DFSMS Using the Volume Mount Analyzer

Version 2 Release 2
Before using this information and the product it supports, read the information in "Notices" on page 185.
Contents

Figures vii

Tables ix

About This Book xi
 Required Product Knowledge xi
 Referenced Publications xii
 z/OS information xii

How to send your comments to IBM xiii
 If you have a technical problem xiii

Summary of changes xv
 Changes for SC23-6859-01 z/OS Version 2 Release 2 xv
 Summary of changes for z/OS Version 2 Release 1 xv

Chapter 1. Preparing to Use the Volume Mount Analyzer 1
 Understanding the Volume Mount Analyzer for Tape Mount Management 1
 What Information Does the Volume Mount Analyzer Give You? 2
 How Do You Use This Information for Tape Mount Management? 2
 How Do You Manage Your Tape Data with Tape Mount Management? 2
 What Are the Benefits of Using Tape Mount Management? 3
 Performing a Volume Mount Analyzer Study 3
 Collecting SMF Records 4
 Understanding the Limitations of the Volume Mount Analyzer 5
 Shared Systems: Same Addresses for Tape Subsystems 5
 Shared Systems: Different Addresses for Tape Subsystems 6
 Avoiding Confusion with Shared Tape Subsystems 7
 Knowing Notational Conventions 7

Chapter 2. Using GFTAXTR to Extract Data from SMF Records 9
 Understanding the GFTAXTR Program 9
 GFTAXTR Objectives 9
 GFTAXTR Processing 9
 Understanding the Input to GFTAXTR 10
 Required SMF Records 10
 SMF Record Types 10
 Submitting the GFTAXTR JCL 11
 Submitting the GFTAXTR JCL for Concatenated Input 14
 Using GFTAXTR Keywords 15
 Keyword Summary and Syntax 15
 Keyword Rules 15
 ACCTFLD Keyword 15
 DATE Keyword 16
 LINES Keyword 17
 TIME Keyword 17
 Interpreting the GFTAXTR Output Report 18
 GFTAXTR Output Report—Input Phase 18
 GFTAXTR Output Report—Messages 19
 GFTAXTR Output Report—Internal Record Generation Phase 20
 GFTAXTR Output Report—Internal SMF Job/Step Reconstruction Phase 21
 GFTAXTR Output Report—Data Set Statistics Phase 23
 GFTAXTR Output Report—NON-HSM Tape Data Set Usage Analysis 24
 GFTAXTR Output Report—Final Record Output Phase 26
 Examining the GFTAXTR Output 27
 Troubleshooting when Obtaining the GFTAXTR Output 28

Chapter 3. Understanding Tape—Some Concepts 29
 Single/Multi Volume/File Data Sets 29
 Single Volume and Single File 29
 Single Volume and Multifile 29
 Multivolume and Single File 29
 Multivolume and Multifile 30
 Statistical Mounts 30
 Example of Calculating Statistical Mounts 30
 Example for Multifile Data Sets 31
 Example for Multiple Versions of a Data Set 31
 Statistical Volumes 31
 Unique Volume Serial and Statistical Volumes 32
 Zero Statistical Volumes 33
 Example of Calculating Statistical Volumes 33
 Example for Multiple Versions of a Data Set 33
 Example for Multifile and Multiple Version Data Sets 34
 Open Counts 34
 Tape Cartridge Usage 35
 Volumes Without IDRC 35
 Cartridges With IDRC 35
 Data Set Usage Types 36
 Order for Assigning Usage Types 36
 HSM 36
 Temporary 37
 Backup 37
 Single 37
 BCMOPY 37
 Active 38
 Categories of Tape Mount Management Data Sets 38
 Order for Assigning Tape Mount Management Data Set Categories 38

© Copyright IBM Corp. 1987, 2015
Chapter 7. Using GFTAVMA Keywords to Tailor Your Output

Keyword Rules
Summary of Keywords That Tailor Your Output
BLKSIZE Keyword
- Syntax
- Default
- BLKSIZE Example
- Reports Affected
BPROGRAM Keyword
- Syntax
- Default
- Reports Affected
CHART Keyword
- Syntax
- Additional JCL Needed for CHART
- Default
- CHART Example
- Reports Affected
CLASSIFY Keyword
- Syntax
- Default
- Relationship to Other Keywords
- Restrictions
- Reports Affected
COMPACTION Keyword
- Syntax
- Default
- Restrictions
- COMPRACTION Example
- Reports Affected
CUTOFF Keyword
- Syntax
- Default
- CUTOFF Example
- Reports Affected
DASDDEV Keyword
- Syntax
- Default
- DASDDEV Example
- Reports Affected
DSORT Keyword
- Syntax
- Default
- Reports Affected
FORCECAP/NOMFORCECAP Keywords
- Syntax
- The Importance of FORCECAP
- Default
- Reports Affected
FSORT Key word
- Syntax
- Default
- Reports Affected
GDG Key word
- Syntax

The Improved Data Recording Capability Report 119
The Management Class Report 124

Chapter 7. Using GFTAVMA Keywords to Tailor Your Output 129

Keyword Rules 129
Summary of Keywords That Tailor Your Output 129
BLKSIZE Keyword 131
- Syntax 131
- Default 131
- BLKSIZE Example 132
- Reports Affected 132
BPROGRAM Keyword 132
- Syntax 132
- Default 133
- Reports Affected 133
CHART Keyword 133
- Syntax 133
- Additional JCL Needed for CHART 133
- Default 134
- CHART Example 134
- Reports Affected 134
CLASSIFY Keyword 134
- Syntax 134
- Default 134
- Relationship to Other Keywords 135
- Restrictions 135
- Reports Affected 135
COMPACTION Keyword 135
- Syntax 135
- Default 135
- Restrictions 135
- COMPRACTION Example 136
- Reports Affected 136
CUTOFF Keyword 136
- Syntax 136
- Default 137
- CUTOFF Example 137
- Reports Affected 137
DASDDEV Keyword 137
- Syntax 137
- Default 137
- DASDDEV Example 137
- Reports Affected 138
DSORT Keyword 138
- Syntax 138
- Default 138
- Reports Affected 138
FORCECAP/NOMFORCECAP Keywords 139
- Syntax 139
- The Importance of FORCECAP 139
- Default 140
- Reports Affected 140
FSORT Key word 140
- Syntax 140
- Default 140
- Reports Affected 140
GDG Key word 141
- Syntax 141
- Reports Affected 141

Default 141
REPORT Keyword 146
- Syntax 146
- Parameters for the Top Report 147
- Default 148
- Relationship to Other Keywords 148
- REPORT Examples 148
- Reports Affected 148
RPROGRAM Keyword 149
- Syntax 149
- Default 149
- Reports Affected 149
SPLIT Keyword 150
- Syntax 150
- The Importance of SPLIT 150
- Additional JCL Needed for SPLIT 150
- Default 151
- Reports Affected 151
TAPEDEV Keyword 151
- Syntax 151
- Default 151
- Relationship to Other Keywords 152
- Reports Affected 152
TAPELEN Keyword 152
- Syntax 152
- Default 152
- Relationship to Other Keywords 152
- Reports Affected 152
VSORT Keyword 153
- Syntax 153
- Default 153
Figures

1. ACCTFLD Keyword Syntax 15
2. DATE Keyword Syntax 16
3. LINES Keyword Syntax 17
4. TIME Keyword Syntax 17
5. Example GFTAXTR Report—Input Phase 19
6. Example GFTAXTR Report—Internal Record Generation Phase (Messages) 19
7. Example GFTAXTR Report—Internal Record Generation Phase 20
8. Example GFTAXTR Report—Internal SMF JOB/STEP Reconstruction Phase 22
9. Example GFTAXTR Report—Data Set Statistics Phase 23
10. Example GFTAXTR Report—Non-HSM Tape Data Set Usage Analysis 25
11. Example GFTAXTR Report—Final Record Output Phase 26
12. Count of unique volser for GFTASRT2 32
13. Count of statistical volumes for GFTASRT3 33
14. Order of Assigning Tape Mount Management Categories 40
15. The Three Phases of GFTAVMA Processing 42
16. GFTASRT1 Summary Report—Input Analysis Phase 53
17. GFTASRT2 Summary Report—Tape Volser Processing Phase (The # character in Volume Mount Analyzer reports represents the word "number") 54
18. GFTASRT2 Summary Report—Tape Volume Size Ranges 56
19. GFTASRT3 Summary Report—Tape Data Set Processing Phase 58
20. GFTASRT3 Summary Report—Tape Data Set Analysis 60
21. ACCOUNT Keyword Syntax 65
22. DATASET Keyword Syntax 66
23. DATE Keyword Syntax 66
24. EXPDT Keyword Syntax 68
25. FILE Keyword Syntax 68
26. JOBNAME Keyword Syntax 70
27. MAXSIZE and MINSIZE Keyword Syntax 70
28. MOUNT Keyword Syntax 72
29. PROGRAM Keyword Syntax 73
30. SYSTEMID Keyword Syntax 74
31. TIME Keyword Syntax 75
32. UNIT Keyword Syntax 76
33. UNIITADDR Keyword Syntax 77
34. USAGE Keyword Syntax 78
35. VOLUME Keyword Syntax 79
36. Partial Data Set Report 86
37. The GBMAX Report 90
38. The Top Report 93
40. The Usage Report—Tape Allocations by Hour 97
41. The Usage Report—Tape Allocations by Hour (continued) 98
42. The Usage Report—Tape Mounts 99
43. The Usage Report—Tape Mounts (continued) 100
44. The Volume Report Legend 102
45. Partial Volume Report 104
46. Estimate Report—Statistical Mount Savings Breakdown 107
47. Estimate Report—Statistical Volume Savings Breakdown 110
48. Estimate Report—DASD Buffer Cost Breakdown 112
49. The Estimate Report Legend 115
50. The Estimate Report—Savings/Cost Summary 117
51. The IDRC Report Legend 122
52. The IDRC Report 123
53. Partial Management Class Report 126
54. BLKSIZE Keyword Syntax 131
55. BPROGRAM Keyword Syntax 132
56. CHART Keyword Syntax 133
57. CLASSIFY Keyword Syntax 134
58. COMPACTION Keyword Syntax 135
59. CUTOFF Keyword Syntax 137
60. DASDDEV Keyword Syntax 137
61. DSORT Keyword Syntax 138
62. FORCECAP/NOFORCECAP Keyword Syntax 139
63. FSPACE Keyword Syntax 140
64. GDG Keyword Syntax 141
65. IDRCFACTOR Keyword Syntax 142
66. LARGE Keyword Syntax 143
67. LEVEL0AGE Keyword Syntax 144
68. LEVEL1AGE Keyword Syntax 145
69. LINES Keyword Syntax 145
70. LFSSPACE Keyword Syntax 146
71. REPORT Keyword Syntax 147
72. RPROGRAM Keyword Syntax 149
73. SPLIT Keyword Syntax 150
74. TAPEDEV Keyword Syntax 151
75. TAPELEN Keyword Syntax 152
76. VSORT Keyword Syntax 153
Tables

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>SMF Input Records</td>
</tr>
<tr>
<td>2.</td>
<td>Capacities of Tape Volumes without IDRC Compaction</td>
</tr>
<tr>
<td>3.</td>
<td>Capacities of Tape Cartridges with an IDRC Compaction Factor of 3</td>
</tr>
<tr>
<td>4.</td>
<td>Keywords that Filter Your Input</td>
</tr>
<tr>
<td>5.</td>
<td>Keywords that Tailor Your Output Reports</td>
</tr>
<tr>
<td>6.</td>
<td>Quick Reference to GFTAXTR Keywords</td>
</tr>
<tr>
<td>7.</td>
<td>Quick Reference for Keywords that Filter Your Input</td>
</tr>
<tr>
<td>8.</td>
<td>Quick Reference for Keywords that Tailor Your Output Reports</td>
</tr>
<tr>
<td>9.</td>
<td>Keyword Summary for GFTAXTR</td>
</tr>
<tr>
<td>10.</td>
<td>Keyword Summary for GFTAVMA</td>
</tr>
<tr>
<td>11.</td>
<td>Severity Levels for the Volume Mount Analyzer Messages</td>
</tr>
</tbody>
</table>
About This Book

This book is intended for storage administrators who run volume mount analyzer programs and use the generated reports to improve the efficiency of tape storage.

This book describes how to use the volume mount analyzer to determine the value of automating tape data management using z/OS. The volume mount analyzer produces reports that show the mounts and tape usage at your installation. You can use these reports to decide whether your installation could benefit from tape mount management.

Specifically, this book provides information to help you:
- Prepare to run the volume mount analyzer
- Extract data from your SMF records to provide input to the volume mount analyzer
- Understand tape concepts
- Run the volume mount analyzer to study your tape usage and produce summary reports
- Use keywords to filter your input
- Produce optional detailed volume mount analyzer reports
- Use keywords to tailor your output reports
- Understand the volume mount analyzer messages

Before using this book, see z/OS DFSMS Implementing System-Managed Storage for an explanation of how to implement tape mount management using information from the volume mount analyzer reports.

Required Product Knowledge

To use this book effectively, you should be familiar with:
- Applications that use tape at your installation
- DFSMS™
- Method of allocation in MVS
- Job control language (JCL)
- System management facilities (SMF) records
- Tape and DASD hardware
- Tape mount management

You should also familiarize yourself with related information presented in the following publications:
- z/OS DFSMS Implementing System-Managed Storage
- z/OS MVS JCL Reference
- z/OS MVS JCL User’s Guide
- z/OS MVS System Management Facilities (SMF)

For more specific information on the Storage Management Subsystem, see z/OS DFSMSdss Storage Administration
Referenced Publications

Within this book, references are made to the following publications:

- z/OS DFSMS Implementing System-Managed Storage
- z/OS DFSMS Using Magnetic Tapes
- z/OS DFSMShsm Implementation and Customization Guide
- z/OS MVS JCL Reference
- z/OS MVS JCL User’s Guide
- z/OS MVS System Management Facilities (SMF)

z/OS information

This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using shortened versions of the document title. For complete titles and order numbers of the documents for all products that are part of z/OS, see [z/OS V2R2 Information Roadmap](http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

To find the complete z/OS® library, go to [IBM Knowledge Center](http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).
How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and completeness of the information or provide any other feedback that you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://www.ibm.com/systems/z/os/zos/webqs.html).

Include the following information:
- Your name and address.
- Your email address.
- Your telephone or fax number.
- The publication title and order number:
 z/OS V2R2 DFSMS Using the Volume Mount Analyzer
 SC23-6859-00
- The topic and page number that is related to your comment.
- The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute the comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the issues that you submit.

If you have a technical problem

Do not use the feedback methods that are listed for sending comments. Instead, take one of the following actions:
- Contact your IBM service representative.
- Call IBM technical support.
Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations for the current edition are indicated by a vertical line to the left of the change.

Changes for SC23-6859-01 z/OS Version 2 Release 2

This edition contains information previously presented in z/OS DFSMS Using the Volume Mount Analyzer (SC23-6859-00)

Changed information

The following messages are changed:
GFTA086W
GFTA109S

Summary of changes for z/OS Version 2 Release 1

See the following publications for all enhancements to z/OS Version 2 Release 1 (V2R1):

- [z/OS V2R2 Migration](#)
- [z/OS Planning for Installation](#)
- [z/OS Summary of Message and Interface Changes](#)
- [z/OS V2R2 Introduction and Release Guide](#)
Chapter 1. Preparing to Use the Volume Mount Analyzer

This chapter provides an overview of the volume mount analyzer and explains how you can prepare to use it.

Understanding the Volume Mount Analyzer

The volume mount analyzer is a program that helps you analyze your current tape environment. You use the volume mount analyzer to study tape mount activity, monitor tape media use, and implement tape mount management at your installation. The volume mount analyzer produces reports that you can use to tailor data classes, management classes, and automatic class selection (ACS) routine filters depending on your specific tape usage profile. Using tape mount management, you can maximize the use of your tape media and reduce your tape mounts.

The volume mount analyzer is composed of two programs: GFTAXTR and GFTAVMA.

GFTAXTR
Processes system management facilities (SMF) records and puts them in a format that the GFTAVMA program can use. GFTAXTR produces an output data set, which is the input to GFTAVMA, and a report of its processing phases.

GFTAVMA
Analyzes the tape usage and tape mounts at your installation using the output data set from GFTAXTR. GFTAVMA produces summary reports for every run and optional detailed reports if you request them.

See Chapter 2, “Using GFTAXTR to Extract Data from SMF Records,” on page 9 and Chapter 4, “Analyzing Your Tape Usage with GFTAVMA,” on page 41 for more information about these two programs.

By analyzing SMF records of your installation, the volume mount analyzer can help you determine:
- the space each tape data set uses on a tape volume
- the unused space on a tape volume
- the number of tape mounts you would save by implementing tape mount management
- the tape mount management DASD buffer space you would need to hold the data sets until they are transferred to tape storage

See z/OS MVS System Management Facilities (SMF) for more information on SMF records.

Using the Volume Mount Analyzer for Tape Mount Management

The volume mount analyzer helps you analyze the costs and savings of automating your tape data management using DFSMS. It also helps you choose data sets for tape mount management. Tape mount management is a method of reducing tape mounts by:
- Allowing the system to manage the placement of data
- Taking advantage of hardware and software compaction
Taking advantage of new tape technology
Automatically filling each tape volume to capacity

Using DFSMS and tape mount management can help you reduce the number of both tape mounts and tape volumes that your installation requires. The volume mount analyzer reviews your tape mounts and creates reports that provide you with information you need to effectively implement the tape mount management methodology recommended by IBM®.

See z/OS DFSMS Implementing System-Managed Storage for more information on tape mount management.

What Information Does the Volume Mount Analyzer Give You?
The volume mount analyzer produces both summary and detailed reports of your tape activity for a selected time period. You can use these reports, along with an estimate of the average cost of a tape mount, to determine the value of managing tape data with DFSMS or to write ACS routines that implement tape mount management most effectively.

The summary reports are generated with every run, but you must request the detailed reports using GFTAVMA keywords. GFTAVMA generates two types of optional detailed reports:
- Reports that show the actual tape usage at your installation
- Reports that simulate what the tape usage at your installation might be if you used tape mount management

See “Interpreting the Actual Reports” on page 82 and “Interpreting the Simulation Reports” on page 105 for more information.

All volume mount analyzer messages appear in the reports. See Appendix D, “Volume Mount Analyzer Messages,” on page 167 for more information.

How Do You Use This Information for Tape Mount Management?
Use the volume mount analyzer reports to identify the data sets that you can manage with tape mount management and to develop the ACS filters that you can use to capture and redirect these data sets to the Storage Management Subsystem (SMS). The reports also show the potential costs and savings of tape mount management.

See z/OS DFSMS Implementing System-Managed Storage for details on how to use the volume mount analyzer reports for tape mount management.

How Do You Manage Your Tape Data with Tape Mount Management?
To use your tape media effectively and achieve optimum benefits from advancements in compaction and tape cartridges, you must write full cartridges of data automatically. To do so, you can use DFSMS to stack small data sets on a cartridge without dependencies on manual file markers or JCL changes.

Tape mount management recommends that you use DFSMSHsm™ to do interval migration to SMS storage groups. You can use ACS routines to redirect your tape data sets to a tape mount management DASD buffer storage group. DFSMSHsm
scans this buffer on a regular basis and migrates the data sets to migration level 1 DASD or migration level 2 tape as soon as possible, based on the management class and storage group specifications.

By using SMS to direct data sets from tape to DASD, you do not have to change your JCL to modify the UNIT= parameter.

Managing tape data automatically with DFSMS implies that:
- Random tape mounts are drastically reduced. DFSMS creates data in a primary pool buffer and puts it to tape at a later time using DFSMShsm. A later time can be minutes or days, depending on the management class assigned to the particular data set.
- When a tape volume is mounted, it is filled with data. The system automatically determines the amount of data that can reside on a single volume based on the capability of both the installed hardware and the tape cartridge.
- If an application accesses a data set later, DFSMShsm automatically recalls it from where it resides in the storage hierarchy and allocates it on primary DASD for access. No JCL changes are required, and the location of the data is transparent to the application program.

What Are the Benefits of Using Tape Mount Management?

Tape mount management allows you to efficiently fill a tape cartridge to its capacity and gain full benefit from improved data recording capability (IDRC) compaction, 3490E Enhanced Capability Magnetic Tape Subsystem, 36-track enhanced recording format, and Enhanced Capacity Cartridge System Tape. By filling your tape cartridges, you reduce your tape mounts and even the number of tape volumes you need.

With an effective tape cartridge capacity of 2.4 GB using 3490E and the Enhanced Capacity Cartridge System Tape, DFSMS can intercept all but extremely large data sets and manage them with tape mount management. By implementing tape mount management with DFSMS, you might reduce your tape mounts by 60 to 70% with little or no additional hardware required. Therefore, the resulting tape environment would be able to fully exploit integrated cartridge loaders (ICL), IDRC, and 3490E.

Tape mount management also improves job throughput because jobs are no longer queued up on tape drives. Approximately 70% of all tape data sets queued up on drives are less than 10MB. With tape mount management, these data sets reside on DASD while in use. This frees up the tape drives for other allocations.

Do not confuse the process of automating tape data management using DFSMS with tape-to-DASD conversion. DASD storage is used only as a temporary buffer. Little of the data currently on tape really belongs on DASD. Most often, inactive data is put on tape. You need to decide the best time and the most efficient way to store the data there.

Performing a Volume Mount Analyzer Study

To run the volume mount analyzer, you must have:
- Data Facility Sort (DFSORT) or its functional equivalent
- A z/OS operating system

In a volume mount analyzer study, you must:
1. Determine a representative time period for the study.
 To get an accurate picture of tape mount activity, you should choose a time that includes peak loads as well as routine processing. A good starting point is to study a one month period, including weekends. Also, include month-end activity in the sample period. In any event, collect SMF records during a period that is representative of your tape usage.

2. Collect SMF records by enabling and creating the necessary SMF records during the chosen time period.
 To perform an analysis, the volume mount analyzer uses SMF data that your installation has collected over the representative time period, which should be one month. See “Understanding the Input to GFTAXTR” on page 10 for information about the SMF records required to perform the analysis.
 To run the volume mount analyzer, you must provide the required SMF records. The volume mount analyzer needs these SMF records to generate the desired output reports.

3. Run the SMF data extractor program, GFTAXTR, once to reduce the amount of input data.
 You use the resulting output data set for the rest of the study unless you want to study another period of time.

4. Run the volume mount analyzer program, GFTAVMA, to generate both the summary and detailed reports.
 Before you run GFTAVMA, you need to understand the data set naming conventions at your installation in order to properly categorize your data. Although the volume mount analyzer can use its built-in intelligence to categorize data, its assumptions might not be completely accurate.
 To determine the potential savings and costs, you are recommended to run a simple Estimate Report (see “The Estimate Report” on page 105 for more information). Then, with subsequent GFTAVMA runs, you can isolate certain applications based on appropriate criteria, such as program name or data set name. A suggested implementation usually contains INCLUDEs of program names and, optionally, some EXCLUDEs of data set names. See “Include/Exclude Filters” on page 44 for more information.

5. Analyze the results.
 At this time, construct the necessary INCLUDE or EXCLUDE filters and use the volume mount analyzer keywords. You can run GFTAVMA as many times as needed, until you are satisfied with the results.

6. Determine whether you want to implement tape mount management.

Collecting SMF Records

The system management facilities (SMF) create records of MVS system and job-related information for your installation.

To run the volume mount analyzer, you must provide SMF records for your system. When collecting SMF records, you must:
- Use SMF records from a currently supported release of z/OS.
- Use the IFASMFDP dump utility to collect the records.
- Collect the correct record types and sub-types. See “Understanding the Input to GFTAXTR” on page 10 for the required types and sub-types
- Collect the data that you want to analyze together. Once GFTAXTR has created the output file, you cannot sub-divide or merge the output with other GFTAXTR output files.
• Be aware of shared systems considerations. See “Understanding the Limitations of the Volume Mount Analyzer” for more information.

For best results, you should:
• Collect SMF records for a period of at least one month, including month-end processing.
• End the collection sample just before midnight so that you have a full day of records for the last day.

See z/OS MVS System Management Facilities (SMF) for details on SMF records and how to collect them.

Understanding the Limitations of the Volume Mount Analyzer

GFTAXTR rebuilds tape data set and job activity from SMF records, and GFTAVMA analyzes and reports on this SMF information. The volume mount analyzer works well with standard tape usage, but it might not correctly interpret SMF data when it is merged from multiple systems.

Although the volume mount analyzer can process SMF data from multiple systems, it might not understand some of the addressing configurations. Consequently, these configurations might cause misleading or incorrect results in the Usage Report. See “The Usage Report” on page 94 for more information. Therefore, you must be aware of how your tape drives are addressed when merging SMF data from multiple systems into one volume mount analyzer analysis.

The volume mount analyzer assumes that each unique device address represents one unit. This might cause problems if two systems use the same address for two different tape subsystems. Similarly, problems might occur if two systems use different addresses for the same set of shared tape subsystems.

When you use the volume mount analyzer, you must understand how tape subsystems are addressed and shared to avoid confusion. Look at your system configurations map to find out which types of configuration you have.

Shared Systems: Same Addresses for Tape Subsystems

When reading SMF data for systems A and B, the volume mount analyzer cannot make a distinction between Configurations One and Two.
Configuration One
SYSA and SYSB do not share tape subsystems. However, each system has tape units with the same addresses, 0580-059F. In this case, the volume mount analyzer incorrectly assumes there is one tape subsystem.

Configuration Two
SYSA and SYSB share a tape subsystem. The volume mount analyzer correctly interprets that both systems use the same address range (0580-059F) to refer to one tape subsystem.

Therefore, merging SMF data for SYSA and SYSB in Configuration One might cause misleading or incorrect results for the Usage Report because the volume mount analyzer assumes that each unique address represents one and only one unit. See “The Usage Report” on page 94 for more information.

Note: Do not merge SMF data from multiple systems if your installation has Configuration One. Analyze these SMF samples separately.

Shared Systems: Different Addresses for Tape Subsystems
The volume mount analyzer can not distinguish between Configurations Three and Four either when you combine the SMF data from SYS C and SYSD.
Configuration Three
SYSC and SYSD do not share tape subsystems. SYSC uses tape addresses of 0380-039F. SYSD addresses its tape units with 0580-059F. Because these two systems use different addresses for different tape subsystems, the volume mount analyzer correctly interprets that the addresses are for different tape subsystems.

Configuration Four
SYSC and SYSD share a tape subsystem. However, each system addresses the same tape subsystem using a different address range. In this case, the volume mount analyzer incorrectly interprets the data as indicating SYSC and SYSD each use a different tape subsystem.

Merging the SMF data from SYSC and SYSD in Configuration Four might cause misleading or incorrect results for the Usage Report because the volume mount analyzer does not know that unit 0380 on SYSC and unit 0580 on SYSD are the same device. See “The Usage Report” on page 94 for more information. The volume mount analyzer assumes that each unique address represents a separate device, as shown in Configuration Three.

Note: Do not merge SMF data from multiple systems if your installation has Configuration Four. Analyze these SMF samples separately.

Avoiding Confusion with Shared Tape Subsystems
Refer to your system configuration maps or contact your systems programmer to find out what your system configuration is. If you have either Configuration One or Configuration Four, collect SMF records for each system and then run the volume mount analyzer separately for each system. Do not combine the SMF data from these systems before you run volume mount analyzer.

Knowing Notational Conventions
A uniform notation is used to describe the syntax of commands or the format of control records. This notation is not part of the language. The following conventions might be used in this book:
Brackets enclose an optional entry. You may, but need not, include the entry. Examples are:

- [length]
- [MF=E]

An OR sign (a vertical bar) separates alternative entries. You must specify one, and only one, of the entries unless you allow an indicated default. Examples are:

- [REREAD|LEAVE]
- [length|S]

Braces enclose alternative entries. You must use one, and only one, of the entries. Examples are:

- BFTEK={S|A}
- {K|D}
- {address|S|O}

Sometimes alternative entries are shown in a vertical stack of braces. An example is:

MACRF={(R[C|P])}
{(W[C|P|L])}
{(R[C],W[C])}

In the example above, you must choose only one entry from the vertical stack.

An ellipsis indicates that the entry immediately preceding the ellipsis may be repeated. For example:

- (dcbaddr,(options),..)

‘ ‘ ‘ indicates that a blank (an empty space) must be present before the next parameter.

UPPERCASE BOLDFACE

Keywords are shown in **UPPERCASE BOLDFACE** in the syntax. These entries consist of keywords and punctuation symbols, such as commas, parentheses, and equal signs. Examples are:

- CLOSE,, TYPE=T
- MACRF=(PL,PTC)

UNDERSCORED UPPERCASE BOLDFACE

Indicates the default used if you do not specify any of the alternatives. Examples are:

- [EROPT={ACC|SKP|ABE}]
- [BFALN={F|D}]

Lowercase Italic

Lowercase italic indicates a value that you will supply according to specifications and limits described for each parameter. Examples are:

- number
- image-id
- count
Chapter 2. Using GFTAXTR to Extract Data from SMF Records

After you have collected SMF records for the selected period of time, you are ready to run GFTAXTR. This chapter describes the GFTAXTR program and shows you how to use it to extract data from SMF records. See “Collecting SMF Records” on page 4 for details.

It is important to know that because sort is invoked 20 or more times during processing, GFTAXTR requires DFSORT or its functional equivalent.

Understanding the GFTAXTR Program

The GFTAXTR program processes raw SMF data and transforms it into a format that GFTAVMA can analyze. The amount of SMF data is so large that it must stay on tape. Also, GFTAVMA reads the data many times, which would cause thousands of tape mounts. To make the repeated runs of GFTAVMA more efficient, GFTAXTR sorts and reduces the amount of data.

GFTAXTR Objectives

GFTAXTR has two objectives:

1. To reduce the quantity of input data so that GFTAVMA can be run iteratively using a DASD data set as input. Because the GFTAVMA analysis is an iterative process, using SMF records directly as input would be inefficient and costly in tape mounts.

2. To preprocess the SMF data by filling in missing record information and reconstructing the flow of the job that created each data set. GFTAXTR establishes all the inter-relationships between the data set and volume records, which enhances the performance of each GFTAVMA run.

GFTAXTR Processing

GFTAXTR extracts only tape-related records, which are the records GFTAVMA analyzes, reducing the size of the SMF input by approximately 95%. It also reduces each SMF record so as to contain only those fields necessary to perform tape activity analysis. GFTAXTR then provides missing information in the SMF records, such as invalid record format, data set name syntax errors, BLKSIZE value, and volume serial numbers.

Unlike GFTAVMA, which can be run many times using various keywords, you run GFTAXTR just once to create the input data set for GFTAVMA. The only other time you would run GFTAXTR is when you want to analyze a new sample of SMF data from another time period or another system.

The extract process was split, and several new modules were created. This allows you to make daily or weekly runs and then concatenate these runs into a final extract run. The output from this final run will be the input data set for GFTAVMA. However, if you wish, you can still use GFTAXTR to make just one run.
Note: Although the **TIME** and **DATE** keywords (see "Using GFTAXTR Keywords" on page 15) create subsets of the GFTAXTR data set, you cannot concatenate or combine multiple GFTAXTR output data sets into a single run without first enabling the concatenation code.

Understanding the Input to GFTAXTR

The GFTAXTR input is your collected SMF records. Since the order of SMF records on tape does not matter to the volume mount analyzer, these records can be in any chronological order.

When collecting SMF records, ensure that the SMFPRMxx member of SYS1.PARMLIB identifies the required record types for each system you want to analyze. See [z/OS MVS System Management Facilities (SMF)](https://pubs.opengroup.org/zos/v2r2/dfsms_shsm.pdf) for more information.

Required SMF Records

GFTAXTR input **must** contain SMF record types 14, 15, and 21. The input **must** also contain the data from record type 30 (sub-types 4 and 5) or record types 04, 05, 34 and 35.

If record types 4, 5, 21, 30 (sub-types 4 or 5), 34, or 35 do not match their corresponding type 14/15 records, GFTAXTR discards them.

Note: Record types 14 and 15 are mandatory input to GFTAXTR because they are the tape data set records. If you do not supply type 14 and 15 SMF records, or if GFTAXTR processing excludes all type 14 and 15 records through filtering, GFTAVMA processing terminates with a return code of 8.

GFTAXTR re-creates information from missing step end (type 4), job end (type 5), and demount (type 21) SMF records. When type 21 records are missing, GFTAXTR generates a type 21 record for every data set open record, which creates far more demounts than actually occurred. In some cases, type 4 and type 5 SMF records for long running jobs such as DFSMShsm™, IMS/ESA®, or other started task jobs are not included in the collected SMF records. This is because the job or step might have started before the sample collection began or ended after the sample collection ended. GFTAXTR therefore re-creates these records.

Obviously, the degree of accuracy is much higher if the information for all record types is supplied in the SMF records instead of being re-created.

Although GFTAVMA will not terminate with errors if type 21 SMF records are missing, you must include type 21 records in the analysis because the information in type 21 records is critical to GFTAVMA's ability to reconstruct the flow of jobs and to accurately report on tape mounts.

Note: You **must** have **type 21 records to do a tape analysis**. You cannot accurately study tape mounts without analyzing the type 21 SMF records. This is because without these records, the values in all of the volume mount analyzer reports are inaccurate.

SMF Record Types

[Table 1 on page 11](https://pubs.opengroup.org/zos/v2r2/dfsms_shsm.pdf) shows SMF record types. See [z/OS MVS System Management Facilities (SMF)](https://pubs.opengroup.org/zos/v2r2/dfsms_shsm.pdf) for more information.
Table 1. SMF Input Records

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Record Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>Step End</td>
</tr>
<tr>
<td>05</td>
<td>Job End</td>
</tr>
<tr>
<td>14</td>
<td>EOV or CLOSE when open for reading. Called "open for input" in reports.</td>
</tr>
<tr>
<td>15</td>
<td>EOV or CLOSE when open for writing. Called "open for output" in reports.</td>
</tr>
<tr>
<td>21</td>
<td>Volume Demount</td>
</tr>
<tr>
<td>30</td>
<td>Address Space Record (Contains sub-types 04, 05, 34, 35, and others)</td>
</tr>
<tr>
<td>34</td>
<td>Step End (TSO)</td>
</tr>
<tr>
<td>35</td>
<td>Job End (TSO)</td>
</tr>
</tbody>
</table>

Notes:
1. Type 21 records exist only for tape data.
2. Record type 30 (sub-types 4 and 5) is a shell record that contains the same information that is in record types 04, 05, 34, and 35.
 If a type 30 record has the same data as type 04, 05, 34 and 35 records in the input data set, then GFTAXTR uses the data from the type 30 record and ignores the other records.

Submitting the GFTAXTR JCL

To submit the GFTAXTR job, you:
1. Copy the JCL member, GFTAXTRP, from SYS1.SAMPLIB
2. Change only the indicated fields
3. Submit the GFTAXTR JCL for execution using the TSO SUBMIT command

For more information on using JCL, see [z/OS MVS JCL Reference](#).

Since this job runs for a long time, you might want to run it overnight.

GFTAXTR reads one input data set (SMFIN data set) and one input control statement data set (defined by the XTRCNTL DD statement) and builds a single output data set (XTRCIN data set).
Use the TAPES parameter to do a symbolic override for the allocation of data sets. Refer to &TAPES in the SPACE parameter of the DD statement. Use the number of type 21 records from the IFASMFDP run as an estimate for the TAPES value on the PROC keyword. You can estimate the size of the SMF data extract file by looking at the printout from IFASMFDP. For example, if there were 21,732 type 21 records in the IFASMFDP output, you should set TAPES='22000,5000'.

See z/OS MVS System Management Facilities (SMF) for information on using the SMF dump utility, IFASMFDP.
The XTRCIN DD statement points to the GFTAXTR output data set that contains the SMF records that are input to GFTAVMA. Change the HLQ, RUN, and TAPES parameters with symbolic overrides on either the PROC statement in 1 or on the EXEC statement in 2.

Set the substitutional parameters for the GFTAXTR PROC to your HLQ and RUN values. HLQ is the high-level qualifier of your SMF input data set. RUN is the low-level qualifier of your SMF input data set. Therefore, if you specified HLQ=ABC and RUN=RUN6, the name of the GFTAXTR output data set would be ABC.GFTAXTR.RUN6.

If you do not specify values for HLQ and RUN, you will get a JCL error.

Replace SMFINPUT:DATASET.NAME with the name of your SMF data set. Your SMF input data set contains the set of SMF records collected by the IFASMFDP dump utility. This data set can contain many different types of SMF records, but GFTAXTR processes only the records necessary for tape analysis and discards all other records.

If you do not specify a value for SMFIN, you will get a JCL error.

If your SMF input sample is contained in GDGs, you can read the entire set of GDSs by specifying the GDG base name.

To specify your data set name on the EXEC statement, add the following after the EXEC statement:

```bash
// EXEC GFTAXTR,SMFIN='your.dataset.name',HLQ=...,RUN=...
```
To include more than one input data set containing SMF data, add these statements after the EXEC statement:

```
// EXEC GFTAXTR,SMFIN=,HLQ=...,RUN=...
//XTRACT.SMFIN DD DSN=your.data.set1,DISP=SHR
// DD DSN=your.data.set2,DISP=SHR
// DD DSN=your.data.set3,DISP=SHR
```

These statements nullify the SMFIN statement on the EXEC statement, and a JCL override DD statement, XTRACT.SMFIN, refers to additional data sets.

Specify optional keywords following the XTRACT.XTRCNTL DD statement.

There are no required keywords for GFTAXTR. However, you should use the DATE keyword to select the one month of your SMF sample you want to study.

See “Using GFTAXTR Keywords” on page 15 for the rules and syntax of the GFTAXTR keywords.

Submitting the GFTAXTR JCL for Concatenated Input

To submit the GFTAXTR job to concatenate input, you:

1. Copy the JCL member, GFTAXTRP, from SYS1.SAMPLIB
2. Change all references from GFTAXTR to GFTAXTD when making daily or weekly runs, and to GFTAXTF when making the final run. Then, change only the indicated fields
3. Submit the GFTAXTD or GFTAXTF JCL for execution using the TSO SUBMIT command

For more information on using JCL, see **z/OS MVS JCL Reference**

GFTAXTD reads one input data set (SMFIN data set) and one input control statement data set (defined by the XTRCNTL DD statement) and builds a single output data set (XTRCIN data set) which can then be concatenated with other GFTAXTD runs to become the input for the final run (GFTAXTF). Make sure that the output from each GFTAXTD run has a unique name, such as RUN=RUN1, RUN2.

GFTAXTF reads one input data set (SMFIN data set) and one input control statement data set (defined by the XTRCNTL DD statement) and builds a single output data set (XTRCIN data set) which is used as input to GFTAVMA. To include all GFTAXTD data sets for the final run, add these statements after the EXEC statement:

```
// EXEC GFTAXTF,SMFIN=,HLQ=...,RUN=...
//XTRACT.SMFIN DD DSN=your.data.set1,DISP=SHR
// DD DSN=your.data.set2,DISP=SHR
// DD DSN=your.data.set3,DISP=SHR
```

These statements nullify the SMFIN statement on the EXEC statement, and a JCL override DD statement, XTRACT.SMFIN, refers to additional data sets.

If you want to process multiple SMF data sets, then perform multiple GFTAXTD runs with each single SMF data set selected in the SMFIN DD statement. The output of each of these GFTAXTD runs is saved in the data set created by the XTRIN DD statement. When all of the GFTAXTD runs have completed for the selected SMF data sets, then perform a final GFTAXTF run.
The GFTAXTF run will use the GFTAXTD XTRIN output data sets in concatenation and specified in SMFIN DD statement to create the final XTRIN output data set that will be ready for a GFTAVMA analysis.

When you are processing just one SMF data set, use GFTAXTR to build a single output XTRCIN data set.

Using GFTAXTR Keywords

There are four optional keywords that you can use in the GFTAXTR JCL. You can use GFTAXTR keywords to select SMF records by date and time, identify the field for accounting information, and control the printing of the output report.

Keyword Summary and Syntax

The XTRCNTL DD statement points to a sequential data set with 80-byte records that contain GFTAXTR keywords. Normally, this is a DD * data set.

As pointed out earlier, all GFTAXTR keywords are optional. If you do not want to use any keywords, comment out the XTRACT.XTRCNTL DD statement.

Here is a list of the optional keywords and their syntax:

- [ACCTFLD (nn)]
- [DATE (fromdate[,todate])]
- [LINES (nn)]
- [TIME (fromtime[,totime])]

Keyword Rules

When using GFTAXTR keywords,
- Start or end the keywords in any position from 1 to 71. Positions 72 through 80 are ignored.
- Do not use continuation characters. GFTAXTR does not allow continuation characters.

Comments are surrounded by the delimiters /* and */. A comment start delimiter, /*, cannot be in column one.

ACCTFLD Keyword

Use the ACCTFLD keyword as an index to the accounting information that is specified in the JOB statement of those jobs that created or used tape. The ACCTFLD value indexes to the SMF5ACTF field of the type 5 SMF record and selects the next eight characters of accounting information. GFTAVMA uses these eight characters as the job’s accounting information.

Abbreviation: AFLD

Syntax

Figure 1 shows the syntax for the ACCTFLD keyword.

```
[ACCTFLD (nn)]
```

Figure 1. ACCTFLD Keyword Syntax
ACCTFLD

nn Specifies the number that GFTAXTR uses to index-by-eight into the accounting information and select eight characters to use as the accounting data in the GFTAVMA program.

You can specify a value from 1 to 18.

Default
If you do not specify the ACCTFLD keyword, GFTAXTR uses the default of 1, which is the first eight characters of accounting information.

Relationship to Other Keywords
ACCTFLD indexes into the accounting information filtered by the GFTAVMA ACCOUNT filtering keyword. See “ACCOUNT Keyword” on page 64 for more information.

Reports Affected
ACCTFLD affects the TOP(ACCOUNT) report. See “The Top Report” on page 91 and “Parameters for the Top Report” on page 147 for more information.

DATE Keyword
Use DATE to select SMF records created on specified dates or between specified dates if you request a range.

Abbreviation: None

Syntax

Figure 2 shows the syntax for the DATE keyword.

```
[DATE (fromdate[,todate])]
```

Figure 2. DATE Keyword Syntax

fromdate
- Specifies the start date of the SMF collection period.

todate
- Specifies the end date of the SMF collection period.

If you specify only a fromdate, GFTAVMA selects only the records created on that date.

Use the DATE keyword to select the dates for the period you want to study. The time defaults to 00:00:00 to 23:59:59.

You can use any of the following formats for fromdate and todate:

mm/dd/yy
- The month/day/year specified with 2 digit fields, for example: 03/15/93

mm/dd/yyyy
- The month/day/year where the month and day are 2 digit fields and the year is a 4 digit field, for example: 03/15/2004

yyyyyddd
- The year and Julian date using 4 digits for the year, for example: 2004074

yyddd
- The year and Julian date using 2 digits for the year, for example: 93074
DATE

Default
If you do not specify the **DATE** keyword, GFTAXTR analyzes the SMF records for every day in the collected SMF sample.

DATE Examples
If you specify:

DATE (05/30/93)

GFTAXTR only includes the SMF records created on May 30, 2004.

If you specify:

DATE (05/27/93,06/28/93)

GFTAXTR includes the SMF records created from May 27, 2004, through June 28, 2004.

LINES Keyword
Use **LINES** to set the number of lines per page for the printed output report.

Abbreviation: None

Syntax
Figure 3 shows the syntax for the **LINES** keyword.

```
[LINES (nn)]
```

Figure 3. LINES Keyword Syntax

Default
The default for **LINES** is 60 lines per page.

TIME Keyword
Use **TIME** to select records based on the timestamp when the SMF record was created. You can also use **TIME** to examine a daily processing window or a particular shift.

If you specify a time range using **TIME (fromtime,totime)**, only records in that time range are extracted for each day in the sample.

Abbreviation: None

Syntax
Figure 4 shows the syntax for the **TIME** keyword.

```
[TIME (fromtime,totime)]
```

Figure 4. TIME Keyword Syntax

Both **fromtime** and **totime** have this syntax:

hh:mm:ss
Specifies the hour, minute, and second of the timestamp.
TIME

If you specify only a fromtime, the default totime is the end of the day, 23:59:59.

The valid range of values is 00:00:00 for midnight, which is the start of the day, and 23:59:59, which is the end of the day.

Times can be specified as hh:mm:ss, hh:mm, or just hh. The specified time values must be in 24 hour clock values.

Default

If you do not specify the TIME keyword, GFTAXTR analyzes the SMF records for all times in the collected SMF sample.

TIME Examples

If you specify:
TIME (3)

GFTAXTR includes only records created between 03:00:00 and 23:59:59 on each day of the sample period.

If you specify:
TIME (8,12)

GFTAXTR includes only records created between 08:00:00 and 12:00:00 on each day of the sample period.

Interpreting the GFTAXTR Output Report

GFTAXTR produces a single output report in the SYSPRINT data set. This report shows the results of the various phases of SMF record processing and contains all GFTAXTR error and informational messages. See Appendix D, "Volume Mount Analyzer Messages," on page 167 for more information.

The GFTAXTR output report is informational only. It is not the input to GFTAVMA. The input to the GFTAVMA program is the output data set defined by the XTRCIN DD statement in the GFTAXTRP JCL.

The GFTAXTR output report shows the SMF records that were dropped, created, read, and written during the processing phases.

The output report from GFTAXTD daily or weekly runs will only contain the internal record generation phase. The output report from the GFTAXTF final run will contain all phases of the SMF record processing.

