
WebSphere MQ

Using Java

Version 6.0

SC34-6591-02

���

WebSphere MQ

Using Java

Version 6.0

SC34-6591-02

���

Note!

Before using this information and the product it supports, be sure to read the general information under Appendix G,

“Notices,” on page 681.

Third edition (March 2007)

This edition of the book applies to the following products:

v IBM WebSphere MQ, Version 6.0

v IBM WebSphere MQ for z/OS, Version 6.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1997, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi

Who this book is for xi

What you need to know to understand this book . . xi

How to use this book xi

Terms used in this book xi

Summary of changes xiii

Changes for this edition (SC34-6591-02) xiii

Changes for the previous edition (SC34-6591-01) xiii

Part 1. Guidance for users 1

Chapter 1. Getting started 3

What are WebSphere MQ classes for Java? 3

What are WebSphere MQ classes for Java Message

Service? 3

Connection options 3

Prerequisites 5

Chapter 2. Installation and configuration 7

What is installed 7

Running WebSphere MQ Java applications under

the Java 2 Security Manager 11

Running WebSphere MQ base Java applications

under CICS Transaction Server 12

Chapter 3. Using WebSphere MQ

classes for Java (WebSphere MQ base

Java) 13

Configuring your queue manager to accept client

connections 13

Verifying with the sample application 14

Solving WebSphere MQ base Java problems . . . 15

Chapter 4. Using WebSphere MQ

classes for Java Message Service

(WebSphere MQ JMS) 17

JMS Postcard 17

Post installation setup 23

Running the point-to-point IVT 26

The publish/subscribe installation verification test 30

Solving problems 33

Chapter 5. Using the WebSphere MQ

JMS administration tool 35

Invoking the administration tool 35

Configuration 36

Administration commands 38

Manipulating subcontexts 39

Administering JMS objects 39

Part 2. Programming with

WebSphere MQ base Java 63

Chapter 6. Introduction for

programmers 65

Why should I use the Java interface? 65

The WebSphere MQ classes for Java interface . . . 65

Chapter 7. Writing WebSphere MQ base

Java applications 67

Connection differences 67

Example application 68

Operations on queue managers 69

Accessing queues and processes 73

Handling messages 73

Handling errors 75

Getting and setting attribute values 76

Multithreaded programs 76

Using channel exits 77

Channel compression 80

Connection pooling 81

JTA/JDBC coordination using WebSphere MQ base

Java 87

Secure Sockets Layer (SSL) support 90

Running WebSphere MQ base Java applications . . 95

Tracing WebSphere MQ base Java programs . . . 95

Chapter 8. Environment-dependent

behavior 97

Core details 97

Restrictions and variations for core classes 98

Features outside the core 100

Restrictions under CICS Transaction Server . . . 101

Part 3. WebSphere MQ base Java

API reference 103

Chapter 9. Package com.ibm.mq . . . 105

MQChannelDefinition 106

MQChannelExit 108

MQConnectionSecurityParameters 112

MQDistributionList 114

MQDistributionListItem 116

MQEnvironment 118

MQExitChain 127

MQExternalReceiveExit 128

MQExternalSecurityExit 129

MQExternalSendExit 130

MQExternalUserExit 131

© Copyright IBM Corp. 1997, 2007 iii

MQGetMessageOptions 132

MQJavaLevel 135

MQManagedObject 136

MQMD 139

MQMessage 147

MQPoolToken 161

MQProcess 162

MQPutMessageOptions 164

MQQueue 166

MQQueueManager 176

MQReceiveExitChain 191

MQSendExitChain 193

MQSimpleConnectionManager 195

MQC 199

MQReceiveExit 276

MQSecurityExit 278

MQSendExit 280

MQException 282

Part 4. Programming with

WebSphere MQ JMS 311

Chapter 10. Writing WebSphere MQ

JMS applications 313

The JMS model 313

Building a connection 314

Obtaining a session 317

Sending a message 317

Receiving a message 321

Closing down 322

Handling errors 323

Using Secure Sockets Layer (SSL) 323

Chapter 11. Writing WebSphere MQ

JMS publish/subscribe applications . . 327

Introduction 327

Getting started with WebSphere MQ JMS and

publish/subscribe 327

Writing a simple publish/subscribe application

connecting through WebSphere MQ 329

Using topics 335

Subscriber options 338

Solving publish/subscribe problems 343

Chapter 12. Writing WebSphere MQ

JMS 1.1 applications 349

The JMS 1.1 model 349

Building a connection 350

Obtaining a session 355

Destinations 355

Sending a message 357

Receiving a message 358

JMS persistent messages 365

Asynchronous delivery 366

Consumer cleanup utility for the publish/subscribe

domain 367

Closing down 370

Handling errors 370

Using channel exits 372

Using Secure Sockets Layer (SSL) 373

Chapter 13. JMS messages 379

Message selectors 379

Mapping JMS messages onto WebSphere MQ

messages 382

Chapter 14. WebSphere MQ JMS

Application Server Facilities 399

ASF classes and functions 399

Application server sample code 406

Examples of ASF use 409

Part 5. WebSphere MQ JMS API

reference 417

Chapter 15. Package com.ibm.jms . . 421

JMSBytesMessage 422

JMSMapMessage 431

JMSMessage 439

JMSObjectMessage 456

JMSStreamMessage 458

JMSTextMessage 466

Chapter 16. Package com.ibm.mq.jms 469

Cleanup 470

MQConnection 474

MQConnectionFactory 478

MQConnectionMetaData 505

MQDestination 507

MQJMSLevel 512

MQMessageConsumer 513

MQMessageProducer 516

MQQueue 522

MQQueueBrowser 524

MQQueueConnection 526

MQQueueConnectionFactory 527

MQQueueEnumeration 528

MQQueueReceiver 529

MQQueueSender 530

MQQueueSession 531

MQSession 533

MQTemporaryQueue 541

MQTemporaryTopic 542

MQTopic 543

MQTopicConnection 546

MQTopicConnectionFactory 547

MQTopicPublisher 548

MQTopicSession 550

MQTopicSubscriber 552

MQXAConnection 553

MQXAConnectionFactory 554

MQXAQueueConnection 556

MQXAQueueConnectionFactory 557

MQXAQueueSession 559

MQXASession 560

MQXATopicConnection 562

MQXATopicConnectionFactory 563

MQXATopicSession 565

iv Using Java

JMSC 566

BrokerCommandFailedException 577

FieldNameException 578

FieldTypeException 579

IntErrorException 580

ISSLException 581

JMSInvalidParameterException 582

JMSListenerSetException 583

JMSMessageQueueOverflowException 584

JMSNotActiveException 585

JMSNotSupportedException 586

JMSParameterIsNullException 587

MulticastHeartbeatTimeoutException 588

MulticastPacketLossException 589

NoBrokerResponseException 590

SyntaxException 591

Chapter 17. Package

com.ibm.mq.jms.services 593

MQJMS_Messages 594

Part 6. Appendixes 631

Appendix A. Mapping between

administration tool properties and

programmable properties 633

Appendix B. Scripts provided with

WebSphere MQ classes for Java

Message Service 637

Appendix C. Connecting to other

products 639

Setting up a publish/subscribe broker 639

Transformation and routing with WebSphere MQ

Integrator V2 641

Configuring WebSphere MQ JMS for a direct

connection to WebSphere Business Integration

Event Broker, Version 5.0 or later and WebSphere

Business Integration Message Broker, Version 5.0 or

later 642

Appendix D. SSL CipherSpecs and

CipherSuites 645

Appendix E. Support for OSGi 647

Appendix F. The WebSphere MQ

resource adapter 649

Other required documentation 649

Installation of the WebSphere MQ resource adapter 650

Configuration of the WebSphere MQ resource

adapter 651

The installation verification test (IVT) program . . 667

Limitations of the WebSphere MQ resource adapter 671

Problem determination 671

The WebSphere MQ resource adapter error and

warning messages 674

Appendix G. Notices 681

Trademarks 682

Index 685

Sending your comments to IBM . . . 691

Contents v

 | |

 |
 | |
 | |
 | |
 |
 | |
 | |
 | |
 | |
 |
 | |

vi Using Java

Figures

1. WebSphere MQ classes for Java Message

Service topic name hierarchy 335

2. How messages are transformed between JMS

and WebSphere MQ using the MQRFH2

header 383

3. How JMS messages are transformed to

WebSphere MQ messages (no MQRFH2

header) 396

4. ServerSessionPool and ServerSession

functionality 406

5. WebSphere MQ Integrator message flow 640

6. The initial page of the IVT program 669

7. Page showing the results of a successful IVT 670

8. Page showing the results of an IVT that failed 671

© Copyright IBM Corp. 1997, 2007 vii

 | |
 | |
 | |

viii Using Java

Tables

 1. Platforms and connection modes 4

 2. WebSphere MQ Java installation directories 8

 3. Samples directories 8

 4. CLASSPATH setting to run WebSphere MQ

base Java applications, including the WebSphere

MQ base Java sample applications 9

 5. CLASSPATH setting to run WebSphere MQ JMS

applications, including the WebSphere MQ JMS

sample applications 9

 6. The location of the WebSphere MQ Java

libraries for each platform 10

 7. Administration verbs 38

 8. Syntax and description of commands used to

manipulate subcontexts 39

 9. The JMS object types that are handled by the

administration tool 39

10. Syntax and description of commands used to

manipulate administered objects 40

11. Property names and valid values 42

12. The valid combinations of property and object

type 50

13. The directory for channel exit programs 79

14. Property names for queue and topic URIs 318

15. Symbolic values for queue properties 320

16. The JMS 1.1 domain independent interfaces 349

17. Possible values for NameValueCCSID field 385

18. MQRFH2 folders and properties used by JMS 385

19. Property data types 387

20. JMS header fields mapping to MQMD fields 387

21. JMS properties mapping to MQMD fields 388

22. JMS provider specific properties mapping to

MQMD fields 388

23. Outgoing message field mapping 389

24. Outgoing message JMS property mapping 389

25. Outgoing message JMS provider specific

property mapping 389

26. Incoming message JMS header field mapping 394

27. Incoming message property mapping 394

28. Incoming message provider specific JMS

property mapping 394

29. Load1 parameters and defaults 410

30. ASFClient1 parameters and defaults 411

31. TopicLoad parameters and defaults 414

32. ASFClient3 parameters and defaults 414

33. Comparison of representations of property

values within the administration tool and

within applications 633

34. Utilities supplied with WebSphere MQ classes

for Java Message Service 637

35. CipherSpecs supported by WebSphere MQ

and their equivalent CipherSuites 645

36. The directory containing wmq.jmsra.rar for

each platform 650

37. Support for non-transacted and transacted

connections 651

38. Properties of the ResourceAdapter object that

are associated with diagnostic tracing . . . 652

39. The levels of detail for diagnostic tracing 653

40. Properties of the ResourceAdapter object that

are associated with the connection pool . . . 654

41. Properties of an ActivationSpec object that are

used to create a JMS connection 655

42. Properties of an ActivationSpec object that are

used to create a JMS connection consumer . . 658

43. Properties of a ConnectionFactory object 662

44. Properties that are common to a Queue object

and a Topic object 665

45. Properties that are specific to a Queue object 666

46. Properties that are specific to a Topic object 666

47. WebSphere MQ resource adapter error

messages 674

48. WebSphere MQ resource adapter warning

messages 678

© Copyright IBM Corp. 1997, 2007 ix

||

 |
 | |
 |
 | |
 |
 | |
 | |
 |
 | |
 |
 | |
 |
 | |
 | |
 |
 | |
 | |
 | |
 |
 | |
 |
 | |

x Using Java

About this book

This book describes:

v WebSphere® MQ classes for Java™, which can be used to access WebSphere MQ

systems

v WebSphere MQ classes for Java Message Service, which can be used to access

both Java Message Service (JMS) and WebSphere MQ applications

Note: See the WebSphere MQ README file for information that expands and

corrects the information in this book.

Who this book is for

This information is written for programmers who are familiar with the procedural

WebSphere MQ application programming interface as described in the WebSphere

MQ Application Programming Guide. It shows how to transfer this knowledge to

become productive with the WebSphere MQ Java programming interfaces.

What you need to know to understand this book

You need:

v Knowledge of the Java programming language

v Understanding of the purpose of the message queue interface (MQI) as

described in the WebSphere MQ Application Programming Guide and the chapter

about Call Descriptions in the WebSphere MQ Application Programming Reference

v Experience of WebSphere MQ programs in general, or familiarity with the

content of the other WebSphere MQ publications

Users intending to use WebSphere MQ classes for Java with CICS® Transaction

Server for OS/390® or CICS Transaction Server for z/OS® also need to be familiar

with:

v Customer Information Control System (CICS) concepts

v Using the CICS Java Application Programming Interface (API)

v Running Java programs from within CICS

How to use this book

Part 1 of this book tells you how to use WebSphere MQ base Java and WebSphere

MQ JMS; Part 2 helps programmers wanting to use WebSphere MQ base Java; Part

3 helps programmers wanting to use WebSphere MQ JMS.

First, read the topics in Part 1 that introduce you to WebSphere MQ base Java and

WebSphere MQ JMS. Then use the programming guidance in Part 2 or 3 to

understand how to use the classes to send and receive WebSphere MQ messages in

the environment you want to use.

Terms used in this book

The term WebSphere MQ base Java means WebSphere MQ classes for Java.

© Copyright IBM Corp. 1997, 2007 xi

The term WebSphere MQ JMS means WebSphere MQ classes for Java Message

Service.

The term WebSphere MQ Java means WebSphere MQ classes for Java and

WebSphere MQ classes for Java Message Service combined.

The term i5/OS® means any release of i5/OS or OS/400® supported by the current

version of WebSphere MQ for iSeries™.

Linux® is used as a general term for any of the following platforms:

v Linux (POWER™ platform)

v Linux (x86 platform)

v Linux (zSeries® platform)

UNIX® system is used as a general term for any of the following platforms:

v AIX®

v HP-UX

v Linux

v Solaris

Windows® system, or just Windows, is used as a general term for any of the

following platforms:

v Windows 2000

v Windows Server 2003

v Windows XP

The term IP address means either an Internet Protocol Version 4 (IPv4) address,

expressed as a sequence of decimal numbers separated by dots, or an Internet

Protocol Version 6 (IPv6) address, expressed as a sequence of hexadecimal numbers

separated by colons.

About this book

xii Using Java

Summary of changes

This section describes the changes in this edition of WebSphere MQ Using Java.

Changes since the previous edition of the book are marked by revision bars to the

left of the changes.

Changes for this edition (SC34-6591-02)

This edition contains the documentation for the following new function:

v Support for a 64-bit JVM when running applications in WebSphere Application

Server on z/OS

v The WebSphere MQ resource adapter

This edition also contains various editorial improvements, clarifications, and

corrections.

Changes for the previous edition (SC34-6591-01)

The locations of WebSphere MQ libraries for the new 64-bit platforms are added

This edition also contains various editorial improvements, clarifications, and

corrections.

© Copyright IBM Corp. 1997, 2007 xiii

xiv Using Java

Part 1. Guidance for users

Chapter 1. Getting started 3

What are WebSphere MQ classes for Java? 3

What are WebSphere MQ classes for Java Message

Service? 3

Connection options 3

Client connection 4

Bindings connection 4

Prerequisites 5

Chapter 2. Installation and configuration 7

What is installed 7

Installation directories 8

Environment variables 8

The WebSphere MQ Java libraries 10

STEPLIB configuration on z/OS 11

Running WebSphere MQ Java applications under

the Java 2 Security Manager 11

Running WebSphere MQ base Java applications

under CICS Transaction Server 12

Chapter 3. Using WebSphere MQ classes for

Java (WebSphere MQ base Java) 13

Configuring your queue manager to accept client

connections 13

TCP/IP client 13

Verifying with the sample application 14

Solving WebSphere MQ base Java problems . . . 15

Tracing the sample application 16

Error messages 16

Chapter 4. Using WebSphere MQ classes for

Java Message Service (WebSphere MQ JMS) . . 17

JMS Postcard 17

Setting up JMS Postcard 17

Starting 17

Sign-on 18

Sending a postcard 18

JMS Postcard configuration 20

How JMS Postcard works 20

Post installation setup 23

Additional setup for publish/subscribe mode . . 23

Queues that require authorization for

non-privileged users 25

Running the point-to-point IVT 26

Point-to-point verification without JNDI 27

Point-to-point verification with JNDI 28

IVT error recovery 29

The publish/subscribe installation verification test 30

Publish/subscribe verification without JNDI . . 30

Publish/subscribe verification with JNDI . . . 32

PSIVT error recovery 33

Solving problems 33

Tracing programs 33

Logging 34

Chapter 5. Using the WebSphere MQ JMS

administration tool 35

Invoking the administration tool 35

Configuration 36

Using an unlisted InitialContextFactory 37

Security 37

Administration commands 38

Manipulating subcontexts 39

Administering JMS objects 39

Object types 39

Verbs used with JMS objects 40

Creating objects 41

Properties 42

Property dependencies 57

The ENCODING property 58

SSL properties 59

Sample error conditions 60

© Copyright IBM Corp. 1997, 2007 1

2 Using Java

Chapter 1. Getting started

This chapter gives an overview of WebSphere MQ classes for Java and WebSphere

MQ classes for Java Message Service and their uses.

What are WebSphere MQ classes for Java?

WebSphere MQ classes for Java (also referred to as WebSphere MQ base Java)

allow a Java application to:

v Connect to WebSphere MQ as a WebSphere MQ client

v Connect directly to a WebSphere MQ server

WebSphere MQ base Java encapsulates the Message Queue Interface (MQI), the

native WebSphere MQ API.

What are WebSphere MQ classes for Java Message Service?

WebSphere MQ classes for Java Message Service (also referred to as WebSphere

MQ JMS) is a set of Java classes that implement Sun’s Java Message Service (JMS)

interfaces to enable JMS programs to access WebSphere MQ systems. This book

describes an implementation of Version 1.1 of the JMS API specification, which is

backwards compatible with previous versions of the specification.

Using WebSphere MQ JMS as the API to write WebSphere MQ applications has a

number of benefits. Some advantages derive from JMS being an open standard

with multiple implementations. Other advantages come from additional features

that are present in WebSphere MQ JMS, but not in WebSphere MQ base Java.

Benefits arising from the use of an open standard include:

v The protection of investment, both in skills and application code

v The availability of people skilled in JMS application programming

v The ability to plug in different JMS implementations to fit different requirements

Sun’s Web site at http://java.sun.com provides more information about the

benefits of the JMS API.

The extra function provided over WebSphere MQ base Java includes:

v Asynchronous message delivery. Messages can be delivered to an application as

they arrive, on a separate thread.

v Message selectors.

v Support for publish/subscribe messaging.

v Structured, more abstract, message classes. Implementation details are left to the

JMS provider.

Connection options

Programmable options allow WebSphere MQ Java to connect to WebSphere MQ in

either of the following ways:

v As a WebSphere MQ client using Transmission Control Protocol/Internet

Protocol (TCP/IP)

© Copyright IBM Corp. 1997, 2007 3

v In bindings mode, connecting directly to WebSphere MQ using the Java Native

Interface (JNI)

Table 1 shows which of these connection modes can be used for each platform.

 Table 1. Platforms and connection modes

Application platform Can an application

connect in client

mode?

Can an application

connect in bindings

mode?

AIX Yes Yes

HP-UX Yes Yes1

i5/OS Yes Yes

Linux (POWER platform) Yes Yes

Linux (x86 platform) Yes Yes

Linux (zSeries platform) Yes No2

Solaris Yes Yes

Windows 2000 Yes Yes

Windows Server 2003 Yes Yes

Windows XP Yes Yes

z/OS No3 Yes

Note:

1. HP-UX Java bindings support is available only for HP-UXv11 systems

running the POSIX draft 10 pthreaded version of WebSphere MQ.

2. On Linux (zSeries platform), only TCP/IP client connectivity is

supported.

3. However, a WebSphere MQ JMS application running under WebSphere

Application Server on z/OS can connect in client mode.

In addition, WebSphere MQ JMS publish/subscribe applications can connect

directly across TCP/IP to a broker of any of the following products:

v WebSphere MQ Event Broker, Version 2.1

v WebSphere Business Integration Event Broker, Version 5.0

v WebSphere Business Integration Message Broker, Version 5.0

The following sections describe the client mode and bindings mode connection

options in more detail.

Client connection

To use WebSphere MQ Java as a WebSphere MQ client, you can install it either on

the WebSphere MQ server machine, which may also contain a Web server, or on a

separate machine. If you install WebSphere MQ Java on the same machine as a

Web server, you can download and run WebSphere MQ client applications on

machines that do not have WebSphere MQ Java installed locally.

Bindings connection

When used in bindings mode, WebSphere MQ Java uses the Java Native Interface

(JNI) to call directly into the existing queue manager API, rather than

Connection options

4 Using Java

communicating through a network. In some environments, connecting in bindings

mode can provide better performance for WebSphere MQ Java applications than

connecting in client mode.

Prerequisites

For the latest information about the prerequisites for WebSphere MQ Java, see

the WebSphere MQ README file.

To develop WebSphere MQ Java applications, you need a Java 2 Software

Development Kit (SDK).

To run WebSphere MQ Java applications, you need the following software

components:

v A WebSphere MQ queue manager, for applications that connect to a queue

manager

v One of the following publish/subscribe brokers, for publish/subscribe

applications:

– WebSphere MQ Publish/Subscribe

– WebSphere MQ Integrator, Version 2

– WebSphere MQ Event Broker, Version 2.1

– WebSphere Business Integration Event Broker, Version 5.0

– WebSphere Business Integration Message Broker, Version 5.0
v A Java Runtime Environment (JRE), for each system on which you run

applications

v For i5/OS, QShell, which is option 30 of the operating system

v For z/OS, UNIX System Services (USS)

To determine the supported Java 2 SDKs for your platform, see

www.ibm.com/software/integration/websphere/mqplatforms/supported.html .

The supported JREs are those JREs that are embedded in the supported Java 2

SDKs.

To support Secure Sockets Layer (SSL) authentication fully, you need a JRE at

Version 1.4.2 for your platform. A WebSphere MQ Java application can use SSL to

obtain a secure connection to a queue manager, with authentication, message

integrity, and data encryption.

If you require SSL connections to use cryptographic modules that have been FIPS

140-2 certified, you need the IBM® Java JSSE FIPS provider (IBMJSSEFIPS). Every

IBM Java 2 SDK and JRE at Version 1.4.2 contains IBMJSSEFIPS.

You can use Internet Protocol Version 6 (IPv6) addresses in your WebSphere MQ

Java applications provided IPv6 addresses are supported by your Java virtual

machine (JVM) and the TCP/IP implementation on your operating system. The

WebSphere MQ JMS administration tool (see Chapter 5, “Using the WebSphere MQ

JMS administration tool,” on page 35) also accepts IPv6 addresses.

To use the WebSphere MQ JMS administration tool, you need one of the following

service provider packages, supplied with WebSphere MQ:

v Lightweight Directory Access Protocol (LDAP) - ldap.jar, providerutil.jar.

v File system - fscontext.jar, providerutil.jar.

Connection options

Chapter 1. Getting started 5

These packages provide the Java Naming and Directory Service (JNDI) service.

This is the resource that stores physical representations of the administered objects.

Users of WebSphere MQ JMS probably use an LDAP server for this purpose, but

the tool also supports the use of the file system context service provider. If you use

an LDAP server, configure it to store JMS objects. For information to assist with

this configuration, see the documentation for your LDAP server.

To use the XOpen/XA facilities of WebSphere MQ JMS on i5/OS you need a

specific PTF. See the WebSphere MQ README file for further information.

Prerequisites

6 Using Java

Chapter 2. Installation and configuration

This chapter describes the directories and files that are created when you install

WebSphere MQ Java, and tells you how to configure WebSphere MQ Java after

installation.

What is installed

The latest version of WebSphere MQ Java is installed with WebSphere MQ. You

might need to override default installation options to make sure this is done.

Refer to the following books for more information about installing WebSphere MQ:

 WebSphere MQ for AIX Quick Beginnings

 WebSphere MQ for HP-UX Quick Beginnings

 WebSphere MQ for iSeries Quick Beginnings

 WebSphere MQ for Linux Quick Beginnings

 WebSphere MQ for Solaris Quick Beginnings

 WebSphere MQ for Windows Quick Beginnings

 WebSphere MQ for z/OS Program Directory

WebSphere MQ base Java is contained in the Java archive (JAR) file

com.ibm.mq.jar.

WebSphere MQ JMS is contained in the JAR file com.ibm.mqjms.jar.

The following JAR files are also supplied with WebSphere MQ Java. These files are

required by a WebSphere MQ JMS application that connects directly to a

publish/subscribe broker.

v CL3Export.jar

v CL3Nonexport.jar

v rmm.jar

The following JAR file is also supplied with WebSphere MQ Java. This file is

required by any WebSphere MQ JMS application.

v dhbcore.jar

The following Java libraries from Sun Microsystems are distributed with

WebSphere MQ Java:

v connector.jar (Version 1.0)

v fscontext.jar (Version 1.2)

v jms.jar (Version 1.1)

v jndi.jar (Version 1.2.1)

v jta.jar (Version 1.0.1)

v ldap.jar (Version 1.2.2)

v providerutil.jar (Version 1.2)

The sample application called Postcard is in postcard.jar. For more information

about this application; see “JMS Postcard” on page 17.

© Copyright IBM Corp. 1997, 2007 7

The Javadoc tool has been used to generate the HTML pages containing the

specifications of the WebSphere MQ base Java and WebSphere MQ JMS APIs. This

documentation is in mqjmsapi.jar.

When installation is complete, files and samples are installed in the locations

shown in “Installation directories.”

After installation, on any platform other than Windows, you must update your

environment variables as described in “Environment variables.”

Installation directories

Table 2 shows where the WebSphere MQ Java files are installed on each platform.

 Table 2. WebSphere MQ Java installation directories

Platform Directory

AIX /usr/mqm/java

HP-UX, Linux, and Solaris /opt/mqm/java

i5/OS /QIBM/ProdData/mqm/java

Windows install_dir\Java

z/OS install_dir/mqm/V6R0M0/java

Note: install_dir is the directory in which you installed WebSphere MQ. On Windows, this

directory is normally C:\Program Files\IBM\WebSphere MQ. On z/OS, this directory is

likely to be /usr/lpp.

Some sample applications, such as the Installation Verification Programs (IVPs), are

supplied with WebSphere MQ. Table 3 shows where the sample applications are

installed on each platform. The WebSphere MQ base Java samples are in a

subdirectory called base, and the WebSphere MQ JMS samples are in a

subdirectory called jms.

 Table 3. Samples directories

Platform Directory

AIX /usr/mqm/samp/java

HP-UX, Linux, and Solaris /opt/mqm/samp/java

i5/OS /QIBM/ProdData/mqm/java/samples

Windows install_dir\Tools\Java

z/OS install_dir/mqm/V6R0M0/java/samples

Note: install_dir is the directory in which you installed WebSphere MQ. On Windows, this

directory is normally C:\Program Files\IBM\WebSphere MQ. On z/OS, this directory is

likely to be /usr/lpp.

Environment variables

Before you can run WebSphere MQ Java applications, the setting for your

CLASSPATH environment variable must include the appropriate WebSphere MQ

Java code. To run the sample applications, the CLASSPATH setting must also

include the appropriate samples directories.

To run WebSphere MQ base Java applications, including the WebSphere MQ base

Java sample applications, use the CLASSPATH setting for your platform as shown

in Table 4 on page 9.

What is installed

8 Using Java

Table 4. CLASSPATH setting to run WebSphere MQ base Java applications, including the

WebSphere MQ base Java sample applications

Platform CLASSPATH setting

AIX CLASSPATH=/usr/mqm/java/lib/com.ibm.mq.jar:

/usr/mqm/samp/java/base:

HP-UX, Linux,

and Solaris

CLASSPATH=/opt/mqm/java/lib/com.ibm.mq.jar:

/opt/mqm/samp/java/base:

i5/OS CLASSPATH=/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jar:

/QIBM/ProdData/mqm/java/samples/base:

Windows CLASSPATH=install_dir\Java\lib\com.ibm.mq.jar;

install_dir\Tools\Java\base;

z/OS CLASSPATH=install_dir/mqm/V6R0M0/java/lib/com.ibm.mq.jar:

install_dir/mqm/V6R0M0/java/samples/base:

Note: install_dir is the directory in which you installed WebSphere MQ. On Windows, this

directory is normally C:\Program Files\IBM\WebSphere MQ. On z/OS, this directory is

likely to be /usr/lpp.

To run WebSphere MQ JMS applications, including the WebSphere MQ JMS sample

applications, use the CLASSPATH setting for your platform as shown in Table 5.

 Table 5. CLASSPATH setting to run WebSphere MQ JMS applications, including the

WebSphere MQ JMS sample applications

Platform CLASSPATH setting

AIX CLASSPATH=/usr/mqm/java/lib/com.ibm.mqjms.jar:

/usr/mqm/samp/java/jms:

HP-UX, Linux,

and Solaris

CLASSPATH=/opt/mqm/java/lib/com.ibm.mqjms.jar:

/opt/mqm/samp/java/jms:

i5/OS CLASSPATH=/QIBM/ProdData/mqm/java/lib/com.ibm.mqjms.jar:

/QIBM/ProdData/mqm/java/samples/jms:

Windows CLASSPATH=install_dir\Java\lib\com.ibm.mqjms.jar;

install_dir\Tools\Java\jms;

z/OS CLASSPATH=install_dir/mqm/V6R0M0/java/lib/com.ibm.mqjms.jar:

install_dir/mqm/V6R0M0/java/samples/jms:

Note: install_dir is the directory in which you installed WebSphere MQ. On Windows, this

directory is normally C:\Program Files\IBM\WebSphere MQ. On z/OS, this directory is

likely to be /usr/lpp.

To run WebSphere MQ base Java and WebSphere MQ JMS applications, including

the WebSphere MQ base Java and WebSphere MQ JMS sample applications, simply

combine the CLASSPATH settings shown in Table 4 and Table 5.

The scripts provided with WebSphere MQ Java use the following environment

variables:

MQ_JAVA_DATA_PATH

This environment variable specifies the directory for log and trace output.

For information about how MQ_JAVA_DATA_PATH is used, see “Solving

problems” on page 33.

MQ_JAVA_INSTALL_PATH

This environment variable specifies the directory where WebSphere MQ

Java is installed, as shown in Table 2 on page 8.

What is installed

Chapter 2. Installation and configuration 9

MQ_JAVA_LIB_PATH

This environment variable specifies the directory where the WebSphere MQ

Java libraries are stored, as shown in Table 6. Some scripts supplied with

WebSphere MQ Java, such as IVTRun, use this environment variable.

On Windows, all the environment variables are set automatically during

installation. On any other platform, you must set them yourself. On a UNIX

system, you can use the script setjmsenv to set the environment variables. On AIX,

setjmsenv is in the /usr/mqm/java/bin directory and, on HP-UX, Linux, and

Solaris, it is in the /opt/mqm/java/bin directory.

On i5/OS, the environment variable QIBM_MULTI_THREADED must be set to Y.

You can then run multithreaded applications in the same way that you run single

threaded applications.

The WebSphere MQ Java libraries

To specify the location of the Java Native Interface (JNI) libraries, start your

application using a java command with the following format:

java -Djava.library.path=library_path application_name

where library_path is the path to the WebSphere MQ Java libraries, which include

the JNI libraries. Table 6 shows the location of the WebSphere MQ Java libraries for

each platform.

 Table 6. The location of the WebSphere MQ Java libraries for each platform

Platform Directory containing the WebSphere MQ Java

libraries

AIX /usr/mqm/java/lib (32-bit libraries)

/usr/mqm/java/lib64 (64-bit libraries)

HP-UX

Linux (POWER, x86-64

and zSeries s390x platforms)

Solaris (x86-64 and Sparc platforms)

/opt/mqm/java/lib (32-bit libraries)

/opt/mqm/java/lib64 (64-bit libraries)

Linux (x86 platform)

Linux (zSeries platform)

/opt/mqm/java/lib

Windows install_dir\Java\lib

z/OS install_dir/mqm/V6R0M0/java/lib

(31-bit and 64-bit libraries)

Note: install_dir is the directory in which you installed WebSphere MQ. On Windows, this

directory is normally C:\Program Files\IBM\WebSphere MQ. On z/OS, this directory is

likely to be /usr/lpp.

Note:

1. On AIX, HP-UX, Linux (POWER platform), or Solaris, use either the

32-bit libraries or the 64-bit libraries. Use the 64-bit libraries only if you

are running your application in a 64-bit Java virtual machine (JVM) on a

64-bit platform. Otherwise, use the 32-bit libraries.

2. On Windows, you can use the PATH environment variable to specify the

location of the WebSphere MQ Java libraries instead of specifying their

location on the java command.

3. To use WebSphere MQ Java in bindings mode on i5/OS, ensure that the

library QMQMJAVA is in your library list.

What is installed

10 Using Java

|

|
|

|

4. On z/OS, you can use either a 31-bit or 64-bit Java virtual machine

(JVM) when running applications in WebSphere Application Server. In

other environments on z/OS, you can use only a 31-bit JVM. You do not

have to specify which libraries to use and you do not need to modify the

system path to use 64-bit support.

STEPLIB configuration on z/OS

On z/OS, the STEPLIB used at runtime must contain the WebSphere MQ

SCSQAUTH library. From UNIX System Services, you can add this using a line in

your .profile as shown below, replacing thlqual with the high level data set

qualifier that you chose when installing WebSphere MQ:

export STEPLIB=thlqual.SCSQAUTH:$STEPLIB

In other environments, you typically need to edit the startup JCL to include

SCSQAUTH on the STEPLIB concatenation:

 STEPLIB DD DSN=thlqual.SCSQAUTH,DISP=SHR

Running WebSphere MQ Java applications under the Java 2 Security

Manager

WebSphere MQ Java can run with the Java 2 Security Manager enabled. To

successfully run applications with the Security Manager enabled, you must

configure your JVM with a suitable policy definition file.

The simplest way to do this is to change the policy file supplied with the JRE. On

most systems this file is stored in the path lib/security/java.policy, relative to

your JRE directory. You can edit policy files using your preferred editor or the

policytool program supplied with your JRE.

You need to give authority to the com.ibm.mq.jar and com.ibm.mqjms.jar files so

that they can:

v Create sockets (in client mode)

v Load the native library (in bindings mode)

v Read various properties from the environment

The system property os.name must be available to the WebSphere MQ Java classes

when running under the Java 2 Security Manager.

Here is an example of a policy file entry that allows WebSphere MQ Java to run

successfully under the default security manager. Replace the string /opt/mqm in this

example with the location where WebSphere MQ Java is installed on your system.

grant codeBase "file:/opt/mqm/java/lib/com.ibm.mq.jar" {

 permission java.net.SocketPermission "*","connect";

 permission java.lang.RuntimePermission "loadLibrary.*";

};

grant codeBase "file:/opt/mqm/java/lib/com.ibm.mqjms.jar" {

 permission java.util.PropertyPermission "MQJMS_LOG_DIR","read";

 permission java.util.PropertyPermission "MQJMS_TRACE_LEVEL","read";

 permission java.util.PropertyPermission "MQJMS_TRACE_DIR","read";

 permission java.util.PropertyPermission "MQ_JAVA_INSTALL_PATH","read";

 permission java.util.PropertyPermission "file.separator","read";

 permission java.util.PropertyPermission "os.name","read";

What is installed

Chapter 2. Installation and configuration 11

|
|
|
|
|

permission java.util.PropertyPermission "user.name","read";

 permission java.util.PropertyPermission "com.ibm.mq.jms.cleanup","read";

 permission java.util.PropertyPermission "com.ibm.mq.localaddress","read";

};

This example of a policy file enables the WebSphere MQ Java classes to work

correctly under the security manager, but you might still need to enable your own

code to run correctly before your applications will work.

The sample code shipped with WebSphere MQ Java has not been specifically

enabled for use with the security manager; however the IVT tests run with the

above policy file and the default security manager in place.

Running WebSphere MQ base Java applications under CICS

Transaction Server

To run a WebSphere MQ base Java application as a transaction under CICS

Transaction Server for OS/390 or CICS Transaction Server for z/OS, you must:

1. Define the application and transaction to CICS by using the supplied CEDA

transaction.

2. Ensure that the WebSphere MQ CICS adapter is installed in your CICS system.

(See WebSphere MQ for z/OS System Setup Guide for details.)

3. Ensure that the JVM environment specified in CICS includes the appropriate

CLASSPATH and LIBPATH entries.

4. Initiate the transaction by using any of your normal processes.

For more information on running CICS Java transactions, refer to your CICS

system documentation.

Running under the Java 2 Security Manager

12 Using Java

Chapter 3. Using WebSphere MQ classes for Java

(WebSphere MQ base Java)

This chapter tells you how to:

v Configure your system to run the sample applications to verify your WebSphere

MQ base Java installation.

v Modify the procedures to run your own applications.

The procedures depend on the connection option you want to use. Follow the

instructions in the section that is appropriate for your requirements.

Remember to check the WebSphere MQ README file for later or more specific

information for your environment.

Before attempting to run any WebSphere MQ base Java applications in bindings

mode, make sure that you have configured WebSphere MQ as described in the

Quick Beginnings book for your platform or the WebSphere MQ for z/OS System

Setup Guide.

Configuring your queue manager to accept client connections

Use the following procedures to configure your queue manager to accept incoming

connection requests from the clients.

TCP/IP client

1. Define a server connection channel using the following procedures:

For i5/OS:

a. Start your queue manager by using the STRMQM command.

b. Define a sample channel called JAVA.CHANNEL by issuing the

following command:

CRTMQMCHL CHLNAME(JAVA.CHANNEL) CHLTYPE(*SVRCN) MQMNAME(QMGRNAME)

 MCAUSERID(SOMEUSERID)

 TEXT(’Sample channel for WebSphere MQ classes for Java’)

where QMGRNAME is the name of your queue manager, and

SOMEUSERID is an i5/OS user ID with appropriate authority to the

WebSphere MQ resources.

For z/OS:

Note: You must have the Client attachment feature installed on your

target queue manager in order to connect using TCP/IP.

a. Start your queue manager by using the START QMGR command.

b. Define a sample channel called JAVA.CHANNEL by issuing the

following command:

DEF CHL(’JAVA.CHANNEL’) CHLTYPE(SVRCONN) TRPTYPE(TCP)

DESCR(’Sample channel for WebSphere MQ classes for Java’)

For the other platforms:

a. Start your queue manager by using the strmqm command.

© Copyright IBM Corp. 1997, 2007 13

b. Type the following command to start the runmqsc program:

runmqsc [QMNAME]

c. Define a sample channel called JAVA.CHANNEL by issuing the

following command:

DEF CHL(’JAVA.CHANNEL’) CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(’ ’) +

DESCR(’Sample channel for WebSphere MQ classes for Java’)

2. Start a listener program with the following commands:

For UNIX and Windows systems:

Issue the command:

runmqlsr -t tcp [-m QMNAME] -p 1414

Note: If you use the default queue manager, you can omit the -m

option.

For i5/OS:

Issue the command:

STRMQMLSR MQMNAME(QMGRNAME)

where QMGRNAME is the name of your queue manager.

For z/OS:

a. Ensure your channel initiator is started. If not, start it by issuing the

START CHINIT command.

b. Start the listener by issuing the command START LISTENER

TRPTYPE(TCP) PORT(1414)

Verifying with the sample application

An installation verification program, MQIVP, is supplied with WebSphere MQ base

Java. You can use this program to test all the connection modes of WebSphere MQ

base Java. The program prompts for a number of choices and other data to

determine which connection mode you want to verify. Use the following procedure

to verify your installation:

1. If you are going to run the program in client mode, configure your queue

manager as described in “Configuring your queue manager to accept client

connections” on page 13.

2. The user ID associated with the program when it runs must have authority to

access certain resources of the queue manager. Grant the following authorities

to the user ID:

v The authority to connect to the queue manager, and the authority to inquire

on the attributes of the queue manager object

v The authority to put messages on the queue

SYSTEM.DEFAULT.LOCAL.QUEUE, and the authority to get messages from

the queue

For information about how to grant authorities, see the following books:

v WebSphere MQ for iSeries System Administration Guide, if the queue manager is

running on i5/OS

v WebSphere MQ System Administration Guide, if the queue manager is running

on a UNIX system or Windows

v WebSphere MQ for z/OS System Setup Guide, if the queue manager is running

on z/OS

Configuring your queue manager to accept client connections

14 Using Java

If you are going to run the program in client mode, see also WebSphere MQ

Clients.

Perform the remaining steps of this procedure on the system on which you are

going to run the program.

3. Make sure that you have updated your CLASSPATH environment variable

according to the instructions in “Environment variables” on page 8.

4. At a command prompt, enter:

java -Djava.library.path=library_path MQIVP

where library_path is the path to the WebSphere MQ Java libraries (see “The

WebSphere MQ Java libraries” on page 10).

The program tries to:

a. Connect to the queue manager

b. Open the queue SYSTEM.DEFAULT.LOCAL.QUEUE, put a message on the

queue, get a message from the queue, and then close the queue

c. Disconnect from the queue manager

d. Return a message if the operations are successful
5. At the prompt marked

(§):

v To use a TCP/IP connection, enter a WebSphere MQ server host name.

v To use native connection (bindings mode), leave the field blank. (Do not

enter a name.)

Here is an example of the prompts and responses you might see. The actual

prompts and your responses depend on your WebSphere MQ network.

Please enter the IP address of the MQ server : ipaddress(§)

Please enter the port to connect to : (1414)(§§)

Please enter the server connection channel name : channelname(§§)

Please enter the queue manager name : qmname

Success: Connected to queue manager.

Success: Opened SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Put a message to SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Got a message from SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Closed SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Disconnected from queue manager

Tests complete -

SUCCESS: This MQ Transport is functioning correctly.

Press Enter to continue ...

Note:

1. On z/OS, leave the field blank at prompt marked

(§).

2. If you choose server connection, you do not see the prompts marked

(§§).

3. On i5/OS, you can issue the command java MQIVP only from QShell.

Alternatively, you can run the application by using the CL command

RUNJVA CLASS(MQIVP).

Solving WebSphere MQ base Java problems

If a program does not complete successfully, run the installation verification

program, and follow the advice given in the diagnostic messages. Both of these

programs are described in Chapter 3, “Using WebSphere MQ classes for Java

(WebSphere MQ base Java),” on page 13.

Verifying with the sample application

Chapter 3. Using WebSphere MQ classes for Java (WebSphere MQ base Java) 15

If the problems continue and you need to contact the IBM service team, you might

be asked to turn on the trace facility. Refer to the following sections for the

appropriate procedures for your system.

Tracing the sample application

To trace the MQIVP program, enter the following:

java -Djava.library.path=library_path MQIVP -trace n

where library_path is the path to the WebSphere MQ Java libraries (see “The

WebSphere MQ Java libraries” on page 10), and n is a number between 1 and 5,

depending on the level of detail required (the greater the number, the more

information that is gathered).

For more information about how to use trace, see “Tracing WebSphere MQ base

Java programs” on page 95.

Error messages

Here are some of the more common error messages that you might see:

Unable to identify local host IP address

The server is not connected to the network.

 Connect the server to the network and retry.

MQRC_ADAPTER_CONN_LOAD_ERROR

If you see this z/OS error , ensure that the WebSphere MQ SCSQANLE

and SCSQAUTH datasets are in your STEPLIB statement.

Solving problems

16 Using Java

Chapter 4. Using WebSphere MQ classes for Java Message

Service (WebSphere MQ JMS)

This chapter tells you how to:

v Set up and use JMS Postcard

v Set up your system to use the test and sample programs

v Run the point-to-point Installation Verification Test (IVT) program to verify your

WebSphere MQ classes for Java Message Service installation

v Run the sample publish/subscribe Installation Verification Test (PSIVT) program

to verify your publish/subscribe installation

v Run your own programs

Before attempting to run any WebSphere MQ JMS applications in bindings mode,

make sure that you have configured WebSphere MQ as described in the Quick

Beginnings book for your platform or the WebSphere MQ for z/OS System Setup

Guide.

JMS Postcard

JMS Postcard is a simple way to do the following:

v Verify that you have successfully installed WebSphere MQ and WebSphere MQ

JMS on one computer and, optionally, on others as well

v Introduce you to messaging

Note: JMS Postcard is not supported on WebSphere MQ for z/OS or WebSphere

MQ for iSeries.

Setting up JMS Postcard

To use JMS Postcard, make sure that the Java Messaging feature of WebSphere MQ

for Windows (WebSphere MQ JMS) is installed. You also need a working Java

Runtime Environment (JRE) at Java 1.3.1 level or later.

Before you can successfully run the JMS Postcard application, define the

environment variables CLASSPATH, MQ_JAVA_DATA_PATH,

MQ_JAVA_INSTALL_PATH, and MQ_JAVA_LIB_PATH. On Windows systems

these variables are set as part of the install process. On other platforms you must

set them yourself. For more information about these variables, see “Environment

variables” on page 8.

Many operations that the Postcard application carries out on your behalf require

the user to be a member of the WebSphere MQ administrators group (mqm). If you

are not a member of mqm, get a member of the mqm group to set up the default

configuration on your behalf. See “JMS Postcard default configuration” on page 20.

Starting

To start the JMS Postcard application, run the postcard script. This is supplied in

the java/bin directory of the WebSphere MQ installation.

© Copyright IBM Corp. 1997, 2007 17

The first time that you run JMS Postcard, it asks you to complete the default

configuration, which sets up a suitable queue manager to act as mailbox. See “JMS

Postcard default configuration” on page 20.

Whenever you start a Postcard application, you must sign on and enter a

nickname. (There are advanced options available on the sign-on dialog, see

“Sign-on advanced options” for details).

Sign-on

The sign-on dialog has a check box labelled Advanced. Check this to see the

extended dialog where you can choose which queue manager is used by the

Postcard program.

Note:

1. If you have no queue managers at all, or just the default configuration,

the checkbox is disabled.

2. Depending on what queue managers and clusters you have, the

checkbox and options are in one of various combinations of enabled,

disabled, and preselected.

Sign-on advanced options

Use default configuration as mailbox

This is the easiest way to use JMS Postcard on one or several computers.

Make sure that the default configuration is installed on all the computers,

that one of them holds the repository, and that all the others use the first

one as their repository; this puts them all in the same cluster.

Choose queue manager as mailbox

Use the drop-down list to choose any one of your local queue managers. If

you want to send postcards between two queue managers (on one or more

computers) this way, make sure that one of the following conditions is

true:

v The queue managers are in the same cluster (for more information about

clusters, see the WebSphere MQ Queue Manager Clusters book).

v There are explicit connections between the queue managers.

Sending a postcard

To send a postcard successfully, you need two instances of the Postcard application

with different nicknames. For example, suppose you start the Postcard application

and use the nickname Will, and then start it again using the nickname Tim. Will

can send postcards to Tim and Tim can send postcards to Will.

If Will and Tim are connected to the same queue manager, see “Running JMS

Postcard with one queue manager” on page 19.

If Tim is on a different queue manager manager (on the same or a different

computer from Will), see “Running JMS Postcard with two queue managers” on

page 19.

When the postcard arrives successfully, you know that your WebSphere MQ

installation and WebSphere MQ JMS are working correctly.

JMS Postcard

18 Using Java

For an alternative way of verifying the installation of WebSphere MQ JMS, run the

IVTRun application from the command line. See “Running the point-to-point IVT”

on page 26 for more information about this.

Running JMS Postcard with one queue manager

If you have already started the Postcard application with a nickname, for example,

Will, and you want to send a postcard to a second nickname on this computer,

follow these steps:

1. Move the first Postcard (Will) to one side of your screen, then start a second

Postcard by running the postcard shell script again.

2. Enter your second nickname, for example Tim.

3. On Will’s Postcard fill in the To field with your second nickname, Tim. (You

can leave the On field empty and Postcard will fill it in for you, or you can

type in the queue manager name that you see below the Message box after

On).

4. Click in the Message box, type your message in, and click the Send button.

5. Look in Tim’s Postcard to see the message arrive, and double-click on it to see

the postcard itself.

6. Try using Tim to send a message back to Will. You can do this by selecting the

message that arrived in Tim’s list, and clicking the Reply button.

Note: See “JMS Postcard configuration” on page 20 for advice about configuration.

Running JMS Postcard with two queue managers

If you have already started JMS Postcard with a nickname, for example Will, and

you want to send a postcard to a second nickname on a second queue manager on

this, or another, computer, follow these steps:

1. Start the second Postcard, choosing one of the following:

v JMS Postcard

– On this computer, run the postcard shell script again, then in the sign-on

dialog check Advanced and select the second queue manager you want to

use.

– On another computer, run the postcard shell script; or, on Windows

systems, open WebSphere MQ First Steps and click on JMS Postcard.
v MQI Postcard on Windows systems:

either start from WebSphere MQ First Steps (to use the default

configuration), or open the WebSphere MQ Explorer, right-click on the queue

manager you want to use and click All Tasks->Start a Postcard...

2. When the sign-on dialog appears, enter your second nickname (for example,

Tim).

3. In the Postcard application on Will’s computer, fill in the To field with your

second nickname (Tim), and in the On field put the queue manager name of

the second postcard where Tim is. If you don’t know this name, on Tim’s

computer in the Postcard look below the Message box after On:; alternatively if

both queue managers are in the default configuration cluster, you can just type

in the short TCP/IP name of Tim’s computer and Postcard builds that into the

queue manager name in the same way that the task that creates the default

configuration does.

4. Type your message, and click Send.

Look in Tim’s Postcard to see the message arrive, and double-click on it to see

the postcard itself.

5. Try sending a message from Tim’s computer back to Will.

JMS Postcard

Chapter 4. Using WebSphere MQ classes for Java Message Service (WebSphere MQ JMS) 19

You can do this by selecting the message that arrived in Tim’s list, and clicking

Reply.

Note: See “JMS Postcard configuration.”

See also “How JMS Postcard works.”

JMS Postcard configuration

The Postcard application needs a suitable queue manager to act as mailbox. See

“JMS Postcard default configuration” for the easiest way to get one. You will be

prompted to install this default configuration the first time you start the Postcard

application (see “Starting” on page 17).

Instead of using the default configuration, you can also start the Postcard

application using any other local queue manager.

If you want to send postcards to another computer, or to other queue managers,

the default configuration must include the option of being joined in the same

cluster. The other queue managers must either be in the same cluster or you must

create a connection explicitly between them.

See also “How JMS Postcard works.”

JMS Postcard default configuration

Installing the default configuration creates a special queue manager (with queues

and channels), and optionally joins it to a cluster, to enable you to use the JMS

Postcard application to verify your installation and see messaging working.

On WebSphere MQ for Windows, the Default Configuration Wizard automatically

opens when JMS Postcard is started and the wizard has not already been run on

this computer.

On platforms other than Windows systems, you can also run the

DefaultConfiguration script, provided that there are no existing queue managers

on this computer. On Windows systems, run Default Configuration from First

Steps.

Note: You must be a member of the WebSphere MQ administrators group (mqm)

to complete default configuration successfully. If you are not a member of

mqm, get a member of the mqm group to set up the default configuration

on your behalf.

How JMS Postcard works

This section tells you how the JMS Postcard works, including:

v “Starting up” on page 21

v “Receiving messages” on page 21

v “Sending messages” on page 21

v “How the postcards get there” on page 21

v “Tidying up undeliverable messages” on page 22

v “Exchanging messages between different WebSphere MQ Postcard applications”

on page 22

v “Customizing JMS Postcard” on page 22

JMS Postcard

20 Using Java

Starting up

When JMS Postcard starts, it checks to see what queue managers exist on this

computer, and initializes the sign-on dialog accordingly. If there are no queue

managers at all, it prompts you to install the default configuration.

JMS Postcard uses the Java Message Service method

queueConnectionFactory.createQueueConnection() to connect to the default queue

manager.

Receiving messages

All the time JMS Postcard is running, it polls a queue called postcard for incoming

messages from other Postcard applications. If there is no queue called postcard,

JMS Postcard creates one.

When JMS Postcard starts running, it creates a Java Message Service

QueueReceiver object for the local postcard queue, providing as a parameter a

selector string that filters the messages to be received from the queue by the

Correlation Identifier (CorrelId field). The selector string defines that the postcard

client should only receive messages where the CorrelId field matches the nickname

of the user. The words from the message data are then presented in the JMS

Postcard window.

Sending messages

If you did not enter a computer name in the On: field, JMS Postcard assumes that

the recipient is on the same queue manager.

If you entered a name, JMS Postcard checks for the existence of a queue manager

with this name, first using the exact name supplied, and then using a prefix in the

same format as that created by the default configuration.

In both cases, it issues a session.createQueue(’postcard’), and sets the base queue

manager name to the string supplied.

Finally, it builds a JMS BytesMessage from your nickname and the words you

typed in, and runs queueSender.send(theMessage) to put the message onto the

queue.

How the postcards get there

When other instances of Postcard on this computer use the same queue manager

and queue, the messages are being put and got from the one queue. This does,

however, verify that the WebSphere MQ code installed on this computer is

configured and working correctly.

JMS Postcard can only send to another queue manager if a connection to that

queue manager exists. This connection exists because either both queue managers

are members of the same cluster, or you have explicitly created a connection

yourself. JMS Postcard can therefore assume that it can connect to the queue

manager, and connects to it, opens the queue, and puts a message, as already

described, leaving all the work of getting the message there to the WebSphere MQ

cluster code. In other words, JMS Postcard uses only one piece of code for putting

the message, and does not need to know whether the message is going to another

computer.

In JMS Postcard, when session.createSender(’postcard’) is called, the cluster code

checks the repository to find the other queue manager, and to check that the queue

exists, and throws an exception if this was not possible for any reason.

JMS Postcard

Chapter 4. Using WebSphere MQ classes for Java Message Service (WebSphere MQ JMS) 21

When queueSender.send(theMessage) is called, the cluster code opens a channel to

the other queue manager (creating it if necessary) and sends the message.

Discard the channel afterwards, if the cluster optimizing code does not need it. If

the queue managers are on different computers, that is all handled by the cluster

code.

Tidying up undeliverable messages

If you sent a postcard message to John, but never ran a Postcard application with

the nickname John, the message would sit on the queue for ever. To prevent this,

JMS Postcard sets the Message Lifetime (Expiry) field in the Message Descriptor

(MQMD) to 48 hours. After that time, the message is discarded, wherever it may

be (possibly even still in transmission).

Exchanging messages between different WebSphere MQ

Postcard applications

You can exchange messages between all the different types of Postcard application

as follows:

v MQI Postcard on WebSphere MQ for Windows.

v JMS Postcard on Windows systems and other operating systems such as UNIX.

v MQSeries® Postcard on previous versions of MQSeries for Windows, with the

exception that it cannot receive messages from JMS Postcard.

v MQ Everyplace® Postcard on WebSphere MQ Everyplace on pervasive devices.

For this, a connection must be explicitly set up between the queue managers. See

the WebSphere MQ Everyplace product documentation for further information.

Customizing JMS Postcard

Normally JMS Postcard uses standard Java Swing settings for font size and

background color. But if it detects a postcard.ini file on startup, JMS Postcard

uses settings specified in this file instead. You can also change the trace setting.

Edit the sample file postcard.ini in the bin directory of the WebSphere MQ

classes for Java installation and set your preferred settings for font size, and screen

foreground and background colors.

Note: The precise use of upper and lower case letters in the keywords, as in the

following examples, must be strictly observed when you set these

properties.

Setting screen colors

By setting the Background and Foreground properties, you can change the

background and foreground colors of controls used in the Postcard

application.

Background=000000

Foreground=FFFFFF

This example selects white text on a black background. The values

represent intensity levels for red, green, and blue colors using a

hexadecimal scale from 00 to FF. Other examples of colors are FF0000

(bright red), 00FF00 (bright green) and 0000FF (bright blue).

Setting font size

MinimumFont=20

This example selects a minimum font size of 20 points. Any value smaller

than 13 is ignored.

JMS Postcard

22 Using Java

Using an external browser for online help

WebBrowser=nautilus

This setting is only applicable on non-Windows systems. The internal

browser used for displaying online help information cannot be customized.

This setting allows you to identify an alternative browser.

Tracing the Postcard application

Trace=1

Set this to start trace output. Note that the trace output is sent to the trc

subdirectory of the directory defined by the MQ_JAVA_DATA_PATH

system environment variable. If the application cannot write to this

directory, trace output is directed to the system console.

 You can also use the MQJMS_TRACE_LEVEL parameter on the java

command line to start tracing. See “Tracing programs” on page 33 for more

about tracing applications.

Post installation setup

Note: Remember to check the WebSphere MQ README file. It might contain

information that supersedes the information in this book.

After installation, on any platform other than Windows, you must update your

environment variables as described in “Environment variables” on page 8.

Additional setup for publish/subscribe mode

Before you can use the WebSphere MQ JMS implementation of JMS

publish/subscribe, some additional setup is required:

v Ensure that you have access to a publish/subscribe broker.

v Ensure that the broker is running.

v Create the WebSphere MQ JMS system queues.

This step is not required for direct connection to a broker.

You also need to know publish/subscribe concepts as discussed in Chapter 11,

“Writing WebSphere MQ JMS publish/subscribe applications,” on page 327.

Ensure that you have access to a publish/subscribe broker

With WebSphere MQ JMS, you have the choice of these brokers:

v WebSphere MQ Publish/Subscribe

v WebSphere MQ Integrator, Version 2

v WebSphere MQ Event Broker, Version 2.1

v WebSphere Business Integration Event Broker, Version 5.0

v WebSphere Business Integration Message Broker, Version 5.0

Differences between these brokers are discussed in Chapter 11, “Writing

WebSphere MQ JMS publish/subscribe applications,” on page 327. Read

the documentation for each broker for installation and configuration

instructions.

 Note, however, that broker based subscription stores are not supported by

WebSphere MQ Integrator, Version 2. For more information about

subscription stores, see “Subscription stores” on page 363.

JMS Postcard

Chapter 4. Using WebSphere MQ classes for Java Message Service (WebSphere MQ JMS) 23

Ensure that the broker is running

WebSphere MQ Publish/Subscribe

To verify that the broker is installed and running, use the

command:

dspmqbrk -m MY.QUEUE.MANAGER

where MY.QUEUE.MANAGER is the name of the queue manager on

which the broker is running. If the broker is running, a message

similar to the following is displayed:

WebSphere MQ message broker for queue manager MY.QUEUE.MANAGER running.

If the operating system reports that it cannot run the dspmqbrk

command, ensure that the WebSphere MQ Publish/Subscribe

broker is installed properly.

 If the operating system reports that the broker is not active, start it

using the command:

strmqbrk -m MY.QUEUE.MANAGER

WebSphere MQ Integrator, Version 2, WebSphere Business Integration

Event Broker, Version 5.0, or WebSphere Business Integration Message

Broker, Version 5.0

To verify that the broker is installed and running, refer to the

product documentation.

 The command to start the broker is:

mqsistart MYBROKER

where MYBROKER is the name of the broker.

WebSphere MQ Event Broker, Version 2.1

To verify that the broker provided in WebSphere MQ Event Broker

is installed and running, refer to the product documentation.

 The command to start the broker in WebSphere MQ Event Broker

is:

wmqpsstart MYBROKER

where MYBROKER is the name of the broker.

Create the WebSphere MQ JMS system queues

This does not apply if you use a direct connection to a broker.

 For a publish/subscribe implementation to work correctly, you must create

a number of system queues. A script is supplied, in the bin subdirectory of

the WebSphere MQ JMS installation, to assist with this task. To use the

script, enter the following commands:

For i5/OS:

1. Copy the script from the integrated file system to a native file

system library using a command similar to:

CPYFRMSTMF FROMSTMF(’/QIBM/ProdData/mqm/java/bin/MQJMS_PSQ.mqsc’)

 TOMBR(’/QSYS.LIB/QGPL.LIB/QCLSRC.FILE/MQJMS_PSQ.MBR’)

2. Call the script file using STRMQMMQSC:

STRMQMMQSC SRCMBR(MQJMS_PSQ) SRCFILE(QGPL/QCLSRC)

For z/OS:

Post installation setup

24 Using Java

1. Copy the script from the HFS into a PDS using a TSO

command similar to:

OGET ’/usr/lpp/mqm/java/bin/MQJMS_PSQ.mqsc’ ’USERID.MQSC(MQJMSPSQ)’

The PDS should be of fixed-block format with a record length

of 80.

2. Either use the CSQUTIL application to execute this command

script, or add the script to the CSQINP2 DD concatenation in

your queue manager’s started task JCL. In either case, refer to

the WebSphere MQ for z/OS System Setup Guide and the

WebSphere MQ for z/OS System Administration Guide for further

details.

For the other platforms:

runmqsc MY.QUEUE.MANAGER < MQJMS_PSQ.mqsc

If an error occurs, check that you typed the queue manager name correctly

and that the queue manager is running.

For a broker running on a remote queue manager

For operation with a broker running on a remote queue manager, further setup is

required.

1. Define a transmission queue on the remote queue manager with a queue name

matching the local queue manager. These names must match for correct routing

of messages by WebSphere MQ.

2. Define a sender channel on the remote queue manager and a receiver channel

on the local queue manager. The sender channel should use the transmission

queue defined in step 1.

3. Set up the local queue manager for communication with the remote broker:

a. Define a local transmission queue with the same name as the queue

manager running the remote broker.

b. Define local sender and remote receiver channels to the remote broker

queue manager. The sender channel must use the transmission queue

defined in step 3a.
4. To operate the remote broker, take the following steps:

a. Start the remote broker queue manager.

b. Start a listener for the remote broker queue manager (TCP/IP channels).

c. Start the sender and receiver channels to the local queue manager.

d. Start the broker on the remote queue manager.

An example command is

strmqbrk -m MyBrokerMgr

5. To operate the local queue manager to communicate with the remote broker,

take the following steps:

a. Start the local queue manager.

b. Start a listener for the local queue manager.

c. Start the sender and receiver channels to the remote broker queue manager.

Queues that require authorization for non-privileged users

Non-privileged users need authorization granted to access the queues used by

JMS. For details about access control in WebSphere MQ, see the chapter about

protecting WebSphere MQ objects in the WebSphere MQ System Administration

Guide.

Post installation setup

Chapter 4. Using WebSphere MQ classes for Java Message Service (WebSphere MQ JMS) 25

For JMS point-to-point mode, the access control issues are similar to those for the

WebSphere MQ classes for Java:

v Queues that are used by QueueSender need put authority.

v Queues that are used by QueueReceivers and QueueBrowsers need get, inq, and

browse authorities.

v The QueueSession.createTemporaryQueue method needs access to the model

queue that is defined in the QueueConnectionFactory temporaryModel field (by

default this is SYSTEM.DEFAULT.MODEL.QUEUE).

For JMS publish/subscribe mode, the following system queues are used:

v SYSTEM.JMS.ADMIN.QUEUE

v SYSTEM.JMS.REPORT.QUEUE

v SYSTEM.JMS.MODEL.QUEUE

v SYSTEM.JMS.PS.STATUS.QUEUE

v SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

v SYSTEM.JMS.D.SUBSCRIBER.QUEUE

v SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

v SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

v SYSTEM.BROKER.CONTROL.QUEUE

Also, any application that publishes messages needs access to the STREAM queue

that is specified in the topic connection factory being used. The default value for

this is SYSTEM.BROKER.DEFAULT.STREAM.

If you use ConnectionConsumer, additional authorization might be needed.

Queues to be read by the ConnectionConsumer must have get, inq and browse

authorities. The system dead-letter queue, and any backout-requeue queue or

report queue used by the ConnectionConsumer must have put and passall

authorities.

Running the point-to-point IVT

This section describes the point-to-point installation verification test program (IVT)

that is supplied with WebSphere MQ JMS.

The IVT verifies the installation by connecting to the default queue manager on the

local machine, using the WebSphere MQ JMS in bindings mode. It then sends a

message to the SYSTEM.DEFAULT.LOCAL.QUEUE queue and reads it back again.

You can run the program in one of two possible modes.

With JNDI lookup of administered objects

JNDI mode forces the program to obtain its administered objects from a

JNDI namespace, which is the expected operation of JMS client

applications. (See “Administering JMS objects” on page 39 for a description

of administered objects). This invocation method has the same

prerequisites as the administration tool (see Chapter 5, “Using the

WebSphere MQ JMS administration tool,” on page 35).

Without JNDI lookup of administered objects

If you do not want to use JNDI, you can create the administered objects at

runtime by running the IVT in non-JNDI mode. Because a JNDI-based

repository is relatively complex to set up, run the IVT first without JNDI.

Post installation setup

26 Using Java

Point-to-point verification without JNDI

A script, named IVTRun on UNIX, or IVTRun.bat on Windows systems, is provided

to run the IVT. This file is installed in the bin subdirectory of the installation.

To run the test without JNDI, issue the following command:

IVTRun [-t] -nojndi [-m <qmgr>]

For client mode, to run the test without JNDI, issue the following command:

IVTRun [-t] -nojndi -client -m <qmgr> -host <hostname> [-port <port>]

 [-channel <channel>]

where:

-t turns tracing on (by default, tracing is off)

qmgr is the name of the queue manager to which you want to connect

hostname

is the host on which the queue manager is running

port is the TCP/IP port on which the queue manager’s listener is running

(default 1414)

channel

is the client connection channel (default SYSTEM.DEF.SVRCONN)

If the test completes successfully, you should see output similar to the following:

5724-H72, 5655-L82, 5724-L26 (c) Copyright IBM Corp. 2002,2005. All Rights Reserved.

Websphere MQ classes for Java(tm) Message Service 6.0

Installation Verification Test

Creating a QueueConnectionFactory

Creating a Connection

Creating a Session

Creating a Queue

Creating a QueueSender

Creating a QueueReceiver

Creating a TextMessage

Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE

Reading the message back again

Got message:

JMS Message class: jms_text

 JMSType: null

 JMSDeliveryMode: 2

 JMSExpiration: 0

 JMSPriority: 4

 JMSMessageID: ID:414d5120514d5f63616c6c616e6169734286ac4120000a02

 JMSTimestamp: 1101826963911

 JMSCorrelationID:null

 JMSDestination: queue:///SYSTEM.DEFAULT.LOCAL.QUEUE

 JMSReplyTo: null

 JMSRedelivered: false

 JMS_IBM_PutDate:20041130

 JMSXAppID:WebSphere MQ Client for Java

 JMS_IBM_Format:MQSTR

 JMS_IBM_PutApplType:28

 JMS_IBM_MsgType:8

 JMSXUserID:mwhite

 JMS_IBM_PutTime:15024393

 JMSXDeliveryCount:1

A simple text message from the MQJMSIVT program

Reply string equals original string

Running the point-to-point IVT

Chapter 4. Using WebSphere MQ classes for Java Message Service (WebSphere MQ JMS) 27

Closing QueueReceiver

Closing QueueSender

Closing Session

Closing Connection

IVT completed OK

IVT finished

Point-to-point verification with JNDI

To run the IVT with JNDI, the LDAP server must be running and must be

configured to accept Java objects. If the following message occurs, it indicates that

there is a connection to the LDAP server, but that the server is not correctly

configured:

Unable to bind to object

This message means that either the server is not storing Java objects, or the

permissions on the objects or the suffix are not correct. For more help in this

situation, see the documentation for your LDAP server.

Also, the following administered objects must be retrievable from a JNDI

namespace:

v MQQueueConnectionFactory

v MQQueue

A script, named IVTSetup on UNIX, or IVTSetup.bat on Windows systems, is

provided to create these objects automatically. Enter the command:

IVTSetup

The script invokes the WebSphere MQ JMS Administration tool (see Chapter 5,

“Using the WebSphere MQ JMS administration tool,” on page 35) and creates the

objects in a JNDI namespace.

The MQQueueConnectionFactory is bound under the name ivtQCF (for LDAP,

cn=ivtQCF). All the properties are default values:

TRANSPORT(BIND)

PORT(1414)

HOSTNAME(localhost)

CHANNEL(SYSTEM.DEF.SVRCONN)

VERSION(1)

CCSID(819)

TEMPMODEL(SYSTEM.DEFAULT.MODEL.QUEUE)

QMANAGER()

The MQQueue is bound under the name ivtQ (cn=ivtQ). The value of the QUEUE

property becomes QUEUE(SYSTEM.DEFAULT.LOCAL.QUEUE). All other properties have

default values:

PERSISTENCE(APP)

QUEUE(SYSTEM.DEFAULT.LOCAL.QUEUE)

EXPIRY(APP)

TARGCLIENT(JMS)

ENCODING(NATIVE)

VERSION(1)

CCSID(1208)

PRIORITY(APP)

QMANAGER()

Once the administered objects are created in the JNDI namespace, run the IVTRun

(IVTRun.bat on Windows systems) script using the following command:

IVTRun [-t] -url "<providerURL>" [-icf <initCtxFact>]

Running the point-to-point IVT

28 Using Java

where:

-t turns tracing on (by default, tracing is off)

providerURL

Note: Enclose the providerURL string in quotation marks (″).
This is the JNDI location of the administered objects. If the default initial

context factory is in use, this is an LDAP URL of the form:

"ldap://hostname.company.com/contextName"

If a file system service provider is used, (see initCtxFact below), the URL

is of the form:

"file://directorySpec"

initCtxFact

is the classname of the initial context factory. The default is for an LDAP

service provider, and has the value:

com.sun.jndi.ldap.LdapCtxFactory

If a file system service provider is used, set this parameter to:

com.sun.jndi.fscontext.RefFSContextFactory

If the test completes successfully, the output is similar to the non-JNDI output,

except that the create QueueConnectionFactory and Queue lines indicate retrieval of

the object from JNDI. The following shows an example.

5724-H72, 5655-L82, 5724-L26 (c) Copyright IBM Corp. 2002,2005. All Rights Reserved.

Websphere MQ classes for Java(tm) Message Service 6.0

Installation Verification Test

Using administered objects, please ensure that these are available

Retrieving a QueueConnectionFactory from JNDI

Creating a Connection

Creating a Session

Retrieving a Queue from JNDI

Creating a QueueSender

Creating a QueueReceiver

Creating a TextMessage

Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE

Reading the message back again

Got message:

JMS Message class: jms_text

 JMSType: null

 ...

 ...

Although not strictly necessary, it is good practice to remove objects that are

created by the IVTSetup script from the JNDI namespace. A script called IVTTidy

(IVTTidy.bat on Windows systems) is provided for this purpose.

IVT error recovery

If the test is not successful, note the following:

v For help with any error messages involving the classpath, check that your

classpath is set correctly, as described in “Post installation setup” on page 23.

v The IVT might fail with a message failed to create MQQueueManager, with an

additional message including the number 2059. This indicates that WebSphere

Running the point-to-point IVT

Chapter 4. Using WebSphere MQ classes for Java Message Service (WebSphere MQ JMS) 29

MQ failed to connect to the default local queue manager on the machine on

which you ran the IVT. Check that the queue manager is running, and that it is

marked as the default queue manager.

v A message failed to open MQ queue indicates that WebSphere MQ connected to

the default queue manager, but could not open the

SYSTEM.DEFAULT.LOCAL.QUEUE. This might indicate that either the queue

does not exist on your default queue manager, or that the queue is not enabled

for PUT and GET. Add or enable the queue for the duration of the test.

The IVT tests whether the following Java archive (JAR) files are accessible to your

Java virtual machine (JVM):

v com.ibm.mqjms.jar

v com.ibm.mq.jar

v connector.jar

v jms.jar

v jndi.jar

v jta.jar

v ldap.jar

v providerutil.jar

The publish/subscribe installation verification test

The publish/subscribe installation verification test (PSIVT) program is supplied

only in compiled form. It is in the com.ibm.mq.jms package.

The PSIVT requires a suitable publish/subscribe broker that is running. See

“Additional setup for publish/subscribe mode” on page 23 for a list of the

supported publish/subscribe brokers and instructions on how to start each of

them.

The PSIVT attempts to:

1. Create a publisher, p, publishing on the topic MQJMS/PSIVT/Information

2. Create a subscriber, s, subscribing on the topic MQJMS/PSIVT/Information

3. Use p to publish a simple text message

4. Use s to receive a message waiting on its input queue

When you run the PSIVT, the publisher publishes the message, and the subscriber

receives and displays the message. The publisher publishes to the broker’s default

stream. The subscriber is non-durable, does not perform message selection, and

accepts messages from local connections. It performs a synchronous receive,

waiting a maximum of 5 seconds for a message to arrive.

You can run the PSIVT, like the IVT, in either JNDI mode or standalone mode.

JNDI mode uses JNDI to retrieve a TopicConnectionFactory and a Topic from a

JNDI namespace. If JNDI is not used, these objects are created at runtime.

Publish/subscribe verification without JNDI

A script named PSIVTRun (PSIVTRun.bat on Windows systems) is provided to run

PSIVT. The file is in the bin subdirectory of the installation.

To run the test without JNDI, issue the following command:

PSIVTRun -nojndi [-m <qmgr>] [-bqm <broker>] [-t]

Running the point-to-point IVT

30 Using Java

For client mode, to run the test without JNDI, issue the following command:

PSIVTRun -nojndi -client -m <qmgr> -host <hostname> [-port <port>]

 [-channel <channel>] [-bqm <broker>] [-t]

where:

-nojndi

indicates no JNDI lookup of the administered objects

qmgr is the name of the queue manager to which you wish to connect

hostname

is the host on which the queue manager is running

port is the TCP/IP port on which the queue manager’s listener is running

(default 1414)

channel

is the client connection channel (default SYSTEM.DEF.SVRCONN)

broker

is the name of the remote queue manager on which the broker is running.

If this is not specified, the value used for qmgr is assumed.

-t turns tracing on (default is off)

If the test completes successfully, output is similar to the following:

5724-H72, 5655-L82, 5724-L26 (c) Copyright IBM Corp. 2002,2005. All Rights Reserved.

Websphere MQ classes for Java(tm) Message Service 6.0

Publish/Subscribe Installation Verification Test

Creating a TopicConnectionFactory

Creating a Connection

Creating a Session

Creating a Topic

Creating a TopicPublisher

Creating a TopicSubscriber

Creating a TextMessage

Adding text

Publishing the message to topic://MQJMS/PSIVT/Information

Waiting for a message to arrive [5 secs max]...

Got message:

JMS Message class: jms_text

 JMSType: null

 JMSDeliveryMode: 2

 JMSExpiration: 0

 JMSPriority: 4

 JMSMessageID: ID:414d5120514d5f63616c6c616e6169734286ac4120002304

 JMSTimestamp: 1102075124453

 JMSCorrelationID:AMQ QM_callanais

 JMSDestination: topic://MQJMS/PSIVT/Information

 JMSReplyTo: null

 JMSRedelivered: false

 JMS_IBM_PutDate:20041203

 JMSXAppID:QM_callanais

 JMS_IBM_Format:MQSTR

 JMS_IBM_PutApplType:26

 JMS_IBM_MsgType:8

 JMSXUserID:mwhite

 JMS_IBM_PutTime:11584446

 JMSXDeliveryCount:1

A simple text message from the MQJMSPSIVT program

Reply string equals original string

Closing TopicSubscriber

The publish/subscribe installation verification test

Chapter 4. Using WebSphere MQ classes for Java Message Service (WebSphere MQ JMS) 31

Closing TopicPublisher

Closing Session

Closing Connection

PSIVT finished

Publish/subscribe verification with JNDI

To run the PSIVT in JNDI mode, two administered objects must be retrievable from

a JNDI namespace:

v A TopicConnectionFactory bound under the name ivtTCF

v A Topic bound under the name ivtT

You can define these objects by using the WebSphere MQ JMS Administration Tool

(see Chapter 5, “Using the WebSphere MQ JMS administration tool,” on page 35)

and using the following commands:

DEFINE TCF(ivtTCF)

This command defines the TopicConnectionFactory.

DEFINE T(ivtT) TOPIC(MQJMS/PSIVT/Information)

This command defines the Topic.

These definitions assume that a default queue manager, on which the broker is

running, is available. For details on configuring these objects to use a non-default

queue manager, see “Administering JMS objects” on page 39. These objects must

reside in a context pointed to by the -url command-line parameter described

below.

To run the test in JNDI mode, enter the following command:

PSIVTRun [-t] -url "<providerURL>" [-icf <initCtxFact>]

where:

-t means turn tracing on (by default, tracing is off)

providerURL

Note: Enclose the providerURL string in quotation marks (″).
This is the JNDI location of the administered objects. If the default initial

context factory is in use, this is an LDAP URL of the form:

"ldap://hostname.company.com/contextName"

If a file system service provider is used, (see initCtxFact below), the URL

is of the form:

"file://directorySpec"

initCtxFact

is the classname of the initial context factory. The default is for an LDAP

service provider, and has the value:

com.sun.jndi.ldap.LdapCtxFactory

If a file system service provider is used, set this parameter to:

com.sun.jndi.fscontext.RefFSContextFactory

If the test completes successfully, output is similar to the non-JNDI output, except

that the create QueueConnectionFactory and Queue lines indicate retrieval of the

object from JNDI.

The publish/subscribe installation verification test

32 Using Java

PSIVT error recovery

If the test is not successful, note the following:

v The following message:

*** No broker response. Please ensure broker is running. ***

indicates that the broker is installed on the target queue manager, but its control

queue contains some outstanding messages. For instructions on how to start it,

see “Additional setup for publish/subscribe mode” on page 23.

v If the following message is displayed:

Unable to connect to queue manager: <default>

ensure that your WebSphere MQ system has configured a default queue

manager.

v If the following message is displayed:

Unable to connect to queue manager: ...

ensure that the administered TopicConnectionFactory that the PSIVT uses is

configured with a valid queue manager name. Alternatively, if you used the

-nojndi option, ensure that you supplied a valid queue manager (using the -m

option).

v If the following message is displayed:

Unable to access broker control queue on queue manager: ...

Please ensure the broker is installed on this queue manager

ensure that the administered TopicConnectionFactory that the PSIVT uses is

configured with the name of the queue manager on which the broker is

installed. If you used the -nojndi option, ensure that you supplied a queue

manager name (using the -m option).

Solving problems

If a program does not complete successfully, run the installation verification

program, which is described in “Running the point-to-point IVT” on page 26, and

follow the advice given in the diagnostic messages.

Tracing programs

The WebSphere MQ JMS trace facility is provided to help IBM staff to diagnose

customer problems.

Trace is disabled by default, because the output rapidly becomes large, and is

unlikely to be of use in normal circumstances.

If you are asked to provide trace output, enable it by setting the Java property

MQJMS_TRACE_LEVEL to one of the following values:

on traces WebSphere MQ JMS calls only

base traces both WebSphere MQ JMS calls and the underlying WebSphere MQ

base Java calls

For example:

java -Djava.library.path=library_path

 -DMQJMS_TRACE_LEVEL=base MyJMSProg

The publish/subscribe installation verification test

Chapter 4. Using WebSphere MQ classes for Java Message Service (WebSphere MQ JMS) 33

where library_path is the path to the WebSphere MQ Java libraries (see “The

WebSphere MQ Java libraries” on page 10).

To disable trace, set MQJMS_TRACE_LEVEL to off.

By default, trace is output to a file named mqjms.trc in the current working

directory. You can redirect it to a different directory by using the Java property

MQJMS_TRACE_DIR. For example:

java -Djava.library.path=library_path

 -DMQJMS_TRACE_LEVEL=base -DMQJMS_TRACE_DIR=/somepath/tracedir MyJMSProg

Logging

The WebSphere MQ JMS log facility is provided to report serious problems,

particularly those that might indicate configuration errors rather than

programming errors. By default, log output is sent to the System.err stream, which

usually appears on the stderr of the console in which the JVM is run.

You can redirect the output to a file by using a Java property that specifies the new

location, for example:

java -Djava.library.path=library_path

 -DMQJMS_LOG_DIR=/mydir/forlogs MyJMSProg

where library_path is the path to the WebSphere MQ Java libraries (see “The

WebSphere MQ Java libraries” on page 10).

When the log is redirected to a file, it is output in a binary form. To view the log,

the utility formatLog (formatLog.bat on Windows systems) is provided, which

converts the file to plain text format. The utility is stored in the bin directory of

your WebSphere MQ JMS installation. Run the conversion as follows:

formatLog <inputfile> <outputfile>

Solving problems

34 Using Java

Chapter 5. Using the WebSphere MQ JMS administration tool

The administration tool enables administrators to define the properties of eight

types of WebSphere MQ JMS object and to store them within a JNDI namespace.

Then, JMS clients can use JNDI to retrieve these administered objects from the

namespace and use them.

The JMS objects that you can administer by using the tool are:

v MQConnectionFactory

v MQQueueConnectionFactory

v MQTopicConnectionFactory

v MQQueue

v MQTopic

v MQXAConnectionFactory

v MQXAQueueConnectionFactory

v MQXATopicConnectionFactory

For details about these objects, refer to “Administering JMS objects” on page 39.

The tool also allows administrators to manipulate directory namespace subcontexts

within the JNDI. See “Manipulating subcontexts” on page 39.

Invoking the administration tool

The administration tool has a command line interface. You can use this

interactively, or use it to start a batch process. The interactive mode provides a

command prompt where you can enter administration commands. In the batch

mode, the command to start the tool includes the name of a file that contains an

administration command script.

To start the tool in interactive mode, enter the command:

JMSAdmin [-t] [-v] [-cfg config_filename]

where:

-t Enables trace (default is trace off)

-v Produces verbose output (default is terse output)

-cfg config_filename

Names an alternative configuration file (see “Configuration” on page 36)

A command prompt is displayed, which indicates that the tool is ready to accept

administration commands. This prompt initially appears as:

InitCtx>

indicating that the current context (that is, the JNDI context to which all naming

and directory operations currently refer) is the initial context defined in the

PROVIDER_URL configuration parameter (see “Configuration” on page 36).

As you traverse the directory namespace, the prompt changes to reflect this, so

that the prompt always displays the current context.

To start the tool in batch mode, enter the command:

© Copyright IBM Corp. 1997, 2007 35

JMSAdmin <test.scp

where test.scp is a script file that contains administration commands (see

“Administration commands” on page 38). The last command in the file must be

the END command.

Configuration

Configure the administration tool with values for the following properties:

INITIAL_CONTEXT_FACTORY

The service provider that the tool uses. The supported values for this

property are as follows:

v com.sun.jndi.ldap.LdapCtxFactory (for LDAP)

v com.sun.jndi.fscontext.RefFSContextFactory (for file system context)

On z/OS, com.ibm.jndi.LDAPCtxFactory is also supported and provides

access to an LDAP server. However, this is incompatible with

com.sun.jndi.ldap.LdapCtxFactory, in that objects created using one

InitialContextFactory cannot be read or modified using the other.

 You can also use an InitialContextFactory that is not in the list above. See

“Using an unlisted InitialContextFactory” on page 37 for more details.

PROVIDER_URL

The URL of the session’s initial context; the root of all JNDI operations

carried out by the tool. Two forms of this property are supported:

v ldap://hostname/contextname

v file:[drive:]/pathname

SECURITY_AUTHENTICATION

Whether JNDI passes security credentials to your service provider. This

property is used only when an LDAP service provider is used. This

property can take one of three values:

v none (anonymous authentication)

v simple (simple authentication)

v CRAM-MD5 (CRAM-MD5 authentication mechanism)

If a valid value is not supplied, the property defaults to none. See

“Security” on page 37 for more details about security with the

administration tool.

These properties are set in a configuration file. When you invoke the tool, you can

specify this configuration by using the -cfg command-line parameter, as described

in “Invoking the administration tool” on page 35. If you do not specify a

configuration file name, the tool attempts to load the default configuration file

(JMSAdmin.config). It looks for this file first in the current directory, and then in the

<MQ_JAVA_INSTALL_PATH>/bin directory, where <MQ_JAVA_INSTALL_PATH> is the path

to your WebSphere MQ JMS installation.

The configuration file is a plain-text file that consists of a set of key-value pairs,

separated by =. This is shown in the following example:

#Set the service provider

 INITIAL_CONTEXT_FACTORY=com.sun.jndi.ldap.LdapCtxFactory

#Set the initial context

 PROVIDER_URL=ldap://polaris/o=ibm_us,c=us

#Set the authentication type

 SECURITY_AUTHENTICATION=none

Invoking the administration tool

36 Using Java

(A # in the first column of the line indicates a comment, or a line that is not used.)

