report message text as it

would appear in the message buffer.

CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)

START TIME: 06/01/2005 12:50:57.749916

CHECK DATE: 20040703 CHECK SEVERITY: HIGH

 APF Dataset Report

S Data Set Name Vol UACC Warn ID* User

- --------------------------------------- ------ ---- ---- ---- ----

E SYS1.LINKLIB PETPB1 Updt No ****

E SYS1.SVCLIB PETPB1 Updt No ****

E SYS1.SIEALNKE PETPB1 Updt No ****

 .

 .

 .

 TCPIP.V3R2M0.SEZALINK D83AE8 Read No ****

This example shows that:

– The report actually consists of four messages, IRRH255R through IRRH258R.

However, unless you run the check in debug mode and use SDSF to display

messages, the message identifier is not displayed for report messages.

– The first three messages, IRRH255R through IRRH257R contain the report

title lines, with the report name supplied by a variable.

– The fourth message, IRRH258R, contains the report data as a series of

variables.

– The same message explanation tags are required in a report message as

they are in an exception message, although they do not show up in the

message buffer.

The following example shows how we coded the message:

<msglist xreftext="csectname" rules="1">

<!-- === -->

<!-- Message: IRRH255R -->

Message input data set

166 IBM Health Checker for z/OS User’s Guide

<!-- === -->

<msg class="report">

<msgnum xreftext="255">IRRH255R</msgnum>

<msgtext>

<lines class="center">

<mv>report-name</mv>Report

</lines>

</msgtext>

<msgitem class="explanation"><p>

Header line for the RACF_SENSITIVE_RESOURCES check.

</p></msgitem>

<msgitem class="sysact"><p>

Processing continues.

</p></msgitem>

<msgitem class="oresp"><p>

None.

</p></msgitem>

<msgitem class="spresp"><p>

None.

</p></msgitem>

<msgitem class="probd"><p>

None.

</p></msgitem>

<msgitem class="source"><p>

None.

</p></msgitem>

<msgitem class="refdoc"><p>

None.

</p></msgitem>

<msgitem class="automation"><p>

None.

</p></msgitem>

<msgitem class="module"><p>

IRRHCR00

</p></msgitem>

<msgitem class="rcode"><p>

</p></msgitem>

<msgitem class="dcode"><p>

</p></msgitem>

</msg>

<!-- === -->

<!-- Message: IRRH256R -->

<!-- === -->

<msg class="report">

<msgnum xreftext="256">IRRH256R</msgnum>

<msgtext>

S Data Set Name Vol UACC Warn ID* User

</msgtext>

<msgitem class="explanation"><p>

Header line for the RACF_SENSITIVE_RESOURCES check

</p></msgitem>

<msgitem class="sysact"><p>

Processing continues.

</p></msgitem>

<msgitem class="oresp"><p>

None.

</p></msgitem>

<msgitem class="spresp"><p>

Message input data set

Chapter 10. Creating the message input for your check 167

None.

</p></msgitem>

<msgitem class="probd"><p>

None.

</p></msgitem>

<msgitem class="source"><p>

None.

</p></msgitem>

<msgitem class="refdoc"><p>

None.

</p></msgitem>

<msgitem class="automation"><p>

None.

</p></msgitem>

<msgitem class="module"><p>

IRRHCR00

</p></msgitem>

<msgitem class="rcode"><p>

</p></msgitem>

<msgitem class="dcode"><p>

</p></msgitem>

</msg>

<!-- === -->

<!-- Message: IRRH257R -->

<!-- === -->

<msg class="report">

<msgnum xreftext="257">IRRH257R</msgnum>

<msgtext>

- --------------------------------------- ------ ---- ---- ---- ----

</msgtext>

<msgitem class="explanation"><p>

Data set header line for the RACF_SENSITIVE_RESOURCES check

</p></msgitem>

<msgitem class="sysact"><p>

Processing continues.

</p></msgitem>

<msgitem class="oresp"><p>

None.

</p></msgitem>

<msgitem class="spresp"><p>

None.

</p></msgitem>

<msgitem class="probd"><p>

None.

</p></msgitem>

<msgitem class="source"><p>

None.

</p></msgitem>

<msgitem class="refdoc"><p>

None.

</p></msgitem>

<msgitem class="automation"><p>

None.

</p></msgitem>

<msgitem class="module"><p>

IRRHCR00

</p></msgitem>

<msgitem class="rcode"><p>

</p></msgitem>

<msgitem class="dcode"><p>

Message input data set

168 IBM Health Checker for z/OS User’s Guide

</p></msgitem>

</msg>

<!-- === -->

<!-- Message: IRRH258R -->

<!-- === -->

<msg class="report">

<msgnum xreftext="258">IRRH258R</msgnum>

<msgtext>

<mv>status</mv>

<mv>data-set-name</mv>

<mv>volume</mv>

<mv>UACC-access</mv>

<mv>idSplat-access</mv>

<mv>warning</mv>

<mv>userId-access</mv>

</msgtext>

<msgitem class="explanation"><p>

Data line for data set analysis report.

</p></msgitem>

<msgitem class="sysact"><p>

Processing continues.

</p></msgitem>

<msgitem class="oresp"><p>

None.

</p></msgitem>

<msgitem class="spresp"><p>

None.

</p></msgitem>

<msgitem class="probd"><p>

None.

</p></msgitem>

<msgitem class="source"><p>

None.

</p></msgitem>

<msgitem class="refdoc"><p>

None.

</p></msgitem>

<msgitem class="automation"><p>

None.

</p></msgitem>

<msgitem class="module"><p>

IRRHCR00

</p></msgitem>

<msgitem class="rcode"><p>

</p></msgitem>

<msgitem class="dcode"><p>

</p></msgitem>

</msg>

 .

 .

 .

</msglist>

v A report message in debug mode: If you are running in debug mode and using

SDSF, the report message above displays with the message number on every

line:

HZS1098I CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)

HZS1090I START TIME: 06/01/2005 13:29:16.860783

HZS1095I CHECK DATE: 20040703 CHECK SEVERITY: HIGH

IRRH255R

IRRH255R APF Dataset Report

Message input data set

Chapter 10. Creating the message input for your check 169

IRRH255R

IRRH256R S Data Set Name Vol UACC Warn ID* User

IRRH257R - --------------------------------------- ------ ---- ---- ---- ----

IRRH258R E SYS1.LINKLIB PETPB1 Updt No ****

IRRH258R E SYS1.SVCLIB PETPB1 Updt No ****

The message number is not displayed on every line if you are looking the report

message in the message buffer or with the print command. That is only a feature

of SDSF.

Debug message example

The following example shows a debug message text as it would appear in SDSF

output when the system is running in debug mode - a debug message only

appears when you are running in debug mode. (See “Debugging checks” on page

106 for how to turn on debug mode.)

HZS1098I CHECK(IBMSDUMP,SDUMP_AUTO_ALLOCATION)

HZS1090I START TIME: 06/01/2005 13:46:28.025111

HZS1095I CHECK DATE: 20050118 CHECK SEVERITY: MEDIUM

IEAH700I IEAH700I Build level 2005.045 15:49:09.60 FC= 2 EC= 2

Note that if you look at the debug message in the message buffer or with the print

command, you will not see the message number on every line.

The following example shows how we coded the debug message:

<msglist xreftext="csectname" rules="1">

<msg class=debug>

<msgnum xreftext=700>IEAH700I</msgnum>

<msgtext>

<mv>debug</mv>

</msgtext>

<msgitem class="explanation"><p>Checker debug information.</p>

</msgitem>

<msgitem class="sysact"><p>n/a</p>

</msgitem>

<msgitem class="oresp"><p>n/a</p>

</msgitem>

<msgitem class="spresp"><p>n/a</p>

</msgitem>

<msgitem class="probd"><p>n/a</p>

</msgitem>

<msgitem class="source"><p>SDUMP (SCDMP)</p>

</msgitem>

<msgitem class="refdoc"><p>n/a</p>

</msgitem>

<msgitem class="automation"><p>n/a</p>

</msgitem>

<msgitem class="module"><p>IEAVTSHG</p>

</msgitem>

<msgitem class="rcode"><p>n/a</p>

</msgitem>

<msgitem class="dcode"><p>n/a</p>

</msgitem>

</msg>

 .

 .

 .

</msglist>

Message list tagging example

The following example shows how you would code the entire message list for your

messages, including the copyright and <msglist> tags:

Message input data set

170 IBM Health Checker for z/OS User’s Guide

<lines props="copyright">

* THE SOURCE CODE FOR THIS PROGRAM IS NOT PUBLISHED OR OTHERWISE

* DIVESTED OF ITS TRADE SECRETS, IRRESPECTIVE OF WHAT HAS BEEN

* DEPOSITED WITH THE U.S. COPYRIGHT OFFICE.

* OCO SOURCE MATERIALS

* 5694-A01 (C) COPYRIGHT IBM CORP. 2005

</lines>

<msglist xreftext="hzshmtbl">

<!-- === -->

<!-- Message: IRRH201I -->

<!-- === -->

<msg class="information">

<msgnum xreftext="201">IRRH201I</msgnum>

<msgtext>The &hzsckname; check cannot be executed in a

GRS=NONE environment.

</msgtext>

<msgitem class="explanation"><p>

The RACF check &hzsckname; is not applicable to a

GRS=NONE environment.

</p></msgitem>

<msgitem class="sysact"><p>

The check stops processing. There is no effect on the system.

</p></msgitem>

<msgitem class="oresp"><p>

Report this problem to the system programmer.

</p></msgitem>

<msgitem class="spresp"><p>

Disable the &hzsckname; RACF check.

</p></msgitem>

<msgitem class="probd"><p>

</p></msgitem>

<msgitem class="source"><p>

RACF System Programmer’s Guide

</p></msgitem>

<msgitem class="refdoc"><p>

<lines>

RACF System Programmer’s Guide

MVS Planning: Global Resource Serialization

</lines>

</p></msgitem>

<msgitem class="automation"><p>

None.

</p></msgitem>

<msgitem class="module"><p>

IRRHCR00

</p></msgitem>

<msgitem class="rcode"><p>

</p></msgitem>

<msgitem class="dcode"><p>

</p></msgitem>

</msg>

 .

 .

 .

</msglist>

Syntax of message input

You code the message input with tags. The following topics describe the syntax for

coding an IBM Health Checker for z/OS message in the message input data set:

v “Message input tags” on page 172

v “Special formatting tags for the message input data set” on page 180

v “How messages are formatted in the message buffer” on page 182

v “Using symbols in the message input data set” on page 184

Message input data set

Chapter 10. Creating the message input for your check 171

Restrictions:

The following characters are tag characters, and you can only use them in

tags in your message input data set. Note, however, that IBM Health Checker

for z/OS does support symbols in the message input data set.

v Do not use < (less-than) and > (greater-than) - You can use < and > as

substitutes.

v Do not use & (ampersand) - You can use & as a substitute.

Message input tags

Copyright information

<lines id=″checkownername″ props="copyright" > * copyright information *

</lines>

The message input data set for every check must contain a copyright

statement. For example, a copyright statement might look as follows:

<lines id="IBMRACF" props="copyright">

* THE SOURCE CODE FOR THIS PROGRAM IS NOT PUBLISHED OR OTHERWISE

* DIVESTED OF ITS TRADE SECRETS, IRRESPECTIVE OF WHAT HAS BEEN

* DEPOSITED WITH THE U.S. COPYRIGHT OFFICE.

* OCO SOURCE MATERIALS

* 5694-A01 (C) COPYRIGHT IBM CORP. 2005

</lines>

id=″checkownername″

Specify the check owner, such as IBMRACF, for the messages in

this message list.

props="copyright"

Specify props="copyright" to indicate that this is your copyright

statement.

Message list tag - <msglist>

<msglist xreftext=″csectname″ rules="ruleslevel"></msglist>:

The message list tag. You can only have one message list per message input

data set. If you include any data after the end message list tag, </msglist>, the

message generation program will issue error message HZSM0009 and issue a

return code of 8. See “Generating the compilable assembler CSECT for the

message input data set” on page 187.

xreftext=″csectname″

Specify the name of the generated message table CSECT. The default

message table module name is HZSHMTBL. csectname must be 1-8

alphanumeric characters. xreftext=″csectname″ is required.

rules="ruleslevel"

Use the rules attribute to indicate whether or not your check message input

table uses message elements that apply only to z/OS V1R8 and above

systems. If the message input data set does not conform to the rules level

selected, the HZSMSGEN exec will not be able to generate the message

input data set.

rules="1"

Indicates that the check can run on systems at the z/OS V1R7 level

or below, depending on what releases the individual check supports

- see Chapter 13, “IBM Health Checker for z/OS checks,” on page

301

Message input data set

172 IBM Health Checker for z/OS User’s Guide

301. At rules level 1, a check message input data set cannot use

z/OS V1R8 enhancements such as required blank symbols or

maxlen and fieldsize attributes for variables. For a rules="1"

message list, the system will ignore leading blank characters after

the paragraph tag, <p>, and message text tag, <msgtext>.

rules="2"

Indicates that the check can run on systems at the z/OS V1R8 level

or above and use R8 and above functions:

v You can use maxlen and fieldsize attributes for variables - see

“Variables for message text” on page 175.

v In rules="2" message list, you cannot enter leading blank

characters after the <p> and <msgtext> tags. If you need a blank

in a rules="2" messagelist, use symbol &rbl;, which inserts a

required blank into the formatted output. This is also useful for

keeping words together on one line. For example, to keep the

words System A on one line and together, code the following:

System&rbl;A

If you specify rules="2" on a message list for a check that runs on a

system below the z/OS V1R8 level, the check abends when the

system tries to add the check to the system.

In order to convert a message list from rules="1" to rules="2", you

must:

v Specify rules="2" on the message list tag

v Use a required blank symbol, &rbl; if you require a leading blank

after a <p> tag or <msgtext> tag.

Message instance tag - <msg>

<msg class=″msgtype″></msg>

The <msg> element defines a message in a message list. The

class=″msgtype″ attribute, which describes the type of message, is required

on the <msg> tag. The class may describe either z/OS Health Checker

message behavior or a Common based event. You can have the following

values for class=″msgtype″:

v Exception: Messages notifying the installation that action is required

because a check routine found an exception to a suggested setting. The

message text, intended for the operator, is issued in a WTO. The

message text and full explanation are issued to the message buffer,

mainly for the system programmer.

v Information: Messages conveying general non-exception information, for

example the completion of the check without exceptions, or as the first

line of a report. Only the message text is issued to the message buffer.

v Report: Single lines of report data issued to the message buffer without

a message number (except in debug mode). Only the message text is

issued to the message buffer. The report message type gives you the

most control over the formatted output. A single report line should be 72

characters of formatted output or less. Because report messages do not

display with a message number, a report message with a line of report

data should be preceded by an information message containing the

report title.

v Debug: Messages issued to the message buffer when the check is

placed in debug mode to aid in testing and diagnosis. Only the message

text is issued to the message buffer.

Message input data set

Chapter 10. Creating the message input for your check 173

The following table summarizes information for the different message types:

 Table 17. A summary of message types for IBM Health Checker for z/OS

Message type <msg class=msgtype> Message number suffix Where is message

text issued?

Exception

 <msg class=Exception>

E v The message

buffer, including the

message text and

all details.

v WTO message text

only to console,

operlog, or syslog

Information <msg class=Information> I Message buffer

Report <msg class=report> N/A - Message number is

not displayed unless you

are running in debug

mode and use SDSF to

display the message.

Message buffer

Debug <msg class=debug> N/A - Message number is

not displayed unless you

are running in debug

mode and use SDSF to

display the message.

Message buffer or

system hardcopy log

Each <msg> element must contain the following elements:

v <msgnum> - See “Message number tag - <msgnum>.”

v <msgtext> - See “<msgtext>” on page 175.

v <msgitem> - See “message explanation” on page 178.

Restriction: You must code the following tags in consecutive lines without

comments or blank lines between them:

<msg class=″msgtype″></msg>

<msgnum xreftext=″nnnn″>ccccHmmmms</msgnum>

<msgtext>....

Message number tag - <msgnum>

<msgnum xreftext=″msgnumber″>ccccHmmmms</msgnum>

The message is identified in two ways on the <msgnum> tag - both inputs

are required for all messages:

xreftext=″messagenumber″

messagenumber is the decimal value used in the HZSFMSG macro

to uniquely identify the message. messagenumber is a decimal

value between 1 and 2147483647. The messagenumber you define

will be reflected in the MGB_MessageNumber field in the HZSMGB

data area.

ccccHmmmms

The text value that appears as the message identifier. In the

message identifier:

ccccH cccc is the component identifier, such as ISG for global

resource serialization. The required H represents IBM

Health Checker for z/OS.

mmmm

The message number. For example, in message identifier

ISGH101E, 101 is the message number.

Message input data set

174 IBM Health Checker for z/OS User’s Guide

s The severity code for the message. s is one of the

following:

v For an exception message, use E.

v For information and debug messages, use I.

v For report messages, you can use any suffix you like, or

no suffix at all - users will not see these message

numbers unless they’re running IBM Health Checker for

z/OS in debug mode and viewing the message buffer

with SDSF. Because report messages do not display with

a message number, a report message with a line of

report data should be preceded by an information

message with the report title and the explanation for the

report.

Message text (<msgtext>) and message variable (<mv>) tags

<msgtext></msgtext>

Required element that contains the data issued to a message buffer when

IBM Health Checker for z/OS issues messages for a check.

 For an exception message, the system uses data in the <msgtext> tags to

create a WTO. In many installations, the exception message WTOs (which

are issued to the operator’s console) require national language support

(NLS) translation using MVS message service (MMS). If you are going to

translate your messages, each message text line must be 71 characters or

less. See “Support for translating messages to other languages” on page

191 for guidelines on how to code the message text for translating

messages.

 You can have message variables in a message text - see “Variables for

message text.”

 You cannot use paragraph (<p></p>) tags within the <msgtext> . If you

need to start a new line, <lines></lines>:

<msgtext>

I need a new line, but I can’t use a paragraph tag.

<lines></lines>

But I can get a new line with the lines tag.

</msgtext>

For information on how message text (<msgtext>) is formatted in the

message buffer, see “How messages are formatted in the message buffer”

on page 182.

<mv class=″variable_class″ xreftext="maxlen(nnn | fieldsize(nnn")></mv>

Specify <mv>/</mv> to define the variables in your message text

(<msgtext></msgtext>). You define each variable with a class="varable

_class", to specify the type of variable and xreftext="maxlen(nnn) |

fieldsize(nnn" to define the length of a variable after it is formatted.

class=″variable_class″

Specify <mv class=″variable_class″> to define different types of

variables. A message variable allows the check routine to issue the

HZSFMSG macro with dynamic variables in the message text. You

can have up to 20 message variables in a message, each used one

time only. When you develop a check, you’ll provide the data for the

message variables in the HZSMGB data area in the

MGB_MsgInsert field. See “How messages and message variables

are issued at check runtime” on page 156.

Message input data set

Chapter 10. Creating the message input for your check 175

The default for an <mv> variable (if you do not specify a class) is

text, which indicates that the variable is EBCDIC text with a

maximum length of 256 bytes.

 Use a meaningful variable name. IBM Health Checker for z/OS

processes message variables positionally; it does not parse the

content. The following example shows a message text message

with two variables:

<msgtext>LNKLST

<mv class=compress xreftext=maxlen(16)>lnklst name</mv>

data set name :

<mv class=compress xreftext=maxlen(44)>dsname</mv><lines></lines>

has more extents than when it was

activated.

</msgtext>

The output of the message markup showing the dynamically

resolved variables might look as follows:

LNKLST LNKLST00 data set name: DATASET1.DATA.ABC has more extents than

when it was activated.

Note that although the variables are coded on separate lines, they

are all on the same line in the output. The system inserts a blank

between each variable because of the end of the line.

 You can specify the following different types of variables:

<mv class=″compress″>

Specifies that data in the MGB_MsgInsertField of the

HZSMGB data area is text. The system removes leading

and trailing blanks within the variable in the message

output. class=″compress″ is the default behavior for

exception, information, and debug messages.

<mv class=″nocompress>

Specifies that data in the MGB_MsgInsertField is text. The

system will not remove leading and trailing blanks or

suppress blanks within the variable in the message output -

the length of the variable will be same as the length

provided in the MGB_MsgInsertField for the variable.

 Class=″nocompress″ is the default for report messages

because it gives you more control over the formatted

output. The system does not remove blanks in nocompress

variables..

 You cannot specify xreftext="fieldsize(nnn)" for a

nocompress variable.

<mv class=″condcompress>

Specifies that data in the MGB_MsgInsertField field for the

variable is text. The system leaves or removes leading and

trailing blanks, depending on the message type. For report

messages, the system does not remove blanks in the

variable. For exception, information, and debug messages,

the system does remove blanks within the variable. <mv

class=″condcompress> is the default.

<mv class=″decimal″>

Specifies that the binary input described in the

Message input data set

176 IBM Health Checker for z/OS User’s Guide

MGB_MsgInsert field for the variable be converted to

decimal. Leading zeros are suppressed, and the field size is

set to the first significant digit. The largest generated output

length for decimal variable values up to 2147483647

(X'7FFFFFF') is 10 bytes. Values greater than 2147483647

are expressed with multiplier notation and can be a

maximum of six characters. The following table shows the

value of multipliers:

 Kilo K 1,024

Mega M 1,048,576

Giga G 1,073,741,824

Tera T 1,099,511,627,776

Peta P 1,125,899,906,842,624

<mv class=″hex″>

Specifies that the binary input described in the

MSB_MsgInsert field for the variable (up to 100 characters)

be translated to a hexadecimal value expressed in EBCDIC

characters. Hexadecimal output is formatted with an

underscore after the eighth character.

<mv class=″gmttime″>

Specifies that the value from the MGB_MsgInsert field is

not to be adjusted for local time. The input data for this

variable is an eight character field containing a 64-bit time

of day value in the format MM.DD.YY HH:MM:SS.ffffff.

<mv class=″LocalTime″>

Specifies that the value from the MGB_MsgInsert field is to

be adjusted to local time. The input data for this variable is

an eight character field containing a 64-bit time of day value

in the format MM.DD.YY HH:MM:SS.ffffff.

Maximum length values for variables are as follows:

 Table 18. Variable input and output lengths and alignment:

Variable type Input length Output length

Class=″compress″,

″nocompress″, or

″condcompress″

1-256 256

Class=″hex″ 1-100 256

Class=″decmial″ 1-8 10

Class=″gmttime″,

″localtime″

8 26

Note that if a variable has a zero input length at the time when the

message is issued, the field does not show up in the output

because all the nulls and blank are eliminated from the output.

xreftext=" maxlen(nnn) | fieldsize(nnn)"

Specify <mv class="variable_class" xreftext="maxlen(nnn | fieldsize(nnn" to

define the length a variable after it is formatted. You can only specify

maxlen and fieldsize on a rules="2" message list.

Message input data set

Chapter 10. Creating the message input for your check 177

maxlen(nnn)

Maxlen allows you to specify the maximum length of formatted

output a variable should produce. Maxlen applies only to systems at

z/OS V1R8 or higher and the message list must specify rules="2".

Maxlen is particularly useful for calculating variable size for NLS

message translation, which requires message line text length of 71

characters or less. See “Support for translating messages to other

languages” on page 191.

 If variable resolution produces output greater length than the value

of maxlen, the HZSFMSG invocation abends with abend code

X'290', reason code X'4016'.

 The following table shows which variables allow maxlen:

 Table 19. Which variables allow maxlen?

Variable type Maxlen allowed? Maxlen value allowed

Class=″compress″,

"condcompress"

Yes 256 or less

Class=″nocompress″ Yes 256 or less

Class=″hex″ Yes 224 or less, because

the output is limited to

100 bytes.

Class=″decmial″ Yes 10 or less

Class=″gmttime″,

″localtime″

No –

fieldsize(nnn)

Fieldsize allows you to specify the exact length that the field should

always be in the formatted output. The output is expanded to the

specified length and padded with blanks. This is useful for creating

columns in report messages. When you specify fieldsize, variables

are aligned as follows:

v Decimal and hex variables are right aligned

v Compress and condcompress variables are left aligned

v gmltime and localtime variables are truncated on the right

The following example shows a report message that uses fieldsize

for variables:

<msg class=report>

<msgnum xreftext=0001>ReportL01</msgnum>

<msgtext><mv xreftext="fieldsize(6)">Volser</mv>

<mv xreftext="fieldsize(44)">data set name</mv>

<mv class="decimal" xreftext="fieldsize(6)">data set extents</mv>

</msgtext>

If variable resolution produces output greater length than the value

of fieldsize, the check abends with abend code X'290', reason code

X'4116'.

Message item tag - <msgitem>

<msgitem class=″itemclass″></msgitem>

The <msgitem class=″itemclass″> tag contains the message explanation

information that is usually included in a message reference document:

Message input data set

178 IBM Health Checker for z/OS User’s Guide

v For class="exception" messages, the information specified in the

<msgitem class=″itemclass″> tags is also included in the message buffer,

where it is available for users to read and automate from. The first line of

the message explanation described with <msgitem> tags begins in

position 3. Lines following the first line of the explanation begin in

position 5. When a <msgitem> section ends, the system generates new

paragraph to put a blank line between each <msgitem>.

v For class="information", "report", and "debug" messages, information

specified in the <msgitem> tags will only be included in the

documentation for the message in message book for the check

component. The <msgitem> information is not included in the output in

the message buffer or elsewhere for non-exception messages.

You can optionally enclose the itemclass in quotes, either double or single.

Use <mv></mv> to list and explain all variables that appear in the

message. Use the following formatting elements to control the presentation

of text

v <p> (paragraph) - text in a message item must be within paragraph tags

(<p></p>).

v <lines> (lines) - allows you to control lines of text. Use <lines></lines> to

generate a blank line.

See “Special formatting tags for the message input data set” on page 180.

 You will have multiple <msgitem class=″itemclass″> tags for a message

(see “Examples of message input” on page 163 for an example). All of the

classes are required. If you do not have specific information for a class, you

can often use ’n/a’.

 Table 20. Description of <msgitem> classes required for all message explanations

Class Description

″explanation″ Explains the message. Can include message variables, paragraphs and other formatted text - see “Special

formatting tags for the message input data set” on page 180.

For an exception message, the explanation should describe the exception condition found and its impact to

the system.

For the informational report title message, the explanation must include the meaning of the variables used in

the message text that are not self-explanatory within the explanation. For example, if you use

<mv>widget</mv> within the message text, you must then explain what the variable in the explanation, as

follows:

widget

An important device you need to buy for your computer. widget will be one of the following:

widgeta

Type a widget

widgetb

Type b widget

″sysact″ The system action describes what the system, in particular the component that owns the check, is doing as a

result of the condition that caused the message to be issued. The system action must be specific - you cannot

enter a system action of ’n/a’ or ’None’. The system always does something, even if it just continues

processing.

″oresp″ Operator response describes the actions an operator should take in response to the message.

v For exception messages, this should direct the operator to the right person to evaluate the exception. for

example, ″Contact the system programmer:″

v For other messages, which do not appear on the operators console, ’n/a’ is the correct operator's response.

The operator response can also be ’n/a’.

Message input data set

Chapter 10. Creating the message input for your check 179

Table 20. Description of <msgitem> classes required for all message explanations (continued)

″spresp″ System programmer response describes the actions, if any, the system programmer should take to isolate and

correct an error, including diagnostic steps and reporting the problem to the IBM support center. Include

sample syntax and references for changing system parameters or issuing commands. Include a reference to

the problem determination category if you’re using the probd class for additional information for the system

programmer. ″Spresp″ can also be ’n/a’.

″probd″ Problem determination - communicates additional information or actions that a system programmer, system

administrator, security administrator, or database administrator may need to know to further diagnose a

problem discussed in the system programmer response, including trace or dump information. Provide cross

references (including links to other books) to procedures - different dumps use different allocations,

procedures, and resources. Probd can also be ’None’.

″source″ The name of the component, subsystem, or product issuing the message.

″automation″ Automation - Use this section to discuss automation concerns related to the check results. Specify ’n/a’ if you

have no automation information for a message.

″refdoc″ Use the reference documentation class to reference books that provide additional detail regarding suggested

settings or interpreting results. Include the book title, chapter heading, and section heading.

Specify ’n/a’ if you have no reference information.

″module″ Module identifies the name of the detecting module. If your component is OCO (Object Code Only), use the

component name instead of a module name. Consider using an entity declaration in HZSSDSN to create a

symbol for the module. This class is not included in the message buffer for an exception message.

″rcode″ Routing code. Specify N/A for this field, because Health Checker for z/OS does not use a routing code, so this

value is always zero unless the installation overrides the value in the HZSPRMxx parmlib member values for

the check. Rcode is not included in the message buffer for an exception message.

″dcode″ Descriptor code.

For an exception message, document the default descriptor code based on the severity of the check:

v High severity checks use a descriptor code of 11

v Medium severity checks use a descriptor code of 3.

v Low severity checks use a descriptor code of 12.

See “Great symbols for multiple users” on page 186.The installation can override the severity and descriptor

code in the HZSPRMxx parmlib member. Dcode is not included in the message buffer for an exception

message.

For a non-exception message specify N/A for this field.

Special formatting tags for the message input data set

<mv ></mv>

For use in the message explanation, <msgitem> tags, specifies that the text

within the <mv></mv> tags are variables. The text within the tags will

generally format in italics. See “Variables for message text” on page 175 for

complete information about variables.

<!-- comment --> tags and blank lines

You cannot place comments or blank lines inside the body of individual

messages, between the <msg> and </msg> tags. This will cause

unpredictable results. You should only place comments and blank lines:

v Before the copyright statement for the message input data set (<lines

id=″ownername″ props="copyright" > * copyright information * </lines>).

v Between the copyright statement and the message list tag, <msglist>

v Between the <msglist> tag and the message tag, <msg>

v Between individual messages, which would be between the message

end tag, </msg>, and the next message start tag, <msg>.

Comments must go on a separate line with no other data.

See “Defining your own symbols for check messages” on page 185 for

putting comments in an entity declaration.

Message input data set

180 IBM Health Checker for z/OS User’s Guide

<lines></lines>

The <lines> tag lets you control lines of text by keeping short lines of text

from flowing together or by generating blank lines. You can use the <lines>

tags to format text in the message text (<msgtext>) or explanation

(<msgitem> tags) for any type of message. The <lines class=″center″> tag

lets you both control and center lines of text. Use <lines tags with the

following considerations:

v For exception messages, use <lines></lines> tags to define a new line

before you reach the WTO limit of 71 characters. Make sure you include

the message number in your count.

v The <lines> or <lines class=″center″> beginning tag generates a new

line. Use <lines></lines> to create a blank line for messages in the

message buffers. Blank lines are suppressed for WTOs, so in the WTO

message text for an exception message <lines></lines> will just start a

new line.

v If you specify too long a line of text within the <lines> tag to fit on the

line, the data wraps to a new line.

v The end of a line is broken on a word boundary and causes the next

word to begin a new line.

v You can put variables (<mv> tag) and symbols within <lines tags.

v You cannot use <p> tags within the <lines markup.

<lines> example 1: The following example show a valid use of <lines>

tags to keep a group of short lines from flowing together:

<lines>

Short lines of data

that format exactly as I type them

in the generated output.

This one is too long and is going to wrap around in a way I dislike, so I shouldn’t really
</lines>

<lines> example 2: You cannot use <p></p> tags within the message text

<msgtext> tags. If you need to start a new line, use <lines></lines> instead.

For example, you might want to break a line in an exception message text

before you reach the WTO limit of 71 characters.

<msgtext>

I need a new line, but I can’t use a paragraph tag.

<lines></lines>

But I can get a new line with the lines tag.

</msgtext>

For a WTO message text, <lines></lines> tagging starts a new line:

I need a new line, but I can’t use a paragraph tag.

But I can get a new line with the lines tag.

In the message buffer, <lines></lines> gives you a blank line:

I need a new line, but I can’t use a paragraph tag.

But I can get a new line with the lines tag.

<lines class=″center″> example: Use <lines class=″center″> to center

your lines of text:

Message input data set

Chapter 10. Creating the message input for your check 181

<lines class="center">

Short lines of data

that format exactly as I type them

in the generated output

except centered

</lines>

You will get the following output:

 Short lines of data

that format exactly as I type them

 in the generated output

 except centered

<p></p>

A paragraph contains text in paragraph form. Use paragraph tags to format

paragraph text as follows:

v Paragraph tags are required to enclose the text in all <msgitem> tags, for

any type of message.

v You cannot use paragraph tags in message text <msgtext>. Instead, use

<lines></lines> to create a blank line.

v The <p> beginning tag starts a new line and data begins at the start of

the next line.

v If your text in a paragraph hits the end of the line boundary, the line splits

on a word boundary. Leading and trailing blanks may be lost when the

line is split. See “How messages are formatted in the message buffer.”

Example: The following example shows valid use of paragraph tags:

This is a line of text.

<p>Although the text flow of paragraph is the default behavior,

more rigid rules are observed.

</p>

<p>

Blank

lines are suppressed.

</p>

This example will format as follows:

 This is a line of text.

Although the text flow of paragraph is the default behavior, more rigid

rules are observed.

Blank lines are suppressed.

How messages are formatted in the message buffer

For exception messages, both text (<msgtext>) and explanation (<msgitem

class=″itemclass″> except rcode and dcode) are issued to the message buffer. For

information, report, and debug messages, only the text (<msgtext>) is issued to the

message buffer or log.

Default formatting for messages in the message buffer is as follows:

v Message processing for all messages and all the parts of a message use

paragraph flow unless <lines></lines> tags are used to break up lines.

v When a message is reformatted to fit in the message buffer, the system splits the

line on a word boundary. Blanks may be lost when the line is split. The system

suppresses blank lines.

v The system strips leading and trailing blanks from variables, except variables in

report messages or nocompress variables (<msgitem class=″nocompress″>.

Message input data set

182 IBM Health Checker for z/OS User’s Guide

v A character string with a length greater than the output line length will continue

on the following line without blanks added. This is referred to as wrap mode.

The table below shows how the different types of messages are formatted in the

message buffer:

 Table 21. How messages are formatted in the message buffer

Message type Formatting in the message buffer

Exception A complete message, including both the message text and explanation are issued to the message buffer. The

message text is limited to 14 lines, 70 characters long (4 for indentation). In the check details, you can have lines

71 characters long. Check exception messages are imbedded in a IBM Health Checker for z/OS HZS prefix

message with a prefix of HZS and format as follows:

v The first line of the exception message contains the HZS message identifiers, either HZS003A, HZS002E, or

HZS001I, depending on the severity of the message as well as the check owner and check name. For example,

the following output would be issued to the operator console:

HZS002E (IBMCSV,LNKLST_SPACE)

CSVH951E LNKLST CZ INCLUDES DATA SETS WITH SECONDARY SPACE

DEFINED.

v The first line of the message explanation in the message buffer begins in position 3.

v The second line of the message begins with the message identifier assigned to the message in the <msgnum>

tag.

v The second and following lines of the message begin in position 5 and are 66 characters long.

v When the <msgtext> section ends, the system generates a new line.

Information The message text (<msgtext>) specified is formatted in paragraph format in the message buffer.

v The system splits the line on a word boundary and begins the new line with a non-blank character. The system

suppresses blank lines.

v When data exceeds the output line length, it will wrap to the next line.

v A line ends on a word boundary, and new lines begin in the 5th position on the following line.

Report The message text (<msgtext>) is a single line of data issued to the message buffer.

v Each line of text begins in position 1.

v When data exceeds the output line length, it will wrap to the next line.

v The system will not suppress leading and trailing blanks in the message text when you add dynamic variables

using the <mv> element. To compress leading and trailing blanks in a variable in a report message, use a <mv

class=″compress> tag.

Debug The message text (<msgtext>) is issued to the message buffer or system hardcopy log when you place the check

in debug mode.

v The first line of text in a debug message begins in position 1, unless you format the lines differently, using

<lines>, for example.

v Lines end on a word boundary and new lines begin in the 5th position on the following line.

v When data exceeds the output line length, it will wrap to the next line.

v The system suppresses leading and trailing blanks in the message text of information messages unless

formatting tags override the default text flow.

v You can add dynamic variables using the <mv> element.

Extra fields issued to the message buffer for exception

messages

For exception messages issued to the message buffer, IBM Health Checker for

z/OS issues additional information automatically, including:

v Owner IBMcomp reason: This field displays the reason for running the check.

The reason displayed is specified by the check developer in the HZSADDCHECK

exit routine. For example, for check GRS_MODE, the reason defined in the

HZSADDCHECK exit routine is as follows:

GRS should run in STAR mode to improve performance

See Chapter 9, “Writing an HZSADDCHECK exit routine,” on page 147.

v Installation reason: This field is displayed if the installation overwrites the

HZSADDCHECK exit routine reason with a new reason value.

v Check Parameters: This field displays the parameters (defined in the

HZSADDCHECK exit routine) that are passed to the check routine when it runs.

Message input data set

Chapter 10. Creating the message input for your check 183

Using symbols in the message input data set

You can specify symbols in your message input data set that resolve to meaningful

values. There are several types of symbols that you can use:

v Pre-defined system symbols set by IBM Health Checker for z/OS for use in an

exception message and that resolve at check runtime. (A very few resolve when

you generate your message input data set CSECT.) See “Using pre-defined

system symbols.”

v Symbols defined in the source message input data set or setup file that resolve

when you generate the CSECT for the message input data set. See “Defining

your own symbols for check messages” on page 185.

Using pre-defined system symbols

You can use the following predefined system symbols in an exception message.

These are set by IBM Health Checker for z/OS. For example, the following

message markup uses symbols (delimited by an ampersand and a semi-colon) for

the check and system names:

 <msgtext>&hzsckname; Health Checker Report for z/OS

 on system &hzssysname;

 </msgtext>

IBM Health Checker for z/OS sets these symbols at registration and run time. That

means you do not have to define these symbols in a setup data set or in your

message input data set in order to use them. The system resolves the following

pre-defined symbols that resolve when the check runs:

 Table 22. A summary of pre-defined symbols that resolve when the check runs

Predefined symbol Maximum

number of

characters

Symbol resolves to

&hzs; 38 IBM Health Checker for z/OS

&hzsproc; 8 The name of the start up procedure for IBM Health Checker for z/OS

&hzssysname; 8 System name

&hzssysplex; 8 Sysplex name

&hzsreason; 256 User or component reason from the HZSADDCHECK exit routine.

&hzsexitrtn; 8 The name of the HZSADDCHECK exit routine.

&hzsparmsource ; 16 Resolves to ’Installation’ or ’Owner’ to indicate whether the default

PARMS from the HZSADDCHECK exit routine are in effect, or user

overrides are in effect.

&hzssev; 6 Resolves to the severity set defined at runtime from either the

HZSPRMxx parmlib member or the HZSADDCHECK exit routine

(HIGH | MEDIUM | LOW)

&hzsparms; 126 Active check parameters

&hzsckname; 32 The check name, as defined in the HZSADDCHECK exit routine

&hzsowner; 16 The check owner, which is the component or subsystem as defined in

the HZSADDCHECK exit routine. For example, &owner; might resolve

to OEM, IBMGRS, IBMRSM, IBMXCF, or IBMUSS.

&hzsdate; 10 The current system date in the form: dd mmm yyyy

&hzsgmttime; 16 The current system GMT time is displayed in the form:

mm/dd/yyyy hh:mm:ss.tttttt

Message input data set

184 IBM Health Checker for z/OS User’s Guide

Table 22. A summary of pre-defined symbols that resolve when the check runs (continued)

Predefined symbol Maximum

number of

characters

Symbol resolves to

&hzslocaltime; 16 The current system time is adjusted to local time and displayed in the

form :

mm/dd/yyyy hh:mm:ss.tttttt

The following table shows other pre-defined symbols that resolve when you

generate the CSECT for the message input data set:

 Table 23. A summary of pre-defined symbols that resolve when you generate the CSECT for the message input data

set

Predefined symbol Maximum

number of

characters

Symbol resolves to

&rbl; The ever useful required blank character for use in a rules="2"

message list. In rules="2" message list, you cannot enter leading blank

characters after the <p> and <msgtext> tags, so you must use symbol

&rbl;, which inserts a required blank into the formatted output, and

keeps the words on the same line. A required blank will not be

removed during formatting. This is also useful for keeping words

together on one line. For example, to keep the words System A on one

line and together, code the following:

System&rbl;A

You can also specify a required blank in a message variable using the

character X'44'. The system resolves this hex character as a blank

when the output data is formatted.

> Greater than symbol, >

< Less than symbol, <

& Ampersand symbol, &

If you want to use other symbols besides the predefined system symbols in your

message input, you must define them in the source message input data set (before

the <msglist> tag) or in the message setup data set, see “Defining your own

symbols for check messages.”

Defining your own symbols for check messages

Besides using the predefined system symbols, you can also define symbols specific

to the check messages in the message input data set or setup file. We'll call these

local symbols. Keep the following in mind as you plan whether to define local

symbols and which ones to define:

v You should only create a local symbol for a known constant that you use multiple

times in the message input data set.

v National language support (NLS) variables are not created for check specific

symbols, and they do not require special support at execution time.

v Local symbols can use symbols within symbols. In other words, the symbol

substitution text can include other local or system symbols.

Like system symbols, you specify the entity for your local symbol as a name

delimited by an ampersand (&) and a semi-colon. For example, you could specify

and use local symbols as follows:

Message input data set

Chapter 10. Creating the message input for your check 185

v Create your own symbols for any text you use multiple times in the message

input data set. When you generate the message input data set, the symbols will

resolve to your text value. For example:

If I insert an entity, or symbol, &newsym;.

This would resolve to:

If I insert an entity, or symbol, the symbol resolves to this exciting text.

v Define your own symbols to make it easier to put accurate book titles in the

required <msgitem class=″refdoc″> tag for check messages. For example:

For more information about the recommended settings, see &ieaa100t;.

This resolves to:

For more information about the recommended settings, see

z/OS MVS Auth Assm Services Reference ALE-DYN.

You can define symbols for your check using <!ENTITY> tags in either:

v The source message input data set, before the <msglist> tag. Here's an

example of defining symbols in the message input data set itself:

<!ENTITY PROD1 "Product ABC">

<!ENTITY PROD2 "Product DEF">

<!ENTITY NA "N/A">

<msglist xreftext="PRODABC Rules=2">

 .

 .

 .

v A setup data set, which is a separate data set containing the symbol definitions

for your check. This is a handy way to make symbols available for multiple

checks. Here’s an example of a setup data set with both a copyright statement

and some symbols we find very useful for multiple users and multiple checks:

Using either of these methods, the symbols are resolved in the CSECT when you

generate the message input data set.

Syntax for defining your symbols - the <!ENTITY> tag: The following shows

the syntax of the <!ENTITY> tag you use to define your own symbols in the

message input data set or setup data set:

<!ENTITY entity-name ″replacement text″ -- comment -- >

An ENTITY identifies an entity declaration, which just means it’s how you

define a symbol. An entity statement breaks down as follows:

<!ENTITY cunu100t "z/OS Support for Unicode: Using Conversion Service">

<!ENTITY ieaa100t "z/OS MVS Auth Assm Services Reference ALE-DYN">

<!ENTITY ieaa200t "z/OS MVS Auth Assm Services Reference ENF-IXG">

<!ENTITY ieaa300t "z/OS MVS Auth Assm Services Reference LLA-SDU">

<!ENTITY ieae200t "z/OS MVS Initialization and Tuning Reference">

 .

 .

 .

<!ENTITY act " The system continues processing.">

<!ENTITY bugmsg " This message only appears when you are running in debug mode.">

<!ENTITY repsysp "Report this problem to the system programmer.">

<!ENTITY lvl2 "Search problem reporting data bases for a fix for the problem.">

<!ENTITY diagdoc "Provide the messages, the logrec data set record, the SYSLOG output, and dump if one was taken."

-- The following symbols are defined for routing codes. -- >

<!ENTITY hisevdc "11 is the default set by this check.">

<!ENTITY medsevdc "3 is the default set by this check.">

<!ENTITY losevdc "12 is the default set by this check.">

<!ENTITY success "This check ran successfully and found no exceptions.">

Figure 14. Example of a setup data set that defines symbols used in the message input data set

Message input data set

186 IBM Health Checker for z/OS User’s Guide

entity-name

Specifies the name you select for your symbol. When you specify

the entity name in your message input data set, it will resolve to the

replacement text when you generate the message table.

″replacement text″

A single string specifying the text that you want your entity or

symbol name to resolve to.

 Local symbols can use symbols within the replacement text. For

example, you could define a symbol as follows:

<!ENTITY good2 "&good1; is a good symbol, these are two good symbols">

Then in the message input data set, you code the following

sentence:

If &good2; we can use in a message.

Will resolve into a complete sentence when the check runs:

If &good1; is a good symbol, these are two good symbols we can use in a message.

Neat huh? Don't get yourself tied in knots though!

-- comment -- >

Specifies a comment within an entity declaration. You can insert a

comment anywhere in an entity declaration between the < >

delimiters. Identify the start and end of the comment with two

hyphens (--). The following example shows a comment in an entity

declaration:

<!ENTITY newsym "the symbol resolves to this text" -- this is a comment -->

Generating the compilable assembler CSECT for the message input

data set

The message table is loaded in Health Check private, it should be a single csect

load module.

You can generate the messages from the message input data set into a compilable

assembler CSECT using the message generation exec HZSMSGEN. The JCL for

HZSMSGEN is contained in member HZSMSGNJ of SYS1.SAMPLIB.

HZSMSGEN can also generate the national language support (NLS) message

skeletons for message translation of check message text, if desired. See “Support

for translating messages to other languages” on page 191.

