
z/OS

DFSMS Distributed FileManager Guide
and Reference
Version 2 Release 1

SC23-6848-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 139.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1993, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this document ix
Required product knowledge ix
Referenced documents x
z/OS information. x

How to send your comments to IBM . . xi
If you have a technical problem. xi

z/OS Version 2 Release 1 summary of
changes xiii

Chapter 1. Introduction to Distributed
FileManager 1
Terminology Used in This Book 1
Introduction to Distributed Data Processing 2

Extended Enterprise Data Access 2
Client/Server Perspective 4

DFSMSdfp Distributed Data Processing Environment 4
Distributed FileManager 4
Introduction to the Distributed FileManager
Environment 6

Components of the Distributed FileManager
Environment 6
Platforms That Support DDM Architecture
Implementations 7
How Distributed FileManager Works 7
How Distributed FileManager DataAgent Works . 9

Scenarios for Distributed FileManager 10

Chapter 2. Accessing Data Sets with
Distributed FileManager 11
Accessing z/OS Data Sets 11

Data Set Requirements. 11
Data Set Types Supported 11
Data Set Types Not Supported 12
File Models Supported 12
Default File Attributes 12

Distributed FileManager Access Functions 13
Record Files and Record Access 13
Stream Files and Stream Access. 16
Directories and Directory Access 17

Data Set Naming 18
Wild Cards 19
Wild Card Restrictions. 19

Using VSAM Data Sets 19
REUSE Attribute for VSAM Data Sets 20

Nonreusable Attribute 20
Reusable Attribute 20

Using PDSE and PDS Data Sets 21

Special PDSE and PDS Processing Considerations 21
Wildcard Processing Exceptions 22
Using PDSEs 22
Using PDSs 22

Coded Character Set Identifiers. 22
Setting the CCSID Attribute 23
Data Conversion. 23

Associated DDM Attributes 24
Listing DDM Attributes 25
Propagating DDM Attributes 26

Accessing Data Using the DataAgent Parameters . . 27
Using the DFM DataAgent Filename Suffix
Parameters 27

Using the
AGENT(agent_name<,procedure_parameter>) . . 27
Using the PARM(agent_parameter_list) 28
Using the PGM(program_name) 28
Using the START(job_name<,job_parameters>) . 28

Chapter 3. Customizing z/OS for
Distributed FileManager 31
What Is In This Chapter? 31

Summary of Customizing Tasks 31
Interrelationships of Customizing Tasks 31

APPC/MVS Customizing Tasks 33
Defining PARMLIB Start Parameters for
APPC/MVS 34
Creating the Distributed FileManager TP Profile 35
Creating the APPC/MVS Side Information Data
Set 37
Defining PARMLIB Start Parameters for the
APPC/MVS Scheduler. 37

VTAM Customizing Tasks 38
Defining the Local LU to VTAMLST 38
Defining APPC/MVS Logon Mode Entry in
VTAMLIB 39
Defining LU and Logon Mode on Partner
Systems 40

Distributed FileManager Customizing Tasks . . . 41
Tuning Distributed FileManager Startup
Parameters in System PARMLIB 41
Activating Distributed FileManager in System
PROCLIB 44
Verifying PPT Entries for Distributed
FileManager 45

ACS Routines for Defining Distributed FileManager
SMS Classes 45
Establishing Distributed FileManager TP Access
Security 47
Using RACF to Control Access to the Distributed
FileManager TP 47

Defining the Distributed FileManager TP Profile
to RACF 48
Defining a TP Administrator to RACF 48
Defining a User ID to RACF. 48

© Copyright IBM Corp. 1993, 2013 iii

Implementing RACF Access Protection for TP . . 48

Chapter 4. Operating Distributed
FileManager 49
Starting the Distributed FileManager Environment 49

Starting APPC/MVS 49
Starting the APPC/MVS Transaction Scheduler 49
Starting Up Distributed FileManager 49
Triggering the Distributed FileManager
DataAgent. 49

Monitoring Status of Distributed FileManager
Conversations 50

Using the DISPLAY APPC Command. 50
Using the DISPLAY ASCH Command 50

Controlling Status of Distributed FileManager
Conversations 51

Deactivating the Distributed FileManager TP . . 51
Stopping a Local LU with the MVS SET
Command 51
Stopping DFM for z/OS with the MVS CANCEL
Command 51

Appendix A. System Samples 53
System SAMPLIB Samples 53

GDEAPPC. 53
GDEAPDEF 53
GDEASCH 54
DFM00 55
GDELOGMD 56
GDETPDEF 57
GDEPRTLU 58

Appendix B. DFMX0001 61

Appendix C. DFMXAGNT 63

Appendix D. DFMXSORT 69

Appendix E. DFMXSRTI 77

Appendix F. DFMQTSO 81

Appendix G. DFMXTSOI 89

Appendix H. System PROCLIB Member
DFM 95

Appendix I. PPT Entries for Distributed
FileManager 97

Appendix J. DFMACALL.C 99

Appendix K. DDM File Attributes . . . 125

Appendix L. Application Programming
Considerations. 127
Distributed FileManager Implementation 127

DDM Record Access File Creation 127
Stream File Creation 128
File Access Commands Supported by
Distributed FileManager 128

DDM Record Access Restrictions 132
Stream File API Restrictions 133
Logon Mode Requirements 133

Appendix M. Accessibility 135
Accessibility features 135
Using assistive technologies 135
Keyboard navigation of the user interface 135
Dotted decimal syntax diagrams 135

Notices 139
Policy for unsupported hardware. 140
Minimum supported hardware 141
Programming interface information 141
Trademarks 141

Glossary 143

Index 153

iv z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Figures

1. Extended Enterprise Environment 3
2. Client/Server Cooperative Processing 4
3. Example of DDM Source—DDM Target

Relationships 5
4. Distributed FileManager Processing

Environment 8
5. DDM Source System for z/OS Target

Communication Flow 9
6. ALTER Command that Marks a Data Set

Reusable 21
7. IDCAMS ALTER Command 23
8. ISMF Data Set List Columns 34-35 25
9. LISTCAT Command 26

10. IDCAMS LISTCAT Output Showing
DDMEXIST and CCSID Fields 26

11. Interrelationships of Customizing Tasks for
Distributed FileManager 33

12. Basic LUADD Definition 34
13. TPADD Command Example 36
14. VTAM APPL Definition 39
15. Logon Mode Table 40
16. DFM Member Example 45
17. Data Class Routine 46
18. Management Class Routine 46
19. Storage Class Routine 47
20. APPC/MVS Start Parameters 53
21. VTAM APPL Definition in VTAMLST 54
22. ASCH Start Parameter Statements to Run DFM 55
23. Startup Parameters for Distributed

FileManager 55
24. VTAM Logon Mode Table Part 1 of 2 56
25. VTAM Logon Mode Table Part 2 of 2 57
26. MVS/APPC Setup for DFM: TP Definition

Utility Part 1 of 2 58
27. MVS/APPC Setup for DFM: TP Definition

Utility Part 2 of 2 58
28. VTAM Partner LU Definition to Run

DFSMS/DFM 59
29. Starting the DFM DataAgent 61
30. DFM DataAgent Sample Routine Part 1 of 5 63
31. DFM DataAgent Sample Routine Part 2 of 5 64
32. DFM DataAgent Sample Routine Part 3 of 5 65
33. DFM DataAgent Sample Routine Part 4 of 5 66
34. DFM DataAgent Sample Routine Part 5 of 5 67
35. DFM DataAgent Sort Sample Part 1 of 7 69
36. DFM DataAgent Sort Sample Part 2 of 7 70
37. DFM DataAgent Sort Sample Part 3 of 7 71
38. DFM DataAgent Sort Sample Part 4 of 7 72
39. DFM DataAgent Sort Sample Part 5 of 7 73
40. DFM DataAgent Sort Sample Part 6 of 7 74
41. DFM DataAgent Sort Sample Part 7 of 7 75
42. Sample Installation for the DFMXSORT

DataAgent Routine Part 1 of 4 77
43. Sample Installation for the DFMXSORT

DataAgent Routine Part 2 of 4 78

44. Sample Installation for the DFMXSORT
DataAgent Routine Part 3 of 4 79

45. Sample Installation for the DFMXSORT
DataAgent Routine Part 4 of 4 80

46. DFM DataAgent Sample Routine (TSO) Part 1
of 7 81

47. DFM DataAgent Sample Routine (TSO) Part 2
of 7 82

48. DFM DataAgent Sample Routine (TSO) Part 3
of 7 83

49. DFM DataAgent Sample Routine (TSO) Part 4
of 7 84

50. DFM DataAgent Sample Routine (TSO) Part 5
of 7 85

51. DFM DataAgent Sample Routine (TSO) Part 6
of 7 86

52. DFM DataAgent Sample Routine (TSO) Part 7
of 7 87

53. Sample Installation for the DFMXTSO and
DFMQTSO DataAgent Routines Part 1 of 7 . . 89

54. Sample Installation for the DFMXTSO and
DFMQTSO DataAgent Routines Part 2 of 7 . . 90

55. Sample Installation for the DFMXTSO and
DFMQTSO DataAgent Routines Part 3 of 7 . . 90

56. Sample Installation for the DFMXTSO and
DFMQTSO DataAgent Routines Part 4 of 7 . . 91

57. Sample Installation for the DFMXTSO and
DFMQTSO DataAgent Routines Part 5 of 7 . . 92

58. Sample Installation for the DFMXTSO and
DFMQTSO DataAgent Routines Part 6 of 7 . . 93

59. Sample Installation for the DFMXTSO and
DFMQTSO DataAgent Routines Part 7 of 7 . . 94

60. DFM Startup Procedure 95
61. PPT Entries for Distributed FileManager 97
62. DFM DataAgent Sample Part 1 of 25 99
63. DFM DataAgent Sample Part 2 of 25 100
64. DFM DataAgent Sample Part 3 of 25 101
65. DFM DataAgent Sample Part 4 of 25 102
66. DFM DataAgent Sample Part 5 of 25 103
67. DFM DataAgent Sample Part 6 of 25 104
68. DFM DataAgent Sample Part 7 of 25 105
69. DFM DataAgent Sample Part 8 of 25 106
70. DFM DataAgent Sample Part 9 of 25 107
71. DFM DataAgent Sample Part 10 of 25 108
72. DFM DataAgent Sample Part 11 of 25 109
73. DFM DataAgent Sample Part 12 of 25 110
74. DFM DataAgent Sample Part 13 of 25 111
75. DFM DataAgent Sample Part 14 of 25 112
76. DFM DataAgent Sample Part 15 of 25 113
77. DFM DataAgent Sample Part 16 of 25 114
78. DFM DataAgent Sample Part 17 of 25 115
79. DFM DataAgent Sample Part 18 of 25 116
80. DFM DataAgent Sample Part 19 of 25 117
81. DFM DataAgent Sample Part 20 of 25 118
82. DFM DataAgent Sample Part 21 of 25 119
83. DFM DataAgent Sample Part 22 of 25 120

© Copyright IBM Corp. 1993, 2013 v

84. DFM DataAgent Sample Part 23 of 25 121
85. DFM DataAgent Sample Part 24 of 25 122

86. DFM DataAgent Sample Part 25 of 25 123
87. Error Messages 133

vi z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Tables

1. Tunable Parameters in DFM00 41
2. DDM File Attributes 125
3. DDM Access Method Commands Supported

for Distributed FileManager Sequential Files . 128
4. DDM Access Method Commands Supported

for Distributed FileManager Direct Files . . 130

5. DDM Access Method Commands Supported
for Distributed FileManager Keyed Files . . 130

6. DDM Access Method Commands Supported
for Distributed FileManager Stream Files . . 131

© Copyright IBM Corp. 1993, 2013 vii

viii z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

About this document

This document describes the Distributed FileManager component of DFSMSdfp,
henceforth called Distributed FileManager or DFM in this book. Distributed
FileManager is a Distributed Data Management Architecture (DDM) server
implementation on z/OS®. Distributed FileManager provides DDM client
implementations on heterogeneous systems with remote access to z/OS data.
Applications can access z/OS data independent of where the data is located in a
distributed network. Using the Distributed FileManager server can improve your
ability to access z/OS data from applications running on client systems.

This document introduces you to Distributed FileManager and how it works, what
its data set requirements are, and how to customize z/OS for Distributed
FileManager support. This book discusses operating the Distributed FileManager
environment and working with DDM client implementations on AIX®, i5/OS™ and
DDM client systems. This document also discusses working with DataAgent
through the remote DDM application of SMARTdata UTILITIES (SdU).

For information about accessibility features of z/OS and z/OS.e, for users who
have a physical disability, see Appendix M, “Accessibility,” on page 135.

Required product knowledge
To use this book effectively, you should be familiar with the following:
v On z/OS systems:

– Characteristics of data sets and access methods
– Using the Storage Management Subsystem (SMS) to manage data sets
– Utilities that move or copy data sets
– Working with Virtual Telecommunications Access Method (VTAM®)
– Using the Interactive Storage Management Facility (ISMF)
– Working with Advanced Program-to-Program Communications (APPC)

v Distributed data processing:
– Fundamentals of DDM
– System Network Architecture (SNA) LU 6.2 protocol for connecting

applications
– Client/server technology

v DDM source implementations (clients):
i5/OS operating system:
– File system
– i5/OS DDM
– i5/OS APPC
– i5/OS control language (CL)
Other DDM client systems:
– Stream- and record-oriented file access
– Application programming interfaces (APIs)
– SMARTdata UTILITIES (SdU)
– Communications Manager or Communications Manager/2

© Copyright IBM Corp. 1993, 2013 ix

Referenced documents
The following publications are referenced in this book:

Publication Title Order Number

Character Data Representation Architecture Overview GC09-2207

Character Data Representation Architecture Reference and Registry SC09-2190

Distributed Data Management Architecture: General Information GC21-9527

z/OS DFSMS Access Method Services Commands SC23-6846

z/OS DFSMSdss Storage Administration SC23-6868

z/OS DFSMS Using Data Sets SC23-6855

z/OS DFSMSdfp Utilities SC23-6864

z/OS MVS Planning: APPC/MVS Management SA23-1388

z/OS Security Server RACF Security Administrator's Guide SA23-2289

VTAM Network Implementation Guide SC31-6434

VTAM Resource Definition Reference SC31-6438

VTAM Resource Definition Samples SC31-6414

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, see
z/OS Internet Library (http://www.ibm.com/systems/z/os/zos/bkserv/).

x z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

http://www.ibm.com/systems/z/os/zos/bkserv/

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference
SC23-6848-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1993, 2013 xi

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xii z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration, GA32-0889

v z/OS Planning for Installation, GA32-0890

v z/OS Summary of Message and Interface Changes, SA23-2300

v z/OS Introduction and Release Guide, GA32-0887

© Copyright IBM Corp. 1993, 2013 xiii

xiv z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Chapter 1. Introduction to Distributed FileManager

Today's complex data processing environment often requires accessing data that is
distributed among many different computer systems. Distributed FileManager
(DFM) helps solve the problems of distributed data processing. It offers services for
accessing and processing z/OS data from remote computer systems as if the data
were local to the remote systems.

The objective of this chapter is for you to understand the concepts of DFM, its
benefits, and how it works. To aid your understanding, this chapter includes the
following topics:
v Introduction to distributed data processing
v DFSMSdfp distributed processing environment
v Introduction to the DFM environment
v Scenarios for DFM applications.

Terminology Used in This Book
Before beginning the discussion, please acquaint yourself with the following terms:

associated DDM attributes
Associated DDM attributes are z/OS data set attributes that are defined in
DDM. Examples of associated DDM attributes are file size, lock options or
end-of-file offset for byte-stream files. Associated DDM attributes are not
necessarily exclusive to DDM, but can be common to other applications
that access the same data sets.

data set/file
Data set and file are used interchangeably throughout this book. Both
terms refer to a named collection of data that is treated as a single unit of
data storage and retrieval.

Distributed Data Management Architecture
Distributed Data Management Architecture (DDM) offers a vocabulary and
a set of rules for sharing and accessing data among like and unlike
computer systems. DDM includes a set of standardized file models for
keyed, relative record, sequential, and stream data. It allows users and
applications to access data without concern for the location or format of
the data.

Distributed FileManager
Distributed FileManager (or DFM) is an implementation of target (server)
support as defined by DDM. DDM permits systems in an extended
enterprise that have DDM source (client) capability to access file data on a
DDM target z/OS system. See definitions for source, target, and extended
enterprise.

extended enterprise
An extended enterprise is a heterogeneous computing environment that
often includes both centralized hosts and distributed workstations
connected in a network. Gateways within the extended enterprise provide
connections to local area networks (LANs). These LANs can serve any
computing systems architecture.

local Local is your reference point when discussing such entities as platforms or

© Copyright IBM Corp. 1993, 2013 1

applications. For example, when discussing network conversations from
the reference point of a z/OS platform, local refers to entities located on
that z/OS system. Similarly, when discussing data access methods from the
reference point of a z/OS platform, local refers to those access methods.
Contrast with remote.

partner
Refers to complementary information or function on a remote platform. For
example, the ability of DFM to conduct a network conversation requires a
local logical unit (LU) on the target z/OS system and a partner LU on the
source system.

platform
A computer system running a specific operating system connected in a
network. For example, i5/OS and z/OS are different operating system
platforms.

record-oriented file
File with a record-oriented structure that is accessed record by record. This
file structure is typical of data sets on VM, z/OS, OS/390, and i5/OS
systems. Contrast with stream-oriented file.

remote
Remote is relative to your reference point when discussing such entities as
platforms or applications. For example, when discussing network
conversations from the reference point of a z/OS platform, remote refers to
entities that access z/OS dataacross a network. For example, a DDM client
application accessing local z/OS data would be remote. Contrast with local.

source Source is the term used in DDM to refer to the platform that originates a
request for remote data. Source is also known as client. Source and client
are used interchangeably within the scope of this document. Contrast with
target.

stream-oriented file
File with a byte-oriented structure that is accessed as continuous streams of
data bytes. This file structure is common in workstation environments.
Contrast with record-oriented file.

target Target is the term used in DDM to refer to the platform that fulfills a
request for remote data. Target is also known as server. Target and server
are used interchangeably within the scope of this document. Contrast with
source.

Introduction to Distributed Data Processing
Topics included in this introduction are extended enterprise data access,
requirements for accessing remote data in a network, and the client/server
perspective.

Extended Enterprise Data Access
The extended enterprise environment depicted in Figure 1 on page 3 represents
today's data processing installations. Such an environment often includes both
centralized hosts and distributed workstations or hosts connected in a network.
Gateways provide connections to LANs. These LANs can serve any computing
systems architecture.

2 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Most applications in an extended enterprise tend to share data to some degree. The
trend toward sharing data will grow as workstations become more powerful,
networks become more widespread, and applications are written that exploit these
capabilities. The evolution of the distributed environment has created the following
new requirements for accessing remote data.

Transparent Data Access
Data access should be transparent to applications regardless of the internal format
and location of the data. In addition, the data that applications access must at all
times be the latest copy. In this discussion, data access implies that applications on
source systems can create, read, and write data on target z/OS, or OS/390 systems.

Sharing and Accessing Data
Data in an extended enterprise must be in a form that can be shared throughout an
enterprise. Multiple workstations must have access to the same z/OS data in
which the z/OS system provides data sharing and serializing at the data set level.

Avoiding Duplicate Data
In an extended enterprise, uncontrolled data duplication leads to storage
management problems and wasting of storage resources. In contrast, controlled
duplication for backups and migration is desirable and necessary. Downloading
data to the local or LAN environment becomes unnecessary for applications with
access to z/OS data through DFM services.

Portable Applications
For any computing that is to be off-loaded from mainframe systems to
workstations, applications should be readily portable to workstations without
downloading data. You should be able to access and share data resident on z/OS
systems by running applications on workstations.

Applications developed on workstations before they are ported to z/OS systems
should also be able to access data on z/OS systems without downloading it to the
workstations or to the LAN servers supporting the workstations.

GATEWAYS/BACKBONE

TECH WS
LANS

TWS

PC LANS

LAN Server

AIX Server

3rd Party Server

IBM Server
OEM Server OEM Server

IBM, OEM Hosts Super Computer

Centralized Distributed

ES/9000

IBM PC

DA4M5001

Figure 1. Extended Enterprise Environment

Chapter 1. Introduction to Distributed FileManager 3

Transparent Applications
Sometimes pertinent data is spread out in an extended enterprise, some of it local
to the workstation where the application is running, and the rest of it on a remote
z/OS system. If so, a transparent application that runs without modifications
allows existing or new applications to access data wherever the data exists without
unnecessary data movement. These applications frequently require both record-
and stream-oriented data.

Client/Server Perspective
From an architectural point of view, the client or server can be a workstation, a
central processor, a local processor or a departmental processor. Generally, a client
is best described as a workstation. It is possible, however, for a large host system
to be a client that requests data from a small computer such as a workstation.

Usually a server is a central processor, a local system or a departmental system. It
is possible, however, for a workstation to be a server that provides data to a
central processor. See Figure 2.

DFSMSdfp Distributed Data Processing Environment
A key objective of DFSMSdfp is to offer products that provide workstations with
both record- and stream-oriented data access to z/OS data. Workstations accessing
z/OS data must have the capability of creating, reading, and writing data to the
z/OS system-managed external storage. DFM is a DFSMSdfp client/server product
that enables remote clients in your network to access data on z/OS systems.

Distributed FileManager
DFM is a DDM server on a z/OS system. DDM enables clients to share and access
data on z/OS servers regardless of where the data is located. The benefits of DFM
are:

Client - Server Perspective

N
e
t
w
o
r
k

Central Processor

Central Processor

Local/Department
Processors

Local/Department
Processors

Client Server

DA4M5002

Figure 2. Client/Server Cooperative Processing

4 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

v It provides applications and end-users with transparent access to z/OS data
from remote platforms
– Supports both record- and stream-oriented data
– Gives workstations access to z/OS data as if the data were local
– Allows you to use local commands; no need to use z/OS commands

v It improves the productivity of application programmers
– Can develop high-level language applications independent of data location
– Eliminates upload and download procedures. Data access is in-place
– Can share data with other workstations as well as with z/OS batch jobs and

Time Sharing Option (TSO) users
– Allows creating, updating, deleting, and renaming of z/OS data that is

accessed in-place
v It capitalizes on strengths of centralized data storage

– Offers backup and recovery support across an extended enterprise
– Allows data to be shared throughout an extended enterprise
– Ensures security and data integrity using normal z/OS conventions
– Provides latest storage and data management techniques for workstation data

v It leverages existing investments in data, applications, support skills, and storage
capacity

DFM uses APPC LU 6.2 protocol to establish network conversations with DDM
clients. The conversations consist of DDM commands and messages. DDM is the
common language between DDM clients and DFM. The DDM client support is
currently available on DDM client and i5/OS systems (see Figure 3).

z/OS

Distributed
FileManager

SNA

Network

i5/OS

z/OS
data sets

z/OS
data sets

z/OS
data sets

DDM client

DDM
Source Systems

DFM
Target Systems

DA4M5003

Figure 3. Example of DDM Source—DDM Target Relationships

Chapter 1. Introduction to Distributed FileManager 5

Introduction to the Distributed FileManager Environment
This discussion includes the following topics:
v Components of the DFM environment
v Platforms that support DDM implementations
v How DFM works
v How DFM DataAgent works.

Components of the Distributed FileManager Environment
The DFM environment requires DDM, DDM source systems, APPC/LU 6.2
protocol, and Resource Access Control Facility (RACF®) or an equivalent product.

DDM
DDM implementations use DDM commands as their common language for
processing remote data access. DDM provides a vocabulary and set of rules for
sharing and accessing data among like and unlike computer platforms. It includes
a set of standardized file models and access methods that allows users and
applications to access remote data without needing to upload and download files.

DFM is a DDM target implementation providing access and sharing of z/OS files
to DDM source implementations. DDM source systems use DDM commands to
access and share data on DDM target z/OS systems. DDM defines the following
terms concerning remote file access:

Source of the request
Initiates requests for data that resides remotely on another system that has
DDM target capability.

Target of the request
Processes requests for data initiated by a source system in the network.

For more information about DDM, see Distributed Data Management Architecture:
General Information.

DDM Source Systems
i5/OS, AIX, and DDM clients exploit DFM services. i5/OS supports both DDM
source and DDM target capabilities. For DDM clients and AIX, DDM source
systems are available through SMARTdata UTILITIES (SdU); these source systems
provide local record file support and DDM source capability.

The DDM client DDM source implementation requires SdU, which supports record
file access for applications written in high-level languages that include C, PL/I and
IBM® Visual COBOL and Visual PL/I. These high-level languages use the record
access feature in a transparent manner so that an application can run from the
workstation to access remote record data just by recompiling. It supports stream
file access for applications written in C. With SdU, stream access is also invoked
for files or directories that are the target of the DDM client commands issued for
z/OS.

APPC Communications Protocol
DFM uses the APPC LU 6.2 protocol, defined by Systems Network Architecture
(SNA), to communicate with DDM source implementations in an extended
enterprise network. The APPC LU 6.2 protocol allows systems in a network to
communicate on a peer-to-peer basis.

6 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

APPC LU 6.2 support on z/OS systems is provided by APPC/MVS, a part of the
base control program (BCP) of z/OS and Virtual Telecommunications Access
Method (VTAM). DFM is conversant in APPC/MVS LU 6.2 protocols and
commands. A DDM source implementation is conversant in APPC LU 6.2 protocols
and commands.

APPC LU 6.2 on a DDM source system and LU 6.2 on a z/OS system enable
conversations to take place between the DDM source and DFM. These
conversations carry DDM commands and messages involved in processing remote
access to z/OS data.

For more information about APPC/MVS, see z/OS MVS Planning: APPC/MVS
Management.

RACF Conversation Access Security
RACF, or an equivalent product, is used to control which source systems are
authorized to initiate conversations with DFM. By setting up RACF resource class
profiles, you can define which user IDs or groups are authorized to access DFM
services. You can use RACF resource class profiles to define administrators with
update authority to authorize access to DFM.

Once a conversation is initiated, DFM uses RACF services to control the actual
data access as well. For more details, see “Using RACF to Control Access to the
Distributed FileManager TP” on page 47.

Platforms That Support DDM Architecture Implementations
DDM source or target implementations are supported on the following IBM
platforms:

Platform
Implementation

DDM client
DDM source only

AIX DDM source only

i5/OS Both DDM source and DDM target

4680 Point-of-Sale
DDM target only

CICS®/DDM
DDM target only (z/OS and VSE)

How Distributed FileManager Works
The objective of this discussion is to explain how DFM generally works on a z/OS
system and how remote applications access z/OS data using DFM. Unless
otherwise indicated, you can assume that the DDM source implementation is
SMARTdata UTILITIES on a DDM client.

Profile of the Distributed FileManager Environment
DFM enables authorized users and applications on DDM source systems to access
z/OS data remotely. Applications executing on DDM source systems can access
z/OS data by exploiting the DFM target support.

DFM participates in APPC LU 6.2 conversations with DDM source
implementations. The conversations are exchanges of DDM source commands and

Chapter 1. Introduction to Distributed FileManager 7

DDM target responses. APPC/MVS works with VTAM to provide the logical
connection on z/OS for network conversations with source systems. VTAM
manages the local logical unit (LU) that forms an LU 6.2 to LU 6.2 link with a
partner LU on a remote system.

RACF, or an equivalent product, provides authorization services for controlling
access to DFM. Once a conversation is established, RACF also provides
authorization services for controlling access to the z/OS data.

DFM provides access to z/OS data to DDM source implementations as follows (see
Figure 4):
1. An LU 6.2 to LU 6.2 network link is established between a DDM source and

VTAM and APPC/MVS on the DDM target z/OS system.
2. The DDM source sends an LU 6.2 allocate request to initiate a conversation

with DFM.
3. The RACF authorizes the DDM source access to DFM.
4. The APPC/MVS scheduler (ASCH), running in an APPC conversation address

space, initiates and schedules the DFM started procedure address space.
5. DFM, running in the DFM central address space, processes the allocate request

from the DDM source. It begins a network conversation with the DDM source
exchanging DDM commands and messages.

How DDM Source Systems Communicate with Distributed
FileManager
The communication relationship between a DDM source system and DFM is
shown in Figure 5 on page 9.

z/OS Operating System

APPC/
MVS

LU 6.2
Svcs

LU 6.2
Session

ASCH

Data Spaces

RACFVTAM
DDM

Source

APPC
Conv
Addr

Space

DFM
Started
Proc
Addr

Space

DFM
Central
Addr

Space

Data
Sets

DA4M5005

Figure 4. Distributed FileManager Processing Environment

8 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

The DDM source system accesses z/OS data using DFM as follows:
1. An application on the source system requests data.
2. The source LDMI (local data management interface) determines if the data is

located locally or remotely.
3. If the data is remotely located, the request is turned over to the source DDM

(DDM source).
4. An LU 6.2 to LU 6.2 network link is established between APPC LU 6.2 on the

source system and VTAM and APPC LU 6.2 on the z/OS system.
5. Source DDM sends an allocate request across the network link to DFM.
6. If the source is authorized access, a network conversation begins between

source DDM and target DFM that processes remote data access to z/OS data.

How Distributed FileManager DataAgent Works
The DFM DataAgent function allows workstation users to invoke remote
procedures that run as extensions or agents of DFM. This expands the capability of
this mode of access by providing access to functions or data sets not ordinarily
supported by DFM and by allowing workstations greater control over processing
on the z/OS server.

DFM DataAgent allows the workstation user of SdU to invoke user-written,
IBM-written, or vendor-written DFM DataAgent routines using:
v TSO commands, CLISTs, or REXX execs
v DFM DataAgent routines through the remote file access feature of SdU.

The DFM DataAgent is an extension to the DFM component of DFSMSdfp and to
the remote DDM application of SdU that provides the ability for remote callers to
invoke the DFM DataAgent function to execute specified routines on z/OS. The
functions that may be performed using this facility include the execution of TSO
and REXX commands as well as user-written programs. Samples are provided that

Files Files

Source System z/OS Target System

Distributed
FileManager

DA4M5004

Local
Data
Mgmt

Source
DDM

Application
LDMI

SNA

VTAM
APPC
LU 6.2

DFSMSdfp
REQ

Trap

APPC
LU 6.2

DFSMSdfp

Figure 5. DDM Source System for z/OS Target Communication Flow

Chapter 1. Introduction to Distributed FileManager 9

show specific uses of this function. The DFM DataAgent enhancement represents a
significant extension of the functionality of the remote DDM application beyond
basic data access.

A sample DataAgent is provided to invoke TSO functions, such as TSO CLISTs,
REXX execs, or TSO commands. Another sample DataAgent is provided to invoke
SORT.

The following is an example of how the DFM DataAgent expands the capability of
the remote DDM application on z/OS. Before the DataAgent, the remote
application was able to create and delete files, and read, write, update, and delete
data contained in files on z/OS. With the DataAgent, this capability is broadened
significantly by the ability to execute remote procedures on z/OS. A DataAgent job
could be invoked to preprocess data on z/OS by retrieving it from the files or
other repositories and place it in the file that the application will access. The DDM
application could then process the data in the intermediate file. When the DDM
application has finished, a second DataAgent could be invoked to take the data in
the intermediate file and distribute the changes to the permanent files.

Scenarios for Distributed FileManager
DFM offers distributed data processing solutions for a broad range of diverse
applications. The following are a few scenarios of the many possibilities:
v Insurance industry

– Customer-written PC applications can present insurance data to underwriters.
– DDM client and DDM source systems can connect with DFM on a target

z/OS system and remotely access and update insurance information.
v Chemical industry

– Orders can be entered on an i5/OS system.
Source DDM on an i5/OS system can transmit orders to DFM providing
access to z/OS data sets for centralized tracking.

– An i5/OS system contains personnel data for security guards at one
establishment. Daily updates of personnel data can be retrieved from an z/OS
or OS/390 system using DFM.

v Banking and finance industries
Foreign currency transactions on a branch i5/OS can be transmitted to a
central z/OS system using DFM.

10 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Chapter 2. Accessing Data Sets with Distributed FileManager

This chapter describes Distributed FileManager (DFM) support for z/OS data sets.
It explains the types of data sets you can access and describes the record, stream,
and directory access functions you can use. It also includes information about data
set naming, data set usage, character sets, and file attributes.

Accessing z/OS Data Sets
This section introduces the data set access capabilities of DFM, including:
v DFM data set requirements
v Data set types supported by DFM
v File models supported by DFM
v Default file attributes

Data Set Requirements
DFM has the following data set requirements:
v New data sets created using DFM should be SMS-managed, although DFM

supports non-SMS-managed data set creation and access of existing
non-SMS-managed data sets.

Note: The creation of non-SMS-managed data sets is not recommended, because
DFM cannot save attributes designed to improve performance or to enhance
function. Non-SMS-managed data set creation by DFM should only be used
during the transition period between DFM installation and the implementation
of system-managed storage. Once this transition is complete the UNIT and
VOLUME parameters should be removed from DFM00. Refer to “Tuning
Distributed FileManager Startup Parameters in System PARMLIB” on page 41
for additional information on the tunable parameters in DFM00.

v All data sets accessed must be cataloged in an integrated catalog facility catalog.
v All data sets accessed must reside on direct access storage.
v All data sets must be one of the supported types in the next section.

Data Set Types Supported
DFM supports the following z/OS data set types:
v Non-SMS-managed data sets
v Sequential access method (SAM) data sets

– Basic sequential access method (BSAM) data sets
– Queued sequential access method (QSAM) data sets

v Virtual Storage Access Method (VSAM) data sets
– Entry-sequenced data sets (ESDSs)
– Key-sequenced data sets (KSDSs)
– Fixed-length relative record data sets (RRDSs)
– Variable-length relative record data sets (VRRDSs)
– VSAM alternate indexes to ESDSs or KSDSs

v Basic partitioned access method data sets
– Partitioned data set extended (PDSE) members

© Copyright IBM Corp. 1993, 2013 11

– Partitioned data set (PDS) members
– Read-only support for PDSE directories
– Read-only support for PDS directories

Data Set Types Not Supported
DFM does not support:
v VSAM linear data sets (LDSs)
v Generation data groups (GDGs) and generation data sets (GDSs)
v Basic direct access method (BDAM) data sets
v Extended format sequential data sets
v z/OS UNIX System Services (z/OS UNIX) hierarchical file system (HFS) files
v Tape media
v z/OS File System (zFS)
v Large format sequential data sets

File Models Supported
The IBM Distributed Data Management (DDM) architecture helps client
applications access server data by defining common data access rules that can be
used between different kinds of systems. DFM supports a set of standardized
DDM file models, that allow client applications to use the DDM architecture to
access z/OS data. One or more DDM file models can be used to access each
supported z/OS data set listed below:

Record Files

v The DDM direct file model can be used to create and access VSAM RRDSs and
VRRDSs.

v The DDM keyed file model can be used to create and access VSAM KSDSs.
v The DDM sequential file model can be used to create and access SAM data sets,

VSAM ESDSs, VSAM RRDSs and VRRDSs, PDSE members, and PDS members.
v DFM supports non-SMS-file creation.