The installation comes with a sample configuration file that is called

JMSAdmin.config, and is found in the <MQ_JAVA_INSTALL_PATH>/bin directory. Edit

this file to suit the setup of your system.

Using an unlisted InitialContextFactory

You can use the administration tool to connect to JNDI contexts other than those

listed in “Configuration” on page 36 by using three parameters defined in the

JMSAdmin configuration file.

To use a different InitialContextFactory:

1. Set the INITIAL_CONTEXT_FACTORY property to the required class name.

2. Define the behavior of the InitialContextFactory using the

USE_INITIAL_DIR_CONTEXT, NAME_PREFIX and

NAME_READABILITY_MARKER properties.

The settings for these properties are described in the sample configuration file

comments.

You do not need to define the three properties listed here, if you use one of the

supported INITIAL_CONTEXT_FACTORY values. However, you can give them

values to override the system defaults. If you omit one or more of the three

InitialContextFactory properties, the administration tool provides suitable defaults

based on the values of the other properties.

Security

You need to understand the effect of the SECURITY_AUTHENTICATION property

described in “Configuration” on page 36.

v If you set this parameter to none, JNDI does not pass any security credentials to

the service provider, and anonymous authentication is performed.

v If you set the parameter to either simple or CRAM-MD5, security credentials are

passed through JNDI to the underlying service provider. These security

credentials are in the form of a user distinguished name (User DN) and

password.

If security credentials are required, you are prompted for these when the tool

initializes. Avoid this by setting the PROVIDER_USERDN and

PROVIDER_PASSWORD properties in the JMSAdmin configuration file.

Note: If you do not use these properties, the text typed, including the password, is

echoed to the screen. This may have security implications.

The tool does no authentication itself; the task is delegated to the LDAP server.

The LDAP server administrator must set up and maintain access privileges to

different parts of the directory. If authentication fails, the tool displays an

appropriate error message and terminates.

More detailed information about security and JNDI is in the documentation at

Sun’s Java web site (http://java.sun.com).

Configuration

Chapter 5. Using the WebSphere MQ JMS administration tool 37

Administration commands

When the command prompt is displayed, the tool is ready to accept commands.

Administration commands are generally of the following form:

verb [param]*

where verb is one of the administration verbs listed in Table 7. All valid commands

consist of at least one (and only one) verb, which appears at the beginning of the

command in either its standard or short form.

The parameters a verb can take depend on the verb. For example, the END verb

cannot take any parameters, but the DEFINE verb can take any number of

parameters. Details of the verbs that take at least one parameter are discussed in

later sections of this chapter.

 Table 7. Administration verbs

Verb Short form Description

ALTER ALT Change at least one of the properties of a given

administered object

DEFINE DEF Create and store an administered object, or create a new

subcontext

DISPLAY DIS Display the properties of one or more stored administered

objects, or the contents of the current context

DELETE DEL Remove one or more administered objects from the

namespace, or remove an empty subcontext

CHANGE CHG Alter the current context, allowing the user to traverse the

directory namespace anywhere below the initial context

(pending security clearance)

COPY CP Make a copy of a stored administered object, storing it

under an alternative name

MOVE MV Alter the name under which an administered object is

stored

END Close the administration tool

Verb names are not case-sensitive.

Usually, to terminate commands, you press the carriage return key. However, you

can override this by typing the + symbol directly before the carriage return. This

enables you to enter multiline commands, as shown in the following example:

DEFINE Q(BookingsInputQueue) +

 QMGR(QM.POLARIS.TEST) +

 QUEUE(BOOKINGS.INPUT.QUEUE) +

 PORT(1415) +

 CCSID(437)

Lines beginning with one of the characters *, #, or / are treated as comments, or

lines that are ignored.

Administration commands

38 Using Java

Manipulating subcontexts

Use the verbs CHANGE, DEFINE, DISPLAY and DELETE to manipulate directory

namespace subcontexts. Their use is described in Table 8.

 Table 8. Syntax and description of commands used to manipulate subcontexts

Command syntax Description

DEFINE CTX(ctxName) Attempts to create a new child subcontext of the current

context, having the name ctxName. Fails if there is a

security violation, if the subcontext already exists, or if the

name supplied is not valid.

DISPLAY CTX Displays the contents of the current context. Administered

objects are annotated with a, subcontexts with [D]. The Java

type of each object is also displayed.

DELETE CTX(ctxName) Attempts to delete the current context’s child context

having the name ctxName. Fails if the context is not found,

is non-empty, or if there is a security violation.

CHANGE CTX(ctxName) Alters the current context, so that it now refers to the child

context having the name ctxName. One of two special

values of ctxName can be supplied:

=UP moves to the current context’s parent

=INIT moves directly to the initial context

Fails if the specified context does not exist, or if there is a

security violation.

Administering JMS objects

This section describes the eight types of object that the administration tool can

handle. It includes details about each of their configurable properties and the verbs

that can manipulate them.

Object types

Table 9 shows the eight types of administered objects. The Keyword column shows

the strings that you can substitute for TYPE in the commands shown in Table 10 on

page 40.

 Table 9. The JMS object types that are handled by the administration tool

Object Type Keyword Description

MQConnectionFactory CF The WebSphere MQ implementation

of the JMS ConnectionFactory

interface. This represents a factory

object for creating connections in the

both the point-to-point and

publish/subscribe domains.

MQQueueConnectionFactory QCF The WebSphere MQ implementation

of the JMS QueueConnectionFactory

interface. This represents a factory

object for creating connections in the

point-to-point domain.

Manipulating subcontexts

Chapter 5. Using the WebSphere MQ JMS administration tool 39

Table 9. The JMS object types that are handled by the administration tool (continued)

Object Type Keyword Description

MQTopicConnectionFactory TCF The WebSphere MQ implementation

of the JMS TopicConnectionFactory

interface. This represents a factory

object for creating connections in the

publish/subscribe domain.

MQQueue Q The WebSphere MQ implementation

of the JMS Queue interface. This

represents a destination for messages

in the point-to-point domain.

MQTopic T The WebSphere MQ implementation

of the JMS Topic interface. This

represents a destination for messages

in the publish/subscribe domain.

MQXAConnectionFactory1 XACF The WebSphere MQ implementation

of the JMS XAConnectionFactory

interface. This represents a factory

object for creating connections in both

the point-to-point and

publish/subscribe domains, and

where the connections use the XA

versions of JMS classes.

MQXAQueueConnectionFactory1 XAQCF The WebSphere MQ implementation

of the JMS

XAQueueConnectionFactory interface.

This represents a factory object for

creating connections in the

point-to-point domain that use the XA

versions of JMS classes.

MQXATopicConnectionFactory1 XATCF The WebSphere MQ implementation

of the JMS XATopicConnectionFactory

interface. This represents a factory

object for creating connections in the

publish/subscribe domain that use

the XA versions of JMS classes.

Note:

1. These classes are provided for use by vendors of application servers. They are unlikely

to be directly useful to application programmers.

Verbs used with JMS objects

You can use the verbs ALTER, DEFINE, DISPLAY, DELETE, COPY, and MOVE to manipulate

administered objects in the directory namespace. Table 10 summarizes their use.

Substitute TYPE with the keyword that represents the required administered object,

as listed in Table 9 on page 39.

 Table 10. Syntax and description of commands used to manipulate administered objects

Command syntax Description

ALTER TYPE(name) [property]* Attempts to update the given administered object’s

properties with the ones supplied. Fails if there is a

security violation, if the specified object cannot be

found, or if the new properties supplied are not

valid.

Administering JMS objects

40 Using Java

Table 10. Syntax and description of commands used to manipulate administered

objects (continued)

Command syntax Description

DEFINE TYPE(name) [property]* Attempts to create an administered object of type

TYPE with the supplied properties, and store it under

the name name in the current context. Fails if there is

a security violation, if the supplied name is not valid

or already exists, or if the properties supplied are not

valid.

DISPLAY TYPE(name) Displays the properties of the administered object of

type TYPE, bound under the name name in the current

context. Fails if the object does not exist, or if there is

a security violation.

DELETE TYPE(name) Attempts to remove the administered object of type

TYPE, having the name name, from the current context.

Fails if the object does not exist, or if there is a

security violation.

COPY TYPE(nameA)

TYPE(nameB)

Makes a copy of the administered object of type TYPE,

having the name nameA, naming the copy nameB. This

all occurs within the scope of the current context.

Fails if the object to be copied does not exist, if an

object of name nameB already exists, or if there is a

security violation.

MOVE TYPE(nameA)

TYPE(nameB)

Moves (renames) the administered object of type

TYPE, having the name nameA, to nameB. This all occurs

within the scope of the current context. Fails if the

object to be moved does not exist, if an object of

name nameB already exists, or if there is a security

violation.

Creating objects

Objects are created and stored in a JNDI namespace using the following command

syntax:

DEFINE TYPE(name) [property]*

That is, the DEFINE verb, followed by a TYPE(name) administered object reference,

followed by zero or more properties (see “Properties” on page 42).

LDAP naming considerations

To store your objects in an LDAP environment, you must give them names that

comply with certain conventions. One of these is that object and subcontext names

must include a prefix, such as cn= (common name), or ou= (organizational unit).

The administration tool simplifies the use of LDAP service providers by allowing

you to refer to object and context names without a prefix. If you do not supply a

prefix, the tool automatically adds a default prefix to the name you supply. For

LDAP this is cn=.

You can change the default prefix by setting the NAME_PREFIX property in the

JMSAdmin configuration file, as described in “Using an unlisted

InitialContextFactory” on page 37.

This is shown in the following example.

Administering JMS objects

Chapter 5. Using the WebSphere MQ JMS administration tool 41

InitCtx> DEFINE Q(testQueue)

InitCtx> DISPLAY CTX

 Contents of InitCtx

 a cn=testQueue com.ibm.mq.jms.MQQueue

 1 Object(s)

 0 Context(s)

 1 Binding(s), 1 Administered

Note that, although the object name supplied (testQueue) does not have a prefix,

the tool automatically adds one to ensure compliance with the LDAP naming

convention. Likewise, submitting the command DISPLAY Q(testQueue) also causes

this prefix to be added.

You might need to configure your LDAP server to store Java objects. For

information to assist with this configuration, see the documentation for your LDAP

server.

Properties

A property consists of a name-value pair in the format:

PROPERTY_NAME(property_value)

Property names are not case-sensitive, and are restricted to the set of recognized

names shown in Table 11. This table also shows the valid property values for each

property.

 Table 11. Property names and valid values

Property Short

form

Valid values (defaults in bold)

BROKERCCDURSUBQ CCDSUB v SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

v Any valid string. See “Configuring durable

topic subscribers” on page 362.

BROKERCCSUBQ CCSUB v SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

v Any valid string. See “Configuring

nondurable message consumers” on page 362.

BROKERCONQ BCON v SYSTEM.BROKER.CONTROL.QUEUE

v Any string

BROKERDURSUBQ BDSUB v SYSTEM.JMS.D.SUBSCRIBER.QUEUE

v Any valid string. See “Configuring durable

topic subscribers” on page 362.

BROKERPUBQ BPUB v SYSTEM.BROKER.DEFAULT.STREAM

v Any string

BROKERPUBQMGR BPQM Any string

BROKERQMGR BQM Any string

BROKERSUBQ BSUB v SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

v Any valid string. See “Configuring

nondurable message consumers” on page 362.

Administering JMS objects

42 Using Java

Table 11. Property names and valid values (continued)

Property Short

form

Valid values (defaults in bold)

BROKERVER BVER v V1 - To use a WebSphere MQ

Publish/Subscribe broker, or to use a broker

of WebSphere MQ Integrator, WebSphere MQ

Event Broker, WebSphere Business Integration

Event Broker, or WebSphere Business

Integration Message Broker in compatibility

mode. This is the default value if

TRANSPORT is set to BIND or CLIENT.

v V2 - To use a broker of WebSphere MQ

Integrator, WebSphere MQ Event Broker,

WebSphere Business Integration Event Broker,

or WebSphere Business Integration Message

Broker in native mode. This is the default

value if TRANSPORT is set to DIRECT or

DIRECTHTTP.

CCDTURL1 CCDT v Not set

v A uniform resource locator (URL)

CCSID CCS v 819 - This is the default for a connection

factory.

v 1208 - This is the default for a destination.

v Any positive integer

CHANNEL1 CHAN v SYSTEM.DEF.SVRCONN

v Any string

CLEANUP CL v SAFE

v ASPROP

v NONE

v STRONG

CLEANUPINT CLINT v 3 600 000

v Any positive integer

CLIENTID CID Any string

CLONESUPP CLS v DISABLED - Only one instance of a durable

topic subscriber can run at a time.

v ENABLED2 - Two or more instances of the

same durable topic subscriber can run

simultaneously, but each instance must run in

a separate Java virtual machine (JVM).

COMPHDR HC v NONE

v SYSTEM

COMPMSG MC v NONE

v A list of one or more of the following values

separated by blank characters:

 RLE

 ZLIBFAST

 ZLIBHIGH

Administering JMS objects

Chapter 5. Using the WebSphere MQ JMS administration tool 43

Table 11. Property names and valid values (continued)

Property Short

form

Valid values (defaults in bold)

CONNOPT3 CNOPT v STANDARD - The nature of the binding

between the application and the queue

manager depends on the platform on which

the queue manager is running and how the

queue manager is configured.

v SHARED - The application and the local

queue manager agent run in separate units of

execution but share some resources.

v ISOLATED - The application and the local

queue manager agent run in separate units of

execution and share no resources.

v FASTPATH - The application and the local

queue manager agent run in the same unit of

execution.

v SERIALQM - The application requests

exclusive use of the connection tag within the

scope of the queue manager.

v SERIALQSG - The application requests

exclusive use of the connection tag within the

scope of the queue sharing group to which

the queue manager belongs.

v RESTRICTQM - The application requests

shared use of the connection tag, but there are

restrictions on the shared use of the

connection tag within the scope of the queue

manager.

v RESTRICTQSG - The application requests

shared use of the connection tag, but there are

restrictions on the shared use of the

connection tag within the scope of the queue

sharing group to which the queue manager

belongs.

CONNTAG CNTAG Any string. The value is truncated if it is longer

than 128 bytes.

DESCRIPTION DESC Any string

DIRECTAUTH DAUTH v BASIC - No authentication, username

authentication, or password authentication

v CERTIFICATE - Public key certificate

authentication

ENCODING ENC See “The ENCODING property” on page 58

EXPIRY EXP v APP - Expiry may be defined by the JMS

application.

v UNLIM - No expiry occurs.

v Any positive integer representing expiry in

milliseconds.

Administering JMS objects

44 Using Java

Table 11. Property names and valid values (continued)

Property Short

form

Valid values (defaults in bold)

FAILIFQUIESCE FIQ v YES - Calls to certain methods fail if the

queue manager is in a quiescing state. If an

application detects that the queue manager is

quiescing, the application can complete its

immediate task and close the connection,

allowing the queue manager to stop.

v NO - No method call fails because the queue

manager is in a quiescing state. If you specify

this value, an application cannot detect that

the queue manager is quiescing. The

application might continue to perform

operations against the queue manager, and

therefore prevent the queue manager from

stopping.

HOSTNAME HOST v localhost

v Any string

LOCALADDRESS LA v Not set

v A string in the format [ip-addr][(low-port[,high-
port])]

Here are some examples:

9.20.4.98

The channel binds to address

9.20.4.98 locally

9.20.4.98(1000)

The channel binds to address

9.20.4.98 locally and uses port 1000

9.20.4.98(1000,2000)

The channel binds to address

9.20.4.98 locally and uses a port in

the range 1000 to 2000

(1000) The channel binds to port 1000

locally

(1000,2000)

The channel binds to a port in the

range 1000 to 2000 locally
You can specify a host name instead of an IP

address.

For a direct connection to a broker, this

property is relevant only when multicast is

used, and the value of the property must not

contain a port number, or a range of port

numbers. The only valid values of the

property in this case are null, an IP address,

or a host name.

MAPNAMESTYLE MNST v STANDARD - Map messages are sent in the

current format, which can be interpreted only

by the current version or Version 5.3 of

WebSphere MQ JMS.

v COMPATIBLE - Map messages are sent in an

earlier format, which can be interpreted by

any version of WebSphere MQ JMS, including

versions earlier than Version 5.3.

MAXBUFFSIZE MBSZ v 1000

v Any positive integer

Administering JMS objects

Chapter 5. Using the WebSphere MQ JMS administration tool 45

|||
|
|
|
|
|
|
|

Table 11. Property names and valid values (continued)

Property Short

form

Valid values (defaults in bold)

MSGBATCHSZ MBS v 10

v Any positive integer

MSGRETENTION MRET v Yes - Unwanted messages remain on the input

queue

v No - Unwanted messages are dealt with

according to their disposition options

MSGSELECTION MSEL v CLIENT - Message selection is done by the

client.

v BROKER - Message selection is done by the

broker.

MULTICAST MCAST v DISABLED - Messages are not delivered to a

message consumer using multicast transport.

This is the default value for

ConnectionFactory and

TopicConnectionFactory objects.

v ASCF - Messages are delivered to a message

consumer according to the multicast setting

for the connection factory associated with the

message consumer. The multicast setting for

the connection factory is noted at the time

that the message consumer is created. This

value is valid only for Topic objects, and is

the default value for Topic objects.

v ENABLED - If the topic is configured for

multicast in the broker, messages are

delivered to a message consumer using

multicast transport. A reliable quality of

service is used if the topic is configured for

reliable multicast.

v RELIABLE - If the topic is configured for

reliable multicast in the broker, messages are

delivered to the message consumer using

multicast transport with a reliable quality of

service. If the topic is not configured for

reliable multicast, you cannot create a

message consumer for the topic.

v NOTR - If the topic is configured for multicast

in the broker, messages are delivered to the

message consumer using multicast transport.

A reliable quality of service is not used even if

the topic is configured for reliable multicast.

OPTIMISTICPUBLICATION OPTPUB v NO - When a publisher publishes a message,

the WebSphere MQ JMS client does not return

control to the publisher until it has completed

all the processing associated with the call and

can report the outcome to the publisher.

v YES - When a publisher publishes a message,

the WebSphere MQ JMS client returns control

to the publisher immediately, before it has

completed all the processing associated with

the call and can report the outcome to the

publisher. The WebSphere MQ JMS client

reports the outcome only when the publisher

commits the message.

Administering JMS objects

46 Using Java

Table 11. Property names and valid values (continued)

Property Short

form

Valid values (defaults in bold)

OUTCOMENOTIFICATION NOTIFY v YES - When a subscriber acknowledges or

commits a message, the WebSphere MQ JMS

client does not return control to the subscriber

until it has completed all the processing

associated with the call and can report the

outcome to the subscriber.

v NO4 - When a subscriber acknowledges or

commits a message, the WebSphere MQ JMS

client returns control to the subscriber

immediately, before it has completed all the

processing associated with the call and can

report the outcome to the subscriber.

PERSISTENCE PER v APP - Persistence is defined by the JMS

application.

v QDEF - Persistence takes the value of the

queue default.

v PERS - Messages are persistent.

v NON - Messages are nonpersistent.

v HIGH - See “JMS persistent messages” on

page 365.

POLLINGINT PINT v 5000

v Any positive integer

PORT v 1414 - This is the default value if

TRANSPORT is set to CLIENT.

v 1506 - This is the default value if

TRANSPORT is set to DIRECT or

DIRECTHTTP.

v Any positive integer

PRIORITY PRI v APP - Priority is defined by the JMS

application.

v QDEF - Priority takes the value of the queue

default.

v Any integer in the range 0-9.

PROCESSDURATION PROCDUR v UNKNOWN - A subscriber can give no

guarantee about how quickly it can process

any message it receives.

v SHORT - A subscriber guarantees to process

quickly any message it receives before

returning control to the WebSphere MQ JMS

client.

PROXYHOSTNAME PHOST v Not set

v The host name of the proxy server

PROXYPORT PPORT v 443

v The port number of the proxy server

PUBACKINT PAI v 25

v Any positive integer

QMANAGER QMGR Any string

QUEUE QU Any string

Administering JMS objects

Chapter 5. Using the WebSphere MQ JMS administration tool 47

Table 11. Property names and valid values (continued)

Property Short

form

Valid values (defaults in bold)

RECEIVEISOLATION RCVISOL v COMMITTED - A subscriber receives only

those messages on the subscriber queue that

have been committed.

v UNCOMMITTED5 - A subscriber can receive

messages that have not been committed on

the subscriber queue.

RECEXIT RCX v Not set

v A string comprising one or more items

separated by commas, where each item is one

of the following:

– The name of a class that implements the

WebSphere MQ base Java interface,

MQReceiveExit (for a channel receive exit

written in Java)

– A string in the format

libraryName(entryPointName) (for a channel

receive exit not written in Java)

RECEXITINIT RCXI v Not set

v A string comprising one or more items of user

data separated by commas

RESCANINT RINT v 5000

v Any positive integer

SECEXIT SCX v Not set

v The name of a class that implements the

WebSphere MQ base Java interface,

MQSecurityExit (for a channel security exit

written in Java)

v A string in the format

libraryName(entryPointName) (for a channel

security exit not written in Java)

SECEXITINIT SCXI v Not set

v Any string

SENDEXIT SDX v Not set

v A string comprising one or more items

separated by commas, where each item is one

of the following:

– The name of a class that implements the

WebSphere MQ base Java interface,

MQSendExit (for a channel send exit

written in Java)

– A string in the format

libraryName(entryPointName) (for a channel

send exit not written in Java)

SENDEXITINIT SDXI v Not set

v A string comprising one or more items of user

data separated by commas

SPARSESUBS SSUBS v NO - Subscriptions receive frequent matching

messages.

v YES - Subscriptions receive infrequent

matching messages. This value requires that

the subscription queue can be opened for

browse.

Administering JMS objects

48 Using Java

|

Table 11. Property names and valid values (continued)

Property Short

form

Valid values (defaults in bold)

SSLCIPHERSUITE SCPHS v Not set

v See “SSL properties” on page 59

SSLCRL SCRL v Not set

v Space-separated list of LDAP URLs. See “SSL

properties” on page 59

SSLFIPSREQUIRED SFIPS v NO - An SSL connection can use any

CipherSuite that is not supported by the IBM

Java JSSE FIPS provider (IBMJSSEFIPS).

v YES - An SSL connection must use a

CipherSuite that is supported by

IBMJSSEFIPS.

SSLPEERNAME SPEER v Not set

v See “SSL properties” on page 59

SSLRESETCOUNT SRC v 0

v Zero, or any positive integer less than or

equal to 999 999 999. See “SSL properties” on

page 59

STATREFRESHINT SRI v 60 000

v Any positive integer

SUBSTORE SS v MIGRATE

v QUEUE

v BROKER

SYNCPOINTALLGETS SPAG v No

v Yes

TARGCLIENT TC v JMS - The target of the message is a JMS

application.

v MQ - The target of the message is a non-JMS

WebSphere MQ application.

TARGCLIENTMATCHING TCM v YES - If an incoming message does not have

an MQRFH2 header, the TARGCLIENT

property of the Queue object derived from the

JMSReplyTo header field of the message is set

to MQ. If the message does have an MQRFH2

header, the TARGCLIENT property is set to

JMS instead.

v NO - The TARGCLIENT property of the

Queue object derived from the JMSReplyTo

header field of an incoming message is always

set to JMS.

TEMPMODEL TM v SYSTEM.DEFAULT.MODEL.QUEUE

v Any string

TEMPQPREFIX TQP Any string

TOPIC TOP Any string

Administering JMS objects

Chapter 5. Using the WebSphere MQ JMS administration tool 49

Table 11. Property names and valid values (continued)

Property Short

form

Valid values (defaults in bold)

TRANSPORT TRAN v BIND - For a bindings connection

v CLIENT - For a client connection

v DIRECT - For a direct connection to a broker

of WebSphere MQ Event Broker, WebSphere

Business Integration Event Broker, or

WebSphere Business Integration Message

Broker

v DIRECTHTTP - For a direct connection using

HTTP tunnelling.

USECONNPOOLING UCP v Yes

v No

Note:

1. The CCDTURL and CHANNEL properties of an object cannot both be set at the same

time.

2. Running two or more instances of the same durable topic subscriber simultaneously

contravenes the Java Message Service Specification, Version 1.1.

3. The binding options, STANDARD, SHARED, ISOLATED, and FASTPATH, are ignored

if the application connects in client mode. The SHARED, ISOLATED, and FASTPATH

options are ignored by a queue manager running on z/OS. The connection tag options,

SERIALQM, SERIALQSG, RESTRICTQM, and RESTRICTQSG, are supported only by a

queue manager running on z/OS. For a more detailed explanation of the connection

options, see the WebSphere MQ Application Programming Reference.

4. If you specify NO, and a message is rolled back after the WebSphere MQ JMS client has

returned control to the subscriber, the subscriber still retains a copy of the message but

is not informed of the rollback. In this situation, a subscriber might receive the same

message more than once.

5. The value UNCOMMITTED has an effect only if PROCESSDURATION has the value

SHORT. It has no effect if PROCESSDURATION has the value UNKNOWN. If you

specify UNCOMMITTED, ensure that a subscriber acknowledges or commits each

message individually.

Many of the properties are relevant only to a specific subset of the object types.

Table 12 shows for each property which object types are valid, and gives a brief

description of each property. The object types are identified using keywords; refer

to Table 9 on page 39 for an explanation of these.

Numbers refer to notes at the end of the table. See also “Property dependencies”

on page 57. Appendix A, “Mapping between administration tool properties and

programmable properties,” on page 633 shows the relationship between properties

set by the tool and programmable properties.

 Table 12. The valid combinations of property and object type

Property CF1 QCF TCF Q T XACF1 XAQCF XATCF Description

BROKERCCDURSUBQ Y The name of the queue from which

durable subscription messages are

retrieved for a

ConnectionConsumer

BROKERCCSUBQ Y Y Y Y The name of the queue from which

non-durable subscription messages

are retrieved for a

ConnectionConsumer

Administering JMS objects

50 Using Java

Table 12. The valid combinations of property and object type (continued)

Property CF1 QCF TCF Q T XACF1 XAQCF XATCF Description

BROKERCONQ Y Y Y Y Broker’s control queue name

BROKERDURSUBQ Y The name of the queue from which

durable subscription messages are

retrieved

BROKERPUBQ Y Y Y Y Y The name of the queue where

published messages are sent (the

stream queue)

BROKERPUBQMGR Y The name of the queue manager

that owns the queue where

messages published on the topic

are sent

BROKERQMGR Y Y Y Y The name of the queue manager on

which the broker is running

BROKERSUBQ Y Y Y Y The name of the queue from which

non-durable subscription messages

are retrieved

BROKERVER Y2 Y2 Y Y Y The version of the broker being

used

CCDTURL3 Y Y Y Y Y Y A uniform resource locator (URL)

that identifies the name and

location of the file containing the

client channel definition table and

specifies how the file can be

accessed

CCSID Y Y Y Y Y Y Y Y The coded-character-set-ID to be

used on connections

CHANNEL3 Y Y Y Y Y Y The name of the client connection

channel being used

CLEANUP Y Y Y Y Cleanup Level for BROKER or

MIGRATE Subscription Stores

CLEANUPINT Y Y Y Y The interval between background

executions of the publish/subscribe

cleanup utility

CLIENTID Y2 Y Y2 Y Y Y A string identifier for the client

CLONESUPP Y Y Y Y Whether two or more instances of

the same durable topic subscriber

can run simultaneously

COMPHDR Y Y Y Y Y Y A list of the techniques that can be

used for compressing header data

on a connection

COMPMSG Y Y Y Y Y Y A list of the techniques that can be

used for compressing message data

on a connection

CONNOPT Y Y Y Y Y Y Options that control how the

application connects to the queue

manager

Administering JMS objects

Chapter 5. Using the WebSphere MQ JMS administration tool 51

Table 12. The valid combinations of property and object type (continued)

Property CF1 QCF TCF Q T XACF1 XAQCF XATCF Description

CONNTAG4 Y Y Y Y Y Y A tag that the queue manager

associates with the resources

updated by the application within a

unit of work while the application

is connected to the queue manager

DESCRIPTION Y2 Y Y2 Y Y Y Y Y A description of the stored object

DIRECTAUTH Y Y To enable SSL authentication for a

direct connection5

ENCODING Y Y The encoding scheme used for this

destination

EXPIRY Y Y The period after which messages at

a destination expire

FAILIFQUIESCE Y Y Y Y Y Y Y Y Whether calls to certain methods

fail if the queue manager is in a

quiescing state

HOSTNAME Y2 Y Y2 Y Y Y The host name or IP address of the

system on which the queue

manager resides or, for a direct

connection to a broker, the system

on which the broker resides

LOCALADDRESS Y Y Y Y Y Y For a connection to a queue

manager, this property specifies

either or both of the following:

v The local network interface to be

used

v The local port, or range of local

ports, to be used

For a direct connection to a broker,

this property is relevant only when

multicast is used, and specifies the

local network interface to be used.

MAPNAMESTYLE Y Y Y Determines how the body of a map

message is encoded when the

message is sent.

MAXBUFFSIZE Y Y Y The maximum number of received

messages that can be stored in an

internal message buffer while

waiting to be processed by the

client application. This property

applies only when TRANSPORT

has the value DIRECT or

DIRECTHTTP.

MSGBATCHSZ Y Y Y Y Y Y The maximum number of messages

to be taken from a queue in one

packet when using asynchronous

message delivery

MSGRETENTION Y Y Y Y Whether or not the connection

consumer keeps unwanted

messages on the input queue

Administering JMS objects

52 Using Java

||||||||||
|
|

Table 12. The valid combinations of property and object type (continued)

Property CF1 QCF TCF Q T XACF1 XAQCF XATCF Description

MSGSELECTION Y Y Y Y Determines whether message

selection is done by the JMS client

or by the broker. If TRANSPORT

has the value DIRECT, message

selection is always done by the

broker and the value of

MSGSELECTION is ignored.

Message selection by the broker is

not supported when BROKERVER

has the value V1.

MULTICAST Y Y Y To enable multicast transport on a

direct connection and, if enabled, to

specify the precise way in which

multicast transport is used to

deliver messages from the broker to

a message consumer. The property

has no effect on how a message

producer sends messages to the

broker.5

OPTIMISTICPUBLICATION Y Y Whether the WebSphere MQ JMS

client returns control immediately

to a publisher that has just

published a message, or whether it

returns control only after it has

completed all the processing

associated with the call and can

report the outcome to the publisher

OUTCOMENOTIFICATION Y Y Whether the WebSphere MQ JMS

client returns control immediately

to a subscriber that has just

acknowledged or committed a

message, or whether it returns

control only after it has completed

all the processing associated with

the call and can report the outcome

to the subscriber

PERSISTENCE Y Y The persistence of messages sent to

a destination

POLLINGINT Y Y Y Y Y Y If each message listener within a

session has no suitable message on

its queue, this is the maximum

interval, in milliseconds, that

elapses before each message

listener tries again to get a message

from its queue. If it frequently

happens that no suitable message is

available for any of the message

listeners in a session, consider

increasing the value of this

property. This property is relevant

only if TRANSPORT has the value

BIND or CLIENT.

PORT Y2 Y Y2 Y Y Y The port on which the queue

manager or broker listens

Administering JMS objects

Chapter 5. Using the WebSphere MQ JMS administration tool 53

Table 12. The valid combinations of property and object type (continued)

Property CF1 QCF TCF Q T XACF1 XAQCF XATCF Description

PRIORITY Y Y The priority for messages sent to a

destination

PROCESSDURATION Y Y Whether a subscriber guarantees to

process quickly any message it

receives before returning control to

the WebSphere MQ JMS client

PROXYHOSTNAME Y Y The host name of the proxy server

for a direct connection5

PROXYPORT Y Y The port number of the proxy

server for a direct connection5

PUBACKINT Y Y Y Y The number of messages published

by a publisher before the

WebSphere MQ JMS client requests

an acknowledgement from the

broker. If you lower the value of

this property, the client requests

acknowledgements more often, and

therefore the performance of the

publisher decreases. If you raise the

value, the client takes a longer time

to throw an exception if the broker

fails. This property is relevant only

if TRANSPORT has the value BIND

or CLIENT.

QMANAGER Y Y Y Y Y Y Y The name of the queue manager to

connect to. But, if your application

uses a client channel definition

table to connect to a queue

manager, see “Using a client

channel definition table” on page

351.

QUEUE Y The underlying name of the queue

representing this destination

RECEIVEISOLATION Y Y Whether a subscriber might receive

messages that have not been

committed on the subscriber queue

RECEXIT Y Y Y Y Y Y Identifies a channel receive exit, or

a sequence of receive exits to be

run in succession

RECEXITINIT Y Y Y Y Y Y The user data that is passed to

channel receive exits when they are

called

Administering JMS objects

54 Using Java

Table 12. The valid combinations of property and object type (continued)

Property CF1 QCF TCF Q T XACF1 XAQCF XATCF Description

RESCANINT Y Y Y Y When a message consumer in the

point-to-point domain uses a

message selector to select which

messages it wants to receive, the

WebSphere MQ JMS client searches

the WebSphere MQ queue for

suitable messages in the sequence

determined by the

MsgDeliverySequence attribute of

the queue. When the client finds a

suitable message and delivers it to

the consumer, the client resumes

the search for the next suitable

message from its current position in

the queue. The client continues to

search the queue in this way until

it reaches the end of the queue, or

until the interval of time in

milliseconds, as determined by the

value of this property, has expired.

In each case, the client returns to

the beginning of the queue to

continue its search, and a new time

interval commences.

SECEXIT Y Y Y Y Y Y Identifies a channel security exit

SECEXITINIT Y Y Y Y Y Y The user data that is passed to a

channel security exit when it is

called

SENDEXIT Y Y Y Y Y Y Identifies a channel send exit, or a

sequence of send exits to be run in

succession

SENDEXITINIT Y Y Y Y Y Y The user data that is passed to

channel send exits when they are

called

SPARSESUBS Y Y Controls the message retrieval

policy of a TopicSubscriber object

SSLCIPHERSUITE Y Y Y Y Y Y The CipherSuite to use for an SSL

connection

SSLCRL Y Y Y Y Y Y CRL servers to check for SSL

certificate revocation

SSLFIPSREQUIRED Y Y Y Y Y Y Whether an SSL connection must

use a CipherSuite that is supported

by the IBM Java JSSE FIPS provider

(IBMJSSEFIPS)

SSLPEERNAME Y Y Y Y Y Y For SSL, a distinguished name

skeleton that must match that

provided by the queue manager

SSLRESETCOUNT Y Y Y Y Y Y For SSL, the total number bytes

sent and received by a connection

before the secret key that is used

for encryption is renegotiated.

Administering JMS objects

Chapter 5. Using the WebSphere MQ JMS administration tool 55

Table 12. The valid combinations of property and object type (continued)

Property CF1 QCF TCF Q T XACF1 XAQCF XATCF Description

STATREFRESHINT Y Y Y Y The interval, in milliseconds,

between refreshes of the long

running transaction that detects

when a subscriber loses its

connection to the queue manager.

This property is relevant only if

SUBSTORE has the value QUEUE.

For more information about setting

this property, see “Subscription

stores” on page 363.

SUBSTORE Y Y Y Y Where WebSphere MQ JMS should

store persistent data relating to

active subscriptions

SYNCPOINTALLGETS Y Y Y Y Y Y Whether all gets should be

performed under syncpoint

TARGCLIENT6 Y Y Whether the WebSphere MQ RFH2

format is used to exchange

information with target applications

TARGCLIENTMATCHING Y Y Y Y Whether a reply message, sent to

the queue identified by the

JMSReplyTo header field of an

incoming message, has an

MQRFH2 header only if the

incoming message has an MQRFH2

header

TEMPMODEL Y Y Y Y The name of the model queue from

which JMS temporary queues are

created

TEMPQPREFIX Y Y Y Y The prefix that is used to form the

name of a WebSphere MQ dynamic

queue. The rules for forming the

prefix are the same as those for

forming the contents of the

DynamicQName field in a WebSphere

MQ object descriptor, structure

MQOD, but the last non blank

character must be an asterisk. If no

value is specified for the property,

the value used is CSQ.* on z/OS

and AMQ.* on the other platforms.

TOPIC Y The underlying name of the topic

representing this destination

TRANSPORT Y2 Y Y2 Y Y Y Whether a connection uses

bindings or client mode to connect

to a queue manager, or whether it

is a direct connection to a broker

USECONNPOOLING Y Y Y Y Y Y Whether to use connection pooling

Administering JMS objects

56 Using Java

Table 12. The valid combinations of property and object type (continued)

Property CF1 QCF TCF Q T XACF1 XAQCF XATCF Description

Note:

1. This object type applies to JMS 1.1 only.

2. Only the BROKERVER, CLIENTID, DESCRIPTION, HOSTNAME, LOCALADDRESS, PORT, and TRANSPORT

properties are supported for a TopicConnectionFactory object, or a JMS 1.1 domain independent

ConnectionFactory object, when connecting directly to a broker.

3. The CCDTURL and CHANNEL properties of an object cannot both be set at the same time.

4. The CONNTAG property is supported only by a queue manager running on z/OS.

5. See Appendix C, “Connecting to other products,” on page 639.

6. The TARGCLIENT property indicates whether the WebSphere MQ RFH2 format is used to exchange information

with target applications.

The MQJMS_CLIENT_JMS_COMPLIANT constant indicates that the RFH2 format is used to send information.

Applications that use WebSphere MQ JMS understand the RFH2 format. Set the

MQJMS_CLIENT_JMS_COMPLIANT constant when you exchange information with a target WebSphere MQ

JMS application.

The MQJMS_CLIENT_NONJMS_MQ constant indicates that the RFH2 format is not used to send information.

Typically, this value is used for an existing WebSphere MQ application (that is, one that does not handle RFH2).

Property dependencies

Some properties have dependencies on each other. This might mean that it is

meaningless to supply a property unless another property is set to a particular

value. The specific property groups where this can occur are

v Client properties

v Properties for a direct connection to a broker

v Exit initialization strings

Client properties

For a connection to a queue manager, the following properties are relevant

only if TRANSPORT has the value CLIENT:

v HOSTNAME

v PORT

v CHANNEL

v LOCALADDRESS

v CCDTURL

v CCSID

v COMPHDR

v COMPMSG

v RECEXIT

v RECEXITINIT

v SECEXIT

v SECEXITINIT

v SENDEXIT

v SENDEXITINIT

v SSLCIPHERSUITE

v SSLCRL

v SSLFIPSREQUIRED

v SSLPEERNAME

Administering JMS objects

Chapter 5. Using the WebSphere MQ JMS administration tool 57

v SSLRESETCOUNT

Using the administration tool, you cannot set values for these properties if

TRANSPORT has the value BIND.

If TRANSPORT has the value CLIENT, the default value of the

BROKERVER property is V1 and the default value of the PORT property is

1414. If you set the value of BROKERVER or PORT explicitly, a later

change to the value of TRANSPORT does not override your choices.

Properties for a direct connection to a broker

Only the following properties are relevant if TRANSPORT has the value

DIRECT or DIRECTHTTP:

v BROKERVER

v CLIENTID

v DESCRIPTION

v HOSTNAME

v PORT

v LOCALADDRESS

v MULTICAST (only supported for DIRECT)

If TRANSPORT has the value DIRECT or DIRECTHTTP, the default value

of the BROKERVER property is V2, and the default value of the PORT

property is 1506. If you set the value of BROKERVER or PORT explicitly, a

later change to the value of TRANSPORT does not override your choices.

Exit initialization strings

Do not set any of the exit initialization strings without supplying the

corresponding exit name. The exit initialization properties are:

v RECEXITINIT

v SECEXITINIT

v SENDEXITINIT

For example, specifying RECEXITINIT(myString) without specifying

RECEXIT(some.exit.classname) causes an error.

The ENCODING property

The valid values that the ENCODING property can take are constructed from three

sub-properties:

integer encoding

Either normal or reversed

decimal encoding

Either normal or reversed

floating-point encoding

IEEE normal, IEEE reversed, or z/OS.

The ENCODING is expressed as a three-character string with the following syntax:

{N|R}{N|R}{N|R|3}

In this string:

v N denotes normal

v R denotes reversed

v 3 denotes z/OS

Administering JMS objects

58 Using Java

v The first character represents integer encoding

v The second character represents decimal encoding

v The third character represents floating-point encoding

This provides a set of twelve possible values for the ENCODING property.

There is an additional value, the string NATIVE, which sets appropriate encoding

values for the Java platform.

The following examples show valid combinations for ENCODING:

 ENCODING(NNR)

 ENCODING(NATIVE)

 ENCODING(RR3)

SSL properties

When you specify TRANSPORT(CLIENT), you can enable Secure Sockets Layer

(SSL) encrypted communication using the SSLCIPHERSUITE property. Set this

property to a valid CipherSuite provided by your JSSE provider; it must match the

CipherSpec named on the SVRCONN channel named by the CHANNEL property.

However, CipherSpecs (as specified on the SVRCONN channel) and CipherSuites

(as specified on ConnectionFactory objects) use different naming schemes to

represent the same SSL encryption algorithms. If a recognized CipherSpec name is

specified on the SSLCIPHERSUITE property, JMSAdmin issues a warning and

maps the CipherSpec to its equivalent CipherSuite. See Appendix D, “SSL

CipherSpecs and CipherSuites,” on page 645 for a list of CipherSpecs recognized

by WebSphere MQ and JMSAdmin.

If you require a connection to use a CipherSuite that is supported by the IBM Java

JSSE FIPS provider (IBMJSSEFIPS), set the SSLFIPSREQUIRED property of the

connection factory to YES. The default value of this property is NO, which means

that a connection can use any CipherSuite that is not supported by IBMJSSEFIPS.

The property is ignored if SSLCIPHERSUITE is not set.

The SSLPEERNAME matches the format of the SSLPEER parameter, which can be

set on channel definitions. It is a list of attribute name and value pairs separated

by commas or semicolons. For example:

SSLPEERNAME(CN=QMGR.*, OU=IBM, OU=WEBSPHERE)

The set of names and values makes up a distinguished name. For more details about

distinguished names and their use with WebSphere MQ, see the WebSphere MQ

Security book.

The example given checks the identifying certificate presented by the server at

connect-time. For the connection to succeed, the certificate must have a Common

Name beginning QMGR., and must have at least two Organizational Unit names,

the first of which is IBM and the second WEBSPHERE. Checking is

case-insensitive.

If SSLPEERNAME is not set, no such checking is performed. SSLPEERNAME is

ignored if SSLCIPHERSUITE is not set.

The SSLCRL property specifies zero or more CRL (Certificate Revocation List)

servers. Use of this property requires a JVM at Java 2 v1.4. This is a

space-delimited list of entries of the form:

Administering JMS objects

Chapter 5. Using the WebSphere MQ JMS administration tool 59

ldap://hostname:[port]

optionally followed by a single /. If port is omitted, the default LDAP port of 389

is assumed. At connect-time, the SSL certificate presented by the server is checked

against the specified CRL servers. See the WebSphere MQ Security book for more

about CRL security.

If SSLCRL is not set, no such checking is performed. SSLCRL is ignored if

SSLCIPHERSUITE is not set.

The SSLRESETCOUNT property represents the total number of bytes sent and

received by a connection before the secret key that is used for encryption is

renegotiated. The number of bytes sent is the number before encryption, and the

number of bytes received is the number after decryption. The number of bytes also

includes control information sent and received by the WebSphere MQ JMS client.

For example, to configure a ConnectionFactory object that can be used to create a

connection over an SSL enabled MQI channel whose secret key is renegotiated

after 4 MB of data have flowed, issue the following command to JMSAdmin:

ALTER CF(my.cf) SSLRESETCOUNT(4194304)

If the value of SSLRESETCOUNT is zero, which is the default value, the secret key

is never renegotiated. The SSLRESETCOUNT property is ignored if

SSLCIPHERSUITE is not set.

If you are using an HP or Sun Java 2 Software Development Kit (SDK) or Java

Runtime Environment (JRE), do not set SSLRESETCOUNT to a value other than

zero. If you do set SSLRESETCOUNT to a value other than zero, a connection fails

when it attempts to renegotiate the secret key.

For more information about the secret key that is used for encryption on an SSL

enabled channel, see WebSphere MQ Security.

Sample error conditions

The following are examples of the error conditions that might arise when creating

an object:

CipherSpec mapped to CipherSuite

InitCtx/cn=Trash> DEFINE QCF(testQCF) SSLCIPHERSUITE(RC4_MD5_US)

 WARNING: Converting CipherSpec RC4_MD5_US to

 CipherSuite SSL_RSA_WITH_RC4_128_MD5

Invalid property for object

InitCtx/cn=Trash> DEFINE QCF(testQCF) PRIORITY(4)

 Unable to create a valid object, please check the parameters supplied

 Invalid property for a QCF: PRI

Invalid type for property value

InitCtx/cn=Trash> DEFINE QCF(testQCF) CCSID(english)

 Unable to create a valid object, please check the parameters supplied

 Invalid value for CCS property: English

Property clash - client/bindings

InitCtx/cn=Trash> DEFINE QCF(testQCF) HOSTNAME(polaris.hursley.ibm.com)

 Unable to create a valid object, please check the parameters supplied

 Invalid property in this context: Client-bindings attribute clash

Administering JMS objects

60 Using Java

Property clash - Exit initialization

InitCtx/cn=Trash> DEFINE QCF(testQCF) SECEXITINIT(initStr)

 Unable to create a valid object, please check the parameters supplied

 Invalid property in this context: ExitInit string supplied

 without Exit string

Property value outside valid range

InitCtx/cn=Trash> DEFINE Q(testQ) PRIORITY(12)

 Unable to create a valid object, please check the parameters supplied

 Invalid value for PRI property: 12

Unknown property

InitCtx/cn=Trash> DEFINE QCF(testQCF) PIZZA(ham and mushroom)

 Unable to create a valid object, please check the parameters supplied

 Unknown property: PIZZA

The following are examples of error conditions that might arise on Windows when

looking up JNDI administered objects from a JMS client.

1. If you are using the WebSphere JNDI provider,

com.ibm.websphere.naming.WsnInitialContextFactory, you must use a forward

slash (/) to access administered objects defined in sub-contexts; for example,

jms/MyQueueName. If you use a backslash (\), an InvalidNameException is

thrown.

2. If you are using the Sun JNDI provider,

com.sun.jndi.fscontext.RefFSContextFactory, you must use a backslash (\) to

access administered objects defined in sub-contexts; for example, ctx1\\fred. If

you use a forward slash (/), a NameNotFoundException is thrown.

Administering JMS objects

Chapter 5. Using the WebSphere MQ JMS administration tool 61

Administering JMS objects

62 Using Java

Part 2. Programming with WebSphere MQ base Java

Chapter 6. Introduction for programmers . . . 65

Why should I use the Java interface? 65

The WebSphere MQ classes for Java interface . . . 65

Chapter 7. Writing WebSphere MQ base Java

applications 67

Connection differences 67

Client connections 67

Bindings mode 67

Defining which connection to use 67

Example application 68

Operations on queue managers 69

Setting up the WebSphere MQ environment . . 69

Connecting to a queue manager 70

Using a client channel definition table 70

Specifying a range of ports for client connections 72

Accessing queues and processes 73

Handling messages 73

Handling errors 75

Getting and setting attribute values 76

Multithreaded programs 76

Using channel exits 77

Using channel exits not written in Java 79

Using a sequence of channel send or receive exits 79

Channel compression 80

Connection pooling 81

Controlling the default connection pool 82

The default connection pool and multiple

components 83

Supplying a different connection pool 84

Supplying your own ConnectionManager . . . 86

JTA/JDBC coordination using WebSphere MQ base

Java 87

Configuring JTA/JDBC coordination 87

Using JTA/JDBC coordination 88

Known problems and limitations with JTA/JDBC

coordination 89

Secure Sockets Layer (SSL) support 90

Enabling SSL 90

Using the distinguished name of the queue

manager 91

Using certificate revocation lists 91

Renegotiating the secret key used for encryption 93

Supplying a customized SSLSocketFactory . . . 93

Making changes to the JSSE keystore or truststore 94

Error handling when using SSL 94

Running WebSphere MQ base Java applications . . 95

Tracing WebSphere MQ base Java programs . . . 95

Chapter 8. Environment-dependent behavior . . 97

Core details 97

Restrictions and variations for core classes 98

MQGMO_* values 98

MQPMRF_* values 98

MQPMO_* values 99

MQCNO_FASTPATH_BINDING 99

MQRO_* values 99

Miscellaneous differences with z/OS 99

Features outside the core 100

MQQueueManager constructor option 100

MQQueueManager.begin() method 100

MQGetMessageOptions fields 100

Distribution lists 100

MQPutMessageOptions fields 101

MQMD fields 101

Restrictions under CICS Transaction Server . . . 101

© Copyright IBM Corp. 1997, 2007 63

64 Using Java

Chapter 6. Introduction for programmers

This chapter contains general information for programmers. For more detailed

information about writing programs, see Chapter 7, “Writing WebSphere MQ base

Java applications,” on page 67.

Why should I use the Java interface?

The WebSphere MQ classes for Java programming interface makes the many

benefits of Java available to you as a developer of WebSphere MQ applications:

v The Java programming language is easy to use.

There is no need for header files, pointers, structures, unions, and operator

overloading. Programs written in Java are easier to develop and debug than

their C and C++ equivalents.

v Java is object-oriented.

The object-oriented features of Java are comparable to those of C++, but there is

no multiple inheritance. Instead, Java uses the concept of an interface.

v Java is inherently distributed.

The Java class libraries contain a library of routines for coping with TCP/IP

protocols like HTTP and FTP. Java programs can access URLs as easily as

accessing a file system.

v Java is robust.

Java puts a lot of emphasis on early checking for possible problems, dynamic

(runtime) checking, and the elimination of situations that are error prone. Java

uses a concept of references that eliminates the possibility of overwriting

memory and corrupting data.

v Java is secure.

Java is intended to be run in networked or distributed environments, and a lot

of emphasis has been placed on security. Java programs cannot overrun their

runtime stack and cannot corrupt memory outside their process space. When

Java programs are downloaded from the Internet, they cannot even read or write

local files.

v Java programs are portable.

There are no implementation-dependent aspects of the Java specification. The

Java compiler generates an architecture-neutral object file format. The compiled

code is executable on many processors, as long as the Java runtime system is

present.

The WebSphere MQ classes for Java interface

The procedural WebSphere MQ application programming interface is built around

the following verbs:

 MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN, MQCONNX,

 MQDISC, MQGET, MQINQ, MQOPEN, MQPUT, MQPUT1, MQSET

These verbs all take, as a parameter, a handle to the WebSphere MQ object on

which they are to operate. Because Java is object-oriented, the Java programming

interface turns this round. Your program consists of a set of WebSphere MQ

objects, which you act upon by calling methods on those objects.

© Copyright IBM Corp. 1997, 2007 65

When you use the procedural interface, you disconnect from a queue manager by

using the call MQDISC(Hconn, CompCode, Reason), where Hconn is a handle to

the queue manager.

In the Java interface, the queue manager is represented by an object of class

MQQueueManager. You disconnect from the queue manager by calling the

disconnect() method on that class.

// declare an object of type queue manager

MQQueueManager queueManager=new MQQueueManager();

...

// do something...

...

// disconnect from the queue manager

queueManager.disconnect();

The WebSphere MQ classes for Java interface

66 Using Java

Chapter 7. Writing WebSphere MQ base Java applications

To use WebSphere MQ classes for Java to access WebSphere MQ queues, you write

Java applications that contain calls that put messages onto, and get messages from,

WebSphere MQ queues. This chapter provides information to assist with writing

Java applications to interact with WebSphere MQ systems. For details of individual

classes, see Chapter 9, “Package com.ibm.mq,” on page 105.

Connection differences

The way you program for WebSphere MQ classes for Java has some dependencies

on the connection modes you want to use.

Client connections

When WebSphere MQ classes for Java is used as a client, it is similar to the

WebSphere MQ C client, but has the following differences:

v It supports only TCP/IP.

v It does not read any WebSphere MQ environment variables at startup.

v Information that would be stored in a channel definition and in environment

variables is stored in a class called Environment. Alternatively, this information

can be passed as parameters when the connection is made.

v Error and exception conditions are written to a log specified in the MQException

class. The default error destination is the Java console.

v It does not access information stored in a qm.ini file, or the equivalent

information stored in the Windows Registry. Entries in a qm.ini file, such as the

KeepAlive entry, are therefore ignored.

When used in client mode, WebSphere MQ classes for Java does not support the

MQBEGIN call or fast path bindings.

For general information on WebSphere MQ clients, see the WebSphere MQ Clients

book.

Bindings mode

The bindings mode of WebSphere MQ classes for Java differs from the client

modes in the following ways:

v Most of the parameters provided by the MQEnvironment class are ignored

v The bindings support the MQBEGIN call and fast path bindings into the

WebSphere MQ queue manager

Note: WebSphere MQ for iSeries and WebSphere MQ for z/OS do not support the

use of MQBEGIN to initiate global units of work that are coordinated by the

queue manager.

Defining which connection to use

The connection is determined by the setting of variables in the MQEnvironment

class.

MQEnvironment.properties

This can contain the following key/value pairs:

© Copyright IBM Corp. 1997, 2007 67

v For client and bindings connections:

MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_MQSERIES

MQEnvironment.hostname

Set the value of this variable follows:

v For client connections, set this to the host name of the WebSphere MQ

server to which you want to connect

v For bindings mode, set this to null

Example application

The following code fragment demonstrates an application that uses bindings mode

to:

1. Connect to a queue manager

2. Put a message onto SYSTEM.DEFAULT.LOCAL.QUEUE

3. Get the message back again
// ===

//

// Licensed Materials - Property of IBM

//

// 5724-H27, 5655-L82, 5724-L26

//

// (c) Copyright IBM Corp. 1995,2002,2005

//

// ===

// WebSphere MQ classes for Java sample application

//

// This sample runs as a Java Application using the command :- java MQSample

//

// @(#) javabase/samples/MQSample.java, java, j000 1.8 04/12/03 10:59:49

import com.ibm.mq.*; // Include the WebSphere MQ classes for Java package

public class MQSample

{

 private String qManager = "your_Q_manager"; // define name of queue

 // manager to connect to.

 private MQQueueManager qMgr; // define a queue manager

 // object

 public static void main(String args[]) {

 new MQSample();

 }

 public MQSample() {

 try {

 // Create a connection to the queue manager

 qMgr = new MQQueueManager(qManager);

 // Set up the options on the queue we wish to open...

 // Note. All WebSphere MQ Options are prefixed with MQC in Java.

 int openOptions = MQC.MQOO_INPUT_AS_Q_DEF |

 MQC.MQOO_OUTPUT ;

 // Now specify the queue that we wish to open,

 // and the open options...

 MQQueue system_default_local_queue =

 qMgr.accessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",

 openOptions);

 // Define a simple WebSphere MQ message, and write some text in UTF format..

 MQMessage hello_world = new MQMessage();

 hello_world.writeUTF("Hello World!");

 // specify the message options...

Connection differences

68 Using Java

MQPutMessageOptions pmo = new MQPutMessageOptions(); // accept the // defaults,

 // same as MQPMO_DEFAULT

 // put the message on the queue

 system_default_local_queue.put(hello_world,pmo);

 // get the message back again...

 // First define a WebSphere MQ message buffer to receive the message into..

 MQMessage retrievedMessage = new MQMessage();

 retrievedMessage.messageId = hello_world.messageId;

 // Set the get message options...

 MQGetMessageOptions gmo = new MQGetMessageOptions(); // accept the defaults

 // same as MQGMO_DEFAULT

 // get the message off the queue...

 system_default_local_queue.get(retrievedMessage, gmo);

 // And prove we have the message by displaying the UTF message text

 String msgText = retrievedMessage.readUTF();

 System.out.println("The message is: " + msgText);

 // Close the queue...

 system_default_local_queue.close();

 // Disconnect from the queue manager

 qMgr.disconnect();

 }

 // If an error has occurred in the above, try to identify what went wrong

 // Was it a WebSphere MQ error?

 catch (MQException ex)

 {

 System.out.println("A WebSphere MQ error occurred : Completion code " +

 ex.completionCode + " Reason code " + ex.reasonCode);

 }

 // Was it a Java buffer space error?

 catch (java.io.IOException ex)

 {

 System.out.println("An error occurred whilst writing to the message buffer: " + ex);

 }

 }

} // end of sample

Operations on queue managers

This section describes how to connect to, and disconnect from, a queue manager

using WebSphere MQ base Java.

Setting up the WebSphere MQ environment

The information in this section is not relevant if your application connects to a

queue manager in bindings mode.

Before an application can connect to a queue manager in client mode, the

application must set certain fields in the MQEnvironment class. These fields

specify the following information, which is used during the connection attempt:

v Channel name

v Host name

v Port number

To specify the channel name and host name, use the following code:

MQEnvironment.hostname = "host.domain.com";

MQEnvironment.channel = "java.client.channel";

This is equivalent to an MQSERVER environment variable setting of:

"java.client.channel/TCP/host.domain.com".

Example application

Chapter 7. Writing WebSphere MQ base Java applications 69

By default, the Java clients attempt to connect to a WebSphere MQ listener at port

1414. To specify a different port, use the code:

MQEnvironment.port = nnnn;

Connecting to a queue manager

You are now ready to connect to a queue manager by creating a new instance of

the MQQueueManager class:

MQQueueManager queueManager = new MQQueueManager("qMgrName");

To disconnect from a queue manager, call the disconnect() method on the queue

manager:

queueManager.disconnect();

If you call the disconnect method, all open queues and processes that you have

accessed through that queue manager are closed. However, it is good

programming practice to close these resources explicitly when you finish using

them. To do this, use the close() method.

The commit() and backout() methods on a queue manager replace the MQCMIT

and MQBACK calls that are used with the procedural interface.

Using a client channel definition table

As an alternative to creating a client connection channel definition by setting

certain fields and environment properties in the MQEnvironment class, a

WebSphere MQ base Java client application can use client connection channel

definitions that are stored in a client channel definition table. These definitions are

created by WebSphere MQ Script (MQSC) commands or WebSphere MQ

Programmable Command Format (PCF) commands. When the application creates

an MQQueueManager object, the WebSphere MQ base Java client searches the

client channel definition table for a suitable client connection channel definition,

and uses the channel definition to start an MQI channel. For more information

about client channel definition tables and how to construct one, see WebSphere MQ

Clients.

To use a client channel definition table, an application must first create a URL

object. The URL object encapsulates a uniform resource locator (URL) that

identifies the name and location of the file containing the client channel definition

table and specifies how the file can be accessed.

For example, if the file ccdt1.tab contains a client channel definition table and is

stored on the same system on which the application is running, the application can

create a URL object in the following way:

java.net.URL chanTab1 = new URL("file:///home/admdata/ccdt1.tab");

As another example, suppose the file ccdt2.tab contains a client channel definition

table and is stored on a system that is different to the one on which the application

is running. If the file can be accessed using the FTP protocol, the application can

create a URL object in the following way:

java.net.URL chanTab2 = new URL("ftp://ftp.server/admdata/ccdt2.tab");

After the application has created a URL object, the application can create an

MQQueueManager object using one of the constructors that takes a URL object as

a parameter. Here is an example:

MQQueueManager mars = new MQQueueManager("MARS", chanTab2);

Operations on queue managers

70 Using Java

This statement causes the WebSphere MQ base Java client to access the client

channel definition table identified by the URL object chanTab2, search the table for

a suitable client connection channel definition, and then use the channel definition

to start an MQI channel to the queue manager called MARS.

Note the following points that apply if an application uses a client channel

definition table:

v When the application creates an MQQueueManager object using a constructor

that takes a URL object as a parameter, no channel name must be set in the

MQEnvironment class, either as a field or as an environment property. If a

channel name is set, the WebSphere MQ base Java client throws an

MQException. The field or environment property specifying the channel name is

considered to be set if its value is anything other than null, an empty string, or a

string containing all blank characters.

v The queueManagerName parameter on the MQQueueManager constructor can

have one of the following values:

– The name of a queue manager

– An asterisk (*) followed by the name of a queue manager group

– An asterisk (*)

– Null, an empty string, or a string containing all blank characters

These are the same values that can be used for the QMgrName parameter on an

MQCONN call issued by a client application that is using Message Queue

Interface (MQI). For more information about the meaning of these values

therefore, see the WebSphere MQ Application Programming Reference and WebSphere

MQ Clients. The way that the WebSphere MQ base Java client uses the

queueManagerName parameter to search the client channel definition table is

also as described in these books. If your application uses connection pooling, see

also “Controlling the default connection pool” on page 82.

v When the WebSphere MQ base Java client finds a suitable client connection

channel definition in the client channel definition table, it uses only the

information extracted from this channel definition to start an MQI channel. Any

channel related fields or environment properties that the application might have

set in the MQEnvironment class are ignored.

In particular, note the following points if you are using Secure Sockets Layer

(SSL):

– An MQI channel uses SSL only if the channel definition extracted from the

client channel definition table specifies the name of a CipherSpec supported

by the WebSphere MQ base Java client.

– A client channel definition table also contains information about the location

of Lightweight Directory Access Protocol (LDAP) servers that hold certificate

revocation lists (CRLs). The WebSphere MQ base Java client uses only this

information to access LDAP servers that hold CRLs.

For more information about using SSL with a client channel definition table, see

WebSphere MQ Clients.

Note also the following points if you are using channel exits:

– An MQI channel uses only the channel exits and associated user data

specified by the channel definition extracted from the client channel definition

table.

– A channel definition extracted from a client channel definition table can

specify channel exits that are written in Java. This means, for example, that

the SCYEXIT parameter on the DEFINE CHANNEL command to create a

client connection channel definition can specify the name of a class that

Operations on queue managers

Chapter 7. Writing WebSphere MQ base Java applications 71

implements the MQSecurityExit interface. Similarly, the SENDEXIT parameter

can specify the name of a class that implements the MQSendExit interface,

and the RCVEXIT parameter can specify the name of a class that implements

the MQReceiveExit interface. For more information about how to write a

channel exit in Java, see “Using channel exits” on page 77.

The use of channel exits written in a language other than Java is also

supported. For information about how to specify the SCYEXIT, SENDEXIT,

and RCVEXIT parameters on the DEFINE CHANNEL command for channel

exits written in another language, see the WebSphere MQ Script (MQSC)

Command Reference.

Using the WebSphere MQ Explorer

When using the WebSphere MQ Explorer, you can connect to a remote queue

manager using a channel definition table. You can also set channel exits for remote

queue managers, but the following restrictions apply:

v Java exits cannot be loaded from a .jar or .zip file. They must exist

uncompressed in the appropriate directory structure.

v Native (non-Java) exits can be loaded but the WebSphere MQ JMS/Java client

must be installed, as well as the Explorer. If the JMS/Java client is not installed,

the native exit will not load, because a native utility library from the JMS/Java

client is neded to load the native exit.

Specifying a range of ports for client connections

When a WebSphere MQ base Java application attempts to connect to a WebSphere

MQ queue manager in client mode, a firewall might allow only those connections

that originate from specified ports or range of ports. In this situation, you can

specify a port, or a range of points, that the application can bind to. You can do

this in either of the following ways:

v You can set the localAddressSetting field in the MQEnvironment class. Here is

an example:

MQEnvironment.localAddressSetting = "9.20.0.1(2000,3000)";

v You can set the environment property MQC.LOCAL_ADDRESS_PROPERTY.

Here is an example:

(MQEnvironment.properties).put(MQC.LOCAL_ADDRESS_PROPERTY,

 "9.20.0.1(2000,3000)");

In each of these examples, when the application connects to a queue manager

subsequently, the application binds to a local IP address and port number in the

range 9.20.0.1(2000) to 9.20.0.1(3000).

In a system with more than one network interface, you can also use the

localAddressSetting field, or the environment property

MQC.LOCAL_ADDRESS_PROPERTY, to specify which network interface must be

used for a connection.

Connection errors might occur if you restrict the range of ports. If an error occurs,

an MQException is thrown containing the WebSphere MQ reason code

MQRC_Q_MGR_NOT_AVAILABLE and the following message:

Socket connection attempt refused due to LOCAL_ADDRESS_PROPERTY restrictions

An error might occur if all the ports in the specified range are in use, or if the

specified IP address, host name, or port number is not valid (a negative port

number, for example).

Operations on queue managers

72 Using Java

Accessing queues and processes

To access queues and processes, use the MQQueueManager class. The MQOD

(object descriptor structure) is collapsed into the parameters of these methods. For

example, to open a queue on a queue manager called queueManager, use the

following code:

MQQueue queue = queueManager.accessQueue("qName",

 MQC.MQOO_OUTPUT,

 "qMgrName",

 "dynamicQName",

 "altUserId");

The options parameter is the same as the Options parameter in the MQOPEN call.

The accessQueue method returns a new object of class MQQueue.

When you have finished using the queue, use the close() method to close it, as in

the following example:

queue.close();

With WebSphere MQ classes for Java, you can also create a queue by using the

MQQueue constructor. The parameters are exactly the same as for the accessQueue

method, with the addition of a queue manager parameter. For example:

MQQueue queue = new MQQueue(queueManager,

 "qName",

 MQC.MQOO_OUTPUT,

 "qMgrName",

 "dynamicQName",

 "altUserId");

Constructing a queue object in this way enables you to write your own subclasses

of MQQueue.

To access a process, use the accessProcess method in place of accessQueue. This

method does not have a dynamic queue name parameter, because this does not apply

to processes.

The accessProcess method returns a new object of class MQProcess.

When you have finished using the process object, use the close() method to close it,

as in the following example:

process.close();

With WebSphere MQ classes for Java, you can also create a process by using the

MQProcess constructor. The parameters are exactly the same as for the

accessProcess method, with the addition of a queue manager parameter.

Constructing a process object in this way enables you to write your own subclasses

of MQProcess.

Handling messages

Put messages onto queues using the put() method of the MQQueue class. You get

messages from queues using the get() method of the MQQueue class. Unlike the

procedural interface, where MQPUT and MQGET put and get arrays of bytes, the

Java programming language puts and gets instances of the MQMessage class. The

Accessing queues and processes

Chapter 7. Writing WebSphere MQ base Java applications 73

MQMessage class encapsulates the data buffer that contains the actual message

data, together with all the MQMD (message descriptor) parameters that describe

that message.

To build a new message, create a new instance of the MQMessage class, and use

the writeXXX methods to put data into the message buffer.

When the new message instance is created, all the MQMD parameters are

automatically set to their default values, as defined in the WebSphere MQ

Application Programming Reference. The put() method of MQQueue also takes an

instance of the MQPutMessageOptions class as a parameter. This class represents

the MQPMO structure. The following example creates a message and puts it onto a

queue:

// Build a new message containing my age followed by my name

MQMessage myMessage = new MQMessage();

myMessage.writeInt(25);

String name = "Charlie Jordan";

myMessage.writeInt(name.length());

myMessage.writeBytes(name);

// Use the default put message options...

MQPutMessageOptions pmo = new MQPutMessageOptions();

// put the message!

queue.put(myMessage,pmo);

The get() method of MQQueue returns a new instance of MQMessage, which

represents the message just taken from the queue. It also takes an instance of the

MQGetMessageOptions class as a parameter. This class represents the MQGMO

structure.

You do not need to specify a maximum message size, because the get() method

automatically adjusts the size of its internal buffer to fit the incoming message. Use

the readXXX methods of the MQMessage class to access the data in the returned

message.

The following example shows how to get a message from a queue:

// Get a message from the queue

MQMessage theMessage = new MQMessage();

MQGetMessageOptions gmo = new MQGetMessageOptions();

queue.get(theMessage,gmo); // has default values

// Extract the message data

int age = theMessage.readInt();

int strLen = theMessage.readInt();

byte[] strData = new byte[strLen];

theMessage.readFully(strData,0,strLen);

String name = new String(strData,0);

You can alter the number format that the read and write methods use by setting

the encoding member variable.

You can alter the character set to use for reading and writing strings by setting the

characterSet member variable.

See “MQMessage” on page 147 for more details.

Handling messages

74 Using Java

Note: The writeUTF() method of MQMessage automatically encodes the length of

the string as well as the Unicode bytes it contains. When your message will

be read by another Java program (using readUTF()), this is the simplest way

to send string information.

Handling errors

Methods in the Java interface do not return a completion code and reason code.

Instead, they throw an exception whenever the completion code and reason code

resulting from a WebSphere MQ call are not both zero. This simplifies the program

logic so that you do not have to check the return codes after each call to

WebSphere MQ. You can decide at which points in your program you want to deal

with the possibility of failure. At these points, you can surround your code with

try and catch blocks, as in the following example:

try {

 myQueue.put(messageA,putMessageOptionsA);

 myQueue.put(messageB,putMessageOptionsB);

}

catch (MQException ex) {

 // This block of code is only executed if one of

 // the two put methods gave rise to a non-zero

 // completion code or reason code.

 System.out.println("An error occurred during the put operation:" +

 "CC = " + ex.completionCode +

 "RC = " + ex.reasonCode);

 System.out.println("Cause exception:" + ex.getCause());

}

The WebSphere MQ call reason codes reported back in Java exceptions are

documented in a chapter called “Return Codes” in the WebSphere MQ Application

Programming Reference.

Exceptions that are thrown while a WebSphere MQ base Java application is

running are also written to the log. However, an application can call the

MQException.logExclude() method to prevent exceptions associated with a specific

reason code from being logged. You might want to do this in situations where you

expect many exceptions associated with a specific reason code to be thrown, and

you do not want the log to be filled with these exceptions. For example, if your

application attempts to get a message from a queue each time it iterates around a

loop and, for most of these attempts, you expect no suitable message to be on the

queue, you might want to prevent exceptions associated the reason code

MQRC_NO_MSG_AVAILABLE from being logged. If an application has previously

prevented exceptions associated with a specific reason code from being logged, it

can allow these exceptions to be logged again by calling the method

MQException.logInclude().

Sometimes the reason code does not convey all details associated with the error.

This can occur if WebSphere MQ uses services provided by another product (for

example, a JSSE implementation) that throws a java.lang.Exception to WebSphere

MQ Java. In this case, the method MQException.getCause() retrieves the

underlying java.lang.Exception that caused the error.

Handling messages

Chapter 7. Writing WebSphere MQ base Java applications 75

Getting and setting attribute values

For many of the common attributes, the classes MQManagedObject, MQQueue,

MQProcess, and MQQueueManager contain getXXX() and setXXX() methods.

These methods allow you to get and set their attribute values. Note that for

MQQueue, the methods work only if you specify the appropriate inquire and set

flags when you open the queue.

For less common attributes, the MQQueueManager, MQQueue, and MQProcess

classes all inherit from a class called MQManagedObject. This class defines the

inquire() and set() interfaces.

When you create a new queue manager object by using the new operator, it is

automatically opened for inquire. When you use the accessProcess() method to

access a process object, that object is automatically opened for inquire. When you

use the accessQueue() method to access a queue object, that object is not

automatically opened for either inquire or set operations. This is because adding

these options automatically can cause problems with some types of remote queues.

To use the inquire, set, getXXX, and setXXX methods on a queue, you must specify

the appropriate inquire and set flags in the openOptions parameter of the

accessQueue() method.

The inquire and set methods take three parameters:

v selectors array

v intAttrs array

v charAttrs array

You do not need the SelectorCount, IntAttrCount, and CharAttrLength parameters

that are found in MQINQ, because the length of an array in Java is always known.

The following example shows how to make an inquiry on a queue:

// inquire on a queue

final static int MQIA_DEF_PRIORITY = 6;

final static int MQCA_Q_DESC = 2013;

final static int MQ_Q_DESC_LENGTH = 64;

int[] selectors = new int[2];

int[] intAttrs = new int[1];

byte[] charAttrs = new byte[MQ_Q_DESC_LENGTH]

selectors[0] = MQIA_DEF_PRIORITY;

selectors[1] = MQCA_Q_DESC;

queue.inquire(selectors,intAttrs,charAttrs);

System.out.println("Default Priority = " + intAttrs[0]);

System.out.println("Description : " + new String(charAttrs,0));

Multithreaded programs

Multithreaded programs are hard to avoid in Java. Consider a simple program that

connects to a queue manager and opens a queue at startup. The program displays

a single button on the screen. When a user presses that button, the program fetches

a message from the queue.

The Java runtime environment is inherently multithreaded. Therefore, your

application initialization occurs in one thread, and the code that executes in

response to the button press executes in a separate thread (the user interface

thread).

Getting and setting attribute values

76 Using Java

With the C based WebSphere MQ client, this would cause a problem, because

handles cannot be shared across multiple threads. WebSphere MQ classes for Java

relaxes this constraint, allowing a queue manager object (and its associated queue

and process objects) to be shared across multiple threads.

The implementation of WebSphere MQ classes for Java ensures that, for a given

connection (MQQueueManager object instance), all access to the target WebSphere

MQ queue manager is synchronized. A thread that wants to issue a call to a queue

manager is blocked until all other calls in progress for that connection are

complete. If you require simultaneous access to the same queue manager from

multiple threads within your program, create a new MQQueueManager object for

each thread that requires concurrent access. (This is equivalent to issuing a

separate MQCONN call for each thread.)

Using channel exits

WebSphere MQ classes for Java allows you to provide your own send, receive, and

security exits.

To implement an exit, you define a new Java class that implements the appropriate

interface. Three exit interfaces are defined in the WebSphere MQ package:

v MQSendExit

v MQReceiveExit

v MQSecurityExit

Note: Channel exits are supported for client connections only; they are not

supported for bindings connections.

Any SSL encryption defined for a connection is performed after the send exit has

been invoked. Similarly, decryption is performed before the receive or security exits

are invoked.

The following sample defines a class that implements all three:

class MyMQExits implements MQSendExit, MQReceiveExit, MQSecurityExit {

 // This method comes from the send exit

 public byte[] sendExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,

 byte agentBuffer[])

 {

 // fill in the body of the send exit here

 }

 // This method comes from the receive exit

 public byte[] receiveExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,

 byte agentBuffer[])

 {

 // fill in the body of the receive exit here

 }

 // This method comes from the security exit

 public byte[] securityExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,

 byte agentBuffer[])

 {

Multithreaded programs

Chapter 7. Writing WebSphere MQ base Java applications 77

// fill in the body of the security exit here

 }

}

Each exit is passed an MQChannelExit and an MQChannelDefinition object

instance. These objects represent the MQCXP and MQCD structures defined in the

procedural interface.

For a send exit, the agentBuffer parameter contains the data that is about to be sent.

For a receive exit or a security exit, the agentBuffer parameter contains the data that

has just been received. You do not need a length parameter, because the expression

agentBuffer.length indicates the length of the array. You cannot change the size of

the agentBuffer in an exit .

For the send and security exits, your exit code should return the byte array that

you want to send to the server. For a receive exit, your exit code must return the

modified data that you want WebSphere MQ classes for Java to interpret.

The simplest possible exit body is:

{

 return agentBuffer;

}

If your program is to run as a downloaded Java applet, the security restrictions

that apply mean that you cannot read or write any local files. If your exit needs a

configuration file, you can place the file on the Web and use the java.net.URL class

to download it and examine its contents.

Having defined a class that implements the MQSecurityExit interface, an

application can use the security exit by assigning an instance of the class to the

MQEnvironment.securityExit field before creating an MQQueueManager object. An

application can use a send or a receive exit in a similar way. For example, the

following code fragment shows you how to use the security, send, and receive

exits that are implemented in the class MyMQExits, which was defined previously:

MyMQExits myexits = new MyMQExits();

MQEnvironment.securityExit = myexits;

MQEnvironment.sendExit = myexits;

MQEnvironment.receiveExit = myexits;

:

MQQueueManager jupiter = new MQQueueManager("JUPITER");

If an application connects to a queue manager by setting channel related fields or

environment properties in the MQEnvironment class, no user data can be passed to

channel exit classes when they are called. However, if an application uses a client

channel definition table to connect to a queue manager, any user data specified in

a client connection channel definition is passed to channel exit classes when they

are called. For more information about using a client channel definition table, see

“Using a client channel definition table” on page 70.

If you package channel exit classes in separate JAR files or class files, you must

make sure that WebSphere MQ base Java can locate these files. For an application

that is not running in an application server, you can do this in either of the

following ways:

v Make sure that the files can be found in the class path of the JVM.

v Store the files in the directory shown in Table 13 on page 79.

Using channel exits

78 Using Java

|
|
|
|
|
|
|

|
|
|
|

|

|

For an application that is running in an application server, you must store the files

in the directory shown in Table 13.

 Table 13. The directory for channel exit programs

Platform Directory

AIX, HP-UX, Linux, and Solaris /var/mqm/exits (32-bit channel exit programs)

/var/mqm/exits64 (64-bit channel exit programs)

Windows install_data_dir\exits

Note: install_data_dir is the directory that you chose for the WebSphere MQ data files

during installation. The default directory is C:\Program Files\IBM\WebSphere MQ.

Using channel exits not written in Java

A WebSphere MQ base Java application can use channel exit programs that are

written in C or C++. Three classes are provided for this purpose:

v MQExternalSecurityExit, which implements the MQSecurityExit interface

v MQExternalSendExit, which implements the MQSendExit interface

v MQExternalReceiveExit, which implements the MQReceiveExit interface

To use a security exit that is not written in Java, an application must first create an

MQExternalSecurityExit object. The application specifies, as parameters on the

MQExternalSecurityExit constructor, the name of the library containing the security

exit, the name of the entry point for the security exit, and the user data to be

passed to the security exit when it is called. The application can then assign the

MQExternalSecurityExit object to the MQEnvironment.securityExit field before

creating an MQQueueManager object. The MQExternalSecurityExit object contains

all the information required to construct the MQCXP and MQCD structures that

are passed to the security exit when it is called.

An application can use a send or a receive exit that is not written in Java in a way

similar to that just described for a security exit.

If an application connects to a queue manager by setting channel related fields or

environment properties in the MQEnvironment class, no user data can be passed to

channel exit programs when they are called. If an application uses a client channel

definition table to connect to a queue manager, any user data specified in a client

connection channel definition is passed to channel exit programs when they are

called. On i5/OS, however, no user data can be passed to channel exit programs,

even if the application uses a client channel definition table. For more information

about using a client channel definition table, see “Using a client channel definition

table” on page 70.

You must store channel exit programs that are not written in Java in the directory

shown in Table 13.

For information about how to write a channel exit in C or C++, see WebSphere MQ

Intercommunication.

Using a sequence of channel send or receive exits

A WebSphere MQ base Java application can use a sequence of channel send or

receive exits that are run in succession. Two classes are provided for this purpose:

v MQSendExitChain, which implements the MQSendExit interface

v MQReceiveExitChain, which implements the MQReceiveExit interface

Using channel exits

Chapter 7. Writing WebSphere MQ base Java applications 79

|
|

||

||

||
|

||

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|

|
|

|

To use a sequence of send exits, an application must create a list of objects, where

each object is one of the following:

v An instance of a user defined class that implements the MQSendExit interface

(for a send exit written in Java)

v An instance of the MQExternalSendExit class (for a send exit not written in Java)

v An instance of the MQSendExitChain class

The application creates an MQSendExitChain object by passing this list of objects

as a parameter on the constructor. The application can then assign the

MQSendExitChain object to the MQEnvironment.sendExit field before creating an

MQQueueManager object.

The context of information passed to exits is solely within the domain of the exits.

For example, if a Java exit and a C exit are chained, the C exit will not be aware

that there is also a Java exit in effect.

An application can use a sequence of receive exits in a way similar to that just

described for a sequence of send exits.

Channel compression

Compressing the data that flows on a WebSphere MQ channel can improve the

performance of the channel and reduce network traffic. Using function supplied

with WebSphere MQ, you can compress the data that flows on message channels

and MQI channels and, on either type of channel, you can compress header data

and message data independently of each other. By default, no data is compressed

on a channel. For a full description of channel compression, including how it is

implemented in WebSphere MQ, see WebSphere MQ Intercommunication, for

message channels, and WebSphere MQ Clients, for MQI channels.

A WebSphere MQ base Java application specifies the techniques that can be used

for compressing header or message data on a client connection by creating a

java.util.Collection object. Each compression technique is an Integer object in the

collection, and the order in which the application adds the compression techniques

to the collection is the order in which the compression techniques are negotiated

with the queue manager when the client connection starts. The application can

then assign the collection to the hdrCompList field, for header data, or the

msgCompList field, for message data, in the MQEnvironment class. When the

application is ready, it can start the client connection by creating an

MQQueueManager object.

The following code fragments illustrate the approach just described. The first code

fragment shows you how to implement header data compression:

Collection headerComp = new Vector();

headerComp.add(new Integer(MQC.MQCOMPRESS_SYSTEM));

:

MQEnvironment.hdrCompList = headerComp;

:

MQQueueManager qMgr = new MQQueueManager(QM);

The second code fragment shows you how to implement message data

compression:

Collection msgComp = new Vector();

msgComp.add(new Integer(MQC.MQCOMPRESS_RLE));

msgComp.add(new Integer(MQC.MQCOMPRESS_ZLIBHIGH));

:

Using channel exits

80 Using Java

MQEnvironment.msgCompList = msgComp;

:

MQQueueManager qMgr = new MQQueueManager(QM);

In the second example, the compression techniques are negotiated in the order

RLE, then ZLIBHIGH, when the client connection starts. The compression

technique that is selected cannot be changed during the lifetime of the

MQQueueManager object.

The compression techniques for header and message data that are supported by

both the client and the queue manager on a client connection are passed to a

channel exit as collections in the hdrCompList and msgCompList fields

respectively of an MQChannelDefinition object. The actual techniques that are

currently being used for compressing header and message data on a client

connection are passed to a channel exit in the CurHdrCompression and

CurMsgCompression fields respectively of an MQChannelExit object.

Note that, if compression is used on a client connection, the data is compressed

before any channel send exits are processed and decompressed after any channel

receive exits are processed. The data passed to send and receive exits is therefore

in a compressed state.

For more information about specifying compression techniques, and about which

compression techniques are available, see “MQEnvironment” on page 118 and

“MQC” on page 199.

Connection pooling

WebSphere MQ classes for Java provides additional support for applications that

deal with multiple connections to WebSphere MQ queue managers. When a

connection is no longer required, instead of destroying it, it can be pooled and

later reused. This can provide a substantial performance enhancement for

applications and middleware that connect serially to arbitrary queue managers.

WebSphere MQ provides a default connection pool. Applications can activate or

deactivate this connection pool by registering and deregistering tokens through the

MQEnvironment class. If the pool is active when WebSphere MQ base Java

constructs an MQQueueManager object, it searches this default pool and reuses

any suitable connection. When an MQQueueManager.disconnect() call occurs, the

underlying connection is returned to the pool.

Alternatively, applications can construct an MQSimpleConnectionManager

connection pool for a particular use. Then, the application can either specify that

pool during construction of an MQQueueManager object, or pass that pool to

MQEnvironment for use as the default connection pool.

To prevent connections from using too much resource, you can limit the total

number of connections that an MQSimpleConnectionManager object can handle,

and you can limit the size of the connection pool. Setting limits is useful if there

are conflicting demands for connections within a JVM.

By default, the getMaxConnections() method returns the value zero, which means

that there is no limit to the number of connections that the

MQSimpleConnectionManager object can handle. You can set a limit by using the

setMaxConnections() method. If you set a limit and the limit is reached, a request

Channel compression

Chapter 7. Writing WebSphere MQ base Java applications 81

for a further connection might cause an MQException to be thrown, with a reason

code of MQRC_MAX_CONNS_LIMIT_REACHED.

Also, WebSphere MQ base Java provides a partial implementation of the Java 2

Platform, Enterprise Edition (J2EE) Connector Architecture, Version 1.0.

Applications running under a Java 2 v1.3 JVM with JAAS 1.0 (Java Authentication

and Authorization Service) can provide their own connection pool by

implementing the javax.resource.spi.ConnectionManager interface. Again, this

interface can be specified on the MQQueueManager constructor, or specified as the

default connection pool.