To use the message generation JCL to generate check messages into a CSECT, do

the following:

1. Get the HZSMSGNJ message generation JCL from SYS1.SAMPLIB. Also in

SYS1.SAMPLIB, you will find the following files referenced in the HZSMSGNJ

JCL:

v Member HZSSMSGT containing a sample message input data set.

v Member HZSSSYMD containing a sample local symbol.
//HZSMSGEN JOB

//*

// SET SYSPROC=SYS1.SBLSCLI0(HZSMSGEN)

// SET HZSMDSN=SYS1.SAMPLIB(HZSSMSGT)

// SET HZSADSN=&SYSUID..TEMP.ASM;

// SET HZSSDSN=SYS1.SAMPLIB(HZSSSYMD)

// SET HZSNPSKE=&SYSUID..DUMMY.NLS.PROLOGUE;

Message input data set

Chapter 10. Creating the message input for your check 187

// SET HZSNLSKE=&SYSUID..TEMP.SKEL;

//* ***

//* * *

//* * $MAC(HCHECK) COMP(SCHZS) PROD(HBB7730): *

//* * HCHECKER SAMPLE MESSGAGE GENERATION JOB *

//* * *

//* * PROPRIETARY STATEMENT: *

//* * *

//* * LICENSED MATERIALS - PROPERTY OF IBM *

//* * 5694-A01 *

//* * (C) COPYRIGHT IBM CORP. 2006 *

//* * STATUS = HBB7730 *

//* * *

//* * HZSMSGEN - Z/OS HEALTH CHECKER MESSAGE GENERATION *

//* * ------------- *

//* * *

//* * FUNCTION - Generate an assembler csect using a *

//* * structured message script *

//* * *

//* * *

//* * RC 8 Some messages contain errors *

//* * 16 No messages could be processed *

//* * 20 The assembler csect could not be allocated *

//* * 24 The message source could not be allocated *

//* * 28 The entity symbol source dataset is unusable *

//* * 32 The message report or SYSTSPRT was unusable. *

//* * 36 The NLS skeleton ouput data set could not be *

//* * allocated when NLSCHECK(Y) was specified. *

//* * 40 The NLS skeleton prologue data set could not be *

//* * allocated when NLSCHECK(Y) was specified. *

//* * 44 A TSO/E environment does not exist. *

//* * *

//* * SYSTSPRT is required to support errors *

//* * an abendu0102 will occur if SYSTSPRT is *

//* * not provided *

//* * *

//* * *

//* * *

//* * INSTRUCTIONS *

//* * *

//* * 1. Customize the job card *

//* * *

//* * 2. Set variable SYSPROC to the name of the library *

//* * containing the message generation exec HZSMSGEN. *

//* * *

//* * 3. Set variable HZSMDSN to the name of the library *

//* * containing the input message script. A fixed record *

//* * length of 80 is recommended for this data set. *

//* * The message source input cannot have sequence *

//* * numbers in it. *

//* * *

//* * If you are using the ISPF editor to create this *

//* * file, set the sequence numbers off by typing *

//* * NUMBER OFF on the command line before you begin *

//* * entering data. If sequence numbers already exist *

//* * type UNNUM to remove them. *

//* * *

//* * *

//* * 4. Set variable HZSADSN to the name of the library *

//* * to contain the output assembler CSECT. A fixed record *

//* * length of 80 is recommended for this data set. *

//* * *

//* * This job will fail with a RC = 20 when a DUMMY *

//* * data set is used. *

//* * *

//* * 5. Set variable HZSSDSN to the name of a sequential *

//* * data set or a member of a PDS. This data set *

//* * contains symbol statements. *

//* * *

//* * 6. Change the parameter NLSCHECK(N) to NLSCHECK(Y) to *

//* * verify messages conform to guidelines required for *

//* * HZSMSGEN NLS skeleton generation. If you want to *

//* * generate a skeleton follow optional steps below. *

//* * *

Message input data set

188 IBM Health Checker for z/OS User’s Guide

//* * Optional data sets for NLS message skeletons. *

//* * *

//* * Uncomment the DD statements HZSNPSKE and HZSNLSKE. *

//* * *

//* * See z/OS MVS Assembler Services Guide for addition *

//* * detail on how the system uses messages skeleton to *

//* * translate. *

//* * *

//* * *

//* * 7. Set variable HZSNPSKE to the name of a sequential *

//* * data set or a member of a PDS that contains the NLS *

//* * prologue. The product version record is required *

//* * by MMS and must be included in NLS prologue to *

//* * produce a compilable NLS skeleton. *

//* * *

//* * See MVS Assembler Services Guide for additional *

//* * information on translating messages. *

//* * *

//* * *

//* * 8. Set variable HZSNLSKE to the name of a sequential *

//* * data set or a member of a PDS to be used as output. *

//* * It will contain the NLS message skeleton when *

//* * NLSCHECK(Y) is specified and message generation *

//* * completes with a return code of 0. This data set *

//* * must have a variable record length of 259. *

//* * *

//* * *

//* * SYNTAX of PARMS provided to HZSMSGEN: *

//* * *

//* * NLSCHECK - (Y|YES) IF HZSNLSKE and HZSNPSKE exists *

//* * NLS skeletons will be generated *

//* * for each WTO issued by an *

//* * exception message. HZSM0017 is *

//* * issued when a the WTO is not *

//* * clearly defined for NLS. *

//* * *

//* * (N|NO) The WTO text is not checked. NLS *

//* * skeletons are not created. *

//* * *

//* * Default: NLSCHECK(Y) *

//* * *

//* * *

//* * SOURCE - (ERROR|ALL) *

//* * ERROR indications message *

//* * source only appears for messages *

//* * that contain an error. *

//* * *

//* * ALL includes the entire message *

//* * source in the output *

//* * *

//* * Default: SOURCE(ERROR) *

//* * *

//* * *

//* * NOTE: Errors are reported by the SYSTSPRT DD *

//* * *

//* * *

//* * CHANGE-ACTIVITY: *

//* * $L0=HCHECK HZS7720,040821, PDZJ: HEALTH CHECKER *

//* * $L1=ME01048 HZS7720,040901, PDZJ: PROLOGUE *

//* * $L2=MExxxxx HBB7730,050912, PDZJ: skeleton support *

//* * *

//* * *

//* ***

//*

//HZSMSG EXEC PGM=IKJEFT01,REGION=32M,

// PARM=’%HZSMSGEN NLSCHECK(N) SOURCE(ERROR)’

//SYSTSPRT DD SYSOUT=*,DCB=(LRECL=132,BLKSIZE=132,RECFM=FB)

//SYSPROC DD DISP=SHR,DSN=&SYSPROC;

//SYSTSIN DD DUMMY

//HZSMDSN DD DISP=SHR,DSN=&HZSMDSN;

//HZSSDSN DD DISP=SHR,DSN=&HZSSDSN;

//HZSADSN DD DSN=&HZSADSN;,DISP=(NEW,KEEP),

// SPACE=(TRK,(10,10)),UNIT=SYSDA,DCB=(LRECL=80,BLKSIZE=0,RECFM=FB)

Message input data set

Chapter 10. Creating the message input for your check 189

//*HZSNPSKE DD DSN=&HZSNPSKE;,DISP=SHR

//*HZSNLSKE DD DSN=&HZSNLSKE;,DISP=(NEW,KEEP),

//* SPACE=(TRK,(10,10)),UNIT=SYSDA,DCB=(LRECL=259,BLKSIZE=0,RECFM=VB)

/*

2. Customize your copy of HZSMSGNJ as indicated in the prolog.

Note that specifying NLSCHECK(Y) does not specify that message skeletons be

generated! NLSCHECK(Y) specifies that you want HZSMSGEN to enforce the

message translation guidelines that will make it possible to generate message

skeletons. (See “Support for translating messages to other languages” on page

191). If you want to generate message skeletons for message translation, you

must uncomment the HZSNPSKE and HZSLNSKE DD statements:

v Set HZSNPSKE to the name of the NLS skeleton output data set. This data

set should be blocked variable with a record length of 259. After HZSMSGEN

runs, this data set contains the prolog from HZSNLSKE and the completed

message skeletons for the check messages.

v Set HZSNLSKE to the name of the NLS skeleton prolog input data set. This

data set must contain the version record required for MVS message service

(MMS) translation and should contain a copyright statement. The following

shows an example HZSNLSKE data set:

.VENUNHBB7730 5694-A010601

.*

.***

.*

.* COPYRIGHT -

.* 5637-A01

.* THIS MESSAGE INSTALL FILE IS "RESTRICTED MATERIALS OF IBM"

.* (C) COPYRIGHT IBM CORP. 1988, 2005

.* LICENSED MATERIALS - PROPERTY OF IBM

.*

.* STATUS = HBB7730

.*

.*

.*

.* NOTE: VERSION RECORD (.V IN COLS. 1-2) MUST APPEAR FIRST IN THIS

.* FILE. FOR UPDATES, REFER TO APPLICATION DEVELOPMENT GUIDE:

.* ASSEMBLER LANGUAGE PROGRAMS.

.*

.* CHANGE-ACTIVITY:

.* $L0=HCHECK HBB7730,050731,PD00ZJ: HCR8

.*

.***

The version record must be the first non-comment record in each install

message file identified by the '.v' in columns 1 and 2 of the HZSNLSKE data

set. See Creating a version record in z/OS MVS Programming: Assembler

Services Guide for the complete format of the version record.
3. To run the message generation JCL, Issue the following command from TSO:

SUB ’your.dataset.name(HZMSGNJ)’

4. HZSMSGEN writes a message generation report to either the data set specified

in HZSMDSN, if specified, or to the SYSTSPRT file. The following shows an

HZSMSGEN report for both CSECT and NLS skeleton generation:

IBM Health Checker For Z/OS HBB7730 NLSCHECK(Y) SOURCE(ERROR)

10 May 2006

RulesLevel 2 (HBB7730 and up) was selected for processing

System execution level: z/OS 01.08.00 HBB7730 TSO/E 3060

Source data set ’SYS1.SAMPLIB(HZSSMSGT)’

Message input data set

190 IBM Health Checker for z/OS User’s Guide

Setup entity data set: ’SYS1.SAMPLIB(HZSSSYMD)’

Assembler source MSGTBL: ’userid.your.dsname(csect)’

NLS skeleton prologue: ’input.nls.version.record’

NLS skeleton source:’output.nls(skeleton)’

HZSM0133 The assembler source for the message table was created

Return Code: 0

HZSM0133 The NLS message skeleton source was created

Return Code: 0

Support for translating messages to other languages

In many installations, the text that appears in WTOs may need to be translated to

other languages using MVS Message Service (MMS). You can use the HZSMSGEN

exec to create the MMS source file, which is required input when translating

message to other languages. For information about using MMS for message

translation, see Translating messages in z/OS MVS Programming: Assembler

Services Guide. This section also includes details on how the system uses the NLS

skeletons.

Guidelines for coding translatable exception message text lines

If you want to generate skeletons for message translations for your check exception

WTO messages, it will impact the way you code the message text for your

messages in the message input data set. For example, if you want to generate NLS

skeletons for your messages, you must break up message text in the message

input data set into lines of 71 characters or less. The line length is calculated based

on the total length of the message text, and the maximum length that each insert is

defined. When you use HZSMSGEN, you can specify NLSCHECK(Y) to specify that

the system enforce the NLS length guideline. HZSMSGEN enforces these

restrictions when messages are created.

To make sure that you can generate your exception messages successfully, and

that messages will translate successfully at runtime, use the following guidelines to

help you calculate the length of each message line to make sure that each line is

71 characters or less:

v On the first line of the message text, remember that the message identifier, or

number, can require up to 11 characters.

v You must use “″<lines></lines> tags″ ” on page 180 to define a new line before

you reach the WTO limit of 71 characters.

v Specify <mv class="variable_class" xreftext="maxlen(nnn)>" for all the variables

in your exception messages to define the maximum length possible for each

variable. This will make it much easier for you to calculate where you need to

insert a <lines></lines> tag to break up a message text to avoid exceeding the

71 character limit. If you do not specify maxlen, you must allow for the maximum

space allowed for the type of variable when calculating where you want to break

your line with <lines></lines>. See Table 18 on page 177 for specifics on variable

lengths.

v For a predefined system symbol, which is resolved at check run time, you must

allow for the maximum space allowed for the element when calculating the

number of characters it will take up. See Table 22 on page 184.

Message input data set

Chapter 10. Creating the message input for your check 191

v Both system symbols and variables can be longer than 71 characters

themselves. This is OK, as long as the lengthy item is followed by a new line

indicator (<lines></lines> tags together) or is the very last thing in the message

text.

When you specify NLSCHECK(Y) and run the HZSMSGEN exec with he

HZSNPSKE and HZSNLSKE DD statements uncommented, your message

skeletons are generated in the output data set specified on the HZSNLSKE DD

statement.

v Set variable HZSNPSKE to the name of a sequential data set or a member of a

PDS that contains the NLS prologue. The product version record is required by

MMS and must be included in NLS prologue to produce a compilable NLS

skeleton.

v Set variable HZSNLSKE to the name of a sequential data set or a member of a

PDS to be used as output. It will contain the NLS message skeleton when

NLSCHECK(Y) is specified and message generation completes with a return

code of 0. This data set must have a variable record length of 259.
//HZSMSGEN JOB

//*

// SET SYSPROC=SYS1.SBLSCLI0(HZSMSGEN)

// SET HZSMDSN=SYS1.SAMPLIB(HZSSMSGT)

// SET HZSADSN=&SYSUID..TEMP.ASM;

// SET HZSSDSN=SYS1.SAMPLIB(HZSSSYMD)

// SET HZSNPSKE=&SYSUID..DUMMY.NLS.PROLOGUE;

// SET HZSNLSKE=&SYSUID..TEMP.SKEL;

//*

//HZSMSG EXEC PGM=IKJEFT01,REGION=32M,

// PARM=’%HZSMSGEN NLSCHECK(N) SOURCE(ERROR)’

//SYSTSPRT DD SYSOUT=*,DCB=(LRECL=132,BLKSIZE=132,RECFM=FB)

//SYSPROC DD DISP=SHR,DSN=&SYSPROC;

//SYSTSIN DD DUMMY

//HZSMDSN DD DISP=SHR,DSN=&HZSMDSN;

//HZSSDSN DD DISP=SHR,DSN=&HZSSDSN;

//HZSADSN DD DSN=&HZSADSN;,DISP=(NEW,KEEP),

// SPACE=(TRK,(10,10)),UNIT=SYSDA,DCB=(LRECL=80,BLKSIZE=0,RECFM=FB)

//HZSNPSKE DD DSN=&HZSNPSKE;,DISP=SHR

//HZSNLSKE DD DSN=&HZSNLSKE;,DISP=(NEW,KEEP),

//* SPACE=(TRK,(10,10)),UNIT=SYSDA,DCB=(LRECL=259,BLKSIZE=0,RECFM=VB)

/*

When you use the HZSMSGEN exec to generate skeletons for the following

messages:

CSVH0970E New extents were detected in LNKLST set(s).

CSVH0980E Some LNKLST sets include data set(s) allocated

 with secondary space defined.

You will get the following skeletons generated:

CSVH0970E New extents were detected in LNKLST set(s).

CSVH0980E 01001 Some LNKLST sets include data set(s) allocated with

CSVH0980E 01002 secondary space defined.

You can customize the timestamp, date, or day generated by timestamp symbols or

variables in your messages, by customizing the format for the symbols in the

system configuration SYS1.PARMLIB CNL members. See CNLcccxx (Time and

date format for translated messages) in z/OS MVS Initialization and Tuning

Reference for additional information.

For predefined system symbols &hzsgmttime; and &hzslocaltime; the format used in

the skeletons is as follows:

 &DATE;=DATEMDY4. &TIME;=TIMEHMSCD6

Message input data set

192 IBM Health Checker for z/OS User’s Guide

Parmlib members CNLENU00 and CNLJPN00 now include symbol TIMEHMSCD6.

Because the length of class=gmltime and localtime variables can vary if you specify

field size, <mv class="gmltime" xreftext=" fieldsize(11)" for example, the format used

in the skeletons will also vary by length as follows:

26 mm/dd/yyyy.hh.mm.ss.tttttt &DATE=DATEMDY4. &TIME=TIMEHMSCD6.

25 mm/dd/yyyy.hh.mm.ss.ttttt &DATE=DATEMDY4. &TIME=TIMEHMSCD5.

24 mm/dd/yyyy.hh.mm.ss.tttt &DATE=DATEMDY4. &TIME=TIMEHMSCD4.

23 mm/dd/yyyy.hh mm.ss.ttt &DATE=DATEMDY4. &TIME=TIMEHMSCD3.

22 mm/dd/yyyy.hh.mm.ss.tt &DATE=DATEMDY4. &TIME=TIMEHMSCD2.

21 mm/dd/yyyy.hh.mm.ss.t &DATE=DATEMDY4. &TIME=TIMEHMSCD1.

20 mm/dd/yyyy.hh.mm.ss. &DATE=DATEMDY4. &TIME=TIMEHMSC.

19 mm/dd/yyyy.hh.mm.ss &DATE=DATEMDY4. &TIME=TIMEHMSC.

18 mm/dd/yyyy.hh.mm.s &DATE=DATEMDY4. &hh..&mm..&s.

17 mm/dd/yyyy.hh.mm. &DATE=DATEMDY4. &hh..&mm..

16 mm/dd/yyyy.hh.mm &DATE=DATEMDY4. &TIME=TIMEHMC.

15 mm/dd/yyyy.hh.m &DATE=DATEMDY4. &hh..&m.

14 mm/dd/yyyy.hh. &DATE=DATEMDY4. &hh..

13 mm/dd/yyyy.hh &DATE=DATEMDY4. &hh.

12 mm/dd/yyyy.h &DATE=DATEMDY4. &h.

11 mm/dd/yyyy &DATE=DATEMDY4.

10 mm/dd/yyyy &DATE=DATEMDY4.

1-9 mm/dd/yyyy &username.

Message input data set

Chapter 10. Creating the message input for your check 193

Message input data set

194 IBM Health Checker for z/OS User’s Guide

Part 3. Reference

Chapter 11. IBM Health Checker for z/OS System REXX Functions 199

HZSLSTRT function . 200

Input variables . 200

Output variables . 200

HZSLSTRT return codes . 202

HZSLFMSG function . 203

Input variables . 203

Input variables for HZSLFMSG_REQUEST='CHECKMSG' 203

Input variables for HZSLFMSG_REQUEST='HZSMSG' 205

Input variables for HZSLFMSG_REQUEST='STOP' 209

HZSLFMSG Output variables 210

HZSLFMSG return codes 212

HZSLSTOP function . 213

Input variables . 213

Output variables . 213

HZSLSTOP return codes . 215

Chapter 12. IBM Health Checker for z/OS HZS macros 217

HZSADDCK macro — HZS add a check 218

Description . 218

Environment . 218

Programming Requirements 218

Restrictions . 218

Input Register Information 218

Output Register Information 218

Performance Implications 219

Syntax . 219

Parameters . 221

HZSADDCK ABEND Codes 230

HZSADDCK Return and Reason Codes 231

Examples . 234

HZSFMSG macro — Issue a formatted check message 236

Description . 236

Environment . 236

Programming Requirements 236

Restrictions . 236

Input Register Information 236

Output Register Information 236

Performance Implications 237

Syntax . 237

Parameters . 240

HZSFMSG ABEND Codes 252

HZSFMSG Return and Reason Codes 254

Examples . 256

HZSQUERY macro — HZS Query 259

Description . 259

Environment . 259

Programming Requirements 259

Restrictions . 260

Input Register Information 260

Output Register Information 260

Performance Implications 260

Syntax . 260

© Copyright IBM Corp. 2006, 2007 195

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

||

Parameters . 262

ABEND Codes . 271

Return and Reason Codes 271

Examples . 274

HZSCHECK macro — HZS Check command request 275

Description . 275

Environment . 275

Programming Requirements 276

Restrictions . 276

Input Register Information 276

Output Register Information 276

Performance Implications 276

Syntax . 277

Parameters . 278

ABEND Codes . 285

HZSCHECK Return and Reason Codes 285

Examples . 288

HZSCPARS macro — HZS Check Parameter Parsing 289

Description . 289

Environment . 289

Programming Requirements 289

Restrictions . 289

Input Register Information 289

Output Register Information 289

Performance Implications 290

Syntax . 290

Parameters . 292

ABEND Codes . 299

Return and Reason Codes 299

Examples . 300

Chapter 13. IBM Health Checker for z/OS checks 301

ASM checks (IBMASM) . 302

ASM_NUMBER_LOCAL_DATASETS 302

ASM_PAGE_ADD . 303

ASM_PLPA_COMMON_SIZE 304

ASM_PLPA_COMMON_USAGE 304

ASM_LOCAL_SLOT_USAGE 305

Communications Server checks (IBMCS) 306

CSTCP_SYSTCPIP_CTRACE_TCPIPstackname 306

CSTCP_SYSPLEXMON_RECOV_TCPIPstackname 307

CSTCP_TCPMAXRCVBUFRSIZE_TCPIPstackname 308

CSVTAM_CSM_STG_LIMIT 309

CSVTAM_T1BUF_T2BUF_EE 310

CSVTAM_T1BUF_T2BUF_NOEE 311

CSVTAM_VIT_DSPSIZE . 311

CSVTAM_VIT_OPT_ALL . 312

CSVTAM_VIT_OPT_PSSSMS 313

CSVTAM_VIT_SIZE . 314

Consoles checks (IBMCNZ) . 314

CNZ_AMRF_Eventual_Action_Msgs 314

CNZ_Console_MasterAuth_Cmdsys 315

CNZ_Console_Mscope_And_Routcode 316

CNZ_Console_Routcode_11 316

CNZ_EMCS_Hardcopy_Mscope 317

CNZ_EMCS_Inactive_Consoles 318

196 IBM Health Checker for z/OS User’s Guide

||

||
||
||
||
||
||

CNZ_Syscons_Master . 318

CNZ_Syscons_Mscope . 319

CNZ_Syscons_PD_Mode 319

CNZ_Syscons_Routcode . 320

CNZ_Task_Table . 321

Contents supervision checks (IBMCSV) 321

CSV_APF_EXISTS . 321

CSV_LNKLST_NEWEXTENTS 322

CSV_LNKLST_SPACE . 324

CSV_LPA_CHANGES . 325

Global Resource Serialization checks (IBMGRS) 327

GRS_Mode . 327

GRS_SYNCHRES . 327

GRS_CONVERT_RESERVES 328

GRS_EXIT_PERFORMANCE 328

GRS_GRSQ_SETTING . 329

GRS_RNL_IGNORED_CONV 330

PDSE checks (IBMPDSE) . 331

PDSE_SMSPDSE1 . 331

RACF checks (IBMRACF) . 331

RACF_GRS_RNL . 331

RACF_SENSITIVE_RESOURCES 336

RACF_classname_ACTIVE 342

RACF_IBMUSER_REVOKED 344

RRS checks (IBMRRS) . 345

RRS_RMDataLogDuplexMode 345

RRS_RMDOffloadSize . 346

RRS_DUROffloadSize . 347

RRS_MUROffloadSize . 347

RRS_RSTOffloadSize . 348

RRS_ArchiveCFStructure 348

RSM checks (IBMRSM) . 349

RSM_HVSHARE . 349

RSM_MEMLIMIT . 350

RSM_MAXCADS . 351

RSM_AFQ . 351

RSM_REAL . 353

RSM_RSU . 353

SDUMP checks (IBMSDUMP) 354

SDUMP_AVAILABLE . 354

SDUMP_AUTO_ALLOCATION 355

Supervisor (IBMSUP) . 355

IEA_ASIDS . 355

IEA_LXS . 356

System logger checks (IBMIXGLOGR) 357

IXGLOGR_STAGINGDSFULL 357

IXGLOGR_ENTRYTHRESHOLD 358

IXGLOGR_STRUCTUREFULL 358

TSO/E (IBMTSOE) . 359

TSOE_USERLOGS . 359

TSOE_PARMLIB_ERROR 360

z/OS UNIX System Services checks (IBMUSS) 361

USS_AUTOMOUNT_DELAY 361

USS_FILESYS_CONFIG . 362

USS_MAXSOCKETS_MAXFILEPROC 363

USS_PARMLIB . 364

Part 3. Reference 197

||
||
||
||
||

||
||

||
||
||

||
||
||

||

VSAM checks (IBMVSAM) . 366

VSAMRLS_DIAG_CONTENTION 366

VSAM_INDEX_TRAP . 367

VSAMRLS_SINGLE_POINT_FAILURE 368

VSM checks (IBMVSM) . 369

VSM_ALLOWUSERKEYCSA 369

VSM_CSA_LIMIT . 370

VSM_SQA_LIMIT . 371

VSM_PVT_LIMIT . 372

VSM_CSA_THRESHOLD 373

VSM_SQA_THRESHOLD 374

VSM_CSA_CHANGE . 375

Cross system coupling facility (XCF) checks (IBMXCF) 376

XCF_CF_CONNECTIVITY 376

XCF_FDI . 376

XCF_SFM_ACTIVE . 377

XCF_CLEANUP_VALUE . 377

XCF_CDS_SEPARATION 378

XCF_SYSPLEX_CDS_CAPACITY 379

XCF_TCLASS_HAS_UNDESIG 379

XCF_TCLASS_CONNECTIVITY 380

XCF_TCLASS_CLASSLEN 380

XCF_SIG_CONNECTIVITY 381

XCF_DEFAULT_MAXMSG 382

XCF_MAXMSG_NUMBUF_RATIO 382

XCF_SIG_PATH_SEPARATION 383

XCF_SIG_STR_SIZE . 383

XCF_CF_STR_PREFLIST 384

XCF_CF_STR_EXCLLIST 384

198 IBM Health Checker for z/OS User’s Guide

Chapter 11. IBM Health Checker for z/OS System REXX

Functions

IBM Health Checker for z/OS includes the following System REXX functions:

v “HZSLSTRT function” on page 200 - The REXX check exec invokes HZSLSTRT

to notify IBM Health Checker for z/OS it is running. This call initializes multiple

variables defined in the HZSPQE macro.

v “HZSLFMSG function” on page 203 - The REXX check invokes HZSLFMSG to

issue messages.

v “HZSLSTOP function” on page 213 - The REXX check invokes HZSLSTOP to

notify IBM Health Checker for z/OS of check completion. This request will save

the user work area, HZS_PQE_ChkWork.

© Copyright IBM Corp. 2006, 2007 199

|

|

|

|

|
|
|

|
|

|
|
|

|

HZSLSTRT function

Purpose: REXX function indicating that the check has started running. This is the

interface to the assembler HZSCHECK REQUEST=OPSTART macro.

Invocation: CALL HZSLSTRT

Input variables

The following REXX variable is input to HZSLSTRT:

 Table 24. HZSLSTRT input variable

Variable name Description

HZS_HANDLE IBM Health Checker for z/OS sets this variable to the correct value when it calls

a REXX check. Your REXX check must not modify HZS_HANDLE. The

HZS_HANDLE is used to synchronize the check and IBM Health Checker for

z/OS, because they do not run in the same address space.

Output variables

The following REXX variable are returned by HZSLSTRT:

 Table 25. HZSLSTRT output variables

Variable name Description

RC The return code for the HZSLSTRT function. The possible return codes are as

follows:

0 Meaning: Indicates that the HZSLSTRT function completed successfully.

 Action: None required.

8 Meaning: The HZSLSTRT function did not complete because of an error.

 Action: Refer to action under the individual reason code returned in

HZSLSTRT_RSN

12 Meaning: HZSLSTRT did not complete because of an environment error.

 Action: Refer to action under the individual reason code returned in

HZSLSTRT_RSN

16 Meaning: HZSLSTRT did not completed because of an component error.

 Action: Refer to action under the individual reason code returned in

HZSLSTRT_RSN

HZSLSTRT function

200 IBM Health Checker for z/OS User’s Guide

|
|

|
|

|

|

|

||

||

||
|
|
|
|

|

|

||

||

||
|

||

|

||

|
|

||

|
|

||

|
|

Table 25. HZSLSTRT output variables (continued)

Variable name Description

HZSLSTRT_RSN The reason code explaining a RESULTvalue of 8 or more. The reason codes are

as follows:

00000858

Meaning: HZS_HANDLE was not valid.

 Action: Make sure that the HZSLSTRT serice is only called from a REXX

exec called by IBM Health Checker for z/OS. The check must not modify

output variable HZS_HANDLE.

xxxx08xx

Meaning: HZSCHECK REQUEST=OPSTART returned the

HzscheckRC_InvParm reason code equate symbol.

 Action: Refer to the action under the individual reason code for the

HZSCHECK macro.Meaning: Action:

xxxx0Cxx

Meaning: HZSCHECK REQUEST=OPSTART returned the

HzscheckRC_EnvError reason code equate symbol.

 Action: Refer to the action under the individual reason code for the

HZSCHECK macro.

xxxx0Cxx

Meaning: HZSCHECK REQUEST=OPSTART returned the

HzscheckRC_EnvError reason code equate symbol.

 Action: Refer to the action under the individual reason code for the

HZSCHECK macro.

00001003

Meaning: A service used by HZSLSTRT failed.

 Action: Retry the service. If HZSLSTRT continues to fail, obtain the value of

the REXX variable HZSLSTRT_SYSTEMDIAG, and contact IBM service.

HZSLSTRT_SYSTEMDIAG Diagnostic data returned by the failed service that HZSLSTRT uses.

HZS_PQE_VERSION The version of the HZSPQE that is used to represent this check.

HZS_PQE_CHECK_COUNT Number of times this check has been called since the check was initialized.

HZS_PQE_ENVIRONMENT

_XCFLOCAL

Indicates whether the system is in XCF local mode:

1 Boolean TRUE - System is XCF local mode.

0 Boolean FALSE - System is not XCF local mode.

HZS_PQE_ENVIRONMENT

_XCFMONOPLEX

Indicates whether the system is in XCF monoplex mode:

1 Boolean TRUE - System is XCF monoplex mode.

0 Boolean FALSE - System is not XCF monoplex l mode.

HZS_PQE_CHECKOWNER The product, component, or element that owns the check.

HZS_PQE_CHECKNAME Check name.

HZS_PQE_GLOBAL _CHECK Indicates whether the check is defined as global:

1 Boolean TRUE - check is defined as global.

0 Boolean FALSE - check is not defined as global.

HZS_PQE_DEBUG Indicates whether the check is running in debug mode:

1 Boolean TRUE - check is running in debug mode.

0 Boolean FALSE - check is running in debug mode,

HZSLSTRT function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 201

|

||

||
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

||

||

||

|
|
|

||

||

|
|
|

||

||

||

||

||

||

||

||

||

||

Table 25. HZSLSTRT output variables (continued)

Variable name Description

HZS_PQE_LOOKATPARMS Indicates whether the check should look at the parameter values, either because

check parameter values have changed since the last time this check ran, or

because it is the first time the check has run after it was in a DISABLED or

INACTIVATED state.:

1 Boolean TRUE - The check should look at the parameter values.

0 Boolean FALSE - The check does not need to look at the parameter values.

HZS_PQE_VERBOSE Indicates whether the check is running in verbose mode:

1 Boolean TRUE - The check is running in verbose mod.

0 Boolean FALSE - The check is not is running in verbose mod.

HZS_PQE_REASON Current value of the check reason text.

HZS_PQE_PARMAREA Current check parameter(s). If LENGTH(HZS_PQE_PARMAREA)=0, then no

parameters are currently defined for this check.

HZS_PQE_CHKWORK Current value of the PQE_CHKWORK area saved by the HZSLSTOP service the

last time the check ran. Only a maximum of 2048 characters

HZS_PQE_CHKWORK will be saved and restored. HZS_PQE_CHCKWORK is

reset before the check is run for the following reasons:

v When the check is to run for the first time.

v When the check is REFRESHed.

v When the check becomes either INACTIVE or DISABLED for any reason

besides invalid parameters.

HZSLSTRT return codes

0 Meaning: HZSLSTRT was invoked while the exec was running under System

REXX.

 Action: RESULT will be set to the return code of the service.

C Meaning: HZSLSTRT was not invoked from a System REXX environment.

 Action: Make sure the HZSLSTRT serice is only called from an exec that has

gotten control as a REXX check called by the IBM Health Checker for z/OS.

HZSLSTRT function

202 IBM Health Checker for z/OS User’s Guide

|

||

||
|
|
|

||

||

||

||

||

||

||
|

||
|
|
|
|
|
|
|
|

|

||
|

|

||

|
|

|

HZSLFMSG function

Purpose: REXX write messages for the check. This is the interface to the

assembler HZSFMSG macro. See “HZSFMSG macro — Issue a formatted check

message” on page 236.

Invocation: CALL HZSLFMST

Input variables

The following REXX variables are input to HZSLFMSG:

 Table 26. HZSLFMSG input variables

Variable name Description

HZS_HANDLE IBM Health Checker for z/OS sets this variable to the correct value when it calls

a REXX check. Your REXX check must not modify HZS_HANDLE. The

HZS_HANDLE is used to synchronize the check and IBM Health Checker for

z/OS, because they do not run in the same address space.

HZSLFMSG_REQUEST= {

’CHECKMSG’ | ’HZSMSG’ | ’STOP’

}

Identifies the source of the message text.

v CHECKMSG indicates that the message text is provided in the message table

identified by the MSGTBL parameter when the check was added to IBM

Health Checker for z/OS.

v HZSMSG indicates that the message text is provided by IBM Health Checker

for z/OS.

v STOP indicates that the system is to stop calling this check. The message text

is provided by IBM Health Checker for z/OS.

Input variables for HZSLFMSG_REQUEST='CHECKMSG'

HZSLFMSG_REQUEST='CHECKMSG' indicates that the message text is provided

in the message table identified by the MSGTBL parameter when the check was

added to IBM Health Checker for z/OS.

The following REXX variables are required input when

HZSLFMSG_REQUEST=’CHECKMSG’ is specified:

 Table 27. HZSLFMSG_REQUEST='CHECKMSG' input variables

Variable name Description

HZSLFMSG_MESSAGENUMBER The message number for the message being issued. This is the value specified

in ″XREFTEXT=MessageNumber″ within the <msgnum> tag of the message

source used to create the message table identified by the MSGTBL parameter

when the check was added. Must be in the range between 1 and 999999999.

HZSLFMSG_INSERT REXX stem variable identifying the character variable message inserts.

HZSLFMSG_INSERT.0 The number of inserts or variables provided. This value must match the number

of inserts defined in the message and must be in the range between 0 and 20.

HZSLFMSG function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 203

|
|

|
|
|

|

|

|

||

||

||
|
|
|

|
|
|

|

|
|
|

|
|

|
|
|

|
|
|
|

|
|

||

||

||
|
|
|

||

||
|

Table 27. HZSLFMSG_REQUEST='CHECKMSG' input variables (continued)

Variable name Description

HZSLFMSG_INSERT.x The message insert text. The text provided in the insert should be compatible

with the class attribute of the associated message variable in the message input

data set. A class attribute of hex, decimal or timestamp in the message input

data set will treat the insert data as a hexadecimal string.

In the following example, variable HZSLFMSG_INSERT.1 expects to receive

hexadecimal data:

v Variable 1 in the message input data set has a class attribute of hex: <mv

class=″hex″>variable 1</mv>

v The REXX check might use the following HZSLFMSG input variables:

HZSLFMSG_INSERT.1 = ’01234567’X /* A hex character string */

HZSLFMSG_INSERT.1 = x2c(020B140E) /* Text that is converted to hexadecimal */

Note that decimal text also converts hex values to decimal text. For example, lets

say that variable in the message input data set has a class attribute of:

<mv class=“decimal">variable 1</mv>

The REXX check use the following HZSLFMSG input variable:

HZSLFMSG_INSERT.1 = ’0A’X -> 10 /* The decimal value 10 is displayed */

In general, the REXX values you use will be text and usually do not require

additional translation.

HZSLFMSG function

204 IBM Health Checker for z/OS User’s Guide

|

||

||
|
|
|

|
|

|
|

|
|
|

|
|

|

|
|

|
|
|

Input variables for HZSLFMSG_REQUEST='HZSMSG'

HZSLFMSG_REQUEST=HZSMSG' indicates that the message text is provided by

IBM Health Checker for z/OS.

The following REXX variables are required input when

HZSLFMSG_REQUEST=’HZSMSG' is specified:

 Table 28. HZSLFMSG_REQUEST='HZSMSG' input variables

Variable name Description

HZSLFMSG_REASON=’ERROR’ Indicates that the message is being issued because of an error situation. The

system is to issue HZS1002E. This message is also recorded in the check’s

message buffer. The state of the check is changed to error. The check remains

active.

If you specify HZSFMSG_REASON='ERROR", you must also specify the following REXX input variables to

identify the error:

HZSLFMSG_DIAG Is set to the data to be displayed as hex data in the message output to provide

internal component diagnostic information for the error, which is included when

check detail is displayed.

The value in HZSLFMSG_DIAG must be either:

v An 8 character value that will be displayed as hexadecimal value.

v A 16 character hexadecimal value, that may contain valid hexadecimal

characters: 0-9 and A-F only.

Example: Lets say you want the following IBM Health Checker for z/OS

message:

HZS1002E CHECK(HZJVTT78,HZXVTT78_A_PARMLIB_EXEC):

 AN ERROR OCCURRED, DIAG: 00000000_01234567

You would define the following input variables:

HZSLFMSG_DIAG = ’0000000001234567’ /* hexadecimal characters */

HZSLFMSG_DIAG = ’0000000001234567’X /* hexadecimal data */

HZSLFMSG_REASON=’PARS1201’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1201E, parm IS REQUIRED BUT WAS NOT SPECIFIED.

The following REXX variables are required input for

HZSLFMSG_REASON=’PARS1201’:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert for HZS1201E.

v HZSLFMSG_INSERT.0 = 1 - Indicates that there is one insert.

v HZSLFMSG_INSERT.1=parm - 1 to 16 character name of the parameter in

error.

HZSLFMSG_REASON=’PARS1202’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1202E, parm WAS SPECIFIED BUT IS NOT ALLOWED.

The following REXX variables are required input for

HZSLFMSG_REASON=’PARS1202’:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert.

v HZSLFMSG_INSERT.0 = 1 - Indicates that there is one insert.

v HZSLFMSG_INSERT.1=parm - 1 to 16 character name of the parameter in

error.

HZSLFMSG function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 205

|
|
|

|
|

||

||

||
|
|
|

|
|

||
|
|

|
|
|
|

|
|

|
|

|

|
|

||
|

|
|
|
|
|
|
|

||
|

|
|
|
|
|
|
|

Table 28. HZSLFMSG_REQUEST='HZSMSG' input variables (continued)

Variable name Description

HZSLFMSG_REASON=’PARS1203’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1203E, PARAMETER parm VALUE value IS NOT VALID.

The following REXX variables are required input when

HZSLFMSG_REASON=’PARS1203’ is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT1 = parm - 1 to 16 character name of the parameter in

error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG_REASON=’PARS1204’ Indicates that the message is being issued for a parameter parsing error,

issuing message HZS1204E, UNEXPECTED END OF PARAMETER STRING.

The following REXX variables are required input for

HZSLFMSG_REASON=’PARS1204’:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert .

v HZSLFMSG_INSERT.0 = 0 - Indicates that there are no inserts.

HZSLFMSG_REASON=’PARS1205’ Indicates that the message is being issued for a parameter parsing error,

issuing message HZS1205E, A PARAMETER WAS EXPECTED BUT string

WAS FOUND INSTEAD.

The following REXX variables are required input for

HZSLFMSG_REASON=’PARS1205’:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert .

v HZSLFMSG_INSERT.0 = 1 - Indicates that there is one insert.

v HZSLFMSG_INSERT.1 = value - 1 to 17 character string value in error.

HZSLFMSG_REASON=’PARS1206’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1206E, A DELIMITER WAS EXPECTED BUT string WAS

FOUND INSTEAD.

The following REXX variables are required input for

HZSLFMSG_REASON=’PARS1206’:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert .

v HZSLFMSG_INSERT.0 = 1 - Indicates that there is one insert.

v HZSLFMSG_INSERT.1 = value - 1 to 17 character string value in error.

HZSLFMSG_REASON=’PARS1207’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1207E, PARAMETER parm HAS TOO MANY VALUES, n.

The following REXX variables are required input when

HZSLFMSG_REASON=’PARS1207’ is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT1 = parm - 1 to 16 character name of the parameter in

error.

v HZSLFMSG_INSERT.2 = n - Number of values that were specified. The

maximum value that can be specified is 999999999.

HZSLFMSG function

206 IBM Health Checker for z/OS User’s Guide

|

||

||
|

|
|
|
|
|
|
|
|

||
|

|
|
|
|
|

||
|
|

|
|
|
|
|
|

||
|
|

|
|
|
|
|
|

||
|

|
|
|
|
|
|
|
|
|

Table 28. HZSLFMSG_REQUEST='HZSMSG' input variables (continued)

Variable name Description

HZSLFMSG_REASON=’PARS1208’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1208E, PARAMETER parm HAS TOO FEW VALUES, In.

The following REXX variables are required input when

HZSLFMSG_REASON=’PARS1208’ is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT1 = parm - 1 to 16 character name of the parameter in

error.

v HZSLFMSG_INSERT.2 = n - Number of values that were specified. The

maximum value that can be specified is 999999999.

HZSLFMSG_REASON=’PARS1209’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1209E, PARAMETER parm IS NOT RECOGNIZED.

The following REXX variables are required input for

HZSLFMSG_REASON=’PARS1209’:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert.

v HZSLFMSG_INSERT.0 = 1 - Indicates that there is one insert.

v HZSLFMSG_INSERT.1=parm - 1 to 17 character name of the parameter in

error.

HZSLFMSG_REASON=’PARS1210’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1210E, PARAMETER parm IS MISSING ITS VALUE.

The following REXX variables are required input for

HZSLFMSG_REASON=’PARS1210’:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert.

v HZSLFMSG_INSERT.0 = 1 - Indicates that there is one insert.

v HZSLFMSG_INSERT.1=parm - 1 to 16 character name of the parameter in

error.

HZSLFMSG_REASON=’PARS1211’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1211E, PARAMETER parm VALUE value IS TOO LARGE.

The following REXX variables are required input when

HZSLFMSG_REASON=’PARS1211’ is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT1 = parm - 1 to 16 character name of the parameter in

error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG_REASON=’PARS1212’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1212E, PARAMETER parm VALUE value IS TOO SMALL.

The following REXX variables are required input when

HZSLFMSG_REASON=’PARS1212’ is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT1 = parm - 1 to 16 character name of the parameter in

error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 207

|

||

||
|

|
|
|
|
|
|
|
|
|

||
|

|
|
|
|
|
|
|

||
|

|
|
|
|
|
|
|

||
|

|
|
|
|
|
|
|
|

||
|

|
|
|
|
|
|
|
|

Table 28. HZSLFMSG_REQUEST='HZSMSG' input variables (continued)

Variable name Description

HZSLFMSG_REASON=’PARS1213’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1213E, PARAMETER parm VALUE value IS TOO LONG.

The following REXX variables are required input when

HZSLFMSG_REASON=’PARS1213’ is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT1 = parm - 1 to 16 character name of the parameter in

error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG_REASON=’PARS1214’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1214E, PARAMETER parm VALUE value IS TOO SHORT.

The following REXX variables are required input when

HZSLFMSG_REASON=’PARS1214’ is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT1 = parm - 1 to 16 character name of the parameter in

error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG_REASON=’PARS1215’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1215E, PARAMETER parm VALUE value IS NOT

DECIMAL.

The following REXX variables are required input when

HZSLFMSG_REASON=’PARS1215’ is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT1 = parm - 1 to 16 character name of the parameter in

error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG_REASON=’PARS1216’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1216E, PARAMETER parm VALUE value IS NOT

HEXADECIMAL.

The following REXX variables are required input when

HZSLFMSG_REASON=’PARS1216’ is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert .

v HZSLFMSG_INSERT.0 = 2 - Indicates that there are two inserts.

v HZSLFMSG_INSERT1 = parm - 1 to 16 character name of the parameter in

error.

v HZSLFMSG_INSERT.2 = value - 1 to 17 character parameter value in error.

HZSLFMSG_REASON=’PARS1217’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1217E, PARAMETERS WERE SPECIFIED BUT NONE

ARE NOT ALLOWED.

The following REXX variables are required input for

HZSLFMSG_REASON=’PARS1217’:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert.

v HZSLFMSG_INSERT.0 =0 - Indicates that there are no inserts.

HZSLFMSG function

208 IBM Health Checker for z/OS User’s Guide

|

||

||
|

|
|
|
|
|
|
|
|

||
|

|
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|

Table 28. HZSLFMSG_REQUEST='HZSMSG' input variables (continued)

Variable name Description

HZSLFMSG_REASON=’PARS1218’ indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1218E, PARAMETER NUMBER n WAS NOT

PROCESSED.

The following REXX variables are required input when

HZSLFMSG_REASON=’PARS1218’ is specified:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert .

v HZSLFMSG_INSERT.0 = 1 - Indicates that there are two inserts.

v HZSLFMSG_INSERT.2 = n - Number of the parameter that was not

processed, the maxamum value that can be specified is 999999999.

HZSLFMSG_REASON=’PARS1219’ Indicates that the message is being issued due to a parameter parsing error,

issuing message HZS1219E, MIXING POSITIONAL AND KEYWORD

FORMATS IS NOT ALLOWED.

The following REXX variables are required input for

HZSLFMSG_REASON=’PARS1219’:

v HZSLFMSG_INSERT - REXX stem variable that is used to identify the

message insert.

v HZSLFMSG_INSERT.0 =0 - Indicates that there are no inserts.

Input variables for HZSLFMSG_REQUEST='STOP'

HZSLFMSG_REQUEST=’STOP’ indicates that the system is to stop calling this

check. The message text is provided by IBM Health Checker for z/OS.

The following REXX variables are required input when

HZSLFMSG_REQUEST=’STOP' is specified:

 Table 29. HZSLFMSG_REQUEST='STOP' input variables

Variable name Description

HZSLFMSG_REASON=’BADPARM’ Indicates that the parameters are not valid. The system issues message

HZS1001E. This message is also recorded in the check’s message buffer. The

state of the check is changed to parameter error. The check remains disabled

until the PARMS are changed, presumably to address the error.

HZSLFMSG_REASON=’ERROR’ Indicates that the message is being issued because of error. The system is to

issue HZS1002E. The state of the check is changed to error. The check is

disabled. The check will not be called again until the check is refreshed.

The following REXX variable is required input for

HZSLFMSG_REASON='ERROR'’:

v HZSLFMSG_DIAG - is set to the data to be displayed as hex data in the

message output to provide diagnostic information for the failure that is being

reported. There is no pre-defined format for this data; it may well be internal

component diagnostic data.

The value in HZSLFMSG_DIAG must be either:

– An 8 character value that will be displayed as hexadecimal value.

– A 16 character hexadecimal value, that may contain valid hexadecimal

characters: 0-9 and A-F only.

HZSLFMSG_REASON=’ENVNA’ Indicates that the check is not applicable in the current system environment.

Message HZS1003E is written as hardcopy-only and is also written to the

check’s message buffer. The state of the check is changed to not applicable.

The check is disabled. The check will not be called again until the reason for the

condition is resolved and the check is refreshed (or its parameter is changed).

HZSLFMSG function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 209

|

||

||
|
|

|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|

|
|
|

|
|

||

||

||
|
|
|

||
|
|

|
|
|
|
|
|

|
|
|
|

||
|
|
|
|
|

HZSLFMSG Output variables

The following REXX variable are returned by HZSLFMSG:

 Table 30. HZSLFMSG output varaibles

Variable name Description

RESULT The return code for the HZSLFMSG function. The possible return codes are as

follows:

0 Meaning: Indicates that the HZSLFMSG function completed successfully.

 Action: None required.

8 Meaning: The HZSLFMSG function did not complete because of an error.

 Action: Refer to action under the individual reason code returned in

HZSLFMSG_RSN

12 Meaning: The HZSLFMSG function did not complete because of an

environment error.

 Action: Refer to action under the individual reason code returned in

HZSLFMSG_RSN

16 Meaning: The HZSLFMSG function did not complete because of a

component error.

 Action: Refer to action under the individual reason code returned in

HZSLFMSG_RSN

HZSLFMSG function

210 IBM Health Checker for z/OS User’s Guide

|
|

||

||

||
|

||

|

||

|
|

||
|

|
|

||
|

|
|

Table 30. HZSLFMSG output varaibles (continued)

Variable name Description

HZSLFMSG_RSN The reason code explaining a RESULTvalue of 8 or more. The reason codes are

as follows:

00000858

Meaning: HZS_HANDLE was not valid.

 Action: Make sure that the HZSLFMSG function is only called from a REXX

exec called by IBM Health Checker for z/OS. The check exec must not

modify output variable HZS_HANDLE.

00000890

Meaning: HZSLFMSG_REQUEST is not valid.

 Action: Make sure HZSLFMSG_REQUEST is set to a valid value. The valid

values are ’CHECKMSG’, ’HZSMSG’ and ’STOP’.

00000891

Meaning: HZSLFMSG_DIAG is not valid.

 Action: Make sure the HZSLFMSG_DIAG is set to a valid value:

v An 8 character value that will be displayed as a hexadecimal value.

v A 16 character hexadecimal value, that may contain valid hexadecimal

characters: 0-9 and A-F only.

00000892

Meaning: HZSLFMSG_REASON is not valid .

 Action: Make sure the HZSLFMSG_REASON is set to a valid value:

v When HZSLFMSG_REQUEST=’HZSMSG’, the valid values of

HZSLFMSG_REASON are: { ’ERROR’ | ’PARS1201’ | ’PARS1202’ |

’PARS1203’ | ’PARS1204’ | ’PARS1205’ | ’PARS1206’ | ’PARS1207’ |

’PARS1208’ | ’PARS1209’ | ’PARS1210’ | ’PARS1211’ | ’PARS1212’ |

’PARS1213’ | ’PARS1214’ | ’PARS1215’ | ’PARS1216’ | ’PARS1217’ |

’PARS1218’ | ’PARS1219’ }

v When HZSLFMSG_REQUEST=’STOP’, the valid values of

HZSLFMSG_REASON are: { ’BADPARM’ | ’ERROR’ | ’ENVNA’ }

00000893

Meaning: HZSLFMSG_MESSAGENUMBER is not valid.

 Action: Make sure the HZSLFMSG_MESSAGENUMBER is set to a valid

decimal number that identifies the desired message to be written.

00000894

Meaning: HZSLFMSG_INSERT.0 is not valid .

 Action: Make sure the stem variable HZSLFMSG_INSERT.0 is set to the

number of message inserts defined for the message that is to be written.

The minimum number of message inserts that can be defined for a message

is zero (0). The maximum number of inserts that can be defined for a

message is twenty (20).

HZSLFMSG function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 211

|

||

||
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

Table 30. HZSLFMSG output varaibles (continued)

Variable name Description

00000895

Meaning: HZSLFMSG_INSERT.xx is not valid .

 Action: Make sure HZSLFMSG_INSERT.xx is valid. Each insert is limited to

256 characters. Numeric inserts for PARS12yy messages must be a decimal

number between 0 and 999999999. The first 2 characters of

HZSFMSG_RSN identifies which insert is not valid.

0000089F

Meaning: HZSLFMSG service issued a 290 ABEND .

 Action: Look at the data returned in HZSLFMSG_USERRSN and

HZSLFMSG_ABENDRESULT to determine the problem:

HZSLFMSG_USERRSN

290 ABEND reason code (see “HZSFMSG ABEND Codes” on page

252).

HZSLFMSG_ABENDRESULT

ABEND result string returned by HZSFMSG service.

xxxx08xx

Meaning: HzsfmsgRc_EnvParm was returned by the HZSFMSG macro.

 Action: Refer to the action under “HZSFMSG Return and Reason Codes”

on page 254 the HZSFMSG macro.

xxxx0Cxx

Meaning: HzsfmsgRc_EnvError was returned by the HZSFMSG macro.

 Action: Refer to the action under “HZSFMSG Return and Reason Codes”

on page 254 the HZSFMSG macro.

00001003

Meaning: A service used by HZSLFMSG failed.

 Action: Retry the service, if HZSLFMSG continues to fail, obtain the value of

the REXX variable HZSLFMSG_SYSTEMDIAG, and contact IBM service.

HZSLFMSG_SYSTEMDIAG Diagnostic data returned by the failed service.

HZSLFMSG return codes

0 Meaning: Service was invoked while the exec was running under System

REXX.

 Action: RESULT will be set to the return code of the service.

8 Meaning: The HZSFMSG request specified incorrect parameters.

 Action: Refer to action under the individual reason code.

C Meaning: HZSLFMSG was not invoked from a System REXX environment.

 Action: Make sure the HZSLFMSG service is only called from an exec that has

gotten control as a REXX check called by the IBM Health Checker for z/OS.

HZSLFMSG function

212 IBM Health Checker for z/OS User’s Guide

|

||

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

||
|

|

||
|

|

||

|

||

|
|

|

HZSLSTOP function

Purpose: REXX function indicating that the check has finished running. This is the

interface to the assembler HZSCHECK REQUEST=OPCOMPLETE macro.

Invocation: CALL HZSLSTOP

Input variables

The following REXX variable is input to HZSLSTOP:

 Table 31. HZSLSTOP input variable

Variable name Description

HZS_HANDLE IBM Health Checker for z/OS sets this variable to the correct value when it calls

a REXX check. Your REXX check must not modify HZS_HANDLE. The

HZS_HANDLE is used to synchronize the check and IBM Health Checker for

z/OS, because they do not run in the same address space.

HZS_PQE_CHKWORK Current value of the PQE_CHKWORK area. Only a maximum of 2048 characters

HZS_PQE_CHKWORK will be saved and restored. HZS_PQE_CHCKWORK is

reset before the check is run for the following reasons:

v When the check is to run for the first time.

v When the check is REFRESHed.

v When the check becomes either INACTIVE or DISABLED for any reason

besides invalid parameters.