Stream files

v The DDM stream file model can be used to create and access SAM data sets and
PDSE members. In addition, DFM supports stream access to record files.

v DFM supports non-SMS-file creation.

DFM also supports the following DDM file models, that have no exact equivalent
on z/OS:
v A DDM alternate index file (AIF) can be used to create a VSAM alternate index

and alternate index path, and to access VSAM data through an alternate index
path.

v A DDM directory can be used to access a PDSE directory, a PDS directory, or a
directory consisting of all target data sets selected by a source system.

Default File Attributes
Unless otherwise specified by a DDM record access application or changed
through the appropriate workstation command, z/OS files have the following
default values:
v File hidden, system file, and file protect are set to FALSE.

12 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

v Get, insert, and modify capabilities are set to TRUE.

Default Delete Capability Attribute
The default delete capability attribute for the following categories is FALSE, unless
you take action to change the delete capability attribute to TRUE: All
SMS-managed VSAM KSDSs, RRDSs, and VRRDSs, which were not created
through DFM, have a default delete capability of FALSE.

Changing the Delete Capability Attribute
You cannot issue a DDMOpen with delete access intent against data sets that have
a delete capability attribute of FALSE.

To change the delete capability attribute for a file, perform either of the following
steps:
v Delete the file, and recreate it through a DDM record access application

specifying DELCP in the DDMCreate command.
v Add a DDMSetFileInfo command to the application to set the delete capability

as desired.

Distributed FileManager Access Functions
This section describes the DFM support for the following categories of files and
access functions:
v Record files and record access functions
v Stream files and stream access functions
v Directories and directory access functions

Record Files and Record Access
DFM supports four DDM record file classes, two sets of DDM access methods for
record files, and a complete range of DDM record access functions. The file classes,
access methods, and access functions you can use depends on the type of z/OS
data set you want to access.

Record File Classes
The DDM file classes that you can use to create and access record files are the
direct file, keyed file, sequential file, and alternate index file classes. The DDM file
classes correspond to the DDM file models explained in “File Models Supported”
on page 12.

DDM file classes can be used to access record files as follows:
v SAM data sets, VSAM ESDSs, PDSE members, and PDS members can be

accessed through the sequential file class.

Note: SAM data sets and PDSE members can also be accessed through the
stream file class, as explained in “Stream Files and Stream Access” on page 16.

v VSAM RRDSs and VRRDSs can be accessed through the sequential file class or
the direct file class.

v VSAM KSDSs can be accessed through the keyed file class.
v A VSAM alternate index and associated alternate index path can be accessed

through the alternate index file class.

Chapter 2. Accessing Data Sets with Distributed FileManager 13

Access to Record Files
You can use DDM record access methods and DDM keyed access methods to
access the following record files.
v Record access methods can be used with these record files: SAM data sets;

VSAM ESDSs, RRDSs, and VRRDSs; PDSE members and PDS members.
v Keyed access methods can be used with these record files: VSAM KSDSs and

DDM AIFs.
v Record and keyed access methods can only be used with record files and they

cannot be used to access stream files. The stream access method can be used
with stream files and with record files. Stream access to record files is described
in “Stream Files and Stream Access” on page 16.

Record Access Functions
The record access functions that can be performed from a remote system, and the
data set types that can use with the functions include the following. The list begins
with the most restrictive functions that are limited to certain SMS-managed data
sets and ends with the most widely available functions that work with any data set
supported by DFM.

Modify Attributes

You can modify DDM attributes associated with the following record files:
v SMS-managed SAM data sets on disk
v SMS-managed VSAM ESDSs, KSDSs, RRDSs, or VRRDSs
v SMS-managed PDSE members

Create File

You can create the following record files:
v Non-SMS-managed data sets
v SMS-managed SAM data sets on disk
v SMS-managed VSAM ESDSs, KSDSs, RRDSs, or VRRDSs
v SMS-managed VSAM alternate indexes and alternate index paths

– An alternate index and alternate index path are created for you when you
create a DDM alternate index file (AIF).

– The VSAM base data set must meet certain requirements, see “Using VSAM
Data Sets” on page 19.

v SMS-managed PDSE members
A PDSE will be created for you first, if it does not yet exist.

v PDS members, with these limitations:
– You can only create PDS members if the PDS already exists. If a new data set

is required, a PDSE will be created.
– SMS-managed PDSs are recommended, but you can also create PDS members

in a non-SMS-managed data set.
– PDS members do not support DDM attributes.

Delete File

You can delete the following record files:
v SMS-managed SAM data sets on disk
v SMS-managed VSAM ESDSs, KSDSs, RRDSs, or VRRDSs

14 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

If you delete a VSAM base data set with an alternate index, the alternate
index will be deleted for you.

v SMS-managed VSAM alternate indexes and alternate index paths
These are deleted for you when you delete DDM AIFs.

v SMS-managed PDSE members
Even if you delete the last member of a data set, the data set itself will not be
deleted.

v PDS members (whether or not they are SMS-managed)
Even if you delete the last member of a data set, the data set itself will not be
deleted.

Clear File

You can clear the following record files, whether or not they are SMS-managed:
v SAM data sets on disk
v Reusable VSAM ESDSs, KSDSs, RRDSs, or VRRDSs
v PDSE members and PDS members

Other Access Functions

You can use read, write, and positioning functions with the following record files,
and you can rename them or retrieve their DDM attributes:
v SAM data sets on disk
v VSAM ESDSs, KSDSs, RRDSs, or VRRDSs (reusable or nonreusable)
v DDM AIFs (and their associated VSAM base data sets)

DDM attributes are retrieved from the VSAM alternate index or VSAM base
data set, depending on the attribute.

v PDSE members and PDS members

Note: PDS members and non-SMS-managed data sets do not support their own
DDM attributes. If you retrieve DDM attributes, you will receive default values.

Access Restrictions
When using record files, the following data set access restrictions apply:
v Alias names for PDSE and PDS members are not supported by DFM. Only the

true names can be used to access a file. Load libraries cannot be handled
properly due to loss of link edit attributes.

v When accessing multivolume data sets, backward processing and direct
positioning is not supported, some forms of insert processing to the end of the
file are not supported, and retrieval and update requests do not work if they
span physical volumes.
See Appendix L, “Application Programming Considerations,” on page 127 for
DDM record access restrictions for multivolume data sets.

v If a local z/OS user updates a PDSE member that was created as a sequential
file with associated DDM attributes, all the attributes will be lost. Because loss of
attributes can cause data conversion and performance problems, local z/OS
users should avoid updating PDSE members that are accessed by DFM.

v DFM cannot create or access SAM data sets or PDSE members with fixed record
lengths greater than 32,760 or variable record lengths greater than 32,756. DFM
cannot create or access VSAM data sets with record lengths greater than 32,760.

Chapter 2. Accessing Data Sets with Distributed FileManager 15

Stream Files and Stream Access
DFM supports stream files in SAM data sets or PDSE members. It also supports
stream access to record files in additional types of z/OS data sets. This section
only describes stream access to stream files and stream access to record files. For
information about record files and record access, see “Record Files and Record
Access” on page 13.

The stream files and access functions you can use from a remote system and the
data set types you can use with them, include:

Stream Files
Two types of z/OS data sets can be accessed using the DDM stream file class, or
file model. You can create, rename, delete, modify DDM attributes, and retrieve
DDM attributes for stream files in these data set types:
v SMS-managed SAM data sets on disk
v SMS-managed PDSE members

Stream access is provided on some workstation platforms (currently only DDM
client) to allow commands to access remote data transparently. For example, the
DDM client EPM editor can be used to browse or update an z/OS file in a
transparent manner. In addition, the end user on the workstation can specify TEXT
on the DFMDRIVE ASSIGN or DFMDRIVE SETPARM commands to activate
stream data conversion and to influence the coded character set identifier (CCSID)
used to tag newly created host files. See “Coded Character Set Identifiers” on page
22 for information on CCSID and “Data Conversion” on page 23 for information
on the DFMDRIVE ASSIGN or DFMDRIVE SETPARM commands.

Stream files created while the TEXT option is in effect will be converted to the
target system code page and tagged with the value specified by HOST_CCSID. If
HOST_CCSID is omitted, they will be tagged with the CCSID of the target system.
See “Coded Character Set Identifiers” on page 22 for information on supported
CCSID code pages. Files for which BINARY is specified will be tagged with a
CCSID of X'FFFF'.

Legacy data sets tagged with the wrong CCSID can be correctly tagged by running
IDCAMS ALTER. Otherwise, they will have to be retrieved using the target server
defined code page as the PC_CCSID or by using BINARY processing. For example,
a text file that was stored as binary can be restored by retrieving the file from a
drive assigned with the BINARY parameter and copying it to a drive with the
TEXT parameter. The reverse is also true when restoring binary files that were
stored as text files.

Files that are not tagged with a HOST_CCSID can be retrieved correctly by starting
DFM on z/OS with the CCSID parameter in SYS1.PARMLIB(DFM00) set to the
CCSID of the file(s) to be retrieved. The DFM00 CCSID value applies to all
untagged files for all client access. Alternatively, a HOST_CCSID can be specified
on an exception basis by using the workstation HOST_CCSID parameter on the
DFMDRIVE ASSIGN/SETPARM command. In either case, TEXT must be
specified to trigger stream data conversion.

Stream Access
You can use the DDM stream access method to read stream data in the following
files:
v Record files in nonreusable VSAM ESDSs, and
v Record files in VSAM KSDSs, RRDSs, or VRRDSs.

16 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

You can use the DDM stream access method to read, write, or clear stream data in
the following files:
v Stream files in SAM data sets on disk
v Stream files in PDSE members
v Record files in SAM data sets on disk
v Record files in Reusable VSAM ESDS data sets
v Record files in PDSE members and PDS members

Access Restrictions
When using stream files, the following data set access restrictions apply:
v As a DFM user, you cannot use record file access methods to access stream files.

However, as a local z/OS user, you can use standard DFSMSdfp record access
methods to access stream files.

v Alias names for PDSE and PDS members are not supported by DFM. Only the
true names can be used to access a file.

v If a local z/OS user updates a PDSE member that was created as a stream file
with associated DDM attributes, the attribute extension cell containing those
attributes is lost. As a result, the PDSE member loses its stream file properties
and assumes a file class of sequential file. At the present time, there is no way to
correct this situation.

Directories and Directory Access
DFM supports DDM directories and read-only directory access functions. You can
read the directory entries themselves, and their associated DDM attributes, when
you list these directories:
v Selected lists of target data sets
v PDSE directories and PDS directories

Note: For record files, the file size shows the number of records in the file. For
stream files, the file size shows the number of bytes in the file. (If the file size is
unknown to z/OS, a size of 0 is shown.)

DFM does not support the MKDIR command for directories, nor does it support
member names that do not comply with z/OS PDSE or PDS naming restrictions.
For example, a client file named AFILE could be copied to an z/OS directory, but
AFILE.TXT could not.

Renaming within an z/OS directory is possible, but the full z/OS path name must
be given. For example, you could perform a RENAME with the following
command:

RENAME IBMUSER.PDSE(A) IBMUSER.PDSE(B)

However, the following RENAME would not work:

CD IBMUSER.PDSE (or DFMDRIVE ASSIGN IBMUSER.PDSE)
RENAME A B

Selected Lists of Target Data Sets
From a remote system, you can use DFM to list various target data sets as follows:
v You can use a wild card to select a filtered list of target data sets, and you can

view the list as if it were a directory. For example, ‘userid.*.PAY’ lists all the
source requester's PAY data sets.

Chapter 2. Accessing Data Sets with Distributed FileManager 17

v You can view lists of SAM, VSAM, PDSE, and PDS data sets. A directory can
also include files with access restrictions (see “Access Restrictions”).

PDSE Directories and PDS Directories
v If you select a PDSE or PDS as a directory, you can select file names that have a

wild card in the member name. For example, you can select the following file
names:

MEM*, MEM, or null
v If you do not select a directory, you can select file names that have a wild card

in the data set name or member name, but not both. For example:
A.*, A.B, A(MEM*), or A(MEM).

v PDSEs, PDSs, and PDS members do not support their own DDM attributes, so
default attributes are displayed.

Access Restrictions
A directory can include hidden files, system files, migrated files, or unsupported
files; alias names are not shown. When using directories the following access
restrictions apply:
v Hidden or system files

When you create files using DFM, you can mark them as hidden files or
system files. Later, when you list the directory, you have the option of
excluding either of these kinds of files from the list.

v Migrated files
Directory lists will show default attribute values for migrated files, until they
are recalled. When they are recalled, they will show their true attribute
values.

v Unsupported files
The directory lists all files with the names you selected, regardless of whether
the data set type is supported by DFM. If a file is unsupported, it is listed
with default attributes. However, you cannot use DFM to access the file itself.

v Alias names
Alias names for PDSE and PDS members are not supported by DFM. Only
the true names are shown when you use DFM to list a PDSE or PDS
directory.

Data Set Naming
DDM source applications use a file name parameter to specify target data set
names on z/OS. If the source file names conform to z/OS data set naming
conventions, they can also be used as the target data set names. However, if you
want to use source file names which cannot be used on z/OS, you can implement
a name mapping function on the source system.

For example, when you create a SAM data set from a DDM client, you can also
use the DDM client naming convention on z/OS (an 8-character file name plus a
3-character extension). However, when you create a PDSE member from a DDM
client, you might need a file name exit on the DDM client to map the DDM client
file names to the z/OS data set names. If you are using SMARTdata UTILITIES for
a DDM client, the Distributed FileManager component provides a user exit that
lets you write a file name mapping program.

18 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Wild Cards
A wild card is a character that can be used to represent zero or more characters or
qualifiers in a data set name. DFM supports the use of wild cards with commands
that rename or delete files, or that retrieve directory information. For example, you
can use wild cards with the DOS commands DELETE, ERASE, or DIR.

The following wild cards are supported by DFM:

% Represents one and only one character for which a match is not required.
For example:
v If the data set name is AB%.XY, then ABA.XY and ABC.XY match.
v If the data set name is A.B(M%), then A.B(MR) and A.B(MS) match.

* Represents zero or more characters for which a match is not required. For
example:
v If the data set name is A*.XY, then A.XY and ABC.XY match.
v If the data set name is A.B(M*), then A.B(M) and A.B(MEMX) match.

* Represents zero or more qualifiers for which a match is not required. For
example:

If the data set name is ABC.*.Z, then ABC.Z and ABC.X.Y.Z match.

* Represents a member name for which a match is not required. For
example:

If the data set name is A.B(*), then A.B(MEMX) and A.B(MEMY) match.

Wild Card Restrictions
When using wild cards, the following restrictions apply:
v Wild cards cannot be used to process a group of PDSE or PDS data sets. For

example, ABC*(DE) is not allowed. However, wild cards can be used to process
a group of PDSE or PDS members, as shown above.

v Only one wild card can be used in each data set name. For example,
ABC%E%.XY and AB*.C(E%) are not allowed.

v Wild cards cannot be used in the first character of the data set name. For
example, %BCDE.XY and *ABC.D are not allowed.

Using VSAM Data Sets
This section explains how to use alternate indexes to VSAM data sets.

Alternate Index Files

DFM support for VSAM alternate indexes is provided by a DDM file model called
an alternate index file (AIF). A DDM AIF provides access to a VSAM base data set
(an ESDS or a KSDS), through a VSAM alternate index path. You can define
multiple AIFs over a single VSAM base data set. DFM will create an AIF with
RECSZ(4086 32600). The RECSZ parameter on the chosen DATACLAS will be
ignored by IDCAMS.

You can choose a DDM AIF name with a maximum of 40 characters.

Base Data Sets

Chapter 2. Accessing Data Sets with Distributed FileManager 19

You can use DFM to create an alternate index over an ESDS or KSDS base data set.
Before you can build an alternate index, the base data set must meet the following
requirements:
v DFM requirements:

– If the base was created using DFM, it must be a KSDS.
– If it was created by a local z/OS user, it can be an ESDS or a KSDS.

v VSAM requirements:
– The base data set must contain records.
– The base data set must be nonreusable. For more information, see “REUSE

Attribute for VSAM Data Sets.”

Access Restriction

After you create an alternate index file or files, you will have more than one access
path to the same VSAM base data set. At that point, you can access the base data
set directly or through an alternate index path. However, to avoid locking conflicts,
you are advised to use only one access path at a time.

DFM uses VSAM data definition name (ddname) sharing, VSAM
SHAREOPTIONS, and the DFM lock manager to ensure data integrity. For
simultaneous use of more than one access path at a time, consult z/OS DFSMS
Using Data Sets, SC23-6855 for additional information about VSAM sharing.

REUSE Attribute for VSAM Data Sets
This section explains how to use the REUSE attribute for VSAM data sets. VSAM
data sets can be marked nonreusable or reusable. A nonreusable data set cannot be
reopened as a new data set. A reusable data set can be used as a new data set each
time it is opened, as if it were empty.

Nonreusable Attribute
A VSAM data set must be marked nonreusable before you can build an alternate
index over it. This VSAM requirement applies whether or not DFM is used to
build the index.

If DFM is used to build the index, it automatically changes the base ESDS or KSDS
to nonreusable, before it creates the alternate index. It is also possible for an z/OS
user to mark a data set nonreusable with the IDCAMS ALTER command and the
NOREUSE parameter.

Reusable Attribute
All VSAM data sets created by DFM are initially reusable. A VSAM data set must
be marked reusable before you can use DFM to clear any data set or write to a
VSAM ESDS with the stream access method.

You can mark a data set reusable using the IDCAMS ALTER command with the
REUSE parameter.

Note:

1. You must be a local z/OS user to use the ALTER command. You cannot turn
on the reusable attribute using DFM.

20 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

2. If you delete an alternate index file, you must use the ALTER command if you
want to make the base reusable again. DFM does not automatically change the
base ESDS or KSDS back to reusable.

3. These restrictions are implemented because it is possible for additional indexes
to be defined on z/OS, which are not known to DFM.

Figure 6 is an example of an ALTER command that marks a data set reusable.

For more information, see the ALTER command in z/OS DFSMS Access Method
Services Commands.

Using PDSE and PDS Data Sets
DFM supports both PDSEs and PDSs. PDSEs are recommended because they have
more capabilities than PDSs.

Special PDSE and PDS Processing Considerations
You can only create PDS members as sequential record files using DFM. DDM
client commands create stream files and can be used to create new PDSE members,
but cannot be used to create new PDS members.

A DIR command shows PDSEs and PDSs as directories. However, as discussed in
“Directories and Directory Access” on page 17, DFM does not provide full
directory support. Also, ambiguities might arise if a PDSE or PDS name matches a
prefix name. For example, you may have a PDSE named IBMUSER.DATA and a
sequential file named IBMUSER.DATA.SAMFILE.

Therefore, the following rules are provided to help you control PDSE and PDS
member access. These examples assume that the user ID is IBMUSER. Note that
rules 1 and 2 take precedence over any of the other rules.
1. A DFMDRIVE ASSIGN specifying a PDSE or PDS implies that all the

subsequent file references for that drive will be to members until a change
directory (CD) command is issued, in which case see rule 2 (except that
RENAME requires the full z/OS path name).

2. A change directory into a PDSE or PDS implies that the file names that follow
will be members. For example, CD "IBMUSER.MYDIR" implies that a reference
to file A will be to member A of PDSE or PDS "IBMUSER.MYDIR" (except that
RENAME requires the full z/OS path name).

3. Explicit usage of parentheses in a fully qualified name implies a member. For
example, "IBMUSER.MYDIR(A)" refers to member A of the PDSE or PDS
"IBMUSER.MYDIR".

//ALTER JOB ...
//STEPA EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

ALTER -
VSAM.DFM.DATASET -
REUSE

/*

Figure 6. ALTER Command that Marks a Data Set Reusable

Chapter 2. Accessing Data Sets with Distributed FileManager 21

4. A file name with a "\" preceding the last qualifier implies a member. For
example, "IBMUSER.A.B\C" refers to member C of the PDSE or PDS
"IBMUSER.A.B" (except that RENAME requires the full z/OS path name with
parentheses around the member name).

5. A file name with a "." preceding the last qualifier implies a nonmember. For
example, "IBMUSER.A.B.C" refers to a file named "IBMUSER.A.B.C".

Wildcard Processing Exceptions

Note: Wildcard processing does not necessarily follow these rules. For example,
COPY S:IMBUSER.PDSE(A*) C:\MYDIR will copy using long filenames
IBMUSER.PDSE(A...). Most likely you will want to first issue the command, CD
IBMUSER.PDSE, and then the command, COPY A* C:\MYDIR. This will copy
using the 1 to 8 character member names only.

Using PDSEs
Some of the advantages to using PDSEs are as follows:
v PDSEs support member-level DDM attributes, whereas member-level attributes

do not exist for PDSs.
v PDSE members can contain stream files, whereas PDS members cannot.

However, you can use stream access to PDS members that contain record files.
v PDSEs use dynamic space allocation and reclamation, whereas PDSs need to be

compressed periodically with the IEBCOPY utility.
v PDSEs are always SMS-managed. PDSs are not necessarily SMS-managed.

Using PDSs
Some of the limitations of using PDSs are as follows:
v PDSs must be compressed periodically using the IEBCOPY utility.

– Space used by PDS members that are replaced or deleted cannot be reused
until the data set is compressed. The more you update a PDS, the more you
need to compress it.

– For more information on IEBCOPY, see z/OS DFSMSdfp Utilities.
v You can only create PDS members if the PDS already exists. If it does not exist, a

PDSE and PDSE member will be created instead.
v PDS members do not support their own DDM attributes, so DDM default

attributes are assumed.

Coded Character Set Identifiers
DFM supports a DDM attribute called the coded character set identifier (CCSID).
The CCSID attribute specifies an identifier registered with the IBM Character Data
Representation Architecture (CDRA) of an encoding scheme for coded character set
data. The CCSID attribute is a 16-bit number identifying a specific set of encoding
scheme identifier, character set identifiers, code page identifiers, and additional
coding-related required information that uniquely identifies the coded graphic
character representation used. For example, if a file has a CCSID of 437, it is in
USA ASCII format. If it has a CCSID of 297, it is in the French EBCDIC format.
The meaning of each CCSID is defined in the IBM CDRA. See Character Data
Representation Architecture Reference and Registry and Character Data Representation
Architecture Overview for more information.

22 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

All single-byte code page conversions supported by CDRA are supported. DFM
provides built-in support for data conversions between code pages 500 and 850.
CDRA needs to be activated for code page conversions that are outside the DFM
built-in support range. The special PC code page values of 0 and 65535 prevent
stream data conversion. These values are not valid with the TEXT parameter
because not providing the PC code page makes it impossible to determine the
delimiters that text processing requires. The special host code page value of 65535
(or BINARY) prevents stream data conversion.

Setting the CCSID Attribute
You can set the CCSID attribute locally or remotely. Note that setting the CCSID
attribute identifies the character set used by the file, it does not convert the file to
that character set.

Setting the CCSID from a Remote System
When you create a new z/OS data set from a remote system, DFM supports the
assignment of a CCSID at the time of creation. Also, if a z/OS data set already
exists, DFM supports modification of the CCSID from a remote system. You can
assign a CCSID to any SMS-managed data set supported by DFM, except a PDS.

Setting the CCSID from a Local System
If a z/OS data set is SMS-managed (and not a PDS), a local system user can run
the IDCAMS ALTER command to set or change the CCSID, without using DFM.

Figure 7 is an example of the command.

In Figure 7, the CCSID parameter sets the coded character set identifier to X'01F4'.
For more information, see the ALTER command in z/OS DFSMS Access Method
Services Commands.

Data Conversion
Stream Files: DFM offers limited support of data conversion for stream files. DFM
APAR OW16828 for DFSMS/MVS 1.3 provides enhancements to end users who
install DDM client enhancements, as described in informational APAR II09011.
These DDM client end users can now retrieve z/OS stream data and have it
converted to the single-byte code page associated with their workstation.

Using commands equivalent to DFM/2 commands DFMDRIVE SETPARM and
DFMDRIVE ASSIGN, the DDM client end user can specify z/OS target parameters
that will trigger stream data conversion. The z/OS target parameters are as
follows:

BINARY
Specifies no stream data conversion. BINARY is the default.

TEXT
Specifies stream data conversion and tags new stream file with the workstation

//ALTER JOB ...
//STEPA EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

ALTER -
USER1.DFM.DATASET -
CCSID(X’01F4’)

/*

Figure 7. IDCAMS ALTER Command

Chapter 2. Accessing Data Sets with Distributed FileManager 23

CCSID (PP_CCSID). The current workstation CCSID is automatically passed in
by the DDM client, but may be overridden by the PC_CCSID parameter. When
TEXT is specified, the following parameters are also valid:
v CRLF maintains record boundaries using carriage return and line feed as the

delimiters. CRLF is the default.
v NL maintains record boundaries using the new line character as the

delimiter.
v LF maintains record boundaries using the line feed character as the

delimiter.
v NOEOL does not maintain record boundaries and treats any delimiters or

padding as data.

PC_CCSID=ddddd
Specifies the workstation CCSID, ddddd is the decimal CCSID. The CCSID is
ignored for BINARY processing and new files are tagged with a CCSID of
X'FFFF' to indicate they are not converted. The PC_CCSID setting does not
affect the retrieval of binary files, only the TEXT parameter triggers data
conversion.

HOST_CCSID=ddddd
Specifies the CCSID used for stream files created on the target system or for
legacy data sets with no explicit CCSID defined. ddddd is a decimal CCSID
from 0 to 65535. A CCSID value of 65535 prevents steam data conversion. If
omitted, text files are created or retrieved using the current CCSID from
SYS1.PARMLIB(DFM00).

The TEXT parameter triggers stream data conversion when required and when the
combination of CCSIDs is supported by CDRA.

If the file is not tagged with a CCSID and TEXT processing is specified by the
workstation, legacy files not tagged with a specific CCSID will default to the
CCSID as specified in SYS1.PARMLIB(DFM00).

The HOST_CCSID parameter is not used to override an explicit CCSID associated
with a file. It is only used to tag new files or to access files that have no CCSID set.

Record Files

DFM does not provide data conversion services for record files. When DFM stores
record files on z/OS, the data is stored in the format sent by the source. If a target
system application requires a different data format, data conversion can be done by
a source application.

For example, if data is sent from a DDM client source system in ASCII format, it
requires conversion to EBCDIC before it can be read by a standard z/OS
application. This conversion from ASCII to EBCDIC can be done by the conversion
utility provided by the Distributed FileManager component of SMARTdata
UTILITIES.

Associated DDM Attributes
Associated DDM attributes are z/OS data set attributes that are defined in DDM
architecture. Examples of associated DDM attributes are file size, lock options, or
end-of-file offset for byte-stream files. Associated DDM attributes are not exclusive
to DDM, but can be common to other applications that access the same data sets.

24 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

DFM creates associated DDM attributes when it creates new data sets or changes
the attributes of existing data sets. When copying, moving, or backing up data sets
that have associated DDM attributes, it is important that you use recommended
data moving utilities (see “Propagating DDM Attributes” on page 26).

The remainder of this section explains the applications and commands you can use
to determine if a z/OS data set has associated DDM attributes, and the utilities
you can use to propagate associated DDM attributes.

Listing DDM Attributes
You can use one of the following tools to determine whether a data set has
associated DDM attributes:
v ISMF data set list application
v IDCAMS DCOLLECT command
v IDCAMS LISTCAT command.

However, these tools cannot determine which specific DDM attributes are
associated with a z/OS data set, nor the values of the DDM attributes (except for
the CCSID attribute).

Using the ISMF Data Set List
With Interactive Storage Management Facility (ISMF), you can use the data set list
application to determine whether SAM or VSAM data sets have associated DDM
attributes, and the value of the CCSID attribute.

Using the FILTER, LIST, SORT, or VIEW command, select specified data sets and
sort on the DDMATTR field in column 34 and the CCSID DESCRIPTION field in
column 35. The DDMATTR field indicates whether or not a data set has DDM
attributes and the CCSID DESCRIPTION field gives the value of the CCSID.
Figure 8 is an example of the resulting output.

For more details, see z/OS DFSMS Using the Interactive Storage Management Facility.

Using the IDCAMS DCOLLECT Command
You can use the IDCAMS DCOLLECT command to determine if SMS-managed
data sets have associated DDM attributes and the value of the CCSID attribute. In
the DCOLLECT command output, the DCDDDMEX flag indicates if a data set has
associated DDM attributes and the DCDCCSID field contains the value of the
CCSID attribute.

DGTLGP11 DATA SET LIST
COMMAND ===> SCROLL ===> PAGE

Entries 1-6 of 6
ENTER LINE OPERATORS BELOW: Data Columns 34-35 of 35

LINE DDM
OPERATOR DATA SET NAME ATTR CCSID DESCRIPTION

---(1)---- ------------(2)------------ (34) ------(35)-------
DATASET.NUMBER.A YES JAPANESE PC DATA
DATASET.NUMBER.B NO SPANISH PC DATA
DATASET.NUMBER.C YES ID=00255, NO DESC
DATASET.NUMBER.D --- -----------------
DATASET.NUMBER.E NO -----------------
DATASET.NUMBER.F --- GERMAN PC DATA

---------- ------ ----------- BOTTOM OF DATA ----------- ------ ----
USE HELP COMMAND FOR HELP; USE END

COMMAND TO EXIT.

Figure 8. ISMF Data Set List Columns 34-35

Chapter 2. Accessing Data Sets with Distributed FileManager 25

Using the IDCAMS LISTCAT Command
You can use the IDCAMS LISTCAT command to determine if SAM or VSAM data
sets have associated DDM attributes and the value of the CCSID attribute. Figure 9
uses the LISTCAT command to generate a report on a data set named
IBMUSER.DFMDATA:

Figure 10 shows the resulting output. The DDMEXIST field contains the value
TEXT, indicating that associated DDM attributes exist. And the CCSID field
contains the value X'01F4', NLS EBCDIC STANDARD.

Propagating DDM Attributes
To reliably propagate DDM attributes when moving their associated files, you must
use recommended data movers.

//LISTCAT JOB
//STEP EXEC PGM=IDCAMS
//**
//* PURPOSE: LIST A CATALOG AND A CLUSTER
//***
//SYSPRINT DD SYSOUT=*
//AMSDUMP DD SYSOUT=*
//SYSIN DD *

LISTCAT LVL(IBMUSER.DFMDATA) ALL
/*

Figure 9. LISTCAT Command

IDCAMS SYSTEM SERVICES TIME:08:10 12/02/92
PAGE 1
NONVSAM ------- IBMUSER.DFMDATA.TEST

IN-CAT --- SYS1.ICFCAT.VSYS306
HISTORY

DATASET-OWNER-----(NULL) CREATION--------1990.016
RELEASE----------------2 EXPIRATION------0000.000

SMSDATA
STORAGECLASS -----NORMAL MANAGEMENTCLASS--PRIMARY
DATACLASS --------(NULL) LBACKUP ---1992.296.0129

VOLUMES
VOLSER------------SYS309 DEVTYPE------X’3010200E’ FSEQN------------------0

ASSOCIATIONS--------(NULL)
ATTRIBUTES

STRIPE-COUNT------(NULL) CCSID------------X’01F4’, NLS EBCDIC STANDARD
DDMEXIST TEXT

IDCAMS SYSTEM SERVICES TIME:08:10 12/02/92
PAGE 2

THE NUMBER OF ENTRIES PROCESSED WAS:
AIX -------------------0
ALIAS -----------------0
CLUSTER ---------------0
DATA ------------------0
GDG -------------------0
INDEX -----------------0
NONVSAM ---------------1
PAGESPACE -------------0
PATH ------------------0
SPACE -----------------0
USERCATALOG -----------0
TAPELIBRARY -----------0
TAPEVOLUME ------------0
TOTAL -----------------1

THE NUMBER OF PROTECTED ENTRIES SUPPRESSED WAS 0
IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

Figure 10. IDCAMS LISTCAT Output Showing DDMEXIST and CCSID Fields

26 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

For more information on IMPORT and EXPORT, see z/OS DFSMS Access Method
Services Commands. For more information on DFSMSdss, see z/OS DFSMSdss
Storage Administration. For more information on IEBCOPY, see z/OS DFSMSdfp
Utilities.

SAM and VSAM Data Sets
You can use the IDCAMS IMPORT and EXPORT commands to copy or move SAM
and VSAM data sets. You can use the DFSMSdss data mover to back up, retrieve,
or migrate SAM and VSAM data sets. You must use the DFSMSdss data mover if
the data sets are managed by DFSMShsm.

These data movers automatically propagate associated DDM attributes when
moving data sets to other volumes or other systems. DDM attributes associated
with SAM and VSAM data sets are not propagated in the following situations:
v If you move data sets to a system that does not support DFM
v If you use IDCAMS IMPORT with the INTOEMPTY parameter
v If you use the IDCAMS REPRO command

PDSE Members
You can use the IEBCOPY utility or the DFSMSdss data mover to copy, move, or
back up PDSE members. With IEBCOPY you can create unloaded copies directly to
tape or disk. You must use the DFSMSdss data mover if the data sets are managed
by DFSMShsm. These data movers automatically propagate DDM attributes
associated with PDSE members. DDM attributes associated with PDSE members
are not propagated in the following situations:
v If you copy or move individual records from one member to another
v If the input data set does not completely replace the output data set
v If you move a PDSE member to a system that does not support DFM
v If you convert a PDSE to a PDS
v If you load an unloaded PDSE to a PDS
v If you copy or move a PDSE member to a PDS

If you move or copy a PDS member or a PDS data set to a PDSE, default DDM
attributes will be assigned to the resulting PDSE members.

Accessing Data Using the DataAgent Parameters
This section describes accessing data using the DataAgent parameters. A
DataAgent can only be started from a DDM application from a client workstation.
You can use the DDMOpen function to get a filename suffix that can be used to
start DFM DataAgent processing on z/OS. The DDMClose function terminates
DataAgent processing. It issues the DDM commands CLOSE and DELDCL, which
actually terminates agent processing by invoking the exit with the DELDCL code
point in the parameter list, if requested.

Using the DFM DataAgent Filename Suffix Parameters
The DFM DataAgent filename suffix parameters supported by z/OS are the
following:

Using the AGENT(agent_name<,procedure_parameter>)
This parameter specifies the name of the agent that is invoked when a file is
declared (at DDMOpen) and, optionally, when the file declaration is deleted (at

Chapter 2. Accessing Data Sets with Distributed FileManager 27

DDMClose). The agent_name specifies the name of a member that must exist in
SYS1.PROCLIB. Parameters can optionally be provided for symbolic substitution in
the PROCLIB member.

Allocation will run under the authorization assigned to started tasks. The agent
(running under the user's authorization) may have to use dynamic allocation to
allocate files that cannot be allocated by started tasks.

Because agents begin as started tasks, unless DFM00 specifies
RESTRICT_START(NO), the first 3 characters of the procedure (or agent) must be
"DFM."

The maximum length of the agent name and its parameters is 107 bytes. Each
parameter in the list of procedures is subject to the z/OS limit of 44 bytes.