Controlling the default connection pool

Consider the following example application, MQApp1:

import com.ibm.mq.*;

public class MQApp1

{

 public static void main(String[] args) throws MQException

 {

 for (int i=0; i<args.length; i++) {

 MQQueueManager qmgr=new MQQueueManager(args[i]);

 :

 : (do something with qmgr)

 :

 qmgr.disconnect();

 }

 }

}

MQApp1 takes a list of local queue managers from the command line, connects to

each in turn, and performs some operation. However, when the command line lists

the same queue manager many times, it is more efficient to connect only once, and

to reuse that connection many times.

WebSphere MQ base Java provides a default connection pool that you can use to

do this. To enable the pool, use one of the

MQEnvironment.addConnectionPoolToken() methods. To disable the pool, use

MQEnvironment.removeConnectionPoolToken().

The following example application, MQApp2, is functionally identical to MQApp1,

but connects only once to each queue manager.

import com.ibm.mq.*;

public class MQApp2

{

 public static void main(String[] args) throws MQException

 {

 MQPoolToken token=MQEnvironment.addConnectionPoolToken();

 for (int i=0; i<args.length; i++) {

 MQQueueManager qmgr=new MQQueueManager(args[i]);

 :

 : (do something with qmgr)

 :

 qmgr.disconnect();

 }

 MQEnvironment.removeConnectionPoolToken(token);

 }

}

Connection pooling

82 Using Java

The first bold line activates the default connection pool by registering an

MQPoolToken object with MQEnvironment.

The MQQueueManager constructor now searches this pool for an appropriate

connection and only creates a connection to the queue manager if it cannot find an

existing one. The qmgr.disconnect() call returns the connection to the pool for later

reuse. These API calls are the same as the sample application MQApp1.

The second highlighted line deactivates the default connection pool, which

destroys any queue manager connections stored in the pool. This is important

because otherwise the application would terminate with a number of live queue

manager connections in the pool. This situation could cause errors that would

appear in the queue manager logs.

If an application uses a client channel definition table to connect to a queue

manager, the MQQueueManager constructor first searches the table for a suitable

client connection channel definition. If one is found, the constructor searches the

default connection pool for a connection that can be used for the channel. If the

constructor cannot find a suitable connection in the pool, it then searches the client

channel definition table for the next suitable client connection channel definition,

and proceeds as described previously. If the constructor completes its search of the

client channel definition table and fails to find any suitable connection in the pool,

the constructor starts a second search of the table. During this search, the

constructor tries to create a new connection for each suitable client connection

channel definition in turn, and uses the first connection that it manages to create.

The default connection pool stores a maximum of ten unused connections, and

keeps unused connections active for a maximum of five minutes. The application

can alter this (for details, see “Supplying a different connection pool” on page 84).

Instead of using MQEnvironment to supply an MQPoolToken, the application can

construct its own:

 MQPoolToken token=new MQPoolToken();

 MQEnvironment.addConnectionPoolToken(token);

Some applications or middleware vendors provide subclasses of MQPoolToken in

order to pass information to a custom connection pool. They can be constructed

and passed to addConnectionPoolToken() in this way so that extra information can

be passed to the connection pool.

The default connection pool and multiple components

MQEnvironment holds a static set of registered MQPoolToken objects. To add or

remove MQPoolTokens from this set, use the following methods:

v MQEnvironment.addConnectionPoolToken()

v MQEnvironment.removeConnectionPoolToken()

An application might consist of many components that exist independently and

perform work using a queue manager. In such an application, each component

should add an MQPoolToken to the MQEnvironment set for its lifetime.

For example, the example application MQApp3 creates ten threads and starts each

one. Each thread registers its own MQPoolToken, waits for a length of time, then

connects to the queue manager. After the thread disconnects, it removes its own

MQPoolToken.

Connection pooling

Chapter 7. Writing WebSphere MQ base Java applications 83

The default connection pool remains active while there is at least one token in the

set of MQPoolTokens, so it will remain active for the duration of this application.

The application does not need to keep a master object in overall control of the

threads.

import com.ibm.mq.*;

public class MQApp3

{

 public static void main(String[] args)

 {

 for (int i=0; i<10; i++) {

 MQApp3_Thread thread=new MQApp3_Thread(i*60000);

 thread.start();

 }

 }

}

class MQApp3_Thread extends Thread

{

 long time;

 public MQApp3_Thread(long time)

 {

 this.time=time;

 }

 public synchronized void run()

 {

 MQPoolToken token=MQEnvironment.addConnectionPoolToken();

 try {

 wait(time);

 MQQueueManager qmgr=new MQQueueManager("my.qmgr.1");

 :

 : (do something with qmgr)

 :

 qmgr.disconnect();

 }

 catch (MQException mqe) {System.err.println("Error occurred!");}

 catch (InterruptedException ie) {}

 MQEnvironment.removeConnectionPoolToken(token);

 }

}

Supplying a different connection pool

This section describes how to use the class

com.ibm.mq.MQSimpleConnectionManager to supply a different connection pool.

This class provides basic facilities for connection pooling, and applications can use

this class to customize the behavior of the pool.

Once it is instantiated, an MQSimpleConnectionManager can be specified on the

MQQueueManager constructor. The MQSimpleConnectionManager then manages

the connection that underlies the constructed MQQueueManager. If the

MQSimpleConnectionManager contains a suitable pooled connection, that

connection is reused and returned to the MQSimpleConnectionManager after an

MQQueueManager.disconnect() call.

The following code fragment demonstrates this behavior:

 MQSimpleConnectionManager myConnMan=new MQSimpleConnectionManager();

 myConnMan.setActive(MQSimpleConnectionManager.MODE_ACTIVE);

 MQQueueManager qmgr=new MQQueueManager("my.qmgr.1", myConnMan);

 :

 : (do something with qmgr)

Connection pooling

84 Using Java

:

 qmgr.disconnect();

 MQQueueManager qmgr2=new MQQueueManager("my.qmgr.1", myConnMan);

 :

 : (do something with qmgr2)

 :

 qmgr2.disconnect();

 myConnMan.setActive(MQSimpleConnectionManager.MODE_INACTIVE);

The connection that is forged during the first MQQueueManager constructor is

stored in myConnMan after the qmgr.disconnect() call. The connection is then

reused during the second call to the MQQueueManager constructor.

The second line enables the MQSimpleConnectionManager. The last line disables

MQSimpleConnectionManager, destroying any connections held in the pool. An

MQSimpleConnectionManager is, by default, in MODE_AUTO, which is described

later in this section.

An MQSimpleConnectionManager allocates connections on a most-recently-used

basis, and destroys connections on a least-recently-used basis. By default, a

connection is destroyed if it has not been used for five minutes, or if there are

more than ten unused connections in the pool. You can alter these values by calling

MQSimpleConnectionManager.setTimeout().

You can also set up an MQSimpleConnectionManager for use as the default

connection pool, to be used when no Connection Manager is supplied on the

MQQueueManager constructor.

The following application demonstrates this:

import com.ibm.mq.*;

public class MQApp4

{

 public static void main(String []args)

 {

 MQSimpleConnectionManager myConnMan=new MQSimpleConnectionManager();

 myConnMan.setActive(MQSimpleConnectionManager.MODE_AUTO);

 myConnMan.setTimeout(3600000);

 myConnMan.setMaxConnections(75);

 myConnMan.setMaxUnusedConnections(50);

 MQEnvironment.setDefaultConnectionManager(myConnMan);

 MQApp3.main(args);

 }

}

The bold lines create and configure an MQSimpleConnectionManager object. The

configuration does the following:

v Ends connections that are not used for an hour

v Limits the number of connections managed by myConnMan to 75

v Limits the number of unused connections in the pool to 50

v Sets MODE_AUTO, which is the default. This means that the pool is active only

if it is the default connection manager, and there is at least one token in the set

of MQPoolTokens held by MQEnvironment.

The new MQSimpleConnectionManager is then set as the default connection

manager.

Connection pooling

Chapter 7. Writing WebSphere MQ base Java applications 85

In the last line, the application calls MQApp3.main(). This runs a number of

threads, where each thread uses WebSphere MQ independently. These threads use

myConnMan when they forge connections.

Supplying your own ConnectionManager

Under Java 2 v1.3, with JAAS 1.0 installed, applications and middleware providers

can provide alternative implementations of connection pools. WebSphere MQ base

Java provides a partial implementation of the J2EE Connector Architecture.

Implementations of javax.resource.spi.ConnectionManager can either be used as

the default Connection Manager or be specified on the MQQueueManager

constructor.

WebSphere MQ base Java complies with the Connection Management contract of

the J2EE Connector Architecture. Read this section in conjunction with the

Connection Management contract of the J2EE Connector Architecture (refer to

Sun’s Web site at http://java.sun.com).

The ConnectionManager interface defines only one method:

package javax.resource.spi;

public interface ConnectionManager {

 Object allocateConnection(ManagedConnectionFactory mcf,

 ConnectionRequestInfo cxRequestInfo);

}

The MQQueueManager constructor calls allocateConnection on the appropriate

ConnectionManager. It passes appropriate implementations of

ManagedConnectionFactory and ConnectionRequestInfo as parameters to describe

the connection required.

The ConnectionManager searches its pool for a

javax.resource.spi.ManagedConnection object that has been created with identical

ManagedConnectionFactory and ConnectionRequestInfo objects. If the

ConnectionManager finds any suitable ManagedConnection objects, it creates a

java.util.Set that contains the candidate ManagedConnections. Then, the

ConnectionManager calls the following:

ManagedConnection mc=mcf.matchManagedConnections(connectionSet, subject,

cxRequestInfo);

The WebSphere MQ implementation of ManagedConnectionFactory ignores the

subject parameter. This method selects and returns a suitable ManagedConnection

from the set, or returns null if it does not find a suitable ManagedConnection. If

there is not a suitable ManagedConnection in the pool, the ConnectionManager can

create one by using:

ManagedConnection mc=mcf.createManagedConnection(subject, cxRequestInfo);

Again, the subject parameter is ignored. This method connects to a WebSphere MQ

queue manager and returns an implementation of

javax.resource.spi.ManagedConnection that represents the newly-forged connection.

Once the ConnectionManager has obtained a ManagedConnection (either from the

pool or freshly created), it creates a connection handle using:

Object handle=mc.getConnection(subject, cxRequestInfo);

This connection handle can be returned from allocateConnection().

A ConnectionManager must register an interest in the ManagedConnection

through:

Connection pooling

86 Using Java

mc.addConnectionEventListener()

The ConnectionEventListener is notified if a severe error occurs on the connection,

or when MQQueueManager.disconnect() is called. When

MQQueueManager.disconnect() is called, the ConnectionEventListener can do

either of the following:

v Reset the ManagedConnection using the mc.cleanup() call, then return the

ManagedConnection to the pool

v Destroy the ManagedConnection using the mc.destroy() call

If the ConnectionManager is the default ConnectionManager, it can also register an

interest in the state of the MQEnvironment-managed set of MQPoolTokens. To do

so, first construct an MQPoolServices object, then register an

MQPoolServicesEventListener object with the MQPoolServices object:

MQPoolServices mqps=new MQPoolServices();

mqps.addMQPoolServicesEventListener(listener);

The listener is notified when an MQPoolToken is added or removed from the set,

or when the default ConnectionManager changes. The MQPoolServices object also

provides a way to query the current size of the set of MQPoolTokens.

JTA/JDBC coordination using WebSphere MQ base Java

WebSphere MQ base Java supports the MQQueueManager.begin() method, which

allows WebSphere MQ to act as a coordinator for a database which provides a

JDBC type 2 or JDBC type 4 compliant driver. Currently this support is available

on AIX, HP-UX, Solaris, and Windows with DB2® or Oracle databases.

Configuring JTA/JDBC coordination

In order to use the XA-JTA support, you must use the special JTA switch library.

The method for using this library varies depending on whether you are using

Windows or one of the other platforms.

Configuring on Windows

On Windows systems, the new XA library is supplied as a complete DLL. The

name of this DLL is jdbcxxx.dll where xxx indicates the database for which the

switch library has been compiled. This library is in the Java\lib\jdbc directory of

your WebSphere MQ base Java installation.

Configuring on the other platforms

For each database management system, WebSphere MQ provides two object files.

You must link one object file to create a 32-bit switch library, and link the other

object file to create a 64-bit switch library. For DB2, the name of each object file is

jdbcdb2.o and, for Oracle, the name of each object file is jdbcora.o.

You must link each object file using the appropriate makefile supplied with

WebSphere MQ. A switch library requires other libraries, which might be stored in

different locations on different systems. However, a switch library cannot use the

library path environment variable to locate these libraries because the switch

library is loaded by the queue manager, which runs in a setuid environment. The

supplied makefile therefore ensures that a switch library contains the fully

qualified path names of these libraries.

To create a switch library, enter a make command with the following format. To

create a 32-bit switch library, enter the command in the /java/lib/jdbc directory of

Connection pooling

Chapter 7. Writing WebSphere MQ base Java applications 87

your WebSphere MQ installation. To create a 64-bit switch library, enter the

command in the /java/lib64/jdbc directory.

make DBMS

where DBMS is the database management system for which you are creating the

switch library. The valid values are db2 for DB2 and oracle for Oracle.

Here is an example of a make command:

make db2

Note the following points:

v To run 32-bit applications, you must create both a 32-bit and a 64-bit switch

library for each database management system that you are using. To run 64-bit

applications, you need create only a 64-bit switch library. For DB2, the name of

each switch library is jdbcdb2 and, for Oracle, the name of each switch library is

jdbcora. The makefiles ensure that 32-bit and 64-bit switch libraries are stored in

different WebSphere MQ directories. A 32-bit switch library is stored in the

/var/mqm/exits directory, and a 64-bit switch library is stored in the

/var/mqm/exits64 directory.

v Because you can install Oracle anywhere on a system, the makefiles use the

ORACLE_HOME environment variable to locate where Oracle is installed.

After you have created the switch libraries for DB2, Oracle, or both, you must

declare them to your queue manager. If the queue manager configuration file

(qm.ini) already contains XAResourceManger stanzas for DB2 or Oracle databases,

you must replace the SwitchFile entry in each stanza by one of the following:

For a DB2 database

SwitchFile=jdbcdb2

For an Oracle database

SwitchFile=jdbcora

Do not specify the fully qualified path name of either the 32-bit or 64-bit switch

library. Specify only the name of the library.

If the queue manager configuration file does not already contain

XAResourceManager stanzas for DB2 or Oracle databases, or if you want to add

additional XAResourceManager stanzas, see the WebSphere MQ System

Administration Guide for information about how to construct an

XAResourceManager stanza. However, each SwitchFile entry in a new

XAResourceManger stanza must be exactly as described previously for a DB2 or

Oracle database. You must also include the entry ThreadOfControl=PROCESS.

After you have updated the queue manager configuration file, and made sure that

all appropriate database environment variables have been set, you can restart the

queue manager.

Using JTA/JDBC coordination

The basic sequence of API calls for a user application is:

 qMgr = new MQQueueManager("QM1")

 Connection con = qMgr.getJDBCConnection(xads);

 qMgr.begin()

 < Perform MQ and DB operations to be grouped in a unit of work >

JTA/JDBC coordination

88 Using Java

qMgr.commit() or qMgr.backout();

 con.close()

 qMgr.disconnect()

xads in the getJDBCConnection call is a database-specific implementation of the

XADataSource interface, which defines the details of the database to connect to.

See the documentation for your database to determine how to create an

appropriate XADataSource object to pass into getJDBCConnection.

You must also update your CLASSPATH with the appropriate database-specific jar

files for performing JDBC work.

If you need to connect to multiple databases, you might have to call

getJDBCConnection several times to perform the transaction across several

different connections.

There are two forms of the getJDBCConnection, reflecting the two forms of

XADataSource.getXAConnection:

 public java.sql.Connection getJDBCConnection(javax.sql.XADataSource xads)

 throws MQException, SQLException, Exception

 public java.sql.Connection getJDBCConnection(XADataSource dataSource,

 String userid, String password)

 throws MQException, SQLException, Exception

These methods declare Exception in their throws clauses to avoid problems with

the JVM verifier for customers who are not using the JTA functionality. The actual

exception thrown is javax.transaction.xa.XAException. which requires the jta.jar file

to be added to the classpath for programs that did not previously require it.

To use the JTA/JDBC support, you must include the following statement in your

application:

MQEnvironment.properties.put(MQC.THREAD_AFFINITY_PROPERTY, new Boolean(true));

Known problems and limitations with JTA/JDBC coordination

Because this support makes calls to JDBC drivers, the implementation of those

JDBC drivers can have significant impact on the system behavior. In particular,

tested JDBC drivers behave differently when the database is shut down while an

application is running. Always avoid abruptly shutting down a database while

there are applications holding open connections to it.

Multiple XAResourceManager stanzas

The use of more than one XAResourceManager stanza in a queue manager

configuration file, qm.ini, is not supported. Any XAResourceManager

stanza other than the first is ignored.

DB2

 Sometimes DB2 returns a SQL0805N error. This problem can be resolved

with the following CLP command:

DB2 bind @db2cli.lst blocking all grant public

Refer to the DB2 documentation for more information.

 The XAResourceManager stanza must be configured to use

ThreadOfControl=PROCESS. For DB2 version 8.1 and higher this does not

match the default thread of control setting for DB2, so toc=p must be

JTA/JDBC coordination

Chapter 7. Writing WebSphere MQ base Java applications 89

|

|
|
|
|

specified in the XA Open String. An example XAResourceManager stanza

for DB2 with JTA/JDBC coordination is as follows:

XAResourceManager:

 Name=jdbcdb2

 SwitchFile=jdbcdb2

 XAOpenString=uid=userid,db=dbalias,pwd=password,toc=p

 ThreadOfControl=PROCESS

This does not prevent the Java applications that use JTA/JDBC

coordination from being multithreaded themselves.

Oracle 8.1.7

Calling the JDBC Connection.close() method after

MQQueueManager.disconnect() generates an SQLException. Either call

Connection.close() before MQQueueManager.disconnect(), or omit the call

to Connection.close().

Secure Sockets Layer (SSL) support

WebSphere MQ base Java client applications and WebSphere MQ JMS connections

using TRANSPORT(CLIENT) support Secure Sockets Layer (SSL) encryption. SSL

provides communication encryption, authentication, and message integrity. It is

typically used to secure communications between any two peers on the Internet or

within an intranet.

WebSphere MQ classes for Java uses Java Secure Socket Extension (JSSE) to handle

SSL encryption, and so requires a JSSE provider. J2SE v1.4 JVMs have a JSSE

provider built in. Details of how to manage and store certificates can vary from

provider to provider. For information about this, refer to your JSSE provider’s

documentation.

This section assumes that your JSSE provider is correctly installed and configured,

and that suitable certificates have been installed and made available to your JSSE

provider.

If your WebSphere MQ base Java client application uses a client channel definition

table to connect to a queue manager, see “Using a client channel definition table”

on page 70.

Enabling SSL

SSL is supported only for client connections. To enable SSL, you must specify the

CipherSuite to use when communicating with the queue manager, and this must

match the CipherSpec set on the target channel. Additionally, the named

CipherSuite must be supported by your JSSE provider. However, CipherSuites are

distinct from CipherSpecs and so have different names. Appendix D, “SSL

CipherSpecs and CipherSuites,” on page 645 contains a table mapping the

CipherSpecs supported by WebSphere MQ to their equivalent CipherSuites as

known to JSSE.

To enable SSL, specify the CipherSuite using the sslCipherSuite static member

variable of MQEnvironment. The following example attaches to a SVRCONN

channel named SECURE.SVRCONN.CHANNEL, which has been set up to require

SSL with a CipherSpec of RC4_MD5_EXPORT:

MQEnvironment.hostname = "your_hostname";

MQEnvironment.channel = "SECURE.SVRCONN.CHANNEL";

MQEnvironment.sslCipherSuite = "SSL_RSA_EXPORT_WITH_RC4_40_MD5";

MQQueueManager qmgr = new MQQueueManager("your_Q_manager");

JTA/JDBC coordination

90 Using Java

Note that, although the channel has a CipherSpec of RC4_MD5_EXPORT, the Java

application must specify a CipherSuite of SSL_RSA_EXPORT_WITH_RC4_40_MD5.

For more information about CipherSpecs and CipherSuites, see the WebSphere MQ

Security book. See Appendix D, “SSL CipherSpecs and CipherSuites,” on page 645

for a list of mappings between CipherSpecs and CipherSuites.

An application can also specify a CipherSuite by setting the environment property

MQC.SSL_CIPHER_SUITE_PROPERTY.

If you require a client connection to use a CipherSuite that is supported by the

IBM Java JSSE FIPS provider (IBMJSSEFIPS), an application can set the

sslFipsRequired field in the MQEnvironment class to true. Alternatively, the

application can set the environment property

MQC.SSL_FIPS_REQUIRED_PROPERTY. The default value is false, which means

that a client connection can use any CipherSuite that is not supported by

IBMJSSEFIPS.

If an application uses more than one client connection, the value of the

sslFipsRequired field that is used when the application creates the first client

connection determines the value that is used when the application creates any

subsequent client connection. This means that, when the application creates a

subsequent client connection, the value of the sslFipsRequired field is ignored. You

must restart the application if you want to use a different value for the

sslFipsRequired field.

To connect successfully using SSL, the JSSE truststore must be set up with

Certificate Authority root certificates from which the certificate presented by the

queue manager can be authenticated. Similarly, if SSLClientAuth on the SVRCONN

channel has been set to MQSSL_CLIENT_AUTH_REQUIRED, the JSSE keystore

must contain an identifying certificate that is trusted by the queue manager.

Using the distinguished name of the queue manager

The queue manager identifies itself using an SSL certificate, which contains a

Distinguished Name (DN). A WebSphere MQ base Java client application can use

this DN to ensure that it is communicating with the correct queue manager. A DN

pattern is specified using the sslPeerName variable of MQEnvironment. For

example, setting:

 MQEnvironment.sslPeerName = "CN=QMGR.*, OU=IBM, OU=WEBSPHERE";

allows the connection to succeed only if the queue manager presents a certificate

with a Common Name beginning QMGR., and at least two Organizational Unit

names, the first of which must be IBM and the second WEBSPHERE.

If sslPeerName is set, connections succeed only if it is set to a valid pattern and the

queue manager presents a matching certificate.

An application can also specify the distinguished name of the queue manager by

setting the environment property MQC.SSL_PEER_NAME_PROPERTY. For more

information about distinguished names, see WebSphere MQ Security.

Using certificate revocation lists

A certificate revocation list (CRL) is a set of certificates that have been revoked,

either by the issuing Certificate Authority or by the local organization. CRLs are

typically hosted on LDAP servers. With Java 2 v1.4, a CRL server can be specified

at connect-time and the certificate presented by the queue manager is checked

SSL support

Chapter 7. Writing WebSphere MQ base Java applications 91

against the CRL before the connection is allowed. For more information about

certificate revocation lists and WebSphere MQ, see WebSphere MQ Security.

Note: To use a CertStore successfully with a CRL hosted on an LDAP server, make

sure that your Java Software Development Kit (SDK) is compatible with the

CRL. Some SDKs require that the CRL conforms to RFC 2587, which defines

a schema for LDAP v2. Most LDAP v3 servers use RFC 2256 instead.

The CRLs to use are specified through the java.security.cert.CertStore class. Refer to

documentation on this class for full details of how to obtain instances of CertStore.

To create a CertStore based on an LDAP server, first create an

LDAPCertStoreParameters instance, initialized with the server and port settings to

use. For example:

import java.security.cert.*;

CertStoreParameters csp = new LDAPCertStoreParameters("crl_server", 389);

Having created a CertStoreParameters instance, use the static constructor on

CertStore to create a CertStore of type LDAP:

CertStore cs = CertStore.getInstance("LDAP", csp);

Other CertStore types (for example, Collection) are also supported. Commonly

there are several CRL servers set up with identical CRL information to give

redundancy. Once you have a CertStore object for each of these CRL servers, place

them all in a suitable Collection. The following example shows the CertStore

objects placed in an ArrayList:

import java.util.ArrayList;

Collection crls = new ArrayList();

crls.add(cs);

This Collection can be set into the MQEnvironment static variable, sslCertStores,

before connecting to enable CRL checking:

MQEnvironment.sslCertStores = crls;

The certificate presented by the queue manager when a connection is being set up

is validated as follows:

1. The first CertStore object in the Collection identified by sslCertStores is used to

identify a CRL server.

2. An attempt is made to contact the CRL server.

3. If the attempt is successful, the server is searched for a match for the certificate.

a. If the certificate is found to be revoked, the search process is over and the

connection request fails with reason code

MQRC_SSL_CERTIFICATE_REVOKED.

b. If the certificate is not found, the search process is over and the connection

is allowed to proceed.
4. If the attempt to contact the server is unsuccessful, the next CertStore object is

used to identify a CRL server and the process repeats from step 2.

If this was the last CertStore in the Collection, or if the Collection contains no

CertStore objects, the search process has failed and the connection request fails

with reason code MQRC_SSL_CERT_STORE_ERROR.

The Collection object determines the order in which CertStores are used.

The Collection of CertStores can also be set using the

MQC.SSL_CERT_STORE_PROPERTY. As a convenience, this property also allows a

single CertStore to be specified without needing to be a member of a Collection.

SSL support

92 Using Java

If sslCertStores is set to null, no CRL checking is performed. This property is

ignored if sslCipherSuite is not set.

Renegotiating the secret key used for encryption

A WebSphere MQ base Java client application can control when the secret key that

is used for encryption on a client connection is renegotiated. The application can

do this in any of the following ways:

v By setting the sslResetCount field in the MQEnvironment class.

v By setting the environment property MQC.SSL_RESET_COUNT_PROPERTY in a

Hashtable object. The application then assigns the hashtable to the properties

field in the MQEnvironment class, or passes the hashtable to an

MQQueueManager object on its constructor.

If the application uses more than one of these ways, the usual precedence rules

apply. See “MQEnvironment” on page 118 for the precedence rules.

The value of the sslResetCount field or environment property

MQC.SSL_RESET_COUNT_PROPERTY represents the total number of bytes sent

and received by the WebSphere MQ base Java client code before the secret key is

renegotiated. The number of bytes sent is the number before encryption, and the

number of bytes received is the number after decryption. The number of bytes also

includes control information sent and received by the WebSphere MQ base Java

client.

If the reset count is zero, which is the default value, the secret key is never

renegotiated. The reset count is ignored if no CipherSuite is specified.

If you are using an HP or Sun Java 2 Software Development Kit (SDK) or Java

Runtime Environment (JRE), do not set the reset count to a value other than zero.

If you do set the reset count to a value other than zero, a client connection fails

when it attempts to renegotiate the secret key.

For more information about the secret key that is used for encryption on an SSL

enabled channel, see WebSphere MQ Security.

Supplying a customized SSLSocketFactory

Different JSSE implementations can provide different features. For example, a

specialized JSSE implementation could allow configuration of a particular model of

encryption hardware. Additionally, some JSSE providers allow customization of

keystores and truststores by program, or allow the choice of identity certificate

from the keystore to be altered. In JSSE, all these customizations are abstracted into

a factory class, javax.net.ssl.SSLSocketFactory.

Refer to your JSSE documentation for details of how to create a customized

SSLSocketFactory implementation. The details vary from provider to provider, but

a typical sequence of steps might be:

1. Create an SSLContext object using a static method on SSLContext

2. Initialize this SSLContext with appropriate KeyManager and TrustManager

implementations (created from their own factory classes)

3. Create an SSLSocketFactory from the SSLContext

When you have an SSLSocketFactory object, set the

MQEnvironment.sslSocketFactory to the customized factory object. For example:

SSL support

Chapter 7. Writing WebSphere MQ base Java applications 93

javax.net.ssl.SSLSocketFactory sf = sslContext.getSocketFactory();

MQEnvironment.sslSocketFactory = sf;

WebSphere MQ classes for Java then use this SSLSocketFactory to connect to the

WebSphere MQ queue manager. This property can also be set using the

MQC.SSL_SOCKET_FACTORY_PROPERTY. If sslSocketFactory is set to null, the

JVM’s default SSLSocketFactory is used. This property is ignored if sslCipherSuite

is not set.

Making changes to the JSSE keystore or truststore

If you change the contents of the JSSE keystore or truststore, or change the location

of the keystore or truststore file, WebSphere MQ base Java applications that are

running at the time do not automatically pick up the changes. For the changes to

take effect, the following actions must be performed:

v The applications must close all their connections, and destroy any unused

connections in connection pools.

v If your JSSE provider caches information from the keystore and truststore, this

information must be refreshed.

After these actions have been performed, the applications can then recreate their

connections.

Depending on how you design your applications, and on the function provided by

your JSSE provider, it might be possible to perform these actions without stopping

and restarting your applications. However, stopping and restarting the applications

might be the simplest solution.

Error handling when using SSL

The following reason codes can be issued by WebSphere MQ classes for Java when

connecting to a queue manager using SSL:

MQRC_SSL_NOT_ALLOWED

The sslCipherSuite property was set, but bindings connect was used. Only

client connect supports SSL.

MQRC_JSSE_ERROR

The JSSE provider reported an error that could not be handled by

WebSphere MQ. This could be caused by a configuration problem with

JSSE, or because the certificate presented by the queue manager could not

be validated. The exception produced by JSSE can be retrieved using the

getCause() method on MQException.

MQRC_SSL_PEER_NAME_MISMATCH

The DN pattern specified in the sslPeerName property did not match the

DN presented by the queue manager.

MQRC_SSL_PEER_NAME_ERROR

The DN pattern specified in the sslPeerName property was not valid.

MQRC_UNSUPPORTED_CIPHER_SUITE

The CipherSuite named in sslCipherSuite was not recognized by the JSSE

provider. A full list of CipherSuites supported by the JSSE provider can be

obtained by a program using the

SSLSocketFactory.getSupportedCipherSuites() method. A list of

CipherSuites that can be used to communicate with WebSphere MQ can be

found in Appendix D, “SSL CipherSpecs and CipherSuites,” on page 645.

SSL support

94 Using Java

MQRC_SSL_CERTIFICATE_REVOKED

The certificate presented by the queue manager was found in a CRL

specified with the sslCertStores property. Update the queue manager to use

trusted certificates.

MQRC_SSL_CERT_STORE_ERROR

None of the supplied CertStores could be searched for the certificate

presented by the queue manager. The MQException.getCause() method

returns the error that occurred while searching the first CertStore

attempted. If the causal exception is NoSuchElementException,

ClassCastException, or NullPointerException, check that the Collection

specified on the sslCertStores property contains at least one valid CertStore

object.

Running WebSphere MQ base Java applications

If you write an application (a class that contains a main() method), using either the

client or the bindings mode, run your program using the Java interpreter. Use the

command:

java -Djava.library.path=library_path MyClass

where library_path is the path to the WebSphere MQ Java libraries (see “The

WebSphere MQ Java libraries” on page 10).

Tracing WebSphere MQ base Java programs

WebSphere MQ base Java includes a trace facility, which you can use to produce

diagnostic messages if you suspect that there might be a problem with the code.

(You normally need to use this facility only at the request of IBM service.)

Tracing is controlled by the enableTracing and disableTracing methods of the

MQEnvironment class. For example:

MQEnvironment.enableTracing(2); // trace at level 2

 ... // these commands will be traced

MQEnvironment.disableTracing(); // turn tracing off again

The trace is written to the Java console (System.err).

If your program is an application, or if you run it from your local disk using the

appletviewer command, you can also redirect the trace output to a file of your

choice. The following code fragment shows an example of how to redirect the trace

output to a file called myapp.trc:

import java.io.*;

try {

 FileOutputStream

 traceFile = new FileOutputStream("myapp.trc");

 MQEnvironment.enableTracing(2,traceFile);

}

catch (IOException ex) {

 // couldn’t open the file,

 // trace to System.err instead

 MQEnvironment.enableTracing(2);

}

There are five different levels of tracing:

1. Provides entry, exit, and exception tracing

SSL support

Chapter 7. Writing WebSphere MQ base Java applications 95

2. Provides parameter information in addition to 1

3. Provides transmitted and received WebSphere MQ headers and data blocks in

addition to 2

4. Provides transmitted and received user message data in addition to 3

5. Provides tracing of methods in the Java Virtual Machine in addition to 4

To trace methods in the Java Virtual Machine with trace level 5:

v For an application, run it by issuing the command java_g (instead of java)

v For an applet, run it by issuing the command appletviewer_g (instead of

appletviewer)

Note: java_g is not supported on i5/OS, but similar function is provided by using

OPTION(*VERBOSE) on the RUNJVA command.

Tracing WebSphere MQ base Java programs

96 Using Java

Chapter 8. Environment-dependent behavior

WebSphere MQ classes for Java allow you to create applications that can run

against different versions of WebSphere MQ and MQSeries. This chapter describes

the behavior of the Java classes dependent on these different versions.

WebSphere MQ classes for Java provides a core of classes, which provide

consistent function and behavior in all the environments. Features outside this core

depend on the capability of the queue manager to which the application is

connected.

Except where noted here, the behavior exhibited is as described in the Application

Programming Reference book appropriate to the queue manager.

Core details

WebSphere MQ classes for Java contains the following core set of classes, which

can be used in all environments with only the minor variations listed in

“Restrictions and variations for core classes” on page 98.

v MQEnvironment

v MQException

v MQGetMessageOptions

Excluding:

– MatchOptions

– GroupStatus

– SegmentStatus

– Segmentation
v MQManagedObject

Excluding:

– inquire()

– set()
v MQMessage

Excluding:

– groupId

– messageFlags

– messageSequenceNumber

– offset

– originalLength
v MQPoolServices

v MQPoolServicesEvent

v MQPoolServicesEventListener

v MQPoolToken

v MQPutMessageOptions

Excluding:

– knownDestCount

– unknownDestCount

© Copyright IBM Corp. 1997, 2007 97

– invalidDestCount

– recordFields
v MQProcess

v MQQueue

v MQQueueManager

Excluding:

– begin()

– accessDistributionList()
v MQSimpleConnectionManager

v MQC

Note:

1. Some constants are not included in the core (see “Restrictions and

variations for core classes” for details); do not use them in completely

portable programs.

2. Some platforms do not support all connection modes. On these

platforms, you can use only the core classes and options that relate to

the supported modes. (See Table 1 on page 4.)

Restrictions and variations for core classes

The core classes generally behave consistently across all environments, even if the

equivalent MQI calls normally have environment differences. The behavior is as if

a Windows or UNIX WebSphere MQ queue manager is used, except for the

following minor restrictions and variations.

MQGMO_* values

The following MQGMO_* values are not supported by all queue managers, and

their use might throw MQException from an MQQueue.get():

 MQGMO_SYNCPOINT_IF_PERSISTENT

 MQGMO_MARK_SKIP_BACKOUT

 MQGMO_BROWSE_MSG_UNDER_CURSOR

 MQGMO_LOCK

 MQGMO_UNLOCK

 MQGMO_LOGICAL_ORDER

 MQGMO_COMPLETE_MESSAGE

 MQGMO_ALL_MSGS_AVAILABLE

 MQGMO_ALL_SEGMENTS_AVAILABLE

 MQGMO_UNMARKED_BROWSE_MSG

 MQGMO_MARK_BROWSE_HANDLE

 MQGMO_MARK_BROWSE_CO_OP

 MQGMO_UNMARK_BROWSE_HANDLE

 MQGMO_UNMARK_BROWSE_CO_OP

Additionally, MQGMO_SET_SIGNAL is not supported when used from Java.

MQPMRF_* values

These are used only when putting messages to a distribution list, and are

supported only by queue managers supporting distribution lists. For example,

z/OS queue managers do not support distribution lists.

Core details

98 Using Java

MQPMO_* values

The following MQPMO_* values are not supported by all queue managers, and

their use might throw MQException from an MQQueue.put() or an

MQQueueManager.put():

 MQPMO_LOGICAL_ORDER

 MQPMO_NEW_CORREL_ID

 MQPMO_NEW_MESSAGE_ID

 MQPMO_RESOLVE_LOCAL_Q

MQCNO_FASTPATH_BINDING

This value is ignored on queue managers that do not support it, or when using a

TCP/IP client connection.

MQRO_* values

The following report options can be set but are ignored by some queue managers.

This can affect applications connected to a queue manager that honors the report

options when the report message is generated by a remote queue manager that

does not. Avoid relying on these options if there is a possibility that a queue

manager involved does not support them.

 MQRO_EXCEPTION_WITH_FULL_DATA

 MQRO_EXPIRATION_WITH_FULL_DATA

 MQRO_COA_WITH_FULL_DATA

 MQRO_COD_WITH_FULL_DATA

 MQRO_DISCARD_MSG

 MQRO_PASS_DISCARD_AND_EXPIRY

Miscellaneous differences with z/OS

Message priority

When a message is put with a priority greater than MaxPriority, a z/OS

queue manager rejects the put with MQCC_FAILED and

MQRC_PRIORITY_ERROR. Other platforms complete the put with

MQCC_WARNING and MQRC_PRIORITY_EXCEEDS_MAXIMUM, and

treat the message as if it were put with MaxPriority.

BackoutCount

A z/OS queue manager returns a maximum BackoutCount of 255, even if

the message has been backed out more than 255 times.

Default dynamic queue prefix

When connected to a z/OS queue manager using a bindings connection,

the default dynamic queue prefix is CSQ.*. Otherwise, the default dynamic

queue prefix is AMQ.*.

MQQueueManager constructor

Client connect is not supported on z/OS. Attempting to connect with client

options results in an MQException with MQCC_FAILED and

MQRC_ENVIRONMENT_ERROR. The MQQueueManager constructor

might also fail with MQRC_CHAR_CONVERSION_ERROR (if it fails to

initialize conversion between the IBM-1047 and ISO8859-1 code pages), or

MQRC_UCS2_CONVERSION_ERROR (if it fails to initialize conversion

between the queue manager’s code page and Unicode). If your application

fails with one of these reason codes, ensure that the National Language

Resources component of Language Environment® is installed, and ensure

that the correct conversion tables are available.

Restrictions and variations for core classes

Chapter 8. Environment-dependent behavior 99

Conversion tables for Unicode are installed as part of the z/OS C/C++

optional feature. See the z/OS C/C++ Programming Guide, SC09-4765, for

more information about enabling UCS-2 conversions.

Features outside the core

The WebSphere MQ classes for Java contain the following functions that are

specifically designed to use API extensions that are not supported by all queue

managers. This section describes how they behave when using a queue manager

that does not support them.

MQQueueManager constructor option

Some of the MQQueueManager constructors include an optional integer argument.

This maps onto the MQI’s MQCNO options field, and is used to switch between

normal and fast path connection. This extended form of the constructor is accepted

in all environments, provided that the only options used are

MQCNO_STANDARD_BINDING or MQCNO_FASTPATH_BINDING. Any other

options cause the constructor to fail with MQRC_OPTIONS_ERROR. The fast path

option MQC.MQCNO_FASTPATH_BINDING is honored only when with a

bindings connection to a queue manager that supports it. In other environments, it

is ignored.

MQQueueManager.begin() method

This can be used only against a WebSphere MQ queue manager on UNIX or

Windows systems in bindings mode. Otherwise, it fails with

MQRC_ENVIRONMENT_ERROR. See “JTA/JDBC coordination using WebSphere

MQ base Java” on page 87 for more details.

MQGetMessageOptions fields

When using a queue manager that does not support the Version 2 MQGMO

structure, leave the following fields set to their default values:

 GroupStatus

 SegmentStatus

 Segmentation

Also, the MatchOptions field support only MQMO_MATCH_MSG_ID and

MQMO_MATCH_CORREL_ID. If you put unsupported values into these fields,

the subsequent MQQueue.get() fail with MQRC_GMO_ERROR. If the queue

manager does not support the Version 2 MQGMO structure, these fields are not

updated after a successful MQQueue.get().

Distribution lists

The following classes are used to create distribution lists:

 MQDistributionList

 MQDistributionListItem

 MQMessageTracker

You can create and populate MQDistributionLists and MQDistributionListItems in

any environment, but not all queue managers allow you to open an

MQDistributionList. In particular, z/OS queue managers do not support

distribution lists. Attempting to open an MQDistributionList when using such a

queue manager results in MQRC_OD_ERROR.

Restrictions and variations for core classes

100 Using Java

MQPutMessageOptions fields

Four fields in the MQPMO are rendered as the following member variables in the

MQPutMessageOptions class:

 knownDestCount

 unknownDestCount

 invalidDestCount

 recordFields

These fields are primarily intended for use with distribution lists. However, a

queue manager that supports distribution lists also fills in the DestCount fields

after an MQPUT to a single queue. For example, if the queue resolves to a local

queue, knownDestCount is set to 1 and the other two count fields are set to 0.

If the queue manager does not support distribution lists, these values are

simulated as follows:

v If the put() succeeds, unknownDestCount is set to 1, and the others are set to 0.

v If the put() fails, invalidDestCount is set to 1, and the others are set to 0.

The recordFields variable is used with distribution lists. A value can be written

into recordFields at any time, regardless of the environment. It is ignored if the

MQPutMessageOptions object is used on a subsequent MQQueue.put() or

MQQueueManager.put(), rather than MQDistributionList.put().

MQMD fields

The following MQMD fields are largely concerned with message segmentation:

 GroupId

 MsgSeqNumber

 Offset

 MsgFlags

 OriginalLength

If an application sets any of these MQMD fields to values other than their defaults,

and then does a put() or get() on a queue manager that does not support these, the

put() or get() raises an MQException with MQRC_MD_ERROR. A successful put()

or get() with such a queue manager always leaves the MQMD fields set to their

default values. Do not send a grouped or segmented message to a Java application

that runs against a queue manager that does not support message grouping and

segmentation.

If a Java application attempts to get() a message from a queue manager that does

not support these fields, and the physical message to be retrieved is part of a

group of segmented messages (that is, it has non-default values for the MQMD

fields), it is retrieved without error. However, the MQMD fields in the MQMessage

are not updated, the MQMessage format property is set to

MQFMT_MD_EXTENSION, and the true message data is prefixed with an

MQMDE structure that contains the values for the new fields.

Restrictions under CICS Transaction Server

In the CICS Transaction Server for OS/390 or CICS Transaction Server for z/OS

environment, only the main (first) thread is allowed to issue CICS or WebSphere

MQ calls. It is therefore not possible to share MQQueueManager or MQQueue

objects between threads in this environment, or to create a new MQQueueManager

on a child thread.

Features outside the core

Chapter 8. Environment-dependent behavior 101

“Miscellaneous differences with z/OS” on page 99 identifies some restrictions and

variations that apply to the WebSphere MQ classes for Java when running against

a z/OS queue manager. Additionally, when running under CICS, the transaction

control methods on MQQueueManager are not supported. Instead of issuing

MQQueueManager.commit() or MQQueueManager.backout(), applications use the

JCICS task synchronization methods, Task.commit() and Task.rollback(). The Task

class is supplied by JCICS in the com.ibm.cics.server package.

Restrictions under CICS Transaction Server

102 Using Java

Part 3. WebSphere MQ base Java API reference

Chapter 9. Package com.ibm.mq 105

MQChannelDefinition 106

Fields 106

MQChannelExit 108

Fields 108

Methods 111

MQConnectionSecurityParameters 112

Methods 112

MQDistributionList 114

Constructors 114

Methods 114

MQDistributionListItem 116

Constructors 116

Fields 116

Methods 117

MQEnvironment 118

Fields 118

Methods 123

MQExitChain 127

Constructors 127

Methods 127

MQExternalReceiveExit 128

Constructors 128

Methods 128

MQExternalSecurityExit 129

Constructors 129

Methods 129

MQExternalSendExit 130

Constructors 130

Methods 130

MQExternalUserExit 131

Methods 131

MQGetMessageOptions 132

Constructors 132

Fields 132

Methods 134

MQJavaLevel 135

MQManagedObject 136

Fields 136

Methods 137

MQMD 139

Fields 139

Methods 145

MQMessage 147

Constructors 147

Methods 147

MQPoolToken 161

Constructors 161

MQProcess 162

Constructors 162

Methods 162

MQPutMessageOptions 164

Constructors 164

Fields 164

Methods 165

MQQueue 166

Constructors 166

Methods 167

MQQueueManager 176

Constructors 176

Fields 181

Methods 182

MQReceiveExitChain 191

Constructors 191

Methods 191

MQSendExitChain 193

Constructors 193

Methods 193

MQSimpleConnectionManager 195

Constructors 195

Fields 195

Methods 196

MQC 199

Fields 199

MQReceiveExit 276

Methods 276

MQSecurityExit 278

Methods 278

MQSendExit 280

Methods 280

MQException 282

Constructors 282

Fields 282

Methods 310

© Copyright IBM Corp. 1997, 2007 103

Introduction

This part documents the WebSphere MQ base Java application programming

interface. The same information is provided in the file mqjmsapi.jar, which contains

the HTML pages generated by the Javadoc tool.

104 Using Java

Chapter 9. Package com.ibm.mq

This is the main package of Java classes and interfaces for WebSphere MQ classes

for Java. com.ibm.mq.jms is the main package used for WebSphere MQ classes for

JMS and it is described separately.

© Copyright IBM Corp. 1997, 2007 105

MQChannelDefinition

public class MQChannelDefinition

extends Object

java.lang.Object

 |

 +----com.ibm.mq.MQChannelDefinition

Use the MQChannelDefinition class to pass information concerning the connection

with the queue manager to the send, receive, and security exits.

Note: This class does not apply when connecting directly to WebSphere MQ in

bindings mode.

Fields

channelName

public java.lang.String

The name of the channel through which the connection is established.

connectionName

public java.lang.String

The TCP/IP hostname of the machine on which the queue manager resides.

hdrCompList

public java.util.Collection

The list of supported header data compression techniques.

localAddress

public java.lang.String

The actual TCP/IP address in use.

maxMessageLength

public int

The maximum length of message that can be sent to the queue manager.

msgCompList

public java.util.Collection

The list of supported message data compression techniques.

queueManagerName

public java.lang.String

The name of the queue manager to which the connection is made.

receiveUserData

public java.lang.String

MQChannelDefinition

106 Using Java

A storage area for the receive exit to use. Information placed here is preserved

across invocations of the receive exit, and is also available to the send and security

exits.

remotePassword

public java.lang.String

The password used to establish the connection.

remoteUserId

public java.lang.String

The user ID used to establish the connection.

securityUserData

public java.lang.String

A storage area for the security exit to use. Information placed here is preserved

across invocations of the security exit and is also available to the send and receive

exits.

sendUserData

public java.lang.String

A storage area for the send exit to use. Information placed here is preserved across

invocations of the send exit and is also available to the security and receive exits.

sslPeerName

public java.lang.String

The SSL peer name used for matching. If SSL is used to encrypt data, the name is

set to the Distinguished Name presented by the queue manager during connection.

If SSL is not used, it is left at null.

MQChannelDefinition

Chapter 9. Package com.ibm.mq 107

MQChannelExit

public class MQChannelExit

extends Object

java.lang.Object

 |

 +----com.ibm.mq.MQChannelExit

This class defines context information passed to the send, receive and security exits

when they are invoked. The exit must set the exitResponse member variable to

indicate what action the WebSphere MQ Client for Java must take next.

Note: This class is not used when connecting directly to WebSphere MQ in

bindings mode.

Fields

capabilityFlags

public int

Capabilities of the queue manager.

Only the MQC.MQCF_DIST_LISTS flag is supported.

CurHdrCompression

public int

The technique currently being used to compress header data.

CurMsgCompression

public int

The technique currently being used to compress message data.

exitID

public int

The type of exit that has been invoked. Possible values are:

v MQC.MQXT_CHANNEL_SEC_EXIT

v MQC.MQXT_CHANNEL_SEND_EXIT

v MQC.MQXT_CHANNEL_RCV_EXIT

exitReason

public int

The reason for invoking the exit. Possible values are:

v MQC.MQXR_INIT

v MQC.MQXR_TERM

v MQC.MQXR_XMIT

v MQC.MQXR_SEC_MSG

v MQC.MQXR_INIT_SEC

v MQC.MQXR_SEC_PARMS

MQChannelExit

108 Using Java

exitResponse

public int

Set by the exit to indicate the action that the WebSphere MQ Client for Java must

take next. Valid values are:

v MQC.MQXCC_OK

v MQC.MQXCC_SUPPRESS_FUNCTION

v MQC.MQXCC_SEND_AND_REQUEST_SEC_MSG

v MQC.MQXCC_SEND_SEC_MSG

v MQC.MQXCC_SUPPRESS_EXIT

v MQC.MQXCC_CLOSE_CHANNEL

exitUserArea

public byte[]

A storage area available for the exit to use. Any data placed here is preserved by

the WebSphere MQ Client for Java across exit invocations with the same exitID.

That is, each send, receive or security exit has its own independent user area.

fapLevel

public int

The negotiated Format and Protocol (FAP) level. The default level is 8.

maxSegmentLength

public int

The maximum length for a simple transmission to a queue manager. If the exit

returns data which is to be sent to the queue manager, the length of the returned

data must not exceed this value.

MQXCC_CLOSE_CHANNEL

public final static int

Deprecated

use MQC.MQXCC_CLOSE_CHANNEL instead.

MQXCC_OK

public final static int

Deprecated

use MQC.MQXCC_OK instead.

MQXCC_SEND_AND_REQUEST_SEC_MSG

public final static int

Deprecated

use MQC.MQXCC_SEND_AND_REQUEST_SEC_MSG instead.

MQChannelExit

Chapter 9. Package com.ibm.mq 109

MQXCC_SEND_SEC_MSG

public final static int

Deprecated

use MQC.MQXCC_SEND_SEC_MSG instead.

MQXCC_SUPPRESS_EXIT

public final static int

Deprecated

use MQC.MQXCC_SUPPRESS_EXIT instead.

MQXCC_SUPPRESS_FUNCTION

public final static int

Deprecated

use MQC.MQXCC_SUPPRESS_FUNCTION instead.

MQXR_INIT

public final static int

Deprecated

use MQC.MQXR_INIT instead.

MQXR_INIT_SEC

public final static int

Deprecated

use MQC.MQXR_INIT_SEC instead.

MQXR_SEC_MSG

public final static int

Deprecated

use MQC.MQXR_SEC_MSG instead.

MQXR_TERM

public final static int

Deprecated

use MQC.MQXR_TERM instead.

MQXR_XMIT

public final static int

Deprecated

use MQC.MQXR_XMIT instead.

MQChannelExit

110 Using Java

MQXT_CHANNEL_RCV_EXIT

public final static int

Deprecated

use MQC.MQXT_CHANNEL_RCV_EXIT instead.

MQXT_CHANNEL_SEC_EXIT

public final static int

Deprecated

use MQC.MQXT_CHANNEL_SEC_EXIT instead.

MQXT_CHANNEL_SEND_EXIT

public final static int

Deprecated

use MQC.MQXT_CHANNEL_SEND_EXIT instead.

Methods

getMQCSP

public MQConnectionSecurityParameters getMQCSP();

Gets a MQConnectionSecurityParameters object. If no such object has been created,

this method will return null.

Returns

v the MQConnectionSecurityParameters object.

setMQCSP

public void setMQCSP(MQConnectionSecurityParameters mqcsp);

Sets a MQConnectionSecurityParameters object. If this object is created and set

when a security exit is invoked with MQC.MQXR_SEC_PARMS then any supplied

information will be sent to the Queue Manager.

This applies to channel security exits only.

Parameters

v mqcsp - the MQConnectionSecurityParameters object.

MQChannelExit

Chapter 9. Package com.ibm.mq 111

MQConnectionSecurityParameters

public class MQConnectionSecurityParameters

extends Object

java.lang.Object

 |

 +----com.ibm.mq.MQConnectionSecurityParameters

This class is a representation of the MQCSP structure. It is used to enable the

Object Authority Manager (OAM) to authenticate a user and change appropriate

identity context fields.

In the WebSphere MQ Java client, this field can be set only from within a Security

channel exit. When the exit is invoked, the reference to this class in MQChannel

Exit will be null. The exit can replace this with an

MQConnectionSecurityParameters object defined by the exit. For example:

 public byte[] securityExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] agentBuffer)

{

 // ... other code ...

 MQConnectionSecurityParameters csp = new MQConnectionSecurityParameters();

 csp.setCSPUserId("myID");

 csp.setCSPPassword("myPassword");

 csp.setAuthenticationType(MQC.MQCSP_AUTH_USER_ID_AND_PWD);

 channelExitParms.setMQCSP(csp);

}

If the reference is not null when the exit completes, then the information in the

MQConnectionSecurityParameters object created by the Exit will be sent to the

queue manager.

Data must be in the character set and encoding of the local queue manager; these

are given by the CodedCharSetId queue-manager attribute and MQENC_NATIVE,

respectively.

Methods

getAuthenticationType

public int getAuthenticationType();

This method returns the authentication method to be used by the Object Authority

Manager (OAM). It will be either MQCSP_AUTH_NONE or

MQCSP_AUTH_USER_ID_AND_PWD.

The initial value of this field is MQCSP_AUTH_NONE

Returns

v int authenticationType

getCSPPassword

public String getCSPPassword();

This method returns the defined MQCSP password.

Returns

v the MQCSP password

MQConnectionSecurityParameters

112 Using Java

getCSPUserId

public String getCSPUserId();

This method returns the defined MQCSP user ID.

Returns

v the MQCSP user ID

setAuthenticationType

public void setAuthenticationType(int i);

Sets the authentication method to be used by the Object Authority Manager

(OAM). It can be either MQCSP_AUTH_NONE or

MQCSP_AUTH_USER_ID_AND_PWD. Any other value is interpreted as

MQCSP_AUTH_NONE.

The initial value of this field is MQCSP_AUTH_NONE .

setCSPPassword

public void setCSPPassword(String pass);

Sets a String to be used as the MQCSP password. If the authentication type is set

to MQCSP_AUTH_USER_ID_AND_PWD then this will be passed to the Object

Authority Manager (OAM) for authentication.

The initial value of this field is null.

Parameters

v pass - CSPPassword

setCSPUserId

public void setCSPUserId(String id);

Sets a String to be used as the MQCSP user ID. If the authentication type is set to

MQCSP_AUTH_USER_ID_AND_PWD then this will be passed to the Object

Authority Manager (OAM) for authentication.

The initial value of this field is null.

Parameters

v id - the user id

MQConnectionSecurityParameters

Chapter 9. Package com.ibm.mq 113

MQDistributionList

public class MQDistributionList

extends MQManagedObject

java.lang.Object

 |

 +----com.ibm.mq.MQManagedObject

 |

 +----com.ibm.mq.MQDistributionList

Create a distribution list using the MQDistributionList() constructor or the

MQQueueManager.accessDistributionList() method. A distribution list represents a

set of open queues to which messages can be sent using a single call to the put

method.

Constructors

MQDistributionList

public MQDistributionList(MQQueueManager qMgr,

 MQDistributionListItem[] litems,

 int openOptions, String alternateUserId)

 throws MQException;

Creates a new distribution list and opens the queues.

Parameters

v qMgr - the queue manager where the list is to be opened.

v litems - the items to be included in the distribution list.

v openOptions - options which control the opening of the distribution list.

v alternateUserId - the alternative user identifier used to check the

authorization for opening queues if

MQOO_ALTERNATE_USER_AUTHORITY is specified in openOptions.

Otherwise this parameter can be left blank (or null).

Exceptions

v MQException - is only thrown if the call fails completely. The

constructor completes if at least one queue opens successfully.

Methods

close

public void close() throws MQException;

Closes the distribution list.

Exceptions

v MQException - if the close fails.

getFirstDistributionListItem

public MQDistributionListItem getFirstDistributionListItem();

Gets the first item in the distribution list, or null if the list is empty.

Returns

v the first item.

MQDistributionList

114 Using Java

getInvalidDestinationCount

public int getInvalidDestinationCount();

Gets the number of items in the distribution list that failed to open successfully.

Returns

v the number of items.

getValidDestinationCount

public int getValidDestinationCount();

Gets the number of items in the distribution list that were opened successfully.

Returns

v the number of items.

put

public void put(MQMessage message, MQPutMessageOptions putMessageOptions)

 throws MQException;

Puts a message to the queues on the distribution list.

Parameters

v message - the message descriptor information and the returned message

data.

v putMessageOptions - controls the action of MQPUT.

Exceptions

v MQException - if the put fails.

MQDistributionList

Chapter 9. Package com.ibm.mq 115

MQDistributionListItem

public class MQDistributionListItem

extends MQMessageTracker

java.lang.Object

 |

 +----com.ibm.mq.MQMessageTracker

 |

 +----com.ibm.mq.MQDistributionListItem

Represents a single item (queue) within a distribution list.

Constructors

MQDistributionListItem

public MQDistributionListItem();

Public constructor.

Fields

completionCode

public int

The completion code resulting from the most recent operation on this item. If this

was the construction of a distribution list, the completion code relates to the

opening of the queue. If it was a put operation, the completion code relates to the

attempt to put a message onto this queue.

The initial value is 0.

queueManagerName

public java.lang.String

The name of the queue manager on which the queue is defined. The initial value is

″″ (empty string).

queueName

public java.lang.String

The name of a queue to be uses with a distribution list. It cannot be the name of a

model queue.

The initial value is ″″ (empty string).

reasonCode

public int

The reason code resulting from the last operation on this item. If this was the

construction of a distribution list, the reason code relates to the opening of the

queue. If it was a put operation, the reason code relates to the attempt to put a

message onto this queue.

The initial value is 0.

MQDistributionListItem

116 Using Java

Methods

getNextDistributedItem

public MQDistributionListItem getNextDistributedItem();

Gets the next item in the chain.

Returns

v next item, or null if none.

getPreviousDistributedItem

public MQDistributionListItem getPreviousDistributedItem();

Gets the previous item in chain.

Returns

v previous item, or null if none.

MQDistributionListItem

Chapter 9. Package com.ibm.mq 117

MQEnvironment

public class MQEnvironment

extends Object

java.lang.Object

 |

 +----com.ibm.mq.MQEnvironment

MQEnvironment contains static fields that control the environment in which an

MQQueueManager object (and its corresponding connection to WebSphere MQ) is

constructed. As values set in MQEnvironment class take effect when the

MQQueueManager constructor is called, you must set the values in the

MQEnvironment class before you construct a MQQueueManager object.

Note: All the methods and attributes of this class apply to the WebSphere MQ

classes for Java client connections, but only enableTracing(), disableTracing(),

properties, and version_notice apply to bindings connections.

Fields

CCSID

public static int

The CCSID used by the client. It does not apply when connecting directly to

WebSphere MQ in bindings mode.

Changing this value affects the way that the queue manager you connect to

translates information in the WebSphere MQ headers. All data in WebSphere MQ

headers is drawn from the invariant part of the ASCII codeset, except for the data

in the MQMessage.applicationIdData and MQMessage.putApplicationName fields.

If you avoid using characters from the variant part of the ASCII codeset for these

two fields, then the CCSID can be changed from 819 to any other ASCII codeset.

If you change the client CCSID to be the same as that of the queue manager to

which you are connecting, you gain a performance benefit at the queue manager

because it does not attempt to translate the message headers.

The default value is 819.

channel

public static java.lang.String

The name of the channel to connect to on the target queue manager. It does not

apply when connecting directly to WebSphere MQ in bindings mode. You must set

this field, or the corresponding property, before constructing an MQQueueManager

instance for use in client mode.

connOptions

public static int

The queue manager connection options. Possible values are:

v MQC.MQCNO_STANDARD_BINDING

v MQC.MQCNO_FASTPATH_BINDING

v MQC.MQCNO_ISOLATED_BINDING

MQEnvironment

118 Using Java

v MQC.MQCNO_SHARED_BINDING

v MQC.MQCNO_RESTRICT_CONN_TAG_Q_MGR

v MQC.MQCNO_RESTRICT_CONN_TAG_QSG

v MQC.MQCNO_SERIALIZE_CONN_TAG_Q_MGR

v MQC.MQCNO_SERIALIZE_CONN_TAG_QSG

connTag

public static byte[]

The connection tag which allows users to serialize access to the resources they are

using on a z/OS queue manager. The connTag String is truncated to 128 bytes.

connTag is ignored if connOptions is not set.

hdrCompList

public static java.util.Collection

The list of supported compressors for header compression. Possible values are:

v MQC.MQCOMPRESS_NONE

v MQC.MQCOMPRESS_SYSTEM

hostname

public static java.lang.String

The TCP/IP hostname of the machine on which the WebSphere MQ server resides.

If the hostname is not set, and no overriding properties are set, bindings mode is

used to connect to the local queue manager.

localAddressSetting

public static java.lang.String

The local address, including a range of ports, used when connecting to a

WebSphere MQ queue manager through a firewall. The format is

[ip-addr][(low-port[,high-port])].

Here are some examples:

9.20.4.98

The channel binds to address 9.20.4.98 locally

9.20.4.98(1000)

The channel binds to address 9.20.4.98 locally and uses port 1000

9.20.4.98(1000,2000)

The channel binds to address 9.20.4.98 locally and uses a port in the range

1000 to 2000

(1000) The channel binds to port 1000 locally

(1000,2000)

The channel binds to a port in the range 1000 to 2000 locally

You can specify a host name instead of an IP address. The variable is initialized

from system property com.ibm.mq.localAddress when you start the JVM. The

default value is null.

MQEnvironment

Chapter 9. Package com.ibm.mq 119

msgCompList

public static java.util.Collection

The list of supported compressors for message compression. Possible values are:

v MQC.MQCOMPRESS_NONE, the default.

v MQC.MQCOMPRESS_RLE.

v MQC.MQCOMPRESS_ZLIBFAST.

v MQC.MQCOMPRESS_ZLIBHIGH.

password

public static java.lang.String

The password used to verify the identity of the WebSphere MQ Client. It is

equivalent to the MQEnvironment variable MQ_PASSWORD .

If a security exit is not defined for this client, the value of password is transmitted

to the server and is available to the server security exit when it is invoked.

The default value is ″″ (empty string).

port

public static int

The port to be used. This is the port on which WebSphere MQ listens for

connection requests.

The default value is 1414.

properties

public static java.util.Hashtable

A Hashtable that defines the WebSphere MQ environment.

This Hashtable allows you to set environment properties as key/value pairs rather

than as individual variables.

The properties can also be passed as a Hashtable in a parameter on the

MQQueueManager constructor. Properties passed on the constructor take

precedence over values set with this properties variable, but they are otherwise

interchangeable. The order of precedence of finding properties is:

1. properties parameter on MQQueueManager constructor

2. MQEnvironment.properties

3. Other MQEnvironment variables

4. Constant default values

The property key names are:

v MQC.CCSID_PROPERTY overrides CCSID.

v MQC.CHANNEL_PROPERTY overrides channel.

v MQC.CONNECT_OPTIONS_PROPERTY overrides connOptions.

v MQC.CONNTAG_PROPERTY overrides connTag.

v MQC.HEADER_COMPRESSION_PROPERTY overrides hdrCompList.

v MQC.MESSAGE_COMPRESSION_PROPERTY overrides msgCompList.

MQEnvironment

120 Using Java

v MQC.HOST_NAME_PROPERTY overrides hostname.

v MQC.LOCAL_ADDRESS_PROPERTY overrides localAddressSetting.

v MQC.PASSWORD_PROPERTY overrides password.

v MQC.PORT_PROPERTY overrides port.

v MQC.RECEIVE_EXIT_PROPERTY overrides receiveExit.

v MQC.SECURITY_EXIT_PROPERTY overrides securityExit.

v MQC.SEND_EXIT_PROPERTY overrides sendExit.

v MQC.SSL_CERT_STORE_PROPERTY overrides sslCertStores.

v MQC.SSL_CIPHER_SUITE_PROPERTY overrides sslCipherSuite.

v MQC.SSL_FIPS_REQUIRED overrides sslFipsRequired.

v MQC.SSL_RESET_COUNT_PROPERTY . overrides sslResetCount.

v MQC.SSL_PEER_NAME_PROPERTY . overrides sslPeerName.

v MQC.SSL_SOCKET_FACTORY_PROPERTY overrides sslSocketFactory.

v MQC.TRANSPORT_PROPERTY forces

MQC.TRANSPORT_MQSERIES_BINDINGS or

MQC.TRANSPORT_MQSERIES_CLIENT.

v MQC.USER_ID_PROPERTY overrides userID.

receiveExit

public static com.ibm.mq.MQReceiveExit

The receive exit used when receiving messages from a queue manager. It allows

you to examine, and possibly alter, data and is normally used in conjunction with

a corresponding send exit at the queue manager.

If you want to provide your own receive exit, define a class that implements the

MQReceiveExit interface, and assign receiveExit to an instance of that class.

If you set this field to null no receive exit is called.

securityExit

public static com.ibm.mq.MQSecurityExit

The security exit used when connecting to a queue manager. It allows you to

customize the security flows that occur when an attempt is made to connect to a

queue manager.

If you want to provide your own security exit, define a class that implements the

MQSecurityExit interface and assign securityExit to an instance of that class.

If you set this field to null no security exit is called.

sendExit

public static com.ibm.mq.MQSendExit

The send exit used when sending messages to a queue manager. It allows you to

examine, and possibly alter, data and is normally used in conjunction with a

corresponding receive exit at the queue manager.

If you want to provide your own send exit, define a class that implements the

MQSendExit interface, and assign sendExit to an instance of that class.

If you set this field to null no send exit is called.

MQEnvironment

Chapter 9. Package com.ibm.mq 121

sslCertStores

public static java.util.Collection

Collection of SSL CertStores. The collection of CertStores (J2SE v1.4 only) is used to

enable WebSphere MQ Java clients to check certificates for revocation in a

Certificate Revocation List (CRL).

sslCipherSuite

public static java.lang.String

The name of the Cipher Suite to be used by SSL. SSL is only valid for a client

connection, and is triggered by setting sslCipherSuite . If sslCipherSuite is not set,

all of the other values are irrelevant and a standard non-SSL connection is used to

connect to the server.

sslFipsRequired

public static boolean

When this is set to true, the only Cipher Suites which can be used on an SSL

connection from this client process are those which are FIPS-enabled. If this has

been set to true and a customized sslSocketFactory has been specified the

customized sslSocketFactory will not be used, as it cant be guaranteed that the

sslSocketFactory is FIPS compliant.

sslPeerName

public static java.lang.String

The Distinguished Name (DN) of the queue manager to be used by SSL. The peer

name is set to indicate that connections will only be allowed where the server is

successfully authenticated as a specific DN.

sslResetCount

public static int

The total number of unencrypted bytes that are sent and received by the initiating

channel MCA before the secret key is reset. The number of bytes includes control

information sent by the message channel agent. A value of 0 disables secret key

reset from occurring.

sslSocketFactory

public static java.lang.Object

The factory to use when connecting with SSL encryption. If sslCipherSuite is set,

this variable can be used to customize all aspects of the SSL connection. For more

information on constructing and customizing SSLSocketFactory instances, refer to

your JSSE provider; for information regarding the use of this variable. If set to null

(default) and SSL encryption is requested, the default SSLSocketFactory is used.

This variable is ignored if sslCipherSuite is null.

userID

public static java.lang.String

The ID used to identify the WebSphere MQ client. It is equivalent to the

WebSphere MQ environment variable MQ_USER_ID.

MQEnvironment

122 Using Java

If no security exit is defined for this client, the value of userID is transmitted to the

server and is available for use by the server security exit.

The default value is ″″ (empty string).

version_notice

public final static java.lang.String

The current version of the WebSphere MQ Java Classes.

Methods

addConnectionPoolToken

public static MQPoolToken addConnectionPoolToken();

Constructs an MQPoolToken and adds it to the set of tokens. The token is returned

to the application to be passed later into removeConnectionPoolToken() method.

Returns

v the token which has been added.

addConnectionPoolToken

public static void addConnectionPoolToken(MQPoolToken token);

Adds a given MQPoolToken to the connection pool. A default ConnectionManager

can use this as a hint; typically, it is enabled only while there is at least one token

in the connection pool.

Parameters

v token - the token to be added.

disableTracing

public static void disableTracing();

This method turns off the WebSphere MQ Client for Java trace facility.

enableTracing

public static void enableTracing(int level);

Turns on tracing at the specified trace level (traces to system.err). Levels are:

0 entry/exit.

1 as above plus error and exceptions.

2 as above plus some parameter and flow information.

3 as above plus data trace for headers flowing between client and queue

manager.

4 as above plus full data trace of all data sent between client and queue

manager.

5 as above plus Java VM method tracing.

Parameters

v level - the level of trace.

enableTracing

public static void enableTracing(int level, OutputStream stream);

MQEnvironment

Chapter 9. Package com.ibm.mq 123

This method turns on tracing at the specified trace level. See enableTracing(int) for

details of levels.

Specifying a FileOutputStream means that in a WebSphere Application Server

version 5 environment, the WebSphere MQ Base Java classes trace is not redirected

to the WebSphere Application Server trace adapter which expects a JMS context.

If the trace string JMSApi=all=enabled is specified within the WebSphere

Application Server version 5 environment at the same time as this is run, it takes

priority and this tracing is disabled.

Parameters

v level - the level of trace.

v stream - the stream to which output is sent.

getDefaultConnectionManager

public static ConnectionManager getDefaultConnectionManager();

Gets the default ConnectionManager.

Returns

v ConnectionManager or null if the default connection manager is an

MQConnectionManager rather than a ConnectionManager.

getQueueManagerReference

public static MQQueueManager getQueueManagerReference(int scope);

Returns an MQQueueManager object reference if one is available within the

specified scope. The scope must be one of MQC.ASSOCIATE_ALL or

MQC.ASSOCIATE_THREAD, and a queue manager must already have been

created with MQC.MQ_QMGR_ASSOCIATION_PROPERTY set to the scope

requested.

If no queue manager has been created within the specified scope, or if

MQC.ASSOCIATE_NONE is specified, this method will return null.

A call to this method is the same as calling

MQEnvironment.getQueueManagerReference(int, Object) with a null Object.

Parameters

v scope - the association scope

Returns

v MQQueueManager, or null if no reference is available.

getQueueManagerReference

public static MQQueueManager getQueueManagerReference(int scope,

 Object context);

Returns an MQQueueManager object reference if one is available within the

specified scope. The scope must be one of MQC.ASSOCIATE_ALL or

MQC.ASSOCIATE_THREAD, and a queue manager must already have been

created with MQC.MQ_QMGR_ASSOCIATION_PROPERTY set to the scope

requested. The supplied Object gives information necessary to identify the

MQQueueManager within the scope; for MQC.ASSOCIATE_ALL and

MQC.ASSOCIATE_THREAD this Object must be a String containing the name of

the queue manager

MQEnvironment

124 Using Java

If no queue manager identified by the supplied Object has been created within the

specified scope, or if MQC.ASSOCIATE_NONE is specified, this method will

return null.

An MQQueueManager object returned by this method will refer to the same

underlying HConn as the MQQueueManager created with

MQC.MQ_QMGR_ASSOCIATION_PROPERTY set, and both will therefore share

the same transaction context. If an attempt is made to create a second

MQQueueManager object on the same context to a different queue manager, then a

separate HConn will be made, and the first and second object will have

independent transaction contexts. These contexts will extend to WebSphere MQ

coordinated JDBC transactions by using

MQQueueManager.getJDBCConnection(XADataSource) on the appropriate queue

manager.

Parameters

v scope - the association scope

v context - an object containing context. Currently this must be a String

specifying a WebSphere MQ queue manager name

Returns

v MQQueueManager, or null if no reference is available.

getVersionNotice

public final static String getVersionNotice();

Gets the current version of the WebSphere MQ Java Classes.

Returns

v the version.

removeConnectionPoolToken

public static void removeConnectionPoolToken(MQPoolToken token);

Removes a token from the connection pool.

Parameters

v token - the token to be removed.

setDefaultConnectionManager

public static void setDefaultConnectionManager(ConnectionManager cxMan);

Sets the default ConnectionManager, and empties the set of MQPoolTokens. The

default ConnectionManager is used no ConnectionManager is specified on the

MQQueueManager constructor. This method requires a JVM at Java 2 V1.3 or later,

with JAAS 1.0 or later installed.

Parameters

v cxMan - the supplied ConnectionManager.

setDefaultConnectionManager

public static void setDefaultConnectionManager(MQConnectionManager mqCxMan);

Sets the supplied MQConnectionManager to be the default ConnectionManager.

The default ConnectionManager is used when no ConnectionManager is specified

on the MQQueueManager constructor. This method also empties the set of

MQPoolTokens.

MQEnvironment

Chapter 9. Package com.ibm.mq 125

Parameters

v mqCxMan - the supplied MQConnectionManager .

traceSystemProperties

public static void traceSystemProperties();

Outputs the current System Properties to trace. Constructs a StringBuffer

containing all the data and traces the entire contents in a single statement. This

means that the results are all traced without the usual preceding timestamp and

class hashcode. (although these will appear on the line above the properties block).

MQEnvironment

126 Using Java

MQExitChain

public class MQExitChain

extends Object

java.lang.Object

 |

 +----com.ibm.mq.MQExitChain

Class used for chaining send and receive user exits. It is not used directly but is

used by MQReceiveExitChain and MQSendExitChain .

Constructors

MQExitChain

public MQExitChain();

Constructor creates an object with no exits defined.

Methods

getExitChain

public List getExitChain();

Gets the exits which have been chained by this object.

Returns

v the exits as a List object.

getReasonCode

public int getReasonCode();

Gets the reason code created in the most recent use of this object.

Returns

v the reason code. See MQException .

MQExitChain

Chapter 9. Package com.ibm.mq 127

MQExternalReceiveExit

public class MQExternalReceiveExit

extends MQExternalUserExit

implements MQReceiveExit

java.lang.Object

 |

 +----com.ibm.mq.MQExternalUserExit

 |

 +----com.ibm.mq.MQExternalReceiveExit

Enables Java code to call a non-Java receive exit. Chaining of exits is implemented

by MQReceiveExitChain.

An MQExternalReceiveExit object holds all the information required to construct

the MQCXP and MQCD structures which are required when calling the non-Java

receive exit.

Constructors

MQExternalReceiveExit

public MQExternalReceiveExit();

The default constructor.

MQExternalReceiveExit

public MQExternalReceiveExit(String libraryName, String entryPointName,

 String userData);

Constructs an object with an exit already defined.

Parameters

v libraryName - the name of the library module which contains the exit.

v entryPointName - the name of the entry point in libraryName used by

the exit.

v userData - the data defined by the user.

Methods

receiveExit

public byte[] receiveExit(MQChannelExit exitParms,

 MQChannelDefinition channelParms,

 byte[] data);

Calls the external user exit.

Parameters

v exitParms - the data on the exit.

v channelParms - the data on the channel.

v data - the raw message data.

Returns

v the raw message data after processing by the exit.

MQExternalReceiveExit

128 Using Java

MQExternalSecurityExit

public class MQExternalSecurityExit

extends MQExternalUserExit

implements MQSecurityExit

java.lang.Object

 |

 +----com.ibm.mq.MQExternalUserExit

 |

 +----com.ibm.mq.MQExternalSecurityExit

Enables Java code to call a non-Java security exit.

An MQExternalSecurityExit object holds all the information required to construct

the MQCXP and MQCD objects which are required when calling the non-Java

security exit.

Constructors

MQExternalSecurityExit

public MQExternalSecurityExit();

The default constructor.

MQExternalSecurityExit

public MQExternalSecurityExit(String libraryName, String entryPointName,

 String userData);

Constructs an object with an exit already defined.

Parameters

v libraryName - the name of the library module which contains the exit.

v entryPointName - the name of the entry point in libraryName used by

the exit.

v userData - the data defined by the user.

Methods

securityExit

public byte[] securityExit(MQChannelExit exitParms,

 MQChannelDefinition channelParms,

 byte[] data);

Calls the external user exit.

Parameters

v exitParms - the data on the exit.

v channelParms - the data on the channel.

v data - the raw message data.

Returns

v the raw message data after processing by the exit.

MQExternalSecurityExit

Chapter 9. Package com.ibm.mq 129

MQExternalSendExit

public class MQExternalSendExit

extends MQExternalUserExit

implements MQSendExit

java.lang.Object

 |

 +----com.ibm.mq.MQExternalUserExit

 |

 +----com.ibm.mq.MQExternalSendExit

Enables Java code to call a non-Java send exit. Chaining of exits is implemented by

MQSendExitChain.

An MQExternalSendExit object holds all the information required to construct the

MQCXP and MQCD structures which are required when calling the non-Java send

exit.

Constructors

MQExternalSendExit

public MQExternalSendExit();

The default constructor.

MQExternalSendExit

public MQExternalSendExit(String libraryName, String entryPointName,

 String userData);

Constructs an object with an exit already defined.

Parameters

v libraryName - the name of the library module which contains the exit.

v entryPointName - the name of the entry point in libraryName used by

the exit.

v userData - the data defined by the user.

Methods

sendExit

public byte[] sendExit(MQChannelExit exitParms,

 MQChannelDefinition channelParms,

 byte[] data);

Calls the external user exit.

Parameters

v exitParms - the data on the exit.

v channelParms - the data on the channel.

v data - the raw message data.

Returns

v the raw message data after processing by the exit.

MQExternalSendExit

130 Using Java

MQExternalUserExit

public class MQExternalUserExit

extends Object

java.lang.Object

 |

 +----com.ibm.mq.MQExternalUserExit

The MQExternalUserExit class is a superclass for MQExternalReceiveExit,

MQExternalSecurityExit and MQExternalSendExit. You cannot create it directly.

Methods

getReasonCode

public int getReasonCode();

Gets the latest reason code.

Returns

v the reason code. See MQException .

getUserData

public String getUserData();

Gets the user data for the exit.

Returns

v the user data.

setEntryPointName

public void setEntryPointName(String entryPointName);

Sets the name of the entry point for an exit.

Parameters

v entryPointName - the name of the entry point.

setLibraryName

public void setLibraryName(String libraryName);

Sets the name of the library module which contains the exit.

Parameters

v libraryName - the library name.

setUserData

public void setUserData(String userData);

Sets the user data for the exit.

Parameters

v userData - the user data.

MQExternalUserExit

Chapter 9. Package com.ibm.mq 131

MQGetMessageOptions

public class MQGetMessageOptions

extends Object

java.lang.Object

 |

 +----com.ibm.mq.MQGetMessageOptions

This class contains options which control the behavior of MQQueue.get().

Constructors

MQGetMessageOptions

public MQGetMessageOptions();

Constructs an MQGetMessageOptions object with options set to

MQC.MQGMO_MO_WAIT, a wait interval of zero, and a blank resolved queue

name.

MQGetMessageOptions

public MQGetMessageOptions(boolean noReadBack);

Constructs an MQGetMessageOptions object with an option on reading the

options field. You can use this constructor to save some overheads if your

application never needs to read back the options field.

Parameters

v noReadBack - if true, prevents the options MQGMO field from being

read back. This means that the overhead of converting it is avoided.

Fields

groupStatus

public char

Whether the retrieved message is in a group, and if it is, whether it is the last in

the group. Possible values are:

v MQC.MQGS_LAST_MSG_IN_GROUP

v MQC.MQGS_MSG_IN_GROUP

v MQC.MQGS_NOT_IN_GROUP

matchOptions

public int

Selection criteria which determine which message is retrieved. The following match

options can be set:

v MQC.MQMO_MATCH_CORREL_ID

v MQC.MQMO_MATCH_GROUP_ID

v MQC.MQMO_MATCH_MSG_ID

v MQC.MQMO_MATCH_MSG_SEQ_NUMBER

v MQC.MQMO_NONE

MQGetMessageOptions

132 Using Java

The default value is MQC.MQMO_MATCH_MSG_ID |

MQC.MQMO_MATCH_CORREL_ID .

msgToken

public byte[]

A token for use when getting messages. It is set either by the queue manager or by

the application in combination with MQMO_MATCH_MSG_TOKEN . The token is

truncated if its size is greater than MQC.MQ_MSG_TOKEN_LENGTH. It is ignored

if it has been set without the corresponding matchOption being set. If matchOption

is set for a platform other than z/OS an attempted get will fail.

options

public int

Options which control the action of MQQueue.get() . Any or none of the following

values can be specified. If more than one option is required the values can

combined using either ’+’ or ’|’.

v MQC.MQGMO_WAIT

v MQC.MQGMO_NO_WAIT

v MQC.MQGMO_SYNCPOINT

v MQC.MQGMO_NO_SYNCPOINT - default

v MQC.MQGMO_BROWSE_FIRST

v MQC.MQGMO_BROWSE_NEXT

v MQC.MQGMO_BROWSE_MSG_UNDER_CURSOR

v MQC.MQGMO_MSG_UNDER_CURSOR

v MQC.MQGMO_LOCK

v MQC.MQGMO_UNLOCK

v MQC.MQGMO_ACCEPT_TRUNCATED_MSG

v MQC.MQGMO_FAIL_IF_QUIESCING

v MQC.MQGMO_CONVERT

resolvedQueueName

public java.lang.String

The local name of the queue from which the message was retrieved. This is the

resolved name as set by the queue manager. It is different from the name used to

open the queue, if an alias queue or model queue was opened.

returnedLength

public int

The length in bytes of the message data. It is set by the queue manager to the

value returned by the MQGET call. If the queue manager does not support this

capability, the value is set to MQC.MQRL_UNDEFINED .

segmentation

public char

Whether segmentation is allowed for the retrieved message. Possible values are:

v MQC.MQSEG_INHIBITED

v MQC.MQSEG_ALLOWED

MQGetMessageOptions

Chapter 9. Package com.ibm.mq 133

segmentStatus

public char

Whether the retrieved message is a segment of a logical message. If the message is

a segment, indicates whether or not it is the last segment. Possible values are:

v MQC.MQSS_LAST_SEGMENT

v MQC.MQSS_NOT_A_SEGMENT

v MQC.MQSS_SEGMENT

waitInterval

public int

The maximum time (in milliseconds) that an MQQueue.get() call waits for a

suitable message to arrive. It is used in conjunction with MQC.MQGMO_WAIT. A

value of MQC.MQWI_UNLIMITED indicates that an unlimited wait is required.

Methods

MQGetMessageOptions

134 Using Java

MQJavaLevel

public class MQJavaLevel

extends Object

java.lang.Object

 |

 +----com.ibm.mq.MQJavaLevel

Displays information about the currently installed version of WebSphere MQ

Classes for Java.

Add this class to the CLASSPATH, and run it using the command java

com.ibm.mq.MQJavaLevel. You can modify the output with the following

parameters:

-b - basic format (no titles)

-f n - fields to display

where nis one, or a combination of, the following digits:

1 Name

2 Version

4 Build ID

8 Build Type

You can add these numbers together (for example, ’3’ displays both the Name and

Version fields). If -f is not specified, the default is to display all fields.

MQJavaLevel

Chapter 9. Package com.ibm.mq 135

MQManagedObject

public class MQManagedObject

extends Object

java.lang.Object

 |

 +----com.ibm.mq.MQManagedObject

MQManagedObject is a superclass for MQDistributionList, MQProcess, MQQueue,

MQQueueManager . It provides the ability to inquire and set attributes of these

objects.

Fields

alternateUserId

public java.lang.String

The alternative user ID specified (if any) when this resource was opened. Setting

this attribute has no effect.

closeOptions

public int

Controls the way the resource is closed. Permitted values are:

v MQC.MQCO_NONE - the default value

v MQC.MQCO_DELETE - permanent dynamic queues only

v MQC.MQCO_DELETE_PURGE - permanent dynamic queues only

connectionReference

public com.ibm.mq.MQQueueManager

The queue manager to which this resource belongs. Setting this attribute has no

effect.

isOpen

public boolean

Deprecated

use the isOpen() method instead.

Indicates whether this resource is currently open. Do not set this attribute.

name

public java.lang.String

The name of this resource. This is either the name supplied by the access method,

or the name allocated by the queue manager for a dynamic queue. Setting this

attribute has no effect.

openOptions

public int

The options specified when this resource was opened. Setting this attribute has no

effect.

MQManagedObject

136 Using Java

Methods

close

public void close() throws MQException;

Closes the object. No further operations on this object are permitted after it is

closed. The behavior of the close method can be altered by setting closeOptions.

Exceptions

v MQException - if the WebSphere MQ call fails.

getAttributeString

public final String getAttributeString(int aSelector, int length)

 throws MQException;

Gets an attribute string.

Parameters

v aSelector - indicates which attribute is being queried. Suitable selectors

for character attributes are shown in MQC.MQCA_*.

v length - the length of string required.

Exceptions

v MQException - if the call fails.

getDescription

public String getDescription() throws MQException;

Gets the description of this resource as held at the queue manager.

Returns

v the description.