Output variables

The following REXX variable are returned by HZSLSTOP:

 Table 32. HZSLSTOP output variables

Variable name Description

RC The return code for the HZSLSTOP function. The possible return codes are as

follows:

0 Meaning: Indicates that the HZSLSTOP function completed successfully.

 Action: None required.

4 Meaning: HZSLSTOP completed with a warning.

 Action: Refer to action under the individual reason code returned in

HZSLSTOP_RSN

8 Meaning: The HZSLSTOP function did not complete because of an error.

 Action: Refer to action under the individual reason code returned in

HZSLSTOP_RSN

12 Meaning: HZSLSTRT did not complete because of an environment error.

 Action: Refer to action under the individual reason code returned in

HZSLSTRT_RSN

16 Meaning: HZSLSTRT did not completed because of an component error.

 Action: Refer to action under the individual reason code returned in

HZSLSTRT_RSN

HZSLSTOP function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 213

|
|

|
|

|

|

|

||

||

||
|
|
|

||
|
|
|
|
|
|
|

|

|

||

||

||
|

||

|

||

|
|

||

|
|

||

|
|

||

|
|

Table 32. HZSLSTOP output variables (continued)

Variable name Description

HZSLSTOP_RSN The reason code explaining an RESULT value of 4 or more. The reason codes

are as follows:

00000401

Meaning: HZS_PQE_CHKWORK exceeded 2048 bytes. Only the first 2048

bytes of HZS_PQE_CHKWORK will be saved.

 Action: Do not set HZS_PQE_CHKWORK to a character string longer the

2048 characters.

xxxx04xx

Meaning: HZSCHECK REQUEST=OPSTART HzscheckRC_Warning was

returned from the HZSCHECK macro.

 Action: Refer to the action under the individual Reason code as

documented by the HZSCHECK macro.

00000858

Meaning: HZS_HANDLE was not valid.

 Action: Make sure that the HZSLSTOP serice is only called from a REXX

exec called by IBM Health Checker for z/OS. The check must not modify

output variable HZS_HANDLE.

xxxx08xx

Meaning: HZSCHECK REQUEST=OPSTART returned the

HzscheckRC_InvParm reason code equate symbol.

 Action: Refer to the action under the individual reason code for the

HZSCHECK macro.Meaning: Action:

00000C01

Meaning: IBM Health Checker for z/OS is not active.

 Action: Reissue the function when IBM Health Checker for z/OS is active.

00000C03

Meaning: The check issued the HZSLTOP function for a check that was not

started.

 Action: Ensure that an HZSLSTART function is issued before a HZSLFMSG

or HZSLSTOP function.

00000C05

Meaning: The system does not support System REXX checks.

 Action: Run the check on a system at the z/OS R9 level or above.

xxxx0Cxx

Meaning: HZSCHECK REQUEST=OPSTART returned the

HzscheckRC_EnvError reason code equate symbol.

 Action: Refer to the action under the individual reason code for the

HZSCHECK macro.

00001003

Meaning: A service used by HZSLSTOP failed.

 Action: Retry the service. If HZSLSTOP continues to fail, obtain the value of

the REXX variable HZSLSTOP_SYSTEMDIAG, and contact IBM service.

HZSLSTOP_SYSTEMDIAG Diagnostic data returned by the failed service that HZSLSTRT uses.

HZSLSTOP function

214 IBM Health Checker for z/OS User’s Guide

|

||

||
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|

|
|
|

|
|

|
|

|

|
|
|

|
|

|
|

|
|

||
|

HZSLSTOP return codes

0 Meaning: HZSLSTOP was invoked while the exec was running under System

REXX.

 Action: RESULT will be set to the return code of the service.

4 Meaning: HZSLSTOP completed with a warning.

 Action: Refer to the action under the individual reason code returned in

HZSLSTOP_RSN

C Meaning: HZSLSTOP was not invoked from a System REXX environment.

 Action: Make sure the HZSLSTOP service is only called from an exec that has

gotten control as a REXX check called by the IBM Health Checker for z/OS.

HZSLSTOP function

Chapter 11. IBM Health Checker for z/OS System REXX Functions 215

|

||
|

|

||

|
|

||

|
|

HZSLSTOP function

216 IBM Health Checker for z/OS User’s Guide

Chapter 12. IBM Health Checker for z/OS HZS macros

IBM Health Checker for z/OS includes the following macros.

v Use “HZSADDCK macro — HZS add a check” on page 218 to define a check in

a HZSADDCHECK exit routine

v Use “HZSFMSG macro — Issue a formatted check message” on page 236 to

issue messages in check routines

v Use “HZSQUERY macro — HZS Query” on page 259 to obtain information about

checks that are currently registered with IBM Health Checker For z/OS.

v Use “HZSCHECK macro — HZS Check command request” on page 275 to

manage a check and in registration routines, to refresh a check

v Use “HZSCPARS macro — HZS Check Parameter Parsing” on page 289 to

parse check parameters.

© Copyright IBM Corp. 2006, 2007 217

HZSADDCK macro — HZS add a check

Description

The HZSADDCK macro is used by the HZSADDCHECK dynamic exit routine to add

a check to IBM Health Checker for z/OS. Adding a check includes defining default

values, the parameters and routines required to run the check. The exit routine and

the check routines run in IBM Health Checker for z/OS address space.

Environment

The requirements for the caller are:

 Minimum authorization: Problem state. PSW key 8-15 When problem state and key

8-15 and not APF authorized, or when SECCHECK=ALL is

specified, The caller must be authorized for control access to

any of the following:

v XFACILIT class resource HZS.sysname.checkowner.ADD

v XFACILIT class resource

HZS.sysname.checkowner.checkname.ADD

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE

ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

v This macro must be invoked from an exit routine associated with the

HZSADDCHECK dynamic exit.

v The check routine and the message table must be in an APF-authorized library.

v The caller should include the HZSZCONS macro to get equate symbols for the

return and reason codes.

Restrictions

This macro supports multiple versions. Some keywords are unique to certain

versions. See the PLISTVER parameter description.

The caller may not have an FRR established.

Input Register Information

Before issuing the HZSADDCK macro, the caller does not have to place any

information into any register unless using it in register notation for a particular

parameter, or using it as a base register.

Before issuing the HZSADDCK macro, the caller does not have to place any

information into any AR unless using it in register notation for a particular

parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

HZSADDCK macro

218 IBM Health Checker for z/OS User’s Guide

Register

Contents

0 Reason code, when register 15 is not 0.

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the ARs contain:

Register

Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after

issuing a service. If the system changes the contents of registers on which the

caller depends, the caller must save them before issuing the service, and restore

them after the system returns control.

Performance Implications

None.

Syntax

The HZSADDCK macro is written as follows:

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 219

|
|
|

main diagram

��

name
 HZSADDCK � CHECKOWNER = checkowner , CHECKNAME = checkname �

�
 , REMOTE = NO

parameters-1

,

REMOTE

=

YES

parameters-2

,

DATE

=

date

�

� , REASON = reason , REASONLEN = reasonlen �

�
,

PARMS

=

NO_PARMS

,

PARMSLEN

=

,

PARMS

=

parms

,

PARMSLEN

=

parmslen

,

LOCAL

,

GLOBAL

,

ACTIVE

,

INACTIVE

 �

� , SEVERITY = LOW

,

SEVERITY

=

MED

,

SEVERITY

=

HI

 �

�
 , EIHOURS = , EIMINUTES =

,

INTERVAL

=

ONETIME

,

EIHOURS

=

eihours

,

EIMINUTES

=

eiminutes

,

INTERVAL

=

TIMER

parameters-3

�

�
 , VERBOSE = NO

,

VERBOSE

=

YES

,

RETCODE

=

retcode

,

RSNCODE

=

rsncode

�

�
 , PLISTVER = IMPLIED_VERSION

,

PLISTVER

=

MAX

,

PLISTVER

=

,

PLISTVER

=

 , MF = S

,

D

,

MF

=

(

L

,

list addr

)

,

attr

,

COMPLETE

,

MF

=

(

E

,

list addr

)

��

parameters-1

�� , CHECKROUTINE = checkroutine

,

ENTRYCODE

=

entrycode
 �

�

,

EXITRTN

=

exitrtn

,

MSGTBL

=

msgtbl
 , USS = NO

,

USS

=

YES

��

HZSADDCK macro

220 IBM Health Checker for z/OS User’s Guide

|

|

||||||||||||||||||||||||||||
|

|
|||
|

|
|||||||||||||||||||
|

|
||
|

|
|||||||||||||||||||||||||||||||||
|

|
||
|

|
|||
|

|
|||

||||
|

|

|

||||||||||||||||||||||||
|

|
|||

||||
|

||

Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the HZSADDCK

macro invocation. The name must conform to the rules for an ordinary

assembler language symbol.

parameters-2

��
 , SECCHECK = UNAUTH

,

SECCHECK

=

ALL

�

�
 , REXX = NO , USS = NO

,

HANDLE

=

handle

,

PETOKEN

=

petoken

,

USS

=

YES

,

REXX

=

YES

parameters-4

��

parameters-3

��
 , HOURS = 0

,

HOURS

=

hours

 , MINUTES = 0

,

MINUTES

=

minutes

�

�
 , EINTERVAL = SYSTEM

,

EINTERVAL

=

HALF

,

EIHOURS

=

0

,

EIMINUTES

=

0

,

EINTERVAL

=

TIMER

,

EIHOURS

=

eihours

,

EIMINUTES

=

eiminutes

��

parameters-4

�� , EXEC = exec

,

ENTRYCODE

=

entrycode
 �

� , EXITRTN = exitrtn , MSGTBL = msgtbl �

�
 , TIMELIMIT = NO_TIMELIMIT

,

TIMELIMIT

=

timelimit

,

REXXHLQ

=

rexxhlq

�

�
 , REXXTSO = YES , USS = NO

,

USS

=

YES

,

REXXIN

=

NO

,

REXXTSO

=

NO

,

REXXIN

=

YES

��

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 221

|

|

|||||||||||||||||||||||||
|

|
|||

||||
|

|

|

|||
|

|
||

||||
|
|

|

||||||||||||||||||||||||
|

|
|||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||
|

|
|||

||||
|

||

,ACTIVE

An optional input parameter that indicates the check should run when it is

added to the system.

 To code: Specify a value.

,CHECKNAME=checkname

A required input parameter that specifies the name of the check being added.

IBM recommends using the naming convention of a short component reference

followed by a descriptive title (e.g., GRS_MODE). Upper and lower case

alphabetic characters(a-z), numerics (0-9), national characters (@,$,#) and the

underscore (’_’) are allowed. Lower case alphabetic characters are folded to

upper case and are treated as equivalent to their corresponding upper case

value.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

32-character field.

CHECKOWNER=checkowner

A required input parameter that specifies the owner of the check being added.

The check owner and check name identify the check. IBM recommends that

you use your company name followed by the short component name (i.e.,

IBMGRS) as the owner. Upper and lower case alphabetic characters(a-z),

numerics (0-9), national characters (@,$,#) and the underscore (’_’) are

allowed. Lower case alphabetic characters are folded to upper case and are

treated as equivalent to their corresponding upper case value. Do not use as

the checkowner any of the following: QUERY, MESSAGES, ACTIVATE,

DEACTIVATE, UPDATE, RUN, REFRESH, DELETE, ADDNEW.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,CHECKROUTINE=checkroutine

When REMOTE=NO is specified, a required input parameter that specifies the

module name of the check. The system gives control to the entry point of this

module to run the check. The check routine module must be in an

APF-authorized library.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,DATE=date

A required input parameter, date (its format is YYYYMMDD) that indicates when

the default values for the check were defined. When two HZSADDCK requests

are received with the same check owner and check name, the request with the

latest date will be honored. When the date provided on a matching POLICY

UPDATE or POLICY DELETE statement is older than this date, that policy

statement is not applied to this check.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,EIHOURS=eihours

,EIHOURS=0

When INTERVAL=ONETIME is specified, an optional input parameter that

specifies the number of hours in the exception interval. It must be in the range

0 through 999. If both EIHours and EIMinutes specify 0, no exception interval is

processed. The default is 0.

 To code: Specify the RS-type address of a halfword field. eihours must be in

the range 0 through 999.

HZSADDCK macro

222 IBM Health Checker for z/OS User’s Guide

,EIHOURS=eihours

,EIHOURS=0

When EINTERVAL=TIMER and INTERVAL=TIMER are specified, an optional

input parameter that specifies the number of hours in the exception interval. It

must be in the range 0 through 999. The default is 0.

 To code: Specify the RS-type address of a halfword field. eihours must be in

the range 0 through 999.

,EIMINUTES=eiminutes

,EIMINUTES=0

When INTERVAL=ONETIME is specified, an optional input parameter that

specifies the number of minutes in the exception interval It must be in the range

0 through 59. If both EIHours and EIMinutes specify 0, no exception interval is

processed. The default is 0.

 To code: Specify the RS-type address of a halfword field. eiminutes must be in

the range 0 through 59.

,EIMINUTES=eiminutes

,EIMINUTES=0

When EINTERVAL=TIMER and INTERVAL=TIMER are specified, an optional

input parameter that specifies the number of minutes in the exception interval It

must be in the range 0 through 59. The default is 0.

 To code: Specify the RS-type address of a halfword field. eiminutes must be in

the range 0 through 59.

,EINTERVAL=SYSTEM

,EINTERVAL=HALF

,EINTERVAL=TIMER

When INTERVAL=TIMER is specified, an optional parameter that specifies the

time exception interval for the next running of the check. If the previous running

of the check resulted in an exception, then this interval is to be used. The

default is EINTERVAL=SYSTEM.

,EINTERVAL=SYSTEM

indicates that the check should run according to system rules (namely,

according to the interval parameter).

,EINTERVAL=HALF

indicates that the check should run when one half of the interval according

to the interval parameter has expired. This value is rounded up to a whole

number of minutes.

,EINTERVAL=TIMER

indicates that a timer is used to reschedule the check. The number of hours

is combined with the number of minutes to determine how long after the

completion of the check routine’s running the next running of the check

routine should occur. When both the hours and minutes values are zero,

the system treats this as if EINTERVAL=SYSTEM had been specified.

,ENTRYCODE=entrycode

When REMOTE=NO is specified, an optional input parameter that specifies a

unique check entry value when the same check routine will be accessed by

multiple checks. This value is passed to the check routine in the field

Pqe_EntryCode.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

fullword field.

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 223

,ENTRYCODE=entrycode

When REXX=YES and REMOTE=YES are specified, an optional input

parameter that specifies a unique check entry value when the same check

routine will be accessed by multiple checks. This value is passed to the check

routine in the field Pqe_EntryCode.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

fullword field.

,EXEC=exec

When REXX=YES and REMOTE=YES are specified, a required input

parameter that is the name of the REXX exec to be invoked.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,EXITRTN=exitrtn

When REMOTE=NO is specified, a required input parameter that specifies the

name of the exit routine that invoked this HZSADDCK request.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,EXITRTN=exitrtn

When REXX=YES and REMOTE=YES are specified, a required input

parameter that specifies the name of the exit routine that invoked this

HZSADDCK request.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,GLOBAL

An optional input parameter that indicates the check should run on only one

system in a sysplex. The system on which the check runs is designated as the

global system for that check. Serialization for the global check is accomplished

via exclusive ownership of SCOPE=SYSTEMS ENQ with QNAME SYSZHZS

and RNAME checkowner.checkname.

 To code: Specify a value.

,HANDLE=handle

When REXX=NO and REMOTE=YES are specified, a required output

parameter that is to hold a handle (token) that identifies the check. This handle

is to be used on the HANDLE parameter of the HZSCHECK and HZSFMSG

macros.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,HOURS=hours

,HOURS=0

When INTERVAL=TIMER is specified, an optional input parameter that specifies

the number of hours. It must be in the range 0 through 999. The default is 0.

 To code: Specify the RS-type address of a halfword field. hours must be in the

range 0 through 999.

,INACTIVE

An optional input parameter that Indicates the check should not run until the

state is changed to active.

 To code: Specify a value.

,INTERVAL=ONETIME

HZSADDCK macro

224 IBM Health Checker for z/OS User’s Guide

,INTERVAL=TIMER

A required parameter that specifies the time interval for the next running of the

check.

,INTERVAL=ONETIME

indicates that the check should run once. It will not be rescheduled.

,INTERVAL=TIMER

indicates that a timer is used to reschedule the check. The number of hours

is combined with the number of minutes to determine how long after the

completion of the check routine’s running the next running of the check

routine should occur. When both the hours and minutes values are zero,

the system treats this as if INTERVAL=ONETIME had been specified.

,LOCAL

An optional input parameter that indicates the check should run on this system.

 To code: Specify a value.

,MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

 Use MF=S to specify the standard form of the macro, which builds an inline

parameter list and generates the macro invocation to transfer control to the

service. MF=S is the default.

 Use MF=L to specify the list form of the macro. Use the list form together with

the execute form of the macro for applications that require reentrant code. The

list form defines an area of storage that the execute form uses to store the

parameters. Only the PLISTVER parameter may be coded with the list form of

the macro.

 Use MF=E to specify the execute form of the macro. Use the execute form

together with the list form of the macro for applications that require reentrant

code. The execute form of the macro stores the parameters into the storage

area defined by the list form, and generates the macro invocation to transfer

control to the service.

,list addr

The name of a storage area to contain the parameters. For MF=S and

MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr

An optional 1- to 60-character input string that you use to force boundary

alignment of the parameter list. Use a value of 0F to force the parameter

list to a word boundary, or 0D to force the parameter list to a doubleword

boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE

Specifies that the system is to check for required parameters and supply

defaults for omitted optional parameters.

,MINUTES=minutes

,MINUTES=0

When INTERVAL=TIMER is specified, an optional input parameter that specifies

the number of minutes. It must be in the range 0 through 59. The default is 0.

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 225

To code: Specify the RS-type address of a halfword field. minutes must be in

the range 0 through 59.

,MSGTBL=msgtbl

When REMOTE=NO is specified, a required input parameter that specifies the

module name of the message table that will be used when generating

messages for the check. The message table must be built using the

HZSMSGEN REXX exec. The message table module must be in an

APF-authorized library.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,MSGTBL=msgtbl

When REXX=YES and REMOTE=YES are specified, a required input

parameter that specifies the module name of the message table that will be

used when generating messages for the check. The message table must be

built using the HZSMSGEN REXX exec. The message table module must be in

an APF-authorized library.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,PARMS=parms

,PARMS=NO_PARMS

An optional input parameter that specifies the default parameters for the check.

The length of the parameter string is specified by the PARMSLEN parameter.

Alphanumeric or national characters separated by commas are the standard

form of expressing check parameters. IBM recommends that each parameter be

of the form ″keyword(value)″ and that multiple parameters be separated from

each other by a comma. An example of a parameter string following that

protocol is ″MAXLEN(8),MINLEN(1)″. Although the parameters are not checked

when the check is added, the check routine itself will likely do so. The default is

NO_PARMS.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,PARMSLEN=parmslen

,PARMSLEN=0

When PARMS=parms is specified, a required input parameter that contains the

length of the default parameters for each check. The length must be in the

range 1 through 256. The default is 0.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

fullword field. parmslen must be in the range 0 through 256.

,PETOKEN=petoken

When REXX=NO and REMOTE=YES are specified, a required input parameter

that is a pause element token obtained by the caller via the IEAVAPE service

using an authlvl of IEA_UNAUTHORIZED (even if the caller is authorized). The

caller, waiting to be told what to do by IBM Health Checker for z/OS, should

pause using that pause element token. IBM Health Checker for z/OS will

″release″ using that pause element token to wake up the check processing.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

HZSADDCK macro

226 IBM Health Checker for z/OS User’s Guide

,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER

determines which parameter list the system generates. PLISTVER is an

optional input parameter on all forms of the macro, including the list form. When

using PLISTVER, specify it on all macro forms used for a request and with the

same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER

parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.

This size might grow from release to release and affect the amount of

storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify

PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that

the list-form parameter list is always long enough to hold all the parameters

you might specify on the execute form, when both are assembled with the

same level of the system. In this way, MAX ensures that the parameter list

does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in

higher versions.

v 1, which supports both the following parameters and those from version 0:

 EXEC PETOKEN TIMELIMIT

HANDLE REXXHLQ

To code: Specify one of the following:

v IMPLIED_VERSION

v MAX

v A decimal value of 0, or 1

,REASON=reason

A required input parameter that indicates what the check routine validates. The

text is limited to 126 characters.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,REASONLEN=reasonlen

A required input parameter that contains the length of the Reason text. It must

be in the range 1 through 126.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

fullword field.

,REMOTE=NO

,REMOTE=YES

An optional parameter, which identifies the locale of the check. The default is

REMOTE=NO.

,REMOTE=NO

indicates that the check runs locally in the address space of IBM Health

Checker for z/OS.

,REMOTE=YES

indicates that the check runs remotely, in an address space other than that

of IBM Health Checker for z/OS.

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 227

,RETCODE=retcode

An optional output parameter into which the return code is to be copied from

GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,REXX=NO

,REXX=YES

When REMOTE=YES is specified, an optional parameter, which identifies if this

is a REXX check The default is REXX=NO.

,REXX=NO

indicates that this is not a REXX check.

,REXX=YES

indicates that this is a REXX check

,REXXHLQ=rexxhlq

When REXX=YES and REMOTE=YES are specified, a required input

parameter that specifies the high level qualifier for data sets(s) to be made

available to the Rexx exec. The output data set (such as the one to which the

’say’ function would send its output) is made available when the check is in

debug mode and not otherwise. When there is no entry code, or the entry code

is 0, the output data set name for a high level qualifier of ’HLQ’ will be

’HLQ.execname.REXXOUT’. When there is a non-0 entry code, the output data

set name will be ’HLQ.execname.REXXOUT.En’ where n is the decimal value of

the entry code. If the entry code exceeds 9999999, the value modulo 10000000

will be used. The system will not make any attempt to ensure that the data sets

are unique beyond this naming convention. If not already allocated, the data set

will be allocated by the system. If the data set is to be created, the IBM Health

Checker for z/OS address space identity must have the authority to create the

data set. If the system does attempt to create or use the data set and is not

successful, the check routine will not run successfully. The input data set name

will be formed using a similar protocol, changing only REXXOUT to REXXIN.

The use of the REXXIN data set is controlled by the REXXIN parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,REXXIN=NO

,REXXIN=YES

When REXXTSO=NO, REXX=YES and REMOTE=YES are specified, an

optional parameter that indicates if there is a REXX input data set. The default

is REXXIN=NO.

,REXXIN=NO

indicates that there is no REXX input data set.

,REXXIN=YES

indicates that the REXX input data set does exist and is to be made

available to the exec. Its naming convention is described under the

REXXHLQ parameter. If the data set does not exist, the exec will not

successfully be given control.

,REXXTSO=YES

,REXXTSO=NO

When REXX=YES and REMOTE=YES are specified, an optional parameter that

indicates if this REXX exec needs access to TSO functions. The default is

REXXTSO=YES.

HZSADDCK macro

228 IBM Health Checker for z/OS User’s Guide

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

,REXXTSO=YES

indicates that the REXX exec needs TSO functions. The exec will execute

in a TSO host command environment.

,REXXTSO=NO

indicates that the REXX exec does not need TSO functions. The exec will

execute in a MVS host command environment.

,RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from

GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SECCHECK=UNAUTH

,SECCHECK=ALL

When REMOTE=YES is specified, an optional parameter that indicates whether

to do RACF security checks. The default is SECCHECK=UNAUTH.

,SECCHECK=UNAUTH

that indicates to do RACF security checks only when the caller is

unauthorized (not supervisor state, not system key, not APF-authorized).

,SECCHECK=ALL

that indicates to do RACF security checks in all cases for remote checks. If

RACF does not grant authority, the request is rejected.

,SEVERITY=LOW

,SEVERITY=MED

,SEVERITY=HI

A required parameter that indicates the severity assigned to the check.

,SEVERITY=LOW

indicates that this is a low-severity check. When a low-severity check

detects an exception, an informational WTO is issued.

,SEVERITY=MED

indicates that this is a medium-severity check. When a medium-severity

check detects an exception, an eventual action WTO is issued.

,SEVERITY=HI

indicates that this is a high-severity check. When a high-severity check

detects an exception, a critical eventual action WTO is issued.

,TIMELIMIT=timelimit

,TIMELIMIT=NO_TIMELIMIT

When REXX=YES and REMOTE=YES are specified, an optional input

parameter that is the number of seconds to which the execution of an iteration

of the exec is to be limited. A value of 0 is treated the same as ″no time limit″.

The default is NO_TIMELIMIT.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

fullword field, or specify a literal decimal value.

,USS=NO

,USS=YES

When REMOTE=NO is specified, an optional parameter that indicates whether

the check uses Unix System Services. This information is used when Unix

System Services itself is shut down, at which time IBM Health Checker for z/OS

will wait for the completion of the running of any non-remote check that has

indicated it uses Unix System Services before allowing the Unix System

Services shutdown to complete. Also, when Unix System Services are not

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 229

|
|
|

|
|
|

|
|
|
|
|
|

|
|

available, checks that have indicated they use those services are not run. Thus,

indicating ″YES″ if the check actually does not use Unix System Services could

delay USS shutdown and would result in the check’s not being run when those

services are not available. The default is USS=NO.

,USS=NO

indicates the check does not use Unix System Services.

,USS=YES

indicates the check does use Unix System Services.

,USS=NO

,USS=YES

When REXX=NO and REMOTE=YES are specified, an optional parameter that

indicates whether the check uses Unix System Services. When Unix System

Services are not available, checks that have indicated they use those services

are not run. Thus, indicating ″YES″ if the check actually does not use Unix

System Services would result in the check’s not being run when those services

are not available. The default is USS=NO.

,USS=NO

indicates the check does not use Unix System Services.

,USS=YES

indicates the check does use Unix System Services.

,USS=NO

,USS=YES

When REXXTSO=YES, REXX=YES and REMOTE=YES are specified, an

optional parameter that indicates whether the check uses Unix System

Services. When Unix System Services are not available, checks that have

indicated they use those services are not run. Thus, indicating ″YES″ if the

check actually does not use Unix System Services would result in the check’s

not being run when those services are not available. The default is USS=NO.

,USS=NO

indicates the check does not use Unix System Services.

,USS=YES

indicates the check does use Unix System Services.

,VERBOSE=NO

,VERBOSE=YES

An optional parameter that identifies the initial verbose mode for the check. The

default is VERBOSE=NO.

,VERBOSE=NO

indicates that verbose mode is not to be in effect.

,VERBOSE=YES

indicates that verbose mode is to be in effect.

HZSADDCK ABEND Codes

290 The HZSADDCK service failed.

The format for reason codes is xxxxyyyy where yyyy is the reason code. The

reason codes are in hexadecimal.

Reason Code (Hex)

Explanation

HZSADDCK macro

230 IBM Health Checker for z/OS User’s Guide

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|

xxxx4007

HZSADDCK could not load the specified check routine.

xxxx4008

HZSADDCK could not load the specified message table.

xxxx4009

HZSADDCK found a message table containing functions that are not

supported on this release or the message table was not created by

HZSMSGEN.

HZSADDCK Return and Reason Codes

When the HZSADDCK macro returns control to your program:

v GPR 15 (and retcode, when you code RETCODE) contains a return code.

v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro HZSZCONS provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the

equate symbol associated with each reason code. IBM support personnel may

request the entire reason code, including the xxxx value.

 Table 33. Return and Reason Codes for the HZSADDCK Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: HzsaddckRc_OK

Meaning: The check was added to IBM Health Checker for z/OS.

Action: None required

4 — Equate Symbol: HzsaddckRc_Warn

Meaning: Warning

Action: Refer to action under the individual reason code.

4 xxxx0401 Equate Symbol: HzsaddckRsn_CheckReplaced

Meaning: The check replaced an active check that had an earlier date.

Action: None required.

4 xxxx0402 Equate Symbol: HzsaddckRsn_CheckInactive

Meaning: The check was added but will not run until its state is changed to

active.

Action: None required

4 xxxx0414 Equate Symbol: HzsaddckRsn_CheckIdentical

Meaning: Check was not activated because a check with the specified

name is already active.

Action: None required

8 — Equate Symbol: HzsaddckRc_InvParm

Meaning: HZSADDCK request specifies incorrect parameters.

Action: Refer to action under the individual reason code.

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 231

Table 33. Return and Reason Codes for the HZSADDCK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0801 Equate Symbol: HzsaddckRsn_CheckOld

Meaning: The check was not added because a check with the same name

is already being added. That other check has a more recent date than the

date provided for this request.

Action: Avoid adding the same check twice, or make sure that the single

version of the check that you want to run has the most current date.

8 xxxx0804 Equate Symbol: HzsaddckRsn_BadCheckRoutine

Meaning: This reason code is not part of the programming interface.

Action: None.

8 xxxx0805 Equate Symbol: HzsaddckRsn_BadMessageTable

Meaning: This reason code is not part of the programming interface.

Action: None.

8 xxxx0808 Equate Symbol: HzsaddckRsn_BadENV

Meaning: HZSADDCK for a REMOTE=NO, or a REXX=YES check must

be called only from an exit routine associated with the HZSADDCHECK

exit.

Action: Issue HZSADDCK only from a supported environment.

8 xxxx0809 Equate Symbol: HzsaddckRsn_BadCheckName

Meaning: The check name contained invalid characters.

Action: Specify a valid check name.

8 xxxx080A Equate Symbol: HzsaddckRsn_BadOwnerName

Meaning: The check owner contained invalid characters.

Action: Specify a valid check owner.

8 xxxx080B Equate Symbol: HzsaddckRsn_BadDate

Meaning: The date was not in the format YYYYMMDD or is after today’s

date.

Action: Specify a valid date.

8 xxxx080C Equate Symbol: HzsaddckRsn_BadReasonLen

Meaning: The REASONLEN value is either 0 or exceeds the maximum of

256.

Action: Specify a valid value for the REASONLEN parameter.

8 xxxx080D Equate Symbol: HzsaddckRsn_BadExitRoutine

Meaning: The exit routine name was all zeroes or all blanks.

Action: Specify a valid exit routine.

8 xxxx080E Equate Symbol: HzsaddckRsn_BadTime

Meaning: The hours value exceeded 999 or the minutes value exceeded

60.

Action: Specify valid hours and minutes values.

HZSADDCK macro

232 IBM Health Checker for z/OS User’s Guide

Table 33. Return and Reason Codes for the HZSADDCK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0818 Equate Symbol: HzsaddckRsn_BadParmlist

Meaning: Error accessing parameter list.

Action: Make sure that the provided parameter list is valid.

8 xxxx0838 Equate Symbol: HzsaddckRsn_BadParmListVersion

Meaning: The specified version of the macro is not compatible with the

current version of IBM Health Checker for z/OS.

Action: Avoid requesting parameters that are not supported by this version

of IBM Health Checker for z/OS.

8 xxxx0841 Equate Symbol: HzsaddckRsn_BadParmsArea

Meaning: Error accessing the PARMS area.

Action: Make sure that the provided PARMS area is valid.

8 xxxx0842 Equate Symbol: HzsaddckRsn_BadReasonArea

Meaning: Error accessing the REASON area.

Action: Make sure that the provided REASON area is valid.

8 xxxx084F Equate Symbol: HzsaddckRsn_BadParmsLen

Meaning: The PARMSLEN value is either 0 or exceeds the maximum of

256.

Action: Specify a valid value for the PARMSLEN parameter.

8 xxxx0859 Equate Symbol: HzsaddckRsn_NotAuthorized

Meaning: Caller is not authorized

Action: Avoid calling HZSADDCK when not authorized.

8 xxxx0862 Equate Symbol: HzsaddckRsn_BadExceptionInterval

Meaning: The EIHOURS value exceeded 999 or the EIMINUTES value

exceeded 60.

Action: Specify valid hours and minutes values.

8 xxxx0863 Equate Symbol: HzsaddckRsn_BadPEToken

Meaning: The PEToken is not one obtained using authlvl of

IEA_UNAUTHORIZED.

Action: Specify a valid PEToken.

0C — Equate Symbol: HzsaddckRc_EnvError

Meaning: Environmental Error

Action: Refer to action under the individual reason code.

0C xxxx0C01 Equate Symbol: HzsaddckRsn_IBMHCNotActive

Meaning: IBM Health Checker for z/OS is not active

Action: Re-issue the request when the service is available

10 — Equate Symbol: HzsaddckRc_CompError

Meaning: Component Error

Action: Refer to action under the individual reason code.

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 233

Table 33. Return and Reason Codes for the HZSADDCK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

10 xxxx1001 Equate Symbol: HzsaddckRsn_IntError

Meaning: Unexpected internal error

Action: Report the problem to the system programmer

Examples

 Add a low severity check that is to run once. The check shares a check routine

with other checks, so provides an entry code.

The code is as follows.

* Add a low severity check that is to run once. *

 HZSADDCK CHECKOWNER=LOWNER,CHECKNAME=LNAME, *

 CHECKROUTINE=LCHECKRTN,EXITRTN=LEXITRTN, *

 MSGTBL=LMSGTBL,DATE=LDATE, *

 REASON=LREASON,REASONLEN=LREASONLEN, *

 ENTRYCODE=LENTRYCODE, *

 SEVERITY=LOW,INTERVAL=ONETIME, *

 RETCODE=LRETCODE,RSNCODE=LRSNCODE, *

 MF=(E,ADDCKL)

*

* Place code to check return/reason codes here

*

LOWNER DC CL16’MYCOMPANY’

LNAME DC CL32’MYCOMPONENT_CHECK_WIDGETS’

LCHECKRTN DC CL8’MYMODULE’

LEXITRTN DC CL8’MYEXITRT’

LMSGTBL DC CL8’MYMSGTBL’

LDATE DC CL8’20050601’

LREASON DC CL26’Verify widgets are present’

LREASONLEN DC A(L’LREASON)

LENTRYCODE DC F’1’

 HZSZCONS Return code information

DYNAREA DSECT

LRETCODE DS F

LRSNCODE DS F

 HZSADDCK MF=(L,ADDCKL),PLISTVER=MAX

 Add a high severity check that is to run once every one hour and fifteen

minutes. The check shares a check routine with other checks, so provides an

entry code.

The code is as follows.

* Add a high severity check that is to run once *

 HZSADDCK CHECKOWNER=LOWNER,CHECKNAME=LNAME, *

 CHECKROUTINE=LCHECKRTN,EXITRTN=LEXITRTN, *

 MSGTBL=LMSGTBL,DATE=LDATE, *

 REASON=LREASON,REASONLEN=LREASONLEN, *

 ENTRYCODE=LENTRYCODE, *

 SEVERITY=HI,INTERVAL=TIMER, *

 HOURS=LHOURS,MINUTES=LMINUTES, *

 RETCODE=LRETCODE,RSNCODE=LRSNCODE, *

 MF=(E,ADDCKL)

*

* Place code to check return/reason codes here

*

LOWNER DC CL16’MYCOMPANY’

LNAME DC CL32’MYCOMPONENT_CHECK_OTHER_WIDGETS’

HZSADDCK macro

234 IBM Health Checker for z/OS User’s Guide

LCHECKRTN DC CL8’MYMODULE’

LEXITRTN DC CL8’MYEXITRT’

LMSGTBL DC CL8’MYMSGTBL’

LDATE DC CL8’20050601’

LREASON DC CL32’Verify other widgets are present’

LREASONLEN DC A(L’LREASON)

LENTRYCODE DC F’2’

LHOURS DC H’1’

LMINUTES DC H’15’

 HZSZCONS Return code information

DYNAREA DSECT

LRETCODE DS F

LRSNCODE DS F

HZSADDCK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 235

HZSFMSG macro — Issue a formatted check message

Description

HZSFMSG is used by a check routine to format and process a check message

(using the message table identified by the MSGTBL parameter of the HZSADDCK

macro) or to report a functional issue such as a parameter error.

Both check-defined and system-defined messages can be issued.

Environment

The requirements for the caller are:

 Minimum authorization: Problem state. PSW key 8-15

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE

ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

This service is supported only when it is called from a check routine invoked by IBM

Health Checker for z/OS.

The check routine must include macro HZSMGB to get a mapping of the MGB

which is input to HZSFMSG.

Restrictions

The caller may not have an FRR established.

Input Register Information

Before issuing the HZSFMSG macro, the caller does not have to place any

information into any register unless using it in register notation for a particular

parameter, or using it as a base register.

Before issuing the HZSFMSG macro, the caller does not have to place any

information into any AR unless using it in register notation for a particular

parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

Register

Contents

0 Reason code, when register 15 is not 0.

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the ARs contain:

HZSFMSG macro

236 IBM Health Checker for z/OS User’s Guide

Register

Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after

issuing a service. If the system changes the contents of registers on which the

caller depends, the caller must save them before issuing the service, and restore

them after the system returns control.

Performance Implications

None.

Syntax

main diagram

��

name
 HZSFMSG � REQUEST = CHECKMSG parameters-1

REQUEST

=

HZSMSG

parameters-2

REQUEST

=

STOP

parameters-3

 �

�

,

ABENDRESULT

=

abendresult

 , MGBFORMAT = 0

,

MGBFORMAT

=

1

�

�
,

RETCODE

=

retcode

,

RSNCODE

=

rsncode
 �

�
 , PLISTVER = IMPLIED_VERSION

,

PLISTVER

=

MAX

,

PLISTVER

=

1

�

�
 , MF = S

,

0D

,

MF

=

(

L

,

list addr

)

,

attr

,

COMPLETE

,

MF

=

(

E

,

list addr

)

��

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 237

parameters-1

�� , MGBADDR = mgbaddr

,

MGB

=

mgb
 �

�
 , REMOTE = NO

,

REXX

=

NO

,

REMOTE

=

YES

,

HANDLE

=

handle

,

MSGTABLE

=

msgtable

��

HZSFMSG macro

238 IBM Health Checker for z/OS User’s Guide

parameters-2

�� , REASON = ERROR , DIAG = diag

,

REASON

=

PARS1201

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1202

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1203

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1204

,

REASON

=

PARS1205

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1206

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1207

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1208

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1209

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1210

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1211

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1212

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1213

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1214

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1215

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1216

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1217

,

REASON

=

PARS1218

,

MGBADDR

=

mgbaddr

,

MGB

=

mgb

,

REASON

=

PARS1219

 �

�
 , REMOTE = NO

,

REMOTE

=

YES

,

HANDLE

=

handle

��

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 239

Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the HZSFMSG

macro invocation. The name must conform to the rules for an ordinary

assembler language symbol.

,ABENDRESULT=abendresult

An optional output parameter, which is to contain diagnostic information about

this invocation, when the result is Abend s290. The information is in ″readable″

EBCDIC.

Macro action

Result value returned

RC=0 OK

RC>0 HZSFMSG RC=rc RSN=rsn

ABEND

HZSFMSG ABEND 290/rsn Message=msgnum Insert=insertnum

MsgTbleOffset=offset MsgSegmentData=’hex data’X

AbendData1=datafield1 AbendDatan=datafieldn

To code: Specify the RS-type address, or address in register (2)-(12), of a

256-character field.

,DIAG=diag

When REASON=ERROR and REQUEST=HZSMSG are specified, a required

input parameter, which is displayed as hex data in message output to provide

diagnostic information for the failure that is being reported. There is no

pre-defined format for this data; it may well be internal component diagnostic

data.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,DIAG=diag

When REASON=ERROR and REQUEST=STOP are specified, a required input

parameter, which is displayed as hex data in message output to provide

diagnostic information for the failure that is being reported. There is no

pre-defined format for this data; it may well be internal component diagnostic

data.

parameters-3

�� , REASON = BADPARM

,

REASON

=

ERROR

,

DIAG

=

diag

,

REASON

=

ENVNA

 �

�
 , REMOTE = NO

,

REXX

=

NO

,

REMOTE

=

YES

,

HANDLE

=

handle

��

HZSFMSG macro

240 IBM Health Checker for z/OS User’s Guide

To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,HANDLE=handle

When REMOTE=YES and REQUEST=CHECKMSG are specified, a required

input parameter that specifies a handle (token) that identifies the check. This

handle was returned via the HANDLE parameter of the HZSADDCK macro for a

REMOTE=YES REXX=NO check. The handle is in REXX variable hzs_handle

for a REMOTE=YES REXX=YES check.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,HANDLE=handle

When REMOTE=YES and REQUEST=HZSMSG are specified, a required input

parameter that specifies a handle (token) that identifies the check. This handle

was returned via the HANDLE parameter of the HZSADDCK macro for a

REMOTE=YES REXX=NO check. The handle is in REXX variable hzs_handle

for a REMOTE=YES REXX=YES check.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,HANDLE=handle

When REMOTE=YES and REQUEST=STOP are specified, a required input

parameter that specifies a handle (token) that identifies the check. This handle

was returned via the HANDLE parameter of the HZSADDCK macro for a

REMOTE=YES REXX=NO check. The handle is in REXX variable hzs_handle

for a REMOTE=YES REXX=YES check.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

 Use MF=S to specify the standard form of the macro, which builds an inline

parameter list and generates the macro invocation to transfer control to the

service. MF=S is the default.

 Use MF=L to specify the list form of the macro. Use the list form together with

the execute form of the macro for applications that require reentrant code. The

list form defines an area of storage that the execute form uses to store the

parameters. Only the PLISTVER parameter may be coded with the list form of

the macro.

 Use MF=E to specify the execute form of the macro. Use the execute form

together with the list form of the macro for applications that require reentrant

code. The execute form of the macro stores the parameters into the storage

area defined by the list form, and generates the macro invocation to transfer

control to the service.

,list addr

The name of a storage area to contain the parameters. For MF=S and

MF=E, this can be an RS-type address or an address in register (1)-(12).

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 241

,attr

An optional 1- to 60-character input string that you use to force boundary

alignment of the parameter list. Use a value of 0F to force the parameter

list to a word boundary, or 0D to force the parameter list to a doubleword

boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE

Specifies that the system is to check for required parameters and supply

defaults for omitted optional parameters.

,MGB=mgb

When REQUEST=CHECKMSG is specified, a required input parameter that is

the MGB control block used to describe the message request. The contents of

the MGB are as described under the MGBADDR parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1201 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1202 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1203 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1205 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1206 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

HZSFMSG macro

242 IBM Health Checker for z/OS User’s Guide

,MGB=mgb

When REASON=PARS1207 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1208 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1209 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1210 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1211 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1212 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1213 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 243

,MGB=mgb

When REASON=PARS1214 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1215 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1216 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGB=mgb

When REASON=PARS1218 and REQUEST=HZSMSG are specified, a required

input parameter that is the MGB control block used to describe the message

request. The contents of the MGB are as described under the MGBADDR

parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MGBADDR=mgbaddr

When REQUEST=CHECKMSG is specified, a required input parameter of the

MGB control block used to describe the message request. The MGB identifies

which message in the check’s message table is requested and describes

inserts to be used in that message. The HZSMGB macro maps the MGB

(structure name HZSMGB or HZSMGB1, according to the MGBFORMAT

parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1201 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1202 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

HZSFMSG macro

244 IBM Health Checker for z/OS User’s Guide

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1203 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1205 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1206 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1207 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1208 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 245

,MGBADDR=mgbaddr

When REASON=PARS1209 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1210 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1211 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1212 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1213 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1214 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

HZSFMSG macro

246 IBM Health Checker for z/OS User’s Guide

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1215 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1216 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBADDR=mgbaddr

When REASON=PARS1218 and REQUEST=HZSMSG are specified, a required

input parameter of the MGB control block used to describe the message

request. The MGB identifies which message in the check’s message table is

requested and describes inserts to be used in that message. The HZSMGB

macro maps the MGB (structure name HZSMGB or HZSMGB1, according to

the MGBFORMAT parameter of HZSFMSG).

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,MGBFORMAT=0

,MGBFORMAT=1

An optional parameter, which indicates the format of the MGB provided by the

MGBADDR or MGB parameter. The default is MGBFORMAT=0.

,MGBFORMAT=0

indicates that the format 0 MGB (mapped by dsect HZSMGB in macro

HZSMGB is used).

,MGBFORMAT=1

indicates that the format 1 MGB (mapped by dsect HZSMGB1 in macro

HZSMGB is used).

,MSGTABLE=msgtable

When REXX=NO, REMOTE=YES and REQUEST=CHECKMSG are specified, a

required input parameter that is the message table for the processing to use.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 247

,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER

determines which parameter list the system generates. PLISTVER is an

optional input parameter on all forms of the macro, including the list form. When

using PLISTVER, specify it on all macro forms used for a request and with the

same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER

parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.

This size might grow from release to release and affect the amount of

storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify

PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that

the list-form parameter list is always long enough to hold all the parameters

you might specify on the execute form, when both are assembled with the

same level of the system. In this way, MAX ensures that the parameter list

does not overwrite nearby storage.

v 1, if you use the currently available parameters.

To code: Specify one of the following:

v IMPLIED_VERSION

v MAX

v A decimal value of 1

,REASON=ERROR

,REASON=PARS1201

,REASON=PARS1202

,REASON=PARS1203

,REASON=PARS1204

,REASON=PARS1205

,REASON=PARS1206

,REASON=PARS1207

,REASON=PARS1208

,REASON=PARS1209

,REASON=PARS1210

,REASON=PARS1211

,REASON=PARS1212

,REASON=PARS1213

,REASON=PARS1214

,REASON=PARS1215

,REASON=PARS1216

,REASON=PARS1217

,REASON=PARS1218

,REASON=PARS1219

When REQUEST=HZSMSG is specified, a required parameter that indicates

the type of situation being reported.

,REASON=ERROR

indicates that the message is being issued because of an error. The system

is to issue message HZS1002E. This message is also recorded in the

check’s message buffer.

 The state of the check is changed to error. The check remains active.

,REASON=PARS1201

indicates that the message is being issued due to a parameter parsing

HZSFMSG macro

248 IBM Health Checker for z/OS User’s Guide

error, issuing message HZS1201E, parm IS REQUIRED BUT WAS NOT

SPECIFIED. The caller must provide exactly one insert, containing the

parameter that is required. The insert length is limited to 16.

,REASON=PARS1202

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1202E, parm WAS SPECIFIED BUT IS NOT

ALLOWED. The caller must provide exactly one insert, containing the

parameter that was specified. The insert length is limited to 16.

,REASON=PARS1203

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1203E, PARAMETER parm VALUE value IS

NOT VALID. The caller must provide exactly two inserts, containing the

parameter name and the value that was specified, respectively. The length

of the first insert is limited to 16. The length of the second insert is limited to

17.

,REASON=PARS1204

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1204E, UNEXPECTED END OF PARAMETER

STRING. The caller must provide no inserts.

,REASON=PARS1205

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1205E, A PARAMETER WAS EXPECTED BUT

string WAS FOUND INSTEAD. The caller must provide exactly one insert,

containing the string that was found. The insert length is limited to 17.

,REASON=PARS1206

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1206E, A DELIMITER WAS EXPECTED BUT

string WAS FOUND INSTEAD The caller must provide exactly one insert,

containing the string that was found. The insert length is limited to 17.

,REASON=PARS1207

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1207E, PARAMETER parm HAS TOO MANY

VALUES, n. The caller must provide exactly two inserts, containing the

parameter name and the number of values, respectively. The number of

values is to be provided not as a printable field but as a halfword or fullword

field containing the information. The length of the first insert is limited to 16.

The length of the second insert is limited to 4.

,REASON=PARS1208

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1208E, PARAMETER parm HAS TOO FEW

VALUES, n. The caller must provide exactly two inserts, containing the

parameter name and the number of values, respectively. The number of

values is to be provided not as a printable field but as a halfword or fullword

field containing the information. The length of the first insert is limited to 16.

The length of the second insert is limited to 4.

,REASON=PARS1209

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1209E, PARAMETER parm IS NOT

RECOGNIZED. The caller must provide exactly one insert, containing the

parameter that was not recognized. The insert length is limited to 17.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 249

,REASON=PARS1210

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1210E, PARAMETER parm IS MISSING ITS

VALUE. The caller must provide exactly one insert, containing the

parameter name. The insert length is limited to 16.

,REASON=PARS1211

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1211E, PARAMETER parm VALUE value IS

TOO LARGE. The caller must provide exactly two inserts, containing the

parameter name and the value, respectively. The length of the first insert is

limited to 16. The length of the second insert is limited to 17.

,REASON=PARS1212

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1212E, PARAMETER parm VALUE value IS

TOO SMALL. The caller must provide exactly one insert, containing the

parameter name. The length of the first insert is limited to 16. The length of

the second insert is limited to 17.

,REASON=PARS1213

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1213E, PARAMETER parm VALUE IS TOO

LONG. The caller must provide exactly two inserts, containing the

parameter name and the value, respectively. The length of the first insert is

limited to 16. The length of the second insert is limited to 17.

,REASON=PARS1214

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1214E, PARAMETER parm VALUE value IS

TOO SHORT. The caller must provide exactly two inserts, containing the

parameter name and the value, respectively. The length of the first insert is

limited to 16. The length of the second insert is limited to 17.

,REASON=PARS1215

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1215E, PARAMETER parm VALUE value IS

NOT DECIMAL. The caller must provide exactly two inserts, containing the

parameter name and the value, respectively. The length of the first insert is

limited to 16. The length of the second insert is limited to 17.

,REASON=PARS1216

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1216E, PARAMETER parm VALUE value IS

NOT HEXADECIMAL. The caller must provide exactly two inserts,

containing the parameter name and the value, respectively. The length of

the first insert is limited to 16. The length of the second insert is limited to

17.

,REASON=PARS1217

indicates that the message is being issued because parameters were

provided but none were expected, HZS1217E, PARAMETERS WERE

SPECIFIED BUT ARE NOT ALLOWED. The caller must provide no inserts.