The agent runs synchronously. If the PROCLIB member has multiple steps, any file
name changes or return code settings will be propagated to the later steps and will
only be returned to DFM after the last step has executed.

Using the PARM(agent_parameter_list)
This parameter is used to pass parameters to the agent routine when it begins to
execute in the DataAgent address space. Parameters are converted to upper case
and concatenated to any parameters provided in the PROCLIB member.

The maximum length of the parameters in bytes is limited only by the space
available to the filename suffix.

If PARM is specified, the PROCLIB member must contain the JCL statements as
provided by the sample DFMX001 that specifies the DFMINIT parameter so as to
run a DFM DataAgent address space initialization routine as the first program in
the address space. This causes DFM to pass a supplementary run time parameter
list to the DataAgent routine and allows the routine to return an error code and
additional reason codes to DFM. The agent parameter list specified is concatenated
with DFMINIT before the DataAgent routine invoked.

This parameter is ignored if AGENT is omitted.

Using the PGM(program_name)
This parameter specifies the name of the program (DataAgent routine) to be
invoked by DFM after initialization. If omitted, the program invoked will default
to the agent name requiring that you have identically named z/OS load modules
and PROCLIB members.

This parameter is ignored if AGENT is omitted.

Using the START(job_name<,job_parameters>)
This parameter specifies the name of the PROCLIB member representing a job or
procedure to be started asynchronously. Unless DFM00 specifies
RESTRICT_START(NO), the first 3 characters of the procedure or command must
be "DFM."

Optional parameters can also be provided. The z/OS limit for the total length of
the job name and its parameters is 124 bytes.

28 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

DFM will verify that an address space for running the procedure was created, but
will not verify that the procedure exists or that it ever completes successfully. That
is, the started job runs asynchronously.

It is possible to run some existing PROCLIB members that may not have particular
initialization requirements by using only the AGENT keyword. However, it is not
recommended because return codes will not be passed back to DFM. It is expected
that there will usually be a need for extended parameter passing. The AGENT
parameter should be used in conjunction with the PARM and PGM parameters
even if the PARM parameter is the null value of PARM() or the PGM name is the
same as the agent name.

DFM imposes a limit of 256 bytes for the file name and file name suffix and for the
total length of the parameters (AGENT, PARM, PC_CCISD, START, and so on) that
can be passed.

As with the other filename suffix parameters, unidentified or misspelled keywords
are ignored and the first (leftmost) is used in case of duplicate keywords.

Chapter 2. Accessing Data Sets with Distributed FileManager 29

30 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Chapter 3. Customizing z/OS for Distributed FileManager

This chapter is about customizing z/OS for Distributed FileManager(DFM). It
discusses how to enable DFM to function in a network as a DDM target (server)
providing remote access to data sets for DDM source implementations (clients).
DFM does not support DDM source capability.

What Is In This Chapter?
Customizing z/OS for Distributed FileManager includes several tasks. These tasks
involve establishing APPC/MVS, VTAM, DFM, and other system information so
that DFM can provide remote access to data sets. The objective of this chapter is
for you to understand the tasks involved and how they are interrelated.

Summary of Customizing Tasks
v APPC/MVS customizing tasks

– Defining PARMLIB start parameters for APPC/MVS
– Creating the APPC/MVS transaction program (TP) profile data set (if not

already existent)
– Adding DFM TP profile information to the TP profile data set
– Creating the APPC/MVS side information data set
– Defining PARMLIB start parameters for the APPC/MVS scheduler

v VTAM customizing tasks
– Defining the local LU to VTAMLST
– Defining the logon mode table in VTAMLIB
– Defining the local LU and logon mode on a partner system

v DFM customizing tasks
– Installing PARMLIB start parameters for DFM
– Activating the PROCLIB startup procedure for DFM
– Verifying program property table (PPT) entries for DFM

v Setting up automatic class selection (ACS) routines
v Defining TP access security

Interrelationships of Customizing Tasks
Figure 11 on page 33 shows some of the interrelationships among tasks involved in
customizing z/OS for DFM. Each numbered box in the figure represents a task. To
simplify the diagram, only sample parameters that show relationships are shown.
The lines and arrows between boxes show relationships between parameters,
members, or data set names.

�1� Adding the DFM TP profile to the TP profile data set

�2� Creating the APPC/MVS side information data

�3� Defining a local LU and logon mode table to VTAMLST

�4� Defining logon mode table to VTAMLIB

© Copyright IBM Corp. 1993, 2013 31

�5� Starting VTAMLST and VTAMLIB

�6� Startup procedure for DFM

�7� Defining startup parameters for APPC/MVS

�8� Defining startup parameters for the APPC/MVS transaction scheduler

�9� Tunable startup parameters for DFM

�10� Defining partner DDM client local LU and logon mode information

�11� Operator command for starting APPC/MVS

�12� Operator command for starting the APPC/MVS transaction scheduler

�13� Operator command for starting DFM

32 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

APPC/MVS Customizing Tasks
APPC/MVS customizing tasks include:
v Defining PARMLIB start parameters for APPC/MVS
v Creating the APPC/MVS TP profile data set (if not already existent)
v Creating the DFM TP profile
v Creating the APPC/MVS side information data set
v Defining PARMLIB start parameters for the APPC/MVS transaction scheduler

VSAM KSDS Data Sets

SYS1.APPCTP

TPADD
TPNAME(X'07'001)
ACTIVE(YES)
TPSCHED DELIMITER(##)
CLASS(A)

APPCPMxx

LUADD
ACBNAME(MVSLU01)
TPDATA(SYS1.APPCTP)
SIDEINFO

ASCHPMxx

CLASSADD
CLASSNAME(A)

DFM00

DFM
LOCK_WAIT INTV(20)
MAX_CONV_LOCK(5) ...

SYS1.VTAMLST

MVSLU01 APPL
ACBNAME=MVSLU01
MODETAB=LOGMODES

VTAM

EXEC PGM=IST
//VTAMLIB DD DSN=xx
//VTAMLST DD DSN=yy

DFM

// DFM EXEC
PGM=GDEISBOT,

SYS1.VTAMLIB

LOGMODES MODETAB

SYS1.APPCSI

START APPC,SUB=MSTR,APPC=xx

START ASCH,SUB=MSTR,ASCH=xx

START DFM,SUB=MSTR

OS2PRTNR LU LOCADDR=0,
ISTATUS=ACTIVE,
MODETAB=LOGMODES,
RESSCB=4

VTAM Configuration

Client LU Definition

SYS1.PROCLIB

Starting Distributed FileManager
Environment

SYS1.PARMLIB

1

9

10

11

12

13

6

7

8

4

5

2

3

DA4M5010

Figure 11. Interrelationships of Customizing Tasks for Distributed FileManager

Chapter 3. Customizing z/OS for Distributed FileManager 33

Defining PARMLIB Start Parameters for APPC/MVS
You define APPC/MVS start parameters in system PARMLIB member APPCPMxx
(for example, SYS1.PARMLIB(APPCPMxx)). The APPC/MVS start parameters
contain information for establishing and controlling APPC conversations on the
system. They identify the local LU to be used for APPC conversations, and the TP
profile and side information data sets to be used by APPC/MVS.

On z/OS, Distributed FileManager conversations flow over the LU defined as the
base LU in APPCPMxx. The TP profile data set provides APPC/MVS with the
DFM TP profile information. The TP profile information enables DFM to
participate in APPC LU 6.2 conversations.

You can control APPC/MVS start parameters by using different versions of
APPCPMxx. Each version can have different values for the start parameters. For
example, one version can omit an LU name that is included in another version.

APPC/MVS is started by a system operator command. The operator command
(which can be part of initial program load) identifies APPCPMxx (see “Starting
APPC/MVS” on page 49). Both APPC/MVS and the APPC/MVS transaction
scheduler (also started by operator command) must be active before DFM LU 6.2
conversations can take place.

Using the APPC/MVS LUADD Definition
Use the APPC/MVS LUADD definition to define the start parameters in
APPCPMxx. With LUADD parameters, you can add, modify, and delete LU
information. You can also change the defined names for both the TP profile and
the side information data sets.

Figure 12 is an example of the basic LUADD definition that should be included in
APPCPMxx. This example can be found in system SAMPLIB member GDEAPPC
(for example, SYS1.SAMPLIB(GDEAPPC)), or see “GDEAPPC” on page 53. Also
see system SAMPLIB members APPCPMRX and APPCPMXX for more details.

The parameters in Figure 12 do the following:

ACBNAME(MVSLU01)
Defines the name of the LU as MVSLU01. The name specified must be the
same as the LU name specified to VTAM.

BASE Indicates that the LU specified for ACBNAME (MVSLU01 in this case) is
the base LU for APPC/MVS. The base LU is associated with the
APPC/MVS transaction scheduler. APPC LU 6.2 conversations take place
across the base LU.

TPDATA(SYS1.APPCTP)
Defines the name of the TP profile data set as SYS1.APPCTP. The name
specified must match the name of the APPC/MVS TP profile data set.

LUADD
ACBNAME(MVSLUO1) �─── LU name
BASE
TPDATA(SYS1.APPCTP) �─── APPC/MVS VSAM TP data set
SIDEINFO DATASET(SYS1.APPCSI) �─── APPC/MVS VSAM SI data set

Figure 12. Basic LUADD Definition

34 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

SIDEINFO DATASET(SYS1.APPCSI)
Defines the name of the VSAM KSDS side information data set as
SYS1.APPCSI. The name specified must match the name of the APPC/MVS
side information data set.

The LUADD SCHED parameter (omitted in the above example) specifies the name
of the APPC/MVS transaction scheduler. If omitted, it defaults to the value
SCHED(ASCH).

For more information on using the LUADD definition, see z/OS MVS Planning:
APPC/MVS Management.

Creating the Distributed FileManager TP Profile
APPC/MVS enables DFM to communicate across a computer network with DDM
source implementations. To use APPC/MVS services, DFM must be set up as an
APPC/MVS TP. Every TP must have a TP profile contained in the APPC/MVS TP
profile data set. The TP profile consists of scheduling and security information
needed to run the TP.

Allocating a VSAM KSDS for the TP Profile
If you are not already using APPC/MVS, you must allocate a VSAM KSDS in the
system library (for example, SYS1.APPCTP) where APPC/MVS TP profile
information can be stored. The name of the VSAM KSDS data set must match the
name defined in system PARMLIB member APPCPMxx. A sample of allocating the
VSAM KSDS is in system SAMPLIB member ATBTPVSM (for example,
SYS1.SAMPLIB(ATBTPVSM)).

For more information on allocating a VSAM KSDS, see z/OS DFSMS Access Method
Services Commands.

Adding the TP Profile to the VSAM KSDS
This discussion assumes that a VSAM KSDS already exists for TP profile
information.

The APPC/MVS administration utility (ATBSDFMU) has commands for creating
and modifying APPC/MVS TP profiles in the VSAM KSDS. You can use the
TPADD command to add a TP profile. For a sample of using TPADD to add a
variety of TP profiles, see system SAMPLIB member ATBUTIL (for example,
SYS1.SAMPLIB(ATBUTIL)).

Figure 13 on page 36 shows a job step that adds a DFM TP profile to
SYS1.APPCTP using the TPADD command. This example can be found in system
SAMPLIB member GDETPDEF (for example, SYS1.SAMPLIB(GDETPDEF) and in
“GDETPDEF” on page 57.

Chapter 3. Customizing z/OS for Distributed FileManager 35

As Figure 13 shows, each TP profile contains three sections.

TP profile key section
Consists of a TP name and a TP level (because TP level is not included in
this example, TP Level defaults to SYSTEM).
v The TP name for DFM must be ^X'07'001
v TP level identifies which entities RACF authorizes to access the DFM TP.

It can be one of the following:

Level Access

SYSTEM
Any user can attach the TP. This is the default if no TP level is
used.

GROUP
Any member of a predefined group of users can attach the TP.

USER A single user can attach the TP.

TP attributes section
Consists of ACTIVE(YES), which indicates that the TP status is active. If the
status is set to ACTIVE(NO), the TP cannot be scheduled.

TP scheduler section
Has the following information:
v Provides the JCL used to run the DFM TP. This example shows sample

JOB and EXEC statements.
v SCHED(A) indicates the APPC/MVS transaction scheduler for the DFM

TP.
v GDEDFM should have either no region size or a region size of 0K to

contain cached stream files.
v GDEISASB must be specified as the program to be executed on the

EXEC statement.

//STEP EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDOUT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
//SYSIN DD DATA,DLM=XX

TPDELETE
TPNAME(^X’07’001)

TPADD
TPNAME(^X’07’001) <- TP key section
ACTIVE(YES) <- TP attribute section
TPSCHED_DELIMITER(##) <------. TP scheduler section

CLASS(A) |
JCL_DELIMITER(ENDJCL) |

//GDEDFM JOB MSGCLASS=H,MSGLEVEL=(1,1),CLASS=A |
//GDEDFM EXEC PGM=GDEISASB |
//* CHANGE THE STEPLIB STATEMENT AS REQUIRED IF YOUR INSTALLATION
//* DOESN’T HAVE THE LE RUNTIME DATA SET IN ITS LINK LIST.
//*STEPLIB DD DSN=SYS1.SCEERUN,DISP=SHR
//*CDRATRC DD DSN=SYS1.CDRATRC2,DISP=SHR <- CDRA API TRACE OUTPUT
//*SYSOUT DD DSN=SYS1.CDRAOUT2,DISP=SHR <- C RUNTIME MESSAGES
//SYSOUT DD DUMMY <- C RUNTIME MESSAGES (NO-OP)
ENDJCL |
<------’
XX

Figure 13. TPADD Command Example

36 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Note: The language environment (LE) is required to use CDRA. If LE is
installed and is not in the link list, SYS1.PROCLIB(DFM) and
SYS1.SAMPLIB(GDETPDEF) should be modified so their STEPLIB DD
statements refer to the proper LE run time library. Refer to DFMREADM
in SYS1.SAMPLIB for details. SYSOUT and CDRATRC files can be
allocated as RECFM=FBA, LRECL=133, and DSORG=PS for use in
diagnosing CDRA problems.

TP profile definition parameters not included in this example are set to default
values. For more details about adding and modifying TP profile information, see
z/OS MVS Planning: APPC/MVS Management.

Creating the APPC/MVS Side Information Data Set
APPC/MVS requires that a VSAM KSDS data set be allocated for the side
information data set. The APPC/MVS side information data set contains
translations of symbolic destination names used by TPs when they issue outbound
allocate requests.

Because DFM is a DDM target only and therefore does not issue outbound allocate
requests, the side information data set does not need to contain any information.
The name used for the SIDEINFO parameter in system PARMLIB member
APPCPMxx must match the side information data set name.

Sample JCL for allocating the side information KSDS data set can be found in
system SAMPLIB member ATBSIVSM (for example, SYS1.SAMPLIB(ATBSIVSM)).
For information about creating side information, see z/OS MVS Planning:
APPC/MVS Management.

Defining PARMLIB Start Parameters for the APPC/MVS
Scheduler

The APPC/MVS transaction scheduler (ASCH) initiates and schedules TPs in
response to inbound requests for conversations. Start parameter values in system
PARMLIB member ASCHPMxx (for example, SYS1.PARMLIB(ASCHPMxx)) define
and modify TP scheduling classes and other TP scheduling characteristics to
ASCH.

ASCH is started by a system operator command. The operator command (can be
part of initial program load) identifies the ASCHPMxx member (see “Starting the
APPC/MVS Transaction Scheduler” on page 49). Both APPC/MVS (also started by
operator command) and ASCH must be active before DFM LU 6.2 conversations
can take place.

You can use an APPC/MVS CLASSADD definition to define the ASCH start
parameters in ASCHPMxx, as shown in the following example. This example can
be found in system SAMPLIB member GDEASCH (for example,
SYS1.SAMPLIB(GDEASCH)) or in “GDEASCH” on page 54.

CLASSADD CLASSNAME(A)
MSGLIMIT(1000) MAX(10) MIN(1) RESPGOAL(1)

The parameters in this example do the following:

CLASSADD CLASSNAME(A)
Defines a class of transaction initiators to ASCH. A transaction initiator is

Chapter 3. Customizing z/OS for Distributed FileManager 37

an entity, such as DFM, that functions as an APPC/MVS TP. TPs in the
same class should have similar characteristics such as run-time, priority,
schedule-type, and security.

The CLASSNAME parameter defines the class name as A. It must match
the class name used in the TP profile for DFM.

MSGLIMIT(1000)
Defines 1000 as the maximum number of messages in the message log data
set for TPs in this class.

MAX(10)
Defines 10 as the maximum number of transaction initiators allowed for
this class.

MIN(1)
Defines 1 as the number of transaction initiators in this class that will be
started when ASCH is started.

RESPGOAL(1)
Defines 1 second as the system response time goal for TPs running in this
class.

For more information about defining ASCH and about scheduling TPs, see z/OS
MVS Planning: APPC/MVS Management.

VTAM Customizing Tasks
Customizing VTAM for DFM includes defining the local LU to VTAMLST, setting
up the logon mode table in VTAMLIB, and establishing local LUs and logon mode
definitions on partner systems.

Defining the Local LU to VTAMLST
When VTAM is initialized on an z/OS system, local LUs are activated based on
information in the system VTAMLST library. To define the local APPC/MVS LU to
VTAM, use a VTAM application (APPL) definition in the VTAMLST library that is
defined in the VTAM start procedure. The VTAM APPL definition:
v Names the local APPC/MVS LU
v Sets up defaults for the LU
v Specifies the name of the logon mode table that contains the logon mode used

by the LU
v Defines security for the LU

Figure 14 on page 39 is an example of a VTAM APPL definition. This example can
be found in system SAMPLIB member GDEAPDEF, for example,
SYS1.SAMPLIB(GDEAPDEF), or see “GDEAPDEF” on page 53.

38 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

The ACBNAME and MODETAB parameters in this example do the following:

ACBNAME=MVSLU01
Defines the local APPC/MVS LU name as MVSLU01. The LU name
specified must match the local LU name defined in PARMLIB member
APPCPMxx.

MODETAB=LOGMODES
Defines the name of the logon mode table as LOGMODES. This parameter
is optional. Including it, however, allows you to make additional logon
mode definitions known to VTAM. This is required if the logon mode
name specified by the partner system is not supplied in the VTAM default
logon mode table ISTINCLM.

The name for the logon mode table name must match the name of a
defined in VTAMLIB.

For more information about VTAM APPL definitions, see z/OS MVS Planning:
APPC/MVS Management.

Defining APPC/MVS Logon Mode Entry in VTAMLIB
A logon mode is a set of parameters and protocols that determines the
communication characteristics of a VTAM session. Logon modes are entries in a
logon mode table contained in the system VTAMLIB library.

APPC/MVS requires a logon mode entry in a logon mode table. The logon mode
table containing the APPC/MVS logon mode entry must be assembled and linked
into the VTAMLIB library defined by the VTAM start procedure. System SAMPLIB
member ATBLJOB (for example, SYS1.SAMPLIB(ATBLJOB)) provides sample JCL
for assembling and linking a logon mode table.

Figure 15 on page 40 is an example of a logon mode table containing several logon
mode entries. This example can be found in system SAMPLIB member
GDELOGMD (for example, SYS1.SAMPLIB(GDELOGMD)) or see “GDELOGMD”
on page 56.

MVSLU01 APPL ACBNAME=MVSLU01, �─── ACBNAME (also
APPC/MVS LUADD)

APPC=YES,
AUTOSES=0,
DDRAINL=NALLOW,
DMINWNL=5,
DMINWNR=5,
DRESPL=NALLOW,
DSESLIM=10,
LMDENT=19,
MODETAB=LOGMODES, �─── VTAM Logon Mode Table name
PARSESS=YES,
SECACPT=CONV,
SRBEXIT=YES,
VPACING=1

Figure 14. VTAM APPL Definition

Chapter 3. Customizing z/OS for Distributed FileManager 39

The name of the logon mode table defined in the VTAM APPL definition must
match the name defined in VTAMLIB. In Figure 15, for example, the name of the
logon mode table defined to VTAMLIB is LOGMODES.

For more information about defining the APPC/MVS logon mode, see z/OS MVS
Planning: APPC/MVS Management.

Defining LU and Logon Mode on Partner Systems
For DFM to conduct a network conversation with a DDM source implementation,
each system in the conversation must know its partner's LU name and logon mode
information. Establishing partner information involves the following steps:

LOGMODES MODETAB �─── VTAM APPL LOGMODE table name
EJECT

**
TITLE ’SNASVCMG’ *

**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* REQUIRED FOR LU MANAGEMENT *
**
SNASVCMG MODEENT LOGMODE=SNASVCMG,FMPROF=X’13’,TSPROF=X’07’, *

PRIPROT=X’B0’,SECPROT=X’B0’,COMPROT=X’D0B1’, *
RUSIZES=X’8585’,ENCR=B’0000’, *
PSERVIC=X’060200000000000000000300’

**
TITLE ’QPCSUPP ’ *

**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* REQUIRED FOR LU MANAGEMENT *
**
QPCSUPP MODEENT LOGMODE=QPCSUPP,FMPROF=X’13’,TSPROF=X’07’, *

PRIPROT=X’B0’,SECPROT=X’B0’,COMPROT=X’D0B1’, *
RUSIZES=X’8585’,ENCR=B’0000’, *
PSERVIC=X’060200000000000000000300’

**
TITLE ’APPCPCLM’

**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* FOR PC TARGET *
* IN THIS EXAMPLE THE DEFAULT RU SIZE FOR OS/2 (1024) IS USED *
**
APPCPCLM MODEENT LOGMODE=APPCPCLM, *

RUSIZES=X’8787’, *
SRCVPAC=X’00’, *
SSNDPAC=X’01’

**
TITLE ’APPCHOST’

**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* FOR HOST TARGET *
* IN THIS EXAMPLE RU SIZE OF 4096 IS USED *
**
APPCHOST MODEENT LOGMODE=APPCHOST, *

RUSIZES=X’8989’, *
SRCVPAC=X’00’, *
SSNDPAC=X’01’

MODEEND
END

Figure 15. Logon Mode Table

40 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

1. You need to define on the partner (source) system the local LU, logon mode
entry, and partner LU (the LU associated with DFM for z/OS). What
conventions and utilities you use for defining this information depends on
what platform the partner system runs. On a DDM client system, for example,
you use Communications Manager for specifying network information.
The logon mode name on the partner system must match a logon mode table
entry name defined to VTAM and associated with the VTAM APPL definition.
This association can be explicit in the APPL MODETAB definition statement or
implicit in the VTAM-supplied default logon mode table ISTINCLM.
When the partner system sends an APPC allocate call to initiate a conversation
with DFM, it sends the name of a logon mode definition that must match a
logon mode entry name defined to VTAM. If the partner system is a DDM
client, you must use the QPCSUPP logon mode entry name.

2. On the target z/OS system, you need to identify to VTAM the name of the
partner LU. This name must match the local LU name that you have
established on the partner system.
For information about defining partner information to VTAM, see VTAM
Network Implementation Guide , SC31-6434; VTAM Resource Definition Samples ,
SC31-6414; and VTAM Resource Definition Samples , SC31-6414.

Defining Partner Information on a DDM client
The following is an example of defining a local LU and a VTAM logon mode table
specification for a partner a DDM client. This example can be found in system
SAMPLIB member GDEPRTLU (for example, SYS1.SAMPLIB(GDEPRTLU)) or see
“GDEPRTLU” on page 58.

OS2PRTNR LU LOCADDR=0,
ISTATUS=ACTIVE,
MODETAB=LOGMODES �─── VTAM Logon Mode Table name
RESSCB=4

Distributed FileManager Customizing Tasks
Customizing DFM includes installing and tuning DFM startup parameters in
system PARMLIB, activating the DFM startup procedure in system PROCLIB, and
verifying PPT entries for DFM.

Tuning Distributed FileManager Startup Parameters in System
PARMLIB

You can tune the startup parameters for DFM to fit your installation's performance
requirements. These parameters are contained in PARMLIB member DFM00 (for
example, SYS1.PARMLIB(DFM00)). If DFM00 needs to be installed in PARMLIB on
your system, you can copy system SAMPLIB member DFM00 (for example,
SYS1.SAMPLIB(DFM00)). DFM00 can also be found in “DFM00” on page 55.

The parameters shown in Table 1 fall into categories related to either performance
tuning or data set definition defaults.

Table 1. Tunable Parameters in DFM00

Parameter Description Default Range

CLOSE_CHECK_INTV Time interval (in seconds) to wait between searches of
the Open PDSE queue for data sets to close

0 0—100

DEFER_CLOSE_TIME Time interval (in seconds) to wait before closing a PDSE
data set after a DDM close command has been processed

0 0—100

Chapter 3. Customizing z/OS for Distributed FileManager 41

Table 1. Tunable Parameters in DFM00 (continued)

Parameter Description Default Range

LOCK_RETRY Number of lock conflict retries 3 1—100

LOCK_WAIT_INTV File lock wait interval in seconds 20 1—100

MAX_AGENT_TSKS Number of agents supported 5 1—100

MAX_CONV_LOCK Maximum locks on a file per agent 5 1—100

SEND_BUFFER_THRESHOLD Maximum number of buffers between APPC SEND verb
completions

100 1—1,000

LOGICAL_CACHE Cache limit for stream files 1,024 1—2,047

CCSID Coded character set identifier (CCSID) for DFM 0 0—65,535

PRIMARY Data set space allocation in records (non-SMS only) 100 1—2GB

SECONDARY Data set space allocation in records when PRIMARY
space is exhausted (non-SMS only)

50 0—2GB

STREAM_LRECL Logical record length for stream files 8,196 0—32,760

UNIT Device type where non-SMS data sets are created, see
VOLUME

SYSALLDA N/A

VOLUME DASD volume serial number for non-SMS data set
creation

None N/A

RESTRICT_START Startup command in the PARMLIB DFM00 member Yes Yes or No

Parameters Related to Performance
CLOSE_CHECK_INTV and DEFER_CLOSE_TIME

These parameters offer a trade-off between concurrency and PDSE
processing performance. If typical usage on your system tends to reaccess
the same or other members of a PDSE, these parameters can be specified
as nonzero values to leave PDSEs open longer. Then, when PDSE members
are reaccessed, the overhead of closing and reopening data sets is
eliminated. The trade-off is that the data sets might be unavailable to other
remote or local users longer than necessary.

MAX_AGENT_TSKS
This parameter can be used as a control on DFM resources. It determines
the maximum number of concurrent remote user tasks that the target
server will allow.

MAX_CONV_LOCK
This parameter establishes a limit on how many locks each agent can have.
If you think of a lock as representing a system resource (in this case, a data
set), then setting a maximum value for the number of locks that can be
held establishes a limit on how much serially reusable resource a given
agent can use at one time.

LOCK_RETRY and LOCK_WAIT_INTV
These parameters control how soon lock contentions are detected. In an
interactive environment where you can choose how to handle “try again
later” messages, you might want short wait intervals and few lock conflict
retries. However, in a more batch-oriented environment, you might want
the opposite to avoid terminating batch jobs just because a lock is
temporarily unavailable.

SEND_BUFFER_THRESHOLD
For this parameter, the maximum number of buffers between APPC SEND

42 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

verb completions should be fairly large to avoid irregularities in system
response and to maximize concurrency. Specifying too large a value,
however, could result in excess paging.

In some cases, this parameter can increase the overall auxiliary storage
requirements of the system. As a general rule, you can determine the
auxiliary storage increase by adding up the estimates for the following:
v The total size of the stream-oriented files that are likely to be accessed

concurrently by a typical address space
v The space required for input buffers (up to the combined file size)
v The storage required for output buffers (SEND_BUFFER_THRESHOLD

times 32k)

Take the resulting sum and multiply it by the number of concurrently
running address spaces, then add 25% to allow for control block overhead
and unused space at the end of some of the buffers.

LOGICAL_CACHE
This parameter allows you to limit the amount of virtual storage a DFM
conversation can use for caching stream files. When the limit is reached,
the current stream request is terminated. You can use this parameter to
minimize the potential impact of DFM for z/OS on z/OS system
performance.

Parameters Related to Data Set Definition
CCSID

Use this parameter to establish the default value for the CCSID associated
with data sets that will be created by DFM. This CCSID, unless overridden
by the workstation, defines the code page in which stream files are stored
when the workstation requests data conversion by specifying the TEXT
option. In most cases, the value should be left as zero. Zero is a special
value that causes the default CCSID to be inherited from a higher level in
the hierarchy. Currently the only value that can be inherited is 500,
EBCDIC International Latin-1. The inheritance occurs from DFM itself
rather than from the operating system.

If the CCSID is not supported by Character Data Representation
Architecture (CDRA), startup will end with message GDE006E indicating
that the CCSID keyword has an incorrect value. The return code shown
will be that defined for CDRA's CDRGCTL function. If LE is not installed,
message GDE006E will be issued for an invalid CCSID with a return code
of X'FFFFFFFF'. DFM startup will indicate it is not started, but is actually
started in a partial non-data conversion mode.

PRIMARY
This parameter defines the amount of space requested by a user for a data
set when it is created. This parameter applied only to the creation of
non-SMS data sets. The default primary space allocation is 100 records.

SECONDARY
This parameter defines the amount of additional space requested by the
user for a data set when primary space is full. This parameter applied only
to the creation of non-SMS data sets. The default secondary space
allocation is 50 records.

STREAM_LRECL
This parameter provides a default value for block size if the logical record
length is not provided by the SMS DATACLASS. If ACS routines or data

Chapter 3. Customizing z/OS for Distributed FileManager 43

classes are established so that all logical record length specifications are
provided through SMS data classes, this parameter can be specified as 0.
Larger values than 8196 can give better performance, but generally the
most important consideration is whether the data will be shared with z/OS
applications.

If the data is shared, the needs of the z/OS applications should determine
the logical record length. For example, choosing a small value might allow
easy editing or browsing of the file on z/OS. If, however, the data will not
be shared with z/OS applications, the larger the logical record length the
better the performance will tend to be.

UNIT This parameter defines the device type where non-SMS data sets are
created, see VOLUME.

VOLUME
This parameter defines the DASD serial number for non-SMS data set
creation.

When DFM is installed, the VOLUME parameter must be activated if the
installation does not use SMS or chooses not to establish ACS routines for
the DFM.

If SMS is not active and VOLUME is omitted, it is possible to create SAM
data sets, but PDS data sets created will not have directory blocks assigned
to them and a "file damaged" error will occur.

Parameters Related to DataAgent
RESTRICT_START

This parameter is the startup command in the PARMLIB DFM00 member.
The default is YES.

Activating Distributed FileManager in System PROCLIB
Activating DFM involves adding a startup procedure to a new system PROCLIB
member called DFM, for example, SYS1.PROCLIB(DFM). Once DFM is added to
PROCLIB, DFM can be started by a system operator command. The operator
command, which can be part of initial program load, identifies the DFM member
(see “Starting Up Distributed FileManager” on page 49).

APPC/MVS and the APPC/MVS transaction scheduler (both are started by
operator command) must be active before DFM LU 6.2 conversations can take
place on z/OS.

Figure 16 on page 45 is an example of the contents of the DFM member.

44 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Note: LE is required to use CDRA, if LE is installed and is not in the link list,
SYS1.PROCLIB(DFM) and SYS1.SAMPLIB(GDETPDEF) should be modified so their
STEPLIB DD statements refer to the proper LE run time library. Refer to
DFMREADM in SYS1.SAMPLIB for details.

Verifying PPT Entries for Distributed FileManager
To execute correctly, DFM must have entries in the system program property table
(PPT). These entries are automatically included in the base PPT for your
installation (system LINKLIB member IEFSDPPT). If the need arises to override
this base PPT, you can add the entries to system PARMLIB member SCHEDxx (for
example, SYS1.PARMLIB(SCHEDxx)). For a sample of the entries, see Appendix I,
“PPT Entries for Distributed FileManager,” on page 97. PARMLIB(SCHEDxx)
members for these sample entries should not be created without prior discussion
with your IBM service representative.

ACS Routines for Defining Distributed FileManager SMS Classes
ACS routines determine the SMS classes for data sets. For data sets to be classified
as SMS-managed, they must be defined in a storage class. DFM only permits
remote creation of data sets when the resultant data set is SMS-managed. If a
request to create a data set would result in a non-SMS-managed data set, DFM
rejects the request.

DFM does not support the use of large format data sets, which are physical
sequential data sets with the ability to grow beyond the previous size limit of

//DFM PROC PARMS=’NORMAL’
//***
//* *
//* DFM START UP PROCEDURE *
//* *
//***
//DFM EXEC PGM=GDEISBOT,
// PARM=’&PARMS’,
// REGION=0K,
// TIME=1440
//IEFPARM DD DSN=SYS1.PARMLIB,DISP=SHR
//* CHANGE THE STEPLIB STATEMENT AS REQUIRED IF YOUR INSTALLATION
//* DOESN’T HAVE THE LE RUNTIME DATA SET IN ITS LINK LIST.
//*STEPLIB DD DSN=SYS1.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//*
//* THE TWO FILES ASSOCIATED WITH THE DD STATEMENTS CDRATRC AND
//* SYSOUT CAN BE USED TO DIAGNOSE DFM STARTUP PROBLEMS RELATED
//* TO CDRA. (CDRA IS INVOKED DURING STARTUP FOR CERTAIN CCSID
//* VALUES IN THE SYS1.PARMLIB MEMBER DFM00.)
//*
//* YOU MUST ALLOCATE THE TWO FILES AS RECFM=FBA, LRECL=133,
//* AND DSORG=PS BEFORE STARTING DFM WITH THE DD STATEMENTS
//* ACTIVE.
//*
//* NOTE THAT SYSOUT IS REQUIRED AND CDRATRC IS OPTIONAL
//* WHEN USING CDRA AND THE DEFAULT INSTALLATION IS SET UP TO
//* USE CDRA IF YOUR HOST CODE PAGE IS OTHER THAN 500.
//*
//* CDRATRC DD DSN=SYS1.CDRATRC,DISP=SHR CDRA API TRACING
//* SYSOUT DD DSN=SYS1.CDRAOUT,DISP=SHR C RUNTIME MESSAGES
//SYSOUT DD DUMMY <- DEFAULT = CDRA WITH RUNTIME MESSAGES DISCARDED

Figure 16. DFM Member Example

Chapter 3. Customizing z/OS for Distributed FileManager 45

65 535 tracks per volume. To prevent attempts to create a large format data set, it
is recommended that provide a storage class ACS routine to fail any DFM request
to create an unsupported type, such as &DSNTYPE = EXR, EXC, or LARGE.

For more information about large format data sets, see SC26-7410z/OS DFSMS
Using Data Sets, SC23-6855.

Figure 17, Figure 18, and Figure 19 on page 47 are sample ACS routines for
defining data, management, and storage classes for data sets created by DFM.

If the logical record length for stream files is specified as zero
(STREAM_LRECL(0)) in the system PARMLIB member DFM00, you must select a
data class providing a nonzero record length.