Exceptions

v MQException - if this method is called after the resource has been

closed, to indicate that the resource is no longer available.

inquire

public void inquire(int[] selectors, int[] intAttrs, byte[] charAttrs)

 throws MQException;

Queries requested attributes of the object.

Many of the common attribute values can be queried using the getXXX() methods

defined in MQManagedObject, MQQueue, MQQueueManager and MQProcess.

Parameters

v selectors - indicates which attributes are being queried. Suitable selectors

for character attributes are shown in MQC.MQCA_*. Suitable selectors

for integer attributes are shown in MQC.MQIA_*.

v intAttrs - the requested attribute values in the same order as in

selectors.

v charAttrs - the requested character attributes, concatenated together and

in the same order as in selectors.

Exceptions

v MQException - if the inquire fails.

MQManagedObject

Chapter 9. Package com.ibm.mq 137

isOpen

public boolean isOpen();

Indicates whether this object is open.

Returns

v true if the object is open.

set

public void set(int[] selectors, int[] intAttrs, byte[] charAttrs)

 throws MQException;

Sets requested attributes of the object.

Note that many of the more common attribute values can be set using the setXXX()

methods defined in MQQueue .

Parameters

v selectors - indicates which attributes are being set. Suitable selectors for

character attributes are shown in MQC.MQCA_*. Suitable selectors for

integer attributes are shown in MQC.MQIA_*.

v intAttrs - the requested attribute values in the same order as in selectors.

v charAttrs - the requested character attributes, concatenated together and

in the same order as in selectors.

Exceptions

v MQException - if the inquire fails.

setAttributeString

public final void setAttributeString(int aSelector, String aValue,

 int length) throws MQException;

Sets an attribute string.

Parameters

v aSelector - integer which indicates which attribute is being set. Suitable

selectors for character attributes are shown in MQC.MQCA_*. Please

refer to WebSphere MQ Application Programming Reference for further

details.

v aValue - the value of the attribute.

v length - the number of characters of aValue to set.

Exceptions

v MQException - if the call fails.

MQManagedObject

138 Using Java

MQMD

public class MQMD

extends Object

java.lang.Object

 |

 +----com.ibm.mq.MQMD

The MQMD class contains the control information that accompanies the application

data when a message travels between the sending and receiving applications.

Character data in the message descriptor is in the character set of the queue

manager to which the application is connected; this is given by the

CodedCharSetId queue manager attribute. Numeric data in the message descriptor

is in the native machine encoding (given by MQENC_NATIVE).

If the sending and receiving queue managers use different character sets or

encodings, the data in the message descriptor is converted automatically - it is not

necessary for the receiving application to perform these conversions.

You can write an exit to convert an application’s message data, which is invoked

when an MQGET call retrieves the message.

Fields

accountingToken

public byte[]

The accounting token. This is part of the identity of the message and it allows

work done as a result of the message to be appropriately charged.

The default value is an array of zeros.

applicationIdData

public java.lang.String

Application ID data. It is part of the identity context of the message - information

defined by the application suite; it can be used to provide additional information

about the message or its originator.

The default value is ″″ (empty string).

applicationOriginData

public java.lang.String

Data about the originating application. This can be used by the application to

provide additional information about the origin of the message.

The default value is ″″ (empty string).

backoutCount

public int

The number of times the message has been backed out. This is the number of

times the message has been returned by MQQueue.get(), as part of a unit of work,

and subsequently backed out.

MQMD

Chapter 9. Package com.ibm.mq 139

The default value is zero.

characterSet

public int

The coded character set identifier of character data in the application message data.

It alters the behavior of MQMessage.readString(), MQMessage.readLine() and

MQMessage.writeString() .

The default value for this field is MQC.MQCCSI_Q_MGR . The following

additional character set values are supported:

850 commonly used ASCII codeset

819 the ISO standard ASCII codeset

37 the American EBCDIC codeset

1200 Unicode

1208 UTF-8

correlationId

public byte[]

Specifies the correlation identifier of the message to be retrieved. This applies to

MQQueue.get(). Normally the queue manager returns the first message whose

message identifier and correlation identifier match those specified. The special

value MQC.MQCI_NONE allows any correlation identifier to match.

For MQQueue.get() this specifies the correlation identifier to use.

The default value is MQC.MQCI_NONE.

encoding

public int

Specifies the representation used for numeric values in the application message

data. This applies to binary, packed decimal and floating point data. The behavior

of the read and write methods for these numeric formats is altered accordingly.

The following encodings are defined:

 binary packed decimal floating point

big-endian MQC.MQENC_INTEGER_NORMAL MQC.MQENC_DECIMAL_NORMAL MQC.MQENC_FLOAT_IEEE_NORMAL

little-endian MQC.MQENC_INTEGER_REVERSED MQC.MQENC_DECIMAL_REVERSED MQC.MQENC_FLOAT_IEEE_REVERSED

zSeries MQC.MQENC_INTEGER_NORMAL MQENC_DECIMAL_NORMAL MQC.MQENC_FLOAT_S390

You can construct a value for the encoding field by combining one value from each

row of the table by use of ’+’ or ’|’ operators. The default value is

MQC.MQENC_INTEGER_NORMAL | MQC.MQENC_DECIMAL_NORMAL |

MQC.MQENC_FLOAT_IEEE_NORMAL. For convenience this value is also

represented by MQC.MQENC_NATIVE. This setting causes MQMessage.writeInt()

to write, for example, a big-endian integer, and MQMessage.readInt() to read a

big-endian integer.

MQMD

140 Using Java

A loss in precision can occur when converting from IEEE format floating point

values to zSeries format floating point values.

expiry

public int

The expiry time (in tenths of a second). It is set by the application which puts the

message. After a message’s expiry time has elapsed, it is eligible to be discarded by

the queue manager. If the message specified one of the MQC.MQRO_EXPIRATION

flags, then a report is generated when the message is discarded.

The default value is MQC.MQEI_UNLIMITED, which means that the message

never expires.

feedback

public int

The nature of the feedback report. It is used with a message of type

MQC.MQMT_REPORT to indicate the nature of the report. The following feedback

codes are defined:

v MQC.MQFB_EXPIRATION

v MQC.MQFB_COA

v MQC.MQFB_COD

v MQC.MQFB_QUIT

v MQFB_NONE

v MQC.MQFB_SYSTEM_FIRST

v MQC.MQFB_APPL_CANNOT_BE_STARTED

v MQC.MQFB_TM_ERROR

v MQC.MQFB_APPL_TYPE_ERROR

v MQC.MQFB_STOPPED_BY_MSG_EXIT

v MQC.MQFB_XMIT_Q_MSG_ERROR

v MQC.MQFB_SYSTEM_LAST

v MQC.MQFB_ACTIVITY

v MQC.MQFB_MAX_ACTIVITIES

v MQC.MQFB_NOT_FORWARDED

v MQC.MQFB_NOT_DELIVERED

v MQC.MQFB_UNSUPPORTED_FORWARDING

v MQC.MQFB_UNSUPPORTED_DELIVERY

Application-defined feedback values in the range MQC.MQFB_APPL_FIRST to

MQC.MQFB_APPL_LAST can also be used.

The default value of this field is MQC.MQFB_NONE , indicating that no feedback

is provided.

format

public java.lang.String

A name which indicates the nature of the data in the message. It is set by the

sender. You can use your own format names, but names beginning with the letters

″MQ″ have meanings that are defined by the queue manager. The queue manager

built-in formats are:

MQMD

Chapter 9. Package com.ibm.mq 141

v MQC.MQFMT_NONE

v MQC.MQFMT_ADMIN

v MQC.MQFMT_COMMAND_1

v MQC.MQFMT_COMMAND_2

v MQC.MQFMT_DEAD_LETTER_HEADER

v MQC.MQFMT_EVENT

v MQC.MQFMT_MD_EXTENSION

v MQC.MQFMT_PCF

v MQC.MQFMT_STRING

v MQC.MQFMT_TRIGGER

v MQC.MQFMT_XMIT_Q_HEADER

The default value is MQC.MQFMT_NONE.

groupId

public byte[]

The ID of the message group. This identifies the message group to which the

message belongs.

messageFlags

public int

Flags controlling the segmentation and status of the message. Possible values are:

v MQC.MQMF_NONE, the default

v MQC.MQMF_SEGMENTATION_INHIBITED

v MQC.MQMF_SEGMENTATION_ALLOWED

v MQC.MQMF_SEGMENT

v MQC.MQMF_LAST_SEGMENT

v MQC.MQMF_MSG_IN_GROUP

v MQC.MQMF_LAST_MSG_IN_GROUP

messageId

public byte[]

Specifies the message identifier of the message to be retrieved. This applies to

MQQueue.get(). Normally the queue manager returns the first message whose

message identifier and correlation identifier match those specified. The special

value MQC.MQMI_NONE allows any message identifier to match.

For MQQueue.put() this specifies the message identifier to use. If

MQC.MQMI_NONE is specified, the queue manager generates a unique message

identifier when the message is put. The value of this field is updated after the put

to indicate the message identifier that was used.

The default value is MQC.MQMI_NONE.

messageSequenceNumber

public int

Sequence number of logical message within group.

MQMD

142 Using Java

messageType

public int

Indicates the type of the message. The following values are currently defined:

v MQC.MQMT_DATAGRAM

v MQC.MQMT_REQUEST

v MQC.MQMT_REPLY

v MQC.MQMT_REPORT

Application defined values can also be used; these can be in the range

MQMT_APPL_FIRST to MQMT_APPL_LAST .

The default value of this field is MQC.MQMT_DATAGRAM .

offset

public int

Offset of data in the physical message from the start of the logical message.

originalLength

public int

Original length of a segmented message.

persistence

public int

The message persistence. The following values are defined:

v MQC.MQPER_PERSISTENT

v MQC.MQPER_NOT_PERSISTENT

v MQC.MQPER_PERSISTENCE_AS_Q_DEF

The default value is MQC.MQPER_PERSISTENCE_AS_Q_DEF

priority

public int

The message priority. The default value is MQC.MQPRI_PRIORITY_AS_Q_DEF .

putApplicationName

public java.lang.String

The name of the application that put the message. The default value is ″″ (empty

string).

putApplicationType

public int

The type of application that put the message. The value can be defined by the

system or by the user. The following values are defined by the system:

v MQC.MQAT_AIX

v MQC.MQAT_CICS

v MQC.MQAT_DOS

v MQC.MQAT_IMS

MQMD

Chapter 9. Package com.ibm.mq 143

v MQC.MQAT_MVS

v MQC.MQAT_OS2

v MQC.MQAT_OS400

v MQC.MQAT_QMGR

v MQC.MQAT_UNIX

v MQC.MQAT_WINDOWS

v MQC.MQAT_JAVA

v MQC.MQAT_UNKNOWN

v MQC.MQAT_NO_CONTEXT

v MQC.MQAT_CICS_VSE

v MQC.MQAT_VMS

v MQC.MQAT_GUARDIAN

v MQC.MQAT_VOS

v MQC.MQAT_DEFAULT

v MQC.MQAT_NSK

v MQC.MQAT_CICS_BRIDGE

v MQC.MQAT_NOTES_AGENT

v MQC.MQAT_WINDOWS_NT

v MQC.MQAT_IMS_BRIDGE

v MQC.MQAT_XCF

The default value is the special value MQC.MQAT_NO_CONTEXT, which

indicates that no context information is present in the message.

putDateTime

public java.util.GregorianCalendar

The time and date when the message was put.

replyToQueueManagerName

public java.lang.String

The name of the queue manager to which reply or report messages can be sent.

The default value is ″″ (empty string).

replyToQueueName

public java.lang.String

The name of the queue to which a reply can be sent. The application that issued

the get request for the message can send MQC.MQFMT_REPLY and

MQC.MQFMT_REPORT messages to this queue.

The default value is ″″ (empty string).

report

public int

A report message about another message. This field enables the application

sending the original message to specify which report messages are required,

whether the application message data is to be included in them, and also how the

message and correlation ID in the report or reply are to be set. It comprises one or

MQMD

144 Using Java

more constants from the MQC class combined by means of the ’+’ or ’|’ operators.

You can select one type from each row of the following table:

 basic with data with full data

Exception MQC.MQRO_EXCEPTION MQC.MQRO_EXCEPTION_WITH_DATA MQC.MQRO_EXCEPTION_WITH_FULL_DATA

Expiration MQC.MQRO_EXPIRATION MQC.MQRO_EXPIRATION_WITH_DATA MQC.MQRO_EXPIRATION_WITH_FULL_DATA

Confirm on

arrival

MQC.MQRO_COA MQC.MQRO_COA_WITH_DATA MQC.MQRO_COA_WITH_FULL_DATA

Confirm on

delivery

MQC.MQRO_COD MQC.MQRO_COD_WITH_DATA MQC.MQRO_COD_WITH_FULL_DATA

You can specify how the message ID is generated for the report or reply message:

v MQC.MQRO_NEW_MSG_ID

v MQC.MQRO_PASS_MSG_ID

You can specify one of the following to control how to set the correlation ID of the

report or reply message:

v MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID

v MQC.MQRO_PASS_CORREL_ID

You can specify the following to pass the discard option and expiry time of the

original message to the report or reply message:

v MQC.MQRO_PASS_DISCARD_AND_EXPIRY

You can specify one of the following to control the disposition of the original

message when it cannot be delivered to the destination queue:

v MQC.MQRO_DEAD_LETTER_Q

v MQC.MQRO_DISCARD_MSG

v MQC.MQRO_PASS_DISCARD_AND_EXPIRY

If no report options are specified, the default is MQC.MQRO_NEW_MSG_ID |

MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID | MQC.MQRO_DEAD_LETTER_Q

.

userId

public java.lang.String

The user ID. It is part of the identity of the message and identifies which user

originated it.

The default value is ″″ (empty string).

Methods

getVersion

public int getVersion();

Gets the version of the message.

Returns

v the version.

MQMD

Chapter 9. Package com.ibm.mq 145

setVersion

public void setVersion(int version) throws MQException;

Sets the version of the message.

Parameters

v version - the value to be set.

Exceptions

v MQException - if the value of the version is inconsistent.

MQMD

146 Using Java

MQMessage

public class MQMessage

extends MQMD

implements DataInputDataOutput

java.lang.Object

 |

 +----com.ibm.mq.MQMD

 |

 +----com.ibm.mq.MQMessage

MQMessage represents both the message descriptor and the data for a WebSphere

MQ message. It has a group of methods for reading data from a message and a

group of methods for writing data into a message. The format of numbers and

strings used by these read and write methods is controlled by the encoding and

characterSet fields. The remaining fields contain control information which

accompanies the application message data when a message travels between

sending and receiving applications.

Constructors

MQMessage

public MQMessage();

The default constructor. This creates a message with default message descriptor

information and an empty message buffer.

Methods

clearMessage

public void clearMessage() throws IOException;

Discards any data in the message buffer and sets the cursor position to zero.

Exceptions

v IOException - if there is a problem with IO.

getDataLength

public int getDataLength() throws IOException;

Gets the number of bytes of message data remaining to be read.

getDataOffset

public int getDataOffset() throws IOException;

Returns the current cursor position within the message data (the point at which

read and write operations take effect).

Returns

v the cursor position.

Exceptions

v IOException - if there is a problem with IO.

MQMessage

Chapter 9. Package com.ibm.mq 147

getMessageLength

public int getMessageLength() throws IOException;

Gets the number of bytes of message data in this message.

Returns

v the number of bytes.

Exceptions

v IOException - if there is a problem with IO.

getTotalMessageLength

public int getTotalMessageLength();

Gets the total number of bytes in the message as stored on the message queue on

which this message was held. This method reports the total size of the message on

the queue when an MQQueue.get() method fails with an error code which

indicates that the message has been truncated.

readBoolean

public boolean readBoolean() throws IOException, EOFException;

Reads a boolean from the current position in the message buffer.

Returns

v the boolean.

Exceptions

v IOException - if there is a problem with IO.

v EOFException - if the read goes beyond the end of file.

readByte

public byte readByte() throws IOException, EOFException;

Reads a byte from the current position in the message buffer.

Returns

v the (signed) byte.

Exceptions

v IOException - if there is a problem with IO.

v EOFException - if the read goes beyond the end of file.

readChar

public char readChar() throws IOException, EOFException;

Reads a character from the current position in the message buffer.

Returns

v the Unicode character.

Exceptions

v IOException - if there is a problem with IO.

v EOFException - if the read goes beyond the end of file.

MQMessage

148 Using Java

readDecimal2

public short readDecimal2() throws IOException;

Reads a 2-byte packed decimal number in the range -999 to 999.

Returns

v a big-endian short if encoding equals

MQC.MQENC_DECIMAL_NORMAL or a little-endian short if it equals

MQC.MQENC_DECIMAL_REVERSED.

Exceptions

v IOException - if there is a problem with IO.

readDecimal4

public int readDecimal4() throws IOException;

Reads a 4-byte packed decimal number in the range -9,999,999 to 9,999,999.

Returns

v a big-endian int if encoding equals MQC.MQENC_DECIMAL_NORMAL

or a little-endian int if it equals MQC.MQENC_DECIMAL_REVERSED.

Exceptions

v IOException - if there is a problem with IO.

readDecimal8

public long readDecimal8() throws IOException;

Reads an 8-byte packed decimal number in the range -999,999,999,999,999 to

999,999,999,999,999.

Returns

v a big-endian long if encoding equals

MQC.MQENC_DECIMAL_NORMAL or a little-endian long if it equals

MQC.MQENC_DECIMAL_REVERSED.

Exceptions

v IOException - if there is a problem with IO.

readDouble

public double readDouble() throws IOException, EOFException;

Reads a double from the current position in the message buffer.

Returns

v a big-endian double if encoding is equal to

MQC.MQENC_INTEGER_NORMAL, or a little-endian double if it is

equal to MQC.MQENC_INTEGER_REVERSED .

Exceptions

v IOException - if encoding is not equal to either of these values.

v EOFException - if the read goes beyond the end of file.

readFloat

public float readFloat() throws IOException, EOFException;

Reads a double from the current position in the message buffer.

MQMessage

Chapter 9. Package com.ibm.mq 149

Returns

v a big-endian float if encoding equals

MQC.MQENC_INTEGER_NORMAL, a little-endian float if it equals

MQC.MQENC_INTEGER_REVERSED, or a zSeries format floating point

number if it equals MQC.MQENC_FLOAT_S390.

Exceptions

v IOException - if encoding is none of these.

v EOFException - if the read goes beyond the end of file.

readFully

public void readFully(byte[] b) throws IOException;

Fills a byte array with data from the message buffer.

Parameters

v b - the byte array.

Exceptions

v IOException - if there is a problem with IO.

readFully

public void readFully(byte[] b, int off, int len) throws IOException;

Partly fills a byte array with data from the message buffer.

Parameters

v b - the byte array.

v off - the offset into the message buffer where the reading starts.

v len - the number of bytes to be read.

Exceptions

v IOException - if there is a problem with IO.

readInt

public int readInt() throws IOException;

Reads an integer from the current position in the message buffer.

Returns

v a big-endian integer if encoding is equal to

MQC.MQENC_INTEGER_NORMAL, or a little-endian integer if it is

equal to MQC.MQENC_INTEGER_REVERSED .

Exceptions

v IOException - if there is a problem with IO.

readInt2

public short readInt2() throws IOException;

Identical to readShort(). Provided for cross-language WebSphere MQ API

compatibility.

Returns

v a big-endian short if encoding is equal to

MQC.MQENC_INTEGER_NORMAL, or a little-endian short if it is equal

to MQC.MQENC_INTEGER_REVERSED .

MQMessage

150 Using Java

Exceptions

v IOException - if there is a problem with IO.

readInt4

public int readInt4() throws IOException;

Synonym for readInt(), provided for cross-language WebSphere MQ API

compatibility.

Exceptions

v IOException - if there is a problem with IO.

readInt8

public long readInt8() throws IOException;

Identical to readLong(). Provided for cross-language WebSphere MQ API

compatibility.

Returns

v a big-endian long if encoding is equal to

MQC.MQENC_INTEGER_NORMAL, or a little-endian long if it is equal

to MQC.MQENC_INTEGER_REVERSED .

Exceptions

v IOException - if encoding is not equal to either of these values.

readLine

public String readLine() throws IOException;

Reads a line of text from the message. Converts from the codeset identified in

characterSet, and then reads in a line that has been terminated by \n, \r, \r\n,

EOF or the end of a UTF string.

Returns

v the returned string, in Unicode.

Exceptions

v IOException - if there is a problem with IO.

readLong

public long readLong() throws IOException;

Reads an integer from the current position in the message buffer.

Returns

v a big-endian long if encoding is equal to

MQC.MQENC_INTEGER_NORMAL, or a little-endian long if it is equal

to MQC.MQENC_INTEGER_REVERSED .

Exceptions

v IOException - if encoding is not equal to either of these values.

readMQMDE

public void readMQMDE() throws MQException, IOException;

MQMessage

Chapter 9. Package com.ibm.mq 151

Reads an imbedded extended MQMD object. It uses extended MQMD information

to update encoding, characterSet, format, groupId, messageSequenceNumber,

offset, messageFlags and originalLength fields. Only call this method if format is

MQC.MQFMT_MD_EXTENSION .

Exceptions

v IOException - if there is a problem with IO.

v EOFException - if the read goes beyond the end of file.

readObject

public Object readObject() throws ClassNotFoundException,

 InvalidClassException, StreamCorruptedException,

 OptionalDataException, IOException;

Reads an object carried in the message.

Returns

v the Object.

Exceptions

v ClassNotFoundException -

v InvalidClassException -

v StreamCorruptedException -

v OptionalDataException -

v IOException -

readShort

public short readShort() throws IOException;

Reads a short from the current position in the message buffer.

Returns

v a big-endian short if encoding is equal to

MQC.MQENC_INTEGER_NORMAL, or a little-endian short if it is equal

to MQC.MQENC_INTEGER_REVERSED .

Exceptions

v IOException - if encoding is not equal to either of these values.

readString

public String readString(int length) throws IOException;

Reads a string in the codeset identified by characterSet and converts it into

Unicode.

Parameters

v length - The number of characters to read (which might differ from the

number of bytes according to the codeset, since some codesets use more

than one byte per character).

readStringOfByteLength

public String readStringOfByteLength(int numberOfBytes)

 throws IOException, EOFException;

MQMessage

152 Using Java

Reads a specified number of bytes and uses them to construct a new string using

the character set specified by characterSet. When the given bytes are not valid in

the given charset, the behavior of this method is dependant on the implementation

of the JRE.

Where the byte length of a string is known, read the entire String in a single

invocation of this method. This will avoid problems where byte and char

boundaries do not coincide.

Parameters

v numberOfBytes - The number of bytes to read.

Returns

v the string.

Exceptions

v IOException - if there is a problem with IO.

readStringOfCharLength

public String readStringOfCharLength(int numberOfChars)

 throws IOException, EOFException;

Reads a string in the codeset identified by characterSet and converts it into

Unicode.

Parameters

v numberOfChars - The number of characters to read (which might differ

from the number of bytes according to the codeset, because some

codesets use more than one byte per character).

Returns

v the string.

Exceptions

v IOException - if there is a problem with IO.

readUInt2

public int readUInt2() throws IOException;

Identical to readUnsignedShort(), provided for cross-language WebSphere MQ API

compatibility.

Returns

v an int which contains a big-endian short if encoding is equal to

MQC.MQENC_INTEGER_NORMAL, or a little-endian short if it is equal

to MQC.MQENC_INTEGER_REVERSED.

Exceptions

v IOException - if there is a problem with IO.

readUnsignedByte

public int readUnsignedByte() throws IOException;

Reads an unsigned byte from the current position in the message buffer.

Returns

v an int which contains the value.

Exceptions

MQMessage

Chapter 9. Package com.ibm.mq 153

v IOException - if there is a problem with IO.

readUnsignedShort

public int readUnsignedShort() throws IOException;

Reads an unsigned short from the current position in the message buffer.

Returns

v an int which contains a big-endian short if encoding is equal to

MQC.MQENC_INTEGER_NORMAL, or a little-endian short if it is equal

to MQC.MQENC_INTEGER_REVERSED.

Exceptions

v IOException - if encoding is not equal to either of these values.

readUTF

public String readUTF() throws IOException;

Reads a UTF format String from the current position in the message buffer.

Returns

v the String.

Exceptions

v IOException - if there is a problem with IO.

resizeBuffer

public void resizeBuffer(int size) throws IOException;

Indicates to the MQMessage class the size of buffer that might be required. If the

message currently contains message data and the new size is less than the current

size, the message data is truncated. If this message is subsequently used with

MQQueue.get(), then this is the size of buffer allocated for the get request.

Exceptions

v IOException - if there is a problem with IO.

seek

public void seek(int offset) throws EOFException;

Moves the cursor to a new absolute position in the message buffer. Subsequent

reads and writes will start from this position in the buffer.

Parameters

v offset - the new value of the cursor position.

Exceptions

v EOFException - if offset takes cursor outside the message data.

setDataOffset

public void setDataOffset(int offset) throws EOFException;

Moves the cursor to a new absolute position in the message buffer. This method is

identical to seek(), and is provided for cross-language compatibility with the other

WebSphere MQ APIs.

Parameters

v offset - the new value of the cursor position.

MQMessage

154 Using Java

Exceptions

v EOFException - if offset takes cursor outside the message data.

skipBytes

public int skipBytes(int n) throws IOException, EOFException;

Moves the cursor forward in the message buffer.

Parameters

v n - the number of bytes to move.

Returns

v the number of bytes actually moved.

Exceptions

v IOException - if there is a problem with IO.

v EOFException - if the skip goes beyond the end of file.

write

public void write(byte[] b) throws IOException;

Writes an array of bytes into the message buffer at the current position.

Parameters

v b - the array to be written.

Returns

v the array to be written.

Exceptions

v IOException - if there is a problem with IO.

write

public void write(byte[] b, int off, int len) throws IOException;

Writes a series of bytes into the message buffer at the current position.

Parameters

v b - the array from which the bytes are written.

v off - the offset to the first byte in the array to be written.

v len - the number of bytes to be written.

Exceptions

v IOException - if there is a problem with IO.

write

public void write(int b) throws IOException;

Writes a byte into the message buffer at the current position.

Parameters

v b - the byte to be written

Exceptions

v IOException - if there is a problem with IO.

MQMessage

Chapter 9. Package com.ibm.mq 155

writeBoolean

public void writeBoolean(boolean v) throws IOException;

Writes a boolean into the message buffer at the current position.

Parameters

v v - the boolean to be written.

Exceptions

v IOException - if there is a problem with IO.

writeByte

public void writeByte(int v) throws IOException;

Writes a byte into the message buffer at the current position.

Parameters

v v - the byte to be written.

Exceptions

v IOException - if there is a problem with IO.

writeBytes

public void writeBytes(String s) throws IOException;

Writes a String as a sequence of bytes into the message buffer at the current

position.

Parameters

v s - the String to be written.

Exceptions

v IOException - if there is a problem with IO.

writeChar

public void writeChar(int v) throws IOException;

Writes a Unicode character into the message buffer at the current position.

Parameters

v v - the character to be written, expressed as an int.

Exceptions

v IOException - if there is a problem with IO.

writeChars

public void writeChars(String s) throws IOException;

Writes a String as a sequence of Unicode characters into the message buffer at the

current position.

Parameters

v s - the String to be written.

Exceptions

v IOException - if there is a problem with IO.

writeDecimal2

public void writeDecimal2(short v) throws IOException;

MQMessage

156 Using Java

Writes a 2-byte packed decimal format number into the message buffer at the

current position. The behavior of this method is determined by encoding. A value

of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed decimal and a

value of MQC.MQENC_DECIMAL_REVERSED writes a little-endian packed

decimal.

Parameters

v v - is the number to be written in the range -999 to 999.

Exceptions

v IOException - if there is a problem with IO.

writeDecimal4

public void writeDecimal4(int v) throws IOException;

Writes a 4-byte packed decimal format number into the message buffer at the

current position. The behavior of this method is determined by encoding. A value

of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed decimal and a

value of MQC.MQENC_DECIMAL_REVERSED writes a little-endian packed

decimal.

Parameters

v v - is the number to be written in the range -9,999,999 to 9,999,999.

Exceptions

v IOException - if there is a problem with IO.

writeDecimal8

public void writeDecimal8(long v) throws IOException;

Writes an 8-byte packed decimal format number into the message buffer at the

current position. The behavior of this method is determined by encoding. A value

of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed decimal and a

value of MQC.MQENC_DECIMAL_REVERSED writes a little-endian packed

decimal.

Parameters

v v - is the number to be written int the range -999,999,999,999,999 to

999,999,999,999,999.

Exceptions

v IOException - if there is a problem with IO.

writeDouble

public void writeDouble(double v) throws IOException;

Writes a double into the message buffer at the current position. The behavior of

this method is determined by encoding.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and

MQENC_IEEE_FLOAT_REVERSED write IEEE standard floats in big-endian and

little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 writes a zSeries format floating point

number. Note that the range of IEEE doubles is greater than the range of zSeries

double precision floating point numbers, and that very large numbers cannot be

converted.

MQMessage

Chapter 9. Package com.ibm.mq 157

Parameters

v v - the double to be written.

Exceptions

v IOException - if there is a problem with IO.

writeFloat

public void writeFloat(float v) throws IOException;

Writes a float into the message buffer at the current position. The behavior of this

method is determined by encoding.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and

MQENC_IEEE_FLOAT_REVERSED write IEEE standard floats in big-endian and

little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 writes a zSeries format floating point

number. Note that the range of IEEE doubles is greater than the range of zSeries

double precision floating point numbers, and that very large numbers cannot be

converted.

Parameters

v v - the float to be written.

Exceptions

v IOException - if there is a problem with IO.

writeInt

public void writeInt(int v) throws IOException;

Writes an int into the message buffer at the current position. The behavior of this

method is determined by encoding.

Values of MQC.MQENC_INTEGER_NORMAL and

MQC.MQENC_INTEGER_REVERSED write integers in big-endian and little-endian

formats respectively.

Parameters

v v - the int to be written.

Exceptions

v IOException - if there is a problem with IO.

writeInt2

public void writeInt2(int v) throws IOException;

Identical to writeShort(), provided for cross-language WebSphere MQ API

compatibility.

Parameters

v v - the long to be written.

Exceptions

v IOException - if there is a problem with IO.

writeInt4

public void writeInt4(int v) throws IOException;

MQMessage

158 Using Java

Synonym for writeInt(), provided for cross-language WebSphere MQ API

compatibility.

Exceptions

v IOException - if there is a problem with IO.

writeInt8

public void writeInt8(long v) throws IOException;

Synonym for writeLong(), provided for cross-language WebSphere MQ API

compatibility.

Exceptions

v IOException - if there is a problem with IO.

writeLong

public void writeLong(long v) throws IOException;

Writes a long into the message buffer at the current position. The behavior of this

method is determined by encoding.

Values of MQC.MQENC_INTEGER_NORMAL and

MQC.MQENC_INTEGER_REVERSED write longs in big-endian and little-endian

formats respectively.

Parameters

v v - the long to be written.

Exceptions

v IOException - if there is a problem with IO.

writeMQMDE

public void writeMQMDE() throws IOException, MQException;

Writes an extended MQMD object into the message at the current position. Values

for the MQMDE are drawn from the field values: encoding, characterSet, format,

groupId, messageSequenceNumber, offset, messageFlags and originalLength

fields. The current value of the format field is written into the MDE, and the

format field is then set to MQFMT_MD_EXTENSION.

Exceptions

v IOException - if there is a problem with IO.

v EOFException - if the read goes beyond the end of file.

writeObject

public void writeObject(Object obj) throws IOException;

Writes an Object into the message.

Parameters

v obj - the Object to be written.

Exceptions

v IOException - if there is a problem with IO.

writeShort

public void writeShort(int v) throws IOException;

MQMessage

Chapter 9. Package com.ibm.mq 159

Writes a short into the message buffer at the current position. The behavior of this

method is determined by encoding.

Values of MQC.MQENC_INTEGER_NORMAL and

MQC.MQENC_INTEGER_REVERSED write shorts in big-endian and little-endian

formats respectively.

A value of MQC.MQENC_FLOAT_S390 writes a zSeries format floating point

number.

Parameters

v v - the long to be written.

Exceptions

v IOException - if there is a problem with IO.

writeString

public void writeString(String s) throws IOException;

Writes a String into the message buffer at the current position, converting it to the

codeset identified by characterSet.

Parameters

v s - the String to be written.

Exceptions

v IOException - if there is a problem with IO.

writeUTF

public void writeUTF(String str) throws IOException;

Writes a String in UTF format into the message buffer at the current position.

Parameters

v str - the String to be written.

Exceptions

v IOException - if there is a problem with IO.

MQMessage

160 Using Java

MQPoolToken

public class MQPoolToken

extends Object

java.lang.Object

 |

 +----com.ibm.mq.MQPoolToken

The MQPoolToken is used in conjunction with MQEnvironment to allow

application components to exercise control over the default connection manager.

Typically, an application component constructs an MQPoolToken and registers it

with MQEnvironment prior to using WebSphere MQ, and removes the

MQPoolToken when it has finished using WebSphere MQ.

The default connection manager can keep track of the number of registered tokens

via an MQPoolServices object. It typically destroys any MQManagedConnections in

the pool, when the number of registered MQPoolTokens falls to zero.

A connection manager intended for use as the default connection manager can

provide a subclass of MQPoolToken. Application components can optionally

instantiate the subclass and use this to pass information to the connection manager.

Constructors

MQPoolToken

public MQPoolToken();

The default constructor.

MQPoolToken

Chapter 9. Package com.ibm.mq 161

MQProcess

public class MQProcess

extends MQManagedObject

java.lang.Object

 |

 +----com.ibm.mq.MQManagedObject

 |

 +----com.ibm.mq.MQProcess

MQProcess provides inquire operations for WebSphere MQ processes. Use

MQQueueManager.accessProcess() to create an MQProcess object.

Constructors

MQProcess

public MQProcess(MQQueueManager qMgr, String processName, int openOptions,

 String queueManagerName,

 String alternateUserId) throws MQException;

Establishes access to a WebSphere MQ process on the specified queue manager in

to inquire about the process attributes. It has been made public to permit

subclassing.

Parameters

v qMgr - the queue manager which is running the process.

v processName - the name of process to open.

v openOptions - options which control the opening of the process. As

inquire is automatically added to the options specified there is no need

to specify it explicitly. Valid options are:

– MQC.MQOO_ALTERNATE_USER_AUTHORITY

– MQC.MQOO_FAIL_IF_QUIESCING

If more than one option is required, the values can be combined using

either the ’+’ or ’|’ operator.

v queueManagerName - the name of queue manager qMgr.

v alternateUserId - if MQC.MQOO_ALTERNATE_USER_AUTHORITY is

specified in the openOptions parameter, this parameter specifies the

alternative user ID to be used to check the authorization for the open.

Otherwise this parameter can be blank or null.

Exceptions

v MQException - if the open fails.

Methods

close

public void close() throws MQException;

Closes the process.

Exceptions

v MQException - if the WebSphere MQ call fails.

getApplicationId

public String getApplicationId() throws MQException;

MQProcess

162 Using Java

Gets the character string which identifies the application to be started. This

information is used by a trigger monitor application which processes messages on

the initiation queue; the information is sent to the initiation queue as part of the

trigger message.

Returns

v the application ID.

Exceptions

v MQException - if you call this method after you have closed the process,

to indicate that the process is no longer accessible or if the underlying

inquire() call fails.

getApplicationType

public int getApplicationType() throws MQException;

Identifies the nature of the process to be started in response to a trigger message.

Returns

v the following standard types have already been defined but others can

be used:

– MQC.MQAT_AIX

– MQC.MQAT_CICS

– MQC.MQAT_IMS

– MQC.MQAT_MVS

– MQC.MQAT_OS400

– MQC.MQAT_UNIX

– MQC.MQAT_WINDOWS

– MQC.MQAT_JAVA

– MQC.MQAT_USER_FIRST

– MQC.MQAT_USER_LAST

Exceptions

v MQException - if underlying inquire call fails.

getEnvironmentData

public String getEnvironmentData() throws MQException;

Gets information on the environment of the application that is to be started.

Returns

v the information as a String.

Exceptions

v MQException - if an internal error occurs.

getUserData

public String getUserData() throws MQException;

Gets information pertaining to the application to be started.

Returns

v the information as a String.

Exceptions

v MQException - if an internal error occurs.

MQProcess

Chapter 9. Package com.ibm.mq 163

MQPutMessageOptions

public class MQPutMessageOptions

extends Object

java.lang.Object

 |

 +----com.ibm.mq.MQPutMessageOptions

This class contains options that control the behavior of MQQueue.put().

Constructors

MQPutMessageOptions

public MQPutMessageOptions();

Constructs an object with no options set, and blank resolvedQueueName and

resolvedQueueManagerName.

MQPutMessageOptions

public MQPutMessageOptions(boolean noReadBack);

Constructs an MQPutMessageOptions object; reading the options field is optional.

You can use this constructor to save some overheads if your application never

needs to read back the options field.

Parameters

v noReadBack - if true this disables the reading back the options MQPMO

field. This avoids the overhead of converting it.

Fields

contextReference

public com.ibm.mq.MQQueue

An input field that indicates the source of the context information. If the options

field includes MQC.MQPMO_PASS_IDENTITY_CONTEXT or

MQC.MQPMO_PASS_ALL_CONTEXT, set this field to refer to the MQQueue from

which to take the context information. The initial value of this field is null.

contextReferenceHandle

public int

Handle to the context reference

invalidDestCount

public int

Number of messages that could not be sent.

knownDestCount

public int

Number of messages successfully sent to local queues.

options

public int

MQPutMessageOptions

164 Using Java

Options that control the action of MQQueue.put(). Any or none of the following

values can be specified. If more than one option is required, the values can be

combined using ’+’ or ’|’.

v MQC.MQPMO_SYNCPOINT

v MQC.MQPMO_NO_SYNCPOINT - default

v MQC.MQPMO_NO_CONTEXT

v MQC.MQPMO_DEFAULT_CONTEXT

v MQC.MQPMO_SET_IDENTITY_CONTEXT

v MQC.MQPMO_SET_ALL_CONTEXT

v MQC.MQPMO_FAIL_IF_QUIESCING

v MQC.MQPMO_NEW_MSG_ID

v MQC.MQPMO_NEW_CORREL_ID

v MQC.MQPMO_LOGICAL_ORDER

v MQC.MQPMO_ALTERNATE_USER_AUTHORITY

v MQC.MQPMO_RESOLVE_LOCAL_Q

recordFields

public int

Flag which controls the behavior of MQPUT when used with distribution lists.

resolvedQueueManagerName

public java.lang.String

An output field set by the queue manager to the name of the queue manager that

owns the remote queue. This might be different from the name of the queue

manager from which the queue was accessed if the queue is a remote queue.

resolvedQueueName

public java.lang.String

The output field set by the queue manager to the name of the queue on which the

message is placed. This might be different from the name used to open the queue,

if the opened queue was an alias or model queue.

unknownDestCount

public int

Number of messages successfully sent to remote queues.

Methods

updateDistributionListItems

public void updateDistributionListItems();

Copies updates in the response records into the distribution list items. Called from

the bindings.

MQPutMessageOptions

Chapter 9. Package com.ibm.mq 165

MQQueue

public class MQQueue

extends MQManagedObject

java.lang.Object

 |

 +----com.ibm.mq.MQManagedObject

 |

 +----com.ibm.mq.MQQueue

MQQueue provides inquire, set, put and get operations for WebSphere MQ

queues. The inquire and set capabilities are inherited from MQManagedObject.

Use MQQueueManager.accessQueue() to gain access to an MQQueue object.

Constructors

MQQueue

public MQQueue(MQQueueManager qMgr, String queueName, int openOptions,

 String queueManagerName,

 String dynamicQueueName, String alternateUserId)

 throws MQException;

Public constructor which allows users to create MQQueue subclasses.

Parameters

v qMgr - the object which represents the queue manager on which the

queue resides. Valid options are:

– MQC.MQOO_ALTERNATE_USER_AUTHORITY

– MQC.MQOO_BIND_AS_Q_DEF

– MQC.MQOO_BIND_NOT_FIXED

– MQC.MQOO_BIND_ON_OPEN

– MQC.MQOO_BROWSE

– MQC.MQOO_FAIL_IF_QUIESCING

– MQC.MQOO_INPUT_AS_Q_DEF

– MQC.MQOO_INPUT_SHARED

– MQC.MQOO_INPUT_EXCLUSIVE

– MQC.MQOO_INQUIRE

– MQC.MQOO_OUTPUT

– MQC.MQOO_PASS_ALL_CONTEXT

– MQC.MQOO_PASS_IDENTITY_CONTEXT

– MQC.MQOO_SAVE_ALL_CONTEXT

– MQC.MQOO_SET

– MQC.MQOO_SET_ALL_CONTEXT

– MQC.MQOO_SET_IDENTITY_CONTEXT

– MQC.MQOO_RESOLVE_LOCAL_Q
If more than one option is required, the values can be combined using

either the ’+’ or ’|’ operator.

v queueName - name of the queue to open.

v openOptions - options which control the opening of the queue.

MQQueue

166 Using Java

v queueManagerName - name of the queue manager on which the queue

is defined. If it is blank or null the queue manager to which this

MQQueueManager object is connected is used.

v dynamicQueueName - specifies the name of the dynamic queue to be

created. It is ignored unless queueName specifies the name of a model

queue, in which case it must not be blank or null. If the last non-blank

character in the name is an asterisk (*), the queue manager replaces the

asterisk with a string of characters that guarantees that the name

generated for the queue is unique on this queue manager.

v alternateUserId - the alternative user ID used to check the authorization

for the open if MQC.MQOO_ALTERNATE_USER_AUTHORITY is

specified in openOptions.

Exceptions

v MQException - if the queue cannot be opened.

Methods

close

public void close() throws MQException;

Closes the object. No further operations on this object are permitted after it is

closed. The behavior of the close method can be altered by setting closeOptions.

Exceptions

v MQException - if the WebSphere MQ call fails.

get

public void get(MQMessage message) throws MQException;

Retrieves a message from the queue, using default get message options. It uses an

option setting of MQC.MQGMO_NO_WAIT.

Parameters

v message - an input/output parameter which contains the message

descriptor information and the returned message data. On input, some

of the fields are used as input parameters, in particular messageId and

correlationId. It is important to ensure that these are set as required.

Exceptions

v MQException - if the get fails.

get

public void get(MQMessage message, MQGetMessageOptions getMessageOptions)

 throws MQException;

Retrieves a message from the queue, regardless of the size of the message. For

large messages, this might require two calls to WebSphere MQ, One to establish

the required buffer size and one to get the message data itself.

If the call fails, the MQMessage object is unchanged. If it succeeds, the message

descriptor fields and message data portions of the MQMessage are completely

overwritten by the fields and data from the incoming message.

MQQueue

Chapter 9. Package com.ibm.mq 167

Note that if you perform a get with wait, all other threads using the same

MQQueueManager are blocked until the call completes. If you need multiple

threads to access WebSphere MQ simultaneously, then each thread must create its

own MQQueueManager object.

Parameters

v message - an input/output parameter which contains the message

descriptor information and the returned message data. On input some of

the fields are used as input parameters, in particular messageId and

correlationId. It is important to ensure that these are set as required.

v getMessageOptions - options which control the action of the get. See

MQGetMessageOptions.options for details.

Exceptions

v MQException - if the get fails.

get

public void get(MQMessage message, MQGetMessageOptions getMessageOptions,

 int MaxMsgSize) throws MQException;

Retrieves a message from the queue, up to a maximum specified message size.

If the call fails, the MQMessage object is unchanged. If it succeeds, the message

descriptor fields and message data portions of the MQMessage are completely

overwritten by the fields and data from the incoming message.

If you perform a get with wait, all other threads using the same

MQQueueManager are blocked until the call completes. If you need multiple

threads to access WebSphere MQ simultaneously, then each thread must create its

own MQQueueManager object.

Parameters

v message - an input/output parameter which contains the message

descriptor information and the returned message data. On input, some

of the fields are used as input parameters, in particular messageId and

correlationId. It is important to ensure that these are set as required.

v getMessageOptions - options which control the action of the get. See

MQGetMessageOptions.options for details.

v MaxMsgSize - the largest message this call can to receive. If the message

on the queue is larger than this, the result depends on whether the

MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag has been selected in

MQGetMessageOptions.options.

If the flag has been set, the message is filled with as much of the

message data as will fit in the specified buffer size, and an MQException

is thrown with completion code MQCC_WARNING and reason code

MQRC_TRUNCATED_MSG_ACCEPTED.

If the flag has not been set, the message is left on the queue and an

MQException is thrown with completion code MQCC_FAILED and

reason code MQRC_TRUNCATED_MSG_FAILED.

Exceptions

v MQException - if the get fails.

MQQueue

168 Using Java

getCreationDateTime

public GregorianCalendar getCreationDateTime() throws MQException;

Gets the date and time that this queue was created.

Returns

v the date and time.

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

getCurrentDepth

public int getCurrentDepth() throws MQException;

Gets the number of messages currently on the queue. This value is incremented

during a put call and during backout of a get call. It is decremented during a

non-browse get and during backout of a put call.

Returns

v the number of messages.

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

getDefinitionType

public int getDefinitionType() throws MQException;

Indicates how the queue was defined.

Returns

v one of the following:

– MQC.MQQDT_PREDEFINED

– MQC.MQQDT_PERMANENT_DYNAMIC

– MQC.MQQDT_TEMPORARY_DYNAMIC

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

getInhibitGet

public int getInhibitGet() throws MQException;

Indicates whether get operations are allowed for this queue.

Returns

v one of the following:

– MQC.MQQA_GET_INHIBITED

– MQC.MQQA_GET_ALLOWED

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

MQQueue

Chapter 9. Package com.ibm.mq 169

getInhibitPut

public int getInhibitPut() throws MQException;

Indicates whether put operations are allowed for this queue.

Returns

v one of the following:

– MQC.MQQA_PUT_INHIBITED

– MQC.MQQA_PUT_ALLOWED

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

getMaximumDepth

public int getMaximumDepth() throws MQException;

Gets the maximum number of messages that can exist on the queue at any one

time. An attempt to put a message to a queue that already contains this many

messages fails with reason code MQException.MQRC_Q_FULL .

Returns

v the maximum number of messages.

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

getMaximumMessageLength

public int getMaximumMessageLength() throws MQException;

Gets the maximum length of the application data of a message on this queue. An

attempt to put a message larger than this value fails with reason code

MQException.MQRC_MSG_TOO_BIG_FOR_Q.

Returns

v the maximum length.

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

getOpenInputCount

public int getOpenInputCount() throws MQException;

Gets the number of currently valid handles for removing messages from the queue.

Returns

v the total number of valid handles known to the local queue manager, not

just those created by the WebSphere MQ Client for Java (using

accessQueue()).

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

MQQueue

170 Using Java

getOpenOutputCount

public int getOpenOutputCount() throws MQException;

Gets the number of currently valid handles for adding messages to the queue.

Returns

v the total number of valid handles known to the local queue manager, not

just those created by the WebSphere MQ Client for Java (using

accessQueue()).

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

getQueueType

public int getQueueType() throws MQException;

Gets the type of this queue.

Returns

v one of the following:

– MQC.MQQT_ALIAS

– MQC.MQQT_LOCAL

– MQC.MQQT_MODEL

– MQC.MQQT_REMOTE

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

getShareability

public int getShareability() throws MQException;

Indicates whether the queue can be opened multiple times for input.

Returns

v one of the following:

– MQC.MQQA_SHAREABLE

– MQC.MQQA_NOT_SHAREABLE

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

getTriggerControl

public int getTriggerControl() throws MQException;

Indicates whether trigger messages are written to an initiation queue. This starts an

application to service the queue.

Returns

v the possible values are:

– MQC.MQTC_OFF

– MQC.MQTC_ON

Exceptions

MQQueue

Chapter 9. Package com.ibm.mq 171

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

getTriggerData

public String getTriggerData() throws MQException;

Gets the data for the trigger message that is written to the initiation queue. The

trigger message is written to the initiation queue when a message arrives on this

one.

Returns

v the data in free format.

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

getTriggerDepth

public int getTriggerDepth() throws MQException;

Gets the number of messages that have to be on the queue to generate a trigger

message. This applies when the trigger type is MQC.MQTT_DEPTH.

Returns

v the number of messages.

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

getTriggerMessagePriority

public int getTriggerMessagePriority() throws MQException;

Gets the message priority below which messages do not cause trigger messages.

That is, the queue manager ignores these messages when deciding whether to

generate a trigger.

Returns

v the message priority. Zero means that all messages contribute to the

generation of trigger messages.

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

getTriggerType

public int getTriggerType() throws MQException;

Indicates the conditions under which trigger messages are written. Trigger

messages are written as a result of messages arriving on this queue.

Returns

v the possible values are:

– MQC.MQTT_NONE

– MQC.MQTT_FIRST

– MQC.MQTT_EVERY

– MQC.MQTT_DEPTH

MQQueue

172 Using Java

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

put

public void put(MQMessage message) throws MQException;

Puts a message onto the queue using default put message options.

Parameters

v message - an object which contains the message descriptor data and the

message data to be sent.

Exceptions

v MQException - if the put fails.

put

public void put(MQMessage message, MQPutMessageOptions putMessageOptions)

 throws MQException;

Puts a message onto the queue.

Modifications to the MQMessage object after the put has completed do not affect

the actual message on the queue.

If you use the same MQMessage object to make further calls, then performing a

put updates MQMessage.messageId and MQMessage.correlationId.

Note also that calling put does not clear the message data. For example:

 msg.writeString("a");

 q.put(msg,pmo);

 msg.writeString("b");

 q.put(msg,pmo);

results in ″ab″ being put by the second call.

Parameters

v message - an object which contains the message descriptor data and the

message data to be sent. On completion the values are set to those of the

message which was put on the queue.

v putMessageOptions - Options controlling the action of the put. See

MQPutMessageOptions.options for details.

Exceptions

v MQException - if the put fails.

setInhibitGet

public void setInhibitGet(int inhibit) throws MQException;

Controls whether get operations are allowed for this queue.

Parameters

v inhibit - the permissible values are:

– MQC.MQQA_GET_INHIBITED

– MQC.MQQA_GET_ALLOWED

Exceptions

MQQueue

Chapter 9. Package com.ibm.mq 173

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

setInhibitPut

public void setInhibitPut(int inhibit) throws MQException;

Controls whether put operations are allowed for this queue.

Parameters

v inhibit - the permissible values are:

– MQC.MQQA_PUT_INHIBITED

– MQC.MQQA_PUT_ALLOWED

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

setTriggerControl

public void setTriggerControl(int trigger) throws MQException;

Controls whether trigger messages are written to an initiation queue. This starts an

application to service the queue.

Parameters

v trigger - the permissible values are:

– MQC.MQTC_OFF

– MQC.MQTC_ON

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

setTriggerData

public void setTriggerData(String data) throws MQException;

Sets the data for the trigger message that is written to the initiation queue. The

trigger message is written to the initiation queue when a message arrives on this

one.

Parameters

v data - sets the data in free-format. The maximum permissible length of

the string is given by MQC.MQ_TRIGGER_DATA_LENGTH.

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

setTriggerDepth

public void setTriggerDepth(int depth) throws MQException;

Sets the number of messages that have to be on the queue to generate a trigger

message. This applies when trigger type is MQC.MQTT_DEPTH .

Parameters

v depth - the number of messages.

Exceptions

MQQueue

174 Using Java

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

setTriggerMessagePriority

public void setTriggerMessagePriority(int priority) throws MQException;

Sets the message priority below which messages do not cause trigger messages.

That is, the queue manager ignores these messages when deciding whether to

generate a trigger.

Parameters

v priority - the message priority. Zero means that all messages contribute

to the generation of trigger messages.

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

setTriggerType

public void setTriggerType(int type) throws MQException;

Sets the conditions under which trigger messages are written. Trigger messages are

written as a result of messages arriving on this queue.

Parameters

v type - the possible values are:

– MQC.MQTT_NONE

– MQC.MQTT_FIRST

– MQC.MQTT_EVERY

– MQC.MQTT_DEPTH

Exceptions

v MQException - if you call this method after you have closed the queue,

to indicate that the queue is no longer accessible.

MQQueue

Chapter 9. Package com.ibm.mq 175

MQQueueManager

public class MQQueueManager

extends MQManagedObject

java.lang.Object

 |

 +----com.ibm.mq.MQManagedObject

 |

 +----com.ibm.mq.MQQueueManager

The MQQueueManager class provides a connection to a WebSphere MQ queue

manager.

An MQQueueManager object (and any queues or processes accessed through it)

can be shared between multiple threads, but be aware that access to the WebSphere

MQ queue manager itself is synchronized, so that only one thread can

communicate with it at any one time. A call to MQQueue.get() specifying

MQC.MQGMO_WAIT (for example) will therefore block any other threads

attempting to make WebSphere MQ calls using the same MQQueueManager until

the get completes.

Constructors

MQQueueManager

public MQQueueManager(String queueManagerName) throws MQException;

Creates a connection to the named queue manager.

The host name, channel name and port to use during the connection request are

specified in the MQEnvironment class. This must be done before calling this

constructor.

The following example shows a connection to a queue manager ″MYQM″, running

on a system with host name ″fred.mq.com″.

MQEnvironment.hostname = "fred.mq.com"; // host to connect to

MQEnvironment.port = -1 ; // port to connect to. If not set,

 // this defaults to 1414 for WebSphere MQ

 // client connections.

MQEnvironment.channel = "channel.name"; // the CASE-SENSITIVE name of the SVRCONN

 // channel on the queue manager

MQQueueManager qMgr = new MQQueueManager("MYQM");

If the queue manager name is null or blank, then a connection is made to the

default queue manager.

Parameters

v queueManagerName - the name of the queue manager to which to

connect.

Exceptions

v MQException - if there are connection problems.

MQQueueManager

public MQQueueManager(String queueManagerName,

 ConnectionManager connectionManager)

 throws MQException;

MQQueueManager

176 Using Java

Creates a connection to the named queue manager specifying a connection

manager.

Parameters

v queueManagerName - the name of the queue manager.

v connectionManager - the connection manager which will handle this

connection.

Exceptions

v MQException - if there are connection problems.

MQQueueManager

public MQQueueManager(String queueManagerName, Hashtable properties)

 throws MQException;

Creates a connection to the named queue manager using a Hashtable. The

Hashtable overrides the specification held in MQEnvironment.

Parameters

v queueManagerName - the name of the queue manager.

v properties - connection properties.

Exceptions

v MQException - if there are connection problems.

MQQueueManager

public MQQueueManager(String queueManagerName, Hashtable properties,

 ConnectionManager connectionManager)

 throws MQException;

Creates a connection to the named queue manager using given Hashtable and

connection manager. The given properties override those held in MQEnvironment.

Parameters

v queueManagerName - the name of the queue manager.

v properties - connection properties.

v connectionManager - the ConnectionManager which handles this

connection.

Exceptions

v MQException - if there are connection problems.

MQQueueManager

public MQQueueManager(String queueManagerName, Hashtable properties,

 MQConnectionManager connectionManager)

 throws MQException;

Creates a connection to a queue manager which overrides the settings in

MQEnvironment class with those in the given Hashtable.

Parameters

v queueManagerName - the name of the queue manager.

v properties - connection properties.

v connectionManager - the connection manager which will handle this

connection.

Exceptions

v MQException - raised if there are connection problems.

MQQueueManager

Chapter 9. Package com.ibm.mq 177

MQQueueManager

public MQQueueManager(String queueManagerName, Hashtable properties,

 URL url) throws MQException;

Creates a connection to the named queue manager using a channel definition table.

Using a client channel definition table enables alternative channel definitions to be

defined. The constructor selects a set of definitions from the table and these are

used instead of any settings held in MQEnvironment class when opening a

channel. Properties other than those defined by the client channel definition table

can be supplied with this constructor.

Parameters

v queueManagerName - the queue manager which is used when selecting

a channel definition. This can be in of the following forms:

– ″qMgrName″, where the actual name of the required queue manager

is passed in. The channel must connect to a queue manager of this

name.

– ″*qMgrName″, where ″*″ followed by the actual name of the required

queue manager is passed in. The channel definition that is used must

specify this queue manager name. This full name is passed onto the

queueManager during a connect, but the queue manager that is

ultimately connected to might not have the same name as specified

here after the ’*’.

– ″*″ or ″″ or a name which consists entirely of blanks is passed in. The

actual queue manager name is disregarded when a channel definition

is being selected.
v properties - A Hashtable of properties to be used to establish the

connection with those defined in the client channel definition that is

actually used. Any properties that are not valid for this type of

connection will be ignored.

v url - the URL which specifies the channel definition file to be used in

connecting to the queue manager.

Exceptions

v MQException - raised if there are connection problems.

MQQueueManager

public MQQueueManager(String queueManagerName, int options)

 throws MQException;

Creates a connection to the named queue manager specifying binding options.

Parameters

v queueManagerName - the name of the queue manager.

v options - binding options. Possible values are:

– MQC.MQCNO_FASTPATH_BINDING

– MQC.MQCNO_STANDARD_BINDING

– MQC.MQCNO_SHARED_BINDING

– MQC.MQCNO_ISOLATED_BINDING

Exceptions

v MQException - if there are connection problems.

MQQueueManager

178 Using Java

MQQueueManager

public MQQueueManager(String queueManagerName, int options,

 ConnectionManager connectionManager)

 throws MQException;

Creates a connection to the named queue manager specifying bindings options and

a connection manager.

Parameters

v queueManagerName - the name of the queue manager.

v options - binding options. Possible values are:

– MQC.MQCNO_FASTPATH_BINDING

– MQC.MQCNO_STANDARD_BINDING

– MQC.MQCNO_SHARED_BINDING

– MQC.MQCNO_ISOLATED_BINDING
v connectionManager - the Connection manager which handles this

connection

Exceptions

v MQException - if there are connection problems.

MQQueueManager

public MQQueueManager(String queueManagerName, int options,

 MQConnectionManager connectionManager)

 throws MQException;

Creates a connection to a queue manager allowing binding options to be specified.

It also allows a connection manager to be specified.

Parameters

v queueManagerName - the name of the queue manager.

v options - binding options. Possible values are:

– MQC.MQCNO_FASTPATH_BINDING

– MQC.MQCNO_STANDARD_BINDING

– MQC.MQCNO_SHARED_BINDING

– MQC.MQCNO_ISOLATED_BINDING
v connectionManager - the connection manager which will handle this

connection.

Exceptions

v MQException - if there are connection problems.

MQQueueManager

public MQQueueManager(String queueManagerName,

 MQConnectionManager connectionManager)

 throws MQException;

Creates a connection to a named queue manager using a connection manager.

Parameters

v queueManagerName - the name of the queue manager.

v connectionManager - the connection manager which will handle this

connection.

Exceptions

MQQueueManager

Chapter 9. Package com.ibm.mq 179

v MQException - if there are connection problems.

MQQueueManager

public MQQueueManager(String queueManagerName, URL url)

 throws MQException;

Creates a connection to the named queue manager using a channel definition table.

Using a client channel definition table enables alternative channel definitions to be

defined. The constructor selects a set of definitions from the table and these are

used instead of any settings held in MQEnvironment class when opening a

channel.

Parameters

v queueManagerName - the queue manager which is used when selecting

a channel definition. This can be in of the following forms:

– ″qMgrName″, where the actual name of the required queue manager

is passed in. The channel must connect to a queue manager of this

name.

– ″*qMgrName″, where ″*″ followed by the actual name of the required

queue manager is passed in. The channel definition that is used must

specify this queue manager name. This full name is passed onto the

queue manager during a connect, but the queue manager that is

ultimately connected to might not have the same name as specified

here after the ’*’.

– ″*″ or ″″ or a name which consists entirely of blanks is passed in. The

actual queue manager name is disregarded when a channel definition

is being selected.
v url - the URL which specifies the channel definition file to be used in

connecting to the queue manager.

Exceptions

v MQException - raised if there are connection problems.

MQQueueManager

public MQQueueManager(String queueManagerName, URL url,

 ConnectionManager connectionManager)

 throws MQException;

Creates a connection to the named queue manager using a client channel definition

table. Using a client channel definition table enables alternative channel definitions

to be defined. The constructor selects a set of definitions from the table and these

are used instead of any settings held in MQEnvironment class when opening a

channel. The channel definition that is used must specify this queue manager

name. This full name is passed onto the queue manager during a connect, but the

queue manager that is ultimately connected to might not have the same name as

specified here after the “*” ″*″ or ″″ or a name which consists entirely of blanks is

passed in. The actual queue manager name is disregarded when a channel

definition is being selected.

Parameters

v queueManagerName - the queue manager which is used when selecting

a channel definition. This can be in of the following forms:

– ″qMgrName″, where the actual name of the required queue manager

is passed in. The channel must connect to a queue manager of this

name.

MQQueueManager

180 Using Java

– ″*qMgrName″, where ″*″ followed by the actual name of the required

queue manager is passed in. The channel definition that is used must

specify this queue manager name. This full name is passed onto the

queue manager during a connect, but the queue manager that is

ultimately connected to might not have the same name as specified

here after the “*”.

– ″*″ or ″″ or a name which consists entirely of blanks is passed in. The

actual queue manager name is disregarded when a channel definition

is being selected.
v url - the URL which specifies the channel definition table to be used in

connecting to the queue manager.

v connectionManager - the connection manager.

Exceptions

v MQException - raised if there are connection problems.

MQQueueManager

public MQQueueManager(String queueManagerName, URL url,

 MQConnectionManager connectionManager)

 throws MQException;

Creates a connection to the named queue manager using a client channel definition

table. Using a client channel definition table enables alternative channel definitions

to be defined. The constructor selects a set of definitions from the table and these

are used instead of any settings held in MQEnvironment class when opening a

channel.

Parameters

v queueManagerName - the queue manager which is used when selecting

a channel definition. This can be in of the following forms:

– ″qMgrName″, where the actual name of the required queue manager

is passed in. The channel must connect to a queue manager of this

name.

– ″*qMgrName″, where ″*″ followed by the actual name of the required

queue manager is passed in. The channel definition that is used must

specify this queue manager name. This full name is passed onto the

queue manager during a connect, but the queue manager that is

ultimately connected to might not have the same name as specified

here after the “*”.

– ″*″ or ″″ or a name which consists entirely of blanks is passed in. The

actual queue manager name is disregarded when a channel definition

is being selected.
v url - the URL which specifies the channel definition file to be used in

connecting to the queue manager.

v connectionManager - the connection manager.

Exceptions

v MQException - raised if there are connection problems.

Fields

isConnected

public boolean

Deprecated

MQQueueManager

Chapter 9. Package com.ibm.mq 181

Use the isConnected() method instead.

Indicates whether this MQQueueManager object is currently connected to a

WebSphere MQ queue manager. Use the disconnect method to disconnect from a

queue manager.

Methods

accessDistributionList

public MQDistributionList accessDistributionList(MQDistributionListItem[] items,

 int options)

 throws MQException;

Creates a distribution list using the default alternative user ID.

Parameters

v items - the elements of the distribution list.

v options - the open options for the distribution list.

Returns

v the distribution list.

Exceptions

v MQException - if there is a problem opening the distribution list.

accessDistributionList

public MQDistributionList accessDistributionList(MQDistributionListItem[] items,

 int options,

 String id)

 throws MQException;

Creates a distribution list.

Parameters

v items - the elements of the distribution list.

v options - the open options for the distribution list.

v id - the alternative user ID.

Returns

v the distribution list.

Exceptions

v MQException - if there is a problem opening the distribution list.

accessProcess

public MQProcess accessProcess(String processName, int openOptions)

 throws MQException;

Accesses a WebSphere MQ process on this queue manager using default queue

manager name and alternative user ID values.

Parameters

v processName - name of process to open.

v openOptions - see openOptions for details.

Returns

MQQueueManager

182 Using Java

v MQProcess which has been successfully opened.

Exceptions

v MQException - if the open fails.

accessProcess

public MQProcess accessProcess(String processName, int openOptions,

 String queueManagerName,

 String alternateUserId)

 throws MQException;

Establishes access to a WebSphere MQ process on this queue manager in order to

inquire about the process attributes.

Parameters

v processName - name of process to open

v openOptions - options which control the opening of the process. As

inquire is automatically added to the options specified there is no need

to specify it explicitly. Valid options are:

– MQC.MQOO_ALTERNATE_USER_AUTHORITY

– MQC.MQOO_FAIL_IF_QUIESCING

If more than one option is required the values can be combined using

either the ’+’ or ’|’ operator.

v queueManagerName - name of the queue manager on which the process

is defined. A name which is entirely blank or null denotes the queue

manager to which this object is connected.

v alternateUserId - if MQC.MQOO_ALTERNATE_USER_AUTHORITY is

specified in the openOptions parameter, this parameter specifies the

alternative user ID to be used to check the authorization for the open.

Otherwise this parameter can be blank or null.

Returns

v MQProcess which has been successfully opened.

Exceptions

v MQException - if the open fails.

accessQueue

public MQQueue accessQueue(String queueName, int openOptions)

 throws MQException;

Establishes access to an WebSphere MQ queue on this queue manager using

default queue manager name and alternative user ID values.

Parameters

v queueName - name of queue to open.

v openOptions - options which control the opening of the queue. See

accessQueue(String, int, String, String, String) for more information.

Returns

v MQQueue which has been successfully opened.

Exceptions

v MQException - if the open fails.

MQQueueManager

Chapter 9. Package com.ibm.mq 183

accessQueue

public MQQueue accessQueue(String queueName, int openOptions,

 String queueManagerName,

 String dynamicQueueName,

 String alternateUserId)

 throws MQException;

Establishes access to a WebSphere MQ queue on this queue manager in order to

get or browse messages, put messages, inquire about the attributes of the queue, or

set the attributes of the queue.

If the queue named is a model queue, then a dynamic local queue is created. The

name of the created queue is held in the name field of the returned MQQueue

object.

Parameters

v queueName - name of queue to open.

v openOptions - options which control the opening of the queue. As

inquire and set options are automatically added to the options provided,

there is no need to specify these explicitly. The valid options are:

– MQC.MQOO_BROWSE

– MQC.MQOO_INPUT_AS_Q_DEF

– MQC.MQOO_INPUT_SHARED

– MQC.MQOO_INPUT_EXCLUSIVE

– MQC.MQOO_OUTPUT

– MQC.MQOO_SAVE_ALL_CONTEXT

– MQC.MQOO_PASS_IDENTITY_CONTEXT

– MQC.MQOO_PASS_ALL_CONTEXT

– MQC.MQOO_SET_IDENTITY_CONTEXT

– MQC.MQOO_SET_ALL_CONTEXT

– MQC.MQOO_ALTERNATE_USER_AUTHORITY

– MQC.MQOO_FAIL_IF_QUIESCING

If more than one option is required the values can be combined using

either the ’+’ or ’|’ operator. See WebSphere MQ Application Programming

Reference for a fuller description of these options.

v queueManagerName - name of the queue manager on which the queue

is defined. A name which is blank, or which is null, denotes the queue

manager to which this object is connected.

v dynamicQueueName - name of the dynamic queue to be created. This

parameter is ignored unless queueName specifies the name of a model

queue. If it does, this parameter specifies the name of the dynamic

queue to be created. A blank or null name is not valid if queueName

specifies the name of a model queue. If the last non-blank character in

the name is an asterisk (*), the queue manager replaces it with a string

of characters which guarantees that the name generated for the queue is

unique at the local queue manager. Asterisk is only valid in positions 1

to 33 of the dynamicQueueName parameter.

v alternateUserId - if MQC.MQOO_ALTERNATE_USER_AUTHORITY is

specified in the openOptions parameter this parameter specifies the

alternate user ID to be used to check the authorization for the open. If

MQC.MQOO_ALTERNATE_USER_AUTHORITY is not specified, this

parameter can be left blank (or null).

MQQueueManager

184 Using Java

Returns

v the MQQueue which has been successfully opened.

Exceptions

v MQException - if the open fails.

backout

public void backout() throws MQException;

Indicates to the queue manager that all the message gets and puts that have

occurred since the last syncpoint are to be backed out. Messages sent as part of a

unit of work (with the MQC.MQPMO_SYNCPOINT flag set in the options field of

MQPutMessageOptions) are deleted. Messages retrieved as part of a unit of work

(with the MQC.MQGMO_SYNCPOINT flag set in MQGetMessageOptions.options)

are reinstated on the queue.

Exceptions

v MQException - if the call fails.

begin

public void begin() throws MQException;

Begins a new unit of work. This method is only supported by WebSphere MQ in a

bindings connection. It signals to the queue manager that a new unit of work is to

begin.

Exceptions

v MQException - if the call fails

commit

public void commit() throws MQException;

Indicates to the queue manager that the application has reached a syncpoint. All

the message gets and puts that have occurred since the last syncpoint are to be

made permanent. Messages sent as part of a unit of work (with the

MQC.MQPMO_SYNCPOINT flag set in MQPutMessageOptions.options) are made

available to other applications. Messages retrieved as part of a unit of work (with

the MQC.MQGMO_SYNCPOINT flag set in MQGetMessageOptions.options) are

deleted.

Exceptions

v MQException - if the call fails.

disconnect

public void disconnect() throws MQException;

Ends the connection to the queue manager. All open queues and processes

accessed through this queue manager are closed and become unusable. The only

way to reconnect is to create a new MQQueueManager object.

Exceptions

v MQException - if the MQ disconnect call fails.

getCCDTURL

public URL getCCDTURL();

MQQueueManager

Chapter 9. Package com.ibm.mq 185

Returns the URL of the channel definition file, or null if it does not exist. Java

URLs support various protocols, which normally include file, HTTP, FTP and

LDAP. The URL class has several constructors, one of which is: URL(String spec).

Returns

v The URL of the channel definition file.

getCharacterSet

public int getCharacterSet() throws MQException;

Gets the CCSID (Coded Character Set Identifier) of the queue manager’s codeset.

This defines the character set used by the queue manager for all character string

fields in the application programming interface.

Returns

v the CCSID.

Exceptions

v MQException - if you call this method after disconnecting from the

queue manager to indicate that the connection is no longer valid.

getCommandInputQueueName

public String getCommandInputQueueName() throws MQException;

Gets the name of the command input queue defined on the queue manager. This is

a queue to which applications can send commands, if authorized to do so.

Returns

v the name of the command input queue.

Exceptions

v MQException - if you call this method after disconnecting from the

queue manager to indicate that the connection is no longer valid.

getCommandLevel

public int getCommandLevel() throws MQException;

Indicates the level of system control commands supported by the queue manager.

The set of system control commands corresponding to a particular command level

varies according to the platform on which the queue manager is running. See

WebSphere MQ Application Programming Reference.

Returns

v values between MQC.MQCMDL_LEVEL_1 and

MQC.MQCMDL_LEVEL_600.

Exceptions

v MQException - if you call this method after disconnecting from the

queue manager to indicate that the connection is no longer valid.

getDistributionListCapable

public boolean getDistributionListCapable();

Indicates whether the queue manager supports distribution lists.

Returns

v trueif distribution lists are supported.

MQQueueManager

186 Using Java

getJDBCConnection

public Connection getJDBCConnection(XADataSource xads) throws MQException,

 SQLException, Exception;

Returns a Connection object for use with the JTA-JDBC support.

Parameters

v xads - A database-specific implementation of the XADataSource interface

that defines the details of the database to connect to. See the

documentation for your database to determine how to create an

appropriate XADataSource object to pass into this method.

Returns

v A connection for use with the JTA-JDBC support.

Exceptions

v MQException - if there is a WebSphere MQ failure.

v SQLException - if there are problems getting the Connection object.

v Exception - thrown to avoid problems with the JVM verifier for

customers who are not using the JTA functionality. The actual exception

thrown is javax.transaction.xa.XAException, which requires the jta.jar file

to be added to the CLASSPATH for programs that did not previously

require it.

getJDBCConnection

public Connection getJDBCConnection(XADataSource xads, String userid,

 String password)

 throws MQException, SQLException, Exception;

Registers a database for coordination. Used to create a JDBC Connection which is

coordinated by the queue manager after a call to begin.

Parameters

v xads - database-specific implementation of the XADataSource interface

that defines the details of the database. See the documentation for your

database to determine how to create an appropriate XADataSource

object to pass into this method.

v userid - the user ID for connecting to the database.

v password - the password for connecting to the database.

Returns

v connection for use with the JTA-JDBC support.

Exceptions

v MQException - if there is a WebSphere MQ failure.

v SQLException - if there are problems getting the Connection object.

v Exception - thrown to avoid problems with the JVM verifier for

customers who are not using the JTA functionality. The actual exception

thrown is javax.transaction.xa.XAException, which requires the jta.jar file

to be added to the CLASSPATH for programs that did not previously

require it.

getMaximumMessageLength

public int getMaximumMessageLength() throws MQException;

MQQueueManager

Chapter 9. Package com.ibm.mq 187

Gets the maximum length of a message that the queue manager can handle. No

queue can be defined with a maximum message length greater than this.

Returns

v The maximum message length in bytes.

Exceptions

v MQException - if you call this method after disconnecting from the

queue manager to indicate that the connection is no longer valid.

getMaximumPriority

public int getMaximumPriority() throws MQException;

Gets the maximum message priority supported by the queue manager. Priorities

range from zero (lowest) to this value.

Returns

v the maximum message priority.

Exceptions

v MQException - if you call this method after disconnecting from the

queue manager to indicate that the connection is no longer valid.

getProperties

public static Hashtable getProperties(Object key, MQChannelHeader header,

 URL url) throws IOException,

 MQException;

Reads properties concerning a channel in the channel definition table.

Parameters

v key - the name of the channel.

v header - helps to find the channel information in the table.

v url - the URL of the channel definition table.

Returns

v the relevant properties in a Hashtable.

Exceptions

v IOException - raised if there are connection problems.

v MQException - raised if there are WebSphere MQ problems.

getSyncpointAvailability

public int getSyncpointAvailability() throws MQException;

Indicates whether the queue manager supports units of work and syncpointing

with the MQQueue.get() and MQQueue.put() methods.

Returns

v MQC.MQSP_AVAILABLE if syncpointing is available, or

MQC.MQSP_NOT_AVAILABLE if not.

Exceptions

v MQException - if you call this method after disconnecting from the

queue manager to indicate that the connection is no longer valid.

isConnected

public boolean isConnected();

MQQueueManager

188 Using Java

Indicates whether this object is currently connected to a WebSphere MQ queue

manager. Use disconnect() to disconnect from a queue manager.

Returns

v true if connected.

put

public void put(String qName, MQMessage msg) throws MQException;

Puts a single message on to a (possibly unopened) queue. If a send exit has been

specified it processes the message before it is sent.

Parameters

v qName - the name of the queue to which the message is put.

v msg - the message to be sent.

Exceptions

v MQException - if the WebSphere MQ put call fails.

put

public void put(String qName, MQMessage msg, MQPutMessageOptions pmo)

 throws MQException;

Puts a single message on to a (possibly unopened) queue. If a send exit has been

specified it processes the message before it is sent.

Parameters

v qName - the name of the queue to which the message is put.

v msg - the message to be sent.

v pmo - the put message options to use.

Exceptions

v MQException - if the WebSphere MQ put call fails.

put

public void put(String qName, String qmName, MQMessage msg)

 throws MQException;

Puts a single message on to a (possibly unopened) queue. If a send exit has been

specified it processes the message before it is sent.

Parameters

v qName - the name of the queue to which the message is put.

v qmName - the name of the queue manager which holds the queue.

v msg - the message to be sent.

Exceptions

v MQException - if the WebSphere MQ put call fails.

put

public void put(String qName, String qmName, MQMessage msg,

 MQPutMessageOptions pmo) throws MQException;

Puts a single message on to a (possibly unopened) queue. If a send exit has been

specified it processes the message before it is sent.

Parameters

v qName - the name of the queue to which the message is put.

MQQueueManager

Chapter 9. Package com.ibm.mq 189

v qmName - the name of the queue manager which holds the queue.

v msg - the message to be sent.

v pmo - the put message options to use.

Exceptions

v MQException - if the WebSphere MQ put call fails.

put

public void put(String qName, String qmName, MQMessage msg,

 MQPutMessageOptions pmo, String altUserId)

 throws MQException;

Puts a single message onto a (possibly unopened) queue. If a send exit has been

specified, it processes the message before it is sent. See the description of MQPUT1

in WebSphere MQ Application Programming Reference for more information.

Parameters

v qName - the name of the queue to which the message is put.

v qmName - the name of the queue manager which holds the queue.

v msg - the message to be sent.

v pmo - the put message options to use.

v altUserId - alternative user ID to use when putting the message.

Exceptions

v MQException - if the WebSphere MQ put call fails.

MQQueueManager

190 Using Java

MQReceiveExitChain

public class MQReceiveExitChain

extends MQExitChain

implements MQReceiveExit

java.lang.Object

 |

 +----com.ibm.mq.MQExitChain

 |

 +----com.ibm.mq.MQReceiveExitChain

Chains receive exits together. The exits are of class MQReceiveExit ; as well as exits

written in Java, this includes non-Java receive exits made available by means of the

MQExternalReceiveExit class.

Constructors

MQReceiveExitChain

public MQReceiveExitChain();

The default constructor. Creates a Receive Exit Chain.

MQReceiveExitChain

public MQReceiveExitChain(List collection);

Constructor.

Parameters

v collection - a List object which defines the receive exits which are to be

chained.

Methods

receiveExit

public byte[] receiveExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] agentBuffer);

Calls the receive exit. This is normally made by the Java client code.

Parameters

v channelExitParms - the definition of the chain of exits.

v channelDefinition - the definition of the channel.

v agentBuffer - the message being passed into the chain of exits.

Returns

v agentBuffer the data to be processed. If the exit response code (in

channelExitParms is MQXCC_OK the WebSphere MQ Client for Java can

process the data. The simplest receiveExit method therefore, consists of a

single line.

setExitChain

public void setExitChain(List collection);

Inserts a collection of receive exits into the chain.

Parameters

MQReceiveExitChain

Chapter 9. Package com.ibm.mq 191

v collection - a List object which defines the receive exits which are to be

chained.

MQReceiveExitChain

192 Using Java

MQSendExitChain

public class MQSendExitChain

extends MQExitChain

implements MQSendExit

java.lang.Object

 |

 +----com.ibm.mq.MQExitChain

 |

 +----com.ibm.mq.MQSendExitChain

Chains send exits together. The exits are of class MQSendExit; as well as exits

written in Java, this includes non-Java send exits made available by means of the

MQExternalSendExit class.

Constructors

MQSendExitChain

public MQSendExitChain();

The default constructor. Creates a Send Exit Chain. Use setExitChain() to add an

exit chain.

MQSendExitChain

public MQSendExitChain(List collection);

Constructor which defines the send exits which are to be chained.

Parameters

v collection - defines the send exits which are to be chained.

Methods

sendExit

public byte[] sendExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] agentBuffer);

Calls the send exit. This is normally made by the Java client code.

Parameters

v channelExitParms - the definition of the chain of exits.

v channelDefinition - the definition of the channel.

v agentBuffer - the message being passed into the chain of exits.

Returns

v agentBuffer the data to be processed. If the exit response code (in

channelExitParms) is MQXCC_OK the WebSphere MQ Client for Java

can process the data. The simplest sendExit method therefore, consists of

a single line.

setExitChain

public void setExitChain(List collection);

Inserts a collection of send exits into the chain.

Parameters

MQSendExitChain

Chapter 9. Package com.ibm.mq 193

v collection - defines the send exits which are to be chained.

MQSendExitChain

194 Using Java

MQSimpleConnectionManager

public final class MQSimpleConnectionManager

extends Object

implements MQConnectionManager

java.lang.Object

 |

 +----com.ibm.mq.MQSimpleConnectionManager

An MQSimpleConnectionManager provides basic connection pooling function. You

can use an MQSimpleConnectionManager either as the default connection

manager, or as a parameter to an MQQueueManager constructor. When an

MQQueueManager is constructed, the most recently used connection in the pool is

used. Connections are destroyed by a separate thread when they are unused for a

specified period, when there are more than a specified number of unused

connections in the pool, or when the maximum number of connections has been

reached and room must be made for new connections. You can specify the timeout

period, the maximum number of managed connections, and the maximum number

of unused connections.

Constructors

MQSimpleConnectionManager

public MQSimpleConnectionManager();

Constructs an MQSimpleConnectionManager.

Fields

MODE_ACTIVE

public final static int

The pool is always active. On MQQueueManager.disconnect(), the underlying

connection is pooled and can be reused the next time an MQQueueManager object

is constructed. Connections are destroyed by a separate thread if they have been

unused for longer then the timeout period or if the size of the pool exceeds the

value set by setMaxUnusedConnections().

MODE_AUTO

public final static int

An MQSimpleConnectionManager is active if it is the default connection manager

and there is at least one connection in the pool.

This is the default.

MODE_INACTIVE

public final static int

The pool is always inactive. The pool of connections is cleared on entering this

mode. The connection underlying any active MQQueueManager objects is

destroyed when MQQueueManager.disconnect() is called.

MQSimpleConnectionManager

Chapter 9. Package com.ibm.mq 195

Methods

allocateConnection

public Object allocateConnection(MQManagedConnectionFactory mcf,

 ConnectionRequestInfo cxRequestInfo)

 throws ResourceException;

Makes a connection to a queue manager, either by reusing an existing connection

or by creating a new one. It is called by the connection factory instance of the

resource adapter.

Normal applications should not call this method.

Parameters

v mcf - the connection factory.

v cxRequestInfo - represents information specific to the resource adapter

for handling the connection request.

Returns

v a connection.

Exceptions

v ResourceException - if the call fails.

createConnection

public Object createConnection(MQManagedConnectionFactory mcf,

 ConnectionRequestInfo cxRequestInfo)

 throws ResourceException;

Makes a connection to a queue manager. It is called by the connection factory

instance of the resource adapter.

Normal applications should not call this method.

Parameters

v mcf - the connection factory.

v cxRequestInfo - represents information specific to the resource adapter

for handling the connection request.

Returns

v a connection.

Exceptions

v ResourceException - if the call fails.

getActive

public int getActive();

Gets the active mode of the pool.

Returns

v one of:

– MODE_AUTO

– MODE_ACTIVE

– MODE_INACTIVE

MQSimpleConnectionManager

196 Using Java

getHighThreshold

public int getHighThreshold();

getMaxConnections

public int getMaxConnections();

Gets the maximum number of connections.

Returns

v the maximum number of connections.

getMaxUnusedConnections

public int getMaxUnusedConnections();

Gets the maximum number of unused connections in the pool.

Returns

v the maximum number of unused connections.

getTimeout

public long getTimeout();

Gets the timeout value.

Returns

v the time out value in milliseconds. Connections which have been unused

for this length of time are destroyed.

recycleConnection

public Object recycleConnection(MQManagedConnectionFactory mcf,

 ConnectionRequestInfo cxRequestInfo);

Finds an existing connection to a queue manager. It is called by the connection

factory instance of the resource adapter.

Normal applications should not call this method.

Parameters

v mcf - the connection factory.

v cxRequestInfo - represents information specific to the resource adapter

for handling the connection request.

Returns

v a connection, or null if the call fails.

setActive

public void setActive(int mode);

Sets the active mode of the pool.

Parameters

v mode - one of:

– MODE_AUTO

– MODE_ACTIVE

– MODE_INACTIVE

MQSimpleConnectionManager

Chapter 9. Package com.ibm.mq 197

setHighThreshold

public void setHighThreshold(int limit);

setMaxConnections

public void setMaxConnections(int newLimit)

 throws IllegalArgumentException;

Sets the maximum number of connections.

Parameters

v newLimit - the new maximum number of connections.

Exceptions

v IllegalArgumentException -

setMaxUnusedConnections

public void setMaxUnusedConnections(int limit);

Sets the maximum number of unused connections in the pool.

Parameters

v limit - recently used connections are destroyed if the size of the pool

exceeds this value.

setTimeout

public void setTimeout(long timeout);

Sets the timeout value.

Parameters

v timeout - the time out value in milliseconds. Connections which have

been unused for this length of time are destroyed.