GFTAXTR Output Report—Input Phase

If you specify keywords in the input phase, GFTAXTR filters the SMF records. Figure 5 on page 19 is an example of part of the GFTAXTR output report that shows what keywords were used to filter the SMF records for this run.
The following keywords were input to this run:

DATE(05/27/2002,06/28/2002)

All input SMF records will be filtered by the following date/time stamp range:

Date range: 05/27/2002 to 06/28/2002
Time range: 12:00:00 A.M. to 11:59:59 P.M.

GFTAXTR Output Report—Messages

During the internal record generation phase, GFTAXTR reads, drops, corrects, and writes SMF records. GFTAXTR also generates messages that describe why records were dropped and provide other processing information.

Figure 6 is an example of part of the GFTAXTR output report that shows the volume mount analyzer messages and the records GFTAXTR dropped and corrected during this processing phase.

GFTAXTR -- INTERNAL RECORD GENERATION PHASE -- 05/21/2003 -- 02:33:02 P.M.

GFTA077W SMF INPUT ERROR -- THE FOLLOWING DEMOUNT (TYPE 21) RECORD WAS MISSING THE VOLUME INFORMATION -- RECORD WAS DROPPED
-- JOB= (- 12:00:00 A.M.) - UADR=0520 - TSMV=05/28/2002 - 08:11:14 A.M.

Many other messages here

Other messages

Other messages ...

SMF Dropped Record Error Summary:
132 DATA SET NAME ERRORS ('SMFJFCB1' FIELD)
140 VOLUME SERIAL ERRORS ('SMF21VOL' FIELD)

272 SMF RECORD ERRORS (TOTAL)

SMF Corrected Field Error Summary:
13 DSNAME FIELD ERRORS (INVALID CHARACTERS)

13 SMF FIELD ERRORS CORRECTED (TOTAL)

Figure 6. Example GFTAXTR Report—Internal Record Generation Phase (Messages)

This report usually includes a series of messages that describe errors GFTAXTR detected during the processing of SMF records.

GFTAXTR drops an SMF record because:
- The record has an error, such as a character field contains binary data or a binary field contains character data.
- The record is incomplete.
SMF records might contain conflicting or incomplete pieces of data. GFTAXTR often compensates for incomplete data by reconstructing the flow of the job from other records.

Many of the messages relating to created or corrected records are informational only, but they show the extent to which the volume mount analyzer has used its own logic to provide missing information in the SMF records. See Appendix D, “Volume Mount Analyzer Messages,” on page 167 for the complete messages.

GFTAXTR Output Report—Internal Record Generation Phase

In this phase, GFTAXTR takes the raw SMF records, discards the parts of the records GFTAVMA does not use, and builds new records in a compressed format. Figure 7 is an example of part of the GFTAXTR output report that shows records read, dropped, generated and written while GFTAXTR was converting the SMF data into input for the GFTAVMA program.

Figure 7. Example GFTAXTR Report—Internal Record Generation Phase

3 Time/Date range of the input SMF sample.

4 Raw SMF records from the SMFIN file, which is the file of SMF records input to GFTAXTR.

5 Records dropped because they are not tape-related. Instead, they are DASD 14/15 records.

6 Records dropped because of date/time filtering.
Records dropped because of incomplete SMF records. Some SMF records are missing pieces of information that the volume mount analyzer needs, such as a volume serial number or unit address.

Type 21 records dropped because they did not have matching type 14 or 15 SMF records. The type 21 records might not have matched type 14 or 15 records because the SMF interval sample did not go back far enough in time to include the matching 14/15 records. To GFTAXTR, the record mismatch was an error, but it was not an SMF error. Since GFTAXTR could find the related data set activity, it discarded the demount record.

Demount records (type 21) created because they did not have corresponding data set open records.

Type 30 SMF records dropped because they did not have a sub-type 04 or 05 record.

Records generated. GFTAXTR created these records with information pulled from other records types.

The total number of SMF records written to the output data set, XTRCIN. This number is smaller than that of SMF records read in. The number of records read (229,183) minus the number of records dropped because of filtering and errors (43,209) equals the number of records in the output file (185,974).

The percentage of records dropped because of errors is small: 42,286 records were dropped by DATE/TIME filtering, 651 records were dropped by SMF sample interval, and 272 records were dropped because of SMF errors.

By the end of the internal record generation phase, GFTAXTR has cleaned up and reduced the SMF records.

GFTAXTR Output Report—Internal SMF Job/Step Reconstruction Phase

During this phase, GFTAXTR completely reconstructs the jobs that used tapes, including job steps, opens, and demounts.

Figure 8 on page 22 is an example of part of the GFTAXTR output report that shows the reconstruction of jobs with incomplete SMF data and the tape usage during the SMF data collection period.
TIME

GFTAXTR -- INTERNAL SMF JOB/STEP RECONSTRUCTION PHASE -- 05/21/2003 -- 02:35:41 P.M.

GFTA104W SMF INPUT ERROR--DEMOUNT RECORD HAS NO MATCHING 14/15 RECORD--THE FOLLOWING DEMOUNT
(TYPE 21) RECORD WAS DROPPED:
--JOB=BASN02D (06/06/2002 - 05:32:28 P.M.) - VOL=703772 - UADR=052F - TSMV=06/06/2002 - 06:39:03 P.M.

GFTAXTR -- INTERNAL SMF JOB/STEP RECONSTRUCTION PHASE -- 05/21/2003 -- 02:35:41 P.M.

JOB STATISTICS:

116 TYPE 21 RECORDS WERE DROPPED BY 'GFTAXTR'
6 TYPE 21 RECORDS WERE CREATED BY 'GFTAXTR'
5 INTERNAL STEP END(S) CREATED BY 'GFTAXTR'
2435 STEP END RECORD(S) MODIFIED BY 'GFTAXTR'
5 INTERNAL JOB END(S) CREATED BY 'GFTAXTR'
202 JOB END RECORD(S) MODIFIED BY 'GFTAXTR'
359 NON-TAPE JOBS PROCESSED
12448 TAPE JOBS PROCESSED
12807 TOTAL JOBS PROCESSED

OUTPUT RECORD STATISTICS ('XTRCIN' FILE):

17511 OPEN (INPUT) FOR TAPE
67243 OPEN (OUTPUT) FOR TAPE
38586 DEMOUNT RECORDS (TAPE)

123340 TOTAL OUTPUT RECORDS WRITTEN

TAPE MOUNT STATISTICS:

10679 INPUT MOUNTS
26280 OUTPUT MOUNTS
1627 INPUT/OUTPUT MOUNTS

38586 DEMOUNT RECORDS (TAPE)

Figure 8. Example GFTAXTR Report—Internal SMF JOB/STEP Reconstruction Phase

Note: The output report generated in Figure 8 is not the same as the output report generated in Figure 7 on page 26.

13 This message tells you that a type 21 SMF record had no matching 14/15 SMF record and, therefore, GFTAXTR dropped the type 21 SMF record. See Appendix D, “Volume Mount Analyzer Messages,” on page 167 for more information.

14 Type 21 records that GFTAXTR created to replace missing records. GFTAXTR does not create type 14 or 15 records.

15 Internal step end records that GFTAXTR created to replace missing SMF records. The step end probably occurred outside of the date or time period of the sample.
Job end records that GFTAXTR modified to correct some timestamps. For example, the timestamp of a demount might be later than the timestamp of a corresponding job end. In cases like this, GFTAXTR modifies the timestamp of the job end to match the timestamp of the tape demount.

The number of tape and non-tape jobs in the SMF sample. GFTAVMA only analyzes tape data sets and the corresponding jobs that processed them.

The total number of output records written. These records are in an internal format specific to GFTAXTR.

Output mounts are those resulted in open for output activity only. This number will match the number of scratch mounts if all output activity required scratch tapes or tapes with no specific volume serials. A scratch mount is always an output mount, but the reverse is not necessarily true.

Normally, only the input mounts are specific mounts, and all other mounts would be scratch mounts. If you use specific volume serials for new tape allocations, those mounts would be specific as well. Most installations use a generic tape unit with no volume serial.

GFTAXTR Output Report—Data Set Statistics Phase

In this phase, GFTAXTR identifies multivolume and multifile data sets, classifies data set usage types (such as BCOPY, backup, and active), determines attributes (such as DS type, latest version, and total size), and prints these statistics. The term "multifile data sets" is defined in “Single Volume and Multifile” on page 29.

See "Data Set Usage Types" on page 36 for a description of how the volume mount analyzer determines data set usage types.

Figure 9 is an example of part of the GFTAXTR output report that shows the breakdown of non-DFSMShsm tape data set types.
The JCL for the jobs creating these data sets included DISP=(,CATLG).

The JCL for the jobs creating these data sets included SPACE=(x,(n)).

Note: Although the SPACE parameter might have been coded on the DD statements of these data sets, their size might not be accurate because tape allocation does not use the SPACE parameter. If you use the specified SPACE values, there is no guarantee that these values are adequate for a DASD allocation.

Data sets with expiration dates. EXPDT is frequently used by tape management systems to code various tape management attributes.

Data sets (other than HSM, temporary, or backup) where every reference occurred on a single calendar day.

Data sets with a block size of zero. Unless you specify a value on the BLKSIZE keyword, GFTAVMA assumes a default of 32,760 for these data sets. See “BLKSIZE Keyword” on page 131 for details.

Data sets currently blocked at greater than a half track of 3380 or at greater than a half track of 3390, which causes inefficient use of DASD space.

You should address block size efficiency when planning for migration. An efficient BLKSIZE specification for tape might not be a good value to use when placing the data set on DASD. The amount of DASD space required is affected by the user-specified or system-determined BLKSIZE value.

GFTAXTR Output Report—NON-HSM Tape Data Set Usage Analysis

Figure 10 on page 25 is an example of the part of the GFTAXTR output report that shows the detailed data set usage for non-HSM tape data sets. See “Data Set Usage Types” on page 36 for the order of precedence that the volume mount analyzer uses to determine usage types.
Multivolume data sets. A multivolume data set extends across volume boundaries; it is part of a group of data sets that collectively spans volume boundaries. See “Single/Multi Volume/File Data Sets” on page 29 for more information.

Backup data sets. Since these data sets were opened for output only, the volume mount analyzer categorized them as backup. They might not all be backup, but most usually are.

Active data sets. Since these data sets were either opened for input only or have a mix of input and output activity, the volume mount analyzer categorized them as active.

Single data sets. Since these data sets were referenced in the input sample within a single calendar day, the volume mount analyzer categorized them as single.

Temporary data sets. Temporary data sets exist only for the life of the job. You might want to eliminate these data sets from tape and store in a DASD buffer until they expire.

Single-volume data sets. A single-volume data set does not extend across volume boundaries. It often resides alone on a volume and is usually small. Having many small, single-volume data sets might reduce the efficiency of your tape media usage. See “Single/Multi Volume/File Data Sets” on page 29 for more information.
Backup copy of data sets. Since these data sets were opened once for input and once for output, the volume mount analyzer categorized them as BCOPY.

An output sample that does not show DFSMSshm output statistics. When output includes DFSMSshm statistics, the report shows DFSMSshm single file data sets, which are the large multivolume data sets into which DFSMSshm writes user data sets in blocks of 16384 bytes.

There are two single-file data sets for migration and two for backup. GFTAVMA generates two data sets for each to distinguish inputs from outputs in the analysis. GFTAVMA uses an appended LLQ qualifier of .INPUT and .OUTPUT for each of the single file format (SFF) data sets to accumulate statistics separately for the data that DFSMSshm is writing versus the data DFSMSshm is reading. In GFTAVMA reports, each of the SFF data sets is treated as two data sets. See “Data Set Usage Types” on page 36 for more information about DFSMSshm processing.

GFTAXTR Output Report—Final Record Output Phase

Figure 11 is an example of part of the GFTAXTR output report that shows SMF record output statistics. These are the records that are input to GFTAVMA.

GFTAXTR -- FINAL RECORD OUTPUT PHASE -- 05/21/2003 -- 02:57:22 P.M.

JES SYSTEM ID(S):

<table>
<thead>
<tr>
<th>SYSTEM ID</th>
<th>OPER SYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSA</td>
<td>MVS/ESA</td>
</tr>
</tbody>
</table>

DATA COMPRESSION STATISTICS:

- 120619.6 KB (TOTAL IN THE SMF INPUT FILE)
- 30452.0 KB (IN THE GFTAXTR OUTPUT FILE)
- 25.2% (DATA COMPRESSION RATIO)

OUTPUT RECORD STATISTICS:

- 1 TYPE 000 RECORD(S) (GFTAXTR VERSION RECORD)
- 1 TYPE 001 RECORD(S) (JES SYSTEM ID RECORD)
- 1751 TYPE 014 RECORD(S) (DATA SET OPEN (INPUT))
- 67243 TYPE 015 RECORD(S) (DATA SET OPEN (OUTPUT))
- 38506 TYPE 021 RECORD(S) (TAPE VOLUME DEMOUNT)
- 123342 TYPE XXX RECORD(S) (TOTAL IN OUTPUT FILE)

GFTAXTR PROGRAM COMPLETED AT 02:57:48 P.M. ON 05/21/2003 -- RETURN CODE = 4

Figure 11. Example GFTAXTR Report—Final Record Output Phase

This shows the system identifiers for the systems you are studying in the SMF sample. Systems in a run must all belong to the same logical complex with shared access to the tape subsystems being analyzed. See “Understanding the Limitations of the Volume Mount Analyzer” on page 5 for shared systems considerations.

After you run GFTAVMA, make sure that the system IDs and the date and time on this GFTAXTR report match the system IDs and date and time on the GFTASRT1 summary report. See “GFTASRT1—Input Analysis Report” on page 52.

GFTAXTR has taken the original SMF data, extracted only the parts necessary for the analysis, and compressed the data. These statistics reflect the efficiency of
this process. In this example, the output from GFTAXTR uses only 25.2% of the storage that the original SMF data would have used.

Data set open records do not always correlate with previous processing phases because in some cases a data set can have more than one open record. See “Open Counts” on page 34 for more information.

GFTAXTR creates its own internal record types. The counts of these records match the counts of the similar type SMF input records that were not dropped. But the format of these records is different from that of the SMF records. GFTAXTR has indexed data set and demount records to one another and added job flow information so that GFTA/MA can get an accurate picture of the jobs that created the data sets.

Because of GFTAXTR’s data compression, the total number of output records is smaller than the total in Figure 7 on page 20.

Ideally, the return code is 0. However, the return code is usually 4 because GFTAXTR generates warning messages to tell you the time and reasons that SMF records were dropped or altered. Missing information in the input SMF records caused these warning messages. Normally, the missing information only represents a small percentage of the total SMF input and does not affect the analysis. See Appendix D, “Volume Mount Analyzer Messages,” on page 167.

Examining the GFTAXTR Output

You should check your GFTAXTR output by asking the following questions:

- What percentages of the records were dropped and created?

 Large percentages of 14/15 records are dropped because they are DASD records, so they are not studied in a tape analysis. The number of 14/15 records dropped might actually be larger than the number retained.

 If records have a time mismatch, the volume mount analyzer creates type 21 records for the 14/15 records that do not have matching type 21 records. If things run normal, then only 1% to 2% of the records created will be type 21 records. However, if a large number of type 21 records are created, this means there were many time mismatches.

- Were type 21 SMF records included in the study?

 You must have type 21 records for tape analysis.

- What percentage of the data sets was USAGE (BACKUP) or USAGE (SINGLE)?

 The higher the percentage, the better.

- What percentage of data sets was allocated with SPACE?

 This percentage should be low. Since tape allocation does not require a SPACE value, be aware of data sets that were allocated with SPACE. If you intercept these data sets, the SPACE value specified in the JCL might be incorrect.

- Did the return code print out at the end of the report?

 You should either get a return code of 0 indicating no errors or 4 indicating some recoverable errors. Since there are usually SMF record time mismatches, the return code is often 4.
Troubleshooting when Obtaining the GFTAXTR Output

If you did not obtain the GFTAXTR output, make sure that:

- Your SMF input includes types 14 and 15 records.
- These 14 and 15 records are for tape, not DASD.
- You have type 21 records in your SMF input.
- You have type 30 records that correspond to tape mount and open activity.
- Tapes were mounted during the period specified for SMF record collection.
- You do not have many mismatches in the time frame of records for demounts (21) and records for opens (14/15).
- Your SMF records are not altered. They must correspond to the formats in z/OS MVS System Management Facilities (SMF).
- Your SMF records have the correct length. If your installation writes its own SMF records, they might have incorrect length. GFTAXTR inspects each record type for a minimum length value. If the length of the record is less than the standard SMF record format, then GFTAXTR will not use the short records. See z/OS MVS System Management Facilities (SMF) for more information.
- You did not over-filter and exclude all SMF records.
Chapter 3. Understanding Tape—Some Concepts

This chapter describes the following tape concepts:
- single/multi volume/file data sets
- statistical mounts
- statistical volumes
- open counts
- tape cartridge usage
- data set usage types
- tape mount management data set categories

You need to understand these tape concepts in order to use GFTAVMA efficiently.

Single/Multi Volume/File Data Sets

To understand how the volume mount analyzer calculates mounts and tape volume usage, you must understand the four ways data sets can reside on tape volumes.

Single Volume and Single File

```
VOLUME 1          A.B.C
```

A single-volume, single-file data set resides on one volume and does not share that volume with other data sets.

Single Volume and Multifile

```
VOLUME 1          A.B.C       D.E.F
```

A single-volume, multifile data set resides on one volume, but shares that volume with at least one other data set.

Multivolume and Single File

```
VOLUME 1          A.B.C (1)

VOLUME 2          A.B.C (2)
```

A multivolume, single-file data set is one data set that spans two or more volumes. None of these volumes is shared with other data sets.
Multivolume and Multifile

A multivolume, multifile data set is a part of a collection of data sets that span two or more volumes. The name multivolume, multifile applies to the entire collection of data sets written together, whether each data set actually spans a volume boundary. In other z/OS manuals, this collection of volumes is called an aggregate.

In this example, A.B.C, D.E.F, and X.Y.Z are all multivolume, multifile data sets. A.B.C. is file 1; D.E.F is file 2, regardless of the volume; and X.Y.Z is file 3.

Statistical Mounts

By definition, mounts are associated with volumes. If a volume contains only one data set (single-file, single-volume), the number of mounts is directly associated with that data set in a ratio of one to one. Thus, for single-file data sets, the number of statistical mounts equals the number of mounts of the associated volumes.

In cases where data sets are stacked on a tape or across multiple tapes (multifile, multivolume), calculating mounts becomes more complicated because more than one data set can be written after a single mount.

Calculating statistical mounts for multifile, multivolume data sets means assigning fractions of mounts when filtering causes GFTAVMA to divide the mounts among several data sets on the volume. For multifile data sets, the number of statistical mounts is an average of the number of mounts for the volume divided equally among all data sets on that volume (statistical mounts = number of mounts/number of data sets on a volume).

Statistical mounts reflect all the mounts attributed to a data set during the reporting period. It is a cumulative value. On the other hand, statistical volumes reflect only the volumes that contain the latest version of the data set. See “Statistical Volumes” on page 31 for information on statistical volumes.

Example of Calculating Statistical Mounts

Volume 111111 was mounted 3 times.

Statistical mounts for A.B.C
= volume mounts (3)/data sets on volume (1)
= 3.0 statistical mounts

Data set A.B.C is a single-file data set; therefore, the number of statistical mounts (3.0) equals the number of mounts for volume 111111 (3).
Example for Multifile Data Sets

VOLUME 222222

| A.B.C | X.Y.Z |

Volume 222222 was mounted 3 times.

Statistical mounts for A.B.C

\[
\frac{\text{mounts for volume 222222}}{\text{data sets on volume 222222}} = 1.5 \text{ statistical mounts per data set}
\]

Data sets A.B.C and X.Y.Z share Volume 222222. For these multifile data sets, the number of statistical mounts is an average of the number of mounts for the volume divided equally among all data sets on that volume (statistical mounts = number of mounts/number of data sets on a volume). So a volume mounted three times containing two data sets (3/2) equals 1.5 statistical mounts.

Example for Multiple Versions of a Data Set

VOLUME 333333

| A.B.C | X.Y.Z |

VOLUME 444444

| A.B.C' |

Volume 333333 was mounted 3 times.

Volume 444444, which contains a later version of A.B.C, was mounted 4 times.

Statistical mounts for A.B.C

\[
\frac{\text{mounts for volume 333333}}{\text{data sets on volume 333333}} + \frac{\text{mounts for volume 444444}}{\text{data sets on volume 444444}} = 3/2 + 4/1 = 5.5 \text{ statistical mounts}
\]

This example shows that data sets can change their characteristics during the reporting period of the SMF sample. Since statistical mounts reflect all mounts for a data set during the time of the study, the number of statistical mounts for data set A.B.C is 5.5; the volume mount analyzer calculates mounts for both versions of A.B.C, first as multifile on volume 333333 and then as single file on volume 444444.

Statistical Volumes

A statistical volume is a calculation that shows the number of volumes directly associated with the current version of a data set. For this calculation, GFTAVMA divides a volume equally among the number of data sets or partial data sets residing on that volume.

Statistical volumes reflect only the volumes that contain the latest version of the data set. On the other hand, statistical mounts reflect all the mounts attributed to a data set during the reporting period. In this sense, the data set is a cumulative value. See "Statistical Mounts" on page 30 for information on statistical mounts.
Unique Volume Serial and Statistical Volumes

The total number of unique volume serials reported in GFTASRT2 often exceeds the number of statistical volumes reported in GFTASRT3. In GFTASRT2 (see Figure 17 on page 54), the number of UNIQUE VOLSERS is the count of all volumes used during the analysis period.

Figure 12 provides a good example. If you run GFTAVMA against one single-file, single-volume data set that was created five times on five different volumes, and if those volumes were never reused, the count of UNIQUE VOLSERS in GFTASRT2 would be five.

On day one of the study, data set D.E.F resided on volume 1.

| VOLUME 1 | D.E.F | old version |

On day four, a newer version of data set D.E.F resided on volume 2.

| VOLUME 2 | D.E.F | old version |

On day 12, another version of data set D.E.F resided on volume 3.

| VOLUME 3 | D.E.F | old version |

On day 23, an even newer data set D.E.F resided on volume 4.

| VOLUME 4 | D.E.F | old version |

On day 30, the latest version of data set D.E.F resides on volume 5.

| VOLUME 5 | D.E.F | current version |

Five different versions of data set D.E.F resided on five different volumes during the time of the study.

The GFTASRT2 report shows the total count of volumes on which all versions of a data set resided on during the period of the study (the number of unique volsers).

For data set D.E.F, UNIQUE VOLSERS = 5

Figure 12. Count of unique volsers for GFTASRT2

However, the statistical volume count in GFTASRT3 (see Figure 19 on page 58) would be one, which is the count of the statistical volumes needed to hold the latest version of the data set as shown in Figure 13 on page 33.
At the time of the study, the current version of data set D.E.F is the version residing on volume 5.

```
VOLUME 5        D.E.F        current version
```

Volume 5 contains the current version of data set D.E.F, and GFTAVMA assumes that volumes 1 to 4 were returned to scratch because they contained old versions of data set D.E.F.

GFTASRT3 shows the count of the volumes that the current version of a data set resides on during the study (statistical volumes).

For data set D.E.F, STATISTICAL VOLUMES = 1

Zero Statistical Volumes

It is possible to have zero statistical volumes when a tape is reused. For example, on Monday, data set A resides on Volume 1 and causes one mount. On Wednesday, data set B resides on Volume 1 and causes one mount. Thus, there are two mounts for one volume. Since Volume 1 is reused, data set A has zero statistical volumes and one statistical mount, while data set B, the current version, has one statistical volume and one statistical mount.

Example of Calculating Statistical Volumes

```
VOLUME 111111   A.B.C
```

Statistical volumes for A.B.C = 1.0

Since data set A.B.C is a single-file, single-volume data set that only resided on volume 111111 during this analysis, the number of statistical volumes is 1.0.

Example for Multiple Versions of a Data Set

```
VOLUME 222222   A.B.C '   Day 1
VOLUME 333333   A.B.C *   Day 2
```

Statistical volumes for A.B.C = 1.0

Data set A.B.C was written to Volume 222222 on Day 1 of the analysis. On Day 2, an updated version of data set A.B.C was written to a different volume (Volume 333333). Volume 222222 was then erased-on-scratch and made available for reuse. For the analysis, A.B.C occupied 1.0 statistical volume.
Example for Multifile and Multiple Version Data Sets

An earlier version of X.Y.Z resided on another volume (444444) before volume 444444 was erased-on-scratch. However, data sets A.B.C and X.Y.Z currently share a single volume (555555).

Since the volume mount analyzer only calculates statistical volumes for the latest version of a data set, A.B.C occupies 0.5 statistical volumes, and X.Y.Z occupies 0.5 statistical volumes. Volume 444444 has been erased-on-scratch, since it no longer contains current data.

Open Counts

For each type of data set, the program that references it issues one open (one open count). However, a single-file, multivolume data set is likely to have multiple opens. This is because when processing reaches the end of the first volume, open/close/end-of-volume (O/C/EOV) issues another open to move to the next volume. So a multivolume data set can have two or more opens depending on the number of volumes on which it resides.

As the following example illustrates, the number of opens the volume mount analyzer reports for a single-file, single-volume data set does not equal the number of opens for a single-file, multivolume data set.

In this example, data set A.B.C. is opened once by the referencing program. It thus has an open count of one. Data set X.Y.Z is also opened once by the referencing program. But when the end of volume is reached, O/C/EOV issues a second open to move to volume 222222. As a result, data set X.Y.Z has an open count of two.
Tape Cartridge Usage

The volume mount analyzer does not know the physical length of a data set on a tape because the volume mount analyzer reads and analyzes SMF records, not the physical tape cartridges represented by the SMF records. Therefore, the volume mount analyzer data set size is the size of the data transfer to the tape cartridge.

The data set size calculation equals block count multiplied by block size. In most cases, the data transfer size equals the data set size. But since this calculation is an estimate, the two sizes are not always equal. If the data set is extended with DISP=MOD, the calculated size may be smaller than the actual size. If portions of the data set are reread or rewritten without closing and reopening the data set, the calculated size might be larger than the actual size. Examples are programs that reposition the tape with the BSP, POINT, CNTRL, EXCP, or CLOSE TYPE=T macros.

Since the type of tape cartridge, the compaction value, and the recording technique affect physical length of a data set on a tape, you need to be aware of the tape cartridge size, the compaction rate, and the recording technique.

To understand how data is placed on a tape, see z/OS DFSMS Using Magnetic Tapes.

Volumes Without IDRC

Table 2 shows the capacities of tape volumes not compacted with improved data recording capability (IDRC).

<table>
<thead>
<tr>
<th>Type of Tape Volume</th>
<th>Size in Megabytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3420 reel</td>
<td>169</td>
</tr>
<tr>
<td>3480 (348X)</td>
<td>208</td>
</tr>
<tr>
<td>3490E with 36 tracks (TAPELEN = 1)</td>
<td>416</td>
</tr>
<tr>
<td>3490E with 36 tracks and Enhanced Capacity Cartridge System Tape (TAPELEN = 2)</td>
<td>832</td>
</tr>
</tbody>
</table>

Cartridges With IDRC

Table 3 shows the capacities of tape cartridges compacted with improved data recording capability (IDRC), using a compaction factor of 3 (IDRCFACTOR=3).

<table>
<thead>
<tr>
<th>Type of Tape Cartridge</th>
<th>Size in Megabytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>348X (3490)</td>
<td>625</td>
</tr>
<tr>
<td>3490E with 36 tracks (TAPELEN = 1)</td>
<td>1,250</td>
</tr>
<tr>
<td>3490E with 36 tracks and Enhanced Capacity Cartridge System Tape (TAPELEN = 2)</td>
<td>2,500</td>
</tr>
</tbody>
</table>

Tape cartridge sizes range from 169MB for tape cartridges of the smallest capacity to 2500MB for those of the largest capacity. If you wish to take full advantage of the larger capacity tape cartridges and reduce your number of mounts, you need to use tape mount management and let DFSMShsm place the data sets on tapes. Then you can fill these large capacity tape cartridges with data sets of a smaller size.
GFTAXTR assigns a usage type to all data sets that the volume mount analyzer analyzes based on their naming convention, data set attributes, or patterns of read/write activity. There are six usage types: HSM, temporary, backup, single, BCOPY, and active.

There are also six categories of tape mount management data sets. See “Categories of Tape Mount Management Data Sets” on page 38 for more information. The tape mount management categories are different from data set usage types, but the usage types help determine the tape mount management categories in certain cases.

Order for Assigning Usage Types

GFTAXTR assigns usage types in the following order:
1. HSM
2. Temporary
3. Backup
4. Single
5. BCOPY
6. Active

You can filter on the usage types using the USAGE keyword. See “USAGE Keyword” on page 78 for more details.

HSM

If DFSMShsm writes data sets to tape, GFTAXTR identifies them as USAGE(HSM) data sets. Because DFSMShsm uses tape differently from other applications, any data sets written to tape by DFSMShsm are included in USAGE(HSM).

DFSMShsm Tape Usage

DFSMShsm typically transfers large amounts of data. Therefore, GFTAXTR needs to separate these data sets. If the DFSMShsm data sets are placed in active or backup categories, they can drastically influence any averages, totals, or summary information, which might cause the volume mount analyzer to draw inaccurate conclusions about those categories.

The most common usage of tape by DFSMShsm is the single-file format (SFF) data sets used for migration level 2 or backup.

When migrating or backing up user data sets to tape with SFF, DFSMShsm places data in blocks of 16384 bytes in these large, multivolume data sets. The SFF data sets are named hlq.HMIGTAPE.DATASET or hlq.BACKTAPE.DATASET. They are not cataloged and can span up to 255 tape volumes. DFSMShsm continues writing user data sets in a single SFF data set until it is full. At that point, DFSMShsm opens another SFF data set with the same name.

GFTAVMA Special Considerations for DFSMShsm

The HSM usage pattern requires special consideration for GFTAVMA. For these data sets only, the cumulative gigabytes transferred represents the total amount of data written for output only over the entire sample studied. For all other data sets,
GFTAVMA uses the last quantity of data written as the current size of the data set. If there are no writes, the size of the data set is the amount of data transferred in the last open for output.

If migrations, recalls or backups, and recovery are the only activities occurring to the SFF data sets, GFTAVMA can measure how well DFSMShsm is using tape. However, if there is tape RECYCLE activity during the time studied, these opens, reads, and writes are added into the cumulative totals shown for the data set. Further, tape RECYCLE processes smaller amounts of data per read or write, which deflates the average megabytes/volume statistics.

DFSMShsm also uses various other utility and backup data sets, such as control data set backups, that are written to tape. Since DFSMShsm has special data set uses and sizes, GFTAXTR categorizes all DFSMShsm data sets as USAGE(HSM).

Temporary

Next, GFTAXTR assigns a usage type of temporary to data sets that have a naming convention matching the system-derived temporary name of SYS*.R*.**. Or it assigns the same data type to those data sets, regardless of their name, allocated with a disposition of (NEW,DELETE), indicating that they will be deleted at the end of the job. GFTAXTR categorizes these data sets as USAGE(TEMPORARY).

Backup

Then, GFTAXTR designates data sets that have been opened only once for output during the time period of the study as USAGE(BACKUP). Many of the USAGE(BACKUP) data sets are referenced on a single calendar day, but GFTAXTR separates them before the USAGE(SINGLE) data sets because the USAGE(BACKUP) data sets might migrate earlier, after 0 days, than USAGE(SINGLE) data sets.

USAGE(BACKUP) data sets are eligible to migrate to migration level 2 after 0 days on primary storage and 0 days on migration level 1, in other words, directly to migration level 2.

Single

After GFTAXTR has assigned the HSM, temporary, and backup usage types, it assigns USAGE(SINGLE).

GFTAXTR designates a data set as USAGE(SINGLE) if all references to it occur within a single calendar day. In doing so, GFTAXTR can identify data sets that can safely migrate to migration level 2 after one day because they are unlikely to be used again.

Unlike backup data, a USAGE(SINGLE) data set may have read activity. It does not matter whether the data set was opened for read or write, or how many opens were attributed to the data set. USAGE(SINGLE) requires, however, that the data is referenced only on a single calendar day.

USAGE(SINGLE) usually represents more than 50% of the data sets that can migrate directly to migration level 2 after one day.

BCOPY

GFTAXTR designates data sets with an access pattern of one open for input and one open for output as backup copy (BCOPY). Although these data sets do not
match the definition of backup data sets, in actuality, many BCOPY data sets are indeed a form of backup. This includes backups that have been recovered as well as backups that are written and then immediately copied to produce a vault copy.

If the open for input immediately follows the open for output on the same day, GFTAXTR categorizes the data set as USAGE(SINGLE). If the opens do not occur within the same day, GFTAXTR categorizes the data set as USAGE(BCOPY). This is a useful category to filter on to determine what this pattern of access means to your installation.

When calculating the values for the Estimate Report (see "The Estimate Report" on page 105), the volume mount analyzer categorizes BCOPY data sets as the tape mount management data set category of active and honors the LEVEL0AGE and LEVEL1AGE keyword specifications to determine where each data set should reside in the storage hierarchy.

Active

GFTAXTR categorizes data sets that do not fall into any of the above categories as USAGE(ACTIVE). These data sets have a mix of input and output activity and, typically, a higher number of mounts for a smaller amount of data than the data sets in other categories.

Do not directly access USAGE(ACTIVE) data sets from tape unless they are very large. These data sets should be part of the storage hierarchy, managed by DFSMS, allowed to automatically migrate to tape, and based on their age and pattern of usage.

You can use the Management Class Report (see "The Management Class Report" on page 124, to determine the best LEVEL0AGE and LEVEL1AGE values for any given set of data based on the actual reference pattern of the data sets.

Categories of Tape Mount Management Data Sets

In the tape mount management methodology, GFTAVMA categorizes all data sets according to their usage patterns. Data sets are categorized into one of six possible tape mount management categories.

In a volume mount analyzer study, tape mount management categories affect the output of the Estimate, IDRC, and Management Class Reports. See "Interpreting the Simulation Reports" on page 105 for more details.

Order for Assigning Tape Mount Management Data Set Categories

When calculating the simulation reports, GFTAVMA divides all tape data sets into six categories. GFTAVMA assigns the tape mount management categories in the following order:

Exceptions

Categorized using EXCLUDE filters and the SPLIT keyword. See "Include/Exclude Filters" on page 44 and "SPLIT Keyword" on page 150 for more information.

HSM Categorized because the data sets were created by DFSMShsm and have the USAGE(HSM) attribute.
LARGE
Categorized using the LARGE keyword. All data sets whose sizes are greater than or equal to the value of the LARGE keyword are large. See “LARGE Keyword” on page 142 for more information.

Temporary
Categorized because the data sets have a temporary data set name or were created with DISP=(NEW,DELETE).

Backup
Categorized by the CLASSIFY keyword or because the data sets were built by a backup program and categorized as USAGE(BACKUP). See “CLASSIFY Keyword” on page 134 for more information.

Active
Categorized by the CLASSIFY keyword or because these data sets have not been assigned other tape mount management data set categories. See “CLASSIFY Keyword” on page 134 for more information.

Tape Mount Management Data Set Categories in the Estimate Report

The Estimate Report accounts for data sets based on the categories of active or backup and simulates the management of data sets based on their particular tape mount management data set categories. See “The Estimate Report” on page 105 for more information.

Active
Data sets are modelled as migrating through the storage hierarchy once every 24 hours according to the management class keywords LEVEL0AGE and LEVEL1AGE.

Data sets categorized as USAGE(ACTIVE) or USAGE(SINGLE) are modelled as the tape mount management category of active for the Estimate Report.

Backup
Data sets are modelled as migrating once every 24 hours directly to migration level 2 from primary DASD after zero days of residency. The Estimate Report assumes that the data sets migrate every 24 hours, not hourly.

Data sets categorized as USAGE(BACKUP) are modelled as the tape mount management category of backup for the Estimate Report.

LARGE
Data sets whose sizes are greater than or equal to the LARGE keyword value are modelled as bypassing the tape mount management DASD buffer and going directly to tape.

Any data sets larger than the LARGE value are modelled as the tape mount management category of large for the Estimate Report. Data sets from any usage type can be large depending on their size.

HSM
Data sets created by DFSMShsm are modelled as bypassing the tape mount management DASD buffer and going directly to tape.

Data sets categorized as USAGE(HSM) are modelled as the tape mount management category of HSM for the Estimate Report.

Temporary
Data sets are modelled as going directly to the tape mount management DASD buffer for the life of the job and then expiring.
Data sets categorized as USAGE(TEMP) are modelled as the tape mount management category of temporary for the Estimate Report.

Exceptions
Data sets that remain on tape.

Categorization of Data Sets
GFTAVMA assigns tape mount management data set categories based on the data set name, data set size, the pattern of read and write activity to a data set, and the keywords you have specified. See Figure 14 to understand the order of assignment.

Figure 14. Order of Assigning Tape Mount Management Categories
Chapter 4. Analyzing Your Tape Usage with GFTAVMA

This chapter helps you understand the GFTAVMA program and explains how to analyze your tape usage with GFTAVMA.

For a set of SMF data, you run GFTAXTR only once to create the extract file. However, you run GFTAVMA many times to determine which applications would get the most benefit from tape mount management for the lowest cost. These runs also generate the list of ACS filters you can use to capture data sets and to determine the appropriate management class and data class for each application.

Understanding the GFTAVMA Program

GFTAVMA is the program name of the volume mount analyzer. For input, GFTAVMA requires GFTAXTR's output data set, which is defined to GFTAVMA by the XTRIN DD statement in GFTAVMA's JCL.

Note: You must pass the GFTAXTR output data set to GFTAVMA unaltered. Do not attempt to edit the GFTAXTR data set. You cannot concatenate or combine multiple GFTAXTR data sets as input to GFTAVMA.

Requirements for Using GFTAVMA

To run GFTAVMA, you must have a z/OS operating system.

You must also understand how to create useful filters and how to use the optional keywords for GFTAVMA. See “Filtering Your Input with GFTAVMA Keywords” on page 44 for an explanation of creating filters.

See Chapter 5, “Using GFTAVMA Keywords to Filter Your Input,” on page 63 and Chapter 7, “Using GFTAVMA Keywords to Tailor Your Output,” on page 129 for more information on keywords.

GFTAVMA Output Reports

GFTAVMA generates the following output:

• Summary reports that GFTAVMA automatically creates every time you run the volume mount analyzer

• Optional detailed reports that GFTAVMA creates depending on the report keywords that you specify for a run

See “REPORT Keyword” on page 146 for more information on the report keywords.

GFTAVMA generates the summary reports and the optional detailed reports during the three phases of GFTAVMA processing. If you request the detailed reports using the REPORT keyword, you get one output data set containing the three summary reports and any optional detailed reports you requested.

You can use GFTAVMA reports to determine which data sets are good candidates for tape mount management.
Because you can generate many unique GFTAVMA reports during your analysis, create DASD data sets to manage them more easily.

Understanding GFTAVMA Processing Phases

There are three GFTAVMA processing phases. The reports generated during each phase appear in the output data set in the order GFTAVMA generates them:

- During phase 1, GFTAVMA generates the GFTASRT1 summary report and, if requested, the Usage Report.
- During phase 2, GFTAVMA generates the GFTASRT2 summary report and, if requested, the Volume Report.
- During phase 3, GFTAVMA generates the GFTASRT3 summary report and, if requested, any or all other optional reports.

If you request the Volume Report with the `REPORT` keyword, the order of the reports is GFTASRT1, GFTASRT2, the Volume Report, and GFTASRT3. See [“Interpreting GFTAVMA Summary Reports” on page 51](#) and Chapter 6, “Producing Detailed Analysis Reports,” on page 81 for more information.

Figure 15 shows the filtering and processing steps of GFTAVMA.

Figure 15. The Three Phases of GFTAVMA Processing

- GFTAAXTR generates the extract output data set defined by the XTRCIN DD statement in the GFTAAXTR JCL. This data set must be passed to GFTAVMA in the exact form as it was created. If a data set is created by removing a subset of the GFTAAXTR file or by merging several GFTAAXTR files, GFTAVMA terminates with an error.

- Each of the GFTAVMA processing steps generates output. See [“Interpreting GFTAVMA Summary Reports” on page 51](#) for more information about the summary reports.
All filtering based on keywords and sub-keywords, such as INCLUDE, EXCLUDE, MAXSIZE, and USAGE, is done at the beginning of the GFTASRT1 phase. As a result, GFTAVMA generates all reports with filtered data. The Usage Report, for example, shows only the number of devices allocated to those tape volumes still included in the analysis after GFTAVMA has applied filtering.

You control the filtering of the analysis reports using keywords on a control statement in the JCL member, GFTAVMAP. You can submit GFTAVMAP multiple times using different keywords for each run.

See Chapter 5, “Using GFTAVMA Keywords to Filter Your Input,” on page 63 and Chapter 7, “Using GFTAVMA Keywords to Tailor Your Output,” on page 129 for the rules and syntax of the optional keywords.

Volume level processing examines the data sets from the volume perspective. The Volume Report shows the amount of data that was processed to each volume. If a volume was used more than once, the last data written to the volume is considered to be what is on the volume.

The intention of the Volume Report is to show how full the volumes are. Therefore, the numbers on the volume reports and the data set reports do not match.

Data set level processing examines the data sets from the data set perspective. This level of processing considers the most current version of each data set to be the last one written during the time period. If the data set was not created during the time period of the study, then GFTAVMA uses the last read as the most current version of the data set.

GFTAVMA accumulates mounts and opens for all versions analyzed in the sample, but it considers size and volume residency only for the current version.

Preparing to Run GFTAVMA

Before you run GFTAVMA, look at the volume mount analyzer messages in the GFTAXTR output report defined by the SYSPRINT DD statement in the GFTAXTR JCL. Also check the following in SYSPRINT:

- Do you have type 14 and 15 tape records?
- What are the start and end dates for the GFTAXTR run?
- How many records were processed?
- Are all dropped records accounted for?
- How many SMF records are in the GFTAXTR output file?
- How many tape jobs were processed?
- How many input and output records are there?
- What systems are associated with the sample?
- What are the error and informational messages?

This information ensures that you collected a representative sample of System Management Facility (SMF) data for input to GFTAVMA. See Appendix D, “Volume Mount Analyzer Messages,” on page 167 for more information.

Z/OS DFSMS Implementing System-Managed Storage explains the most useful order for requesting the detailed reports. Read about tape mount management in this book before you use GFTAVMA for the first time.
Filtering Your Input with GFTAVMA Keywords

The volume mount analyzer program, GFTAVMA, provides a comprehensive set of filters for you to study your tape data set activity and apply the tape mount management methodology. Filters are the criteria that data sets must meet in order to be included in your analysis.

You select optional keywords at GFTAVMA execution time to filter the input to GFTAVMA. See Chapter 5, “Using GFTAVMA Keywords to Filter Your Input,” on page 63 for more information about the filtering keyword rules and syntax.

Filter Types

The volume mount analyzer has two types of filters:
- limiting
- include/exclude

Limiting Filters

All data is first filtered by the limiting filters, which restrict the data in your analysis. GFTAVMA invokes these filters in the following order:
1. MAXSIZE
2. MINSIZE
3. MOUNT
4. FILE
5. USAGE
6. DATE
7. TIME

The limiting filters act as a funnel. For example, MAXSIZE filters the complete set of input data. MINSIZE filters the subset of data that remains following MAXSIZE filtering. MOUNT filters the subset of data that remains following MINSIZE filtering and so on.

If you specify the following keywords:
MAXSIZE(99) USAGE(NONHSM) DATE(01/01/04,01/02/04)

your input data is limited to non-HSM data sets that are less than 100MB and were created during the first two days of January. Each of these limiting filters further restricts the data sets that are candidates for selection. In this way, the size of the SMF sample gets smaller and smaller.

Include/Exclude Filters

The second type of filter is the include/exclude filter. These filters affect only the subset of data that remains following the limiting filters. They are slightly more complex than the limiting filters. They use INCLUDE and EXCLUDE sub-keywords so that you can be more selective when filtering your data. Further, these filters use Boolean "OR" logic to select data sets from the smaller sample produced by the limiting filters.

Categories of Include/Exclude Filters

The volume mount analyzer program has two categories of include/exclude filters:
- primary
- secondary
Primary Filters
Primary filters are the filters you can use for ACS routines and for tape mount management. A data set meeting the criteria defined by any of these primary filters is included in or excluded from the analysis sample.

The five primary filters, when used together, interact using Boolean "OR" logic:
- ACCOUNT
- DATASET
- EXPDT
- JOBNAME
- PROGRAM

During GFTAXTR processing, the latest creating JOBNAME, PROGRAM, ACCOUNT, and data set EXPDT are saved in all versions of the data set record if the data set was actually created during the time period represented by the SMF sample. Otherwise, the JOBNAME, PROGRAM, ACCOUNT, and data set EXPDT of the first reference are saved in all versions of the data set record. Therefore, when you filter your data using these primary filters, you filter in or out all versions of the data sets based on the creating JOBNAME, PROGRAM, ACCOUNT, and data set EXPDT.

Secondary Filters
Data sets that have not been excluded by limiting or primary filtering are further filtered by the secondary filters. You can use secondary filters to select specific units, volumes, or systems. These filters help you reduce your output.

The four secondary filters, when used together, interact using Boolean "OR" logic:
- SYSTEMID
- UNIT
- UNITADDR
- VOLUME

Example of Primary and Secondary Filters
When you use primary and secondary filters together, the data is filtered by the primary DATASET filter first, and then by the secondary UNIT filter.

```
DATASET (INCLUDE (AAA.**)) UNIT (INCLUDE (3490E))
```

This combination would include data sets with a high level qualifier of AAA. Of this group of data sets, it would include only those referenced on a 3490E tape drive.

Note: As this example shows, when you use a primary and a secondary filter together, they do not interact with "OR" logic. Primary filters interact using "OR" logic with other primary filters, and secondary filters interact using "OR" logic with other secondary filters. However, primary filters interact with secondary filters using "AND" logic.