/* DATACLAS ROUTINE */
/* DEFAULT DATACLASSES FOR DFM */
/* */
IF &JOB = ’GDEDFM’ AND &DATACLAS = ’’ THEN

DO
SELECT

WHEN (&RECORG = ’KS’) SET &DATACLAS = ’KS000000’
WHEN (&RECORG = ’ES’) SET &DATACLAS = ’ES000000’
WHEN (&RECORG = ’RR’) SET &DATACLAS = ’RR000000’
WHEN (&DSORG = ’PS’) SET &DATACLAS = ’PS000000’
WHEN (&DSNTYPE = ’LIBRARY’) SET &DATACLAS = ’LIB00000’
OTHERWISE WRITE ’NOT A SUPPORTED DFM DATASET TYPE’

END /* SELECT */
/* DEBUGGING STATEMENT FOLLOWS. REMOVE IT WHEN ROUTINE IS OK. */
IF &DATACLAS ^= ’’ THEN

WRITE ’DATACLAS SET TO ’&DATACLAS’ FOR DFM’
EXIT CODE(0)

END /* DO */

Figure 17. Data Class Routine

/* MGMTCLAS ROUTINE */
/* IF JOB IS DFM */
/* SET MGMTCLAS TO DFMMGMT. */
/* */
IF &JOB = ’GDEDFM’ THEN

DO
SET &MGMTCLAS = ’DFMMGMT’
/* DEBUGGING STATEMENT FOLLOWS. REMOVE IT WHEN ROUTINE IS OK. */
WRITE ’&MGMTCLAS SET TO ’&MGMTCLAS’ FOR DFM’
EXIT CODE(0)

END /* GDEDFM */
/* */

Figure 18. Management Class Routine

46 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Data sets without a storage class cannot be SMS-managed.

Establishing Distributed FileManager TP Access Security
You need to establish access security for the DFM TP so that only authorized users
and applications can remotely access it. To protect the DFM TP, you can:
v Limit which LUs can enter your z/OS system
v Ensure that inbound requests to initiate conversations with the DFM TP contain

security information such as user IDs and passwords
v Limit by user ID or group who can access the DFM TP
v Limit the administrators who can define and update information in the DFM TP

profile

Using RACF to Control Access to the Distributed FileManager TP
You can use RACF (or an equivalent product) to control which user IDs or groups
of user IDs are authorized to access DFM. To accomplish this, you need the
following information:
v Name of your DFM TP profile
v User IDs that will be authorized EXECUTE access to your APPC/MVS TP
v User IDs that will be authorized as APPC/MVS administrators to read and

update DFM TP profile information

The RACF APPCTP resource class controls the use of the APPC/MVS TP. Profiles
in this resource class define which user IDs can execute the APPC/MVS TP. The
names of these profiles are in the form dbtoken.level.tpname, where

dbtoken
The database token associated with the DFM TP profile (1 to 8 characters).
The TP profile must have a database token, or else APPC/MVS cannot call
RACF for TP access security. For more information about adding a
database token, see z/OS MVS Planning: APPC/MVS Management.

level This is one of the following:
v The name of your system library (for example, SYS1), if the TP is

available to all users who can access the LU
v A group ID, if the TP is available to a group
v A user ID, if the TP is available to just a specific user

/* STORCLAS ROUTINE */
/* DEFAULT STORCLAS FOR DFM IS DFMCLASS. */
/* */
/* */
IF &JOB = ’GDEDFM’ AND &STORCLAS = ’’ THEN

DO
SET &STORCLAS = ’DFMCLASS’

/* DEBUGGING STATEMENT FOLLOWS. REMOVE IT WHEN ROUTINE IS OK. */
WRITE ’STORCLAS SET TO ’&STORCLAS’ FOR DFM’
EXIT CODE(0)

END
/* */
/* */

Figure 19. Storage Class Routine

Chapter 3. Customizing z/OS for Distributed FileManager 47

tpname
The name of the DFM TP profile, which is always ^X'07'001 (see “Adding
the TP Profile to the VSAM KSDS” on page 35)

Defining the Distributed FileManager TP Profile to RACF
The following example defines to RACF the DFM TP profile name (^X'07'001) in
the RACF APPCTP class:

RDEFINE APPCTP TOKEN1.SYSTEM.^X’07’001 UACC(NONE)

Defining a TP Administrator to RACF
The following example defines to RACF the user ID ADMIN01 with update access
to the DFM TP profile:

PERMIT TOKEN1.SYSTEM.^X’07’001 CLASS (APPCTP) ID (ADMIN01) ACCESS(UPDATE)

Defining a User ID to RACF
The following example defines to RACF the user ID DFMUSER with authorization
to execute the DFM TP:

PERMIT TOKEN1.SYSTEM.^X’07’001 CLASS (APPCTP) ID (DFMUSER) ACCESS(EXECUTE)

Implementing RACF Access Protection for TP
To implement RACF protection as defined in the APPCTP profile, you must
activate in RACF the APPCTP class and SETROPTS RACLIST for the class. For
example:

SECTROPTS CLASSACT(APPCTP) RACLIST(APPCTP)

For more detailed information about using RACF to control DFM TP access, see
z/OS MVS Planning: APPC/MVS Management.

48 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Chapter 4. Operating Distributed FileManager

This chapter is about operating Distributed FileManager (DFM) on a z/OS system.
It covers procedures for starting up the DFM environment on z/OS and for
monitoring and controlling the status of DFM conversations.

For more information, see z/OS MVS Planning: APPC/MVS Management.

Starting the Distributed FileManager Environment
Starting the DFM environment requires that computer operations run procedures
to start APPC/MVS, the APPC/MVS transaction scheduler, and DFM.

APPC/MVS and the transaction scheduler must be started before starting DFM. To
automate these procedures at initial program load (IPL), you can add the startup
commands to the system PARMLIB member COMMNDxx (for example,
SYS1.PARMLIB(COMMNDxx)).

Starting APPC/MVS
The startup parameters for APPC/MVS are in system PARMLIB member
APPCPMxx. These parameters define the local LU to be used for APPC/MVS.
They associate the LU with an APPC/MVS transaction scheduler and the DFM TP
profile. See “Defining PARMLIB Start Parameters for APPC/MVS” on page 34 for
more details.

The following command starts up APPC/MVS:
START APPC,SUB=MSTR,APPC=xx
where xx is the unique APPCPMxx suffix

Starting the APPC/MVS Transaction Scheduler
The APPC/MVS transaction scheduler initiates and schedules TPs in response to
inbound allocate requests. The system PARMLIB member ASCHPMxx controls the
transaction scheduler for the DFM TP. For more information about creating
ASCHPMxx, see “Defining PARMLIB Start Parameters for the APPC/MVS
Scheduler” on page 37.

The following command starts up the APPC/MVS transaction scheduler:
START ASCH,SUB=MSTR,ASCH=xx
where xx is the unique ASCHPMxx suffix

Starting Up Distributed FileManager
System PROCLIB member DFM contains the procedure for starting up
&mvsdfmtemp (see “Activating Distributed FileManager in System PROCLIB” on
page 44). DFM must be active prior to APPC/MVS initiating a conversation.

The following command starts DFM:
START DFM,SUB=MSTR

Triggering the Distributed FileManager DataAgent
A DFM for z/OS DataAgent can only be triggered from an SdU application or a
DDM application that is written to call the DataAgent from a client workstation.

© Copyright IBM Corp. 1993, 2013 49

IBM provides sample DataAgent routines, DFMXAGNT, DFMQTSO, DFMXSORT,
and DFMXTSO that you can execute. You can also use these routines as examples
to help write your own DataAgent routines. Your SdU application or DDM
application uses the DDMOpen function to trigger the DataAgent processing on
z/OS and it uses the DDMClose function to terminate the DataAgent processing.

Monitoring Status of Distributed FileManager Conversations
APPC/MVS provides the DISPLAY command for monitoring the status of
APPC/MVS conversations. The DISPLAY APPC command gives status information
about TPs and LUs. The DISPLAY ASCH command gives status information about
APPC/MVS transaction schedulers. “Using the DISPLAY APPC Command”
provides examples of using these commands.

Using the DISPLAY APPC Command
These are examples of using the DISPLAY APPC command.

Displaying TP Status Information
These examples use the DISPLAY APPC command to return selected TP status
information about the following:
v DFM TP:

DISPLAY APPC,TP,LIST,LTPN=^X’07’001

v TPs scheduled by ASCH:
DISPLAY APPC,LIST,SCHED=ASCH

v DFM TP in a particular address space:
DISPLAY APPC,LIST,ASID=asid
where asid is the hexadecimal address space identifier

v TPs activated by a specific user ID:
DISPLAY APPC,LIST,USERID=userid

Displaying LU Status Information
These examples use the DISPLAY APPC command to return selected LU status
information about the following:
v A local LU:

DISPLAY APPC,LU,LIST,LLUN=lluname
where lluname is the name of a local LU

v All LUs (includes detailed information about local and partner LUs):
DISPLAY APPC,LU,ALL

Using the DISPLAY ASCH Command
These examples use the DISPLAY ASCH command to return selected status
information about ASCH:
v Summary of ASCH transaction scheduling information (includes summary of all

APPC/MVS transaction scheduling activity):
DISPLAY ASCH,SUMMARY

v DFM TP scheduling information:
DISPLAY ASCH,LIST,ASID=001E
where 001E is the hexadecimal address space identifier for
the Distributed FileManager TP

v TPs scheduled by a specific user ID:
DISPLAY ASCH,LIST,USERID=userid

50 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Controlling Status of Distributed FileManager Conversations
This discussion covers the following ways for controlling the status of DFM
conversations:
v Deactivating the DFM TP
v Stopping a local LU with the SET command
v Stopping DFM with the CANCEL command
v Using the FORCE command

Deactivating the Distributed FileManager TP
You can deactivate the DFM TP by modifying its TP profile. Using the TPMODIFY
command in the APPC/MVS administration utility (ATBSDFMU), you can stop the
DFM TP from being scheduled and stop new requests for the TP.

The TPMODIFY command lets you change the active status of the DFM TP to NO
in the TP profile data set. If the DFM TP is running at the time, then the current
and any queued requests are allowed to complete. No new requests, however, are
allowed.

This is an example of using the TPMODIFY command to deactivate the DFM TP:
TPMODIFY
TPNAME(^X’07’001)
SYSTEM
ACTIVE(NO)

For more information, see z/OS MVS Planning: APPC/MVS Management.

Stopping a Local LU with the MVS SET Command
You can stop work from coming into a local LU by using the MVS™ SET command
to delete an LU from the APPC/MVS configuration. Use this method to:
v Stop an LU that is not functioning properly (for example, because of a VTAM

error)
v Stop TPs defined in a TP profile data set that uses one or more LUs
v Stop a TP scheduler

To stop an LU by using the SET command:
1. Code system PARMLIB member APPCPMxx with the command to delete the

LU. For example, to delete an LU named MYLU, code PARMLIB member
APPCPM1D as follows:

LUDEL
ACBNAME(MYLU)

2. After coding APPCPM1D, issue this command to stop the LU:
SET APPC=1D

For more information about deleting LUs, see z/OS MVS Planning: APPC/MVS
Management.

Stopping DFM for z/OS with the MVS CANCEL Command
You can use the MVS CANCEL command to immediately stop the DFM TP in a
particular address space. It can also be used to immediately stop the DFM startup

Chapter 4. Operating Distributed FileManager 51

procedures APPC/MVS, ASCH, and DFM. If the CANCEL command is not
successful, try the FORCE command (see “Using the FORCE Command”).

Stopping the Distributed FileManager TP
This example stops both the DFM TP and any associated APPC/MVS conversation:
1. First use this command to find out the jobname and address space identifier

(ASID) for your DFM TP:
DISPLAY ASCH,ALL,LTPN=^X’07’001
where ^X’07’001 is the Distributed FileManager TP profile name

2. Suppose that the jobname is GDEDFM and the ASID is 0044. Use this
information as shown to immediately stop the DFM TP:

CANCEL GDEDFM,A=0044

Stopping APPC/MVS, ASCH, and DFM
The following examples stop APPC/MVS, ASCH, and DFM:

CANCEL APPC
CANCEL ASCH
CANCEL DFM

You should consider the following before using the CANCEL command:
v Before cancelling DFM, first cancel all jobs servicing APPC/MVS conversations,

for example JOBNAME GDEDFM. Otherwise, the jobs abend when they try to
access DFM resources.

v Each time DFM is cancelled, the system marks the address space in which it was
running as nonreusable until the next IPL.

v Cancelling APPC, ASCH, or DFM immediately ends all TPs and scheduling
activity for APPC/MVS, which could have serious repercussions.

Note: 13E abends can occur during CANCEL command processing. These abends
are perfectly normal and do not interfere with the CANCEL command processing.

Using the FORCE Command
If the CANCEL command is not successful, you can try the MVS FORCE command
to stop the DFM TP. Using the FORCE command can, however, result in loss of
resources until the system is re-IPLed.

In this example, the FORCE command is used to stop a DFM TP with jobname
GDEDFM and an ASID of 0044:

FORCE GDEDFM,A=0044

52 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Appendix A. System Samples

This appendix documents:
v The system SAMPLIB and PROCLIB samples related to customizing z/OS for

the Distributed FileManager environment
v A sample of the PPT entries for Distributed FileManager
v The DFM DataAgent DFMACALL.C sample

System SAMPLIB Samples
The following are system SAMPLIB samples that are referred to in Chapter 3,
“Customizing z/OS for Distributed FileManager,” on page 31.

GDEAPPC
System SAMPLIB member GDEAPPC, for example, SYS1.SAMPLIB(GDEAPPC),
contains the sample shown in Figure 20 of the APPC/MVS start parameters.

GDEAPDEF
System SAMPLIB member GDEAPDEF, for example, SYS1.SAMPLIB(GDEAPDEF),
contains the sample shown in Figure 21 on page 54 of a VTAM APPL definition in

/* START OF SPECIFICATIONS ***/
/* */
/*01* MEMBER-NAME: GDEAPPC */
/* */
/*02* DESCRIPTIVE-NAME: DFSMS DISTRIBUTED FILEMANAGER SAMPLE TO */
/* DEFINE A LOCAL LU TO APPC/MVS */
/* */
/*01* DISCLAIMER = */
/* */
/* THIS SAMPLE SOURCE IS PROVIDED FOR TUTORIAL PURPOSES ONLY. A */
/* COMPLETE HANDLING OF ERROR CONDITIONS HAS NOT BEEN SHOWN OR */
/* ATTEMPTED, AND THIS SOURCE HAS NOT BEEN SUBMITTED TO FORMAL IBM */
/* TESTING. THIS SOURCE IS DISTRIBUTED ON AN ’AS IS’ BASIS */
/* WITHOUT ANY WARRANTIES EITHER EXPRESSED OR IMPLIED. */
/* */
/* */
/*01* FUNCTION: */
/* THIS SAMPLE MEMBER DEFINES AN LU TO APPC, ALONG WITH A VSAM */
/* DATASET FOR TP PROFILES AND A SECOND ONE FOR SIDE INFORMATION */
/* */
/* */
/*01* DISTRIBUTION LIBRARY: ASAMPLIB */
/* */
/*01* CHANGE-ACTIVITY: */
/* */
/* FLAG LINEITEM FMID DATE ID COMMENT */
/* $L0=GDEAPPC HDZ11B0 931009 DFSMS 1.2.0 DISTRIBUTED FILEMANAGER */
/* SAMPLE TO ADD A LOCAL LU TO APPC/MVS */
/* */
/* */
/***/
LUADD ACBNAME(MVSLU01) BASE TPDATA(SYS1.APPCTP)
SIDEINFO DATASET(SYS1.APPCSI)

Figure 20. APPC/MVS Start Parameters

© Copyright IBM Corp. 1993, 2013 53

VTAMLST.

GDEASCH
System SAMPLIB member GDEASCH, for example, SYS1.SAMPLIB(GDEASCH),
contains the sample shown in Figure 22 on page 55 of start parameters for the
APPC/MVS scheduler (ASCH).

/ START OF SPECIFICATIONS ***
* *
01 MEMBER-NAME: GDEAPDEF *
* *
02 DESCRIPTIVE-NAME: SAMPLE VTAM APPL STATEMENT FOR APPC/MVS *
* NECESSARY TO RUN DFSMS DISTRIBUTED FILEMANAGER *
* *
* 01* DISCLAIMER = *
* *
* THIS SAMPLE SOURCE IS PROVIDED FOR TUTORIAL PURPOSES ONLY. A *
* COMPLETE HANDLING OF ERROR CONDITIONS HAS NOT BEEN SHOWN OR *
* ATTEMPTED, AND THIS SOURCE HAS NOT BEEN SUBMITTED TO FORMAL IBM *
* TESTING. THIS SOURCE IS DISTRIBUTED ON AN ’AS IS’ BASIS *
* WITHOUT ANY WARRANTIES EITHER EXPRESSED OR IMPLIED. *
* *
* *
01 FUNCTION: THIS APPL STATEMENT IDENTIFIES APPC/MVS AS A VTAM *
* APPLICATION, WITH ONE ACB DEFINED FOR LU MVSLU01. *
* *
* *
01 DISTRIBUTION LIBRARY: ASAMPLIB *
* *
01 CHANGE-ACTIVITY: *
* *
* FLAG LINEITEM FMID DATE ID COMMENT *
* $L0=GDEAPDEF HDZ11B0 931009 DFSMS 1.2.0 DISTRIBUTED FILEMANAGER *
* SAMPLE VTAM APPL DEFINITION *
* *

MVSLU01 APPL ACBNAME=MVSLU01, C

APPC=YES, C
AUTOSES=0, C
DDRAINL=NALLOW, C
DMINWNL=5, C
DMINWNR=5, C
DRESPL=NALLOW, C
DSESLIM=10, C
LMDENT=19, C
MODETAB=LOGMODES, C
PARSESS=YES, C
SECACPT=CONV, C
SRBEXIT=YES, C
VPACING=1

Figure 21. VTAM APPL Definition in VTAMLST

54 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

DFM00
System SAMPLIB member DFM00, for example, SYS1.SAMPLIB(DFM00), contains
the sample shown in Figure 23 of the startup parameters for Distributed
FileManager.

/** START OF SPECIFICATIONS **/
/* */
/*01*MEMBER-NAME: GDEASCH */
/* */
/*02* DESCRIPTIVE-NAME: SAMPLE ASCH START PARAMETER STATEMENTS */
/* NECESSARY TO RUN DFSMS DISTRIBUTED FILEMANAGER*/
/* */
/*01* DISCLAIMER = */
/* */
/* THIS SAMPLE SOURCE IS PROVIDED FOR TUTORIAL PURPOSES ONLY. A */
/* COMPLETE HANDLING OF ERROR CONDITIONS HAS NOT BEEN SHOWN OR */
/* ATTEMPTED, AND THIS SOURCE HAS NOT BEEN SUBMITTED TO FORMAL IBM */
/* TESTING. THIS SOURCE IS DISTRIBUTED ON AN ’AS IS’ BASIS */
/* WITHOUT ANY WARRANTIES EITHER EXPRESSED OR IMPLIED. */
/* */
/*01* FUNCTION: */
/* THIS PARMLIB MEMBER SETS UP A SCHEDULER CLASS. */
/* */
/*01* DISTRIBUTION LIBRARY: ASAMPLIB */
/* */
/*01* CHANGE-ACTIVITY: */
/* */
/*FLAG LINEITEM FMID DATE ID COMMENT */
/* $L0=GDEASCH HDZ11B0 931009 DFSMS 1.2.0 DISTRIBUTED FILEMANAGER */
/* SAMPLE ASCH START PARAMETERS */
/* */
/***/
CLASSADD CLASSNAME(A)

MSGLIMIT(1000) MAX(10) MIN(1) RESPGOAL(1)

Figure 22. ASCH Start Parameter Statements to Run DFM

DFM CCSID(0)
CLOSE_CHECK_INTV(0)
DEFER_CLOSE_TIME(0)
LOCK_RETRY(3)
LOCK_WAIT_INTV(20)
LOGICAL_CACHE(1024)
MAX_AGENT_TSKS(5)
MAX_CONV_LOCK(5)
RESTRICT_START(YES)
STREAM_LRECL(8196)
SEND_BUFFER_THRESHOLD(100)

/* Uncomment the next lines to provide allocation defaults if */
/* non-SMS files are to be created by DFM. Remove or comment them */
/* out again once SMS allocation is in use. */

/* PRIMARY(100) SECONDARY(50) */
/* UNIT(SYSALLDA) */
/* VOLUME(xxxxxx) */

Figure 23. Startup Parameters for Distributed FileManager

Appendix A. System Samples 55

GDELOGMD
System SAMPLIB member GDELOGMD, for example,
SYS1.SAMPLIB(GDELOGMD), contains the sample shown in Figure 24 of a VTAM
logon mode table that contains the logon mode entry for Distributed FileManager.

*** START OF SPECIFICATIONS **
* *
01 MEMBER-NAME: GDELOGMD *
* *
02 DESCRIPTIVE-NAME: SAMPLE VTAM LOGMODE TABLE *
* *
* *
* 01* DISCLAIMER = *
* *
* THIS SAMPLE SOURCE IS PROVIDED FOR TUTORIAL PURPOSES ONLY. A *
* COMPLETE HANDLING OF ERROR CONDITIONS HAS NOT BEEN SHOWN OR *
* ATTEMPTED, AND THIS SOURCE HAS NOT BEEN SUBMITTED TO FORMAL IBM *
* TESTING. THIS SOURCE IS DISTRIBUTED ON AN ’AS IS’ BASIS *
* WITHOUT ANY WARRANTIES EITHER EXPRESSED OR IMPLIED. *
* *
01 FUNCTION: *
* THIS TABLE IS AN EXAMPLE OF A VTAM LOGMODE TABLE NECESSARY *
* TO BE INSTALLED ON MVS HOST TO RUN DFSMS DISTRIBUTED *
* FILEMANAGER. *
* *
01 DISTRIBUTION LIBRARY: ASAMPLIB *
* *
01 CHANGE-ACTIVITY: *
* *
* FLAG LINEITEM FMID DATE ID COMMENT *
* $L0=GDELOGMD HDZ11B0 931009 DFSMS 1.2.0 DISTRIBUTED FILEMANAGER *
* SAMPLE VTAM LOGON MODE TABLE. *
* *
**
* *
LOGMODES MODETAB

EJECT
**

TITLE ’SNASVCMG’
**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* REQUIRED FOR LU MANAGEMENT *
**
SNASVCMG MODEENT LOGMODE=SNASVCMG,FMPROF=X’13’,TSPROF=X’07’, *

PRIPROT=X’B0’,SECPROT=X’B0’,COMPROT=X’D0B1’, *
RUSIZES=X’8585’,ENCR=B’0000’, *
PSERVIC=X’060200000000000000000300’

**

Figure 24. VTAM Logon Mode Table Part 1 of 2

56 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

GDETPDEF
System SAMPLIB member GDETPDEF, for example, SYS1.SAMPLIB(GDETPDEF),
contains the sample shown in Figure 26 on page 58 of adding the Distributed
FileManager TP profile to the APPC/MVS TP profile data set.

Note: The GDEDFM job in GDETPDEF should have either no region size or a
region size of 0K to contain cached stream files. LE is required to use CDRA, if LE
is installed and is not in the link list, SYS1.PROCLIB(DFM) and
SYS1.SAMPLIB(GDETPDEF) should be modified so their STEPLIB DD statements
refer to the proper LE run time library. Refer to DFMREADM in SYS1.SAMPLIB
for details. SYSOUT and CDRATRC files can be allocated as RECFM=FBA,
LRECL=133, and DSORG=PS for use in diagnosing CDRA problems.

TITLE ’QPCSUPP’
**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* REQUIRED FOR LU MANAGEMENT *
**
QPCSUPP MODEENT LOGMODE=QPCSUPP,FMPROF=X’13’,TSPROF=X’07’, *

PRIPROT=X’B0’,SECPROT=X’B0’,COMPROT=X’D0B1’, *
RUSIZES=X’8585’,ENCR=B’0000’, *
PSERVIC=X’060200000000000000000300’

**
TITLE ’APPCPCLM’

**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* FOR PC TARGET *
* IN THIS EXAMPLE THE DEFAULT RU SIZE FOR OS/2 (1024) IS USED *
**
APPCPCLM MODEENT LOGMODE=APPCPCLM, *

RUSIZES=X’8787’, *
SRCVPAC=X’00’, *
SSNDPAC=X’01’

**
TITLE ’APPCHOST’

**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* FOR HOST TARGET *
* IN THIS EXAMPLE RU SIZE OF 4096 IS USED *
**
APPCHOST MODEENT LOGMODE=APPCHOST, *

RUSIZES=X’8989’, *
SRCVPAC=X’00’, *
SSNDPAC=X’01’

MODEEND
END

Figure 25. VTAM Logon Mode Table Part 2 of 2

Appendix A. System Samples 57

GDEPRTLU
System SAMPLIB member GDEPRTLU, for example, SYS1.SAMPLIB(GDEPRTLU),
contains the sample shown in Figure 28 on page 59 of a partner definition for a

//**
//* PROPRIETARY V2 STATEMENT
//* LICENSED MATERIALS - PROPERTY OF IBM
//* 5695-DF1 (C) COPYRIGHT 1994,1995 IBM CORP.
//* END PROPRIETARY V2 STATEMENT
//*
//**
//IBMUSER1 JOB ’GDETPDEF’,NOTIFY=IBMUSER,MSGCLASS=H
//**
//*
//* GDETPDEF - MVS/APPC setup for DFM: TP definition utility
//*
//* This job invokes the APPC/MVS administration utility to add
//* the TP profile to the APPC/MVS data set.
//*
//* It consists of a single job step that adds a MVS/DFM TP
//* to SYS1.APPCTP.
//*
//* Modify the above job statement as required and,
//* optionally, make the following modifications
//* to the job itself:
//*
//* change ’SYS1.APPCTP’ to another name if required by
//* your installation
//* change the DFMJOB card to one suitable for your installation
//* Note that you can alter the DD statements CDRATRC and SYSOUT
//* as needed to obtain CDRA API trace output and C runtime messages.
//**

Figure 26. MVS/APPC Setup for DFM: TP Definition Utility Part 1 of 2

//STEP EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDOUT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
//SYSIN DD DATA,DLM=XX

TPDELETE
TPNAME(^X’07’001)

TPADD
TPNAME(^X’07’001)
ACTIVE(YES)
TPSCHED_DELIMITER(##)

CLASS(A)
JCL_DELIMITER(ENDJCL)

//GDEDFM JOB MSGCLASS=H,MSGLEVEL=(1,1),CLASS=A
//GDEDFM EXEC PGM=GDEISASB
//* CHANGE THE STEPLIB STATEMENT AS REQUIRED IF YOUR INSTALLATION
//* DOES NOT HAVE THE LE RUNTIME DATA SET IN ITS LINK LIST.
//*STEPLIB DD DSN=SYS1.SCEERUN,DISP=SHR
//*CDRATRC DD DSN=SYS1.CDRATRC2,DISP=SHR <- CDRA API TRACE OUTPUT
//*SYSOUT DD DSN=SYS1.CDRAOUT2,DISP=SHR <- C RUNTIME MESSAGES
//SYSOUT DD DUMMY <- C RUNTIME MESSAGES (NO-OP)
ENDJCL
##
XX

Figure 27. MVS/APPC Setup for DFM: TP Definition Utility Part 2 of 2

58 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

DDM client system.

/ START OF SPECIFICATIONS ***
* *
01 MEMBER-NAME: GDEPRTLU *
* *
02 DESCRIPTIVE-NAME: SAMPLE VTAM PARTNER LU DEFINITION NECESSARY *
* TO RUN DFSMS DISTRIBUTED FILEMANAGER *
* *
* 01* DISCLAIMER = *
* *
* THIS SAMPLE SOURCE IS PROVIDED FOR TUTORIAL PURPOSES ONLY. A *
* COMPLETE HANDLING OF ERROR CONDITIONS HAS NOT BEEN SHOWN OR *
* ATTEMPTED, AND THIS SOURCE HAS NOT BEEN SUBMITTED TO FORMAL IBM *
* TESTING. THIS SOURCE IS DISTRIBUTED ON AN ’AS IS’ BASIS *
* WITHOUT ANY WARRANTIES EITHER EXPRESSED OR IMPLIED. *
* *
01 FUNCTION: THIS LU STATEMENT IDENTIFIES THE PARTNER LU *
* *
01 DISTRIBUTION LIBRARY: ASAMPLIB *
* *
01 CHANGE-ACTIVITY: *
* *
* FLAG LINEITEM FMID DATE ID COMMENT *
* $L0=GDEPRTLU HDZ11B0 931009 DFSMS 1.2.0 DISTRIBUTED FILEMANAGER *
* SAMPLE PARTNER LU DEFINITION *
* *

OS2PRTNR LU LOCADDR=0, *

ISTATUS=ACTIVE, *
MODETAB=LOGMODES, *
RESSCB=4

Figure 28. VTAM Partner LU Definition to Run DFSMS/DFM

Appendix A. System Samples 59

60 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Appendix B. DFMX0001

System SAMPLIB member DFMX0001, for example, SYS1.SAMPLIB(DFMX0001),
contains the sample shown in Figure 29, showing how to set up a procedure for
starting the DFM DataAgent.

//DFMX0001 JOB ,MSGCLASS=Z
//DFMX0001 PROC DFMINIT= <,optional_procedural_parameters>
//DFMAGENT EXEC PGM=&DFMINIT <,optional_program_parameters>
//*
//* This procedure is a sample showing how to set up a procedure
//* for starting a DFM DataAgent.
//*
//* DFM DataAgent processing requires a procedure (whose name is
//* the same as the agent name). The procedure has to run DFMINIT
//* and DFMINIT will call a DataAgent routine. The DataAgent routine
//* will default to the same name as the agent (or procedure) name
//* but can be the name of any executable program suitable for
//* running as a key 8 job step.
//*
//* For example, you could run this DataAgent routine with no
//* further setup by issuing the following SdU sample command
//* from a workstation:
//* dfmacall agent x:filename dfmx0001 pgm iefbr14
//*
//* DFMINIT is DFM’s DataAgent routing module and should not
//* be changed. Other DD statements and symbolic
//* substitutions can be added as needed by the DataAgent
//* program itself.
//*
//* This example is intended to discard the output by routing
//* it to MSGCLASS of Z. You should modify it as appropriate
//* for your installation. If you do not purge output, the
//* operator will have to periodically have to issue the $ps
//* command.
//*
//* Add additional DD statements as required by your program.
//*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DFMX0001 PEND
//GO EXEC DFMX0001

Figure 29. Starting the DFM DataAgent

© Copyright IBM Corp. 1993, 2013 61

62 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Appendix C. DFMXAGNT

System SAMPLIB member DFMXAGNT, for example,
SYS1.SAMPLIB(DFMXAGNT) shown in Figure 30, contains the DFM DataAgent
sample routine.

/***
* PROPRIETARY V3 STATEMENT *
* LICENSED MATERIALS - PROPERTY OF IBM *
* 5695-DF1 *
* (C) COPYRIGHT 1997 IBM CORP. *
* END PROPRIETARY V3 STATEMENT *
***/

/***
* *
* $MOD(DFMXAGNT) COMP(5695-DF120) *
* *
* MODULE NAME: DFMXAGNT *
* *
* DESCRIPTION: DFM DataAgent Sample Routine *
* *
* STATUS: Version 1 Release 4.0 (DFSMS) *
* *
* COPYRIGHT: See the copyright statement on the previous page.*
* *
* FUNCTION: This module illustrates how a DFM DataAgent can *
* be written in C. It gets control at file declaration time *
* and sets the reason code so that it will also get control *
* when the file declaration is deleted. Its sole function is *
* to issue printf statements displaying the parameters if its *
* internal debug flag is set. *
* *
* You can use the C compiler and your installation’s linkedit *
* JCL to build the DFMXAGNT executable code on the mainframe. *
* *
* You can then copy DFMX0001 to produce a proclib *
* member (proclib member name is also referred to as the *
* DFM DataAgent name). You could then invoke the DataAgent *
* by means of the DFMACALL sample application provided by *
* SdU. (An analogous procedure is given by the installation *
* sample DFMXSRTI but in this case you might call the load *
* module DFMXAGNT and copy DMFX0001 to build PROCLIB(DFMXAGNT) *
* so that "dfmacall agent x:filename dfmxagent" could be used *
* to invoke it from the workstation.) *
* *
* An installation sample is not provided in order to *
* demonstrate that the manual process as outlined above is *
* straight-forward and because this sample would probably not *
* be used without significant changes anyway. *
* *

Figure 30. DFM DataAgent Sample Routine Part 1 of 5

© Copyright IBM Corp. 1993, 2013 63

* PROCESSING: *
* *
* LOGIC: *
* Refer to block comments in the code. *
* *
* ERROR PROCESSING: *
* Issue a printf and then return with register 15 set to a *
* non-zero value and with the reason code in the extended *
* parameter list set to a unique value. *
* *
* NOTES: *
* *
* PATCH SPACE: None *
* XAX CONSIDERATIONS: AMODE(31) RMODE(ANY) ENV(PRI) *
* DEPENDENCIES: The Language Environment and the C runtime *
* library must be installed. *
* RESTRICTIONS: None *
* REGISTER CONVENTIONS: Standard conventions--refer to C *
* compiler documentation. *
* SERIALIZATION: No serialization techniques are used by this *
* module. *
* *
* MODULE TYPE: Procedure *
* PROCESSOR: C *
* ATTRIBUTES: *
* TYPE: Reentrant *
* PRIMARY ASID: Caller’s ASID *
* SECONDARY ASID: Same as primary *
* HOME ASID: Same as primary *
* MODE: Task *
* KEY: 8 *
* STATE: Problem program *
* LOCATION: Link library *
* *
* ENTRY POINT: main *
* *
* PURPOSE: Show that a DataAgent routine can be written in C. *
* LINKAGE: Called by Distributed FileManager. *
* INPUT/OUTPUT: Refer to the DFM Guide and Reference for the *
* parameter list format. *
* *
* MESSAGES: Refer to printf statements. *
* *
* EXIT NORMAL: *
* RETURN CODE: Register 15 = 0 *
* REASON CODE: Not applicable *
* MESSAGE ID: None: *

Figure 31. DFM DataAgent Sample Routine Part 2 of 5

64 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

* *
* EXIT ERRORS: *
* RETURN CODE: Register 15 = 8 *
* REASON CODE: Unique values set in the extended parameter *
* list *
* MESSAGE ID: See printf statements. *
* *
* EXTERNAL REFERENCES: None *
* *
* CHANGE ACTIVITY: *
* $L0=DFSMS14,HDZ11D0,960628,SJPLMMR: DFM DataAgent initial code *
***/
#pragma csect (static, "DFMXAGN")
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <ctype.h>
#include <string.h>

#pragma csect (code, "DFMXAGNT")

int main(argc, argv)
int argc; /* count of input parameters */
char **argv; /* input parameters */

{
int i; /* loop counter */
char dsname??(55??); /* data set name area */
int debug = 1; /* debug flag */

/**/
/* Define additional parameter for DataAgent special processing */
/**/
_Packed struct extra_parms {

short int extra_parms_len; /* length of extra parms */
/**/
/* Basic section of the extra parameter structure */
/**/
unsigned short int reserved; /* reserved field */
unsigned short int command_cp; /* command code point */
unsigned short int object_cp; /* object code point */
unsigned short int ofn_len; /* original filename length */

char ofn??(54??); /* original filename */
unsigned short int cfn_len; /* current/modified filename len */

char cfn??(54??); /* current/modified filename */
signed long int reason_code1; /* main reason code */
signed long int reason_code2; /* secondary reason code */

Figure 32. DFM DataAgent Sample Routine Part 3 of 5

Appendix C. DFMXAGNT 65

/**/
/* Any additions to the extra parameter structure in */
/* future DFSMS releases would go here. */
/**/

} ep_area; /* extra parameters for DataAgent */
/* Define extra parameter instance */
struct extra_parms *p_extra;

/**/
/* Begin DataAgent routine processing. */
/**/
if (debug) {

/**/
/* Display input parameters for debugging purposes. */
/**/
printf ("DFMXAGNT: DataAgent routine entered.\n");
if (argc > 0) {

/**/
/* Display standard parameters and the program name. */
/**/
printf(" \n");
printf ("Parameters passed were the following:\n");
{
for (i = 1; i < argc; i++)

printf (" %s\n",argv??(i??));
}
/**/
/* DataAgent has access to an extra parameter list in addition*/
/* to the standard format MVS parameter list. This parameter */
/* list is defined by the structure agent_parms. */
/**/
/* Locate the extra parameters. */
/**/

DFMXLPRM("DFMXAGNT",&p_extra);
if (p_extra == NULL) {

/**/
/* No parameters--something went wrong. */
/**/
printf ("DFMXAGNT: No DataAgent parameters!!\n");
return 8; /* exit with error */

}

Figure 33. DFM DataAgent Sample Routine Part 4 of 5

66 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

if (p_extra->extra_parms_len >= sizeof(ep_area)) {
/**/
/* Print the basic section of the extra parameter list. */
/**/
printf (" \n");
printf ("Extra DataAgent parameters were:\n");
printf (" DDM command code point: %X\n",p_extra->command_cp);
printf (" DDM object code point: %X\n",p_extra->object_cp);
printf (" DDM current filename length: %d\n",

p_extra->cfn_len);
printf (" DDM current filename: %s\n",

strncpy(dsname, p_extra->cfn, p_extra->cfn_len));
printf (" DDM original filename length: %d\n",

p_extra->ofn_len);
printf (" DDM original filename: %s\n",

strncpy(dsname, p_extra->ofn, p_extra->ofn_len));
/**/
/* Force recall of the exit (for DELDCL, etc.) */
/**/
p_extra->reason_code1 = -1;

} /* End, basic section exists */
} /* End, parameters exist */
else {

/**/
/* No parameters--something went wrong. */
/**/
printf ("DFMXAGNT: No parameters?\n");
p_extra->reason_code1 = 2; /* set reason code */
return 8; /* exit with error */

} /* End of missing parameters */
} /* End of input parameter display */
/**/
/* Any further DataAgent routine processing would go here. */
/**/
return 0;

}

Figure 34. DFM DataAgent Sample Routine Part 5 of 5

Appendix C. DFMXAGNT 67

68 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Appendix D. DFMXSORT

System SAMPLIB member DFMXSORT, for example, SYS1.SAMPLIB(DFMXSORT)
shown in Figure 35, shows how a DFM DataAgent can be written in assembler
language to invoke SORT.