MQSimpleConnectionManager

198 Using Java

MQC

public interface MQC

com.ibm.mq.MQC

The MQC interface defines all the constants used by the WebSphere MQ Java

programming interface (except for completion code constants and error code

constants). To refer to one of these constants from within your programs, simply

prefix constant name with ″MQC.″. For example, you can set the close options for

a queue as follows:

 MQQueue queue;

 ...

 queue.closeOptions = MQC.MQCO_DELETE; // delete the queue when it is closed

 ...

Fields

ASSOCIATE_ALL

public final static int

This value can be defined in the MQEnvironment to indicate that the

MQQueueManager object being created can be shared within the context of the

Java Virtual Machine. A subsequent call to

MQEnvironment.getQueueManagerReference(int) or

MQEnvironment.getQueueManagerReference(int, Object), where the Object is a

Java String containing the name of the WebSphere MQ queue manager, will return

a reference to this MQQueueManager object.

ASSOCIATE_NONE

public final static int

This value can be defined in the MQEnvironment to indicate that the

MQQueueManager object being created will not be available for sharing within

any context. This is the default value.

ASSOCIATE_THREAD

public final static int

This value can be defined in the MQEnvironment to indicate that the

MQQueueManager object being created can be shared within the context of the

currently executing thread. A subsequent call to

MQEnvironment.getQueueManagerReference(int) or

MQEnvironment.getQueueManagerReference(int, Object), where the Object is a

Java String containing the name of the WebSphere MQ queue manager, will return

a reference to this MQQueueManager object.

CCSID_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining the CCSID, the

coded-character-set-ID to be used on connections. The corresponding value must

be an Integer. This property overrides MQEnvironment.CCSID.

CHANNEL_PROPERTY

public final static java.lang.String

MQC

Chapter 9. Package com.ibm.mq 199

WebSphere MQ Java environment key for defining the channel name. The

corresponding value must be a String. This property overrides

MQEnvironment.channel .

CONNECT_OPTIONS_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining the connect options. Permitted

values are

v MQCNO_STANDARD_BINDING

v MQCNO_FASTPATH_BINDING

v MQCNO_NONE

v MQCNO_SHARED_BINDING

v MQCNO_ISOLATED_BINDING

v MQCNO_SERIALIZE_CONN_TAG_Q_MGR

v MQCNO_SERIALIZE_CONN_TAG_QSG

v MQCNO_RESTRICT_CONN_TAG_Q_MGR

v MQCNO_RESTRICT_CONN_TAG_QSG

The default value is MQC.MQCNO_NONE

CONNTAG_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining the connection tag. This is a tag

that the queue manager associates with the resources that are affected by the

application during this connection. It is only used by z/OS. The length of the

connection tag must be 128 bytes.

HDRCOMPLIST_LENGTH

public final static int

The maximum length of the list of header compression techniques which can be

set.

HEADER_COMPRESSION_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for specifying compression techniques (in

order of preference) to be applied to message header data. The corresponding

value must be of type java.util.Collection. The following compression technique

options are valid:

MQCOMPRESS_NONE MQCOMPRESS_SYSTEM.

This property overrides MQEnvironment.hdrCompList .

HOST_NAME_PROPERTY

public final static java.lang.String

The WebSphere MQ Java environment key for defining the host name property.

The corresponding value must be a String. This property overrides

MQEnvironment.hostname.

MQC

200 Using Java

LOCAL_ADDRESS_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining firewall local address property.

The corresponding value must be a String, in the format ″IP(Low port, High port)″,

e.g. ″9.20.0.1(2000,3000)″. This defines a range of local ports to be selected when

making a connection to an MQ queue manager.

MESSAGE_COMPRESSION_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for specifying compression techniques (in

order of preference) to be applied to message data. The corresponding value must

be of type java.util.Collection. The following compression technique options are

valid:

MQCOMPRESS_NONE MQCOMPRESS_RLE MQCOMPRESS_ZLIBFAST

MQCOMPRESS_ZLIBHIGH.

This property overrides MQEnvironment.msgCompList.

MQ_ACCOUNTING_TOKEN_LENGTH

public final static int

This defines the length of the accounting token field. The length is 32 bytes.

MQ_APPL_IDENTITY_DATA_LENGTH

public final static int

This defines the length of the application identity field. The length is 32 characters.

MQ_APPL_NAME_LENGTH

public final static int

This defines the length of the application name. The length is 28 characters.

MQ_APPL_ORIGIN_DATA_LENGTH

public final static int

This defines length of the application origin data field. ApplOriginData is

information that is defined by the application suite that can be used to provide

additional information about the origin of the message. The length is 4 characters.

MQ_CHANNEL_NAME_LENGTH

public final static int

This defines the length of the channel name field. The length is 20 characters.

MQ_CONN_NAME_LENGTH

public final static int

This defines the length of the connection name field. The length is 264 characters.

MQ_CONN_TAG_LENGTH

public final static int

MQC

Chapter 9. Package com.ibm.mq 201

This defines length of the connection tag. This is a tag that the queue manager

associates with the resources that are affected by the application during this

connection. The length is 128 bytes.

MQ_CORREL_ID_LENGTH

public final static int

This defines the length of the correlation ID field. The length is 24 bytes.

MQ_EXIT_DATA_LENGTH

public final static int

This defines the length of the exit data. The length is 32 bytes.

MQ_EXIT_NAME_LENGTH

public final static int

This defines the length of the exit name. The length is variable.

MQ_EXIT_USER_AREA_LENGTH

public final static int

This defines the length of the exit user area. The length is 16 bytes.

MQ_FORMAT_LENGTH

public final static int

This defines length of the message format field. The length is 8 bytes.

MQ_GROUP_ID_LENGTH

public final static int

This defines the length of the Group ID field. The length is 24 bytes

MQ_MSG_HEADER_LENGTH

public final static int

This defines the length of the message header. The length is 4000 bytes.

MQ_MSG_ID_LENGTH

public final static int

This defines the length of the message ID field. The length is 24 bytes.

MQ_MSG_TOKEN_LENGTH

public final static int

This defines the length of the message token field. The length is 16 bytes.

MQ_NAMELIST_DESC_LENGTH

public final static int

This defines the length of the namelist description field. The length is 64

characters.

MQC

202 Using Java

MQ_NAMELIST_NAME_LENGTH

public final static int

This defines the length of the name of the namelist. The length is 48 characters.

MQ_PASSWORD_LENGTH

public final static int

This defines the length of the password field. The length is 12 characters.

MQ_PROCESS_APPL_ID_LENGTH

public final static int

This defines the length of the process application ID field. The length is 256 bytes.

MQ_PROCESS_DESC_LENGTH

public final static int

This defines the length of the process description field. The length is 64 bytes.

MQ_PROCESS_ENV_DATA_LENGTH

public final static int

This defines the length of the environment data field. The length is 128 bytes.

MQ_PROCESS_NAME_LENGTH

public final static int

This defines the length of the process name field. The length is 48 bytes.

MQ_PROCESS_USER_DATA_LENGTH

public final static int

This defines the length of the process user data field. The length is 128 bytes.

MQ_PUT_APPL_NAME_LENGTH

public final static int

This defines the length of the MQ_PUT_APPL_NAME field. This contains the

name of the application that put a message on the dead-letter

(undelivered-message) queue. The length is 28 characters.

MQ_Q_DESC_LENGTH

public final static int

This defines the length of the queue description field. The length is 64 characters.

MQ_Q_MGR_DESC_LENGTH

public final static int

This defines the length of the queue manager description field. The length is 64

characters.

MQ_Q_MGR_NAME_LENGTH

public final static int

MQC

Chapter 9. Package com.ibm.mq 203

This defines the length of the queue manager name field. The length is 48

characters.

MQ_Q_NAME_LENGTH

public final static int

This defines the length of the queue name field. The length is 48 characters.

MQ_QMGR_ASSOCIATION_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining whether an MQQueueManager

object can be shared within a specified context. If this value is not set, then the

default behavior is to prevent the object being shared.

MQ_QSG_NAME_LENGTH

public final static int

This defines the length of the queue sharing group name field. The length is 4

characters.

MQ_SECURITY_ID_LENGTH

public final static int

This defines the length of the security ID field. The length is 40 bytes.

MQ_STORAGE_CLASS_LENGTH

public final static int

This defines the length of the storage class name field. The length is 8 characters.

MQ_TRIGGER_DATA_LENGTH

public final static int

This defines the length of the trigger data field. The length is 64 bytes.

MQ_USER_ID_LENGTH

public final static int

This defines the length of the user ID field. The length is 12 bytes.

MQACT_NONE

public final static byte[]

No accounting token is specified. The value is binary zero for the length of the

field.

MQACTT_CICS_LUOW_ID

public final static byte

This defines a CICS LUOW accounting token.

MQACTT_DOS_DEFAULT

public final static byte

This defines the default MS-DOS accounting token.

MQC

204 Using Java

MQACTT_NT_SECURITY_ID

public final static byte

This defines the Windows security ID accounting token.

MQACTT_OS2_DEFAULT

public final static byte

This defines the default OS/2® accounting token.

MQACTT_OS400_ACCOUNT_TOKEN

public final static byte

This defines the default i5/OS accounting token.

MQACTT_UNIX_NUMERIC_ID

public final static byte

This defines the default UNIX numeric accounting token.

MQACTT_UNKNOWN

public final static byte

This defines an unknown accounting token type.

MQACTT_USER

public final static byte

A user-defined accounting token.

MQACTT_WINDOWS_DEFAULT

public final static byte

This defines the default Windows accounting token.

MQAT_AIX

public final static int

This value indicates that an AIX application put the message. This is the same

value as MQAT_UNIX.

MQAT_CICS

public final static int

This value indicates that a CICS transaction put the message.

MQAT_CICS_BRIDGE

public final static int

This value indicates that the CICS bridge put the message.

MQAT_CICS_VSE

public final static int

This value indicates that a CICS/VSE® transaction put the message.

MQC

Chapter 9. Package com.ibm.mq 205

MQAT_DEFAULT

public final static int

This value indicates the default application type. This is the default application

type for the platform on which the application is running.

MQAT_DOS

public final static int

This value indicates that a WebSphere MQ client application on PC DOS put the

message.

MQAT_GUARDIAN

public final static int

This value indicates that a Tandem Guardian application put the message. This is

the same value as MQAT_NSK.

MQAT_IMS

public final static int

This value indicates that an IMS™ application put the message.

MQAT_IMS_BRIDGE

public final static int

This value indicates that the IMS bridge put the message.

MQAT_JAVA

public final static int

This value indicates that a Java application put the message.

MQAT_MVS

public final static int

This value indicates that an MVS™ or TSO application put the message. This is the

same value as MQAT_ZOS.

MQAT_NO_CONTEXT

public final static int

This value is set by the queue manager when a message is put with no context

(that is, the MQPMO_NO_CONTEXT context option is specified).

MQAT_NOTES_AGENT

public final static int

This value indicates that a Lotus Notes® Agent application put the message.

MQAT_NSK

public final static int

This value indicates that a Compaq NonStop Kernel application put the message.

MQC

206 Using Java

MQAT_OS2

public final static int

This value indicates that an OS/2 application put the message.

MQAT_OS400

public final static int

This value indicates that a i5/OS application put the message.

MQAT_QMGR

public final static int

This value indicates that a queue manager put the message.

MQAT_UNIX

public final static int

This value indicates that a UNIX application put the message. This is the same

value as MQAT_AIX.

MQAT_UNKNOWN

public final static int

This value indicates that the type of application that put the message is unknown,

even though other context information is present.

MQAT_USER_FIRST

public final static int

This defines the lowest value for user-defined application types.

MQAT_USER_LAST

public final static int

This defines the highest value for user-defined application types.

MQAT_VMS

public final static int

This value indicates that a Digital OpenVMS application put the message.

MQAT_VOS

public final static int

This value indicates that a Stratus VOS application put the message.

MQAT_WINDOWS

public final static int

This value indicates that a 16-bit Windows application put the message.

MQAT_WINDOWS_NT

public final static int

This value indicates that a 32-bit Windows application put the message.

MQC

Chapter 9. Package com.ibm.mq 207

MQAT_XCF

public final static int

This value indicates that XCF put the message.

MQBND_BIND_NOT_FIXED

public final static int

This value indicates that binding is not fixed by the MQOPEN call. This is the

binding that is used when MQOO_BIND_AS_Q_DEF is specified on the MQOPEN

call and the queue is a cluster queue.

MQBND_BIND_ON_OPEN

public final static int

This value indicates that binding is fixed by the MQOPEN call. This is the binding

that is used when MQOO_BIND_AS_Q_DEF is specified on the MQOPEN call and

the queue is a cluster queue.

MQCA_ALTERATION_DATE

public final static int

This character attribute selector is used with an MQINQ call to determine the date

of most-recent alteration. The length of the string is MQ_DATE_LENGTH.

MQCA_ALTERATION_TIME

public final static int

This character attribute selector is used with an MQINQ call to determine the time

of most-recent alteration. The length of the string is MQ_TIME_LENGTH.

MQCA_APPL_ID

public final static int

This character attribute selector is used with an MQINQ call to determine the

application ID. This is a character string that identifies the application to be

started. This information is for use by a trigger-monitor application that processes

messages on the initiation queue; the information is sent to the initiation queue as

part of the trigger message. The length of the string is

MQ_PROCESS_APPL_ID_LENGTH.

MQCA_AUTH_INFO_CONN_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

connection name of an AuthInfo object.

MQCA_AUTH_INFO_DESC

public final static int

This character attribute selector is used with an MQINQ call to determine the

description of an AuthInfo object.

MQCA_AUTH_INFO_NAME

public final static int

MQC

208 Using Java

This character attribute selector is used with an MQINQ call to determine the

name of an AuthInfo object.

MQCA_BACKOUT_REQ_Q_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

excessive backout requeue queue name. The length of the string is

MQ_Q_NAME_LENGTH.

MQCA_BASE_Q_NAME

public final static int

This character attribute selector is used to determine the name of queue that alias

resolves to. The length of string is MQ_Q_NAME_LENGTH.

MQCA_CF_STRUC_DESC

public final static int

This character attribute selector is used with an MQINQ call to determine the

description of the coupling-facility structure where the messages on the queue are

stored. The length of this attribute is given by MQ_CF_STRUC_NAME_LENGTH.

This attribute applies only to shared queues. This attribute is supported only on

z/OS.

MQCA_CF_STRUC_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the coupling-facility structure where the messages on the queue are

stored. The length of this attribute is given by MQ_CF_STRUC_NAME_LENGTH.

This attribute applies only to shared queues. This attribute is supported only on

z/OS.

MQCA_CHANNEL_AUTO_DEF_EXIT

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the user exit for automatic channel definition. The length of the string is

MQ_EXIT_NAME_LENGTH.

MQCA_CLUSTER_DATE

public final static int

This character attribute selector is used with an MQINQ call to determine the date

when the cluster definition became available to the local queue manager. The

format of the date is YYYY-MM-DD, padded with two trailing blanks to make the

length 12 bytes. The length of the string is MQ_CREATION_DATE_LENGTH.

MQCA_CLUSTER_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the cluster to which the queue belongs. The length of the string is

MQ_CLUSTER_NAME_LENGTH.

MQC

Chapter 9. Package com.ibm.mq 209

MQCA_CLUSTER_NAMELIST

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of a namelist object that contains the names of clusters to which this queue

belongs. The length of the string is MQ_NAMELIST_NAME_LENGTH.

MQCA_CLUSTER_Q_MGR_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of a cluster queue manager. The length of the string is

MQ_Q_MGR_NAME_LENGTH.

MQCA_CLUSTER_TIME

public final static int

This character attribute selector is used with an MQINQ call to determine the time

when the cluster definition became available to the local queue manager. The

format of the time is HH.MM.SS using the 24-hour clock, with a leading zero if the

hour is less than 10. The length of the string is MQ_CREATION_TIME_LENGTH.

MQCA_CLUSTER_WORKLOAD_DATA

public final static int

This character attribute selector is used with an MQINQ call to determine the

user-defined 32-byte character string that is passed to the cluster workload exit

when it is called. If there is no data to pass to the exit, the string is blank. The

length of the string is MQ_EXIT_DATA_LENGTH.

MQCA_CLUSTER_WORKLOAD_EXIT

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the user exit for cluster workload management. If this name is non-blank,

the exit is called each time that a message is put to a cluster queue or moved from

one cluster-sender queue to another. The length of the string is

MQ_EXIT_NAME_LENGTH.

MQCA_COMMAND_INPUT_Q_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the command input queue defined on the local queue manager. This is a

queue to which users can send commands, if authorized to do so. The name of the

queue depends on the environment. The length of the string is

MQ_Q_NAME_LENGTH.

MQCA_COMMAND_REPLY_Q_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the command reply queue defined on the local queue manager. The name

of the queue depends on the environment. The length of the string is

MQ_Q_NAME_LENGTH.

MQC

210 Using Java

MQCA_CREATION_DATE

public final static int

This character attribute selector is used with an MQINQ call to determine the date

when the queue was created. The format of the date is YYYY-MM-DD, padded

with two trailing blanks to make the length 12 bytes. The length of the string is

MQ_CREATION_DATE_LENGTH.

MQCA_CREATION_TIME

public final static int

This character attribute selector is used with an MQINQ call to determine the time

when the queue was created. The format of the time is HH.MM.SS using the

24-hour clock, with a leading zero if the hour is less than 10. The length of the

string is MQ_CREATION_TIME_LENGTH.

MQCA_DEAD_LETTER_Q_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the queue defined on the local queue manager as the dead-letter

(undelivered-message) queue. Messages are sent to this queue if they cannot be

routed to their correct destination. The length of the string is

MQ_Q_NAME_LENGTH.

MQCA_DEF_XMIT_Q_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the transmission queue that is used for the transmission of messages to

remote queue managers, if there is no other indication of which transmission

queue to use. If there is no default transmission queue, the name is entirely blank.

The initial value of this attribute is blank. The length of the string is

MQ_Q_NAME_LENGTH.

MQCA_ENV_DATA

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the character string that contains environment-related information

pertaining to the application to be started. This information is for use by a

trigger-monitor application that processes messages on the initiation queue; the

information is sent to the initiation queue as part of the trigger message. The

length of the string is MQ_PROCESS_ENV_DATA_LENGTH.

MQCA_FIRST

public final static int

This defines the start of the range of valid character attribute selectors. The integer

and character attribute selectors are allocated within two different ranges, with

MQCA_* selectors within the range MQCA_FIRST through MQCA_LAST.

MQCA_IGQ_USER_ID

public final static int

MQC

Chapter 9. Package com.ibm.mq 211

This character attribute selector is used with an MQINQ call to determine the user

identifier that is associated with the local intra-group queuing agent (IGQ agent).

This attribute is applicable only if the local queue manager is a member of a

queue-sharing group. The length of the string is MQ_USER_ID_LENGTH.

MQCA_INITIATION_Q_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the initiation queue defined on the local queue manager. The queue must

be of type MQQT_LOCAL. The queue manager sends a trigger message to the

initiation queue when application start-up is required as a result of a message

arriving on the queue to which this attribute belongs. The length of the string is

MQ_Q_NAME_LENGTH.

MQCA_LAST

public final static int

This defines the end of the range of valid character attribute selectors. The integer

and character attribute selectors are allocated within two different ranges, with

MQCA_* selectors within the range MQCA_FIRST through MQCA_LAST.

MQCA_LAST_USED

public final static int

This defines the highest value in the range of valid character attribute selectors

that the queue manager will accept.

MQCA_LDAP_PASSWORD

public final static int

This character attribute selector is used with an MQINQ call to determine the

password needed to access the defined LDAP CRL server.

MQCA_LDAP_USER_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

LDAP user name. It consists of the Distinguished Name of the user who is

attempting to access the LDAP CRL server.

MQCA_NAMELIST_DESC

public final static int

This character attribute selector is used with an MQINQ call to determine the

namelist description. The content of the field is of no significance to the queue

manager. The length of the string is MQ_NAMELIST_DESC_LENGTH.

MQCA_NAMELIST_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

namelist name. For more information about namelist names, see the WebSphere MQ

Application Programming Guide. The length of the string is

MQ_NAMELIST_NAME_LENGTH.

MQC

212 Using Java

MQCA_NAMES

public final static int

This character attribute selector is used with an MQINQ call to determine a list of

NameCount names, where each name is the name of an object that is defined to

the local queue manager. For more information about object names, see WebSphere

MQ Application Programming Reference. The length of the each of the names in the

list is MQ_OBJECT_NAME_LENGTH.

MQCA_PROCESS_DESC

public final static int

This character attribute selector is used with an MQINQ call to determine the

process description. The content of the field is of no significance to the queue

manager. The length of the string is MQ_PROCESS_DESC_LENGTH.

MQCA_PROCESS_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of a process definition that is defined on the local queue manager. Each

process definition has a name that is different from the names of other process

definitions belonging to the queue manager. The length of the string is

MQ_PROCESS_NAME_LENGTH.

MQCA_Q_DESC

public final static int

This character attribute selector is used with an MQINQ call to determine a queue

description. The content of the field is of no significance to the queue manager. The

length of the string is MQ_Q_DESC_LENGTH.

MQCA_Q_MGR_DESC

public final static int

This character attribute selector is used with an MQINQ call to determine the

queue manager description. The content of the field is of no significance to the

queue manager. The length of the string is MQ_Q_MGR_DESC_LENGTH.

MQCA_Q_MGR_IDENTIFIER

public final static int

This character attribute selector is used with an MQINQ call to determine the

internally-generated unique name for the queue manager. The length of the string

is MQ_Q_MGR_IDENTIFIER_LENGTH.

MQCA_Q_MGR_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the local queue manager. That is, the name of the queue manager to

which the application is connected. The length of the string is

MQ_Q_MGR_NAME_LENGTH.

MQCA_Q_NAME

public final static int

MQC

Chapter 9. Package com.ibm.mq 213

This character attribute selector is used with an MQINQ call to determine the

name of a queue defined on the local queue manager. For more information about

queue names, see WebSphere MQ Application Programming Guide. All queues defined

on a queue manager share the same queue name space. Therefore, an

MQQT_LOCAL queue and an MQQT_ALIAS queue cannot have the same name.

The length of the string is MQ_Q_NAME_LENGTH.

MQCA_QSG_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of a queue sharing group to which the local queue manager belongs. If the

local queue manager does not belong to a queue-sharing group, the name is blank.

The length of the string is MQ_QSG_NAME_LENGTH.

MQCA_REMOTE_Q_MGR_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the remote queue manager on which the queue RemoteQName is defined.

If the RemoteQName queue has a QSGDisp value of MQQSGD_COPY or

MQQSGD_SHARED, RemoteQMgrName can be the name of the queue-sharing

group that owns RemoteQName. The length of the string is

MQ_Q_MGR_NAME_LENGTH.

MQCA_REMOTE_Q_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the queue as it is known on the remote queue manager

RemoteQMgrName. The length of the string is MQ_Q_NAME_LENGTH.

MQCA_REPOSITORY_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of a cluster for which this queue manager provides a repository-manager

service. The length of the string is MQ_Q_MGR_NAME_LENGTH.

MQCA_REPOSITORY_NAMELIST

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of a namelist object that contains the names of clusters for which this queue

manager provides a repository-manager service. If the queue manager provides

this service for only one cluster, the namelist object contains only one name. The

length of the string is MQ_NAMELIST_NAME_LENGTH.

MQCA_SSL_CRL_NAMELIST

public final static int

This character attribute selector is used with an MQINQ call to determine the

name of the namelist object containing names of authentication information objects.

MQCA_SSL_CRYPTO_HARDWARE

public final static int

MQC

214 Using Java

This character attribute selector is used with an MQINQ call to determine the

cryptographic hardware configuration string. This field is relevant only for

WebSphere MQ clients running on UNIX systems.

MQCA_STORAGE_CLASS

public final static int

This character attribute selector is used with an MQINQ call to determine the

user-defined name that defines the physical storage used to hold the queue. This

attribute is supported only on z/OS. The length of the string is

MQ_STORAGE_CLASS_LENGTH.

MQCA_STORAGE_CLASS_DESC

public final static int

This character attribute selector is used with an MQINQ call to determine the

user-defined description of the physical storage used to hold the queue. The

content of the field is of no significance to the queue manager. This attribute is

supported only on z/OS. The length of the string is

MQ_STORAGE_CLASS_LENGTH.

MQCA_TRIGGER_DATA

public final static int

This character attribute selector is used with an MQINQ call to determine the

free-format data that the queue manager inserts into the trigger message when a

message arriving on this queue causes a trigger message to be written to the

initiation queue. The length of the string is MQ_TRIGGER_DATA_LENGTH.

MQCA_USER_DATA

public final static int

This character attribute selector is used with an MQINQ call to determine the

string that contains user information pertaining to the application to be started.

This information is for use by a trigger-monitor application that processes

messages on the initiation queue, or the application that is started by the trigger

monitor. The information is sent to the initiation queue as part of the trigger

message. The length of the string is MQ_PROCESS_USER_DATA_LENGTH.

MQCA_XCF_GROUP_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the XCF

group name. The maximum length of the string is

MQ_XCF_GROUP_NAME_LENGTH.

MQCA_XCF_MEMBER_NAME

public final static int

This character attribute selector is used with an MQINQ call to determine the XCF

member name. The maximum length of the string is

MQ_XCF_MEMBER_NAME_LENGTH.

MQCA_XMIT_Q_NAME

public final static int

MQC

Chapter 9. Package com.ibm.mq 215

This character attribute selector is used with an MQINQ call to determine the

transmission queue name. If this attribute is not blank when an open occurs, either

for a remote queue or for a queue-manager alias definition, it specifies the name of

the local transmission queue to be used for forwarding the message. If

XmitQName is blank, the local queue whose name is the same as

RemoteQMgrName is used as the transmission queue. If there is no queue with the

name RemoteQMgrName, the queue identified by the DefXmitQName

queue-manager attribute is used. The length of the string is

MQ_Q_NAME_LENGTH.

MQCCSI_DEFAULT

public final static int

The CodedCharSetId of the data in the String field is defined by the

CodedCharSetId field in the header structure that precedes the MQCFH structure,

or by the CodedCharSetId field in the MQMD if the MQCFH is at the start of the

message.

MQCCSI_INHERIT

public final static int

Character data in the message is in the same character set as this structure. This is

the queue manager’s character set. (For MQMD only, MQCCSI_INHERIT has the

same meaning as MQCCSI_Q_MGR).

The queue manager changes this value in the MQMD that is sent with the message

to the actual character-set identifier of MQMD. Provided no error occurs, the value

MQCCSI_INHERIT is not returned by the MQGET call.

MQCCSI_Q_MGR

public final static int

Character data in the message is in the queue manager’s character set.

On the MQPUT and MQPUT1 calls, the queue manager changes this value in the

MQMD that is sent with the message to the true character-set identifier of the

queue manager. As a result, the value MQCCSI_Q_MGR is never returned by the

MQGET call.

MQCF_DIST_LISTS

public final static int

This flag indicates that distribution lists are supported by the local queue manager.

MQCI_NEW_SESSION

public final static byte[]

This indicates that the Message is the start of a new session. This value is

recognized by the CICS bridge as indicating the start of a new session, that is, the

start of a new sequence of messages.

MQCI_NONE

public final static byte[]

No correlation ID is specified. The value is binary zero for the length of the field.

MQC

216 Using Java

MQCMDL_LEVEL_1

public final static int

This indicates that level 1 of system control commands are supported by the queue

manager.

MQCMDL_LEVEL_101

public final static int

This indicates that level 1.01 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_110

public final static int

This indicates that level 1.10 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_114

public final static int

This indicates that level 1.14 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_120

public final static int

This indicates that level 1.20 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_200

public final static int

This indicates that level 2.00 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_201

public final static int

This indicates that level 2.01 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_210

public final static int

This indicates that level 2.10 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_221

public final static int

This indicates that level 2.21 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_230

public final static int

MQC

Chapter 9. Package com.ibm.mq 217

This indicates that level 2.30 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_320

public final static int

This indicates that level 3.20 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_500

public final static int

This indicates that level 5.00 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_510

public final static int

This indicates that level 5.10 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_520

public final static int

This indicates that level 5.20 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_530

public final static int

This indicates that level 5.30 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_531

public final static int

This indicates that level 5.31 of system control commands are supported by the

queue manager.

MQCMDL_LEVEL_600

public final static int

This indicates that level 6.00 of system control commands are supported by the

queue manager.

MQCNO_FASTPATH_BINDING

public final static int

This option causes the application and the local-queue-manager agent to be part of

the same unit of execution. This is in contrast to the normal method of binding,

where the application and the local-queue-manager agent run in separate units of

execution.

MQCNO_ISOLATED_BINDING

public final static int

MQC

218 Using Java

This option causes the application and the local-queue-manager agent (the

component that manages queuing operations) to run in separate units of execution

(generally, in separate processes). This arrangement maintains the integrity of the

queue manager, that is, it protects the queue manager from errant programs. The

application process and the local-queue-manager agent are isolated from each other

in that they do not share resources.

MQCNO_NONE

public final static int

This field can be specified to aid program documentation when no MQCNO_*

options need be specified. It is not intended that this option be used with any

other MQCNO_* option, but as its value is zero, such use cannot be detected.

MQCNO_RESTRICT_CONN_TAG_Q_MGR

public final static int

This option indicates that connection tag use is restricted within the queue

manager. This connection option is supported on z/OS only. It requests shared use

of the connection tag within the local queue manager. If the connection tag is

already in use in the local queue manager, the MQCONNX call can succeed

provided that the requesting application is running in the same processing scope

as the existing user of the tag. If this condition is not satisfied, the MQCONNX call

fails with reason code MQRC_CONN_TAG_IN_USE. The outcome of the call is not

affected by use of the connection tag elsewhere in the queue-sharing group to

which the local queue manager belongs.

On z/OS, applications must run within the same MVS address space in order to

share the connection tag.

If the application using the connection tag is a client application,

MQCNO_RESTRICT_CONN_TAG_Q_MGR is not allowed.

MQCNO_RESTRICT_CONN_TAG_QSG

public final static int

This option indicates that connection tag use is restricted within the queue-sharing

group. This connection option is supported on z/OS only. It requests shared use of

the connection tag within the queue-sharing group to which the local queue

manager belongs. If the connection tag is already in use in the queue-sharing

group, the MQCONNX call can succeed provided that: the requesting application

is running in the same processing scope as the existing user of the tag; the

requesting application is connected to the same queue manager as the existing user

of the tag. If these conditions are not satisfied, the MQCONNX call fails with

reason code MQRC_CONN_TAG_IN_USE.

On z/OS, applications must run within the same MVS address space in order to

share the connection tag.

If the application using the connection tag is a client application,

MQCNO_RESTRICT_CONN_TAG_Q_QSG is not allowed.

MQCNO_SERIALIZE_CONN_TAG_Q_MGR

public final static int

MQC

Chapter 9. Package com.ibm.mq 219

This option indicates that connection tag use is serialized within the queue

manager. This connection option is supported on z/OS only. It requests exclusive

use of the connection tag within the local queue manager. If the connection tag is

already in use in the local queue manager, the MQCONNX call fails with reason

code MQRC_CONN_TAG_IN_USE. The outcome of the call is not affected by use

of the connection tag elsewhere in the queue-sharing group to which the local

queue manager belongs.

MQCNO_SERIALIZE_CONN_TAG_QSG

public final static int

This option indicates that connection tag use is serialized within the queue-sharing

group. This connection option is supported on z/OS only. It requests exclusive use

of the connection tag within the queue-sharing group to which the local queue

manager belongs. If the connection tag is already in use in the queue-sharing

group, the MQCONNX call fails with reason code MQRC_CONN_TAG_IN_USE.

MQCNO_SHARED_BINDING

public final static int

This connection option causes the application and the local-queue-manager agent

(the component that manages queuing operations) to run in separate units of

execution (generally, in separate processes). This arrangement maintains the

integrity of the queue manager. That is, it protects the queue manager from errant

programs. However some resources are shared between the application and the

local-queue-manager agent.

MQCNO_STANDARD_BINDING

public final static int

This connection option causes the application and the local-queue-manager agent

(the component that manages queuing operations) to run in separate units of

execution (generally, in separate processes). This arrangement maintains the

integrity of the queue manager, that is, it protects the queue manager from errant

programs.

MQCNO_VERSION_1

public final static int

This defines a version 1 connection options structure.

MQCNO_VERSION_2

public final static int

This defines a version 2 connection options structure.

MQCNO_VERSION_3

public final static int

This defines a version 3 connection options structure.

MQCNO_VERSION_4

public final static int

This defines a version 4 connection options structure.

MQC

220 Using Java

MQCNO_VERSION_5

public final static int

This defines a version 5 connection options structure.

MQCO_DELETE

public final static int

The queue is deleted if either of the following is true:

v It is a permanent dynamic queue, and there are no messages on the queue and

no uncommitted get or put requests outstanding for the queue (either for the

current task or any other task).

v It is the temporary dynamic queue that was created by the MQOPEN call that

returned Hobj. In this case, all the messages on the queue are purged.

In all other cases the call fails with reason code

MQRC_OPTION_NOT_VALID_FOR_TYPE, and the object is not deleted.

MQCO_DELETE_PURGE

public final static int

The queue is deleted, and any messages on it purged, if either of the following is

true:

v It is a permanent dynamic queue and there are no uncommitted get or put

requests outstanding for the queue (either for the current task or any other task).

v It is the temporary dynamic queue that was created by the MQOPEN call that

returned Hobj.

In all other cases the call fails with reason code

MQRC_OPTION_NOT_VALID_FOR_TYPE, and the object is not deleted.

MQCO_NONE

public final static int

No optional close processing is required. This must be specified for:

v Objects other than queues

v Predefined queues

v Temporary dynamic queues (but only in those cases where Hobj is not the

handle returned by the MQOPEN call that created the queue).

v Distribution lists

MQCOMPRESS_NONE

public final static int

Setting this value specifies that no message or header data compression is to take

place. See MESSAGE_COMPRESSION_PROPERTY and

HEADER_COMPRESSION_PROPERTY.

MQCOMPRESS_RLE

public final static int

Setting this value specifies that message data compression is to be performed using

run-length encoding (RLE) compression. See

MESSAGE_COMPRESSION_PROPERTY .

MQC

Chapter 9. Package com.ibm.mq 221

MQCOMPRESS_SYSTEM

public final static int

Setting this value specifies that header data compression is performed using

run-length encoding (RLE) compression. See

HEADER_COMPRESSION_PROPERTY .

MQCOMPRESS_ZLIBFAST

public final static int

Setting this value specifies that message data compression is performed using ZLIB

encoding and with speed of compression prioritized over degree of compression.

See MESSAGE_COMPRESSION_PROPERTY.

MQCOMPRESS_ZLIBHIGH

public final static int

Setting this value specifies that message data compression is performed using ZLIB

encoding and with degree of compression prioritized over speed of compression.

See MESSAGE_COMPRESSION_PROPERTY.

MQCSP_AUTH_NONE

public final static int

This value indicates that MQCSP user ID and password fields are not used by the

Object Authority Manager (OAM) to perform authentication on a MQCONNX call.

This is the default value.

MQCSP_AUTH_USER_ID_AND_PWD

public final static int

This value indicates that MQCSP user ID and password fields will be used by the

Object Authority Manager (OAM) to perform authentication on a MQCONNX call.

When this is specified, the MQCSP structure is passed to the OAM Authenticate

User function, which can set appropriate identity context fields.

MQCSP_VERSION_1

public final static int

This defines a version 1 connection security parameters structure.

MQCT_NONE

public final static byte[]

MQCT_NONE can be used when no connection tag is required. The value is

binary zero for the length of the field.

The connection tag field is only used when connecting to a z/OS queue manager.

In other environments, specify the value MQCT_NONE.

MQDL_NOT_SUPPORTED

public final static int

Distribution-list messages cannot be stored on the queue, because the partnering

queue manager does not support distribution lists. If an application puts a

distribution-list message, and that message is to be placed on this queue, the queue

MQC

222 Using Java

manager splits the distribution-list message and places the individual messages on

the queue instead. This increases the amount of processing required to send the

message to multiple destinations, but ensures that the messages are processed

correctly by the partnering queue manager.

MQDL_SUPPORTED

public final static int

Distribution-list messages can be stored on the queue, and transmitted to the

partnering queue manager in that form. This reduces the amount of processing

required to send the message to multiple destinations.

MQEI_UNLIMITED

public final static int

This field marks a message as having an unlimited expiration time.

MQENC_DECIMAL_MASK

public final static int

Mask for packed-decimal-integer encoding. This subfield occupies bit positions 24

through 27 within the Encoding field.

MQENC_DECIMAL_NORMAL

public final static int

Packed-decimal integers are represented in the conventional way:

v Each decimal digit in the printable form of the number is represented in packed

decimal by a single hexadecimal digit in the range X’0’ through X’9’. Each

hexadecimal digit occupies four bits, and so each byte in the packed decimal

number represents two decimal digits in the printable form of the number.

v The least significant byte in the packed-decimal number is the byte that contains

the least significant decimal digit. Within that byte, the most significant four bits

contain the least significant decimal digit, and the least significant four bits

contain the sign. The sign is either X’C’ (positive), X’D’ (negative), or X’F’

(unsigned).

v The least significant byte in the number has the highest address of any of the

bytes in the number; the most significant byte has the lowest address.

v The least significant bit in each byte is adjacent to the byte with the next higher

address; the most significant bit in each byte is adjacent to the byte with the next

lower address.

MQENC_DECIMAL_REVERSED

public final static int

Packed-decimal integers are represented in the same way as

MQENC_DECIMAL_NORMAL, but with the bytes arranged in reverse order. The

bits within each byte are arranged in the same way as

MQENC_DECIMAL_NORMAL.

MQENC_DECIMAL_UNDEFINED

public final static int

Packed-decimal integers are represented using an encoding that is undefined.

MQC

Chapter 9. Package com.ibm.mq 223

MQENC_FLOAT_IEEE_NORMAL

public final static int

Floating-point numbers are represented using the standard IEEE3 floating-point

format

MQENC_FLOAT_IEEE_REVERSED

public final static int

Floating-point numbers are represented in the same way as

MQENC_FLOAT_IEEE_NORMAL, but with the bytes arranged in reverse order.

The bits within each byte are arranged in the same way as

MQENC_FLOAT_IEEE_NORMAL.

MQENC_FLOAT_MASK

public final static int

Mask for floating-point encoding. This subfield occupies bit positions 20 through

23 within the Encoding field.

MQENC_FLOAT_S390

public final static int

Floating-point numbers are represented using the standard zSeries (System/390®)

floating-point format. This is also used by System/370™.

MQENC_FLOAT_TNS

public final static int

Floating-point numbers are represented using TNSFloat floating-point format. This

is for use on Compaq NonStop Kernel applications.

MQENC_FLOAT_UNDEFINED

public final static int

Floating-point numbers are represented using an encoding that is undefined.

MQENC_INTEGER_MASK

public final static int

Mask for binary-integer encoding. This subfield occupies bit positions 28 through

31 within the Encoding field.

MQENC_INTEGER_NORMAL

public final static int

Binary integers are represented in the conventional way:

v The least significant byte in the number has the highest address of any of the

bytes in the number; the most significant byte has the lowest address.

v The least significant bit in each byte is adjacent to the byte with the next higher

address; the most significant bit in each byte is adjacent to the byte with the next

lower address.

MQENC_INTEGER_REVERSED

public final static int

MQC

224 Using Java

Binary integers are represented in the same way as MQENC_INTEGER_NORMAL,

but with the bytes arranged in reverse order. The bits within each byte are

arranged in the same way as MQENC_INTEGER_NORMAL.

MQENC_INTEGER_UNDEFINED

public final static int

Binary integers are represented using an encoding that is undefined.

MQENC_NATIVE

public final static int

Numbers are encoded using the system encoding. This is the default value

MQENC_RESERVED_MASK

public final static int

Mask for reserved bits. This subfield occupies bit positions 0 through 19 within the

Encoding field.

MQFB_ACTIVITY

public final static int

Feedback indicating that an activity was performed on behalf of message.

MQFB_APPL_CANNOT_BE_STARTED

public final static int

Feedback indicating that an application processing a trigger message cannot start

the application named in the ApplId field of the trigger message.

MQFB_APPL_FIRST

public final static int

This defines the lowest value for application-defined feedback.

MQFB_APPL_LAST

public final static int

This defines the highest value for application-defined feedback.

MQFB_APPL_TYPE_ERROR

public final static int

Feedback indicating that an application processing a trigger message cannot start

the application because the ApplType field of the trigger message is not valid

MQFB_BUFFER_OVERFLOW

public final static int

The feedback codes can be generated by the IMS bridge to indicate that the value

of one of the length fields would cause the data to overflow the message buffer.

MQFB_COA

public final static int

Feedback confirming arrival on the destination queue (see MQRO_COA).

MQC

Chapter 9. Package com.ibm.mq 225

MQFB_COD

public final static int

Feedback confirming delivery to the receiving application (see MQRO_COD).

MQFB_DATA_LENGTH_NEGATIVE

public final static int

The feedback codes can be generated by the IMS bridge to indicate that a segment

length was negative in the application data of the message.

MQFB_DATA_LENGTH_TOO_BIG

public final static int

The feedback codes can be generated by the IMS bridge to indicate that a segment

length too big in the application data of the message.

MQFB_DATA_LENGTH_ZERO

public final static int

The feedback codes can be generated by the IMS bridge to indicate that a segment

length was zero in the application data of the message.

MQFB_EXPIRATION

public final static int

Feedback indicating that the message was discarded because it had not been

removed from the destination queue before its expiry time had elapsed.

MQFB_IIH_ERROR

public final static int

The feedback codes can be generated by the IMS bridge to indicate that the Format

field in MQMD specifies MQFMT_IMS, but the message does not begin with a

valid MQIIH structure.

MQFB_LENGTH_OFF_BY_ONE

public final static int

The feedback codes can be generated by the IMS bridge to indicate that the value

of one of the length fields was one byte too short.

MQFB_MAX_ACTIVITIES

public final static int

Feedback indicating that a trace-route message was discarded because it was

involved in more than the specified maximum number of activities.

MQFB_NAN

public final static int

This is used with a message of type MQMT_REPORT to indicate the nature of the

report, and is only meaningful with that type of message. This value indicates a

negative action notification.

MQC

226 Using Java

MQFB_NONE

public final static int

This is used with a message of type report, and indicates no feedback is provided.

MQFB_NOT_DELIVERED

public final static int

Feedback indicating that a trace-route message was discarded because it was about

to be delivered to a local queue.

MQFB_NOT_FORWARDED

public final static int

Feedback indicating that a trace-route message was discarded because it was about

to be forwarded to a queue manager that is unable to honor the value of the

specified forwarding options.

MQFB_PAN

public final static int

This is used with a message of type MQMT_REPORT to indicate the nature of the

report, and is only meaningful with that type of message. This value indicates a

positive action notification.

MQFB_QUIT

public final static int

Feedback indicating an application ended. This can be used by a workload

scheduling program to control the number of instances of an application program

that are running. Sending an MQMT_REPORT message with this feedback code to

an instance of the application program indicates to that instance that it should stop

processing.

Adherence to this convention is a matter for the application; it is not enforced by

the queue manager.

MQFB_STOPPED_BY_MSG_EXIT

public final static int

Feedback indicating that a message was stopped by a channel message exit.

MQFB_SYSTEM_FIRST

public final static int

This defines the lowest value for system-generated feedback.

MQFB_SYSTEM_LAST

public final static int

This defines the highest value for system-generated feedback.

MQFB_TM_ERROR

public final static int

MQC

Chapter 9. Package com.ibm.mq 227

Feedback indicating that the Format field in MQMD specifies MQFMT_TRIGGER,

but the message does not begin with a valid MQTM structure.

MQFB_UNSUPPORTED_DELIVERY

public final static int

Feedback indicating that a trace-route message was discarded because at least one

of the delivery options was not recognized and was in the

MQROUTE_DELIVER_REJ_UNSUP_MASK bitmask.

MQFB_UNSUPPORTED_FORWARDING

public final static int

Feedback indicating that a trace-route message was discarded because at least one

of the forwarding options was not recognized and was in the

MQROUTE_FORWARD_REJ_UNSUP_MASK bitmask.

MQFB_XMIT_Q_MSG_ERROR

public final static int

Feedback indicating that a message channel agent has found that a message on the

transmission queue is not in the correct format. The message channel agent puts

the message on the dead-letter queue using this feedback code.

MQFMT_ADMIN

public final static java.lang.String

The message is a command-server request or reply message in programmable

command format (PCF). Messages of this format can be converted if the

MQGMO_CONVERT option is specified on the MQGET call.

MQFMT_CICS

public final static java.lang.String

The message data begins with the CICS information header MQCIH, followed by

the application data. The format name of the application data is given by the

Format field in the MQCIH structure. On z/OS, specify the MQGMO_CONVERT

option on the MQGET call to convert messages that have format MQFMT_CICS.

MQFMT_COMMAND_1

public final static java.lang.String

The message is an MQSC command-server reply message containing the object

count, completion code, and reason code. Messages of this format can be converted

if the MQGMO_CONVERT option is specified on the MQGET call.

MQFMT_COMMAND_2

public final static java.lang.String

The message is an MQSC command-server reply message containing information

about the objects requested. Messages of this format can be converted if the

MQGMO_CONVERT option is specified on the MQGET call.

MQFMT_DEAD_LETTER_HEADER

public final static java.lang.String

MQC

228 Using Java

The message data begins with the dead-letter header MQDLH. The data from the

original message immediately follows the MQDLH structure. The format name of

the original message data is given by the Format field in the MQDLH structure.

Messages of this format can be converted if the MQGMO_CONVERT option is

specified on the MQGET call.

MQFMT_DIST_HEADER

public final static java.lang.String

The message data begins with the distribution-list header MQDH; this includes the

arrays of MQOR and MQPMR records. The distribution-list header can be followed

by additional data. The format of the additional data (if any) is given by the

Format field in the MQDH structure.

MQFMT_EVENT

public final static java.lang.String

The message is an MQ event message that reports an event that occurred. Event

messages have the same structure as programmable commands.

Version 1 event messages can be converted in all environments if the

MQGMO_CONVERT option is specified on the MQGET call. Version 2 event

messages can be converted only on z/OS.

MQFMT_IMS

public final static java.lang.String

The message data begins with the IMS information header MQIIH, which is

followed by the application data. The format name of the application data is given

by the Format field in the MQIIH structure. Specify the MQGMO_CONVERT

option on the MQGET call to convert messages that have format MQFMT_IMS.

MQFMT_IMS_VAR_STRING

public final static java.lang.String

The message is an IMS variable string, which is a string of the form llzzccc.

MQFMT_MD_EXTENSION

public final static java.lang.String

The message data begins with the message-descriptor extension MQMDE, and is

optionally followed by other data (usually the application message data). The

format name, character set, and encoding of the data that follow the MQMDE are

given by the Format, CodedCharSetId, and Encoding fields in the MQMDE.

MQFMT_NONE

public final static java.lang.String

The nature of the data is undefined, and the data cannot be converted when the

message is retrieved from a queue using the MQGMO_CONVERT option.

MQFMT_PCF

public final static java.lang.String

The message is a user-defined message that conforms to the structure of a

programmable command format (PCF) message. Messages of this format can be

converted if the MQGMO_CONVERT option is specified on the MQGET call.

MQC

Chapter 9. Package com.ibm.mq 229

MQFMT_REF_MSG_HEADER

public final static java.lang.String

The message data begins with the reference message header MQRMH, and is

optionally followed by other data. The format name, character set, and encoding of

the data is given by the Format, CodedCharSetId, and Encoding fields in the

MQRMH.

MQFMT_RF_HEADER_1

public final static java.lang.String

The message data begins with the rules and formatting header MQRFH, and is

optionally followed by other data. The format name, character set, and encoding of

the data (if any) are given by the Format, CodedCharSetId, and Encoding fields in

the MQRFH. Messages of this format can be converted if the MQGMO_CONVERT

option is specified on the MQGET call.

MQFMT_RF_HEADER_2

public final static java.lang.String

The message data begins with the version 2 rules and formatting header MQRFH2,

and is optionally followed by other data. The format name, character set, and

encoding of the optional data (if any) are given by the Format, CodedCharSetId,

and Encoding fields in the MQRFH2. Messages of this format can be converted if

the MQGMO_CONVERT option is specified on the MQGET call.

MQFMT_STRING

public final static java.lang.String

The application message data can be either an SBCS string (single-byte character

set), or a DBCS string (double-byte character set). Messages of this format can be

converted if the MQGMO_CONVERT option is specified on the MQGET call.

MQFMT_TRIGGER

public final static java.lang.String

The message is a trigger message. Messages of this format can be converted if the

MQGMO_CONVERT option is specified on the MQGET call.

MQFMT_XMIT_Q_HEADER

public final static java.lang.String

The message data begins with the transmission queue header MQXQH. The data

from the original message immediately follows the MQXQH structure. The format

name of the original message data is given by the Format field in the MQMD

structure, which is part of the transmission queue header MQXQH.

MQGI_NONE

public final static byte[]

No group identifier is specified. The value is binary zero for the length of the field.

This is the value that is used for messages that are not in groups, that are not

segments of logical messages, and for which segmentation is not allowed.

MQGMO_ACCEPT_TRUNCATED_MSG

public final static int

MQC

230 Using Java

If the message buffer is too small to hold the complete message, allow the MQGET

call to fill the buffer with as much of the message as the buffer can hold.

MQGMO_ALL_MSGS_AVAILABLE

public final static int

Messages in a group become available for retrieval only when all messages in the

group are available. If the queue contains message groups with some of the

messages missing (perhaps because they have been delayed in the network and

have not yet arrived), specifying MQGMO_ALL_MSGS_AVAILABLE prevents

retrieval of messages belonging to incomplete groups. However, those messages

still contribute to the value of the CurrentQDepth queue attribute; this means that

there might be no retrievable message groups, even though CurrentQDepth is

greater than zero.

MQGMO_ALL_SEGMENTS_AVAILABLE

public final static int

Segments in a logical message become available for retrieval only when all

segments in the logical message are available. If the queue contains segmented

messages with some of the segments missing (perhaps because they have been

delayed in the network and have not yet arrived), specifying

MQGMO_ALL_SEGMENTS_AVAILABLE prevents retrieval of segments belonging

to incomplete logical messages. However, those segments still contribute to the

value of the CurrentQDepth queue attribute; this means that there might be no

retrievable logical messages, even though CurrentQDepth is greater than zero.

MQGMO_BROWSE_FIRST

public final static int

When a queue is opened with the MQOO_BROWSE option, a browse cursor is

established, positioned logically before the first message on the queue. You can

then use MQGET calls specifying the MQGMO_BROWSE_FIRST,

MQGMO_BROWSE_NEXT, or MQGMO_BROWSE_MSG_UNDER_CURSOR option

to retrieve messages from the queue nondestructively. The browse cursor marks

the position, within the messages on the queue, from which the next MQGET call

with MQGMO_BROWSE_NEXT searches for a suitable message.

MQGMO_BROWSE_MSG_UNDER_CURSOR

public final static int

Retrieve the message pointed to by the browse cursor nondestructively, regardless

of the MQMO_* options specified in the MatchOptions field in MQGMO.

The message pointed to by the browse cursor is the one that was last retrieved

using either the MQGMO_BROWSE_FIRST or the MQGMO_BROWSE_NEXT

option. The call fails if neither of these calls have been issued for this queue since

it was opened, or if the message that was under the browse cursor has since been

retrieved destructively.

The position of the browse cursor is not changed by this call.

MQGMO_BROWSE_NEXT

public final static int

MQC

Chapter 9. Package com.ibm.mq 231

Advance the browse cursor to the next message on the queue that satisfies the

selection criteria specified on the MQGET call. The message is returned to the

application, but remains on the queue. After a queue has been opened for browse,

the first browse call using the handle has the same effect whether it specifies the

MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option.

See WebSphere MQ Application Programming Reference for more information on this

parameter.

MQGMO_COMPLETE_MSG

public final static int

Only a complete logical message can be returned by the MQGET call. If the logical

message is segmented, the queue manager reassembles the segments and returns

the complete logical message to the application; the fact that the logical message

was segmented is not apparent to the application retrieving it.

MQGMO_CONVERT

public final static int

Requests the application data to be converted. The conversion conforms to the

characterSet and encoding attributes of MQMessage, before the data is copied into

the message buffer.

MQGMO_FAIL_IF_QUIESCING

public final static int

Force the MQGET call to fail if the queue manager is in the quiescing state. On

z/OS, this option also forces the MQGET call to fail if the connection (for a CICS

or IMS application) is in the quiescing state.

MQGMO_LOCK

public final static int

Lock the message that is browsed, so that the message becomes invisible to any

other handle open for the queue. The option can be specified only if one of the

following options is also specified:

v MQGMO_BROWSE_FIRST

v MQGMO_BROWSE_NEXT

v MQGMO_BROWSE_MSG_UNDER_CURSOR

MQGMO_LOGICAL_ORDER

public final static int

This option controls the order in which messages are returned by successive

MQGET calls for the queue handle. The option must be specified on each of those

calls in order to have an effect.

MQGMO_MARK_SKIP_BACKOUT

public final static int

Back out a unit of work without reinstating on the queue the message that was

marked with this option.

When an application requests the backout of a unit of work containing a get

request, a message that was retrieved using this option is not restored to its

MQC

232 Using Java

previous state. (Other resource updates, however, are still backed out.) Instead, the

message is treated as if it had been retrieved by a get request without this option,

in a new unit of work started by the backout request.

MQGMO_MSG_UNDER_CURSOR

public final static int

Retrieve the message pointed to by the browse cursor, regardless of the MQMO_*

options specified in the MatchOptions field in MQGMO. The message is removed

from the queue. The message pointed to by the browse cursor is the one that was

last retrieved using either the MQGMO_BROWSE_FIRST or the

MQGMO_BROWSE_NEXT option.

MQGMO_NO_SYNCPOINT

public final static int

The request is to operate outside the normal unit-of-work protocols. The message

is deleted from the queue immediately (unless this is a browse request). The

message cannot be made available again by backing out the unit of work.

MQGMO_NO_WAIT

public final static int

The application does not wait if no suitable message is available. This is the

opposite of the MQGMO_WAIT option, and is defined to aid program

documentation. It is the default if neither is specified.

MQGMO_NONE

public final static int

This value indicates that no other options have been specified and all options

assume their default values. MQGMO_NONE aids program documentation; it is

not intended that this option be used with any other, but as its value is zero, such

use cannot be detected.

MQGMO_SYNCPOINT

public final static int

The request is to operate within the normal unit-of-work protocols. The message is

marked as being unavailable to other applications, but it is deleted from the queue

only when the unit of work is committed. The message is made available again if

the unit of work is backed out.

If neither this option nor MQGMO_NO_SYNCPOINT is specified, the inclusion of

the get request in unit-of-work protocols is determined by the environment:

v On z/OS, the get request is within a unit of work.

v In all other environments, the get request is not within a unit of work.

MQGMO_SYNCPOINT_IF_PERSISTENT

public final static int

The request is to operate within the normal unit-of-work protocols, but only if the

message retrieved is persistent. A persistent message has the value

MQPER_PERSISTENT in the Persistence field in MQMD.

MQC

Chapter 9. Package com.ibm.mq 233

If the message is persistent, the queue manager processes the call as though the

application had specified MQGMO_SYNCPOINT.

If the message is not persistent, the queue manager processes the call as though

the application had specified MQGMO_NO_SYNCPOINT.

MQGMO_UNLOCK

public final static int

Unlock a message. The message to be unlocked must have been previously locked

by an MQGET call with the MQGMO_LOCK option. If there is no message locked

for this handle, the call completes with MQRC_NO_MSG_LOCKED.

This option is not valid with any options except MQGMO_NO_WAIT and

MQGMO_NO_SYNCPOINT. Both of these options are assumed whether specified

or not.

MQGMO_VERSION_1

public final static int

This is the version number of the get-message options structure. This value

indicates version 1 of the structure.

MQGMO_VERSION_2

public final static int

This is the version number of the get-message options structure. This value

indicates version 2 of the structure.

MQGMO_VERSION_3

public final static int

This is the version number of the get-message options structure. This value

indicates version 3 of the structure.

MQGMO_WAIT

public final static int

The application waits until a suitable message arrives. The maximum time that the

application waits is specified in WaitInterval.

If MQGET requests are inhibited, or MQGET requests become inhibited while

waiting, the wait is canceled and the call completes with MQCC_FAILED and

reason code MQRC_GET_INHIBITED, regardless of whether there are suitable

messages on the queue.

MQGS_LAST_MSG_IN_GROUP

public final static char

This flag indicates that the message retrieved is the last in a group. This is also the

value returned if the group consists of only one message.

MQGS_MSG_IN_GROUP

public final static char

This flag indicates that the message retrieved is in a group.

MQC

234 Using Java

MQGS_NOT_IN_GROUP

public final static char

This flag indicates that the message retrieved is not in a group.

MQIA_ACCOUNTING_CONN_OVERRIDE

public final static int

This integer attribute selector is used with an MQINQ call to determine is

applications can override the setting of the ACCTMQI and ACCTQDATA values in

the Qmgr attribute. The value is one of MQMON_DISABLED or

MQMON_ENABLED. The default is MQMON_DISABLED.

MQIA_ACCOUNTING_INTERVAL

public final static int

This integer attribute selector is used with an MQINQ call to determine how long

before intermediate accounting records are written (in seconds). The value is an

integer in the range 0 to 604800, with a default value of 1800 (30 minutes). Specify

0 to turn off intermediate records.

MQIA_ACCOUNTING_MQI

public final static int

This integer attribute selector is used with an MQINQ call to determine the

collection of accounting information for MQI data. The value is one of

MQMON_ON or MQMON_OFF. The default is MQMON_OFF.

MQIA_ACCOUNTING_Q

public final static int

This integer attribute selector is used with an MQINQ call to determine the

collection of accounting information for queues. The value is one of

MQMON_NONE, MQMON_OFF or MQMON_ON. The default is

MQMON_NONE.

MQIA_APPL_TYPE

public final static int

This integer attribute selector is used with an MQINQ call to determine the nature

of the program to be started in response to the receipt of a trigger message. This

information is for use by a trigger-monitor application that processes messages on

the initiation queue. This value will be one of the MQAT_* values.

MQIA_ARCHIVE

public final static int

This integer attribute selector is used with an MQINQ call to determine the way

that archiving mode works. This value will be one of MQAR_NONE or

MQAR_ALL.

MQIA_AUTH_INFO_TYPE

public final static int

MQC

Chapter 9. Package com.ibm.mq 235

This integer attribute selector is used with an MQINQ call to determine the type of

authentication information contained in an AuthInfoRecord. The value will always

be MQAIT_CRL_LDAP, indicating that certificate revocation lists are stored on a

LDAP server.

MQIA_AUTHORITY_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

authorization (Not Authorized) events are generated. The value is one of

MQEVR_DISABLED or MQEVR_ENABLED. For more information about events,

see Monitoring WebSphere MQ.

MQIA_BACKOUT_THRESHOLD

public final static int

This integer attribute selector is used with an MQINQ call to determine the

backout threshold. Apart from allowing its value to be queried, the queue manager

takes no action based on the value of this attribute.

MQIA_CHANNEL_AUTO_DEF

public final static int

This integer attribute selector is used with an MQINQ call to determine the

automatic definition of channels of type MQCHT_RECEIVER and

MQCHT_SVRCONN. Automatic definition of MQCHT_CLUSSDR channels is

always enabled. The value is one of MQCHAD_DISABLED or

MQCHAD_ENABLED.

MQIA_CHANNEL_AUTO_DEF_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

channel automatic-definition events are generated. It applies to channels of type

MQCHT_RECEIVER, MQCHT_SVRCONN, and MQCHT_CLUSSDR. The value is

one of MQEVR_DISABLED or MQEVR_ENABLED.

MQIA_CHANNEL_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

channel events are generated. The value is one of MQEVR_EXCEPTION,

MQEVR_ENABLED or MQEVR_DISABLED. The default is MQEVR_DISABLED.

MQIA_CLUSTER_Q_TYPE

public final static int

This integer attribute selector is used with an MQINQ call to determine the cluster

queue type.

MQIA_CLUSTER_WORKLOAD_LENGTH

public final static int

This integer attribute selector is used with an MQINQ call to determine the

maximum length of message data that is passed to the cluster workload exit.

MQC

236 Using Java

MQIA_CLWL_MRU_CHANNELS

public final static int

This integer attribute selector is used with an MQINQ call to determine the

maximum number of most recently used channels in cluster workload balancing.

MQIA_CLWL_Q_PRIORITY

public final static int

This integer attribute selector is used with an MQINQ call to determine the

priority of a queue for cluster workload management purposes.

MQIA_CLWL_Q_RANK

public final static int

This integer attribute selector is used with an MQINQ call to determine the rank of

a queue for cluster workload management purposes.

MQIA_CLWL_USE_REMOTE_Q

public final static int

This integer attribute selector is used with an MQINQ call to determine the

behavior of a put when the target queue has both a local instance and at least one

remote cluster instance. This value will be one of MQQF_CLWL_USEQ_ANY or

MQQF_CLWL_USEQ_LOCAL.

MQIA_CODED_CHAR_SET_ID

public final static int

This integer attribute selector is used with an MQINQ call to determine the

character set used by the queue manager for all character string fields. The

character set must be one that has single-byte characters for the characters that are

valid in object names. It does not apply to application data carried in the message.

The value depends on the environment.

MQIA_COMMAND_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

command events are generated. The value is one of MQEVR_DISABLED,

MQEVR_ENABLED or MQEVR_NO_DISPLAY. The default is MQEVR_DISABLED.

MQIA_COMMAND_LEVEL

public final static int

This integer attribute selector is used with an MQINQ call to determine the level of

system control commands supported by the queue manager. The value is one of

the MQCMDL_LEVEL_* values.

MQIA_CONFIGURATION_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

configuration events are generated.

MQC

Chapter 9. Package com.ibm.mq 237

|

MQIA_CURRENT_Q_DEPTH

public final static int

This integer attribute selector is used with an MQINQ call to determine the

number of messages currently on the queue. It is incremented during an MQPUT

call, and during backout of an MQGET call. It is decremented during a

non-browsing MQGET call, and during backout of an MQPUT call.

MQIA_DEF_BIND

public final static int

This integer attribute selector is used with an MQINQ call to determine the default

binding that is used when MQOO_BIND_AS_Q_DEF is specified on the MQOPEN

call and the queue is a cluster queue. The value is one MQBND_BIND_ON_OPEN

or MQBND_BIND_NOT_FIXED.

MQIA_DEF_INPUT_OPEN_OPTION

public final static int

This integer attribute selector is used with an MQINQ call to determine the default

way in which to open the queue for input. It applies if the

MQOO_INPUT_AS_Q_DEF option is specified on the MQOPEN call when the

queue is opened. The value is one of MQOO_INPUT_EXCLUSIVE or

MQOO_INPUT_SHARED.

MQIA_DEF_PERSISTENCE

public final static int

This integer attribute selector is used with an MQINQ call to determine the default

persistence of messages on the queue. It applies if

MQPER_PERSISTENCE_AS_Q_DEF is specified in the message descriptor when

the message is put. The value is one of MQPER_PERSISTENT or

MQPER_NON_PERSISTENT.

MQIA_DEF_PRIORITY

public final static int

This integer attribute selector is used with an MQINQ call to determine the default

priority for messages on the queue. This applies if MQPRI_PRIORITY_AS_Q_DEF

is specified in the message descriptor when the message is put on the queue.

MQIA_DEFINITION_TYPE

public final static int

This integer attribute selector is used with an MQINQ call to determine how the

queue was defined. The value is one of MQQDT_PREDEFINED,

MQQDT_PERMANENT_DYNAMIC, MQQDT_TEMPORARY_DYNAMIC or

MQQDT_SHARED_DYNAMIC.

MQIA_DIST_LISTS

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

distribution-list messages can be placed on the queue. The value is one of

MQDL_SUPPORTED or MQDL_NOT_SUPPORTED.

MQC

238 Using Java

MQIA_EXPIRY_INTERVAL

public final static int

This integer attribute selector is used with an MQINQ call to determine the

interval between scans for expired messages. It is either a time interval (in seconds)

in the range 1 to 99,999,999, or the special value MQEXPI_OFF to indicate that the

queue manager does not scan the queues looking for expired messages.

MQIA_FIRST

public final static int

This defines the start of the range of valid integer attribute selectors. The integer

and character attribute selectors are allocated within two different ranges, with

MQIA_* selectors within the range MQIA_FIRST through MQIA_LAST.

MQIA_HARDEN_GET_BACKOUT

public final static int

This integer attribute selector is used with an MQINQ call to determine if

hardening is used to ensure that the backout count for messages on this queue is

accurate. The values is one of MQQA_BACKOUT_HARDENED or

MQQA_BACKOUT_NOT_HARDENED. The default is

MQQA_BACKOUT_NOT_HARDENED.

MQIA_HIGH_Q_DEPTH

public final static int

This integer attribute selector is used with an MQINQ call to determine the

maximum number of messages on the queue since the queue statistics were last

reset.

MQIA_IGQ_PUT_AUTHORITY

public final static int

This integer attribute selector is used with an MQINQ call to determine the type of

authority checking that is performed when the local intra-group queuing agent

(IGQ agent) removes a message from the shared transmission queue and places the

message on a local queue. It applies only if the local queue manager is a member

of a queue-sharing group. The value is one of MQIGQPA_DEFAULT,

MQIGQPA_CONTEXT, MQIGQPA_ONLY_IGQ or

MQIGQPA_ALTERNATE_OR_IGQ.

MQIA_INDEX_TYPE

public final static int

This integer attribute selector is used with an MQINQ call to determine the type of

index that the queue manager maintains for messages on the queue. The type of

index required depends on how the application retrieves messages, and whether

the queue is a shared queue or a nonshared queue.

MQIA_INHIBIT_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

inhibit (Inhibit Get and Inhibit Put) events are generated. The value is one of

MQC

Chapter 9. Package com.ibm.mq 239

MQEVR_DISABLED or MQEVR_ENABLED. On z/OS, you cannot use the MQINQ

call to determine the value of this attribute.

MQIA_INHIBIT_GET

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

get operations for this queue are allowed. If the queue is an alias queue, get

operations must be allowed for both the alias and the base queue at the time of the

get operation, for the MQGET call to succeed. The value is one of

MQQA_GET_INHIBITED or MQQA_GET_ALLOWED.

MQIA_INHIBIT_PUT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

put operations for this queue are allowed. If there is more than one definition in

the queue-name resolution path, put operations must be allowed for every

definition in the path (including any queue-manager alias definitions) at the time

of the put operation. The value is one of MQQA_PUT_INHIBITED or

MQQA_PUT_ALLOWED.

MQIA_INTRA_GROUP_QUEUING

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

intra-group queuing is enabled for the queue-sharing group. This attribute applies

only if the local queue manager is a member of a queue-sharing group, and is

supported only on z/OS. The value is one of MQIGQ_DISABLED or

MQIGQ_ENABLED.

MQIA_LAST

public final static int

This defines the end of the range of valid integer attribute selectors. The integer

and character attribute selectors are allocated within two different ranges, with

MQIA_* selectors within the range MQIA_FIRST through MQIA_LAST.

MQIA_LAST_USED

public final static int

This defines the highest value in the range of valid integer attribute selectors that

the queue manager will accept.

MQIA_LOCAL_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

local error events are generated. The value is one of MQEVR_DISABLED or

MQEVR_ENABLED. The default is MQEVR_DISABLED.

MQIA_MAX_HANDLES

public final static int

This integer attribute selector is used with an MQINQ call to determine the

maximum number of open handles that any one task can use concurrently. Each

MQC

240 Using Java

successful MQOPEN call for a single queue (or for an object that is not a queue)

uses one handle. That handle becomes available for reuse when the object is

closed.

The value is in the range 1 to 999,999,999. The default value is determined by the

environment. On z/OS, the default value is 100. In all other environments, the

default value is 256.

MQIA_MAX_MSG_LENGTH

public final static int

This integer attribute selector is used with an MQINQ call to determine the length

of the longest physical message that the queue manager can handle. However,

because the MaxMsgLength queue-manager attribute can be set independently of

the MaxMsgLength queue attribute, the longest physical message that can be

placed on a queue is the lesser of those two values.

The lower limit for the MaxMsgLength attribute is 32 KB (32 768 bytes). The upper

limit is 100 MB (104 857 600 bytes).

MQIA_MAX_PRIORITY

public final static int

This integer attribute selector is used with an MQINQ call to determine the

maximum message priority supported by the queue manager. Priorities range from

zero (lowest) to MaxPriority (highest).

MQIA_MAX_Q_DEPTH

public final static int

This integer attribute selector is used with an MQINQ call to determine the

defined upper limit for the number of physical messages that can exist on the

queue at any one time. An attempt to put a message on a queue that already

contains MaxQDepth messages fails with reason code MQRC_Q_FULL.

The value of this attribute is zero or greater. The upper limit is determined by the

environment. On AIX, HP-UX, z/OS, Solaris, Linux, and Windows, the value

cannot exceed 999,999,999. On i5/OS, the value cannot exceed 640 000.

MQIA_MAX_UNCOMMITTED_MSGS

public final static int

This integer attribute selector is used with an MQINQ call to determine the

maximum number of uncommitted messages that can exist within a unit of work.

MQIA_MSG_DELIVERY_SEQUENCE

public final static int

This integer attribute selector is used with an MQINQ call to determine the order

in which the MQGET call returns messages to the application. It can be either

MQMDS_FIFO (messages are returned in first in, first out order) or

MQMDS_PRIORITY (higher priority messages are returned first).

MQIA_MSG_DEQ_COUNT

public final static int

MQC

Chapter 9. Package com.ibm.mq 241

This integer attribute selector is used with an MQINQ call to determine the

number of messages that were removed from the queue since the queue statistics

were last reset.

MQIA_MSG_ENQ_COUNT

public final static int

This integer attribute selector is used with an MQINQ call to determine the

number of messages that were put on the queue since the queue statistics were last

reset.

MQIA_NAME_COUNT

public final static int

This integer attribute selector is used with an MQINQ call to determine the

number of names in the namelist. It is greater than or equal to zero.

MQNC_MAX_NAMELIST_NAME_COUNT defines the maximum number of

names in a namelist.

MQIA_NAMELIST_TYPE

public final static int

This integer attribute selector is used with an MQINQ call to determine the nature

of the names in the namelist, and indicates how the namelist is used. The value is

one of MQNT_NONE, MQNT_Q, MQNT_CLUSTER or MQNT_AUTH_INFO. This

attribute is supported only on z/OS.

MQIA_NPM_CLASS

public final static int

This integer attribute selector is used with an MQINQ call to determine the

reliability goal for nonpersistent messages. This specifies the circumstances under

which nonpersistent messages put on this queue are discarded. The value is one of

MQNPM_CLASS_NORMAL or MQNPM_CLASS_HIGH.

MQIA_OPEN_INPUT_COUNT

public final static int

This integer attribute selector is used with an MQINQ call to determine the

number of handles that are currently valid for removing messages from the queue

by means of the MQGET call. It is the total number of such handles known to the

local queue manager. If the queue is a shared queue, the count does not include

opens for input that were performed for the queue at other queue managers in the

queue-sharing group to which the local queue manager belongs.

MQIA_OPEN_OUTPUT_COUNT

public final static int

This integer attribute selector is used with an MQINQ call to determine the

number of handles that are currently valid for adding messages to the queue by

means of the MQPUT call. It is the total number of such handles known to the

local queue manager; it does not include opens for output that were performed for

this queue at remote queue managers. If the queue is a shared queue, the count

does not include opens for output that were performed for the queue at other

queue managers in the queue-sharing group to which the local queue manager

belongs.

MQC

242 Using Java

MQIA_PERFORMANCE_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

performance-related events are generated. The value is one of MQEVR_DISABLED

or MQEVR_ENABLED. On z/OS, you cannot use the MQINQ call to determine

the value of this attribute.

MQIA_PLATFORM

public final static int

This integer attribute selector is used with an MQINQ call to determine the

operating system on which the queue manager is running. The value will be one of

the MQPL_* values.

MQIA_Q_DEPTH_HIGH_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

Queue Depth High events are generated. A Queue Depth High event indicates that

an application has put a message on a queue, and this has caused the number of

messages on the queue to become greater than or equal to the queue depth high

threshold. The value is one of MQEVR_DISABLED or MQEVR_ENABLED.

MQIA_Q_DEPTH_HIGH_LIMIT

public final static int

This integer attribute selector is used with an MQINQ call to determine the

threshold against which the queue depth is compared to generate a Queue Depth

High event. This event indicates that an application has put a message on a queue,

and that this has caused the number of messages on the queue to become greater

than or equal to the queue depth high threshold.

MQIA_Q_DEPTH_LOW_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

Queue Depth Low events are generated. A Queue Depth Low event indicates that

an application has removed a message from a queue, and this has caused the

number of messages on the queue to become less than or equal to the queue depth

low threshold. The value is one of MQEVR_DISABLED or MQEVR_ENABLED.

MQIA_Q_DEPTH_LOW_LIMIT

public final static int

This integer attribute selector is used with an MQINQ call to determine the

threshold against which the queue depth is compared to generate a Queue Depth

Low event. This event indicates that an application has removed a message from a

queue, and that this has caused the number of messages on the queue to become

less than or equal to the queue depth low threshold.

MQIA_Q_DEPTH_MAX_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

Queue Full events are generated. A Queue Full event indicates that a put to a

MQC

Chapter 9. Package com.ibm.mq 243

queue has been rejected because the queue is full, that is, the queue depth has

already reached its maximum value. The value is one of MQEVR_DISABLED or

MQEVR_ENABLED.

MQIA_Q_SERVICE_INTERVAL

public final static int

This integer attribute selector is used with an MQINQ call to determine the service

interval used for comparison to generate Service Interval High and Service Interval

OK events. The interval is set in milliseconds, and its value is not less than zero

and not greater than 999,999,999.

MQIA_Q_SERVICE_INTERVAL_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

Service Interval High or Service Interval OK events are generated. This value is

one of MQQSIE_HIGH, MQQSIE_OK or MQQSIE_NONE.

MQIA_Q_TYPE

public final static int

This integer attribute selector is used with an MQINQ call to determine the type of

queue. It has one of the following values: MQQT_ALIAS, MQQT_CLUSTER,

MQQT_LOCAL or MQQT_REMOTE.

MQIA_QSG_DISP

public final static int

This integer attribute selector is used with an MQINQ call to determine the

disposition of the queue. The value is one of MQQSGD_Q_MGR, MQQSGD_COPY

or MQQSGD_SHARED. This attribute is only supported on z/OS.

MQIA_REMOTE_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

remote error events are generated. The value is one of MQEVR_DISABLED or

MQEVR_ENABLED.

MQIA_RETENTION_INTERVAL

public final static int

This integer attribute selector is used with an MQINQ call to determine the period

of time for which to retain the queue. After this time has elapsed, the queue is

eligible for deletion. The time is measured in hours, counting from the date and

time when the queue was created. This information is provided to enable a

housekeeping application or the operator to identify and delete queues that are no

longer required.

MQIA_SCOPE

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

an entry for this queue also exists in a cell directory. A cell directory is provided by

an installable Name service. The value is one of MQSCO_Q_MGR or

MQSCO_CELL.

MQC

244 Using Java

MQIA_SHAREABILITY

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

the queue can be opened for input multiple times concurrently. The value is one of

MQQA_SHAREABLE or MQQA_NOT_SHAREABLE.

MQIA_SSL_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

SSL events are generated. The value is one of MQEVR_DISABLED or

MQEVR_ENABLED.

MQIA_SSL_FIPS_REQUIRED

public final static int

This integer attribute selector is used with an MQINQ call to determine if only

FIPS-certified algorithms are to be used if the cryptography is executed in

WebSphere MQ-provided software. The value is one of MQSSL_FIPS_NO or

MQSSL_FIPS_YES. The default is MQSSL_FIPS_NO.

MQIA_SSL_RESET_COUNT

public final static int

This integer attribute selector is used with an MQINQ call to determine when SSL

channel message channel agents (MCAs) that initiate communication reset the

secret key used for encryption on the channel. The value represents the total

number of unencrypted bytes that are sent and received on the channel before the

secret key is renegotiated. The number of bytes includes control information sent

by the MCA.

The value is a number between 0 and 999,999,999, with a default value of 0.

MQIA_SSL_TASKS

public final static int

This integer attribute selector is used with an MQINQ call to determine the

number of server subtasks for processing SSL calls.

MQIA_START_STOP_EVENT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

start and stop events are generated. The value is one of MQEVR_DISABLED or

MQEVR_ENABLED.

MQIA_STATISTICS_AUTO_CLUSSDR

public final static int

This integer attribute selector is used with an MQINQ call to determine whether to

collect online monitoring data for auto-defined cluster sender channels. The value

is one of MQMON_Q_MGR, MQMON_OFF, MQMON_LOW, MQMON_MEDIUM

or MQMON_HIGH. The default is MQMON_Q_MGR.

MQC

Chapter 9. Package com.ibm.mq 245

MQIA_STATISTICS_CHANNEL

public final static int

This integer attribute selector is used with an MQINQ call to determine the

collection of statistics data for channels. The value is one of MQMON_NONE,

MQMON_OFF, MQMON_LOW, MQMON_MEDIUM or MQMON_HIGH. The

default is MQMON_NONE.

MQIA_STATISTICS_INTERVAL

public final static int

This integer attribute selector is used with an MQINQ call to determine how often

(in seconds) to write statistics monitoring data to the monitoring queue. The value

is an integer in the range 0 to 604800, with a default value of 1800 (30 minutes).

MQIA_STATISTICS_MQI

public final static int

This integer attribute selector is used with an MQINQ call to determine the

collection of statistics monitoring information for the queue manager. The value is

one of MQMON_ON or MQMON_OFF. The default is MQMON_OFF.

MQIA_STATISTICS_Q

public final static int

This integer attribute selector is used with an MQINQ call to determine the

collection of statistics data for queues. The value is one of MQMON_NONE,

MQMON_OFF or MQMON_ON. The default is MQMON_NONE.

MQIA_SYNCPOINT

public final static int

This integer attribute selector is used with an MQINQ call to determine whether

the local queue manager supports units of work and syncpointing with the

MQGET, MQPUT, and MQPUT1 calls. The value is one of MQSP_AVAILABLE or

MQSP_NOT_AVAILABLE.

MQIA_TIME_SINCE_RESET

public final static int

This integer attribute selector is used with an MQINQ call to determine the time,

in seconds, since the statistics were last reset. The value recorded by this timer is

also used as the interval time in queue service interval events.

MQIA_TRACE_ROUTE_RECORDING

public final static int

This integer attribute selector is used with an MQINQ call to determine the

recording of trace route information. The value is one of MQROUTE_DISABLED,

MQROUTE_RECORDING_Q or MQROUTE_RECORDING_MSG.

MQIA_TRIGGER_CONTROL

public final static int

MQC

246 Using Java

This integer attribute selector is used with an MQINQ call to determine whether

trigger messages are written to an initiation queue to start an application to service

the queue. This is one of MQTC_OFF or MQTC_ON.

MQIA_TRIGGER_DEPTH

public final static int

This integer attribute selector is used with an MQINQ call to determine the

number of messages of priority TriggerMsgPriority or greater that must be on the

queue before a trigger message is written. This applies when TriggerType is set to

MQTT_DEPTH. The value of TriggerDepth is 1 or greater.

MQIA_TRIGGER_INTERVAL

public final static int

This integer attribute selector is used with an MQINQ call to determine a time

interval (in milliseconds) used to restrict the number of trigger messages. This is

relevant only when the TriggerType is MQTT_FIRST. In this case trigger messages

are usually generated only when a suitable message arrives on the queue, and the

queue was previously empty. Under certain circumstances, however, an additional

trigger message can be generated with MQTT_FIRST triggering even if the queue

was not empty. These additional trigger messages are not generated more often

than every TriggerInterval milliseconds.

The value is not less than 0 and not greater than 999,999,999. The default value is

999,999,999.

MQIA_TRIGGER_MSG_PRIORITY

public final static int

This integer attribute selector is used with an MQINQ call to determine the

message priority below which messages do not contribute to the generation of

trigger messages (that is, the queue manager ignores these messages when

deciding whether to generate a trigger message). TriggerMsgPriority can be in the

range zero (lowest) to MaxPriority. A value of zero causes all messages to

contribute to the generation of trigger messages.

MQIA_TRIGGER_TYPE

public final static int

This integer attribute selector is used with an MQINQ call to determine the

conditions under which trigger messages are written as a result of messages

arriving on this queue. The value is one of MQTT_NONE, MQTT_FIRST,

MQTT_EVERY or MQTT_DEPTH.

MQIA_USAGE

public final static int

This integer attribute selector is used with an MQINQ call to determine what the

queue is used for. The value is one of MQUS_NORMAL or

MQUS_TRANSMISSION.

MQIAV_NOT_APPLICABLE

public final static int

This indicates that an integer attribute (IntAttrs) value is not applicable.

MQC

Chapter 9. Package com.ibm.mq 247

MQIAV_UNDEFINED

public final static int

This indicates that an integer attribute (IntAttrs) value is undefined.

MQMD_VERSION_1

public final static int

This is the message descriptor structure version number. This value indicates

version 1 of the structure.

MQMD_VERSION_2

public final static int

This is the message descriptor structure version number. This value indicates

version 2 of the structure.

MQMDS_FIFO

public final static int

This determines the order in which the MQGET call returns messages to the

application. With this option, messages are returned in FIFO order (first in, first

out). An MQGET call returns the first message that satisfies the selection criteria

specified on the call, regardless of the priority of the message.

MQMDS_PRIORITY

public final static int

This determines the order in which the MQGET call returns messages to the

application. Messages are returned in priority order. An MQGET call returns the

highest-priority message that satisfies the selection criteria specified on the call.

Within each priority level, messages are returned in FIFO order (first in, first out).

MQMF_ACCEPT_UNSUP_IF_XMIT_MASK

public final static int

This mask identifies the bit positions within the MsgFlags field where message

flags that are not supported by the local queue manager are nevertheless accepted

on the MQPUT or MQPUT1 calls provided that both of the following conditions

are satisfied:

v The message is destined for a remote queue manager.

v The application is not putting the message directly on a local transmission queue

This subfield occupies bit positions 12 through 19.

MQMF_ACCEPT_UNSUP_MASK

public final static int

This mask identifies the bit positions within the MsgFlags field where message

flags that are not supported by the local queue manager are nevertheless accepted

on the MQPUT or MQPUT1 calls.

This subfield occupies bit positions 0 through 11.

MQMF_LAST_MSG_IN_GROUP

public final static int

MQC

248 Using Java

Message is the last logical message in a group. If this flag is set, the queue

manager turns on MQMF_MSG_IN_GROUP in the copy of MQMD that is sent

with the message, but does not alter the settings of these flags in the MQMD

provided by the application on the MQPUT or MQPUT1 call.

MQMF_LAST_SEGMENT

public final static int

Message is the last segment of a logical message. If this flag is set, the queue

manager turns on MQMF_SEGMENT in the copy of MQMD that is sent with the

message, but does not alter the settings of these flags in the MQMD provided by

the application on the MQPUT or MQPUT1 call.

MQMF_MSG_IN_GROUP

public final static int

Indicates that the message is a member of a group.

MQMF_NONE

public final static int

No message flags (default message attributes). This inhibits segmentation, and

indicates that the message is not in a group and is not a segment of a logical

message. MQMF_NONE is defined to aid program documentation. It is not

intended that this flag be used with any other, but as its value is zero, such use

cannot be detected.

MQMF_REJECT_UNSUP_MASK

public final static int

This mask identifies the bit positions within the MsgFlags field where message

flags that are not supported by the local queue manager cause the MQPUT or

MQPUT1 call to fail with completion code MQCC_FAILED and reason code

MQRC_MSG_FLAGS_ERROR.

This subfield occupies bit positions 20 through 31.

MQMF_SEGMENT

public final static int

Message is a segment of a logical message. When MQMF_SEGMENT is specified

without MQMF_LAST_SEGMENT, the length of the application message data in

the segment (excluding the lengths of any MQ header structures that might be

present) must be at least one. If the length is zero, the MQPUT or MQPUT1 call

fails with reason code MQRC_SEGMENT_LENGTH_ZERO.