,REASON=PARS1218

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1218E, PARAMETER NUMBER n WAS NOT

PROCESSED. The caller must provide exactly one insert, containing the

parameter that was not recognized. The number of values is to be provided

HZSFMSG macro

250 IBM Health Checker for z/OS User’s Guide

not as a printable field but as a halfword or fullword field containing the

information. The length of the insert is limited to 4.

,REASON=PARS1219

indicates that the message is being issued due to a parameter parsing

error, issuing message HZS1219E, MIXING POSITIONAL AND KEYWORD

FORMATS IS NOT ALLOWED. The caller must provide no inserts.

,REASON=BADPARM

,REASON=ERROR

,REASON=ENVNA

When REQUEST=STOP is specified, a required parameter that indicates the

type of situation being reported

,REASON=BADPARM

indicates that the parameters are not valid. The system is to issue message

HZS1001E. This message is also recorded in the check’s message buffer.

 The state of the check is changed to parameter error. The check remains

disabled until the PARMS are changed, presumably to address the error.

,REASON=ERROR

indicates that the message is being issued because of an error. The system

is to issue message HZS1002I.

 The state of the check is changed to error. The check is disabled. If a

request is made to run the check, the check routine receives control for

check initialization.

,REASON=ENVNA

indicates that the check is not applicable in the current system environment.

Message HZS1003E is written as hardcopy-only and is also written to the

check’s message buffer.

 The state of the check is changed to not applicable. The check is disabled.

The check will not be called again until the reason for the condition is

resolved and the check is refreshed (or its parameter is changed).

,REMOTE=NO

,REMOTE=YES

When REQUEST=CHECKMSG is specified, an optional parameter, which

identifies the locale of the check. The default is REMOTE=NO.

,REMOTE=NO

indicates that the check runs locally in the address space of IBM Health

Checker for z/OS.

,REMOTE=YES

indicates that the check runs remotely, in an address space other than that

of IBM Health Checker for z/OS.

,REMOTE=NO

,REMOTE=YES

When REQUEST=HZSMSG is specified, an optional parameter, which identifies

the locale of the check. The default is REMOTE=NO.

,REMOTE=NO

indicates that the check runs locally in the address space of IBM Health

Checker for z/OS.

,REMOTE=YES

indicates that the check runs remotely, in an address space other than that

of IBM Health Checker for z/OS.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 251

,REMOTE=NO

,REMOTE=YES

When REQUEST=STOP is specified, an optional parameter, which identifies the

locale of the check. The default is REMOTE=NO.

,REMOTE=NO

indicates that the check runs locally in the address space of IBM Health

Checker for z/OS.

,REMOTE=YES

indicates that the check runs remotely, in an address space other than that

of IBM Health Checker for z/OS.

REQUEST=CHECKMSG

REQUEST=HZSMSG

REQUEST=STOP

A required parameter that identifies the source of the message text.

REQUEST=CHECKMSG

indicates that the message text is provided in the message table identified

by the MSGTBL parameter of the HZSADDCK macro when the check was

added.

REQUEST=HZSMSG

indicates that the message text is provided by IBM Health Checker for

z/OS.

REQUEST=STOP

indicates that the system is to stop calling this check. The message text is

provided by IBM Health Checker for z/OS.

,RETCODE=retcode

An optional output parameter into which the return code is to be copied from

GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,REXX=NO

When REMOTE=YES and REQUEST=CHECKMSG are specified, an optional

parameter, which indicates if this is a REXX check. The default is REXX=NO.

,REXX=NO

indicates that the check is not a REXX check.

,REXX=NO

When REMOTE=YES and REQUEST=STOP are specified, an optional

parameter, which indicates if this is a REXX check. The default is REXX=NO.

,REXX=NO

indicates that the check is not a REXX check.

,RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from

GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

HZSFMSG ABEND Codes

290 HZSFMSG service failed a request. There may be additional diagnostic

data in the registers at time of the abend.

Register

Diagnostic data when REQUEST=CHECKMSG fails

HZSFMSG macro

252 IBM Health Checker for z/OS User’s Guide

2 The message id passed in MGB_MessageNumber

3 The number of variable inserts passed in MGB_INSERT_CNT

4 The PQE address passed to the Check routine

5 The number of variables that have not been processed

6 Addition information for internal diagnosis by IBM

7 Address of data in the message table that was being processed

8 Data pointed to by R7, or the address of the check routine

This convention is used for the following abend reasons: xxxx4108 xxxx4109

xxxx410A xxxx410B xxxx410C xxxx410D xxxx410E xxxx4110 xxxx1013 xxxx1015

xxxx4116 xxxx1017 xxxx1018 xxxx4016

An abend 290 will be issued if an error in the request is detected. Addition detail is

recorded in LOGREC for this error.

In the following HZSFMSG abend reason codes, the bytes designated ″xx″ are for

diagnostic purposes and have no significance to the external interface.

User errors are indicated by an abend reason code of the form xxxx4xxx.

Component errors are indicated by an abend reason code of the form xxxx1xxx.

Reason Code (Hex)

Explanation

xxxx4106

The HZSMGB was not avaliable in storage in the caller’s key.

xxxx4107

A variable insert in the HZSMGB had a bad address or length.

xxxx4108

The message number could not be found in the message table.

xxxx4109

The MGB_INSERT_CNT contain a value that was higher than the maximum

number of insert allowed.

xxxx410A

The message table is in error. A message insert was requested in the

incorrect sequence.

xxxx410B

A message insert is required to complete the message, but it was not

provided.

xxxx410C

A message insert was provided, but it was not needed to complete the

message.

xxxx410D

A message insert address was zero.

xxxx410E

A message insert length was not valid for the requested variable. A text

insert must be from 0-256, a hex insert must be from 1-100, and the rest

must be 8 charaters or less.

xxxx410F

The parameter list was not available in storage in the caller’s key.

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 253

xxxx4110

The address of the HZSMGB area is zero when the request required a

completed HZSMGB.

xxxx4111

The parameter version is not supported.

xxxx4112

The calling routine is not a check routine.

xxxx4113

The calling routine did not provide a valid handle.

xxxx4114

The calling remote routine is not a check routine.

xxxx4115

ABENDRESULT was specified, but could not be set because it is not in

storage in the caller’s key.

xxxx4016

The variable defined in the HZSMGB area has a length greater than the

value defined by Maxlen in the message table.

xxxx4116

The variable defined in the HZSMGB area has a length greater than the

value defined by Fieldsize in the message table.

xxxx4117

The message table supplied by a remote check is not valid. Make sure that

the message table was built via the HZSMSGEN exec and has not been

overlaid.

xxxx4118

A remote check issued HZSFMSG other than from the INITRUN or RUN

function

xxxx1001

An unexpected internal error occurred.

xxxx1013

The message table contains data that cannot be processed.

xxxx1014

The Pqe control block was not found.

xxxx1015

A message variable description was bad.

xxxx1017

The message table contains data that incorrectly defines a Maxlen value.

The table is corrupted.

xxxx1018

The message table contains data that allows a WTO line to exceed 71

characters. The table is corrupted.

xxxx1019

The Hcklog control block contains errors.

HZSFMSG Return and Reason Codes

When the HZSFMSG macro returns control to your program:

v GPR 15 (and retcode, when you code RETCODE) contains a return code.

HZSFMSG macro

254 IBM Health Checker for z/OS User’s Guide

v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro HZSZCONS provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the

equate symbol associated with each reason code. IBM support personnel may

request the entire reason code, including the xxxx value.

 Table 34. Return and Reason Codes for the HZSFMSG Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: HzsfmsgRc_OK

Meaning: The request completed successfully.

Action: None required

8 — Equate Symbol: HzsfmsgRc_InvParm

Meaning: HZSFMSG request specifies incorrect parameters.

Action: Refer to action under the individual reason code.

8 xxxx0837 Equate Symbol: HzsfmsgRsn_ErrorLimitExceeded

Meaning: The check routine has abended too many times, messages will

not be processed.

Action: Fix the check routine. :dt.xxxx0858 :dd.Name:

HzsfmsgRsn_BadHandle :dd.Meaning: The handle provided with the

HANDLE parameter is not valid. :dd.Action: Specify the handle that was

returned by the HZSADDCK macro if this is a REMOTE=YES REXX=NO

check, or the handle in REXX variable hzs_handle if this is a

REMOTE=YES REXX=YES check. ¦¦>

0C — Equate Symbol: HzsfmsgRc_EnvError

Meaning: Environmental Error

Action: Refer to action under the individual reason code.

0C xxxx0C01 Equate Symbol: HzsfmsgRsn_IBMHCNotActive

Meaning: IBM Health Checker for z/OS is not active

Action: Re-issue the request when the service is available

10 — Equate Symbol: HzsfmsgRc_CompError

Meaning: Component Error. An associated dump and logrec entry has

been created using abend 290 and the reason code.

Action: Refer to action under the individual reason code.

10 xxxx1001 Equate Symbol: HzsfmsgRsn_IntError

Meaning: Unexpected internal error

Action: Report the problem to the system programmer

10 xxxx1013 Equate Symbol: HzsfmsgRsn_MsgTblError

Meaning: The message table could not be processed.

Action: Report the problem to the system programmer

10 xxxx1014 Equate Symbol: HzsfmsgRsn_Pqe_NotValid

Meaning: The Pqe control block could not be found.

Action: Report the problem to the system programmer

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 255

Table 34. Return and Reason Codes for the HZSFMSG Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

10 xxxx1015 Equate Symbol: HzsfmsgRsn_BadMsgTblSegment

Meaning: A message variable is incorrectly defined in the message table.

Action: Report the problem to the system programmer

10 xxxx1017 Equate Symbol: HfmsgAbend_BadMsgTblOutLen

Meaning: The message table contains data that incorrectly defines a

Maxlen value. The table is corrupted.

Action: Report the problem to the system programmer

10 xxxx1018 Equate Symbol: HzsfmsgAbend_MsgTblMissingNewLine

Meaning: The message table contains data that allows a WTO line to

exceed 71 characters. The table is corrupted

Action: Report the problem to the system programmer

10 xxxx1019 Equate Symbol: HzsfmsgRsn_HckLog_NotValid

Meaning: The Hcklog control block contains errors.

Action: Report the problem to the system programmer

Examples

 Issue a message with two inserts where the first insert is known at assembly

time and the second is an 8-character name not known at assembly time.

The code is as follows.

* Issue a message with two inserts *

 SYSSTATE ARCHLVL=1

* save regs, get dynamic storage, chain saveareas, set usings

 LA 2,TheMGBArea

 ST 2,TheMGBAddr

 USING HZSMGB,2

 MVC MGB_MessageNumber,=F’1’ Message 1

 MVC MGB_insert_cnt,=F’2’ Two inserts

 LA 3,Insert1Area Address of first insert

 ST 3,MGB_Inserts Save insert address

 LA 3,Insert2Area Address of second insert

 USING MGB_MsgInsertD,3

 MVC MGB_MsgILen,=AL2(L’Insert2Val) Insert length’

 MVC MGB_MsgIVal(L’Insert2Val),MyMod Insert value

 DROP 3

 ST 3,MGB_Inserts+4 Save insert address

 HZSFMSG REQUEST=CHECKMSG,MGBADDR=TheMGBAddr, *

 RETCODE=LRETCODE,RSNCODE=LRSNCODE, *

 MF=(E,FMSGL)

 DROP 2

*

* Place code to check return/reason codes here

*

* free dynamic storage, restore regs

 BR 14

MyMod DC CL8’MYMODULE’

* Area for first insert

Insert1Area DS 0H

Insert1Len DC AL2(L’Insert1Val)

Insert1Val DC C’This is the first insert’

 LTORG ,

 HZSZCONS , Return code information

HZSFMSG macro

256 IBM Health Checker for z/OS User’s Guide

HZSMGB , Insert mapping

DYNAREA DSECT

LRETCODE DS F

LRSNCODE DS F

* Area for 2 inserts (HZSMGB_LEN accounts for one, so

* we add one more "length of MGB_Inserts")

TheMGBAddr DS A

TheMGBArea DS CL(HZSMGB_LEN+1*L’MGB_Inserts)

* Area for second insert

Insert2Area DS 0H

Insert2Len DS CL(L’MGB_MsgInsertD_Header)

Insert2Val DS CL(L’MyMod)

 HZSFMSG MF=(L,FMSGL),PLISTVER=MAX

DYNAREA_LEN EQU *-DYNAREA

 Same as example 1, but using MGBFORMAT=1 and the MGB parameter rather

than the MGBADDR parameter.

The code is as follows.

* Issue a message with two inserts, MGBFORMAT=1. *

* For MGBFORMAT=0, it was necessary to move the insert *

* data if it was not in the form of a halfword length *

* followed by the data. *

* For MGBFORMAT=1, that is not necessary since the length *

* is specified in the MGB_MsgInsertDesc DSECT. *

 SYSSTATE ARCHLVL=1

* save regs, get dynamic storage, chain saveareas, set usings

* somewhere there needs to be code to set Insert2Val

 LA 2,TheMGB1Area

 USING HZSMGB1,2

 MVC MGB1_MessageNumber,=F’1’ Message 1

 MVC MGB1_insert_cnt,=F’2’ Two inserts

* address first insert description

 LA 3,MGB1_insert_structure_Entries

 USING MGB1_MsgInsertDesc,3

* fill in first insert description

 LA 4,L’Insert1Val

 ST 4,MGB1_MsgInsertDesc_Length

 LA 4,Insert1Val

 ST 4,MGB1_MsgInsertDesc_Addr

* move on to next insert description

 LA 3,MGB1_insert_structure_Entries_Len(,3)

* fill in second insert description

 LA 4,L’Insert2Val

 ST 4,MGB1_MsgInsertDesc_Length

 MVC Insert2Val(L’Insert2Val),MyMod Insert value

 LA 4,Insert2Val

 ST 4,MGB1_MsgInsertDesc_Addr

 DROP 3

 HZSFMSG REQUEST=CHECKMSG,MGB=TheMGB1Area, *

 RETCODE=LRETCODE,RSNCODE=LRSNCODE, *

 MGBFORMAT=1,MF=(E,FMSGL)

 DROP 2

*

* Place code to check return/reason codes here

*

* free dynamic storage, restore regs

 BR 14

MyMod DC CL8’MYMODULE’

* Area for first insert

Insert1Val DC C’This is a static insert’

 LTORG ,

 HZSZCONS , Return code information

 HZSMGB , Insert mapping

DYNAREA DSECT

HZSFMSG macro

Chapter 12. IBM Health Checker for z/OS HZS macros 257

LRETCODE DS F

LRSNCODE DS F

* Area for 2 inserts (HZSMGB1_LEN accounts for none,

* we add two "length of MGB1_MsgInsertDesc"

 DS 0F

TheMGB1Area DS CL(HZSMGB1_LEN+1*L’MGB1_Inserts)

* Area for second insert

Insert2Val DS CL(L’MyMod)

 HZSFMSG MF=(L,FMSGL),PLISTVER=MAX

DYNAREA_LEN EQU *-DYNAREA

HZSFMSG macro

258 IBM Health Checker for z/OS User’s Guide

HZSQUERY macro — HZS Query

Description

The HZSQUERY macro provides the interface to obtain information about checks

that are currently registered with IBM Health Checker For z/OS.

Environment

The requirements for the caller are:

 Minimum authorization: Problem state. PSW key 8-15 When problem state and key

8-15 and not APF authorized, or when SECCHECK=ALL is

specified, the caller’s authorization requirements depend on

the input specification.

v The caller may be authorized for read access to any of the

following:

– when the check owner has wildcard character(s), or

when the check owner has no wildcard characters and

the check name has no wildcard characters, XFACILIT

class resource HZS.sysname.reqtype

– when the check owner has no wildcard characters and

the check name has wildcard character(s), XFACILIT

class resource HZS.sysname.checkowner.reqtype

– when the check owner has no wildcard characters and

the check name has no wildcard characters, XFACILIT

class resource

HZS.sysname.checkowner.checkname.reqtype
v The values for reqtype are as follows

– When REQUEST=MSGBUFF is specified, reqtype is

MESSAGES.

– When REQUEST=CHKINFO is specified, reqtype is

QUERY.

– When REQUEST=GENINFO is specified, reqtype is

QUERY.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE

ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that

is addressable through a public entry on the caller’s

dispatchable unit access list (DU-AL).

The user-provided answer area via the ANSAREA parameter

has the same requirements and restrictions as the control

parameters.

Programming Requirements

The caller must include the HZSQUAA macro to get a mapping for the answer area.

The caller should include the HZSZCONS macro to get equate symbols for the

return and reason codes.

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 259

The caller must include the HZSPQE macro to get a mapping for some of the

subfields within the answer area.

Restrictions

This macro supports multiple versions. Some keywords are unique to certain

versions. See the PLISTVER parameter description.

The caller may not have an FRR established.

Input Register Information

Before issuing the HZSQUERY macro, the caller does not have to place any

information into any register unless using it in register notation for a particular

parameter, or using it as a base register.

Before issuing the HZSQUERY macro, the caller does not have to place any

information into any AR unless using it in register notation for a particular

parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

Register

Contents

0 Reason code, when register 15 is not 0.

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the ARs contain:

Register

Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after

issuing a service. If the system changes the contents of registers on which the

caller depends, the caller must save them before issuing the service, and restore

them after the system returns control.

Performance Implications

None.

Syntax

The HZSQUERY macro is written as follows:

HZSQUERY macro

260 IBM Health Checker for z/OS User’s Guide

main diagram

��

name
 HZSQUERY � REQUEST = GENINFO

REQUEST

=

CHECKINFO

parameters-1

REQUEST

=

MSGBUFF

parameters-2

 �

�
 , TEXTSTRING = YES

,

TEXTSTRING

=

NO

,

ANSAREA

=

ansarea

�

� , ANSLEN = anslen

,

RETCODE

=

retcode
 �

�

,

RSNCODE

=

rsncode

 , PLISTVER = IMPLIED_VERSION

,

PLISTVER

=

MAX

,

PLISTVER

=

0

,

PLISTVER

=

1

�

�
 , MF = S

,

0D

,

MF

=

(

L

,

list addr

)

,

attr

,

COMPLETE

,

MF

=

(

E

,

list addr

)

��

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 261

Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the HZSQUERY

macro invocation. The name must conform to the rules for an ordinary

assembler language symbol.

,ANSAREA=ansarea

A required output parameter, which is to contain the returned information The

area is mapped by macro HZSQUAA.

parameters-1

��
 , SECCHECKONLY = NO , SECCHECK = UNAUTH

,

SECCHECK

=

ALL

,

SYSNAME

=

CURRENT

,

SECCHECKONLY

=

YES

,

SYSNAME

=

sysname

,

CHECKOWNER

=

checkowner

,

OWNER

=

owner

�

�

,

CHECKNAME

=

checkname

,

NAME

=

name

 , EXITRTN = ANY_EXITRTN

,

EXITRTN

=

exitrtn

�

�
,

CATEGORY

=

ANY_CATEGORY

,

NUMCAT

=

numcat

,

CATRULE

=

DEFAULT

,

CATEGORY

=

category

,

CATRULE

=

ONLY

,

CATRULE

=

ANY

,

CATRULE

=

EVERY

,

CATRULE

=

EXCEPT

,

CATRULE

=

VALUE

,

CATRULEVAL

=

catruleval

 �

�
 , CHECKTYPE = ALL , EXCEPTION = NOTAPPLICABLE , RESULT = ANY

,

EXCEPTION

=

BYDATE

,

RESULT

=

EXCEPTIONS

,

EXCEPTION

=

NOTAPPLICABLE

,

RESULT

=

ANY

,

CHECKTYPE

=

NOTDELETED

,

EXCEPTION

=

BYDATE

,

RESULT

=

EXCEPTIONS

,

CHECKTYPE

=

DELETED

�

�
 , LOCALE = ANY

,

LOCALE

=

HZSPROC

,

REXX

=

ANY

,

LOCALE

=

REMOTE

,

REXX

=

NO

,

REXX

=

YES

 , GLOBALCHECK = DONOTFIND

,

GLOBALCHECK

=

FINDSYSTEM

��

parameters-2

��
 , SECCHECKONLY = NO , SECCHECK = UNAUTH

,

SECCHECK

=

ALL

,

SYSNAME

=

CURRENT

,

SECCHECKONLY

=

YES

,

SYSNAME

=

sysname

�

� , CHECKOWNER = checkowner

,

OWNER

=

owner
 , CHECKNAME = checkname

,

NAME

=

name
 �

� , MSGTOKEN = msgtoken , INSTANCE = CURRENT

,

INSTANCE

=

MUSTMATCH
 ��

HZSQUERY macro

262 IBM Health Checker for z/OS User’s Guide

To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,ANSLEN=anslen

A required input parameter, which contains the length of the provided answer

area. The length must be at least the value specified by symbol

HZSQUERY_MIN_ANSLEN in macro HZSQUAA.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

fullword field, or specify a literal decimal value.

,CATEGORY=category

,CATEGORY=ANY_CATEGORY

When REQUEST=CHECKINFO is specified, an optional input parameter that

specifies an array of 1 to 16 contiguous 16 character entries each of which

contains a category to be associated with the check. The categories are used

as filters. Each category can include wildcard characters. Checks that belong to

categories that match according to the rules of the CATRULE parameter and

according to the other filtering parameters (OWNER, NAME, and EXITRTN) are

processed. The number of categories is specified by the NUMCAT parameter.

The default is ANY_CATEGORY.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,CATRULE=DEFAULT

,CATRULE=ONLY

,CATRULE=ANY

,CATRULE=EVERY

,CATRULE=EXCEPT

,CATRULE=VALUE

When CATEGORY=category and REQUEST=CHECKINFO are specified, a

required parameter that indicates how to process the category filters.

,CATRULE=DEFAULT

indicates to apply the default (which is CATRULE=ONLY).

,CATRULE=ONLY

indicates to match only if all the categories match the categories to which

the target check belongs, and if the target check belongs to exactly the

number of categories specified by the NUMCAT parameter.

,CATRULE=ANY

indicates to match if any of the categories provided match any of the

categories to which the target check belongs.

,CATRULE=EVERY

indicates to match if every one of the categories provided matches any of

the categories to which the target check belongs.

,CATRULE=EXCEPT

indicates to match except when one of the categories provided matches

any of the categories to which the target check belongs.

,CATRULE=VALUE

Indicates that the value specified by CATRULEVAL is to be used.

,CATRULEVAL=catruleval

When CATRULE=VALUE, CATEGORY=category and REQUEST=CHECKINFO

are specified, a required input parameter that indicates the category rule to be

applied. It must be one of the values defined by the xxx_CATRULES_yyy

equates generated by HZSQUERY MF=(L,xxx).

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 263

To code: Specify the RS-type address, or address in register (2)-(12), of an

one-byte field.

,CHECKNAME=checkname

When REQUEST=CHECKINFO is specified, a required input parameter field

that identifies the name of the check. If the first character is x’00’, or the value

is all blanks, information about all checks is returned. Wildcard processing is

performed on the name, using the standard wildcard symbols of ″*″ and ″?″.

The check pattern is delineated by the last non-blank found within the input.

Example: A check pattern of ″*″ indicates to match all checks. Example: A

check pattern of ″A*″ indicates to match all checks with names beginning with

″A″.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

32-character field.

,CHECKNAME=checkname

When REQUEST=MSGBUFF is specified, a required input parameter field that

identifies the name of the check. No Wildcard processing is performed on the

name.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

32-character field.

,CHECKOWNER=checkowner

When REQUEST=CHECKINFO is specified, a required input parameter field

that identifies the owner of the check. If the first character is x’00’, or the value

is all blanks, information about checks with all owners is returned. Wildcard

processing is performed on the name, using the standard wildcard symbols of

″*″ and ″?″. The owner pattern is delineated by the last non-blank found within

the input. Example: an owner pattern of ″*″ indicates to match all owners.

Example: an owner pattern of ″A*″ indicates to match all owners with names

beginning with ″A″.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,CHECKOWNER=checkowner

When REQUEST=MSGBUFF is specified, a required input parameter field that

identifies the owner of the check. No Wildcard processing is performed on the

name.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,CHECKTYPE=ALL

,CHECKTYPE=NOTDELETED

,CHECKTYPE=DELETED

When REQUEST=CHECKINFO is specified, an optional parameter, of the

checks for which information is to be returned. The default is

CHECKTYPE=ALL.

,CHECKTYPE=ALL

that indicates that no restrictions are to be made. Return information about

checks of any type. The type of the returned check is defined by field

HZSQUAAC_Type in macro HZSQUAA.

,CHECKTYPE=NOTDELETED

that indicates to return information only about checks that are not deleted

and are not delete-pending

HZSQUERY macro

264 IBM Health Checker for z/OS User’s Guide

,CHECKTYPE=DELETED

that indicates to return information only about checks that are deleted or are

delete-pending.

,EXCEPTION=NOTAPPLICABLE

,EXCEPTION=BYDATE

When CHECKTYPE=ALL and REQUEST=CHECKINFO are specified, an

optional parameter that indicates what exception processing to do The default is

EXCEPTION=NOTAPPLICABLE.

,EXCEPTION=NOTAPPLICABLE

that indicates that exception processing is not applicable to this request

,EXCEPTION=BYDATE

that indicates to find only checks that have date exceptions (i.e., a policy

statement that matches this check was not applied because its date was

older than the check’s date)

,EXCEPTION=NOTAPPLICABLE

,EXCEPTION=BYDATE

When CHECKTYPE=NOTDELETED and REQUEST=CHECKINFO are

specified, an optional parameter that indicates what exception processing to do

The default is EXCEPTION=NOTAPPLICABLE.

,EXCEPTION=NOTAPPLICABLE

that indicates that exception processing is not applicable to this request

,EXCEPTION=BYDATE

that indicates to find only checks that have date exceptions (i.e., a policy

statement that matches this check was not applied because its date was

older than the check’s date). Note that DELETED checks are not

considered to have policy date exceptions.

,EXITRTN=exitrtn

,EXITRTN=ANY_EXITRTN

When REQUEST=CHECKINFO is specified, an optional input parameter that

identifies the name of the exit routine associated with the check, to be used as

a filter. EXITRTN can include wildcard characters. All checks with names that

match the specified name and that match the other filtering parameters

(OWNER, NAME, CATEGORY) are processed. The default is ANY_EXITRTN.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,GLOBALCHECK=DONOTFIND

,GLOBALCHECK=FINDSYSTEM

When REQUEST=CHECKINFO is specified, an optional parameter that

indicates what to process for global checks The default is

GLOBALCHECK=DONOTFIND.

,GLOBALCHECK=DONOTFIND

that indicates not to find the system on which the global check is being run.

,GLOBALCHECK=FINDSYSTEM

that indicates to find the system on which the global check is to be run.

Field PQE_GlobalCheck_SYSNAME contains the name of that system, or

zeroes if no system is currently tagged to run that check.

,INSTANCE=CURRENT

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 265

,INSTANCE=MUSTMATCH

When REQUEST=MSGBUFF is specified, a required parameter that indicates

how to compare the instance of the check designated by the MSGTOKEN

parameter to the instance of the check.

,INSTANCE=CURRENT

indicates to return the message buffer(s) for the current instance of the

check, and set bit HzsquaaH_MsgBuffWrongInstance when the instance of

the check designated by the MSGTOKEN parameter is not the current

instance.

,INSTANCE=MUSTMATCH

indicates to return data only if the message buffer(s) for the instance of the

check designated by the MSGTOKEN parameter are available. They might

not be available if the instance is not the current instance.

,LOCALE=ANY

,LOCALE=HZSPROC

,LOCALE=REMOTE

When REQUEST=CHECKINFO is specified, an optional parameter, which

identifies the locale of the check. The default is LOCALE=ANY.

,LOCALE=ANY

indicates that the check can be of any locale (hzsproc, remote or REXX)

,LOCALE=HZSPROC

indicates that the check must be of locale HZSPROC (i.e., runs in the IBM

Health Checker for z/OS address space start by hzsproc).

,LOCALE=REMOTE

indicates that the check is remote (i.e., does not run in the IBM Health

Checker for z/OS address space).

,MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

 Use MF=S to specify the standard form of the macro, which builds an inline

parameter list and generates the macro invocation to transfer control to the

service. MF=S is the default.

 Use MF=L to specify the list form of the macro. Use the list form together with

the execute form of the macro for applications that require reentrant code. The

list form defines an area of storage that the execute form uses to store the

parameters. Only the PLISTVER parameter may be coded with the list form of

the macro.

 Use MF=E to specify the execute form of the macro. Use the execute form

together with the list form of the macro for applications that require reentrant

code. The execute form of the macro stores the parameters into the storage

area defined by the list form, and generates the macro invocation to transfer

control to the service.

,list addr

The name of a storage area to contain the parameters. For MF=S and

MF=E, this can be an RS-type address or an address in register (1)-(12).

HZSQUERY macro

266 IBM Health Checker for z/OS User’s Guide

,attr

An optional 1- to 60-character input string that you use to force boundary

alignment of the parameter list. Use a value of 0F to force the parameter

list to a word boundary, or 0D to force the parameter list to a doubleword

boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE

Specifies that the system is to check for required parameters and supply

defaults for omitted optional parameters.

,MSGTOKEN=msgtoken

When REQUEST=MSGBUFF is specified, a required input parameter, field that

is the message token returned by a previous HZSQUERY request.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,NAME=name

When REQUEST=CHECKINFO is specified, a required input parameter field

that identifies the name of the check. If the first character is x’00’, or the value

is all blanks, information about all checks is returned. Wildcard processing is

performed on the name, using the standard wildcard symbols of ″*″ and ″?″.

The check pattern is delineated by the last non-blank found within the input.

Example: A check pattern of ″*″ indicates to match all checks. Example: A

check pattern of ″A*″ indicates to match all checks with names beginning with

″A″.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

32-character field.

,NAME=name

When REQUEST=MSGBUFF is specified, a required input parameter field that

identifies the name of the check. No Wildcard processing is performed on the

name.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

32-character field.

,NUMCAT=numcat

When CATEGORY=category and REQUEST=CHECKINFO are specified, a

required input parameter that indicates how many categories are contained in

the array specified by the CATEGORY parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

one-byte field.

,OWNER=owner

When REQUEST=CHECKINFO is specified, a required input parameter field

that identifies the owner of the check. If the first character is x’00’, or the value

is all blanks, information about checks with all owners is returned. Wildcard

processing is performed on the name, using the standard wildcard symbols of

″*″ and ″?″. The owner pattern is delineated by the last non-blank found within

the input. Example: an owner pattern of ″*″ indicates to match all owners.

Example: an owner pattern of ″A*″ indicates to match all owners with names

beginning with ″A″.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 267

,OWNER=owner

When REQUEST=MSGBUFF is specified, a required input parameter field that

identifies the owner of the check. No Wildcard processing is performed on the

name.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER

determines which parameter list the system generates. PLISTVER is an

optional input parameter on all forms of the macro, including the list form. When

using PLISTVER, specify it on all macro forms used for a request and with the

same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER

parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.

This size might grow from release to release and affect the amount of

storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify

PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that

the list-form parameter list is always long enough to hold all the parameters

you might specify on the execute form, when both are assembled with the

same level of the system. In this way, MAX ensures that the parameter list

does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in

higher versions.

v 1, which supports both the following parameters and those from version 0:

 POLICYNAME

To code: Specify one of the following:

v IMPLIED_VERSION

v MAX

v A decimal value of 0, or 1

REQUEST=GENINFO

REQUEST=CHECKINFO

REQUEST=MSGBUFF

A required parameter, which identifies the type of request.

REQUEST=GENINFO

Get general information about IBM Health Checker for z/OS. This includes

the procedure used to start it, and the started task identifier assigned to it.

The returned information consists of

v a header area (mapped by DSECT HZSQUAAHDR in macro HZSQUAA)

which contains the procedure used to start IBM Health Checker for z/OS,

the started task identifier, and the logstream name, as well as a value of

one in field HzsquaahNumQuaaG indicating that there is one entry

provided, with the address of that entry being in field

HzsquaahQuaaGAddr.

v the entry (mapped by DSECT HZSQUAAG in macro HZSQUAA)

HZSQUERY macro

268 IBM Health Checker for z/OS User’s Guide

REQUEST=CHECKINFO

Get information about the specified check. The information consists of

v a header area (mapped by DSECT HZSQUAAHDR in macro HZSQUAA)

which contains the number of entries that follows (HzsquaahNumQuaaC)

and the address of the first entry (HzsquaahQuaaCAddr).

v entries (mapped by DSECT HZSQUAAC in macro HZSQUAA) each of

which has a field that indicates the length of that entry (HzsquaaCLen).

The length field should be added to the address of an entry to get the

address of the next entry.

REQUEST=MSGBUFF

Get information about the message buffer(s) specified by the input

MSGTOKEN. That MSGTOKEN would have been returned on a previous

HZSQUERY request in field HzsquaaCMsgToken. The information consists

of

v a header area (mapped by DSECT HZSQUAAHDR in macro HZSQUAA)

which contains the number of entries that follows (HzsquaahNumHCKL)

and the address of the first entry (HzsquaahHcklAddr).

v entries (mapped by DSECT HZSLOG in macro HZSZHCKL) each of

which has a field that indicates the length of that entry (Hcklog_BufLen).

The length field should be added to the address of an entry to get the

address of the next entry.

,RESULT=ANY

,RESULT=EXCEPTIONS

When CHECKTYPE=ALL and REQUEST=CHECKINFO are specified, an

optional parameter that indicates what result processing to do The default is

RESULT=ANY.

,RESULT=ANY

that indicates that any check result is applicable to this request

,RESULT=EXCEPTIONS

that indicates to find only checks that detected exception(s). Note that

DELETED checks are not considered to have detected exception(s).

,RESULT=ANY

,RESULT=EXCEPTIONS

When CHECKTYPE=NOTDELETED and REQUEST=CHECKINFO are

specified, an optional parameter that indicates what result processing to do The

default is RESULT=ANY.

,RESULT=ANY

that indicates that any check result is applicable to this request

,RESULT=EXCEPTIONS

that indicates to find only checks that detected exception(s).

,RETCODE=retcode

An optional output parameter into which the return code is to be copied from

GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,REXX=ANY

,REXX=NO

,REXX=YES

When LOCALE=REMOTE and REQUEST=CHECKINFO are specified, an

optional parameter, which indicates if this is a REXX check. The default is

REXX=ANY.

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 269

,REXX=ANY

indicates that the check can either be a REXX check or not.

,REXX=NO

indicates that the check is not a REXX check.

,REXX=YES

indicates that the check is a REXX check.

,RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from

GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SECCHECK=UNAUTH

,SECCHECK=ALL

When SECCHECKONLY=NO and REQUEST=CHECKINFO are specified, an

optional parameter that indicates whether to do RACF security checks. The

default is SECCHECK=UNAUTH.

,SECCHECK=UNAUTH

that indicates to do RACF security checks only when the caller is

unauthorized (not supervisor state, not system key, not APF-authorized).

,SECCHECK=ALL

that indicates to do RACF security checks in all cases. If RACF does not

grant authority, the request is rejected.

,SECCHECK=UNAUTH

,SECCHECK=ALL

When SECCHECKONLY=NO and REQUEST=MSGBUFF are specified, an

optional parameter that indicates whether to do RACF security checks. The

default is SECCHECK=UNAUTH.

,SECCHECK=UNAUTH

that indicates to do RACF security checks only when the caller is

unauthorized (not supervisor state, not system key, not APF-authorized).

,SECCHECK=ALL

that indicates to do RACF security checks in all cases. If RACF does not

grant authority, the request is rejected.

,SECCHECKONLY=NO

,SECCHECKONLY=YES

When REQUEST=CHECKINFO is specified, an optional parameter that

indicates whether to do full processing or only security checks The default is

SECCHECKONLY=NO.

,SECCHECKONLY=NO

that indicates to do full processing.

,SECCHECKONLY=YES

that indicates to do only the security check to see if the requesting user has

RACF authority to access the data. When this option is specified, the

security check is done regardless of the caller’s key or state.

,SECCHECKONLY=NO

,SECCHECKONLY=YES

When REQUEST=MSGBUFF is specified, an optional parameter that indicates

whether to do full processing or only security checks The default is

SECCHECKONLY=NO.

HZSQUERY macro

270 IBM Health Checker for z/OS User’s Guide

,SECCHECKONLY=NO

that indicates to do full processing.

,SECCHECKONLY=YES

that indicates to do only the security check to see if the requesting user has

RACF authority to access the data. When this option is specified, the

security check is done regardless of the caller’s key or state.

,SYSNAME=sysname

,SYSNAME=CURRENT

When SECCHECKONLY=YES and REQUEST=CHECKINFO are specified, an

optional input parameter that specifies the system name to be used when doing

the security check. Note that this specification is used only when the caller is

supervisor state, system key, or APF-authorized. The default is CURRENT.

which indicates to use the name of the system on which this request was

issued.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,SYSNAME=sysname

,SYSNAME=CURRENT

When SECCHECKONLY=YES and REQUEST=MSGBUFF are specified, an

optional input parameter that specifies the system name to be used when doing

the security check. Note that this specification is used only when the caller is

supervisor state, system key, or APF-authorized. The default is CURRENT.

which indicates to use the name of the system on which this request was

issued.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,TEXTSTRING=YES

,TEXTSTRING=NO

An optional parameter that indicates whether to return the ″text strings″ mapped

in HZSPQE. The default is TEXTSTRING=YES.

,TEXTSTRING=YES

that indicates to return the HZSPQE ″text strings″.

,TEXTSTRING=NO

that indicates not to return the ″text strings″. If not using the HZSPQE

output for displaying, specifying ″NO″ avoids setting some fields that you

might not need.

ABEND Codes

None.

Return and Reason Codes

When the HZSQUERY macro returns control to your program:

v GPR 15 (and retcode, when you code RETCODE) contains a return code.

v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro HZSZCONS provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the

equate symbol associated with each reason code. IBM support personnel may

request the entire reason code, including the xxxx value.

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 271

Table 35. Return and Reason Codes for the HZSQUERY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: HzsqueryRc_OK

Meaning: Requested information returned

Action: None required

4 — Equate Symbol: HzsqueryRc_Warn

Meaning: Warning

Action: Refer to action under the individual reason code.

4 xxxx0401 Equate Symbol: HzsqueryRsn_NotAllDataReturned

Meaning: Not all data was returned because the answer area is not

big enough. Answer area field HZSQUAAHTLEN indicates how

much space is currently required.

Action: Allocate a larger area and request the function again.

8 — Equate Symbol: HzsqueryRc_InvParm

Meaning: HZSQUERY request specifies incorrect parameters.

Action: Refer to action under the individual reason code.

8 xxxx0801 Equate Symbol: HzsqueryRsn_NotAuthorized

Meaning: Caller is not authorized

Action: Avoid calling HZSQUERY when not authorized

8 xxxx0818 Equate Symbol: HzsqueryRsn_BadParmlist

Meaning: Error accessing parameter list.

Action: Make sure that the provided parameter list is valid.

8 xxxx0838 Equate Symbol: HzsqueryRsn_BadParmListVersion

Meaning: The specified version of the macro is not compatible with

the current version of IBM Health Checker for z/OS.

Action: Avoid requesting parameters that are not supported by this

version of IBM Health Checker for z/OS.

8 xxxx0843 Equate Symbol: HzsqueryRsn_SrbMode

Meaning: SRB mode.

Action: Avoid issuing HZSQUERY in SRB mode.

8 xxxx0844 Equate Symbol: HzsqueryRsn_NotEnabled

Meaning: Not Enabled.

Action: Avoid using HZSQUERY when not enabled.

8 xxxx0845 Equate Symbol: HzsqueryRsn_Locked

Meaning: Locked

Action: Avoid using HZSQUERY when a lock is held.

8 xxxx0846 Equate Symbol: HzsqueryRsn_FRR

Meaning: The caller had an EUT FRR established.

Action: Avoid using HZSQUERY when an EUT FRR is established.

HZSQUERY macro

272 IBM Health Checker for z/OS User’s Guide

Table 35. Return and Reason Codes for the HZSQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0847 Equate Symbol: HzsqueryRsn_BadParmlistALET

Meaning: Bad parameter list ALET.

Action: Make sure that the ALET associated with the parameter list

is valid. You might not have set up its access register properly.

8 xxxx0848 Equate Symbol: HzsqueryRsn_BadAnsAreaALET

Meaning: Bad answer area ALET.

Action: Make sure that the ALET associated with the answer area

is valid. You might not have set up its access register properly.

8 xxxx0849 Equate Symbol: HzsqueryRsn_BadAnsArea

Meaning: Error accessing answer area.

Action: Make sure that the provided answer area is valid.

8 xxxx084A Equate Symbol: HzsqueryRsn_BadAnsLen

Meaning: AnsLen is less than size of the header area.

Action: Provide a larger answer area (as indicated by the ANSLEN

keyword).

8 xxxx084B Equate Symbol: HzsqueryRsn_BadParmlistValue

Meaning: A parameter list field contains an unsupported value.

Action: Check for possible storage overlay

8 xxxx084C Equate Symbol: HzsqueryRsn_BadCategoryALET

Meaning: Bad category ALET.

Action: Make sure that the ALET associated with the category area

is valid. You might not have set up its access register properly.

8 xxxx084D Equate Symbol: HzsqueryRsn_BadCategory

Meaning: Error accessing category area.

Action: Make sure that the provided category area is valid.

8 xxxx084E Equate Symbol: HzsqueryRsn_MsgTokenNotValid

Meaning: MSGTOKEN is not valid.

Action: Make sure that the MSGTOKEN specifies a value returned

by HZSQUERY. As that might represent a check that no longer

exists, it might be necessary to re-issue HZSQUERY to get a new

MSGTOKEN.

0C — Equate Symbol: HzsqueryRc_EnvError

Meaning: Environmental Error

Action: Refer to action under the individual reason code.

0C xxxx0C01 Equate Symbol: HzsqueryRsn_IBMHCNotActive

Meaning: IBM Health Checker for z/OS is not active

Action: Re-issue the request when the service is available

10 — Equate Symbol: HzsqueryRc_CompError

Meaning: Component Error

Action: Refer to action under the individual reason code.

HZSQUERY macro

Chapter 12. IBM Health Checker for z/OS HZS macros 273

Table 35. Return and Reason Codes for the HZSQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

10 xxxx1001 Equate Symbol: HzsqueryRsn_IntError

Meaning: Unexpected internal error

Action: Report the problem to the system programmer

Examples

None.

HZSQUERY macro

274 IBM Health Checker for z/OS User’s Guide

HZSCHECK macro — HZS Check command request

Description

The HZSCHECK macro provides the interface to manage checks that are currently

registered with IBM Health Checker For z/OS.

Environment

The requirements for the caller are:

 Minimum authorization: Problem state. PSW key 8-15 When problem state and key

8-15 and not APF authorized, or when SECCHECK=ALL is

specified, the caller’s authorization requirements depend on

the input specification.

v The caller may be authorized for access to any of the

following:

– when the check owner has wildcard character(s), or

when the check owner has no wildcard characters and

the check name has no wildcard characters, XFACILIT

class resource HZS.sysname.reqtype

– when the check owner has no wildcard characters and

the check name has wildcard character(s), XFACILIT

class resource HZS.sysname.checkowner.reqtype

– when the check owner has no wildcard characters and

the check name has no wildcard characters, XFACILIT

class resource

HZS.sysname.checkowner.checkname.reqtype
v The values for reqtype are as follows:

– When REQUEST=ACTIVATE is specified, reqtype is

ACTIVATE and update authority is needed.

– When REQUEST=UPDATE is specified, reqtype is

UPDATE and update authority is needed.

– When REQUEST=DELETE is specified, reqtype is

DELETE and control authority is needed.

– When REQUEST=DEACTIVATE is specified, reqtype is

DEACTIVATE and update authority is needed.

– When REQUEST=REFRESH is specified, reqtype is

REFRESH and control authority is needed.

– When REQUEST=ADDNEW is specified, reqtype is

ADDNEW and update authority is needed.

– When REQUEST=RUN is specified, reqtype is RUN

and authority for update is needed.

– When REQUEST=OPSTART is specified, the authority

to have added the check is all that is needed.

– When REQUEST=OPCOMPLETE is specified, the

authority to have added the check is all that is needed.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE

ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 275

Programming Requirements

The caller should include the HZSZCONS macro to get equate symbols for the

return and reason codes.

Restrictions

This macro supports multiple versions. Some keywords are unique to certain

versions. See the PLISTVER parameter description.

The caller may not have an FRR established.

Input Register Information

Before issuing the HZSCHECK macro, the caller does not have to place any

information into any register unless using it in register notation for a particular

parameter, or using it as a base register.

Before issuing the HZSCHECK macro, the caller does not have to place any

information into any AR unless using it in register notation for a particular

parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

Register

Contents

0 Reason code, when register 15 is not 0.

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the ARs contain:

Register

Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after

issuing a service. If the system changes the contents of registers on which the

caller depends, the caller must save them before issuing the service, and restore

them after the system returns control.

Performance Implications

None.

HZSCHECK macro

276 IBM Health Checker for z/OS User’s Guide

Syntax

main diagram

��

name

HZSCHECK

�
 REMOTE = ANY

parameters-1

REMOTE

=

YES

parameters-2

�

�
 , SECCHECKONLY = NO , SECCHECK = UNAUTH

,

SECCHECK

=

ALL

,

SYSNAME

=

CURRENT

,

SECCHECKONLY

=

YES

,

SYSNAME

=

sysname

�

�
 , CART = NO_CART

,

CART

=

cart

 , CONSID = NO_CONSID

,

CONSID

=

consid

�

�
,

RETCODE

=

retcode

,

RSNCODE

=

rsncode
 �

�
 , PLISTVER = IMPLIED_VERSION

,

PLISTVER

=

MAX

,

PLISTVER

=

0

,

PLISTVER

=

1

�

�
 , MF = S

,

0D

,

MF

=

(

L

,

list addr

)

,

attr

,

COMPLETE

,

MF

=

(

E

,

list addr

)

��

parameters-1

�� , REQUEST = DELETE parameters-3

,

REQUEST

=

ADDNEW

,

REQUEST

=

RUN

parameters-4

 ��

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 277

Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the HZSCHECK

macro invocation. The name must conform to the rules for an ordinary

assembler language symbol.

,CART=cart

,CART=NO_CART

An optional input parameter that specifies the Command And Response Token

(CART) to be used if any messages are issued while processing the

HZSCHECK request. The default is NO_CART. which indicates that messages

issued while processing the HZSCHECK will be issued without a CART.

parameters-2

�� , HANDLE = handle �

�
 , REXX = NO

,

REQUEST

=

OPSTART

,

PETOKEN

=

petoken

,

PQE

=

pqe

,

REXX

=

NO

,

REQUEST

=

OPCOMPLETE

,

PQECHKWORK

=

NO_PQECHKWORK

,

PQECHKWORK

=

pqechkwork

��

parameters-3

��

,

CHECKOWNER

=

checkowner

,

CHECKNAME

=

checkname
 , EXITRTN = ANY_EXITRTN

,

EXITRTN

=

exitrtn

�

�
,

CATEGORY

=

ANY_CATEGORY

,

NUMCAT

=

numcat

,

CATRULE

=

DEFAULT

,

CATEGORY

=

category

,

CATRULE

=

ONLY

,

CATRULE

=

ANY

,

CATRULE

=

EVERY

,

CATRULE

=

EXCEPT

 ��

parameters-4

��

,

CHECKOWNER

=

checkowner

,

CHECKNAME

=

checkname
 , EXITRTN = ANY_EXITRTN

,

EXITRTN

=

exitrtn

�

�
,

CATEGORY

=

ANY_CATEGORY

,

NUMCAT

=

numcat

,

CATRULE

=

DEFAULT

,

CATEGORY

=

category

,

CATRULE

=

ONLY

,

CATRULE

=

ANY

,

CATRULE

=

EVERY

,

CATRULE

=

EXCEPT

 ��

HZSCHECK macro

278 IBM Health Checker for z/OS User’s Guide

To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,CATEGORY=category

,CATEGORY=ANY_CATEGORY

When REQUEST=DELETE and REMOTE=ANY are specified, an optional input

parameter that specifies an array of 1 to 16 contiguous 16 character entries

each of which contains a category. The categories are used as filters. Each

category can include wildcard characters. Checks that belong to categories that

match according to the rules of the CATRULE parameter and according to the

other filtering parameters (CHECKOWNER, CHECKNAME, and EXITRTN) are

processed. The number of categories is specified by the NUMCAT parameter.

The default is ANY_CATEGORY.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,CATEGORY=category

,CATEGORY=ANY_CATEGORY

When REQUEST=RUN and REMOTE=ANY are specified, an optional input

parameter that specifies an array of 1 to 16 contiguous 16 character entries

each of which contains a category. The categories are used as filters. Each

category can include wildcard characters. Checks that belong to categories that

match according to the rules of the CATRULE parameter and according to the

other filtering parameters (CHECKOWNER, CHECKNAME, and EXITRTN) are

processed. The number of categories is specified by the NUMCAT parameter.

The default is ANY_CATEGORY.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,CATRULE=DEFAULT

,CATRULE=ONLY

,CATRULE=ANY

,CATRULE=EVERY

,CATRULE=EXCEPT

When CATEGORY=category, REQUEST=DELETE and REMOTE=ANY are

specified, a required parameter that indicates how to process the category

filters.

,CATRULE=DEFAULT

indicates to apply the default (which is CATRULE=ONLY).

,CATRULE=ONLY

indicates to match only if all the categories match the categories to which

the target check belongs, and if the target check belongs to exactly the

number of categories specified by the NUMCAT parameter.

,CATRULE=ANY

indicates to match if any of the categories provided match any of the

categories to which the target check belongs.

,CATRULE=EVERY

indicates to match if every one of the categories provided matches any of

the categories to which the target check belongs.

,CATRULE=EXCEPT

indicates to match except when one of the categories provided matches

any of the categories to which the target check belongs.