TITLE ’DFMXSORT - DFM DataAgent Sort Sample’
*/**
*/*PROPRIETARY V3 STATEMENT *
*/*LICENSED MATERIALS - PROPERTY OF IBM *
*/*5695-DF1 *
/(C) COPYRIGHT 1997 IBM CORP. *
*/*END PROPRIETARY V3 STATEMENT *
*/**
*/**
/ *
/ $MOD(DFMXSORT) COMP(5695-DF120) *
/ *
/ MODULE NAME: DFMXSORT *
/ *
/ DESCRIPTION: DFM DataAgent Sample Routine (SORT) *
/ *
/ STATUS: Version 1 Release 4.0 (DFSMS) *
/ *
/ COPYRIGHT: See copyright statement on previous page *
/ *
/ FUNCTION: This module illustrates how a DFM DataAgent can *
/ be written in assembler language to invoke SORT. It is *
/ implemented with a basic function that assumes the input *
/ filename matches the SORTIN DD statement. It changes the *
/ filename from SORTIN to SORTOUT so that any retrieval through *
/ DFM will retrieve the sorted data rather than the original. *
/ *
/ Code commentary is provided to show how the *
/ function could be extended to use the input filename for *
/ dynamic allocation and to derive an output filename. The *
/ commentary also discusses how this DataAgent could request *
/ that it be called again at file close time to access and *
/ possibly write the output file’s data to the original file. *
/ *
/ PROCESSING: *
/ *
/ LOGIC: *
/ Refer to block comments in the code. *
/ *
/ ERROR PROCESSING: *
/ Issue a WTO and then return with register 15 set to a *
/ non-zero value and with the reason code set to a unique *
/ value. SORT error messages will be in the JOBLOG. *
/ *

Figure 35. DFM DataAgent Sort Sample Part 1 of 7

© Copyright IBM Corp. 1993, 2013 69

/ NOTES: *
/ *
/ PATCH SPACE: None *
/ XAX CONSIDERATIONS: AMODE(31) RMODE(ANY) ENV(PRI) *
/ DEPENDENCIES: None *
/ RESTRICTIONS: None *
/ REGISTER CONVENTIONS: Standard *
/ SERIALIZATION: No serialization techniques are used by this *
/ module. *
/ *
/ MODULE TYPE: Procedure *
/ PROCESSOR: z/OS Assembler *
/ ATTRIBUTES: *
/ TYPE: Not reentrant *
/ PRIMARY ASID: Caller’s ASID *
/ SECONDARY ASID: Same as primary *
/ HOME ASID: Same as primary *
/ MODE: Task *
/ KEY: 8 *
/ STATE: Problem program, non-APF-authorized *
/ LOCATION: Link library *
/ *
/ ENTRY POINT: DFMXSORT *
/ *
/ PURPOSE: Show that a DataAgent routine can invoke SORT. *
/ LINKAGE: Called by Distributed FileManager. *
/ INPUT: Refer to the DFM Guide and Reference for a general *
/ description of the parameter list format. *
/ *
/ MESSAGES: Refer to WTO statements. *
/ *
/ EXIT NORMAL: *
/ *
/ RETURN CODE: Register 15 = 0 *
/ REASON CODE: Not applicable *
/ MESSAGE ID: None: *
/ *
/ EXIT ERRORS: *
/ *
/ RETURN CODE: Register 15 = 8 *
/ REASON CODE: Unique values set in the extended parameter *
/ list *
/ MESSAGE ID: See WTO statements. *
/ *
/ EXTERNAL REFERENCES: None *
/ *
/ CHANGE ACTIVITY: *
/ $L0=DFSMS14,HDZ11D0,960628,SJPLMMR: DFM DataAgent initial code *
*/**
DFMXSORT AMODE 31
DFMXSORT RMODE ANY
DFMXSORT CSECT

Figure 36. DFM DataAgent Sort Sample Part 2 of 7

70 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

* This program is used as a DataAgent routine to get control *
* when a workstation’s SdU application opens a remote MVS file *
* with a filename suffix specifying "agent(dfmxsort)". The file is *
* assumed to be in the format of the sample file created earlier. *
* The input file is sorted and the filename is then changed to the *
* filename of the sort output file. This results in the SdU *
* application’s retrieving a sorted subset of the records as if *
* they came from the original file. *
* *
* An alternative invocation method is provided by SdU through *
* the DFMACALL sample application. Refer to it for details. *
* *
* The reason code can be set to -1 to force entry at the file’s *
* delete declaration time when adding extended function. *

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
RTN EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

SAVE (14,12) SAVE REGISTERS
BALR 12,0 BRANCH AND LINK REG.
USING *,12 USE REG 12
ST 13,SAVEAREA+4 SAVE BACKWARD POINTER
LA 14,SAVEAREA SET FORWARD PT.ER IN CALLER SAVE AREA
ST 14,8(13)
LR 13,14 SET OUR SAVE AREA

--
* Determine whether we are defining or deleting the file *
* declaration (i.e. previous to OPEN or after CLOSE). *
--

LR R3,R1 Save original parameter pointers
SR R15,R15 Clear error code
USING INPARMS,R3 Address of MVS parameter list
L R4,EXTPARMP Point to DFM DataAgent parameters
USING EXTPARMS,R4 Base of DFM DataAgent parameters
CLC EXTOBJCP,FILNAM Is file being processed?
BNE EXIT No, exit

Figure 37. DFM DataAgent Sort Sample Part 3 of 7

Appendix D. DFMXSORT 71

--
* Called for a file–see whether declaration or delete *
* declaration. *
--

CLC EXTCMDCP,DCLFIL Is file being declared?
BE DODCLFIL Yes, process DCLFIL.
CLC EXTCMDCP,DELDCL Is file declaration being deleted?
BE DODELDCL Yes, process DELDCL.

--
* Unknown command type *
--

WTO ’DFMXSORT: Unknown command code.’
LA R15,12
B EXIT

*
--
* DCLFIL Processing *
--
DODCLFIL EQU *
--
* Enhanced function: *
* Set sort input filename from input filename. *
* Set sort output filename to input filename. *
* If output filename is greater than 40 characters then do. *
* Locate last component of filename. *
* If last component of filename is < 4 then *
* Locate last 2 components of filename. *
* If last component(s) are equal to ".SRT" then *
* Replace last component(s) with ".SR2". *
* Else *
* Replace last component(s) with ".SRT". *
* end. *
* Else *
* Append ".SRT" to output filename. *
* Allocate sort input as DISP=SHR. *
* Allocate sort output as DISP=(NEW,CATLG). *
--
--
* Invoke DFSORT with 31-bit parameter list *
--

LR R1,R3 Fetch address of std parm list
MVC EXTPARMP,=F’-1’ End of list
LINK EP=SORT Invoke DFSORT
LTR R15,R15 Check for SORT failure
BNZ SORTERR Branch if error

*
--
* Enhanced function: *
* Set modified filename generated for output file allocation. *
* Set reason code to -1 to force recall for DELDCL. *
--
*

Figure 38. DFM DataAgent Sort Sample Part 4 of 7

72 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

--
* Return modified filename and filename length to DFM. *
--

LH R2,EXTOFNLN Get original (input) name length
CH R2,MAXIFNLN Ensure maximum is not exceeded
BH OFNISOK Branch–file name is left alone
CH R2,MINIFNLN Ensure minimum is met
BL OFNISOK Branch–file name is left alone
LA R1,EXTOFN Point to beginning of orig fn
AR R1,R2 Point to end
LH R15,MINIFNLN Get length of trigger in name
SR R1,R15 Backup to where trigger appears
BCTR R15,0 Decrement for execute
EX R15,COMPNAME Compare last part of name
BNE OFNISOK Branch–no trigger at name end

* Original file name meets qualifications–modify file name.
LA R3,EXTMFN Set pointer to modified file name.
LR R1,R2 Set length of filename.
SH R1,MINIFNLN Backup to trigger (=root end)
BCTR R1,0 Decrement for execute
EX R1,MOVENAME Move input name beginning to output
LA R1,1(R1) Restore length
AR R3,R1 Point to end of root
LH R15,MODIFLEN Get length of modifier
BCTR R15,0 Decrement for execute
EX R15,CHANGENM Change name to root + modifier
SH R2,MINIFNLN Decrement trigger length
AH R2,MODIFLEN Add modifier length
STH R2,EXTMFNLN Set output name length

OFNISOK EQU * Here if changed/no change to do
SR R15,R15 Exit with no error
B EXIT Exit DataAgent DCLFIL routine

COMPNAME CLC 0(0,R1),TRIGGER Compare name to trigger string
MOVENAME MVC EXTMFN(0),EXTOFN Move original name to modified name
CHANGENM MVC 0(0,R3),MODIFIER Move modifier string to end of name
*
--
* SORT error occurred–refer to JOBLOG for details. *
--
SORTERR EQU *

LR R2,R15 Save SORT code
ST R0,EXTRSNC2 Save SORT reason code
WTO ’DFMXSORT: SORT failure.’
LR R15,R2 Exit with error
B EXIT Exit DataAgent routine

*

Figure 39. DFM DataAgent Sort Sample Part 5 of 7

Appendix D. DFMXSORT 73

--
* DELDCL Processing *
--
DODELDCL EQU *

WTO ’DFMXSORT: Can delete IBMUSER.DFMXSORT.SORTOUT now.’
--
* Enhanced function: *
* Copy the changes to the permanent file. *
--

SR R15,R15 Exit with no error
B EXIT Exit with return code from Sort

--
* Exit *
--
EXIT EQU *

L 13,4(,13) GET RETURN ADDRESS
RETURN (14,12),RC=(15) RESTORE REGS,FLAG SAVEAREA,SET RC

SAVEAREA DC 18F’00’
LTORG

*
--
* Define input parameters. *
--
* In this case, the standard format MVS parameter list should be*
* a halfword length field followed by a DFSORT extended *
* parameter list. For example, Sort by ascending characters in *
* columns 17-22 is: *
* SORT FIELDS=(17,6,CH,A) *
--
*
--
* Constants for use with the DFM DataAgent extended parameters. *
--
DCLFIL DC X’102C’ Declare file command code point
DELDCL DC X’102D’ Delete declare file command code point
DRCNAM DC X’1165’ Directory is being declared
FILNAM DC X’110E’ File is being declared
--
* Local Constants *
--
MAXIFNLN DC H’53’ Maximum allowing for trigger->modifier
MINIFNLN DC H’6’ Minimum orig name len (= len of trigger)
TRIGGER DC CL6’SORTIN’ Trigger in input filename
MODIFLEN DC H’7’ Length of modifier
MODIFIER DC CL7’SORTOUT’ Modifier for output filename

Figure 40. DFM DataAgent Sort Sample Part 6 of 7

74 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

--
* Parameter list pointers. *
--
INPARMS DSECT
STDPARMP DS A(0) Ptr to standard format MVS parameter list
EXTPARMP DS A(0) Ptr to extended DFM parameter list
*
--
* Standard MVS parameter list for SORT usage. *
--
STDPARMS DSECT
STDPARML DS H Length of parameters
STDPARMC DS CL256 Standard parameter string
*
*
--
* Extended parameter list unique to DFM. *
--
EXTPARMS DSECT
EXTPARML DS H Length of parameters

DS H Reserved
EXTCMDCP DS H Command code point
EXTOBJCP DS H Object code point
EXTOFNLN DS H Original filename length
EXTOFN DS CL54 Original filename
EXTMFNLN DS H Modified filename length
EXTMFN DS CL54 Modified filename
EXTRSNC1 DS F Reason code 1
EXTRSNC2 DS F Reason code 2
*

END DFMXSORT

Figure 41. DFM DataAgent Sort Sample Part 7 of 7

Appendix D. DFMXSORT 75

76 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Appendix E. DFMXSRTI

System SAMPLIB member DFMXSRTI, for example, SYS1.SAMPLIB(DFMXSRTI)
shown in Figure 42, shows how to install the DFMXSORT DataAgent routine.

//DFMXSRTI JOB ,’DFMXSORT SETUP’,MSGLEVEL=(1,1),MSGCLASS=A,
// USER=IBMUSER,PASSWORD=IBM,REGION=1M
//**/
//*PROPRIETARY V3 STATEMENT
//*LICENSED MATERIALS - PROPERTY OF IBM
//*5695-DF1
//*(C) COPYRIGHT 1997 IBM CORP.
//*END PROPRIETARY V3 STATEMENT
//**/
//* Sample installation for DFMXSORT DataAgent routine. Modify the
//* job statement, etc. as appropriate for your installation.
//**/
//* This sample uses &PREFIX to generate input and output filenames.
//* For example, &PREFIX.SORTIN will be used for input and
//* &PREFIX.SORTOUT will be used for output.
//*
//* A sample input file, IBMUSER.DFMXSORT.SORTIN, is also provided.
//*
//* It could be cloned with other filenames and sort parameters
//* or could be generalized to use dynamic allocation for the
//* input and output files. Pseudocode is included to illustrate
//* the types of changes that would be required. If changes are
//* made, then you must remove DD statements for SORTIN and
//* SORTOUT from the cataloged procedure.
//*
//* Once this installation job has run, logon to a workstation with
//* the prerequisite level of SdU and with an APPC connection to the
//* mainframe and issue the following command:
//* dfmacall agent x:ibmuser.dfmxsort.sortin
//* ’dfmxsort,prefix=ibmuser.dfmxsort’
//* parm ’sort fields=(17,6,ch,a)’
//*
//* Refer to DFMACALL for details.
//*
//**/

Figure 42. Sample Installation for the DFMXSORT DataAgent Routine Part 1 of 4

© Copyright IBM Corp. 1993, 2013 77

//**/
//* Clean up test data sets. Remove this step from production version.
//**/
//CLEANUP EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DELETE (-
IBMUSER.DFMXSORT.* -
) NONVSAM PURGE SCRATCH

IF LASTCC = 8 THEN DO
SET LASTCC = 0
SET MAXCC = 0

END
/*

//**/
//* Generate SORTIN and allocate SORTOUT */
//**/
//STEP1 EXEC PGM=IEBGENER
//SYSUT2 DD
DSN=IBMUSER.DFMXSORT.SORTIN,DISP=(NEW,CATLG),UNIT=SYSDA,
// DCB=(LRECL=80,BLKSIZE=0,RECFM=FB),
// SPACE=(TRK,(1,1))
//SORTOUT DD DSN=IBMUSER.DFMXSORT.SORTOUT,DISP=(NEW,CATLG),
//
UNIT=SYSDA,DCB=(LRECL=80,BLKSIZE=0,RECFM=FB),
// SPACE=(TRK,(1,1))
//* Create records with a 6 character sort field in column 17
//* and with a flag in column 40 that is used to omit (=1) or
//* include the record. The program itself contains the parameters
//* for the sort (ascending on columns 17-22) and the control file
//* contains the definition of what records to include/omit.
//SYSUT1 DD DATA
RECORD NUMBER = 000030, OMIT FLAG IS = 1
RECORD NUMBER = 000888, OMIT FLAG IS = 0
RECORD NUMBER = 000887, OMIT FLAG IS = 1
RECORD NUMBER = 099999, OMIT FLAG IS = 0
RECORD NUMBER = 100000, OMIT FLAG IS = 1
RECORD NUMBER = 100001, OMIT FLAG IS = 0
RECORD NUMBER = 111111, OMIT FLAG IS = 1
RECORD NUMBER = 111110, OMIT FLAG IS = 1
RECORD NUMBER = 211111, OMIT FLAG IS = 0
RECORD NUMBER = 999999, OMIT FLAG IS = 1
RECORD NUMBER = 000000, OMIT FLAG IS = 0
/*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY

Figure 43. Sample Installation for the DFMXSORT DataAgent Routine Part 2 of 4

78 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

//***
//* Assemble the DataAgent Sample DFMXSORT
//***
//ASM01 EXEC PGM=IEV90,PARM=’OBJECT,NODECK’
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSUT2 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSUT3 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSLIN DD DSN=&&DFMXSORT,DISP=(,PASS),
// UNIT=SYSDA,SPACE=(TRK,(2,2,2))
//SYSIN DD DSN=SYS1.SAMPLIB(DFMXSORT),DISP=SHR
//**
//* Link Edit DataAgent Routine DFMXSORT *
//**
//LINK1 EXEC
PGM=IEWL,PARM=’XREF,LET,LIST,AMODE=31,RMODE=ANY’
//SYSPRINT DD SYSOUT=*
//OBJ DD DSN=&&DFMXSORT,DISP=(OLD,DELETE)
//SYSLMOD DD DSN=SYS1.LINKLIB(DFMXSORT),DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(80,10))
//SYSLIN DD *

INCLUDE OBJ
ENTRY DFMXSORT
NAME DFMXSORT(R)

/*
//***
//* Build Agent JCL in SYS1.PROCLIB
//***
//STEP1 EXEC PGM=IEBGENER
//SYSUT2 DD DISP=SHR,DSN=SYS1.PROCLIB(DFMXSORT)
//SYSUT1 DD DATA
//DFMXSORT JOB ,MSGCLASS=A
//***
//* Set appropriate msgclass above for debug vs production
//***
//DFMXSORT PROC DFMINIT=,PREFIX=IBMUSER.DFMXSORT
//DFMAGENT EXEC PGM=&DFMINIT
//***
//* Run DFMXSORT DataAgent Sample
//*
//* Sort input comes from IBMUSER.DFMXSORT.SORTIN by default.
//* Sorted data goes into IBMUSER.DFMXSORT.SORTOUT by default.
//* You should modify the names, space allocation, etc. as appropriate
//* for your installation.

Figure 44. Sample Installation for the DFMXSORT DataAgent Routine Part 3 of 4

Appendix E. DFMXSRTI 79

//***
//* Add STEPLIB statements as appropriate for your installation.
//*STEPLIB DD DSN=...,DISP=SHR
//* DD DSN=SYS1.LINKLIB,DISP=SHR
//SYSOUT DD SYSOUT=*
//SORTIN DD DSN=&PREFIX..SORTIN,DISP=SHR
//SORTOUT DD DSN=&PREFIX..SORTOUT,DISP=SHR
//SORTCNTL DD DSN=SYS1.PROCLIB(DFMXSORI),DISP=SHR
//DFMXSORT PEND
//GO EXEC DFMXSORT
/*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//***
//* Build omit control statement in SYS1.PROCLIB
//***
//STEP2 EXEC PGM=IEBGENER
//SYSUT2 DD DISP=SHR,DSN=SYS1.PROCLIB(DFMXSORI)
//SYSUT1 DD DATA
* The following omit statement will ensure that only the
* records without a 1 in column 40 appear in the sortout data set
OMIT COND=(40,4,CH,EQ,C’1’)

/*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY

Figure 45. Sample Installation for the DFMXSORT DataAgent Routine Part 4 of 4

80 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Appendix F. DFMQTSO

System SAMPLIB member DFMQTSO, for example, SYS1.SAMPLIB(DFMQTSO)
shown in Figure 46, shows how a DFM DataAgent can be written in assembler
language to invoke TSO. The DFMQTSO routine links to the IKJTSOEV function.

TITLE ’DFMQTSO - DFM DataAgent TSO Sample’
*/**
*/*PROPRIETARY V3 STATEMENT *
*/*LICENSED MATERIALS - PROPERTY OF IBM *
*/*5695-DF1 *
/(C) COPYRIGHT 1997 IBM CORP. *
*/*END PROPRIETARY V3 STATEMENT *
*/**
*/**
/ *
/ $MOD(DFMQTSO) COMP(5695-DF120) *
/ *
/ MODULE NAME: DFMQTSO (Quick TSO-Input in PARM) *
/ *
/ DESCRIPTION: DFM DataAgent Sample Routine (TSO) *
/ *
/ STATUS: Version 1 Release 4.0 (DFSMS) *
/ *
/ COPYRIGHT: See copyright statement on previous page *
/ *
/ FUNCTION: This module illustrates how a DFM DataAgent can *
/ be written in assembler language to invoke TSO. *
/ *
/ SdU provides a sample application, DFMACALL, that can be *
/ to invoke this sample. Refer to it for details. *
/ *
/ Refer to ’TSO Extensions for MVS: Programming Services’ for *
/ information about using the TSO environment service used in *
/ this example. *
/ *
/ PROCESSING: *
/ *
/ LOGIC: *
/ Refer to block comments in the code. *
/ *
/ ERROR PROCESSING: *
/ Issue a WTO and then return with register 15 set to a *
/ non-zero value and with the reason code set to a unique *
/ value. *
/ *

Figure 46. DFM DataAgent Sample Routine (TSO) Part 1 of 7

© Copyright IBM Corp. 1993, 2013 81

/ NOTES: *
/ *
/ PATCH SPACE: None *
/ XAX CONSIDERATIONS: AMODE(31) RMODE(ANY) ENV(PRI) *
/ DEPENDENCIES: None *
/ RESTRICTIONS: None *
/ REGISTER CONVENTIONS: Standard *
/ SERIALIZATION: No serialization techniques are used by this *
/ module. *
/ *
/ MODULE TYPE: Procedure *
/ PROCESSOR: z/OS Assembler *
/ ATTRIBUTES: *
/ TYPE: Not reentrant *
/ PRIMARY ASID: Caller’s ASID *
/ SECONDARY ASID: Same as primary *
/ HOME ASID: Same as primary *
/ MODE: Task *
/ KEY: 8 (Current task TCBPKF=jobstep task TCBPKF)*
/ STATE: Problem program, non-APF-authorized *
/ LOCATION: Link library *
/ *
/ ENTRY POINT: DFMQTSO *
/ *
/ PURPOSE: Show that a DataAgent routine can invoke TSO. *
/ LINKAGE: Called by Distributed FileManager. *
/ INPUT: Refer to the DFM Guide and Reference for a general *
/ description of the parameter list format. Refer to *
/ DFMACALL documentation for command line invocation from *
/ SdU. *
/ *
/ MESSAGES: Refer to WTO statements. *
/ *
/ EXIT NORMAL: *
/ *
/ RETURN CODE: Register 15 = 0 *
/ REASON CODE: Not applicable *
/ MESSAGE ID: None: *
/ *
/ EXIT ERRORS: *
/ *
/ RETURN CODE: Register 15 = non-zero *
/ REASON CODE: Unique values set in the extended parameter *
/ list *
/ MESSAGE ID: See WTO statements. *
/ *
/ EXTERNAL REFERENCES: None *
/ *
/ CHANGE ACTIVITY: *
/ $L0=DFSMS14,HDZ11D0,960628,SJPLMMR: DFM DataAgent initial code *
*/**

Figure 47. DFM DataAgent Sample Routine (TSO) Part 2 of 7

82 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

DFMQTSO CSECT
DFMQTSO AMODE 31
DFMQTSO RMODE ANY

STM R14,R12,12(R13)
BALR R12,0
USING *,R12
ST R13,SAVEAREA+4
LA R11,SAVEAREA
ST R11,8(,R13)
LA R13,SAVEAREA
LR R3,R1 Save original parameter pointers
SR R15,R15 Clear error code
USING INPARMS,R3 Address of MVS parameter list
L R4,STDPARMP Point to DFM DataAgent parameters
USING STDPARMS,R4 Base of DFM DataAgent parameters
L R5,EXTPARMP Point to DFM DataAgent parameters
USING EXTPARMS,R5 Base of DFM DataAgent parameters

--
* Called for a file or directory. See whether declaration *
* is being created or deleted. *
--

CLC EXTCMDCP,DCLFIL Is file being declared?
BE DODCLFIL Yes, process DCLFIL.
CLC EXTCMDCP,DELDCL Is file declaration being deleted?
BE DODELDCL Yes, process DELDCL.

--
* Unknown command type *
--

WTO ’DFMQTSO: Unknown command code.’
LA R15,16 Exit without trying to set reason code
B EXIT

*
--
* DCLFIL Processing (DCLFIL, or Declare File, is a DDM, *
* Distributed Data Management, command issued when a remote *
* file or directory is about to be opened) *
--
DODCLFIL EQU *

WTO ’DFMQTSO: Declaring a file.’

* CALTSOEV - CALL THE TSO/E ENVIRONMENT SERVICE TO ESTABLISH A TSO/E
* ENVIRONMENT IN THIS PROGRAM’S ADDRESS SPACE.
* PARM1 IS RESERVED
* PARM2 IS A FULLWORD THAT WILL CONTAIN THE RETURN CODE FROM IKJTSOEV
* PARM3 IS A FULLWORD THAT WILL CONTAIN THE REASON CODE ON RETURN
* FROM IKJTSOEV.
* PARM4 IS A FULLWORD THAT WILL CONTAIN THE ABEND CODE, IF AN ABEND
* OCCURS DURING TSO/E ENVIRONMENT SERVICE PROCESSING.
* PARM5 IS A FULLWORD THAT WILL CONTAIN THE ADDRESS OF THE CPPL.

CALTSOEV DS 0H

XC PARM1,PARM1
LINK EP=IKJTSOEV,ERRET=LE,PARAM=(PARM1,PARM2,PARM3,PARM4,PARM*

5),VL=1

Figure 48. DFM DataAgent Sample Routine (TSO) Part 3 of 7

Appendix F. DFMQTSO 83

* CHKEVRC - CHECK THE RETURN CODE FROM IKJTSOEV

CHKEVRC DS 0H

L R2,PARM2
LTR R2,R2
BNZ BADEVRC

* TSO Environment established–process the input file.

* CALLTSR - Call IKJEFTSR to process the input file or the parameter
* list–depending on whether a parameter list is present.
* The output from the commands will go to the SYSTSPRT file.

CALLTSR DS 0H

LH R2,STDPARML Get length of input parameters
LTR R2,R2 If zero then use the input file
BZ USEINFIL
ST R2,BUFLEN Set buffer length
BCTR R2,0
EX R2,COPYCMD Copy command to parameter area
L R15,CVTPTR
L R15,CVTTVT(,R15)
L R15,TSVTASF-TSVT(,R15)
CALL (15),(FLAGS,CMDBUFF,BUFLEN,RETCODE,RSNCODE,ABNDCODE),VL

* DOALL - At this point, process the return values from
* IKJEFTSR and the invoked functions.

DOALL DS 0H

LTR R15,R15
BZ EXIT Exit if no error
C R15,=F’4’ Did CLIST or REXX exec fail?
BNE SAVERC No, just ensure RC is saved
MVC RSNCODE,RETCODE Use CLIST/REXX RC as reason code

SAVERC ST R15,RETCODE Ensure a retcode is set
WTO ’DFMQTSO: IKJEFTSR failed.’
L R15,RETCODE Set return code
MVC EXTRSNC1,RSNCODE Set reason code 1
MVC EXTRSNC2,ABNDCODE Set reason code 2 to ABEND code
B EXIT

COPYCMD MVC CMDBUFF(0),STDPARMC
*

Figure 49. DFM DataAgent Sample Routine (TSO) Part 4 of 7

84 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

--
* SYSTSIN Processing *
--
USEINFIL EQU *

WTO ’DFMQTSO: SYSTSIN input not supported. Use DFMXTSO.’
LA R15,8
B EXIT

*
--
* DELDCL Processing (DELDCL, or Delete Declaration, is a DDM, *
* Distributed Data Management, command issued after a remote *
* file or directory has been closed) *
--
DODELDCL EQU *

WTO ’DFMQTSO: Deleting file declaration.’
SR R15,R15 Exit with no error
B EXIT Exit with return code from Sort

* LE - Branch here if LINK failed. The ABEND code will be in
* register 1 but there will be no reason code. Set the
* return code to 8 and use the ABEND code as the reason code.

*
LE DS 0H

ST R1,EXTRSNC1 Save the ABEND code
WTO ’DFMQTSO: LINK to IKJTSOEV failed.’
LA R15,8
B EXIT

*

* BADEVRC - Branch here if IKJTSOEV returned a non-zero return code.
* If the program branches here, it will exit with an error.
* In the DFM diagnostics, the error data will be as follows:
* RETURN CODE - THE RETURN CODE FROM IKJTSOEV
* REASON CODE 1 - THE REASON CODE FROM IKJTSOEV
* REASON CODE 2 - THE ABEND CODE FROM IKJTSOEV

BADEVRC DS 0H

WTO ’DFMQTSO: IKJTSOEV error occurred.’
L R15,PARM2
MVC EXTRSNC1,PARM3
MVC EXTRSNC2,PARM4
B EXIT

Figure 50. DFM DataAgent Sample Routine (TSO) Part 5 of 7

Appendix F. DFMQTSO 85

* EXIT - RETURN TO CALLING PROGRAM

EXIT DS 0H

L R13,4(,R13)
RETURN (14,12),RC=(15) RESTORE REGS,FLAG SAVEAREA,SET RC

*
* REGISTER EQUATES
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
* PARAMETERS USED TO INVOKE THE TSO/E ENVIRONMENT SERVICE
PARM1 DS F RESERVED FIELD
PARM2 DS F RETURN CODE FIELD
PARM3 DS F REASON CODE FIELD
PARM4 DS F FUNCTION ABEND CODE
PARM5 DS F CPPL ADDRESS
* PARAMETERS USED TO INVOKE THE TSO SERVICE FACILITY
FLAGS DS 0F FULLWORD OF FLAGS
RESFLAGS DC H’0001’ ESTABLISH UNAUTHORIZED ENVIRONMENT
ABFLAGS DC X’01’ PRODUCE A DUMP IF FUNCTION ABENDS
FNCFLAGS DC X’01’ INVOKE TSO/E CMD, REXX EXEC, CLIST
CMDBUFF DS 256C COMMAND BUFFER
BUFLEN DS F LENGTH OF COMMAND BUFFER
RETCODE DS F FUNCTION RETURN CODE
RSNCODE DS F FUNCTION REASON CODE
ABNDCODE DS F FUNCTION ABEND CODE
CVTPTR EQU 16 THESE 2 PARMS ARE USED TO GET
CVTTVT EQU X’9C’ ADDR OF THE TSO SERVICE FACILITY
* SAVEAREA AND OTHER PROGRAM STORAGE
SAVEAREA DS 18F
* TSVT MAPPING MACRO (USED TO GET THE ADDRESS OF TSO SERVICE FACILITY)

IKJTSVT
DFMQTSO CSECT

LTORG
*
--
* Define input parameters. *
--
* The standard format MVS parameter list is a halfword length *
* field followed by a parameter list. In this case the *
* parameter list is a TSO command. *
--
*

Figure 51. DFM DataAgent Sample Routine (TSO) Part 6 of 7

86 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

--
* Constants for use with the DFM DataAgent extended parameters. *
--
DCLFIL DC X’102C’ Declare file command code point
DELDCL DC X’102D’ Delete declare file command code point
DRCNAM DC X’1165’ Directory is being declared
FILNAM DC X’110E’ File is being declared
--
* Parameter list pointers. *
--
INPARMS DSECT
STDPARMP DS A(0) Ptr to standard format MVS parameter list
EXTPARMP DS A(0) Ptr to extended DFM parameter list
*
--
* Standard MVS parameter list for SORT usage. *
--
STDPARMS DSECT
STDPARML DS H Length of parameters
STDPARMC DS CL256 Standard parameter string
*
*
--
* Extended parameter list unique to DFM. *
--
EXTPARMS DSECT
EXTPARML DS H Length of parameters

DS H Reserved
EXTCMDCP DS H Command code point
EXTOBJCP DS H Object code point
EXTOFNLN DS H Original filename length
EXTOFN DS CL54 Original filename
EXTMFNLN DS H Modified filename length
EXTMFN DS CL54 Modified filename
EXTRSNC1 DS F Reason code 1
EXTRSNC2 DS F Reason code 2
*

END DFMQTSO

Figure 52. DFM DataAgent Sample Routine (TSO) Part 7 of 7

Appendix F. DFMQTSO 87

88 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Appendix G. DFMXTSOI

System SAMPLIB member DFMXTSOI, for example, SYS1.SAMPLIB(DFMXTSOI)
shown in Figure 53, shows how to install the two DataAgent routines: DFMXTSO
and DFMQTSO.