MQMF_SEGMENTATION_ALLOWED

public final static int

This option allows the message to be broken into segments by the queue manager.

If specified for a message that is already a segment, this option allows the segment

to be broken into smaller segments. MQMF_SEGMENTATION_ALLOWED can be

set without either MQMF_SEGMENT or MQMF_LAST_SEGMENT being set.

MQMF_SEGMENTATION_INHIBITED

public final static int

MQC

Chapter 9. Package com.ibm.mq 249

This option prevents the message being broken into segments by the queue

manager. If specified for a message that is already a segment, this option prevents

the segment being broken into smaller segments.

The value of this flag is binary zero. This is the default.

MQMI_NONE

public final static byte[]

No message identifier is specified. The value is binary zero for the length of the

field.

MQMO_MATCH_CORREL_ID

public final static int

The message to be retrieved must have a correlation identifier that matches the

value of the CorrelId field in the MsgDesc parameter of the MQGET call. This

match is in addition to any other matches that might apply (for example, the

message identifier).

If you omit this option, the CorrelId field in the MsgDesc parameter is ignored,

and any correlation identifier will match.

MQMO_MATCH_GROUP_ID

public final static int

The message to be retrieved must have a group identifier that matches the value of

the GroupId field in the MsgDesc parameter of the MQGET call. This match is in

addition to any other matches that might apply (for example, the correlation

identifier).

If you omit this option, the GroupId field in the MsgDesc parameter is ignored,

and any group identifier will match.

MQMO_MATCH_MSG_ID

public final static int

The message to be retrieved must have a message identifier that matches the value

of the MsgId field in the MsgDesc parameter of the MQGET call. This match is in

addition to any other matches that might apply (for example, the correlation

identifier).

If you omit this option, the MsgId field in the MsgDesc parameter is ignored, and

any message identifier will match.

MQMO_MATCH_MSG_SEQ_NUMBER

public final static int

The message to be retrieved must have a message sequence number that matches

the value of the MsgSeqNumber field in the MsgDesc parameter of MQGMO the

MQGET call. This match is in addition to any other matches that might apply (for

example, the group identifier).

If you omit this option, the MsgSeqNumber field in the MsgDesc parameter is

ignored, and any message sequence number will match.

MQC

250 Using Java

MQMO_MATCH_MSG_TOKEN

public final static int

The message to be retrieved must have a message token that matches the value of

the MsgToken field in the MQGMO structure specified on the MQGET call.

If you omit this option, the MsgToken field in MQGMO is ignored, and any

message token will match.

MQMO_MATCH_OFFSET

public final static int

The message to be retrieved must have an offset that matches the value of the

Offset field in the MsgDesc parameter of the MQGET call. This match is in

addition to any other matches that might apply (for example, the message

sequence number).

If you omit this option or it is not specified, the Offset field in the MsgDesc

parameter is ignored, and any offset will match.

MQMO_NONE

public final static int

Do not use matches in selecting the message to be returned. All messages on the

queue are eligible for retrieval. MQMO_NONE aids program documentation. It is

not intended that this option be used with any other MQMO_* option, but as its

value is zero, such use cannot be detected.

MQMT_APPL_FIRST

public final static int

This defines the lowest value for application-defined message types.

MQMT_APPL_LAST

public final static int

This defines the highest value for application-defined message types.

MQMT_DATAGRAM

public final static int

The message is one that does not require a reply.

MQMT_REPLY

public final static int

The message is the reply to an earlier request message (MQMT_REQUEST). The

message must be sent to the queue indicated by the ReplyToQ field of the request

message. Use the Report field of the request to control how to set the MsgId and

CorrelId of the reply.

Note: The queue manager does not enforce the request-reply relationship; this is an

application responsibility.

MQMT_REPORT

public final static int

MQC

Chapter 9. Package com.ibm.mq 251

The message is reporting on an expected or unexpected occurrence, usually related

to another message. For example, a request message was received that contained

data that was not valid. Send the message to the queue indicated by the ReplyToQ

field of the message descriptor of the original message. Set the Feedback fields to

indicate the nature of the report. Use the Report field of the original message to

control how to set the MsgId and CorrelId of the report message.

Report messages generated by the queue manager or message channel agent are

always sent to the ReplyToQ queue, with the Feedback and CorrelId fields set.

MQMT_REQUEST

public final static int

The message is one that requires a reply. Specify the name of the queue to which

to send the reply in the ReplyToQ field. The Report field indicates how to set the

MsgId and CorrelId of the reply.

MQMT_SYSTEM_FIRST

public final static int

This defines the lowest value for system-defined message types.

MQMT_SYSTEM_LAST

public final static int

This defines the highest value for system-defined message types.

MQMTOK_NONE

public final static byte[]

No message token is specified. The value is binary zero for the length of the field.

MQOL_UNDEFINED

public final static int

Original length of message is not defined. This field is relevant only for report

messages that are segments. It specifies the length of the message segment to

which the report message relates; it does not specify the length of the logical

message of which the segment forms part, or the length of the data in the report

message.

MQOO_ALTERNATE_USER_AUTHORITY

public final static int

The AlternateUserId field in the ObjDesc parameter contains a user identifier to

use to validate this MQOPEN call. The call can succeed only if this

AlternateUserId is authorized to open the object with the specified access options,

regardless of whether the user identifier under which the application is running is

authorized to do so.

This option is valid for all types of object.

MQOO_BIND_AS_Q_DEF

public final static int

MQC

252 Using Java

The local queue manager binds the queue handle in the way defined by the

DefBind queue attribute. The value of this attribute is either

MQBND_BIND_ON_OPEN or MQBND_BIND_NOT_FIXED.

MQOO_BIND_AS_Q_DEF is the default if neither MQOO_BIND_ON_OPEN nor

MQOO_BIND_NOT_FIXED is specified.

MQOO_BIND_NOT_FIXED

public final static int

This stops the local queue manager binding the queue handle to a particular

instance of the destination queue. As a result, successive MQPUT calls using this

handle send the messages to different instances of the destination queue, or to the

same instance but by different routes. It also allows the instance selected to be

changed subsequently by the local queue manager, by a remote queue manager, or

by a message channel agent (MCA), according to network conditions.

MQOO_BIND_ON_OPEN

public final static int

The local queue manager binds the queue handle to a particular instance of the

destination queue when the queue is opened. As a result, all messages put using

this handle are sent to the same instance of the destination queue, and by the same

route.

This option is valid only for queues, and affects only cluster queues. If specified

for a queue that is not a cluster queue, the option is ignored.

MQOO_BROWSE

public final static int

Open the queue to browse messages. The queue is opened for use with subsequent

MQGET calls with one of the following options: MQGMO_BROWSE_FIRST,

MQGMO_BROWSE_NEXT and MQGMO_BROWSE_MSG_UNDER_CURSOR. This

is allowed even if the queue is currently open for MQOO_INPUT_EXCLUSIVE. An

MQOPEN call with the MQOO_BROWSE option establishes a browse cursor, and

positions it logically before the first message on the queue.

MQOO_FAIL_IF_QUIESCING

public final static int

The MQOPEN call fails if the queue manager is in quiescing state. This option is

valid for all types of object.

MQOO_INPUT_AS_Q_DEF

public final static int

Open the queue to get messages using the queue-defined default. The queue is

opened for use with subsequent MQGET calls. The type of access is either shared

or exclusive, depending on the value of the DefInputOpenOption queue attribute.

MQOO_INPUT_EXCLUSIVE

public final static int

MQC

Chapter 9. Package com.ibm.mq 253

Open the queue to get messages with exclusive access. The queue is opened for

use with subsequent MQGET calls. The call fails with reason code

MQRC_OBJECT_IN_USE if the queue is currently open by this or another

application for input of any type.

MQOO_INPUT_SHARED

public final static int

Open the queue to get messages with shared access. The queue is opened for use

with subsequent MQGET calls. The call can succeed if the queue is currently open

by this or another application with MQOO_INPUT_SHARED, but fails with reason

code MQRC_OBJECT_IN_USE if the queue is currently open with

MQOO_INPUT_EXCLUSIVE.

MQOO_INQUIRE

public final static int

Open the object to query attributes. The queue, namelist, process definition, or

queue manager is opened for use with subsequent MQINQ calls. This option is

valid for all types of object other than distribution lists. It is not valid if

ObjectQMgrName is the name of a queue manager alias; this is true even if the

value of the RemoteQMgrName attribute in the local definition of a remote queue

used for queue-manager aliasing is the name of the local queue manager.

MQOO_OUTPUT

public final static int

Open the queue to put messages. The queue is opened for use with subsequent

MQPUT calls.

An MQOPEN call with this option can succeed even if the InhibitPut queue

attribute is set to MQQA_PUT_INHIBITED (although subsequent MQPUT calls

will fail while the attribute is set to this value). This option is valid for all types of

queue, including distribution lists.

MQOO_PASS_ALL_CONTEXT

public final static int

This allows the MQPMO_PASS_ALL_CONTEXT option to be specified in the

PutMsgOpts parameter when a message is put on a queue. This gives the message

the identity and origin context information from an input queue that was opened

with the MQOO_SAVE_ALL_CONTEXT option. This option implies

MQOO_PASS_IDENTITY_CONTEXT, which need not therefore be specified. The

MQOO_OUTPUT option must be specified. For more information on message

context, see WebSphere MQ Application Programming Guide.

This option is valid for all types of queue, including distribution lists.

MQOO_PASS_IDENTITY_CONTEXT

public final static int

This allows the MQPMO_PASS_IDENTITY_CONTEXT option to be specified in the

PutMsgOpts parameter when a message is put on a queue. This gives the message

the identity context information from an input queue that was opened with the

MQC

254 Using Java

MQOO_SAVE_ALL_CONTEXT option. The MQOO_OUTPUT option must be

specified. For more information on message context, see WebSphere MQ Application

Programming Guide.

This option is valid for all types of queue, including distribution lists.

MQOO_RESOLVE_LOCAL_Q

public final static int

Fill the ResolvedQName in the MQOD structure with the name of the local queue

that was opened. Similarly, the ResolvedQMgrName is filled with the name of the

local queue manager hosting the local queue.

MQOO_RESOLVE_LOCAL_QUEUE

public final static int

Deprecated

use MQC.MQOO_RESOLVE_LOCAL_Q instead.

MQOO_SAVE_ALL_CONTEXT

public final static int

Context information is associated with this queue handle. This information is set

from the context of any message retrieved using this handle. For more information

on message context, see WebSphere MQ Application Programming Guide.

This option is valid only for local, alias, and model queues; it is not valid for

remote queues, distribution lists, and objects that are not queues.

MQOO_SET

public final static int

Open the queue to set attributes. The queue is opened for use with subsequent

MQSET calls. This option is valid for all types of object other than distribution

lists. It is not valid if ObjectQMgrName is the name of a queue manager alias; this

is true even if the value of the RemoteQMgrName attribute in the local definition

of a remote queue used for queue-manager aliasing is the name of the local queue

manager.

MQOO_SET_ALL_CONTEXT

public final static int

This allows the MQPMO_SET_ALL_CONTEXT option to be specified in the

PutMsgOpts parameter when a message is put on a queue. This gives the message

the identity and origin context information contained in the MsgDesc parameter

specified on the MQPUT or MQPUT1() call. The MQOO_OUTPUT option must be

specified. For more information on message context, see WebSphere MQ Application

Programming Guide.

This option is valid for all types of queue, including distribution lists.

MQOO_SET_IDENTITY_CONTEXT

public final static int

MQC

Chapter 9. Package com.ibm.mq 255

This allows the MQPMO_SET_IDENTITY_CONTEXT option to be specified in the

PutMsgOpts parameter when a message is put on a queue. This gives the message

the identity context information contained in the MsgDesc parameter specified on

the MQPUT() or MQPUT1 call. This option implies

MQOO_PASS_IDENTITY_CONTEXT, which need not therefore be specified. The

MQOO_OUTPUT option must be specified. For more information on message

context, see WebSphere MQ Application Programming Guide.

This option is valid for all types of queue, including distribution lists.

MQPER_NOT_PERSISTENT

public final static int

The message does not usually survive system failures or queue manager restarts.

This applies even if an intact copy of the message is found on auxiliary storage

when the queue manager restarts.

In the case of shared queues, nonpersistent messages survive queue manager

restarts in the queue-sharing group, but do not survive failures of the coupling

facility used to store messages on the shared queues.

MQPER_PERSISTENCE_AS_Q_DEF

public final static int

If the queue is not a cluster queue, the persistence of the message is taken from the

DefPersistence attribute defined at the local queue manager, even if the destination

queue manager is remote.

If the queue is a cluster queue, the persistence of the message is taken from the

DefPersistence attribute defined at the destination queue manager that owns the

particular instance of the queue on which the message is placed.

MQPER_PERSISTENT

public final static int

The message survives system failures and restarts of the queue manager. Once the

message has been put, and the unit of work in which it was put has been

committed (if the message is put as part of a unit of work), the message is

preserved on auxiliary storage. It remains there until the message is removed from

the queue, and the unit of work of which it was part has been committed (if the

message is retrieved as part of a unit of work).

MQPL_AIX

public final static int

This indicates that the operating system on which the queue manager is running is

AIX (same value as MQPL_UNIX).

MQPL_MVS

public final static int

This indicates that the operating system on which the queue manager is running is

MVS/ESA™ (same value as MQPL_ZOS).

MQPL_NSK

public final static int

MQC

256 Using Java

This indicates that the operating system on which the queue manager is running is

Compaq NonStop Kernel.

MQPL_OS2

public final static int

This indicates that the operating system on which the queue manager is running is

OS/2.

MQPL_OS400

public final static int

This indicates that the operating system on which the queue manager is running is

OS/400 or i5/OS.

MQPL_UNIX

public final static int

This indicates that the operating system on which the queue manager is running is

a UNIX system (same value as MQPL_AIX).

MQPL_WINDOWS

public final static int

This indicates that the operating system on which the queue manager is running is

Windows 3.1.

MQPL_WINDOWS_NT

public final static int

This indicates that the operating system on which the queue manager is running is

Windows NT®, Windows 2000 or Windows XP.

MQPMO_ALTERNATE_USER_AUTHORITY

public final static int

This indicates that the AlternateUserId field in the ObjDesc parameter of the

MQPUT1 call contains a user identifier that is to be used to validate authority to

put messages on the queue. The call can succeed only if this AlternateUserId is

authorized to open the queue with the specified options, regardless of whether the

user identifier under which the application is running is authorized to do so.

MQPMO_DEFAULT_CONTEXT

public final static int

The message is to have default context information associated with it, for both

identity and origin.

MQPMO_FAIL_IF_QUIESCING

public final static int

This option forces the MQPUT or MQPUT1 call to fail if the queue manager is in

the quiescing state.

MQPMO_LOGICAL_ORDER

public final static int

MQC

Chapter 9. Package com.ibm.mq 257

This option tells the queue manager how the application puts messages in groups

and segments of logical messages. It can be specified only on the MQPUT call; it is

not valid on the MQPUT1 call. See WebSphere MQ Application Programming Reference

for more information on this option.

MQPMO_NEW_CORREL_ID

public final static int

The queue manager replaces the contents of the CorrelId field in MQMD with a

new correlation identifier. This correlation identifier is sent with the message, and

returned to the application on output from the MQPUT or MQPUT1 call.

MQPMO_NEW_MSG_ID

public final static int

The queue manager replaces the contents of the MsgId field in MQMD with a new

message identifier. This message identifier is sent with the message, and returned

to the application on output from the MQPUT or MQPUT1 call.

MQPMO_NO_CONTEXT

public final static int

Both identity and origin context are set to indicate no context. This means that the

context fields in MQMD are set to:

v Blank, for character fields

v Null, for byte fields

v Zero, for numeric fields

MQPMO_NO_SYNCPOINT

public final static int

The request is to operate outside the normal unit-of-work protocols. The message

is available immediately, and it cannot be deleted by backing out a unit of work. If

neither this option nor MQPMO_SYNCPOINT is specified, the inclusion of the put

request in unit-of-work protocols is determined by the environment, see

MQPMO_SYNCPOINT.

Do not specify MQPMO_NO_SYNCPOINT with MQPMO_SYNCPOINT.

MQPMO_NONE

public final static int

Use this value to indicate that no other options have been specified. All options

assume their default values. MQPMO_NONE is defined to aid program

documentation; it is not intended that this option be used with any other, but as its

value is zero, such use cannot be detected.

MQPMO_PASS_ALL_CONTEXT

public final static int

The message is to have context information associated with it. Both identity and

origin context are taken from the queue handle specified in the Context field.

MQPMO_PASS_IDENTITY_CONTEXT

public final static int

MQC

258 Using Java

The message is to have context information associated with it. Identity context is

taken from the queue handle specified in the Context field. Origin context

information is generated by the queue manager in the same way that it is for

MQPMO_DEFAULT_CONTEXT.

MQPMO_RESOLVE_LOCAL_Q

public final static int

Use this option to fill ResolvedQName in the MQPMO structure with the name of

the local queue to which the message is put, and ResolvedQMgrName with the

name of the local queue manager that hosts the local queue.

MQPMO_SET_ALL_CONTEXT

public final static int

The message is to have context information associated with it. The application

specifies the identity and origin context in the MQMD structure. For more

information on message context.

MQPMO_SET_IDENTITY_CONTEXT

public final static int

The message is to have context information associated with it. The application

specifies the identity context in the MQMD structure. Origin context information is

generated by the queue manager in the same way that it is for

MQPMO_DEFAULT_CONTEXT.

MQPMO_SYNCPOINT

public final static int

The request is to operate within the normal unit-of-work protocols. The message is

not visible outside the unit of work until the unit of work is committed. If the unit

of work is backed out, the message is deleted.

If neither this option nor MQPMO_NO_SYNCPOINT is specified, the inclusion of

the put request in unit-of-work protocols is determined by the environment:

v On z/OS, the put request is within a unit of work.

v In all other environments, the put request is not within a unit of work.

Do not specify MQPMO_NO_SYNCPOINT with MQPMO_SYNCPOINT.

MQPMO_VERSION_1

public final static int

This is the version number of the put message options structure. This value

indicates version 1 of the structure.

MQPMO_VERSION_2

public final static int

This is the version number of the put message options structure. This value

indicates version 2 of the structure.

MQPMRF_ACCOUNTING_TOKEN

public final static int

MQC

Chapter 9. Package com.ibm.mq 259

This flag indicates that an accounting token field is present in the put message

records provided by the application. This is only used when sending messages to a

distribution list. For fields that are present, the queue manager uses for each

destination the values from the fields in the corresponding put message record. For

fields that are absent, the queue manager uses the values from the MQMD

structure.

If you specify this flag, also specify either MQPMO_SET_IDENTITY_CONTEXT or

MQPMO_SET_ALL_CONTEXT in the Options field; if this condition is not

satisfied, the call fails with reason code MQRC_PMO_RECORD_FLAGS_ERROR.

MQPMRF_CORREL_ID

public final static int

This flag indicates that a correlation ID field is present in the put message records

provided by the application. This is only used when sending messages to a

distribution list. For fields that are present, the queue manager uses for each

destination the values from the fields in the corresponding put message record. For

fields that are absent, the queue manager uses the values from the MQMD

structure.

MQPMRF_FEEDBACK

public final static int

This flag indicates that a feedback field is present in the put message records

provided by the application. This is only used when sending messages to a

distribution list. For fields that are present, the queue manager uses for each

destination the values from the fields in the corresponding put message record. For

fields that are absent, the queue manager uses the values from the MQMD

structure.

MQPMRF_GROUP_ID

public final static int

This flag indicates that a group ID field is present in the put message records

provided by the application. This is only used when sending messages to a

distribution list. For fields that are present, the queue manager uses for each

destination the values from the fields in the corresponding put message record. For

fields that are absent, the queue manager uses the values from the MQMD

structure.

MQPMRF_MSG_ID

public final static int

This flag indicates that a message-identifier field is present in the put message

records provided by the application. This is only used when sending messages to a

distribution list. For fields that are present, the queue manager uses for each

destination the values from the fields in the corresponding put message record. For

fields that are absent, the queue manager uses the values from the MQMD

structure.

MQPMRF_NONE

public final static int

MQC

260 Using Java

This flag indicates that no put message record fields are present. MQPMRF_NONE

is defined to aid program documentation. It is not intended that this constant be

used with any other, but as its value is zero, such use cannot be detected.

MQPRI_PRIORITY_AS_Q_DEF

public final static int

Priority is taken from the default priority attribute of the destination

MQQA_BACKOUT_HARDENED

public final static int

This option indicates that information is written to disk to ensure that the backout

count for messages on this queue is accurate. This option imposes a performance

overhead, so only use it if it is essential that the count is accurate.

MQQA_BACKOUT_NOT_HARDENED

public final static int

This option indicates that the backout count is not saved to disk. The count will

survive queue manager restarts, but in the event of a queue manager failure the

backout count might be lower than it should be.

MQQA_GET_ALLOWED

public final static int

This controls whether get operations for this queue are allowed. With this option,

get operations are allowed.

MQQA_GET_INHIBITED

public final static int

This controls whether get operations for this queue are allowed. With this option,

get operations are inhibited. MQGET calls fail with reason code

MQRC_GET_INHIBITED. This includes MQGET calls that specify

MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT.

MQQA_NOT_SHAREABLE

public final static int

This indicates whether the queue can be opened for input multiple times

concurrently. With this option, the queue is not shareable.

MQQA_PUT_ALLOWED

public final static int

This controls whether put operations for this queue are allowed. With this option,

put operations are allowed.

MQQA_PUT_INHIBITED

public final static int

This controls whether put operations for this queue are allowed. With this option,

put operations are inhibited. MQPUT and MQPUT1 calls fail with reason code

MQRC_PUT_INHIBITED.

MQC

Chapter 9. Package com.ibm.mq 261

MQQA_SHAREABLE

public final static int

This indicates whether the queue can be opened for input multiple times

concurrently. With this option, the queue is shareable. Multiple opens with the

MQOO_INPUT_SHARED option are allowed.

MQQDT_PERMANENT_DYNAMIC

public final static int

The queue is a permanent queue that was created by an application issuing an

MQOPEN call with the name of a model queue specified in the object descriptor

MQOD. The model queue definition had the value

MQQDT_PERMANENT_DYNAMIC for the DefinitionType attribute.

MQQDT_PREDEFINED

public final static int

The queue is a permanent queue created by the system administrator. Only the

system administrator can delete it. Predefined queues are created using the

DEFINE MQSC command, and can be deleted only by using the DELETE MQSC

command. Predefined queues cannot be created from model queues.

MQQDT_TEMPORARY_DYNAMIC

public final static int

The queue is a temporary queue that was created by an application issuing an

MQOPEN call with the name of a model queue specified in the object descriptor

MQOD. The model queue definition had the value

MQQDT_TEMPORARY_DYNAMIC for the DefinitionType attribute.

This type of queue is deleted automatically by the MQCLOSE call when it is closed

by the application that created it.

MQQT_ALIAS

public final static int

This defines an alias queue. This is not a physical queue; it is an alternative name

for a local queue, a shared queue, a cluster queue, or a remote queue. The name of

the queue to which the alias resolves is part of the definition of the alias queue.

MQQT_CLUSTER

public final static int

This defines a cluster queue. This is a physical queue that stores messages. The

queue exists either on the local queue manager, or on one or more of the queue

managers that belong to the same cluster as the local queue manager.

MQQT_LOCAL

public final static int

This defines a local queue. It is a physical queue that stores messages. The queue

exists on the local queue manager. Applications connected to the local queue

manager can place messages on and remove messages from queues of this type.

MQC

262 Using Java

MQQT_MODEL

public final static int

This defines a model queue. It is not a physical queue; it is a set of queue

attributes from which a local queue can be created. Messages cannot be stored on

queues of this type.

MQQT_REMOTE

public final static int

This defines a remote queue. This is not a physical queue; it is the local definition

of a queue that exists on a remote queue manager. The local definition of the

remote queue contains information that tells the local queue manager how to route

messages to the remote queue manager.

Applications connected to the local queue manager can place messages on queues

of this type; the messages are placed on the local transmission queue used to route

messages to the remote queue manager. Applications cannot remove messages

from remote queues.

MQRFH_NO_FLAGS

public final static int

This defines an RFH flags field containing no flags.

MQRFH_STRUC_ID

public final static java.lang.String

This field is the identifier for the rules and formatting header structure.

MQRFH_STRUC_LENGTH_FIXED_1

public final static int

This defines the length of the fixed length part of a version 1 rules and formatting

header structure. The length is 32 bytes.

MQRFH_STRUC_LENGTH_FIXED_2

public final static int

This defines the length of the fixed length part of a version 2 rules and formatting

header structure. The length is 36 bytes.

MQRFH_VERSION_1

public final static int

This defines a version 1 rules and formatting header structure.

MQRFH_VERSION_2

public final static int

This defines a version 2 rules and formatting header structure.

MQRL_UNDEFINED

public final static int

MQC

Chapter 9. Package com.ibm.mq 263

The ReturnedLength field in the MQGMO is set by the queue manager to the

length in bytes of the message data returned by the MQGET call in the Buffer

parameter. If the queue manager does not support this capability, ReturnedLength

is set to the value MQRL_UNDEFINED.

MQRO_ACCEPT_UNSUP_IF_XMIT_MASK

public final static int

This mask identifies the bit positions within the Report field where report options

that are not supported by the local queue manager are nevertheless accepted on

the MQPUT or MQPUT1 calls provided that both of the following conditions are

satisfied:

v The message is destined for a remote queue manager.

v The application is not putting the message directly on a local transmission

queue.

MQRO_ACCEPT_UNSUP_MASK

public final static int

This mask identifies the bit positions within the Report field where report options

that are not supported by the local queue manager are nevertheless accepted on

the MQPUT or MQPUT1 calls.

MQRO_ACTIVITY

public final static int

This type of report is generated by applications that are enabled for activity

recording.

MQRO_COA

public final static int

This type of report is generated by the queue manager that owns the destination

queue when the message is placed on the destination queue. Message data from

the original message is not included with the report message.

If the message is put as part of a unit of work, and the destination queue is a local

queue, the COA report message generated by the queue manager can be retrieved

only if the unit of work is committed.

Do not specify more than one of MQRO_COA, MQRO_COA_WITH_DATA, and

MQRO_COA_WITH_FULL_DATA.

MQRO_COA_WITH_DATA

public final static int

This is the same as MQRO_COA, except that the first 100 bytes of the application

message data from the original message are included in the report message. If the

original message contains one or more MQ header structures, they are included in

the report message, in addition to the 100 bytes of application data.

Do not specify more than one of MQRO_COA, MQRO_COA_WITH_DATA, and

MQRO_COA_WITH_FULL_DATA.

MQRO_COA_WITH_FULL_DATA

public final static int

MQC

264 Using Java

This is the same as MQRO_COA, except that all the application message data from

the original message is included in the report message.

Do not specify more than one of MQRO_COA, MQRO_COA_WITH_DATA, and

MQRO_COA_WITH_FULL_DATA.

MQRO_COD

public final static int

This type of report is generated by the queue manager when an application

retrieves the message from the destination queue in a way that deletes the message

from the queue. Message data from the original message is not included with the

report message.

If the message is retrieved as part of a unit of work, the report message is

generated within the same unit of work, so that the report is not available until the

unit of work is committed. If the unit of work is backed out, the report is not sent.

Do not specify more than one of MQRO_COD, MQRO_COD_WITH_DATA, and

MQRO_COD_WITH_FULL_DATA.

MQRO_COD_WITH_DATA

public final static int

This is the same as MQRO_COD, except that the first 100 bytes of the application

message data from the original message are included in the report message. If the

original message contains one or more MQ header structures, they are included in

the report message, in addition to the 100 bytes of application data.

Do not specify more than one of MQRO_COD, MQRO_COD_WITH_DATA, and

MQRO_COD_WITH_FULL_DATA.

MQRO_COD_WITH_FULL_DATA

public final static int

This is the same as MQRO_COD, except that all the application message data from

the original message is included in the report message.

Do not specify more than one of MQRO_COD, MQRO_COD_WITH_DATA, and

MQRO_COD_WITH_FULL_DATA.

MQRO_COPY_MSG_ID_TO_CORREL_ID

public final static int

This is the default action, and indicates that if a report or reply is generated as a

result of this message, the MsgId of this message is copied to the CorrelId of the

report or reply message.

MQRO_DEAD_LETTER_Q

public final static int

This is the default action, and places the message on the dead-letter queue if the

message cannot be delivered to the destination queue. An exception report

message is generated, if one was requested by the sender.

MQC

Chapter 9. Package com.ibm.mq 265

MQRO_DISCARD_MSG

public final static int

This discards the message if it cannot be delivered to the destination queue. An

exception report message is generated, if one was requested by the sender.

If you want to return the original message to the sender, without the original

message being placed on the dead-letter queue, the sender must specify

MQRO_DISCARD_MSG with MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXCEPTION

public final static int

A message channel agent generates this type of report when a message is sent to

another queue manager and the message cannot be delivered to the specified

destination queue. For example, the destination queue or an intermediate

transmission queue might be full, or the message might be too big for the queue.

Do not specify more than one of MQRO_EXCEPTION,

MQRO_EXCEPTION_WITH_DATA, and

MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXCEPTION_WITH_DATA

public final static int

This is the same as MQRO_EXCEPTION, except that the first 100 bytes of the

application message data from the original message are included in the report

message. If the original message contains one or more MQ header structures, they

are included in the report message, in addition to the 100 bytes of application data.

Do not specify more than one of MQRO_EXCEPTION,

MQRO_EXCEPTION_WITH_DATA, and

MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXCEPTION_WITH_FULL_DATA

public final static int

Exception reports with full data required. This is the same as MQRO_EXCEPTION,

except that all the application message data from the original message is included

in the report message.

Do not specify more than one of MQRO_EXCEPTION,

MQRO_EXCEPTION_WITH_DATA, and

MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXPIRATION

public final static int

This type of report is generated by the queue manager if the message is discarded

before delivery to an application because its expiry time has passed. If this option

is not set, no report message is generated if a message is discarded for this reason.

Do not specify more than one of MQRO_EXPIRATION,

MQRO_EXPIRATION_WITH_DATA, and

MQRO_EXPIRATION_WITH_FULL_DATA.

MQC

266 Using Java

MQRO_EXPIRATION_WITH_DATA

public final static int

This is the same as MQRO_EXPIRATION, except that the first 100 bytes of the

application message data from the original message are included in the report

message. If the original message contains one or more MQ header structures, they

are included in the report message, in addition to the 100 bytes of application data.

Do not specify more than one of MQRO_EXPIRATION,

MQRO_EXPIRATION_WITH_DATA, and

MQRO_EXPIRATION_WITH_FULL_DATA.

MQRO_EXPIRATION_WITH_FULL_DATA

public final static int

This is the same as MQRO_EXPIRATION, except that all the application message

data from the original message is included in the report message.

Do not specify more than one of MQRO_EXPIRATION,

MQRO_EXPIRATION_WITH_DATA, and

MQRO_EXPIRATION_WITH_FULL_DATA.

MQRO_NAN

public final static int

This type of report is generated by the application that retrieves the message and

acts upon it. It indicates that the action requested in the message has not been

performed successfully. The application generating the report determines whether

any data is to be included with the report.

MQRO_NEW_MSG_ID

public final static int

This is the default action, and indicates that if a report or reply is generated as a

result of this message, a new MsgId is generated for the report or reply message.

MQRO_NONE

public final static int

Use this value to indicate that no other options have been specified. MQRO_NONE

is defined to aid program documentation. It is not intended that this option be

used with any other, but as its value is zero, such use cannot be detected.

MQRO_PAN

public final static int

This type of report is generated by the application that retrieves the message and

acts upon it. It indicates that the action requested in the message has been

performed successfully. The application generating the report determines whether

any data is to be included with the report.

MQRO_PASS_CORREL_ID

public final static int

If a report or reply is generated as a result of this message, the CorrelId of this

message is copied to the CorrelId of the report or reply message.

MQC

Chapter 9. Package com.ibm.mq 267

If this option is not specified, MQRO_COPY_MSG_ID_TO_CORREL_ID is

assumed.

MQRO_PASS_DISCARD_AND_EXPIRY

public final static int

If this option is set on a message, and a report or reply is generated because of it,

the message descriptor of the report inherits:

v MQRO_DISCARD_MSG if it was set.

v The remaining expiry time of the message (if this is not an expiry report). If this

is an expiry report the expiry time is set to 60 seconds.

MQRO_PASS_MSG_ID

public final static int

If a report or reply is generated as a result of this message, the MsgId of this

message is copied to the MsgId of the report or reply message.

If this option is not specified, MQRO_NEW_MSG_ID is assumed.

MQRO_REJECT_UNSUP_MASK

public final static int

This mask identifies the bit positions within the Report field where report options

that are not supported by the local queue manager cause the MQPUT or MQPUT1

call to fail with completion code MQCC_FAILED and reason code

MQRC_REPORT_OPTIONS_ERROR.

MQSCO_VERSION_1

public final static int

This defines a version 1 SSL configuration options structure.

MQSCO_VERSION_2

public final static int

This defines a version 2 SSL configuration options structure.

MQSEG_ALLOWED

public final static char

This is a flag that indicates that further segmentation is allowed for the message

retrieved.

MQSEG_INHIBITED

public final static char

This is a flag that indicates that further segmentation is inhibited for the message

retrieved.

MQSIDT_NONE

public final static byte

This indicates that no security identifier is present

MQC

268 Using Java

MQSIDT_NT_SECURITY_ID

public final static byte

This indicates that a Windows security identifier is present.

MQSP_AVAILABLE

public final static int

This indicates that the local queue manager supports units of work and

syncpointing with the MQGET, MQPUT, and MQPUT1 calls.

MQSP_NOT_AVAILABLE

public final static int

This indicates that the local queue manager does not support units of work and

syncpointing with the MQGET, MQPUT, and MQPUT1 calls.

MQSS_LAST_SEGMENT

public final static char

This is a flag that indicates whether the message retrieved is the last segment of a

logical message. This is also the value returned if the logical message consists of

only one segment.

MQSS_NOT_A_SEGMENT

public final static char

This is a flag that indicates whether the message retrieved is not a segment of a

logical message.

MQSS_SEGMENT

public final static char

This is a flag that indicates whether the message retrieved is a segment of a logical

message.

MQTC_OFF

public final static int

This controls whether trigger messages are written to an initiation queue to start

an application to service the queue. With this option, no trigger messages are to be

written for this queue.

MQTC_ON

public final static int

This controls whether trigger messages are written to an initiation queue to start

an application to service the queue. With this option, trigger messages are to be

written for this queue when the appropriate trigger events occur.

MQTT_DEPTH

public final static int

MQC

Chapter 9. Package com.ibm.mq 269

This controls the conditions under which trigger messages are written as a result of

messages arriving on this queue. With this option, a trigger message is written

whenever the number of messages of priority TriggerMsgPriority or greater on the

queue equals or exceeds TriggerDepth.

After the trigger message has been written, TriggerControl is set to MQTC_OFF to

prevent further triggering until it is explicitly turned on again.

MQTT_EVERY

public final static int

This controls the conditions under which trigger messages are written as a result of

messages arriving on this queue. With this option, a trigger message is written

whenever a message of priority TriggerMsgPriority or greater arrives on the queue.

MQTT_FIRST

public final static int

This controls the conditions under which trigger messages are written as a result of

messages arriving on this queue. With this option, a trigger message is written

whenever the number of messages of priority TriggerMsgPriority or greater on the

queue changes from 0 to 1.

MQTT_NONE

public final static int

This controls the conditions under which trigger messages are written as a result of

messages arriving on this queue. With this option, no trigger messages are written

as a result of messages on this queue. This has the same effect as setting

TriggerControl to MQTC_OFF.

MQUS_NORMAL

public final static int

This indicates what the queue is used for. This value indicates that this is a queue

that applications use when putting and getting messages; the queue is not a

transmission queue.

MQUS_TRANSMISSION

public final static int

This indicates what the queue is used for. This value indicates that this is a queue

used to hold messages destined for remote queue managers. When an application

sends a message to a remote queue, the local queue manager stores the message

temporarily on the appropriate transmission queue.

MQWI_UNLIMITED

public final static int

This option indicates that the MQGET call can wait an unlimited time for a

suitable message to arrive.

MQXCC_CLOSE_CHANNEL

public final static int

This value can be set by any type of channel exit, and indicates that the connection

to the queue manager can be closed.

MQC

270 Using Java

MQXCC_OK

public final static int

This is set by the exit to indicate that the exit completed successfully. For a channel

security exit, this indicates that message transfer can now proceed normally. In the

case of a send exit, it indicates that the returned data is to be transmitted to the

queue manager, while in the case of a receive exit, it indicates that the returned

data is available for processing by the WebSphere MQ Client for Java.

MQXCC_SEND_AND_REQUEST_SEC_MSG

public final static int

This is set by the security exit to indicate that the returned data is to be

transmitted to the queue manager, and that a response is expected. If no response

is received, the channel must be terminated, because the exit has not yet decided

whether communications can proceed. It is not valid for send or receive exits.

MQXCC_SEND_SEC_MSG

public final static int

This is set by the security exit to indicate that the returned data is to be

transmitted to the queue manager. No response is expected. It is not valid for send

or receive exits.

MQXCC_SUPPRESS_EXIT

public final static int

This value can be set by a send exit or receive exit, to indicate that it can no longer

be called. It suppresses any further invocation of that exit, until termination of the

channel, when the exit is again invoked with an exit reason of MQXR_TERM.

MQXCC_SUPPRESS_FUNCTION

public final static int

This is set by the security exit to indicate that communications with the queue

manager must be shut down. It is not valid for send or receive exits.

MQXR_INIT

public final static int

This indicates that the exit is being invoked for the first time. It allows the exit to

acquire and initialize any resources that it might need

This is set after the channel connection conditions have been negotiated, but before

any security flows have been sent.

MQXR_INIT_SEC

public final static int

This indicates that the exit is to initiate the security dialog with the queue

manager. This occurs for channel security exits only.

The receiver’s security exit is always invoked with this reason immediately after

being invoked with MQC.MQXR_INIT, to give it the opportunity to initiate a

security exchange. If it declines the opportunity by returning MQC.MQXCC_OK

MQC

Chapter 9. Package com.ibm.mq 271

instead of MQC.MQXCC_SEND_SEC_MSG or

MQC.MQXCC_SEND_AND_REQUEST_SEC_MSG , the sender’s security exit is

invoked with MQXR_INIT_SEC.

See WebSphere MQ Intercommunication for more details of the possible security

exchanges that can take place when an exit is invoked with this reason.

MQXR_SEC_MSG

public final static int

This indicates that a security message has been received from the queue manager.

This occurs for channel security exits only.

MQXR_SEC_PARMS

public final static int

This indicates that the exit might create a MQConnectionSecurityParameters object.

If it does so, and MQChannelExit.getMQCSP() is not null after the exit completes,

then the data returned from the exit is then sent to the server-connection end of

the channel.

This occurs for channel security exits only, and takes place when the normal

security message exchange has ended and the channel is ready to run.

See WebSphere MQ Intercommunication for more details of the possible security

exchanges that can take place when an exit is invoked with this reason.

MQXR_TERM

public final static int

This indicates that the exit is about to be terminated. The exit should free any

resources that it has acquired since it was initialized.

This is called after the disconnect flows have been sent but before the socket

connection is destroyed.

MQXR_XMIT

public final static int

This indicates that the exit is about to process a transmission. This occurs for

channel send and receive exits only.

MQXT_CHANNEL_RCV_EXIT

public final static int

This indicates that a Channel receive exit is being called. It is set on entry to the

exit routine.

MQXT_CHANNEL_SEC_EXIT

public final static int

This indicates that a Channel security exit is being called. It is set on entry to the

exit routine.

MQXT_CHANNEL_SEND_EXIT

public final static int

MQC

272 Using Java

This indicates that a Channel send exit is being called. It is set on entry to the exit

routine.

MSGCOMPLIST_LENGTH

public final static int

The maximum length of the list of message compression techniques which can be

set.

PASSWORD_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining the password. The

corresponding value must be a String. This property overrides

MQEnvironment.password .

PORT_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining the port number. The

corresponding value must be an Integer. This property overrides

MQEnvironment.port .

RECEIVE_EXIT_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining a channel receive exit. The

corresponding value must be an Object that implements

com.ibm.mq.MQReceiveExit. This property overrides MQEnvironment.receiveExit.

SECURITY_EXIT_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining a channel security exit. The

corresponding value must be an Object that implements

com.ibm.mq.MQSecurityExit. This property overrides

MQEnvironment.securirtyExit.

SEND_EXIT_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining a channel send exit. The

corresponding value must be an Object that implements com.ibm.mq.MQSendExit.

This property overrides MQEnvironment.sendExit .

SSL_CERT_STORE_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining the SSL certificate store. The

corresponding value must be a java.util.Collection or a java.security.cert.CertStore.

This property overrides MQEnvironment.sslCertStores.

SSL_CIPHER_SUITE_PROPERTY

public final static java.lang.String

MQC

Chapter 9. Package com.ibm.mq 273

WebSphere MQ Java environment key for defining the name of the SSL cipher

suite. The corresponding value must be a String. This property overrides

MQEnvironment.sslCipherSuite.

SSL_FIPS_REQUIRED_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining the SSL FIPS required flag. The

corresponding value must be an Boolean. If this is set to true, then only

FIPS-certified cipher suites will be used. This property overrides

MQEnvironment.sslFipsRequired.

SSL_PEER_NAME_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining the SSL peer name. The

corresponding value must be a String. This property overrides

MQEnvironment.sslPeerName .

SSL_RESET_COUNT_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining the SSL key reset count. The

corresponding value must be an Integer, with a value between 0 (disabled) and

999,999,999. This property overrides MQEnvironment.sslResetCount .

SSL_SOCKET_FACTORY_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining the SSL socket factory. The

corresponding value must be a javax.net.ssl.SSLSocketFactory. This property

overrides MQEnvironment.sslSocketFactory.

THREAD_AFFINITY

public final static java.lang.String

Deprecated

see THREAD_AFFINITY_PROPERTY.

THREAD_AFFINITY_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining thread affinity. The

corresponding value must be a Boolean. Thread affinity is disabled by default and

connections can be shared. If it is enabled, then each queue manager connection

will be bound to a worker thread.

Two-phase commit processing is not supported with shared connections, and so

XA coordination is only possible when the MQQueueManager is created with

THREAD_AFFINITY set to true. If it is not, MQQueueManager.begin() will fail

with MQRC 2121, MQRC_NO_EXTERNAL_PARTICIPANTS.

TRANSPORT_MQSERIES

public final static java.lang.String

MQC

274 Using Java

This value indicates that the mode of transport will be determined by the value of

the hostname property. If this is not set, then the Java client will connect in

Bindings mode, otherwise it will connect in Client mode.

TRANSPORT_MQSERIES_BINDINGS

public final static java.lang.String

This value indicates that the Java client will connect in Bindings mode.

TRANSPORT_MQSERIES_CLIENT

public final static java.lang.String

This value indicates that the Java client will connect in Client mode.

TRANSPORT_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining the transport. The

corresponding value must be an Integer, and must be one of

MQC.TRANSPORT_MQSERIES_BINDINGS or

MQC.TRANSPORT_MQSERIES_CLIENT. The default is

MQC.TRANSPORT_MQSERIES, which selects a transport based on the value of

the hostname property.

USER_ID_PROPERTY

public final static java.lang.String

WebSphere MQ Java environment key for defining the user ID. The corresponding

value must be an String. This property overrides MQEnvironment.userID .

MQC

Chapter 9. Package com.ibm.mq 275

MQReceiveExit

public interface MQReceiveExit

com.ibm.mq.MQReceiveExit

The receive exit interface allows you to examine, and possibly alter, the data

received from the queue manager by the WebSphere MQ Client for Java.

Note: This interface does not apply when connecting directly to WebSphere MQ in

bindings mode.

To provide your own receive exit, define a class that implements this interface.

Create a new instance of your class and assign it to the

MQEnvironment.receiveExit field before constructing your MQQueueManager

object.

For example,

 // in MyReceiveExit.java

 class MyReceiveExit implements MQReceiveExit

 {

 // you must provide an implementation of the receiveExit method

 public byte[] receiveExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] agentBuffer)

 {

 // your exit code goes here...

 }

 }

 // in your main program...

 MQEnvironment.receiveExit = new MyReceiveExit();

 ... // other initialisation

 MQQueueManager qMgr = new MQQueueManager("");

Methods

receiveExit

public byte[] receiveExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] agentBuffer);

The receive exit method that your class must provide. It is invoked whenever the

WebSphere MQ Client for Java receives a message from the queue manager.

Parameters

v channelExitParms - contains information about the context in which the

exit is being invoked. channelExitParms.exitResponse is a parameter that

you use to tell the WebSphere MQ Client for Java what action to take

next.

v channelDefinition - contains details of the channel through which all

communications with the queue manager take place.

v agentBuffer - contains the data received from the queue manager if

channelExitParms.exitReason is MQChannelExit.MQXR_XMIT.

Otherwise agentBuffer is null.

Returns

MQReceiveExit

276 Using Java

v the data to be processed. If the exit response code (in channelExitParms)

is MQXCC_OK, the MQ Client for Java can now process the data. The

simplest receive exit therefore, consists of the single line:

return agentBuffer;

MQReceiveExit

Chapter 9. Package com.ibm.mq 277

MQSecurityExit

public interface MQSecurityExit

com.ibm.mq.MQSecurityExit

The security exit interface allows you to customize the security flows that occur

when an attempt is made to connect to a queue manager.

Note: This interface does not apply when connecting directly to WebSphere MQ in

bindings mode.

To provide your own security exit, define a class that implements this interface.

Create a new instance of your class and assign it to the

MQEnvironment.securityExit field before constructing your MQQueueManager

object.

For example,

 // in MySecurityExit.java

 class MySecurityExit implements MQSecurityExit

 {

 // you must provide an implementation of the securityExit method

 public byte[] securityExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] agentBuffer)

 {

 // your exit code goes here...

 }

 }

 // in your main program...

 MQEnvironment.securityExit = new MySecurityExit();

 ... // other initialisation

 MQQueueManager qMgr = new MQQueueManager("");

Methods

securityExit

public byte[] securityExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] agentBuffer);

The security exit method that your class must provide.

Parameters

v channelExitParms - contains information about the context in which the

exit is being invoked. channelExitParms.exitResponse is a parameter that

you use to tell the WebSphere MQ Client for Java what action to take

next.

v channelDefinition - Contains details of the channel through which all

communications with the queue manager take place.

v agentBuffer - if channelExitParms.exitReason is

MQChannelExit.MQXR_SEC_MSG, then agentBuffer contains the

security message received from the queue manager, otherwise

agentBuffer is null.

Returns

MQSecurityExit

278 Using Java

v the exit response code (in channelExitParms). If this is set so that a

message is to be transmitted to the queue manager, then your security

exit method must return the data to be transmitted.

MQSecurityExit

Chapter 9. Package com.ibm.mq 279

MQSendExit

public interface MQSendExit

com.ibm.mq.MQSendExit

The send exit interface allows you to examine, and possibly alter, the data sent to

the queue manager by the WebSphere MQ Client for Java.

Note: This interface does not apply when connecting directly to WebSphere MQ in

bindings mode.

To provide your own send exit, define a class that implements this interface. Create

a new instance of your class and assign it to the MQEnvironment.sendExit field

before constructing your MQQueueManager object.

For example,

 // in MySendExit.java

 class MySendExit implements MQSendExit

 {

 // you must provide an implementation of the sendExit method

 public byte[] sendExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] agentBuffer)

 {

 // your exit code goes here...

 }

 }

 // in your main program...

 MQEnvironment.sendExit = new MySendExit();

 ... // other initialisation

 MQQueueManager qMgr = new MQQueueManager("");

Methods

sendExit

public byte[] sendExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] agentBuffer);

The send exit method that your class must provide. It is invoked whenever the

WebSphere MQ Client for Java sends a message to the queue manager.

Parameters

v channelExitParms - contains information about the context in which the

exit is being invoked. channelExitParms.exitResponse is a parameter that

you use to tell the WebSphere MQ Client for Java what action to take

next.

v channelDefinition - contains details of the channel through which all

communications with the queue manager take place.

v agentBuffer - contains the data received from the queue manager if

channelExitParms.exitReason is MQChannelExit.MQXR_XMIT.

Otherwise agentBuffer is null.

Returns

v the data to be processed. If the exit response code (in channelExitParms)

is MQXCC_OK, the MQ Client for Java can now process the data. The

simplest send exit therefore, consists of the single line:

MQSendExit

280 Using Java

return agentBuffer;

MQSendExit

Chapter 9. Package com.ibm.mq 281

MQException

public class MQException

extends Exception

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----com.ibm.mq.MQException

An MQException is thrown whenever a WebSphere MQ error occurs. You can

change the java.io.OutputStreamWriter to vary where exceptions are logged by

setting the value of MQException.log. The default value is System.err.

Constructors

MQException

public MQException(int completionCode, int reasonCode, Object source);

Constructs a new MQException object.

Parameters

v completionCode - the WebSphere MQ completion code

v reasonCode - the WebSphere MQ reason code

v source - the object in which the error occurred

Fields

completionCode

public int

WebSphere MQ completion code giving rise to the error. The possible values are:

v MQException.MQCC_WARNING

v MQException.MQCC_FAILED

exceptionSource

public java.lang.Object

The object instance that threw the exception.

log

public static java.io.OutputStreamWriter

Stream to which exceptions will be logged (the default is System.err). If you set

this to null then no logging will occur.

MQCC_FAILED

public final static int

Completion code - call failed. The processing of the call did not complete, and the

state of the queue manager is normally unchanged; exceptions are specifically

noted. The completion code and reason code output parameters have been set;

other parameters are unchanged, except where noted. The failure might be the

MQException

282 Using Java

result of a fault in the application program, or of a situation external to the

program, for example the user’s authority might have been revoked. The reason

code parameter gives additional information about the error.

MQCC_OK

public final static int

Completion code - successful completion. The call completed fully; all output

parameters have been set. The Reason parameter always has the value

MQRC_NONE in this case.

MQCC_UNKNOWN

public final static int

Completion code - unknown.

MQCC_WARNING

public final static int

Completion code - warning (partial completion). The call completed partially. Some

output parameters might have been set in addition to the completion code and

reason code output parameters. The Reason parameter gives additional information

about the partial completion.

MQRC_ADAPTER_CONN_LOAD_ERROR

public final static int

Reason code - unable to load adapter connection module.

MQRC_ADAPTER_CONV_LOAD_ERROR

public final static int

Reason code - unable to load data conversion services modules.

MQRC_ADAPTER_DEFS_ERROR

public final static int

Reason code - adapter subsystem definition module not valid.

MQRC_ADAPTER_DEFS_LOAD_ERROR

public final static int

Reason code - unable to load adapter subsystem definition module.

MQRC_ADAPTER_DISC_LOAD_ERROR

public final static int

Reason code - unable to load adapter disconnection module.

MQRC_ADAPTER_NOT_AVAILABLE

public final static int

Reason code - adapter not available.

MQException

Chapter 9. Package com.ibm.mq 283

MQRC_ADAPTER_SERV_LOAD_ERROR

public final static int

Reason code - unable to load adapter service module.

MQRC_ADAPTER_STORAGE_SHORTAGE

public final static int

Reason code - insufficient storage for adapter.

MQRC_ALIAS_BASE_Q_TYPE_ERROR

public final static int

Reason code - alias base queue not a valid type.

MQRC_ALREADY_CONNECTED

public final static int

Reason code - application is already connected.

MQRC_ANOTHER_Q_MGR_CONNECTED

public final static int

Reason code - another queue manager is already connected.

MQRC_API_EXIT_LOAD_ERROR

public final static int

Reason code - unable to load the API exit.

MQRC_ASID_MISMATCH

public final static int

Reason code - primary and home ASIDs differ.

MQRC_BACKED_OUT

public final static int

Reason code - unit of work is backed out.

MQRC_BACKOUT_THRESHOLD_REACHED

public final static int

Reason code - backout threshold has been reached.

MQRC_BUFFER_ERROR

public final static int

Reason code - buffer parameter is not valid.

MQRC_BUFFER_LENGTH_ERROR

public final static int

Reason code - buffer length parameter is not valid.

MQException

284 Using Java

MQRC_CALL_IN_PROGRESS

public final static int

Reason code - MQI was entered before previous call was complete.

MQRC_CD_ERROR

public final static int

Reason code - invalid MQCD channel definition. An MQCONNX call was issued

to connect to a queue manager, but the MQCD channel definition structure

addressed by the ClientConnOffset or ClientConnPtr field in MQCNO contains

data that is not valid.

MQRC_CF_NOT_AVAILABLE

public final static int

Reason code - the coupling-facility structure is unavailable. An MQOPEN or

MQPUT1 call was issued to access a shared queue, but the allocation of the

coupling-facility structure specified in the queue definition failed because there is

no suitable coupling facility to hold the structure, based on the preference list in

the active CFRM policy. Only applies to z/OS.

MQRC_CF_STRUC_AUTH_FAILED

public final static int

Reason code - the user is not authorized to access the coupling-facility structure.

An MQOPEN or MQPUT1 call was issued to access a shared queue, but the call

failed because the user is not authorized to access the coupling-facility structure

specified in the queue definition. Only applies to z/OS.

MQRC_CF_STRUC_ERROR

public final static int

Reason code - coupling-facility structure is not valid. Z/OS only.

MQRC_CF_STRUC_IN_USE

public final static int

Reason code - the coupling-facility structure is in use. An MQI call was issued to

operate on a shared queue, but the call failed because the coupling-facility

structure specified in the queue definition is temporarily unavailable. Only applies

to z/OS.

MQRC_CF_STRUC_LIST_HDR_IN_USE

public final static int

Reason code - the list header associated with the coupling-facility structure is in

use. An MQGET, MQOPEN, MQPUT1, or MQSET call was issued to access a

shared queue, but the call failed because the list header associated with the

coupling-facility structure specified in the queue definition is temporarily

unavailable. Only applies to z/OS.

MQRC_CFH_ERROR

public final static int

Reason code - PCF header structure is not valid.

MQException

Chapter 9. Package com.ibm.mq 285

MQRC_CFIL_ERROR

public final static int

Reason code - PCF integer list parameter structure is not valid.

MQRC_CFIN_ERROR

public final static int

Reason code - PCF integer parameter structure is not valid.

MQRC_CFSL_ERROR

public final static int

Reason code - PCF string list parameter structure is not valid.

MQRC_CFST_ERROR

public final static int

Reason code - PCF string parameter structure is not valid.

MQRC_CHANNEL_ACTIVATED

public final static int

Reason code - a channel is now able to become active because an active slot has

been released by another channel.

MQRC_CHANNEL_AUTO_DEF_ERROR

public final static int

Reason code - automatically defined error

MQRC_CHANNEL_AUTO_DEF_OK

public final static int

Reason code - Automatic channel definition succeeded.

This condition is detected when the automatic definition of a channel is successful.

The channel is defined by the MCA.

MQRC_CHANNEL_CONV_ERROR

public final static int

Reason code - a channel was unable to convert data and the MQGET call to get a

message from the transmission queue resulted in a data conversion error.

MQRC_CHANNEL_NOT_ACTIVATED

public final static int

Reason code - a channel is required to become active, but is unable to do so

because the limit on the number of active channels has been reached.

MQRC_CHANNEL_STARTED

public final static int

Reason code - either an operator has issued a Start Channel command or an

instance of a channel has been successfully established.

MQException

286 Using Java

MQRC_CHANNEL_STOPPED

public final static int

Reason code - channel has been stopped.

MQRC_CHANNEL_STOPPED_BY_USER

public final static int

Reason code - channel has been stopped by an operator.

MQRC_CHAR_ATTR_LENGTH_ERROR

public final static int

Reason code - length of character attributes is not valid.

MQRC_CHAR_ATTRS_ERROR

public final static int

Reason code - character attributes string is not valid.

MQRC_CHAR_ATTRS_TOO_SHORT

public final static int

Reason code - not enough space allowed for character attributes.

MQRC_CHAR_CONVERSION_ERROR

public final static int

Reason code - returned by the Java MQQueueManager constructor when a

required character-set conversion is not available. The conversion required is

between two non-Unicode character sets.

MQRC_CICS_WAIT_FAILED

public final static int

Reason code - wait request has been rejected by CICS.

MQRC_CLIENT_CHANNEL_CONFLICT

public final static int

Reason code - client channel definition table conflict error. An attempt is being

made to specify a client channel definition table when the name of the channel has

already been defined. Change the channel name to blank and try again. This

reason code only occurs with Java applications.

MQRC_CLIENT_CONN_ERROR

public final static int

Reason code - an MQCONNX call was issued to connect to a queue manager, but

the MQCD channel definition structure was not specified correctly.

MQRC_CLIENT_EXIT_ERROR

public final static int

Reason code - Error in client exit

MQException

Chapter 9. Package com.ibm.mq 287

MQRC_CLIENT_EXIT_LOAD_ERROR

public final static int

Reason code - client exit could not be loaded.

MQRC_CLUSTER_EXIT_ERROR

public final static int

Reason code - cluster workload exit has failed.

MQRC_CLUSTER_EXIT_LOAD_ERROR

public final static int

Reason code - unable to load cluster workload exit.

MQRC_CLUSTER_PUT_INHIBITED

public final static int

Reason code - put calls have been inhibited for all queues in cluster.

MQRC_CLUSTER_RESOLUTION_ERROR

public final static int

Reason code - cluster name resolution failed.

MQRC_CLUSTER_RESOURCE_ERROR

public final static int

Reason code - cluster resource error.

MQRC_CMD_SERVER_NOT_AVAILABLE

public final static int

Reason code - the command server that processes administration commands is not

available.

MQRC_CNO_ERROR

public final static int

Reason code - connection options are not valid.

MQRC_COD_NOT_VALID_FOR_XCF_Q

public final static int

Reason code - COD report option not valid for XCF queue.

MQRC_CODED_CHAR_SET_ID_ERROR

public final static int

Reason code - the coded character set ID is not valid.

MQRC_CONN_ID_IN_USE

public final static int

Reason code - connection identifier is already in use.

MQException

288 Using Java

MQRC_CONN_TAG_NOT_RELEASED

public final static int

Reason code - an MQDISC call was issued when there was a unit of work

outstanding for the connection handle. Only applies to z/OS.

MQRC_CONN_TAG_NOT_USABLE

public final static int

Reason code - the connection tag is not usable. An MQCONNX call was issued

specifying one of the MQCNO_* or _CONN_TAG_* options, but the call failed

because the connection tag specified by ConnTag in MQCNO is being used by the

queue manager for recovery processing, and this processing is delayed pending

recovery of the coupling facility. Only applies to z/OS.

MQRC_CONNECTION_BROKEN

public final static int

Reason code - connection to queue manager has been lost.

MQRC_CONNECTION_NOT_AUTHORIZED

public final static int

Reason code - not authorized for connection.

MQRC_CONNECTION_QUIESCING

public final static int

Reason code - connection is quiescing.

MQRC_CONNECTION_STOPPING

public final static int

Reason code - connection is stopping.

MQRC_CONTEXT_HANDLE_ERROR

public final static int

Reason code - queue handle referred to does not save context.

MQRC_CONTEXT_NOT_AVAILABLE

public final static int

Reason code - context not available for queue handle referred to.

MQRC_CONVERTED_MSG_TOO_BIG

public final static int

Reason code - converted data is too big for buffer.

MQRC_CONVERTED_STRING_TOO_BIG

public final static int

Reason code - converted string is too big for field.

MQException

Chapter 9. Package com.ibm.mq 289

MQRC_CORREL_ID_ERROR

public final static int

Reason code - correlation ID error.

MQRC_CURRENT_RECORD_ERROR

public final static int

Reason code - error in current record.

MQRC_DATA_LENGTH_ERROR

public final static int

Reason code - data length parameter is not valid.

MQRC_DB2_NOT_AVAILABLE

public final static int

Reason code - an MQOPEN, MQPUT1, or MQSET call was issued to access a

shared queue, but the call failed because the queue manager is not connected to a

DB2 subsystem. As a result, the queue manager is unable to access the object

definition relating to the shared queue. Only applies to z/OS.

MQRC_DBCS_ERROR

public final static int

Reason code - DBCS string is not valid.

MQRC_DEF_XMIT_Q_TYPE_ERROR

public final static int

Reason code - default transmission queue is not local.

MQRC_DEF_XMIT_Q_USAGE_ERROR

public final static int

Reason code - default transmission queue usage error.

MQRC_DLH_ERROR

public final static int

Reason code - dead letter header structure is not valid.

MQRC_DUPLICATE_RECOV_COORD

public final static int

Reason code - recovery coordinator already exists.

MQRC_DYNAMIC_Q_NAME_ERROR

public final static int

Reason code - name of dynamic queue is not valid.

MQRC_ENCODING_NOT_SUPPORTED

public final static int

MQException

290 Using Java

Reason code - the Encoding field in the message descriptor MQMD contains a

value that is not supported.

MQRC_ENVIRONMENT_ERROR

public final static int

Reason code - call not valid in this environment.

MQRC_EXPIRY_ERROR

public final static int

Reason code - expiry time is not valid.

MQRC_FEEDBACK_ERROR

public final static int

Reason code - feedback code is not valid.

MQRC_FILE_NOT_AUDITED

public final static int

Reason code - file has not been audited.

MQRC_FILE_SYSTEM_ERROR

public final static int

Reason code - error in file system.

MQRC_FORMAT_ERROR

public final static int

Reason code - message format is not valid.

MQRC_FORMAT_NOT_SUPPORTED

public final static int

Reason code - The format field in the message descriptor MQMD contains a value

that is not supported.

MQRC_FUNCTION_NOT_SUPPORTED

public final static int

Reason code - An attempt was made to access functionality that is not supported

from the environment from which it was called. For example, running the Client

Configuration on z/OS

MQRC_GET_INHIBITED

public final static int

Reason code - gets are inhibited for the queue.

MQRC_GLOBAL_UOW_CONFLICT

public final static int

Reason code - global units of work conflict with each other.

MQException

Chapter 9. Package com.ibm.mq 291

MQRC_GMO_ERROR

public final static int

Reason code - get-message options object is not valid.

MQRC_GROUP_ID_ERROR

public final static int

Reason code - group identifier is not valid.

MQRC_HANDLE_IN_USE_FOR_UOW

public final static int

Reason code - handle is in use for a global unit of work.

MQRC_HANDLE_NOT_AVAILABLE

public final static int

Reason code - no more handles are available.

MQRC_HCONN_ERROR

public final static int

Reason code - connection handle is not valid.

MQRC_HEADER_ERROR

public final static int

Reason code - WebSphere MQ header structure is not valid.

MQRC_HOBJ_ERROR

public final static int

Reason code - object handle is not valid.

MQRC_INCOMPLETE_GROUP

public final static int

Reason code - message group is not complete.

MQRC_INCOMPLETE_MSG

public final static int

Reason code - message is not complete.

MQRC_INCONSISTENT_BROWSE

public final static int

Reason code - browse specification is inconsistent.

MQRC_INCONSISTENT_CCSIDS

public final static int

Reason code - message segments have differing CCSIDs.

MQException

292 Using Java

MQRC_INCONSISTENT_ENCODINGS

public final static int

Reason code - message segments have differing encodings.

MQRC_INCONSISTENT_PERSISTENCE

public final static int

Reason code - inconsistent persistence specification.

MQRC_INCONSISTENT_UOW

public final static int

Reason code - unit-of-work specification is inconsistent.

MQRC_INDEX_ERROR

public final static int

Reason code - an index parameter to a call or method has a value that is not valid.

The value must be zero or greater.

MQRC_INDEX_NOT_PRESENT

public final static int

Reason code - the specified index is not present.

MQRC_INHIBIT_VALUE_ERROR

public final static int

Reason code - value for inhibit-get or inhibit-put queue attribute is not valid.

MQRC_INT_ATTR_COUNT_ERROR

public final static int

Reason code - count of integer attributes is not valid.

MQRC_INT_ATTR_COUNT_TOO_SMALL

public final static int

Reason code - not enough space has been allowed for integer attributes.

MQRC_INT_ATTRS_ARRAY_ERROR

public final static int

Reason code - integer attributes array is not valid.

MQRC_INVALID_MSG_UNDER_CURSOR

public final static int

Reason code - message under cursor is not valid for retrieval.

MQRC_JMS_FORMAT_ERROR

public final static int

Reason code - this reason code is generated when JMS encounters a message that it

is unable to parse. If such a message is encountered by a JMS

MQException

Chapter 9. Package com.ibm.mq 293

ConnectionConsumer, the message is processed as specified by the disposition

options in the Report field in the MQMD of the message.

If the Report field specifies one of the MQRO_EXCEPTION_* options, this reason

code appears in the Feedback field of the report message. If the Report field

specifies MQRO_DEAD_LETTER_Q, or the disposition report options are left as

default, this reason code appears in the Reason field of the MQDLH.

MQRC_JSSE_ERROR

public final static int

Reason code - JSSE reported an error (for example, while connecting to a queue

manager using SSL encryption). The MQException object containing this reason

code references the Exception thrown by JSSE; this can be obtained by using the

MQException.getCause() method. From JMS, the MQException is linked to the

thrown JMSException.

MQRC_LOCAL_UOW_CONFLICT

public final static int

Reason code - global unit of work conflicts with a local unit of work.

MQRC_MATCH_OPTIONS_ERROR

public final static int

Reason code - match options are not valid.

MQRC_MAX_CONNS_LIMIT_REACHED

public final static int

Reason code - maximum number of connections reached.

MQRC_MD_ERROR

public final static int

Reason code - message descriptor is not valid.

MQRC_MDE_ERROR

public final static int

Reason code - message descriptor extension is not valid.

MQRC_MISSING_REPLY_TO_Q

public final static int

Reason code - missing reply-to queue.

MQRC_MISSING_WIH

public final static int

Reason code - mismatch of queue IndexType and Format field in MQMD. An

MQPUT or MQPUT1 call was issued to put a message on a queue whose

IndexType attribute had the value MQIT_MSG_TOKEN, but the Format field in the

MQMD was not MQFMT_WORK_INFO_HEADER. This error occurs only when

the message arrives at the destination queue manager. Only allies to z/OS.

MQException

294 Using Java

MQRC_MSG_FLAGS_ERROR

public final static int

Reason code - message flags are not valid.

MQRC_MSG_ID_ERROR

public final static int

Reason code - message ID error.

MQRC_MSG_MARKED_BROWSE_CO_OP

public final static int

Reason code - message is marked

MQRC_MSG_NOT_MATCHED

public final static int

Reason code - message is not matched.

MQRC_MSG_SEQ_NUMBER_ERROR

public final static int

Reason code - message sequence number is not valid.

MQRC_MSG_TOKEN_ERROR

public final static int

Reason code - An MQGET call was issued to retrieve a message using the message

token as a selection criterion, but the options specified are not valid. only applies

to z/OS.

MQRC_MSG_TOO_BIG_FOR_CHANNEL

public final static int

Reason code - message is too big for channel.

MQRC_MSG_TOO_BIG_FOR_Q

public final static int

Reason code - message length is greater than maximum for queue.

MQRC_MSG_TOO_BIG_FOR_Q_MGR

public final static int

Reason code - message length is greater than maximum for queue manager.

MQRC_MSG_TYPE_ERROR

public final static int

Reason code - message type in message descriptor is not valid.

MQRC_MULTIPLE_REASONS

public final static int

Reason code - multiple reason codes have been returned.

MQException

Chapter 9. Package com.ibm.mq 295

MQRC_NAME_IN_USE

public final static int

Reason code - an MQOPEN call was issued to create a dynamic queue, but a

queue with the same name as the dynamic queue already exists. The existing

queue is one that is logically deleted, but for which there are still one or more

open handles. Only applies to z/OS.

MQRC_NAME_NOT_VALID_FOR_TYPE

public final static int

Reason code - object name is not valid for object type.

MQRC_NEXT_OFFSET_ERROR

public final static int

Reason code - error in offset to next record.

MQRC_NEXT_RECORD_ERROR

public final static int

Reason code - error in next record.

MQRC_NO_DESTINATIONS_AVAILABLE

public final static int

Reason code - no destination queues are available.

MQRC_NO_EXTERNAL_PARTICIPANTS

public final static int

Reason code - An MQBEGIN call was issued to start a unit of work coordinated by

the queue manager, but no participating resource managers have been registered

with the queue manager. As a result, only changes to WebSphere MQ resources can

be coordinated by the queue manager in the unit of work.

MQRC_NO_MSG_AVAILABLE

public final static int

Reason code - no message is available.

MQRC_NO_MSG_LOCKED

public final static int

Reason code - no message is locked.

MQRC_NO_MSG_UNDER_CURSOR

public final static int

Reason code - browse cursor is not positioned on message.

MQRC_NO_RECORD_AVAILABLE

public final static int

Reason code - no record is available.

MQException

296 Using Java

MQRC_NONE

public final static int

Reason code - none.

MQRC_NOT_AUTHORIZED

public final static int

Reason code - queue is not authorized for access.

MQRC_NOT_CONVERTED

public final static int

Reason code - message data has not been converted.

MQRC_NOT_OPEN_FOR_BROWSE

public final static int

Reason code - queue is not open for browse.

MQRC_NOT_OPEN_FOR_INPUT

public final static int

Reason code - queue is not open for input.

MQRC_NOT_OPEN_FOR_INQUIRE

public final static int

Reason code - queue is not open for inquire.

MQRC_NOT_OPEN_FOR_OUTPUT

public final static int

Reason code - queue is not open for output.

MQRC_NOT_OPEN_FOR_PASS_ALL

public final static int

Reason code - queue not open for pass all context.

MQRC_NOT_OPEN_FOR_PASS_IDENT

public final static int

Reason code - queue not open for pass identity context.

MQRC_NOT_OPEN_FOR_SET

public final static int

Reason code - queue is not open for set all context.

MQRC_NOT_OPEN_FOR_SET_ALL

public final static int

Reason code - queue not open for set all context.

MQException

Chapter 9. Package com.ibm.mq 297

MQRC_NOT_OPEN_FOR_SET_IDENT

public final static int

Reason code - queue not open for set identity context.

MQRC_OBJECT_ALREADY_EXISTS

public final static int

Reason code - object already exists.

MQRC_OBJECT_CHANGED

public final static int

Reason code - object definition has changed since it opened.

MQRC_OBJECT_DAMAGED

public final static int

Reason code - object has been damaged.

MQRC_OBJECT_IN_USE

public final static int

Reason code - object is already open with conflicting options.

MQRC_OBJECT_LEVEL_INCOMPATIBLE

public final static int

Reason code - object level is incompatible.

MQRC_OBJECT_NAME_ERROR

public final static int

Reason code - object name is not valid.

MQRC_OBJECT_NOT_UNIQUE

public final static int

Reason code - An MQOPEN or MQPUT1 call was issued to access a queue, but the

call failed because the queue specified in the MQOD structure cannot be resolved

unambiguously. There exists a shared queue with the specified name, and a

nonshared queue with the same name. Only applies to z/OS.

MQRC_OBJECT_Q_MGR_NAME_ERROR

public final static int

Reason code - object queue-manager name is not valid.

MQRC_OBJECT_RECORDS_ERROR

public final static int

Reason code - object records are not valid.

MQRC_OBJECT_TYPE_ERROR

public final static int

Reason code - object type is not valid.

MQException

298 Using Java

MQRC_OD_ERROR

public final static int

Reason code - object descriptor structure is not valid.

MQRC_OFFSET_ERROR

public final static int

Reason code - message segment offset is not valid.

MQRC_OPEN_FAILED

public final static int

Reason code - object did not open successfully.

MQRC_OPTION_ENVIRONMENT_ERROR

public final static int

Reason code - an MQGET call with the MQGMO_MARK_SKIP_BACKOUT option

specified was issued from a DB2 Stored Procedure. The call failed because the

MQGMO_MARK_SKIP_BACKOUT option cannot be used from a DB2 Stored

Procedure.

MQRC_OPTION_NOT_VALID_FOR_TYPE

public final static int

Reason code - option is not valid for object type.

MQRC_OPTIONS_ERROR

public final static int

Reason code - options are not valid or not consistent.

MQRC_ORIGINAL_LENGTH_ERROR

public final static int

Reason code - original length is not valid.

MQRC_OUTCOME_MIXED

public final static int

Reason code - result of commit or backout operation is mixed.

MQRC_OUTCOME_PENDING

public final static int

Reason code - result of commit operation is pending.

MQRC_PAGESET_ERROR

public final static int

Reason code - error accessing page-set data set.

MQRC_PAGESET_FULL

public final static int

Reason code - external storage medium is full.

MQException

Chapter 9. Package com.ibm.mq 299

MQRC_PARTICIPANT_NOT_AVAILABLE

public final static int

Reason code - no participating resource managers have been registered.

MQRC_PARTICIPANT_NOT_DEFINED

public final static int

Reason code - participant has not been defined.

MQRC_PERSISTENCE_ERROR

public final static int

Reason code - persistence is not valid.

MQRC_PERSISTENT_NOT_ALLOWED

public final static int

Reason code - queue does not support persistent messages.

MQRC_PMO_ERROR

public final static int

Reason code - put-message options object is not valid.

MQRC_PMO_RECORD_FLAGS_ERROR

public final static int

Reason code - put message record flags not valid.

MQRC_PRIORITY_ERROR

public final static int

Reason code - message priority is not valid.

MQRC_PRIORITY_EXCEEDS_MAXIMUM

public final static int

Reason code - message priority exceeds maximum value supported.

MQRC_PUT_INHIBITED

public final static int

Reason code - put calls are inhibited for the queue.

MQRC_PUT_MSG_RECORDS_ERROR

public final static int

Reason code - put message records are not valid.

MQRC_Q_DELETED

public final static int

Reason code - queue has been deleted.

MQException

300 Using Java

MQRC_Q_DEPTH_HIGH

public final static int

Reason code - Queue depth high limit reached or exceeded.

A message put has caused the queue depth to be incremented to or above the limit

specified in the QDepthHighLimit attribute.

MQRC_Q_DEPTH_LOW

public final static int

Reason code - Queue depth low limit reached or exceeded.

A message get has caused the queue depth to be decremented to or below the limit

specified in the QDepthLowLimit attribute.

MQRC_Q_FULL

public final static int

Reason code - queue is full.

MQRC_Q_MGR_ACTIVE

public final static int

Reason code - the queue manager is active.

MQRC_Q_MGR_NAME_ERROR

public final static int

Reason code - queue manager name is not valid or not known.

MQRC_Q_MGR_NOT_ACTIVE

public final static int

Reason code - the queue manager is not active.

MQRC_Q_MGR_NOT_AVAILABLE

public final static int

Reason code - queue manager is not available for connection.

MQRC_Q_MGR_QUIESCING

public final static int

Reason code - queue manager is quiescing.

MQRC_Q_MGR_STOPPING

public final static int

Reason code - queue manager is shutting down.

MQRC_Q_NOT_EMPTY

public final static int

Reason code - queue contains one or more messages or uncommitted put or get

requests.

MQException

Chapter 9. Package com.ibm.mq 301

MQRC_Q_SERVICE_INTERVAL_HIGH

public final static int

Reason code - Queue service interval high.

No successful gets or puts have been detected within an interval greater than the

limit specified in the QServiceInterval attribute.

MQRC_Q_SERVICE_INTERVAL_OK

public final static int

Reason code - Queue service interval OK.

A successful get has been detected within an interval less than or equal to the limit

specified in the QServiceInterval attribute.

MQRC_Q_SPACE_NOT_AVAILABLE

public final static int

Reason code - no space available on disk for queue.

MQRC_Q_TYPE_ERROR

public final static int

Reason code - queue type not valid.

MQRC_RECS_PRESENT_ERROR

public final static int

Reason code - number of records present is not valid.

MQRC_REMOTE_Q_NAME_ERROR

public final static int

Reason code - remote queue name is not valid.

MQRC_REPORT_OPTIONS_ERROR

public final static int

Reason code - report options in message descriptor are not valid.

MQRC_RESOURCE_PROBLEM

public final static int

Reason code - insufficient system resources are available.

MQRC_RESPONSE_RECORDS_ERROR

public final static int

Reason code - object records not valid.

MQRC_RFH_COMMAND_ERROR

public final static int

Reason code - the message contains an MQRFH structure, but the command name

contained in the NameValueString field is not valid.

MQException

302 Using Java

MQRC_RFH_DUPLICATE_PARM

public final static int

Reason code - the message contains an MQRFH structure, but a parameter occurs

more than once in the NameValueString field when only one occurrence is valid

for the specified command.

MQRC_RFH_ERROR

public final static int

Reason code - an MQPUT or MQPUT1 call was issued, but the message data

contains an MQRFH or MQRFH2 structure that is not valid.

MQRC_RFH_PARM_ERROR

public final static int

Reason code - the message contains an MQRFH structure, but a parameter name

contained in the NameValueString field is not valid for the command specified.

MQRC_RFH_PARM_MISSING

public final static int

Reason code - the message contains an MQRFH structure, but the command

specified in the NameValueString field requires a parameter that is not present.

MQRC_RFH_STRING_ERROR

public final static int

Reason code - the contents of the NameValueString field in the MQRFH structure

are not valid.

MQRC_RMH_ERROR

public final static int

Reason code - Reference message header structure is not valid.

MQRC_SECOND_MARK_NOT_ALLOWED

public final static int

Reason code - a message is already marked.

MQRC_SECURITY_ERROR

public final static int

Reason code - a security error has occurred.

MQRC_SEGMENT_LENGTH_ZERO

public final static int

Reason code - length of data in message segment is zero.

MQRC_SIGNAL_OUTSTANDING

public final static int

Reason code - a signal is outstanding for this handle.

MQException

Chapter 9. Package com.ibm.mq 303

MQRC_SIGNAL_REQUEST_ACCEPTED

public final static int

Reason code - no message returned (but signal request accepted).

MQRC_SIGNAL1_ERROR

public final static int

Reason code - signal field is not valid.

MQRC_SOURCE_BUFFER_ERROR

public final static int

Reason code - source buffer parameter is not valid.

MQRC_SOURCE_CCSID_ERROR

public final static int

Reason code - source coded character set identifier is not valid.

MQRC_SOURCE_DECIMAL_ENC_ERROR

public final static int

Reason code - packed-decimal encoding specified by receiver is not recognized.

MQRC_SOURCE_FLOAT_ENC_ERROR

public final static int

Reason code - source floating point encoding specified is not recognized.

MQRC_SOURCE_INTEGER_ENC_ERROR

public final static int

Reason code - source integer encoding not recognized.

MQRC_SOURCE_LENGTH_ERROR

public final static int

Reason code - source length parameter is not valid.

MQRC_SSL_CERT_STORE_ERROR

public final static int

Reason code - SSL CertStore error.

MQRC_SSL_CERTIFICATE_REVOKED

public final static int

Reason code - SSL certificate has been revoked.

MQRC_SSL_INITIALIZATION_ERROR

public final static int

Reason code - SSL initialization error.

MQException

304 Using Java

MQRC_SSL_KEY_RESET_ERROR

public final static int

Reason code - SSL key reset error.

MQRC_SSL_NOT_ALLOWED

public final static int

Reason code - SSL is not allowed.

MQRC_SSL_PEER_NAME_ERROR

public final static int

Reason code - SSL error in peer name.

MQRC_SSL_PEER_NAME_MISMATCH

public final static int

Reason code - SSL peer name mismatch.

MQRC_STOPPED_BY_CLUSTER_EXIT

public final static int

Reason code - call has been rejected by cluster workload exit.

MQRC_STORAGE_CLASS_ERROR

public final static int

Reason code - storage class error.

MQRC_STORAGE_NOT_AVAILABLE

public final static int

Reason code - insufficient storage is available.

MQRC_STRING_ERROR

public final static int

Reason code - the string parameter is not valid.

MQRC_STRING_LENGTH_ERROR

public final static int

The StringLength parameter is not valid.

MQRC_STRING_TRUNCATED

public final static int

Reason code - the string returned by the call is too long to fit in the buffer

provided. The string has been truncated to fit in the buffer.

MQRC_SUPPRESSED_BY_EXIT

public final static int

Reason code - call suppressed by exit program.

MQException

Chapter 9. Package com.ibm.mq 305

MQRC_SYNCPOINT_LIMIT_REACHED

public final static int

Reason code - no more messages can be handled within current unit of work.

MQRC_SYNCPOINT_NOT_AVAILABLE

public final static int

Reason code - syncpoint support is not available.

MQRC_TARGET_BUFFER_ERROR

public final static int

Reason code - target buffer parameter is not valid.

MQRC_TARGET_CCSID_ERROR

public final static int

Reason code - the coded character-set identifier to which the character data is to be

converted is not valid or not supported.

MQRC_TARGET_DECIMAL_ENC_ERROR

public final static int

Reason code - packed-decimal encoding specified by the receiver is not recognized.

MQRC_TARGET_FLOAT_ENC_ERROR

public final static int

Reason code - floating-point encoding specified by the receiver is not recognized.

MQRC_TARGET_INTEGER_ENC_ERROR

public final static int

Reason code - target coded character set identifier is not valid.

MQRC_TARGET_LENGTH_ERROR

public final static int

Reason code - target length parameter is not valid.

MQRC_TM_ERROR

public final static int

Reason code - trigger message structure is not valid.

MQRC_TMC_ERROR

public final static int

Reason code - character trigger message structure is not valid.

MQRC_TRIGGER_CONTROL_ERROR

public final static int

Reason code - value for trigger-point attribute is not valid.

MQException

306 Using Java

MQRC_TRIGGER_DEPTH_ERROR

public final static int

Reason code - value for trigger-depth attribute is not valid.

MQRC_TRIGGER_MSG_PRIORITY_ERR

public final static int

Reason code - value for trigger-message priority attribute is not valid.

MQRC_TRIGGER_TYPE_ERROR

public final static int

Reason code - value for trigger-type attribute is not valid.

MQRC_TRUNCATED_MSG_ACCEPTED

public final static int

Reason code - truncated message returned (processing completed).

MQRC_TRUNCATED_MSG_FAILED

public final static int

Reason code - truncated message returned (processing not completed).

MQRC_UCS2_CONVERSION_ERROR

public final static int

Reason code - returned by the Java MQQueueManager constructor when a

required character-set conversion is not available. The conversion required is

between the UCS-2 Unicode character set and the queue manager’s character set.

IBM-500 is used for the queue manager’s character set if no specific value is

available.

MQRC_UNEXPECTED_ERROR

public final static int

Reason code - an unexpected error has occurred.

MQRC_UNIT_OF_WORK_NOT_STARTED

public final static int

Reason code - the unit of work has not started.

MQRC_UNKNOWN_ALIAS_BASE_Q

public final static int

Reason code - unknown alias base queue.

MQRC_UNKNOWN_DEF_XMIT_Q

public final static int

Reason code - unknown default transmission queue.

MQException

Chapter 9. Package com.ibm.mq 307

MQRC_UNKNOWN_OBJECT_NAME

public final static int

Reason code - unknown object name.

MQRC_UNKNOWN_OBJECT_Q_MGR

public final static int

Reason code - unknown object queue manager.

MQRC_UNKNOWN_REMOTE_Q_MGR

public final static int

Reason code - unknown remote queue manager.

MQRC_UNKNOWN_REPORT_OPTION

public final static int

Reason code - one or more report options in the in message descriptor are not

recognized.

MQRC_UNKNOWN_XMIT_Q

public final static int

Reason code - unknown transmission queue.

MQRC_UNSUPPORTED_CIPHER_SUITE

public final static int

Reason code - cipher suite is unsupported.

MQRC_UOW_CANCELED

public final static int

Reason code - an MQI call was issued, but the unit of work (TM/MP transaction)

being used for the WebSphere MQ operation had been canceled.

MQRC_UOW_ENLISTMENT_ERROR

public final static int

Reason code - enlistment in a global unit of work failed.

MQRC_UOW_MIX_NOT_SUPPORTED

public final static int

Reason code - mixture of unit-of-work calls is not supported.

MQRC_UOW_NOT_AVAILABLE

public final static int

Reason code - unit of work is not available for the queue manager to use.

MQRC_WAIT_INTERVAL_ERROR

public final static int

Reason code - wait interval in MQGMO not valid.