Include/Exclude Filter Syntax
You can use either or both of the INCLUDE and EXCLUDE sub-keywords on the include/exclude filtering keywords. You can specify filter strings on the INCLUDE and EXCLUDE sub-keywords. The items in the filter strings must be separated by commas. For example:

```
DATASET (INCLUDE (ABC*), EXCLUDE (ABC001,ABC002))
```
This example includes any data sets beginning with the characters ABC except ABC001 or ABC002.

Note: Do not put quotation marks around sub-keywords in your include-exclude filters because the volume mount analyzer assumes the quotation marks are part of the sub-keywords.

Global Data Set Name Characters in Filters
You can use these global data set name characters in your filters:

Single asterisk (*)
represents one of the following:
- A single data set name qualifier (A.*.B)
- Zero to 8 characters within a data set name qualifier (ABC*)
- Zero to 8 characters within a job name or program name
- Zero to 6 character within a volume serial

Double asterisk (**)
represents zero to 22 qualifiers within a qualified data set name (A.**.B)

Percent Sign (%)
represents one, and only one, character

Examples of Global Data Set Name Characters

**.LOAD
Any qualified name where the last qualifier is LOAD.

ABCD.*
Any name with only 2 qualifiers where the first qualifier is ABCD. Any name starting with ABCD that has more than 2 qualifiers will be ignored.

SYS1.**
Any qualified name where the first qualifier is SYS1.

XYZ***.LIST
Any qualified name where the first 3 characters of the first qualifier are XYZ, and the last 4 characters of the last qualifier are LIST with any number of qualifiers between them.

348* 3480, 348X

SYS1.**.ASM
Any name with 4 qualifiers where the first qualifier is SYS1, and the last qualifier is ASM.

**.B%G*V00
Any generation data set (GDS) where the qualifier immediately preceding the generation suffix consists of a ‘B’ followed by any two other characters.

Examples of Include/Exclude Filters
If you specify the DATASET keyword as follows:

DATASET (INCLUDE (AAA.B%B.**), EXCLUDE (AAA.BZB.**))

only data sets with a high-level qualifier of AAA and a second-level qualifier beginning and ending with B would fit the INCLUDE pattern. From this group of selected data sets, GFTAVMA would EXCLUDE those whose second-level qualifier is BZB.
If you specify a **DATASET** keyword with no **INCLUDEs**, only **EXCLUDEs**, GFTAVMA compares all the data that was not previously filtered against the **EXCLUDE** list and excludes from the analysis the data sets that fit the **EXCLUDE** pattern.

The following example shows the **DATASET** keyword with an **INCLUDE** that works, but an **EXCLUDE** that is superfluous:

```
DATASET (INCLUDE (AAA.B%B.**), EXCLUDE (AAA.CZC.**))
```

Only data sets with a high-level qualifier of AAA and a second-level qualifier beginning and ending with B fit the **INCLUDE** pattern. However, the **EXCLUDE** pattern says exclude data sets with a high-level qualifier of AAA and a second-level qualifier of CZC. Unlike the previous example, this pattern is not a subset of the **INCLUDE** pattern. Thus, the **EXCLUDE** sub-keyword is superfluous because these data sets would be excluded anyway since they do not match the include pattern.

If you specify two primary include/exclude filters together:

```
DATASET (INCLUDE (AAA.**)) JOBNAME (INCLUDE (FQX73B))
```

they interact using Boolean "OR" logic. Therefore, the results of this combination would include all data sets with a high-level qualifier of AAA and all data sets created by the job named FQX73B.

Example of Generation Data Set Filters

To include GDSs, specify

```
DATASET (INCLUDE (AAA.BBB.CCC.G%%%%V%%))
```

This example includes GDSs from the *generation data group* (GDG) named AAA.BBB.CCC. Each GDS, within the GDG, has a suffix that identifies the absolute generation and version. The generation and version are in the form GxxxxVyy, where xxxx is an unsigned 4-digit decimal generation number (0001 through 9999) and yy is an unsigned 2-digit decimal version number (00 through 99).

GFTAVMA does not filter generation data sets by relative generation number, such as AAA.BBB.CCC(-1) or AAA.BBB.CCC(0). Additionally, if you specify the GDG name, AAA.BBB.CCC, without the G%%%%V%% suffix, GFTAVMA will not know it as a GDG name. Consequently, you can't specify the GDG name and expect GFTAVMA to include or exclude all of the GDSs within the GDG.

Note: Do not put quotation marks around sub-keywords in your include/exclude filters because the volume mount analyzer assumes the quotation marks are part of the sub-keywords.

Example of Multiple Filters

If you specify

```
DATASET (INCLUDE (A.B.C))
PROGRAM (INCLUDE (ADRDSSU))
UNIT (INCLUDE (3490E))
```

this set of keywords will include all records that have a data set name of A.B.C and all records created by the program named ADRDSSU. Of the set of data that matches either of these two keywords, only those with unit type of 3490E are included.
In this example, the primary filters, DATASET and PROGRAM, interact with each other using Boolean "OR" logic. Then the two primary filters interact with the secondary filter, UNIT, using Boolean "AND" logic.

If you input the following records

UNIT UNITADDR
rec1 A 01
rec2 A 50
rec3 B 02
rec4 B 51

and the INCLUDE/EXCLUDE FILTERs are:

UNIT(EXC(A))
UNITADDR(INCLUDE(5%))

The record rec4 (B 51) is selected.

When a record is in the INCLUDE condition, it moves on to the next set of tests. If a record is in the EXCLUDE condition, it is immediately dropped or excluded. The record in EXCLUDE condition is not considered in any of the following tests.

In this example, because unit A is excluded, both rec1 (A 01) and rec2 (A 50) are dropped and are not considered in the UNITADDR test. Then only rec3 (B 02) and rec4 (B 51) are input to the UNITADDR test. The parameter, INCLUDE(5%), results in rec3 being dropped. Thus, only rec4 is selected and continues on in the process.

Filter Cautions

Primary and secondary filters sometimes do not mix well when you use them together.

For example, if you combine the primary DATASET filter and the secondary UNITADDR filter in the following way, you might get inaccurate results.

DATASET (INCLUDE (AAA.**)) UNITADDR (INCLUDE (0580))

The results of this combination would include data sets with the high-level qualifier of AAA, but of this group of data sets, only those on the device with the address 0580 would be included. This might cause you to artificially exclude some AAA data sets from the analysis, which would affect your report results.

Submitting the GFTAVMA JCL

After you have determined the filtering and report keywords you want to use for your volume mount analyzer run, you must submit the GFTAVMA job. To submit the GFTAVMA job, you:

- Copy the JCL member, GFTAVMAP, from SYS1.SAMPLIB
- Change only the indicated fields
- Submit the GFTAVMA JCL for execution using the TSO SUBMIT command

Note: It is crucial to change only the indicated fields. If you use this JCL as is, you ensure the space calculation is accurate. GFTAVMA uses system determined block size and average record allocation. Since SORT is invoked multiple times, it is important not to have RLSE on the SORTxxxx and XTRCxxxx files.

For more information on using JCL, see [z/OS MVS JCL Reference](#).
During initialization, GFTAVMA obtains enough memory to store up to 1000 user-specified filters. If you need to use more than 1000 filters during GFTAVMA processing, you can set the value of the FILT#(&FILTERS) parameter on the EXEC statement in 6. The FILTERS parameter allows you to specify the number of filters that you want to supply as input to filter your SMF data. You can change the FILT# value by changing the FILTERS specification. The valid range is 100 to 21474836.

If you remove the PARM=FILT#(&FILTERS)' from the VMA EXEC statement, GFTAVMA defaults to 10,000.

All SORT/WORK files defined by the SORTxxx and XTRCxxx prefixed DD statements are sized according to the values supplied on the TAPES parameter. During GFTAVMA processing, DFSORT does not release space automatically on each call. Therefore, do not use the RLSE sub-parameter of the DD SPACE parameter for these JCL statements. See the note in the comments block regarding setting the TAPES parameter. These values supply the space quantities for all files required during the GFTAVMA run.
The **CHART** keyword is optional. When specified, the **CHART** keyword causes the GFTAVMA program to create a sequential data set referenced by the VMACHART DD statement.

In the GFTAVMAP JCL member, the VMACHART DD is allocated to a SYSOUT file. To override this specification, specify the **CHART** keyword after and insert the following DD statement after the EXEC statement in:

```
//VMA.VMACHART DD DSN=your.data.set,DISP=(NEW,CATLG),
// DCB=(LRECL=80,RECFM=FB),SPACE=(TRK,(1,1))
```

This statement directs the **CHART** output to a sequential data set that you can use to create charts using the graphics package of your choice.

If you do not request **CHART**, GFTAVMA does not put any output in the SYSPRINT file.

See “**CHART Keyword**” on page 133 for more information about the **CHART** keyword. See Appendix C, “Example of Chart Output,” on page 161 for examples of the output that **CHART** generates.

The **SPLIT** keyword is optional. Use **SPLIT** to filter out a large list of excluded data sets once rather than filtering them out each time.

The **SPLIT** keyword creates two optional sequential data sets. These data sets are identified by the VMAINCL and VMAEXCL DD statements in the GFTAVMA JCL. In the GFTAVMAP JCL member, GFTAVMA PROC has assigned these DD statements as dummy.

To use **SPLIT**, you must override these dummy assignments. To override the current GFTAVMA DD assignments, use the following DD statements to redirect them to a direct access or tape data set.

Place the DD statements for **SPLIT** after the EXEC GFTAVMA statement in the sample JCL, and specify the **SPLIT** keyword after the VMA.VMACNTL DD statement.

```
//VMA.VMAINCL DD DSN=your.sequential.data.set.for.includes,
// DCB=(LRECL=316,RECFM=VB,DSORG=PS),
// DISP=(NEW,CATLG),
// SPACE=({....}),
// UNIT=...
#
```

For subsequent GFTAVMA runs, update the XTRIN DD statement to point to either the included or excluded data set.

See “**SPLIT Keyword**” on page 150 for more information.
Specify the name of your GFTAXTR output data set, XTRCIN.

Specify keywords and filters here for the GFTAVMA run. These keywords are all optional. If you do not specify keywords or filters in the JCL, GFTAVMA analyzes all the input from GFTAXTR and only generates the summary reports, which are created for every run.

Note: [z/OS DFSMS Implementing System-Managed Storage](#) describes the recommended order for requesting the detailed reports. Read these recommendations before you run GFTAVMA.

Troubleshooting When Obtaining GFTAVMA Output

If you did not get output from GFTAVMA, you probably used too many filters. That is, you over-filtered the GFTAXTR output. If you filtered out all SMF records, GFTAVMA had nothing to analyze. Check your list of filters to see what filters you need to change to include SMF records in the current run. See "Filtering Your Input with GFTAVMA Keywords" on page 44 for more information about filtering.

Look at the volume mount analyzer messages to determine why you did not get output. See [Appendix D, “Volume Mount Analyzer Messages,” on page 167](#) for explanations of the messages.

Also check the levels for the GFTAXTR program and the GFTAVMA program. These levels must match. If they do not match, the volume mount analyzer terminates with an error message and does not produce output.

Interpreting GFTAVMA Summary Reports

Each major processing step of GFTAVMA generates its own output consisting of processing statistics, messages, tables, and summary information about the data.
Summary reports are automatically generated for every GFTAVMA run. GFTAVMA puts the summary reports in the data set defined by the SYSPRINT DD statement in the GFTAVMAP JCL. Normally, this data set is a SYSOUT data set.

Examples of the output summary reports from each processing step of GFTAVMA are shown in the following sections. These examples are generated by running the GFTAVMAP JCL member without specifying any optional report keywords. The actual content of the summary reports varies depending on the keywords used and the amount and type of data being processed. See “Submitting the GFTAVMA JCL” on page 48 for the JCL that generated these examples.

If you specify the REPORT keyword, in addition to the summary reports, you also get the detailed reports you requested. See Chapter 6, “Producing Detailed Analysis Reports,” on page 81 for more information.

All volume mount analyzer messages appear in the reports. See Appendix D, “Volume Mount Analyzer Messages,” on page 167 for more information.

Input Analysis Phase—GFTASRT1

This phase analyzes the input that GFTAVMA receives from GFTAXTR by building and filtering the SMF data. GFTAVMA includes or excludes all records based on the filters you use. See “Filtering Your Input with GFTAVMA Keywords” on page 44 for more information about filtering.

Note: To be sure that the GFTAVMA and GFTAXTR runs are for the same set of data, compare the times and system IDs on the GFTAXTR report to those on the summary reports. They must be the same.

GFTASRT1—Input Analysis Report

As shown in Figure 16 on page 53, GFTASRT1 is the part of the GFTAVMA summary report that shows the times and dates of the SMF input data sample and the GFTAXTR run. It shows the input records that GFTAXTR generated and the output records that GFTAVMA used when the filtering phase ended.

In this example report, keywords were not specified.
Be sure the date, time, and system ID on this report match the date, time, and system ID on the GFTAXTR report. See “GFTAXTR Output Report—Final Record Output Phase” on page 26.

These are the records built by the GFTAXTR program.

There is a difference of two between this total and the total in 2. The two records deducted are the header records that contain the GFTAXTR version information, SMF record counts, system IDs, and time/date information. The input phase uses these two records but does not pass them on to the processing phases that follow.

Any data sets excluded because of filtering, such as INCLUDE, EXCLUDE, USAGE, or MAXSIZE, are listed here. Since no filters were specified for this run, nothing was excluded.

Volume Analysis Phase—GFTASRT2

During the volume analysis phase, GFTAVMA analyzes the data from the volume perspective and generates the GFTASRT2 summary report.

GFTASRT2—Tape Volume Statistics Report

GFTASRT2 is the part of the GFTAVMA summary report that shows how much of your tape media actually contain data. This report reflects the latest contents of the volume. The data sets that reside on a particular volume might be old versions of the data sets, but they are the current contents of the volume.
In the volume analysis phase, only volume level processing is completed. Since the SMF sample represents a time period, it is possible for the same data set to have been re-written several times on multiple volumes. See "Statistical Volumes" on page 31 for an explanation of unique volser.

For example, if data set 'X' is written ten times onto ten different tape volumes during the sample, all these tape volumes and their associated mounts are included in the volume level processing. GFTAVMA analyzes all of these volumes to show an accurate picture of how well your volumes are used over time, even though only one of the volumes contains valid data in this case.

Figure 17 shows the tape volume serial (volser) statistics. In this report, keywords were not specified.

Figure 17. GFTASRT2 Summary Report—Tape Volser Processing Phase (The # character in Volume Mount Analyzer reports represents the word "number").

The total number of unique volume serials (UNIQUE VOLSERS) is a total volume count taken from the volume perspective (a count of all unique tape volume serials). In this example, the total is 8909.

The GFTASRT2 volume counts are the total gross volume counts. If you run GFTAVMA against one single-file, single-volume data set that was created five times on five different volumes, the GFTASRT2 volume count is five. However, the GFTASRT3 statistical volume count for the data set is one, the current version of the data set. See "Statistical Volumes" on page 31 for more details.

Single-file volumes contain a single data set or part of a single data set. See "Single/Multi Volume/File Data Sets" on page 29 for more information.

Multifile volumes contain more than one data set. The data sets might be complete, or they might be pieces of data sets that are continued on other volumes. See "Single/Multi Volume/File Data Sets" on page 29 for more information.
Returned Scratch volumes are volumes on which all data set copies are obsolete. GFTAVMA has found a more recent copy of every data set, and these volumes are eligible to return to the scratch pool.

To determine the number of scratch volumes, GFTAVMA searches for the most current version of a data set and assumes that its other versions are on volumes returned to scratch. For example, Volume 1 contains data set A on Monday, but Volume 2 contains data set A on Wednesday. Thus, GFTAVMA determines that Volume 1 has been returned to scratch and counted it as a scratch volume.

GFTAVMA obtains the average number of megabytes per volume from the information in the SMF records, which were generated at the time the data set was closed. This information does not reflect the effect of IDRC compaction. So, for devices with the IDRC feature, the number of megabytes are non-compacted megabytes. However, any software compaction, such as DFSMShsm compaction, occurs in the processor and is reflected in the SMF data.

FORCECAP sets a maximum capacity of data per volume based on cartridge or volume size: 416MB for 3490E cartridges, 208MB for 3490 and 3480 cartridges, and 169MB for 3420 tape volumes. See “The Importance of FORCECAP” on page 139 for more information.

GFTASRT2—Tape Volume Size Range Report
GFTASRT2 also shows your tape library composition. If you specify CHART (see “CHART Keyword” on page 133), the raw numbers from this report are put out to the sequential data set defined by the VMACHART DD statement.

Note: You should not try to match these numbers to those from the data set summary report (GFTASRT3) because they simply do not equate. The numbers in GFTASRT2 are from the volume perspective while the numbers in GFTASRT3 are from the data set perspective.

Figure 18 on page 56 shows the tape volume sizes for this run. In this report, keywords were not specified.
This report shows you how efficiently you are filling your tape cartridges. Determine the efficiency level of your tape usage, such as 50MB, and use this report to see if you are reaching that level. This example shows that the tape is not efficiently used.

This example shows that 2763 unique volume serials contain 1MB of data or less.

Forty-two and seven-tenths percent of all of the tapes contain 5MB of data or less. These volumes represent 43.5% of all mounts.

This report also shows that 49.4% of the unique volume serials contain 10MB or less. Fifty and four-tenths percent of the mounts at this installation are caused by this inefficient use of tape.

Fifty-eight and two-tenths percent of all volumes contain 25MB of data or less. This is only 12% of a native 3480 cartridge capacity or 1% of the capacity that
GFTASRT2 Report

can be achieved with 3490E and the Enhanced Capacity Cartridge System Tape. In this sample, these volumes represent 59.0% of all mounts.

11 For any given row of the table, CUM # VOLSERS shows the cumulative number of unique volumes that has, at most, that particular amount of data written to them. It is the number of tape volumes used in your library during the period of analysis.

12 For any given row of the table, CUM # MOUNTS shows the number of mounts associated with that number of tape volumes.

Data Set Analysis Phase—GFTASRT3

During the data set analysis phase, GFTAVMA analyzes the data from the data set perspective and generates the GFTASRT3 summary report. If data set 'X' was written ten times during the sample, GFTAVMA considers the last time it was written to be the current version of data set 'X'. GFTAVMA attributes all the mounts caused by all versions of data set 'X' to data set 'X', but GFTASRT3 shows only the portion of statistical volumes attributed to the latest copy of the data set. See "Statistical Volumes" on page 31 for an explanation of unique volsers and statistical volumes.

The GFTAVMA keywords DATE or TIME change what GFTAVMA shows as the current version of data set 'X'.

GFTASRT3—Tape Data Set Statistics Report

GFTASRT3 is the part of the GFTAVMA summary report that shows the current version of a data set, its current size, the job and program that created it, and all mounts attributed to all versions of that data set. It shows only the current volume the data set resides on.

If you specify the GDG(GROUP) keyword, the numbers in the Tape Data Set Statistics Report reflect non-GDG data sets and GDG data sets that are grouped together and counted as one generation data group.

Figure 19 on page 58 is the report of tape data set statistics. In this report, keywords were not specified.
The GDG statistics show the number of GDSs per GDG during the sample period.

The size of data sets on tape averaged 31.7MB for this run.
The total amount of data represented by the 41,238 data sets in this run is 1309.1GB.

The age of the oldest data set in the sample, where age is the number of days between the date of last reference and the end of the sample, is 31 days. If this value is less than the number of days in the sample, all data sets from the early part of the sample have been deleted or referenced during the sample period.

For an explanation of statistical mounts, see “Statistical Mounts” on page 30.

For an explanation of statistical volumes, see “Statistical Volumes” on page 31.

The average of all the maximum numbers of days since last reference for all data sets in the sample. If this number is significantly less than 1, such as 0.1, it indicates that the majority of the data sets in this sample are referenced as backup and can be migrated off the tape mount management DASD buffer hourly.

This line does not print if you specify GDG(GROUP).

Note the high percentage of single file data sets (23.0%) and the percentage of mounts they represent (56.1%). These data sets are probably data sets that were created for backup purposes during batch processing. They are all necessary, but they contribute to inefficient use of tape. If you manage only these data sets with tape mount management, you can reduce the majority (56.1%) of your tape mounts.

GFTASRT3—Tape Data Set Size Range Report
GFTASRT3 shows the most current version of each particular data set found during the sample. If ten copies of a data set exist on tape, this part of the report only includes the latest version.

This report shows the number of data sets in each size range and the mount activity that is attributed to the data sets in that range. If you specify CHART (see “CHART Keyword” on page 133), the raw numbers from this report are put out to the sequential data set defined by the VMACHART DD statement.

If you specify the GDG(GROUP) keyword, the numbers in the Tape Data Set Size Range Report reflect non-GDG data sets and GDG data sets grouped together and counted as one generation data group.

Note: You should not try to match these numbers to those from the volume summary report (GFTASRT2) because they simply do not equate. The numbers in GFTASRT3 are from the data set perspective while the numbers in GFTASRT2 are from the volume perspective.

Figure 20 on page 60 is the report that summarizes data set sizes for this run. In this report, keywords were not specified.
This report shows the sizes of your data sets and the number of mounts these data sets caused. If small data sets are causing most of your mounts, as they are in this example, you are using your tape media inefficiently.

Compare the number of data sets in each of the size ranges. Notice that the majority of the data sets are in the smaller size ranges while fewer data sets are in...
the large size ranges. The data set size (DSN SIZE) and number of mounts (CUM STAT MOUNTS and % TOT MNTS) show that the smaller data sets caused most of the mounts in this example.

11 Two-thousand-five-hundred-sixty-eight data sets are equal to 0MB and account for 1277.8 mounts. These data sets were opened, but had no read or write activity. These data sets should not have caused tape mounts because there was no transfer of data. These mounts could have been avoided by directing these data sets to the tape mount management DASD buffer.

12 This sample is typical in that the majority of data sets on tape are small, yet they account for most of the mounts. For example, 75.2% of the data sets analyzed are less than or equal to 10MB, but they account for 57.3% of all tape mounts in this run.

13 Small data sets, less than or equal to 100MB, are causing 80% of the mounts in this example, which indicates that tape mount management could significantly reduce the number of mounts for this installation.
GFTASRT3 Report
Chapter 5. Using GFTAVMA Keywords to Filter Your Input

This chapter describes the GFTAVMA keywords you use to filter the input to the volume mount analyzer. As introduced in "Filtering Your Input with GFTAVMA Keywords" on page 44, these keywords affect the input phase of processing by selecting the SMF records the volume mount analyzer analyzes.

All GFTAVMA keywords are optional. The VMACNTL DD statement points to a sequential data set with 80-byte records that contain the GFTAVMA keywords. Normally, this is a DD * data set. See the GFTAVMA JCL member in "Submitting the GFTAVMA JCL" on page 48.

In this chapter, the keywords are arranged in alphabetical order. Sub-keywords, if any, are described with their corresponding keywords.

Keyword Rules

When using keywords to filter your input, you should:
• Start or end keywords in any position between 1 and 71. Positions 72 through 80 are ignored
• Separate keywords with either blanks or commas
• Separate sub-keywords with commas
• Separate items in a list with commas
• Put keywords in any order
• Use the correct number of parentheses

If a keyword spans more than one record, you must indicate continuation by using continuation characters in the last text character of the keyword. Blanks can follow a continuation character in a record. The valid continuation characters for GFTAVMA are a comma and the left and right parenthesis.

Comments are surrounded by the delimiters /* and */. A comment start delimiter, /*, cannot be in column one. Examples:

TIME(0,12) /* This is a comment */
TIME(0, /* The last character, the comma, indicates continuation */
 12) /* part two of the continued keyword */

Summary of Keywords That Filter Your Input

Table 4 summarizes the filtering keywords. These keywords affect which SMF records are used as input to GFTAVMA.

Table 4. Keywords that Filter Your Input

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Filter Type</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCOUNT</td>
<td>Primary Include/Exclude</td>
<td>"ACCOUNT Keyword" on page 64</td>
</tr>
<tr>
<td>DATASET</td>
<td>Primary Include/Exclude</td>
<td>"DATASET Keyword" on page 65</td>
</tr>
<tr>
<td>DATE</td>
<td>Limiting</td>
<td>"DATE Keyword" on page 66</td>
</tr>
</tbody>
</table>
Table 4. Keywords that Filter Your Input (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Filter Type</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPDT</td>
<td>Primary Include/Exclude</td>
<td>“EXPDT Keyword” on page 67</td>
</tr>
<tr>
<td>FILE</td>
<td>Limiting</td>
<td>“FILE Keyword” on page 68</td>
</tr>
<tr>
<td>JOBNAME</td>
<td>Primary Include/Exclude</td>
<td>“JOBNAME Keyword” on page 69</td>
</tr>
<tr>
<td>MAXSIZE</td>
<td>Limiting</td>
<td>“MAXSIZE and MINSIZE Keywords” on page 70</td>
</tr>
<tr>
<td>MINSIZE</td>
<td>Limiting</td>
<td>“MAXSIZE and MINSIZE Keywords” on page 70</td>
</tr>
<tr>
<td>MOUNT</td>
<td>Limiting</td>
<td>“MOUNT Keyword” on page 72</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>Primary Include/Exclude</td>
<td>“PROGRAM Keyword” on page 73</td>
</tr>
<tr>
<td>SYSTEMID</td>
<td>Secondary Include/Exclude</td>
<td>“SYSTEMID Keyword” on page 74</td>
</tr>
<tr>
<td>TIME</td>
<td>Limiting</td>
<td>“TIME Keyword” on page 74</td>
</tr>
<tr>
<td>UNIT</td>
<td>Secondary Include/Exclude</td>
<td>“UNIT Keyword” on page 75</td>
</tr>
<tr>
<td>UNITADDR</td>
<td>Secondary Include/Exclude</td>
<td>“UNITADDR Keyword” on page 76</td>
</tr>
<tr>
<td>USAGE</td>
<td>Limiting</td>
<td>“USAGE Keyword” on page 78</td>
</tr>
<tr>
<td>VOLUME</td>
<td>Secondary Include/Exclude</td>
<td>“VOLUME Keyword” on page 79</td>
</tr>
</tbody>
</table>

Note:
1. See "Filtering Your Input with GFTAVMA Keywords" on page 44 for complete details on filtering and filtering keywords.

See Appendix A, “A Quick Reference to Volume Mount Analyzer Keywords,” on page 155 for a complete list of the keyword abbreviations and defaults. See Appendix B, “Volume Mount Analyzer Keyword Syntax,” on page 159 for the syntax of all keywords.

ACCOUNT Keyword

Use **ACCOUNT** to include or exclude data sets created by jobs that have specified accounting information. If a data set is not created during the time period of the SMF sample, the ACCOUNT information is from the first reference to the data set. See “Primary Filters” on page 45 for more information.

The accounting information that GFTAVMA uses is in the first 8 bytes of the accounting field as specified on the JOB statement.

Abbreviation: ACCT
ACCOUNT

Syntax

Figure 21 shows the syntax for the ACCOUNT keyword.

```
[ACCOUNT (INCLUDE (account number include list),
    EXCLUDE (account number exclude list))]  
```

Figure 21. ACCOUNT Keyword Syntax

INCLUDE (account number include list)
Specifies a list of account numbers to include in the analysis.

EXCLUDE (account number exclude list)
Specifies a list of account numbers to exclude from the analysis.

See “Include/Exclude Filter Syntax” on page 45 for the rules and syntax for filters.

Default
If you do not specify the ACCOUNT keyword, GFTAVMA analyzes all data sets.

Relationship to Other Keywords
There can be more than one accounting field in the JOB accounting information. The first accounting field is the default. To override this default, use the ACCTFLD keyword when you run GFTAXTR to specify another accounting field. See “ACCTFLD Keyword” on page 15 for more information.

ACCOUNT Examples
If you specify:

```
ACCOUNT (INCLUDE (%7*),
    EXCLUDE (1*))
```

GFTAVMA includes all data sets that were created by jobs that have account numbers with a 7 in the second position but excludes any data sets that were created by jobs that have account numbers that start with 17.

Using ACCOUNT as an ACS Filter
ACCOUNT is a filter you can use for automatic class selection (ACS) routines. GFTAVMA analyzes only eight bytes of the account field, while the ACCOUNT parameter for ACS is the value of the entire JOB account field.

DATASET Keyword

Use DATASET to include or exclude data sets from the GFTAVMA analysis based on the data set names in the input SMF data records. See “Primary Filters” on page 45 for more information.

Abbreviation: DSN

Syntax

Figure 22 on page 66 shows the syntax for the DATASET keyword.
DATASET

```
[DATASET (INCLUDE (data set filter list),
          EXCLUDE (data set filter list))]
```

Figure 22. DATASET Keyword Syntax

INCLUDE (data set filter list)
Specifies a list of data sets to include in the analysis.

EXCLUDE (data set filter list)
Specifies a list of data sets to exclude from the analysis.

See “Include/Exclude Filter Syntax” on page 45 for the rules and syntax for filters.

Default
If you do not specify the DATASET keyword, GFTAVMA will analyze all the data sets.

DATASET Examples
If you specify:
```
DATASET (INCLUDE (IMS.**, DB2.**),
         EXCLUDE (IMS.IMAGE.COPY.**))
```
GFTAVMA includes all the IMS/ESA® and DB2® database data sets except those known from their data set names as image copies for IMS.

If you specify:
```
DATASET (EXCLUDE (DFDSS.WEEKLY.DUMP.**, DFDSS.DR.**))
```
GFTAVMA excludes all the input SMF data associated with DFSMSdss™ weekly dumps and DFSMSdss error-recovery dumps based on the data set naming rules for the output data sets.

Using DATASET as an ACS Filter
DATASET is a filter you can use for the ACS routines. However, data set names are not the most useful ACS filter because listing the data set names makes your ACS filter list long and difficult to maintain.

DATE Keyword

Use DATE to select SMF records created on the specified dates or in the specified date range. See “Limiting Filters” on page 44 for more information.

Abbreviation: None

Syntax
```
[DATE (fromdate[,todate])]
```
Figure 23. DATE Keyword Syntax

fromdate
Specifies the start date for the records to include in your analysis.
DATE

todate
 Specifies the end date for the records to include in your analysis.

If you specify only the fromdate, GFTAVMA selects only the records created on that
date.

You can use any of the following formats for fromdate and todate:

mm/dd/yy
 The month/day/year specified with 2 digit fields, for example: 03/15/04
 or 3/15/04

mm/dd/yyyy
 The month/day/year where the month and day are 2 digit fields and the
 year is a 4 digit field, for example: 03/15/2004

yyyyddd
 The year and Julian date using 4 digits for the year, for example: 2005074

yyddd
 The year and Julian date using 2 digits for the year, for example: 05074

Default
 If you do not specify the DATE keyword, GFTAVMA analyzes the SMF records for
every day in the collected sample.

DATE Examples
 If you specify:
 DATE (05/30/05)

 GFTAVMA includes only SMF records that were created on May 30, 2005.

If you specify:
 DATE (05/27/00,06/28/00)

 GFTAVMA includes all SMF records created from May 27, 2000, through June 28,
 2000.

EXPDT Keyword

Use EXPDT to include or exclude data sets from the analysis based on the
expiration date of the creating job's data set. If the data set was not created during
the time period of the SMF sample, the EXPDT information is from the first
reference to the data set. See "Primary Filters" on page 45 for more information.

If a data set does not have a specified expiration date, it is not included when you
specify EXPDT (INCLUDE). Only the data sets whose expiration dates match the
EXPDT include list are included in the analysis. You cannot explicitly include or
exclude data sets with blank expiration dates.

The usefulness of this function varies depending on the way that your installation
uses expiration dates. For example, some sites use a specific value, such as 04000,
in the expiration date field to indicate a data set that is to go off site after its
creation. This use provides a simple approach to identify and inform the Storage
Management Subsystem (SMS) those data sets that must be allocated directly to
tape.

Abbreviation: EXP
EXPDT

Syntax

Figure 24 shows the syntax for the EXPDT keyword.

```
[EXPDT (INCLUDE (nnnnn),
       EXCLUDE (yyyyy))]
```

Figure 24. EXPDT Keyword Syntax

INCLUDE (nnnnn)

Specifies a list of expiration dates to include in the analysis.

EXCLUDE (yyyyy)

Specifies a list of expiration dates to exclude from the analysis.

See "Include/Exclude Filter Syntax" on page 45 for the rules and syntax for filters.

Use the following date formats for EXPDT:

- **yyyyyddd**
 - The year and Julian date using 4 digits for the year, for example: 2005074
 - The year and Julian date using 2 digits for the year, for example: 05074

Default

If you do not specify the EXPDT keyword, GFTAVMA analyzes all data sets.

EXPDT Examples

If you specify:

```
EXPDT (INCLUDE (05*), EXCLUDE (05005))
```

GFTAVMA includes data sets with an expiration date matching the filter 05* (the year 2005) except those that have an expiration date of 05005 (January 5, 2005).

Using EXPDT as an ACS Filter

EXPDT is a filter you can use for the automatic class selection (ACS) routines.

FILE Keyword

Use FILE to select:

- Data sets that reside alone on one or more volumes
- Data sets that reside with other data sets on one or more volumes
- All data sets

See "Limiting Filters" on page 44 for more information.

Abbreviation: None

Syntax

Figure 25 shows the syntax for the FILE keyword.

```
[FILE (SINGLE | MULTIPLE | BOTH)]
```

Figure 25. FILE Keyword Syntax
FILE

SINGLE
Includes those volumes that contain a single data set. All volumes that have multiple data sets are excluded.

MULTIPLE
Includes those volumes that contain multiple data sets. All volumes that have only a single data set are excluded.

BOTH
Includes all volumes in the analysis.

Single-file and multifile data sets can be either single-volume or multivolume. See “Single/Multi Volume/File Data Sets” on page 29 for more information about tape data sets.

Default
The default for FILE is BOTH.

Relationship to Other Keywords
If you want to examine the effects of IDRC compaction, 3490E, or Enhanced Capacity Cartridge System Tape on your large, multivolume data sets, such as volume or database dumps, use FILE(SINGLE) and MOUNT(MULTIPLE). This keyword combination causes GFTAVMA to filter in those large, multivolume data sets.

FILE Examples
If you specify:
FILE (BOTH)
GFTAVMA will include all volumes regardless of the number of data sets that reside on them.

If you specify:
FILE (SINGLE)
GFTAVMA will include only those volumes that contain a single data set.

Note: If a volume is used more than once, the last data written to the volume is considered to be what is on the volume.

JOBNAME Keyword

Use JOBNAME to include or exclude data sets created by specific job names. All data sets associated with the execution of a job are included in or excluded from the analysis. If you code INCLUDE, then all references to those data sets are included, including references from other jobs unless they are excluded by another filter. If a data set was not created during the time period of the SMF sample, JOBNAME is from the first reference to the data set. See “Primary Filters” on page 45 for more information.

Abbreviation: JOB

Syntax
Figure 26 on page 70 shows the syntax for the JOBNAME keyword.
JOBNM

\begin{verbatim}
[JOBNM (INCLUDE (job name filter list),
 EXCLUDE (job name filter list))]
\end{verbatim}

Figure 26. JOBNM Keyword Syntax

INCLUDE (job name filter list)
- Specifies a job name filter list to include in the analysis.

EXCLUDE (job name filter list)
- Specifies a job name filter list to exclude from the analysis.

See “Include/Exclude Filter Syntax” on page 45 for the rules and syntax for these keywords.

Default
If you do not specify the JOBNM keyword, GFTAVMA analyzes data sets associated with all job names.

JOBNM Example
If you specify:

\begin{verbatim}
JOBNM (EXCLUDE (IPCSDMP, SMF*, DLOG))
\end{verbatim}

GFTAVMA will exclude all data sets for the jobs named IPCSDMP, SMF*, and DLOG. GFTAVMA includes data sets from all other jobs in the analysis.

Using JOBNM as an ACS Filter
JOBNM is a filter you can use for the ACS routines.

MAXSIZE and MINSIZE Keywords

Use **MAXSIZE** to analyze data sets that are less than or equal to **MAXSIZE**. Similarly, use **MINSIZE** to analyze data sets that are greater than or equal to **MINSIZE**. See “Limiting Filters” on page 44 for more information.

Abbreviations: MAX and MIN

Syntax
Figure 27 shows the syntax for the **MAXSIZE** and **MINSIZE** keywords.

\begin{verbatim}
[MAXSIZE (nmm) MINSIZE (nmm)]
\end{verbatim}

Figure 27. MAXSIZE and MINSIZE Keyword Syntax

MAXSIZE (nmm)
- Includes all data sets that are less than or equal to nmm megabytes in the analysis.

MINSIZE (nmm)
- Includes all data sets that are greater than or equal to nmm megabytes in the analysis.

You can specify either **MAXSIZE** or **MINSIZE** or both for a run. The ranges for **MAXSIZE** and **MINSIZE** are zero to infinity.
Default

The default for **MAXSIZE** is *infinity*, and the default for **MINSIZE** is *zero*. If you do not specify the **MAXSIZE** and **MINSIZE** keywords, GFTAVMA analyzes all data sets.

Caution

Do not use **MAXSIZE** and **MINSIZE** to set artificial bounds on the data to be managed by the Storage Management Subsystem (SMS). In other words, do not use GFTAVMA to identify all data sets that are less than 10MB. In this way, you can move these data sets to DASD. This approach is extremely difficult to implement and often results in thousands of ACS filters.

By restricting the size of data sets analyzed in this manner, you do not get meaningful patterns to develop filters for ACS routines. Therefore, in order to capture that set of data, you end up with large numbers of fully-qualified data set names in the ACS routines, a situation that quickly becomes cumbersome and unmanageable.

Note: **MAXSIZE** and **MINSIZE** ignore any data sets that do not fall into the selected size range. If one generation of a GDG happens to fall outside the selected size range, it is not considered in the analysis even though all other generations in that GDG are included.

Do not be too dependent on **MAXSIZE** and **MINSIZE** because they do not offer an easy method of tape mount management implementation. Most tape data sets do not have size coded in the JCL. By the time the actual size of the data set is determined, it is too late to influence its fate with regard to being intercepted by DFSMS or not.

The size of a data set can certainly be a common denominator if it is looked at as an average or range rather than an absolute number. For instance, many large data sets probably have some common characteristics that emerge as patterns when you analyze them. Certain programs or jobs tend to generate many of the large data sets. However, there is no number that is a hard and fast breakpoint as to what determines a large data set.

Use **MAXSIZE** and **MINSIZE** as a first cut, but in the final analysis, you need to develop filters based on attributes that can be used by ACS to intercept the data sets. Otherwise, you do not have a practical basis for tape mount management implementation, and your study has been an interesting paper exercise at best.

Relationship to Other Keywords

The default value for the **LARGE** keyword is 600MB, but users have successfully intercepted data sets as large as 1.8GB. Using GFTAVMA, you can determine useful filters for **LARGE** using **MINSIZE**. If you specified **MINSIZE** (*600*) and **REPORT (DSN)**, you may have 30 data sets for ABC.PROD that are over 600MB. By reducing the **MINSIZE** value to 400MB, the report might show 2200 data sets for ABC.PROD.

MAXSIZE and MINSIZE Examples

If you specify:

```plaintext
MINSIZE (600)
```
MAXSIZE and MINSIZE

GFTAVMA will include only large data sets that are candidates to go directly to tape with hardware compaction. You set 600MB as the minimum size because that is the approximate capacity of a cartridge using IDRC compaction or half the capacity of a 3490E Enhanced Capacity Cartridge System Tape. With 3590, you will want to specify a larger value.

If you specify:
MAXSIZE (600)

GFTAVMA will include data sets that are smaller than 600MB. You can use 600MB as the estimated maximum size to analyze only the data sets that you would consider candidates to intercept and manage with DFSMS.

MOUNT Keyword

Use MOUNT to select:
• Data sets that are contained on one volume
• Only those data sets that span multiple volumes
• All data sets regardless of the number of residence volumes

See “Limiting Filters” on page 44 for more information.

Abbreviation: MOU

Syntax

Figure 28 shows the syntax for the MOUNT keyword.

[MOUNT (SINGLE | MULTIPLE | BOTH)]

Figure 28. MOUNT Keyword Syntax

SINGLE
Includes only those data sets that are contained on a single volume. All multiple volume data sets are excluded.

MULTIPLE
Includes only those data sets that span multiple volumes. All single volume data sets are excluded.

BOTH
Includes all data sets in the analysis.

Each of the above types of data sets can be either single-file or multifile. See “Single/Multi Volume/File Data Sets” on page 29 for more information about tape data sets.

Default
The default for MOUNT is BOTH.

Relationship to Other Keywords

If you want to examine the effects of IDRC on your large, multivolume data sets, such as volume or database dumps, use FILE(SINGLE) and MOUNT(MULTIPLE). This keyword combination causes GFTAVMA to filter in those large, multivolume data sets.
MOUNT Examples

If you specify:

MOUNT (BOTH)

GFTAVMA will include all data sets regardless of their volume residence requirements.

If you specify:

MOUNT (MULTIPLE)

GFTAVMA will include only those data sets that reside on more than one volume.

PROGRAM Keyword

Use PROGRAM to include or exclude data sets created by specific program names. All data sets created by the named programs are included in or excluded from the data analyzed. If a data set was not created during the time period in the SMF sample, the PROGRAM information is from the first reference to the data set. See “Primary Filters” on page 45 for more information.

Abbreviation: PGM

Syntax

Figure 29 shows the syntax for the PROGRAM keyword.

```
[PROGRAM (INCLUDE (program filter list),
  EXCLUDE (program filter list))]
```

Figure 29. PROGRAM Keyword Syntax

INCLUDE (program filter list)

Specifies a program filter list to include in the analysis.

EXCLUDE (program filter list)

Specifies a program filter list to exclude from the analysis.

See “Include/Exclude Filter Syntax” on page 45 for the rules and syntax for these keywords.

Default

If you do not specify the PROGRAM keyword, GFTAVMA analyzes all data sets associated with all programs.

PROGRAM Examples

If you specify:

PROGRAM (INCLUDE (IDCAMS, IEB*, IEH*),
 EXCLUDE (ADRDSSU))

GFTAVMA will include all the data being handled by IBM utilities, except the data handled by DFSMSdss (ADRDSSU).

If you specify:

PROGRAM (EXCLUDE (IKJEFT01))
PROGRAM

GFTAVMA will exclude data handled by the TSO Terminal Monitor Program (IKJEFT01).

Using PROGRAM as an ACS Filter
PROGRAM is a filter you can use for the automatic class selection (ACS) routines.

SYSTEMID Keyword

Use SYSTEMID to include or exclude particular systems in the analysis. Each system that generates SMF data is identified by a system ID. The SYSTEMID keyword provides the ability to focus on one or more specific systems in the analysis. See “Secondary Filters” on page 45 for more information.

Abbreviation: SYID

Syntax

Figure 30 shows the syntax for the SYSTEMID keyword.

```
[SYSTEMID (INCLUDE (system-id1),
    EXCLUDE (system-id2))]
```

Figure 30. SYSTEMID Keyword Syntax

INCLUDE (system-id1)
Specifies a list of system IDs to include in the analysis.

EXCLUDE (system-id2)
Specifies a list of system IDs to exclude from the analysis.

See “Include/Exclude Filter Syntax” on page 45 for the rules and syntax for filters.

Default

If you do not specify the SYSTEMID keyword, GFTAVMA will analyze data sets from all systems.

SYSTEMID Example

If you specify:
SYSTEMID (EXCLUDE (TEST))

GFTAVMA will exclude TEST, which is a logical test partition (LPAR). You would exclude LPARs because test cases created the LPAR data sets, which generated mounts. Since these data sets were created by test cases, you would not intercept and manage them with DFSMS.

TIME Keyword

Use TIME to select records created at specified times or within a specified time range. Using TIME can be useful for examining a daily processing window or a particular shift. See “Limiting Filters” on page 44 for more information.

If you specify a time range using TIME (fromtime, totime), only records within that time range are extracted for each day in the sample.
TIME

Abbreviation: None

Syntax

Figure 31 shows the syntax for the TIME keyword.

```
[TIME (fromtime[,totime])]
```

Figure 31. TIME Keyword Syntax

Both fromtime and totime have this syntax:

```
hh:mm:ss
```

Specifies the hour, minute, and second of the timestamp.

If you only specify the fromtime, the default totime is the end of the day, 23:59:59.

The valid range of values is between 00:00:00 for midnight, which is the start of the day, and 23:59:59, which is the end of the day.

Times can be specified as hh:mm:ss, hh:mm, or just hh. The time values specified must be in 24 hour clock values.

Default

If you do not specify the TIME keyword, GFTAVMA will analyze the SMF records for all times in the sample collected.

TIME Examples

If you specify:

```
TIME (3)
```

GFTAVMA includes only records created between 03:00:00 and 23:59:59 on each day of the sample period.

If you specify:

```
TIME (8,12)
```

GFTAVMA will include only records created between 08:00:00 and 12:00:00 on each day of the sample period.

UNIT Keyword

Use UNIT to select the unit types of tape volumes to be included in the analysis. Specify the unit type to differentiate between hardware devices with varying recording densities and media capacities. See "Secondary Filters" on page 45 for more information.

Since only the actual device type is in the SMF record, GFTAVMA only recognizes actual device types. It does not recognize esoteric unit types.

Abbreviation: None

Syntax

Figure 32 on page 76 shows the syntax for the UNIT keyword.
UNIT

[UNIT (INCLUDE (3420,3480,348X,3490E,3590),
 EXCLUDE (3420,3480,348X,3490E,3590))]

Figure 32. UNIT Keyword Syntax

INCLUDE (3420,3480,348X,3490E,3590)
 Specifies a list of unit types to include in the analysis.

EXCLUDE (3420,3480,348X,3490E,3590)
 Specifies a list of unit types to exclude from the analysis.