,CATRULE=DEFAULT

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 279

,CATRULE=ONLY

,CATRULE=ANY

,CATRULE=EVERY

,CATRULE=EXCEPT

When CATEGORY=category, REQUEST=RUN and REMOTE=ANY are

specified, a required parameter that indicates how to process the category

filters.

,CATRULE=DEFAULT

indicates to apply the default (which is CATRULE=ONLY).

,CATRULE=ONLY

indicates to match only if all the categories match the categories to which

the target check belongs, and if the target check belongs to exactly the

number of categories specified by the NUMCAT parameter.

,CATRULE=ANY

indicates to match if any of the categories provided match any of the

categories to which the target check belongs.

,CATRULE=EVERY

indicates to match if every one of the categories provided matches any of

the categories to which the target check belongs.

,CATRULE=EXCEPT

indicates to match except when one of the categories provided matches

any of the categories to which the target check belongs.

,CHECKNAME=checkname

When REQUEST=DELETE and REMOTE=ANY are specified, a required input

parameter that specifies the name of the check to be used as a filter.

CHECKNAME can include wildcard characters. All checks with names that

match the specified name and that match the other filtering parameters

(CHECKOWNER, EXITRTN, CATEGORY) are processed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

32-character field.

,CHECKNAME=checkname

When REQUEST=RUN and REMOTE=ANY are specified, a required input

parameter that specifies the name of the check to be used as a filter.

CHECKNAME can include wildcard characters. All checks with names that

match the specified name and that match the other filtering parameters

(CHECKOWNER, EXITRTN, CATEGORY) are processed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

32-character field.

,CHECKOWNER=checkowner

When REQUEST=DELETE and REMOTE=ANY are specified, a required input

parameter that specifies the owner of the check to be used as a filter.

CHECKOWNER can include wildcard characters. All checks with owners that

match the specified owner and that match the other filtering parameters

(CHECKNAME, EXITRTN, CATEGORY) are processed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,CHECKOWNER=checkowner

When REQUEST=RUN and REMOTE=ANY are specified, a required input

parameter that specifies the owner of the check to be used as a filter.

CHECKOWNER can include wildcard characters. All checks with owners that

HZSCHECK macro

280 IBM Health Checker for z/OS User’s Guide

match the specified owner and that match the other filtering parameters

(CHECKNAME, EXITRTN, CATEGORY) are processed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,CONSID=consid

,CONSID=NO_CONSID

An optional input parameter that specifies the console ID to be used if any

messages are issued while processing the HZSCHECK request. The default is

NO_CONSID. If the CONSID parameter is not specified, no messages will be

issued while processing the HZSCHECK.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

fullword field, or specify a literal decimal value.

,EXITRTN=exitrtn

,EXITRTN=ANY_EXITRTN

When REQUEST=DELETE and REMOTE=ANY are specified, an optional input

parameter that specifies the name of the exit routine that was provided via the

EXITRTN parameter on the HZSADDCK macro that added the check. The exit

routine is EXITRTN, which can include wildcard characters. All checks with

names that match the specified name and that match the other filtering

parameters (CHECKOWNER, CHECKNAME, CATEGORY) are processed. The

default is ANY_EXITRTN.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,EXITRTN=exitrtn

,EXITRTN=ANY_EXITRTN

When REQUEST=RUN and REMOTE=ANY are specified, an optional input

parameter that specifies the name of the exit routine that was provided via the

EXITRTN parameter on the HZSADDCK macro that added the check. The exit

routine is EXITRTN, which can include wildcard characters. All checks with

names that match the specified name and that match the other filtering

parameters (CHECKOWNER, CHECKNAME, CATEGORY) are processed. The

default is ANY_EXITRTN.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,HANDLE=handle

When REMOTE=YES is specified, a required input parameter that specifies a

handle (token) that identifies the check. This handle was returned via the

HANDLE parameter of the HZSADDCK macro for a REMOTE=YES REXX=NO

check. The handle is in REXX variable hzs_handle for a REMOTE=YES

REXX=YES check.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 281

Use MF=S to specify the standard form of the macro, which builds an inline

parameter list and generates the macro invocation to transfer control to the

service. MF=S is the default.

 Use MF=L to specify the list form of the macro. Use the list form together with

the execute form of the macro for applications that require reentrant code. The

list form defines an area of storage that the execute form uses to store the

parameters. Only the PLISTVER parameter may be coded with the list form of

the macro.

 Use MF=E to specify the execute form of the macro. Use the execute form

together with the list form of the macro for applications that require reentrant

code. The execute form of the macro stores the parameters into the storage

area defined by the list form, and generates the macro invocation to transfer

control to the service.

,list addr

The name of a storage area to contain the parameters. For MF=S and

MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr

An optional 1- to 60-character input string that you use to force boundary

alignment of the parameter list. Use a value of 0F to force the parameter

list to a word boundary, or 0D to force the parameter list to a doubleword

boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE

Specifies that the system is to check for required parameters and supply

defaults for omitted optional parameters.

,NUMCAT=numcat

When CATEGORY=category, REQUEST=DELETE and REMOTE=ANY are

specified, a required input parameter that specifies the number of categories

contained in the array specified by the CATEGORY parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

one-byte field.

,NUMCAT=numcat

When CATEGORY=category, REQUEST=RUN and REMOTE=ANY are

specified, a required input parameter that specifies the number of categories

contained in the array specified by the CATEGORY parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

one-byte field.

,PETOKEN=petoken

When REXX=NO, REQUEST=OPSTART and REMOTE=YES are specified, a

required input parameter that is the updated pause element token returned by

the IEAVPSE service (the pause element token was originally obtained via the

IEAVAPE service and then was provided as input to the IEAVPSE service which

returned an updated token). The caller, waiting to be told what to do by IBM

Health Checker for z/OS, should pause using this pause element token. IBM

Health Checker for z/OS will ″release″ using that pause element token to wake

up the check processing.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

HZSCHECK macro

282 IBM Health Checker for z/OS User’s Guide

,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER

determines which parameter list the system generates. PLISTVER is an

optional input parameter on all forms of the macro, including the list form. When

using PLISTVER, specify it on all macro forms used for a request and with the

same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER

parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.

This size might grow from release to release and affect the amount of

storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify

PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that

the list-form parameter list is always long enough to hold all the parameters

you might specify on the execute form, when both are assembled with the

same level of the system. In this way, MAX ensures that the parameter list

does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in

higher versions.

v 1, which supports both the following parameters and those from version 0:

 REXXTIMELIM

To code: Specify one of the following:

v IMPLIED_VERSION

v MAX

v A decimal value of 0, or 1

,PQE=pqe

When REQUEST=OPSTART and REMOTE=YES are specified, an optional

output parameter that specifies the area into which to place the information

mapped by HZSPQE that is associated with this check. This area should begin

on a doubleword boundary.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

4096-character field.

,PQECHKWORK=pqechkwork

,PQECHKWORK=NO_PQECHKWORK

When REQUEST=OPCOMPLETE and REMOTE=YES are specified, an

optional input parameter that specifies the PQECHKWORK area which is to be

saved and which is to be provided on the next running of the check. This area

should begin on a doubleword boundary. The default is NO_PQECHKWORK.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

2048-character field.

REMOTE=ANY

REMOTE=YES

An optional parameter, which identifies the locale of the check. The default is

REMOTE=ANY.

REMOTE=ANY

indicates that the check may either be Remote (runs remotely, in an

address space other than that of IBM Health Checker for z/OS) or not

Remote (runs locally in the address space of IBM Health Checker for z/OS).

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 283

REMOTE=YES

indicates that the check runs remotely, in an address space other than that

of IBM Health Checker for z/OS.

,REQUEST=DELETE

,REQUEST=ADDNEW

,REQUEST=RUN

When REMOTE=ANY is specified, a required parameter, which identifies the

type of request.

,REQUEST=DELETE

indicates to delete the specified check(s) from IBM Health Checker for

z/OS.

,REQUEST=ADDNEW

indicates to call the HZSADDCHECK dynamic exit, which results in running

exit routines associated with that exit to add checks that are not currently

added to IBM Health Checker for z/OS. When a check is added, the current

policy is processed to obtain any modifications to the new check(s).

 The system runs checks when they are added, unless they are inactive.

 REQUEST(ADDNEW) is not allowed from within a HZSADDCHECK

dynamic exit routine.

,REQUEST=RUN

indicates to run the specified check(s) registered with IBM Health Checker

for z/OS. Checks that are inactive will not be run.

,REQUEST=OPSTART

,REQUEST=OPCOMPLETE

When REMOTE=YES is specified, a required parameter, which identifies the

type of request.

,REQUEST=OPSTART

indicates that the current operation is starting

,REQUEST=OPCOMPLETE

indicates that the current operation is now complete for the check.

,RETCODE=retcode

An optional output parameter into which the return code is to be copied from

GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,REXX=NO

When REQUEST=OPSTART and REMOTE=YES are specified, an optional

parameter, which indicates if this is a REXX check. The default is REXX=NO.

,REXX=NO

indicates that the check is a REXX check.

,REXX=NO

When REQUEST=OPCOMPLETE and REMOTE=YES are specified, an

optional parameter, which indicates if the check is a REXX check. The default is

REXX=NO.

,REXX=NO

indicates that the check is a REXX check.

,RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from

GPR 0.

HZSCHECK macro

284 IBM Health Checker for z/OS User’s Guide

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SECCHECK=UNAUTH

,SECCHECK=ALL

When SECCHECKONLY=NO is specified, an optional parameter that indicates

whether to do RACF security checks. The default is SECCHECK=UNAUTH.

,SECCHECK=UNAUTH

that indicates to do RACF security checks only when the caller is

unauthorized (not supervisor state, not system key, not APF-authorized).

,SECCHECK=ALL

that indicates to do RACF security checks in all cases. If RACF does not

grant authority, the request is rejected.

,SECCHECKONLY=NO

,SECCHECKONLY=YES

An optional parameter that indicates whether to do full processing or only

security checks The default is SECCHECKONLY=NO.

,SECCHECKONLY=NO

that indicates to do full processing.

,SECCHECKONLY=YES

that indicates to do only the security check to see if the requesting user has

RACF authority to access the data. When this option is specified, the

security check is done regardless of the caller’s key or state.

,SYSNAME=sysname

,SYSNAME=CURRENT

When SECCHECKONLY=YES is specified, an optional input parameter that

specifies the system name to be used when doing the security check. Note that

this specification is used only when the caller is supervisor state, system key, or

APF-authorized. The default is CURRENT. which indicates to use the name of

the system on which this request was issued.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

ABEND Codes

None.

HZSCHECK Return and Reason Codes

When the HZSCHECK macro returns control to your program:

v GPR 15 (and retcode, when you code RETCODE) contains a return code.

v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro HZSZCONS provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the

equate symbol associated with each reason code. IBM support personnel may

request the entire reason code, including the xxxx value.

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 285

Table 36. Return and Reason Codes for the HZSCHECK Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: HzscheckRc_OK

Meaning: SECCHECKONLY=YES was requested and the request

passed the security check.

Action: None required.

4 — Equate Symbol: HzscheckRc_Warn

Meaning: Warning

Action: Refer to action under the individual reason code.

4 xxxx0400 Equate Symbol: HzscheckRsn_CommandQueued

Meaning: The specified HZSCHECK will be completed

asynchronously

Action: None needed

8 — Equate Symbol: HzscheckRc_InvParm

Meaning: HZSCHECK request specifies incorrect parameters.

Action: Refer to action under the individual reason code.

8 xxxx0801 Equate Symbol: HzscheckRsn_NotAuthorized

Meaning: Caller is not authorized

Action: Avoid calling HZSCHECK when not authorized.

8 xxxx0818 Equate Symbol: HzscheckRsn_BadParmlist

Meaning: Error accessing the parameter list

Action: Make sure that the provided parameter list is valid.

8 xxxx0829 Equate Symbol: HzscheckRsn_BadAddRepcatArea

Meaning: Error while reading the AddCat or RepCat array

Action: Make sure that the provided area is valid.

8 xxxx082A Equate Symbol: HzscheckRsn_BadRemcatArea

Meaning: Error while reading the RemCat array

Action: Make sure that the provided area is valid.

8 xxxx0838 Equate Symbol: HzscheckRsn_BadParmListVersion

Meaning: The specified version of the macro is not compatible with

the current version of IBM Health Checker for z/OS.

Action: Avoid requesting parameters that are not supported by this

version of IBM Health Checker for z/OS.

8 xxxx0847 Equate Symbol: HzscheckRsn_BadParmlistALET

Meaning: Bad parameter list ALET.

Action: Make sure that the ALET associated with the parameter list

is valid. You might not have set up its access register properly.

8 xxxx084B Equate Symbol: HzscheckRsn_BadParmlistValue

Meaning: A parameter list field contains an unsupported value.

Action: Check for possible storage overlay

HZSCHECK macro

286 IBM Health Checker for z/OS User’s Guide

Table 36. Return and Reason Codes for the HZSCHECK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx084C Equate Symbol: HzscheckRsn_BadCategoryALET

Meaning: Bad category ALET.

Action: Make sure that the ALET associated with the category area

is valid. You might not have set up its access register properly.

8 xxxx084D Equate Symbol: HzscheckRsn_BadCategoryArea

Meaning: Error accessing category area.

Action: Make sure that the provided category area is valid.

8 xxxx0853 Equate Symbol: HzscheckRsn_BadAddRepcatALET

Meaning: Bad ALET for AddCat or RepCat array.

Action: Make sure that the ALET associated with the AddCat or

RepCat array is valid. You might not have set up its access register

properly.

8 xxxx0854 Equate Symbol: HzscheckRsn_BadRemcatALET

Meaning: Bad ALET for RemCat array.

Action: Make sure that the ALET associated with the RemCat array

is valid. You might not have set up its access register properly.

8 xxxx0855 Equate Symbol: HzscheckRsn_BadNumCat

Meaning: Value provided by NUMCAT exceeds the limit of 16.

Action: Avoid specifying more than the allowable number of

categories.

8 xxxx0856 Equate Symbol: HzscheckRsn_BadNumAddRepRemCat

Meaning: The total value provided by NUMADDCAT, NUMREPCAT,

and NUMREMCAT exceeds the limit of 16.

Action: Avoid specifying more than the allowable number of

categories.

8 xxxx0858 Equate Symbol: HzscheckRsn_BadHandle

Meaning: The handle provided with the HANDLE parameter is not

valid.

Action: Specify the handle that was returned by the HZSADDCK

macro if this is a REMOTE=YES REXX=NO check, or the handle in

REXX variable hzs_handle if this is a REMOTE=YES REXX=YES

check.

8 xxxx0864 Equate Symbol: HzscheckRsn_BadPqeArea

Meaning: Error while writing to the PQE area

Action: Make sure that the provided area is valid.

8 xxxx0865 Equate Symbol: HzscheckRsn_BadPqeALET

Meaning: Bad ALET for the PQE area.

Action: Make sure that the ALET associated with the PQE area is

valid. You might not have set up its access register properly.

8 xxxx0866 Equate Symbol: HzscheckRsn_BadPqeChkWorkArea

Meaning: Error while reading from the PqeChkWork area

Action: Make sure that the provided area is valid.

HZSCHECK macro

Chapter 12. IBM Health Checker for z/OS HZS macros 287

Table 36. Return and Reason Codes for the HZSCHECK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0867 Equate Symbol: HzscheckRsn_BadPqeChkWorkALET

Meaning: Bad ALET for the PqeChkWork area.

Action: Make sure that the ALET associated with the PqeChkWork

area is valid. You might not have set up its access register properly.

0C — Equate Symbol: HzscheckRc_EnvError

Meaning: Environmental Error

Action: Refer to action under the individual reason code.

0C xxxx0C01 Equate Symbol: HzscheckRsn_IBMHCNotActive

Meaning: IBM Health Checker for z/OS is not active

Action: For REQUEST=ADDNEW, no action is needed. For any

other REQUEST option, re-issue the request when the service is

available

0C xxxx0C02 Equate Symbol: HzscheckRsn_BadCommandEnv

Meaning: The specified command cannot be specified from a

HZSADDCHECK dynamic exit

Action: Do Not issue a ADDNEW or REFRESH command from a

HZSADDCHECK dynamic exit routine

0C xxxx0C03 Equate Symbol: HzscheckRsn_BadRemoteEnv

Meaning: For REQUEST=OPSTART or

REQUEST=OPCOMPLETE, the call must be done only once after

having been awakened to process a remote function. For that

function, the call may be done only once. For

REQUEST=OPSTART, the call must be done before the

REQUEST=OPCOMPLETE call.

Action: Avoid using REQUEST=OPSTART or

REQUEST=OPCOMPLETE in an incorrect environment.

10 — Equate Symbol: HzscheckRc_CompError

Meaning: Component Error

Action: Refer to action under the individual reason code.

10 xxxx1001 Equate Symbol: HzscheckRsn_IntError

Meaning: Unexpected internal error

Action: Report the problem to the system programmer

Examples

None.

HZSCHECK macro

288 IBM Health Checker for z/OS User’s Guide

HZSCPARS macro — HZS Check Parameter Parsing

Description

The HZSCPARS macro provides functions dealing with parsing the check

parameter.

Environment

The requirements for the caller are:

 Minimum authorization: For local checks, supervisor state and the key of the check

routine. For remote checks, problem state and PSW key

8-15.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE

ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

The caller must include the HZSZCPAR macro to get mappings for the areas.

All HZSCPARS services called after the parse service must be called in the same

PSW key in which you called the parse service.

Restrictions

The caller may not have an FRR established.

Input Register Information

Before issuing the HZSCPARS macro, the caller does not have to place any

information into any register unless using it in register notation for a particular

parameter, or using it as a base register.

Before issuing the HZSCPARS macro, the caller does not have to place any

information into any AR unless using it in register notation for a particular

parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

Register

Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the ARs contain:

Register

Contents

0-1 Used as work registers by the system

HZSCPARS macro

Chapter 12. IBM Health Checker for z/OS HZS macros 289

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after

issuing a service. If the system changes the contents of registers on which the

caller depends, the caller must save them before issuing the service, and restore

them after the system returns control.

Performance Implications

None.

Syntax

main diagram

��

name
 HZSCPARS � �

� REQUEST = PARSE parameters-1

REQUEST

=

CHECKPARM

parameters-2

REQUEST

=

CHECKNOTPROC

,

CPARAREA

=

cpararea

REQUEST

=

CHECKDEC

parameters-3

REQUEST

=

CHECKHEX

parameters-4

REQUEST

=

CHECKCHAR

parameters-5

REQUEST

=

FREE

,

CPARAREA

=

cpararea

 �

�
 , REMOTE = NO

,

REMOTE

=

YES

,

HANDLE

=

handle

�

�
,

RETCODE

=

retcode

,

RSNCODE

=

rsncode
 �

�
 , PLISTVER = IMPLIED_VERSION

,

PLISTVER

=

MAX

,

PLISTVER

=

0

�

�
 , MF = S

,

0D

,

MF

=

(

L

,

list addr

)

,

attr

,

COMPLETE

,

MF

=

(

E

,

list addr

)

��

HZSCPARS macro

290 IBM Health Checker for z/OS User’s Guide

parameters-1

�� , PARM = parm , PARMLEN = parmlen , TOUPPER = YES

,

TOUPPER

=

NO
 �

�

,

CPARAREAADDR

=

cparareaaddr
 , PARMFORMAT = EITHER

,

PARMFORMAT

=

KEYWORD

��

parameters-2

�� , CPARAREA = cpararea �

�
 , PARMPOS = NOT_POS

,

PARMNAME

=

parmname

,

PARMPOS

=

parmpos

�

�
,

KEYENTRYADDR

=

keyentryaddr
 �

�
,

FIRSTVALUEADDR

=

firstvalueaddr
 , MINVALUES = minvalues �

� , MAXVALUES = maxvalues ��

parameters-3

�� , PARMNAME = parmname �

� , KEYENTRY = keyentry

,

KEYVALUEENTRY

=

keyvalueentry

,

NEXTVALUEADDR

=

nextvalueaddr
 �

� , MINVALUEDEC = minvaluedec , MAXVALUEDEC = maxvaluedec �

�
 , PERCENTVALUE = NOT_USED

,

PERCENTOK

=

YES

,

PERCENTVALUE

=

percentvalue

,

PERCENTOK

=

NO

�

� , KEYINFOAREA = keyinfoarea ��

HZSCPARS macro

Chapter 12. IBM Health Checker for z/OS HZS macros 291

Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the HZSCPARS

macro invocation. The name must conform to the rules for an ordinary

assembler language symbol.

,CPARAREA=cpararea

When REQUEST=CHECKPARM is specified, a required input parameter that is

the check parse area (CParArea), the address of which was returned by the

PARSE request.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,CPARAREA=cpararea

When REQUEST=CHECKNOTPROC is specified, a required input parameter

that is the check parse area (CParArea), the address of which was returned by

the PARSE request.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,CPARAREA=cpararea

When REQUEST=FREE is specified, a required input parameter that is the

check parse area (CParArea) to be freed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,CPARAREAADDR=cparareaaddr

When REQUEST=PARSE is specified, a required output parameter that is to

contain the address of the check parse area (CParArea).

parameters-4

�� , PARMNAME = parmname �

� , KEYENTRY = keyentry

,

KEYVALUEENTRY

=

keyvalueentry

,

NEXTVALUEADDR

=

nextvalueaddr
 �

� , MINVALUEHEX = minvaluehex , MAXVALUEHEX = maxvaluehex �

� , KEYINFOAREA = keyinfoarea ��

parameters-5

�� , PARMNAME = parmname �

� , KEYENTRY = keyentry

,

KEYVALUEENTRY

=

keyvalueentry

,

NEXTVALUEADDR

=

nextvalueaddr
 �

� , MINLEN = minlen , MAXLEN = maxlen , KEYINFOAREA = keyinfoarea ��

HZSCPARS macro

292 IBM Health Checker for z/OS User’s Guide

To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,FIRSTVALUEADDR=firstvalueaddr

When REQUEST=CHECKPARM is specified, an optional output parameter that

is to contain the address of the first ParseKeywordValueEntry area of the

parameter, or 0 if there are none. A value of 0 is expected when the format is

positional (bit CparAreaFormatPositional is on. This should be used except

when you are verifying that the number of values that can be specified is 0.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,HANDLE=handle

When REMOTE=YES is specified, a required input parameter that specifies a

handle (token) that identifies the check. This handle was returned via the

HANDLE parameter of the HZSADDCK macro for a REMOTE=YES REXX=NO

check.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,KEYENTRY=keyentry

When REQUEST=CHECKDEC is specified, a required input parameter that is

the ParseKeywordEntry of the value to be processed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,KEYENTRY=keyentry

When REQUEST=CHECKHEX is specified, a required input parameter that is

the ParseKeywordEntry of the value to be processed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,KEYENTRY=keyentry

When REQUEST=CHECKCHAR is specified, a required input parameter that is

the ParseKeywordEntry of the value to be processed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,KEYENTRYADDR=keyentryaddr

When REQUEST=CHECKPARM is specified, an optional output parameter that

is to contain the address of the ParseKeywordEntry of the parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,KEYINFOAREA=keyinfoarea

When REQUEST=CHECKDEC is specified, a required input/output parameter,

of the KeywordInfo area that is built. It need not be initialized prior to the call

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,KEYINFOAREA=keyinfoarea

When REQUEST=CHECKHEX is specified, a required input/output parameter,

of the KeywordInfo area that is built. It need not be initialized prior to the call

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

HZSCPARS macro

Chapter 12. IBM Health Checker for z/OS HZS macros 293

,KEYINFOAREA=keyinfoarea

When REQUEST=CHECKCHAR is specified, a required input/output parameter,

of the KeywordInfo area that is built. It need not be initialized prior to the call

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,KEYVALUEENTRY=keyvalueentry

When REQUEST=CHECKDEC is specified, a required input parameter that is

the ParseKeywordValueEntry of the value to be processed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,KEYVALUEENTRY=keyvalueentry

When REQUEST=CHECKHEX is specified, a required input parameter that is

the ParseKeywordValueEntry of the value to be processed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,KEYVALUEENTRY=keyvalueentry

When REQUEST=CHECKCHAR is specified, a required input parameter that is

the ParseKeywordValueEntry of the value to be processed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,MAXLEN=maxlen

When REQUEST=CHECKCHAR is specified, a required input parameter that is

the maximum length allowed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

fullword field.

,MAXVALUEDEC=maxvaluedec

When REQUEST=CHECKDEC is specified, a required input parameter that is

the maximum decimal value allowed. This is a numeric value. When the number

has a percent suffix, a value in the range 1-100 is accepted regardless of what

is specified with this parameter. The value is treated as an unsigned number,

and a value >= 2**63 will be treated as 2**63-1.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,MAXVALUEHEX=maxvaluehex

When REQUEST=CHECKHEX is specified, a required input parameter that is

the maximum hexadecimal value allowed. This is a numeric value.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,MAXVALUES=maxvalues

When REQUEST=CHECKPARM is specified, a required input parameter that

indicates the maximum number of values that can be specified.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

fullword field.

,MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

HZSCPARS macro

294 IBM Health Checker for z/OS User’s Guide

,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

 Use MF=S to specify the standard form of the macro, which builds an inline

parameter list and generates the macro invocation to transfer control to the

service. MF=S is the default.

 Use MF=L to specify the list form of the macro. Use the list form together with

the execute form of the macro for applications that require reentrant code. The

list form defines an area of storage that the execute form uses to store the

parameters. Only the PLISTVER parameter may be coded with the list form of

the macro.

 Use MF=E to specify the execute form of the macro. Use the execute form

together with the list form of the macro for applications that require reentrant

code. The execute form of the macro stores the parameters into the storage

area defined by the list form, and generates the macro invocation to transfer

control to the service.

,list addr

The name of a storage area to contain the parameters. For MF=S and

MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr

An optional 1- to 60-character input string that you use to force boundary

alignment of the parameter list. Use a value of 0F to force the parameter

list to a word boundary, or 0D to force the parameter list to a doubleword

boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE

Specifies that the system is to check for required parameters and supply

defaults for omitted optional parameters.

,MINLEN=minlen

When REQUEST=CHECKCHAR is specified, a required input parameter that is

the minimum length allowed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

fullword field.

,MINVALUEDEC=minvaluedec

When REQUEST=CHECKDEC is specified, a required input parameter that is

the minimum decimal value allowed. This is a numeric value. When the number

has a percent suffix, a value in the range 1-100 is accepted regardless of what

is specified with this parameter. The value is treated as an unsigned number.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,MINVALUEHEX=minvaluehex

When REQUEST=CHECKHEX is specified, a required input parameter that is

the minimum hexadecimal value allowed. This is a numeric value.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,MINVALUES=minvalues

When REQUEST=CHECKPARM is specified, a required input parameter that

indicates the minimum number of values that can be specified.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

fullword field.

HZSCPARS macro

Chapter 12. IBM Health Checker for z/OS HZS macros 295

,NEXTVALUEADDR=nextvalueaddr

When KEYVALUEENTRY=keyvalueentry and REQUEST=CHECKDEC are

specified, a required output parameter that is to contain the address of the next

ParseKeywordValueEntry area of the parameter, or 0 if there are none.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer address, or address in register (2)-(12), of a pointer field.

,NEXTVALUEADDR=nextvalueaddr

When KEYVALUEENTRY=keyvalueentry and REQUEST=CHECKHEX are

specified, a required output parameter that is to contain the address of the next

ParseKeywordValueEntry area of the parameter, or 0 if there are none.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,NEXTVALUEADDR=nextvalueaddr

When KEYVALUEENTRY=keyvalueentry and REQUEST=CHECKCHAR are

specified, a required output parameter that is to contain the address of the next

ParseKeywordValueEntry area of the parameter, or 0 if there are none.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

pointer field.

,PARM=parm

When REQUEST=PARSE is specified, a required input parameter that is the

input parameter. The input parameter has a limited acceptable character set:

v Alphanumeric

v Special (’@’, ’#’, ’$’)

v Additional (’.’, ’*’, ’?’, ’_’, ’/’, ’-’, ’%’)

v Delimiters (’=’, ’(’, ’)’, ’,’, blank)

v Single quote (within a quoted string, any character is accepted)

A null parameter can be denoted by consecutive commas with no non-blank

non-comment text in between (or by a leading comma). For example, the string

″A,,B″ represents 3 positional parameters, the first being ″A″, the second being

null, and the third being ″B″.

To code: Specify the RS-type address, or address in register (2)-(12), of a

character field.

,PARMFORMAT=EITHER

,PARMFORMAT=KEYWORD

When REQUEST=PARSE is specified, an optional parameter, which identifies

the allowed format of the input. The default is PARMFORMAT=EITHER.

,PARMFORMAT=EITHER

indicates that either positional or keyword format is OK. An example of

positional format is (″Val1,...,ValN″). Examples of keyword format are

″key1(val1),...,keyN(valN)″ and ″Key1=val1,...,keyN=valN″. Note that within

an input string there cannot be a mixture of keyword and positional format.

,PARMFORMAT=KEYWORD

indicates that only keyword format is allowed.

,PARMLEN=parmlen

When REQUEST=PARSE is specified, a required input parameter that is the

length of the input parameter.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

fullword field.

HZSCPARS macro

296 IBM Health Checker for z/OS User’s Guide

,PARMNAME=parmname

When REQUEST=CHECKPARM is specified, a required input parameter that is

the name of the parameter to be checked.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,PARMNAME=parmname

When REQUEST=CHECKDEC is specified, a required input parameter that is

the name of the parameter being processed

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,PARMNAME=parmname

When REQUEST=CHECKHEX is specified, a required input parameter that is

the name of the parameter being processed

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,PARMNAME=parmname

When REQUEST=CHECKCHAR is specified, a required input parameter that is

the name of the parameter being processed

 To code: Specify the RS-type address, or address in register (2)-(12), of a

16-character field.

,PARMPOS=parmpos

,PARMPOS=NOT_POS

When REQUEST=CHECKPARM is specified, an optional input parameter that

indicates to return the Nth parameter. The default is NOT_POS. that indicates

the parameter is not positional, so use the name.

 To code: Specify the RS-type address, or address in register (2)-(12), of a

fullword field.

,PERCENTOK=YES

,PERCENTOK=NO

When REQUEST=CHECKDEC is specified, a required parameter that indicates

if a percent suffix is to be accepted

,PERCENTOK=YES

indicates that a percent suffix is OK.

,PERCENTOK=NO

indicates that a percent suffix is not OK.

,PERCENTVALUE=percentvalue

,PERCENTVALUE=NOT_USED

When PERCENTOK=YES and REQUEST=CHECKDEC are specified, an

optional input parameter that is the value to which the specified decimal

parameter value when it ends with ″%″ will be applied. This is a numeric value.

This value is multipled by the percentage and the result is returned (multiply by

N and then divide by 100). The default is NOT_USED.

 To code: Specify the RS-type address, or address in register (2)-(12), of an

8-character field.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER

HZSCPARS macro

Chapter 12. IBM Health Checker for z/OS HZS macros 297

determines which parameter list the system generates. PLISTVER is an

optional input parameter on all forms of the macro, including the list form. When

using PLISTVER, specify it on all macro forms used for a request and with the

same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER

parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.

This size might grow from release to release and affect the amount of

storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify

PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that

the list-form parameter list is always long enough to hold all the parameters

you might specify on the execute form, when both are assembled with the

same level of the system. In this way, MAX ensures that the parameter list

does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:

v IMPLIED_VERSION

v MAX

v A decimal value of 0

,REMOTE=NO

,REMOTE=YES

An optional parameter, which identifies the locale of the check. The default is

REMOTE=NO.

,REMOTE=NO

indicates that the check runs locally in the address space of IBM Health

Checker for z/OS.

,REMOTE=YES

indicates that the check runs remotely, in an address space other than that

of IBM Health Checker for z/OS.

REQUEST=PARSE

REQUEST=CHECKPARM

REQUEST=CHECKNOTPROC

REQUEST=CHECKDEC

REQUEST=CHECKHEX

REQUEST=CHECKCHAR

REQUEST=FREE

A required parameter, which identifies the type of request.

REQUEST=PARSE

Parse the input string. Note that if the return code from this function is not

zero, you should avoid using the other request types, as no valid data will

have been returned.

REQUEST=CHECKPARM

Check a particular parameter for number of values

REQUEST=CHECKNOTPROC

Check for parameters that were not processed

REQUEST=CHECKDEC

Check a particular parameter value as a decimal number. The parameter

can be a decimal number or a decimal number followed by a suffix of K

HZSCPARS macro

298 IBM Health Checker for z/OS User’s Guide

(multiply by 2**10), M (multiply by 2**20), G (multiply by 2**30), T (multiply

by 2**40) P (multiply by 2**50), E (multiply by 2**60). The decimal number

is limited to a length of 10 characters and a maximum value of

2147483647. The value that is checked against is the decimal number

multiplied by (when a suffix is provided) the value indicated by the suffix.

REQUEST=CHECKHEX

Check a particular parameter value as a hexadecimal number

REQUEST=CHECKCHAR

Check a particular parameter value as character data

REQUEST=FREE

Free the storage area. Note that, for a REMOTE=NO check if you do not

use this function, the system will free this area for you upon return from the

check routine call in which the area was obtained. Thus for a REMOTE=NO

check you must use REQUEST=FREE from the check routine call that

issued REQUEST=PARSE only.

,RETCODE=retcode

An optional output parameter into which the return code is to be copied from

GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from

GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,TOUPPER=YES

,TOUPPER=NO

When REQUEST=PARSE is specified, a required parameter, which indicates if

the input parameter string is to be translated to upper case before processing.

,TOUPPER=YES

indicates to translate to upper case.

,TOUPPER=NO

indicates not to translate to upper case.

ABEND Codes

290 HZSCPARS service failed a request.

xxx Various abends can occur if an invalid handle or parse area is provided.

An abend 290 will be issued if an error in the request is detected.

In the following HZSCPARS abend reason codes, the bytes designated ″xx″ are for

diagnostic purposes and have no significance to the external interface.

Reason Code (Hex)

Explanation

xxxx002D

A parse area already exists, indicating that parsing has already been done.

Use HZSCPARS REQUEST=FREE prior to beginning a new parse.

Return and Reason Codes

When the HZSCPARS macro returns control to your program:

v GPR 15 (and retcode, when you code RETCODE) contains a return code.

HZSCPARS macro

Chapter 12. IBM Health Checker for z/OS HZS macros 299

v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes and the

equate symbol associated with each reason code. IBM support personnel may

request the entire reason code, including the xxxx value.

 Table 37. Return and Reason Codes for the HZSCPARS Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: HZSCPARSRc_OK

Meaning: Requested information returned

Action: None required

4 — Equate Symbol: HZSCPARSRc_Warn

Meaning: Warning

Action: Refer to action under the individual reason code.

4 xxxx0401 Equate Symbol: HZSCPARSRsn_NotLocated

Meaning: For the CHECKPARM request, the parameter was not

found.

Action: None required.

4 xxxx0402 Equate Symbol: HZSCPARSRsn_NoParms

Meaning: For the PARSE request, the input parameter length was

0.

Action: None required.

8 — Equate Symbol: HZSCPARSRc_InvParm

Meaning: HZSCPARS request specifies incorrect parameters.

Action: Refer to action under the individual reason code.

8 xxxx0801 Equate Symbol: HZSCPARSRsn_BadParmLen

Meaning: The parameter length exceeded the maximum of 4096.

Action: Specify a valid parameter length.

0C — Equate Symbol: HZSCPARSRc_EnvError

Meaning: Environmental Error

Action: Refer to action under the individual reason code.

0C xxxx0C01 Equate Symbol: HZSCPARSRsn_SyntaxError

Meaning: A syntax error was detected. A message was issued

about the problem.

Action: Use HZSFMSG REQUEST=STOP,REASON=BADPARM to

indicate that the check cannot proceed because of a parameter

error.

Examples

None.

HZSCPARS macro

300 IBM Health Checker for z/OS User’s Guide

Chapter 13. IBM Health Checker for z/OS checks

This chapter describes the checks supplied with IBM Health Checker for z/OS. We’ll

be adding more checks to IBM Health Checker for z/OS periodically, both as APARs

and integrated into z/OS. For the most up-to-date information on checks available,

see the following Web site:

http://www.ibm.com/servers/eserver/zseries/zos/hchecker/check_table.html

Where necessary, this document references information in other documents, using

shortened versions of the document title. For complete titles and order numbers of

the documents for all products that are part of z/OS, see z/OS Information

Roadmap. The following table lists titles and order numbers for documents related

to other products.

For check output messages, see the component message books or use message

explanations directly from the LookAt Web site at http://www.ibm.com/eserver/
zseries/zos/bkserv/lookat/. Because checks along with their output messages might

be added by PTF between releases of component message books, LookAt will

contain the most up to date message information. For more information about using

LookAt to find check messages, see “Finding check message documentation with

LookAt” on page 33.

All checks are local checks (run in the IBM Health Checker for z/OS address

space) unless otherwise noted.

This document covers the following checks:

v “ASM checks (IBMASM)” on page 302

v “Communications Server checks (IBMCS)” on page 306

v “Consoles checks (IBMCNZ)” on page 314

v “Contents supervision checks (IBMCSV)” on page 321

v “PDSE checks (IBMPDSE)” on page 331

v “Global Resource Serialization checks (IBMGRS)” on page 327

v “RACF checks (IBMRACF)” on page 331

v “RRS checks (IBMRRS)” on page 345

v “RSM checks (IBMRSM)” on page 349

v “SDUMP checks (IBMSDUMP)” on page 354

v “Supervisor (IBMSUP)” on page 355

v “System logger checks (IBMIXGLOGR)” on page 357

v “TSO/E (IBMTSOE)” on page 359

v “z/OS UNIX System Services checks (IBMUSS)” on page 361

v “VSAM checks (IBMVSAM)” on page 366

v “VSM checks (IBMVSM)” on page 369

v “Cross system coupling facility (XCF) checks (IBMXCF)” on page 376

Several check names have changed since they were released in the prototype. The

following table lists the old and new check names:

 Table 38. Updated check names

Prototype check name IBM Health Checker for z/OS check name

EMCS_hardcopy CNZ_EMCS_Hardcopy_Mscope

SYSCONS_MSCOPE CNZ_Syscons_Mscope

SYSCONS_ROUTCODES CNZ_Syscons_Routcode

SYSCONS_PDMODE CNZ_Syscons_PD_Mode

© Copyright IBM Corp. 2006, 2007 301

|
|

|

|

http://www.ibm.com/servers/eserver/zseries/zos/hchecker/check_table.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

Table 38. Updated check names (continued)

Prototype check name IBM Health Checker for z/OS check name

SYSCONS_MASTER CNZ_Syscons_Master

Console_Master CNZ_Console_MasterAuth_Cmdsys

Console_MSCOPE_and_Routcodes CNZ_Console_Mscope_and_Routcode

AMRF_And_MPF_Consistent CNZ_AMRF_Eventual_Action_Msgs

Console_routcode_11 CNZ_Console_Routcode_11

APF_LIBS CSV_APF_EXISTS

LINKLIB_SPACE CSV_LNKLST_SPACE

LINKLIB_EXTENTS CSV_LNKLST_NEWEXTENTS

GRS_SyncRsv GRS_SYNCHRES

ASM checks (IBMASM)

ASM_NUMBER_LOCAL_DATASETS

Description:

Checks on the number of usable local page data sets. The check generates an

exception if the number is below the recommended value of 3. This is a

one-time check that is also run whenever a page data set is dynamically added

or deleted.

Best practice:

Running with a sufficient number of usable paging data sets ensures that

paging I/O is distributed over multiple devices which enhances paging

throughput.

z/OS releases the check applies to:

z/OS V1R8 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 CHECK(IBMASM,ASM_NUMBER_LOCAL_DATASETS),

 INTERVAL(ONETIME),

 SEVERITY(LOW),

 PARM(’MINLOCALS(3)’),

 DATE(’20041006’)

Debug support:

No

Verbose support:

No

Parameters accepted:

Yes, in keyword MINLOCALS, which is an integer, 1-255, indicating the

recommended minimum number of usable local page data sets. The default is

3.

302 IBM Health Checker for z/OS User’s Guide

Reference:

For information on auxiliary storage management, see z/OS MVS Initialization

and Tuning Guide .

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM) .

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

ASM_PAGE_ADD

Description:

Checks on the ability to dynamically add additional paging data sets via the

PAGEADD command. The check generates an exception if the number of

paging data sets that can be added is at or below the warning value of 2. This

is a one-time check that is also run whenever a page data set is dynamically

added or deleted.

Best practice:

Specifying an appropriate PAGTOTL value (IEASYSxx) allows for the paging

data sets that are defined at IPL time, and allows room for expansion if

additional data sets are subsequently needed.

z/OS releases the check applies to:

z/OS V1R8 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 CHECK(IBMASM,ASM_PAGE_ADD),

 INTERVAL(ONETIME),

 SEVERITY(MED),

 PARM(’MINADDS(2)’),

 DATE(’20041006’)

Debug support:

No

Verbose support:

No

Parameters accepted:

Yes, in keyword MINADDS, which is an integer, 1-255, indicating the the

recommended minimum number of paging data sets that can be dynamically

added. The default is MINADDS(2).

Reference:

v For information on auxiliary storage management initialization, see z/OS MVS

Initialization and Tuning Guide .

v For information on the PAGTOTL parameter, see z/OS MVS Initialization and

Tuning Reference.

v For information on the PAGEADD command, see z/OS MVS System

Commands.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM) .

Chapter 13. IBM Health Checker for z/OS checks 303

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

ASM_PLPA_COMMON_SIZE

Description:

Checks on the combined size of the PLPA and Common page data sets in

relation to the size of CSA/ECSA and PLPA/EPLPA . The check generates an

exception if the PLPA and Common page data sets size can not accommodate

100% of the slots required for all CSA/ECSA and PLPA/EPLPA.

Best practice:

You should define the PLPA and Common page data sets based on the size of

CSA/ECSA and PLPA/EPLPA, if known.

z/OS releases the check applies to:

z/OS V1R8 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 CHECK(IBMASM,ASM_PLPA_COMMON_SIZE),

 INTERVAL(ONETIME),

 PARM(’THRESHOLD(100%)’),

 DATE(’20041006’)

Debug support:

No

Verbose support:

No

Parameters accepted:

Yes, in keyword THRESHOLD, which is an integer of 0-100 indicating the

warning threshold percent. The percent sign is optional. The default is

THRESHOLD(100%).

Reference:

For information on auxiliary storage management initialization, see z/OS MVS

Initialization and Tuning Guide .

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM) .

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

ASM_PLPA_COMMON_USAGE

Description:

Looks at the slot usage of the PLPA and Common page data sets. The check

generates an exception if the combined usage of both data sets meets or

exceeds 80%.

Best practice:

You should prevent full conditions on the PLPA and Common page data sets.

304 IBM Health Checker for z/OS User’s Guide

z/OS releases the check applies to:

z/OS V1R8 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 CHECK(IBMASM,ASM_PLPA_COMMON_USAGE),

 INTERVAL(00:30),

 PARM(’THRESHOLD(80%)’),

 DATE(’20041006’)

Debug support:

No

Verbose support:

No

Parameters accepted:

Yes, in keyword THRESHOLD, which is an integer of 0-100 indicating the

warning threshold percent. The percent sign is optional. The default is

THRESHOLD(80%).

Reference:

For information on auxiliary storage management initialization, see z/OS MVS

Initialization and Tuning Guide .

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM) .

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

ASM_LOCAL_SLOT_USAGE

Description:

Looks at the slot usage of each local page data set. The check generates an

exception if the usage on any data set meets or exceeds 30%.

Best practice:

To maximize the efficiency of ASM slot management, you should keep the slot

usage on all local page data sets below 30% .

z/OS releases the check applies to:

z/OS V1R8 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 CHECK(IBMASM,ASM_LOCAL_SLOT_USAGE),

 INTERVAL(00:30),

 SEVERITY(MED),

 PARM(’THRESHOLD(30%)’),

 DATE(’20041006’)

Debug support:

No

Chapter 13. IBM Health Checker for z/OS checks 305

Verbose support:

No

Parameters accepted:

Yes, in keyword THRESHOLD, which is an integer of 0-100 indicating the

warning threshold percent. The percent sign is optional. The default is

THRESHOLD(30%).

Reference:

For information on auxiliary storage management initialization, see z/OS MVS

Initialization and Tuning Guide .

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM) .

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

Communications Server checks (IBMCS)

CSTCP_SYSTCPIP_CTRACE_TCPIPstackname

Description:

Checks if TCP/IP Event Trace (SYSTCPIP) is active with options other than the

default options (MINIMUM, INIT, OPCMDS, or OPMSGS). The

TCPIPstackname suffix is the job name of the TCP/IP stack to which this check

applies. Use CSTCP_SYSTCPIP_CTRACE_* to reference this check for all

stacks.

Best practice:

If problem documentation is not being gathered, only the default SYSTCPIP

trace options (MINIMUM, INIT, OPCMDS, or OPMSGS) should be active.

Leaving other options active can result in performance degradation.

z/OS releases the check applies to:

z/OS V1R8 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMCS,CSTCP_SYSTCPIP_CTRACE_TCPIPstackname)

 DATE(20050214)

 REASON(’CHECK FOR TCP/IP CTRACE WITH NONDEFAULT OPTIONS’)

 ACTIVE

 SEVERITY(LOW)

 INTERVAL(24:00)

Debug support:

No

Verbose support:

No

Parameters accepted:

No

306 IBM Health Checker for z/OS User’s Guide

Reference:

For information on initializing and modifying TCP/IP Event Trace options, see

Specifying trace options in z/OS Communications Server: IP Diagnosis Guide.

Messages:

See z/OS Communications Server: IP Messages Volume 2 (EZB, EZD).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CSTCP_SYSPLEXMON_RECOV_TCPIPstackname

Description:

Checks to see whether:

v The IPCONFIG DYNAMICXCF or IPCONFIG6 DYNAMICXCF parameters

have been specified and

v The GLOBALCONFIG SYSPLEXMONITOR RECOVERY parameter has been

specified

v

The TCPIPstackname suffix is the job name of the TCP/IP stack to which this

check applies. Use CSTCP_SYSPLEXMON_RECOV_* to reference this check

for all stacks.

Best practice:

IBM suggests that you use GLOBALCONFIG SYSPLEXMONITOR RECOVERY

when IPCONFIG DYNAMICXCF or IPCONFIG6 DYNAMICXCF is specified.

This allows a TCP/IP stack in a sysplex to perform internal checks to determine

if conditions are such that it is unhealthy. If so, it should remove itself from the

sysplex, allowing a healthy backup TCP/IP stack to takeover the ownership of

the DVIPA interfaces. This enables continued availability to applications.

z/OS releases the check applies to:

z/OS V1R9 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

CHECK(IBMCS,CSTCP_SYSPLEXMON_RECOV_TCPIPstackname)

DATE(20060901)

REASON(’CHECK THAT SYSPLEXMONITOR RECOVERY IS SPECIFIED WHEN DYNAMICXCF IS SPECIFIED’)

ACTIVE

SEVERITY(LOW)

INTERVAL(ONETIME)

Debug support:

No

Verbose support:

No

Parameters accepted:

No

Reference:

For more information on GLOBALCONFIG SYSPLEXMONITOR RECOVERY,

see GLOBALCONFIG in z/OS Communications Server: IP Configuration

Reference.

Chapter 13. IBM Health Checker for z/OS checks 307

|

|
|

|
|

|
|

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

Messages:

See z/OS Communications Server: IP Messages Volume 2 (EZB, EZD).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CSTCP_TCPMAXRCVBUFRSIZE_TCPIPstackname

Description:

Checks if the configured TCP maximum receive buffer size is sufficient to

provide optimal support to the z/OS Communications Server FTP Server. The

TCPIPstackname suffix is the job name of the TCP/IP stack to which this check

applies. Use CSTCP_TCPMAXRCVBUFRSIZE_* to reference this check for all

stacks.

Best practice:

Optimally, the z/OS Communications Server FTP Server needs a buffer size of

180K for data connections. TCPMAXRCVBUFRSIZE should not be set below

180K if the z/OS Communications Server FTP Server is being used.

z/OS releases the check applies to:

z/OS V1R8 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMCS,CSTCP_TCPMAXRCVBUFRSIZE_TCPIPstackname)

 DATE(20050214)

 REASON(’ENSURE TCP RECEIVE BUFFER SIZE IS SUFFICIENT FOR FTP SERVER’)

 PARM(’MAXRCVBUFRSIZE(180K)’)

 ACTIVE

 SEVERITY(LOW)

 INTERVAL(ONETIME)

Debug support:

No

Verbose support:

No

Parameters accepted:

Yes - MAXRCVBUFRSIZE is an integer value with optional suffix (K) indicating

the maximum value an application can set as its receive buffer size (in bytes)

using SETSOCKOPT(). Value must be in the range 256 to 512K. Default:

MAXRCVBUFRSIZE(180K)

Reference:

For more information on TCPMAXRCVBUFRSIZE, see TCPCONFIG in z/OS

Communications Server: IP Configuration Reference.

Messages:

See z/OS Communications Server: IP Messages Volume 2 (EZB, EZD).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

308 IBM Health Checker for z/OS User’s Guide

|
|

|
|
|

CSVTAM_CSM_STG_LIMIT

Description:

Checks if the maximum bytes of fixed storage dedicated to CSM use and the

maximum amount of storage dedicated to ECSA CSM buffers is adequate to

meet the needs of your system.