MQException

308 Using Java

MQRC_WIH_HEADER

public final static int

Reason code - an MQPUT or MQPUT1 call was issued, but the message data

contains an MQWIH structure that is not valid.

MQRC_WRONG_GMO_VERSION

public final static int

Reason code - wrong version of MQGMO has been supplied.

MQRC_WRONG_MD_VERSION

public final static int

Reason code - wrong version of MQMD has been supplied.

MQRC_WXP_ERROR

public final static int

Reason code - WXP error.

MQRC_XMIT_Q_TYPE_ERROR

public final static int

Reason code - transmission queue not local.

MQRC_XMIT_Q_USAGE_ERROR

public final static int

Reason code - transmission queue not local.

MQRC_XQH_ERROR

public final static int

Reason code - transmission queue header structure is not valid.

MQRC_XWAIT_CANCELED

public final static int

Reason code - XA wait has been canceled.

MQRC_XWAIT_ERROR

public final static int

Reason code - XA wait error.

reasonCode

public int

WebSphere MQ reason code describing the error.

MQException

Chapter 9. Package com.ibm.mq 309

Methods

getMessage

public String getMessage();

Gets the message detail.

Returns

v the detail

logExclude

public static void logExclude(Integer avoidCode);

Adds an exception type to be kept out of the log.

Parameters

v avoidCode - the exception which is not to be logged.

logInclude

public static void logInclude(Integer includeCode);

Allows an exception type to be put in the log.

Parameters

v includeCode - the exception which is to be logged.

MQException

310 Using Java

Part 4. Programming with WebSphere MQ JMS

Chapter 10. Writing WebSphere MQ JMS

applications 313

The JMS model 313

Building a connection 314

Retrieving the factory from JNDI 314

Using the factory to create a connection . . . 315

Creating factories at runtime 315

Choosing client or bindings transport 316

Specifying a range of ports for client

connections 316

Obtaining a session 317

Sending a message 317

Setting properties with the set method 319

Message types 320

Receiving a message 321

Message selectors 321

Asynchronous delivery 322

Closing down 322

Java Virtual Machine hangs at shutdown . . . 322

Handling errors 323

Exception listener 323

Using Secure Sockets Layer (SSL) 323

SSL administrative properties 324

Chapter 11. Writing WebSphere MQ JMS

publish/subscribe applications 327

Introduction 327

Getting started with WebSphere MQ JMS and

publish/subscribe 327

Choosing a broker 327

Setting up the broker to run WebSphere MQ

JMS 328

Writing a simple publish/subscribe application

connecting through WebSphere MQ 329

Import required packages 331

Obtain or create JMS objects 331

Publish messages 333

Receive subscriptions 333

Close down unwanted resources 333

TopicConnectionFactory administered objects 334

Topic administered objects 334

Using topics 335

Topic names 335

Creating topics at runtime 337

Subscriber options 338

Creating non-durable subscribers 338

Creating durable subscribers 338

Using message selectors 338

Suppressing local publications 339

Combining the subscriber options 339

Configuring the base subscriber queue 339

Subscription stores 341

Solving publish/subscribe problems 343

Incomplete publish/subscribe close down . . . 343

Subscriber cleanup utility 344

Manual cleanup 346

Cleanup from within a program 347

Handling broker reports 347

Other considerations 348

Chapter 12. Writing WebSphere MQ JMS 1.1

applications 349

The JMS 1.1 model 349

Building a connection 350

Retrieving a connection factory from JNDI . . 350

Creating a connection factory at runtime . . . 350

Using a connection factory to create a

connection 351

Starting a connection 351

Using a client channel definition table 351

Specifying a range of ports for client

connections 353

Channel compression 354

Obtaining a session 355

Destinations 355

Sending a message 357

Message types 358

Receiving a message 358

Creating durable topic subscribers 359

Message selectors 360

Suppressing local publications 361

Configuring the consumer queue 361

Subscription stores 363

JMS persistent messages 365

Asynchronous delivery 366

Consumer cleanup utility for the publish/subscribe

domain 367

Manual cleanup 369

Cleanup from within a program 370

Closing down 370

Java Virtual Machine hangs at shutdown . . . 370

Handling errors 370

Exception listener 371

Handling broker reports 371

Other considerations 372

Using channel exits 372

Using Secure Sockets Layer (SSL) 373

SSL administrative properties 374

Chapter 13. JMS messages 379

Message selectors 379

Mapping JMS messages onto WebSphere MQ

messages 382

The MQRFH2 header 384

JMS fields and properties with corresponding

MQMD fields 387

Mapping JMS fields onto WebSphere MQ fields

(outgoing messages) 389

Mapping WebSphere MQ fields onto JMS fields

(incoming messages) 394

Mapping JMS to a native WebSphere MQ

application 395

© Copyright IBM Corp. 1997, 2007 311

Message body 396

Chapter 14. WebSphere MQ JMS Application

Server Facilities 399

ASF classes and functions 399

ConnectionConsumer 399

Planning an application 400

Error handling 404

Application server sample code 406

MyServerSession.java 407

MyServerSessionPool.java 407

MessageListenerFactory.java 408

Examples of ASF use 409

Load1.java 409

CountingMessageListenerFactory.java 410

ASFClient1.java 411

Load2.java 412

LoggingMessageListenerFactory.java 412

ASFClient2.java 412

TopicLoad.java 413

ASFClient3.java 414

ASFClient4.java 415

ASFClient5.java 416

312 Using Java

Chapter 10. Writing WebSphere MQ JMS applications

This chapter provides information to help with writing WebSphere MQ JMS

applications. It gives a brief introduction to the JMS model, and detailed

information on programming some common tasks that application programs are

likely to need to perform.

The JMS model

JMS defines a generic view of a message passing service. The generic JMS model is

based around the following interfaces that are defined in Sun’s javax.jms package:

Connection

Provides access to the underlying transport, and is used to create Sessions.

Session

Provides a context for producing and consuming messages, including the

methods used to create MessageProducers and MessageConsumers.

MessageProducer

Used to send messages.

MessageConsumer

Used to receive messages.

A Connection is thread safe, but Sessions, MessageProducers, and

MessageConsumers are not. The recommended strategy is to use one Session per

application thread.

In WebSphere MQ terms:

Connection

Provides a scope for temporary queues. Also, it provides a place to hold

the parameters that control how to connect to WebSphere MQ. Examples of

these parameters are the name of the queue manager, and the name of the

remote host if you use the WebSphere MQ Java client connectivity.

Session

Contains an HCONN and therefore defines a transactional scope.

MessageProducer and MessageConsumer

Contain an HOBJ that defines a particular queue for writing to or reading

from.

Note that normal WebSphere MQ rules apply:

v Only a single operation can be in progress per HCONN at any given time.

Therefore, the MessageProducers or MessageConsumers associated with a

Session cannot be called concurrently. This is consistent with the JMS restriction

of a single thread per Session.

v PUTs can use remote queues, but GETs can only be applied to queues on the

local queue manager.

The generic JMS interfaces are subclassed into more specific versions for

point-to-point and publish/subscribe behavior.

The point-to-point versions are:

© Copyright IBM Corp. 1997, 2007 313

v QueueConnection

v QueueSession

v QueueSender

v QueueReceiver

When using JMS, always write application programs that use only references to the

interfaces in javax.jms. All vendor-specific information is encapsulated in

implementations of:

v QueueConnectionFactory

v TopicConnectionFactory

v Queue

v Topic

These are known as administered objects, that is, objects that can be built using a

vendor-supplied administration tool and stored in a JNDI namespace. A JMS

application can retrieve these objects from the namespace and use them without

needing to know which vendor provided the implementation.

Building a connection

Connections are not created directly, but are built using a connection factory.

Factory objects can be stored in a JNDI namespace, insulating the JMS application

from provider-specific information. Details of how to create and store factory

objects are in Chapter 5, “Using the WebSphere MQ JMS administration tool,” on

page 35.

If you do not have a JNDI namespace available, see “Creating factories at runtime”

on page 315.

Retrieving the factory from JNDI

To retrieve an object from a JNDI namespace, set up an initial context, as shown in

this fragment taken from the IVTRun sample file:

import javax.jms.*;

import javax.naming.*;

import javax.naming.directory.*;

 .

 .

 .

 java.util.Hashtable environment = new java.util.Hashtable();

 environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);

 environment.put(Context.PROVIDER_URL, url);

 Context ctx = new InitialDirContext(environment);

where:

icf defines a factory class for the initial context

url defines a context specific URL

For more details about JNDI usage, see Sun’s JNDI documentation.

Note: Some combinations of the JNDI packages and LDAP service providers can

result in an LDAP error 84. To resolve the problem, insert the following line

before the call to InitialDirContext.

environment.put(Context.REFERRAL, "throw");

The JMS model

314 Using Java

Once an initial context is obtained, objects are retrieved from the namespace by

using the lookup() method. The following code retrieves a

QueueConnectionFactory named ivtQCF from an LDAP-based namespace:

QueueConnectionFactory factory;

factory = (QueueConnectionFactory)ctx.lookup("cn=ivtQCF");

Using the factory to create a connection

The createQueueConnection() method on the factory object is used to create a

Connection, as shown in the following code:

QueueConnection connection;

connection = factory.createQueueConnection();

Creating factories at runtime

If a JNDI namespace is not available, it is possible to create factory objects at

runtime. However, using this method reduces the portability of the JMS application

because it requires references to WebSphere MQ specific classes.

The following code creates a QueueConnectionFactory with all default settings:

factory = new com.ibm.mq.jms.MQQueueConnectionFactory();

(You can omit the com.ibm.mq.jms. prefix if you import the com.ibm.mq.jms

package instead.)

A connection created from the above factory uses the Java bindings to connect to

the default queue manager on the local machine. The set methods described in

“MQConnectionFactory” on page 478 can be used to customize the factory with

WebSphere MQ specific information.

The only way to create a TopicConnectionFactory object at runtime is to construct

it using the MQTopicConnectionFactory constructor. For example:

MQTopicConnectionFactory fact = new MQTopicConnectionFactory();

This creates a default TopicConnectionFactory object with the bindings

transportType and all other default settings.

It is possible to change the transportType for the TopicConnectionFactory using its

setTransportType() method. For example:

fact.setTransportType(JMSC.MQJMS_TP_BINDINGS_MQ); // Bindings mode

fact.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP); // Client mode

fact.setTransportType(JMSC.MQJMS_TP_DIRECT_TCPIP); // Direct TCP/IP mode

The full JMS TopicConnectionFactory interface has been implemented. Refer to

“MQTopicConnectionFactory” on page 547 for more details. Note that certain

combinations of property settings are not valid for TopicConnectionFactory objects.

See “Properties” on page 42 for more details.

Starting the connection

The JMS specification defines that connections should be created in the stopped

state. Until the connection starts, MessageConsumers that are associated with the

connection cannot receive any messages. To start the connection, issue the

following command:

connection.start();

Building a connection

Chapter 10. Writing WebSphere MQ JMS applications 315

Choosing client or bindings transport

WebSphere MQ JMS can communicate with WebSphere MQ using either client or

bindings transport. (However, client transport is not supported on z/OS.) If you

use the Java bindings, the JMS application and the WebSphere MQ queue manager

must be located on the same machine. If you use the client, the queue manager can

be on a different machine from the application.

The contents of the connection factory object determine which transport to use.

Chapter 5, “Using the WebSphere MQ JMS administration tool,” on page 35

describes how to define a factory object for use with client or bindings transport.

The following code fragment illustrates how you can define the transport within

an application:

String HOSTNAME = "machine1";

String QMGRNAME = "machine1.QM1";

String CHANNEL = "SYSTEM.DEF.SVRCONN";

factory = new MQQueueConnectionFactory();

factory.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP);

factory.setQueueManager(QMGRNAME);

factory.setHostName(HOSTNAME);

factory.setChannel(CHANNEL);

When used in client mode, WebSphere MQ JMS does not access information stored

in a qm.ini file, or the equivalent information stored in the Windows Registry.

Entries in a qm.ini file, such as the KeepAlive entry, are therefore ignored.

Specifying a range of ports for client connections

When a WebSphere MQ JMS application attempts to connect to a WebSphere MQ

queue manager in client mode, a firewall might allow only those connections that

originate from specified ports or a range of ports. In this situation, you can use the

LOCALADDRESS property of a QueueConnectionFactory or

TopicConnectionFactory object to specify a port, or a range of ports, that the

application can bind to.

You can set the LOCALADDRESS property by using the WebSphere MQ JMS

administration tool, or by calling the setLocalAddress() method in an application.

Here is an example of setting the property from within an application:

mqQueueConnectionFactory.setLocalAddress("9.20.0.1(2000,3000)");

When the application connects to a queue manager subsequently, the application

binds to a local IP address and port number in the range 9.20.0.1(2000) to

9.20.0.1(3000).

In a system with more than one network interface, you can also use the

LOCALADDRESS property to specify which network interface must be used for a

connection.

For a direct connection to a broker, the LOCALADDRESS property is relevant only

when multicast is used. In this case, you can use the property to specify which

local network interface must be used for a connection, but the value of the

property must not contain a port number, or a range of port numbers.

Building a connection

316 Using Java

Connection errors might occur if you restrict the range of ports. If an error occurs,

a JMSException is thrown with an embedded MQException that contains the

WebSphere MQ reason code MQRC_Q_MGR_NOT_AVAILABLE and the following

message:

Socket connection attempt refused due to LOCAL_ADDRESS_PROPERTY restrictions

An error might occur if all the ports in the specified range are in use, or if the

specified IP address, host name, or port number is not valid (a negative port

number, for example).

Because the WebSphere MQ JMS client might create connections other than those

required by an application, always consider specifying a range of ports. In general,

every session created by an application requires one port and the WebSphere MQ

JMS client might require three or four additional ports. If a connection error does

occur, increase the range of ports.

Connection pooling, which is used by default in WebSphere MQ JMS, might have

an effect on the speed at which ports can be reused. As a result, a connection error

might occur while ports are being freed.

Obtaining a session

Once a connection is made, use the createQueueSession method on the

QueueConnection to obtain a session.

The method takes two parameters:

1. A boolean that determines whether the session is transacted or non-transacted.

2. A parameter that determines the acknowledge mode.

The simplest case is that of the non-transacted session with AUTO_ACKNOWLEDGE, as

shown in the following code fragment:

QueueSession session;

boolean transacted = false;

session = connection.createQueueSession(transacted,

 Session.AUTO_ACKNOWLEDGE);

Note: A connection is thread safe, but sessions (and objects that are created from

them) are not. The recommended practice for multithreaded applications is

to use a separate session for each thread.

Sending a message

Messages are sent using a MessageProducer. For point-to-point this is a

QueueSender that is created using the createSender method on QueueSession. A

QueueSender is normally created for a specific queue, so that all messages sent

using that sender are sent to the same destination. The destination is specified

using a Queue object. Queue objects can be either created at runtime, or built and

stored in a JNDI namespace.

Queue objects are retrieved from JNDI in the following way:

Queue ioQueue;

ioQueue = (Queue)ctx.lookup(qLookup);

WebSphere MQ JMS provides an implementation of Queue in

com.ibm.mq.jms.MQQueue. It contains properties that control the details of

Building a connection

Chapter 10. Writing WebSphere MQ JMS applications 317

WebSphere MQ specific behavior, but in many cases it is possible to use the default

values. JMS defines a standard way to specify the destination that minimizes the

WebSphere MQ specific code in the application. This mechanism uses the

QueueSession.createQueue method, which takes a string parameter describing the

destination. The string itself is still in a vendor-specific format, but this is a more

flexible approach than directly referring to the vendor classes.

WebSphere MQ JMS accepts two forms for the string parameter of createQueue().

v The first is the name of the WebSphere MQ queue, as illustrated in the following

fragment taken from the IVTRun program in the samples directory:

public static final String QUEUE = "SYSTEM.DEFAULT.LOCAL.QUEUE" ;

 .

 .

 .

 ioQueue = session.createQueue(QUEUE);

v The second, and more powerful, form is based on uniform resource identifiers

(URIs). This form allows you to specify remote queues (queues on a queue

manager other than the one to which you are connected). It also allows you to

set the other properties contained in a com.ibm.mq.jms.MQQueue object.

The URI for a queue begins with the sequence queue://, followed by the name

of the queue manager on which the queue resides. This is followed by a further

/, the name of the queue, and optionally, a list of name-value pairs that set the

remaining Queue properties. For example, the URI equivalent of the previous

example is:

ioQueue = session.createQueue("queue:///SYSTEM.DEFAULT.LOCAL.QUEUE");

The name of the queue manager is omitted. This is interpreted as the queue

manager to which the owning QueueConnection is connected at the time when

the Queue object is used.

Note: When sending a message to a cluster, leave the Queue Manager field in the

JMS Queue object blank. This enables an MQOPEN to be performed in

BIND_NOT_FIXED mode, which allows the queue manager to be

determined. Otherwise an exception is returned reporting that the queue

object cannot be found. This applies when using JNDI or defining queues at

runtime.

The following example connects to queue Q1 on queue manager HOST1.QM1, and

causes all messages to be sent as non-persistent and priority 5:

ioQueue = session.createQueue("queue://HOST1.QM1/Q1?persistence=1&priority=5");

The following is an example of creating a topic URI:

session.createTopic("topic://Sport/Football/Results?multicast=7");

Table 14 lists the names that can be used in the name-value part of the URI. A

disadvantage of this format is that it does not support symbolic names for the

values, so where appropriate, the table also indicates special values, which might

change. (See “Setting properties with the set method” on page 319 for an

alternative way of setting properties.)

 Table 14. Property names for queue and topic URIs

Property Description Values

CCSID Character set of the destination integers - valid values listed in

base WebSphere MQ

documentation

Sending a message

318 Using Java

Table 14. Property names for queue and topic URIs (continued)

Property Description Values

encoding How to represent numeric fields An integer value as described in

the base WebSphere MQ

documentation

expiry Lifetime of the message in

milliseconds

0 for unlimited, positive integers

for timeout (ms)

multicast Sets multicast mode for direct

connections

-1=ASCF, 0=DISABLED, 3=NOTR,

5=RELIABLE, 7=ENABLED

persistence Whether the message should be

hardened to disk

1=non-persistent, 2=persistent,

-1=QDEF, -2=APP

priority Priority of the message 0 through 9, -1=QDEF, -2=APP

targetClient Whether the receiving application

is JMS compliant

0=JMS, 1=MQ

The special values are:

QDEF Determine the property from the configuration of the WebSphere MQ queue.

APP The JMS application can control this property.

Once the Queue object is obtained (either using createQueue as above or from

JNDI), it must be passed into the createSender method to create a QueueSender:

QueueSender queueSender = session.createSender(ioQueue);

The resulting queueSender object is used to send messages by using the send

method:

queueSender.send(outMessage);

Note: If an application sends a message within a transaction, the message is not

delivered to its destination until the transaction is committed. This means

that an application cannot send a message and receive a reply to the

message within the same transaction.

Setting properties with the set method

You can set Queue properties by first creating an instance of

com.ibm.mq.jms.MQQueue using the default constructor. Then you can fill in the

required values by using public set methods. This method means that you can use

symbolic names for the property values. However, because these values are

vendor-specific, and are embedded in the code, the applications become less

portable.

The following code fragment shows the setting of a queue property with a set

method.

com.ibm.mq.jms.MQQueue q1 = new com.ibm.mq.jms.MQQueue();

 q1.setBaseQueueManagerName("HOST1.QM1");

 q1.setBaseQueueName("Q1");

 q1.setPersistence(DeliveryMode.NON_PERSISTENT);

 q1.setPriority(5);

Table 15 on page 320 shows the symbolic property values that are supplied with

WebSphere MQ JMS for use with the set methods.

Sending a message

Chapter 10. Writing WebSphere MQ JMS applications 319

|
|
|
|

Table 15. Symbolic values for queue properties

Property Admin tool

keyword

Values

expiry UNLIM

APP

JMSC.MQJMS_EXP_UNLIMITED

JMSC.MQJMS_EXP_APP

priority APP

QDEF

JMSC.MQJMS_PRI_APP

JMSC.MQJMS_PRI_QDEF

persistence APP

QDEF

PERS

NON

JMSC.MQJMS_PER_APP

JMSC.MQJMS_PER_QDEF

JMSC.MQJMS_PER_PER

JMSC.MQJMS_PER_NON

targetClient JMS

MQ

JMSC.MQJMS_CLIENT_JMS_COMPLIANT

JMSC.MQJMS_CLIENT_NONJMS_MQ

encoding Integer(N)

Integer(R)

Decimal(N)

Decimal(R)

Float(N)

Float(R)

Native

JMSC.MQJMS_ENCODING_INTEGER_NORMAL

JMSC.MQJMS_ENCODING_INTEGER_REVERSED

JMSC.MQJMS_ENCODING_DECIMAL_NORMAL

JMSC.MQJMS_ENCODING_DECIMAL_REVERSED

JMSC.MQJMS_ENCODING_FLOAT_IEEE_NORMAL

JMSC.MQJMS_ENCODING_FLOAT_IEEE_REVERSED

JMSC.MQJMS_ENCODING_NATIVE

multicast ASCF

DISABLED

NOTR

RELIABLE

ENABLED

JMSC.MQJMS_MULTICAST_AS_CF

JMSC.MQJMS_MULTICAST_DISABLED

JMSC.MQJMS_MULTICAST_NOT_RELIABLE

JMSC.MQJMS_MULTICAST_RELIABLE

JMSC.MQJMS_MULTICAST_ENABLED

See “The ENCODING property” on page 58 for a discussion of encoding.

Message types

JMS provides several message types, each of which embodies some knowledge of

its content. To avoid referring to the vendor-specific class names for the message

types, methods are provided on the Session object for message creation.

In the sample program, a text message is created in the following manner:

System.out.println("Creating a TextMessage");

TextMessage outMessage = session.createTextMessage();

System.out.println("Adding Text");

outMessage.setText(outString);

The message types that can be used are:

v BytesMessage

v MapMessage

v ObjectMessage

v StreamMessage

v TextMessage

Details of these types are in Chapter 15, “Package com.ibm.jms,” on page 421.

Sending a message

320 Using Java

Receiving a message

Messages are received using a QueueReceiver. This is created from a Session by

using the createReceiver() method. This method takes a Queue parameter that

defines from where the messages are received. See “Sending a message” on page

317 for details of how to create a Queue object.

The sample program creates a receiver and reads back the test message with the

following code:

QueueReceiver queueReceiver = session.createReceiver(ioQueue);

Message inMessage = queueReceiver.receive(1000);

The parameter in the receive call is a timeout in milliseconds. This parameter

defines how long the method should wait if there is no message available

immediately. You can omit this parameter, in which case, the call blocks

indefinitely. If you do not want any delay, use the receiveNoWait() method.

The receive methods return a message of the appropriate type. For example, if a

TextMessage is put on a queue, when the message is received the object that is

returned is an instance of TextMessage.

To extract the content from the body of the message, it is necessary to cast from

the generic Message class (which is the declared return type of the receive

methods) to the more specific subclass, such as TextMessage. If the received

message type is not known, you can use the instanceof operator to determine

which type it is. It is good practice always to test the message class before casting,

so that unexpected errors can be handled gracefully.

The following code illustrates the use of instanceof, and extraction of the content

from a TextMessage:

if (inMessage instanceof TextMessage) {

 String replyString = ((TextMessage) inMessage).getText();

 .

 .

 .

} else {

 // Print error message if Message was not a TextMessage.

 System.out.println("Reply message was not a TextMessage");

}

Note: If an application sends a message within a transaction, the message is not

delivered to its destination until the transaction is committed. This means

that an application cannot send a message and receive a reply to the

message within the same transaction.

Message selectors

JMS provides a mechanism to select a subset of the messages on a queue so that

this subset is returned by a receive call. When creating a QueueReceiver, you can

provide a string that contains an SQL (Structured Query Language) expression to

determine which messages to retrieve. The selector can refer to fields in the JMS

message header as well as fields in the message properties (these are effectively

application-defined header fields). Details of the header field names, as well as the

syntax for the SQL selector, are in Chapter 13, “JMS messages,” on page 379.

The following example shows how to select for a user-defined property named

myProp:

Receiving a message

Chapter 10. Writing WebSphere MQ JMS applications 321

|
|
|
|

queueReceiver = session.createReceiver(ioQueue, "myProp = ’blue’");

Note: The JMS specification does not permit the selector associated with a receiver

to be changed. Once a receiver is created, the selector is fixed for the lifetime

of that receiver. This means that, if you require different selectors, you must

create new receivers.

Asynchronous delivery

An alternative to making calls to QueueReceiver.receive() is to register a method

that is called automatically when a suitable message is available. The following

fragment illustrates the mechanism:

import javax.jms.*;

public class MyClass implements MessageListener

{

 // The method that will be called by JMS when a message

 // is available.

 public void onMessage(Message message)

 {

 System.out.println("message is "+message);

 // application specific processing here

 .

 .

 .

 }

}

 .

 .

 .

 // In Main program (possibly of some other class)

 MyClass listener = new MyClass();

 queueReceiver.setMessageListener(listener);

 // main program can now continue with other application specific

 // behavior.

Note: Use of asynchronous delivery with a QueueReceiver marks the entire

Session as asynchronous. It is an error to make an explicit call to the receive

methods of a QueueReceiver that is associated with a Session that is using

asynchronous delivery.

Closing down

Garbage collection alone cannot release all WebSphere MQ resources in a timely

manner, especially if the application needs to create many short-lived JMS objects

at the Session level or lower. It is therefore important to call the close() methods

of the various classes (QueueConnection, QueueSession, QueueSender, and

QueueReceiver) when the resources are no longer required.

Java Virtual Machine hangs at shutdown

If an application using WebSphere MQ JMS finishes without calling

Connection.close(), some JVMs appear to hang. If this problem occurs, either edit

the application to include a call to Connection.close(), or terminate the JVM using

the Ctrl-C keys.

Receiving a message

322 Using Java

Handling errors

Any runtime errors in a JMS application are reported by exceptions. The majority

of methods in JMS throw JMSExceptions to indicate errors. It is good programming

practice to catch these exceptions and display them on a suitable output.

A JMSException can contain a further exception embedded in it. For JMS, this can

be a valuable way to pass important detail from the underlying transport. In the

case of WebSphere MQ JMS, when WebSphere MQ raises an MQException, this

exception is usually included as the embedded exception in a JMSException.

The implementation of JMSException does not include the embedded exception in

the output of its toString() method. Therefore, it is necessary to check explicitly

for an embedded exception and print it out, as shown in the following fragment:

try {

 .

 . code which may throw a JMSException

 .

} catch (JMSException je) {

 System.err.println("caught "+je);

 Exception e = je.getLinkedException();

 if (e != null) {

 System.err.println("linked exception: "+e);

 }

}

Exception listener

For asynchronous message delivery, the application code cannot catch exceptions

raised by failures to receive messages. This is because the application code does

not make explicit calls to receive() methods. To cope with this situation, it is

possible to register an ExceptionListener, which is an instance of a class that

implements the onException() method. When a serious error occurs, this method

is called with the JMSException passed as its only parameter. Further details are in

Sun’s JMS documentation.

Using Secure Sockets Layer (SSL)

WebSphere MQ base Java client applications and WebSphere MQ JMS connections

using TRANSPORT(CLIENT) support Secure Sockets Layer (SSL) encryption. SSL

provides communication encryption, authentication, and message integrity. It is

typically used to secure communications between any two peers on the Internet or

within an intranet.

WebSphere MQ classes for Java uses Java Secure Socket Extension (JSSE) to handle

SSL encryption, and so requires a JSSE provider. J2SE v1.4 JVMs have a JSSE

provider built in. Details of how to manage and store certificates can vary from

provider to provider. For information about this, refer to your JSSE provider’s

documentation.

This section assumes that your JSSE provider is correctly installed and configured,

and that suitable certificates have been installed and made available to your JSSE

provider.

Handling errors

Chapter 10. Writing WebSphere MQ JMS applications 323

SSL administrative properties

This section introduces the SSL administrative properties, as follows:

v “SSLCIPHERSUITE object property”

v “SSLPEERNAME object property”

v “SSLCERTSTORES object property” on page 325

v “SSLSocketFactory object property” on page 326

SSLCIPHERSUITE object property

To enable SSL encryption on a ConnectionFactory, use JMSAdmin to set the

SSLCIPHERSUITE property to a CipherSuite supported by your JSSE provider.

This must match the CipherSpec set on the target channel. However, CipherSuites

are distinct from CipherSpecs and so have different names. Appendix D, “SSL

CipherSpecs and CipherSuites,” on page 645 contains a table mapping the

CipherSpecs supported by WebSphere MQ to their equivalent CipherSuites as

known to JSSE. Additionally, the named CipherSuite must be supported by your

JSSE provider. For more information about CipherSpecs and CipherSuites with

WebSphere MQ, see the WebSphere MQ Security book.

For example, to set a QueueConnectionFactory to connect to an SSL-enabled

SVRCONN channel using a CipherSpec of RC4_MD5_EXPORT, issue the following

command to JMSAdmin:

ALTER QCF(my.qcf) SSLCIPHERSUITE(SSL_RSA_EXPORT_WITH_RC4_40_MD5)

This can also be set from a program, using the setSSLCipherSuite() method on

MQConnectionFactory.

For convenience, if a CipherSpec is specified on the SSLCIPHERSUITE property,

JMSAdmin attempts to map the CipherSpec to an appropriate CipherSuite and

issues a warning. This attempt to map is not made if the property is specified by a

program.

SSLPEERNAME object property

A JMS application can ensure that it has connected to the correct queue manager,

by specifying a distinguished name (DN) pattern. The connection succeeds only if

the queue manager presents a DN that matches the pattern. For more details of the

format of this pattern, refer to WebSphere MQ Security or the WebSphere MQ Script

(MQSC) Command Reference.

The DN is set using the SSLPEERNAME property of ConnectionFactory. For

example, the following JMSAdmin command sets the ConnectionFactory to expect

the queue manager to identify itself with a Common Name beginning QMGR. with

at least two Organizational Unit names, the first of which must be IBM and the

second WEBSPHERE:

ALTER QCF(my.qcf) SSLPEERNAME(CN=QMGR.*, OU=IBM, OU=WEBSPHERE)

Checking is case-insensitive, and semicolons can be used in place of the commas.

This can also be set from a program, using the setSSLPeerName() method on

MQConnectionFactory. If this property is not set, no checking is performed on the

Distinguished Name supplied by the queue manager. This property is ignored if

no CipherSuite is set.

Using SSL

324 Using Java

SSLCERTSTORES object property

It is common to use a certificate revocation list (CRL) to manage revocation of

certificates that have become untrusted. These are typically hosted on LDAP

servers; JMS allows an LDAP server to be specified for CRL checking under Java 2

v1.4 or later. The following JMSAdmin example directs JMS to use a CRL hosted

on an LDAP server named crl1.ibm.com:

ALTER QCF(my.qcf) SSLCRL(ldap://crl1.ibm.com)

Note: To use a CertStore successfully with a CRL hosted on an LDAP server, make

sure that your Java Software Development Kit (SDK) is compatible with the

CRL. Some SDKs require that the CRL conforms to RFC 2587, which defines

a schema for LDAP v2. Most LDAP v3 servers use RFC 2256 instead.

If your LDAP server is not running on the default port of 389, the port can be

specified by appending a colon and the port number to the host name. If the

certificate presented by the queue manager is present in the CRL hosted on

crl1.ibm.com, the connection does not complete. To avoid single-point-of-failure,

JMS allows multiple LDAP servers to be supplied, by supplying a space-delimited

list of LDAP servers. For example:

ALTER QCF(my.qcf) SSLCRL(ldap://crl1.ibm.com ldap://crl2.ibm.com)

When multiple LDAP servers are specified, JMS tries each one in turn until it finds

a server with which it can successfully verify the queue manager’s certificate. Each

server must contain identical information.

A string of this format can be supplied by a program on the

MQConnectionFactory.setSSLCertStores() method. Alternatively, the application can

create one or more java.security.cert.CertStore objects, place these in a suitable

Collection object, and supply this Collection to the setSSLCertStores() method. In

this way, the application can customize CRL checking. Refer to your JSSE

documentation for details on constructing and using CertStore objects.

The certificate presented by the queue manager when a connection is being set up

is validated as follows:

1. The first CertStore object in the Collection identified by sslCertStores is used to

identify a CRL server.

2. An attempt is made to contact the CRL server.

3. If the attempt is successful, the server is searched for a match for the certificate.

a. If the certificate is found to be revoked, the search process is over and the

connection request fails with reason code

MQRC_SSL_CERTIFICATE_REVOKED.

b. If the certificate is not found, the search process is over and the connection

is allowed to proceed.
4. If the attempt to contact the server is unsuccessful, the next CertStore object is

used to identify a CRL server and the process repeats from step 2.

If this was the last CertStore in the Collection, or if the Collection contains no

CertStore objects, the search process has failed and the connection request fails

with reason code MQRC_SSL_CERT_STORE_ERROR.

The Collection object determines the order in which CertStores are used.

If your application uses setSSLCertStores() to set a Collection of CertStore objects,

the MQConnectionFactory can no longer be bound into a JNDI namespace.

Using SSL

Chapter 10. Writing WebSphere MQ JMS applications 325

Attempting to do so causes an exception. If the sslCertStores property is not set, no

revocation checking is performed on the certificate provided by the queue

manager. This property is ignored if no CipherSuite is set.

SSLSocketFactory object property

You might want to customize other aspects of the SSL connection for an

application. For example, you might want to initialize cryptographic hardware or

change the keystore and truststore in use. To do this, the application must first

create a javax.net.ssl.SSLSocketFactory instance customized accordingly. Refer to

your JSSE documentation for information on how to do this, as the customizable

features vary from provider to provider. Once a suitable SSLSocketFactory has

been obtained, use the MQConnectionFactory.setSSLSocketFactory() method to

configure JMS to use the customized SSLSocketFactory.

If your application uses setSSLSocketFactory() to set a customized

SSLSocketFactory, the MQConnectionFactory can no longer be bound into a JNDI

namespace. Attempting to do so causes an exception. If this property is not set, the

default SSLSocketFactory is used; refer to your JSSE documentation for details on

the behavior of the default SSLSocketFactory. This property is ignored if no

CipherSuite is set.

Important: Do not assume that use of the SSL properties ensures security when

the ConnectionFactory is retrieved from a JNDI namespace that is not

itself secure. Specifically, the standard LDAP implementation of JNDI is

not secure; an attacker can imitate the LDAP server, misleading a JMS

application into connecting to the wrong server without noticing. With

suitable security arrangements in place, other implementations of JNDI

(such as the fscontext implementation) are secure.

Using SSL

326 Using Java

Chapter 11. Writing WebSphere MQ JMS publish/subscribe

applications

You can write applications with WebSphere MQ JMS using two programming

models:

v Point-to-point

v Publish/subscribe

This section considers publish/subscribe and how publish/subscribe messaging is

implemented in WebSphere MQ JMS.

Introduction

With publish/subscribe messaging, one message producer can send messages to

many message consumers at one time. The message producer need know nothing

about the consumers receiving its messages, it needs to know only about the

common destination. Similarly, the message consumers need to know only about

the common destination. This common destination is called a topic.

A message producer that sends messages to a topic is a publisher and a message

consumer that receives messages from a topic is a subscriber.

A message consumer receives messages on all topics to which it has subscribed. All

messages sent to a topic are forwarded to all the message consumers subscribed to

that topic at that time. Each consumer receives its own copy of each message.

JMS clients can establish durable subscriptions that allow consumers to disconnect

and later reconnect and collect messages published while they were disconnected.

The connection between messages issued by publishers and the subscribers is

made, in WebSphere MQ, by the publish/subscribe broker. The broker (sometimes

referred to as the message broker) has a record of all the subscribers registered to a

topic. When a message is published to a topic, the broker manages the forwarding

of that message to the topic’s subscribers.

To run a WebSphere MQ JMS publish/subscribe application, you must be able to

connect to a message broker.

Getting started with WebSphere MQ JMS and publish/subscribe

Before you can start developing publish/subscribe applications, you need to

choose the broker to use and set that broker up to run the WebSphere MQ JMS.

Choosing a broker

WebSphere MQ offers the following choice of brokers:

v WebSphere MQ Publish/Subscribe

v WebSphere MQ Integrator, Version 2 provides a broker that can be run in one of

two modes. Compatibility mode, which provides a broker of equivalent

functionality to the WebSphere MQ Publish/Subscribe broker; and native mode,

which provides additional functionality. WebSphere MQ JMS can connect to

© Copyright IBM Corp. 1997, 2007 327

WebSphere MQ Integrator in native mode with JMS Version 5.2.1 and later. With

earlier JMS versions, it can connect to WebSphere MQ Integrator in compatibility

mode only.

Note, however, that broker based subscription stores are not supported by

WebSphere MQ Integrator. For more information about subscription stores, see

“Subscription stores” on page 363.

v WebSphere MQ Event Broker, Version 2.1, WebSphere Business Integration Event

Broker, Version 5.0, and WebSphere Business Integration Message Broker, Version

5.0 each provide a broker that can be connected to in two different ways:

Using message queues and WebSphere MQ

With this connection, you can run the broker in either compatibility

mode or native mode.

Directly using a TCP/IP socket

With this connection, you can run the broker only in native mode. Also

there is no support for:

– Persistent messages

– Transacted messages

– Durable subscriptions

This has implications for the implementation of the JMS specification for

direct connections to a broker:

– Because there are no persistent messages, JMSDeliveryMode is always

NON_PERSISTENT, and JMSExpiration has no meaning for messages

received on direct connections.

– Because there are no transacted messages, JMSRedelivered has no

meaning for messages received on direct connections.

For specific information on each publish and subscribe interface, see Chapter 16,

“Package com.ibm.mq.jms,” on page 469.

Setting up the broker to run WebSphere MQ JMS

Broker setup depends on the broker you intend to use and how you intend to use

it. Each broker provides its own documentation describing installation and setup.

However, for convenience and because of WebSphere MQ JMS requirements, some

setup instructions are given here.

Connecting to your broker using WebSphere MQ

This section applies to a WebSphere MQ Publish/Subscribe broker or a broker of

WebSphere MQ Integrator. It also applies to a broker of WebSphere MQ Event

Broker, WebSphere Business Integration Event Broker, or WebSphere Business

Integration Message Broker if you choose to connect to the broker using

WebSphere MQ.

Each broker requires its own queue manager. Refer to the broker’s documentation

regarding installation and setup.

For the WebSphere MQ JMS publish/subscribe implementation to work correctly, a

number of system queues must be created on the queue manager on which the

broker is running. Create these message queues on each queue manager for each

broker you want to run WebSphere MQ JMS. WebSphere MQ JMS provides a script

that creates these queues (see Create the WebSphere MQ JMS system queues).

Run the script to create the system queues. If you are using the WebSphere MQ

Publish/Subscribe broker, your broker is now fully configured. To check that the

Getting started with publish/subscribe

328 Using Java

broker is correctly configured, run the publish/subscribe verification as described

in “Publish/subscribe verification without JNDI” on page 30.

If you are using a broker of WebSphere MQ Integrator, WebSphere MQ Event

Broker, WebSphere Business Integration Event Broker, or WebSphere Business

Integration Message Broker, configure a publish/subscribe message flow in the

broker for messages to be correctly routed. The method for creating the required

message flow is similar in both cases. Refer to Appendix C, “Connecting to other

products,” on page 639 for details.

Connecting to your broker directly

This is possible only when you use the broker provided in WebSphere MQ Event

Broker, WebSphere Business Integration Event Broker, or WebSphere Business

Integration Message Broker. Because the connection to this broker is made directly,

no system queues are required. However, you must set up a publish/subscribe

message flow in the broker for messages to be correctly routed. Refer to

Appendix C, “Connecting to other products,” on page 639 for details.

Writing a simple publish/subscribe application connecting through

WebSphere MQ

This section provides a walkthrough of a simple WebSphere MQ JMS application.

Here is the complete example. Individual sections are discussed after.

// ===

//

// Licensed Materials - Property of IBM

//

// 5724-H27, 5655-L82, 5724-L26

//

// (c) Copyright IBM Corp. 1995,2002,2005

//

// ===

//

// A TopicConnectionFactory object is retrieved from LDAP; this is used to

// create a TopicConnection. The TopicConnection is used to create a

// TopicSession, which creates two publishers and two subscribers. Both

// publishers subscribe to a topic; both subscribers then receive.

//

// @(#) jms/samples/PubSubSample.java, jms, j000 1.1 04/12/03 14:31:41

import java.util.Hashtable;

import javax.jms.*;

import javax.naming.*;

import javax.naming.directory.InitialDirContext;

public class PubSubSample {

 // To use LDAP the Initial Context Factory and the URL need to be specified

 // Change these to suit your particular installatoin

 static String icf = "com.sun.jndi.ldap.LdapCtxFactory";

 static String url = "ldap://edradour.hursley.ibm.com/cn=JMSData,dc=ibm,dc=uk";

 static String tcfLookup = "cn=ivtTCF"; // TopicConnectionFactory (TCF) lookup

 private static String tLookup = "cn=ivtT"; // topic lookup

 // Pub/Sub objects used by this program

 private static TopicConnectionFactory fact = null;

 private static Topic topic = null;

Getting started with publish/subscribe

Chapter 11. Writing WebSphere MQ JMS publish/subscribe applications 329

public static void main(String args[]) {

 // Initialise JNDI properties

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY, icf);

 env.put(Context.PROVIDER_URL, url);

 env.put(Context.REFERRAL, "throw");

 Context ctx = null;

 try {

 System.out.print("Initialising JNDI... ");

 ctx = new InitialDirContext(env);

 System.out.println("Done!");

 } catch (NamingException nx) {

 System.out.println("ERROR: " + nx);

 System.exit(-1);

 }

 // Lookup TCF

 try {

 System.out.print("Obtaining TCF from JNDI... ");

 fact = (TopicConnectionFactory) ctx.lookup(tcfLookup);

 System.out.println("Done!");

 } catch (NamingException nx) {

 System.out.println("ERROR: " + nx);

 System.exit(-1);

 }

 // Lookup Topic

 try {

 System.out.print("Obtaining topic T from JNDI... ");

 topic = (Topic) ctx.lookup(tLookup);

 System.out.println("Done!");

 } catch (NamingException nx) {

 System.out.println("ERROR: " + nx);

 System.exit(-1);

 }

 try {

 ctx.close();

 } catch (NamingException nx) {

 // Just ignore an exception on closing the context

 }

 try {

 // Create connection

 TopicConnection conn = fact.createTopicConnection();

 // Start connection

 conn.start();

 // Session

 TopicSession sess = conn.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

 // Create a topic dynamically

 Topic t = sess.createTopic("myTopic");

 // Publisher

 TopicPublisher pub = sess.createPublisher(t);

 // Subscriber

 TopicSubscriber sub = sess.createSubscriber(t);

 // Publisher

 TopicPublisher pubA = sess.createPublisher(topic);

 // Subscriber

 TopicSubscriber subA = sess.createSubscriber(topic);

 // Publish "Hello World"

 TextMessage hello = sess.createTextMessage();

 hello.setText("Hello World");

 pub.publish(hello);

Writing a simple publish/subscribe application

330 Using Java

hello.setText("Hello World 2");

 pubA.publish(hello);

 // Receive message

 TextMessage m = (TextMessage) sub.receive();

 System.out.println("Message Text = " + m.getText());

 m = (TextMessage) subA.receive();

 System.out.println("Message Text = " + m.getText());

 // Close publishers and subscribers

 pub.close();

 pubA.close();

 sub.close();

 subA.close();

 // Close session and connection

 sess.close();

 conn.close();

 System.exit(0);

 } catch (JMSException je) {

 System.out.println("ERROR: " + je);

 System.out.println("LinkedException: " + je.getLinkedException());

 System.exit(-1);

 }

 }

}

Import required packages

The import statements for an application using WebSphere MQ classes for Java

Message Service must include at least the following:

import javax.jms.*; // JMS interfaces

import javax.naming.*; // Used for JNDI lookup of

import javax.naming.directory.*; // administered objects

Obtain or create JMS objects

The next step is to obtain or create a number of JMS objects:

1. Obtain a TopicConnectionFactory

2. Create a TopicConnection

3. Create a TopicSession

4. Obtain a Topic from JNDI

5. Create TopicPublishers and TopicSubscribers

Many of these processes are similar to those that are used for point-to-point, as

shown in the following:

Obtain a TopicConnectionFactory

The preferred way to do this is to use JNDI lookup, to maintain portability

of the application code. The following code initializes a JNDI context:

String icf = "com.sun.jndi.ldap.LdapCtxFactory"; // initial context factory

String url = "ldap://server.company.com/o=company_us,c=us"; // url

// Initialise JNDI properties

Java.util.Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY, icf);

env.put(Context.PROVIDER_URL, url);

env.put(Context.REFERRAL, "throw");

Context ctx = null;

try {

 System.out.print("Initialising JNDI... ");

Writing a simple publish/subscribe application

Chapter 11. Writing WebSphere MQ JMS publish/subscribe applications 331

ctx = new InitialDirContext(env);

 System.out.println("Done!");

} catch (NamingException nx) {

 System.out.println("ERROR: " + nx);

 System.exit(-1);

}

Note: Change the icf and url variables to suit your installation and your

JNDI service provider.

The properties required by JNDI initialization are in a Hashtable, which is

passed to the InitialDirContext constructor. If this connection fails, an

exception is thrown to indicate that the administered objects required later

in the application are not available.

 Obtain a TopicConnectionFactory using a lookup key that the

administrator has defined:

// LOOKUP TCF

try {

 System.out.print("Obtaining TCF from JNDI... ");

 fact = (TopicConnectionFactory)ctx.lookup(tcfLookup);

 System.out.println("Done!");

} catch (NamingException nx) {

 System.out.println("ERROR: " + nx);

 System.exit(-1);

}

If a JNDI namespace is not available, you can create a

TopicConnectionFactory at runtime. You create a new

com.ibm.mq.jms.MQTopicConnectionFactory as described in “Creating

factories at runtime” on page 315.

Create a TopicConnection

This is created from the TopicConnectionFactory object. Connections are

always initialized in a stop state and must be started with the following

code:

// create connection

TopicConnection conn = fact.createTopicConnection();

//start connection

conn.start();

Create a TopicSession

This is created using the TopicConnection. This method takes two

parameters: one to signify whether the session is transacted, and one to

specify the acknowledgement mode:

TopicSession sess = conn.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

Obtain a Topic

This object can be obtained from JNDI, for use with TopicPublishers and

TopicSubscribers that are created later. The following code retrieves a

Topic:

Topic topic = null;

try {

 System.out.print("Obtaining topic T from JNDI... ");

 topic = (Topic)ctx.lookup(tLookup);

 System.out.println("Done!");

}

catch (NamingException nx) {

 System.out.println("ERROR: " + nx);

 System.exit(-1);

}

Writing a simple publish/subscribe application

332 Using Java

If a JNDI namespace is not available, you can create a Topic at runtime, as

described in “Creating topics at runtime” on page 337.

 The following code creates a Topic at runtime:

// topic

Topic t = sess.createTopic("myTopic");

Create consumers and producers of publications

Depending on the nature of the JMS client application that you write, a

subscriber, a publisher, or both must be created. Use the createPublisher

and createSubscriber methods as follows:

// publisher

TopicPublisher pub = sess.createPublisher(t);

// subscriber

TopicSubscriber sub = sess.createSubscriber(t);

// publisher

TopicPublisher pubA = sess.createPublisher(topic);

// subscriber

TopicSubscriber subA = sess.createSubscriber(topic);

Publish messages

The TopicPublisher object, pub, is used to publish messages, rather like a

QueueSender is used in the point-to-point domain. The following fragment creates

a TextMessage using the session, and then publishes the message:

// publish "hello world"

TextMessage hello = sess.createTextMessage();

hello.setText("Hello World");

pub.publish(hello);

hello.setText("Hello World 2");

pubA.publish(hello);

Receive subscriptions

Subscribers must be able to read the subscriptions that are delivered to them, as in

the following code:

// receive message

TextMessage m = (TextMessage) sub.receive();

System.out.println("Message Text = " + m.getText());

m = (TextMessage) subA.receive();

System.out.println("Message Text = " + m.getText());

This fragment of code performs a get-with-wait, which means that the receive call

blocks until a message is available. Alternative versions of the receive call are

available (such as receiveNoWait). For details, see “MQTopicSubscriber” on page

552.

Close down unwanted resources

It is important to free up all the resources used by the application when it

terminates. Use the close() method on objects that can be closed (publishers,

subscribers, sessions, and connections):

// close publishers and subscribers

pub.close();

pubA.close();

sub.close();

subA.close();

sess.close();

Writing a simple publish/subscribe application

Chapter 11. Writing WebSphere MQ JMS publish/subscribe applications 333

// close session and connection

sess.close();

conn.close();

TopicConnectionFactory administered objects

In the example, the TopicConnectionFactory object is obtained from JNDI name

space. The TopicConnectionFactory in this case is an administered object that has

been created and administered using the JMSAdmin tool. Use this method of

obtaining TopicConnectionFactory objects because it ensures code portability.

The TopicConnectionFactory in the example is testTCF in JMSAdmin. Create

testTCF in JMSAdmin before running the application. You must also create a Topic

in JMSAdmin; see “Topic administered objects.”

To create a TopicConnectionFactory object, invoke the JMSAdmin tool, as described

in “Invoking the administration tool” on page 35, and execute one of the following

commands, depending on the type of connection you want to make to the broker:

Bindings connection

InitCtx> def tcf(testTCF) transport(bind)

or, because this is the default transport type for TopicConnectionFactory

objects:

InitCtx> def tcf(testTCF)

This creates a TopicConnectionFactory with default settings for bindings

transport, connecting to the default queue manager.

Client connection

InitCtx> def tcf(testTCF) transport(client)

This creates a TopicConnectionFactory with default settings for the client

transport type, connecting to localhost, on port 1414, using channel

SYSTEM.DEF.SVRCONN.

Direct TCP/IP connection to a broker

InitCtx> def tcf(testTCF) transport(direct)

This creates a TopicConnectionFactory to make direct connections to a

broker, connecting to localhost on port 1506.

Topic administered objects

In the example, one of the Topic objects has been obtained from JNDI name space.

This Topic is an administered object that has been created and administered in the

JMSAdmin tool. Use this method of obtaining Topic objects because it ensures code

portability.

To run the example application above, create the Topic called testT in JMSAdmin

before running the application.

To create a Topic object, invoke the JMSAdmin tool, as described in “Invoking the

administration tool” on page 35, and execute one of the following commands,

depending on the type of connection you want to make to the broker:

Compatibility mode, or WebSphere MQ Publish/Subscribe

InitCtx> def t(testT) bver(V1) topic(test/topic)

Writing a simple publish/subscribe application

334 Using Java

Native mode, or direct connection to a broker

InitCtx> def t(testT) bver(V2) topic(test/topic)

Using topics

This section discusses the use of JMS Topic objects in WebSphere MQ classes for

Java Message Service applications.

Topic names

This section describes the use of topic names within WebSphere MQ classes for

Java Message Service.

Note: The JMS specification does not specify exact details about the use and

maintenance of topic hierarchies. Therefore, this area can vary from one

provider to the next.

Topic names in WebSphere MQ JMS are arranged in a tree-like hierarchy, an

example of which is shown in Figure 1.

In a topic name, levels in the tree are separated by the / character. This means that

the Signings node in Figure 1 is identified by the topic name:

Sport/Football/Spurs/Signings

A powerful feature of the topic system in WebSphere MQ classes for Java Message

Service is the use of wildcards. These allow subscribers to subscribe to more than

one topic at a time. Different brokers use different wildcard characters and

different rules for their substitution. Use the broker version property of the topic

(BROKERVER) to define which type of wildcards apply.

Note: The broker version of a topic must match the broker version of the topic

connection factory you are using.

Broker Version 1 wildcards

The * wildcard matches zero or more characters; the ? wildcard matches a

single character.

 If a subscriber subscribes to the topic represented by the following topic

name:

Sport/Football/*/Results

Sport

Spurs Arsenal

Rugby Football Tennis

Results Signings Results

Figure 1. WebSphere MQ classes for Java Message Service topic name hierarchy

Writing a simple publish/subscribe application

Chapter 11. Writing WebSphere MQ JMS publish/subscribe applications 335

it receives publications on topics including:

v Sport/Football/Spurs/Results

v Sport/Football/Arsenal/Results

 If the subscription topic is:

Sport/Football/Spurs/*

it receives publications on topics including:

v Sport/Football/Spurs/Results

v Sport/Football/Spurs/Signings

 If the subscription topic is:

Sport/Football/*

it receives publications on topics including:

v Sport/Football/Arsenal/Results

v Sport/Football/Spurs/Results

v Sport/Football/Spurs/Signings

Broker Version 2 wildcards

The # wildcard matches multiple levels in a topic; the + wildcard matches

a single level.

 These wildcards can be used only to stand for complete levels within a

topic; that is they can be preceded only by / or start-of-string, and they

can be followed only by / or end-of-string.

 If a subscriber subscribes to the topic represented by the following topic

name:

Sport/Football/+/Results

it receives publications on topics including:

v Sport/Football/Spurs/Results

v Sport/Football/Arsenal/Results

 If a subscriber subscribes to the topic represented by the following topic

name:

Sport/#/Results

it receives publications on topics including:

v Sport/Football/Spurs/Results

v Sport/Football/Arsenal/Results

 Although Sport/Football/Spur?/Results works with broker Version 1, there is no

equivalent for broker Version 2, which does not support single character

substitutions.

There is no need to administer the topic hierarchies that you use on the broker-side

of your system explicitly. When the first publisher or subscriber on a given topic

comes into existence, the broker automatically creates the state of the topics

currently being published on, and subscribed to.

Unicode characters are supported.

Using topics

336 Using Java

Note: A publisher cannot publish on a topic whose name contains wildcards.

Creating topics at runtime

There are four ways to create Topic objects at runtime:

1. Construct a topic using the one-argument MQTopic constructor

2. Construct a topic using the default MQTopic constructor, and then call the

setBaseTopicName(..) method

3. Use the session’s createTopic(..) method

4. Use the session’s createTemporaryTopic() method

Example 1: Using MQTopic(..)

This technique requires a reference to the WebSphere MQ implementation

of the JMS Topic interface, and therefore renders the code non-portable.

 The constructor takes one argument, which must be a uniform resource

identifier (URI). For WebSphere MQ classes for Java Message Service

Topics, this must be of the form:

topic://TopicName[?property=value[&property=value]*]

For further details on URIs and the permitted name-value pairs, see

“Sending a message” on page 317.

 The following code creates a topic for nonpersistent, priority 5 messages:

// Create a Topic using the one-argument MQTopic constructor

String tSpec = "Sport/Football/Spurs/Results?persistence=1&priority=5";

Topic rtTopic = new MQTopic("topic://" + tSpec);

Example 2: Using MQTopic(), then setBaseTopicName(..)

This technique uses the default MQTopic constructor, and therefore renders

the code non-portable.

 After the object is created, set the baseTopicName property using the

setBaseTopicName(..) method, passing in the required topic name.

Note: The topic name used here is the non-URI form, and cannot include

name-value pairs. Set these by using the set methods, as described

in “Setting properties with the set method” on page 319.

The following code uses this technique to create a topic:

// Create a Topic using the default MQTopic constructor

Topic rtTopic = new MQTopic();

// Set the object properties using the setter methods

((MQTopic)rtTopic).setBaseTopicName("Sport/Football/Spurs/Results");

((MQTopic)rtTopic).setPersistence(1);

((MQTopic)rtTopic).setPriority(5);

Example 3: Using session.createTopic(..)

You can also create a Topic object using the createTopic method of

TopicSession, which takes a topic URI as follows:

// Create a Topic using the session factory method

Topic rtTopic = session.createTopic("topic://Sport/Football/Spurs/Results");

Although the createTopic method is in the JMS specification, the format of

the string argument is vendor-specific. Therefore, using this technique

might make your code non-portable.

Using topics

Chapter 11. Writing WebSphere MQ JMS publish/subscribe applications 337

|
|

|
|

|

|

|

Example 4: Using session.createTemporaryTopic()

A TemporaryTopic is a Topic that can be consumed only by subscribers

that are created by the same TopicConnection. A TemporaryTopic is created

as follows:

// Create a TemporaryTopic using the session factory method

Topic rtTopic = session.createTemporaryTopic();

Subscriber options

There are a number of different ways to use JMS subscribers. This section describes

some examples of their use.

JMS provides two types of subscriber:

Non-durable subscribers

These subscribers receive messages on their chosen topic, only if the

messages are published while the subscriber is active.

Durable subscribers

These subscribers receive all the messages published on a topic, including

those that are published while the subscriber is inactive.

Creating non-durable subscribers

The subscriber created in Create consumers and producers of publications is

non-durable and is created with the following code:

// Create a subscriber, subscribing on the given topic

 TopicSubscriber sub = session.createSubscriber(topic);

Creating durable subscribers

Durable subscribers cannot be configured with a direct connection to a broker.

Creating a durable subscriber is similar to creating a non-durable subscriber, but

you must also provide a name that uniquely identifies the subscriber:

// Create a durable subscriber, supplying a uniquely-identifying name

TopicSubscriber sub = session.createDurableSubscriber(topic, "D_SUB_000001");

Non-durable subscribers automatically deregister themselves when their close()

method is called (or when they fall out of scope). However, if you want to

terminate a durable subscription, you must explicitly notify the system. To do this,

use the session’s unsubscribe() method and pass in the unique name that created

the subscriber:

// Unsubscribe the durable subscriber created above

session.unsubscribe("D_SUB_000001");

A durable subscriber is created at the queue manager specified in the

MQTopicConnectionFactory queue manager parameter. If there is a subsequent

attempt to create a durable subscriber with the same name at a different queue

manager, a new and completely independent durable subscriber is returned.

Using message selectors

You can use message selectors to filter out messages that do not satisfy given

criteria. For details about message selectors, see “Message selectors” on page 321.

Message selectors are associated with a subscriber as follows:

// Associate a message selector with a non-durable subscriber

String selector = "company = ’IBM’";

TopicSubscriber sub = session.createSubscriber(topic, selector, false);

Using topics

338 Using Java

|

You can control whether the JMS client or the broker performs message filtering by

setting the MessageSelection property on the TopicConnectionFactory. If the broker

is capable of performing message selection, it is generally preferable to let the

broker do it because it reduces the number of messages sent to your client.

However, if the broker is very heavily loaded, it might be preferable to let the

client perform message selection instead.

Suppressing local publications

You can create a subscriber that ignores publications that are published on the

subscriber’s own connection. Set the third parameter of the createSubscriber call

to true, as follows:

// Create a non-durable subscriber with the noLocal option set

TopicSubscriber sub = session.createSubscriber(topic, null, true);

Combining the subscriber options

You can combine the subscriber variations, so that you can create a durable

subscriber that applies a selector and ignores local publications. The following code

fragment shows the use of the combined options:

// Create a durable, noLocal subscriber with a selector applied

String selector = "company = ’IBM’";

TopicSubscriber sub = session.createDurableSubscriber(topic, "D_SUB_000001",

 selector, true);

Configuring the base subscriber queue

Subscriber queues cannot be configured for a direct connection to a broker.

There are two ways in which you can configure subscribers:

v Multiple queue approach

Each subscriber has an exclusive queue assigned to it, from which it retrieves all

its messages. JMS creates a new queue for each subscriber. This is the only

approach available with WebSphere MQ JMS V1.1.

v Shared queue approach

A subscriber uses a shared queue, from which it, and other subscribers, retrieve

their messages. This approach requires only one queue to serve multiple

subscribers. This is the default approach used with WebSphere MQ JMS.

You can choose which approach to use, and configure which queues to use.

In general, the shared queue approach gives a modest performance advantage. For

systems with a high throughput, there are also large architectural and

administrative advantages, because of the significant reduction in the number of

queues required.

In some situations, there are still good reasons for using the multiple queue

approach:

v The theoretical physical capacity for message storage is greater.

There is an upper limit to the number of messages that a WebSphere MQ queue

can hold and so, in the shared queue approach, the total number of messages for

all the subscribers that share the queue cannot exceed this limit. This issue is

more significant for durable subscribers, because the lifetime of a durable

subscriber is usually much longer than that of a non-durable subscriber.

Therefore, more messages might accumulate for a durable subscriber.

v External administration of subscription queues is easier.

Subscriber options

Chapter 11. Writing WebSphere MQ JMS publish/subscribe applications 339

For certain application types, administrators might want to monitor the state

and depth of particular subscriber queues. This task is much simpler when there

is one to one mapping between a subscriber and a queue.

Default configuration

The default configuration uses the following shared subscription queues:

v SYSTEM.JMS.ND.SUBSCRIBER.QUEUE for non-durable subscriptions

v SYSTEM.JMS.D.SUBSCRIBER.QUEUE for durable subscriptions

These are created for you when you run the MQJMS_PSQ.MQSC script.

If required, you can specify alternative physical queues. You can also change the

configuration to use the multiple queue approach.

Configuring non-durable subscribers

You can set the non-durable subscriber queue name property in either of the

following ways:

v Use the WebSphere MQ JMS administration tool (for JNDI retrieved objects) to

set the BROKERSUBQ property

v Use the setBrokerSubQueue() method in your program

For non-durable subscriptions, the queue name you provide should start with the

following characters:

v SYSTEM.JMS.ND.

To select a shared queue approach, specify an explicit queue name, where the

named queue is the one to use for the shared queue. The queue that you specify

must already physically exist before you create the subscription.

To select the multiple queue approach, specify a queue name that ends with the *

character. Subsequently, each subscriber that is created with this queue name

creates an appropriate dynamic queue, for exclusive use by that particular

subscriber. MQ JMS uses its own internal model queue to create such queues.

Therefore, with the multiple queue approach, all required queues are created

dynamically.

When you use the multiple queue approach, you cannot specify an explicit queue

name. However, you can specify the queue prefix. This enables you to create

different subscriber queue domains. For example, you could use:

v SYSTEM.JMS.ND.MYDOMAIN.*

The characters that precede the * character are used as the prefix, so that all

dynamic queues that are associated with this subscription have queue names that

start with SYSTEM.JMS.ND.MYDOMAIN.

Configuring durable subscribers

As discussed earlier, there might still be good reasons to use the multiple queue

approach for durable subscriptions. Durable subscriptions are likely to have a

longer life span, so it is possible that a large number of unretrieved messages

could accumulate on the queue.

Therefore, the durable subscriber queue name property is set in the Topic object

(that is, at a more manageable level than TopicConnectionFactory). This enables

you to specify a number of different subscriber queue names, without needing to

re-create multiple objects starting from the TopicConnectionFactory.

Subscriber options

340 Using Java

You can set the durable subscriber queue name in either of the following ways:

v Use the WebSphere MQ JMS administration tool (for JNDI retrieved objects) to

set the BROKERDURSUBQ property

v Use the setBrokerDurSubQueue() method in your program:

// Set the MQTopic durable subscriber queue name using

// the multi-queue approach

sportsTopic.setBrokerDurSubQueue("SYSTEM.JMS.D.FOOTBALL.*");

Once the Topic object is initialized, it is passed into the TopicSession

createDurableSubscriber() method to create the specified subscription:

// Create a durable subscriber using our earlier Topic

TopicSubscriber sub = new session.createDurableSubscriber

 (sportsTopic, "D_SUB_SPORT_001");

For durable subscriptions, the queue name you provide must start with the

following characters:

v SYSTEM.JMS.D.

To select a shared queue approach, specify an explicit queue name, where the

named queue is the one to use for the shared queue. The queue that you specify

must already physically exist before you create the subscription.

To select the multiple queue approach, specify a queue name that ends with the *

character. Subsequently, each subscriber that is created with this queue name

creates an appropriate dynamic queue, for exclusive use by that subscriber. MQ

JMS uses its own internal model queue to create such queues. Therefore, with the

multiple queue approach, all required queues are created dynamically.

When you use the multiple queue approach, you cannot specify an explicit queue

name. However, you can specify the queue prefix. This enables you to create

different subscriber queue domains. For example, you could use:

v SYSTEM.JMS.D.MYDOMAIN.*

The characters that precede the * character are used as the prefix, so that all

dynamic queues that are associated with this subscription have queue names that

start with SYSTEM.JMS.D.MYDOMAIN.

You cannot change the queue used by a durable subscriber. To do so, for example

to move from the multiple queue approach to the single queue approach, first

delete the old subscriber (using the unsubscribe() method) and create the

subscription again from new. This removes any unconsumed messages on the

durable subscription.

Subscription stores

There is no subscription store with a direct connection to a broker.

WebSphere MQ JMS maintains a persistent store of subscription information, used

to resume durable subscriptions and cleanup after failed non-durable subscribers.

This information can be managed by the publish/subscribe broker.

The choice of subscription store is based on the SUBSTORE property of the

TopicConnectionFactory. This takes one of three values: QUEUE, BROKER, or

MIGRATE.

Subscriber options

Chapter 11. Writing WebSphere MQ JMS publish/subscribe applications 341

SUBSTORE(QUEUE)

Subscription information is stored on SYSTEM.JMS.ADMIN.QUEUE and

SYSTEM.JMS.PS.STATUS.QUEUE on the local queue manager.

 WebSphere MQ JMS maintains an extra connection for a long-running

transaction used to detect failed subscribers. There is a connection to each

queue manager in use. In a busy system, this might cause the queue

manager logs to fill up, resulting in errors from both the queue manager

and its applications.

 If you experience these problems, the system administrator can add extra

log files or datasets to the queue manager. Alternatively, reduce the

STATREFRESHINT property on the TopicConnectionFactory. This causes

the long-running transaction to be refreshed more frequently, allowing the

logs to reset themselves.

 After a non-durable subscriber has failed:

v Information is left on the two SYSTEM.JMS queues, which allows a

later JMS application to clean up after the failed subscriber. See

“Subscriber cleanup utility” on page 344 for more information.

v Messages continue to be delivered to the subscriber until a later JMS

application is executed.

 SUBSTORE(QUEUE) is provided for compatibility with versions of

MQSeries JMS.

SUBSTORE(BROKER)

Subscription information is stored by the publish/subscribe broker used by

the application. This option is designed to provide improved resilience.

 When a non-durable subscriber fails, the subscription is deregistered from

the broker as soon as possible. The broker adds a response to this

deregistration onto the SYSTEM.JMS.REPORT.QUEUE, which is used to

clean up after the failed subscriber. With SUBSTORE(BROKER), a separate

cleanup thread is run regularly in the background of each JMS

publish/subscribe application.

 Cleanup is run once every 10 minutes by default, but you can change this

using the CLEANUPINT property on the TopicConnectionFactory. To

customize the actions performed by cleanup, use the CLEANUP property

on the TopicConnectionFactory.

 See “Subscriber cleanup utility” on page 344 for more information about

the different behaviors of cleanup with SUBSTORE(BROKER).

SUBSTORE(MIGRATE)

MIGRATE is the default value for SUBSTORE.

 This option dynamically selects the queue-based or broker-based

subscription store based on the levels of queue manager and

publish/subscribe broker installed. If both queue manager and broker are

capable of supporting SUBSTORE(BROKER), this behaves as

SUBSTORE(BROKER); otherwise it behaves as SUBSTORE(QUEUE).

Additionally, SUBSTORE(MIGRATE) transfers durable subscription

information from the queue-based subscription store to the broker-based

store.

 This provides an easy migration path from older versions of WebSphere

MQ JMS, WebSphere MQ, and publish/subscribe broker. This migration

occurs the first time the durable subscription is opened when both queue

Subscriber options

342 Using Java

manager and broker are capable of supporting the broker-based

subscription store. Only information relating to the subscription being

opened is migrated; information relating to other subscriptions is left in the

queue-based subscription store.

Migration and coexistence considerations

Except when SUBSTORE(MIGRATE) is used, the two subscription stores are

entirely independent.

A durable subscription is created in the store specified by the

TopicConnectionFactory. If there is a subsequent attempt to create a durable

subscriber with the same name and ClientID but with the other subscription store,

a new durable subscription is created.

When a connection uses SUBSTORE(MIGRATE), subscription information is

automatically transferred from the queue-based subscription store to the

broker-based subscription store when createDurableSubscriber() is called. If a

durable subscription with matching name and ClientID already exists in the

broker-based subscription store, this migration cannot complete and an exception is

thrown from createDurableSubscriber().

Once a subscription has been migrated, it is important not to access the

subscription from an application using an older version of WebSphere MQ JMS, or

an application running with SUBSTORE(QUEUE). This would create a subscription

in the queue-based subscription store, and prevent an application running with

SUBSTORE(MIGRATE) from using the subscription.

To recover from this situation, either use SUBSTORE(BROKER) from your

application or unsubscribe from the subscription with SUBSTORE(QUEUE).

Solving publish/subscribe problems

This section describes some problems that can occur when you develop JMS client

applications that use the publish/subscribe domain. It discusses problems that are

specific to the publish/subscribe domain. Refer to “Handling errors” on page 323

and “Solving problems” on page 33 for more general troubleshooting guidance.

Incomplete publish/subscribe close down

It is important that JMS client applications surrender all external resources when

they terminate. To do this, call the close() method on all objects that can be closed

once they are no longer required. For the publish/subscribe domain, these objects

are:

v TopicConnection

v TopicSession

v TopicPublisher

v TopicSubscriber

The WebSphere MQ classes for Java Message Service implementation eases this

task by using a cascading close. With this process, a call to close on a

TopicConnection results in calls to close on each of the TopicSessions it created.

This in turn results in calls to close on all TopicSubscribers and TopicPublishers the

sessions created.

Subscriber options

Chapter 11. Writing WebSphere MQ JMS publish/subscribe applications 343

To ensure the proper release of external resources, call connection.close() for each

of the connections that an application creates.

There are some circumstances where this close procedure might not complete.

These include:

v Loss of a WebSphere MQ client connection

v Unexpected application termination

In these circumstances, the close() is not called, and external resources remain

open on the terminated application’s behalf. The main consequences of this are:

Broker state inconsistency

The WebSphere MQ Message Broker might contain registration information

for subscribers and publishers that no longer exist. This means that the

broker might continue forwarding messages to subscribers that will never

receive them.

Subscriber messages and queues remain

Part of the subscriber deregistration procedure is the removal of subscriber

messages. If appropriate, the underlying WebSphere MQ queue that was

used to receive subscriptions is also removed. If normal closure has not

occurred, these messages and queues remain. If there is broker state

inconsistency, the queues continue to fill up with messages that will never

be read.

Additionally, if the broker resides on a queue manager other than the application’s

local queue manager, correct operation of WebSphere MQ JMS depends on the

communication channels between the two queue managers. If these channels fail

for any reason, problems such as the above can occur until the channels restart.

When diagnosing problems relating to channels, be careful not to lose WebSphere

MQ JMS control messages on the transmission queue.

Subscriber cleanup utility

To avoid the problems associated with non-graceful closure of subscriber objects,

WebSphere MQ JMS includes a subscriber cleanup utility that attempts to detect

any earlier WebSphere MQ JMS publish/subscribe problems that could have

resulted from other applications. This utility runs transparently in the background

and should not affect other WebSphere MQ JMS operations. If a large number of

problems are detected against a given queue manager, you might see some

performance degradation while resources are cleaned up.

Note: Close all subscriber objects gracefully whenever possible, to avoid a buildup

of subscriber problems.

The exact behavior of the utility depends on the subscription store in use:

Subscriber cleanup with SUBSTORE(QUEUE)

When using the queue-based subscription store, cleanup runs on a queue

manager when the first TopicConnection to use that physical queue

manager initializes.

 If all the TopicConnections on a given queue manager close, when the next

TopicConnection initializes for that queue manager, the utility runs again.

 The cleanup utility uses information found on the

SYSTEM.JMS.ADMIN.QUEUE and SYSTEM.JMS.PS.STATUS.QUEUE to

detect previously failed subscribers. If any are found, it cleans up

Solving publish/subscribe problems

344 Using Java

associated resources by deregistering the subscriber from the broker, and

cleaning up any unconsumed messages or temporary queues associated

with the subscription.

Subscriber cleanup with SUBSTORE(BROKER)

With the broker-based subscription store, cleanup runs regularly on a

background thread while there is an open TopicConnection to a particular

physical queue manager. One instance of the cleanup thread is created for

each physical queue manager to which a TopicConnection exists within the

JVM.

 The cleanup utility uses information found on the

SYSTEM.JMS.REPORT.QUEUE (typically responses from the

publish/subscribe broker) to remove unconsumed messages and temporary

queues associated with a failed subscriber. It can be a few seconds after the

subscriber fails before the cleanup routine can remove the messages and

queues.

 Two properties on the TopicConnectionFactory control behavior of this

cleanup thread: CLEANUP and CLEANUPINT. CLEANUPINT determines

how often (in milliseconds) cleanup is executed against any given queue

manager. CLEANUP takes one of four possible values:

CLEANUP(SAFE)

This is the default value.

 The cleanup thread tries to remove unconsumed subscription

messages or temporary queues for failed subscriptions. This mode

of cleanup does not interfere with the operation of other JMS

applications.

CLEANUP(STRONG)

The cleanup thread performs as CLEANUP(SAFE), but also clears

the SYSTEM.JMS.REPORT.QUEUE of any unrecognized messages.

 This mode of cleanup can interfere with the operation of JMS

applications running with later versions of WebSphere MQ JMS. If

multiple JMS applications are using the same queue manager, but

using different versions of WebSphere MQ JMS, only clients using

the most recent version of WebSphere MQ JMS must use this

option.

CLEANUP(NONE)

In this special mode, no cleanup is performed, and no cleanup

thread exists. Additionally, if the application is using the

single-queue approach, unconsumed messages can be left on the

queue.

 This option can be useful if the application is distant from the

queue manager, and especially if it only publishes rather than

subscribes. However, one application must clean up the queue

manager to deal with any unconsumed messages. This can be a

JMS application with CLEANUP(SAFE) or CLEANUP(STRONG),

or the manual cleanup utility described in “Manual cleanup” on

page 346.

CLEANUP(ASPROP)

The style of cleanup to use is determined by the system property

com.ibm.mq.jms.cleanup, which is queried at JVM startup.

Solving publish/subscribe problems

Chapter 11. Writing WebSphere MQ JMS publish/subscribe applications 345

This property can be set on the Java command-line using the -D

option, to NONE, SAFE, or STRONG. Any other value causes an

exception. If not set, the property defaults to SAFE.

 This allows easy JVM-wide change to the cleanup level without

updating every TopicConnectionFactory used by the system. This is

useful for applications or application servers that use multiple

TopicConnectionFactory objects.

 Where multiple TopicConnections exist within a JVM against the same

queue manager, but with differing values for CLEANUP and

CLEANUPINT, the following rules are used to determine behavior:

1. A TopicConnection with CLEANUP(NONE) does not attempt to clean

up immediately after its subscription has closed. However, if another

TopicConnection is using SAFE or STRONG cleanup, the cleanup

thread eventually cleans up after the subscription.

2. If any TopicConnection is using STRONG Cleanup, the cleanup thread

operates at STRONG level. Otherwise, if any TopicConnection uses

SAFE Cleanup, the cleanup thread operates at SAFE level. Otherwise,

there is no cleanup thread.

3. The smallest value of CLEANUPINT for those TopicConnections with

SAFE or STRONG Cleanup is used.

Manual cleanup

If you use the broker-based subscription store, you can operate cleanup manually

from the command-line. The syntax for bindings attach is:

Cleanup [-m <qmgr>] [-r <interval>]

 [SAFE | STRONG | FORCE | NONDUR] [-t]

or, for client attach:

Cleanup -client [-m <qmgr>] -host <hostname> [-port <port>]

 [-channel <channel>] [-r <interval>]

 [SAFE | STRONG | FORCE | NONDUR] [-t]

Where:

v qmgr, hostname, port, and channel determine connection settings for the queue

manager to clean up.

v -r sets the interval between executions of cleanup, in minutes. If not set, cleanup

is performed once.

v -t enables tracing, to the mqjms.trc file.

v SAFE, STRONG, FORCE, and NONDUR set the cleanup level, as follows:

– SAFE and STRONG cleanup behave like the CLEANUP(SAFE) and

CLEANUP(STRONG) options discussed in “Subscriber cleanup utility” on

page 344.

– FORCE cleanup behaves like STRONG Cleanup. However, STRONG cleanup

leaves messages that could not be processed on the

SYSTEM.JMS.REPORT.QUEUE; FORCE cleanup removes all messages even if

it encounters an error during processing.

Warning: This is a dangerous option that can leave an inconsistent state

between the queue manager and the broker. It cannot be run while

any &mqjms; &pubsub; application is running against the queue

manager; doing so causes the cleanup utility to abort.

– NONDUR behaves like FORCE cleanup.

Solving publish/subscribe problems

346 Using Java

After clearing the SYSTEM.JMS.REPORT.QUEUE, it attempts to remove any

remaining unconsumed messages sent to non-durable subscribers. If the

queue manager’s command server is running on any queue beginning

SYSTEM.JMS.ND.*, messages are cleared and the queue itself might be

deleted. Otherwise, only SYSTEM.JMS.ND.SUBSCRIBER.QUEUE and

SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE are cleared of messages.

Cleanup from within a program

You can use a programming interface to the cleanup routines for use with

SUBSTORE(BROKER), through the class com.ibm.mq.jms.Cleanup. Instances of this

class have getter/setter methods for each of the connection properties; and also for

the cleanup level and interval.

It exposes two methods:

cleanup()

Executes cleanup once

run() Runs cleanup at intervals determined by the properties of the cleanup

object

This class allows complete customization of publish/subscribe Cleanup, but it is

intended for use by system administration programs rather than application

programs.

For more details, refer to “Cleanup” on page 470.

Handling broker reports

The WebSphere MQ JMS implementation uses report messages from the broker to

confirm registration and deregistration commands. These reports are normally

consumed by the WebSphere MQ classes for Java Message Service implementation,

but under some error conditions, they might remain on the queue. These messages

are sent to the SYSTEM.JMS.REPORT.QUEUE queue on the local queue manager.

A Java application, PSReportDump, is supplied with WebSphere MQ classes for Java

Message Service, which dumps the contents of this queue in plain text format. The

information can then be analyzed, either by you, or by IBM support staff. You can

also use the application to clear the queue of messages after a problem is

diagnosed or fixed.

The compiled form of the tool is installed in the <MQ_JAVA_INSTALL_PATH>/bin

directory. To invoke the tool, change to this directory, then use the following

command:

java -Djava.library.path=library_path

 PSReportDump [-m queueManager] [-clear]

where library_path is the path to the WebSphere MQ Java libraries (see “The

WebSphere MQ Java libraries” on page 10), and:

-m queueManager

Specifies the name of the queue manager to use

-clear Causes all the messages on the queue to be deleted after their contents

have been dumped

Attention: Do not use this option if you are using the broker-based

subscription store. Instead, run the manual cleanup utility at FORCE level.

Solving publish/subscribe problems

Chapter 11. Writing WebSphere MQ JMS publish/subscribe applications 347

Output is sent to the screen, or you can redirect it to a file.

Other considerations

If a large number of JMS clients connect directly to a broker running on Windows,

and the connections happen almost simultaneously, a java.net.BindException

address in use exception might be thrown in response to a TopicConnection call.

You can try to avoid this by catching the exception and retrying, or by pacing the

connections.

Solving publish/subscribe problems

348 Using Java

Chapter 12. Writing WebSphere MQ JMS 1.1 applications

This chapter provides information to help you write WebSphere MQ JMS 1.1

applications. It covers information similar to that provided in Chapter 10, “Writing

WebSphere MQ JMS applications,” on page 313 and Chapter 11, “Writing

WebSphere MQ JMS publish/subscribe applications,” on page 327, but from a JMS

1.1 perspective.

The JMS 1.1 model

You can write a JMS application using two styles of messaging:

v Point-to-point

v Publish/subscribe

These styles of messaging are also referred to as messaging domains and you can

combine both styles of messaging in one application.

With versions of JMS before JMS 1.1, programming for the point-to-point domain

uses one set of interfaces and methods, and programming for the

publish/subscribe domain uses another set. The two sets are similar, but separate.

With JMS 1.1, you can use a common set of interfaces and methods that support

both messaging domains. The common interfaces provide a domain independent

view of each messaging domain. Table 16 lists the JMS 1.1 domain independent

interfaces and their corresponding domain specific interfaces.

 Table 16. The JMS 1.1 domain independent interfaces

Domain independent

interfaces

Domain specific interfaces

for the point-to-point

domain

Domain specific interfaces

for the publish/subscribe

domain

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer

 QueueReceiver

QueueBrowser

TopicSubscriber

JMS 1.1 retains all the domain specific interfaces in JMS 1.0.2b, and so existing

applications can still use these interfaces. For new applications, however, consider

using the JMS 1.1 domain independent interfaces.

In the WebSphere MQ JMS implementation of JMS 1.1, the administered objects are

the following:

v ConnectionFactory

v Queue

v Topic

Destination is an abstract superclass of Queue and Topic, and so an instance of

Destination is either a Queue or a Topic object. The domain independent interfaces

© Copyright IBM Corp. 1997, 2007 349

treat a queue or a topic as a destination. The messaging domain for a

MessageConsumer or a MessageProducer object is determined by whether the

destination is a queue or a topic.

Building a connection

Connections are not created directly, but are built using a connection factory.

ConnectionFactory objects can be stored in a JNDI namespace, insulating the JMS

application from provider specific information. For information about how to

create and store ConnectionFactory objects, see Chapter 5, “Using the WebSphere

MQ JMS administration tool,” on page 35.

Retrieving a connection factory from JNDI

To retrieve a ConnectionFactory object from a JNDI namespace, you must first set

up an initial context as shown in the following code:

import javax.jms.*;

import javax.naming.*;

import javax.naming.directory.*;

 .

 .

 .

 java.util.Hashtable environment = new java.util.Hashtable();

 environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);

 environment.put(Context.PROVIDER_URL, url);

 Context ctx = new InitialDirContext(environment);

In this code:

icf Defines a factory class for the initial context

url Defines a context specific URL

For more details about using a JNDI namespace, see Sun’s JNDI documentation.

Note: Some combinations of the JNDI packages and LDAP service providers can

result in an LDAP error 84. To resolve the problem, insert the following line

before the call to InitialDirContext:

environment.put(Context.REFERRAL, "throw");

After an initial context is obtained, you can retrieve a ConnectionFactory object

from the JNDI namespace by using the lookup() method. The following code

retrieves a ConnectionFactory object named CF from an LDAP based namespace:

ConnectionFactory factory;

factory = (ConnectionFactory)ctx.lookup("cn=CF");

Creating a connection factory at runtime

If a JNDI namespace is not available, it is possible to create a ConnectionFactory

object at runtime. However, using this method reduces the portability of a JMS

application because the application must then include references to WebSphere MQ

specific classes.

The following code creates a ConnectionFactory object with all the default settings:

factory = new com.ibm.mq.jms.MQConnectionFactory();

The default transport type is bindings. You can change the transport type for a

connection factory by using the setTransportType() method. Here are some

examples:

The JMS 1.1 model

350 Using Java

fact.setTransportType(JMSC.MQJMS_TP_BINDINGS_MQ); // Bindings mode

fact.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP); // Client mode

fact.setTransportType(JMSC.MQJMS_TP_DIRECT_TCPIP); // Direct TCP/IP mode

For information about transport types in each of the specific messaging domains,

see “Choosing client or bindings transport” on page 316, for the point-to-point

domain, and “TopicConnectionFactory administered objects” on page 334, for the

publish/subscribe domain.

Note that you cannot use the point-to-point style of messaging if the transport type

is direct. If an application uses Connection and Session objects that are created

from a ConnectionFactory object whose transport type is direct, the application can

perform only publish/subscribe operations.

A ConnectionFactory object has the same properties as those of a

QueueConnectionFactory object and a TopicConnectionFactory object combined.

However, certain combinations of property settings are not valid for a

ConnectionFactory object. See “Properties” on page 42 for more details.