You can specify one or more unit types. The valid unit types are:

3420 3420 type reel tape
3480 3480 cartridge tape without the IDRC feature
348X 3480 cartridge tape with the IDRC feature or 3490
3490E 3490 cartridge tape written with enhanced recording format and 36–track processing
3590 3590 cartridge tape written with 128–track processing and 36–track processing

The UNIT keyword allows the use of global data set name characters:
UNIT (INC(348%))

See “Include/Exclude Filter Syntax” on page 45 for the rules and syntax for filters.

Default

If you do not specify the UNIT keyword, GFTAVMA will analyze data sets on all units.

Relationship to Other Keywords

Because the 3480 with IDRC and the 3490 create the same capacity and format of cartridge, the SMF records do not differentiate between these with separate unit types. To separate these in an GFTAVMA analysis, use the UNITADDR keyword.

UNIT Examples

If you specify:
UNIT (EXC(3420))

GFTAVMA will include data sets created on any device type except 3420s.

UNITADDR Keyword

Use UNITADDR to include a specific range of device numbers in the analysis or to exclude a range of devices that are of a different device type. See “Secondary Filters” on page 45 for more information. In the book and in the reports device numbers are called “unit addresses”.

UNITADDR is useful if you use certain address ranges specifically for some particular application or function. For example, you might have several tape units in a locked room that are used only for tapes containing highly confidential data. Therefore, you may want to exclude that range of addresses from your analysis.
Abbreviation: UADR

Syntax

Figure 33 shows the syntax for the **UNITADDR** keyword.

```
[UNITADDR (INCLUDE (xxxx),
    EXCLUDE (yyyy)]
```

Figure 33. UNITADDR Keyword Syntax

- **INCLUDE (xxxx)**
 - Specifies a list of unit addresses to include in the analysis.

- **EXCLUDE (yyyy)**
 - Specifies a list of unit addresses to exclude from the analysis.

Unit addresses are four characters in length (for example, 0580).

See "Include/Exclude Filter Syntax" on page 45 for the rules and syntax for filters.

Default

If you do not specify the **UNITADDR** keyword, GFTAVMA will analyze data sets from all unit addresses.

Relationship to Other Keywords

When filtering with **VOLUME** and **UNITADDR**, ensure that the filtering combination works. For example, if data set AA is a multivolume data set that resides on volume 1, volume 2, and volume 3, it is possible that when you use **VOLUME** and **UNITADDR** filtering, you can filter volume 2 out of the analysis. This would affect the volume mount analyzer report results for data set AA.

To avoid this situation, only use these keywords to capture a totally self-contained set of volumes, such as DFSMShsm-owned volumes. These self-contained sets of volumes have a naming convention that identifies them to be used by one particular application only.

Caution

Including or excluding specific unit addresses can sometimes produce inaccurate results. For example, if data set X.Y.Z is multivolume and spans volumes 1, 2, and 3, and if volume 2 gets excluded due to filtering, the data associated with data set X.Y.Z becomes meaningless.

UNITADDR Examples

- If you specify:

 UADR (INCLUDE (07*), EXCLUDE (07C%,07D%))

 GFTAVMA will include all unit addresses in the range of 0700 - 07FF, except for 07C0-07CF and 07D0-07DF.

- If you specify:

 UNITADDR (INCLUDE (07A*,07B*))
UNITADDR

GFTAVMA will include all unit addresses in the range of 07A0 to 07BF. You can use an asterisk to specify a range of unit addresses.

USAGE Keyword

Use USAGE to select data sets for analysis based on their patterns of usage or recognizable naming conventions. USAGE simplifies the categorization of tape data sets and limits the number of filters that you need to code in individual GFTAVMA runs. See “Limiting Filters” on page 44 for more information.

Note that the data set usage attributes are not the same as the tape mount management data set categories. See “Data Set Usage Types” on page 36 for more information.

Abbreviation: USE

Syntax

Figure 34 shows the syntax for the USAGE keyword.

[USAGE (ALL | ACTIVE,BACKUP,BCOPY,TEMP, SINGLE | HSM | NONHSM)]

Figure 34. USAGE Keyword Syntax

ALL

Includes all data sets in the analysis.

ACTIVE (ACTV)

Includes only active data sets. Accessed as read or as write and read, these data sets are not HSM, TEMP, BACKUP, SINGLE, or BCOPY.

BACKUP (BKUP)

Includes data sets that have been opened and processed for output only and are not HSM, TEMP, SINGLE, BCOPY, or ACTIVE. Unlike active data sets, these data sets are probably being placed on tape for backup purposes.

BCOPY (BCOP)

Includes only data sets that have been opened once for input and once for output and are not HSM, TEMP, BACKUP, ACTIVE, or SINGLE. These data sets are likely a specialized form of backup. Perhaps a backup is taken and then re-copied to be sent to a vault.

TEMP

Includes only temporary data sets. Data sets are flagged in GFTAXTR as temporary if they match the system-assigned naming convention for temporary data sets or if they have been allocated as DISP=(NEW,DELETE).

SINGLE (SING)

Includes data sets that have only been accessed on a single day and are not HSM, TEMP, BCOPY, BACKUP, or ACTIVE.

HSM

Includes only those data sets owned and managed by DFSMSshm, such as the migration level 2 and backup single-file format (SFF) data sets and autodumps. GFTAVMA has built-in knowledge of every naming convention that DFSMSshm uses.

NONHSM

Includes all data sets except those that fall into the HSM category.
You can specify one of the following:

- **ALL**
- Any combination of **ACTIVE, BACKUP, BCOPY, TEMP, and SINGLE**
- **HSM**
- **NONHSM**

Default

If you do not specify the **USAGE** keyword, GFTAVMA will use the default, **ALL**.

VOLUME Keyword

Use **VOLUME** to include or exclude volumes from the GFTAVMA analysis based on the volume serial numbers in the input SMF records. See “Secondary Filters” on page 45 for more information.

Abbreviation: **VOL**

Syntax

Figure 35 shows the syntax for the **VOLUME** keyword.

```
[VOLUME (INCLUDE (volume filter list),
       EXCLUDE (volume filter list))]
```

Figure 35. VOLUME Keyword Syntax

INCLUDE (volume filter list)

Specifies a volume filter list to include in the analysis.

EXCLUDE (volume filter list)

Specifies a volume filter list to exclude from the analysis.

See “Include/Exclude Filter Syntax” on page 45 for the rules and syntax for these keywords.

Default

If you do not specify the **VOLUME** keyword, GFTAVMA will analyze all volumes.

Relationship to Other Keywords

When filtering with **VOLUME** and **UNITADDR**, ensure that the filtering combination works. For example, if data set AA is a multivolume data set that resides on volume 1, volume 2, and volume 3, it is possible that when you use **VOLUME** and **UNITADDR** filtering, you filter volume 2 out of the analysis. This would affect the volume mount analyzer report results for data set AA.

To avoid this situation, only use these keywords to capture a totally self-contained set of volumes, such as DFSMShsm-owned volumes. These self-contained sets of volumes have a naming convention that identifies them to be used by one particular application only.
Restrictions
Including or excluding specific volume serials can sometimes produce inaccurate results. For example, if data set X.Y.Z is multivolume and spans volumes 1, 2 and 3, and volume 2 gets excluded due to filtering, the data associated with data set X.Y.Z becomes meaningless.

VOLUME Example
If you specify:
VOLUME (EXCLUDE (B*))

GFTAVMA will include all volumes except those whose volume serial numbers start with B.
Chapter 6. Producing Detailed Analysis Reports

GFTAVMA produces both summary reports and detailed reports. As pointed out in "Interpreting GFTAVMA Summary Reports" on page 51, all GFTAVMA runs automatically generate summary reports. But you must use the REPORT keyword to generate detailed analysis reports. See "REPORT Keyword" on page 146 for keyword rules and syntax.

This chapter introduces detailed analysis reports and describes their production phases and types. It also illustrates how to interpret the actual and simulation reports.

Note: You can read GFTAVMA reports at your terminal. If you wish to print them, you should use necessary keywords to filter your input and tailor your output. Otherwise, you will generate extremely large reports that are hard to read and manage. See Chapter 5, “Using GFTAVMA Keywords to Filter Your Input,” on page 63 and Chapter 7, “Using GFTAVMA Keywords to Tailor Your Output,” on page 129 for more information about using these keywords.

Understanding Detailed Analysis Reports

GFTAVMA generates optional detailed reports during the three phases of GFTAVMA processing. You can use the REPORT keyword to request these reports. As a result, you get one output data set containing the three summary reports, described in "Interpreting GFTAVMA Summary Reports" on page 51, and any optional detailed reports you requested. This data set is defined by the SYSPRINT DD statement in the GFTAVMA JCL.

Production Phases of Detailed Reports

There are three GFTAVMA processing phases. The reports generated during each phase appear in the output data set in the order GFTAVMA generates them:

- During phase 1, GFTAVMA generates the GFTASRT1 summary report and, if requested, the Usage Report.
- During phase 2, GFTAVMA generates the GFTASRT2 summary report and, if requested, the Volume Report.
- During phase 3, GFTAVMA generates the GFTASRT3 summary report and, if requested, any or all other optional reports.

For example, if you request the Volume Report with REPORT(VOLUME), the reports will be generated in the order of GFTASRT1, GFTASRT2, the Volume Report, and GFTASRT3.

Types of Detailed Reports

GFTAVMA generates two types of optional detailed reports:

- Actual reports that show the actual tape usage at your installation. The actual reports include:
 - The Data Set Report
 - The Maximum Gigabyte Report
 - The Top Report
 - The Usage Report
 - The Volume Report
Simulation reports that simulate what the tape usage at your installation might be if you use tape mount management. The simulation reports include:

- The Estimate Report
- The IDRC Report
- The Management Class Report

See "Interpreting the Actual Reports" in the following section and "Interpreting the Simulation Reports" on page 105 for more details.

All volume mount analyzer messages appear in the reports. See Appendix D, "Volume Mount Analyzer Messages," on page 167 for more information.

Interpreting the Actual Reports

The actual reports show the current tape usage statistics for your installation. There are five actual reports:

- The Data Set Report (see "The Data Set Report")
- The Maximum Gigabyte Report (see "The Maximum Gigabyte Report" on page 87)
- The Top Report (see "The Top Report" on page 91)
- The Usage Report (see "The Usage Report" on page 94)
- The Volume Report (see "The Volume Report" on page 100)

Examples of each of the actual reports are shown in this section.

The Data Set Report

The Data Set (DSN) Report is an actual report. The actual reports show the current tape usage statistics for your installation.

Use the keyword REPORT(DATASET) or REP(DSN) to generate the Data Set Report. You can specify the CUTOFF keyword to reduce the number of pages printed for the Data Set Report.

If you specify:

REPORT(DATASET) MINSIZE(400) DSORT(SIZE)

GFTAVMA will generate a Data Set Report that shows data sets greater than 400MB sorted by size.

Keywords that Affect the Data Set Report

The results of the GFTAVMA reports rely on the keywords you choose. Therefore, choose your keywords carefully and be aware of the defaults and effects of the keywords on these reports.

All filtering input keywords and the SPLIT keyword affect these reports. See Chapter 5, “Using GFTAVMA Keywords to Filter Your Input,” on page 63 and “SPLIT Keyword” on page 150 for the syntax and functions of these keywords.

A subset of the tailoring output keywords specified for a GFTAVMA run also affects the Data Set Report. See Chapter 7, “Using GFTAVMA Keywords to Tailor Your Output,” on page 129 for more information about the syntax and functions of these tailoring output keywords:

- BLKSIZE
- CUTOFF
- DASDDEV

Note: It is possible for a data set on a multifile volume to show up as single-file. This happens when the data set is the first and only one written to a volume during a mount. Unless this data set is accessed again during the reporting period and a new SMF record is created, the EXTRACT portion of the volume mount analyzer will not recognize it as part of a multifile volume.

Use of the Data Set Report
The detailed Data Set Report provides further information about each data set to supplement the data set statistics in the GFTAVMA summary report, GFTASRT3.

Use the Data Set Report to examine all data sets by category, such as size, application, expiration date, and account number. The Data Set Report shows you the cost of DASD tracks for each data set as well as the cumulative DASD cost for all data sets.

Use the Data Set Report to identify data set patterns. In this way, you can determine which data sets to exclude because of size. The default for LARGE is 600MB. Therefore, by specifying a MINSIZE of 400MB for the Data Set Report, you can determine if the default for LARGE is accurate for your data set patterns.

The Data Set Report Legend—Explanation of Symbols
The Data Set Report is always preceded by this legend, which describes various symbols and special characters in the report:

<table>
<thead>
<tr>
<th>FIELD</th>
<th>VALUES</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1----> F - DATA SET EXCEEDS THE DEVICE CAPACITY (DUE TO MAX BLKSIZE WITH VAR. OR UNDF. RECORDS), 'FORCECAP' WAS SPECIFIED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----> X - SPECIFIED SIZE EXCEEDS THE DEVICE CAPACITY (DUE TO MAX BLKSIZE WITH VAR. OR UNDF. RECORDS), 'NOFORCECAP' WAS SPECIFIED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----> Z - UNABLE TO DETERMINE THE SIZE OF THE DATA SET DUE TO MISSING INFORMATION (E.G., LRECL) -- FORCED SIZE = ZERO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2----> U - DATA SET HAS "UN-BLOCKED" RECORDS -- THE SIZE (MB) MAY BE ARTIFICIALLY LARGE, ALSO IT CAN'T BE RE-BLOCKED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----> V - DATA SET HAS "VARIABLE" RECORDS -- THE SIZE (MB) MAY BE ARTIFICIALLY LARGE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 6. Producing Detailed Analysis Reports
#1----> I - DATA SET WAS PREVIOUSLY COMPACTED USING IDRC (IMPROVED DATA RECORDING CAPABILITY) ON
THE DEVICE IT CURRENTLY RESIDES ON -- THIS CAN ONLY OCCUR ON A 348X DEVICE AND ABOVE

GFTASRT3 -- DATA SET REPORT -- FIELD KEY CHART (2 OF 3)

********** HEADING = '3390-3 TRACKS' **********

<table>
<thead>
<tr>
<th>3390-3</th>
<th>TRACKS</th>
</tr>
</thead>
</table>

TTTTT (# OF 3390-3 TRACKS) 3

FIELDS---->2

NNNNN (# OF 3390-3 K-TRACKS -- 1000S OF TRACKS)

OR

BBBBB (WHERE "BBBBB" = BLKSIZE OF THE DATA SET WITH > 1/2 TRK BLOCK SIZE ON '3390-3' DEVICE) 4

GFTASRT3 -- DATA SET REPORT -- FIELD KEY CHART (2 OF 2)

FIELD VALUES MEANING

#1----> > - DATA SET IS CURRENTLY BLOCKED > 1/2 TRK AND EITHER "UN-BLOCKED" RECORDS OR PROGRAM
WON'T ALLOW RE-BLOCKING

#2----> Z - THE SMF TYPE 14/15 RECORD HAD A BLKSIZE=0 AND THE DEFAULT/SPECIFIED VALUE,
SUCH AS 'BLKSIZE(32760)', WAS USED

#2----> S - THE 'SPACE' KEYWORD WAS ORIGINALLY CODED IN THE 'BLKSIZE(32760)' WAS USED

GFTASRT3 -- DATA SET REPORT -- FIELD KEY CHART (3 OF 3)

********** HEADING = '#INP OPNS' **********

| #INP |
| OPNS |

NNNN (# OF OPENS FOR A DATA SET IN INPUT MODE)

OR

NNNK (# OF 1000S OF OPENS FOR A DATA SET IN INPUT MODE)

********** HEADING = '#OUT OPNS' **********

| #OUT |
| OPNS |

NNNN (# OF OPENS FOR A DATA SET IN OUTPUT MODE)

OR

NNNK (# OF 1000S OF OPENS FOR A DATA SET IN OUTPUT MODE)

GFTASRT3 -- DATA SET REPORT -- FIELD KEY CHART (3 OF 3)

********** HEADING = 'PROGRAM' **********

| PROGRAM |

_PPPPPPP (NAME OF THE CREATING PROGRAM -- IF KNOWN)

FIELD---->1

FIELD VALUES MEANING

#1----> > - THE PROGRAM LISTED MAY NOT BE THE PROGRAM WHICH CREATED THIS DATA SET -- SINCE NO
OUTPUT RECORDS WERE FOUND FOR THIS DATA SET, IT WAS IMPOSSIBLE TO DETERMINE THE ACTUAL
CREATION PROGRAM

********** HEADING = 'DATA SET NAME' **********

| DATA SET NAME |

_DDDDD... (DATA SET NAME - 43 CHARACTERS)

FIELD---->1

FIELD VALUES MEANING

#1----> > - THE DATA SET MAY NOT BE CATALOGED -- THE GFTAVMA PROGRAM WAS UNABLE TO DETERMINE
W/O ISSUING A LOCATE 2

#2----> 0 - THE DATA SET MAY NOT BE CATALOGED AND LABEL=(,NL) WAS SPECIFIED IN THE JCL
NOTE: IF OTHER DATA SETS WITH THIS HLQ ARE CATALOGED, THEN THIS DATA SET IS
PROBABLY CATALOGED

#3----> + - THE DATA SET NAME LISTED IS A TEMPORARY DATA SET (BASED ON FLAGS IN THE SMF RECORD)
-- UNCATALOGED

#4----> # - THE DATA SET NAME LISTED IS A TEMPORARY DATA SET AND LABEL=(,NL) WAS SPECIFIED
IN THE JCL

NOTE: NOT ALL TEMPORARY DATA SETS HAVE THE FORMAT OF ‘SYYYYYDDDDD.THHMMSS.RA000.JOB.*’

1 Shows the keywords that were specified in the GFTAVMA JCL. This information shows what keywords generated the Data Set Report.
Data Set Report

See the FORCECAP keyword in “FORCECAP/NOFORCECAP Keywords” on page 139 for a discussion of what happens when the data set size exceeds the physical size of the tape cartridge. Also see “Tape Cartridge Usage” on page 35 that explains the capacities of tape volumes.

The heading and actual track calculations for this sample report are based on the DASDDEV keyword, which defaulted to 3390-3.

The data set block size value affects how efficiently DASD track space is allocated. GFTAVMA calculates the DASD track size using the current data set block size.

"W/O ISSUING A LOCATE” means “without reading the catalog”. See note 8.

Note: This block size might be efficient for tape. However, it is inefficient for DASD track usage.

Example of the Data Set Report

Note: Figure 36 on page 86 is only part of the complete Data Set Report that GFTAVMA generated for this run. These data sets are between 402 MB and 499 MB in size.
Data Set Report

<table>
<thead>
<tr>
<th>EXPDT</th>
<th>MOUNTS</th>
<th>XFERD</th>
<th>GB</th>
<th>Tracks</th>
<th>INP</th>
<th>OUT</th>
<th>GDS</th>
<th>DSN#</th>
<th>JOBNAME</th>
<th>PROGRAM</th>
<th>DATA SET NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFTAVMA PROGRAM COMPLETED AT 10:06:42 A.M. ON 05/22/2004 -- RETURN CODE = 0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 36. Partial Data Set Report

6. **Number of statistical mounts attributed to each data set.** See "Statistical Mounts" on page 30 for more information.

7. **The size of the data set the last time it was written.** If the data set was not written in the input sample, this is the size of the data transfer during the last read operation.

If you specified **GDG(GROUP)**, the **SZ-MB XFERD** and **TRACKS** size fields are the cumulative total size of each GDS within the GDG.
Data Set Report

8 The amount of DASD space that would be required to hold the data set. If the block size is less than a half track of the device, the block size is shown. The target DASD device type used here is controlled by the DASDDEV keyword, which defaulted to 3380E in this report example.

9 Reading a row of the Data Set Report shows that the latest version of this data set is named PLRC.XYZ.PROD14.BACKUP.COPY. The > symbol directly in front of the data set name indicates that the data set might not be cataloged. The volume mount analyzer determines catalog status from the data set JFCB, which is contained in the SMF 14 and 15 record types. The volume mount analyzer does not have access to the catalog.

This data set was created by the job named PLRC126W and by the program named XYZ. It has an expiration date (EXPDT) of 99002. This expiration date indicates that a tape management program controls the data set.

During the reporting period, GFTAVMA determined that there were nine statistical mounts that were attributed to the data set. See “Statistical Mounts” on page 30 for more details.

The U in the CUM GB XFERD column indicates that the data set has RECFM=U. When it was created, the size of the data transfer for this data set was 497MB. The I to the right of 497 in the SZ-MB XFERD column indicates that the data set has been compacted by IDRC.

This data set was opened for output nine times, which is equal to the statistical mounts value, and never opened for input. This means that this data set is backup. See “Data Set Usage Types” on page 36 for details.

10 The number of OPENs for INPUT and OPENs for OUTPUT for a data set. These numbers show the usage pattern of active versus backup, assuming the data set is not marked USAGE(SINGLE) or USAGE(BCOPY).

11 If the data set is in a GDG, this column shows the number of individual GDSs it represents. This number is only greater than 1 if you specify GDG(GROUP).

12 Program and job that created the data set or last read if GFTAVMA cannot determine the creator.

The Maximum Gigabyte Report

The Maximum Gigabyte (GBMAX) Report is an actual report. The actual reports show the current tape usage statistics for your installation.

Use the keyword REPORT(GBMAX) or REP(GB) to generate the GBMAX Report.

If you specify:
REPORT (GBMAX)

GFTAVMA will generate a Maximum Gigabyte Report.

Keywords that Affect the Maximum Gigabyte Report

The results of the GFTAVMA reports rely on the keywords you choose. Therefore, choose your keywords carefully and be aware of the defaults and effects of the keywords on these reports.
GBMAX Report

All filtering input keywords and the **SPLIT** keyword affect these reports. See Chapter 5, “Using GFTAVMA Keywords to Filter Your Input,” on page 63 and “SPLIT Keyword” on page 150 for the syntax and functions of these keywords.

A subset of the tailoring output keywords specified for a GFTAVMA run affect the GBMAX Report. See Chapter 7, “Using GFTAVMA Keywords to Tailor Your Output,” on page 129 for more information about the syntax and functions of these tailoring output keywords:
- BLKSIZE
- FORCECAP
- RPROGRAM

Use of the Maximum Gigabyte Report

The Maximum Gigabyte Report shows the number of gigabytes for the DISP=NEW and DISP=MOD data sets being created for every hour of every day in the sample.

If your volume mount analyzer run includes all of the data you plan on intercepting with ACS filters for tape mount management, the GBMAX Report is an excellent estimate of the amount of free space you will need in the tape mount management DASD buffer.

You can determine the amount of free space you need by first running the Estimate and Management Class Reports for each of your tape mount management target applications. Based on these reports, you might determine that you need twenty 3390-3 volumes for primary storage. To determine how much free space you need, assuming DFSMShsm migrates data sets hourly, you would run the GBMAX Report on your final set of filters.

This example report shows that you need two 3390-3 volumes to handle your peak loads. So you would need to start with 22 primary storage volumes to allow two volumes of free space (10%) for the peak loads.

You can also use the GBMAX Report with the Estimate Report to determine the amount of buffering needed for every hour of each day. Keep in mind, however, that the maximum number of gigabytes for all applications is not the sum of the maximum for each application. Applications with maximums of 3, 4, and 5GB might only need 5GB when mixed, not 12GB.

GFTAVMA calculates the numbers in the Estimate Report (see "The Estimate Report" on page 105) by using the LRECL, RECFM, and BLKSIZE of the data sets and the number of blocks as they would lay out on the target DASD device. Therefore, do not expect the number of gigabytes in the Estimate Report to match the numbers in the GBMAX Report.

See z/OS DFSMS Implementing System-Managed Storage for more information on using the GBMAX and Estimate Reports together.

Example of the Maximum Gigabyte Report

The GBMAX Report shows the amount of new data transferred over time for the data sample analyzed in the GFTAVMA run. The report is meant to give a perspective of how much data per hour will be allocated to a tape mount
management DASD buffer if DFSMS intercepted this set of data and redirected it to the tape mount management DASD buffer.

Figure 37 on page 90 is an example of the GBMAX Report.
GBMAX Report

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GB MAX ALLOCATIONS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Max GB Max</td>
<td>1.0</td>
</tr>
<tr>
<td>Max GB Max</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM GIGABYTE ALLOCATIONS BY HOUR

Figure 37. The GBMAX Report

z/OS V2R2 DFSMS Using the Volume Mount Analyzer
GBMAX Report

Reading across the rows of the report by date shows the number of gigabyte of DISP=NEW and DISP=MOD data sets transferred per hour, the highest number of gigabytes transferred during the peak hour, and the total number of gigabytes transferred for that day.

Reading down a column of the report shows the highest number of gigabytes transferred during that hour of each day for the duration of the study.

The number in the HOURLY MAX row shows the highest number of gigabytes transferred during that hour (3GB was the peak for hour 17, and 18GB was the peak for hour 10) for the duration of the study. It is not the total transferred.

1. The MAX per day shows the maximum number of gigabytes for DISP=NEW and DISP=MOD data sets allocated during any one hour interval on a given day.

2. The TOTAL column shows the total number of gigabytes for DISP=NEW and DISP=MOD data sets allocated by day.

3. The MAX in the HOURLY MAX row represents the maximum number of gigabytes for DISP=NEW and DISP=MOD data sets allocated in any one hour interval throughout the sample. The MAX of 18 occurred in hours 7, 8, 9, 10, and 11. The MAX value is not a total.

Note: This MAX is the number that you should look at to determine the peak number of gigabytes for the run, which is the size needed for the hourly free space in tape mount management DASD buffer.

4. In this example, 2060GB are transferred for the duration of your study. The largest number of gigabytes transferred during a single hour for the duration of your study is 18GB. Based on this information, you would know that you need a tape mount management DASD buffer that can handle at least 18GB of data, which is the number of gigabytes transferred during the peak periods of data transfer.

Based on the report in this example, to handle the maximum amount of free space needed each hour, you would need 18GB. To buffer this set of data for 24 hours, you would need to handle the maximum of 125GB on 06/01/2003. GFTAVMA calculates the numbers in the GBMAX Report by multiplying the number of blocks by the maximum block size and then rounding up to the nearest gigabyte.

If the tape mount management DASD buffer is not migrated hourly, you should plan on a buffer that can handle at least the maximum daily tape usage of 130GB, which occurred on 06/08/91.

See z/OS DFSMS Implementing System-Managed Storage for details on planning your DASD buffer.

The Top Report

The Top Report is an actual report. The actual reports show the current tape usage statistics for your installation. The Top Report shows the current tape usage statistics in descending order of mounts for various data set-related categories.

Use the keyword REPORT(TOP) or REP(TOP) to generate the Top Report.

In this example, these keywords were specified:

REPORT(TOP(PROGRAM, PERCENT(75)))
Top Report

These keywords specify that GFTAVMA generates a Top Report to show the programs responsible for the highest number of tape mounts at your installation. PERCENT (75) is the cutoff point. Therefore, the Top Report example only shows the top 75% of cumulative tape mounts.

See "Parameters for the Top Report" on page 147 for the rules, syntax, and other kinds of Top Reports you can request.

Keywords that Affect the Top Report

The results of the GFTAVMA reports rely on the keywords you choose. Therefore, choose your keywords carefully and be aware of the defaults and effects of the keywords on these reports.

All filtering input keywords and the SPLIT keyword affect these reports. See Chapter 5, “Using GFTAVMA Keywords to Filter Your Input,” on page 63 and “SPLIT Keyword” on page 150 for the syntax and functions of these keywords.

A subset of the tailoring output keywords specified for a GFTAVMA run also affects the Top Report. See Chapter 7, “Using GFTAVMA Keywords to Tailor Your Output,” on page 129, “Parameters for the Top Report” on page 147, and “ACCTFLD Keyword” on page 15 for more information about the syntax and functions of these tailoring output keywords:

- ACCTFLD
- BLKSIZE
- TOP parameters

Use of the Top Report

The purpose of the Top Report is to show how you can use simple filters with ACS routines to intercept large numbers of data sets. In the example shown in Figure 38 on page 93, only four programs are responsible for approximately 50 percent of all tape mounts.

You can use this information to filter on these four program names to intercept 21771 data sets. Most of these data sets are probably forms of backup and could be migrated directly to migration level 2. This means that a small amount of DASD would be required to hold the data for a short period of time. In this way, all but extremely large data sets could be intercepted. It would be easier to EXCLUDE the exceptions by program name and keep your filter list simple than to list all the data sets to INCLUDE by their name.

If you want to intercept data sets that are being allocated to tape and stack them, PROGRAM and UNIT=TAPE would be good ACS filters to direct these data sets to the tape mount management DASD buffer before allocating them to tape.

The Top Report also shows the average size of the data sets and the number of data sets greater than the LARGE keyword value for each category. GFTAVMA assumes that you have set the LARGE keyword to a value that represents the largest size of data sets that you want to intercept and send to the tape mount management DASD buffer. See "LARGE Keyword” on page 142.

You should list data sets larger than the LARGE value in an EXCLUDE list and allow them to be written directly to tape. If there are few data sets in the category
greater than LARGE, they could probably easily be accommodated on the tape mount management DASD buffer for a short period of time.

Example of the Top Report

Figure 38 shows the programs that are responsible for the top 75% of the tape mounts in this GFTA VMA run.

<table>
<thead>
<tr>
<th>RANK</th>
<th>PROGRAM</th>
<th># DSNS</th>
<th>% TOT</th>
<th>CUM DSN</th>
<th>% TOT</th>
<th>< LARGE</th>
<th>AVG SIZE</th>
<th># MOUNTS</th>
<th>% TOT</th>
<th>CUM MNTS</th>
<th>% TOT</th>
<th>SIZE (GB)</th>
<th>% TOT</th>
<th>CUM GB</th>
<th>% TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IDCAMS</td>
<td>12386</td>
<td>30.0</td>
<td>12386</td>
<td>30.0</td>
<td>0</td>
<td>16.0</td>
<td>6611.6</td>
<td>17.3</td>
<td>198.3</td>
<td>15.1</td>
<td>198.3</td>
<td>15.1</td>
<td>198.3</td>
<td>15.1</td>
</tr>
<tr>
<td>2</td>
<td>IEBGENER</td>
<td>3273</td>
<td>7.9</td>
<td>15659</td>
<td>38.0</td>
<td>3</td>
<td>7.9</td>
<td>5429.7</td>
<td>14.2</td>
<td>258.8</td>
<td>2.0</td>
<td>224.1</td>
<td>17.1</td>
<td>224.1</td>
<td>17.1</td>
</tr>
<tr>
<td>3</td>
<td>DFSUDMP0</td>
<td>5966</td>
<td>14.5</td>
<td>21625</td>
<td>52.4</td>
<td>0</td>
<td>51.4</td>
<td>4223.9</td>
<td>11.0</td>
<td>626.8</td>
<td>5.0</td>
<td>508.6</td>
<td>39.7</td>
<td>508.6</td>
<td>39.7</td>
</tr>
<tr>
<td>4</td>
<td>XYZ</td>
<td>146</td>
<td>0.4</td>
<td>21771</td>
<td>52.8</td>
<td>130</td>
<td>837.5</td>
<td>2673.0</td>
<td>7.0</td>
<td>18938.3</td>
<td>49.4</td>
<td>1223.3</td>
<td>9.3</td>
<td>1223.3</td>
<td>9.3</td>
</tr>
<tr>
<td>5</td>
<td>ABCDE04</td>
<td>5218</td>
<td>1.3</td>
<td>26989</td>
<td>65.4</td>
<td>0</td>
<td>6.5</td>
<td>2447.9</td>
<td>6.4</td>
<td>687.8</td>
<td>52.5</td>
<td>687.8</td>
<td>52.5</td>
<td>687.8</td>
<td>52.5</td>
</tr>
<tr>
<td>6</td>
<td>ABCDE01</td>
<td>1320</td>
<td>0.3</td>
<td>28309</td>
<td>68.6</td>
<td>2</td>
<td>23.9</td>
<td>1617.0</td>
<td>4.2</td>
<td>23003.2</td>
<td>60.1</td>
<td>31.5</td>
<td>2.4</td>
<td>31.5</td>
<td>2.4</td>
</tr>
<tr>
<td>7</td>
<td>IFASWFDP</td>
<td>10</td>
<td>0.0</td>
<td>28378</td>
<td>68.8</td>
<td>10</td>
<td>358.4</td>
<td>1333.0</td>
<td>3.5</td>
<td>4781.4</td>
<td>12.5</td>
<td>743.5</td>
<td>56.8</td>
<td>743.5</td>
<td>56.8</td>
</tr>
<tr>
<td>8</td>
<td>DFSRRC00</td>
<td>636</td>
<td>1.6</td>
<td>29014</td>
<td>70.4</td>
<td>14</td>
<td>81.0</td>
<td>1229.1</td>
<td>3.2</td>
<td>5556.3</td>
<td>66.7</td>
<td>51.5</td>
<td>3.9</td>
<td>51.5</td>
<td>3.9</td>
</tr>
<tr>
<td>9</td>
<td>DUMP</td>
<td>477</td>
<td>1.2</td>
<td>29491</td>
<td>71.5</td>
<td>0</td>
<td>11.6</td>
<td>956.7</td>
<td>2.6</td>
<td>920.5</td>
<td>61.1</td>
<td>920.5</td>
<td>61.1</td>
<td>920.5</td>
<td>61.1</td>
</tr>
<tr>
<td>10</td>
<td>TATTGET4</td>
<td>92</td>
<td>0.2</td>
<td>29583</td>
<td>71.7</td>
<td>0</td>
<td>87.8</td>
<td>819.0</td>
<td>2.1</td>
<td>27340.0</td>
<td>71.4</td>
<td>101.5</td>
<td>7.7</td>
<td>101.5</td>
<td>7.7</td>
</tr>
<tr>
<td>11</td>
<td>LIMOPR</td>
<td>209</td>
<td>0.5</td>
<td>29792</td>
<td>72.2</td>
<td>0</td>
<td>31.1</td>
<td>708.0</td>
<td>1.8</td>
<td>28048.0</td>
<td>73.2</td>
<td>6.5</td>
<td>0.5</td>
<td>6.5</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>DKNMTASK</td>
<td>140</td>
<td>0.3</td>
<td>29932</td>
<td>72.6</td>
<td>0</td>
<td>8.7</td>
<td>523.0</td>
<td>1.4</td>
<td>28571.0</td>
<td>74.6</td>
<td>1.2</td>
<td>0.1</td>
<td>1.2</td>
<td>0.1</td>
</tr>
<tr>
<td>13</td>
<td>PANNN</td>
<td>92</td>
<td>0.2</td>
<td>30024</td>
<td>72.8</td>
<td>0</td>
<td>107.0</td>
<td>486.0</td>
<td>1.3</td>
<td>29057.0</td>
<td>75.9</td>
<td>9.8</td>
<td>0.8</td>
<td>9.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

GFTA VMA PROGRAM COMPLETED AT 10:08:27 A.M. ON 06/03/1992 -- RETURN CODE = 1

Figure 38. The Top Report

1. # MOUNTS % TOT column shows the number of mounts and the percent of the total mounts for each RANK. The Top Report is ranked according to the associated number of mounts sorted in descending order, and RANK 1 is the program responsible for the most number of mounts at this installation.

2. CUM MNTS % TOT column shows the total mounts for the programs. Usually less than 20 programs account for more than 70% of the mounts. In this example, 13 programs were responsible for 75.9% of the mounts.

Reading across the rows of this example, you see that the first row (RANK 1) shows that the program IDCAMS created 12386 data sets (# DSNS column), which account for 17.3% of the mounts (% TOTAL # OF MOUNTS column). These data sets have an average size of 16.0MB (AVG SIZE column). None of these data sets are greater than the LARGE value of 600MB (> LARGE column).

Contrast this with the second row of the report (RANK 2), which shows that 3273 data sets were created by the program IEBGENER (# DSNS column). These data sets account for 14.2% of the mounts (% TOTAL # OF MOUNTS column). The average data set size is only 7.9MB, and only three of the data sets are greater than the LARGE value. Therefore, you can reduce many mounts by using just one program filter (IEBGENER).

The fourth row (RANK 4) shows that only four programs are responsible for almost half (49.4%) of all mounts (% TOTAL CUM MNTS column). These same...
four programs are also responsible for creating 52.8% of all the tape data sets in this run (% TOTAL OF CUM DSN column).

Therefore, you can filter on four programs and reduce your mounts by 49.4%.

Note: The Top Report can be used to focus on several categories, such as program name, job name, high level qualifier, or account number. See “Parameters for the Top Report” on page 147 for the rules, syntax, and other types of Top Reports you can request.

The Usage Report

The Usage Report is an actual report. The actual reports show the current tape usage statistics for your installation.

Use the keyword REPORT(USAGE) or REP(USE) to generate the Usage Report.

If you specify:
REPORT(USAGE)

GFTAVMA will generate a Usage Report.

Keywords that Affect the Usage Report

All filtering input keywords and the SPLIT keyword affect the Usage Report. See Chapter 5, “Using GFTAVMA Keywords to Filter Your Input,” on page 63 and “SPLIT Keyword” on page 150.

None of the tailoring output keywords affects the Usage Report.

Description

The Usage Report shows the breakdown of tape mount activity and tape drive usage by one hour intervals. Since this report is generated after filtering, the results are for filtered data.

The Usage Report does not show the effects of IDRC compaction, 36 track, or Enhanced Capacity Cartridge System Tape.

You should be aware of shared system considerations when running the Usage Report. See “Understanding the Limitations of the Volume Mount Analyzer” on page 5.

GFTAVMA Ways of Counting Mounts and Allocations

GFTAVMA processes both demount (Type 21) records and open (Types 14 and 15) records to obtain the mount and allocation information. Since the mount time is not represented in either record, GFTAXTR matches the volume demount with one or more data set opens to determine when and how long the volume was actually opened. As a result, the number of transports the volume mount analyzer determines to be in use might be slightly lower (10%) than the number actually in use.

The Tape Mounts per Hour section of the Usage Report is a count of all mounts that occurs during each hourly interval. The Maximum Concurrent Tape Allocations per Hour section of the report is based on exactly the same set of data, but the data is examined at 10 second intervals to determine the maximum number of tapes that were ever concurrently mounted. The report shows the maximum, not the total, for each hour.
The Usage Report does not provide absolute precision because the time between a demount and allocation can be less than 10 seconds and GFTAVMA rounds to 10 second intervals. See Figure 39 on page 96.

New Technology Tape Drives That You Need
The Usage Report analyzes tape activity that has already occurred; it does not project future activity. Determining the number of tape drives of newer device types needed in the future is dependent upon several assumptions, many of which GFTAVMA cannot make. For instance:

- If IDRC is used to compact data at a 3:1 compaction ratio, how much time will the job need a tape drive?
- How much will processing time decrease due to improvements in hardware technology in the tape subsystem (increased buffer size, faster channel speed, decreased rewind time)?
- If times for job processing are shortened, how will GFTAVMA predict the changes in the processing schedule so as to be able to determine the number of tape drives that would be used concurrently?
- If DFSMS is used to manage tape data sets in the storage hierarchy and to place data sets on migration level 2 tape, at what times should it be assumed that DFSMShsm Space Management will run?

If tape mounts are reduced by 50-70% and managed entirely by DFSMShsm, the reduction will be so dramatic that it is practically impossible to emulate on current technology and certainly impossible to emulate on newer technology. The volume mount analyzer reports, however, can be useful in monitoring the effectiveness of your new technology. For example, you might determine how many 348X drives you can eliminate after implementing 3490s.

Use of the Usage Report
Use the Usage Report to determine how many tape mounts you can eliminate using tape mount management. You can also get some indication of what impact tape mount management might have on reducing your batch window.

If you derive a set of ACS filters to capture a particular data set for DFSMS to intercept and manage, this report can show the amount of mounts that will no longer occur and the times when the mounts will be reduced.

You can also study the number of tape devices that are tied up servicing this set of data and the distribution of tape usage over time. To replace this tape usage activity, you can determine the amount of data that would be written to migration level 2 and plan the additional workload that would be given to DFSMShsm. You can also decide the times at which DFSMShsm processes this workload.

See z/OS DFSMS Implementing System-Managed Storage for an explanation of tape mount management and DFSMShsm. See z/OS DFSMShsm Implementation and Customization Guide for more details about DFSMShsm.

The Usage Report also shows how effective your automated tape libraries are compared to your manual tape transports. To make this comparison, filter on the UNIT addresses for the automated transports and for the manual transports. If there is no clear difference between the numbers, automation is probably helping the symptom but not the cause of your problems.
Usage Report

Note: The volume mount analyzer cannot project hardware requirements or show you how to redistribute your workload because the number of parameters needed for the simulation will be prohibitive.

Example of the Usage Report (Tape Allocations)

Figure 39 [Figure 40 on page 97] and [Figure 41 on page 98] provide an example of the Usage Report. These parts of the report describe the tape allocations.

```
GFTASRT1 -- USAGE REPORT -- TAPE DRIVE BY SYSTEM STATISTICS

<table>
<thead>
<tr>
<th>DEVTYP</th>
<th>ADDR</th>
<th>MOUNTS</th>
<th>SMF SYSTEM IDENTIFIERS (SID'S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3420</td>
<td>0280</td>
<td>821</td>
<td>SYSA</td>
</tr>
<tr>
<td>3420</td>
<td>0281</td>
<td>205</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>0520</td>
<td>3024</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>0521</td>
<td>2628</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>0522</td>
<td>2238</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>0523</td>
<td>2396</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>0524</td>
<td>2503</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>0525</td>
<td>2298</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>0526</td>
<td>2142</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>0527</td>
<td>2220</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>0528</td>
<td>2012</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>0529</td>
<td>2239</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>052A</td>
<td>2133</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>052B</td>
<td>2229</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>052C</td>
<td>2271</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>052D</td>
<td>2046</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>052E</td>
<td>2063</td>
<td>SYSA</td>
</tr>
<tr>
<td>348X</td>
<td>052F</td>
<td>1784</td>
<td>SYSA</td>
</tr>
<tr>
<td>3420</td>
<td>0880</td>
<td>1013</td>
<td>SYSA</td>
</tr>
<tr>
<td>3420</td>
<td>0881</td>
<td>321</td>
<td>SYSA</td>
</tr>
</tbody>
</table>

4 3420 TAPE DRIVES

16 348X TAPE DRIVES

-----

20 TOTAL TAPE DRIVES IN THIS SAMPLE

38586 TOTAL TAPE MOUNTS IN THIS SAMPLE
```

Figure 39. The Usage Report—Tape Allocations, System Statistics

The first part of the Usage Report shows the number of mounts per device by device address.
Figure 40. The Usage Report—Tape Allocations by Hour

| DATE: MM/DD/YYYY | HOUR: | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | MAXIMUM MOUNTS |
|-------------------|-------|-------------------|
| 06/14/1991 | 10 8 16 1 0887478687 1 4 1 4 1 1 1 5 1 38 1 0 1 6 1 1 1 1 1 5 1 6 1357 | 4 3 10 2 4 6 5 6 7 12 5 8 7 4 6 9 8 6 5 11 14 13 10 7 14 1274 | 10 17 8 7 9 5 5 4 9 16 9 8 7 6 4 6 7 7 7 7 7 7 12 14 10 15 18 18 1525 | 12 14 10 5 3 7 6 4 11 12 14 6 6 6 5 7 7 8 6 10 9 14 15 15 16 16 1372 | 13 14 9 5 7 7 5 5 8 8 6 6 5 5 8 8 7 6 4 3 11 12 11 9 12 14 1367 | 15 16 16 14 17 12 11 13 13 12 12 7 9 10 5 2 3 2 4 6 10 5 9 10 17 1103 | 3 0 16 12 8 7 6 5 2 0 0 0 0 1 0 0 1 0 0 0 2 3 8 0 16 253 | 3 3 12 4 4 6 6 2 8 9 9 7 8 5 8 6 9 7 12 13 12 7 11 13 1204 | 6 8 17 17 15 10 8 3 9 7 7 6 6 8 6 7 8 6 6 13 16 10 8 11 17 1433 | 11 11 16 16 17 7 7 7 7 8 6 8 7 5 7 8 12 10 8 12 16 14 8 13 17 1447 | 16 13 16 6 9 9 5 7 10 13 11 8 8 8 9 9 14 14 9 12 16 16 12 16 16 1543 | 12 12 14 11 8 6 4 4 7 9 6 7 4 5 6 10 11 3 7 9 14 13 11 11 14 1366 |
| 06/13/1991 | 8 15 16 15 3 7 4 8 9 12 18 13 11 7 8 4 8 10 12 18 11 5 4 14 15 14 11 11 15 1442 | 2 4 6 6 11 8 9 9 6 9 6 9 6 5 8 4 6 7 4 5 14 15 14 11 11 15 1442 | 11 14 15 6 8 6 3 6 11 8 9 9 6 9 8 7 6 4 5 14 15 14 11 11 15 1442 | 11 14 15 6 8 6 5 6 11 8 9 9 6 9 8 7 6 4 5 14 15 14 11 11 15 1442 | 11 14 15 6 8 6 5 6 11 8 9 9 6 9 8 7 6 4 5 14 15 14 11 11 15 1442 | 11 14 15 6 8 6 5 6 11 8 9 9 6 9 8 7 6 4 5 14 15 14 11 11 15 1442 | 11 14 15 6 8 6 5 6 11 8 9 9 6 9 8 7 6 4 5 14 15 14 11 11 15 1442 | 11 14 15 6 8 6 5 6 11 8 9 9 6 9 8 7 6 4 5 14 15 14 11 11 15 1442 | 8 15 16 15 3 7 4 8 9 12 18 13 11 7 8 4 8 10 12 18 11 5 4 14 15 14 11 11 15 1442 | 8 15 16 15 3 7 4 8 9 12 18 13 11 7 8 4 8 10 12 18 11 5 4 14 15 14 11 11 15 1442 |

2 A tape allocation is the entire period of time a tape drive is assigned to a job and therefore unavailable for other work. It includes the time when the volume was opened (for jobs that read/write several volumes through the same DD statement) to the time when the tape was demounted.