Best practice:

The default values for IVTPRM00 are 100 MEG for both FIXED, and ECSA. It is

suggested that they initially be coded at 100M MAX ECSA and 100M MAX

FIXED. Then the system should be monitored for one week using the DISPLAY

CSM command to determine peak usage. IVTPRM00 MAX ECSA and MAX

FIXED values should then be adjusted to 1.5 times the highest value indicated

in the DISPLAY CSM outputs.

z/OS releases the check applies to:

z/OS V1R8 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMCS,CSVTAM_CSM_STG_LIMIT)

 DATE(20050214)

 REASON(’CHECK MAXFIX AND MAXECSA’)

 PARM(’MAXFIX(100M),MAXECSA(100M)’)

 ACTIVE

 SEVERITY(LOW)

 INTERVAL(ONETIME)

Debug support:

No

Verbose support:

No

Parameters accepted:

Yes:

v MAXFIX - Integer value with optional suffix (K,M) indicating the maximum

bytes of fixed storage dedicated to CSM use. Default: MAXFIX(100M)

v MAXECSA - Integer value with optional suffix (K,M) indicating the maximum

amount of storage dedicated to ECSA CSM buffers. Default:

MAXECSA(100M)

Values for both parameters must be in the range between 1024K to 2048M.

Reference:

For more information on defining the maximum bytes of fixed storage dedicated

to CSM use and the maximum amount of storage dedicated to ECSA CSM

buffers, see IVTPRM00 (Communication Storage Manager) in z/OS MVS

Initialization and Tuning Reference.

Messages:

See z/OS Communications Server: SNA Messages.

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

Chapter 13. IBM Health Checker for z/OS checks 309

CSVTAM_T1BUF_T2BUF_EE

Description:

Checks to see whether the T1BUF and T2BUF buffer pool allocations for the

system are adequate when Enterprise Extender (EE) are being used .

Best practice:

The T1BUF and T2BUF buffer pools are used exclusively for Enterprise

Extender (EE) functions that use QDIO or HyperSockets. When EE is being

used with QDIO or HyperSockets DLCs, setting the T1BUF or T2BUF buffer

pool allocations at their default values (16 for T1BUF and 8 for T2BUF) might

not be optimal.

 The T1BUF and T2BUF buffer pools should be monitored and tuned to

minimize the number of expansions. Minimizing buffer pool expansions will

decrease internal buffer overhead processing which should increase throughput

while reducing CPU consumption. These buffer pools can be monitored using

the D NET,BFRUSE,BUF=(T1,T2) command. Once the appropriate allocation

values for the T1BUF and T2BUF buffer pools has been determined, you can

change the T1BUF and T2BUF Start option allocation values.

z/OS releases the check applies to:

z/OS V1R9 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

CHECK(IBMCS,CSVTAM_T1BUF_T2BUF_EE)

DATE(20060901)

REASON(’CHECK T1BUF/T2BUF ALLOCATIONS WITH EE’)

ACTIVE

SEVERITY(LOW)

INTERVAL(ONETIME)

Debug support:

No

Verbose support:

No

Parameters accepted:

No

Reference:

For more information on defining T1BUF and T2BUF parameters, see the Buffer

Pool section of z/OS Communications Server: SNA Resource Definition

Reference.

Messages:

See z/OS Communications Server: SNA Messages.

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

310 IBM Health Checker for z/OS User’s Guide

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

CSVTAM_T1BUF_T2BUF_NOEE

Description:

Checks the T1BUF and T2BUF buffer pool allocations for the system when

Enterprise Extender (EE) is not being used.

Best practice:

The T1BUF and T2BUF buffer pool is used exclusively for Enterprise Extender

(EE) functions that use QDIO or HyperSockets. If EE is not being used, the

T1BUF or T2BUF buffer pool allocations are not optimal if set above their

default values (16 for T1BUF and 8 for T2BUF).

z/OS releases the check applies to:

z/OS V1R9 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

CHECK(IBMCS,CSVTAM_T1BUF_T2BUF_NOEE)

DATE(20060901)

REASON(’CHECK T1BUF/T2BUF ALLOCATIONS WITHOUT EE’)

ACTIVE

SEVERITY(LOW)

INTERVAL(ONETIME)

Debug support:

No

Verbose support:

No

Parameters accepted:

No

Reference:

For more information on defining T1BUF and T2BUF parameters, see the Buffer

Pool section of z/OS Communications Server: SNA Resource Definition

Reference.

Messages:

See z/OS Communications Server: SNA Messages.

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CSVTAM_VIT_DSPSIZE

Description:

Checks to see whether the VTAM Internal Trace (VIT) dataspace table size is

set to 5 (50 MB).

Best practice:

IBM suggests a VIT dataspace table size of 5 (50 MB) to allow an optimal

amount of trace information to be captured for serviceability.

z/OS releases the check applies to:

z/OS V1R9 and up.

Chapter 13. IBM Health Checker for z/OS checks 311

|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|

|
|
|

|
|
|

|
|

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

CHECK(IBMCS,CSVTAM_VIT_DSPSIZE)

DATE(20060901)

REASON(’CHECK VIT DSPSIZE IS AT MAXIMUM’)

ACTIVE

SEVERITY(LOW)

INTERVAL(ONETIME)

Debug support:

No

Verbose support:

No

Parameters accepted:

No

Reference:

For more information on defining VTAM Internal Trace parameters, see TRACE

for MODULE, STATE (with OPTION) or VTAM internal trace in z/OS

Communications Server: SNA Resource Definition Reference.

Messages:

See z/OS Communications Server: SNA Messages.

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CSVTAM_VIT_OPT_ALL

Description:

’Check to see whether all VTAM Internal Trace (VIT) options are active. Having

all VIT options active might not optimal for system performance.

Best practice:

It might not be optimal for all VIT options to be active, unless this was

requested by IBM service. In general, only a subset of all the VIT options needs

to be made active to service a problem.

z/OS releases the check applies to:

z/OS V1R9 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

CHECK(IBMCS,CSVTAM_VIT_OPT_ALL)

DATE(20060901)

REASON(’CHECK VIT OPT=ALL IS NOT SPECIFIED’)

ACTIVE

SEVERITY(LOW)

INTERVAL(ONETIME)

Debug support:

No

312 IBM Health Checker for z/OS User’s Guide

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

Verbose support:

No

Parameters accepted:

No

Reference:

For more information on defining VTAM Internal Trace parameters, see TRACE

for MODULE, STATE (with OPTION) or VTAM internal trace in z/OS

Communications Server: SNA Resource Definition Reference.

Messages:

See z/OS Communications Server: SNA Messages.

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CSVTAM_VIT_OPT_PSSSMS

Description:

Checks to see whether the VTAM Internal Trace (VIT) options PSS and SMS

are active.

Best practice:

IBM suggests that the VIT PSS and SMS options always be activated, since

they are almost always required when servicing a VTAM problem.

z/OS releases the check applies to:

z/OS V1R9 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

CHECK(IBMCS,CSVTAM_VIT_PSS_SMS)

DATE(20060901)

REASON(’CHECK VIT PSS AND SMS OPTIONS ARE ACTIVE’)

ACTIVE

SEVERITY(LOW)

INTERVAL(ONETIME)

Debug support:

No

Verbose support:

No

Parameters accepted:

No

Reference:

For more information on defining VTAM Internal Trace parameters, see TRACE

for MODULE, STATE (with OPTION) or VTAM internal trace in z/OS

Communications Server: SNA Resource Definition Reference.

Messages:

See z/OS Communications Server: SNA Messages.

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

Chapter 13. IBM Health Checker for z/OS checks 313

|
|

|
|

|
|
|
|

|
|

|
|
|

|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

CSVTAM_VIT_SIZE

Description:

Checks to see whether the VTAM Internal Trace (VIT) table size is set to the

maximum value (999).

Best practice:

A maximum table size of 999 for the VIT table allows the maximum amount of

trace information to be captured for serviceability.

z/OS releases the check applies to:

z/OS V1R9 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

CHECK(IBMCS,CSVTAM_VIT_SIZE)

DATE(20060901)

REASON(’CHECK VIT SIZE IS AT MAXIMUM’)

ACTIVE

SEVERITY(LOW)

INTERVAL(ONETIME)

Debug support:

No

Verbose support:

No

Parameters accepted:

No

Reference:

For more information on defining VTAM Internal Trace parameters, see TRACE

for MODULE, STATE (with OPTION) or VTAM internal trace in z/OS

Communications Server: SNA Resource Definition Reference.

Messages:

See z/OS Communications Server: SNA Messages.

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

Consoles checks (IBMCNZ)

CNZ_AMRF_Eventual_Action_Msgs

Description:

Checks that eventual action messages are not retained if the Action Message

Retention Facility (AMRF) is active.

Best practice:

Exclude eventual action messages from being retained when AMRF is active.

Because AMRF causes messages to remain in storage, eventual action

messages may exhaust storage needed to retain critical and immediate action

messages.

314 IBM Health Checker for z/OS User’s Guide

|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

 DATE(20050214)

 REASON(’AVOID THE LOSS OF CRITICAL ACTION MESSAGES’)

 ACTIVE

 SEVERITY(LOW)

 INTERVAL(24:00)

Parameters accepted:

No

Reference:

For more information on AMRF, see z/OS MVS Planning: Operations.

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO) .

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CNZ_Console_MasterAuth_Cmdsys

Description:

Checks that there is an active console with MASTER authority that has

command association to this system.

Best practice:

Assign MASTER authority and proper command association to an MCS, EMCS

or SMCS console. This console gives you the ability to control your system.

z/OS releases the check applies to:

sz/OS V1R4 through z/OS V1R7. This check does not apply to releases higher

than z/OS V1R7.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 DATE(20050214)

 REASON(’ABILITY TO CONTROL THIS SYSTEM’)

 ACTIVE

 SEVERITY(LOW)

 INTERVAL(24:00)

Parameters accepted:

No

Reference:

For more information on MASTER authority and command association, see

z/OS MVS Planning: Operations.

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO) .

Consoles checks

Chapter 13. IBM Health Checker for z/OS checks 315

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CNZ_Console_Mscope_And_Routcode

Description:

Checks that each MCS/SMCS/EMCS console is not defined with multi-system

message scopes AND receiving all routing codes (or all except routing code

11).

Best practice:

All MCS, SMCS, or EMCS consoles defined with multi-system message scope

should only receive routing codes specific to that console’s function.

Conversely, all MCS, SMCS, EMCS consoles that are receiving all routing

codes (or all except routing code 11) should be defined with single-system

message scope. This reduces the number of messages sent to a console in the

sysplex.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

 DATE(20050214)

 REASON(’REDUCES THE NUMBER OF MESSAGE SENT TO A CONSOLE IN THE SYSPLEX’)

 ACTIVE

 SEVERITY(LOW)

 INTERVAL(24:00)

Parameters accepted:

No

Reference:

For more information on message scope and routing codes, see z/OS MVS

Planning: Operations.

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO) .

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CNZ_Console_Routcode_11

Description:

Ensures that no MCS or SMCS console is receiving ROUTCODE 11 messages.

Best practice:

All MCS/SMCS consoles should not be receiving messages issued with routing

code 11. Messages issued with routing code 11 are intended to be sent to the

programmer, not the operator console.

z/OS releases the check applies to:

z/OS V1R4 and up.

Consoles checks

316 IBM Health Checker for z/OS User’s Guide

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

 DATE(20050214)

 REASON(’TO REDUCE MESSAGE TRAFFIC BY REMOVING MESSAGES THAT ARE ONLY INTENDED FOR THE PROBLEM PROGRAMMER’)

 ACTIVE

 SEVERITY(LOW)

 INTERVAL(24:00)

Parameters accepted:

No

Reference:

For more information on routing codes, seez/OS MVS Planning: Operations.

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO) .

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CNZ_EMCS_Hardcopy_Mscope

Description:

Checks to see that each EMCS console defined with a multi-system message

scope is not receiving the hardcopy message set.

Best practice:

All EMCS consoles with multi-system message scopes should not receive the

hardcopy message set. This can affect message processing times and console

availability.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 DATE(20050214)

 REASON(’TO AVOID HAVING EMCS CONSOLES PROCESS AN EXCESSIVE NUMBER OF MESSAGES’)

 ACTIVE

 SEVERITY(MED)

 INTERVAL(24:00)

Parameters accepted:

No

Reference:

For more information on EMCS consoles, see z/OS MVS Planning: Operations.

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO) .

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

Consoles checks

Chapter 13. IBM Health Checker for z/OS checks 317

CNZ_EMCS_Inactive_Consoles

Description:

Ensures that there are not an excessive number of inactive EMCS consoles.

Best practice:

If the EMCS console is no longer needed, use the EMCS console removal

service (IEARELEC) to remove the EMCS console definition. The number of

inactive EMCS consoles in use in a sysplex can affect the time it takes for a

system to join a sysplex.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 DATE(20050214)

 REASON(’REDUCES THE TIME A SYSTEM TAKES TO JOIN A SYSPLEX’)

 PARM(10000)

 ACTIVE

 SEVERITY(HI)

 INTERVAL(24:00)

Parameters accepted:

Yes. You can specify the number of inactive EMCS consoles that you deem

excessive. PARM(10000) is the default.

Reference:

For more information on EMCS consoles, see z/OS MVS Planning: Operations.

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO) .

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CNZ_Syscons_Master

Description:

Ensures that the system console has MASTER authority.

Best practice:

Assign MASTER authority to the system console. The system console should

have MASTER authority so that it can perform necessary recovery operations in

emergency situations.

z/OS releases the check applies to:

z/OS V1R4 through V1R7.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

Consoles checks

318 IBM Health Checker for z/OS User’s Guide

UPDATE,

 DATE(20050214)

 REASON(’NEEDED TO RESOLVE PROBLEMS IN EMERGENCY SITUATIONS’)

 ACTIVE

 SEVERITY(HI)

 INTERVAL(24:00)

Parameters accepted:

No

Reference:

For more information on systems consoles, see z/OS MVS Planning:

Operations.

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO) .

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CNZ_Syscons_Mscope

Description:

Ensures that the system console has a single-system message scope.

Best practice:

The system console should only receive messages from the local system to

avoid having to process large numbers of messages.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

 DATE(20050214)

 REASON(’TO ENSURE THE SYSTEM CONSOLE IS CONFIGURED TO RECEIVE MESSAGES FROM ONLY THE LOCAL SYSTEM’)

 ACTIVE

 SEVERITY(MED)

 INTERVAL(24:00)

Parameters accepted:

No.

Reference:

For more information on systems consoles, see z/OS MVS Planning:

Operations.

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO) .

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CNZ_Syscons_PD_Mode

Description:

Ensures that the system console is not in Problem Determination (PD) mode.

Best practice:

The system console should not be running in PD mode during normal

Consoles checks

Chapter 13. IBM Health Checker for z/OS checks 319

operations. The system console should only be in PD mode to perform

necessary recovery operations in emergency situations.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 DATE(20050214)

 REASON(’SHOULD ONLY RUN IN PROBLEM DETERMINATION MODE WHEN THERE IS A PROBLEM’)

 ACTIVE

 SEVERITY(MED)

 INTERVAL(01:00)

Parameters accepted:

No

Reference:

For more information on system consoles, see z/OS MVS Planning: Operations.

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO) .

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CNZ_Syscons_Routcode

Description:

Ensures that the system console is receiving the minimum set of routing codes

(1, 2 and 10).

Best practice:

The system console should be configured to receive, at a minimum, routing

codes 1, 2, and 10. This is to ensure that the system console receives all

important messages.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 DATE(20050214)

 REASON(’TO ENSURE THE SYSTEM CONSOLE IS CONFIGURED TO RECEIVE IMPORTANT MESSAGES’)

 ACTIVE

 SEVERITY(LOW)

 INTERVAL(24:00)

Parameters accepted:

No

Reference:

For more information on systems consoles, see z/OS MVS Planning:

Operations.

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO) .

Consoles checks

320 IBM Health Checker for z/OS User’s Guide

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

CNZ_Task_Table

Description:

Reports the status of important tasks that run in the CONSOLE address space.

Best practice:

Using the report generated from this check, installations can determine if there

are (real or potential) problems with specific functions of the Consoles

component.

z/OS releases the check applies to:

z/OS V1R7 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 DATE(20050214)

 REASON(’CHECK CONSOLES TASK TABLE’)

 ACTIVE

 SEVERITY(LOW)

 INTERVAL(00:15)

Parameters accepted:

No

Reference:

N / A

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO) .

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

Contents supervision checks (IBMCSV)

CSV_APF_EXISTS

Description:

Checks to see if data sets described by entries in the APF list are consistent

with data sets that exist on the system.

Best practice:

A potential system integrity risk exists when a data set cannot be allocated

using the criteria specified in the system APF list.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

No

User override of IBM values:

The following shows keywords you can use to override check values on either a

Consoles checks

Chapter 13. IBM Health Checker for z/OS checks 321

|

|

|
|
|

|
|
|

|
|

|
|

|
|

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMCSV,CSV_APF_EXISTS)

 SEVERITY(LOW) INTERVAL(04:00) DATE(20050720)

 REASON(’An entry in the APF list might refer to an obsolete’

 ’data set.’)

Debug support:

Yes, the check provides additional error detail in debug mode. You can put a

check into debug mode using any of the following:

v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in a POLICY statement in an HZSPRMxx parmlib member

v Overwrite the OFF value with the ON value in the DEBUG column of the

SDSF CK command display.

Reference:

For more information, see:

v z/OS MVS Programming: Authorized Assembler Services Guide

v z/OS MVS Initialization and Tuning Guide

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for MLS users:

SYSLOW

Output:

The report that CSV_APF_EXISTS produces is shown below:

VOLUME is the volume specified in the APF entry or *SMS*

DSNAME is the data set name specified in the APF entry

ERROR is the problem that was detected by the check

CSVH0955I A problem was found with each APF list entry displayed

VOLUME DSNAME ERROR

TMPSTG ANY.ALIAS DS not found

SMS ANY.DATASET DS not SMS-managed

BADVOL ANY.DATASET Volume not found

SMS ANY.SMS.ALIAS DS is alias

ALL001 ANY.SMS.DATASET DS is SMS-managed

 In the output:

VOLUME

The volume specified in the APF entry or *SMS*

DSNAME

The data set name specified in the APF entry

ERROR

The problem that was detected by the check

CSV_LNKLST_NEWEXTENTS

Description:

Checks to see if the number of extents in each data set of a LNKLST set has

changed since the LNKLST was activated. All active LNKLST sets are checked.

Contents supervision (CSV) checks

322 IBM Health Checker for z/OS User’s Guide

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|

|
|
|

Best practice:

The system will recognize only the extents that existed when the LNKLST was

made ACTIVE.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

The following parameters are supported to control WTOs produced by

exception messages when a new extent is detected in the LNKLST set:

PARM(ALL)

Exceptions should be issued for all active LNKLST data sets for which new

extents were created after the LNKLST was activated.

PARM(’NEW(text value)’)

Exceptions should only be issued for errors that are detected after this

parameter is set.

The following are examples of PARMS specifications for

CSV_LNKLST_NEWEXTENTS:

PARMS(’NEW(yyyy/mm/dd hh:mm)’)

PARMS(’ALL’)

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMCSV,CSV_LNKLST_NEWEXTENTS)

 PARM(’ALL’)

 SEVERITY(HIGH) INTERVAL(01:00) DATE(20050720)

 REASON(’When the number of extents in a LNKLST PDS data set’

 ’changes, I/O errors might result.’)

Debug support:

In debug mode, this check includes additional error information in the message

buffer. You can put a check into debug mode using any of the following:

v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in an HZSPRMxx parmlib member

v Overwrite the OFF value with the ON value in the DEBUG column of the

SDSF CK command display.

Reference:

For more information, see:

v z/OS MVS Initialization and Tuning Guide

v z/OS MVS Initialization and Tuning Reference

v z/OS MVS System Commands

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO).

SECLABEL recommended for MLS users:

SYSLOW

Output:

The report that CSV_LNKLST_NEWEXTENTS produces is shown below:

CSVH0977I LNKLST set NEWLST

The error status is in column one:

C = Confirmed error * = New error

Contents supervision (CSV) checks

Chapter 13. IBM Health Checker for z/OS checks 323

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

ORIG CURR VOLUME DSNAME

* 2 4 SIXPAK XESCT.SHARONP.LOADLIB

TOTAL EXTENTS ORIG: 130 CURR: 132

In the output:

ORIG

The number of extents that existed when the LNKLST was made ACTIVE.

CURR

The number of extents that existed the last time the check routine

executed.

CSV_LNKLST_SPACE

Description:

Checks to see whether all active LNKLST sets on the system for data sets that

were created with secondary space defined.

Best practice:

IBM suggests that partitioned data sets (PDS) in the LNKLST be defined with

only primary spaces. Allocating a PDS with only primary space causes it to

have one extent. That makes it easier to stay within the 255-extent limit of the

LNKLST set and prevents new extents from being created if a data set is

updated after the LNKLST is activated.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

No

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMCSV,CSV_LNKLST_SPACE)

 SEVERITY(LOW) INTERVAL(24:00) DATE(20050720)

 REASON(’PDS data sets in a LNKLST that use only primary space’

 ’are protected from problems due to extent changes.’)

Debug support:

In debug mode, this check includes additional error information in the message

buffer. You can put a check into debug mode using any of the following:

v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in an HZSPRMxx parmlib member

v Overwrite the OFF value with the ON value in the DEBUG column of the

SDSF CK command display.

Reference:

For more information, see:

v z/OS MVS Initialization and Tuning Guide

v z/OS MVS Initialization and Tuning Reference

v z/OS MVS System Commands

Messages:

See z/OS MVS System Messages, Vol 4 (CBD-DMO).

Contents supervision (CSV) checks

324 IBM Health Checker for z/OS User’s Guide

|
|
|
|

|

|
|

|
|
|

|

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

SECLABEL recommended for MLS users:

SYSLOW

Output:

The report that CSV_LNKLST_SPACE produces is shown below:

CSVH0981I LNKLST set LNKLST00 data sets allocated with secondary

VOLUME DSNAME

ZOS17B SYS1.LINKLIB

ZOS17B SYS1.MIGLIB

ZOS17B SYS1.CSSLIB

ZOS17B SYS1.CMDLIB

In the output:

VOLUME

The volume serial number of a data set in the LNKLST

DSNAME

The name of a data set in the LNKLST

CSV_LPA_CHANGES

Description:

This check compares the current IPL’s LPA to the previous IPL’s LPA, providing

information about modules that have changed in size (or been added or

removed), along with summaries of the storage deltas for each of the LPA

sub-areas (PLPA, MLPA, FLPA, device support, dynamic LPA), and totals for

each of the sub-areas. In both cases, the display will differentiate between the

below-16M area and the above-16M area.

Best practice:

An increase in the amount of LPA could mean that the private regions size

might soon be, or has been, reduced which could cause application failures.

Running the system in exception has no consequence. The exception is

intended to alert to the possibilities.

z/OS releases the check applies to:

z/OS V1R9 and up.

Type of check (local or remote):

Local

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 CHECK(IBMCSV,CSV_LPA_CHANGES),

 INTERVAL(ONETIME),

 SEVERITY(LOW),

 PARM(

 ’PLPAD(32K),EPLPAD(1M)’,

 ’MLPAD(32K),EMLPAD(1M)’,

 ’FLPAD(32K),EFLPAD(1M)’,

 ’DEVSUPD(32K),EDEVSUPD(1M)’,

 ’DLPAD(32K),EDLPAD(1M)’,

 ’LPAD(64K),ELPAD(1M)’

),

Contents supervision (CSV) checks

Chapter 13. IBM Health Checker for z/OS checks 325

|
|

|
|

|
|
|
|
|
|
|
|
|

|

|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

DATE(’20060424’)

 Reason(’Changes in LPA can affect the size of ’,

 ’the private area available for ’,

 ’applications.’)

Debug support:

No

Verbose support:

No

Parameters accepted:

v PLPAD(n), for PLPA Delta, specifies an integer 0-2G. If the delta for PLPA

exceeds n, an exception message is issued. The default is 32K.

v MLPAD(n), for MLPA Delta, specifies an integer 0-2G. If the delta for MLPA

exceeds n, an exception message is issued. The default is 32K.

v FLPAD(n), for FLPA Delta, specifies an integer 0-2G. If the delta for FLPA

exceeds n, an exception message is issued. The default is 32K.

v DEVSUPD(n), for Device Support LPA Delta, specifies an integer 0-2G. If the

delta for Device Support LPA exceeds n, an exception message is issued.

The default is 32K.

v DLPAD(n), for Dynamic LPA Delta, specifies an integer 0-2G. If the delta for

dynamic LPA exceeds n, an exception message is issued. The default is

32K.

v LPAD(n), for LPA Delta, specifies an integer 0-2G. If the delta for LPA (the

sum of the PLPA, MLPA, FLPA, DEVSUP LPA, and DLPA deltas) exceeds n,

an exception message is issued. The default is 64K.

v EPLPAD(n), for Extended PLPA Delta, specifies an integer 0-2G. If the delta

for extended PLPA exceeds n, an exception message is issued. The default

is 1M.

v EMLPAD(n), for Extended MLPA Delta, specifies an integer 0-2G. If the delta

for extended MLPA exceeds n, an exception message is issued. The default

is 1M.

v EFLPAD(n), for Extended FLPA Delta, specifies an integer 0-2G. If the delta

for extended FLPA exceeds n, an exception message is issued. The default

is 1M.

v EDEVSUPD(n), for Device Support Extended LPA Delta, specifies an integer

0-2G. If the delta for Device Support extended LPA exceeds n, an exception

message is issued. The default is 1MK.

v EDLPAD(n), for Extended Dynamic LPA Delta, specifies an integer 0-2G. If

the delta for extended dynamic LPA exceeds n, an exception message is

issued. The default is 1M.

v ELPAD(n), for Extended LPA Delta, specifies an integer 0-2G. If the delta for

Extended LPA (the sum of the EPLPA, EMLPA, EFLPA, DEVSUP ELPA, and

EDLPA deltas) exceeds n, an exception message is issued. The default is

1M.

Reference:

Init & Tuning reference, Init & Tuning guide,

Messages:

CSVHxxxx

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

Contents supervision (CSV) checks

326 IBM Health Checker for z/OS User’s Guide

|
|
|
|

|
|

|
|

|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

Global Resource Serialization checks (IBMGRS)

GRS_Mode

Description:

Checks the mode of the Global Resource Serialization complex.

Best practice:

A STAR configuration is recommended because it provides better availability,

real storage consumption, processing capacity, and response time.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE CHECK(IBMGRS,GRS_MODE)

 SEVERITY(LOW) INTERVAL(ONETIME) PARM(’STAR’) DATE(20050105)

 REASON(’GRS should run in STAR mode to improve performance.’)

Parameters accepted:

Yes, you can specify the mode required, either STAR, RING, or NONE. For

example, PARM(’STAR’)

 Default : STAR

Reference:

For more information on GRS, see z/OS MVS Planning: Global Resource

Serialization, SA22-7600.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

GRS_SYNCHRES

Description:

Checks whether GRS synchronous reserve processing is enabled.

Best practice:

Enabling GRS synchronous reserve processing can prevent deadlock

conditions.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMGRS,GRS_SYNCHRES)

 SEVERITY(LOW) INTERVAL(001:00) DATE(20050105)

 REASON(’GRS synchronous RESERVE processing should be enabled to

 avoid deadlock conditions.’)

Global Resource Serialization checks

Chapter 13. IBM Health Checker for z/OS checks 327

|

Parameters accepted:

No

Reference:

For more information on GRS synchronous reserve processing, see z/OS MVS

Planning: Global Resource Serialization, SA22-7600.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

GRS_CONVERT_RESERVES

Description:

Whether RESERVEs are being converted to global ENQs in STAR mode

Best practice:

Converting RESERVEs to global ENQs can help avoid deadlocks and improve

reliability, availability, and serviceability.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE CHECK(IBMGRS,GRS_CONVERT_RESERVES)

 SEVERITY(LOW) INTERVAL(ONETIME) DATE(20050105)

 REASON(’When in STAR mode, converting RESERVEs can help improve

 performance and avoid deadlock.’)

Parameters accepted:

No

Reference:

For more information on GRS Reserve Conversion, see z/OS MVS Planning:

Global Resource Serialization, SA22-7600.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

GRS_EXIT_PERFORMANCE

Description:

Checks to see if there are GRS dynamic exits in use that could degrade system

performance.

Best practice:

The use of certain GRS dynamic exits can degrade system performance. In

some cases, removing an exit module or changing it to use a different exit point

can help improve performance.

z/OS releases the check applies to:

z/OS V1R4 and up.

Global Resource Serialization checks

328 IBM Health Checker for z/OS User’s Guide

Parameters accepted:

No

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE CHECK(IBMGRS,GRS_EXIT_PERFORMANCE)

 SEVERITY(LOW) INTERVAL(024:00) DATE(20050105)

 REASON(’Certain exits may negatively impact system performance.’)

Reference:

For more information on GRS installation exits, see z/OS MVS Planning: Global

Resource Serialization, SA22-7600 andz/OS MVS Installation Exits.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

GRS_GRSQ_SETTING

Description:

Examines the system’s GRSQ setting. The check generates an exception if the

GRSQ setting is not set to CONTENTION in a GRS=STAR mode environment.

This is a one-time check that is also run during a migration from GRS=RING to

GRS=STAR.

Best practice:

Having a GRSQ setting of CONTENTION will shorten the amount of time

required for SVC Dump processing.

z/OS releases the check applies to:

z/OS V1R8 and up.

Type of check:

Local

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE

 CHECK(IBMGRS,GRS_GRSQ_SETTING)

 SEVERITY(LOW) INTERVAL(ONETIME) DATE(20050202)

 REASON(‘IBM recommends a GRSQ setting of contention.’)

Debug support:

No

Verbose support:

No

Parameters accepted:

No

Reference:

For more information on GRSQ, see z/OS MVS Planning: Global Resource

Serialization, SA22-7600.

Global Resource Serialization checks

Chapter 13. IBM Health Checker for z/OS checks 329

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

GRS_RNL_IGNORED_CONV

Description:

Searches the RESERVE Conversion RNL for entries that will be ignored

because of a matching or equivalent entry in the SYSTEMS Exclusion RNL.

Best practice:

There should be no duplicate entries between the RESERVE Conversion RNL

and SYSTEMS Exclusion RNL. Duplicate entries may result in undesired

serialization of a resource.

z/OS releases the check applies to:

z/OS V1R8 and up.

Type of check:

Local

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE

 CHECK(IBMGRS,GRS_RNL_IGNORED_CONV)

 SEVERITY(LOW) INTERVAL(ONETIME) DATE(20050202)

 REASON(‘If an entry in the RESERVE Conversion RNL is

 superseded by an entry in the SYSTEMX Exclusion RNL,

 it will be ignored.’)

Debug support:

No

Verbose support:

No

Parameters accepted:

No

Reference:

For more information on Global Resource Serialization RNL’s, seez/OS MVS

Planning: Global Resource Serialization, SA22-7600.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

Global Resource Serialization checks

330 IBM Health Checker for z/OS User’s Guide

PDSE checks (IBMPDSE)

PDSE_SMSPDSE1

Description:

The PDSE_SMSPDSE1 check returns the current status of the SMSPDSE1

address space.

Best practice:

IBM recommends that SMSPDSE1 address be set to active to prevent possible

PDSE related problems.

z/OS releases the check applies to:

z/OS V1R6 and up.

Parameters accepted:

No

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

 CHECK(IBMPDSE,PDSE_SMSPDSE1),

 SEVERITY(LOW),

 INTERVAL(ONETIME),

 DATE(‘20060301’)

Debug support:

No.

Verbose support:

No

Reference:

For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for MLS users:

SYSLOW

RACF checks (IBMRACF)

RACF_GRS_RNL

Description: Check evaluates whether the RACF ENQ names are in either the

installation system exclusion resource name list (SERNL) or the system inclusion

resource name list (SIRNL).

During its normal course of processing, RACF performs numerous serialization

requests using the Global Resource Serialization (GRS) RESERVE, ENQ, and DEQ

services. These serialization requests allow RACF to ensure that changes to the

RACF database and RACF control blocks are done in a consistent manner,

maintaining the integrity of RACF data.

Depending on the type of the serialization that RACF requires, RACF serializes at

either the address space (SCOPE=STEP), single MVS image (SCOPE=SYSTEM)

Global Resource Serialization checks

Chapter 13. IBM Health Checker for z/OS checks 331

|

|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

or multiple MVS image/Sysplex level (SCOPE=SYSTEMS). GRS identifies a

serialization request by an eight character QNAME (or major name) and RNAME

(or minor name) of up to 255 characters.

GRS allows installations to tailor the processing of RESERVE, ENQ, and DEQ

requests through the use of Resource Name Lists (RNLs). RNLs allow an

installation to influence the scope of RESERVE, ENQ, and DEQ processing. GRS

supports three types of RNLs:

v The System Inclusion RNL (SIRNL), which promotes a local ENQ

(SCOPE=SYSTEM) to a global ENQ (SCOPE=SYSTEMS

v The System Exclusion RNL (SERNL), which demotes a global ENQ

(SCOPE=SYSTEMS) to a local ENQ (SCOPE=SYSTEM)

v The Reserve Conversion (RCRNL), which suppresses a hardware RESERVE, in

effect allowing it to be a global (SCOPE=SYSTEMS) ENQ

The RACF service team has debugged several customer problems and outages

and found that the problem or outage was caused by a customer’s RNL changing

the scope of a RACF serialization request. With z/OS V1R6, GRS introduced an

enhanced ISGQUERY service which allows an application to specify the QNAME

and RNAME of an ENQ and determine if the ENQ name is on an RNL.

RACF’s ENQ names fall into three general categories:

v Names which consist of constant values, such as the SYSZRACF/RACF ENQ

v Names which consist of values, which the check can easily determine, such as

SYSZRACF/racf_data_set_name or SYSZRAC2/RACGLIST_classname

v Names which consist of values which the check cannot easily determine, such as

SYSZRAC2/IRRDPI08hhhh where hhhh is a hexadecimal address. However,

since ISGQUERY supports wildcard characters when searching for entries in the

RNL, many of these cases can be detected.

The RACF_GRS_RNL check produces a report which identifies the RACF ENQs

would have their scope changed by an entry in a GRS RNL. For SYSTEMS level

ENQs, the RACF_GRS_RNL check flags as error that match entries in the SERNL.

For a SYSTEM level ENQ, the RACF_GRS_RBL check flags as errors RACF ENQ

names which matches entries in the SIRNL.

When it runs, the RACF_GRS_RNL check calls the GRS ISGQUERY service for

each of the ENQ names documented in Table 39 and Table 40 on page 333. If one

or more ENQs are on an RNL that affects the scope of the ENQ, then the

RACF_GRS_RNL check identifies the ENQs that have their scope changed.

 Table 39. Systems Level ENQs that RACF_GRS_RNL checks

Major Name Minor Name

SYSZRACF racf_data_set_name

RACF data set names are derived from the data set name table on

which the check executes. The check looks at all of the data sets in

the primary RACF data base as well as all of the data sets in the

backup RACF data base.

SYSZRACF SETROPTS

SYSZRACF DSDTDSDTDSDT...DSDT

The minor name is the string DSDT repeated twelve times.

SYSZRACF DSDTPREP...DSDTPREP

The minor name is the string DSDTPREP repeated six times.

RACF checks

332 IBM Health Checker for z/OS User’s Guide

Table 39. Systems Level ENQs that RACF_GRS_RNL checks (continued)

Major Name Minor Name

SYSZRAC2 IRRCV05

SYSZRAC2 RACGLIST_class_name

class_name is derived from the list of classes defined on the system

upon which the check executes.

SYSZRAC2 GLOBALGLOBALGLOBAL

SYSZRAC2 PROGRAMPROGRAMPROGRAM

SYSZRAC2 TEMPLATE-LOCK

SYSZRAC4 BPX.NEXT.USER

SYSZRAC5 ALIAS

SYSZRAC5 IRRIRA00

 Table 40. System Level ENQs that RACF_GRS_RNL checks

Major Name Minor Name

SYSZRAC2 SSTABLE1

SYSZRAC2 SSTABLE2

SYSZRACF RACF

SYSZRACF CNSTGNLP*class_name

class_name is derived from the list of classes defined on the system

upon which the check executes.

SYSZRACF CNSTRCLP*class_name

class_name is derived from the list of classes defined on the system

upon which the check executes.

SYSZRACF racf_data_set_name

RACF data set names are derived from the data set name table on

which the check executes. The check looks at all of the data sets in

the primary RACF data base as well as all of the data sets in the

backup RACF data base.

SYSZRACF DSDTDSDTDSDT...DSDT

The minor name is the string DSDT repeated twelve times.

SYSZRAC2 IRRCV05

SYSZRACF CNSTRCLP*class_name

class_name is derived from the list of classes defined on the system

upon which the check executes.

SYSZRACF CNSTRCLP*class_name

class_name is derived from the list of classes defined on the system

upon which the check executes.

SYSZRAC2 DSDTABPT0000

SYSZRAC2 ICHSEC00

SYSZRAC2 IRRDPI80000

SYSZRAC2 RCVTDPTB000

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 333

Table 40. System Level ENQs that RACF_GRS_RNL checks (continued)

Major Name Minor Name

SYSZRAC2 XMCAXMCA...XMCA

The minor name is the string XMCA repeated twelve times.

SYSZRAC2 CONNECT...CONNECT

The minor name is the string CONNECT repeated six times.

Best practice:

Installations that convert RACF SYSTEM ENQs to SYSTEM ENQs can corrupt

the RACF data base and experience outages.

z/OS releases the check applies to:

z/OS V1R5 and up.

Parameters accepted:

No

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command:

UPDATE,

CHECK(IBMRACF,RACF_GRS_RNL)

SEVERITY(HI),INTERVAL(08:00),DATE(20040703)

REASON(’None of the RACF ENQ names should be in RNLs.’)

Debug support:

Yes, the check provides output displays all the ENQ names being looked at

plus additional error detail in debug mode. You can put a check into debug

mode using any of the following:

v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in a POLICY statement in an HZSPRMxx parmlib member

v Overwrite the OFF value with the ON value in the DEBUG column of the

SDSF CK command display.

Verbose support:

Yes, the check output displays all the ENQ names being looked at in verbose

mode. You can put a check into verbose mode using the

UPDATE,filters,VERBOSE=ON parameters on either the MODIFY command or

in a POLICY statement in an HZSPRMxx parmlib member.

Reference:

For more information on storage increments, see z/OS MVS Planning: Global

Resource Serialization, SA22-7600 and z/OS Security Server RACF System

Programmer’s Guide.

Messages:

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

 Output: The report that RACF_GRS_RNL produces is shown below. The columns

in this report are as follows:

S Status. An E in this column indicates an exception.

RACF checks

334 IBM Health Checker for z/OS User’s Guide

Major

The major name of the ENQ

Minor

The minor name of the ENQ

Type

The type of the ENQ. SERNL indicates that the ENQ is a SYSTEMS-level ENQ

and that it was found on the system exclusion resource name list, which would

change its scope to SYSTEM-level and potentially destroy RACF’s serialization.

Qname

The QNAME of the RNL entry

Rname

The RNAME of the RNL entry

Type

The type of the RNL entry. The values are SPEC for specific and GEN for

generic

RACF_GRS_RNL check report with exceptions:

 START TIME: 11/10/2004 10:13:10.341622 IBMRACF, RACF_GRS_RNL

 OWNER DATE: 20040703

 RACF_GRS_RNL Report

 S Major Minor Type QName Rname Type

 - -------- -------------------- ----- -------- ----------------- ----

 E SYSZRACF SETROPTS SERNL SYSZRACF SETROPTS SPEC

 E SYSZRAC2 IRRCRV05 SERNL SYSZRAC2 IRRCRV05 SPEC

 E SYSZRAC2 IRRCRV05 SIRNL SYSZRAC2 IRRCRV05 SPEC

 E SYSZRAC5 ALIAS SERNL SYSZRAC5 AL GEN

 * High severity Exception *

 IRRH202E One or more RACF ENQ names were found in a GRS Resource Name

 List.

 Explanation:

 The RACF RACF_GRS_RNL check has detected that a RACF resource

 is covered by an entry in the specified GRS resource name list

 (RNL). RACF resource names should not be in either the system

 inclusion RNL (SIRNL) or the system exclusion RNL (SERNL).

 System Action:

 The check continues processing. There is no effect on the system.

 Operator Response:

 Report this problem to the system programmer.

 System Programmer Response:

 Ensure that the RACF resource names are removed from the specified

 resource name list (RNL).

 Problem Determination:

 See "MVS Planning: Global Resource Serialization" for details on

 resource name lists (RNLs). Ensure that the RACF ENQ names do not

 match any of your resource name list entries. A list of the RACF

 ENQ names may be found in the RACF Systems Programmer’s Guide.

 Source:

 RACF Systems Programmer’s Guide

 Reference documentation:

 RACF Systems Programmer’s Guide MVS Planning: Global Resource

 Serialization

 Automation:

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 335

None.

 IBMRACF Reason: None of the RACF ENQ names should be in RNLs.

 Check parameters: N/A

 END TIME: 01/08/2005 20:47:54.819710 RESULT: 0000000C DIAG:

 00000000_00000000

RACF_GRS_RNL check report without exceptions:

START TIME: 11/14/2004 23:11:39.610978 IBMRACF, RACF_GRS_RNL

OWNER DATE: 20040703

 RACF_GRS_RNL Report

 S Major Minor Type QName Rname Type

 - -------- -------------------- ----- -------- ----------------- ----

IRRH203I No RACF ENQ names were found in the GRS Resource Name List.

END TIME: 11/14/2004 23:11:39.613687 RC: 00000000 RSN: 00000000

RACF_GRS_RNL check report in debug mode:

START TIME: 11/14/2004 23:17:12.648857 IBMRACF, RACF_GRS_RNL

OWNER DATE: 20040703

 RACF_GRS_RNL Report

 S Major Minor Type QName Rname Type

 - -------- -------------------- ----- -------- ----------------- ----

 SYSZRACF SETROPTS SERNL

 SYSZRACF DSDTDSDTDSDTDSDTDSDT SERNL

 SYSZRACF DSDTPREPDSDTPREPDSDT SERNL

 SYSZRACF RACF SIRNL

 SYSZRACF DSDTDSDTDSDTDSDTDSDT SIRNL

 SYSZRAC2 IRRCRV05 SERNL

 SYSZRAC2 GLOBALGLOBALGLOBAL SERNL

 SYSZRAC2 TEMPLATE-LOCK SERNL

 SYSZRAC2 PROGRAMPROGRAMPROGRA SERNL

 . . .

RACF_GRS_RNL check report in a GRS=NONE environment:

START TIME: 11/18/2004 22:29:54.701040 IBMRACF, RACF_GRS_RNL

OWNER DATE: 20040703

IRRH201I The RACF check RACF_GRS_RNL cannot be executed in a

 GRS=NONE environment.

HZS1004E (IBMRACF,RACF_GRS_RNL)

 THE CHECK IS NOT APPLICABLE IN THE CURRENT SYSTEM ENVIRONMENT.

END TIME: 11/18/2004 22:29:54.861360 RC: 00000000 RSN: 00000000

RACF_SENSITIVE_RESOURCES

Description: The RACF_SENSITIVE_RESOURCES check examines the security

characteristics of several system-critical data sets and general resources other than

data sets. The output of this check is a list of exceptions flagged.

For each of these, the check examines:

RACF checks

336 IBM Health Checker for z/OS User’s Guide

v For system-critical data sets, that the data set exists on the expected volume. If

the data set does not exist on the volume, a V (volume exception) is placed in

the Status (S) column.

v That the resource has baseline protection. For example, APF data sets can have

a general access as high as READ, while the data sets which comprise the

RACF data base must have a general access of NONE.

The check verifies the protection of each resource by extracting its profile and

examining the UACC, WARNING status, and the ID(*) entry in the access list if one

exists. In addition, if there is no profile protecting a data set, then if

NOPROTECTALL or PROTECTALL(WARN) is in effect, the check flags the data set

as an exception. The customer can optionally specify a user ID to the check which,

if specified, is used to perform a RACF authorization check for the next higher

access authority after the highest expected general access authority.

Best practice:

The system is critically exposed if these resources are not properly protected.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

Yes, you can specify a user ID as a parameter. The following example shows

keywords you can use to specify an user ID (GENUSER) in the PARM field for

RACF_SENSITIVE_RESOURCES. You can specify the following keywords on

either HZSPRMxx or on a MODIFY command:

CHECK(RACF_SENSITIVE_RESOURCES)

OWNER(IBMRACF)

DATE(20040801)

PARM(GENUSER)

REASON(’Testing with GENUSER value’)

The check verifies that the specified user ID is a syntactically valid user ID, that

the user ID exists, and that the user ID is active and has not been revoked. If

any of these conditions is not true, an error message is written to the IBM

Health Checker for z/OS log and the check continues processing as if no

parameter had been specified to the check.

User override of IBM values:

The following shows keywords you can use to override RACF check values on

either a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command:

UPDATE,

CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES),

SEVERITY(HI),INTERVAL(08:00),DATE(20040703)

REASON(’Sensitive resources should be protected.’)

Debug support:

Yes, the check provides additional error detail in debug mode. You can put a

check into debug mode using any of the following:

v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in a POLICY statement in an HZSPRMxx parmlib member

v Overwrite the OFF value with the ON value in the DEBUG column of the

SDSF CK command display.

Verbose support:

No.

Reference:

For more information on storage increments, see z/OS Security Server RACF

Security Administrator’s Guide and z/OS Security Server RACF Auditor’s Guide.

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 337

Messages:

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

 Output: The report that RACF_GRS_RNL produces is shown below. The columns

in this report are as follows:

S Status. An E in this column indicates that the check found an exception and that

there is excessive access authority allowed to the data set. A V in this column

indicates that the data set is not on the volume.

Data set name

The name of the data set

Vol

The volume upon which the data set resides

UACC

The UACC of the profile that covers the data set

WARN

The WARNING attribute of the profile that covers the data set

ID(*)

The access level assigned to the * user ID on the access list

User

If the installation specified a user ID in the PARMLIB entry for the

RACF_SENSITIVE_RESOURCES check PARMLIB, the User column contains

the string >xxxx, where xxxx is either Read or None.