//DFMXTSOI JOB ,’DFMXTSO SETUP’,MSGLEVEL=(1,1),MSGCLASS=A,
// USER=IBMUSER,PASSWORD=IBM,REGION=1M
//**/
//*PROPRIETARY V3 STATEMENT
//*LICENSED MATERIALS - PROPERTY OF IBM
//*5695-DF1
//*(C) COPYRIGHT 1997 IBM CORP.
//*END PROPRIETARY V3 STATEMENT
//**/
//* Install two TSO DataAgent routines, DFMXTSO and DFMQTSO by
//* installing two procedures DFMXTSO and DFMQTSO and by producing
//* a load module for DFMQTSO. No executable is produced for
//* procedure (or DataAgent) DFMXTSO because it uses the standard
//* TSO batch program, IKJEFT01.
//*
//* DFMXTSO is full function in that it is intended to be used with
//* IKJEFT01 which accepts input from SYSTSIN. DFMQTSO (or quick
//* TSO) only accepts input from the PARM() parameter.
//*
//* Once this installation job has run, DFMACALL TSO or DFMACALL QTSO
//* can be run from a workstation that has SdU installed and that has
//* an APPC connection to the mainframe. Refer to DFMACALL for
//* details. (Note that you might want to set up some typical
//* SYSTSIN files and preallocate several SYSTSPRT files for the
//* anticipated users.)
//*

Figure 53. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 1 of 7

© Copyright IBM Corp. 1993, 2013 89

//**/
//* General setup */
//**/
//**/
//* Clean up old SYSTSIN and SYSTSPRT files. */
//* (Remove or modify if copying this to production JCL.) */
//**/
//CLEANUP EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DELETE (-
IBMUSER.DFMXTSO.SYSTSIN -
) NONVSAM PURGE SCRATCH

DELETE (-
IBMUSER.DFMQTSO.SYSTSPRT -
) NONVSAM PURGE SCRATCH

DELETE (-
IBMUSER.DFMXTSO.SYSTSPRT -
) NONVSAM PURGE SCRATCH

IF LASTCC = 8 THEN
DO

SET LASTCC = 0
SET MAXCC = 0

END

Figure 54. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 2 of 7

/*
//**/
//* Allocate output files */
//* (Remove or modify if copying this to production JCL.) */
//**/
//ALLOCATE EXEC PGM=IEFBR14
//ALLOC1 DD DSN=IBMUSER.DFMQTSO.SYSTSPRT,DISP=(NEW,CATLG),UNIT=SYSDA,
// DCB=(DSORG=PS,LRECL=121,BLKSIZE=0,RECFM=FBA),
// SPACE=(TRK,(15,5))
//ALLOC2 DD DSN=IBMUSER.DFMXTSO.SYSTSPRT,DISP=(NEW,CATLG),UNIT=SYSDA,
// DCB=(DSORG=PS,LRECL=121,BLKSIZE=0,RECFM=FBA),
// SPACE=(TRK,(15,5))
//**/
//* Generate sample input file for full function DFMXTSO */
//* (Remove or modify if copying this to production JCL.) */
//**/
//GENINPUT EXEC PGM=IEBGENER
//SYSUT2 DD DSN=IBMUSER.DFMXTSO.SYSTSIN,DISP=(NEW,CATLG),UNIT=SYSDA,
// DCB=(LRECL=80,BLKSIZE=0,RECFM=FB),
// SPACE=(TRK,(1,1))
//SYSUT1 DD DATA

/* This is a sample input file for SYSTSIN. */
LISTC

/*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*

Figure 55. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 3 of 7

90 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

//**/
//* 1. Setup for the DFMXTSO DataAgent procedure. Modify the job
//* statement, etc. as appropriate for your installation.
//**/
//* This setup job installs a sample procedure, DFMXTSO, to allow
//* workstations to invoke TSO.
//*
//* The procedure is intended to be used with PGM(IKJEFT01) and will
//* accept input from both the PARM field (processed first) and
//* from userID.DFMXTSO.SYSTSIN.
//*
//* It uses userID.DFMXTSO.SYSTSPRT to contain the TSO output.
//*
//* Note that SYSTSPRT allocation is DISP=SHR.
//* This causes SYSTSPRT to be reset each invocation
//* of TSO so the output produced by a file declaration
//* will be overlain by a subsequent delete file declaration.
//* Therefore, end users or applications will have to use the
//* SYSTSPRT file contents before closing the file replaces it.
//* The SYSTSPRT allocation could also be changed to DISP=MOD to
//* cause appending of output.
//*
//* You must create the SYSTSPRT or SYSTSIN files that
//* will be needed before invoking the exit. If parameters are
//* to be passed through the PARM field only, SYSTSIN could
//* be changed to DD DUMMY or the input file could be cleared.
//*
//* The exit must be invoked with at least the following
//* parameters: ...,AGENT(DFMXTSO,U=userID),PARM(...)
//*
//* (DFM for z/OS will automatically provide the U=userID parameter)
//*
//**/

Figure 56. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 4 of 7

Appendix G. DFMXTSOI 91

//***
//* Build Agent JCL in SYS1.PROCLIB
//***
//GENPROC1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DISP=SHR,DSN=SYS1.PROCLIB(DFMXTSO)
//SYSUT1 DD DATA
//DFMXTSO JOB ,MSGCLASS=A
//***
//* Set appropriate msgclass above for debug vs production
//* Note that DFM will provide the DFMINIT parameter and the
//* U parameter (high-level name qualifier or userID).
//***
//DFMXTSO PROC DFMINIT=,U=
//DFMAGENT EXEC PGM=&DFMINIT.,
// PERFORM=2,
// REGION=5000K,
// DYNAMNBR=20
//***
//* Run DFMXTSO DataAgent Sample
//***
//* Add STEPLIB statements as appropriate for your installation.
//* Note that if IKJEFT01 was installed into LPALIB, a STEPLIB will
//* be required because DFM’s DataAgent processing uses the BLDL
//* function.
//*STEPLIB DD DSN=...,DISP=SHR
//* DD DSN=SYS1.LINKLIB,DISP=SHR
//* DD DSN=SYS1.LPALIB,DISP=SHR <-- See note above
//*
//* TSO/E input comes from the SYSTSIN file (as well as from PARM).
//*
//* TSO/E output goes to the SYSTSPRT file.
//*
//* Sample using a generic CLIST...
//*SYSPROC DD DSN=&U..CLIST.CLIST,DISP=SHR
//SYSPROC DD DSN=SYS1.CLIST,DISP=SHR
//SYSTSIN DD DSN=&U..DFMXTSO.SYSTSIN,DISP=SHR
//SYSTSPRT DD DSN=&U..DFMXTSO.SYSTSPRT,DISP=SHR
//SYSOUT DD SYSOUT=*
//DFMXTSO PEND
//GO EXEC DFMXTSO
/*

Figure 57. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 5 of 7

92 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

//**/
//* 2. Setup for the DFMQTSO DataAgent procedure. Modify the job
//* control statements, etc. as appropriate for your installation.
//**/
//* This setup job installs a sample procedure, DFMQTSO, to allow
//* workstations to invoke program DFMQTSO which will, in turn, invoke
//* IKJTSOEV to establish the TSO environment and then call TSO to
//* process the input from the PARM field. It ignores file
//* userID.DFMXTSO.SYSTSIN.
//*
//* Like DFMXTSO, it uses userID.DFMXTSO.SYSTSPRT to contain
//* the TSO output.
//*
//* The exit must be invoked with at least the following
//* parameters: ...,AGENT(DFMQTSO,U=userID),PARM(...)
//*
//* (DFM for z/OS will automatically provide the U=userID parameter)
//*
//**/
//***
//* Assemble the Quick TSO Sample DataAgent Routine, DFMQTSO
//***
//ASM01 EXEC PGM=IEV90,PARM=’OBJECT,NODECK’
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSUT2 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSUT3 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSLIN DD DSN=&&DFMQTSO,DISP=(,PASS),
// UNIT=SYSDA,SPACE=(TRK,(2,2,2))
//SYSIN DD DSN=SYS1.SAMPLIB(DFMQTSO),DISP=SHR
//**
//* Link Edit DataAgent Routine DFMQTSO *
//**
//LINK1 EXEC PGM=IEWL,PARM=’XREF,LET,LIST,AMODE=31,RMODE=ANY’
//SYSPRINT DD SYSOUT=*
//OBJ DD DSN=&&DFMQTSO,DISP=(OLD,DELETE)
//SYSLMOD DD DSN=SYS1.LINKLIB(DFMQTSO),DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(80,10))
//SYSLIN DD *

INCLUDE OBJ
ENTRY DFMQTSO
NAME DFMQTSO(R)

/*

Figure 58. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 6 of 7

Appendix G. DFMXTSOI 93

//***
//* Build DFMQTSO Agent JCL in SYS1.PROCLIB
//***
//GENPROC2 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DISP=SHR,DSN=SYS1.PROCLIB(DFMQTSO)
//SYSUT1 DD DATA
//DFMQTSO JOB ,MSGCLASS=A
//***
//* Set appropriate msgclass above for debug vs production
//* Note that DFM will provide the DFMINIT parameter and the
//* U parameter (high-level name qualifier or userID).
//***
//DFMQTSO PROC DFMINIT=,U=
//DFMAGENT EXEC PGM=&DFMINIT.,
// PERFORM=2,
// REGION=5000K,
// DYNAMNBR=20
//***
//* Run DFMQTSO DataAgent Sample
//***
//* Add STEPLIB statements as appropriate for your installation.
//*STEPLIB DD DSN=...,DISP=SHR
//* DD DSN=SYS1.LINKLIB,DISP=SHR
//*
//* Sample shown using a global CLIST library.
//*SYSPROC DD DSN=&U..CLIST.CLIST,DISP=SHR
//SYSPROC DD DSN=SYS1.CLIST,DISP=SHR
//*
//* TSO/E output goes to the SYSTSPRT file.
//*
//SYSTSPRT DD DSN=&U..DFMQTSO.SYSTSPRT,DISP=SHR
//*
//* Note that the program DFMQTSO does not use SYSTSIN for input
//* so a dummy SYSTSIN DD statement is provided.
//*
//SYSTSIN DD DUMMY
//SYSOUT DD SYSOUT=*
//DFMQTSO PEND
//GO EXEC DFMQTSO
/*

Figure 59. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 7 of 7

94 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Appendix H. System PROCLIB Member DFM

System PROCLIB member DFM, for example, SYS1.PROCLIB(DFM), contains the
sample shown in Figure 60 of the startup procedures for Distributed FileManager.
See “Activating Distributed FileManager in System PROCLIB” on page 44.

Note: LE is required to use CDRA, if LE is installed and is not in the link list,
SYS1.PROCLIB(DFM) and SYS1.SAMPLIB(GDETPDEF) should be modified so their
STEPLIB DD statements refer to the proper LE runtime library. Refer to
DFMREADM in SYS1.SAMPLIB for details.

//DFM PROC PARMS=’NORMAL’
//***
//* *
//* DFSMS DFM START UP PROCEDURE *
//* *
//***
//DFM EXEC PGM=GDEISBOT,
// PARM=’&PARMS&sssq;,
// REGION=0K,
// TIME=1440
//IEFPARM DD DSN=SYS1.PARMLIB,DISP=SHR
//* CHANGE THE STEPLIB STATEMENT AS REQUIRED IF YOUR INSTALLATION
//* DOES NOT HAVE THE LE RUNTIME DATA SET IN ITS LINK LIST.
//*STEPLIB DD DSN=SYS1.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//*
//* THE TWO FILES ASSOCIATED WITH THE DD STATEMENTS CDRATRC AND
//* SYSOUT CAN BE USED TO DIAGNOSE DFM STARTUP PROBLEMS RELATED
//* TO CDRA. (CDRA IS INVOKED DURING STARTUP FOR CERTAIN CCSID
//* VALUES IN THE SYS1.PARMLIB MEMBER DFM00.)
//*
//* YOU MUST ALLOCATE THE TWO FILES AS RECFM=FBA, LRECL=133,
//* AND DSORG=PS BEFORE STARTING DFM WITH THE DD STATEMENTS
//* ACTIVE.
//*
//* NOTE THAT SYSOUT IS REQUIRED AND CDRATRC IS OPTIONAL
//* WHEN USING CDRA AND THE DEFAULT INSTALLATION IS SET UP TO
//* USE CDRA IF YOUR HOST CODE PAGE IS OTHER THAN 500.
//*
//* CDRATRC DD DSN=SYS1.CDRATRC,DISP=SHR CDRA API TRACING
//* SYSOUT DD DSN=SYS1.CDRAOUT,DISP=SHR C RUNTIME MESSAGES
//SYSOUT DD DUMMY <- DEFAULT = CDRA WITH RUNTIME MESSAGES DISCARDED

Figure 60. DFM Startup Procedure

© Copyright IBM Corp. 1993, 2013 95

96 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Appendix I. PPT Entries for Distributed FileManager

Figure 61 shows the PPT entries for Distributed FileManager (see “Verifying PPT
Entries for Distributed FileManager” on page 45).

PPT PGMNAME(GDEISASB) /* DFM CONVERSATION ADDRESS SPACE */
CANCEL /* PROGRAM CAN BE CANCELLED */
KEY(5) /* PROTECT KEY IS 5 */
SWAP /* PROGRAM IS SWAPPABLE */
NOPRIV /* PROGRAM IS NON PRIVILEGED */
DSI /* REQUIRED DATASET INTEGRITY */
SYST /* PROGRAM IS A SYSTEM TASK */
PASS /* CANNOT BYPASS PASSWORD PROTECTION */
AFF(NONE) /* NO CPU AFFINITY */
NOPREF /* NO PREFERRED STORAGE FRAMES */

PPT PGMNAME(GDEISBOT) /* DFM SYSTEM INITIALIZATION */
CANCEL /* PROGRAM CAN BE CANCELLED */
KEY(5) /* PROTECT KEY IS 5 */
NOSWAP /* PROGRAM IS NON SWAPPABLE */
NOPRIV /* PROGRAM IS NON PRIVILEGED */
DSI /* REQUIRED DATASET INTEGRITY */
SYST /* PROGRAM IS A SYSTEM TASK */
PASS /* CANNOT BYPASS PASSWORD PROTECTION */
AFF(NONE) /* NO CPU AFFINITY */
NOPREF /* NO PREFERRED STORAGE FRAMES */

PPT PGMNAME(GDEICASB) /* DFM CENTRAL ADDRESS SPACE */
CANCEL /* PROGRAM CAN BE CANCELLED */
KEY(5) /* PROTECT KEY ASSIGNED IS FIVE */
NOSWAP /* PROGRAM IS NON SWAPPABLE */
NOPRIV /* PROGRAM IS NON PRIVILEGE */
DSI /* REQUIRES DATA SET INTEGRITY */
SYST /* PROGRAM IS A SYSTEM TASK */
PASS /* CANNOT BYPASS PASSWORD PROTECTION */
AFF(NONE) /* NO CPU AFFINITY */
NOPREF /* NO PREFERRED STORAGE FRAMES */

Figure 61. PPT Entries for Distributed FileManager

© Copyright IBM Corp. 1993, 2013 97

98 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Appendix J. DFMACALL.C

The DataAgent sample in Figure 62 demonstrates the ability to invoke DFM
DataAgent functions from C applications on workstations running SmartData
Utilities (SdU) on the DDM client. The sample may need to be modified for your
application and your platform. If modified, rename and compile it on a
workstation using the header files distributed with SmartData Utilities (SdU). This
sample is not included in SYS1.SAMPLIB.

/**
**************************** DFMACALL.C *********************************

*
* DFM DataAgent Sample
*
* Module Name: DFMACALL.C
*
* DDM Workstation Application
*
* Version: 1.0
* Release: 1.0
*
* Copyright (C)
* International Business Machines Corporation 1997
*
* DISCLAIMER OF WARRANTIES: The following (enclosed) code is sample code
* created by the IBM Corporation. This sample code is not a part of any
* IBM product and is provided to you solely for the purpose of assisting
* you in the development of your applications. The code is provided
* "AS IS", without warranty of any kind. IBM shall not be liable for any
* damages arising out of your use of the sample code, even if they have
* been advised of the possibility of such damages.
*
* The sample program does the following:
*
* 1) Construct a filename and filename suffix from the input parameters.
* 2) Do a DDMOpen for the file or directory to trigger MVS suffix
* processing.
* 3) Do a DDMClose for the file or directory to terminate processing.
*
*
* COMMAND LINE INVOCATION:
*
* This sample can be invoked in the following formats:
*
* DFMACALL QTSO driveletter: TSOcommandline [DISPLAY]
* DFMACALL TSO driveletter: [TSOcommandline] [DISPLAY]
* DFMACALL AGENT driveletter:[filename]
MVSprocedure[,procedural_parameters]
* [PGM program_name] [PARM program-parameters]
[DISPLAY]
* DFMACALL START driveletter: MVSprocedure[,procedural_parameters]
* DFMACALL driveletter:filename[,filename_suffix] [DISPLAY]
*

Figure 62. DFM DataAgent Sample Part 1 of 25

© Copyright IBM Corp. 1993, 2013 99

* The last format is free-form in which MVS parameters can be specified
* in the filename suffix. Parameters that are relevant to DFM
* DataAgent processing are the following:
* AGENT(agentname) - Specifies the name of a procedure in SYS1.PROCLIB
* that provides the JCL for agent processing and, if PGM is
* omitted, the name of the DataAgent routine (program) to run.
* Note that procedural parameters can also be specifed. For
* example, AGENT(agentname,USER=userID,DSNAME=DS1,...). If
* you use the free-form format, remember to specify PARM also.
* PGM(programname) - Specifies the name of the DataAgent routine.
* PARM(program_name) - Specifies input parameters to the DataAgent
* routine.
* START(procedurename,procedure parameters) - Specifies the name of an
* MVS procedure to be started asynchronously.
* DISPLAY - Displays the result of the call to DFM DataAgent. In the case of
* QTSO or TSO the result is the SYSTSPRT file. In the case of other
* DataAgents it is the output name returned by the DataAgent routine
* after successful invocation.
* See DFMXSORT for an example.
* (Note that DISPLAY can be used as a DataAgent name with DFMACALL
* but not as a TSO command.)
*
* Examples:
*
* dfmacall r:ibmuser.a.b
* ==> Opens and closes MVS file ibmuser.a.b on remote drive r.
*
* dfmacall r:ibmuser.a.b,agent(dfmxagnt)
* ==> Opens and closes MVS file ibmuser.a.b invoking agent dfmxagnt.
*
* dfmacall r:ibmuser.a.b,agent(dfmx0001),pgm(dfmxagnt)
* ==> Opens and closes MVS file ibmuser.a.b invoking agent dfmx0001
* ==> with program dfmxagnt.
*
* dfmacall agent r:ibmuser.a.b dfmxagnt
* ==> Opens and closes MVS file ibmuser.a.b invoking agent dfmxagnt
* ==> with default program dfmxagnt and null parameters implied.
*
* dfmacall agent r:ibmuser.a.b dfmxtso pgm ikjeft01
* ==> Opens and closes MVS file ibmuser.a.b invoking agent dfmxtso
* ==> with (APF-authorized) program ikjeft01. (Equivalent to
* ==> DFMACALL TSO.)
*

Figure 63. DFM DataAgent Sample Part 2 of 25

100 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

* dfmacall start r: dfmx0001,dfminit=iefbr14
* ==> Asynchronously starts procedure dfmx0001 with parameter
* ==> dfminit set to iefbr14.
*
* dfmacall qtso r: listc display
* ==> Calls TSO to list catalog entries and place the results
* ==> in IBMUSER.DFMQTSO.SYSTSPRT. No SYSTSIN input file is
* ==> expected. The SYSTSPRT file is displayed.
*
* dfmacall tso r:
* ==> Calls TSO to process input file IBMUSER.DFMXTSO.SYSTSIN
* ==> and put the results in IBMUSER.DFMXTSO.SYSTSPRT.
*
* dfmacall tso r: "profile prefix(ibmuser)" display
* ==> After running the command passed it (in this case "profile")
* ==> it calls TSO to process input file IBMUSER.DFMXTSO.SYSTSIN
* ==> and put the results in IBMUSER.DFMXTSO.SYSTSPRT. Display the
* ==> output file.
*
*
*
***/

#include <os2.h> /* required for VSAM/X applications */
#include <stdio.h>
#include <string.h>
#include <memory.h>
#include <malloc.h>
#include "dub.h" /* required master include for VSAM/X applications */

/*---
-- SYMBOLIC CONSTANTS
--*/
#define FILCLS_SIZE sizeof(OBJLENGTH) + (2 * sizeof(CODEPOINT))
#define FILCLS_NAME ".DDM_FILCLS"
#define RECDATALEN 100
#define RPYMSBFLN 546 /* reply message buffer length */
#define PATHLEN 300 /* path with 45 extra bytes */
#define PARMLEN 255 /* arbitrary maximum parm len */
#define USPARMLEN 255 /* arbitrary max user parm len */
#define MINPQTSO 4 /* minimum parameters for QTSO */
#define MAXPQTSO 5 /* maximum parameters for QTSO */
#define MINPTSO 3 /* minimum parameters for TSO */
#define MAXPTSO 5 /* maximum parameters for TSO */
#define MINPAGENT 4 /* minimum parameters for AGENT */
##define MAXPAGENT 9 /* maximum parameters for AGENT */
#define MINPSTART 4 /* minimum parameters for START */
#define MAXPSTART 4 /* maximum parameters for START */
#define MINPFF 2 /* minimum parameters for FF */
#define MAXPFF 3 /* maximum parameters for FF */

Figure 64. DFM DataAgent Sample Part 3 of 25

Appendix J. DFMACALL.C 101

/*---
-- LOCAL FUNCTION DECLARATIONS
--*/
int SpecialOptions(int index, int argc, char* argv[]);
int CheckRange(int min, int max, int argc, char uarg[PARMLEN]);
VOID DumpBuffer(PDDMOBJECT pAttribute, USHORT Count);
CODEPOINT ReplyMsg(VOID);
VOID OmitError(VOID);
VOID GeneralError(VOID);
VOID ValueError(char *value);
VOID ParmLenError(char *value);
int strupper(char *out, char *in, int bufflen);
VOID DisplayBuffer(ULONG count, PDDMRECORD pRcdarea);
VOID DuplicateError(VOID);
VOID HasFileNameError(VOID);
VOID NoFileNameError(VOID);
VOID TooManyError(VOID);
VOID NotEnoughError(VOID);
VOID DisplayHelp(char *helpflag);

/*---
-- DFMACALL
--*/

int dummy_filename = 0; /* Dummy filename flag */
int display_filename = 0; /* Display filename flag */
int TSO_retry = 0; /* TSO error retry flag */
int debug = 1; /* Debug flag: 0 = nothing displayed,*/

/* 1 = filename display, 2 = all of */
/* the above plus major functions, */
/* 5 = all the above plus data. */

int display_counter = 0; /* Record display counter */
int intrc; /* internal return code */

main(int argc, char* argv[])
{

int i; /* Loop counter */
int fnlen = 0; /* Filename length */
int pgmcnt = 0; /* Number of PGM parm occurrences */
int parmcnt = 0; /* Number of PARM parm occurrences */
int data_follows; /* Data follows in next arg */
APIRET SevCode; /* Severity code (see DUBDEFS.H) */
CODEPOINT LCodePoint; /* Local Code Point for reply msg */

Figure 65. DFM DataAgent Sample Part 4 of 25

102 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

PDDMRECORD pRecord;
RECLENGTH RecordSize;
PDDMRECAL pRecAL;
PDDMRECALK pRecALK;
RECLENGTH RecALSize;
PBYTE pData;
HDDMLOAD UnLoad; /* File handle for unload */
ULONG RecCount;
ULONG DDMMoreDataFlag;
int minparms; /* minimum parameters current cmd */
int maxparms; /* maximum parameters current cmd */

HDDMFILE FileHandle;

/* Filename to be operated on */
CHAR MVSFilename[PATHLEN];
CHAR RootName[PATHLEN]; /* Root name for TSO retry */
CHAR dummy_name[9] = "NULLFILE";
CHAR display_name[PATHLEN];

CHAR uarg[PARMLEN]; /* Upper case argument */
CHAR usparg[USPARMLEN]; /* Upper case subparameter */
/**/
/* Determine which command format was used and build the MVS */
/* filename and filename suffix accordingly. */
/**/

RootName[0] = 0; /* Set TSO root name to null string*/
switch (argc)
{ case 1: /* no user arguments */

NotEnoughError();
DisplayHelp("N");
return(SC_SEVERE);

default:
/***/
/* 1 or more user arguments--check further */
/***/
/* Convert current user argument to upper case. */
if (intrc = strupper(uarg, argv[1], PATHLEN))

return intrc;

Figure 66. DFM DataAgent Sample Part 5 of 25

Appendix J. DFMACALL.C 103

if (strcmp(uarg,"QTSO") == 0 |
strcmp(uarg,"TSO") == 0) {
if (strcmp(uarg,"QTSO") == 0) {

/**/
/* QTSO format */
/**/
minparms = MINPQTSO;
maxparms = MAXPQTSO;

}
else {

/**/
/* TSO format */
/**/
minparms = MINPTSO;
maxparms = MAXPTSO;

}
if (intrc = CheckRange(minparms,maxparms,argc, uarg) > 0)

return(intrc);

/**/
/* Set special processing flags */
/**/
for (i=minparms; i < argc; i++) {

if (intrc = SpecialOptions(i, argc, argv) > 0)
return(intrc);

}
/**/
/* Build filename in the format of */
/* x:fn,agent(dfmqtso,u=userID),pgm(dfmqtso), */
/* parm(...) */
/* -- OR -- */
/* x:fn,agent(dfmxtso,u=userID),pgm(ikjeft01), */
/* parm(...) */
/* (Note that MVS will append u=userid) */
/**/
if (intrc = strupper(MVSFilename,argv[2],PATHLEN))

return(intrc);
fnlen = strlen(MVSFilename); /* Save true filename len */
if (fnlen > 2 | strncmp(&MVSFilename[1],":",1) != 0) {

HasFileNameError();
DisplayHelp(&uarg[0]);
return(SC_SEVERE);

}

Figure 67. DFM DataAgent Sample Part 6 of 25

104 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

/**/
/* Build root filename. */
/**/
if (display_filename) {

if (strcmp(uarg,"QTSO") == 0)
strcat(MVSFilename,"DFMQTSO.SYSTSPRT");

else
strcat(MVSFilename,"DFMXTSO.SYSTSPRT");

strcpy(RootName,MVSFilename);
} else {

dummy_filename = 1;
strcat(MVSFilename,dummy_name);

} /* endif */

/**/
/* Attach filename suffix. */
/**/
if (strcmp(uarg,"QTSO") == 0)

strcat(MVSFilename,",agent(dfmqtso),parm(");
else

strcat(MVSFilename,",agent(dfmxtso),pgm(ikjeft01),parm(");

/**/
/* Concatenate parm field */
/**/
if (argc >= 4) {

if (intrc = strupper(usparg, argv[3], USPARMLEN))
return (intrc);

if (strcmp(usparg,"DISPLAY") != 0)
strcat(MVSFilename,argv[3]);

else if (strcmp(uarg,"QTSO") == 0) {
/* DFMQTSO requires a parameter field */
OmitError();
DisplayHelp(&uarg[0]);
return(SC_SEVERE);

}
}
strcat(MVSFilename,")"); /* Terminate parameter field */

} /* End of QTSO/TSO case */

Figure 68. DFM DataAgent Sample Part 7 of 25

Appendix J. DFMACALL.C 105

else if (strcmp(uarg,"AGENT") == 0) {
/**/
/* AGENT format */
/**/
minparms = MINPAGENT;
maxparms = MAXPAGENT;
if (intrc = CheckRange(minparms,maxparms,argc, uarg) > 0)

return(intrc);

/**/
/* Set special processing flags */
/**/
for (i=minparms; i < argc; i++) {

if (intrc = SpecialOptions(i, argc, argv) > 0)
return(intrc);

}

/**/
/* Build filename in the format of */
/* x:fn,agent(agentname),pgm(program_name),parm(parms) */
/**/
if (intrc = strupper(MVSFilename,argv[2], PATHLEN))

return(intrc);
fnlen = strlen(MVSFilename); /* Save true filename len */
/* Add dummy filename if one wasn’t specified */
if (fnlen == 2 & strncmp(&MVSFilename[1],":",1) == 0) {

dummy_filename = 1;
strcat(MVSFilename,dummy_name);

}

/* Check the filename format for obvious errors. */
fnlen = strlen(MVSFilename); /* Save true filename len */
if (fnlen < 3) {

NoFileNameError();
DisplayHelp(&uarg[0]);
return(SC_SEVERE);
}

strcat(MVSFilename,",agent(");
strcat(MVSFilename,argv[3]);
strcat(MVSFilename,")");
/**/
/* Concatenate optional fields */
/**/
if (argc > 4) {

/**/
/* Optional parameters are present */
/**/

Figure 69. DFM DataAgent Sample Part 8 of 25

106 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

/**/
/* All but DISPLAY are in format of keyword + value. */
/**/
data_follows = 0;
for (i=4; i < argc; i++) {

if (!data_follows) {
/* Not data object -- process the keyword. */
data_follows = 1;
if (intrc = strupper(usparg, argv[i], USPARMLEN))

return (intrc);
if (strcmp(usparg,"PGM") == 0) {

pgmcnt++;
strcat(MVSFilename,",pgm(");

}
else if (strcmp(usparg,"PARM") == 0) {

parmcnt++;
strcat(MVSFilename,",parm(");

}
else { /* Unidentified keyword?*/

/* Make sure it’s not a display option */
if (strcmp(usparg,"DISPLAY") != 0) {

GeneralError();
DisplayHelp(&uarg[0]);
return(SC_SEVERE);

}
else

data_follows = 0; /* No following data */
} /* End, unidentified kwd*/

} /* End, even number */
else {

/* Process the keyword’s data. */
data_follows = 0;
strcat(MVSFilename,argv[i]);
strcat(MVSFilename,")");

} /* End, data field */
} /* End of for loop */

}
/**/
/* Ensure no duplicate parameters */
/**/
if (pgmcnt > 1 | parmcnt > 1) {

DuplicateError();
DisplayHelp(&uarg[0]);
return(SC_SEVERE);

}
/**/
/* Ensure AGENT is invoked with a PARM */
/**/
if (parmcnt == 0)

strcat(MVSFilename,",parm()");
} /* End of AGENT */

Figure 70. DFM DataAgent Sample Part 9 of 25

Appendix J. DFMACALL.C 107

else if (strcmp(uarg,"START") == 0) {

/**/
/* START format */
/**/
minparms = MINPSTART;
maxparms = MAXPSTART;
if (intrc = CheckRange(minparms,maxparms,argc, uarg) > 0)

return(intrc);

/**/
/* Build filename in the format of */
/* x:fn,start(proc,parms) */
/**/
if (intrc = strupper(MVSFilename,argv[2],PATHLEN))

return(intrc);
fnlen = strlen(MVSFilename);
if ((fnlen > 2) | (strncmp(&MVSFilename[1],":",1) != 0)) {

HasFileNameError();
DisplayHelp(&uarg[0]);
return(SC_SEVERE);
}
dummy_filename = 1;
strcat(MVSFilename,dummy_name);
strcat(MVSFilename,",start(");
strcat(MVSFilename,argv[3]);
strcat(MVSFilename,")");

} /* End of START parameter */
else { /* None of the above */

/**/
/* Free-form command otherwise */
/**/
/**/
/* Check for help request. */
/**/
if (strncmp(uarg, "?",1) == 0) {

DisplayHelp(&uarg[0]);
return(SC_WARNING);
}

minparms = MINPFF;
maxparms = MAXPFF;
if (intrc = CheckRange(minparms,maxparms,argc, uarg) > 0)

return(intrc);
/**/
/* Set special processing flags */
/**/
for (i=minparms; i < argc; i++) {

if (intrc = SpecialOptions(i, argc, argv) > 0)
return(intrc);

}

Figure 71. DFM DataAgent Sample Part 10 of 25

108 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

if (intrc = strupper(MVSFilename,argv[1], PATHLEN))
return(intrc);

fnlen = strlen(MVSFilename); /* Save true filename len */
if (fnlen < 3) {

NoFileNameError();
DisplayHelp(&uarg[0]);
return(SC_SEVERE);
}

} /* End of free form parameters */
}

/**/
/* Begin processing the MVS file */
/**/

if (debug >= 1) printf
("DFMACALL: Processing filename and filename suffix of %s.\n",

MVSFilename);

if (display_filename) {
/**/
/* Perform unload of records to satisfy display request */
/**/

/**/
/* Allocate a record buffer */
/**/
RecALSize = 64000; /* Try to use a 64K Buffer for records*/
if ((pRecord = (PDDMRECORD)malloc(RecALSize)) == NULL) {

/* Not enough storage--make one last try for 32K */
RecALSize = RecALSize / 2; /* Try 32K Buffer */
if ((pRecord = (PDDMRECORD)malloc(RecALSize)) == NULL) {

printf("DFMACALL: Out of memory\n");
return(SC_SEVERE);

}
}
/**/
/* Unload the first batch of records in rcd number order */
/**/
SevCode = 1;
while (SevCode) {

SevCode = DDMUnLoadFileFirst
(MVSFilename, /* FileName */
&UnLoad, /* UnLoadHandle */
0UL, /* AccessFlags */
&DDMMoreDataFlag, /* Flags */
pRecord, /* RecordBuf */
RecALSize, /* RecordBufLen */
(CODEPOINT) RECSEQ, /* UnloadOrder=rcd number */
&RecCount /* RecCount */
);

Figure 72. DFM DataAgent Sample Part 11 of 25

Appendix J. DFMACALL.C 109

if (SevCode > SC_WARNING) {
printf("DFMACALL: Error on DDMUnLoadFileFirst for %s.\n",

MVSFilename);
printf("Severity code = %u\n",SevCode);
LCodePoint = ReplyMsg();
/* Retry TSO unload output file if not tried already. */
if (strcmp(MVSFilename,RootName) != 0 &

LCodePoint == VALNSPRM) {
TSO_retry = 1;
strcpy(MVSFilename,RootName);

} /* End, TSO retry */
else { /* Permanent error */

free(pRecord);
return(SevCode);

} /* End, permanent error */
} /* End of error from unload file first. */

} /* End of while no error. */

if (SevCode > SC_WARNING) {
free(pRecord);
return(SevCode);

} /* End, unload first err */

if (debug >= 2)
printf ("DDMUnLoadFileFirst: %d records in buffer .\n",

RecCount);
if (TSO_retry > 0) {

printf ("\n** The TSO Output File associated with the error is\
as follows: **\n");

printf ("** (Note that its contents may be from a previou\
s run.) **\n");

}

DisplayBuffer(RecCount,pRecord);