For each one hour period of each day in the sample, the number shown in this report is the peak number of tape drives that were allocated during the one hour interval, not the total for the hour.

3 The DAILY MAXIMUM column shows the highest number of concurrent tape allocations for each hour of the day (as described in 2). For example, on May 27, 2003, during hour 20, there were 12 concurrent tape allocations. This was the highest number for one hour period on that day, and 12 was the DAILY MAXIMUM. It was not the total for the day.
The mount time does not always represent allocation time. In some cases, though there were 20 drives total, the reason for this difference might be because of the difference between open time and mount time. If the data on the 3420s had to be kept on tape, you would run another Usage Report and EXCLUDE 3420s, so you could see a more accurate view of how your 348X drives are being used.

Note: The mount time does not always represent allocation time. In some cases, such as with JES3 systems, drives are allocated well ahead of when they are.
Usage Report

Actually used. GFTAVMA does not have access to that information, so there might be up to 10% variance between the actual number of drives allocated and the number of GFTAVMA reports.

Example of the Usage Report (Tape Mounts)

Figure 42 and Figure 43 on page 100 show the part of the Usage Report that describes tape mount statistics.

GFTASRT1 -- TAPE DRIVE/MOUNT USAGE REPORT

DATE: MM/DD/YYYY	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23 MAXIMUM MOUNTS			
05/27/1991	64	59	67	44	22	33	22	18	56	69	37	38	30	30	42	48	53	22	83	78	121	72	83	165	165	1357	
05/28/1991	22	10	44	2	11	10	19	22	30	75	54	59	66	30	51	96	76	60	72	98	145	107	71	44	145	1274	
05/29/1991	90	107	68	45	22	22	10	18	64	49	41	60	49	48	19	35	58	52	82	146	113	102	91	134	146	1525	
05/30/1991	90	41	48	18	13	14	12	20	75	63	69	29	33	41	25	47	40	60	69	58	161	115	115	116	161	1372	
05/31/1991	110	50	51	19	25	18	34	22	60	61	36	20	32	17	41	66	45	16	40	118	157	89	113	127	157	1367	
06/01/1991	84	124	103	55	64	48	43	54	79	80	68	66	54	45	54	3	1	4	6	15	38	13	11	41	18	124	1103
06/02/1991	4	0	87	50	24	9	15	3	2	0	0	0	0	3	0	0	0	2	8	45	0	87	253				
06/03/1991	4	19	42	15	14	8	27	8	63	49	66	80	32	21	49	47	59	51	79	139	124	85	55	68	139	1204	
06/04/1991	37	53	123	62	82	29	27	20	54	56	41	48	39	39	41	18	60	40	48	70	100	125	94	71	95	125	1433
06/05/1991	61	52	106	58	46	26	20	37	42	52	30	69	41	17	22	59	61	63	72	85	150	105	65	108	150	1447	
06/06/1991	113	71	64	31	31	23	18	23	48	62	62	78	48	25	37	19	57	67	70	72	41	149	130	82	153	153	1543
06/07/1991	100	63	64	43	36	11	10	28	43	73	74	32	16	21	19	51	53	15	70	98	148	117	91	89	148	1366	
06/08/1991	73	76	114	65	49	19	21	53	78	76	67	73	52	16	0	0	2	0	48	56	13	10	54	0	114	1015	
06/09/1991	6	20	86	32	26	18	16	9	4	0	0	0	1	6	4	0	3	0	2	5	8	2	46	0	86	294	
06/10/1991	4	19	37	19	10	6	30	12	26	71	45	69	36	34	36	51	64	50	63	83	107	118	85	52	48	118	1139
06/11/1991	64	109	90	51	32	14	15	24	66	47	57	48	32	35	27	61	59	61	69	98	136	96	89	127	136	1507	
06/12/1991	90	83	65	30	23	12	25	20	88	63	56	18	38	55	33	62	43	14	75	111	112	74	135	135	1442		
06/13/1991	49	76	78	58	34	28	15	18	45	46	71	41	21	25	15	63	36	65	72	44	149	117	88	145	149	1410	
06/14/1991	64	59	67	44	22	33	22	18	56	69	37	38	30	30	42	48	53	22	83	78	121	72	83	165	165	1357	

Figure 42. The Usage Report—Tape Mounts

1. The value for Tape Mounts per Hour is the cumulative number of mounts occurring on all tape drives during that hour.

2. The DAILY MAXIMUM column shows the maximum number of mounts for the peak hour of that day, and the DAILY MOUNTS column is the total number of mounts for the day.
Figure 43. The Usage Report—Tape Mounts (continued)

9 The HOURLY MAXIMUM row shows the peak number of mounts for each hour of the reporting period.

10 This total is the maximum number of mounts for any one hour of the time period of the volume mount analyzer study. If you scan up the MAXIMUM column, you can see that the maximum (176) occurred on 6/25/91 in hour 20.

Figure 41 on page 98 shows that there was a maximum of 15 drives allocated during hour 20 on 6/25/91. Dividing 176 by 15 results in an average of 11.7 mounts per drive per hour, which is approximately one mount every 5 minutes.

The Volume Report

The Volume (VOL) Report is an actual report. The actual reports show the current tape usage statistics for your installation.

Use the keyword REPORT(VOLUME) or REP(VOL) to generate the Volume Report. You can specify the CUTOFF keyword to reduce the size of the Volume Report.

In this example, these keywords were specified:

REPORT(VOLUME), VSORT(VOLUME)
These keywords specify that GFTAVMA generates a Volume Report to show volumes sorted by volume name, which is a 6-character volume serial number.

Keywords that Affect the Volume Report
The results of the GFTAVMA reports rely on the keywords you choose. Therefore, choose your keywords carefully and be aware of the defaults and effects of the keywords on these reports.

All filtering input keywords and the SPLIT keyword affect these reports. See Chapter 5, “Using GFTAVMA Keywords to Filter Your Input,” on page 63 and “SPLIT Keyword” on page 150 for the syntax and functions of these keywords.

A subset of the tailoring output keywords specified for a GFTAVMA run also affects the Volume Report. See Chapter 7, “Using GFTAVMA Keywords to Tailor Your Output,” on page 129 for more information about the syntax and functions of these tailoring output keywords:

- BLKSIZE
- CUTOFF
- DASDDEV
- FORCECAP
- RPROGRAM
- VSORT

Use of the Volume Report
The detailed Volume Report provides further information about each tape volume and its contents to supplement the data set statistics in the GFTAVMA summary report, GFTASRT2.

Usually, the GFTASRT2 summary report provides enough volume information. However, if you need detailed information at the volume level, you must request the Volume Report.

The Volume Report shows your tape usage from the volume perspective. It shows the amount of data transferred to an individual volume during the period of the volume mount analyzer study.

Therefore, you can use the Volume Report to determine the efficiency of your current tape usage. If 150MB of data are transferred to a 200MB volume, your usage will be efficient. However, the typical usage is 5 or 10MB of data transferred to a 200MB volume, which is not efficient. Note that the Volume Report does not show you how to improve the inefficiency of your volume usage; it just shows whether or not your volumes are used inefficiently.

You can also use the Volume Report to see how many data sets are being placed on a volume and whether or not the volumes are full for a specific application. However, you cannot create a filter list based on the Volume Report. Volume serials are not useful tape mount management filters because data sets move from tape to tape.
The Volume Report Legend—Explanation of Symbols

Figure 44 is the header for the Volume Report. It explains some of the Volume Report column headings.

Volume Name

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>This volume no longer has any valid data on it and it has been returned to the 'scratch' pool</td>
</tr>
<tr>
<td>#2</td>
<td>The data on this device has exceeded the effective capacity and 'forcecap' was specified</td>
</tr>
<tr>
<td>X</td>
<td>The data on this device has exceeded the effective capacity and 'noforcecap' was specified</td>
</tr>
</tbody>
</table>

Label Type

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>The volume has 'standard' tape labels</td>
</tr>
<tr>
<td>NSL</td>
<td>The volume has 'non-standard' tape labels</td>
</tr>
<tr>
<td>AL</td>
<td>The volume has 'iso/ansi' tape labels</td>
</tr>
<tr>
<td>NL</td>
<td>The volume doesn't have any tape labels</td>
</tr>
<tr>
<td>UNKN</td>
<td>The volume label type can't be determined by the GFTAVMA program</td>
</tr>
</tbody>
</table>

SZ-MB Xferd

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>The 'SZ-MB' amount was forced to equal the total native capacity of the device because of the 'forcecap' option</td>
</tr>
<tr>
<td>X</td>
<td>Although the 'SZ-MB' of data on this volume exceeds the capacity, the value was not modified due to 'noforcecap'</td>
</tr>
</tbody>
</table>

Figure 44. The Volume Report Legend

1. This refers to the column of the report with the heading Volume Name.
2. The third through eighth positions of the Volume Name field contain the Volume Serial Number, but not other symbols.
3. Fields 1 and 2 of Volume Name might contain symbols as described in 4.
4. List of possible values that could appear in the indicated field.
Volume Report

5 This refers to the column of the report with the heading Label Type. This section of the heading explains the meanings of the five possible values that can appear in the Label Type column. These values are standard label (SL), non-standard label (NSL), ISO/ANSI label (AL), no label (NL), and unknown label type (UNKN). For more information on label types, see *z/OS DFSMS Using Magnetic Tapes*.

5 This refers to the column of the report with the heading SZ-MB XFERD, which shows the size in megabytes of the data transferred to each volume.

Example of the Volume Report

The example report included here is only part of the complete Volume Report that GFTAVMA generated. Since this is only a partial Volume Report, the volume numbers start at 240.

Figure 45 on page 104 shows the Volume Report sorted according to volume using the VSORT(VOLUME) keyword.
Mount ratio value (MRV) is the ratio of the amount of data on the volume to the number of mounts attributed to that volume (MRV = number of megabytes on volume / number of mounts). A volume that has a low MRV is mounted more frequently and contains a smaller amount of data than other volumes.

The unit type comes from the UCB. 348X is either a 3480 with IDRC or a 3490. The label type is explained in the Volume Report Legend.

Number of times a volume was mounted. For example, data set A resides on tape volume AAAA at the beginning of the month. Data set B resides on AAAA in the middle of the month. Data set C resides on AAAA at the end of the month. At the end of the month, the Volume Report shows that the unique volser AAAA has mounts for data sets A, B, and C. Therefore, the totals show one volume with many mounts.

The target DASD device used in these calculations is controlled by the DASDDEV keyword, which defaulted to 3390-3 in this example.
Volume Report

11 Total size of all data sets on the volume. The size of each data set is the size when the data set was last written to the volume. Some of the values for the size of megabytes transferred are less than one (<1).

The asterisk (*) in the SZ-MB XFERD column indicates that the number of megabytes transferred was forced to equal the total native capacity of the device because of FORCECAP. See “FORCECAP/NOFORCECAP Keywords” on page 139 for more details.

12 Number of DASD tracks this amount of data represents. This calculation takes into account the LRECL, RECFM, and block size of the data, and the DASDDEV specification.

13 Number of data sets on the volume. As this example shows, most volumes contain only one data set.

If you determine that you are using many of your volumes inefficiently, as this installation is, you can use tape mount management to stack the small data sets and fill the volumes.

Interpreting the Simulation Reports

The simulation reports show how you can change the tape usage at your installation using tape mount management. Using these reports you can simulate what your tape usage would be if you used DFSMS to manage your storage and if you used various tape devices and compaction.

There are three simulation reports:

- The Estimate Report (see “The Estimate Report”)
- The Improved Data Recording Capability (IDRC) Report (see “The Improved Data Recording Capability Report” on page 119)
- The Management Class (MGMTCLAS) Report (see “The Management Class Report” on page 124)

The Estimate Report

The Estimate Report is a simulation report. The simulation reports show how you might change the tape usage at your installation using tape mount management.

Use the keyword REPORT(ESTIMATE) or REP(EST) to generate the Estimate Report.

If you specify:

```
REPORT (EST) TAPEDEV (3490E) TAPELEN (2)
```

GFTAVMA will generate an Estimate Report that models a tape mount management environment using the 3490E tape devices and the Enhanced Capacity Cartridge System Tape.

The defaults for the keywords that were not specified are:

- **BLKSIZE** defaulted to **32 760**
- **COMPACTION** defaulted to **50%**
- **DASDDEV** defaulted to **3390-3**
- **IDRCFACTOR** defaulted to **4**
- **LARGE** defaulted to **600MB**
- **L0AGE** defaulted to **1**
Keywords that Affect the Estimate Report

The results of the GFTAVMA reports rely on the keywords you choose. Therefore, choose your keywords carefully and be aware of the defaults and effects of the keywords on these reports.

All filtering input keywords and the SPLIT keyword affect these reports. See Chapter 5, “Using GFTAVMA Keywords to Filter Your Input,” on page 63 and “SPLIT Keyword” on page 151 for the syntax and functions of these keywords.

A subset of the tailoring output keywords specified for a GFTAVMA run also affects the Estimate Report. See Chapter 7, “Using GFTAVMA Keywords to Tailor Your Output,” on page 129 for more information about the syntax and functions of these tailoring output keywords:

- BLKSIZE
- BPROGRAM
- CLASSIFY
- COMPACTION
- DASDDEV
- FORCECAP
- FSPACE
- IDRCAFACCTOR
- LARGE
- LEVEL0AGE
- LEVEL1AGE
- L1FSPACE
- RPROGRAM
- TAPEDEV
- TAPELEN

Description

The Estimate Report consists of three breakdown reports, a legend that explains the report's assumptions, and a savings/cost summary that is the bottom line for the savings and costs of implementing tape mount management.

Use of the Estimate Report

The Estimate Report simulates a tape mount management environment to determine the costs and savings associated with implementing the tape mount management methodology. Use the Estimate Report to determine whether the savings of tape mount management outweigh the DASD costs.
You can run the Estimate Report for any data subset because the report is generated after filtering.

Run the Estimate Report and the Management Class Report together to help you determine the best values for LEVEL0AGE and LEVEL1AGE. See “The Management Class Report” on page 124 for more information.

Refer to z/OS DFSMS Implementing System-Managed Storage for additional information on the Estimate Report and the Management Class Report.

The Estimate Report—Statistical Mount Savings Breakdown

The Estimate Report includes three breakdown reports to supplement the Savings/Cost Summary (Figure 50 on page 117). The Statistical Mount Savings Breakdown provides the details for the Statistical Mount Savings reported in the Savings/Cost Summary. The total number of current statistical mounts is arranged by tape mount management data set category, and savings are attributed to the particular management class that would have been assigned based on the specified values for L0AGE and L1AGE.

The first breakdown report is the Statistical Mount Savings Breakdown Report shown in Figure 46.

![Estimate Report—Statistical Mount Savings Breakdown](image)

1. In this example, the current statistical mounts value (CURR STAT MOUNTS) for active data sets is 2088.5. The target statistical mounts (TARG STAT MOUNTS) is set to the HSM - LEVEL 2 TARG MNT# for the ACTIVE, ACTV GDG, and BACKUP categories, and the numbers in these columns are the same.

The estimated target statistical mounts value will be 9.9 if you use DFSMS to manage tape data sets. This reduction results from managing tape data sets in the storage hierarchy using 3490E tape hardware. The reduction from 2088.5 to 9.9 is significant because the data sets representing 1483.1 of the mounts are residing on primary DASD, and the data sets representing the remaining 605.4 mounts are on migration level 2 tape. Because of 3490E and, optionally, DFSMSHsm compaction, these mounts are reduced to 9.9 target mounts.

See “Statistical Mounts” on page 30 for more information.
For ACTV GDG data sets, the values in the HSM - LEVEL 2 TARG MNT# column in Figure 46 on page 107 are equal to the values in the HSM - LEVEL 2 TARG VOL# column in Figure 47 on page 110 because when the ACTV GDG volumes are mounted, all the data sets are written to these volumes during one output operation. Thus, full volumes are written.

GFTAVMA models large data sets (greater than the LARGE keyword default of 600MB) as going directly to migration level 2 tape. Therefore, DFSMS would not manage them, and they would never reside in the storage hierarchy. The mount reduction from 4050.0 to 2380.2 is based on modelling to the 3490E with the Enhanced Capacity Cartridge System Tape (TAPEDEV of 3490E and TAPELEN of 2), which has a much larger capacity.

The target mounts incurred for migration level 2 recalls are reported in the MGMTCLAS row.

In this example, the volume mount analyzer simulates an environment where DFSMShsm bypasses migration level 1 processing. Therefore, the columns for migration level 1 contain zeros. The data sets are modelled as going directly from primary DASD to migration level 2 tape, bypassing migration level 1 DASD because the LEVEL0AGE and the LEVEL1AGE keywords defaulted to one.

The target HSM migration level 2 mounts for ACTIVE, ACTV GDG, and BACKUP represent the mounts needed to create migration level 2 tape volumes.

Understanding the Columns of the Report

The columns in the Statistical Mount Savings Breakdown are:

DATA SET CATEGORY: The tape mount management data set categories. See "Categories of Tape Mount Management Data Sets" on page 38 for a description of these categories.

CURR STAT MOUNTS: The current number of statistical mounts for each tape mount management data set category. See "Statistical Mounts" on page 30.

TARG STAT MOUNTS: The number of statistical mounts that would still occur for each tape mount management category if tape mount management was implemented according to the various parameters specified in the GFTAVMA run.

DFSMS - PRIMARY CURR MNT#: The number of mounts that occurred because the corresponding data sets are residing on DFSMS primary storage.

DFSMS - PRIMARY TARG MNT#: This field is always blank because these values are always zero. The PRIMARY TARG MNT# value is reduced to zero because the data sets that caused these mounts would still be residing on primary DASD in the simulated environment.

HSM - LEVEL 1 CURR MNT#: The number of mounts that occurred because the corresponding data sets are residing on DFSMShsm migration level 1 storage.

HSM - LEVEL 1 TARG MNT#: This field is always blank because no physical tape mounts are required to recall a data set that is compacted on migration level 1 DASD.
Estimate Report

HSM - LEVEL 2 CURR MNT#:
The number of mounts that occurred because the corresponding data sets are residing on DFSMShsm migration level 2 storage.

HSM - LEVEL 2 TARG MNT#:
Number of mounts that would be incurred by DFSMShsm migration level 2 in the target environment.

TAPE DIRECT CURR MNT#:
Number of current mounts that fall into the Tape Direct Category (for example, data sets larger than the LARGE keyword value).

TAPE DIRECT TARG MNT#:
Number of mounts for the LARGE data sets in the target environment using the type of tape hardware specified by the TAPEDEV and TAPELEN keywords.

Understanding the Rows of the Report
The first column of the breakdown reports is DATA SET CATEGORY. The rows are TEMPORARY, ACTIVE, ACTV GDG, BACKUP, LARGE, HSM SFF, HSM GEN, and MGMTCLAS. These categories are related to the tape mount management data categories. See “Categories of Tape Mount Management Data Sets” on page 38 and “Data Set Usage Types” on page 36 for descriptions of these categories.

The tape mount management category of Active is divided into ACTIVE and ACTV GDG for the Estimate Report.

The tape mount management category of HSM is divided into HSM SFF (DFSMShsm single file format data sets) and HSM GEN (DFSMShsm generated data sets, such as VTOCDUMPs).

MGMTCLAS is the row that shows recall mounts.

The Estimate Report—Statistical Volume Savings Breakdown
The Statistical Volume Savings Breakdown provides the details for the Statistical Volume Savings reported in the Savings/Cost Summary (Figure 50 on page 117). The total number of current statistical volumes is arranged by tape mount management data set category, and savings are attributed to the particular management class that would have been assigned based on the specified values for L0AGE and L1AGE.

Figure 47 on page 110 is the second breakdown report. This report is identical to the Statistical Mounts Savings Breakdown report except that the values are STATISTICAL VOLUMES instead of STATISTICAL MOUNTS.
In this example, the current statistical volumes value (CURR STAT VOLUMES) for active data sets is 86.8. The target statistical volumes (TARG STAT VOLUMES) is set to the HSM - LEVEL 2 TARG VOL# for the ACTIVE, ACTV GDG, and BACKUP categories, so these numbers are the same.

The estimated target statistical volumes value if you used DFSMS to manage tape data sets would be 9.9.

This reduction from 86.8 to 9.9 is significant because 18.7 of the 86.8 volumes of active data sets are still residing on primary DASD. The rest of the volumes (68.1) have been reduced to 9.9 volumes because of managing tape data sets in the storage hierarchy and using 3490E tape hardware and Enhanced Capacity Cartridge System Tapes. See “Statistical Volumes” on page 31 for more details.

For ACTV GDG data sets, the values in the HSM - LEVEL 2 TARG VOL# column should be equal to the HSM - LEVEL 2 TARG MNT# because when the ACTV GDG volumes are mounted, all the data sets are written to these volumes during one output operation. Thus, full volumes are written.

GFTAVMA models large data sets (greater than the LARGE default of 600MB) as going directly to tape, so DFSMS does not manage them in the storage hierarchy. The volume reduction from 557.8 to 323.8 is based on modelling to the 3490E with the Enhanced Capacity Cartridge System Tape (TAPEDEV of 3490E and TAPELEN of 2), which has a much larger capacity.

In this example, the volume mount analyzer simulates an environment where DFSMShsm bypasses migration level 1 processing. Therefore, the columns for migration level 1 contain zeros. GFTAVMA models the data sets as going directly from primary DASD to migration level 2 tape, bypassing migration level 1 DASD because the LEVEL0AGE and the LEVEL1AGE keywords defaulted to one.

Understanding the Columns of the Report

The columns in the Statistical Volume Savings Breakdown are:

<table>
<thead>
<tr>
<th>DATA SET CATEGORY</th>
<th>CURR STAT VOLUMES</th>
<th>TARG STAT VOLUMES</th>
<th>DFSMS - PRIMARY</th>
<th>HSM - LEVEL 1</th>
<th>HSM - LEVEL 2</th>
<th>TAPE - DIRECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPORARY</td>
<td>48.2</td>
<td>48.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVE</td>
<td>86.8</td>
<td>9.9</td>
<td>18.7</td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>ACTV GDG</td>
<td>635.4</td>
<td>132.0</td>
<td>90.4</td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>BACKUP</td>
<td>4987.3</td>
<td>1131.5</td>
<td>760.7</td>
<td></td>
<td>4226.6</td>
<td>1131.5</td>
</tr>
<tr>
<td>LARGE</td>
<td>557.8</td>
<td>323.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSM SFF</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSM GEN</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MGMTCLASS</td>
<td>4.2</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>6315.5</td>
<td>1601.4</td>
<td>918.0</td>
<td>0.0</td>
<td>4839.7</td>
<td>1277.6</td>
</tr>
</tbody>
</table>

Figure 47. Estimate Report—Statistical Volume Savings Breakdown
DATA SET CATEGORY:
The tape mount management data set categories. See "Categories of Tape Mount Management Data Sets" on page 38 for a description of these categories.

CURR STAT VOLUMES:
The current number of statistical volumes for each tape mount management data set category. See "Statistical Volumes" on page 31 for more details.

TARG STAT VOLUMES:
The number of statistical volumes that would still occur in each tape mount management data set category if tape mount management was implemented according to the various parameters specified in the GFTAVMA run.

DFSMS - PRIMARY CURR VOL#:
The number of volumes used because the corresponding data sets (such as temporary data sets) are residing on DFSMS primary storage.

DFSMS - PRIMARY TARG VOL#:
This field is always blank because these values are always zero. The PRIMARY TARG VOL# is reduced to zero because the data sets representing these volumes are still residing on primary DASD for the simulation.

HSM - LEVEL 1 CURR VOL#:
The number of volumes used because the corresponding data sets are residing on DFSMShsm migration level 1 storage.

HSM - LEVEL 1 TARG VOL#:
This field is always blank.

HSM - LEVEL 2 CURR VOL#:
The number of volumes used because the corresponding data sets are residing on DFSMShsm migration level 2 storage.

HSM - LEVEL 2 TARG VOL#:
Number of volumes that would be used by DFSMShsm migration level 2 in the target environment.

Note: The difference between the current and target values is the result of stacking data sets (because DFSMShsm fills the tapes) and the new tape technology for which you are estimating if it is different from your current technology.

TAPE DIRECT CURR VOL#:
Number of current volumes that fall into the Tape Direct Category (for example, data sets larger than the LARGE keyword value).

TAPE DIRECT TARG VOL#:
Number of volumes for the LARGE data sets in the target environment using the type of tape hardware specified by the TAPEDEV and TAPELEN keywords.

Understanding the Rows of the Report
The first column of the breakdown reports is DATA SET CATEGORY. The rows are TEMPORARY, ACTIVE, ACTV GDG, BACKUP, LARGE, HSM SFF, HSM GEN, and MGMTCLAS. These categories are related to the tape mount management data categories. See "Categories of Tape Mount Management Data Sets" on page 38 and "Data Set Usage Types" on page 36 for descriptions of these categories.
The tape mount management category of Active is divided into ACTIVE and ACTV GDG for the Estimate Report.

The tape mount management category of HSM is divided into HSM SFF (DFSMShsm single file format data sets) and HSM GEN (DFSMShsm generated data sets, such as VTOCDUMPs).

MGMTCLAS is the row that shows recall mounts.

The Estimate Report—DASD Buffer Cost Breakdown

The tape mount management DASD Buffer Cost Breakdown provides the details for the DASD buffer costs in the Savings/Cost Summary [Figure 50 on page 117]. This breakdown report shows the distribution of data sets by tape mount management data set category and the way they will reside in the simulated target environment.

Figure 48 is the third breakdown report. All the values in this report represent weighted averages based on the number of days the data sets resided on the various levels of storage. For example, a data set with 500 tracks has a size of 15MB on migration level 2. If it resides on migration level 2 for two thirds of the sample, the DASD Buffer Cost Breakdown shows it having a value of 10MB.

In some cases, the HSM LEVEL 1 SIZE-TK column might contain values even if the HSM LEVEL 1 DSN# values are zero. If data has resided on migration level 1 at some time during this sample, there could be zeros in the DSN# column and values for the number of tracks used in the SIZE-TK column.

There are 1885 active data sets in this sample, 200 non-GDG data sets and 1685 GDG data sets. Based on the keywords specified or defaulted (see "Estimating Savings and Costs" on page 116) in this GFTAVMA run, 29 of the active non-GDSs...
would reside on the tape mount management DASD buffer (DFSMS DSN# PRIMARY SIZE-TK) while 171 of them would have already migrated to migration level 2 tape (HSM LEVEL 2 DSN#).

13 The TAPE DIRECT column shows the LARGE data sets, which DFSMS would not intercept, but would write directly to tape. In this case, 418 data sets are greater than the LARGE keyword value, so they would be modelled as going directly to tape. The size reduction from 466686MB to 203378MB would be a result of IDRCPFACTOR of 3, TAPEDEV of 3490E, and TAPELEN of 2.

14 The MGMTCLAS row shows the data set recall activity caused by your selection of LEVEL0AGE and LEVEL1AGE. You can reduce the recall mounts by changing the values for L0AGE and L1AGE. See “The Management Class Report” on page 124 for details on changing values.

15 In this example, the volume mount analyzer simulates an environment where DFSMShsm bypasses migration level 1 processing. Therefore, the columns for migration level 1 contain zeros. The data sets go directly from primary DASD to migration level 2 tape, bypassing migration level 1 DASD because the LEVEL0AGE and LEVEL1AGE keywords defaulted to one.

If the L1AGE value is greater than L0AGE (for example, L0AGE=1 and L1AGE=3), then the data sets that are not referenced would reside on primary DASD for one day, then migrate to migration level 1 DASD and reside for an additional two days, and finally migrate to migration level 2 tape. They would go to migration level 2 tape after a total of three days since the data sets were last referenced.

Understanding the Columns of the Report
The columns in the DASD Buffer Cost Breakdown are:

DATA SET CATEGORY:
The tape mount management data set categories. See “Categories of Tape Mount Management Data Sets” on page 38 for a description of these categories.

DSN#: A breakdown of the total number of data sets for each tape mount management data set category represented in the input SMF sample.

ORIGINAL SIZE-MB:
The amount of data transferred in megabytes for each tape mount management data set category.

ORIGINAL SIZE-TK:
If all data sets in the tape mount management categories were placed on a DASD volume and not migrated or deleted, this column would show the total number of DASDDEV tracks required to hold all the data sets.

DFSMS—PRIMARY:
The primary storage estimate determined by the values specified for the DASDDEV and LEVEL0AGE keywords and by the reference activity of the data sets.

DSN#: The number of data sets by tape mount management category that would reside in primary storage.

SIZE-TK:
The number of DASDDEV tracks that would be required for primary storage. This size estimate is the weighted average size of the primary storage required for the entire reporting period represented in the SMF sample.
HSM—LEVEL 1:
The DFSMShsm migration level 1 storage estimate determined by the values specified for the DASDDEV, COMPACTION, and LEVEL1AGE keywords and by the reference activity of the data sets.

DSN#: The number of data sets by tape mount management category that would reside on migration level 1 storage.

SIZE-TK:
The number of DASDDEV tracks that would be required for migration level 1 storage. This size estimate is the weighted average size of the migration level 1 storage required for the entire reporting period represented in the SMF sample.

HSM—LEVEL 2:
The DFSMShsm migration level 2 storage estimate determined by the values specified for the TAPEDEV, TAPELEN, IDRC (or the current IDRCFACTOR for the data set), and COMPACTION keywords and by the reference activity of the data sets. This column represents tape storage for data sets that DFSMShsm would migrate.

Note: Level 2 storage is not part of the tape mount management DASD buffer.

DSN#: The number of data sets by tape mount management category that would reside on migration level 2 tape storage.

SIZE-MB:
The number of megabytes (MB) that would be required for migration level 2 tape storage. This size estimate is the weighted average size of the migration level 2 storage required for the entire period represented in the SMF sample.

TAPE DIRECT:
The tape storage estimate for the data sets that would continue to go directly to tape and not be intercepted by DFSMS. This estimate is determined by the LARGE, TAPEDEV, TAPELEN, and IDRC (or the current IDRCFACTOR for the data set) keywords.

Note: This storage is for tape requirements and is not part of the tape mount management DASD buffer.

DSN#: The number of data sets that would continue to go directly to tape.

SIZE-MB:
The number of megabytes that would be required for tape storage.

Understanding the Rows of the Report
The first column of the breakdown reports is DATA SET CATEGORY. The rows are TEMPORARY, ACTIVE, ACTV GDG, BACKUP, LARGE, HSM SFF, HSM GEN, and MGMTCLAS. These categories are related to the tape mount management data categories. See “Categories of Tape Mount Management Data Sets” on page 38 and “Data Set Usage Types” on page 36 for descriptions of these categories.

The tape mount management category of Active is divided into ACTIVE and ACTV GDG for the Estimate Report.

The tape mount management category of HSM is divided into HSM SFF (DFSMShsm single file format data sets) and HSM GEN (DFSMShsm generated data sets, such as VTOCDUMP's).
MGMTCLAS is the row that shows recall mounts.

The Estimate Report Legend—Explanation of Symbols
The Estimate Report legend shows the specified and defaulted keywords that were used to produce the Estimate Report. It also defines the tape mount management data set categories and shows how DFSMS would manage the data sets in each of those categories in the simulated environment. See “Categories of Tape Mount Management Data Sets” on page 38 for more information about the various categories of data.

Figure 49 is the legend for this example Estimate Report. It explains the assumptions GFTAVMA used when calculating the numbers for the Estimate Report. This legend shows how GFTAVMA determines which data sets would be migrated to which storage levels.

Figure 49. The Estimate Report Legend

16 The **DASDDEV** keyword specifies the DASD device that GFTAVMA should use as the model for the tape mount management DASD buffer, which in this example defaulted to the **DASDDEV** value of 3380E.

GFTAVMA modelled to the 3490E with Enhanced Capacity Cartridge System Tape because a **TAPEDEV** of 3490E and a **TAPELEN** of 2 were specified.

When GFTAVMA models the tape mount management DASD buffer, it uses a high free space threshold as DFSMSHsm would. The GFTAVMA defaults are 5% free space on the primary DASD buffer and 5% free space on the migration level 1 buffer. If you wish to change these free space percentages, use the **FSPACE** and **L1FSPACE** keywords.

17 The tape mount management data set categories section shows when DFSMS would migrate data sets from primary storage to migration level 1 to migration level 2:

- Temporary data sets reside on primary DASD for the duration of the job and then expire, so they never migrate.
Active data sets and active GDG data sets are controlled by the **LEVEL0AGE** and **LEVEL1AGE** values of 1, so these data sets would reside on primary storage for one day before migrating to migration level 2 tape (if the data sets are not referenced during this time).

Backup data sets migrate to migration level 2 tape after zero days if migration runs every 24 hours. Backup data sets would reside on primary storage for less than one day. They would never reside on migration level 1 regardless of the values for **L0AGE** and **L1AGE**.

MGMTCLAS data sets are data sets that have recall activity. They are recalled from migration level 2 and migration level 1 back to primary storage. The recall activity is based on the last reference to the data set, which is calculated by GFTAXTR, and on the values specified by the **LEVEL0AGE** and **LEVEL1AGE** keywords.

You need to select management class reference ages for active data sets that would migrate the data at optimum times. In this example, **L0AGE** and **L1AGE** defaulted to 1, but these might not be the optimum values based on the data set usage at your installation. The Management Class Report can help you determine the recommended values to use for each application. See “The Management Class Report” on page 124.

For the Estimate Report, GFTAVMA assumes you specified the migration level 1 compaction value that you feel you can achieve using the DFSMSshsm level 1 compaction option. The default is 50% compaction, which means migration level 1 is reduced by 50% from primary storage. The Estimate Report example in this section shows 50% compaction, but you can use the **COMPACTION** keyword to change that percentage.

GFTAVMA models data sets larger than the **LARGE** keyword value (default 600MB) as going directly to tape. In this way, DFSMS does not manage them in the storage hierarchy. GFTAVMA also models DFSMSshsm SFF and GEN data sets as going directly to tape.

Estimating Savings and Costs

The Estimate Report is a bottom line assessment of the costs and savings from implementing tape mount management. You can use the report as a high level, first cut at the potential tape mount management savings if you specify no keywords other than **REPORT(ESTIMATE)**, and let GFTAVMA categorize your data. In contrast, you can tailor the report by using keywords to focus on a particular subset of data and by adjusting the **L0AGE** and **L1AGE** keywords to determine where and how long the data is stored in the storage hierarchy.

Note: The DASD costs shown in the Estimate Report are based on DFSMSshsm running space management against the tape mount management DASD buffer once a day. The DASD requirement could be significantly reduced by running interval migration against those volumes on an hourly basis. However, the volume mount analyzer cannot model this reduction directly.

See [z/OS DFSMS Implementing System-Managed Storage](#) for details on DFSMSshsm migration.

Savings/Cost Summary

Figure 50 on page 117 shows the part of the Estimate Report that explains the bottom line for the details in the breakdown reports. The three parts of the summary reflect the three breakdown reports:
1. Part **ONE** summarizes the Statistical Mount Savings Breakdown. It shows that if you used DFSMS and the 3490E tape device to intercept tape data sets, you could save 81.6% of your mounts.

2. Part **TWO** summarizes the Statistical Volume Savings Breakdown. It shows that if you used DFSMS and 3490E and Enhanced Capacity Cartridge System Tape to intercept tape data sets, you could save 74.6% of your volumes.

3. Part **THREE** summarizes the DASD Buffer Cost Breakdown. It shows that if you used DFSMS to intercept tape data sets, it would cost 28.4 3390-3 DASD volumes to eliminate 31263.2 tape mounts and 4714.1 tape volumes.

Figure 50. The Estimate Report—Savings/Cost Summary

Data sets larger than the LARGE keyword value are modelled as going directly to the tape device specified by the TAPEDEV and TAPELEN keywords. DFSMS would not manage these data sets, so the 4.4% savings result from modelling to 3490E with the Enhanced Capacity Cartridge System Tape.

The projected savings shown in the Savings/Cost Summary is the difference between current statistical mounts or volumes and the target statistical mounts or volumes shown in the Estimate Report breakdown reports. For example, on page 107 shows the current statistical mounts and 2380.2 target statistical mounts for the LARGE category; the difference is a savings of 1669.8.
HSM mount savings result from using different tape hardware technology. DFSMShsm mounts would be saved if you implement IDRC, 3490E, or double capacity cartridges, as specified with the IDRCFACTOR, TAPEDEV, and TAPELEN keywords.

The volume mount analyzer simulates the effects of DFSMS intercepting data sets that do not fall into the Large or HSM categories and allocating them to the tape mount management DASD buffer.

DFSMS mounts in this part of the savings/cost summary represent the temporary, active, active GDG, and backup data sets. GFTAVMA models the migration of these data sets to migration level 1 and migration level 2 according to the specification of management class type keywords, such as L0AGE and L1AGE.

DFSMS mounts in the Savings/Cost Summary are from the TOTAL mounts row in Figure 46 on page 107. The difference between 38300.8 current mounts and 7037.6 target mounts is the savings of 31263.2.

GFTAVMA subtracts mounts specified as MGMTCLAS from the total mounts saved because these mounts represent DFSMShsm recalls that would occur as a result of the current usage pattern. An acceptable percentage of recalls is 5%. Therefore, the 8.8% shown here indicates that you need to select different values for L0AGE and L1AGE to reduce the number of recall mounts. See “The Management Class Report” on page 124 for more information.

To implement tape mount management in this example, you would need 25 primary storage DASD volumes. GFTAVMA calculates the number of volumes needed by dividing the number of primary size tracks (PRIMARY SIZE-TRK) shown in Figure 48 on page 112 by the number of tracks on the target volumes, which in this example are 3390-3 volumes.

You would need 2.1 DASD volumes for recalled data sets (MGMTCLAS).

You would need 1.3 volumes for the 5% free space. Run the Maximum Gigabyte Report (see “The Maximum Gigabyte Report” on page 87) to verify that the 5% free space default is adequate for your needs.

You would need a total of 28.4 (which would be rounded up to 29) 3390-3 DASD volumes for the primary DASD buffer.

You would need 0 volumes for HSM migration level 1.

You would need 0 volumes for migration level 1 free space. You do not need any volumes for migration level 1 because, in this example, the volume mount analyzer simulates an environment where DFSMShsm bypasses migration level 1 processing.

The data sets go directly from primary DASD to migration level 2 tape, bypassing migration level 1 DASD because the LEVEL0AGE and LEVEL1AGE keywords defaulted to one.

You would need a total of 28.4 (which would be rounded up to 29) 3390-3 DASD volumes for the tape mount management DASD buffer. These volumes are for primary storage space. You do not need migration level 1 space because the LEVEL1AGE keyword caused GFTAVMA to bypass level 1 and migrate the data directly to level 2 tape.
The storage needed for the tape mount management DASD buffer and the new tape technology generate the cost for reducing volumes and mounts.

The tape mount management DASD buffer calculations in the Estimate Report assume that the data sets are migrated from the tape mount management DASD buffer by DFSMShsm Daily Space Management. Thus, the report reflects the amount of DASD required for a minimum of 24 hours DASD residency.

Since most of the data is likely to be eligible for immediate migration, a more efficient implementation would be achieved by using DFSMShsm interval migration processing to clear the tape mount management DASD buffer volumes on an hourly basis. The GBMAX Report helps you determine how much new data would be allocated hourly so that you can calculate the size of the DASD buffer needed for hourly migration.

See \textit{z/OS DFSMS Implementing System-Managed Storage} for details on planning your DASD buffer.

\textbf{The Improved Data Recording Capability Report}

The Improved Data Recording Capability (IDRC) Report is a simulation report. This simulation report shows how you can change the tape usage at your installation using IBM hardware technology.

Use the keyword \texttt{REPORT(IDRC)} or \texttt{REP(IDRC)} to generate the IDRC Report.

For this example, these keywords were specified:

\texttt{REPORT(IDRC) LARGE (1500) TAPEDEV (3490E) IDRCFACTOR (3) TAPELEN (2)}

These keywords specify that GFTAVMA generate an IDRC Report that shows data sets that are larger than 1500MB. The \texttt{LARGE} keyword was set to 1500 in this example to limit the report to a size that would be a good example report. Normally, you would select a \texttt{LARGE} keyword value that is the size of the tape cartridges at your installation.

Start with the \texttt{LARGE} default of 600 and increase the value if your sample is too big to be useful. For the IDRC calculations, the \texttt{TAPEDEV, IDRCFACTOR,} and \texttt{TAPELEN} keywords direct GFTAVMA to model to a 3490E with an IDRC compaction ratio of 3 and a tape length of 2. If you specify \texttt{LARGE (0)}, GFTAVMA evaluates all data sets as candidates for IDRC compaction.

The default for the keyword that was not specified was:

- \texttt{BLKSIZE} defaulted to \texttt{32 760}

\textbf{Note:} Do not specify \texttt{GDG(GROUP)} for the IDRC Report. See \textit{“GDG Keyword”} on page 141 for more information.

\textbf{Keywords that Affect the IDRC Report}

The results of the GFTAVMA reports rely on the keywords you choose. Therefore, choose your keywords carefully and be aware of the defaults and effects of the keywords on these reports.

All filtering input keywords and the \texttt{SPLIT} keyword affect these reports. See \textit{Chapter 5, “Using GFTAVMA Keywords to Filter Your Input,”} on page 63 and \textit{“SPLIT Keyword”} on page 150 for the syntax and functions of these keywords.
A subset of the tailoring output keywords specified for a GFTAVMA run also affects the IDRC Report. See Chapter 7, “Using GFTAVMA Keywords to Tailor Your Output,” on page 129 for the syntax and rules for these tailoring output keywords:

- BLKSIZE
- FORCECAP
- IDRCFACTOR
- LARGE
- RPROGRAM
- TAPEDEV
- TAPELEN

Use of the IDRC Report

The IDRC Report shows the potential effects of using IDRC compaction, 3490E enhanced recording format, and the Enhanced Capacity Cartridge System Tape with large data sets. If you use IDRC compaction on a data set that resides on four volumes, you can make it fit on one volume.

To understand the numbers generated for this report, it is important to note the following:

- The IDRC Report shows the data set level detail for the large category savings reported in the Estimate Report. To determine the summary of total savings, request only the Estimate Report.

 This report does not process from the volume perspective. For example, it does not show which tapes are suitable for IDRC/3490E.

- The IDRC Report only includes data sets larger than the value specified with the LARGE keyword. It shows the volumes and mounts associated with each of these data sets. In the tape mount management methodology, these data sets are large enough to make good use of a cartridge and would go directly to tape. GFTAVMA assumes that DFSMS intercepts data sets smaller than the LARGE value (default 600MB) and re-routes them to the tape mount management DASD buffer storage group. The effects of IDRC, 3490E, and double capacity cartridges are modelled for these smaller data sets when they are eligible to be migrated to tape with DFSMShsm, based on the values specified or defaulted for the IDRC, TAPEDEV and TAPELEN keywords.

- Because GFTAVMA analyzes tape processing over time, it is possible to have data sets included in the sample that no longer exist because the volumes associated with these data sets have been reused for other data. These data sets are still accounted for in the IDRC Report because, if you had used IDRC compaction at the time the data sets were written, you could have saved volumes and mounts.

- If the savings from using IDRC and 3490E are less than anticipated, it might be because the majority of your tape data sets are single volume and do not show volume or mount savings that result from using these techniques directly. You can enhance the benefits dramatically by using the principles of tape mount management to ensure that all cartridges are automatically filled with data and thus can benefit from compaction and 36-track recording.
Calculating Target Volumes and Mounts

For its simulation, GFTAVMA calculates the number of target volumes using the size of the current version of the data set. This is the size, in megabytes, that was specified in the MEGABYTES TRANSFERRED column of the IDRC Report (see Figure 52 on page 123).

Based on the TAPEDEV, TAPELEN and IDRCFACTOR specified, GFTAVMA calculates the effective capacity of the target volume and the number of volumes required to hold the data set. GFTAVMA calculates the projected number of target mounts using the number of target volumes, multiplied by a mount factor, which simply represents the number of times the set of volumes was used (current mounts/current volumes).

If data sets are single file, single volume or single file, multivolume (SNGL), GFTAVMA cannot compact them to less than one volume. GFTAVMA then rounds the projected number of volumes up to the next whole volume size. For example, 2½ volumes are rounded up to 3.

If data sets are multifile, single volume (MULT), GFTAVMA calculates the compaction, but does not reduce the projected volume or mount counts.

However, if data sets are multifile, multivolume (MULT), GFTAVMA does reduce their projected volume count to less than one volume because GFTAVMA assumes that the user wants to simulate the effects of IDRC on stacked data sets. Therefore, GFTAVMA reduces those data sets even though their original size was less than or equal to one statistical volume.

See “Single/Multi Volume/File Data Sets” on page 29 for more information about single/multi volume/file.

The simulated reduction of the MULT data sets is based on your adjusting the JCL to accommodate the additional capacity of the larger capacity tape cartridges.

If the data set was previously compacted with IDRC, GFTAVMA uses its actual compaction factor, and the IDRCFACTOR keyword does not affect the compaction. GFTAVMA only uses the IDRCFACTOR value if the data set was not previously compacted.

The IDRC Report Legend—Explanation of Symbols

Figure 51 on page 122 shows the report legend, which explains some of the column headings of the IDRC Report.
IDRC Report

The MEGABYTES TRANSFERRED column shows the size of the most current version of the data set.

The CURRENT STAT-VOLS column shows the current statistical volumes for the data set. See "Statistical Volumes" on page 31 for more information about statistical volumes.