RACF_SENSITIVE_RESOURCES report with exceptions, without a user ID:

1CHECK(IBMRACF,RACF_SENSITIVE_RESOURCES)

 START TIME: 03/02/2006 18:51:19.175232

 CHECK DATE: 20040703 CHECK SEVERITY: HIGH

 APF Dataset Report

 S Data Set Name Vol UACC Warn ID* User

 - --------------------------------------- ------ ---- ---- ---- ----

 E ASM.SASMMOD1 ZDR18

 V ATC.V2R1M4.AUTHLIB DRVPSL

 V CBC.SCBCCMP ZDR18

 E CBC.SCCNCMP ZDR18

 E CBC.SCLBDLL ZDR18

 E CBC.SCLBDLL2 ZDR18

 E CEE.SCEERUN ZDR18

 E CEE.SCEERUN2 ZDR18

 E CRAIGJ.VTAMLIB D94RF2

 E CSF.SCSFMOD0 ZDR18

 E EOY.SEOYLOAD ZDR18

 V EUVF.SEUVFLOD ZDR18

 E FARRELL.TEST.TOOLS.LOAD D94001

 E FFST.V120ESA.SEPWMOD1 ZDR18

 E FFST.V120ESA.SEPWMOD2 ZDR18

 E GAIL.AUTH.LOAD D94RF1

 E GDDM.SADMMOD ZDR18

 E GIM.SGIMLMD0 ZDR18

 V GLD.SGLDLOD ZDR18

 V GSK.SGSKLOD ZDR18

 V ING.SINGMOD1 ZDR18

 V ING.SINGMOD2 ZDR18

 E IOE.SIOELMOD ZDR18

 E ISF.SISFLINK ZDR18

RACF checks

338 IBM Health Checker for z/OS User’s Guide

E ISF.SISFLOAD ZDR18

 E ISP.SISPLOAD ZDR18

 E ISP.SISPLPA ZDR18

 V ISP.SISPSASC ZDR18

 V ISPF350.ISPLOAD PRODAL

 V ISPF350.ISPLPA PRODAL

 V ISPF350.ISRLOAD PRODAL

 V ISPF350.ISRLPA PRODAL

 V ISPF350.LPALIB PRODAL

 V MARUSEK.AUTH.LOAD D79PK2

 E MSPCT.ZOS16ZTT.LOADLIB CTTPAK

 E MSPCT.ZOS17ZTT.LOADLIB CTTPAK

 E MVSSTORE.SRVLIB.ZOS15.LIBS DRVPSL

 E MVSSTORE.SRVLIB.ZOS15.LPA DRVPSL

 E MVSSTORE.SRVLIB.ZOS15.NUCLEUS DRVPSL

 V NETVIEW.V1R4M0.CNMLINK ZDR18

 E RACFDRVR.ATC.AUTHLIB D79PK5

 E RACFL2.LINKLIB D94RF1

 E RACFTEST.ADAU.LOAD D94RF2

 E RACFTEST.RRSF.LOAD D94RF2

 V RACF318.ASAP.MIGLIB D97107

 E RACF318.MIGLIB D97107

 V RACF318.NEW.MIGLIB D97107

 SYS1.CMDLIB ZDR18 None No ****

 SYS1.DFQLLIB ZDR18 None No ****

 SYS1.DGTLLIB ZDR18 None No ****

 V SYS1.ISAMLPA ZDR18

 SYS1.LINKLIB ZDR18 None No ****

 V SYS1.NFSLIB ZDR18

 SYS1.RDHARDG.LINKLIB D94RF1 None No ****

 SYS1.SBDTLIB ZDR18 None No ****

 SYS1.SBDTLINK ZDR18 None No ****

 SYS1.SCBDHENU ZDR18 None No ****

 V SYS1.SCUNIMG ZDR18

 SYS1.SERBLINK ZDR18 None No ****

 V SYS1.SHASLINK ZDR18

 SYS1.SHASLNKE ZDR18 None No ****

 SYS1.SHASMIG ZDR18 None No ****

 SYS1.SIATLIB ZDR18 None No ****

 SYS1.SIATLINK ZDR18 None No ****

 SYS1.SIATLPA ZDR18 None No ****

 SYS1.SIATMIG ZDR18 None No ****

 SYS1.SICELINK ZDR18 None No ****

 SYS1.SIEALNKE ZDR18 None No ****

 SYS1.SIOALMOD ZDR18 None No ****

 SYS1.SISTCLIB ZDR18 None No ****

 SYS1.SVCLIB ZDR18 None No ****

 SYS1.VTAMLIB ZDR18 None No ****

 TCPIP.SEZADSIL ZDR18 None No ****

 V TCPIP.SEZALINK ZDR18

 TCPIP.SEZALNK2 ZDR18 None No ****

 TCPIP.SEZALOAD ZDR18 None No ****

 TCPIP.SEZATCP ZDR18 None No ****

 RACF Dataset Report

 S Data Set Name Vol UACC Warn ID* User

 - --------------------------------------- ------ ---- ---- ---- ----

 E RACFDRVR.RACF318 RDB318

 PARMLIB Dataset Report

 S Data Set Name Vol UACC Warn ID* User

 - --------------------------------------- ------ ---- ---- ---- ----

 E RACFDRVR.PARMLIB D94RF4

 RACFDRVR.PARMLIB.R10 D94RF4 None No ****

 RACFDRVR.PARMLIB.R12 D94RF4 None No ****

 RACFDRVR.PARMLIB.R13 D94RF4 None No ****

 RACFDRVR.PARMLIB.R14 D94RF4 None No ****

 RACFDRVR.PARMLIB.R15 D94RF4 None No ****

 RACFDRVR.PARMLIB.R16 D94RF4 None No ****

 RACFDRVR.PARMLIB.R17 D94RF4 None No ****

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 339

RACFDRVR.PARMLIB.R18 D94RF4 None No ****

 RACFDRVR.PARMLIB.R4 D94RF4 None No ****

 RACFDRVR.PARMLIB.R6 D94RF4 None No ****

 RACFDRVR.PARMLIB.R8 D94RF4 None No ****

 SYS1.PARMLIB None No ****

 SYS1.PARMLIB.INSTALL ZDR18 None No ****

 SYS1.PARMLIB.POK ZDR18 None No ****

 Current Link List Dataset Report

 S Data Set Name Vol UACC Warn ID* User

 - --------------------------------------- ------ ---- ---- ---- ----

 E ASM.SASMMOD1 ZDR18

 E ATC.V2R1M4.SATGBMOD D94RF1

 E CBC.SCLBDLL ZDR18

 E CEE.SCEERUN ZDR18

 E COMMON.LOOKFEEL.LINKLIB ZDR18

 E CSF.SCSFMOD0 ZDR18

 E EOY.SEOYLOAD ZDR18

 E FARRELL.TEST.TOOLS.LOAD D94001

 E FFST.V120ESA.SEPWMOD2 ZDR18

 E GDDM.SADMMOD ZDR18

 E GIM.SGIMLMD0 ZDR18

 E ISF.SISFLINK ZDR18

 E ISF.SISFLOAD ZDR18

 E ISP.SISPLOAD ZDR18

 E MSPCT.OSR10CTT.LOADLIB CTTPAK

 E MSPCT.OSR12CTT.LOADLIB CTTPAK

 E MSPCT.OSR13CTT.LOADLIB CTTPAK

 E MSPCT.OSR14CTT.LOADLIB CTTPAK

 E MSPCT.OSR15CTT.LOADLIB CTTPAK

 E MSPCT.OSR16CTT.LOADLIB CTTPAK

 E MSPCT.ZOS16ZTT.LOADLIB CTTPAK

 E RACFTEST.LOAD D94RF1

 E RACF318.LINKLIB D97107

 E RACF318.MIGLIB D97107

 SYS1.CMDLIB ZDR18 None No ****

 SYS1.CSSLIB ZDR18 None No ****

 SYS1.DFQLLIB ZDR18 None No ****

 SYS1.DGTLLIB ZDR18 None No ****

 SYS1.LINKLIB ZDR18 None No ****

 SYS1.MIGLIB ZDR18 None No ****

 SYS1.SCUNIMG ZDR18Y None No ****

 SYS1.SERBLINK ZDR18 None No ****

 SYS1.SHASLNKE ZDR18 None No ****

 SYS1.SHASMIG ZDR18 None No ****

 SYS1.SIATLIB ZDR18 None No ****

 SYS1.SIATLINK ZDR18 None No ****

 SYS1.SIATLPA ZDR18 None No ****

 SYS1.SICELINK ZDR18 None No ****

 SYS1.SIEALNKE ZDR18 None No ****

 SYS1.SIEAMIGE ZDR18 None No ****

 SYS1.SIOALMOD ZDR18 None No ****

 SYS1.SORTLIB ZDR18 None No ****

 SYS1.VTAMLIB ZDR18 None No ****

 E SYS2.CSSLIB ZDR18

 E SYS2.LINKLIB ZDR18

 E SYS2.MIGLIB ZDR18

 E SYS2.SIEALNKE ZDR18

 E SYS2.SIEAMIGE ZDR18

 TCPIP.SEZALOAD ZDR18 None No ****

 System Rexx Dataset Report

 S Data Set Name Vol UACC Warn ID* User

 - --------------------------------------- ------ ---- ---- ---- ----

 E SYS1.SAXREXEC ZDR19

 Sensitive General Resources Report

 S Resource Name Class UACC Warn ID* User

RACF checks

340 IBM Health Checker for z/OS User’s Guide

|
|
|
|
|
|

- --------------------------------------- -------- ---- ---- ---- ----

 BPX.DAEMON FACILITY None No ****

 BPX.FILEATTR.APF FACILITY None No ****

 BPX.SERVER FACILITY None No ****

 BPX.SUPERUSER FACILITY None No ****

 ICHBLP FACILITY None No ****

 IRR.PASSWORD.RESET FACILITY

 MVS.SET.PROG OPERCMDS

 MVS.SETPROG OPERCMDS

 E ACCT TSOAUTH Updt No ****

 E CONSOLE TSOAUTH None Yes ****

 E OPER TSOAUTH None No Updt

 E PARMLIB TSOAUTH None No Read

 E TESTAUTH TSOAUTH None No Read

 SUPERUSER.FILESYS UNIXPRIV

 SUPERUSER.FILESYS.CHANGEPERMS UNIXPRIV

 SUPERUSER.FILESYS.CHOWN UNIXPRIV

 * High Severity Exception *

 IRRH204E The RACF_SENSITIVE_RESOURCES check has found one or

 more potential errors in the security controls on this system.

 Explanation: The RACF security configuration check has found one or

 more potential errors with the system protection mechanisms.

 System Action: The check continues processing. There is no effect on

 the system.

 Operator Response: Report this problem to the system security

 administrator and the system auditor.

 System Programmer Response: Examine the report that was produced by

 the RACF check. Any data set which has an "E" in the "S" (Status)

 column has excessive authority allowed to the data set. That

 authority may come from a universal access (UACC) or ID(*) access

 list entry which is too permissive, or if the profile is in WARNING

 mode. If there is no profile, then PROTECTALL(FAIL) is not in

 effect. Any data set which has a "V" in the "S" (Status) field is

 not on the indicated volume. Remove these data sets from the list

 or allocate the data sets on the volume. Any data set which has an

 "M" in the "S" (Status) field has been migrated.

 The APF_LIBS check provides additional analysis of the non-RACF

 aspects of your APF list.

 If the "S" field contains an "E" or is blank, then blanks in the

 UACC, WARN, and ID(*) columns indicate that there is no RACF

 profile protecting the data set. Data sets which do not have a RACF

 profile are flagged as exceptions, unless SETROPTS PROTECTALL(FAIL)

 is in effect for the system.

 If a valid user ID was specified as a parameter to the check, that

 user’s authority to the data set is checked. If the user has an

 excessive authority to the data set, that is indicated in the USER

 column. For example, if the user has ALTER authority to an

 APF-authorized data set, the USER column contains ">Read" to

 indicate that the user has more than READ authority to the data set.

 Problem Determination: See the RACF System Programmer’s Guide and

 the RACF Auditor’s Guide for information on the proper controls for

 your system.

 Source:

 RACF System Programmer’s Guide

 RACF Auditor’s Guide

 Reference Documentation:

 RACF System Programmer’s Guide

 RACF Auditor’s Guide

 Automation: None.

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 341

Check Reason: Sensitive resources should be protected.

 END TIME: 03/02/2006 18:51:39.285499 STATUS: EXCEPTION-HIGH

RACF_SENSITIVE_RESOURCES report with exceptions, with a user ID:

 RACF Dataset Report

 S Data Set Name Vol UACC Warn ID* User

 - --------------------------------------- ------ ---- ---- ---- ----

 E RACFDRVR.RACF317 RDB317 None No **** >None

* High severity Exception *

RACF_SENSITIVE_RESOURCES report without exceptions: Note that no user

ID was specified for this report.

START TIME: 11/18/2004 16:54:09.533912 IBMRACF,

RACF_SENSITIVE_RESOURCES

 OWNER DATE:

 APF Dataset Report

 S Data Set Name Vol UACC Warn ID* User

 - --------------------------------------- ------ ---- ---- ---- ----

 MVSSTORE.SRVLIB.ZOS15.NUCLEUS DRVPSL None No ****

 SYS1.LINKLIB ZDR17B Read No ****

 SYS1.NFSLIB ZDR17B Read No ****

 SYS1.SIATLPA ZDR17B Read No ****

 SYS1.SVCLIB ZDR17B **** **** ****

 RACF Dataset Report

 S Data Set Name Vol UACC Warn ID* User

 - --------------------------------------- ------ ---- ---- ---- ----

 RACFDRVR.RACF317 RDB317 None No ****

IRRH205I The RACF check RACF_SENSITIVE_RESOURCES has not found

 any errors in the security controls on this system.

RACF_classname_ACTIVE

Description: Each of the RACF_classname_ACTIVE checks examine the status of

a single RACF general resource class:

v RACF_UNIXPRIV_ACTIVE

v RACF_FACILITY_ACTIVE

v RACF_TAPEVOL_ACTIVE

v RACF_TEMPDSN_ACTIVE

v RACF_TSOAUTH_ACTIVE

v RACF_OPERCMDS_ACTIVE

Best practice:

An effective RACF implementation requires that the baseline group of RACF

general resource classes listed above be active.

z/OS releases the check applies to:

z/OS V1R5 and up.

Parameters accepted:

No.

RACF checks

342 IBM Health Checker for z/OS User’s Guide

User override of IBM values:

The following shows keywords you can use to override RACF check values on

either a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command:

UPDATE,

CHECK(IBMRACF,RACF_classname_ACTIVE),

SEVERITY(MED),INTERVAL(24:00),DATE(20051111)

REASON(’The classname class should be active.’)

Debug support:

Yes, the check provides additional error detail in debug mode. You can put a

check into debug mode using any of the following:

v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in a POLICY statement in an HZSPRMxx parmlib member

v Overwrite the OFF value with the ON value in the DEBUG column of the

SDSF CK command display.

Verbose support:

No.

Reference:

For more information on storage increments, see z/OS Security Server RACF

Security Administrator’s Guide .

Messages:

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

 Output:

RACF_FACILITY__ACTIVE check - no exception found:

1CHECK(IBMRACF,RACF_FACILITY_ACTIVE)

 START TIME: 03/02/2006 14:50:57.305795

 CHECK DATE: 20051111 CHECK SEVERITY: MEDIUM

 CHECK PARM: FACILITY

 IRRH228I The class FACILITY is active.

 END TIME: 03/02/2006 14:50:57.314865 STATUS: SUCCESSFUL

RACF_TAPEVOL_ACTIVE check - class inactive exception found:

1CHECK(IBMRACF,RACF_TAPEVOL_ACTIVE)

 START TIME: 03/02/2006 14:50:57.304859

 CHECK DATE: 20051111 CHECK SEVERITY: MEDIUM

 CHECK PARM: TAPEVOL

 * Medium Severity Exception *

 IRRH229E The class TAPEVOL is not active.

 Explanation: The class is not active. IBM recommends that the

 security administrator at your installation activate this class and

 define in it the profiles to properly protect your system.

 System Action: The check continues processing. There is no effect on

 the system.

 Operator Response: Report this problem to the system security

 administrator and the system auditor.

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 343

System Programmer Response: None.

 Problem Determination: See the RACF Auditor’s Guide and the RACF

 Systems Programmer’s Guide.

 Source:

 RACF System Programmer’s Guide

 RACF Auditor’s Guide

 Reference Documentation:

 RACF System Programmer’s Guide

 RACF Auditor’s Guide

 Automation: None.

 Check Reason: IBM recommends activating this class

 END TIME: 03/02/2006 14:50:57.314816 STATUS: EXCEPTION-MED

RACF_class_name_ACTIVE check - no exceptions found (the class is active):

CHECK(IBMRACF,RACF_TSOAUTH_ACTIVE)

START TIME: 11/16/2005 13:17:30.931923

CHECK DATE: 20050820 CHECK SEVERITY: MEDIUM

CHECK PARM: TSOAUTH

IRRH228I The class TSOAUTH is active.

END TIME: 11/16/2005 13:17:30.945682 STATUS: SUCCESSFUL

RACF_IBMUSER_REVOKED

Description: Check looks to see if the IBMUSER user ID is still active.

Best practice:

The IBMUSER user ID is intended for use only during the initial installation

process. After installation, the IBMUSER user ID should be revoked so that it

cannot be used by unauthorized users.

z/OS releases the check applies to:

z/OS V1R5 and up.

Parameters accepted:

No.

User override of IBM values:

The following shows keywords you can use to override RACF check values on

either a POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command:

UPDATE,

CHECK(IBMRACF,RACF_IBMUSER_REVOKED),

SEVERITY(MED),INTERVAL(24:00),DATE(20051111)

REASON(’IBM recommends that the user ID IBMUSER is revoked.’)

Debug support:

Yes, the check provides additional error detail in debug mode. You can put a

check into debug mode using any of the following:

v UPDATE,filters,DEBUG=ON parameters on either the MODIFY command or

in a POLICY statement in an HZSPRMxx parmlib member

v Overwrite the OFF value with the ON value in the DEBUG column of the

SDSF CK command display.

Verbose support:

No.

Reference:

For more information on storage increments, see z/OS Security Server RACF

Security Administrator’s Guide .

RACF checks

344 IBM Health Checker for z/OS User’s Guide

Messages:

See z/OS Security Server RACF Messages and Codes.

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

 Output:

RACF_IBMUSER_REVOKED check - IBMUSER not revoked exception found:

CHECK(IBMRACF,RACF_IBMUSER_REVOKED)

START TIME: 12/02/2005 16:43:31.614417

CHECK DATE: 20050820 CHECK SEVERITY: MEDIUM

* Medium Severity Exception *

IRRH225E The user ID IBMUSER is not revoked.

Explanation: The user ID IBMUSER has not been revoked. IBM recommends

revoking IBMUSER.

System Action: The check continues processing. There is no effect on

the system.

Operator Response: Report this problem to the system security

administrator and the system auditor.

System Programmer Response: Revoke IBMUSER.

Problem Determination: See the RACF Auditor’s Guide and the RACF

Systems Programmer’s Guide.

Source:

RACF System Programmer’s Guide

RACF Auditor’s Guide

Reference Documentation:

RACF System Programmer’s Guide

RACF Auditor’s Guide

Automation: None.

Check Reason: IBMUSER should be revoked.

END TIME: 12/02/2005 16:43:31.653215 STATUS: EXCEPTION-MED

RACF_IBMUSER_REVOKED check - no exceptions found, IBMUSER has been

revoked:

1CHECK(IBMRACF,RACF_IBMUSER_REVOKED)

 START TIME: 03/02/2006 14:50:57.307193

 CHECK DATE: 20051111 CHECK SEVERITY: MEDIUM

 IRRH224I The user ID IBMUSER is revoked.

 END TIME: 03/02/2006 14:50:57.315063 STATUS: SUCCESSFUL

RRS checks (IBMRRS)

RRS_RMDataLogDuplexMode

Description:

The duplexing scheme used to protect the RM Data log stream is evaluated.

Best practice:

Choose a duplexing scheme more reliable than local buffer duplexing for the

RM Data log stream. For example, choose to use staging data sets. Why?

Because local buffer duplexing can result in a loss of data in the log stream if

both the CF and the local buffers are on the same machine. A loss of data in

the RRS RM Data log stream will eventually require an RRS cold start to repair

the log stream and may also require a cold start of any resource manager using

RRS at the time of the RRS cold start. For more details on protecting log

streams, see z/OS MVS Programming: Resource Recovery.

z/OS releases the check applies to:

z/OS V1R4 and up.

RACF checks

Chapter 13. IBM Health Checker for z/OS checks 345

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMRRS,RRS_RMDATALOGDUPLEXMODE)

 SEVERITY(MEDIUM),INTERVAL(8:00),DATE(20050115)

 REASON(’RM Data log should use a better duplexing scheme than local

buffer duplexing.’)

Parameters accepted:

No

Reference:

For more information, see z/OS MVS Programming: Resource Recovery.

Messages:

See z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

RRS_RMDOffloadSize

Description:

The check evaluates the size of the RM Data log’s offload data set.

Best practice:

The size of the RM Data log’s offload data set should be at least as large as

the space allocated for the log stream’s CF structure. Why? Because a small

offload dataset may cause multiple offload data sets to be created for each

offload of the CF. The increased overhead in allocating datasets can degrade

offload performance and the performance of RRS when reading the log stream.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMRRS,RRS_RMDOFFLOADSIZE)

 SEVERITY(LOW),INTERVAL(8:00),DATE(20050115)

 REASON(’RM Data log offload dataset size should be at least as

large as the space allocated for the log stream in the structure.’)

Parameters accepted:

No

Reference:

For more information, see z/OS MVS Programming: Resource Recovery.

Messages:

See z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

RRS checks

346 IBM Health Checker for z/OS User’s Guide

RRS_DUROffloadSize

Description:

The check evaluates the size of the Delayed UR log’s offload data set.

Best practice:

The size of the Delayed UR log’s offload data set should be at least as large as

the space allocated for the log stream’s CF structure. Why? Because a small

offload data set may cause multiple offload data sets to be created for each

offload of the CF. The increased overhead in allocating data sets can degrade

offload performance and the performance of RRS when reading the log stream.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMRRS,RRS_DUROFFLOADSIZE)

 SEVERITY(LOW),INTERVAL(8:00),DATE(20050115)

 REASON(’Delayed UR log offload dataset size should be at least as

large as the space allocated for the log stream in the structure.’)

Parameters accepted:

No

Reference:

For more information, see z/OS MVS Programming: Resource Recovery.

Messages:

See z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

RRS_MUROffloadSize

Description:

The check evaluates the size of the Main UR log’s offload data set.

Best practice:

The size of the Main UR log’s offload data set should be at least as large as

the space allocated for the log stream’s CF structure. Why? Because a small

offload dataset may cause multiple offload data sets to be created for each

offload of the CF. The increased overhead in allocating datasets can degrade

offload performance and the performance of RRS when reading the log stream.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

RRS checks

Chapter 13. IBM Health Checker for z/OS checks 347

UPDATE

 CHECK(IBMRRS,RRS_MUROFFLOADSIZE)

 SEVERITY(LOW),INTERVAL(8:00),DATE(20050115)

 REASON(’Main UR log offload dataset size should be at least as

large as the space allocated for the log stream in the structure.’)

Parameters accepted:

No

Reference:

For more information, see z/OS MVS Programming: Resource Recovery.

Messages:

See z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

RRS_RSTOffloadSize

Description:

The check evaluates the size of the Restart log’s offload data set.

Best practice:

The size of the Restart log’s offload data set should be at least as large as the

space allocated for the log stream’s CF structure. Why? Because a small

offload dataset may cause multiple offload data sets to be created for each

offload of the CF. The increased overhead in allocating datasets can degrade

offload performance and the performance of RRS when reading the log stream.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMRRS,RRS_RSTOFFLOADSIZE)

 SEVERITY(LOW),INTERVAL(8:00),DATE(20050115)

 REASON(’Restart log offload dataset size should be at least as

large as the space allocated for the log stream in the structure.’)

Parameters accepted:

No

Reference:

For more information, see z/OS MVS Programming: Resource Recovery.

Messages:

See z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

RRS_ArchiveCFStructure

Description:

The check evaluates the coupling facility structure in which the RRS Archive log

resides.

RRS checks

348 IBM Health Checker for z/OS User’s Guide

Best practice:

IBM recommends that each RRS log stream reside in its own coupling facility

structure. This is particularly important for the archive log. Allowing the RRS

archive log stream to share its coupling facility structure with another log stream

is likely to result in sub-optimal use of the storage in the coupling facility

structure, which could affect system performance.

z/OS releases the check applies to:

z/OS V1R8 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMRRS,RRS_ARCHIVECFSTRUCTURE)

 SEVERITY(LOW),INTERVAL(8:00),DATE(20051013)

 REASON(’RRS Archive log stream is sharing its coupling facility structure

 with another log stream. This is not reccomended.’)

Parameters accepted:

No

Reference:

For more information, see z/OS MVS Programming: Resource Recovery.

Debug support:

No

Verbose support:

No

Messages:

See z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

RSM checks (IBMRSM)

RSM_HVSHARE

Description:

Checks the configured size and current allocation of the high virtual shared area

(HVSHARE in IEASYSxx). This check will issue a warning when the allocation

of high virtual storage exceeds a predetermined threshold, and/or when the size

of the high virtual shared area is less than the default minimum.

Best practice:

The HVSHARE setting controls the size of the shared area above 2GB, directly

affecting how much virtual storage may be shared by jobs on the system.

Setting this value too low may cause jobs relying on shared high virtual storage

to fail. The default suggested value for this area is 510T.

z/OS releases the check applies to:

z/OS V1R5 and up in z/Architecture mode only.

User override of IBM values:

The following shows keywords you can use to override check values on either a

RRS checks

Chapter 13. IBM Health Checker for z/OS checks 349

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

CHECK(IBMRSM,RSM_HVSHARE),

INTERVAL(00:15),

SEVERITY(LOW),

PARM(’THRESHOLD(80%),SIZE(510T)’),

DATE(’20041006’)

Parameters accepted:

Yes:

v An integer, 0-100, indicating the warning threshold percent (keyword:

THRESHOLD, percent sign optional)

v Number of bytes with optional suffix (K,M,G,T,P,E), indicating shared area

size (keyword: SIZE)

Default: THRESHOLD(80%),SIZE(510T)

Reference:

For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:

See z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

RSM_MEMLIMIT

Description:

Checks the MEMLIMIT parameter in SMFPRMxx, which affects the amount of

high virtual storage available to jobs on the system.

Best practice:

IBM suggests that jobs requiring virtual storage above 2G use the MEMLIMIT

option on the associated JCL EXEC statement to control high virtual storage

usage. Additionally, IBM suggests that the IEFUSI exit be used as a secondary

limit on the allocation of high virtual storage. Finally, a system wide default

MEMLIMIT should be set in SMFPRMxx. This check will ensure that the

MEMLIMIT setting in SMFPRMxx is not overlooked.

z/OS releases the check applies to:

z/OS V1R4 and up in z/Architecture mode only.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

 CHECK(IBMRSM,RSM_MEMLIMIT),

 INTERVAL(ONETIME),

 SEVERITY(LOW),

 DATE(’20041006’)

Reference:

For more information, see z/OS MVS Initialization and Tuning Reference, z/OS

MVS Programming: Extended Addressability Guide, and z/OS MVS Installation

Exits.

RSM checks

350 IBM Health Checker for z/OS User’s Guide

Messages:

See z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

RSM_MAXCADS

Description:

The setting of MAXCADS in IEASYSxx, and the number of in-use common area

data spaces. A warning will be issued if the number of common area

dataspaces exceeds a predetermined threshold.

Best practice:

Once the number of in use common area dataspaces reaches the value

specified in MAXCADS, no more common area dataspaces can be created.

This may adversely affect starting new jobs, or the continued operation of jobs

already running. This check will help to ensure that the MAXCADS setting is

adequate.

z/OS releases the check applies to:

z/OS V1R4 and up in z/Architecture mode only.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

 CHECK(IBMRSM,RSM_MAXCADS),

 INTERVAL(00:15),

 SEVERITY(MED),

 PARM(’THRESHOLD(80%)’),

 DATE(’20041006’)

Parameters accepted:

An integer, 0-100, indicating the warning threshold percent (keyword:

THRESHOLD, percent sign optional)

 Default: THRESHOLD(80%)

Reference:

For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:

See z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

RSM_AFQ

Description:

Whether available frame queue threshold values used for reclaiming storage

frames are too low.

Best practice:

To avoid situations where the system does not start to reclaim storage frames

soon enough, you should evaluate the values for storage. If you are running in

ESA mode, both the MCCAFCTH and the MCCAECTH values are used. If you

RSM checks

Chapter 13. IBM Health Checker for z/OS checks 351

are running in z/Architecture mode, only the MCCAFCTH value is used. For

migrations to a 64-bit environment, this check is critical because using the same

value that was used in ESA mode could introduce problems. IBM suggests that

the IEAOPTxx parameters are set as follows:

v MCCAFCTH specifies the low and the OK threshold values for central

storage. The lowvalue indicates the number of frames on the available frame

queue when stealing begins. The okvalue indicates the number of frames on

the available frame queue when stealing ends. You can monitor actual

conditions on the RMF Paging Activity Report (RMF Monitor 1) or a

equivalent performance monitoring product and adjust accordingly.

v MCCAECTH specifies the low and the OK threshold values for expanded

storage. The lowvalue indicates the number of frames on the available frame

queue when real storage manager (RSM) frame stealing begins. The okvalue

indicates the number of frames on the available frame queue when stealing

ends. You can monitor actual conditions on the RMF Paging Activity Report

(RMF Monitor 1) or equivalent performance monitoring product and adjust

accordingly.

In 31–bit mode, the defaults are sufficient. For these two parameters, the

defaults are MCCAFCTH=(50,100), and MCCAECTH=(150,300). The OK point

for available frames in a 31-bit mode implementation is 400 frames, 100 from

central storage and 300 from expanded storage.

 For 64–bit mode (after the installations of APARs OW55902 and OW55729), the

default values for MCCAFCTH are (400,600). These are IBM’s minimum

suggested settings. Although IBM suggests using the defaults, higher values are

acceptable.

z/OS releases the check applies to:

z/OS V1R4 and up, in both ESA and z/Architecture modes.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

 CHECK(IBMRSM,RSM_AFQ),

 INTERVAL(ONETIME),

 SEVERITY(HI),

 PARM(’AFQLOW(400),AFQOK(600)’),

 DATE(’20041006’)

Parameters accepted:

1. The number of frames for the MCCAFCTH LOW threshold (keyword:

AFQLOW)

2. The number of frames for the MCCAFCTH OK threshold (keyword: AFQOK)

3. The number of frames for the MCCAECTH LOW threshold (ESA only,

keyword: EXPLOW)

4. The number of frames for the MCCAECTH OK threshold (ESA only,

keyword: EXPOK)

Reference:

For more information on MCCAFCTH and MCCAECTH IEAOPTxx parameters,

see z/OS MVS Initialization and Tuning Reference, SA22-7592. For more

information on using the Paging Activity report, see z/OS RMF Report Analysis,

SC33-7991 and the whitepaper, WP100269 “z/OS Performance: Managing

Processor Storage in a 64–bit environment”.

RSM checks

352 IBM Health Checker for z/OS User’s Guide

Messages:

See z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

RSM_REAL

Description:

The REAL setting in IEASYSxx, which controls the amount of central storage

that can be allocated concurrently for ADDRSPC=REAL (V=R) jobs.

Best practice:

IBM suggests that the REAL setting should be set to 0. However, this would not

be valid if you have a need to run V=R jobs. Setting REAL=0 in IEASYSxx will

improve performance.

z/OS releases the check applies to:

z/OS V1R4 and up, in both ESA and z/Architecture modes.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

 CHECK(IBMRSM,RSM_REAL),

 INTERVAL(ONETIME),

 SEVERITY(LOW),

 DATE(’20041006’)

Parameters accepted:

No.

Reference:

For more information on real storage, see z/OS MVS Initialization and Tuning

Reference, SA22-7592.

Messages:

See z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

RSM_RSU

Description:

The RSU setting in IEASYSxx, which controls the amount of central storage

that can be reconfigured.

Best practice:

IBM suggest that the RSU setting should be set to 0. However, this would not

be valid if you have a need to reconfigure storage. Setting RSU=0 in IEASYSxx

will improve performance.

z/OS releases the check applies to:

z/OS V1R4 and up, in both ESA and z/Architecture modes.

User override of IBM values:

The following shows keywords you can use to override check values on either a

RSM checks

Chapter 13. IBM Health Checker for z/OS checks 353

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

CHECK(IBMRSM,RSM_RSU),

INTERVAL(ONETIME),

SEVERITY(LOW),

DATE(’20041006’)

Parameters accepted:

No.

Reference:

For more information on reconfigurable storage, see z/OS MVS Initialization and

Tuning Reference, SA22-7592.

Messages:

See z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

SDUMP checks (IBMSDUMP)

SDUMP_AVAILABLE

Description:

Ensures that SDUMP is enabled to collect SVC Dumps.

Best practice:

When a system program experiences a condition requiring a snapshot of virtual

storage, it can request an SVC dump.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

CHECK(IBMSDUMP,SDUMP_AVAILABLE)

SEVERITY(MEDIUM)

INTERVAL(OneTime)

DATE(20050301)

REASON(’Example for SCDMP SDUMP checker’)

Parameters accepted:

No.

Reference:

For more information on SDUMP, see z/OS MVS Programming: Authorized

Assembler Services Guide.

Messages:

See z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

RSM checks

354 IBM Health Checker for z/OS User’s Guide

SDUMP_AUTO_ALLOCATION

Description:

Checks to see whether automatic allocation of SVC dump data sets is enabled.

Best practice:

Automatic allocation of SVC dump data sets.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

CHECK(IBMSDUMP,SDUMP_AUTO_ALLOCATION)

SEVERITY(MEDIUM)

INTERVAL(OneTime)

DATE(20050301)

REASON(’Example for SCDMP SDUMP checker’)

Parameters accepted:

No.

Reference:

For more information, see z/OS MVS Diagnosis: Tools and Service Aids,

GA22-7589.

Messages:

See z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

Supervisor (IBMSUP)

IEA_ASIDS

Description:

This check reports on available ″normal″ and ″replacement″ ASIDs

Best practice:

ASIDs are a finite resource. It is important to know how many remain available.

Running the system in exception has no consequence. The exception is

intended to alert to the possibilities.

z/OS releases the check applies to:

z/OS V1R9 and up.

Type of check (local or remote):

Local

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

SDUMP checks

Chapter 13. IBM Health Checker for z/OS checks 355

|

|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

UPDATE,

 CHECK(IBMSUP,IEA_ASIDS),

 INTERVAL(01:00),

 SEVERITY(LOW),

 PARM(’NORMAL(5%),REPLACEMENT(5%),DAYSUNTILIPL(1)’

),

 DATE(’20060424’)

 Reason(’ASIDs are a finite resource. It is important to ’,

 ’know how many remain available.’)

Debug support:

No

Verbose support:

Yes. When VERBOSE mode is in effect, information about individual

connections to non-reusable ASIDs is provided

Parameters accepted:

v NORMAL(n) specifies an integer 0-ASVTMAXI or a percent 1-100 (which is

applied to the value of ASVTMAXI, the number of total possible normal

ASIDs). If the number of available normal ASIDs falls below the limit, an

exception message is issued. The default is 5%.

v REPLACEMENT(n) specifies an integer 0-ASVTNONR or a percent 1-100

(which is applied to the value of ASVTNONR, the number of total possible

replacement ASIDs). If the number of available replacement ASIDs falls

below the limit, an exception message is issued. The default is 5%.

v DAYSUNTILIPL(n) specifies an integer 0-99999. If the system will run out of

ASIDs in n days, given the rate of ASID depletion calculated from the

currently available information, an exception message is issued. The default

is 1.

Reference:

v z/OS MVS Initialization and Tuning Reference

v z/OS MVS Initialization and Tuning Guide

Messages:

z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

IEA_LXS

Description:

This check reports on available system and non-system LXs and extended LXs

(ELXs)

Best practice:

LXs are a finite resource. It is important to know how many remain available.

Running the system in exception has no consequence. The exception is

intended to alert to the possibilities.

z/OS releases the check applies to:

z/OS V1R9 and up.

Type of check (local or remote):

Local

User override of IBM values:

The following shows keywords you can use to override check values on either a

Supervisor checks

356 IBM Health Checker for z/OS User’s Guide

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|

|

|

|
|

|
|
|

|

|
|
|

|
|
|
|

|
|

|
|

|
|

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 CHECK(IBMSUP,IEA_LXS),

 INTERVAL(01:00),

 SEVERITY(LOW),

 PARM(’LX(15%),ELX(15%),SYSLX(15%),SYSELX(15%)’

),

 DATE(’20060424’)

 REASON(’LXs are a finite resource. It is important to ’,

 ’know how many remain available.’)

Debug support:

No

Verbose support:

Yes. When VERBOSE mode is in effect, information about each individual LX is

provided

Parameters accepted:

v LX(n) specifies an integer 0-SvtxLXNSysDefined, or a percent 1-100 (which

is applied to the value of SvtxLXNSysDefined, the number of defined

non-system LXs). If the number of non-system LXs falls below the limit, an

exception message is issued. The default is 15%.

v ELX(n) specifies an integer 0-SvtxBLXNSysDefined, or a percent 1-100

(which is applied to the value of SvtxBLXNSysDefined, the number of defined

non-system extended LXs). If the number of non-system extended LXs falls

below the limit, an exception message is issued. The default is 15%.

v SYSLX(n) specifies an integer 0-SvtxLXSysDefined, or a percent 1-100

(which is applied to the value of SvtxLXSysDefined, the number of defined

system LXs). If the number of system LXs falls below the limit, an exception

message is issued. The default is 15%.

v SYSELX(n) specifies an integer 0-SvtxBLXSysDefined, or a percent 1-100

(which is applied to the value of SvtxBLXSysDefined, the number of defined

system extended LXs). If the number of system extended LXs falls below the

limit, an exception message is issued. The default is 15%.

Reference:

v z/OS MVS Initialization and Tuning Reference

v z/OS MVS Initialization and Tuning Guide

Messages:

z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

System logger checks (IBMIXGLOGR)

IXGLOGR_STAGINGDSFULL

Description:

Checks for staging data sets that have encountered full conditions. SMF must

be active for system logger to report on staging dataset full conditions.

Best practice:

IBM suggests that tuning actions be taken to avoid future full conditions.

Supervisor checks

Chapter 13. IBM Health Checker for z/OS checks 357

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|

|

|
|

|
|
|

z/OS releases the check applies to:

z/OS V1R7 and up.

Parameters accepted:

No.

User override of IBM values:

The following shows keywords you can use to override check values on either

the HZSPRMxx parmlib member or on a MODIFY command. This statement

may be copied and modified to override the check defaults:

UPDATE CHECK(IBMIXGLOGR,IXGLOGR_STAGINGDSFULL)

 SEVERITY(LOW) INTERVAL(4:00) DATE(20050808)

 REASON(’Logger staging dataset full conditions should be investigated to

 determine if application performance is being impacted’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

IXGLOGR_ENTRYTHRESHOLD

Description:

Checks for entry threshold reached conditions. SMF must be active for system

logger to report on entry threshold reached conditions.

Best practice:

IBM suggests that tuning actions be taken to avoid future entry full conditions.

z/OS releases the check applies to:

z/OS V1R7 and up.

Parameters accepted:

No.

User override of IBM values:

The following shows keywords you can use to override check values on either

the HZSPRMxx parmlib member or on a MODIFY command. This statement

may be copied and modified to override the check defaults:

UPDATE CHECK(IBMIXGLOGR,IXGLOGR_ENTRYTHRESHOLD)

 SEVERITY(LOW) INTERVAL(4:00) DATE(20050808)

 REASON(’Logger entry threshold reached conditions should be investigated

 to determine if applications performance is being impacted’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

IXGLOGR_STRUCTUREFULL

Description:

Checks for structure element full conditions. SMF must be active for system

logger to report on structure element full conditions.

System logger checks

358 IBM Health Checker for z/OS User’s Guide

Best practice:

IBM suggests that tuning actions be taken to avoid structure element full

conditions.

z/OS releases the check applies to:

z/OS V1R7 and up.

Parameters accepted:

No.

User override of IBM values:

The following shows keywords you can use to override check values on either

the HZSPRMxx parmlib member or on a MODIFY command. This statement

may be copied and modified to override the check defaults:

UPDATE CHECK(IBMIXGLOGR,IXGLOGR_STRUCTUREFULL

 SEVERITY(LOW) INTERVAL(4:00) DATE(20050808)

 REASON(‘Logger structure full conditions should be investigated to

 determine if application performance is being impacted’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

TSO/E (IBMTSOE)

TSOE_USERLOGS

Description:

This check will report on whether user logs are being used for the receipt of

sent messages.

Best practice:

You should use user logs be used for processing user’s messages. If you do

not use them, the result can be contention on the system brodcast data set and

the possibility of one user tying up the system while the user is accessing user

mail.

z/OS releases the check applies to:

z/OS V1R9 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMTSOE,TSOE_USERLOGS)

 SEVERITY(LOW) INTERVAL(24:00) DATE(20060220)

 REASON(’User logs should be in use’)

Debug support:

No

Verbose support:

No

System logger checks

Chapter 13. IBM Health Checker for z/OS checks 359

|

|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

Parameters accepted:

No

Reference:

See z/OS TSO/E Customization

Messages:

See z/OS TSO/E Messages.

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

 Output: The outputs for the report that TSOE_USERLOGS produces is shown

below:

IKJH0201I User Logs are in use

IKJH0202E User logs are not in use

TSOE_PARMLIB_ERROR

Description:

This check will report on whether any of the groupings of TSO/E settings failed

to be built at IPL due to an error processing the commands in IKJTSOxx. The

groups of settings that were defaulted due to any errors will be listed by this

check.

Best practice:

For ease of maintenance and dynamic updates, IBM suggests that TSO/E

system wide settings be managed via a PARMLIB member, IKJTSOxx. If there

is a syntax error or other error in processing the definitions in the PARMLIB

member, TSO/E will default to a set of definitions that may not be desirable for

the system being IPLd.

z/OS releases the check applies to:

z/OS V1R9 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMTSOE,TSOE_PARMLIB_ERROR)

 SEVERITY(LOW) INTERVAL(24:00) DATE(20060220)

 REASON(’PARMLIB errors may have occurred during IPL’)

Debug support:

No

Verbose support:

No

Parameters accepted:

No

Reference:

See z/OS TSO/E Customization

Messages:

See z/OS TSO/E Messages.

TSO/E checks

360 IBM Health Checker for z/OS User’s Guide

|
|

|
|

|
|

|
|
|

|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

 Output: The outputs for the report that TSOE_PARMLIB_ERROR produces is

shown below:

IKJH0301I All TSO/E PARMLIB settings were initialized successfully.

IKJH0302E TSO/E PARMLIB defaults were used for AUTHCMD due to an error.

z/OS UNIX System Services checks (IBMUSS)

USS_AUTOMOUNT_DELAY

Description:

Automount delay configuration values in a sysplex are at least 10 minutes

Best practice:

Each configuration should have a delay time of at least 10 minutes. Anything

lower can cause the system to hang, continually trying to unmount file systems

and failing. The message will show the automount configured directory, the

configuration name and the delay value.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMUSS,USS_AUTOMOUNT_DELAY)

SEVERITY(MED)

INTERVAL(24:00)

PARM(’DELAY=10’)

DATE(20050224)

REASON(’Sample for USS_AUTOMOUNT_DELAY with default values.’)

Debug support:

No

Verbose support:

No

Parameters accepted:

Yes. Specify either PARM(’DELAY=delay’) or PARM(’delay’). The default is

PARM(’DELAY=10’)

Reference:

See:

v z/OS UNIX System Services Planning for information on using the

automount facility.

v z/OS UNIX System Services Command Reference for information on the

automount command.

Messages:

See z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

TSO/E checks

Chapter 13. IBM Health Checker for z/OS checks 361

|
|
|

|
|

|
|
|

|

|
|

USS_FILESYS_CONFIG

Description:

Evaluates the file system configuration, which includes:

v AUTOMOVE setup verification

v zFS for a multilevel security (MLS) configuration.

v Mode (either RDWR/READ) of the root, system specific, and version HFSs.

Best practice:

The system specific file system should be mode RDWR. The version file system

should be mode READ.

 Define your version and sysplex root file systems as AUTOMOVE and define

your system-specific file systems as UNMOUNT. Do not define a file system as

NOAUTOMOVE or UNMOUNT and a file system underneath it as AUTOMOVE.

If you do, the file system defined as AUTOMOVE will not be available until the

failing system is restarted. A sysplex file system that changes ownership as the

result of a system failure, will only be accessible in the new environment if its

mount point is also accessible. The Automove check verifies that your file

systems are set up according to these rules. This check is only applicable for

images that are part of a sysplex.

 The AUTOMOVE|NOAUTOMOVE|UNMOUNT parameters on ROOT and

MOUNT indicate what happens to the file system if the system that owns that

file system goes down. The AUTOMOVE parameter specifies that ownership of

the file system is automatically moved to another system. It is the default. The

NOAUTOMOVE parameter specifies that the file system will not be moved if the

owning system goes down and the file system is not accessible. –UNMOUNT

specifies that the file system will be unmounted when the system leaves the

sysplex.

z/OS releases the check applies to:

z/OS V1R4 and up. On a z/OS V1R4 system, the check does not evaluate zFS

for an MLS configuration.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMUSS,USS_FILESYS_CONFIG)

SEVERITY(HI)

INTERVAL(24:00)

PARM(’SYSPLEX’)

DATE(20050224)

REASON(’Sample for USS_FILESYS_CONFIG with default values.’)

Debug support:

No

Verbose support:

No

Parameters accepted:

Yes:

v PARM(’SYSPLEX’) - Specifies that the check verify file system configuration.

PARM(SYSPLEX) is the default.

v PARM(’NOPLEX’) - Verifies the MLS configuration.

Use SYSPLEX (the default) if you’re running in a sysplex. Change the

parameter to NOPLEX if you’re running with a MONOPLEX configuration.

z/OS UNIX checks

362 IBM Health Checker for z/OS User’s Guide

|

Reference:

For more information on file systems, see z/OS UNIX System Services

Planning, GA22-7800, and APAR II3129.

Messages:

See z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

USS_MAXSOCKETS_MAXFILEPROC

Description:

MAXSOCKETS (AF_INET) and MAXFILEPROC are set high enough

Best practice:

This check will look at the values for MAXSOCKETS and MAXFILEPROC and

give an exception message if either is too low. If set too low, you can run out of

sockets or file descriptors that can be used. MAXSOCKETS and

MAXFILEPROC values will each be compared to 64000 unless the value is

overridden in HZSPRMxx.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMUSS,USS_MAXSOCKETS_MAXFILEPROC)

SEVERITY(LOW)

INTERVAL(24:00)

PARM(’MAXSOCKETS=64000,MAXFILEPROC=64000’)

DATE(20050224)

REASON(’Sample for USS_MAXSOCKETS_MAXFILEPROC with default values.’)

Debug support:

No

Verbose support:

No

Parameters accepted:

Yes. PARM(’MAXSOCKETS=maxsockets,MAXFILEPROC=maxfileproc’)

MAXSOCKETS and MAXFILEPROC are required integer values to be

compared with internal values.

v The valid range for MAXSOCKETS is 0 through 16777215.

v The valid range for MAXFILEPROC is 3 through 524287.

The default is PARM(’ MAXFILESOCKETS=64000,MAXFILEPROC=64000’).

You can also specify these parameters without keywords, as

PARM(’maxsockets,maxfileproc’).

Reference:

See:

v z/OS MVS System Commands for information on the SETOMVS command.

v z/OS UNIX System Services Planning for information on how to change the

MAXSOCKETS and MAXFILEPROC values using the SETOMVS command.

z/OS UNIX checks

Chapter 13. IBM Health Checker for z/OS checks 363

|
|
|
|
|

|

|
|

Messages:

See z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

USS_PARMLIB

Description:

This check will compare z/OS UNIX System Services current system settings

with those specified in the BPXPRMxx parmlib members used during

initialization. The z/OS UNIX dynamic settings that will be checked are:

 AUTOCVT

MAXPROCSYS

MAXPROCUSER

MAXUIDS

MAXFILEPROC

MAXTHREADTASKS

MAXTHREADS

MAXPTYS

MAXFILESIZE

MAXCORESIZE

MAXASSIZE

MAXCPUTIME

MAXMMAPAREA

MAXSHAREPAGES

SHRLIBRGNSIZE

SHRLIBMAXPAGES

PRIORITYGOAL

IPCMSGNIDS

IPCMSGQBYTES

IPCMSGQMNUM

IPCSEMNIDS

IPCSEMNOPS

IPCSEMNSEMS

IPCSHMMPAGES

IPCSHMNIDS

IPCSHMNSEGS

IPCSHMSPAGES

FORKCOPY

SUPERUSER

TTYGROUP

STEPLIBLIST

USERIDALIASTABLE

LIMMSG

PRIORITYPG

FILESYSTYPE

VERSION

ROOT/MOUNT FILESYSTEM

NETWORK

SYSCALL_COUNTS

MAXQUEUEDSIGS

AUTHPGMLIST

v For the FILESYSTYPE statement, the types specified in the BPXPRMxx

parmlib members will be compared to what Physical File Systems are

currently running.

v • For the ROOT/MOUNT FILESYSTEM statements, the following will be

checked:

– Mount point

– Mode, RDWR for example.

– Automove setting

– PARM subparameter

v For the NETWORK statement, only the MAXSOCKETS value will be

checked for AF_INET and AF_INET6.

Best practice:

When dynamic changes are made to z/OS UNIX, the BPXPRMxx parmlib

members should be updated with the changes so that they will be available the

next z/OS UNIX is initialized.

z/OS releases the check applies to:

z/OS V1R9 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

z/OS UNIX checks

364 IBM Health Checker for z/OS User’s Guide

|

|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|

|

|

|

|
|

|
|
|
|

|
|

|
|

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE

 CHECK(IBMUSS,USS_PARMLIB)

 SEVERITY(LOW) INTERVAL(01:00) DATE(20060112)

 REASON(‘Reconfiguration settings should be kept in a’

 ‘permanent location so they are available’

 ‘the next time z/OS UNIX is initialized.’)

Debug support:

No

Verbose support:

No

Parameters accepted:

No

Reference:

See:

v z/OS UNIX System Services Planning

v z/OS MVS Initialization and Tuning Reference

Messages:

See z/OS MVS System Messages, Vol 3 (ASB-BPX).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

 Output:

CHECK(IBMUSS,USS_PARMLIB)

START TIME: 03/29/2006 16:09:05.512021

CHECK DATE: 20060112 CHECK SEVERITY: LOW

BPXH003I z/OS UNIX System Services was initialized using OMVS=(DD,DN),

where each 2-character item is a BPXPRMxx suffix.

BPXH041I The following differences were found between the system

settings and the BPXPRMxx parmlib concatenation:

Option BPXPRMxx Value System Value

MAXFILEPROC 256 111

MAXPTYS 256 255

MAXCPUTIME 1000 999

Physical File Systems not in parmlib

AUTOMNT

Changed File Systems

File System: ZOS18.ETC.HFS

BPXPRMxx Value:

 Path: etc

 Automove: AUTOMOVE

 Access: RDWR

 Parm: NONE

System Value:

 Path: etc

 Automove: AUTOMOVE

z/OS UNIX checks

Chapter 13. IBM Health Checker for z/OS checks 365

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Access: READ

 Parm: NONE

File System: MYHFS

BPXPRMxx Value:

 Path: /jkad

 Automove: AUTOMOVE

 Access: RDWR

 Parm: NONE

System Value:

 This file system is currently not mounted.

* Low Severity Exception *

BPXH040E One or more differences were found between the system settings

and the settings in the current BPXPRMxx parmlib concatenation.

 Explanation: Check USS_PARMLIB detected changes made to either the

 system settings or to the BPXPRMxx parmlib members.

 System Action: The system continues processing.

 Operator Response: Report this problem to the system programmer.

 System Programmer Response: View the message buffer for information

 on what values have changed. Use the DISPLAY OMVS,OPTIONS command

 to view what the current system settings are. The system values can

 be changed dynamically by using the SETOMVS command. If the current

 system values are desired, then a permanent definition should be

 created so the values will be available the next time z/OS UNIX

 System Services is initialized. A permanent definition can be

 created by editing the BPXPRMxx parmlib members to include the

 desired values.

 Problem Determination: See BPXH041I in the message buffer.

 Source: z/OS UNIX System Services

 Reference Documentation: See MVS System Command Reference in z/OS

 MVS System Commands for information on using the DISPLAY

 OMVS,OPTIONS command. See MVS System Command Reference in z/OS MVS

 System Commands and Managing operations, section: Dynamically

 changing the BPXPRMxx parameter values in z/OS UNIX System Services

 Planning for information on using the SETOMVS command. See

 Customizing z/OS UNIX in z/OS UNIX System Services Planning and

 BPXPRMxx in z/OS MVS Initialization and Tuning Reference for

 information on editing the BPXPRMxx parmlib members.

 Automation: N/A

 Check Reason: Reconfiguration settings should be kept in a permanent

 location so they are available the next time z/OS UNIX is

 initialized.

VSAM checks (IBMVSAM)

VSAMRLS_DIAG_CONTENTION

Description:

Checks for VSAM RLS contention by looking at registered resources. Check

displays a contention table if detected.

z/OS UNIX checks

366 IBM Health Checker for z/OS User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Best practice:

IBM recommends monitoring VSAM RLS contention.

z/OS releases the check applies to:

z/OS V1R8 and up.