/**/
/* Unload remaining records in record number order. */
/* When DDMMoreDataFlag is 0x00UL then the file handle is */
/* invalid and the file will be closed. */
/**/
while (DDMMoreDataFlag == 0x01UL)

{
SevCode = DDMUnLoadFileNext

(UnLoad, /* UnLoadHandle */
0x0000UL, /* Flags */
&DDMMoreDataFlag, /* UnloadFlags */
pRecord, /* RecordBuf */
RecALSize, /* RecordBufLen */
&RecCount /* RecCount */
);

Figure 73. DFM DataAgent Sample Part 12 of 25

110 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

if (SevCode > SC_WARNING) {
printf("DFMACALL: Error on DDMUnLoadFileNext for %s.\n",

MVSFilename);
printf("Severity code = %u\n",SevCode);
ReplyMsg();
free(pRecord);
return(SevCode);

}
if (debug >= 2)

printf ("DDMUnLoadFileNext: %d records in buffer.\n",
RecCount);

DisplayBuffer(RecCount,pRecord);

} /* End of WHILE loop */
free(pRecord);

} else {
/**/
/* No display--just open to trigger DataAgent and then close */
/**/

/**/
/* Open the file */
/**/
SevCode = DDMOpen

(MVSFilename, /* FileName */
&FileHandle, /* FileHandle */
RELRNBAM, /* AccessMethod */
DDM_GETAI, /* AccIntList */
DDM_UPDATERS, /* FileShare */
NULL, /* EABuf */
NULL /* reserved */
);

if (SevCode != SC_NO_ERROR)
{

if (dummy_filename == 0)
{
printf("Error opening file %s\n",MVSFilename);
printf("Severity code = %u\n",SevCode);
}
ReplyMsg();
return(SevCode);

}

Figure 74. DFM DataAgent Sample Part 13 of 25

Appendix J. DFMACALL.C 111

/**/
/* Close the file */
/**/
SevCode = DDMClose

(FileHandle /* FileHandle */
);

if (SevCode != SC_NO_ERROR)
{

if (dummy_filename == 0)
{
printf("Error closing file %s\n",MVSFilename);
printf("Severity code = %u\n",SevCode);
}
ReplyMsg();
return(SevCode);

}
}

return(SC_NO_ERROR);

} /* End--sample main */

/**
**************************** ReplyMsg ***********************************

* Process the reply message if there is a Severity Code other than
* SC_NO_ERROR;
*
***/
CODEPOINT ReplyMsg(VOID)
{

static BYTE pRpyMsgBuf[RPYMSBFLN];

APIRET rc;
CODEPOINT CodePoint;
PDDMOBJECT pReplyObject;
USHORT index;

Figure 75. DFM DataAgent Sample Part 14 of 25

112 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

/*---
-- The following table contains the count for the number of parameters
-- expected for each reply message (1st column), and it also contains
-- the expanded error messages
--
-- The first message in the table, KEYUDIRM, has the lowest
-- code point value. It is also the first message in a block of
-- message code points that ends with RECNAVRM.
--
-- The next block of message code points (in ascending code point order)
-- begins with OS2ERRRM and ends with FILERRRM.
-- The low-order byte is used as the index into this block.
--*/
static struct
{ USHORT Count;

BYTE msg[52];
} ErrorMsgBuffer[] =

{ 6, "Key Update Not Allowed by Different Index \0",
0, " \0",
0, " \0",
0, "Default Record Error \0",
5, "Cursor Not Selecting a Record Position \0",
7, "Invalid Data Record \0",
3, "Duplicate File Name \0",
8, "Duplicate Key Different Index \0",
7, "Duplicate Key Same Index \0",
7, "Duplicate Record Number \0",
3, "End of File \0",
7, "File is Full \0",
4, "File in Use \0",
3, "File Not Found \0",
6, "File Space Not Available \0",
0, " \0",
0, " \0",
3, "Invalid File Name \0",
0, " \0",
0, " \0",
7, "Record Length Mismatch \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
2, "Not Authorized to Function \0",
0, " \0",
4, "File Temporarily Not Available \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",

Figure 76. DFM DataAgent Sample Part 15 of 25

Appendix J. DFMACALL.C 113

7, "Record Number Out of Bounds \0",
5, "Record Not Found \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
3, "Invalid Key Length \0",
0, " \0",
0, " \0",
3, "Not Authorized to Access Method \0",
0, "Invalid Access Method \0",
3, "Permanent Agent Error \0",
6, "Resource Limits Reached on Target System \0",
3, "Invalid Base File Name \0",
0, " \0",
0, " \0",
2, "Not Authorized to Directory \0",
0, "Management Class Conflict \0",
0, "Storage Class Conflict \0",
3, "Existing Condition \0",
4, "Not Authorized to File \0",
6, "Invalid Request \0",
4, "Invalid Key Definition \0",
0, " \0",
5, "Key Update Not Allowed by Same Index \0",
8, "Invalid Key Value \0",
0, " \0",
0, " \0",
3, "Open Exclusive by Same User \0",
4, "Concurrent Open Exceeds Maximum \0",
4, "Conversational Protocol Error \0",
0, " \0",
0, " \0",
0, " \0",
7, "Record Damaged \0",
7, "Record in Use \0",
0, " \0",
5, "Data Stream Syntax Error \0",
7, "Update Cursor Error \0",
5, "No Update Intent on Record \0",
3, "Invalid New File Name \0",
3, "Function Not Supported \0",
3, "Parameter Not Supported \0",
4, "Parameter Value Not Supported \0",
4, "Object Not Supported \0",
5, "Command Check \0",
0, " \0",

Figure 77. DFM DataAgent Sample Part 16 of 25

114 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

0, " \0",
2, "File Handle Not Found \0",
3, "Directory Full \0",
3, "Record Inactive \0",
7, "File Damaged \0",
4, "Load Records Count Mismatch \0",
3, "Not Authorized to Open Intent for Named File \0",
0, " \0",
3, "File Closed with Damage \0",
2, "Target Not Supported \0",
5, "Key Value Modified after Cursor was Last Set \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, "Access Intent List Error \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
5, "Record Not Available \0",

/************ START OF SECOND CODE POINT RANGE *************/
0, "OS/2 Error \0",
0, "Data Description File Not Found \0",
0, "Conversion Table Not Found \0",
2, "Translation Error \0",
0, " \0",
2, "Invalid Flag \0",
0, " \0",
2, "Communications Error \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
0, " \0",
2, "Resource Limit Reached in OS/2 V2.0 Source System \0",
2, "Field Length Error \0",
2, "Address Error \0",
0, " \0",
2, "Function Continuation Error \0",
0, " \0",
2, "File Error \0"

};

Figure 78. DFM DataAgent Sample Part 17 of 25

Appendix J. DFMACALL.C 115

/*---
-- For each reply message available, retrieve and display it.
--*/
do
{ /*--

-- Get the reply message
---*/
rc = DDMGetReplyMessage(pRpyMsgBuf, (ULONG)RPYMSBFLN, (ULONG)1);

switch (rc)
{ case SC_NO_ERROR: /* All reply messages have been received */

case SC_WARNING: /* There are more reply messages to be received*/
break;

case SC_ERROR:
printf(" ReplyMsg: reply message buffer is too small -\n");
printf(" enlarge and recompile ...\n");
return(rc);
break;

case SC_SEVERE:
printf(" ReplyMsg: Warning: A reply message was requested,\n");
printf(" but there are none available ...\n");
return(rc);
break;

case SC_ACCESSDAMAGE:
printf(" ReplyMsg: Error: An invalid reply message buffer\n");
printf(" address was specified ...\n");
return(rc);
break;

case SC_PERMDAMAGE:
printf(" ReplyMsg: Severe Error: An unarchitected reply message\n");
printf(" object was encountered ...\n");
return(rc);
break;

default:
printf(" ReplyMsg: Unknown return code from DDMGetReplyMessage\n");
return(rc);
break;

} /* endswitch */

Figure 79. DFM DataAgent Sample Part 18 of 25

116 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

/*--
-- Get the reply message
---*/
pReplyObject = (PDDMOBJECT)pRpyMsgBuf;

CodePoint = pReplyObject->cpObject; /* get code point */

/* reset pointer to first parm base */
pReplyObject = (PDDMOBJECT)((PBYTE)pReplyObject

+ (sizeof(CODEPOINT)
+ sizeof(OBJLENGTH))

);

/*--
-- Calculate the index into the parameter/msg table based on
-- the codepoint.
---*/
if (CodePoint <= RECNAVRM) /* if code point in first block */

index = (USHORT)(CodePoint - KEYUDIRM);
else /* code point in second block */

index = (USHORT)
((RECNAVRM - KEYUDIRM + 1) /* number of entries in

first block */
+ (CodePoint % 0x0100UL) /* index into second block */
);

/* If the index indicates "file not found" and a dummy filename */
/* is being used, ignore the error. */
if (index == 13 & dummy_filename == 1)

return(SC_NO_ERROR);

/*--
-- Begin dissecting the reply message buffer
---*/
if (ErrorMsgBuffer[index].Count > 0)
{ printf("RPYMSG: %s\n",ErrorMsgBuffer[index].msg);

DumpBuffer(pReplyObject, ErrorMsgBuffer[index].Count);
printf("\n");

}

} while (rc == SC_WARNING); /* enddo */
return(CodePoint);

} /* ReplyMsg */

Figure 80. DFM DataAgent Sample Part 19 of 25

Appendix J. DFMACALL.C 117

/**
************************** DumpBuffer ***********************************

*
* For each object in the reply message buffer, print out its contents.
*
***/
VOID DumpBuffer(PDDMOBJECT pAttribute,

USHORT Count)
{

int i; /* Local loop counter */
do
{ if (pAttribute->cbObject == (sizeof(CODEPOINT) + sizeof(OBJLENGTH)))

{ printf("Null object returned = %x\n",pAttribute->cbObject);
pAttribute->cpObject = 0;

}
else
{ switch(pAttribute->cpObject)

{ case ACCMTHCL: /* Access Method Class */
printf("ACCMTHCL = 0x%X\n", *(PCODEPOINT)(pAttribute-

>pData));
break;

case BASFILNM: /* Base File Name */
printf("BASFILNM = %s\n", pAttribute->pData);
break;

case CODPNT: /* Code Point */
printf("CODPNT = 0x%X\n", *(PCODEPOINT)(pAttribute-

>pData));
break;

case CSRPOSST: /* Cursor Position Status */
printf("CSRPOSST = 0x%hX\n", *(PBYTE)(pAttribute-

>pData));
break;

case DTALCKST: /* Data Lock Status */
printf("DTALCKST = 0x%hX\n", *(PBYTE)(pAttribute-

>pData));
break;

case ERRFILNM: /* Error File Name */
printf("ERRFILNM = %s\n", pAttribute->pData);
break;

case FILNAM: /* File Name */
printf("FILNAM = %s\n", pAttribute->pData);
break;

case KEYDEFCD: /* Key Definition Error Code */
printf("KEYDEFCD = 0x%hX\n", *(PBYTE)(pAttribute-

>pData));
break;

case MAXOPN: /* Maximum Number of File Extents
Concurrent Opens Allowed */

printf("MAXOPN = %d\n", *(PUSHORT)(pAttribute->pData));
break;

Figure 81. DFM DataAgent Sample Part 20 of 25

118 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

case NEWFILNM: /* New File Name */
printf("NEWFILNM = %s\n", pAttribute->pData);
break;

case PRCCNVCD: /* Conversational Protocol Error Code */
printf("PRCCNVCD = 0x%hX\n", *(PBYTE)(pAttribute-

>pData));
break;

case RECCNT: /* Record Count */
printf("RECCNT = %ld\n", *(PULONG)(pAttribute->pData));
break;

case RECNBR: /* Record Number */
printf("RECNBR = %ld\n", *(PRECNUM)(pAttribute->pData));
break;

case SRVDGN: { /* Server Diagnostic Information */
printf("SRVDGN = 0x\n");
for (i=1; i < (pAttribute->cbObject-5); i++) /* 2 byte len, 2 byte codept*/

{ if (i % 16 ==0)
printf("%02X\n", *(PBYTE)(pAttribute->pData+i-

1));
else
if (i % 4 ==0)

printf("%02X ", *(PBYTE)(pAttribute->pData+i-
1));

else
printf("%02X", *(PBYTE)(pAttribute->pData+i-1));

}
}
break;

case SVRCOD: /* Severity Code */
printf("SVRCOD = 0x%X\n", *(PCODEPOINT)(pAttribute-

>pData));
break;

case SYNERRCD: /* Syntax Error Code */
printf("SYNERRCD = 0x%hX\n", *(PBYTE)(pAttribute-

>pData));
break;

default:
printf("Unknown code point - 0x%X\n",

*(PCODEPOINT)(pAttribute->pData));
break;

} /* endswitch */
} /* endif */

/* go to next object */
pAttribute = (PDDMOBJECT)((PBYTE)pAttribute + pAttribute->cbObject);

} while(--Count > 0);

} /* DumpBuffer */

Figure 82. DFM DataAgent Sample Part 21 of 25

Appendix J. DFMACALL.C 119

/**
**************************** Error Routines ******************************
**/
VOID GeneralError()
{

printf("DFMACALL: Incorrect command line syntax.\n");
} /* GeneralError */

VOID OmitError()
{

printf("DFMACALL: A required parameter was omitted.\n");
}

VOID TooManyError()
{

printf("DFMACALL: Too many parameters were on the command line.\n");
}

VOID NotEnoughError()
{
printf("DFMACALL: Not enough parameters were on the command line.\n");

}

VOID HasFileNameError()
{
printf("DFMACALL: Filename is not allowed for QTSO, TSO, or START.\n");

}

VOID NoFileNameError()
{
printf("DFMACALL: A filename must be specified.\n");

}

VOID ValueError(char *value)
{
printf("DFMACALL: Incorrect parameter value %s.\n",value);

}

VOID ParmLenError(char *value)
{
printf("DFMACALL: Parameter %s is too long.\n",value);

}

int strupper(char *oarg, char *iarg, int bufflen)
{
/* Convert string to upper case. */
int i;
if (strlen(iarg) > bufflen) {

ParmLenError(iarg);
return(SC_SEVERE);

}

Figure 83. DFM DataAgent Sample Part 22 of 25

120 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

for (i=0; i < strlen(iarg); i++) {
oarg[i] = toupper(iarg[i]);

}
oarg[i] = 0;
return (0);

}

VOID DuplicateError()
{
printf("DFMACALL: One or more parameters were duplicated.\n");
}

VOID DisplayBuffer(ULONG count, PDDMRECORD pCurrentRecord)
{

/* Display a buffer full of records */
ULONG i; /* record counter */
int j; /* index to character in record */
int cRecLen; /* current record length */
UCHAR c; /* current converted character */
UCHAR savechar; /* savearea for trailing character */

for (i=1; i <= count; i++) {
cRecLen = pCurrentRecord->cbRecord - sizeof(pCurrentRecord->cbRecord)

- sizeof(pCurrentRecord->cpRecord);
/***/
/* Replace all instances of non-printable characters, */
/***/
/* Make sure the string is printable and */
/* make sure that there is no 0 in the middle of string. */
for (j=0; j < cRecLen; j++) {

if (!(c = pCurrentRecord->pRecord[j]))
pCurrentRecord->pRecord[j] = ’ ’; /* Replace x00 with blank */

else if (!isprint(c))
pCurrentRecord->pRecord[j] = ’.’; /* Make nonprintable a "." */

} /* End of for j= loop */
savechar = pCurrentRecord->pRecord[cRecLen]; /* save trailing char */
pCurrentRecord->pRecord[cRecLen] = ’\0’;

if (debug >= 5) {
display_counter++;
printf ("Displaying record %d with length %d:\n",

display_counter,cRecLen);
}
printf ("%s\n",pCurrentRecord->pRecord);
pCurrentRecord->pRecord[cRecLen] = savechar; /* restore trailing */
pCurrentRecord = (PDDMRECORD) (pCurrentRecord->pRecord + cRecLen);

}

}

Figure 84. DFM DataAgent Sample Part 23 of 25

Appendix J. DFMACALL.C 121

SpecialOptions(int index, int argc, char *argv[])
{
CHAR uarg[PARMLEN]; /* Upper case argument */
/* Check for special processing options. */
if (intrc = strupper(uarg, argv[index], PARMLEN))

return(intrc);
if (strcmp(uarg,"DISPLAY") == 0)

display_filename = 1;

return(0);
} /* End of SpecialOptions */

CheckRange(int minparms, int maxparms, int argc, char uarg[PARMLEN])
{
/* Ensure number of parameters is reasonable for the command */

/**/
/* Ensure enough parameters */
/**/
if (argc < minparms) {

NotEnoughError();
DisplayHelp(&uarg[0]);
return(SC_SEVERE);

}

/**/
/* Ensure no leftover parameters */
/**/
if (argc > maxparms) {

TooManyError();
DisplayHelp(&uarg[0]);
return(SC_SEVERE);

}

return(0);

}

Figure 85. DFM DataAgent Sample Part 24 of 25

122 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

/**
**************************** DisplayHelp *****************************

* Display the correct syntax for invoking this function.
*
**/
VOID DisplayHelp(char *fullhelp)
{
if (strncmp(fullhelp,"?",1) == 0) {

/* Print full help text. */
printf("Correct syntax: \n\n");
printf(" DFMACALL QTSO driveletter: TSOcommandline [DISPLAY] \n");
printf(" DFMACALL TSO driveletter: [TSOcommandline] [DISPLAY]

\n");
printf(" DFMACALL AGENT driveletter:[filename]

MVSproc[,proc_parms] \n");
printf(" [PGM prog_name] [PARM prog_parms]

[DISPLAY] \n");
printf(" DFMACALL START driveletter: MVSproc[,proc_parms] \n");
printf(" DFMACALL driveletter:filename[,filename_suffix]

[DISPLAY] \n\n");
printf(" Examples: \n\n");
printf(" dfmacall qtso r: listc display \n");
printf(" dfmacall tso r: display \n");
printf(" dfmacall agent r:ibmuser.a.b dfmxagnt \n");
printf(" dfmacall agent r:ibmuser.a.b dfmxtso \n");
printf(" pgm ikjeft01 parm listc \n");
printf(" dfmacall start r: dfmx0001,dfminit=iefbr14 \n");
printf(" dfmacall r:ibmuser.a.b,agent(dfmxagnt),parm(hello) \n");
printf(" dfmacall r:ibmuser.a.b,agent(dfmx0001),pgm(dfmxagnt)\n\n");

}
else {

/* Print clue for getting correct help text. */
printf("DFMACALL: Enter DFMACALL ? to get the correct command syntax. \n\n");

}
}

Figure 86. DFM DataAgent Sample Part 25 of 25

Appendix J. DFMACALL.C 123

124 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Appendix K. DDM File Attributes

Table 2 summarizes the DDM file attributes by DDM file class.

Table 2. DDM File Attributes

Attribute Description Chg

PDSE
Member
(SEQFIL)

PDSE
Member
(STRFIL) SAM ESDS

KSDS/
VRRDS RRDS

ACCMTHLS Access method list NO YES YES YES YES YES YES

DELCP Delete capable NO YES ... YES YES YES YES

DFTREC Default record NO YES ... NO NO NO NO

DTACLSNM Data class name NO YES YES YES YES YES YES

DTAFMT Data format YES ... YES

EOFNBR End of file number NO YES YES NO YES YES YES

EOFOFF End of file offset NO ... YES

FILEBYTCN File byte count NO YES YES NO NO NO NO

FILCHGDT File change date YES YES YES YES YES YES YES

FILCLS File class NO YES YES YES YES YES YES

FILCRTDT File creation date NO YES YES YES YES YES YES

FILEXNCN File extent count NO NO NO NO NO NO NO

FILEXNSZ File extent size NO YES YES NO NO NO YES

FILEXPDT File expiration date YES YES YES YES YES YES YES

FILHDD File hidden MEM YES YES YES YES YES YES

FILINISZ Initial file size NO YES YES NO NO NO YES

FILMAXEX Maximum number
extents

NO YES YES YES YES YES YES

FILNAM File name NO YES YES YES YES YES YES

FILOPNLO Open lock options NO YES NO NO NO NO ...

FILPRT File protected YES YES YES YES YES YES YES

FILSIZ File size NO YES ... NO YES

FILSYS System file MEM YES YES YES YES YES YES

GETCP Get capable MEM YES YES YES YES YES YES

INSCP Insert capable MEM YES ... YES YES YES YES

KEYDEF Key definition NO YES/

KEYDUPCP Duplicate key
capable

NO YES/

LSTACCDT Last access date NO NO NO YES YES YES YES

LSTARCDT Last archive date NO YES YES NO NO NO NO

MGMCLSNM Management class
name

DS YES YES YES YES YES YES

MODCP Modify capable MEM YES YES YES YES YES YES

RECLEN Record length NO YES ... YES YES YES YES

© Copyright IBM Corp. 1993, 2013 125

Table 2. DDM File Attributes (continued)

Attribute Description Chg

PDSE
Member
(SEQFIL)

PDSE
Member
(STRFIL) SAM ESDS

KSDS/
VRRDS RRDS

RECLENCL Record length class NO YES ... YES YES YES YES

RTNCLS Retention class NO YES YES YES YES YES YES

SHDEXS Shadow exists NO YES YES YES YES YES YES

STGCLSNM Storage class name DS YES YES YES YES YES YES

STRSIZ Stream size YES ... NO

TITLE Title MEM YES YES NO NO NO NO

Legend for Chg column:

YES Attribute value can be changed with the CHGFAT command for a full access data set.

NO Attribute value cannot be changed with the CHGFAT command.

DS Attribute value can be changed for data sets only with the CHGFAT command.

MEM Attribute value can be changed for PDSE members only with the CHGFAT command.

Legend for Data Set/Member columns:

YES Supported; that is, an attribute value is returned when requested on a LSTFAT command.

NO Not supported; that is, no attribute value is returned when requested on a LSTFAT command.

... Does not apply to any of the possible file classes for this data set member.

126 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Appendix L. Application Programming Considerations

This appendix contains programming considerations relevant to a DDM client
record and stream file access. When programming with these application
programming interfaces (APIs), you need to consider Distributed FileManager file
creation support, access command support, access restrictions, and logon mode
requirements.

Distributed FileManager Implementation
DFM provides a subset of DDM access methods, file types, and commands. In
some cases, DFM does not support certain record access and stream file API
commands or command parameters.

DDM Record Access File Creation
DFM creates record-oriented files based on DDMCreateRecFile command
parameter settings. The following are optional parameter settings which govern
data set creation within the indicated FileClass. Also provided are some mandatory
flag and parameter settings for supported DFM functions.

FileClass SEQFIL
Results in the creation of a SAM data set, a PDSE member, a PDS member, or a
VSAM RRDS or VRRDS.
v The type of data set created depends on these parameters:

– If the FileName parameter includes a member name, and the Delete Capability
parameter is off, a PDSE member or PDS member is created. (If the data set
does not exist, a PDSE is created first, and then the member is created.)

– If the FileName does not include a member name, and Delete Capability is on,
a VSAM RRDS or VRRDS is created.

– If the FileName does not include a member name, and Delete Capability is off,
a SAM data set is created.

v FileClass SEQFIL CreateFlags mandatory settings are:
Set off the following bit flag: DDM_TMPFIL

FileClass KEYFIL
Results in the creation of a VSAM KSDS data set.
v FileClass KEYFIL CreateFlags mandatory settings are:

Set off the following bit flags: DDM_TMPFIL, DDM_ALDUPKEY
v In FileClass KEYFIL, for the parameters DftRec and DftRecOp, the only valid

value is NIL.

FileClass DIRFIL
Results in the creation of a VSAM RRDS or VRRDS data set.
v The type of data set created is determined by the following:

– A RecLenCls value of RECFIX results in a RRDS data set
– A RecLenCls value of RECIVL or RECVAR results in a VRRDS data set

v FileClass DIRFIL CreateFlags mandatory settings are:
Set off the following bit flag: DDM_TMPFIL

© Copyright IBM Corp. 1993, 2013 127

Additional Considerations
You should also be aware that:
v If you do not specify InitFileSiz for DDMCreateRecFile, the file size is

determined by your ACS routines.

Stream File Creation
You can use the DDM Stream access method to create stream files in SAM data
sets or PDSE members. The type of data set created depends on:
v If the FileName parameter does not include a member name, a SAM data set is

created.
v If the FileName includes a member name, a PDSE member is created. (If the

data set does not exist, a PDSE is created first, and then the member is created.)

You should also be aware that:
v DFM uses a tunable parameter in DFM00 called STREAM_LRECL for record

length and RECFM = V to create new SAM data sets or PDSE data sets. These
attributes override LRECL and RECFM of the SMS data class defaulted by the
ACS routine.

File Access Commands Supported by Distributed FileManager
Only commands supported by the following DDM access methods can be issued
using DFM:

Access Method
Description

RELRNBAM
Relative by record number access method

RNDRNBAM
Random by record number access method

CMBRNBAM
Combined record number access method

RELKEYAM
Relative by key access method

RNDKEYAM
Random by key access method

CMBKEYAM
Combined key access method

STRAM
Stream access method

Sequential Files
Table 3 lists the DDM access method commands supported for DFM sequential
files.

Table 3. DDM Access Method Commands Supported for Distributed FileManager Sequential
Files

Access
Commands

RELRNBAM RNDRNBAM CMBRNBAM STRAM

CHGEOF YES*

CLOSE YES YES YES YES

128 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Table 3. DDM Access Method Commands Supported for Distributed FileManager Sequential
Files (continued)

Access
Commands

RELRNBAM RNDRNBAM CMBRNBAM STRAM

DELREC YES# YES# YES# ...

FRCBFF YES YES YES YES

GETREC YES YES YES ...

GETSTR YES

INSRECEF YES YES YES ...

INSRECNB ... YES+ YES+ ...

LCKSTR YES

MODREC YES YES YES ...

OPEN YES YES YES YES

PUTSTR YES*

SETBOF YES YES YES ...

SETEOF YES@ YES@ YES@ ...

SETFRS YES YES YES ...

SETLST YES@ YES@ YES@ ...

YES ... YES ...

... YES YES ...

SETNXT YES ... YES ...

YES ... YES ...

YES ... YES ...

NO YES YES ...

UNLIMPLK YES YES YES ...

UNLSTR Yes

Legend:

YES The command is supported.

NO The command is not supported.

... The command does not apply to the access method.

DELREC is only supported for RRDSs and VRRDSs.

@ SETEOF and SETLST are not supported for PDS members.

+ INSRECNB returns “duplicate record number” for PDSE members and PDS
members.

* DFM limits stream access to read-only support for VRRDS and RRDS data sets. All
stream access to non-reusable VSAM data sets is read-only.

Direct Files
Table 4 on page 130 lists the DDM access method commands supported for DFM
direct files.

Appendix L. Application Programming Considerations 129

Table 4. DDM Access Method Commands Supported for Distributed FileManager Direct Files

Access
Commands

RELRNBAM RNDRNBAM CMBRNBAM STRAM

CHGEOF YES*

CLOSE YES YES YES YES

DELREC YES YES YES ...

FRCBFF YES YES YES YES

GETREC YES YES YES ...

GETSTR YES

INSRECEF YES YES YES ...

INSRECNB ... YES YES ...

LCKSTR YES

MODREC YES YES YES ...

OPEN YES YES YES YES

PUTSTR YES*

SETBOF YES YES YES ...

SETEOF YES YES YES ...

SETFRS YES YES YES ...

SETLST YES YES YES ...

YES ... YES ...

... YES YES ...

SETNXT YES ... YES ...

YES ... YES ...

YES ... YES ...

NO YES YES ...

YES YES YES ...

UNLSTR YES

Legend:

YES The command is supported.

NO The command is not supported.

... The command does not apply to the access method.

* DFM limits stream access to read-only support for RRDSs and VRRDSs. All stream
access to non-reusable VSAM data sets is read-only.

Keyed Files
Table 5 lists the DDM access method commands supported for DFM keyed files.

Table 5. DDM Access Method Commands Supported for Distributed FileManager Keyed Files

Access
Commands

RELKEYAM RNDKEYAM CMBKEYAM STRAM

CHGEOF YES*

CLOSE YES YES YES YES

DELREC YES# YES# YES# ...

130 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Table 5. DDM Access Method Commands Supported for Distributed FileManager Keyed
Files (continued)

Access
Commands

RELKEYAM RNDKEYAM CMBKEYAM STRAM

FRCBFF YES YES YES YES

GETREC YES YES YES ...

GETSTR YES

INSRECKY YES YES YES ...

INSRECNB NO NO NO ...

LCKSTR YES

MODREC YES YES YES ...

OPEN YES YES YES YES

PUTSTR YES*

SETBOF YES YES YES ...

SETEOF YES YES YES ...

SETKEY YES@ YES YES ...

SETKEYFR YES YES YES ...

SETKEYLM YES ... YES ...

SETKEYLS YES YES YES ...

SETKEYNX YES ... YES ...

SETKEYPR YES ... YES ...

SETNXTKE YES ... YES ...

YES YES YES ...

YES YES YES ...

UNLSTR YES

Legend:

Yes The command is supported.

No The command is not supported.

... The command does not apply to the access method.

* DFM limits stream access to read-only support for keyed files.

DELREC is only supported for KSDSs.

@ RELKEYAM is promoted to CMBKEYAM.

Stream Files
Table 6 lists the DDM access method commands supported for DFM stream files.

Table 6. DDM Access Method Commands Supported for Distributed FileManager Stream
Files

Access Commands STRAM

CHGEOF YES

CLOSE YES

FRCBFF YES

GETSTR YES

Appendix L. Application Programming Considerations 131

Table 6. DDM Access Method Commands Supported for Distributed FileManager Stream
Files (continued)

Access Commands STRAM

LCKSTR YES

OPEN YES

PUTSTR YES

UNLSTR YES

Legend:

YES The command is supported.

DDM Record Access Restrictions
Restrictions for applications doing record access to DFM are:
v DFM does not support the following functions for accessing multivolume data

sets:
– Backward processing functions: DDMSetMinus and DDMSetPrevious
– Direct positioning functions: DDMSetBOF, DDMSetEOF, DDMSetFirst, and

DDMSetLast
– DDMInsertRecEOF function (An alternative is to use the DDMLoadFileFirst

function to write records to an empty file or to extend the file.)
– Under some conditions, DDMGetRec and DDMModifyRec functions for

accessing records that span physical volumes
The equivalent DDM commands for these DDM record access functions are
SETPRV, SETMNS, SETBOF, SETEOF, SETFRS, SETLST, INSRECEF GETREC and
MODREC. The TRGNSPRM reply message is returned if these commands are
used to access multivolume data sets.

v The DDMOpen AccIntList includes DDM_MODAI, DDM_INSAI, and
DDM_GETAI bit flags. You must explicitly state all your access intents for the
duration of the file being open under control of that DDMOpen command.
There is not a more powerful access intent which implicitly permits another less
powerful access. For example, if you specify DDM_MODAI but not
DDM_GETAI and then attempt to retrieve a record, you will receive an error
reply message.

v The following are other DFM access restrictions:
– For the DDMModifyRec command, the AccessFlags DDM_INHMODKY bit

flag must be set on.
– For DDMUnLoadFileFirst, you must explicitly specify UnloadOrder KEYORD

for KSDS.
– For DDMSetKey, the AccessFlag DDM_HLDCSR bit flag must be set off.
– DDMSetLast with the AccessFlag DDM_RECNBRFB bit flag set on for ESDS

and partitioned sequential data sets returns the special value of -1 for the
record number feedback. This indicates that the number is not known.

v If you are accessing KSDSs or AIFs, you can only use DDM keyed access
method commands. You can only access these records by key, not by record
number.

v If you are accessing a PDS member:
– Only sequential load (using INSRECEF or LODRECF) is supported; random

load (by record number) is not supported.

132 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

– These DDM access commands are not supported: DELREC, INRECNB,
SETEOF, and SETLST.

Stream File API Restrictions
Stream file API restrictions, from DDM clients:

A DDM client editor might report a critical error when you create a remote
stream file using DFM. The file is, however, actually created and can
subsequently be accessed without editor error messages.

Logon Mode Requirements
The IBM i5/OS system and DDM clients have the following logon mode
requirements:
v It requires a logon mode named QPCSUPP in order to perform authorization

checking.
v It only supports one logon mode name specification to be used for all target

systems.
v If you do not successfully place a logon mode table entry named QPCSUPP in

the z/OS VTAM logon mode table concatenation for your z/OS APPC APPL,
you will receive error messages, see Figure 87, on your z/OS console:

IST663I BFINIT REQUEST FROM DFMNCP (my NCP major node) FAILED,
SENSE=...
IST664I REAL OLU=PELNET01.PS2ILU1 REAL DLU=PELNET01.DFMILU1
IST889I SID=...
IST264I REQUIRED LOGMODE NAME QPCSUPP UNDEFINED
IST314I END
IST663I BFTERM REQUEST FROM DFMNCP RECEIVED, SENSE=...
IST664I (same as before)
IST889I SID=...
IST891I PELNET01.VTAMF GENERATED FAILURE NOTIFICATION
IST893I ORIGINAL FAILING REQUEST IS BIND
IST314I END

Figure 87. Error Messages

Appendix L. Application Programming Considerations 133

134 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Appendix M. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1993, 2013 135

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

136 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix M. Accessibility 137

138 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1993, 2013 139

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

140 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This publication documents intended Programming Interface that allow the
customer to write programs to obtain services of DFSMS.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at www.ibm.com/legal/copytrade.shtml (http://www.ibm.com/legal/
copytrade.shtml).

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 141

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

142 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Glossary

This glossary defines technical terms and
abbreviations used in DFSMShsm documentation.
If you do not find the term you are looking for,
refer to the index of the appropriate DFSMShsm
manual or view IBM Glossary of Computing Terms,
located at http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from:
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are
identified by the symbol (A) after the
definition.

v The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee
1, of the International Organization for
Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of
this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

access method
(1) A mainframe data management
routine that moves data between storage
and an I/O device in response to requests
made by a program. (2) The part of the
distributed data management architecture
which accepts commands to access and
process the records of a file.

ACS See Automatic class selection (ACS).

Advanced Program-to-Program Communications
(APPC)

An implementation of the Systems
Network Architecture (SNA) logical unit
(LU) 6.2 protocol that allows
interconnected systems to communicate
and share the processing of programs.

agent Manages the parsing and routing of DDM
commands and replies.

AIF See Alternate index file.

AIX Advanced Interactive Executive

alias An alternative name for an ICF user
catalog, a non-VSAM file, or a member of
a partitioned data set (PDS) or PDSE.

alternate index file
A file that supports keyed forms of access
to the records of a base file.

API See application programming interface (API).

APPC See Advanced Program-to-Program
Communications (APPC).

APPC/MVS
In the z/OS operating system, a session
environment that supports LU 6.2
transaction scheduling and
communications. The z/OS
implementation of APPC.

application programming interface (API)
A formally defined programming
language interface between an IBM
system control program or a licensed
program and the user of a program.

architecture
A set of defined terms and rules used as
instructions to build products.

ascending key sequence
Specifies that the records of a file are in
ascending key sequence. If the key class is
BYTSTRDR (byte string), the collating
sequence is a simple binary sequence with
X'00' as the lowest value and X'FF' as the
highest value.