Example of the IDRC Report

Figure 52 on page 123 shows the possible effects of IDRC compaction, 3490E enhanced recording format, and the Enhanced Capacity Cartridge System Tape on large data sets.
Figure 52. The IDRC Report

3 The target tape device is controlled by the TAPEDEV keyword, which was specified as 3490E, and the TAPELEN keyword, which was specified as 2. IDRCFACTOR was specified as 3.

4 In the S/M FILE column, SNGL or MULT indicates whether a data set is single-file or multifile. See "Single/Multi Volume/File Data Sets" on page 29 for more details.

5 The MEGABYTES TRANSFERRED column is the size, in megabytes, of the current version of a data set. This size is used to calculate the number of target (TAPEDEV) volumes required. The specified IDRCFACTOR is used to determine the effective capacity of the target device type. Because GFTAVMA cannot recognize data sets that have been software compacted, GFTAVMA does not account for software compaction when calculating the effective device capacity.

6 An asterisk (*) in the # CURRENT STAT-VOLS column shows that the volume has been reused. If the volumes associated with a data set no longer exist, there is an *' following the current statistical volumes value. In this case, the current value for statistical volumes is the original number of statistical volumes associated with the data set.
GFTAVMA does not count a volume more than once. To avoid double counting, the reused volumes are not accumulated in the totals for the IDRC Report. Therefore, the columns for current (5) and projected (7) statistical volumes do not add up to their totals.

7 The projected numbers of statistical volumes and statistical mounts result from the combination of the IDRCFACTOR, TAPEDEV, and TAPELEN keywords. An asterisk (*) in the 3490E STAT-VOLS column shows that the volume has been reused.

The Management Class Report
The Management Class Report is a simulation report. The simulation reports show how you can change the tape usage at your installation using tape mount management.

Use the keyword REPORT(MGMTCLAS) or REPORT(MC) to generate the Management Class Report. Using the DATE and TIME keywords for the Management Class Report impacts the accuracy of the report.

Note: Do not specify LEVEL0AGE or LEVEL1AGE keywords for this report because its purpose is to determine the optimum values for these keywords.

In this example, this keyword was specified:
REPORT(MGMTCLAS)

Since no other keywords were specified,
- BLKSIZE defaulted to 32 760
- COMPACTION defaulted to 50%
- DASDDEV defaulted to 3390-3
- IDRCFACTOR defaulted to 4
- LARGE defaulted to 600MB
- TAPEDEV defaulted to 3590
- TAPELEN defaulted to 1

If you want to model another DASD device, specify the DASDDEV keyword.

Keywords that Affect the Management Class Report
The results of the GFTAVMA reports rely on the keywords you choose. Therefore, choose your keywords carefully and be aware of the defaults and effects of the keywords on these reports.

All filtering input keywords and the SPLIT keyword affect these reports. See Chapter 5, “Using GFTAVMA Keywords to Filter Your Input,” on page 63 and “SPLIT Keyword” on page 150 for the syntax and functions of these keywords.

A subset of the tailoring output keywords specified for a GFTAVMA run also affects the Management Class Report. See Chapter 7, “Using GFTAVMA Keywords to Tailor Your Output,” on page 129 for more information about the syntax and functions of the these tailoring output keywords:
- BLKSIZE
- BPROGRAM
- CLASSIFY
- COMPACTION
- DASDDEV
- FORCECAP
Management Class Report

- IDRCFACTOR
- LARGE
- RPROGRAM
- TAPEDEV
- TAPELEN

Description
The Management Class Report shows which management class values would be most effective in managing data in the storage hierarchy for your installation. The LEVEL0AGE and LEVEL1AGE values are the number of days since a data set's last reference. Therefore, when you specify these values, you tell GFTAVMA to model the primary volumes and migration level 1 volumes so that data sets migrate based on the management classes PRIMARY DAYS NON-USAGE and LEVEL 1 DAYS NON-USAGE. GFTAVMA does not model TEMP, LARGE, or BKUP management classes.

GFTAVMA simulates the data set migration and recall patterns that would occur during the sample period based on various combinations of the LEVEL0AGE and LEVEL1AGE keywords.

Use of the Management Class Report
The Management Class Report helps you determine the cost of DASD storage depending on the choice of LEVEL0AGE and LEVEL1AGE keyword values. For example, if you create a data set and reference it every five days, an L0AGE value of 1 and an L1AGE value of 6 will be optimum if you want to avoid any migration to migration level 2 tape. On the other hand, you might save more DASD space by setting L0AGE to 0 and L1AGE to 0. In doing so, the data sets will migrate directly from primary DASD to migration level 2 tape.

Since the Management Class Report lists the combinations for LEVEL0AGE and LEVEL1AGE, run the Management Class Report when you run the Estimate Report to determine the optimum values for LEVEL0AGE and LEVEL1AGE. Based on your 30-day SMF sample, GFTAVMA determines your data set usage patterns and reports on the optimum management class values for the active data sets.

Once you have selected a L0AGE and L1AGE combination for a given set of data, run the Estimate Report again, specifying CLASSIFY(ACTIVE) and the optimum L0AGE and L1AGE values.

Assumptions for the Management Class Report
When generating the Management Class Report, GFTAVMA assumes you specified the migration level 1 compaction value that you feel you can achieve using the DFTSShsm level 1 compaction option (default is 50% compaction, which means level 1 is reduced by 50% from primary storage).

Example of the Management Class Report
The Management Class Report shows the combinations of L0AGE and L1AGE that would use DASD most cost effectively. For each combination, it also shows the
Management Class Report

number of recall mounts that would still occur. Recall mounts are mounts that result from data sets that would be called back from migration level 2 tape to primary DASD.

Figure 53 shows part of the Management Class Report. This run produced a total of 528 combinations of the LEVEL0AGE and LEVEL1AGE keywords.

GFTASRT3 -- REPORT(MGMTCLAS)

<table>
<thead>
<tr>
<th>ORDER</th>
<th>L0AGE</th>
<th>L1AGE</th>
<th>L2-MNTS</th>
<th>RECALLS</th>
<th>TOT TRKS</th>
<th>L0-TRKS</th>
<th>L1-TRKS</th>
<th>L2-MB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3384</td>
<td>3384</td>
<td>103622</td>
<td>103622</td>
<td>0</td>
<td>1689</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3384</td>
<td>3384</td>
<td>83</td>
<td>0</td>
<td>83</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3384</td>
<td>3384</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2993</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1200</td>
<td>3384</td>
<td>103656</td>
<td>103622</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1200</td>
<td>3384</td>
<td>114</td>
<td>0</td>
<td>114</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1200</td>
<td>1200</td>
<td>145856</td>
<td>145856</td>
<td>0</td>
<td>1196</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>900</td>
<td>3384</td>
<td>103678</td>
<td>103622</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>3</td>
<td>900</td>
<td>3384</td>
<td>132</td>
<td>0</td>
<td>132</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
<td>900</td>
<td>1200</td>
<td>145881</td>
<td>145856</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>3</td>
<td>900</td>
<td>171418</td>
<td>171418</td>
<td>0</td>
<td>791</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>4</td>
<td>485</td>
<td>3384</td>
<td>103687</td>
<td>103622</td>
<td>65</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>4</td>
<td>485</td>
<td>3384</td>
<td>139</td>
<td>0</td>
<td>139</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>4</td>
<td>485</td>
<td>1200</td>
<td>145892</td>
<td>145856</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>4</td>
<td>485</td>
<td>900</td>
<td>171418</td>
<td>171418</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>4</td>
<td>485</td>
<td>485</td>
<td>185339</td>
<td>185339</td>
<td>0</td>
<td>560</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>5</td>
<td>351</td>
<td>3384</td>
<td>103697</td>
<td>103622</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>5</td>
<td>351</td>
<td>3384</td>
<td>148</td>
<td>0</td>
<td>148</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>5</td>
<td>351</td>
<td>1200</td>
<td>145902</td>
<td>145856</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>5</td>
<td>351</td>
<td>900</td>
<td>171418</td>
<td>171418</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>5</td>
<td>351</td>
<td>485</td>
<td>185349</td>
<td>185339</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 53. Partial Management Class Report

Note: Each row of this report represents a unique management class.

1 The first combination of L0AGE and L1AGE for this run is 1 and 1. These values leave the data sets on primary storage for at least 24 hours before the data
sets migrate to level 2 tape. Because the value for L1AGE is the same as the value for L0AGE, data sets would bypass migration level 1 storage. This combination would result in 3384 mounts and recalls.

2 The second combination of L0AGE and L1AGE for this run is 0 and 1. These values allow the data sets on primary DASD to migrate to migration level 1 DASD when the next migration occurs, which is less than 24 hours. Then the data sets would remain on migration level 1 for at least 24 hours before migrating to level 2 tape. This combination would result in 3384 mounts and recalls.

3 The thirteenth combination of L0AGE and L1AGE for this run is 2 and 4. This combination significantly reduces migration level 2 mounts from 3384 to 485 and reduces recalls from 3384 to 1200, and the combination of 2 and 4 would be good values to specify for L0AGE and L1AGE for a study at this installation.

Understanding the Columns of the Report
The columns of the report are defined as follows:

ORDER:
- The report is sorted in descending order:
 1. Most mounts incurred
 2. Most recalls incurred (from level 1 and level 2)
 3. Most DASD tracks used

L0AGE:
The setting for primary days for this management class

L1AGE:
The setting for migration level 1 days for this management class

L2-MNTS:
The number of migration level 2 mounts that would be incurred for recalls

RECALLS:
Total number of recalls from migration level 1 or migration level 2 to primary DASD

TOT TRKS:
The total number of DASD tracks \((\text{weighted average over time}) \) that would be needed

L0-TRKS:
The number of required tracks of primary DASD \((\text{weighted average over time}) \). This value is not the total number of tracks containing data; it is the number of tracks needed for migration and recall activity.

L1-TRKS:
The number of required tracks of migration level 1 DASD \((\text{weighted average over time}) \). This value is not the total of tracks containing data; it is the number of tracks needed for migration activity, not recall activity. Nothing is ever recalled to migration level 1, only to primary storage.

L2-MB:
Number of megabytes of data \((\text{weighted average}) \) that would reside on migration level 2 tape because of migration activity.

Understanding the Values in the Management Class Report
Because GFTAVMA calculates DASD tracks as a weighted average over time, all of the DASD track values in Figure 53 on page 126 represent a weighted average based on the number of days the data set resided on the various levels of storage.
Management Class Report

For example, a data set with 500 tracks and a size of 15MB resides on migration level 2. If it resided on migration level 2 for two-thirds of the sample, the Management Class Report would report its size as 10MB. The data set would also have spent one-third of its life on DASD using one-third of 500 tracks, which is 167 tracks of primary DASD.
Chapter 7. Using GFTAVMA Keywords to Tailor Your Output

This chapter describes the GFTAVMA keywords you use to tailor the output reports of the volume mount analyzer. Unlike the keywords that filter your input, these keywords affect the output phase of processing by reducing the physical size of the reports, creating specific reports, and specifying the environment to be modelled in the detailed reports.

As pointed out earlier, all GFTAVMA keywords are optional. The VMACNTL DD statement points to a sequential data set with 80-byte records that contain the GFTAVMA keywords. Normally, this is a DD * data set. See the GFTAVMAP JCL member in "Submitting the GFTAVMA JCL" on page 48.

The keywords in this chapter are arranged in alphabetical order. Sub-keywords, if any, are described with their corresponding keyword.

Keyword Rules

When using keywords to tailor your output, you should:
- Start or end keywords in any position from 1 to 71. Positions 72 through 80 are ignored
- Separate keywords with either blanks or commas
- Separate sub-keywords with commas
- Separate items in a list with commas
- Put keywords in any order
- Use correct number of parentheses

If a keyword spans more than one record, you must indicate continuation by using continuation characters in the last text character of the keyword. Blanks can follow a continuation character in a record. Valid continuation characters for GFTAVMA are a comma and the left and right parenthesis.

Comments are surrounded by the delimiters /* and */. A comment start delimiter, /*, cannot be in column one. Examples:

TIME(0,12) /* This is a comment */
TIME(0, /* The last character, the comma, indicates continuation */
 12) /* part two of the continued keyword */

Summary of Keywords That Tailor Your Output Reports

Table 5 summarizes the output report keywords.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Reports Affected</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLKSIZE</td>
<td>Data Set, GBMAX, Top, Volume, Estimate, IDRC, Management Class</td>
<td>"BLKSIZE" "Keyword" on page [31]</td>
</tr>
<tr>
<td>Keyword</td>
<td>Reports Affected</td>
<td>Page Number</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>BPROGRAM</td>
<td>Estimate, Management Class</td>
<td>“BPROGRAM”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on page 132</td>
</tr>
<tr>
<td>CHART</td>
<td>None</td>
<td>“CHART Keyword”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on page 133</td>
</tr>
<tr>
<td>CLASSIFY</td>
<td>Estimate, Management Class</td>
<td>“CLASSIFY”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on page 134</td>
</tr>
<tr>
<td>COMPACTION</td>
<td>Estimate, Management Class</td>
<td>“COMPACTION”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keyword” on page 135</td>
</tr>
<tr>
<td>CUTOFF</td>
<td>Data Set, Volume</td>
<td>“CUTOFF”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keyword” on page 136</td>
</tr>
<tr>
<td>DASDDEV</td>
<td>Data Set, Volume, Estimate, Management Class</td>
<td>“DASDDEV”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keyword” on page 137</td>
</tr>
<tr>
<td>DSORT</td>
<td>Data Set</td>
<td>“DSORT Keyword”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on page 138</td>
</tr>
<tr>
<td>FORCECAP</td>
<td>Data Set, GBMAX, Volume, Estimate, IDRC, Management Class</td>
<td>“FORCECAP/NOFORCECAP”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keywords” on page 139</td>
</tr>
<tr>
<td>NOFORCECAP</td>
<td>Data Set, GBMAX, Volume, Estimate, IDRC, Management Class</td>
<td>“FORCECAP/NOFORCECAP”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keywords” on page 139</td>
</tr>
<tr>
<td>FSPACE</td>
<td>Estimate</td>
<td>“FSPACE Keyword”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on page 140</td>
</tr>
<tr>
<td>GDG</td>
<td>Data Set, GFTASRT3 Summary Report, Estimate, IDRC</td>
<td>“GDG Keyword”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on page 141</td>
</tr>
<tr>
<td>IDRCFACTOR</td>
<td>Estimate, IDRC, Management Class</td>
<td>“IDRCFACTOR”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keyword” on page 142</td>
</tr>
<tr>
<td>LARGE</td>
<td>Estimate, IDRC, Management Class</td>
<td>“LARGE Keyword”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on page 143</td>
</tr>
<tr>
<td>LEVEL0AGE</td>
<td>Estimate</td>
<td>“LEVEL0AGE”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keyword” on page 144</td>
</tr>
<tr>
<td>LEVEL1AGE</td>
<td>Estimate</td>
<td>“LEVEL1AGE”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keyword” on page 145</td>
</tr>
<tr>
<td>LINES</td>
<td>All</td>
<td>“LINES Keyword”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on page 146</td>
</tr>
<tr>
<td>L1FSPACE</td>
<td>Estimate</td>
<td>“L1FSPACE”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keyword” on page 147</td>
</tr>
<tr>
<td>REPORT</td>
<td>All detailed reports</td>
<td>“REPORT”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keyword” on page 148</td>
</tr>
</tbody>
</table>
Table 5. Keywords that Tailor Your Output Reports (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Reports Affected</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPROGRAM</td>
<td>Data Set, GBMAX, Volume, Estimate, IDRC, Management Class</td>
<td>“RPROGRAM Keyword” on page 149</td>
</tr>
<tr>
<td>SPLIT</td>
<td>All</td>
<td>“SPLIT Keyword” on page 150</td>
</tr>
<tr>
<td>TAPEDEV</td>
<td>Estimate, IDRC, Management Class</td>
<td>“TAPEDEV Keyword” on page 151</td>
</tr>
<tr>
<td>TAPELEN</td>
<td>Estimate, IDRC, Management Class</td>
<td>“TAPELEN Keyword” on page 152</td>
</tr>
<tr>
<td>VSORT</td>
<td>Volume</td>
<td>“VSORT Keyword” on page 153</td>
</tr>
</tbody>
</table>

Notes:
1. Do not specify GDG(GROUP) when you request the Estimate Report or the IDRC Report. GFTAVMA does not allow you to request GDG(GROUP) with REPORT(EST) or REPORT(IDRC). Specify it only when you request the Data Set Report.
2. Do not specify LEVEL0AGE or LEVEL1AGE when you request the Management Class Report because the Management Class Report shows the most effective values for these keywords.

BLKSIZE Keyword

Use BLKSIZE to supply a block size value for GFTAVMA to use when the SMF records indicate a block size of zero.

GFTAVMA uses the block size supplied in the SMF records, unless that value is zero. In that case, GFTAVMA uses the value you specified with the BLKSIZE keyword.

Abbreviation: BLKS

Syntax

Figure 54 shows the syntax for the BLKSIZE keyword.

[BLKSIZE (nnnnn)]

Figure 54. BLKSIZE Keyword Syntax

nnnnn

Represents the number of bytes you want to specify for block size.

SMF data does not supply the total amount of data transferred. Therefore, GFTAVMA must calculate this value from the block size and the number of blocks in the written fields of the SMF type 14/15 records.

Default

If you do not specify the BLKSIZE keyword, GFTAVMA uses its default of 32 760.
BLKSIZE

BLKSIZE Example

If you specify:
BLKSIZE (27998)

you have chosen a good starting point when estimating half-track blocking. This is because you can put two 27998 blocks on a 3390 track. You can specify a larger block size, but it would not be as efficient.

Reports Affected

BLKSIZE affects:
- The Data Set Report (see “The Data Set Report” on page 82 for more information)
- The GBMAX Report (see “The Maximum Gigabyte Report” on page 87 for more information)
- The Top Report (see “The Top Report” on page 91 for more information)
- The Volume Report (see “The Volume Report” on page 100 for more information)
- The Estimate Report (see “The Estimate Report” on page 105 for more information)
- The IDRC Report (see “The Improved Data Recording Capability Report” on page 119 for more information)
- The Management Class Report (see “The Management Class Report” on page 124 for more information)

BPROGRAM Keyword

When you use BPROGRAM to designate a list of program names as backup programs, GFTAVMA considers any data set that one of these programs creates to be a backup data set if the data set’s usage pattern is backup.

If you do not agree with the data set category that the volume mount analyzer assigns to data sets, you can change the category of selected data sets using the BPROGRAM keyword. See “Categories of Tape Mount Management Data Sets” on page 38 for more information on the logic GFTAVMA uses to categorize data sets as either active or backup.

Abbreviation: BPGM

Syntax

Figure 55 shows the syntax for the BPROGRAM keyword.

```
[BPROGRAM (INCLUDE (backup program include list),
           EXCLUDE (backup program exclude list))]  
```

Figure 55. BPROGRAM Keyword Syntax

INCLUDE (backup program include list)
- Specifies a list of backup programs to be included in the analysis.

EXCLUDE (backup program exclude list)
- Specifies a list of backup programs to be excluded from the analysis.
BPROGRAM

Default

If you do not specify the BPROGRAM keyword, GFTAVMA uses the data set usage types assigned during GFTAXTR processing. These types are based on usage patterns determined during the time period of the study. See “Data Set Usage Types” on page 36 for more details.

Relationship to Other Keywords

Do not use the CLASSIFY and BPROGRAM keywords together in the same run. This is because while CLASSIFY sets the entire sample to one tape mount management category, BPROGRAM categorizes selected data sets.

If you do not specify the CLASSIFY keyword, GFTAVMA considers a program designated by the BPROGRAM keyword to be a backup program. For GFTAVMA to categorize a data set as the tape mount management category of backup, the data set must also have a usage pattern of backup (zero reads and one or more writes).

Reports Affected

CHART Keyword

Use CHART to generate a sequential data set for the run. The sequential data set contains formatted data that you can use as input to your graphics package.

Abbreviation: None

Syntax

Figure 56 shows the syntax for the CHART keyword.

```
[CHART]
```

Figure 56. CHART Keyword Syntax

CHART has no sub-keywords.

Additional JCL Needed for CHART

The CHART keyword creates a sequential data set in the data set referenced by the VMACHART DD statement.

In the GFTAVMAP JCL member, the VMACHART DD is allocated as a SYSOUT file. To override this specification, insert the following DD statement in your GFTAVMA execution input stream following the EXEC GFTAVMA statement:

```
//VMA.VMACHART DD DSN=your.data.set, DISP=(NEW,CATLG),
// DCB=(LRECL=80,RECFM=FB), SPACE=(TRK, (1,1))
```

This statement directs the CHART output to a sequential data set that you can use to create charts using the graphics package of your choice. See “Submitting the GFTAVMA JCL” on page 48 for the complete JCL member.
CHART

Default
If you do not specify the CHART keyword, GFTAVMA does not generate a sequential data set for the run.

CHART Example
See Appendix C, “Example of Chart Output,” on page 161 for examples of the output CHART generates.

Reports Affected
CHART does not affect any of the GFTAVMA reports.

CLASSIFY Keyword
Use CLASSIFY to designate all data sets included in the GFTAVMA run as either active or backup.

You can classify all data sets as either active or backup to determine the effects of the values for L0AGE and L1AGE. Classify all data sets as backup to simulate migrating all data sets at the earliest possible time (at least once a day). Classify all data sets as active to simulate migrating all data sets based on the L0AGE and L1AGE values.

The CLASSIFY keyword overrides the tape mount management categories GFTAVMA assigned. See “Categories of Tape Mount Management Data Sets” on page 38 for more information on the logic GFTAVMA uses to categorize data sets.

Abbreviation: CLASS

Syntax
Figure 57 shows the syntax for the CLASSIFY keyword.

[CLASSIFY (ACTIVE | BACKUP)]

Figure 57. CLASSIFY Keyword Syntax

ACTIVE
Designates all data sets in the run (other than HSM, LARGE, and TEMP) as active.

BACKUP
Designates all data sets in the run (other than HSM, LARGE, and TEMP) as backup.

You can specify only one sub-keyword on the CLASSIFY keyword, either active or backup, but not both.

Default
If you do not specify the CLASSIFY keyword, GFTAVMA uses the tape mount management categories described in “Categories of Tape Mount Management Data Sets” on page 38.
Relationship to Other Keywords

Do not specify the CLASSIFY keyword in the same run as the BPROGRAM keyword. This is because CLASSIFY sets the entire sample to one usage class, while BPROGRAM classifies selected data sets.

Specify CLASSIFY only when you request the Estimate Report or the Management Class Report. When modelling the effects of DFSMS, GFTAVMA uses the data set categories to model active data in the DFSMSHsm storage hierarchy. If the data set is categorized as backup, GFTAVMA models the data set as backup in the DFSMSHsm hierarchy.

Restrictions

The CLASSIFY keyword does not change the designations for:

- DFSMSHsm single file format data sets
- Temporary data sets
- Large data sets

Reports Affected

COMPACTION Keyword

Use COMPACTION to specify the compaction percentage. GFTAVMA uses the same compaction percentage to model the effects of DFSMSHsm software compaction when calculating the required number of migration level 1 DASD volumes for the Estimate Report and the Management Class Report.

Abbreviation: COMP

Syntax

Figure 58 shows the syntax for the COMPACTION keyword.

```
[COMPACTION (nn)]
```

Figure 58. COMPACTION Keyword Syntax

nn Represents the percentage of compaction achieved. This value indicates that all data sets in the sample can achieve \(nn \)\% compaction when DFSMSHsm moves the data sets from primary to migration level 1 DASD.

Default

If you do not specify the COMPACTION keyword, GFTAVMA uses the default of 50\%.

Restrictions

COMPACTION only affects active data sets. GFTAVMA models backup data sets as migrating directly to migration level 2 and to whatever device you specify with the TAPEDEV and TAPELEN keywords.
DFSMShsm compaction is taken into account for data sets that GFTAVMA determines to belong on migration level 2 tape based on the length of time since they have been referenced. These data sets would have first resided on migration level 1 for some period of time. For these data sets, GFTAVMA applies the \(nn \) percentage compaction that would have been achieved during migration to migration level 1 and then assumes an additional 15% IDRC compaction during the level 1 to level 2 migration.

Data sets that migrate directly from primary storage to migration level 2 do not require DFSMShsm software compaction if IDRC is available to the tape unit controllers (3480/3490). This saves processor and IDRC compaction at the bit level and is more efficient than the software compaction at the byte level. Data sets that are already software compacted can usually only be IDRC compacted an additional 10%.

Therefore, when a 600MB data set with a specified IDRCFACTOR of 3.0 migrates from primary DASD to migration level 2 tape, the data set is compacted to 200MB. If the same 600MB data set has COMPACTION(50) and IDRCFACTOR(3.0), it is compacted 50% to 300MB when it migrates to migration level 1. When it migrates to migration level 2, it is reduced an additional 45MB to 255MB. Thus, the IDRC compacted data set achieves a total of 200MB, while the software compacted and IDRC compacted data set achieves only a total of 255MB.

Therefore, you must consider the effects of using DFSMShsm’s software compaction with IDRC compaction. A data set that has been software compacted cannot achieve full IDRC compaction.

COMPACTION Example

If you specify:

```
COMPACTION(90)
```

data sets on migration level 1 volumes will be reduced to 90% of their original size.

Reports Affected

COMPACTION applies only to DFSMShsm migration level 1 volumes and affects the Estimate Report and the Management Class Report.

CUTOFF Keyword

Use CUTOFF to stop the printing of a Data Set or Volume Report after a specified number of gigabytes of data has been reached for that report. This keyword has no effect on the values shown in any of the volume mount analyzer reports.

Use this keyword to save paper or cut down on the size of the output listing.

Abbreviation: CUT

Syntax

Figure 59 on page 137 shows the syntax for the CUTOFF keyword.
Specifies the number of gigabytes printed in a report.

The value specified can be from 1 to 2,147,483,647.

Default

If you do not specify the `CUTOFF` keyword, GFTAVMA uses a cutoff of `infinity`.

CUTOFF Example

If you specify:

```
CUTOFF (85)
```

your report will stop printing when the cumulative gigabytes exceed 85GB.

Reports Affected

`CUTOFF` affects the Data Set Report and the Volume Report.

See "The Data Set Report" on page 82 and "The Volume Report" on page 100 for more details.

DASDDEV Keyword

Use `DASDDEV` to control the target DASD device that GFTAVMA uses for all calculations involving DASD space and DASD track sizes in the GFTAVMA reports. All DASD/TRK values reflect the selected device type.

Abbreviation: DASD

Syntax

Figure 60 shows the syntax for the `DASDDEV` keyword.

```
[DASDDEV (3380S | 3380D | 3380J | 3380E | 3380K
| 3390-1 | 3390-2 | 3390-3 | 3390-9 | 9345-1 | 9345-2)]
```

Default

The default for `DASDDEV` is `3390-3`.

DASDDEV Example

For each data set, the Data Set Report shows the number of DASD tracks that would be required to hold the data. The value used for `DASDDEV` controls which DASD track size is used for this calculation.
The actual track calculation is based on both the DASDDEV specification and data set attributes (such as LRECL, BLKSIZE, and RECFM).

Reports Affected

DASDDEV affects:
- The Data Set Report (see "The Data Set Report" on page 82 for more information)
- The Volume Report (see "The Volume Report" on page 100 for more information)
- The Estimate Report (see "The Estimate Report" on page 105 for more information)
- The Management Class Report (See "The Management Class Report" on page 124 for more information)

DSORT Keyword

Use DSORT to specify how the list of data set names in the Data Set Report is sorted. When GFTAVMA sorts on sub-keywords other than data set names, there is a secondary sort performed by data set name within the major sort category.

Abbreviation: DSR

Syntax

Figure 61 shows the syntax for the DSORT keyword.

```
[DSORT (DATASET | JOBNAME | PROGRAM | SIZE | EXPDT)]
```

Figure 61. DSORT Keyword Syntax

DATASET (DSN)

Prints the list of data sets in ascending order by data set name. This is the default and the most useful option for helping you analyze random tape mounts.

JOBNAME (JOB)

Prints the list of data sets in ascending order by job name. This option can be useful for analyzing all data sets associated with a particular job name, such as all data sets related to DFSMShsm processing.

PROGRAM (PGM)

Prints the list of data sets in ascending order by program name. This option can be useful for analyzing certain data sets associated with a particular program.

SIZE (SIZ)

Prints the list of data sets in ascending order by data set size.

EXPDT (EXP)

Prints the list of data sets in ascending order by expiration date.

Default

The default for DSORT is DATASET.
Reports Affected

DSORT only affects the Data Set Report. See ["The Data Set Report" on page 82](#) for more details.

FORCECAP/NOFORCECAP Keywords

Use **FORCECAP** to set an upper limit on the amount of data that GFTAVMA has determined to be on a single volume based on the relative device capacity of that volume.

Note: You should always run with **FORCECAP** because it shows the block size of the data as close as possible to its actual total.

Abbreviations: FCAP and NOFCAP

Syntax

Figure 62 shows the syntax for the **FORCECAP** keyword.

```
[FORCECAP | NOFORCECAP]
```

Figure 62. FORCECAP/NOFORCECAP Keyword Syntax

FORCECAP

Sets a limit on the amount of data calculated to be on a volume based on the capacity of the device.

NOFORCECAP

Does not set a limit on the amount of data calculated to be on a volume. As a result, GFTAVMA might calculate a larger size than the capacity of the device.

Note: Run with **NOFORCECAP** only if you wish to see how high the calculations can be.

The Importance of FORCECAP

Using block size and number of blocks written, GFTAVMA calculates the total amount of data transferred. For variable blocked and undefined records, SMF supplies the user-stated block size found in the JFCB. If the block size is zero, GFTAVMA uses the **BLKSIZE** keyword value, which defaults to 32 760. SMF does not indicate the total amount of data written or the average block size used.

Therefore, in the case of records whose format is variable length or undefined, GFTAVMA’s calculation of the total amount of data transferred is usually somewhat higher than the actual amount of data that was written. This over-calculation is evident when GFTAVMA calculates that a single volume contains well in excess of its maximum capacity.

GFTAVMA attempts to compensate for this over-calculation by setting a maximum capacity (**FORCECAP**) of data per volume: 416MB for 3490E cartridges, 208MB for 3490 and 3480 cartridges, and 169MB for 3420 tape volumes. For data sets that have been IDRC compacted, GFTAVMA adjusts volumes written with IDRC to the specified **IDRCFACTOR** keyword value multiplied by the device capacity (**IDRCFACTOR x devcap**).
FORCECAP/NOFORCECAP

Default

FORCECAP is the default.

If you specify NOFORCECAP, GFTAVMA uses the value calculated by block size multiplied by the number of blocks, which can exceed the maximum capacity of the volume.

Reports Affected

FORCECAP/NOFORCECAP affects:

- The Data Set Report (see “The Data Set Report” on page 82 for more information)
- The GBMAX Report (see “The Maximum Gigabyte Report” on page 87 for more information)
- The Volume Report (see “The Volume Report” on page 100 for more information)
- The Estimate Report (see “The Estimate Report” on page 105 for more information)
- The IDRC Report (see “The Improved Data Recording Capability Report” on page 119 for more information)
- The Management Class Report (see “The Management Class Report” on page 124 for more information)

FSPACE Keyword

Use FSPACE to specify the free space low threshold that GFTAVMA should model for DFSMShsm primary storage volumes when calculating the required number of volumes for the tape mount management DASD buffer.

Abbreviation: FSP

Syntax

Figure 63 shows the syntax for the FSPACE keyword.

```
[FSPACE (nn)]
```

Figure 63. FSPACE Keyword Syntax

nn Represents the percentage for the DFSMShsm free space low threshold.

The actual free space you need for a tape mount management implementation should be based on a REPORT(GBMAX) run against all of the filters planned for ACS routines.

See z/OS DFSMS Implementing System-Managed Storage for details about determining free space.

Default

The default for FSPACE is 5%.

Reports Affected

GDG Keyword

Use GDG to specify how GDSs are listed in the Data Set Report. Each GDS can be listed individually or listed collectively by its GDG.

Abbreviation: None

Syntax

Figure 64 shows the syntax for the GDG keyword.

```
[GDG (SHOW | GROUP)]
```

Figure 64. GDG Keyword Syntax

SHOW

Prints out each GDS separately on the Data Set Report. This option can be useful when you need an in-depth analysis of each GDS.

GROUP

Groups all the GDSs from a GDG base together and prints one line for all the data sets within a GDG. This option simplifies the Data Set Report to save paper.

Default

The default for GDG is SHOW, which displays the GDSs separately.

Reports Affected

Use the GDG keyword only for the Data Set Report. See “The Data Set Report” on page 82 for more details. When you specify GDG(GROUP), run only the Data Set Report. GDG also affects the values in the GFTASRT3 Summary Report. See “GFTASRT3—Tape Data Set Statistics Report” on page 57 for more details.

Note: Do not specify GDG(GROUP) with the Estimate Report or the IDRC Report because GFTAVMA will end processing with message GFTA046E. See the messages in Appendix D, “Volume Mount Analyzer Messages,” on page 167.

IDRCFACTOR Keyword

Use IDRCFACTOR to specify the value that you believe is a reasonable projected IDRC compaction ratio for your environment. Since GFTAVMA does not examine your data directly, it has no way of projecting actual compaction ratios that you might have at your installation.

The IDRC feature available on the 3490 and some 3480s can significantly increase the effective cartridge data capacity. Using IDRC reduces the number of cartridges required for multivolume data sets and therefore the number of required tape mounts. The actual reduction in cartridges that can be achieved with IDRC compaction depends upon the data set’s block size and data characteristics.

GFTAVMA calculates the projected number of volumes and mounts in a simulated IDRC environment based on the size of the data set, the effective capacity of the target media with the IDRCFACTOR applied, and the TAPEDEV and TAPELEN specifications. TAPEDEV and TAPELEN control the selection of which target device type GFTAVMA would use.
IDRCFACTOR

Abbreviation: IDRC

Syntax

Figure 65 shows the syntax for the IDRCFACTOR keyword.

[IDRCFACTOR (nn.n)]

Figure 65. IDRCFACTOR Keyword Syntax

nn.n
Specifies a value between 1.0 and 99.9.

GFTAVMA and Compacted Data Sets

When GFTAVMA finds the flag in the SMF record that indicates a data set has been IDRC compacted, it uses the actual IDRC value for its calculations instead of the value you specified with the IDRCFACTOR keyword.

However, SMF records do not have a flag to indicate software compaction. Since GFTAVMA reports on the size of data transferred and cannot tell if a data set is already software compacted or compressed, the data set size could be larger than the data set transfer size. For data sets that have been software compacted, the volume mount analyzer does not know the actual size of the data sets or whether or not they have been compacted.

Default

The default for IDRCFACTOR is 4.0.

Relationship to Other Keywords

The IDRCFACTOR keyword provides a compaction ratio that is used to project savings from IDRC compaction when you specify the REPORT(IDRC) keyword. See “The Improved Data Recording Capability Report” on page 119 for more information on the IDRC Report and the interaction between IDRCFACTOR and the TAPEDEV and TAPELEN keywords.

IDRCFACTOR estimates the native device capacity when GFTAVMA estimates the data set size and FORCECAP has been specified.

Reports Affected

IDRCFACTOR affects:

- The Estimate Report (see “The Estimate Report” on page 103 for more information)
- The IDRC Report (see “The Improved Data Recording Capability Report” on page 119 for more information)
- The Management Class Report (see “The Management Class Report” on page 124 for more information)

LARGE Keyword

Use LARGE to indicate to GFTAVMA the size of data sets that should be modelled as bypassing the tape mount management DASD buffer and going directly to tape.

Abbreviation: LRG
Syntax

Figure 66 shows the syntax for the LARGE keyword.

```
[LARGE (nnnnnnnnnnn)]
```

Figure 66. LARGE Keyword Syntax

nnnnnnnnnnn

Specifies a number between 0 and 2147483647MB.

If you are including an application that might have a few large data sets that you intend on intercepting regardless of size, which is a good technique, you should set LARGE to a value high enough to ignore these data sets in the LARGE category.

If you specify LARGE (0), GFTAVMA evaluates all data sets as candidates for IDRC compaction and includes them in the IDRC Report.

Default

The default for LARGE is 600MB.

Relationship to Other Keywords

Data sets equal to or larger than the value specified for LARGE are modelled as being written directly to tape. The TAPEDEV, TAPELEN, and IDRCFACTOR keywords control the device type and IDRC compaction for the target device to which GFTAVMA models these data sets.

Data sets smaller than the value specified for LARGE are candidates for system-managed storage and migrate to migration level 1 or migration level 2 according to their active or backup classification and LEVEL0AGE and LEVEL1AGE values.

Reports Affected

LARGE affects:

- The Estimate (see “The Estimate Report” on page 105 for more information)
- The IDRC (see “The Improved Data Recording Capability Report” on page 119 for more information)
- The Management Class Reports (see “The Management Class Report” on page 124 for more information)

LEVEL0AGE Keyword

Use LEVEL0AGE to indicate to GFTAVMA the number of days that must elapse between the date of the last reference to a data set and the date the data set can be migrated from primary DASD to either migration level 1 DASD or migration level 2 tape.

LEVEL0AGE applies primarily to the active category of tape mount management data sets. GFTAVMA models backup data sets as going directly to tape at the end of the day unless you specify L0AGE=0 and L1AGE=0. GFTAVMA models backup data sets as migrating to migration level 2 immediately after their use. Since temporary data sets expire on DASD, their L0AGE is always 1 and L1AGE does not apply because temporary data sets are deleted before they are eligible for migration to migration level 1.
LEVEL0AGE

Abbreviation: L0AGE

Syntax

Figure 67 shows the syntax for the LEVEL0AGE keyword.

![Syntax Diagram]

Figure 67. LEVEL0AGE Keyword Syntax

nnnn

Represents a whole number of days between 0 and 9999.

Note: If you specify L0AGE as 0 and if it causes an immediate recall on the same day, a half day of residency is charged to both primary DASD and to the target level storage, either migration level 1 or migration level 2.

Default

The default for LEVEL0AGE is 1 day.

Relationship to Other Keywords

The value for LEVEL1AGE cannot be smaller than the value for LEVEL0AGE. If you specify a smaller value for LEVEL1AGE than for LEVEL0AGE, GFTAVMA changes the value of LEVEL1AGE so that it is equal to the value of LEVEL0AGE. If you specify L0AGE=1 and L1AGE=0, GFTAVMA would change L1AGE to 1.

The LEVEL0AGE keyword models the effect of the management class attribute PRIMARY DAYS NON-USAGE.

Reports Affected

Do not specify LEVEL0AGE when you request the Management Class Report because this report determines the optimum values for LEVEL0AGE.

LEVEL1AGE Keyword

Use LEVEL1AGE to indicate to GFTAVMA the number of days that must elapse between the date of the last reference to a data set and the date the data set can be migrated from migration level 1 DASD to migration level 2 tape.

LEVEL1AGE applies primarily to the active category of tape mount management data sets. GFTAVMA models backup data sets as going directly to tape at the end of the day unless you specify L0AGE=0 and L1AGE=0. GFTAVMA models backup data sets as migrating to migration level 2 immediately after their use. Since temporary data sets expire on DASD, their L0AGE is always 1 and L1AGE does not apply because temporary data sets are deleted before they are eligible for migration to migration level 1.

Abbreviation: L1AGE
Syntax

Figure 68 shows the syntax for the LEVEL1AGE keyword.

```
[LEVEL1AGE (nnnn)]
```

Figure 68. LEVEL1AGE Keyword Syntax

nnnn

Represents a whole number of days between 0 and 9999.

Default

The default for LEVEL1AGE is the value you specify for LEVEL0AGE.

LEVEL1AGE defaults to the LEVEL0AGE value so that will GFTAVMA simulate bypassing migration level 1. Data sets are modelled as migrating directly from primary storage to migration level 2 tape.

Relationship to Other Keywords

The value you specify for LEVEL1AGE includes the LEVEL0AGE value. For example, assume LEVEL0AGE is set to 2, and LEVEL1AGE is set to 10. After two days of not being referenced on primary DASD, the data set would be eligible to migrate to migration level 1. After an additional 8 days on migration level 1, the data set would migrate to migration level 2 tape. Therefore, LEVEL1AGE is not equal to the number of days the data set resides on migration level 1.

The value for LEVEL1AGE cannot be smaller than the value for LEVEL0AGE. If you specify a smaller value for LEVEL1AGE than for LEVEL0AGE, GFTAVMA changes the value of LEVEL1AGE so that it is equal to the value of LEVEL0AGE. If you specify L0AGE=1 and L1AGE=0, GFTAVMA changes L1AGE to 1.

The LEVEL1AGE keyword models the effect of the management class attribute LEVEL 1 DAYS NON-USAGE.

Reports Affected

Do not specify LEVEL1AGE for the Management Class Report because this report determines the optimum values for LEVEL1AGE.

LINES Keyword

Use LINES to set the number of lines per page for the printed output report.

Abbreviation: None

Syntax

Figure 69 shows the syntax for the LINES keyword.

```
[LINES (nnn)]
```

Figure 69. LINES Keyword Syntax
LINES

\[nn\] Represents the number of lines of output to print per page. The value must be a whole number between 9 and 99.

Default

The default for LINES is 60 lines per page.

Reports Affected

LINES affects all GFTAVMA reports.

L1FSPACE Keyword

Use L1FSPACE to specify the free space threshold that GFTAVMA should model for DFSMSHsm migration level 1 volumes when calculating the required number of migration level 1 volumes required for the tape mount management DASD buffer.

Abbreviation: L1FSP

Syntax

Figure 70 shows the syntax for the L1FSPACE keyword.

![Figure 70. L1FSPACE Keyword Syntax](image)

\[[L1FSPACE \(\text{\(nn\)}\)]

Figure 70. L1FSPACE Keyword Syntax

\[nn\] Represents the percentage of the volume that should be left as free space.

See *z/OS DFSMS Implementing System-Managed Storage* for details about free space and DASD buffers.

Default

The default for L1FSPACE is 5%.

Reports Affected

REPORT Keyword

Use REPORT to specify the optional detailed reports that you want GFTAVMA to generate. You can specify any or all of the optional reports for a single GFTAVMA run.

Abbreviation: REP

Syntax

Figure 71 on page 147 shows the syntax for the REPORT keyword.
REPORT

[REPORT (DATASET,ESTIMATE,GBMAX,IDRC,
MGMTCLAS,TOP,USAGE,VOLUME)]

Figure 71. REPORT Keyword Syntax

DATASET (DSN)
 Produces a Data Set Report showing details about data set use. See “The Data
 Set Report” on page 82 for more information.

ESTIMATE (EST)
 Produces an Estimate Report showing projected costs and savings that result
 from using tape mount management to manage a subset of data. See “The
 Estimate Report” on page 105 for more information.

GBMAX (GB)
 Produces a Maximum Gigabyte Report showing the maximum number of
 DISP=NEW or DISP=MOD GB allocated every day by hour along with the
 maximum per day and hour. See “The Maximum Gigabyte Report” on page 87
 for more information.

IDRC
 Produces an IDRC Report showing the projected savings from using IDRC to
 compact large data sets. See “The Improved Data Recording Capability Report”
 on page 119 for more information.

MGMTCLAS (MC)
 Produces a Management Class Report showing the recommended management
 class values to optimally manage a set of data. See “The Management Class
 Report” on page 124 for more information.

TOP
 Produces a Top Report showing the most frequent high level qualifiers, low
 level qualifiers, programs, jobs, expiration dates, account codes or data set ages
 that are responsible for the top percentage of all mounts. The Top Report is the
 only report that has parameters. See “Parameters for the Top Report.” See “The
 Top Report” on page 91 for more information about the Top Report.

USAGE (USE)
 Produces a Usage Report showing the maximum concurrent number of used
 tape drives and mounts incurred for each hour, as well as the totals and peak
 values for each hour and each day. See “The Usage Report” on page 94 for an
 example of this report.

VOLUME (VOL)
 Produces a Volume Report showing all tape volumes. See “The Volume
 Report” on page 100 for more information.

Parameters for the Top Report
 The TOP sub-keyword is the only sub-keyword that has parameters. The syntax of
 the TOP sub-keyword is:
 REPORT(TOP(parm1,parm2...))

 The valid parameters for the TOP sub-keyword are as follows:
 HLQ High level qualifier
 LLQ Low level qualifier
REPORT

PROGRAM
 Program name (abbreviation is PGM)

JOBNAME
 Job name (abbreviation is JOB)

REFERENCE
 Last reference age (abbreviation is REF)

EXPDT
 Expiration date (abbreviation is EXP)

ACCOUNT
 Accounting information, which is the first 8 bytes of the accounting field as specified on the application program's JOB statement (abbreviation is ACCT). This is affected by the ACCTFLD keyword, which is described in "ACCTFLD Keyword" on page 15.

AGE
 Number of days since last reference

PERCENT(nn)
 The percentage of mounts that should be used as a cutoff point (abbreviation is PCT)

ALL
 All the above parameters

The defaults for the TOP sub-keyword are REPORT (TOP(ALL,PERCENT(100))).

Default

REPORT does not have a default. If you do not specify REPORT, GFTAVMA only produces the summary reports.

Relationship to Other Keywords

Use the DSORT and VSORT keywords to sort the Data Set and Volume Reports.

REPORT Examples

If you specify:
 REPORT (EST, TOP)

GFTAVMA will generate an Estimate Report and a Top Report. Since the Top Report has no specified parameters, GFTAVMA uses the defaults, TOP(ALL,PERCENT(100)).

The Estimate Report and the Top Report are a recommended first run to help you get started.

If you specify:
 REPORT (TOP(HIQ, PROGRAM, EXPDT, PERCENT(40)))

GFTAVMA will produce Top Reports showing the high level qualifiers, program names, and expiration dates that account for the top 40% of all mounts.

Reports Affected

REPORT creates all the GFTAVMA detailed reports. If you do not specify REPORT and its sub-keywords, GFTAVMA does not generate any detailed reports.
RPROGRAM Keyword

Use **RPROGRAM** to designate a list of program names whose associated data sets are reblockable.