Type of check (local or remote):

Local

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMVSAMRLS,VSAMRLS_DIAG_CONTENTION)

SEVERITY(HI)

INTERVAL(00:05)

DATE(20060524)

PARMS(‘ROWS(20)’)

REASON(’Gives the customer ability to monitor VSAM RLS contention.’)

Debug support:

No

Verbose support:

No

Parameters accepted:

Yes, specify an integer, minimum 1, indicating the maximum number of rows to

be displayed in the contention table, (keyword: ROWS).

Reference:

For additional information see VSAM RLS Latch Contention in z/OS DFSMSdfp

Diagnosis.

Messages:

z/OS MVS System Messages, Vol 9 (IGF-IWM)

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

VSAM_INDEX_TRAP

Description:

Checks to see if the VSAM index trap is enabled or not. The index trap

validates each index record before the system writes it, looking for any

corruption in the records.

Best practice:

IBM recommends running with the index trap enabled because it validates index

records before they are written to DASD. If the system detects an error, it

bypasses the write, preventing permanent damage to the data set structure. In

addition, the index trap captures diagnostic data.IBM recommends running with

the index trap enabled because it validates index records before they are

written to DASD. If the system detects an error, it bypasses the write,

preventing permenent damage to the data set structure. In addition, the index

trap captures diagnostic data.

z/OS releases the check applies to:

z/OS V1R4 and up.

z/OS UNIX checks

Chapter 13. IBM Health Checker for z/OS checks 367

Type of check (local or remote):

Local

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE

 CHECK(IBMVSAM,VSAM_INDEX_TRAP)

 ACTIVE

 SEVERITY(MED) INTERVAL(24:00) DATE(20070122)

 REASON(’IBM recommends running with the VSAM Index Trap enable.’)

Debug support:

No

Verbose support:

No

Parameters accepted:

No.

Reference:

For more information on the VSAM index trap, see:

v z/OS DFSMSdfp Diagnosis

v z/OS DFSMS Using Data Sets

Messages:

z/OS MVS System Messages, Vol 6 (GOS-IEA).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

VSAMRLS_SINGLE_POINT_FAILURE

Description:

Verifies that the SHCDSs are on unique volumes.

Best practice:

To avoid single points of failure, IBM suggests that you allocate SHCDS for a

system on unique volumes.

z/OS releases the check applies to:

z/OS V1R8 and up.

Type of check (local or remote):

Local

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMVSAMRLS,VSAMRLS_SINGLE_POINT_FAILURE)

SEVERITY(HI)

INTERVAL(24:00)

DATE(20060610)

REASON(‘Prevents a single point of failure due to a lost volumes.’)

Debug support:

No

z/OS UNIX checks

368 IBM Health Checker for z/OS User’s Guide

Verbose support:

No

Parameters accepted:

No.

Reference:

For additional information see Defining Sharing Control Data Sets in z/OS

DFSMS Storage Administration Reference

Messages:

z/OS MVS System Messages, Vol 9 (IGF-IWM)

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

VSM checks (IBMVSM)

The storage configuration is established during system initialization, based on

system parameters, the size of the modules in LPA, and the nucleus. Your storage

configuration can change when the system is IPLed even if system parameters

have not changed.

IBM Health Checker for z/OS provides several checks and diagnostic reports to

detect when the storage configuration has changed or may need to be changed.

Information regarding the storage configuration is saved for comparison with prior

IPLs.

The VSM checks include different storage reports, including reports showing IPL

parameters, size and location of CSA, SQA, LPA and the nucleus, current common

storage allocation, and the five highest users of common storage (available when

storage tracking is active). These reports are generated along with the check

output, as appropriate.

VSM_ALLOWUSERKEYCSA

Description:

This check examines the setting of the ALLOWERUSERKEYCSA(YES|NO)

DIAGxx option and compares it to the IBM recommended setting of

ALLOWUSERKEYCSA(NO). A warning is issued if the setting is YES either by

default or through explicit specification as ALLOWERUSERKEYCSA(YES).

Best practice:

Allowing programs to obtain user key CSA creates a security risk because CSA

storage can then be modified by any unauthorized program. IBM recommends

that ALLOWERUSERKEYCSA(NO) be coded in the active DIAGxx parmlib

member. Note, however, that coding ALLOWUSERKEYCSA(NO) for this option

will cause user key programs attempting to obtain CSA storage to ABEND with

abend code B78, reason code xxxxxx5C. (The first three bytes of the reason

code provide internal failure details.) The default setting for this option is

ALLOWUSERKEYCSA(YES), to maintain compatibility with the behavior of prior

z/OS releases.

z/OS releases the check applies to:

z/OS V1R8 and up.

Parameters accepted:

No.

z/OS UNIX checks

Chapter 13. IBM Health Checker for z/OS checks 369

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE,

 CHECK(IBMVSM,VSM_ALLOWUSERKEYCSA),

 INTERVAL(ONETIME),

 SEVERITY(LOW),

 DATE(’20060201’)

Debug support:

No

Verbose support:

No

Reference:

For more information, see z/OS MVS Initialization and Tuning Reference and

z/OS MVS System Codes.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

IGVH110E The ALLOWUSERKEYCSA DIAGxx option has not been specified

Explanation: The ALLOWUSERKEYCSA DIAGxx option has not been

specified, and has been defaulted by the system to

ALLOWUSERKEYCSA(YES). Although the default is YES for compatibility,

IBM recommends that you specify ALLOWUSERKEYCSA(NO) in order to

prevent user key CSA from being obtained. User key CSA creates a

security risk because any unauthorized program can modify it.

However, specifying ALLOWUSERKEYCSA(NO) may cause programs obtaining

this storage to fail.

System Action: The system continues processing.

Operator Response: Please report this problem to the system

programmer.

System Programmer Response: Consider coding ALLOWUSERKEYCSA(NO) in

the DIAGxx parmlib member. You may issue the SET DIAG= command to

have your changes take immediate effect.

Problem Determination: n/a

Source: Virtual Storage Manager

Reference Documentation: z/OS MVS Initialization and Tuning Reference

Automation: n/a

Check Reason: Validate the AllowUserKeyCSA DIAGxx Setting

VSM_CSA_LIMIT

Description:

The current size of CSA against a minimum suggested value.

Best practice:

The size of CSA should be adequate to meet the needs of the applications that

VSM checks

370 IBM Health Checker for z/OS User’s Guide

run on your system. It can be established explicitly by the operator during

system initialization. It can also be specified in the system parameter list

(IEASYSxx), specified by the operator response SYSP=xx, or the default

IEASYS00. The size of CSA can be greater than or less than the requested

size because it is affected by other system areas that change when a new IPL

occurs. For example, an increase in the size of SQA or LPA modules that must

be loaded in storage below 16 megabytes can reduce the size of CSA or cause

CSA to be allocated at a lower address. When the allocation of CSA crosses a

1-megabyte segment, the size of private storage is also changed. The size of

LPA can cause less storage to be available in private and CSA. This should be

considered when moving modules to LPA. System performance improves when

the search order for important applications is appropriate and adequate storage

is available. Whenever possible and when you would not compromise available

virtual storage, you should use dynamic LPA to place frequently used modules

in LPA. Make sure you do not inadvertently duplicate modules, module names,

or aliases that already exist in LPA. Fixed LPA and fixed storage should be

reserved for modules that should always be paged in because this reduces the

available central storage on the system.

z/OS releases the check applies to:

z/OS V1R4 and up, in both ESA and z/Architecture modes.

Parameters accepted:

Yes:

v Number of bytes with optional suffix (K,M) indicating the minimum amount of

below the line CSA required on the system (keyword: CSA)

v Number of bytes with optional suffix (K,M) indicating the minimum amount of

above the line CSA required on the system (keyword: ECSA)

v Default: CSA(512K),ECSA(512K)

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

CHECK(IBMVSM,VSM_CSA_LIMIT),

INTERVAL(ONETIME),

SEVERITY(LOW),

PARM(’CSA(512K),ECSA(512K)’),

DATE(’20040405’)

Reference:

For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

VSM_SQA_LIMIT

Description:

The current size of SQA against a minimum suggested value.

Best practice:

The total amount of virtual storage and number of private virtual storage

address spaces affect the system’s use of SQA. Like CSA, SQA size is

VSM checks

Chapter 13. IBM Health Checker for z/OS checks 371

determined by the operator or the system parameter list. When SQA falls below

a threshold, a critical storage message is issued, new jobs cannot be created,

and address spaces cannot be swapped in until the shortage is alleviated. If the

size allocated for extended SQA is too small or is used up very quickly, the

system attempts to use extended CSA. When both extended SQA and

extended CSA are used up, the system allocates space from SQA and CSA

below 16 megabytes. The allocation of this storage could eventually lead to a

system failure.

z/OS releases the check applies to:

z/OS V1R4 and up, in both ESA and z/Architecture modes.

Parameters accepted:

v Number of bytes with optional suffix (K,M) indicating the minimum amount of

below the line SQA required on the system (keyword: SQA)

v Number of bytes with optional suffix (K,M) indicating the minimum amount of

above the line SQA required on the system (keyword: ESQA)

v Default: SQA(512K),ESQA(8M)

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

CHECK(IBMVSM,VSM_SQA_LIMIT),

INTERVAL(ONETIME),

SEVERITY(LOW),

PARM(’SQA(512K),ESQA(8M)’),

DATE(’20040405’)

Reference:

For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

VSM_PVT_LIMIT

Description:

Whether the size of private storage is adequate to meet the needs of

applications that run on your system.

Best practice:

The total amount of private virtual storage available to applications on the

system is a direct result of the size of CSA and SQA, as well as LPA, MLPA,

and FLPA. Changes to the size of any of these areas may impact the amount of

virtual storage remaining to satisfy private storage requests.

z/OS releases the check applies to:

z/OS V1R4 and up, in both ESA and z/Architecture modes.

Parameters accepted:

v Number of bytes with optional suffix (K,M) indicating the minimum amount of

below the line PVT required on the system (keyword: PVT)

VSM checks

372 IBM Health Checker for z/OS User’s Guide

v Number of bytes with optional suffix (K,M) indicating the minimum amount of

above the line PVT required on the system (keyword: EPVT)

v Default:PVT(1M),EPVT(512M)

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

CHECK(IBMVSM,VSM_PVT_LIMIT),

INTERVAL(ONETIME),

SEVERITY(LOW),

PARM(’PVT(1M),EPVT(512M)’),

DATE(’20040405’)

Reference:

For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

VSM_CSA_THRESHOLD

Description:

The current allocation of CSA storage.

Best practice:

When the current allocation has reached the user-specified or IBM-specified

threshold value, an exception message and storage reports are created. The

threshold report includes a comparison to high-water marks on the last IPL as

well as the amount of the current allocation. The high-water mark is the highest

amount of storage allocated since the system was IPLed.

 If the threshold is specified as a percentage value (the default), an exception

will be issued when the allocation of storage exceeds that threshold. If the

threshold is given as a size in bytes, an exception will be issued when the

amount of storage remaining is less than the specified size.

z/OS releases the check applies to:

z/OS V1R4 and up, in both ESA and z/Architecture modes.

Parameters accepted:

v An integer, 0-100, indicating the threshold percent for utilization of CSA below

the line, or a size in bytes with an optional suffix (K,M) indicating the

minimum amount of unallocated CSA. (keyword: CSA, if a percentage value

is given, a percent sign ’%’ must be included)

v An integer, 0-100, indicating the threshold percent for utilization of CSA

above the line, or a size in bytes with an optional suffix (K,M) indicating the

minimum amount of unallocated ECSA. (keyword: ECSA, if a percentage

value is given, a percent sign ’%’ must be included)

v Default: CSA(80%),ECSA(80%)

User override of IBM values:

The following shows keywords you can use to override check values on either a

VSM checks

Chapter 13. IBM Health Checker for z/OS checks 373

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

CHECK(IBMVSM,VSM_CSA_THRESHOLD),

INTERVAL(00:05),

SEVERITY(HIGH),

PARM(’CSA(80%),ECSA(80%)’),

DATE(’20040405’)

Reference:

For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

VSM_SQA_THRESHOLD

Description:

The current allocation of SQA storage.

Best practice:

When the current allocation has reached the user-specified or IBM-specified

threshold value, an exception message and storage reports are created. The

threshold report includes a comparison to high-water marks on the last IPL as

well as the amount of the current allocation. The high-water mark is the highest

amount of storage allocated since the system was IPLed.

 If the threshold is specified as a percentage value (the default), an exception

will be issued when the allocation of storage exceeds that threshold. If the

threshold is given as a size in bytes, an exception will be issued when the

amount of storage remaining is less than the specified size.

z/OS releases the check applies to:

z/OS V1R4 and up, in both ESA and z/Architecture modes.

Parameters accepted:

v An integer, 0-100, indicating the threshold percent for utilization of SQA

below the line, or a size in bytes with an optional suffix (K,M) indicating the

minimum amount of unallocated SQA. (keyword: SQA, if a percentage value

is given, a percent sign ’%’ must be included)

v An integer, 0-100, indicating the threshold percent for utilization of ESQA

above the line, or a size in bytes with an optional suffix (K,M) indicating the

minimum amount of unallocated ESQA . (keyword: ESQA , if a percentage

value is given, a percent sign ’%’ must be included)

v Default:SQA(80%),ESQA(80%)

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

VSM checks

374 IBM Health Checker for z/OS User’s Guide

UPDATE,

CHECK(IBMVSM,VSM_SQA_THRESHOLD),

INTERVAL(00:15),

SEVERITY(MED),

PARM(’SQA(80%),ESQA(80%)’),

DATE(’20050405’)

Reference:

For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

VSM_CSA_CHANGE

Description:

Changes in the size of CSA or private (including the extended areas) since the

last IPL.

Best practice:

The values provided by IBM are 1 megabyte and 10 megabytes for storage

below the line and storage above the line, respectively. These value are helpful

in determining when the module growth in LPA or the nucleus could reduce the

size of the private area.

z/OS releases the check applies to:

z/OS V1R4 and up, in both ESA and z/Architecture modes.

Parameters accepted:

v Number of bytes with optional suffix (K,M) indicating the maximum

acceptable change in CSA or private below the line before an exception is

issued. (keyword: BELOW)

v Number of bytes with optional suffix (K,M) indicating the maximum

acceptable change in CSA or private above the line before an exception is

issued. (keyword: ABOVE)

v Default: BELOW(1M),ABOVE(10M)

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE,

CHECK(IBMVSM,VSM_CSA_CHANGE),

INTERVAL(ONETIME),

SEVERITY(HIGH),

PARM(’BELOW(1M),ABOVE(10M)’),

DATE(’20040405’)

Reference:

For more information, see z/OS MVS Initialization and Tuning Reference.

Messages:

See z/OS MVS System Messages, Vol 9 (IGF-IWM).

SECLABEL recommended for multilevel security (MLS) users:

SYSLOW - see z/OS Planning for Multilevel Security and the Common Criteria

for information on using SECLABELs.

VSM checks

Chapter 13. IBM Health Checker for z/OS checks 375

Cross system coupling facility (XCF) checks (IBMXCF)

XCF_CF_CONNECTIVITY

Description:

Checks that the system has connectivity to each coupling facility, that multiple

links (a/k/a CHPIDs or CFLINKs) to each coupling facility are both ONLINE and

OPERATING, and identify single points of failure.

Best practice:

To avoid single points of failure it is recommended that a system have

connectivity to each coupling facility and that there are multiple links that are

both ONLINE and OPERATIONAL.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

None.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_CF_CONNECTIVITY)

 SEVERITY(MED) INTERVAL(004:00) DATE(20050130)

 REASON(’Avoid problems with CF Connectivity.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_FDI

Description:

Check that the XCF failure detection interval (FDI) equates to the formula

″multiplier * SPINTIME + increment″. The FDI is the amount of time a system

can be stopped before it is considered ’status update missing’.

Best practice:

It is recommended that the FDI be set to 2 times the default spin loop timeout

interval (SPINTIME in the EXSPATxx parmlib member) plus 5 seconds to

balance the reduction of sympathy sickness with the risk of terminating a

system that will recover.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

1. multiplier - (must be an integer in the range of 0 to 86400)

2. increment - (must be an integer in the range of 0 to 86400)

User override of IBM values:

The following shows keywords you can use to override check values on either a

XCF checks

376 IBM Health Checker for z/OS User’s Guide

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_FDI)

 SEVERITY(MED) INTERVAL(004:00) DATE(20050130)

 PARM(’2,5’)

 REASON(’Allow adequate time to recover from spin

 situation before system is assumed to have

 failed.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_SFM_ACTIVE

Description:

Check that the status of Sysplex Failure Management (SFM) policy is as

recommended.

Best practice:

It is recommended that Sysplex Failure Management (SFM) be active to handle

failure conditions in a sysplex with little or no operator involvement.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

Recommended SFM status (must be either ACTIVE or INACTIVE)

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE CHECK(IBMXCF,XCF_SFM_ACTIVE)

 SEVERITY(MED) INTERVAL(004:00) DATE(20050130)

 PARM(’ACTIVE’)

 REASON(’An SFM policy provides better failure

 management.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_CLEANUP_VALUE

Description:

Check that the XCF cleanup interval is set to a reasonable value to hasten the

removal of a failed system from the sysplex. Cleanup interval is the maximum

number of seconds allowed for members of a group to clean up their

processing before the system is put into a wait state.

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 377

Best practice:

It is recommended that the XCF cleanup time be set to 15 seconds.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

The recommended XCF cleanup time in seconds. (must be an integer in the

range of 0 to 86400)

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_CLEANUP_VALUE)

 SEVERITY(MED) INTERVAL(004:00) DATE(20050130)

 PARM(’15’)

 REASON(’Quick removal of a partitioned system from the

 SYSPLEX.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_CDS_SEPARATION

Description:

Check that sysplex couple data set and function couple data sets are properly

isolated with alternates

Best practice:

It is recommended that the SYSPLEX, CFRM and LOGR primary couple data

sets reside on different volumes. It is also recommended that each primary

couple data set reside on a different volume than its corresponding alternate

couple data set.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

None.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_CDS_SEPARATION)

 SEVERITY(HI) INTERVAL(001:00) DATE(20050130)

 REASON(’Ensure that CDS separation has been maintained.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

XCF checks

378 IBM Health Checker for z/OS User’s Guide

SECLABEL recommended for MLS users:

SYSLOW

XCF_SYSPLEX_CDS_CAPACITY

Description:

Check that the maximum number of systems, groups, and members have not at

some time reached a threshold determined by the best practice amount of

space required for growth of systems, groups, and members.

Best practice:

It is recommended that the sysplex couple dataset is formatted large enough to

allow for the growth of 1 system, 2 groups and 5 members.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

1. Recommended growth space for systems. (must be an integer in the range

of 0 to 32)

2. Recommended growth space for groups. (must be an integer in the range of

0 to 2045)

3. Recommended growth space for members. (must be an integer in the range

of 0 to 2047)

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_SYSPLEX_CDS_CAPACITY)

 SEVERITY(MED) INTERVAL(000:30) DATE(20070425)

 PARM(’1,2,5’)

 REASON(’Check sysplex CDS capacities.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_TCLASS_HAS_UNDESIG

Description:

Check that all transport classes are set up to service the pseudo-group name

’UNDESIG’. This ensures that any XCF message can use each transport class.

This check is appropriate for both monoplex and sysplex mode configurations.

Best practice:

It is recommended that all transport classes are set up to service the

pseudo-group name ’UNDESIG’.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

None.

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 379

|

|

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_TCLASS_HAS_UNDESIG)

 SEVERITY(LOW) INTERVAL(024:00) DATE(20050130)

 REASON(’Avoid problems with XCF signalling.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_TCLASS_CONNECTIVITY

Description:

Check that all defined transport classes are assigned at least to the indicated

number of pathouts (outbound paths). This check is appropriate for both

monoplex and sysplex mode configurations.

Best practice:

It is recommended that all defined transport classes have at least 1 pathout

assigned to the class per target system.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

Minimum number of operational signalling paths for a transport class. (must be

an integer in the range of 1 to 99999)

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_TCLASS_CONNECTIVITY)

 SEVERITY(MED) INTERVAL(004:00) DATE(20050130)

 PARM(’1’)

 REASON(’Avoid problems with XCF signalling.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_TCLASS_CLASSLEN

Description:

Check that there are at least a certain number of different transport classes with

unique class lengths defined. This check is appropriate for both monoplex and

sysplex mode configurations, although it will return more useful results in

sysplex mode.

XCF checks

380 IBM Health Checker for z/OS User’s Guide

|
|

|
|
|

Best practice:

It is recommended that there are at least 2 different transport classes with

unique class lengths defined.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

Minimum number of different transport classes with unique class lengths. (must

be an integer in the range of 1 to 17). Use a parameter setting of 1 for

monoplex mode.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

 UPDATE CHECK(IBMXCF,XCF_TCLASS_CLASSLEN)

 SEVERITY(MED) INTERVAL(024:00) DATE(20050130)

 PARM(’2’)

 REASON(’Avoid problems with XCF signalling.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_SIG_CONNECTIVITY

Description:

Check that multiple pathin/pathout pairs are in the working state for each

system in the sysplex connected to the current system.

Best practice:

For availability It is recommended for availability that at least 2 pathin/pathout

pairs are in the working state for each system in the sysplex connected to the

current system.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

The minimum number of pathin/pathout pair counts. (must be an integer in the

range of 1 to 99999)

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_SIG_CONNECTIVITY)

 SEVERITY(MED) INTERVAL(000:30) DATE(20050130)

 PARM(’2’)

 REASON(’Avoid single points of failure problems with XCF signaling.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 381

|
|

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_DEFAULT_MAXMSG

Description:

For each path check that there is a MAXMSG of at least the indicated minimum

value specified by or inherited from the COUPLExx, transport class definition, or

path definition.

Best practice:

It is recommended for availability that there is a minimum MAXMSG value of

2000 for each transport class.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

The minimum MAXMSG value for transport classes. (must be an integer in the

range of 1 to 999999

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_DEFAULT_MAXMSG)

 SEVERITY(LOW) INTERVAL(024:00) DATE(20050130)

 PARM(’2000’)

 REASON(’Avoid problems with XCF signalling.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_MAXMSG_NUMBUF_RATIO

Description:

Check each inbound signal path and ensure that each can support at least the

indicated minimum number of messages from the sending system.

Best practice:

It is recommended that each inbound signal path have enough buffer space to

allow at least 30 messages to be received simultaneously.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

The minimum number of XCF messages that an inbound XCF signal path

should support to avoid message backup. (must be an integer in the range 1 to

999999)

User override of IBM values:

The following shows keywords you can use to override check values on either a

XCF checks

382 IBM Health Checker for z/OS User’s Guide

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_MAXMSG_NUMBUF_RATIO)

 SEVERITY(MED) INTERVAL(004:00) DATE(20050130)

 PARM(’30’)

 REASON(’Avoid problems with XCF signalling.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_SIG_PATH_SEPARATION

Description:

Check for single points of failure for paths to all systems which are connected.

Best practice:

It is recommended that there are no single points of failure for paths.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

None.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_SIG_PATH_SEPARATION)

 SEVERITY(MED) INTERVAL(000:30) DATE(20050130)

 REASON(’Avoid problems with XCF signalling in CFs.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_SIG_STR_SIZE

Description:

Check that there are enough signalling structure entries to support full

connectivity in the sysplex.

Best practice:

It is recommended that there be at least 20 available list entries per list to allow

full connectivity.

z/OS releases the check applies to:

z/OS V1R4 and up.

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 383

Parameters accepted:

The minimum number of entries available for each list. (must be an integer in

the range of 1 to 999999)

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_SIG_STR_SIZE)

 SEVERITY(MED) INTERVAL(008:00) DATE(20050130)

 PARM(’20’)

 REASON(’Avoid problems with XCF signalling in CFs.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_CF_STR_PREFLIST

Description:

Check that each structure is allocated according to the preference list in the

CFRM policy.

Best practice:

It is recommended that structure placement is in accordance with the

preference list.

z/OS releases the check applies to:

z/OS V1R4 and up.

Parameters accepted:

None.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_CF_STR_PREFLIST)

 SEVERITY(MED) INTERVAL(008:00) DATE(20050130)

 REASON(’Check Structure preference lists.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF_CF_STR_EXCLLIST

Description:

Check that each structure is excluded from all structures coded in its exclusion

list.

XCF checks

384 IBM Health Checker for z/OS User’s Guide

Best practice:

It is recommended that structure placement is in accordance with its exclusion

list.

Parameters accepted:

None.

z/OS releases the check applies to:

z/OS V1R4 and up.

User override of IBM values:

The following shows keywords you can use to override check values on either a

POLICY statement in the HZSPRMxx parmlib member or on a MODIFY

command. This statement may be copied and modified to override the check

defaults:

UPDATE CHECK(IBMXCF,XCF_CF_STR_EXCLLIST)

 SEVERITY(MED) INTERVAL(008:00) DATE(20050130)

 REASON(’Check Structure exclusion lists.’)

Reference:

For more information, see z/OS MVS Setting Up a Sysplex.

Messages:

See z/OS MVS System Messages, Vol 10 (IXC-IZP).

SECLABEL recommended for MLS users:

SYSLOW

XCF checks

Chapter 13. IBM Health Checker for z/OS checks 385

XCF checks

386 IBM Health Checker for z/OS User’s Guide

Appendix. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 2006, 2007 387

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

388 IBM Health Checker for z/OS User’s Guide

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006, 2007 389

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Programming Interface Information

This book documents intended Programming Interfaces that allow the customer to

write programs to obtain services of z/OS.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

v ACF/VTAM®

v CICS®

v CUA®

v CT®

v Current®

v DB2®

390 IBM Health Checker for z/OS User’s Guide

v DFSMSdfp™

v DFSMSdss™

v DFSMShsm™

v DFSMSrmm™

v DFSMS/MVS®

v DFSORT™

v Extended Services®

v Footprint®

v Hiperspace™

v IBM

v IBMLink™

v IMS™

v MVS™

v MVS/ESA™

v MVS/SP™

v Notes™ Lotus® Development Corporation

v OS/2®

v OS/390®

v OS/400®

v Parallel Sysplex®

v Perform™

v PR/SM™

v RACF®

v Resource Link™

v RETAIN®

v RMF™

v S/390®

v SecureWay®

v Sysplex Timer®

v System/360™

v System/370™

v System/390®

v Systems Application Architecture®

v VTAM®

v z/Architecture™

v z/OS

v z/OS.e™

v zSeries™

v 3090™

v 3890™

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 391

392 IBM Health Checker for z/OS User’s Guide

Index

A
accessibility 387

ACTIVATE parameter
HZSPRMxx 57, 70

MODIFY command 57, 70

ADD PARMLIB parameter
HZSPRMxx 70

MODIFY command 70

ADD POLICY parameter
HZSPRMxx 71

MODIFY command 71

ADDNEW parameter
HZSPRMxx 58

MODIFY command 58

ADDREPLACE POLICY parameter
HZSPRMxx 71

MODIFY command 71

allocate the HZSPDATA data set 8

automating
check output

exception messages 24

C
categories

HZSPRMxx
syntax 42

MODIFY command
syntax 42

check description
Communications Server 306

consoles 314

Contents supervision 321

Global Resource Serialization 327

PDSE 331

RACF 331

RRS 345

RSM 349

SDUMP 354

system logger 357

TSO/E 359

VSAM 366

VSM 369

XCF 376

z/OS UNIX 361

check messages 19

message input data set 162

CSECT 187, 191

example 163

planning 159

tags 172

variables 156

check output 19

evaluating 23

exception messages
automating 24

resolving exceptions 23

check output (continued)
state

reading 26

check routine
entry and exit linkage 91

environment 89, 111

function codes 93

remote check 117

gotchas 90

HZSFMSG macro 95, 119

HZSPQE fields, using 92, 116

input registers 90

issuing messages in 95, 119

output registers 90

programming considerations 89, 111

recovery 91, 103, 111, 127

reporting exceptions 96, 121, 143

requirements 90, 111

restrictions 90, 111

sample 87, 109

writing 87, 110

check terminology 80

checks
deleting 40

description 301

GRS_CONVERT_RESERVES 328

GRS_EXIT_PERFORMANCE 328

GRS_GRSQ_SETTING 329

GRS_Mode 327

GRS_RNL_IGNORED_CONV 330

GRS_SYNCHRES 327

managing 35

using MODIFY 38

using SDSF 37

obtaining additional 17

RACF_FACILITY_ACTIVE 342

RACF_GRS_RNL 331

RACF_IBMUSER_REVOKED 344

RACF_OPERCMDS_ACTIVE 342

RACF_SENSITIVE_RESOURCES 336

RACF_TAPEVOL_ACTIVE 342

RACF_TEMPDSN_ACTIVE 342

RACF_TSOAUTH_ACTIVE 342

RACF_UNIXPRIV_ACTIVE 342

RRS_DUROffloadSize 347

RRS_MUROffloadSize 347

RRS_RMDataLogDuplexMode 345

RRS_RMDOffloadSize 346

RRS_RSTOffloadSize 348

RSM_AFQ 351

RSM_HVSHARE 349

RSM_MAXCADS 351

RSM_MEMLIMIT 350

RSM_REAL 353

RSU_RSU 353

TSOE_PARMLIB_ERROR 360

TSOE_USERLOGS 359

USS_FILESYS_CONFIG 362

© Copyright IBM Corp. 2006, 2007 393

checks (continued)
USS_MAXSOCKETS_MAXFILEPROC 361, 363

USS_PARMLIB 364

Communications Server
check description 306

completion codes
HZSPRINT utility 31

consoles
check description 314

Contents supervision
check description 321

creating an HZSPRMxx parmlib member 15

creating security definitions 10

assigning a user ID with superuser authority 10

for a IBM Health Checker for z/OS log stream 9

for HZSPRINT utility 11

in an MLS environment 14

D
DEACTIVATE parameter

HZSPRMxx 58

MODIFY command 58

defining a log stream 8

DELETE parameter
HZSPRMxx 58

MODIFY command 58

deleting checks 40

description
checks 301

developing checks 87, 109, 131

check routine 87, 110

REXX check 131

sample 87, 109, 131

disability 387

DISPLAY parameter
HZSPRMxx 59

output 72

MODIFY command 59

output 72

E
entry and exit linkage

check routine 91

example
message input 163

policy 50

exception messages
automating 24

evaluating 23

resolving 19, 23

F
F command

parameters 53

syntax 53

filters
HZSPRMxx 57

MODIFY command 57

function codes 93

remote check 117

G
Global Resource Serialization

check description 327

GRS_CONVERT_RESERVES 328

GRS_EXIT_PERFORMANCE 328

GRS_GRSQ_SETTING 329

GRS_Mode 327

GRS_RNL_IGNORED_CONV 330

GRS_SYNCHRES 327

H
HZSADDCHECK exit routine

adding checks to the system 151

environment 149

input registers 150

multiple checks in 151

output registers 150

sample 87, 109

writing 147

HZSADDCK macro 218, 235

HZSCHECK macro 275, 288

HZSCPARS macro 289, 300

HZSFMSG macro 236, 259

in check routine 95, 119

HZSLFMSG function
in REXX check 141

HZSPDATA data set
allocating 8

HZSPQE 92, 116

HZSPRINT utility
completion codes 31

output example 31

security definitions for 11

setting up 8

using 29

HZSPRMxx
ACTIVATE parameter 57, 70

ADD PARMLIB parameter 70

ADD POLICY parameter 71

ADDNEW parameter 58

ADDREPLACE POLICY parameter 71

DEACTIVATE parameter 58

DELETE parameter 58

DISPLAY parameter 59

output 72

filters 57

LOGGER parameter 61

parameters 53

POLICY parameter 71, 72

REFRESH parameter 61

REMOVE POLICY parameter 71, 72

REPLACE,PARMLIB parameter 70

RUN parameter 62

specifying members 51

STOP parameter 62

syntax 53

394 IBM Health Checker for z/OS User’s Guide

HZSPRMxx (continued)
using categories 42

using wildcards 53

UPDATE parameter 62

HZSPRMxx parmlib member
creating 15

HZSPROC
IBM Health Checker for z/OS started procedure

starting 16

HZSQUERY macro 259, 274

I
IBM Health Checker for z/OS

planning checks 79

setting up 7

software requirements 7

starting 16

K
keyboard 387

L
log stream

defining 8

LOGGER parameter
HZSPRMxx 61

MODIFY command 61

LookAt message retrieval tool xviii

M
macros

HZS 217

HZSADDCK 217

HZSFMSG 217

HZSQUERY 217

managing checks 35, 37

policy 44

example 50

message input
creating 155

message input data set 162

CSECT 187, 191

example 163

planning 159

tags 172

variables 156

message input data set
sample 87, 109, 131

message retrieval tool, LookAt xviii

messages
in check routine 95, 119

MODIFY command
ACTIVATE parameter 57, 70

ADD PARMLIB parameter 70

ADD POLICY parameter 71

ADDNEW parameter 58

MODIFY command (continued)
ADDREPLACE POLICY parameter 71

DEACTIVATE parameter 58

DELETE parameter 58

DISPLAY parameter 59

output 72

filters 57

LOGGER parameter 61

managing checks with 38

parameters 53

POLICY parameter 71, 72

reading check state 26

REFRESH parameter 61

REMOVE POLICY parameter 71, 72

REPLACE,PARMLIB parameter 70

RUN parameter 62

STOP parameter 62

syntax 53

using categories 42

using wildcards 53

UPDATE parameter 62

N
Notices 389

O
output registers

check routine 90

output, check 19

automating 24

P
parameters

HZSPRMxx 53

MODIFY command 53

PDSE
check description 331

planning checks 79

identify potential checks 80

policy
example 50

managing checks with 44

using dates on 49

POLICY parameter
HZSPRMxx 71, 72

MODIFY command 71, 72

R
RACF

check description 331

RACF_FACILITY_ACTIVE 342

RACF_GRS_RNL 331

RACF_IBMUSER_REVOKED 344

RACF_OPERCMDS_ACTIVE 342

RACF_SENSITIVE_RESOURCES 336

RACF_TAPEVOL_ACTIVE 342

Index 395

RACF_TEMPDSN_ACTIVE 342

RACF_TSOAUTH_ACTIVE 342

RACF_UNIXPRIV_ACTIVE 342

reading
check output

state 26

recovery
check routine 91, 111

REFRESH parameter
HZSPRMxx 61

MODIFY command 61

REMOVE POLICY parameter
HZSPRMxx 71, 72

MODIFY command 71, 72

REPLACE PARMLIB parameter
HZSPRMxx 70

REPLACE,PARMLIB parameter
MODIFY command 70

REXX check
issuing messages in 141

recovery 144

writing 131

RRS
check description 345

RRS_DUROffloadSize 347

RRS_MUROffloadSize 347

RRS_RMDataLogDuplexMode 345

RRS_RMDOffloadSize 346

RRS_RSTOffloadSize 348

RSM
check description 349

RSM_AFQ 351

RSM_HVSHARE 349

RSM_MAXCADS 351

RSM_MEMLIMIT 350

RSM_REAL 353

RSM_RSU 353

RUN parameter
HZSPRMxx 62

MODIFY command 62

S
sample

check routine 87, 109

HZSADDCHECK exit routine 87, 109

message input data set 87, 109

SDSF
managing checks with 37

reading check state 26

SDUMP
check description 354

security definitions
creating 10

assigning a user ID with superuser authority 10

for a IBM Health Checker for z/OS log stream 9

for HZSPRINT utility 11

in an MLS environment 14

setting up
IBM Health Checker for z/OS 7

setting up the HZSPRINT utility 8

shortcut keys 387

start IBM Health Checker for z/OS 16

state
check 26

STOP parameter
HZSPRMxx 62

MODIFY command 62

syntax
HZSPRMxx 53

MODIFY command 53

System logger
check description 357

T
TSO/E

check description 359

TSOE_PARMLIB_ERROR 360

TSOE_USERLOGS 359

U
UPDATE parameter

HZSPRMxx 62

MODIFY command 62

USS_FILESYS_CONFIG 362

USS_MAXSOCKETS_MAXFILEPROC 361, 363

USS_PARMLIB 364

V
viewing

check output 19

VSAM
check description 366

VSM
check description 369

W
writing checks 87, 109, 131

sample 87, 109, 131

X
XCF

check description 376

Z
z/OS UNIX

check description 361

396 IBM Health Checker for z/OS User’s Guide

Readers’ Comments — We’d Like to Hear from You

z/OS

IBM Health Checker for z/OS User’s Guide

Version 1 Release 9

 Publication No. SA22-7994-05

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SA22-7994-05

SA22-7994-05

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

MHVRCFS, Mail Station P181

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in USA

SA22-7994-05

	This was a team effort!
	Contents
	Figures
	Tables
	About This Document
	Who should use this document
	Where to find more information
	z/OS information updates on the web
	Using LookAt to look up message explanations

	Summary of changes
	Part 1. Using IBM Health Checker for z/OS
	Chapter 1. Introduction
	What is a check?
	Background for IBM's checks

	Chapter 2. Setting up IBM Health Checker for z/OS
	Software requirements for IBM Health Checker for z/OS
	Allocate the HZSPDATA data set to save check data between restarts
	Set up the HZSPRINT utility
	Define log streams to keep a record of the check output
	Create security definitions
	Setting up security for the IBM Health Checker for z/OS started task
	Setting up security for the HZSPRINT utility
	Security for printing check output from the message buffer
	Security for printing check output from a log stream

	Setting up security for IBM Health Checker for SDSF support

	Create multilevel security definitions
	Optionally create HZSPRMxx from the HZSPRM00 parmlib member
	Start IBM Health Checker for z/OS
	Obtain checks for IBM Health Checker for z/OS

	Chapter 3. Working with check output
	Hey! My system has been configured like this for years, and now I'm receiving exceptions!
	Understanding system data issued with the check messages
	Understanding exception messages
	Evaluating check output and resolving exceptions
	Approaches to automation with IBM Health Checker for z/OS
	More automation ideas
	Using HZS exception messages for automation

	Understanding check state and status
	User controlled states
	IBM Health Checker for z/OS controlled states
	ACTIVE(DISABLED) and INACTIVE(ENABLED) - understanding check state combinations
	Check status

	Using the HZSPRINT utility
	Example of HZSPRINT output
	HZSPRINT utility completion codes

	Finding check message documentation with LookAt

	Chapter 4. Managing checks
	Making dynamic, temporary changes to checks
	Using SDSF to manage checks
	Using the MODIFY hzsproc command to manage checks
	Cheat sheet: examples of MODIFY hzsproc commands
	Why does my check reappear after I delete it? Understanding delete processing
	But my check doesn't reappear after ADDNEW - what happened to it?
	Why can't I re-add my HZSPRMxx parmlib defined check after I delete it? More understanding of the delete processing...
	How can I delete checks while IBM Health Checker for z/OS is terminating?
	Using the category filter to manage checks

	Making persistent changes to checks
	Creating IBM Health Checker for z/OS policies
	How IBM Health Checker for z/OS builds policies from policy statements
	Define one policy in multiple HZSPRMxx parmlib members
	Define multiple policies in one HZSPRMxx parmlib member
	Some finer points of how policy values are applied
	How IBM Health Checker for z/OS uses the dates on policy statements

	Can I put non-policy statements in my HZSPRMxx member?
	Policy statement examples
	Can I create policy statements using the MODIFY command?
	Specifying the HZSPRMxx members you want the system to use

	Syntax and parameters for HZSPRMxx and MODIFY hzsproc command
	Guidelines for HZSPRMxx parmlib members
	HZSPRMxx summary
	Parameter in IEASYSxx (or supplied by the operator)
	IBM supplied defaults for HZSPRMxx
	Syntax rules for HZSPRMxx

	Statements and parameters
	Examples of DISPLAY output

	Part 2. Developing Checks for IBM Health Checker for z/OS
	Chapter 5. Planning checks
	Identifying potential checks
	The life-cycle of a check - check terminology
	What kind of check do you want to write?
	Local checks
	Remote checks
	REXX checks
	Summary of checks - differences and similarities

	Where to next? A road map for developing your check

	Chapter 6. Writing local check routines
	Sample local checks
	Local check routine basics
	Defining a local check to IBM Health Checker for z/OS
	Programming considerations
	Environment
	Requirements
	Restrictions
	Gotchas
	Input Registers
	Output Registers
	Establishing a recovery routine for a check

	Sample reentrant entry and exit linkage
	Using the check parameter parsing service (HZSCPARS)
	Using the HZSPQE data area in your local check routine
	Function codes for local check routines
	Issuing messages in your check routine with the HZSFMSG macro
	Reporting check exceptions

	Defining the variables for your messages
	Using default HZSMGB data area format (MGBFORMAT=0)
	Using HZSMGB data area format MGBFORMAT=1

	The well-behaved local check routine - recommendations and recovery considerations
	Debugging checks

	Chapter 7. Writing remote check routines
	Sample checks
	Remote check routine basics
	Programming considerations
	Environment
	Requirements
	Restrictions
	Establishing a recovery routine for a check

	Preparing for check definition - making sure IBM Health Checker for z/OS is up and running
	Using ENF event code 67 to listen for IBM Health Checker for z/OS availability

	Allocate a pause element token using IEAVAPE
	Issue the HZSADDCK macro to define check defaults to IBM Health Checker for z/OS
	Example of the HZSADDCK macro call for a remote check

	Pause the remote check routine with IEAVPSE
	Using HZSCHECK REQUEST=OPSTART and REQUEST=OPCOMPLETE to communicate check start and stop to IBM Health Checker for z/OS
	Using the check parameter parsing service (HZSCPARS)
	Using the HZSPQE data area in your remote check routine
	Release codes for remote check routines
	Issuing messages in your check routine with the HZSFMSG macro
	Reporting check exceptions

	Defining the variables for your messages
	Using default HZSMGB data area format (MGBFORMAT=0)
	Using HZSMGB data area format MGBFORMAT=1

	Recommendations and recovery considerations for remote checks
	Debugging checks

	Chapter 8. Writing REXX checks
	Sample REXX checks
	REXX check basics
	Using input data sets in a TSO-environment REXX check
	Using REXXIN data sets
	REXXIN data set naming conventions

	Using REXXOUT data sets
	REXXOUT data set naming conventions
	Examples: Capturing error data in REXXOUT

	Defining a REXX check to IBM Health Checker for z/OS
	Issuing messages in your REXX check with the HZSLFMSG function
	Reporting check exceptions

	The well-behaved REXX check - recommendations and recovery considerations
	Debugging REXX checks

	Chapter 9. Writing an HZSADDCHECK exit routine
	Programming considerations for the HZSADDCHECK exit routine
	Environment
	Input Registers
	Output Registers

	Defining multiple local or REXX checks in a single HZSADDCHECK exit routine
	Dynamically adding local or REXX exec checks to IBM Health Checker for z/OS
	Using operator commands to add checks to the system dynamically
	Using a routine to add checks to the system dynamically
	Debugging HZSADDCHECK exit routine abends

	Creating product code that automatically registers checks at initialization
	Creating product code that deletes checks as it goes down

	Chapter 10. Creating the message input for your check
	How messages and message variables are issued at check runtime
	Planning your check messages
	Planning your exception messages
	Planning your information messages
	Planning your report messages
	Planning your debug messages
	Decide what release your check will run on
	Decide whether to translate your exception messages into other national languages
	Rely on IBM Health Checker for z/OS to issue basic check information for you

	Creating the message input data set
	Examples of message input
	Exception message example
	Information message example
	Report message example
	Debug message example
	Message list tagging example

	Syntax of message input
	Message input tags
	Copyright information
	Message list tag - <msglist>
	Message instance tag - <msg>
	Message number tag - <msgnum>
	Message text (<msgtext>) and message variable (<mv>) tags
	Message item tag - <msgitem>

	Special formatting tags for the message input data set
	How messages are formatted in the message buffer
	Extra fields issued to the message buffer for exception messages

	Using symbols in the message input data set
	Using pre-defined system symbols
	Defining your own symbols for check messages

	Generating the compilable assembler CSECT for the message input data set
	Support for translating messages to other languages
	Guidelines for coding translatable exception message text lines

	Part 3. Reference
	Chapter 11. IBM Health Checker for z/OS System REXX Functions
	HZSLSTRT function
	Input variables
	Output variables
	HZSLSTRT return codes

	HZSLFMSG function
	Input variables
	Input variables for HZSLFMSG_REQUEST=CHECKMSG
	Input variables for HZSLFMSG_REQUEST=HZSMSG
	Input variables for HZSLFMSG_REQUEST=STOP
	HZSLFMSG Output variables

	HZSLFMSG return codes

	HZSLSTOP function
	Input variables
	Output variables
	HZSLSTOP return codes

	Chapter 12. IBM Health Checker for z/OS HZS macros
	HZSADDCK macro — HZS add a check
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	HZSADDCK ABEND Codes
	HZSADDCK Return and Reason Codes
	Examples

	HZSFMSG macro — Issue a formatted check message
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	HZSFMSG ABEND Codes
	HZSFMSG Return and Reason Codes
	Examples

	HZSQUERY macro — HZS Query
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	HZSCHECK macro — HZS Check command request
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	HZSCHECK Return and Reason Codes
	Examples

	HZSCPARS macro — HZS Check Parameter Parsing
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	Chapter 13. IBM Health Checker for z/OS checks
	ASM checks (IBMASM)
	ASM_NUMBER_LOCAL_DATASETS
	ASM_PAGE_ADD
	ASM_PLPA_COMMON_SIZE
	ASM_PLPA_COMMON_USAGE
	ASM_LOCAL_SLOT_USAGE

	Communications Server checks (IBMCS)
	CSTCP_SYSTCPIP_CTRACE_TCPIPstackname
	CSTCP_SYSPLEXMON_RECOV_TCPIPstackname
	CSTCP_TCPMAXRCVBUFRSIZE_TCPIPstackname
	CSVTAM_CSM_STG_LIMIT
	CSVTAM_T1BUF_T2BUF_EE
	CSVTAM_T1BUF_T2BUF_NOEE
	CSVTAM_VIT_DSPSIZE
	CSVTAM_VIT_OPT_ALL
	CSVTAM_VIT_OPT_PSSSMS
	CSVTAM_VIT_SIZE

	Consoles checks (IBMCNZ)
	CNZ_AMRF_Eventual_Action_Msgs
	CNZ_Console_MasterAuth_Cmdsys
	CNZ_Console_Mscope_And_Routcode
	CNZ_Console_Routcode_11
	CNZ_EMCS_Hardcopy_Mscope
	CNZ_EMCS_Inactive_Consoles
	CNZ_Syscons_Master
	CNZ_Syscons_Mscope
	CNZ_Syscons_PD_Mode
	CNZ_Syscons_Routcode
	CNZ_Task_Table

	Contents supervision checks (IBMCSV)
	CSV_APF_EXISTS
	CSV_LNKLST_NEWEXTENTS
	CSV_LNKLST_SPACE
	CSV_LPA_CHANGES

	Global Resource Serialization checks (IBMGRS)
	GRS_Mode
	GRS_SYNCHRES
	GRS_CONVERT_RESERVES
	GRS_EXIT_PERFORMANCE
	GRS_GRSQ_SETTING
	GRS_RNL_IGNORED_CONV

	PDSE checks (IBMPDSE)
	PDSE_SMSPDSE1

	RACF checks (IBMRACF)
	RACF_GRS_RNL
	RACF_SENSITIVE_RESOURCES
	RACF_classname_ACTIVE
	RACF_IBMUSER_REVOKED

	RRS checks (IBMRRS)
	RRS_RMDataLogDuplexMode
	RRS_RMDOffloadSize
	RRS_DUROffloadSize
	RRS_MUROffloadSize
	RRS_RSTOffloadSize
	RRS_ArchiveCFStructure

	RSM checks (IBMRSM)
	RSM_HVSHARE
	RSM_MEMLIMIT
	RSM_MAXCADS
	RSM_AFQ
	RSM_REAL
	RSM_RSU

	SDUMP checks (IBMSDUMP)
	SDUMP_AVAILABLE
	SDUMP_AUTO_ALLOCATION

	Supervisor (IBMSUP)
	IEA_ASIDS
	IEA_LXS

	System logger checks (IBMIXGLOGR)
	IXGLOGR_STAGINGDSFULL
	IXGLOGR_ENTRYTHRESHOLD
	IXGLOGR_STRUCTUREFULL

	TSO/E (IBMTSOE)
	TSOE_USERLOGS
	TSOE_PARMLIB_ERROR

	z/OS UNIX System Services checks (IBMUSS)
	USS_AUTOMOUNT_DELAY
	USS_FILESYS_CONFIG
	USS_MAXSOCKETS_MAXFILEPROC
	USS_PARMLIB

	VSAM checks (IBMVSAM)
	VSAMRLS_DIAG_CONTENTION
	VSAM_INDEX_TRAP
	VSAMRLS_SINGLE_POINT_FAILURE

	VSM checks (IBMVSM)
	VSM_ALLOWUSERKEYCSA
	VSM_CSA_LIMIT
	VSM_SQA_LIMIT
	VSM_PVT_LIMIT
	VSM_CSA_THRESHOLD
	VSM_SQA_THRESHOLD
	VSM_CSA_CHANGE

	Cross system coupling facility (XCF) checks (IBMXCF)
	XCF_CF_CONNECTIVITY
	XCF_FDI
	XCF_SFM_ACTIVE
	XCF_CLEANUP_VALUE
	XCF_CDS_SEPARATION
	XCF_SYSPLEX_CDS_CAPACITY
	XCF_TCLASS_HAS_UNDESIG
	XCF_TCLASS_CONNECTIVITY
	XCF_TCLASS_CLASSLEN
	XCF_SIG_CONNECTIVITY
	XCF_DEFAULT_MAXMSG
	XCF_MAXMSG_NUMBUF_RATIO
	XCF_SIG_PATH_SEPARATION
	XCF_SIG_STR_SIZE
	XCF_CF_STR_PREFLIST
	XCF_CF_STR_EXCLLIST

	Appendix. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