ASCH The APPC/MVS scheduler.

ASCII American National Standard Code for
Information Interchange

ASID Address space identifier

associated DDM attributes
Associated DDM attributes are defined in
DDM. Examples of associated DDM
attributes are file size, lock options or
end-of-file offset for byte-stream files.
Associated DDM attributes are not

© Copyright IBM Corp. 1993, 2013 143

necessarily exclusive to DDM, but can be
common to other applications that access
the same data sets.

automatic class selection (ACS)
A mechanism for assigning Storage
Management Subsystem classes and
storage groups to data sets.

automatic class selection (ACS) routine
A procedural set of ACS language
statements. Based on a set of input
variables, the ACS language statements
generate the name of a predefined SMS
class, or a list of names of predefined
storage groups, for a data set.

backup
The process of creating a copy of a data
set or object to be used in case of
accidental loss.

base data set
Data set or file stored on z/OS, in
contrast to the view of the file as seen by
the workstation. Is also used to refer to
the VSAM ESDS or KSDS upon which an
alternate index is built.

BCP Base control program

BDAM
Basic direct access method

BSAM
Basic sequential access method

byte The amount of storage required to
represent one character; the basic unit of
data.

byte stream
A simple sequence of bytes stored in a
stream file.

C language
A language used to develop software
applications in compact, efficient code
that can be run on different types of
computers with minimal change.

CCSID
Coded character set identifier

CD Change directory

CDRA
Character Data Representation
Architecture

CL Control language

client (1) A user. (2) A consumer of resources or
services. (3) A functional unit that receives
shared services from a server. (4) A
system that is dependent on a server to
provide it with programs or access to
programs. (5) On a network, the computer
requesting services or data from another
computer.

client-server
(1) In TCP/IP, the model of interaction in
distributed data processing in which a
program at one site sends a request to a
program at another site and waits for a
response. The requesting program is
called a client; the answering program is
called a server. (2) A model of computer
interaction in which a server provides
resources for other systems on a network,
and a client accesses those resources. See
also client, server.

code point
Specifies the data representation of a
dictionary code point. Code points are
hexadecimal aliases for the named terms
of DDM architecture. Code points are
used to reduce the number of bytes
required to identify the class of an object
in memory and in data streams.

command
A message sent to an object requesting
that the object carry out one of its
operations.

communications manager
Manages the use of the system's
communication facilities.

conversation
In Advanced Program-to-Program
Communications (APPC), a connection
between two transaction programs over a
logical unit-logical unit (LU-LU) session
that allows them to communicate with
each other while processing a transaction.

conversational transaction
In Advanced Program-to-Program
Communications (APPC), two or more
programs communicating using the
services of logical units (LUs).

cursor A cursor is a displayed symbol that acts
as a marker to help the user locate a point
in text, in a system command, or in
storage. Cursors mark file position and

144 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

access information in Distributed Data
Management architecture.

DASD volume
A DASD space identified by a common
label and accessed by a set of related
addresses.

data class
A collection of allocation and space
attributes, defined by the storage
administrator, that are used to create a
data set.

data management services
The storage, organization, and access of
data.

data set
In DFSMS, the major unit of data storage
and retrieval, consisting of a collection of
data in one of several prescribed
arrangements and described by control
information to which the system has
access. In z/OS non-UNIX environments,
the terms data set and file are generally
equivalent and sometimes are used
interchangeably. See also file. In z/OS
UNIX environments, the terms data set
and file have quite distinct meanings.

data stream
All data transmitted through a data
channel in a single read or write
operation.

DCAS DFM central address space

DDM See Distributed Data Management
Architecture.

DDM file name
Distributed Data Management file name.

device name
This term is used interchangeably with
device number, unit number, and unit
name. It is the number by which a
specific device is known. For example,
and installation with two tape drives
might assign them device names 181 and
182.

DFM Distributed FileManager

DFSMS
See Data Facility Storage Management
Subsystem.

DFSMSdfp
A DFSMS functional component or base
element of z/OS, that provides functions
for storage management, data
management, program management,
device management, and distributed data
access.

DFSMSdss
A DFSMS functional component or base
element of z/OS, used to copy, move,
dump, and restore data sets and volumes.

DFSMShsm
A DFSMS functional component or base
element of z/OS, used for backing up and
recovering data, and managing space on
volumes in the storage hierarchy.

DFSMSrmm
A DFSMS functional component or base
element of z/OS, that manages removable
media.

direct file
A file that contains records that have a
relationship between the contents of the
record and the record position at which
the record is stored.

directory
A file that maps the names of other
directories and files to their locations.

distributed computing
Computing that involves the cooperation
of two or more machines communicating
over a network. Data and resources are
shared among the individual computers.

distributed data
Data that is stored in more than one
system in a network and is available to
remote users and application programs.

distributed data management
A methodology that allows data on one
system to be shared and accessed by
another system.

Distributed Data Management Architecture
(DDM)

Distributed Data Management
Architecture (DDM) offers a vocabulary
and a set of rules for sharing and
accessing data among like and unlike
computer systems. DDM includes a set of
standardized file models for keyed,
relative record, sequential, and stream
data. It allows users and applications to

Glossary 145

access data without concern for the
location or format of the data.

distributed file
A file that can be accessed by remote
applications or remote users. Also, the
capability of accessing such a file.

Distributed FileManager
Distributed FileManager (or DFM) is an
implementation of target (server) support
as defined by Distributed Data
Management Architecture (DDM). DDM
permits systems in an extended enterprise
that have DDM source (client) capability
to access file data on a DDM target z/OS
system. See definitions for source, target,
and extended enterprise.

distributed processing
A capability that enables applications and
data located at remote sites or processors
connected by a communications link to be
used as if they were local.

DSAS Data space address space

DSS Data set services

EBCDIC
Extended binary coded decimal
interchange code

extended enterprise
A heterogeneous computing environment
that often includes both centralized hosts
and distributed workstations connected in
a network. Gateways within the extended
enterprise provide connections to local
area networks (LANs). These LANs can
serve any computing systems architecture.

ESDS Entry-sequenced data set

extent A file extent is a storage area for records
allocated to a file by the server. Extents
are not formally architected in DDM.

file A collection of information treated as a
unit. In z/OS non-UNIX environments,
the terms data set and file are generally
equivalent and are sometimes used
interchangeably. See also data set.

file class
Refers to the DDM file class (FILCLS)
used when writing VSAM for a DDM
client or VSAM for AIX applications.

file model
A description of how information is
organized and managed within a file.

fixed-length record
A fixed-length record is one whose length
is established as an attribute of the file in
which it is stored, and can not be
changed. Every record in such a file has
the same length, which is specified by the
record length attribute (RECLEN) of the
file.

gateway
A functional unit that interconnects two
computer networks with different
network architectures. A gateway
connects networks or systems of different
architectures. A bridge interconnects
networks or systems with the same or
similar architectures.

GDG Generation data group

GDS Generation data set

heterogeneous computer network
A computer network in which computers
have dissimilar architecture, but
nevertheless are able to communicate.

HFS Hierarchical file system

ICF See Integrated catalog facility (ICF).

IDCAMS
Integrated catalog access method services

integrated catalog facility (ICF)
In the Data Facility Product (DFP), a
facility that provides for integrated
catalog facility catalogs.

Interactive Storage Management Facility (ISMF)
The interactive interface of DFSMS that
allows users and storage administrators
access to the storage management
functions.

IPL Initial program load

ISMF See Interactive Storage Management Facility
(ISMF).

JCL job control language

146 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

keyed field
The portion of a record which is used
(possibly with other key fields) to locate a
data record in a keyed file.

KSDS Key-sequenced data set

LAN See local area network.

LDMI Local data management interface.

LDS Linear data set (VSAM)

LE Language environment

local Local is your reference point when
discussing such entities as platforms or
applications. For example, when
discussing network conversations from
the reference point of an z/OS platform,
local refers to entities located on the z/OS
system. Similarly, when discussing data
access methods from the reference point
of an z/OS platform, local refers to the
z/OS access methods. Contrast with
remote.

local area network (LAN)
A computer network located on a user's
premises within a limited geographical
area. Communication within a local area
network is not subject to external
regulations; however, communication
across the LAN boundary can be subject
to some form of regulation.

local location name
The name by which a system is know to
other systems in an SNA network. A local
location name is equivalent to an SNA
local logical unit name.

locking
The process of restricting resources to
provide protection from concurrent users
of the system.

logical unit (LU)
In SNA, a logical port through which an
end user accesses the SNA network in
order to communicate with another end
user and through which the end user
accesses the functions provided by system
services.

logical unit 6.2 (LU 6.2)
A particular type of Systems Network
Architecture (SNA) logical unit (LU) that
provides a connection between resources

and transactions programs running on
different network nodes.

LU See logical unit.

LU 6.2 See logical unit 6.2.

mainframe
A large computer, particularly one to
which other computers can be connected
so that they can share facilities the
mainframe provides.

management class
A named collection of management
attributes describing the retention,
backup, and class transition characteristics
for a group of objects in an object storage
hierarchy.

migration
The process of moving unused data to
lower cost storage in order to make space
for high-availability data. If you wish to
use the data set, it must be recalled. See
also migration level 1 and migration level
2.

migration level 1
DFSMShsm-owned DASD volumes that
contain data sets migrated from primary
storage volumes. The data can be
compressed. See also storage hierarchy.
Contrast with primary storage and
migration level 2.

migration level 2
DFSMShsm-owned tape or DASD
volumes that contain data sets migrated
from primary storage volumes or from
migration level 1 volumes. The data can
be compressed. See also storage hierarchy.
Contrast with primary storage and
migration level 1.

mode name
The name used by the initiator of a
session to designate the characteristics
desired for the session, such as traffic
pacing values, message-length limits, sync
point and cryptography options, and the
class of service within the transport
network.

object storage hierarchy
A hierarchy consisting of objects stored in
DB2® table spaces on DASD, on optical or

Glossary 147

tape volumes that reside in a library, and
on optical or tape volumes that reside on
a shelf. See also storage hierarchy.

optical volume
Storage space on an optical disk,
identified by a volume label. See also
volume.

partitioned data set (PDS)
A data set on direct access storage that is
divided into partitions, called members,
each of which can contain a program, part
of a program, or data.

partitioned data set extended (PDSE)
A system-managed data set that contains
an indexed directory and members that
are similar to the directory and members
of partitioned data sets. A PDSE can be
used instead of a partitioned data set.

partner
In data communications, the remote
application program or the remote
computer. Also refers to complementary
information or function on a remote
platform. To conduct a network
conversation, for example, Distributed
FileManager requires a local logical unit
(LU) on the target system and a partner
LU on the source system.

PDS See Partitioned data set.

PDSE See Partitioned data set extended.

platform
A computer system running a specific
operating system connected in a network.
For example, z/OS and i5/OS are
different operating system platforms.

PPT Program property table

primary space allocation
Amount of space requested by a user for
a data set when it is created. Contrast
with secondary space allocation.

primary storage
A DASD volume available to users for
data allocation. The volumes in primary
storage are called primary volumes. See
also storage hierarchy. Contrast with
migration level 1 and migration level 2.

protocol
(1) A set of semantic and syntactic rules
that determines the behavior of functional

units in achieving communication. (2) A
specification for the format and relative
timing of information exchanged between
communicating parties.

QSAM
Queued sequential access method

RACF See Resource Access Control Facility (RACF).

record The basic unit of data stored in a
record-oriented file.

record data
Data sets with a record-oriented structure,
which are accessed record by record. This
data set structure is typical of data sets on
VM, z/OS, and i5/OS systems.

record-level access
A means of supporting distributed files.
Enables an application or user to read and
update individual records of files on a
remote system without specifying the
data's location.

record-oriented file
File with a record-oriented structure that
is accessed record by record. This file
structure is typical of data sets on VM,
z/OS, and i5/OS systems. Contrast with
stream-oriented file.

remote
Remote is relative to your reference point
when discussing such entities as
platforms or applications. For example,
when discussing network conversations
from the reference point of an z/OS
platform, remote refers to entities that
access z/OS data across an network. A
DDM client application accessing the
z/OS data would be remote. Contrast
with local.

Resource Access Control Facility (RACF)
An IBM licensed program that is included
in z/OS Security Server and is also
available as a separate program for the
z/OS and VM environments. RACF
provides access control by identifying and
verifying the users to the system,
authorizing access to protected resources,
logging detected unauthorized attempts
to enter the system, and logging detected
accesses to protected resources.

148 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

RLS Record-level sharing

RRDS Relative record data set

SAM Sequential access method

SDDM/400
DDM source on i5/OS

SdU See SMARTdata UTILITIES.

secondary space allocation
Amount of additional space requested by
the user for a data set when primary
space is full. Contrast with primary space
allocation.

sequential file
A type of z/OS file that has its records
stored and retrieved according to their
physical order within the file. It must be
on a direct access volume.

server (1) A functional unit that provides shared
services to workstations over a network;
for example, a file server, a print server, a
mail server. (2) On a network, the
computer that contains the data or
provides the facilities to be accessed by
other computers in the network. (3) A
program that handles protocol, queuing,
routing, and other tasks necessary for
data transfer between devices in a
computer system.

session
A logical connection between two stations
or network addressable units (NAUs) that
allows them to communicate.

SMARTdata Utilities (SdU)
SMARTdata Utilities (SdU) is a
component of a DDM client system that
provides source DDM services.

SMS See Storage Management Subsystem (SMS).

SNA See Systems Network Architecture.

source Source is the term used in Distributed
Data Management Architecture (DDM) to
refer to the platform that originates a
request for remote data. Source is also
known as client. Contrast with target.

source server
DDM term for the function that converts
source requests to data streams containing
DDM commands and output data and
sends them over the network to the target
server.

source system
A system containing an application
program that requests access to data in
another system.

SPE Small programming enhancement

storage administration group
A centralized group within the data
processing center that is responsible for
managing the storage resources within an
installation.

storage administrator
A person in the data processing center
who is responsible for defining,
implementing, and maintaining storage
management policies.

storage class
A collection of storage attributes that
identify performance goals and
availability requirements, defined by the
storage administrator, used to select a
device that can meet those goals and
requirements.

storage hierarchy
An arrangement of storage devices with
different speeds and capacities. The levels
of the storage hierarchy include main
storage (memory, DASD cache), primary
storage (DASD containing uncompressed
data), migration level 1 (DASD containing
data in a space-saving format), and
migration level 2 (tape cartridges
containing data in a space-saving format).
See also primary storage, migration level 1,
migration level 2, and object storage
hierarchy.

storage management
The activities of data set allocation,
placement, monitoring, migration,
backup, recall, recovery, and deletion.
These can be done either manually or by
using automated processes. The Storage
Management Subsystem automates these
processes for you, while optimizing
storage resources. See also Storage
Management Subsystem.

Storage Management Subsystem (SMS)
A DFSMS facility used to automate and
centralize the management of storage.
Using SMS, a storage administrator
describes data allocation characteristics,
performance and availability goals,
backup and retention requirements, and

Glossary 149

storage requirements to the system
through data class, storage class,
management class, storage group, and
ACS routine definitions.

Stream data file
Data sets with a byte-oriented structure,
which are accessed as continuous streams
of data bytes. This data set (file) structure
is common in workstation environments.

stream-oriented file
File with a byte-oriented structure that is
accessed as continuous streams of data
bytes. This file structure is common in
workstation environments. Contrast with
record-oriented file.

system administrator
The person at a computer installation
who designs, controls, and manages the
use of the computer system.

system operator
An operator responsible for performing
system-oriented procedures.

system programmer
A programmer who plans, generates,
maintains, extends, and controls the use
of an operating system and applications
with the aim of improving overall
productivity of an installation.

system-managed storage
Storage managed by the Storage
Management Subsystem. SMS attempts to
deliver required services for availability,
performance, and space to applications.
See also system-managed storage
environment.

system-managed storage environment
An environment that helps automate and
centralize the management of storage.
This is achieved through a combination of
hardware, software, and policies. In the
system-managed storage environment for
z/OS, the function is provided by
DFSORT, RACF, and the combination of
DFSMS and z/OS.

Systems Network Architecture (SNA)
The description of the logical structure,
formats, protocols, and operational
sequences for transmitting information
units through the networks and also
operational sequences for controlling the
configuration and operation of networks.

tape volume
A tape volume is the recording space on a
single tape cartridge or reel. See also
volume.

target Target is the term used in Distributed
Data Management Architecture (DDM) to
refer to the platform that fulfills a request
for remote data. Target is also known as
server. Contrast with source.

target server
DDM term that describes the function
that converts DDM data streams received
from a source server to local data
management requests and sends reply
messages and input data back to the
source server over a network.

target system
A system containing data that has been
requested by another system.

TCP/IP
See Transmission Control Protocol/Internet
Protocol (TCP/IP).

TP See Transaction program (TP).

transaction program (TP)
A program that uses the Advanced
Program-to-Program Communications
(APPC) application programming
interface (API) to communicate with a
partner application program on a remote
system.

Transmission Control Protocol/Internet Protocol
(TCP/IP)

The two fundamental protocols of the
Internet protocol suite. The abbreviation
TCP/IP is frequently used to refer to this
protocol suite. TCP/IP provides for the
reliable transfer of data, while IP
transmits the data through the network in
the form of datagrams. Users can send
mail, transfer files across the network, or
execute commands on other systems.

TSO Time Sharing Option

user interface
(1) The means by which a user
communicates with a system, program, or
device. (2) The hardware, software, or
both that implements a user interface,
allowing the user to interact with and

150 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

perform operations on a system, program,
or device. Examples are a keyboard,
mouse, command language, or
windowing subsystem.

variable-length record
A variable-length record is one whose
length can be changed after it has been
written to a file. The length of individual
records in the file varies from record to
record but cannot exceed the maximum
length specified by the RECLEN attribute
of the file. The length of a record is
initially set by the DDMInsertRecEOF,
DDMInsertRecNum or DDMInsertRecKey
function, but can be changed by a
subsequent function (DDMModifyRec,
DDMInsertRecNum, DDMInsertRecKey,
or DDMDeleteRec).

volume
The storage space on DASD, tape, or
optical devices, which is identified by a
volume label. See also DASD volume,
optical volume, and tape volume.

VRRDS
Variable-length relative record data set

VSAM
Virtual Storage Access Method

VSE Virtual Storage Extended

VTAM
Virtual Telecommunications Access
Method

wild card
A character or sequence of characters that
can be included in a character string to
represent zero or more characters in the
string.

workstation
(1) A device that enables users to transmit
information to or receive information
from a computer; for example, a display
station or printer. (2) A functional unit at
which a user works. It can be a
programmable workstation, such as an
IBM xSeries® computer, or a
nonprogrammable workstation, such as a
terminal. (3) A terminal or microcomputer,
usually one that is connected to a
mainframe or to a network, at which a
user can perform applications.

WTO Write-to-Operator

Glossary 151

152 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

Index

A
ACBNAME parameter

APPL definition 39
LUADD definition 34

accessibility 135
contact IBM 135
features 135

accessing
data in extended enterprise 2
z/OS data sets requirements 11

ACS (automatic class selection)
routines for Distributed FileManager

data class 46
management class 46
storage class 47

activating Distributed FileManager,
example 44

adding to VSAM KSDS
side information 37
TP profile 35

administration utility
adding TP profile 35

administrator, TP
defining to RACF 48

Advanced Program-to-Program
Communication (APPC) 34

AGENT parameter 27
alias names

directory access 18
record access 15
stream access 17

allocating VSAM KSDS
for side information 37
for TP profile 35

altering CCSID parameter 23
alternate index files

base data sets 19
DDM file model 12
defining 19

APPC (Advanced Program-to-Program
Communication)

Distributed FileManager
creating side information 37
creating TP profile 35
defining APPC/MVS start

parameters 34
defining APPC/MVS transaction

scheduler 37
LUADD definition 34
TP profile 34

starting
APPC/MVS 49
APPC/MVS transaction

scheduler 49
stopping APPC/MVS 52
support for Distributed

FileManager 6
using administration utility 35

APPL definition 38
ASCH

defining start parameters 37

ASCH (continued)
displaying status 50
stopping 52

assistive technologies 135
ATBSDFMU 35
attributes, file, DDM 125
automatic class selection (ACS) 46

B
BASE parameter, LUADD definition 34

C
CANCEL command

controlling conversations 51
CCSID (coded character set identifier)

altering 23
determining

using IDCAMS 25
using ISMF 25

introduction 22
CDRA (character data representation

architecture)
introduction 22

Character Data Representation
Architecture (CDRA) 22

CLASSADD definition
defining start parameters, transaction

scheduler 37
client/server relationship 5
coded character set identifier 23
converting data 23
creating DDM file attributes 24
customizing

for Distributed FileManager
APPC/MVS start parameters 34
APPC/MVS transaction

scheduler 37
illustration of tasks 32
startup parameters 41
startup procedure 44
summary of tasks 31
VTAM 38

D
data set

altering REUSE parameter 20, 21
data conversion 23
Distributed FileManager tuning

parameters 43
name mapping 18
naming, using Distributed

FileManager 18
using Distributed FileManager

access limitations 15, 17
access requirements 11

data set (continued)
z/OS

supported by Distributed
FileManager 11

DataAgent
accessing data 27
DFMQTSO sample 81
DFMX0001 sample 61
DFMXAGNT sample 63
DFMXSORT sample 69
DFMXSRTI sample 77
DFMXTSOI sample 89
how it works 9

dbtoken
defining for Distributed

FileManager 47
DDM (Distributed Data Management

Architecture)
file attributes

altering CCSID parameter 23
creating 24
definition 24
determining 25, 26
loss of 15, 17
propagating 27

implementation 6
implementations

platforms supporting 7
relationship to Distributed

FileManager 6
source, communicating with

Distributed FileManager 8
DDM client system

defining
local LU, example 41

DDM file attributes 125
DDM file models 12
defining

ACS routines for Distributed
FileManager

data class example 46
management class example 46
storage class example 47

APPC/MVS start parameters
LUADD definition 34

Distributed FileManager
side information 37
TP profile 35

logon mode to VTAM 39
partner information, requirements 40
startup procedure

for Distributed FileManager 44
to RACF

TP administrator 48
user ID 48

determining DDM file attributes
using DCOLLECT 25
using ISMF 25
using LISTCAT 26

DFM00 system sample 55
DFMQTSO sample 81

© Copyright IBM Corp. 1993, 2013 153

DFMX0001 sample 61
DFMXAGNT sample 63
DFMXSORT sample 69
DFMXSRTI sample 77
DFMXTSOI sample 89
directories

access 17
restrictions 18

DISPLAY APPC command
example

LU status 50
TP status 50

DISPLAY ASCH command 50
displaying status

local LU 50
transaction program (TP) 50
transaction scheduler 50

Distributed Data Management
Architecture (DDM) 6

distributed data processing
client/server relationship 5
discussion 4

Distributed FileManager
access requirements 11
accessing data using the

DataAgent 27
APPC/MVS support, overview 6
applications of 10
benefits 4
communicating with DDM source 8
controlling conversations

stopping local LU 51
stopping TP 51

creating
side information 37
TP profile 35

customizing
APPC/MVS 33
illustration of tasks 32
summary of tasks 31
VTAM 38

data conversion 23
data set

access limitations 15, 17
name mapping 18
naming 18

DDM file attributes
altering CCSID parameter 23
definition 24
propagating PDSE 27
propagating PS and VSAM 27
using IDCAMS to determine 25,

26
using ISMF to determine 25

DDM source, relationship with 6
DDM support, overview 6
defining

APPC/MVS transaction
scheduler 37

partner information 40
startup parameters for Distributed

FileManager for z/OS 41
startup procedure 44

how DataAgent works 9
monitoring conversations 50
operating procedures 49

Distributed FileManager (continued)
processing environment

components 6
description 7

RACF support, overview 7
starting 49
stopping 52
TP access security

requirements 47
using RACF 47

verifying PPT entries 45
VTAM support, overview 7
wild card options 19
z/OS data sets

not supported 12
supported 11

E
EXPORT command

propagating DDM attributes 27
extended enterprise, data access in 2

F
file attributes, DDM 125
FORCE command, stopping TP 52

G
gateway, in extended enterprise 2
GDEAPDEF system sample 53
GDEAPPC system sample 53
GDEASCH system sample 54
GDELOGMD system sample 56
GDEPRTLU system sample 58
GDETPDEF system sample 57

H
hidden files 18

I
IDCAMS

altering REUSE parameter 20
determining DDM attributes

using DCOLLECT command 25
using LISTCAT command 26

propagating DDM attributes
using IMPORT command 27

IEBCOPY utility
propagating DDM attributes

for PDSE member 27
implementing

TP security to RACF 48
IMPORT command

propagating DDM attributes 27
Interactive Storage Management Facility

(ISMF) 25
ISMF (Interactive Storage Management

Facility)
determining DDM file attributes 25

K
keyboard

navigation 135
PF keys 135
shortcut keys 135

L
LISTCAT command

determining DDM attributes 26
local LU 38
logical unit (LU)

local
APPL definition 39
DDM client, example 41
defining to APPC/MVS 34
defining to VTAM 38
displaying status 50
stopping 51

partner
defining to VTAM 40

logon mode
defining to VTAMLIB 39
defining to VTAMLST 39

logon mode requirements 133
LU 38
LU 6.2 protocol

description 6
LUADD definition

example 34

M
mapping data set name on a DDM

client 18
migrated files 18
multivolume data sets 15

N
naming data set

using Distributed FileManager 18
navigation

keyboard 135
Notices 139

P
parameters, DataAgent file name

suffix 27
PARM parameter 28
PARMLIB

APPCPMxx member
defining APPC/MVS start

parameters 34
LUADD definition 34

ASCHPMxx member
defining transaction scheduler 37

DFM00 member
Distributed FileManager startup

parameters 41
SCHEDxx member 45

partner LU 38

154 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

PDSE member
propagating DDM attributes

restrictions 27
PDSEs

advantages 22
using 22

PDSs
limitations 22
using 22

performance
Distributed FileManager

tuning parameters 42
PGM parameter 28
platform, operating system

DDM implementations on 7
PPT (program property table)

verifying Distributed FileManager
entries 45

PPT Entries for DFM for z/OS 97
preserving DDM attributes 27
PROCLIB

DFM member
Distributed FileManager startup

procedure 44
program property table (PPT) 45
propagating DDM attributes

for PDSE 27
for PS and VSAM data sets 27

Q
QPCSUPP logon mode 133

R
RACF (Resource Access Control Facility)

defining TP access security
description 7
examples 47
for Distributed FileManager 47

record-oriented data
access restrictions using Distributed

FileManager 15
DDM access functions 14
DDM access methods 14
DDM file classes 13

reusing VSAM data set 20

S
SCHED parameter, LUADD

definition 35
sending comments to IBM xi
SET command

controlling TP status 51
shortcut keys 135
SIDEINFO DATASET parameter

in LUADD definition 34
SNA (Systems Network Architecture)

LU 6.2 protocol 6
source

relationship with target 5
START parameter 28
starting

APPC/MVS 49

starting up
APPC/MVS transaction scheduler 49
Distributed FileManager 49

stream-oriented data
access restrictions

using Distributed FileManager 17
DDM access functions 16
DDM access method 16
DDM file class 16

Summary of changes xiii
system files 18
system PROCLIB member DFM,

sample 95
system samples

DFM00 55
DFMQTSO 81
DFMX0001 61
DFMXAGNT 63
DFMXSORT 69
DFMXSRTI 77
DFMXTSOI 89
GDEAPDEF 53
GDEAPPC 53
GDEASCH 54
GDELOGMD 56
GDEPRTLU 58
GDETPDEF 57

Systems Network Architecture (SNA) 6

T
target

relationship with source 5
terminology, special 1, 2
TP (transaction program) 34
TPDATA parameter

in LUADD definition 34
TPMODIFY command

changing TP status 51
transaction program (TP)

access security
defining to RACF 48
requirements for 47

defining for Distributed
FileManager 35

description 34
displaying status 50
profile

defining to RACF 48
stopping 51, 52

transaction scheduler, APPC/MVS
defining start parameters 37
starting 49

tuning parameters
for Distributed FileManager

related to data set definition 43
related to performance 42

U
user ID, defining to RACF 48
user interface

ISPF 135
TSO/E 135

V
verifying PPT entries

for Distributed FileManager 45
Virtual Telecommunications Access

Method (VTAM) 38
VSAM data set

altering REUSE parameter 20
propagating DDM attributes 27

VTAM (Virtual Telecommunications
Access Method)

APPL definition 38
defining

local LU to VTAMLST 38
logon mode to VTAMLIB 39
partner information 40

support, overview 7
VTAMLIB

defining logon mode 39
VTAMLST

defining local LU 38

W
wild cards

restrictions 19
workstation

DFSMSdfp support 4

Index 155

156 z/OS V2R1.0 DFSMS Distributed FileManager Guide and Reference

����

Product Number: 5650-ZOS

Printed in USA

SC23-6848-00

	Contents
	Figures
	Tables
	About this document
	Required product knowledge
	Referenced documents
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Introduction to Distributed FileManager
	Terminology Used in This Book
	Introduction to Distributed Data Processing
	Extended Enterprise Data Access
	Transparent Data Access
	Sharing and Accessing Data
	Avoiding Duplicate Data
	Portable Applications
	Transparent Applications

	Client/Server Perspective

	DFSMSdfp Distributed Data Processing Environment
	Distributed FileManager
	Introduction to the Distributed FileManager Environment
	Components of the Distributed FileManager Environment
	DDM
	DDM Source Systems
	APPC Communications Protocol
	RACF Conversation Access Security

	Platforms That Support DDM Architecture Implementations
	How Distributed FileManager Works
	Profile of the Distributed FileManager Environment
	How DDM Source Systems Communicate with Distributed FileManager

	How Distributed FileManager DataAgent Works

	Scenarios for Distributed FileManager

	Chapter 2. Accessing Data Sets with Distributed FileManager
	Accessing z/OS Data Sets
	Data Set Requirements
	Data Set Types Supported
	Data Set Types Not Supported
	File Models Supported
	Default File Attributes
	Default Delete Capability Attribute
	Changing the Delete Capability Attribute

	Distributed FileManager Access Functions
	Record Files and Record Access
	Record File Classes
	Access to Record Files
	Record Access Functions
	Access Restrictions

	Stream Files and Stream Access
	Stream Files
	Stream Access
	Access Restrictions

	Directories and Directory Access
	Selected Lists of Target Data Sets
	PDSE Directories and PDS Directories
	Access Restrictions

	Data Set Naming
	Wild Cards
	Wild Card Restrictions

	Using VSAM Data Sets
	REUSE Attribute for VSAM Data Sets
	Nonreusable Attribute
	Reusable Attribute

	Using PDSE and PDS Data Sets
	Special PDSE and PDS Processing Considerations
	Wildcard Processing Exceptions
	Using PDSEs
	Using PDSs

	Coded Character Set Identifiers
	Setting the CCSID Attribute
	Setting the CCSID from a Remote System
	Setting the CCSID from a Local System

	Data Conversion

	Associated DDM Attributes
	Listing DDM Attributes
	Using the ISMF Data Set List
	Using the IDCAMS DCOLLECT Command
	Using the IDCAMS LISTCAT Command

	Propagating DDM Attributes
	SAM and VSAM Data Sets
	PDSE Members

	Accessing Data Using the DataAgent Parameters
	Using the DFM DataAgent Filename Suffix Parameters
	Using the AGENT(agent_name<,procedure_parameter>)
	Using the PARM(agent_parameter_list)
	Using the PGM(program_name)
	Using the START(job_name<,job_parameters>)

	Chapter 3. Customizing z/OS for Distributed FileManager
	What Is In This Chapter?
	Summary of Customizing Tasks
	Interrelationships of Customizing Tasks

	APPC/MVS Customizing Tasks
	Defining PARMLIB Start Parameters for APPC/MVS
	Using the APPC/MVS LUADD Definition

	Creating the Distributed FileManager TP Profile
	Allocating a VSAM KSDS for the TP Profile
	Adding the TP Profile to the VSAM KSDS

	Creating the APPC/MVS Side Information Data Set
	Defining PARMLIB Start Parameters for the APPC/MVS Scheduler

	VTAM Customizing Tasks
	Defining the Local LU to VTAMLST
	Defining APPC/MVS Logon Mode Entry in VTAMLIB
	Defining LU and Logon Mode on Partner Systems
	Defining Partner Information on a DDM client

	Distributed FileManager Customizing Tasks
	Tuning Distributed FileManager Startup Parameters in System PARMLIB
	Parameters Related to Performance
	Parameters Related to Data Set Definition
	Parameters Related to DataAgent

	Activating Distributed FileManager in System PROCLIB
	Verifying PPT Entries for Distributed FileManager

	ACS Routines for Defining Distributed FileManager SMS Classes
	Establishing Distributed FileManager TP Access Security
	Using RACF to Control Access to the Distributed FileManager TP
	Defining the Distributed FileManager TP Profile to RACF
	Defining a TP Administrator to RACF
	Defining a User ID to RACF
	Implementing RACF Access Protection for TP

	Chapter 4. Operating Distributed FileManager
	Starting the Distributed FileManager Environment
	Starting APPC/MVS
	Starting the APPC/MVS Transaction Scheduler
	Starting Up Distributed FileManager
	Triggering the Distributed FileManager DataAgent

	Monitoring Status of Distributed FileManager Conversations
	Using the DISPLAY APPC Command
	Displaying TP Status Information
	Displaying LU Status Information

	Using the DISPLAY ASCH Command

	Controlling Status of Distributed FileManager Conversations
	Deactivating the Distributed FileManager TP
	Stopping a Local LU with the MVS SET Command
	Stopping DFM for z/OS with the MVS CANCEL Command
	Stopping the Distributed FileManager TP
	Stopping APPC/MVS, ASCH, and DFM
	Using the FORCE Command

	Appendix A. System Samples
	System SAMPLIB Samples
	GDEAPPC
	GDEAPDEF
	GDEASCH
	DFM00
	GDELOGMD
	GDETPDEF
	GDEPRTLU

	Appendix B. DFMX0001
	Appendix C. DFMXAGNT
	Appendix D. DFMXSORT
	Appendix E. DFMXSRTI
	Appendix F. DFMQTSO
	Appendix G. DFMXTSOI
	Appendix H. System PROCLIB Member DFM
	Appendix I. PPT Entries for Distributed FileManager
	Appendix J. DFMACALL.C
	Appendix K. DDM File Attributes
	Appendix L. Application Programming Considerations
	Distributed FileManager Implementation
	DDM Record Access File Creation
	FileClass SEQFIL
	FileClass KEYFIL
	FileClass DIRFIL
	Additional Considerations

	Stream File Creation
	File Access Commands Supported by Distributed FileManager
	Sequential Files
	Direct Files
	Keyed Files
	Stream Files

	DDM Record Access Restrictions
	Stream File API Restrictions
	Logon Mode Requirements

	Appendix M. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W