Abbreviation: RPGM

Syntax

Figure 72 shows the syntax for the **RPROGRAM** keyword.

```plaintext
[RPROGRAM (INCLUDE (program include list),
EXCLUDE (program exclude list))]
```

INCLUDE (reblockable program include list)

Specifies a list of program names whose data sets will be reblockable.

EXCLUDE (reblockable program exclude list)

Specifies a list of program names whose data sets will not be reblockable.

Many data sets currently on tape have block sizes that are efficient for tape, but inefficient for DASD. For example, 32 760 is a commonly used block size for tape data sets. However, 32 760 is greater than half a track of 3390 DASD and would result in poor track use. Fortunately, most programs have no restrictions on block size. In the DFSMS environment you can eliminate the use of hard coded block size and allow DFSMS to choose the optimum block size with system determined block size.

If the user's DD statement has a BLKSIZE value that exceeds 32 760 when writing, that data set cannot be redirected to DASD. If the system determined the block size and it exceeds 32 760, the system will determine a smaller block size if the data set is redirected to DASD.

GFTAVMA calculates tracks required using the device type specified by the **DASDDEV** keyword and the data set's block size and block count.

If you specify **RPROGRAM**, GFTAVMA models designated programs as reblockable. If GFTAVMA considers a program to be reblockable, any data sets created by that program and allocated to DASD are modelled as having optimum block sizes that use DASD tracks more efficiently.

Default

If you do not specify the **RPROGRAM** keyword, GFTAVMA does not consider any programs reblockable.

Reports Affected

RPROGRAM affects:

- The Data Set Report (see "The Data Set Report" on page 82 for more information)
- The GBMAX Report (see "The Maximum Gigabyte Report" on page 87 for more information)
- The Volume Report (see "The Volume Report" on page 100 for more information)
- Estimate Report (see "The Estimate Report" on page 105 for more information)
SPLIT Keyword

Use SPLIT to create two data sets that are subsets of the GFTAXTR output data set. One data set contains all the included data sets and the other data set contains all the excluded data sets. Using SPLIT maintains the structures of the SMF records, which you cannot do if you sub-divide the SMF input file yourself.

The two split data sets continue to be subsets of the original GFTAXTR output data set. You cannot recombine the subsets.

Abbreviation: None

Syntax

Figure 73 shows the syntax for the SPLIT keyword.

```
[SPLIT]
```

Figure 73. SPLIT Keyword Syntax

SPLIT has no sub-keywords.

Note: Only use the SPLIT keyword once to split the GFTAXTR output data set.

The Importance of SPLIT

SPLIT improves the performance of the volume mount analyzer for those installations that use lengthy include/exclude filter lists during the volume mount analyzer study. Long filter lists cause processing overhead.

Because GFTAVMA compares each filter specified against each SMF 14/15 record in the input file, it is not unusual for some installations to have GFTAVMA runs with excessive elapsed time. Of course this excessive elapsed time is also dependent upon large numbers of SMF 14/15 records that are passed through the filters.

To eliminate the overhead during the GFTAVMA runs, use the SPLIT keyword to split the GFTAXTR output data set into two subset data sets. When specified, SPLIT directs the SMF 14/15 records into either the include or exclude data set.

After using SPLIT, you do not have to worry about the excluded records again or pay for the excessive filtering overhead. The subsequent GFTAVMA runs are against one of the two SPLIT output data sets created during the initial SPLIT run.

Additional JCL Needed for SPLIT

The include and exclude data sets are identified by two JCL DD statements in the GFTAVMA JCL job stream. Their names must be VMAINCL and VMAEXCL. In the JCL, the GFTAVMA PROC has assigned these DD statements as dummy. In order to use SPLIT, you must override these dummy assignments.
To override the current GFTAVMA DD assignments, use the following DD statements to redirect them to a DASD or tape data set. Put the DD statements after the EXEC GFTAVMA statement in the sample JCL.

```plaintext
//VMA.VMAINCL DD DSN=your.sequential.data.set.for.includes,
//   DCB=(LRECL=316,RECFM=VB,DSORG=PS),
//   DISP=(NEW,CATLG),
//   SPACE=(......),
//   UNIT=...
//VMA.VMAEXCL DD DSN=your.sequential.data.set.for.excludes,
//   DCB=(LRECL=316,RECFM=VB,DSORG=PS),
//   DISP=(NEW,CATLG),
//   SPACE=(......),
//   UNIT=...
```

See the complete JCL in "Submitting the GFTAVMA JCL" on page 48.

Default

SPLIT does not have a default. If you do not specify *SPLIT*, GFTAVMA does not create the two data sets for that run.

Reports Affected

SPLIT affects all GFTAVMA reports.

TAPEDEV Keyword

Use **TAPEDEV** to specify the target tape device to which GFTAVMA should model the data. GFTAVMA uses the target tape device to calculate benefits of IDRC compaction and larger effective device capacity.

Abbreviation: TAPE

Syntax

Figure 74 shows the syntax for the **TAPEDEV** keyword.

![Syntax](image)

Figure 74. TAPEDEV Keyword Syntax

The valid tape devices are:

- **3480**
 - Refers to the base 3480 device without the IDRC feature.

- **348X**
 - Refers to the 3480 device with the IDRC feature or the base 3490 device.

- **3490E**
 - Refers specifically to the extended capability 3490E device.

- **3590**
 - Refers to the Magstar 3590 Tape Drive.

Default

The default for **TAPEDEV** is **3590**.
TAPEDEV

Relationship to Other Keywords

Use the **TAPEDEV** keyword with the **IDRCFACTOR** keyword to project the number of mounts and volumes that could be reduced by using IDRC and the specified tape device.

To specify the double capacity cartridge for 3490E, the Enhanced Capacity Cartridge System Tape, you must also specify the **TAPELEN** keyword.

Reports Affected

TAPEDEV affects:
- The Estimate Report (see “The Estimate Report” on page 105 for more information)
- The IDRC Report (see “The Improved Data Recording Capability Report” on page 119 for more information)
- The Management Class Report (see “The Management Class Report” on page 124 for more information)

TAPELEN Keyword

Use **TAPELEN** to specify whether or not GFTAVMA should model to the Enhanced Capacity Cartridge System Tape.

Abbreviation: TLEN

Syntax

Figure 75 shows the syntax for the **TAPELEN** keyword.

```
[TAPELEN (1 | 2)]
```

Figure 75. TAPELEN Keyword Syntax

The valid values for **TAPELEN** are:

1. Refers to a normal tape cartridge with a base capacity of 416 MB for a 3490E tape. This size is the cartridge capacity without IDRC and with 36 tracks. When IDRC is enabled, you can achieve more than the cartridge capacity.

2. Refers to the Enhanced Capacity Cartridge System Tape, which is twice the length of the tape on a physical cartridge. With the Enhanced Capacity Cartridge System Tape, the effective capacity of a tape cartridge is up to 2500MB.

See *z/OS DFSMS Implementing System-Managed Storage* for more information on advanced cartridge hardware.

Default

The default for **TAPELEN** is 1.

Relationship to Other Keywords

If you specify **TAPELEN (2)**, you must also specify **TAPEDEV (3490E)**. The **TAPELEN** keyword has no effect on other **TAPEDEV** sub-keywords.

Reports Affected

TAPELEN affects:
VSORT Keyword

Use **VSORT** to specify whether the list of volume serials in the Volume Report should be sorted by MRV, volume name, or size.

Abbreviation: VSR

Syntax

Figure 76 shows the syntax for the **VSORT** keyword.

```
[VSORT (MRV|VOLUME|SIZE) ]
```

Figure 76. VSORT Keyword Syntax

MRV

Prints a list of volumes in order by MRV. MRV shows the volumes that are mounted frequently but contain small amounts of data.

MRV = number of megabytes divided by the number of mounts.

VOLUME (VOL)

Prints the list of volumes in ascending order by volume serial number. If the volume serial numbers of tapes are meaningful, VOLUME is the most useful option.

SIZE (SIZ)

Prints the list of volumes in order by size of the data transferred to or from the volume.

Default

The default for **VSORT** is **VOL** which sorts the volume serial names in order by the volume serial number.

Reports Affected

VSORT only affects the Volume Report.

See “The Volume Report” on page 100 for an example of the Volume Report sorted by **VOL**.
VSORT
Appendix A. A Quick Reference to Volume Mount Analyzer Keywords

The following figures show the keyword and sub-keyword abbreviations, the defaults, and the page number where the details of the complete keyword are located.

Abbreviations and Defaults for GFTAXTR Keywords

Table 6 summarizes the GFTAXTR keywords.

Table 6. Quick Reference to GFTAXTR Keywords

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Abbreviation</th>
<th>Sub-Key Word Abbreviations</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
</table>
| ACCTFLD | AFLD | (nn) | 1 | "ACCTFLD"
| | | | | "Keyword" on page 15 |
| DATE | none | (fromdate, todate) | include all | "DATE Keyword" on page 16 |
| LINES | none | (nn) | 60 | "LINES Keyword" on page 17 |
| TIME | none | (fromtime, totime) | include all | "TIME Keyword" on page 17 |

Abbreviations and Defaults for Keywords That Filter Your Input

Table 7 summarizes the filtering keywords.

Table 7. Quick Reference for Keywords that Filter Your Input

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Abbreviation</th>
<th>Sub-Key Word Abbreviations</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
</table>
| ACCOUNT | ACCT | (INC, EXC) | include all | "ACCOUNT"
| | | | | Keyword” on page 64 |
| DATASET | DSN | (INC, EXC) | include all | "DATASET"
| | | | | Keyword” on page 65 | | |
| DATE | none | (fromdate, todate) | include all | "DATE Keyword” on page 66 |
| EXPDT | EXP | (INC, EXC) | include all | "EXPDT Keyword” on page 67 |
| FILE | none | (SING | MULT | BOTH) | BOTH | "FILE Keyword” on page 68 |
| JOBNAME | JOB | (INC, EXC) | include all | "JOBNAME"
| | | | | Keyword” on page 69 |
| MAXSIZE | MAX | (nnnn) | infinity | "MAXSIZE and"
| | | | | MINSIZE Keywords” on page 70 |
| MINSIZE | MIN | (nnnn) | zero | "MAXSIZE and"
| | | | | MINSIZE Keywords” on page 70 |
Table 7. Quick Reference for Keywords that Filter Your Input (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Abbreviation</th>
<th>Sub-Keyword Abbreviations</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOUNT</td>
<td>MOU</td>
<td>(SING</td>
<td>MULT</td>
<td>BOTH)</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>PGM</td>
<td>(INC, EXC)</td>
<td>include all</td>
<td>“PROGRAM Keyword” on page 73</td>
</tr>
<tr>
<td>SYSTEMID</td>
<td>SYID</td>
<td>(INC, EXC)</td>
<td>include all</td>
<td>“SYSTEMID Keyword” on page 74</td>
</tr>
<tr>
<td>TIME</td>
<td>none</td>
<td>(fromtime, totime)</td>
<td>include all</td>
<td>“TIME Keyword” on page 74</td>
</tr>
<tr>
<td>UNIT</td>
<td>none</td>
<td>(INC, EXC)</td>
<td>include all</td>
<td>“UNIT Keyword” on page 75</td>
</tr>
<tr>
<td>UNITADDR</td>
<td>UADR</td>
<td>(INC, EXC)</td>
<td>include all</td>
<td>“UNITADDR Keyword” on page 76</td>
</tr>
<tr>
<td>USAGE</td>
<td>USE</td>
<td>(ALL</td>
<td>ACTV BKUP BCOP TEMP SING</td>
<td>HSM</td>
</tr>
<tr>
<td>VOLUME</td>
<td>VOL</td>
<td>(INC, EXC)</td>
<td>include all</td>
<td>“VOLUME Keyword” on page 79</td>
</tr>
</tbody>
</table>

Abbreviations and Defaults for Keywords That Tailor Output Reports

Table 8 summarizes the output report keywords.

Table 8. Quick Reference for Keywords that Tailor Your Output Reports

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Abbreviation</th>
<th>Sub-keyword Abbreviations</th>
<th>Default</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLKSIZE</td>
<td>BLKS</td>
<td>(mmmm)</td>
<td>32 760</td>
<td>“BLKSIZE Keyword” on page 131</td>
</tr>
<tr>
<td>BPROGRAM</td>
<td>BPGM</td>
<td>(INC, EXC)</td>
<td>none</td>
<td>“BPROGRAM Keyword” on page 132</td>
</tr>
<tr>
<td>CHART</td>
<td>none</td>
<td>no sub-keywords</td>
<td>none</td>
<td>“CHART Keyword” on page 133</td>
</tr>
<tr>
<td>CLASSIFY</td>
<td>CLASS</td>
<td>ACTV</td>
<td>BKUP</td>
<td>none</td>
</tr>
<tr>
<td>COMPACTION</td>
<td>COMP</td>
<td>(nn)</td>
<td>50%</td>
<td>“COMPACTION Keyword” on page 135</td>
</tr>
<tr>
<td>CUTOFF</td>
<td>CUT</td>
<td>(mmmmmmmmmm)</td>
<td>infinity</td>
<td>“CUTOFF Keyword” on page 136</td>
</tr>
<tr>
<td>DASDDEV</td>
<td>DASD</td>
<td>(3380S</td>
<td>3380D</td>
<td>3380J</td>
</tr>
<tr>
<td>DSORT</td>
<td>DSR</td>
<td>(DSN</td>
<td>JOB</td>
<td>PGM</td>
</tr>
<tr>
<td>Keyword</td>
<td>Abbreviation</td>
<td>Sub-keyword Abbreviations</td>
<td>Default</td>
<td>Page Number</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>FORCECAP</td>
<td>FCAP</td>
<td>no sub-keywords</td>
<td>FORCECAP</td>
<td>“FORCECAP/NOFORCECAP Keywords” on page 139</td>
</tr>
<tr>
<td>NOFORCECAP</td>
<td>NOFCAP</td>
<td>no sub-keywords</td>
<td>FORCECAP</td>
<td>“FORCECAP/NOFORCECAP Keywords” on page 139</td>
</tr>
<tr>
<td>FSPACE</td>
<td>FSP</td>
<td>((nn))</td>
<td>5%</td>
<td>“FSPACE Keyword” on page 140</td>
</tr>
<tr>
<td>GDG</td>
<td>none</td>
<td>(SHOW</td>
<td>GRP) SHOW</td>
<td></td>
</tr>
<tr>
<td>IDRCFACTOR</td>
<td>IDRC</td>
<td>((nn.n))</td>
<td>3.0</td>
<td>“IDRCFACTOR Keyword” on page 141</td>
</tr>
<tr>
<td>LARGE</td>
<td>LRG</td>
<td>((nnnnnnnnnn))</td>
<td>600MB</td>
<td>“LARGE Keyword” on page 142</td>
</tr>
<tr>
<td>LEVEL0AGE</td>
<td>L0AGE</td>
<td>((nmn))</td>
<td>1 day</td>
<td>“LEVEL0AGE Keyword” on page 143</td>
</tr>
<tr>
<td>LEVEL1AGE</td>
<td>L1AGE</td>
<td>((nnn))</td>
<td>1 day</td>
<td>“LEVEL1AGE Keyword” on page 144</td>
</tr>
<tr>
<td>LINES</td>
<td>none</td>
<td>((nn))</td>
<td>60 lines</td>
<td>“LINES Keyword” on page 145</td>
</tr>
<tr>
<td>L1FSPACE</td>
<td>L1FSP</td>
<td>((nn))</td>
<td>5%</td>
<td>“L1FSPACE Keyword” on page 146</td>
</tr>
<tr>
<td>REPORT</td>
<td>REP</td>
<td>(DSN EST GB IDRC MC TOP USE VOL)</td>
<td>none</td>
<td>“REPORT Keyword” on page 146</td>
</tr>
<tr>
<td>RPROGRAM</td>
<td>RPGM</td>
<td>(INC, EXC)</td>
<td>none</td>
<td>“RPROGRAM Keyword” on page 149</td>
</tr>
<tr>
<td>SPLIT</td>
<td>none</td>
<td>no sub-keywords</td>
<td>none</td>
<td>“SPLIT Keyword” on page 150</td>
</tr>
<tr>
<td>TAPEDEV</td>
<td>TAPE</td>
<td>((3480 \mid 348X \mid 3490E \mid 3590))</td>
<td>3490E</td>
<td>“TAPEDEV Keyword” on page 151</td>
</tr>
<tr>
<td>TAPELEN</td>
<td>TLEN</td>
<td>((1 \mid 2))</td>
<td>1</td>
<td>“TAPELEN Keyword” on page 152</td>
</tr>
<tr>
<td>VSORT</td>
<td>VSR</td>
<td>((MRV \mid VOL \mid SIZ))</td>
<td>VOL</td>
<td>“VSORT Keyword” on page 153</td>
</tr>
</tbody>
</table>
Appendix B. Volume Mount Analyzer Keyword Syntax

The following figures show the syntax for all volume mount analyzer keywords.

Summary of GFTAXTR Keyword Syntax

Table 9 summarizes GFTAXTR keywords and their syntax. All GFTAXTR keywords are optional.

<table>
<thead>
<tr>
<th>GFTAXTR keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCTFLD (nn)</td>
</tr>
<tr>
<td>DATE (fromdate[,todate])</td>
</tr>
<tr>
<td>LINES (nn)</td>
</tr>
<tr>
<td>TIME (fromtime[,totime])</td>
</tr>
</tbody>
</table>

Summary of GFTAVMA Keyword Syntax

Table 10 summarizes GFTAVMA keywords and their syntax. All GFTAVMA keywords are optional.

<table>
<thead>
<tr>
<th>GFTAVMA keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCOUNT (INCLUDE (account number include list), EXCLUDE (account number exclude list))</td>
</tr>
<tr>
<td>BLKSIZE (nnnnn)</td>
</tr>
<tr>
<td>BPROGRAM (INCLUDE (backup program include list), EXCLUDE (backup program exclude list))</td>
</tr>
<tr>
<td>CHART</td>
</tr>
<tr>
<td>CLASSIFY (ACTIVE</td>
</tr>
<tr>
<td>COMPACTION (nn)</td>
</tr>
<tr>
<td>CUTOFF (nnnnnnnnnn)</td>
</tr>
<tr>
<td>DASDDEV (3380S</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DATASET (INCLUDE (data set filter list), EXCLUDE (data set filter list))</td>
</tr>
<tr>
<td>DATE (fromdate[,todate])</td>
</tr>
<tr>
<td>DSORT (DATASET</td>
</tr>
<tr>
<td>EXPDT (INCLUDE (nnnn), EXCLUDE (yyyyy))</td>
</tr>
<tr>
<td>GFTAVMA keywords</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>FILE (SINGLE</td>
</tr>
<tr>
<td>FORCECAP</td>
</tr>
<tr>
<td>FSPACE (nn)</td>
</tr>
<tr>
<td>GDG (SHOW</td>
</tr>
<tr>
<td>IDRCFACTOR (nn.nn)</td>
</tr>
<tr>
<td>JOBNAME (INCLUDE (job name filter list),</td>
</tr>
<tr>
<td>EXCLUDE (job name filter list))</td>
</tr>
<tr>
<td>LARGE (nnnnnnnnn)</td>
</tr>
<tr>
<td>LEVEL0AGE (nnnn)</td>
</tr>
<tr>
<td>LEVEL1AGE (nnnn)</td>
</tr>
<tr>
<td>LINES (nn)</td>
</tr>
<tr>
<td>L1FSPACE (nn)</td>
</tr>
<tr>
<td>MAXSIZE (nnnn) MINSIZE (nnnn)</td>
</tr>
<tr>
<td>MOUNT (SINGLE</td>
</tr>
<tr>
<td>PROGRAM (INCLUDE (program filter list),</td>
</tr>
<tr>
<td>EXCLUDE (program filter list))</td>
</tr>
<tr>
<td>REPORT (DATASET,ESTIMATE,GBMAX,IDRC,MGMTCLAS,</td>
</tr>
<tr>
<td>TOP,USAGE,VOLUME)</td>
</tr>
<tr>
<td>RPROGRAM(INCLUDE(rprogram include list),</td>
</tr>
<tr>
<td>EXCLUDE (rprogram exclude list))</td>
</tr>
<tr>
<td>SPLIT</td>
</tr>
<tr>
<td>SYSTEMID (INCLUDE (system-id1),</td>
</tr>
<tr>
<td>EXCLUDE (system-id2))</td>
</tr>
<tr>
<td>TAPEDEV (3480</td>
</tr>
<tr>
<td>TAPELEN (1</td>
</tr>
<tr>
<td>TIME (fromtime,totime)</td>
</tr>
<tr>
<td>UNIT (INCLUDE (3420,3480,348X,3490E,3590),</td>
</tr>
<tr>
<td>EXCLUDE (3420,3480,348X,3490E,3590))</td>
</tr>
<tr>
<td>UNITADDR (INCLUDE (xxxx),</td>
</tr>
<tr>
<td>EXCLUDE (yyyy))</td>
</tr>
<tr>
<td>USAGE (ALL</td>
</tr>
<tr>
<td>BACKUP,BCOPY,TEMP,SINGLE</td>
</tr>
<tr>
<td>VOLUME (INCLUDE (volume filter list),</td>
</tr>
<tr>
<td>EXCLUDE (volume filter list))</td>
</tr>
<tr>
<td>VSORT (MRV</td>
</tr>
</tbody>
</table>
Appendix C. Example of Chart Output

This topic provides an example of the output you would receive if you specify the CHART keyword. See "CHART Keyword" on page 133. The output used to create the charts is produced after filtering, which allows you to filter against a particular set of data and determine how well that data set is using tape.

You input this sequential data set into your graphics package to create line graphs, bar charts, and pie charts about the data the volume mount analyzer presents in its reports.

The sections of the output are:

CHARTV1
Creates a line graph that shows the cumulative volume and mount percentages by size range (up to 600MB). These numbers come from the Tape Volume Size Range Report part of the GFTASRT2 summary report (See "GFTASRT2—Tape Volume Size Range Report" on page 55). CHARTV1 is produced for every run if you have specified the CHART keyword.

CHARTD1
Creates a line graph that shows the tape data set and mount percentages by size range (up to 600MB). These numbers come from the Tape Data Set Size Range Report in the GFTASRT3 summary report (see "GFTASRT3—Tape Data Set Size Range Report" on page 59). CHARTD1 is produced for every run if you have specified the CHART keyword.

CHARTD2
Creates a bar chart that shows the single-volume versus multivolume number of data sets, gigabytes, mounts, and volumes. These numbers come from the Tape Data Set Statistics part of the GFTASRT3 summary report (see "GFTASRT3—Tape Data Set Statistics Report" on page 57). CHARTD2 is produced for every run if you have specified the CHART keyword.

CHARTD3
Creates a bar chart that shows the single-file versus multifile number of data sets, gigabytes, mounts, and volumes. These numbers come from the Tape Data Set Statistics part of the GFTASRT3 summary report (see "GFTASRT3—Tape Data Set Statistics Report" on page 57). CHARTD3 is produced for every run if you have specified the CHART keyword.

CHARTG1
Creates a line graph that shows the maximum hourly gigabytes versus total daily gigabytes for each day. These numbers come from the Maximum Gigabyte Report (see "The Maximum Gigabyte Report” on page 87). CHARTG1 is produced when you specify CHART and REPORT(GBMAX).

CHARTG2
Creates a bar chart that shows the maximum hourly gigabytes allocated each hour of the day. These numbers come from the Maximum Gigabyte Report (Allocations by Hour). See "The Maximum Gigabyte Report” on page 87. CHARTG2 is produced when you specify CHART and REPORT(GBMAX).
CHARTE1
Creates a bar chart that shows the potential tape mount/volume savings by using 3490E or DFSMS, for example. These numbers come from the Statistical Mount Savings Breakdown and Statistical Volume Savings Breakdown in the Estimate Report (see “The Estimate Report—Statistical Mount Savings Breakdown” on page 107 and “The Estimate Report—Statistical Volume Savings Breakdown” on page 109). CHARTE1 is produced when you specify CHART and REPORT(EST).

CHARTE2
Creates a pie chart that shows the mount percent breakdown by tape mount management category. These numbers come from the Statistical Mount Savings Breakdown part of the Estimate Report (see “The Estimate Report—Statistical Mount Savings Breakdown” on page 107). CHARTE2 is produced when you specify CHART and REPORT(EST).

CHARTE3
Creates a pie chart that shows the volume percent breakdown by tape mount management category. These numbers come from the Statistical Volume Savings Breakdown part of the Estimate Report (see “The Estimate Report—Statistical Volume Savings Breakdown” on page 109). CHARTE3 is produced when you specify CHART and REPORT(EST).

CHARTE4
Creates a pie chart that shows the data set percent breakdown by tape mount management category. These numbers come from the DASD Buffer Cost Breakdown part of the Estimate Report (see “The Estimate Report—DASD Buffer Cost Breakdown” on page 112). CHARTE4 is produced when you specify CHART and REPORT(EST).

CHARTE5
Creates a pie chart that shows the megabyte percent breakdown by tape mount management category. These numbers come from the DASD Buffer Cost Breakdown part of the Estimate Report (see “The Estimate Report—DASD Buffer Cost Breakdown” on page 112). CHARTE5 is produced when you specify CHART and REPORT(EST).

Here is the chart output example:
/ SMF INPUT SAMPLE: 33 DAYS
/ START: 05/27/2003 -- 12:02:01 A.M.
/ END: 06/28/2003 -- 11:59:18 P.M.
/ GFTAXTR RUN:
/ START: 05/21/2004 -- 02:33:02 P.M.
/ END: 05/21/2004 -- 02:57:22 P.M.
/ JES SYSTEM ID(S):
/ SYSTEM ID OPER SYS
/ --------- --------
/ SYSA MVS/ESA
/CHARTV1 LINE TPVLSZRG - Cumulative vols/mnts % by size range (up to 600MB)
/TITLE Tape Vol/Mounts By Size
/YTITLE Cum Percent
/XTITLE Vol Size (MB)
/COLDEF Y1 Y2 X1
/COLNAM Cum_Vols Cum_Mnts
* 2.6 2.3 0
* 33.6 34.6 1
* 42.7 43.5 5
* 49.4 50.4 10
* 58.2 59.0 25
* 62.8 63.9 40
* 64.7 65.8 50
* 70.5 71.6 75
Appendix C. Example of Chart Output
Appendix D. Volume Mount Analyzer Messages

The volume mount analyzer messages appear in GFTAXTR and GFTAVMA output reports.

Table 11. Severity Levels for the Volume Mount Analyzer Messages

<table>
<thead>
<tr>
<th>Suffix Character</th>
<th>Return Code</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| W | 4 | A Warning Message indicates either:
| | | • The program is syntactically or semantically incorrect, but the volume mount analyzer can correct the error by extending the statement or removing an option specified on the statement.
| | | • SMF records were incomplete or contained conflicting information, so the volume mount analyzer dropped them.
| | | These are informational messages. |
| E | 8 | An Error Message indicates that the volume mount analyzer has detected an incorrect statement and attempted to correct the statement, but was unable to. The program will terminate. |
| S | 12 | A Severe Error Message indicates that the volume mount analyzer has detected an incorrect statement, but correcting the statement is impossible. The program will terminate. |
| T | 16 | A Terminating Error Message indicates that the volume mount analyzer has detected an error and cannot continue. The program will terminate. |

GFTA001E ALL INPUT RECORDS HAVE BEEN EXCLUDED DUE TO FILTERING CONTROLS--NO OUTPUT RECORDS WRITTEN--PROCESSING IS TERMINATED

Explanation: Input was over-filtered.

User response: Correct the specified filters, and submit the volume mount analyzer job again.

GFTA002T UNABLE TO BUILD THE VOLUME STATISTICS TABLE--NEEDED xxxxxxxx BYTES

Explanation: GFTAVMA needs additional storage space to complete building the in-storage table.

User response: Increase the REGION size specified on the EXEC JCL statement.

GFTA004T NO OUTPUT RECORDS WERE WRITTEN TO THE 'XTRCIN' FILE--PROCESSING TERMINATED

Explanation: No input records were selected for processing, thus no output was produced to the GFTAXTR file.

User response: Verify SMF input contains required record types for tape. Verify that TIME/DATE filtering did not filter out all records. Check for other severe messages.

GFTA005T NO DATA SET OPEN RECORDS (TYPE 14/15) RECORDS WERE WRITTEN TO THE 'XTRCIN' FILE--PROCESSING TERMINATED

© Copyright IBM Corp. 1987, 2015
GFTA006E NO OUTPUT VOLUME RECORDS
WERE WRITTEN TO THE 'XTRCIN'
DD--PROCESSING TERMINATED

Explanation: GFTAVMA input processing did not find any volume records in the input file. These records are produced when GFTAXTR successfully pairs the different required record types. Otherwise, the unmatched SMF records are discarded.

User response: Check that the SMF input to ensure that all required SMF record types are present and represent the same time period.

GFTA007T 'XTRIN' FILE CONTAINS INVALID
DATA--VERIFY THAT INPUT WAS
BUILT BY THE 'GFTAXTR' PROGRAM

Explanation: The input file contains data that is not in the format that GFTAVMA can use.

User response: Check that XTRIN DD statement points to the correct file.

GFTA008T 'XTRIN' FILE WAS BUILT BY
GFTAXTR VERSION 'xxx'--EXPECTED
VERSION 'yyy'--PROCESSING
TERMINATED

Explanation: The file containing the extracted SMF data is not valid for the current level of GFTAVMA.

User response: Correct the JCL to point to a file built by the current level of GFTAXTR, or run GFTAXTR again.

GFTA009T 'XTRIN' FILE WAS EMPTY--PROGRAM
HIT AN UNEXPECTED END OF
FILE--PROCESSING TERMINATED

Explanation: There is no data in the file GFTAXTR built.

User response: Correct the JCL to point to the correct file containing the extracted data, or run GFTAXTR again.

GFTA010W NO VOLUMES CONTAINING DATA
SETS WERE FOUND IN THE INPUT
SAMPLE-- GFTASRT2 PROCESSING
TERMINATED

Explanation: GFTAVMA was trying to build an input work file for the volume processing phase (GFTASRT2), but no volume records were produced. GFTASRT2 processing terminates because there is nothing to report. Processing continues and goes to GFTASRT3 processing phase.

User response: Verify that all data sets were not filtered out in the input filtering phase (GFTASRT1) of GFTAVMA.

GFTA011T UNEXPECTED END OF FILE
OCCURRED WHILE READING THE
'SORTOUT' FILE--PROCESSING
TERMINATED

Explanation: The file to be sorted is empty. This might be an error on the control cards that caused all records to be filtered out.

User response: Review filters in the control card input. Check for SORT errors (ICExx).

GFTA012W JES SYSTEM ID TABLE OVERFLOW
(MAX OF 256 SYSTEM IDS
ALLOWED)-- ID ="sysid" WAS
DROPPED FROM SYSTEM HEADER
RECORD

Explanation: There is a “built-in” maximum number of system IDs allowed. The input to this run exceeded this number. The entry is dropped from the header record.

User response: This is a warning message. If the maximum needs to be increased, this is a new programming request.

GFTA013T EXPECTED 'n' SYSTEM ID(S)--SYSTEM
ID RECORD(S) MISSING FROM
'XTRIN' FILE--PROCESSING
TERMINATED

Explanation: The list of system IDs to GFTAVMA is kept in a set of header records (records 2 through n), and the number of system IDs is kept in the first record (record type 1). Not all expected system IDs were found.

User response: Verify that the GFTAXTR run completed successfully and that the GFTAXTR output file has not been modified.

GFTA014E NO DATA SET RECORDS IN THE
'XTRCIN' INPUT FILE FROM
'GFTASRT1'--PROCESSING
TERMINATED

Explanation: This message can occur during GFTASRT2 or GFTASRT3 processing. No data records were produced in the previous phase.

User response: Check for SORT error messages (ICExx). Check the input filtering statements to verify that all records were not filtered out.
GFTA015W INVALID RECFM ('yy'X) IN SMF TYPE
'n' RECORD, JOB = 'jobname' DSN =
'dsn'

Explanation: The volume mount analyzer encountered
a type 14 or 15 SMF record with an invalid record
format value and was unable to correct it. The record is
automatically dropped from the sample.

User response: If this happens often, you could have
an SMF problem. Not much can be done about this
other than checking the job that created the data set to
determine if the error is with the data set or is with
SMF, and if necessary, contacting your IBM support
center.

GFTA016T ERROR ENCOUNTERED DURING A
COMMON FILTER SERVICE (CFS)
xxxxxxx CALL, RETURN='yy'
REASON='zz'

Explanation: Under normal circumstances, this error
should never happen. Most likely it is a program error
in the volume mount analyzer or in common filter
services. The run forces ABEND 900.

User response: Contact volume mount analyzer
support. Provide dump (SYSUDUMP).

GFTA017W INVALID BLKSIZE VALUE ('blk'X) IN
SMF TYPE 'n' RECORD, JOB = 'jobname'
DSN = 'dsn'

Explanation: The volume mount analyzer encountered
a type 14 or 15 SMF record with an invalid
BLOCKSIZE field in the record and was unable to
correct it. The record is automatically dropped from the
sample.

User response: If this happens often, you could have
an SMF problem. Not much can be done about this
other than checking the job that created the data set to
determine if the error is with the data set or is with
SMF, and if necessary, contacting your IBM support
center.

GFTA018T EXPECTED 'n' SYSTEM ID(S)--HIT AN
UNEXPECTED END OF FILE ON THE
'XTRIN' FILE--PROCESSING TERMINATED

Explanation: This message can occur during
GFTASRT2 or GFTASRT3 processing. A premature EOF
occurred before all SYSID records were read in.

User response: Check for SORT error messages
(ICExxx). Check the input filtering statements to verify
that all records were not filtered out.

GFTA020T THERE WAS NOT ENOUGH
STORAGE TO PROCESS THE INPUT
CONTROL STATEMENTS--NEEDED 'n'
BYTES

Explanation: Not enough storage available.

User response: Increase REGION size using the
REGXTR parameter for the GFTAXTR PROC or
REGVMA for the GFTAVMA PROC.

GFTA021S STRING ('yyy') IS TOO LONG--MAX
LENGTH = 'n'

Explanation: The indicated string exceeds maximum
allowable length.

User response: Check for invalid syntax/spelling.

GFTA022S TOO MANY NESTING LEVELS WERE
ENCOUNTERED IN THE ABOVE
CONTROL STATEMENTS

Explanation: Error when specifying the input control
statements.

User response: Correct syntax in the input control
statement stream.

GFTA023S UNBALANCED PARENS AFTER THE
'yyy' STRING--CHECK FOR MISSING
LEFT PAREN

Explanation: Syntax error.

User response: Correct syntax in the input control
statement stream.

GFTA024S MISSING COMMA OR RIGHT PAREN
AFTER THE 'yyy' STRING

Explanation: Syntax error.

User response: Correct syntax in the input control
statement stream.

GFTA025E THE 'CLASSIFY' KEYWORD IS NOT
ALLOWED WITH THE 'BPGM'
KEYWORD

Explanation: These keywords are mutually exclusive.

User response: Correct syntax in the input control
statement stream.

GFTA026E 'xxx' IS AN INVALID VALUE FOR THE
'yyy' KEYWORD--EXPECTED A
NUMERIC VALUE OF EITHER 'NN' OR
'NN.N'

Explanation: An invalid value was specified.

User response: Correct the value specified on the
indicated keyword.
GFTA027E 'xxx' IS INVALID LEVEL 1 KEYWORD--PLEASE CHECK FOR PROPER SPELLING

Explanation: Syntax error.
User response: Check for correct syntax/spelling of the indicated keyword, and submit the volume mount analyzer job again.

GFTA028S 'xxx' IS AN INVALID LEVEL 'n' KEYWORD UNDER THE 'yyy' KEYWORD--PLEASE CHECK FOR PROPER SPELLING

Explanation: Syntax error.
User response: Check for correct syntax/spelling of the indicated keyword, and submit the volume mount analyzer job again.

GFTA029E MISSING FILTER LIST ON THE 'sss' SUB-KEYWORD OF THE 'xxx' KEYWORD

Explanation: One or more filters were expected.
User response: Supply the desired filters on the indicated keyword, and submit the volume mount analyzer job again.

GFTA030E THE 'xxx' KEYWORD IS DUPLICATESLY SPECIFIED

Explanation: You cannot use a keyword multiple times.
User response: Remove the unnecessary reference to the keyword, and submit the volume mount analyzer job again.

GFTA031E REQUIRED NUMERIC SUB-PARM IS MISSING ON THE 'xxxxxx' KEYWORD SPECIFICATION

Explanation: GFTA/VMA did not find an expected numeric sub-parameter.
User response: Supply the required sub-parameter, and submit the volume mount analyzer job again.

GFTA032E KEYWORD 'xxx' HAS AN INVALID VALUE 'yyy'--EXPECTED ALL DECIMAL NUMERIC

Explanation: The indicated value is not valid on this keyword.
User response: Correct the value 'yyy' to a decimal number, and submit the volume mount analyzer job again.

GFTA033E KEYWORD 'xxx' HAS AN INVALID VALUE 'yyy'--EXPECTED A DECIMAL VALUE FOLLOWED BY 'KB' OR 'MB'

Explanation: Incorrect syntax for 'yyy'.
User response: Correct the syntax for the indicated keyword and value, and submit the volume mount analyzer job again.

GFTA034S MISSING KEYWORD BETWEEN THE 'xxxxxxx' AND 'yyyyyyyy' DELIMITERS AFTER KEYWORD 'zzzzzzz'

Explanation: A keyword had delimiters without an expected sub-keyword.
User response: Correct the syntax in the specified keyword, and submit the volume mount analyzer job again.

GFTA035S UNBALANCED PARENS IN THE CONTROL STATEMENTS--CHECK FOR MISSING RIGHT PAREN

Explanation: Syntax error.
User response: Correct syntax in input control statements, and submit the volume mount analyzer job again.

GFTA039E THE 'IDRCFACTOR' VALUE 'nn' IS INVALID--IT MUST BE A DECIMAL VALUE BETWEEN 'xx' AND 'yy'

Explanation: Invalid value specified.
User response: Correct the IDRCFACTOR by supplying a decimal value.

GFTA040E THE 'xxxxxx' PERCENT ('yy') IS INVALID--IT MUST BE AN INTEGER BETWEEN 'n' AND 'm'

Explanation: The xxxxxx(yy) PERCENT value is an unsupported value.
User response: Correct the numerical value, and submit the volume mount analyzer job again.

GFTA041E BOTH 'FORCECAP' AND 'NOFORCECAP' SPECIFIED--ONLY ONE OF THEM IS ALLOWED

Explanation: Specified keywords are mutually exclusive.
User response: Remove either the FORCECAP or NOFORCECAP keyword, and submit the volume mount analyzer job again.
GFTA042E SYNTAX ERROR ON THE 'xxx'
KEYWORD INCLUDE|EXCLUDE
LIST--FILTER KEY = 'zzz'

Explanation: The filter specified in the message was not acceptable to common filter services and was rejected.
User response: Correct the syntax of the specified filter, and submit the volume mount analyzer job again.

GFTA043E NOT ENOUGH STORAGE TO READ IN THE INPUT CONTROL STREAM (EXCEEDED 'n' BYTES)--PROCESSING TERMINATED

Explanation: REGION size is too small.
User response: Specify a larger REGION size on the EXEC JCL statement, and submit the volume mount analyzer job again.

GFTA044T NOT ENOUGH STORAGE FOR KEYWORD ARRAY (EXCEEDED 'n' BYTES)--LAST KEY='xxx'

Explanation: REGION size is too small.
User response: Specify a larger REGION size on the JOB or EXEC JCL statement, and submit the volume mount analyzer job again.

GFTA045E ONLY ONE SUB-KEYWORD IS ALLOWED WITH THE 'xxx' KEYWORD--CHOOSE ONE AND RE-RUN

Explanation: Multiple sub-keywords have been specified.
User response: Correct the keyword syntax, and submit the volume mount analyzer job again.

GFTA046E THE 'GDG(GROUP)' OPTION IS NOT ALLOWED WITH THE 'REPORT(IDRC or EST)' KEYWORD SPECIFICATION

Explanation: Both the IDRC and Estimate Reports process individual data sets. GDG(GROUP) implies a summary grouping of generations, which conflicts with IDRC processing that is used in both reports; therefore the GDG(GROUP) option is not allowed when the IDRC and Estimate Reports are specified.
User response: Remove the GDG(GROUP) keyword when requesting either the IDRC or Estimate Reports, and submit the volume mount analyzer job again.

GFTA047E THE 'nnn' VALUE 'v' IS INVALID--IT MUST BE AN INTEGER BETWEEN 'x' AND 'y'

Explanation: Syntax error—a keyword value is outside the allowable value range.
User response: Change 'v' to a valid integer value, and submit the volume mount analyzer job again.

GFTA048E BOTH 'CLASSIFY(ACTIVE)' AND 'CLASSIFY(BACKUP)' SPECIFIED--ONLY ONE OPTION ALLOWED

Explanation: Active and backup are mutually exclusive values.
User response: Specify the CLASSIFY keyword with only one value, active or backup, and submit the volume mount analyzer job again.

GFTA049E THE "FILT#" VALUE (nnnnnnnn) IS NOT VALID, IT MUST BE A VALUE BETWEEN 100 and 21474836

Explanation: FILT# refers to an external PARM on the EXEC statement. PARM='FILT#(xxxx)' specifies the maximum number of filter keys ("ABC %X.*ABC:*") expected. The default is 10,000. If more than 10,000 filters are required, then specify the requirement on this PARM.
User response: Count the number of filters in the input keywords. Specify that count (rounded up) on the FILT# parameter of the EXEC JCL statement.

GFTA050E THE 'FILT#' VALUE ABOVE 'v' IS NOT A DECIMAL NUMBER--RUN TERMINATED

Explanation: FILT# refers to an external PARM on the EXEC statement. PARM='FILT#(xxxx)' specifies the maximum number of filter keys ("ABC %X.*ABC:*") expected. The default is 10,000. If more than 10,000 filters are required, then specify the requirement on this PARM.
User response: The FILT#(vvvv) must be a numerical value. Specify the value, and submit the volume mount analyzer job again.

GFTA051E THE 'FILT#' VALUE ABOVE IS 'n' DIGITS--MAXIMUM VALUE LENGTH IS 'x' DIGITS

Explanation: FILT# refers to an external PARM on the EXEC statement. PARM='FILT#(xxxx)' specifies the maximum number of filter keys ("ABC %X.*ABC:*") expected. The default is 10,000. If more than 10,000 filters are required, then specify the requirement on this PARM.
The FILT#(vvvv) must be a numerical value. Specify the value, and submit the volume mount analyzer job again.

Explanation: FILT# refers to an external PARM on the EXEC statement. PARM='FILT#(xxxx)' specifies the maximum number of filter keys ("ABC %XY.*ABC*.*", etc.) expected. The default is 10,000. If more than 10,000 filters are required, then specify the requirement on this PARM.

User response: Correct the error in the PARM field on the EXEC DD statement. FILT# is the only acceptable value.

Too many time or date values were specified on the keyword.

Explanation: Too many time or date values were specified on the keyword.

User response: Correct the indicated keyword, and submit the volume mount analyzer job again.

The volume mount analyzer expects two time values that are a starting and ending time format.

User response: The start time must be less than the end time. Specify the TIME keyword, and submit the volume mount analyzer job again.

The value specified on the stated keyword is greater than the maximum allowed size.

User response: Select a new value for the keyword, and submit the volume mount analyzer job again.

Syntax error. The volume mount analyzer expects to find a sub-keyword on the keyword identified.

User response: Correct the indicated keyword, and submit the volume mount analyzer job again.

Syntax error. The volume mount analyzer expects to find a value on the indicated keyword.

User response: Correct the indicated keyword, and submit the volume mount analyzer job again.
GFTA061E ONLY ONE VALUE IS ALLOWED WITH THE 'xxxxx' KEYWORD--SPECIFICATION IS INVALID

Explanation: Syntax error. GFTAVMA only expects one value on the identified keyword. More than one value was found.

User response: Correct the indicated keyword, and submit the volume mount analyzer job again.

GFTA062E THE VALUE SPECIFICATION 'vv' on the 'xxxxx' KEYWORD IS TOO LONG--MAX LENGTH = 'n'

Explanation: Syntax error. The value specified on the identified keyword exceeds the length allowed.

User response: Correct the indicated value, and submit the volume mount analyzer job again.

GFTA063E THE VALUE SPECIFICATION 'vv' on the 'xxxxx' KEYWORD IS INVALID -- SPECIFICATION NOT ALLOWED

Explanation: Syntax error.

User response: Correct the indicated value, and submit the volume mount analyzer job again.

GFTA064E ONLY ONE NUMERIC VALUE ALLOWED ON THE 'xxxxx' KEYWORD SPECIFICATION--REMOVE THE VALUES NOT WANTED IN THE LIST

Explanation: Syntax error.

User response: Correct the indicated keyword, and submit the volume mount analyzer job again.

GFTA065E BOTH THE INCLUDE and EXCLUDE KEYWORDS WERE MISSING ON THE 'xxxxx' SPECIFICATION--THEY ARE REQUIRED

Explanation: Syntax error.

User response: Specify either an INCLUDE or EXCLUDE parameter, and submit the volume mount analyzer job again.

GFTA067T SORT PROCESSING ERROR--SORT WAS UNSUCCESSFUL DUE TO SOME SEVERE ERROR CONDITION--SEE SORT MESSAGES

Explanation: The volume mount analyzer job terminated because SORT has detected an error condition.

User response: Check the accompanying SORT messages (ICExxx) for more details about the error condition.

GFTA072T SORT PROCESSING ERROR--SYSOUT' FILE MISSING FROM THE JCL STREAM--PROCESSING TERMINATED

Explanation: The volume mount analyzer job terminated because the called SORT program could not find a required SYSOUT file definition.

User response: Ensure you used the standard JCL that was packaged with GFTAVMA.

GFTA073W INTERNAL PROGRAM WARNING--HSM DATA SET NOT AUTO DETECTED-- DSN='dsn'

Explanation: The data set indicated was generated by DFSMSshm, but does not match one of the data set names on the volume mount analyzer's list of known DFSMSshm data sets.

User response: None, this is an informational message.

GFTA074T POSSIBLE PROGRAM BUG IN 'GFTAXTR' PROGRAM--VOLUME USAGE INDEX OF ZERO WAS IN INPUT RECORD--USER ABEND FORCED

Explanation: Every usage of a volume (such as OPEN or DEMOUNT) should have a unique, non-zero index value so that pairs of OPENS and demounts can be operated on. These indices are assigned by 'GFTAXTR'. A zero value was found and ABEND 902 was issued.

User response: Contact volume mount analyzer support.

GFTA075T AN IMPOSSIBLE ERROR CONDITION OCCURRED ON THE TRACK CALCULATION FOR THE DATA SET LISTED ABOVE--USER ABEND FORCED

Explanation: The volume mount analyzer was
GFTA076W INVALID CHARACTER FOUND IN POSITION 'n' OF THE ACCOUNTING FIELD--ACCOUNT DATA DROPPED. LENGTH='n' BYTES--ACCOUNT FIELD='yyyyyy'

Explanation: The indicated field of the accounting record contains invalid data. The record has been discarded.

User response: None, this is an informational message.

GFTA077W SMF INPUT ERROR--THE FOLLOWING DEMOUNT (TYPE 21) RECORD WAS MISSING THE VOLUME INFORMATION--RECORD WAS DROPPED

Explanation: The message is followed by specific information about the dropped record.

User response: None, this is an informational message.

GFTA078W INVALID SMF RECORD MOVE TIME/DATE STAMP IN A TYPE 'n' RECORD--INVALID FIELD='xxxxxx', LAST VALID SMF MOVE DATE/TIME WAS 'MM/DD/YYYY--hh:mm:ss'--RECORD DROPPED

Explanation: GFTAXTR detected an invalid time or date value in the SMF record type described in the message. The time and date values are in the standard header portion of the SMF record. GFTAXTR expects all the SMF records to have valid time and date values in these fields. If all the SMF records in the input sample are thrown away, then the input SMF records are probably not in the standard SMF record format. Otherwise, an occasional invalid time or date value could occur in thousands of SMF accounting records.

User response: If all the SMF records in your input sample are thrown away, check the SMF input data to see if it conforms to the standard SMF formats. If the error is one in thousands, then this message is informational only.

GFTA079W DSN SYNTAX ERROR IN SMF TYPE 'n' RECORD--INVALID CHARACTERS FOUND AT THE END OF THE DATA SET NAME--CHARACTERS IGNORED-- DSN='dsn'

Explanation: The data set name indicated in the message contains extra characters that do not conform with acceptable data set name standards.

User response: None, this is an informational message.

GFTA080W DSN SYNTAX ERROR IN SMF TYPE 'n' RECORD--RECORD DROPPED, JOB='jobname', DSN='dsn'

Explanation: An invalid data set name was encountered.

This message is followed by one of four possible sub-messages:

- QUALIFIER NUMBER 'n' IN THE DATA SET NAME ABOVE IS MISSING-- DATA SET QUALIFIERS MUST BE 1 TO 8 BYTES.
- QUALIFIER NUMBER 'n' IN THE DATA SET NAME ABOVE IS TOO LONG-- THE MAXIMUM LENGTH ALLOWED IS 8 BYTES.
- QUALIFIER NUMBER 'n' IN THE DATA SET NAME ABOVE BEGINS WITH A NON-ALPHABETIC CHARACTER--THIS IS INVALID.
- AN INVALID CHARACTER WAS ENCOUNTERED IN POSITION 'n' IN THE DATA SET NAME ABOVE--IT MUST BE ALPHAMERIC.

User response: None, this is an informational message.

GFTA081W UNKNOWN TAPE UNIT UCBTYPE='uu'X IN SMF TYPE 'n' RECORD, JOB = 'jobname' VOL = 'volser'--RECORD DROPPED

Explanation: The UCB field in the SMF record indicates a unit type that is unrecognizable to GFTAVMA.

User response: None, this is an informational message.

GFTA082T GETMAIN FAILURE FOR FILTER KEY LISTS--NEEDED 'n' BYTES--PROCESSING TERMINATED

Explanation: REGION size is too small.

User response: Specify a larger REGION size value on the JOB or EXEC JCL statement, and submit the volume mount analyzer job again.

GFTA083T AN I/O ERROR OCCURRED WHILE ATTEMPTING TO READ THE 'VMAFLTRS' DATA SET. (SEE FOLLOWING ERROR MESSAGE)

Explanation: All INCLUDE or EXCLUDE filter keys are parsed to an internal format and then written to the data set referenced by the VMAFLTRS DD statement. An I/O error occurred on the file when the volume
mount analyzer was re-reading the VMAFLTRS data set. Processing is terminated. There is an accompanying GFTA2xx message with additional information.

User response: This usually a temporary data set. Look in the JCL to determine which volume was selected. Check explanation for the GFTA2xx message. Contact the system programmer to determine if these are hardware I/O errors. Contact local IBM support if the problem is with IBM hardware or software.

GFTA084T

A GETMAIN FAILURE FOR FILTER WORK AREA--NEEDED ’n’ BYTES--PROCESSING TERMINATED

Explanation: REGION size is too small.

User response: Specify a larger REGION size value on the JOB or EXEC JCL statement, and submit the volume mount analyzer job again.

GFTA085S

INVALID SYNTAX FOR FILTER KEY: ’ffff’

Explanation: Common filter services found a filter key that was not acceptable.

User response: Correct the syntax/spelling for the specified filter, and submit the volume mount analyzer job again.

GFTA086W

WARNING—ERRORS DETECTED DURING SIZE CALCULATION ON THE FOLLOWING DATA SET(S):

Explanation: The volume mount analyzer was trying to calculate the size of the data set in tracks (based on the DASDDEV keyword and the data set attributes, such as LRECL, BLKSIZE, and RECFM). If the volume mount analyzer is unable to perform the calculation because of invalid or missing information, it lists the data set name and all pertinent information in the following format:

```
<table>
<thead>
<tr>
<th>RC</th>
<th>RECFM</th>
<th>LRECL</th>
<th>BLKSIZE</th>
<th>DEVICE #</th>
<th>BLOCKS</th>
<th>DATA SET NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxxxxx xxxxxxxxxx</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

The LRECL field will contain =X if the LRECL is 32768, indicating LRECL=X.

The following values are possible for RC:

- **04** Invalid record format (RECFM) value.
- **08** Impossible condition (should never happen). The volume mount analyzer forces ABEND 903.
- **12** Impossible condition (should never happen). The volume mount analyzer forces ABEND 904.

- **16** Specified LRECL value was zero. Unable to calculate size without LRECL.
- **20** Specified LRECL value is higher than the maximum record size for the target device.
- **24** BLKSIZE value is zero. Unable to calculate size without BLKSIZE.
- **28** BLKSIZE value is greater than the maximum record size for target device.

For RC=8 or RC=12, message GFTA075 is also generated, and the program abends. For all other RC values, the size of the data set is calculated as zero, and the job continues.

User response: Either ignore, or filter these records out. If necessary, contact local IBM support to determine why the SMF data is in error.

GFTA087E

THE ’TIME’ VALUE SPECIFIED ’T1’ IS TOO LONG--EXPECTED ’HH:MM:SS’

Explanation: Refer to the TIME keyword description.

User response: Correct the format of the time specified, and submit the volume mount analyzer job again.

GFTA088E

THE ’n’ SPECIFICATION IN THE ’TIME’ VALUE (’xx’) IS INVALID

Explanation: Either the hour, minute or second value supplied is invalid.

User response: Supply a TIME value that matches the acceptable format, and submit the volume mount analyzer job again.

GFTA089T

A GETMAIN FAILURE FOR PARSED KEY AREA--NEEDED ’n’ BYTES--PROCESSING TERMINATED

Explanation: REGION size is too small.

User response: Supply a larger REGION size on the JOB or EXEC JCL statement, and submit the volume mount analyzer job again.

GFTA090E

INVALID VALUE ’vv’ ON THE ’TIME’ KEYWORD--EXPECTED ’HH:MM:SS’ ’HH:MM’ OR ’HH’ FORMAT

Explanation: Refer to the TIME keyword description.

User response: Supply a TIME value that matches the acceptable format, and submit the volume mount analyzer job again.
GFTA091E INVALID VALUE 'yy' ON THE 'DATE' KEYWORD--EXPECTED 'MM/DD/YY', 'MM/DD/YYYY', 'YYDDD', OR 'YYYYDDD' FORMAT

Explanation: Refer to the DATE keyword description.

User response: Supply a DATE value that matches the acceptable format, and submit the volume mount analyzer job again.

GFTA092E INVALID JULIAN 'DAY' SPECIFICATION 'ddd' IN THE VALUE 'xxx' ON THE 'DATE' KEYWORD

Explanation: The value specified 'ddd' is not a valid Julian day.

User response: Correct the specified value.

GFTA093E INVALID JULIAN 'YEAR' SPECIFICATION 'yy' IN THE VALUE 'xxx' ON THE 'DATE' KEYWORD

Explanation: The value specified 'yy' is not a valid Julian year.

User response: Correct the specified value.

GFTA094E INPUT 'DATE' STRING 'd1' IS TOO LONG--MAXIMUM LENGTH ALLOWED IS 'n'

Explanation: Syntax error.

User response: Correct the format of the date specified.

GFTA095E INVALID 'n' SPECIFICATION IN THE VALUE 'xx' ON THE 'DATE' KEYWORD

Explanation: Either the year, month or day has been specified incorrectly.

User response: Correct the indicated value.

GFTA096W INVALID FORMAT FOR FILTER DATA: 'fffp'--RECORD EXCLUDED FROM INPUT

Explanation: The input SMF fields (such as DSN and EXPDT) might contain unsupported data when passed to common filter services. If so, this warning message is printed and the data is excluded from the run.

User response: Report the SMF data problem to the local IBM support center.

GFTA097W WRONG LEVEL OF COMMON FILTER SERVICES (CFS) ENCOUNTERED-- WILL USE INTERNAL FILTERING ROUTINE (NO PERCENT SIGN SUPPORT)

Explanation: Probable volume mount analyzer program error. The volume mount analyzer requires that DFP 2.2 or greater be installed. This should have the proper level of CFS. If not, then the volume mount analyzer prints this message and automatically switches to its internal filtering routines to allow the run to continue.

User response: Determine the DFP level, and contact volume mount analyzer support.

GFTA098T START TIME/DATE OF TAPE ALLOCATION > END TIME/DATE--POSSIBLE SMF INPUT ERROR

Explanation: An invalid condition occurred in a demount record (type 21) in the input file from GFTAXTR--possible program error. The last record written to XTRCIN contains the invalid record. GFTAVMA prints this message and the GFTA099T message and abends with ABEND 901.

User response: Contact volume mount analyzer support, and provide dump (SYSUDUMP).

GFTA099T "IMPOSSIBLE" PROGRAM CONDITION OCCURRED--SEE LAST RECORD IN 'XTRCIN' FILE

Explanation: An invalid condition occurred in a demount record (type 21) in the input file from GFTAXTR--possible program error. The last record written to XTRCIN contains the invalid record. GFTAXTR also prints the GFTA098T message, and abends with ABEND 901.

User response: Contact volume mount analyzer support, and provide dump (SYSUDUMP).

GFTA100T "IMPOSSIBLE" PROGRAM CONDITION OCCURRED--ZERO VOLUME USAGE INDEX RECORDS

Explanation: An invalid condition occurred while processing the tape volume usage index table during the execution of the VMA extract program GFTAXTF. The extract program terminates with a return code of 16.

User response: When using the VMA SMF extract program GFTAXTF, you must use the GFTAXTD program's XTRIN output data set(s) as SMFIN input to the GFTAXTF program. Raw SMF records must first be processed by the GFTAXTD extract program before being used as SMFIN input to the GFTAXTF program.
GFTA101W • GFTA109S

Appendix D. Volume Mount Analyzer Messages 177
GFTA110W • GFTA204T

Explanation: An internal program error has occurred. The particular field should never have a value of zero. This message is followed by ABEND 906.

User response: Contact volume mount analyzer support.

GFTA110W UNABLE TO OPEN THE 'VMACHART' FILE TO BUILD THE SEQUENTIAL DATA SET FOR GRAPHIC CHARTS--NO FILE BUILT BUT PROCESSING CONTINUES

Explanation: The CHART keyword was specified in the input stream, but GFTAVMA was unsuccessful when it attempted to open the VMACHART DCB.

User response: Check the GFTAVMAP JCL for an incorrectly specified VMACHART file. Correct the error, and submit the volume mount analyzer job again.

GFTA202E UNABLE TO CALCULATE THE BLKSIZE FOR THE 'dddddd' DD SINCE THE DATA SET WAS ALREADY OPEN

Explanation: The volume mount analyzer program, GFTAXTR or GFTAVMA attempted to open the data set identified by the 'dddddd' name in the message. The data set identified by the 'dddddd' JCL DD statement was currently open. The volume mount analyzer processing terminates.

User response: This should never occur. Check the GFTAXTRP or GFTAVMAP JCL DD statement identified by the 'dddddd' name. The data set named by this DD statement could also be named in another DD statement in the JCL job. Correct the JCL data set naming problem, and submit the volume mount analyzer job again.

GFTA203T INPUT SYNAD I/O ERROR error text ON UADR=unit address, DD=ddname,
DSN=data set name

Explanation: The volume mount analyzer program, GFTAXTR or GFTAVMA encountered an I/O error during QSAM GETL processing. The associated SYNAD routine returned with the error information that is described in the error text portion of the message. Additional information such as data set name, JCL DDNAME, and unit address are also contained in the message.

User response: Probable hardware media error. Move the data set to a different volume, and submit the volume mount analyzer job again.

GFTA204T OUTPUT SYNAD I/O ERROR error text ON UADR=unit address, DD=ddname,
DSN=data set name

Explanation: The volume mount analyzer program, GFTAXTR or GFTAVMA encountered an I/O error during QSAM PUTM processing. The associated...
SYNAD routine returned with the error information that is described in the “error text” portion of the message. Additional information, such as data set name, JCL ddname, and unit address are contained in the message.

User response: Probable hardware media error. Move the data set to a different volume, and submit the volume mount analyzer job again.

GFTA205E • UNABLE TO OPEN FILE FOR INPUT PROCESSING— DDNAME=dddddd

Explanation: The volume mount analyzer, GFTAXTR or GFTAVMA, attempted to open a data set for input processing, but was not successful. The data set is identified by the _dddddd_ name from the JCL DD statement.

User response: Check the JCL statement identified in the message, and correct the data set problem.

GFTA206E • UNABLE TO OPEN FILE FOR OUTPUT PROCESSING— DDNAME=dddddd

Explanation: The volume mount analyzer program, GFTAXTR or GFTAVMA, attempted to open a data set for output processing, but was not successful. The data set is identified by the _dddddd_ name from the JCL DD statement.

User response: Check the JCL statement identified in the message, and correct the data set problem.

ABEND 900

Explanation: Impossible return code from common filter services.

User response: See accompanying GFTAxx error message. Contact volume mount analyzer support.

ABEND 901

Explanation: Tape start time is greater than tape end time.

User response: See accompanying GFTAxx error message. Contact volume mount analyzer support.

ABEND 902

Explanation: Vol/Usage index should never equal 0.

User response: See accompanying GFTAxx error message. Contact volume mount analyzer support.

ABEND 903

Explanation: The target device code (shown as ‘xx’X under ‘DEVICE’ in previous message) is unsupported. It should always be ’20’X for DASD devices.

User response: See accompanying GFTAxx error message. Contact volume mount analyzer support.
Appendix E. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the "Contact us" web page for z/OS (http://www.ibm.com/systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision use software products successfully. The accessibility features in z/OS can help users do the following tasks:

- Run assistive technology such as screen readers and screen magnifier software.
- Operate specific or equivalent features by using the keyboard.
- Customize display attributes such as color, contrast, and font size.

Consult assistive technologies

Assistive technology products such as screen readers function with the user interfaces found in z/OS. Consult the product information for the specific assistive technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface

You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes the default settings for the PF keys.

- z/OS TSO/E Primer
- z/OS TSO/E User’s Guide
- z/OS V2R2 ISPF User’s Guide Vol I

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users who access IBM® Knowledge Center with a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more syntax elements are always present together (or always absent together), they can appear on the same line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers correctly, make sure that the screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number (for example, all the syntax elements that have the number 3.1) are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the syntax elements. Occasionally, these words and symbols might occur at the beginning of the element itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the syntax element repeats. For example, syntax element FILE with dotted decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the syntax just before the items they separate. These characters can appear on the same line as each item, or on a separate line with the same dotted decimal number as the relevant items. The line can also show another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax elements, the elements must be separated by a comma. If no separator is given, assume that you use a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted decimal number followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them. The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number followed by the ! symbol and a syntax element indicate that the syntax element is the default option for all syntax elements that share the same dotted decimal number. Only one of the syntax elements that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the default option KEEP is applied. A default option also applies to the next higher dotted decimal number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A dotted decimal number followed by the * symbol indicates that this syntax element can be used zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data area, you know that you can include one data area, more than one data area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both together, or nothing.

Notes:
1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted decimal number, you can repeat that same item more than once.
2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal number, you can use more than one item from the list, but you cannot use the items more than once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.
3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal number followed by the + symbol indicates that the syntax element must be included one or more times. That is, it must be included at least once and can be repeated. For example, if you hear the line 6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the + symbol can repeat a particular item if it is the only item with that dotted decimal number. The + symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.
Notices

This information was developed for products and services offered in the U.S.A. or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakoza-cho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS™, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted.
for service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently change when service for particular servers or devices is withdrawn. Likewise, the levels of other software products supported on a particular release of z/OS are subject to the service support lifecycle of those products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and product documentation) can include references to hardware and software that is no longer supported.

- For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)

- For information about currently-supported IBM hardware, contact your IBM representative.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml.
This glossary defines technical terms and abbreviations used in DFSMS documentation. If you do not find the term you are looking for, refer to the index of the appropriate DFSMS manual or view the Glossary of Computing Terms located at:

http://www.ibm.com/ibm/terminology/

This glossary includes terms and definitions from:

- The American National Standard Dictionary for Information Systems, ANSI X3.172-1990, copyright 1990 by the American National Standards Institute (ANSI). Copies may be purchased from the American National Standards Institute, 11 West 42nd Street, New York, New York 10036. Definitions are identified by the symbol (A) after the definition.

- The Information Technology Vocabulary developed by Subcommittee 1, Joint Technical Committee 1, of the International Organization for Standardization and the International Electrotechnical Commission (ISO/IEC JTC1/SC1). Definitions of published part of this vocabulary are identified by the symbol (I) after the definition; definitions taken from draft international standards, committee drafts, and working papers being developed by ISO/IEC JTC1/SC1 are identified by the symbol (T) after the definition, indicating that final agreement has not yet been reached among the participating National Bodies of SC1.

The following cross-reference is used in this glossary:

See: This refers the reader to (a) a related term, (b) a term that is the expanded form of an abbreviation or acronym, or (c) a synonym or more preferred term.

ACS See automatic class selection

active data
For tape mount management, application data that is frequently referenced, usually small in size, and managed better in the DFSMS storage hierarchy than on tape. Contrast with inactive data.
Cartridge System Tape
The base tape cartridge media used with 3480 or 3490 Magnetic Tape Subsystems. Contrast with Enhanced Capacity Cartridge System Tape.

class transition
An event that brings about change to an object’s service-level criteria, causing OAM to invoke ACS routines to assign a new storage class or management class to the object.

construct
One of the following: data class, storage class, management class, storage group, aggregate group, base configuration.

DASD
see direct access storage device

DASD volume
A DASD space identified by a common label and accessed by a set of related addresses. See also volume, primary storage, migration level 1, migration level 2.

data class
A collection of allocation and space attributes, defined by the storage administrator, that are used to create a data set.

Data Facility Sort
An IBM licensed program that is a high-speed data processing utility. DFSORT provides an efficient and flexible way to handle sorting, merging, and copying operations, as well as providing versatile data manipulation at the record, field, and bit level.

data set
In DFSMS, the major unit of data storage and retrieval, consisting of a collection of data in one of several prescribed arrangements and described by control information to which the system has access. In z/OS non-UNIX environments, the terms data set and file are generally equivalent and sometimes are used interchangeably. See also file. In z/OS UNIX environments, the terms data set and file have quite distinct meanings.

default unit
Part of the SMS base configuration, it identifies an esoteric (such as SYSDA) or generic (such as 3390) device name. If a user omits the UNIT parameter on the JCL or the dynamic allocation equivalent, SMS applies the default unit if the data set has a disposition of MOD or NEW and is not system-managed.

Device Support Facilities (ICKDSF)
A program used for initialization of DASD volumes and track recovery.

DFSMSdfp
A DFSMS functional component or base element of z/OS, that provides functions for storage management, data management, program management, device management, and distributed data access.

DFSMSdds
A DFSMS functional component or base element of z/OS, used to copy, move, dump, and restore data sets and volumes.

DFSMSshm
A DFSMS functional component or base element of z/OS, used for backing up and recovering data, and managing space on volumes in the storage hierarchy.

DFSMSshm-managed volume
A primary storage volume, which is defined to DFSMSshm but which does not belong to a storage group. A volume in a storage group, which is using DFSMSshm automatic dump, migration, or backup services. Contrast with system-managed volume, DFSMSrmm-managed volume.

DFSMSrmm
A DFSMS functional component or base element of z/OS, that manages removable media.

DFSMSrmm-managed volume
A tape volume that is defined to DFSMSrmm. Contrast with system-managed volume, DFSMSshm-managed volume.

DFSORT
see Data Facility Sort

direct access storage device (DASD)
A mass storage medium on which a computer stores data.

dummy storage group
A type of storage group that contains the serial numbers of volumes no longer connected to a system. Dummy storage
groups allow existing JCL to function without having to be changed. See also storage group.

Enhanced Capacity Cartridge System Tape
Cartridge system tape with increased capacity that can only be used with 3490E Magnetic Tape Subsystems. Contrast with Cartridge System Tape.

erase-on-scratch
The physical erasure of data on a DASD data set when the data set is deleted (scratched).

expiration
The process by which data sets or objects are identified for deletion because their expiration date or retention period has passed. On DASD, data sets and objects are deleted. On tape, when all data sets have reached their expiration date, the tape volume is available for reuse.

In DFSMSrmm, all volumes have an expiration date or retention period set for them either by vital record specification policy, by user-specified JCL when writing a data set to the volume, or by an installation default. When a volume reaches its expiration date or retention period, it becomes eligible for release.

file
A collection of information treated as a unit. In z/OS non-UNIX environments, the terms data set and file are generally equivalent and are sometimes used interchangeably. See also data set.

filtering
The process of selecting data sets based on specified criteria. These criteria consist of fully or partially-qualified data set names or of certain data set characteristics.

GB
See gigabyte

GDG
See generation data group

GDS
Generation data set

generation data group (GDG)
A collection of historically related non-VSAM data sets that are arranged in chronological order; each data set is called a generation data set.

gigabyte (GB)
One billion \(10^9\) bytes.

group
With respect to partitioned data sets, a member and the member's aliases that exist in a PDS or PDSE, or in an unloaded PDSE.

A collection of users who can share access authorities for protected resources.

ICKDSF
see Device Support Facilities

ICL
Integrated cartridge loader

IDCAMS
Access method services

IDRC
see improved data recording capability

improved data recording capability (IDRC)
A recording mode that can increase the effective cartridge data capacity and the effective data rate when enabled and used. IDRC is always enabled on the 3490E Magnetic Tape Subsystems.

inactive data
A copy of active data, such as vital records or a backup copy of a data set. Inactive data is never changed, but can be deleted or superseded by another copy.

In tape mount management, data that is written once and never used again. The majority of this data is point-in-time backups.

Objects infrequently accessed by users and eligible to be moved to the optical library or shelf.

Contrast with active data.

interval migration
In DFSMSshm, automatic migration that occurs when a threshold level of occupancy is reached or exceeded on a DFSMSshm-managed volume, during a specified time interval. Data sets are moved from the volume, largest eligible data set first, until the low threshold of occupancy is reached.

JCL
see job control language

job control language (JCL)
A control language used to identify a job to an operating system and to describe the job’s requirements.

KSDS
see key-sequenced data set
key-sequenced data set (KSDS)
A VSAM data set whose records are loaded in key sequence and controlled by an index.

management class
A collection of management attributes, defined by the storage administrator, used to control the release of allocated but unused space; to control the retention, migration, and backup of data sets; to control the retention and backup of aggregate groups, and to control the retention, backup, and class transition of objects.

MB see megabyte

megabyte (MB)
1) For processor storage, real and virtual storage, and channel volume, \(2^{20}\) or 1 048 576 bytes. 2) For disk storage capacity and communications volume, 1 000 000 bytes.

migration
The process of moving unused data to lower cost storage in order to make space for high-availability data. If you wish to use the data set, it must be recalled. See also migration level 1, migration level 2.

migration control data set (MCDS)
In DFSMS, a VSAM key-sequenced data set that contains statistics records, control records, user records, records for data sets that have migrated, and records for volumes under migration control of DFSMS.

migration level 1
DFSMShsm-owned DASD volumes that contain data sets migrated from primary storage volumes. The data can be compressed. See also storage hierarchy. Contrast with primary storage, migration level 2.

migration level 2
DFSMShsm-owned tape or DASD volumes that contain data sets migrated from primary storage volumes or from migration level 1 volumes. The data can be compressed. See also storage hierarchy. Contrast with primary storage, migration level 1.

modeling
The process of projecting future storage requirements for DASD and tape if data is managed by DFSMS.

Multiple Virtual Storage (MVS)
The short name for the MVS element of the z/OS operating system.

MVS See Multiple Virtual Storage

OAM See object access method

object access method (OAM)
An access method that provides storage, retrieval, and storage hierarchy management for objects and provides storage and retrieval management for tape volumes contained in system-managed libraries.

object backup storage group
A type of storage group that contains optical or tape volumes used for backup copies of objects. See also storage group.

object storage group
A type of storage group that contains objects on DASD, tape, or optical volumes. See also storage group.

optical volume
Storage space on an optical disk, identified by a volume label. See also volume.

partitioned data set (PDS)
A data set on direct access storage that is divided into partitions, called members, each of which can contain a program, part of a program, or data.

partitioned data set extended (PDSE)
A data set that contains an indexed directory and members that are similar to the directory and members of partitioned data sets. A PDSE can be used instead of a partitioned data set.

PDS See partitioned data set

PDSE See partitioned data set extended

performance
(1) A measurement of the amount of work a product can produce with a given amount of resources. (2) In a DFSMS environment, a measurement of effective data processing speed with respect to objectives set by the storage administrator.
Performance is largely determined by throughput, response time, and system availability.

permanent data set
A user-named data set that is normally retained for longer than the duration of a job or interactive session. Contrast with temporary data set.

pool storage group
A type of storage group that contains system-managed DASD volumes. Pool storage groups allow groups of volumes to be managed as a single entity. See also storage group.

primary storage
A DASD volume available to users for data allocation. The volumes in primary storage are called primary volumes. See storage hierarchy. Contrast with migration level 1, migration level 2.

program management
The task of preparing programs for execution, storing the programs, load modules, or program objects in program libraries, and executing them on the operating system.

RACF
See Resource Access Control Facility

recall mount
A mount that results from a data set being referenced after it has migrated to migration level 1 DASD or migration level 2 tape. There are two types of recall mounts: level 2 to primary DASD, which requires a mount, and level 1 DASD to primary DASD, which only requires data transfer and thus is less costly.

Resource Access Control Facility (RACF)
An IBM-licensed program or informal name for a base element of z/OS, that provides for access control by identifying and verifying the users to the system, authorizing access to protected resources, logging the detected unauthorized attempts to enter the system, and logging the detected accesses to protected resources. The formal name for RACF in z/OS is z/OS Security Server.

recovery
The process of rebuilding data after it has been damaged or destroyed, often by using a backup copy of the data or by reapplying transactions recorded in a log.

SFF
Single file format

SMF
See system management facilities

SMS
See Storage Management Subsystem

storage administrator
A person in the data processing center who is responsible for defining, implementing, and maintaining storage management policies.

storage class
A collection of storage attributes that identify performance goals and availability requirements, defined by the storage administrator, used to select a device that can meet those goals and requirements.

storage control
The component in a storage subsystem that handles interaction between processor channel and storage devices, runs channel commands, and controls storage devices.

storage group
A collection of storage volumes and attributes, defined by the storage administrator. The collections can be a group of DASD volumes or tape volumes, or a group of DASD, optical, or tape volumes treated as a single object storage hierarchy. See also VIO storage group, pool storage group, tape storage group, object storage group, object backup storage group, dummy storage group.

storage hierarchy
An arrangement of storage devices with different speeds and capacities. The levels of the storage hierarchy include main storage (memory, DASD cache), primary storage (DASD containing uncompressed data), migration level 1 (DASD containing data in a space-saving format), and migration level 2 (tape cartridges containing data in a space-saving format). See also primary storage, migration level 1, migration level 2, object storage hierarchy.

storage management
The activities of data set allocation, placement, monitoring, migration, backup, recall, recovery, and deletion. These can be done either manually or by using automated processes. The Storage Management Subsystem automates these processes for you, while optimizing...
storage resources. See also Storage Management Subsystem.

Storage Management Subsystem (SMS)
A DFSMS facility used to automate and centralize the management of storage. Using SMS, a storage administrator describes data allocation characteristics, performance and availability goals, backup and retention requirements, and storage requirements to the system through data class, storage class, management class, storage group, and ACS routine definitions.

storage subsystem
A storage control and its attached storage devices. See also tape subsystem.

system-managed storage
Storage managed by the Storage Management Subsystem. SMS attempts to deliver required services for availability, performance, and space to applications. See also system-managed storage environment.

DFSMS environment
An environment that helps automate and centralize the management of storage. This is achieved through a combination of hardware, software, and policies. In the DFSMS environment for z/OS, this function is provided by DFSMS, DFSORT, and RACF. See also system-managed storage.

system-managed tape library
A collection of tape volumes and tape devices, defined in the tape configuration database. A system-managed tape library can be automated or manual. See also tape library.

system management facilities (SMF)
A component of z/OS that collects input/output (I/O) statistics, provided at the data set and storage class levels, which helps you monitor the performance of the direct access storage subsystem.

system programmer
A programmer who plans, generates, maintains, extends, and controls the use of an operating system and applications with the aim of improving overall productivity of an installation.

tape library
A set of equipment and facilities that support an installation’s tape environment. This can include tape storage racks, a set of tape drives, and a set of related tape volumes mounted on those drives. See also system-managed tape library.

tape mount management
The methodology used to optimize tape subsystem operation and use, consisting of hardware and software facilities used to manage tape data efficiently.

tape storage group
A type of storage group that contains system-managed private tape volumes. The tape storage group definition specifies the system-managed tape libraries that can contain tape volumes. See also storage group.

tape subsystem
A magnetic tape subsystem consisting of a controller and devices, which allows for the storage of user data on tape cartridges. Examples of tape subsystems include the IBM 3490 and 3490E Magnetic Tape Subsystems.

tape volume
A tape volume is the recording space on a single tape cartridge or reel. See also volume.

temporary data set
An uncataloged data set whose name begins with & or &&, that is normally used only for the duration of a job or interactive session. Contrast with permanent data set.

threshold
A storage group attribute that controls the space usage on DASD volumes, as a percentage of occupied tracks versus total tracks. The low migration threshold is used during primary space management and interval migration to determine when to stop processing data. The high allocation threshold is used to determine candidate volumes for new data set allocations. Volumes with occupancy lower than the high threshold are selected over volumes that meet or exceed the high threshold value.

time sharing option (TSO)
A function of the z/OS operating system.
that provides interactive time sharing from remote terminals.

TSO See *time sharing option*

virtual input/output (VIO) storage group
A type of storage group that allocates data sets to paging storage, which simulates a DASD volume. VIO storage groups do not contain any actual DASD volumes. See also *storage group*.

virtual storage access method (VSAM)
An access method for direct or sequential processing of fixed and variable-length records on direct access devices. The records in a VSAM data set or file can be organized in logical sequence by a key field (key sequence), in the physical sequence in which they are written on the data set or file (entry-sequence), or by relative-record number.

VMA See *volume mount analyzer*

volume
The storage space on DASD, tape, or optical devices, which is identified by a volume label. See also *DASD volume, optical volume, tape volume*.

volume mount analyzer
A program that helps you analyze your current tape environment. With tape mount management, you can identify data sets that can be redirected to the DASD buffer for management using SMS facilities.

VSAM See *virtual storage access method*

weighted average
DASD space, including free space, which contains not only the data sets generated on primary storage, but also the recalled data sets. During the time of the analysis, this DASD space must be large enough to contain the data sets that will be generated or recalled. The value is calculated over time.
Index

A
- abbreviation
 - filtering input keyword 155
 - GFTAXTR keyword 155
 - tailoring output keyword 156
- ABEND 900 179
- ABEND 901 179
- ABEND 902 179
- ABEND 903 179
- ABEND 904 179
- ABEND 906 179
- accessibility 181
 - contact IBM 181
 - features 181
- ACCOUNT keyword
 - abbreviation 155
 - default 155
 - primary filter 45
 - rules and syntax 64
 - using as ACS filter 65
 - value in SMF record 45
- ACCTFLD keyword
 - abbreviation 155
 - affecting Top Report 92
 - default 155
 - rules and syntax 15
- ACS (automatic class selection) routine
 - ACCOUNT keyword
 - creating filter list for 41
 - DATASET keyword 66
 - developing filters for 1, 92
 - developing filters with Top Report 92
- EXPDT keyword 68
 - JOBNAME keyword 70
 - MAXSIZE and MINSIZE keywords 71
 - PROGRAM keyword 74
 - using GBMAX Report for 88
 - using primary filters for 45
 - using to redirect data set 2
- ACS filter
 - creating filter list for 41
 - developing with Top Report 92
 - identifying 2
 - using primary filters for 45
- active
 - category in Estimate Report 109
 - classified by GFTAXTR 23
 - selecting with USAGE keyword 78
 - tape mount management category 39
 - usage pattern in Data Set Report 87
 - usage type 36
 - using CLASSIFY keyword 134
- actual report
 - Data Set Report 82
 - detailed report 2
 - interpreting 82
 - Maximum Gigabyte Report 87
 - Top Report 91
 - Usage Report 94
 - (continued)
 - Volume Report 100
 - assistive technologies 181
 - automated tape library 95
- B
 - backup
 - category in Estimate Report 109
 - classified by GFTAXTR 23
 - selecting with USAGE keyword 78
 - tape mount management category 39
 - usage pattern in Data Set Report 87
 - usage type 36
 - using CLASSIFY keyword 134
 - BCOPY
 - classified by GFTAXTR 23
 - selecting with USAGE keyword 78
 - usage type 36
 - BLKSIZE keyword
 - abbreviation 156
 - affecting Data Set Report 82
 - affecting Estimate Report 106
 - affecting GBMAX Report 88
 - affecting IDRC Report 120
 - affecting Management Class Report 124
 - affecting report 132
 - affecting Top Report 92
 - affecting Volume Report 101
 - default 24, 156
 - for migration 24
 - rules and syntax 131
 - BPROGRAM keyword
 - abbreviation 156
 - affecting Estimate Report 106
 - affecting Management Class Report 124
 - affecting report 136
 - default 156
 - rules and syntax 135
 - with CLASSIFY 133, 135
 - buffer 116
 - C
 - categorizing data sets
 - CLASSIFY keyword
 - abbreviation 156
 - affecting Estimate Report 106
 - affecting Management Class Report 124
 - affecting report 135
 - categorizing data sets with 39
 - default 156
 - rules and syntax 134
 - with BPROGRAM 133, 135
 - with LEVEL0AGE 134
 - with LEVEL1AGE 134
 - compaction
 - Estimate Report 107
 - examining with keyword 69
 - flag in SMF record 142
 - for tape cartridge 35
 - IDRCFACTOR keyword 35
 - COMPACTION keyword
 - abbreviation 156
 - affecting Estimate Report 106
 - affecting Management Class Report 124
 - affecting report 136
 - default 156
 - rules and syntax 135
 - contact
 - z/OS 181
 - continuation character
 - for extract program keyword 15
 - for filtering input keyword 63
 - for tailoring output keyword 129
 - cost
 - Estimate Report summary 106
 - of DASD storage 125
 - of DASD tracks
 - Data Set Report 83
 - Management Class Report 127
 - of tape mount management DASD buffer 112
 - of using tape mount management 106, 116
 - CUTOFF keyword
 - abbreviation 156
 - affecting Data Set Report 82
 - affecting report 137
 - affecting Volume Report 100, 101
 - default 156
 - rules and syntax 136
 - D
 - DASD buffer 116
 - DASDDEV keyword
 - abbreviation 156
 - affecting Data Set Report 82
 - affecting Estimate Report 106
 - affecting Management Class Report 124
 - affecting report 135
 - categorizing data sets with 39
 - default 156
 - rules and syntax 134
 - with BPROGRAM 133, 135
 - with LEVEL0AGE 134
 - with LEVEL1AGE 134
 - © Copyright IBM Corp. 1987, 2015

197
DASDDEV keyword (continued)
controlling device type 87, 104
default 156
rules and syntax 137
using default for Data Set Report 85
with RPROGRAM 149

data set category
in Estimate Report 115
order for assigning 38

Data Set Report
actual report 82
example 85
GFTASRT3 Report detail 83
keywords that affect 82
legend 83
produced by REPORT keyword 147
using keywords to generate 82

DATASET keyword
abbreviation 155
default 155
filtering example 46
primary filter 45
rules and syntax 65
using as ACS filter 66

DATE keyword
abbreviation 155
default 155
limiting filter 44
rules and syntax 16, 66
specifying the end day of sample 19
default
filtering input keyword 155
GFTA0XTR keyword 155
tailoring output keyword 156
detailed report
actial 2, 82
Data Set Report 82
Estimate Report 105
IDRC Report 119
in output data set 41, 81
Management Class Report 124
Maximum Gigabyte Report 87
optional for a run 1, 81
simulation 2, 82
Top Report 91
Usage Report 94
using REPORT keyword to
generate 146
volume mount analyzer output 2
Volume Report 100

DSORT keyword
abbreviation 156
affecting Data Set Report 83, 148
affecting report 139
default 156
rules and syntax 138

E
Estimate Report
data set category 38
example 107
keywords that affect 106
legend 115

Estimate Report (continued)
produced by REPORT keyword 147
savings/cost summary 117
simulation report 105
using keywords to generate 105

EXPDT keyword
abbreviation 155
default 155
primary filter 45
rules and syntax 67
using as ACS filter 68
value in SMF record 45

FILE keyword
abbreviation 155
default 155
primary
ACCOUNT 45
DATASET 45
description 44
devt 45
JOBNAM 45
PROGRAM 45

G
GBMAX (Maximum Gigabyte) Report
actual report 87
example 89
keywords that affect 88
produced by REPORT keyword 147
running against ACS filter list 140
using keywords to generate 87

GDG keyword
abbreviation 157
daffecting Data Set Report 83
affecting Management Class Report 124
affecting IDRC Report 119
affecting report 141
default 157
rules and syntax 140
used for Usage Report 94

filtering (continued)
MAXSIZE 43
MAXSIZE and MINSIZE keywords 71
phases of GFTAVMA 42
SMF data 52
SPLIT keyword 55
USAGE 43
using Usage Report for 95
with UNITADDR keyword 77
with VOLUME keyword 77

FORCECAP keyword
abbreviation 157
affecting Data Set Report 83, 85
affecting Estimate Report 106
affecting GBMAX Report 88
affecting GFTASRT2 Report 55
affecting IDRC Report 119
affecting Management Class Report 124
affecting report 140
affecting Volume Report 101
default 157
rules and syntax 140
using to change free space 115

GFTA001E 167
GFTA002T 167
GFTA003S 167
GFTA004T 167
GFTA005T 167
GFTA006E 168
GFTA007T 168
GFTA008T 168
GFTA009T 168
GFTA010W 168
GFTA011T 168
GFTA012W 168
GFTA013T 168
GFTA014E 168
GFTA015W 169
GFTA016T 169
GFTA017W 169
GFTA018T 169
keyword
- affecting Data Set Report 82
- affecting Estimate Report 106
- affecting GBMAX Report 88
- affecting IDRC Report 120
- affecting Management Class Report 124
- affecting Top Report 92
- affecting Volume Report 101

extract program (GFTAXTR)
- abbreviation 155
- ACCTFLD 15
- continuation character 15
- DATE 16
- default 155
- LINES 17
- TIME 17
- using 15

filtering input 63
- abbreviation 155
- ACCOUNT 64
- comments in 63
- continuation character 63
- DATASET 65
- DATE 66
- default 155
- EXPDT 67
- FILE 68, 72
- JOBNAME 69
- MAXSIZE 70
- MINSIZE 70
- MOUNT 69, 72
- PROGRAM 73
- rule 63
- SYSTEMID 74
- TIME 74
- UNIT 75
- UNITADDR 76
- USAGE 36, 78
- using 63
- VOLUME 79

generating Usage Report 94
- specifying in GFTAVMA JCL 51
- specifying in GFTAXTR JCL 14

keyword (continued)
t tailoring output (continued)
- LARGE 142
- LEVEL0AGE 143
- LEVEL1AGE 144
- LINES 145
- NOFORCECAP 139
- REPORT 140, 146
- RPROGRAM 149
- rule 129
- SPLIT 150
- TAPEDEV 141, 151
- TAPESIZE 141, 152
- using 129
- VSORT 153

L
LIFSPACE keyword
- abbreviation 157
- affecting Estimate Report 106
- affecting report 146
- default 157
- rules and syntax 146
- using to change free space 115
- large category in Estimate Report 109
- tape mount management category 39

LARGE keyword
- abbreviation 157
- affecting Estimate Report 106
- affecting IDRC Report 120
- affecting Management Class Report 125
- affecting report 143
- categorizing data sets with 39
- default 157
- in target environment 109
- rules and syntax 142
- selecting data sets with 120
- setting value for IDRC Report 119
- using for Top Report 92

LEVEL0AGE keyword
- abbreviation 157
- affecting Estimate Report 106
- affecting Management Class Report 124
- affecting report 144
- categorizing data sets with 39
- default 157
- rules and syntax 143
- with CLASSIFY 134

LEVEL1AGE keyword
- abbreviation 157
- affecting Estimate Report 106
- affecting Management Class Report 124
- affecting report 145
- categorizing data sets with 39
- default 157
- rules and syntax 144
- with CLASSIFY 134

LINES keyword
- abbreviation 155, 157
- default 155, 157
- extract program (GFTAXTR) 17
- rules and syntax 145

M
Management Class Report
- data set category 38
- example 126
- keywords that affect 124
- produced by REPORT keyword 147
- simulation report 124
- using keywords to generate 124

MAXSIZE keyword
- abbreviation 155
- affecting Data Set Report 82
- default 155
- limiting filter 44
- rules and syntax 70

MIN_SIZE keyword
- abbreviation 155
- affecting Data Set Report 82
- default 155
- limiting filter 44
- rules and syntax 70

MOUNT keyword
- abbreviation 156
- default 156
- limiting filter 44
- rules and syntax 72
- with FILE 69

N
Order to request report 43, 51

over-filtering 28, 51

P
primary filter 45
problems with output
- for GFTAVMA 51
- for GFTAXTR 28
- over-filtering 51

PROGRAM keyword
- abbreviation 156
- affecting Top Report 92
- default 156
- primary filter 45
- rules and syntax 73
- using as ACS filter 74, 92
- value in SMF record 45

R
report
- automatic for every run 81
- GFTASRT1 52
Top Report (continued)
types generated by parameter
(continued)
 days since last reference 148
 expiration date 148
 high level qualifier 147
 job name 148
 last reference age 148
 low level qualifier 147
 program name 148
using keywords to generate 91
using PROGRAM as ACS filter 92
using to determine filters 92
trademarks 187
TSO SUBMIT command 11, 48

U
UNIT keyword
 abbreviation 156
 default 156
 rules and syntax 75
 secondary filter 45
 with UNITADDR keyword 76
UNITADDR keyword
 abbreviation 156
 default 156
 rules and syntax 76
 secondary filter 45
 with UNIT keyword 76
 with VOLUME keyword 77, 79
USAGE keyword
 abbreviation 156
 default 156
 filtering input 36
 limiting filter 44
 rules and syntax 78
Usage Report
 actual report 94
 example 96
 produced by REPORT keyword 147
 shared system considerations 5
 using keywords to generate 94
 when generated 42
usage type
 description 36
 order for assigning 36
user interface
 ISPF 181
 TSO/E 181

V
VOLUME keyword
 abbreviation 156
 default 156
 rules and syntax 79
 secondary filter 45
 with UNITADDR keyword 77, 79
Volume Report
 actual report 100
 example 103
 GFTASRT2 Report detail 101
 keywords that affect 101
 legend 102
 produced by REPORT keyword 147

W
wild card 46

X
XTRCIN
 DD statement 13, 42
 in GFTAXTRP JCL member 18
 output of GFTAXTR 11, 51
 total SMF records in 21
XTRIN
 DD statement 41
 in GFTAVMAP JCL 49
 input to GFTAVMA 41
 output of GFTAXTR 41
 update for SPLIT 50

202 z/OS V2R2 DFSMS Using the Volume Mount Analyzer