Using a connection factory to create a connection

You can use the createConnection() method on a ConnectionFactory object to create

a Connection object, as shown in the following example:

Connection connection;

connection = factory.createConnection();

Both QueueConnectionFactory and TopicConnectionFactory inherit the

createConnection() method from ConnectionFactory. You can therefore use

createConnection() to create a domain specific object, as shown in the following

code:

QueueConnectionFactory QCF;

Connection connection;

connection = QCF.createConnection();

This code creates a QueueConnection object. An application can now perform a

domain independent operation on this object, or an operation that is applicable

only to the point-to-point domain. If the application attempts to perform an

operation that is applicable only to the publish/subscribe domain, an

IllegalStateException is thrown with the message MQJMS1112: JMS 1.1 Invalid

operation for a domain specific object. This is because the connection was

created from a domain specific connection factory.

Starting a connection

The JMS specification states that a connection is created in the stopped state. Until

the connection starts, a message consumer that is associated with the connection

cannot receive any messages. To start the connection, issue the following

command:

connection.start();

Using a client channel definition table

As an alternative to creating a client connection channel definition by setting

certain properties of a ConnectionFactory object, a WebSphere MQ JMS client

application can use client connection channel definitions that are stored in a client

channel definition table. These definitions are created by WebSphere MQ Script

(MQSC) commands or WebSphere MQ Programmable Command Format (PCF)

commands. When the application creates a Connection object, the WebSphere MQ

Building a connection

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 351

JMS client searches the client channel definition table for a suitable client

connection channel definition, and uses the channel definition to start an MQI

channel. For more information about client channel definition tables and how to

construct one, see WebSphere MQ Clients.

To use a client channel definition table, the CCDTURL property of a

ConnectionFactory object must be set to a URL object. The URL object encapsulates

a uniform resource locator (URL) that identifies the name and location of the file

containing the client channel definition table and specifies how the file can be

accessed. You can set the CCDTURL property by using the WebSphere MQ JMS

administration tool, or an application can set the property by creating a URL object

and calling the setCCDTURL() method of the ConnectionFactory object.

For example, if the file ccdt1.tab contains a client channel definition table and is

stored on the same system on which the application is running, the application can

set the CCDTURL property in the following way:

java.net.URL chanTab1 = new URL("file:///home/admdata/ccdt1.tab");

factory.setCCDTURL(chanTab1);

As another example, suppose the file ccdt2.tab contains a client channel definition

table and is stored on a system that is different to the one on which the application

is running. If the file can be accessed using the FTP protocol, the application can

set the CCDTURL property in the following way:

java.net.URL chanTab2 = new URL("ftp://ftp.server/admdata/ccdt2.tab");

factory.setCCDTURL(chanTab2);

In addition to setting the CCDTURL property of the ConnectionFactory object, the

QMANAGER property of the same object must be set to one of the following

values:

v The name of a queue manager

v An asterisk (*) followed by the name of a queue manager group

v An asterisk (*)

v An empty string, or a string containing all blank characters

These are the same values that can be used for the QMgrName parameter on an

MQCONN call issued by a client application that is using Message Queue Interface

(MQI). For more information about the meaning of these values therefore, see the

WebSphere MQ Application Programming Reference and WebSphere MQ Clients. You

can set the QMANAGER property by using the WebSphere MQ JMS

administration tool, or an application can set the property by calling the

setQueueManager() method of the ConnectionFactory object.

If an application then creates a Connection object from the ConnectionFactory

object, the WebSphere MQ JMS client accesses the client channel definition table

identified by the CCDTURL property, uses the QMANAGER property to search the

table for a suitable client connection channel definition, and then uses the channel

definition to start an MQI channel to a queue manager. The way that the

WebSphere MQ JMS client uses the QMANAGER property to search the client

channel definition table is also as described in the WebSphere MQ Application

Programming Reference and WebSphere MQ Clients. If your application uses

connection pooling, see also “Controlling the default connection pool” on page 82.

Note that the CCDTURL and CHANNEL properties of a ConnectionFactory object

cannot both be set when the application calls the createConnection() method. If

both properties are set, the method throws an exception. The CCDTURL or

Building a connection

352 Using Java

CHANNEL property is considered to be set if its value is anything other than null,

an empty string, or a string containing all blank characters.

When the WebSphere MQ JMS client finds a suitable client connection channel

definition in the client channel definition table, it uses only the information

extracted from the table to start an MQI channel. Any channel related properties of

the ConnectionFactory object are ignored.

In particular, note the following points if you are using Secure Sockets Layer (SSL):

v An MQI channel uses SSL only if the channel definition extracted from the client

channel definition table specifies the name of a CipherSpec supported by the

WebSphere MQ JMS client.

v A client channel definition table also contains information about the location of

Lightweight Directory Access Protocol (LDAP) servers that hold certificate

revocation lists (CRLs). The WebSphere MQ JMS client uses only this

information to access LDAP servers that hold CRLs.

For more information about using SSL with a client channel definition table, see

WebSphere MQ Clients.

Note also the following points if you are using channel exits:

v An MQI channel uses only the channel exits and associated user data specified

by the channel definition extracted from the client channel definition table.

v A channel definition extracted from a client channel definition table can specify

channel exits that are written in Java. This means, for example, that the SCYEXIT

parameter on the DEFINE CHANNEL command to create a client connection

channel definition can specify the name of a class that implements the

WebSphere MQ base Java interface, MQSecurityExit. Similarly, the SENDEXIT

parameter can specify the name of a class that implements the MQSendExit

interface, and the RCVEXIT parameter can specify the name of a class that

implements the MQReceiveExit interface. For more information about how to

write a channel exit in Java, see “Using channel exits” on page 77.

The use of channel exits written in a language other than Java is also supported.

For information about how to specify the SCYEXIT, SENDEXIT, and RCVEXIT

parameters on the DEFINE CHANNEL command for channel exits written in

another language, see the WebSphere MQ Script (MQSC) Command Reference.

Specifying a range of ports for client connections

When a WebSphere MQ JMS application attempts to connect to a WebSphere MQ

queue manager in client mode, a firewall might allow only those connections that

originate from specified ports or a range of ports. In this situation, you can use the

LOCALADDRESS property of a ConnectionFactory, QueueConnectionFactory, or

TopicConnectionFactory object to specify a port, or a range of ports, that the

application can bind to.

You can set the LOCALADDRESS property by using the WebSphere MQ JMS

administration tool, or by calling the setLocalAddress() method in a JMS

application. Here is an example of setting the property from within an application:

mqConnectionFactory.setLocalAddress("9.20.0.1(2000,3000)");

When the application connects to a queue manager subsequently, the application

binds to a local IP address and port number in the range 9.20.0.1(2000) to

9.20.0.1(3000).

Building a connection

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 353

In a system with more than one network interface, you can also use the

LOCALADDRESS property to specify which network interface must be used for a

connection.

For a direct connection to a broker, the LOCALADDRESS property is relevant only

when multicast is used. In this case, you can use the property to specify which

local network interface must be used for a connection, but the value of the

property must not contain a port number, or a range of port numbers.

Connection errors might occur if you restrict the range of ports. If an error occurs,

a JMSException is thrown with an embedded MQException that contains the

WebSphere MQ reason code MQRC_Q_MGR_NOT_AVAILABLE and the following

message:

Socket connection attempt refused due to LOCAL_ADDRESS_PROPERTY restrictions

An error might occur if all the ports in the specified range are in use, or if the

specified IP address, host name, or port number is not valid (a negative port

number, for example).

Because the WebSphere MQ JMS client might create connections other than those

required by an application, always consider specifying a range of ports. In general,

every session created by an application requires one port and the WebSphere MQ

JMS client might require three or four additional ports. If a connection error does

occur, increase the range of ports.

Connection pooling, which is used by default in WebSphere MQ JMS, might have

an effect on the speed at which ports can be reused. As a result, a connection error

might occur while ports are being freed.

Channel compression

Compressing the data that flows on a WebSphere MQ channel can improve the

performance of the channel and reduce network traffic. Using function supplied

with WebSphere MQ, you can compress the data that flows on message channels

and MQI channels and, on either type of channel, you can compress header data

and message data independently of each other. By default, no data is compressed

on a channel. For a full description of channel compression, including how it is

implemented in WebSphere MQ, see WebSphere MQ Intercommunication, for

message channels, and WebSphere MQ Clients, for MQI channels.

A WebSphere MQ JMS application specifies the techniques that can be used for

compressing header or message data on a connection by creating a

java.util.Collection object. Each compression technique is an Integer object in the

collection, and the order in which the application adds the compression techniques

to the collection is the order in which the compression techniques are negotiated

with the queue manager when the application creates the connection. The

application can then pass the collection to a ConnectionFactory object by calling

the setHdrCompList() method, for header data, or the setMsgCompList() method,

for message data. When the application is ready, it can create the connection.

The following code fragments illustrate the approach just described. The first code

fragment shows you how to implement header data compression:

Collection headerComp = new Vector();

headerComp.add(new Integer(JMSC.MQJMS_COMPHDR_SYSTEM));

.

.

.

Building a connection

354 Using Java

((MQConnectionFactory) cf).setHdrCompList(headerComp);

.

.

.

connection = cf.createConnection();

The second code fragment shows you how to implement message data

compression:

Collection msgComp = new Vector();

msgComp.add(new Integer(JMSC.MQJMS_COMPMSG_RLE));

msgComp.add(new Integer(JMSC.MQJMS_COMPMSG_ZLIB_HIGH));

.

.

.

((MQConnectionFactory) cf).setMsgCompList(msgComp);

.

.

.

connection = cf.createConnection();

In the second example, the compression techniques are negotiated in the order

RLE, then ZLIB_HIGH, when the connection is created. The compression technique

that is selected cannot be changed during the lifetime of the Connection object.

Note that, to use compression on a connection, the setHdrCompList() and the

setMsgCompList() methods must be called before creating the Connection object.

For more information about specifying compression techniques, and about which

compression techniques are available, see “MQConnectionFactory” on page 478

and “JMSC” on page 566.

Obtaining a session

After a connection is made, use the createSession() method on the Connection

object to obtain a session. The method has two parameters:

1. A boolean parameter that determines whether the session is transacted or

non-transacted.

2. A parameter that determines the acknowledge mode.

The simplest case is obtaining a non-transacted session with an acknowledge mode

of AUTO_ACKNOWLEDGE, as shown in the following code:

Session session;

.

.

.

boolean transacted = false;

session = connection.createSession(transacted, Session.AUTO_ACKNOWLEDGE);

Note: A connection is thread safe, but sessions (and the objects that are created

from them) are not. The recommended practice for multithreaded

applications is to use a separate session for each thread.

Destinations

The Destination interface is the abstract superclass of Queue and Topic. In the

WebSphere MQ JMS implementation of JMS 1.1, Queue and Topic objects

encapsulate addresses in WebSphere MQ and the broker. For example, a Queue

object encapsulates the name of a WebSphere MQ queue.

Building a connection

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 355

For information about using Queue objects in the point-to-point domain, see

“Sending a message” on page 317 and, for information about using Topic objects in

the publish/subscribe domain, see “Using topics” on page 335. The following is a

overview from a domain independent perspective.

Queue and Topic objects are retrieved from a JNDI namespace in the following

way:

Queue ioQueue;

ioQueue = (Queue)ctx.lookup(qLookup);

.

.

.

Topic ioTopic;

ioTopic = (Topic)ctx.lookup(tLookup);

The WebSphere MQ JMS implementation of Queue and Topic interfaces are in the

com.ibm.mq.jms.MQQueue and com.ibm.qm.jms.MQTopic classes respectively.

These classes contain properties that control the behavior of WebSphere MQ and

the broker but, in many cases, it is possible to use the default values. As well as

being able to administer Queue and Topic objects in a JNDI namespace, JMS

defines a standard way of specifying a destination at runtime that minimizes the

WebSphere MQ specific code in the application. This mechanism uses the

Session.createQueue() and Session.createTopic() methods, which take a string

parameter that specifies the destination. The string is still in a provider specific

format, but this approach is more flexible than referring directly to the provider

classes.

WebSphere MQ JMS accepts two forms for the string parameter of createQueue():

v The first is the name of a WebSphere MQ queue:

public static final String QUEUE = "SYSTEM.DEFAULT.LOCAL.QUEUE" ;

.

.

.

ioQueue = session.createQueue(QUEUE);

v The second, and more powerful, form is a uniform resource identifier (URI).

This form allows you to specify a remote queue, which is a queue on a queue

manager other than the one to which you are connected. It also allows you to set

the other properties of a com.ibm.mq.jms.MQQueue object.

The URI for a queue begins with the sequence queue://, followed by the name

of the queue manager on which the queue resides. This is followed by a further

forward slash (/), the name of the queue, and, optionally, a list of name-value

pairs that set the remaining queue properties. For example, the URI equivalent

of the previous example is the following:

ioQueue = session.createQueue("queue:///SYSTEM.DEFAULT.LOCAL.QUEUE");

The name of the queue manager is omitted. This is interpreted to mean as the

queue manager to which the owning Connection object is connected at the time

when the Queue object is used.

Note: When sending a message to a cluster, leave the queue manager field in the

Queue object blank. This enables an MQOPEN call to be performed in

BIND_NOT_FIXED mode, which allows the queue manager to be

determined. Otherwise an exception is returned reporting that the Queue

object cannot be found. This applies when using JNDI or defining a queue

at runtime.

Destinations

356 Using Java

WebSphere MQ JMS accepts a topic URI for the string parameter of createTopic(),

as shown in the following example:

Topic topic = session.createTopic("topic://Sport/Football/Spurs/Results");

Although the createTopic() method is in the JMS specification, the format of the

string argument is provider specific. Therefore, using this method can make your

code non-portable.

Other ways of creating a Topic object at runtime are as follows:

Using MQTopic(..)

This way requires a reference to the WebSphere MQ JMS implementation

of the Topic interface, and therefore renders the code non-portable.

 The constructor takes one argument, which must be a URI. For a

WebSphere MQ JMS topic, this must be of the form:

topic://TopicName[?property=value[&property=value]*]

For example, the following code creates a topic for nonpersistent messages

with a priority of 5:

// Create a Topic using the one-argument MQTopic constructor

String tSpec = "Sport/Football/Spurs/Results?persistence=1&priority=5";

Topic rtTopic = new MQTopic("topic://" + tSpec);

Using MQTopic(), then setBaseTopicName(..)

This way uses the default MQTopic constructor, and therefore renders the

code non-portable. Here is an example:

// Create a Topic using the default MQTopic constructor

Topic rtTopic = new MQTopic();

.

.

.

// Set the object properties using the setter methods

((MQTopic)rtTopic).setBaseTopicName("Sport/Football/Spurs/Results");

((MQTopic)rtTopic).setPersistence(1);

((MQTopic)rtTopic).setPriority(5);

Using session.createTemporaryTopic()

A temporary topic is created by a session, and only message consumers

created by the same session can consume messages from the topic. A

TemporaryTopic object is created as follows:

// Create a TemporaryTopic using the session factory method

Topic rtTopic = session.createTemporaryTopic();

Sending a message

An application sends messages using a MessageProducer object. A

MessageProducer object is normally created for a specific destination so that all

messages sent using that message producer are sent to the same destination. The

destination is specified using either a Queue or a Topic object. Queue and Topic

objects can be created at runtime, or built and stored in a JNDI namespace, as

described in “Destinations” on page 355.

After a Queue or a Topic object is obtained, an application can pass the object to

the createProducer() method to create a MessageProducer object, as shown in the

following example:

MessageProducer messageProducer = session.createProducer(ioDestination);

The parameter ioDestination can be either a Queue or a Topic object.

Destinations

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 357

The application can then use the send() method on the MessageProducer object to

send messages. Here is an example:

messageProducer.send(outMessage);

You can use the send() method to send messages in either messaging domain. The

nature of the destination determines the actual domain used. However,

TopicPublisher, the sub-interface for MessageProducer that is specific to the

publish/subscribe domain, uses a publish() method instead.

An application can create a MessageProducer object with no specified destination.

In this case, the application must specify the destination in the send() method.

Note: If an application sends a message within a transaction, the message is not

delivered to its destination until the transaction is committed. This means

that an application cannot send a message and receive a reply to the

message within the same transaction.

Message types

JMS provides several message types, each of which embodies some knowledge of

its content. To avoid referring to the provider specific class names for the message

types, methods for creating messages are provided on a Session object.

For example, a text message can be created in the following manner:

System.out.println("Creating a TextMessage");

TextMessage outMessage = session.createTextMessage();

System.out.println("Adding Text");

outMessage.setText(outString);

Here are the message types you can use:

v BytesMessage

v MapMessage

v ObjectMessage

v StreamMessage

v TextMessage

Details of these types are in Chapter 15, “Package com.ibm.jms,” on page 421.

Receiving a message

An application receives messages using a MessageConsumer object. The

application creates a MessageConsumer object by using the createConsumer()

method on a Session object. This method has a destination parameter that defines

where the messages are received from. See “Destinations” on page 355 for details

of how to create a destination, which is either a Queue or a Topic object.

In the point-to-point domain, the following code creates a MessageConsumer object

and then uses the object to receive a message:

MessageConsumer messageConsumer = session.createConsumer(ioQueue);

Message inMessage = messageConsumer.receive(1000);

The parameter on the receive() call is a timeout in milliseconds. This parameter

defines how long the method must wait if no message is available immediately.

You can omit this parameter; in which case, the call blocks until a suitable message

arrives. If you do not want any delay, use the receiveNoWait() method.

Sending a message

358 Using Java

|
|
|
|

The receive() methods return a message of the appropriate type. For example,

suppose a text message is put on a queue. When the message is received, the

object that is returned is an instance of TextMessage.

To extract the content from the body of the message, it is necessary to cast from

the generic Message class (which is the declared return type of the receive()

methods) to the more specific subclass, such as TextMessage. If the received

message type is not known, you can use the instanceof operator to determine

which type it is. It is good practice always to test the message class before casting

so that unexpected errors can be handled gracefully.

The following code uses the instanceof operator and shows how to extract the

content of a text message:

if (inMessage instanceof TextMessage) {

 String replyString = ((TextMessage) inMessage).getText();

 .

 .

 .

} else {

 // Print error message if Message was not a TextMessage.

 System.out.println("Reply message was not a TextMessage");

}

Note: If an application sends a message within a transaction, the message is not

delivered to its destination until the transaction is committed. This means

that an application cannot send a message and receive a reply to the

message within the same transaction.

JMS provides two types of message consumer:

Nondurable message consumer

A nondurable message consumer receives messages from its chosen

destination only if the messages are available while the consumer is active.

 In the point-to-point domain, whether a consumer receives messages that

are sent while the consumer is inactive depends on how WebSphere MQ is

configured to support that consumer. In the publish/subscribe domain, a

consumer does not receive messages that are sent while the consumer is

inactive.

Durable topic subscriber

A durable topic subscriber receives all the messages sent to a destination,

including those sent while the consumer is inactive.

The following sections describe how to create a durable topic subscriber, and how

to configure WebSphere MQ and the broker to support either type of message

consumer.

Creating durable topic subscribers

You cannot create a durable topic subscriber if the transport type is direct.

Durable topic subscribers are used when an application needs to receive messages

that are published even while the application is inactive.

Creating a durable topic subscriber is similar to creating a nondurable message

consumer, but you must also provide a name that identifies the durable

subscription, as in the following example:

Receiving a message

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 359

|
|
|
|

// Create a durable subscriber, supplying a uniquely-identifying name

TopicSubscriber sub = session.createDurableSubscriber(topic, "D_SUB_000001");

The session used to create a durable topic subscriber must have an associated

client identifier. The name that identifies a durable subscription must be unique

only within the client identifier, and therefore the client identifier forms part of the

full, unique identifier of the durable subscription. To reuse a durable subscription

that was created previously, an application must create a durable topic subscriber

using a session with the same client identifier as that associated with the durable

subscription.

The client identifier associated with a session is the same as that associated with

the connection that is used to create the session. The client identifier can be

specified by setting the CLIENTID property of the ConnectionFactory object.

Alternatively, an application can specify the client identifier by calling the

setClientID() method of the Connection object. For more information about client

identifiers and their relationship with durable topic subscribers and durable

subscriptions, see the Java Message Service Specification, Version 1.1.

A durable topic subscriber is created for the queue manager specified by the

QMANAGER property of the ConnectionFactory object. If there is a subsequent

attempt to create a durable topic subscriber with the same name for a different

queue manager, a new and completely independent durable topic subscriber is

returned.

Nondurable message consumers in the publish/subscribe domain automatically

deregister themselves when their close() method is called, or when they fall out of

scope. However, if you want to terminate a durable subscription, you must

explicitly notify the broker. To do this, use the unsubscribe() method of the session

and pass in the name that identifies the durable subscription:

// Unsubscribe the durable subscriber created above

session.unsubscribe("D_SUB_000001");

Message selectors

JMS allows an application to specify that only messages that satisfy certain criteria

are returned by successive receive() calls. When creating a MessageConsumer

object, you can provide a string that contains an SQL (Structured Query Language)

expression, which determines which messages are retrieved. This SQL expression is

called a selector. The selector can refer to fields in the JMS message header as well

as fields in the message properties (these are effectively application defined header

fields). Details of the header field names, as well as the syntax for an SQL selector,

are in Chapter 13, “JMS messages,” on page 379.

The following example shows how to select messages based on a user defined

property called myProp:

messageConsumer = session.createConsumer(ioQueue, "myProp = ’blue’");

Note: The JMS specification does not permit the selector associated with a message

consumer to be changed. After a message consumer is created, the selector is

fixed for the lifetime of that consumer. This means that, if you require

different selectors, you must create new message consumers.

You can control whether the JMS client or the broker performs message filtering in

the publish/subscribe domain by setting the MSGSELECTION property on the

ConnectionFactory object. If the broker is capable of performing message selection,

it is generally preferable to let the broker do it because it reduces the amount of

Receiving a message

360 Using Java

work done by the client. However, if the broker is very heavily loaded, it might be

preferable to let the client perform message selection instead.

Suppressing local publications

You can create a message consumer that ignores publications published on the

consumer’s own connection. To do this, set the third parameter on the

createConsumer() call to true, as shown in the following example:

// Create a nondurable message consumer with the noLocal option set

MessageConsumer con = session.createConsumer(topic, null, true);

The example that follows shows how to create a durable topic subscriber that

applies a selector and ignores local publications:

// Create a durable, noLocal subscriber with a selector applied

String selector = "company = ’IBM’";

TopicSubscriber sub = session.createDurableSubscriber(topic, "D_SUB_000001",

 selector, true);

Configuring the consumer queue

You cannot configure a consumer queue if the transport type is direct.

In the publish/subscribe messaging domain, you can configure message consumers

in two ways:

v The multiple queue approach.

Each consumer has its own exclusive queue and retrieves all its messages from

this queue. JMS creates a new queue for each consumer.

v The shared queue approach.

Each consumer retrieves its messages from a queue that is shared with other

consumers. This approach requires only one queue to serve multiple consumers.

It is the default approach used with WebSphere MQ JMS.

You can choose which approach to use, and configure which queues to use.

In general, there is a modest performance advantage if you use the shared queue

approach. For systems with a high throughput, there are also large system

management and administrative advantages because of the significant reduction in

the number of queues required.

In some situations, however, there are good reasons for using the multiple queue

approach:

v In theory, you can store more messages.

There is an upper limit to the number of messages that a WebSphere MQ queue

can hold and so, in the shared queue approach, the total number of messages for

all the message consumers that share the queue cannot exceed this limit. This

issue is more significant for durable topic subscribers, because the lifetime of a

durable topic subscriber is usually much longer than that of a nondurable

message consumer. Therefore, more messages might accumulate for a durable

subscriber.

v The WebSphere MQ administration of consumer queues is easier.

For certain applications, an administrator might want to monitor the state and

depth of particular consumer queues. This task is much simpler when each

consumer has its own queue.

Receiving a message

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 361

Default configuration

The default WebSphere MQ JMS configuration for the publish/subscribe domain

uses the following shared consumer queues:

v SYSTEM.JMS.ND.SUBSCRIBER.QUEUE for nondurable message consumers

v SYSTEM.JMS.D.SUBSCRIBER.QUEUE for durable topic subscribers

These are created for you when you run the MQJMS_PSQ.MQSC script.

If required, you can specify alternative WebSphere MQ queues. You can also

change the configuration to use the multiple queue approach.

Configuring nondurable message consumers

You can specify the name of the consumer queue for nondurable message

consumers in either of the following ways:

v Use the WebSphere MQ JMS administration tool to set the BROKERSUBQ

property.

v Use the setBrokerSubQueue() method in your application.

The queue name you provide must start with the following characters:

 SYSTEM.JMS.ND.

To use the shared queue approach, specify the complete name of the shared queue.

The queue must exist before you can create a subscription.

To use the multiple queue approach, specify a queue name that ends with an

asterisk (*). Subsequently, when an application creates a nondurable message

consumer specifying this queue name, WebSphere MQ JMS creates a temporary

dynamic queue for exclusive use by that consumer. With the multiple queue

approach, therefore, all the required queues are created dynamically.

If you use the multiple queue approach, you cannot specify the complete name of

a queue, only a prefix. This allows you to create different domains of consumer

queues. For example, you can use:

 SYSTEM.JMS.ND.MYDOMAIN.*

The characters that precede the asterisk (*) are used as the prefix, so that all

dynamic queues for nondurable message consumers specifying this prefix have

queue names that start with SYSTEM.JMS.ND.MYDOMAIN.

Configuring durable topic subscribers

As stated previously, there might still be good reasons to use the multiple queue

approach for durable topic subscribers. Durable topic subscribers are likely to have

a longer life span, and so it is possible for a large number of messages for a

durable subscriber to accumulate on a queue.

The name of the consumer queue for a durable topic subscriber is a property of a

Topic object. This allows you to specify a number of different consumer queue

names without having to create multiple objects starting from a ConnectionFactory

object.

You can specify the name of the consumer queue for durable topic subscribers in

either of the following ways:

v Use the WebSphere MQ JMS administration tool to set the BROKERDURSUBQ

property.

v Use the setBrokerDurSubQueue() method in your application.

Receiving a message

362 Using Java

The queue name you provide must start with the following characters:

 SYSTEM.JMS.D.

To use the shared queue approach, specify the complete name of the shared queue.

The queue must exist before you can create a subscription.

To use the multiple queue approach, specify a queue name that ends with an

asterisk (*). Subsequently, when an application creates a durable topic subscriber

specifying this queue name, WebSphere MQ JMS creates a permanent dynamic

queue for exclusive use by that subscriber. With the multiple queue approach,

therefore, all the required queues are created dynamically.

Here is an example of using the multiple queue approach:

// Set the MQTopic durable subscriber queue name using

// the multi-queue approach

sportsTopic.setBrokerDurSubQueue("SYSTEM.JMS.D.FOOTBALL.*");

After the Topic object is initialized, it can be passed into the

createDurableSubscriber() method of a Session object to create a durable topic

subscriber:

// Create a durable subscriber using our earlier Topic

TopicSubscriber sub = session.createDurableSubscriber(sportsTopic,

 "D_SUB_SPORT_001");

If you use the multiple queue approach, you cannot specify the complete name of

a queue, only a prefix. This allows you to create different domains of consumer

queues. For example, you can use:

 SYSTEM.JMS.D.MYDOMAIN.*

The characters that precede the asterisk (*) are used as the prefix, so that all

dynamic queues for durable topic subscribers specifying this prefix have queue

names that start with SYSTEM.JMS.D.MYDOMAIN.

You cannot change the consumer queue of a durable topic subscriber. If, for

example, you want to move from the multiple queue approach to the single queue

approach, you must first delete the old subscriber using the unsubscribe() method

and then create a new subscriber. Deleting the old subscriber also deletes any

unconsumed messages for that subscriber.

Subscription stores

A subscription store is not used if the transport type is direct.

When an application creates a message consumer in the publish/subscribe domain,

information about the subscription is created at the same time. WebSphere MQ

JMS maintains a persistent store of subscription information called a subscription

store. A subscription store is used to reopen durable topic subscribers and to clean

up after a nondurable message consumer fails. A subscription store can be

managed by the local queue manager or by the publish/subscribe broker.

The SUBSTORE property of a ConnectionFactory object determines the location of

a subscription store. SUBSTORE has three possible values:

SUBSTORE(QUEUE)

Subscription information is stored in the queues,

SYSTEM.JMS.ADMIN.QUEUE and SYSTEM.JMS.PS.STATUS.QUEUE, on

the local queue manager.

Receiving a message

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 363

WebSphere MQ JMS maintains an extra connection to each queue manager

used by subscribers. Each connection is used by a long running transaction

that detects when a subscriber loses its connection to the queue manager

and cleans up after the subscriber. In a busy system, a long running

transaction might cause the queue manager log to fill up resulting in errors

from both the queue manager and the applications connected to it.

 If you experience these problems, your system administrator can add extra

log files or data sets to the queue manager. Alternatively, you can reduce

the value of the STATREFRESHINT property of the ConnectionFactory

object. This causes the long running transaction to be refreshed more

frequently, allowing the queue manager log to reset itself before it becomes

full.

 After a nondurable message consumer fails, the following occurs:

v Subscription information related to the failed consumer remains on the

two queues implementing the subscription store. This information can be

removed by a cleanup utility supplied with WebSphere MQ JMS. See

“Consumer cleanup utility for the publish/subscribe domain” on page

367 for more information.

v Messages continue to be delivered to the consumer until the cleanup

utility runs.

 This option is provided for compatibility with versions of MQSeries JMS.

SUBSTORE(BROKER)

Subscription information is stored by the publish/subscribe broker used by

the application, not in WebSphere MQ queues. This means that, if a JMS

client fails, the broker can clean up the resources associated with the JMS

client without having to wait for the JMS client to reconnect.

 If a nondurable message consumer fails, the subscription is de-registered

from the broker as soon as possible. In response to the de-registration, the

broker puts a report message on the queue, SYSTEM.JMS.REPORT.QUEUE.

This message is used to clean up after the failed consumer.

 If you use this option, a separate cleanup thread is run in the background.

By default, the cleanup utility runs once every 10 minutes, but you can

change this interval by setting the CLEANUPINT property of the

ConnectionFactory object. To customize the actions performed by the

cleanup utility, use the CLEANUP property of the ConnectionFactory

object. For more information about how the cleanup utility works, see

“Consumer cleanup utility for the publish/subscribe domain” on page 367.

SUBSTORE(MIGRATE)

This is the default value.

 This option dynamically selects a queue based or a broker based

subscription store depending on the release levels of WebSphere MQ and

the publish/subscribe broker that are installed. If both WebSphere MQ and

the broker are capable of supporting the SUBSTORE(BROKER) option, this

option behaves like the SUBSTORE(BROKER) option; otherwise, it behaves

like the SUBSTORE(QUEUE) option.

 If this option behaves like the SUBSTORE(BROKER) option, the option

additionally migrates durable subscription information from the queue

based subscription store to the broker based store. This migration occurs

the first time a durable subscription is opened when both WebSphere MQ

and the broker are capable of supporting a broker based subscription store.

Receiving a message

364 Using Java

Only information related to the subscription being opened is migrated.

Information related to other subscriptions is left in the queue based

subscription store. This option therefore provides an easy migration path

from older versions of WebSphere MQ JMS, WebSphere MQ, and the

publish/subscribe broker.

Migration and coexistence considerations

Except when the SUBSTORE(MIGRATE) option is used, a queue based

subscription store and a broker based subscription store are entirely independent.

A durable subscription is created in the subscription store specified by the

ConnectionFactory object. If there is a subsequent attempt to create a durable

subscription with the same name and ClientID, but with the other subscription

store, a new durable subscription is created.

When a connection uses the SUBSTORE(MIGRATE) option, subscription

information is automatically migrated from the queue based subscription store to

the broker based subscription store when the application calls the

createDurableSubscriber() method. If a durable subscription with a matching name

and ClientID already exists in the broker based subscription store, the migration

cannot complete and an exception is thrown by the createDurableSubscriber() call.

After a subscription is migrated, it is important not to access the subscription from

an application using an older version of WebSphere MQ JMS, or from an

application running with the SUBSTORE(QUEUE) option. Doing either of these

creates a subscription in the queue based subscription store and prevents an

application running with the SUBSTORE(MIGRATE) option from using the

subscription.

To recover from this situation if it occurs, run your application with the

SUBSTORE(BROKER) option, or unsubscribe from the subscription that is held in

the queue based subscription store.

JMS persistent messages

A WebSphere MQ queue has an attribute called NonPersistentMessageClass. The

value of this attribute determines whether nonpersistent messages on the queue

are discarded when the queue manager restarts.

You can set the attribute for a local queue by using the WebSphere MQ Script

(MQSC) command, DEFINE QLOCAL, with either of the following parameters:

NPMCLASS(NORMAL)

Nonpersistent messages on the queue are discarded when the queue

manager restarts. This is the default value.

NPMCLASS(HIGH)

Nonpersistent messages on the queue are not discarded when the queue

manager restarts following a quiesced or immediate shutdown.

Nonpersistent messages might be discarded, however, following a

preemptive shutdown or a failure.

This section describes how WebSphere MQ JMS applications can use this queue

attribute to provide better performance for JMS persistent messages.

The PERSISTENCE property of a Queue or Topic object can have the value HIGH.

You can use the WebSphere MQ JMS administration tool to set this value, or an

Receiving a message

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 365

application can call the Destination.setPersistence() method passing the value

JMSC.MQJMS_PER_HIGH as a parameter.

If an application sends a JMS persistent message or a JMS nonpersistent message

to a destination whose PERSISTENCE property has the value HIGH, and the

underlying WebSphere MQ queue is set to NPMCLASS(HIGH), the message is put

on the queue as a WebSphere MQ nonpersistent message. If the PERSISTENCE

property of the destination does not have the value HIGH, or if the underlying

queue is set to NPMCLASS(NORMAL), a JMS persistent message is put on the

queue as a WebSphere MQ persistent message, and a JMS nonpersistent message is

put on the queue as a WebSphere MQ nonpersistent message.

If a JMS persistent message is put on a queue as a WebSphere MQ nonpersistent

message, and you want to ensure that the message is not discarded following a

quiesced or immediate shutdown of a queue manager, all queues through which

the message might be routed must be set to NPMCLASS(HIGH). In the

publish/subscribe domain, these queues include subscriber queues. As an aid to

enforcing this configuration, the WebSphere MQ JMS client throws an

InvalidDestinationException if an application tries to create a message consumer

for a destination whose PERSISTENCE property has the value HIGH and the

underlying WebSphere MQ queue is set to NPMCLASS(NORMAL).

Setting the PERSISTENCE property of a destination to HIGH has no effect on how

a message is received from that destination. A message sent as a JMS persistent

message is received as a JMS persistent message, and a message sent as a JMS

nonpersistent message is received as a JMS nonpersistent message.

When an application sends the first message to a destination whose PERSISTENCE

property has the value HIGH, or when an application creates the first message

consumer for a destination whose PERSISTENCE property has the value HIGH,

the WebSphere MQ JMS client issues an MQINQ call to determine whether

NPMCLASS(HIGH) is set on the underlying WebSphere MQ queue. The

application must therefore have the authority to inquire on the queue. In addition,

the WebSphere MQ JMS client preserves the result of the MQINQ call until the

destination is deleted, and does not issue more MQINQ calls. Therefore, if you

change the NPMCLASS setting on the underlying queue while the application is

still using the destination, the WebSphere MQ JMS client does not notice the new

setting.

By allowing JMS persistent messages to be put on WebSphere MQ queues as

WebSphere MQ nonpersistent messages, you are gaining performance at the

expense of some reliability. If you require maximum reliability for JMS persistent

messages, do not send the messages to a destination whose PERSISTENCE

property has the value HIGH.

Asynchronous delivery

An application can call the MessageConsumer.receive() method to receive

messages. As an alternative, an application can register a method that is called

automatically when a suitable message is available. This is called asynchronous

delivery of messages. The following code illustrates the mechanism:

import javax.jms.*;

public class MyClass implements MessageListener

{

 // The method that will be called by JMS when a message

 // is available.

JMS persistent messages

366 Using Java

public void onMessage(Message message)

 {

 System.out.println("message is "+message);

 // application specific processing here

 .

 .

 .

 }

}

 .

 .

 .

 // In Main program (possibly of some other class)

 MyClass listener = new MyClass();

 messageConsumer.setMessageListener(listener);

 // main program can now continue with other application specific

 // behavior.

Note: Using asynchronous delivery with a message consumer marks the entire

session as using asynchronous delivery. An application cannot call the

receive() methods of a message consumer if the message consumer is

associated with a session that is using asynchronous delivery.

Consumer cleanup utility for the publish/subscribe domain

To avoid the problems associated with message consumer objects in the

publish/subscribe domain not closing gracefully, WebSphere MQ JMS supplies a

consumer cleanup utility that attempts to clean up the resources associated with a

consumer that has failed. This utility runs in the background and does not affect

other WebSphere MQ JMS operations. If the utility detects a large number of

problems associated with a given queue manager, you might see some

performance degradation while resources are being cleaned up.

Note: Whenever possible, close all message consumer objects gracefully to avoid

an accumulation of these types of problems.

If applications use the domain independent classes, the cleanup utility is invoked

only if the applications perform publish/subscribe operations, such as creating a

Topic object, or creating a MessageConsumer object with a Topic object retrieved

from a JNDI namespace. This is to prevent the cleanup utility from being invoked

in an environment in which applications are performing only point-to-point

operations.

The exact behavior of the cleanup utility depends on where the subscription store

is located:

Queue based subscription store

For a queue based subscription store, the cleanup utility runs against a

queue manager when the first Connection object to use that queue

manager initializes. If all the Connection objects that use a given queue

manager close, the utility runs again only when the next Connection object

to use that queue manager initializes.

 The cleanup utility uses the information in the queues,

SYSTEM.JMS.ADMIN.QUEUE and SYSTEM.JMS.PS.STATUS.QUEUE, to

detect nondurable message consumers that have failed previously. If it

finds a failed consumer, the utility cleans up the resources associated with

Asynchronous delivery

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 367

the consumer by de-registering the consumer from the broker and deleting

its consumer queue, provided it is not a shared queue, and any

unconsumed messages on the queue.

Broker based subscription store

For a broker based subscription store, the cleanup utility runs at regular

intervals on a background thread while there is at least one Connection

object that uses a given queue manager. One cleanup thread is created for

each queue manager for which a Connection object exists within the JVM.

 The cleanup utility uses information in the queue,

SYSTEM.JMS.REPORT.QUEUE (the messages in this queue are typically

report messages from the publish/subscribe broker), to perform any

necessary cleanup. This might involve deleting consumer queues and

unconsumed messages that are no longer required.

 Two properties of a ConnectionFactory object control the behavior of the

cleanup thread: CLEANUPINT and CLEANUP. CLEANUPINT determines

how often, in milliseconds, the cleanup utility is run against any given

queue manager. CLEANUP has four possible values:

CLEANUP(SAFE)

This is the default value.

 The cleanup thread tries to delete any consumer queues and

unconsumed messages that are no longer required. This mode of

cleanup does not interfere with the operation of other JMS

applications.

CLEANUP(STRONG)

The cleanup thread performs like the CLEANUP(SAFE) option, but

it also deletes any messages on the queue,

SYSTEM.JMS.REPORT.QUEUE, that it does not recognize.

 This mode of cleanup can interfere with the operation of JMS

applications running with later versions of WebSphere MQ JMS. If

multiple JMS applications are using the same queue manager, but

using different versions of WebSphere MQ JMS, only applications

using the most recent version of WebSphere MQ JMS must use this

option.

CLEANUP(NONE)

In this special mode, no cleanup is performed, and consumer

queues and unconsumed messages that are no longer required are

not deleted.

 This option can be useful if the application and the queue manager

are on a different systems, especially if the application only sends

messages and does not receive them. At some time, however,

cleanup must be initiated to delete consumer queues and

unconsumed messages that are no longer required. This can be

done by a JMS application that uses a ConnectionFactory object

with the property CLEANUP(SAFE) or CLEANUP(STRONG), or

by using the manual cleanup utility, which is described in “Manual

cleanup” on page 369.

CLEANUP(ASPROP)

The mode of cleanup is determined by the system property

com.ibm.mq.jms.cleanup, which is queried when the JVM starts.

Consumer cleanup utility

368 Using Java

This property can be set on the Java command line by using the -D

option. Its value can be SAFE, STRONG, or NONE. Any other

value causes an exception. If the property not set, its value defaults

to SAFE.

 This option allows you to change the mode of cleanup within an

entire JVM without having to update every ConnectionFactory

object. This is useful for applications or application servers that use

multiple ConnectionFactory objects.

 If multiple Connection objects for the same queue manager exist within a

JVM, but the Connection objects use different values for the CLEANUPINT

and CLEANUP properties, the following rules determine the behavior of

the cleanup utility:

1. If a Connection object using the CLEANUP(NONE) option fails,

cleanup does not run. The cleanup thread eventually runs, however, if

another Connection object is using the CLEANUP(SAFE) or

CLEANUP(STRONG) option.

2. If any Connection object is using the CLEANUP(STRONG) option, the

cleanup thread operates in STRONG mode. Otherwise, if any

Connection object is using the CLEANUP(SAFE) option, the cleanup

thread operates in SAFE mode. Otherwise, there is no cleanup thread.

3. The cleanup utility runs at intervals determined by the smallest value

of the CLEANUPINT property of those Connections that are using the

CLEANUP(SAFE) or CLEANUP(STRONG) option.

Manual cleanup

If you use a broker based subscription store, you can operate the cleanup utility

manually from the command line. Here is the syntax of the command:

For a bindings connection:

Cleanup [-m <qmgr>] [-r <interval>]

 [SAFE | STRONG | FORCE | NONDUR] [-t]

For a client connection:

Cleanup -client [-m <qmgr>] -host <hostname> [-port <port>]

 [-channel <channel>] [-r <interval>]

 [SAFE | STRONG | FORCE | NONDUR] [-t]

The parameters of the command are as follows:

v qmgr, hostname, port, and channel enable the cleanup utility to connect to a

queue manager.

v -r sets the interval, in minutes, between each run of the cleanup utility. If the

parameter is not set, the cleanup utility runs once only.

v -t enables tracing. The output is sent to the file mqjms.trc.

v SAFE, STRONG, FORCE, or NONDUR sets the cleanup level as follows:

– SAFE and STRONG behave like the CLEANUP(SAFE) and

CLEANUP(STRONG) modes discussed in “Consumer cleanup utility for the

publish/subscribe domain” on page 367.

– FORCE behaves like STRONG mode. But, whereas STRONG mode leaves any

messages that cannot be processed on the queue,

SYSTEM.JMS.REPORT.QUEUE, FORCE mode deletes all the messages even if

it encounters an error during processing.

Consumer cleanup utility

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 369

Warning: This is a dangerous mode that can leave an inconsistent state

between the queue manager and the broker. You cannot run the

cleanup utility in this mode while any &mqjms; &pubsub;

applications are connected to the queue manager. If you try to do

so, the cleanup utility ends.

– NONDUR behaves like FORCE mode but, in addition, this mode deletes all

the messages on queues whose names begin with the characters

SYSTEM.JMS.ND. To do this successfully, the command server of the queue

manager must be running.

Cleanup from within a program

You can use a programming interface to invoke the cleanup utility that is used

with a broker based subscription store. Instances of the class

com.ibm.mq.jms.Cleanup have getter and setter methods for each of the properties

that are used to connect to a queue manager, and also for the cleanup level and

cleanup interval. It exposes two additional methods:

cleanup()

Executes the cleanup utility once only.

run() Runs cleanup at intervals determined by cleanup interval property.

This class allows complete customization of the publish/subscribe cleanup utility,

but it is intended for use by system administration programs rather than

application programs.

For more details, see “Cleanup” on page 470.

Closing down

Garbage collection alone cannot release all WebSphere MQ resources in a timely

manner, especially if an application creates many short lived JMS objects at the

session level or lower. It is therefore important for an application to call the

appropriate close() method to close a Connection, Session, MessageConsumer, or

MessageProducer object when it is no longer required.

Java Virtual Machine hangs at shutdown

If an application using WebSphere MQ JMS finishes without calling

Connection.close(), some JVMs appear to hang. If this problems occurs, you can

end the JVM by entering Ctrl-C. To avoid the problem in the future, consider

modifying the application to include a call to Connection.close().

Handling errors

Any runtime errors in a JMS application are reported by exceptions. The majority

of JMS methods throw a JMSException to indicate an error. It is good

programming practice to catch these exceptions and display them on a suitable

output device.

Each JMS exception encapsulates a message identifier and some associated

message text, which describes the error that has occurred. The message identifier

has the format MQJMSnnnn, where nnnn is an integer in the range 0000 to 9999.

For each message identifier, there is a corresponding field in the MQJMS_Messages

class. In the definition of the MQJMS_Messages class, the description of the field

contains an explanation of why the error occurred and a suggested user response.

Consumer cleanup utility

370 Using Java

To determine which field in the MQJMS_Messages class corresponds to a given

message identifier, you must look in the specification of the WebSphere MQ JMS

API that is supplied as HTML pages generated by the Javadoc tool. The

MQJMS_Messages section of the Constant Field Values page contains a table that

lists each message identifier and its corresponding field in the MQJMS_Messages

class.

A JMSException can contain a further exception embedded within it. For JMS, this

can be a valuable way to pass important information about the error from the

underlying transport. In the case of WebSphere MQ JMS, an MQException is

thrown in WebSphere MQ base Java whenever an error occurs in WebSphere MQ,

and this exception is usually included as the embedded exception in a

JMSException.

The implementation of JMSException does not include the embedded exception in

the output of its toString() method. Therefore, you must check explicitly for an

embedded exception and print it out, as shown in the following example:

try {

 .

 . code that might throw a JMSException

 .

} catch (JMSException je) {

 System.err.println("caught "+je);

 Exception e = je.getLinkedException();

 if (e != null) {

 System.err.println("linked exception: "+e);

 }

}

Exception listener

For asynchronous message delivery, the application code cannot catch exceptions

raised by failures to receive messages. This is because the application code does

not make explicit calls to receive() methods. To cope with this situation, you can

register an ExceptionListener, which is an instance of a class that implements the

onException() method. When a serious error occurs, this method is called with the

JMSException passed as its only parameter. Further details are in Sun’s JMS

documentation.

Handling broker reports

The WebSphere MQ JMS implementation uses report messages from the broker to

confirm whether registration and de-registration requests have been successful.

These report messages are sent to the queue, SYSTEM.JMS.REPORT.QUEUE, on

the local queue manager and are normally consumed by the WebSphere MQ JMS.

Under some error conditions, however, they might remain on the queue.

WebSphere MQ JMS supplies a Java application, PSReportDump, which dumps the

contents of the queue, SYSTEM.JMS.REPORT.QUEUE, in plain text format. The

information in the dump can be analyzed by you or by IBM support staff. You can

also use the application to delete all the messages in the queue after a problem is

diagnosed or fixed.

The compiled form of the application is in the <MQ_JAVA_INSTALL_PATH>/bin

directory. To start the application, change to this directory and use the following

command:

java -Djava.library.path=library_path

 PSReportDump [-m queueManager] [-clear]

Handling errors

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 371

where library_path is the path to the WebSphere MQ Java libraries (see “The

WebSphere MQ Java libraries” on page 10), and:

-m queueManager

Specifies the name of the queue manager to use

-clear Causes all the messages on the queue to be deleted after their contents

have been dumped

Attention: Do not use this option if you are using a broker based

subscription store. Instead, run the manual cleanup utility in FORCE mode.

The output from the application is sent to the screen, or you can redirect it to a

file.

Other considerations

If a large number of JMS clients connect directly to a broker running on Windows,

and the connections happen almost simultaneously, a java.net.BindException

address in use exception might be thrown in response to a request to connect to

the broker. You can try to avoid this by catching the exception and retrying, or by

pacing the connections.

Using channel exits

A WebSphere MQ JMS application can use channel security, send, and receive exits

on the MQI channel that starts when the application connects to a queue manager.

The application can use exits written in Java, C, or C++. The application can also

use a sequence of send or receive exits that are run in succession.

Only an application that connects to a queue manager in client mode can use

channel exits. An application cannot use channel exits if it connects in bindings

mode.

The SENDEXIT property of a ConnectionFactory object specifies the send exit, or

exits, used by a connection. The value of the property is a string that comprises

one or more items separated by commas. Each item identifies a send exit in one of

the following ways:

v The name of a class that implements the WebSphere MQ base Java interface,

MQSendExit (for a send exit written in Java)

v A string in the format libraryName(entryPointName) (for a send exit not written in

Java)

You can set the SENDEXIT property by using the WebSphere MQ JMS

administration tool, or an application can set the property by calling the

setSendExit() method.

In a similar way, the RECEXIT property of a ConnectionFactory object specifies the

receive exit, or exits, used by a connection, and the SECEXIT property specifies the

security exit used by a connection.

The SENDEXITINIT property of a ConnectionFactory object specifies the user data

that is passed to each send exit when it is called. The value of the property is a

string that comprises one or more items of user data separated by commas. The

position of each item of user data within the string determines which send exit, in

a sequence of send exits, the user data is passed to. For example, the first item of

user data in the string is passed to the first send exit in a sequence of send exits.

Handling errors

372 Using Java

|

You can set the SENDEXITINIT property by using the WebSphere MQ JMS

administration tool, or an application can set the property by calling the

setSendExitInit() method.

In a similar way, the RECEXITINIT property of a ConnectionFactory object

specifies the user data that is passed to each receive exit, and the SECEXITINIT

property specifies the user data passed to a security exit.

Note the following rules when specifying user data that is passed to channel exits:

v If the number of items of user data in a string is more than the number of exits

in a sequence, the excess items of user data are ignored.

v If the number of items of user data in a string is less than the number of exits in

a sequence, each unspecified item of user data is set to an empty string. Two

commas in succession within a string, or a comma at the beginning of a string,

also denotes an unspecified item of user data.

On i5/OS, no user data can be passed to channel exit programs that are written in

C or C++.

For information about how to write a channel exit in Java, and how to make sure

that WebSphere MQ JMS can locate the JAR or class files containing channel exit

classes, see “Using channel exits” on page 77.

For information about how to write a channel exit in C or C++, see WebSphere MQ

Intercommunication. You must store channel exit programs that are not written in

Java in the directory shown in Table 13 on page 79.

If your application uses a client channel definition table to connect to a queue

manager, see “Using a client channel definition table” on page 351.

Using Secure Sockets Layer (SSL)

WebSphere MQ base Java client applications and WebSphere MQ JMS connections

using TRANSPORT(CLIENT) support Secure Sockets Layer (SSL) encryption. SSL

provides communication encryption, authentication, and message integrity. It is

typically used to secure communications between any two peers on the Internet or

within an intranet.

WebSphere MQ classes for Java uses Java Secure Socket Extension (JSSE) to handle

SSL encryption, and so requires a JSSE provider. J2SE v1.4 JVMs have a JSSE

provider built in. Details of how to manage and store certificates can vary from

provider to provider. For information about this, refer to your JSSE provider’s

documentation.

This section assumes that your JSSE provider is correctly installed and configured,

and that suitable certificates have been installed and made available to your JSSE

provider.

If your WebSphere MQ JMS client application uses a client channel definition table

to connect to a queue manager, see “Using a client channel definition table” on

page 351.

Using channel exits

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 373

|
|

|
|
|

|
|
|

SSL administrative properties

This section introduces the SSL administrative properties, as follows:

v “SSLCIPHERSUITE object property”

v “SSLFIPSREQUIRED object property”

v “SSLPEERNAME object property” on page 375

v “SSLCERTSTORES object property” on page 375

v “SSLRESETCOUNT object property” on page 376

v “SSLSocketFactory object property” on page 376

SSLCIPHERSUITE object property

To enable SSL encryption on a ConnectionFactory object, use JMSAdmin to set the

SSLCIPHERSUITE property to a CipherSuite supported by your JSSE provider.

This must match the CipherSpec set on the target channel. However, CipherSuites

are distinct from CipherSpecs and so have different names. Appendix D, “SSL

CipherSpecs and CipherSuites,” on page 645 contains a table mapping the

CipherSpecs supported by WebSphere MQ to their equivalent CipherSuites as

known to JSSE. Additionally, the named CipherSuite must be supported by your

JSSE provider. For more information about CipherSpecs and CipherSuites with

WebSphere MQ, see WebSphere MQ Security.

For example, to set up a ConnectionFactory object that can be used to create a

connection over an SSL enabled MQI channel with a CipherSpec of

RC4_MD5_EXPORT, issue the following command to JMSAdmin:

ALTER CF(my.cf) SSLCIPHERSUITE(SSL_RSA_EXPORT_WITH_RC4_40_MD5)

This can also be set from an application, using the setSSLCipherSuite() method on

an MQConnectionFactory object.

For convenience, if a CipherSpec is specified on the SSLCIPHERSUITE property,

JMSAdmin attempts to map the CipherSpec to an appropriate CipherSuite and

issues a warning. This attempt to map is not made if the property is specified by

an application.

SSLFIPSREQUIRED object property

If you require a connection to use a CipherSuite that is supported by the IBM Java

JSSE FIPS provider (IBMJSSEFIPS), set the SSLFIPSREQUIRED property of the

connection factory to YES. The default value of this property is NO, which means

that a connection can use any CipherSuite that is not supported by IBMJSSEFIPS.

If an application uses more than one connection, the value of SSLFIPSREQUIRED

that is used when the application creates the first connection determines the value

that is used when the application creates any subsequent connection. This means

that the value of the SSLFIPSREQUIRED property of the connection factory that is

used to create a subsequent connection is ignored. You must restart the application

if you want to use a different value of SSLFIPSREQUIRED.

An application can set this property by calling the setSSLFipsRequired() method of

a ConnectionFactory object. The property is ignored if no CipherSuite is set.

Using SSL

374 Using Java

SSLPEERNAME object property

A JMS application can ensure that it connects to the correct queue manager by

specifying a distinguished name (DN) pattern. The connection succeeds only if the

queue manager presents a DN that matches the pattern. For more details of the

format of this pattern, refer to WebSphere MQ Security or the WebSphere MQ Script

(MQSC) Command Reference.

The DN is set using the SSLPEERNAME property of a ConnectionFactory object.

For example, the following JMSAdmin command sets a ConnectionFactory object

to expect the queue manager to identify itself with a Common Name beginning

with the characters QMGR., and with at least two Organizational Unit names, the

first of which must be IBM and the second WEBSPHERE:

ALTER CF(my.cf) SSLPEERNAME(CN=QMGR.*, OU=IBM, OU=WEBSPHERE)

Checking is not case sensitive and semicolons can be used in place of commas.

This can also be set from an application using the setSSLPeerName() method on an

MQConnectionFactory object. If this property is not set, no checking is performed

on the Distinguished Name supplied by the queue manager. This property is

ignored if no CipherSuite is set.

SSLCERTSTORES object property

It is common to use a certificate revocation list (CRL) to identify certificates that

are no longer trusted. CRLs are typically hosted on LDAP servers. JMS allows an

LDAP server to be specified for CRL checking under Java 2 v1.4 or later. The

following JMSAdmin example directs JMS to use a CRL hosted on an LDAP server

named crl1.ibm.com:

ALTER CF(my.cf) SSLCRL(ldap://crl1.ibm.com)

Note: To use a CertStore successfully with a CRL hosted on an LDAP server, make

sure that your Java Software Development Kit (SDK) is compatible with the

CRL. Some SDKs require that the CRL conforms to RFC 2587, which defines

a schema for LDAP v2. Most LDAP v3 servers use RFC 2256 instead.

If your LDAP server is not running on the default port of 389, the port can be

specified by appending a colon (:) and the port number to the host name. If the

certificate presented by the queue manager is present in the CRL hosted on

crl1.ibm.com, the connection does not complete. To avoid a single point of failure,

JMS allows multiple LDAP servers to be supplied by supplying a list of LDAP

servers delimited by the space character. Here is an example:

ALTER CF(my.cf) SSLCRL(ldap://crl1.ibm.com ldap://crl2.ibm.com)

When multiple LDAP servers are specified, JMS tries each one in turn until it finds

a server with which it can successfully verify the queue manager’s certificate. Each

server must contain identical information.

A string in this format can be supplied by an application on the

MQConnectionFactory.setSSLCertStores() method. Alternatively, the application can

create one or more java.security.cert.CertStore objects, place these in a suitable

Collection object, and supply this Collection object to the setSSLCertStores()

method. In this way, the application can customize CRL checking. Refer to your

JSSE documentation for details on constructing and using CertStore objects.

The certificate presented by the queue manager when a connection is being set up

is validated as follows:

Using SSL

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 375

1. The first CertStore object in the Collection identified by sslCertStores is used to

identify a CRL server.

2. An attempt is made to contact the CRL server.

3. If the attempt is successful, the server is searched for a match for the certificate.

a. If the certificate is found to be revoked, the search process is over and the

connection request fails with reason code

MQRC_SSL_CERTIFICATE_REVOKED.

b. If the certificate is not found, the search process is over and the connection

is allowed to proceed.
4. If the attempt to contact the server is unsuccessful, the next CertStore object is

used to identify a CRL server and the process repeats from step 2.

If this was the last CertStore in the Collection, or if the Collection contains no

CertStore objects, the search process has failed and the connection request fails

with reason code MQRC_SSL_CERT_STORE_ERROR.

The Collection object determines the order in which CertStores are used.

If your application uses setSSLCertStores() to set a Collection of CertStore objects,

the MQConnectionFactory can no longer be bound into a JNDI namespace.

Attempting to do so causes an exception. If the sslCertStores property is not set, no

revocation checking is performed on the certificate provided by the queue

manager. This property is ignored if no CipherSuite is set.

SSLRESETCOUNT object property

This property represents the total number of bytes sent and received by a

connection before the secret key that is used for encryption is renegotiated. The

number of bytes sent is the number before encryption, and the number of bytes

received is the number after decryption. The number of bytes also includes control

information sent and received by the WebSphere MQ JMS client.

For example, to configure a ConnectionFactory object that can be used to create a

connection over an SSL enabled MQI channel whose secret key is renegotiated

after 4 MB of data have flowed, issue the following command to JMSAdmin:

ALTER CF(my.cf) SSLRESETCOUNT(4194304)

An application can set this property by calling the setSSLResetCount() method of a

ConnectionFactory object.

If the value of this property is zero, which is the default value, the secret key is

never renegotiated. The property is ignored if no CipherSuite is set.

If you are using an HP or Sun Java 2 Software Development Kit (SDK) or Java

Runtime Environment (JRE), do not set this property to a value other than zero. If

you do set the property to a value other than zero, a connection fails when it

attempts to renegotiate the secret key.

For more information about the secret key that is used for encryption on an SSL

enabled channel, see WebSphere MQ Security.

SSLSocketFactory object property

You might want to customize other aspects of the SSL connection for an

application. For example, you might want to initialize cryptographic hardware or

change the keystore and truststore in use. To do this, the application must first

Using SSL

376 Using Java

create a javax.net.ssl.SSLSocketFactory object that is customized accordingly. Refer

to your JSSE documentation for information on how to do this, as the customizable

features vary from provider to provider. After a suitable SSLSocketFactory object is

obtained, use the MQConnectionFactory.setSSLSocketFactory() method to configure

JMS to use the customized SSLSocketFactory object.

If your application uses the setSSLSocketFactory() method to set a customized

SSLSocketFactory object, the MQConnectionFactory object can no longer be bound

into a JNDI namespace. Attempting to do so causes an exception. If this property is

not set, the default SSLSocketFactory object is used. Refer to your JSSE

documentation for details on the behavior of the default SSLSocketFactory object.

This property is ignored if no CipherSuite is set.

Important: Do not assume that the use of the SSL properties ensures security

when a ConnectionFactory object is retrieved from a JNDI namespace

that is not itself secure. Specifically, the standard LDAP implementation

of JNDI is not secure. An attacker can imitate the LDAP server,

misleading a JMS application into connecting to the wrong server

without noticing. With suitable security arrangements in place, other

implementations of JNDI (such as the fscontext implementation) are

secure.

Making changes to the JSSE keystore or truststore

If you change the contents of the JSSE keystore or truststore, or change the location

of the keystore or truststore file, WebSphere MQ JMS applications that are running

at the time do not automatically pick up the changes. For the changes to take

effect, the following actions must be performed:

v The applications must close all their connections, and destroy any unused

connections in connection pools.

v If your JSSE provider caches information from the keystore and truststore, this

information must be refreshed.

After these actions have been performed, the applications can then recreate their

connections.

Depending on how you design your applications, and on the function provided by

your JSSE provider, it might be possible to perform these actions without stopping

and restarting your applications. However, stopping and restarting the applications

might be the simplest solution.

Using SSL

Chapter 12. Writing WebSphere MQ JMS 1.1 applications 377

378 Using Java

Chapter 13. JMS messages

JMS messages are composed of the following parts:

Header

All messages support the same set of header fields. Header fields contain

values that are used by both clients and providers to identify and route

messages.

Properties

Each message contains a built-in facility to support application-defined

property values. Properties provide an efficient mechanism to filter

application-defined messages.

Body JMS defines several types of message body that cover the majority of

messaging styles currently in use.

 JMS defines five types of message body:

Stream

A stream of Java primitive values. It is filled and read sequentially.

Map A set of name-value pairs, where names are strings and values are

Java primitive types. The entries can be accessed sequentially or

randomly by name. The order of the entries is undefined.

Text A message containing a java.lang.String.

Object

a message that contains a serializable Java object

Bytes A stream of uninterpreted bytes. This message type is for literally

encoding a body to match an existing message format.

The JMSCorrelationID header field is used to link one message with another. It

typically links a reply message with its requesting message. JMSCorrelationID can

hold a provider-specific message ID, an application-specific String, or a

provider-native byte[] value.

Message selectors

A message contains a built-in facility to support application-defined property

values. In effect, this provides a mechanism to add application-specific header

fields to a message. Properties allow an application, using message selectors, to

have a JMS provider select or filter messages on its behalf, using

application-specific criteria. Application-defined properties must obey the following

rules:

v Property names must obey the rules for a message selector identifier.

v Property values can be boolean, byte, short, int, long, float, double, and String.

v The JMSX and JMS_ name prefixes are reserved.

Property values are set before sending a message. When a client receives a

message, the message properties are read-only. If a client attempts to set properties

at this point, a MessageNotWriteableException is thrown. If clearProperties is

called, the properties can now be both read from, and written to.

© Copyright IBM Corp. 1997, 2007 379

A property value might duplicate a value in a message’s body. JMS does not define

a policy for what should or should not be made into a property. However,

application developers must be aware that JMS providers probably handle data in

a message’s body more efficiently than data in a message’s properties. For best

performance, applications must use message properties only when they need to

customize a message’s header. The primary reason for doing this is to support

customized message selection.

A JMS message selector allows a client to specify the messages that it is interested

in by using the message header. Only messages whose headers match the selector

are delivered.

Message selectors cannot refer to message body values.

A message selector matches a message when the selector evaluates to true when

the message’s header field and property values are substituted for their

corresponding identifiers in the selector.

A message selector is a String, whose syntax is based on a subset of the SQL92

conditional expression syntax. The order in which a message selector is evaluated

is from left to right within a precedence level. You can use parentheses to change

this order. Predefined selector literals and operator names are written here in

upper case; however, they are not case-sensitive.

A selector can contain:

v Literals

– A string literal is enclosed in single quotes. A doubled single quote represents

a single quote. Examples are ’literal’ and ’literal’’s’. Like Java string literals,

these use the Unicode character encoding.

– An exact numeric literal is a numeric value without a decimal point, such as

57, -957, and +62. Numbers in the range of Java long are supported.

– An approximate numeric literal is a numeric value in scientific notation, such

as 7E3 or -57.9E2, or a numeric value with a decimal, such as 7., -95.7, or +6.2.

Numbers in the range of Java double are supported.

– The boolean literals TRUE and FALSE.
v Identifiers:

– An identifier is an unlimited length sequence of Java letters and Java digits,

the first of which must be a Java letter. A letter is any character for which the

method Character.isJavaLetter returns true. This includes _ and $. A letter or

digit is any character for which the method Character.isJavaLetterOrDigit

returns true.

– Identifiers cannot be the names NULL, TRUE, or FALSE.

– Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, or IS.

– Identifiers are either header field references or property references.

– Identifiers are case-sensitive.

– Message header field references are restricted to:

- JMSDeliveryMode

- JMSPriority

- JMSMessageID

- JMSTimestamp

- JMSCorrelationID

Message selectors

380 Using Java

- JMSType

JMSMessageID, JMSTimestamp, JMSCorrelationID, and JMSType values can

be null, and if so, are treated as a NULL value.

– Any name beginning with JMSX is a JMS-defined property name.

– Any name beginning with JMS_ is a provider-specific property name.

– Any name that does not begin with JMS is an application-specific property

name. If there is a reference to a property that does not exist in a message, its

value is NULL. If it does exist, its value is the corresponding property value.
v White space is the same as it is defined for Java: space, horizontal tab, form

feed, and line terminator.

v Expressions:

– A selector is a conditional expression. A selector that evaluates to true

matches; a selector that evaluates to false or unknown does not match.

– Arithmetic expressions are composed of themselves, arithmetic operations,

identifiers (whose value is treated as a numeric literal), and numeric literals.

– Conditional expressions are composed of themselves, comparison operations,

and logical operations.
v Standard bracketing (), to set the order in which expressions are evaluated, is

supported.

v Logical operators in precedence order: NOT, AND, OR.

v Comparison operators: =, >, >=, <, <=, <> (not equal).

– Only values of the same type can be compared. One exception is that it is

valid to compare exact numeric values and approximate numeric values. (The

type conversion required is defined by the rules of Java numeric promotion.)

If there is an attempt to compare different types, the selector is always false.

– String and boolean comparison is restricted to = and <>. Two strings are

equal only if they contain the same sequence of characters.
v Arithmetic operators in precedence order:

– +, - unary.

– *, /, multiplication, and division.

– +, -, addition, and subtraction.

– Arithmetic operations on a NULL value are not supported. If they are

attempted, the complete selector is always false.

– Arithmetic operations must use Java numeric promotion.
v arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3

comparison operator:

– Age BETWEEN 15 and 19 is equivalent to age >= 15 AND age <= 19.

– Age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age > 19.

– If any of the expressions of a BETWEEN operation are NULL, the value of the

operation is false. If any of the expressions of a NOT BETWEEN operation are

NULL, the value of the operation is true.
v identifier [NOT] IN (string-literal1, string-literal2,...) comparison operator where

identifier has a String or NULL value.

– Country IN (’UK’, ’US’, ’France’) is true for ’UK’ and false for ’Peru’. It is

equivalent to the expression (Country = ’UK’) OR (Country = ’US’) OR

(Country = ’France’).

– Country NOT IN (’UK’, ’US’, ’France’) is false for ’UK’ and true for ’Peru’. It

is equivalent to the expression NOT ((Country = ’UK’) OR (Country = ’US’)

OR (Country = ’France’)).

Message selectors

Chapter 13. JMS messages 381

– If the identifier of an IN or NOT IN operation is NULL, the value of the

operation is unknown.
v identifier [NOT] LIKE pattern-value [ESCAPE escape-character] comparison

operator, where identifier has a string value. pattern-value is a string literal,

where _ stands for any single character and % stands for any sequence of

characters (including the empty sequence). All other characters stand for

themselves. The optional escape-character is a single character string literal,

whose character is used to escape the special meaning of the _ and % in

pattern-value.

– phone LIKE ’12%3’ is true for 123 and 12993 and false for 1234.

– word LIKE ’l_se’ is true for lose and false for loose.

– underscored LIKE ’_%’ ESCAPE ’\’ is true for _foo and false for bar.

– phone NOT LIKE ’12%3’ is false for 123 and 12993 and true for 1234.

– If the identifier of a LIKE or NOT LIKE operation is NULL, the value of the

operation is unknown.
v identifier IS NULL comparison operator tests for a null header field value, or a

missing property value.

– prop_name IS NULL.
v identifier IS NOT NULL comparison operator tests for the existence of a

non-null header field value or a property value.

– prop_name IS NOT NULL.

The following message selector selects messages with a message type of car, color

of blue, and weight greater than 2500 lbs:

"JMSType = ’car’ AND color = ’blue’ AND weight > 2500"

As noted above, property values can be NULL. The evaluation of selector

expressions that contain NULL values is defined by SQL 92 NULL semantics. The

following is a brief description of these semantics:

v SQL treats a NULL value as unknown.

v Comparison or arithmetic with an unknown value always yields an unknown

value.

v The IS NULL and IS NOT NULL operators convert an unknown value into the

respective TRUE and FALSE values.

Although SQL supports fixed decimal comparison and arithmetic, JMS message

selectors do not. This is why exact numeric literals are restricted to those without a

decimal. It is also why there are numerics with a decimal as an alternate

representation for an approximate numeric value.

SQL comments are not supported.

Mapping JMS messages onto WebSphere MQ messages

This section describes how the JMS message structure that is described in the first

part of this chapter is mapped onto a WebSphere MQ message. It is of interest to

programmers who want to transmit messages between JMS and traditional

WebSphere MQ applications. It is also of interest to people who want to

manipulate messages transmitted between two JMS applications, for example, in a

message broker implementation.

Message selectors

382 Using Java

This section does not apply if you use a direct connection to a broker. When you

use a direct connection, all communication is performed directly over TCP/IP; no

queues or messages are involved.

WebSphere MQ messages are composed of three components:

v The WebSphere MQ Message Descriptor (MQMD)

v A WebSphere MQ MQRFH2 header

v The message body.

The MQRFH2 is optional, and its inclusion in an outgoing message is governed by

a flag in the JMS Destination class. You can set this flag using the WebSphere MQ

JMS administration tool. Because the MQRFH2 carries JMS-specific information,

always include it in the message when the sender knows that the receiving

destination is a JMS application. Normally, omit the MQRFH2 when sending a

message directly to a non-JMS application. This is because such an application

does not expect an MQRFH2 in its WebSphere MQ message.

If an incoming message does not have an MQRFH2 header, the Queue or Topic

object derived from the JMSReplyTo header field of the message, by default, has

this flag set so that a reply message sent to the queue or topic also does not have

an MQRFH2 header. You can switch off this behavior of including an MQRFH2

header in a reply message only if the original message has an MQRFH2 header by

setting the TARGCLIENTMATCHING property of the connection factory to NO.

Figure 2 shows how the structure of a JMS message is transformed to a WebSphere

MQ message and back again:

The structures are transformed in two ways:

Mapping

Where the MQMD includes a field that is equivalent to the JMS field, the

JMS field is mapped onto the MQMD field. Additional MQMD fields are

exposed as JMS properties, because a JMS application might need to get or

set these fields when communicating with a non-JMS application.

Copying

Where there is no MQMD equivalent, a JMS header field or property is

passed, possibly transformed, as a field inside the MQRFH2.

MappingMapping

Copying Copying

JMS Message

JMS Client

Header

Data

Properties

JMS Client

JMS Message

Header

Data

Properties

WebSphere MQ
Message

Other Data

MQMD

RFH2

Data

Figure 2. How messages are transformed between JMS and WebSphere MQ using the

MQRFH2 header

Mapping JMS messages

Chapter 13. JMS messages 383

The MQRFH2 header

This section describes the MQRFH Version 2 header, which carries JMS-specific

data that is associated with the message content. The MQRFH2 Version 2 is an

extensible header, and can also carry additional information that is not directly

associated with JMS. However, this section covers only its use by JMS.

There are two parts of the header, a fixed portion and a variable portion.

Fixed portion

The fixed portion is modelled on the standard WebSphere MQ header

pattern and consists of the following fields:

StrucId (MQCHAR4)

Structure identifier.

 Must be MQRFH_STRUC_ID (value: “RFH ”) (initial value).

 MQRFH_STRUC_ID_ARRAY (value: “R”,“F”,“H”,“ ”) is also

defined in the usual way.

Version (MQLONG)

Structure version number.

 Must be MQRFH_VERSION_2 (value: 2) (initial value).

StrucLength (MQLONG)

Total length of MQRFH2, including the NameValueData fields.

 The value set into StrucLength must be a multiple of 4 (the data in

the NameValueData fields can be padded with space characters to

achieve this).

Encoding (MQLONG)

Data encoding.

 Encoding of any numeric data in the portion of the message

following the MQRFH2 (the next header, or the message data

following this header).

CodedCharSetId (MQLONG)

Coded character set identifier.

 Representation of any character data in the portion of the message

following the MQRFH2 (the next header, or the message data

following this header).

Format (MQCHAR8)

Format name.

 Format name for the portion of the message following the

MQRFH2.

Flags (MQLONG)

Flags.

 MQRFH_NO_FLAGS =0. No flags set.

NameValueCCSID (MQLONG)

The coded character set identifier (CCSID) for the NameValueData

character strings contained in this header. The NameValueData can

be coded in a character set that differs from the other character

strings that are contained in the header (StrucID and Format).

Mapping JMS messages

384 Using Java

If the NameValueCCSID is a 2-byte Unicode CCSID (1200, 13488,

or 17584), the byte order of the Unicode is the same as the byte

ordering of the numeric fields in the MQRFH2. (For example,

Version, StrucLength, and NameValueCCSID itself.)

 The NameValueCCSID takes values from the following table:

 Table 17. Possible values for NameValueCCSID field

Value Meaning

1200 UCS2 open-ended

1208 UTF8

13488 UCS2 2.0 subset

17584 UCS2 2.1 subset (includes Euro symbol)

Variable portion

The variable portion follows the fixed portion. The variable portion

contains a variable number of MQRFH2 folders. Each folder contains a

variable number of elements or properties. Folders group together related

properties. The MQRFH2 headers created by JMS can contain up to three

folders:

The <mcd> folder

This contains properties that describe the shape or format of the

message. For example, the Msd property identifies the message as

being Text, Bytes, Stream, Map, Object, or null. This folder is

always present in a JMS MQRFH2.

The <jms> folder

This is used to transport JMS header fields, and JMSX properties

that cannot be fully expressed in the MQMD. This folder is always

present in a JMS MQRFH2.

The <usr> folder

This is used to transport any application-defined properties

associated with the message. This folder is present only if the

application has set some application-defined properties.

The <mqext> folder

This is used to transport IBM defined properties that are used only

by WebSphere Application Server. This folder is present only if the

application has set at least one of these properties.

Table 18 shows a full list of property names.

 Table 18. MQRFH2 folders and properties used by JMS

JMS field name Java type MQRFH2

folder name

Property name Type/values

JMSDestination Destination jms Dst string

JMSExpiration long jms Exp i8

JMSPriority int jms Pri i4

JMSDeliveryMode int jms Dlv i4

JMSCorrelationID String jms Cid string

JMSReplyTo Destination jms Rto string

JMSTimestamp long jms Tms i8

JMSType String mcd Type, Set, Fmt string

Mapping JMS messages

Chapter 13. JMS messages 385

Table 18. MQRFH2 folders and properties used by JMS (continued)

JMS field name Java type MQRFH2

folder name

Property name Type/values

JMSXGroupID String jms Gid string

JMSXGroupSeq int jms Seq i4

xxx (user defined) Any usr xxx any

mcd Msd

 jms_none

jms_text

jms_bytes

jms_map

jms_stream

jms_object

The syntax used to express the properties in the variable portion is as

follows:

NameValueLength (MQLONG)

Length in bytes of the NameValueData string that immediately

follows this length field (it does not include its own length). The

value set into NameValueLength is always a multiple of 4 (the

NameValueData field is padded with space characters to achieve

this).

NameValueData (MQCHARn)

A single character string, whose length in bytes is given by the

preceding NameValueLength field. It contains a folder holding a

sequence of properties. Each property is a name/type/value

triplet, contained within an XML element whose name is the folder

name, as follows:

 <foldername> triplet1 triplet2 tripletn </foldername>

 The closing </foldername> tag can be followed by spaces as

padding characters. Each triplet is encoded using an XML-like

syntax:

 <name dt=’datatype’>value</name>

 The dt=’datatype’ element is optional and is omitted for many

properties, because the data type is predefined. If it is included,

one or more space characters must be included before the dt= tag.

name is the name of the property; see Table 18 on page 385.

datatype

must match, after folding, one of the data types listed in

Table 19 on page 387.

value is a string representation of the value to be conveyed,

using the definitions in Table 19 on page 387.

 A null value is encoded using the following syntax:

<name dt=’datatype’ xsi:nil=’true’></name>

Mapping JMS messages

386 Using Java

Do not use xsi:nil=’false’.

 Table 19. Property data types

Data type Definition

string Any sequence of characters excluding < and &

boolean The character 0 or 1 (1 = ″true″)

bin.hex Hexadecimal digits representing octets

i1 A number, expressed using digits 0..9, with optional sign (no fractions or

exponent). Must lie in the range -128 to 127 inclusive

i2 A number, expressed using digits 0..9, with optional sign (no fractions or

exponent). Must lie in the range -32768 to 32767 inclusive

i4 A number, expressed using digits 0..9, with optional sign (no fractions or

exponent). Must lie in the range -2147483648 to 2147483647 inclusive

i8 A number, expressed using digits 0..9, with optional sign (no fractions or

exponent). Must lie in the range -9223372036854775808 to

92233720368547750807 inclusive

int A number, expressed using digits 0..9, with optional sign (no fractions or

exponent). Must lie in the same range as i8. This can be used in place of

one of the i* types if the sender does not want to associate a particular

precision with the property

r4 Floating point number, magnitude <= 3.40282347E+38, >= 1.175E-37

expressed using digits 0..9, optional sign, optional fractional digits, optional

exponent

r8 Floating point number, magnitude <= 1.7976931348623E+308, >= 2.225E-307

expressed using digits 0..9, optional sign, optional fractional digits, optional

exponent

A string value can contain spaces. You must use the following

escape sequences in a string value:

v & for the & character

v < for the < character

 You can use the following escape sequences, but they are not

required:

v > for the > character

v ' for the ’ character

v " for the " character

JMS fields and properties with corresponding MQMD fields

Table 20 lists the JMS header fields and Table 21 on page 388 lists the JMS

properties that are mapped directly to MQMD fields. Table 22 on page 388 lists the

provider specific properties and the MQMD fields that they are mapped to.

 Table 20. JMS header fields mapping to MQMD fields

JMS header field Java

type

MQMD field C type

JMSDeliveryMode int Persistence MQLONG

JMSExpiration long Expiry MQLONG

JMSPriority int Priority MQLONG

JMSMessageID String MessageID MQBYTE24

Mapping JMS messages

Chapter 13. JMS messages 387

Table 20. JMS header fields mapping to MQMD fields (continued)

JMS header field Java

type

MQMD field C type

JMSTimestamp long

 PutDate

PutTime

 MQCHAR8

MQCHAR8

JMSCorrelationID String CorrelId MQBYTE24

 Table 21. JMS properties mapping to MQMD fields

JMS property Java

type

MQMD field C type

JMSXUserID String UserIdentifier MQCHAR12

JMSXAppID String PutApplName MQCHAR28

JMSXDeliveryCount int BackoutCount MQLONG

JMSXGroupID String GroupId MQBYTE24

JMSXGroupSeq int MsgSeqNumber MQLONG

 Table 22. JMS provider specific properties mapping to MQMD fields

JMS provider specific property Java

type

MQMD field C type

JMS_IBM_Report_Exception int Report MQLONG

JMS_IBM_Report_Expiration int Report MQLONG

JMS_IBM_Report_COA int Report MQLONG

JMS_IBM_Report_COD int Report MQLONG

JMS_IBM_Report_PAN int Report MQLONG

JMS_IBM_Report_NAN int Report MQLONG

JMS_IBM_Report_Pass_Msg_ID int Report MQLONG

JMS_IBM_Report_Pass_Correl_ID int Report MQLONG

JMS_IBM_Report_Discard_Msg int Report MQLONG

JMS_IBM_MsgType int MsgType MQLONG

JMS_IBM_Feedback int Feedback MQLONG

JMS_IBM_Format String Format1 MQCHAR8

JMS_IBM_PutApplType int PutApplType MQLONG

JMS_IBM_Encoding int Encoding MQLONG

JMS_IBM_Character_Set String CodedCharacterSetId MQLONG

JMS_IBM_PutDate String PutDate MQCHAR8

JMS_IBM_PutTime String PutTime MQCHAR8

JMS_IBM_Last_Msg_In_Group boolean MsgFlags MQLONG

Note:

1. JMS_IBM_Format represents the format of the message body. This can be defined by

the application setting the JMS_IBM_Format property of the message (note that there is

an 8 character limit), or can default to the WebSphere MQ format of the message body

appropriate to the JMS message type. JMS_IBM_Format maps to the MQMD Format

field only if the message contains no RFH or RFH2 sections. In a typical message, it

will map to the Format field of the RFH2 immediately preceding the message body.

Mapping JMS messages

388 Using Java

Mapping JMS fields onto WebSphere MQ fields (outgoing

messages)

Table 23 shows how the JMS header fields are mapped into MQMD/RFH2 fields at

send() or publish() time. Table 24 shows how JMS properties and Table 25 shows

how JMS provider specific properties are mapped to MQMD fields at send() or

publish() time,

For fields marked Set by Message Object, the value transmitted is the value held in

the JMS message immediately before the send() or publish() operation. The value

in the JMS message is left unchanged by the operation.

For fields marked Set by Send Method, a value is assigned when the send() or

publish() is performed (any value held in the JMS message is ignored). The value

in the JMS message is updated to show the value used.

Fields marked as Receive-only are not transmitted and are left unchanged in the

message by send() or publish().

 Table 23. Outgoing message field mapping

JMS header field name MQMD field used for

transmission

Header Set by

JMSDestination MQRFH2 Send Method

JMSDeliveryMode Persistence MQRFH2 Send Method

JMSExpiration Expiry MQRFH2 Send Method

JMSPriority Priority MQRFH2 Send Method

JMSMessageID MessageID Send Method

JMSTimestamp PutDate/PutTime Send Method

JMSCorrelationID CorrelId MQRFH2 Message Object

JMSReplyTo ReplyToQ/ReplyToQMgr MQRFH2 Message Object

JMSType MQRFH2 Message Object

JMSRedelivered Receive-only

 Table 24. Outgoing message JMS property mapping

JMS property name MQMD field used for

transmission

Header Set by

JMSXUserID UserIdentifier Send Method

JMSXAppID PutApplName Send Method

JMSXDeliveryCount Receive-only

JMSXGroupID GroupId MQRFH2 Message Object

JMSXGroupSeq MsgSeqNumber MQRFH2 Message Object

 Table 25. Outgoing message JMS provider specific property mapping

JMS provider specific property name MQMD field used for

transmission

Header Set by

JMS_IBM_Report_Exception Report Message Object

JMS_IBM_Report_Expiration Report Message Object

JMS_IBM_Report_COA/COD Report Message Object

Mapping JMS messages

Chapter 13. JMS messages 389

Table 25. Outgoing message JMS provider specific property mapping (continued)

JMS provider specific property name MQMD field used for

transmission

Header Set by

JMS_IBM_Report_NAN/PAN Report Message Object

JMS_IBM_Report_Pass_Msg_ID Report Message Object

JMS_IBM_Report_Pass_Correl_ID Report Message Object

JMS_IBM_Report_Discard_Msg Report Message Object

JMS_IBM_MsgType MsgType Message Object

JMS_IBM_Feedback Feedback Message Object

JMS_IBM_Format Format Message Object

JMS_IBM_PutApplType PutApplType Send Method

JMS_IBM_Encoding Encoding Message Object

JMS_IBM_Character_Set CodedCharacterSetId Message Object

JMS_IBM_PutDate PutDate Send Method

JMS_IBM_PutTime PutTime Send Method

JMS_IBM_Last_Msg_In_Group MsgFlags Message Object

Mapping JMS header fields at send() or publish()

The following notes relate to the mapping of JMS fields at send() or publish():

JMSDestination to MQRFH2

This is stored as a string that serializes the salient characteristics of the

destination object, so that a receiving JMS can reconstitute an equivalent

destination object. The MQRFH2 field is encoded as URI (see uniform

resource identifiers for details of the URI notation).

JMSReplyTo to MQMD ReplyToQ, ReplyToQMgr, MQRFH2

The queue and queue manager name are copied to the MQMD ReplyToQ

and ReplyToQMgr fields respectively. The destination extension

information (other useful details that are kept in the destination object) is

copied into the MQRFH2 field. The MQRFH2 field is encoded as a URI

(see uniform resource identifiers for details of the URI notation).

JMSDeliveryMode to MQMD Persistence

The JMSDeliveryMode value is set by the send() or publish() Method or

MessageProducer, unless the Destination Object overrides it. The

JMSDeliveryMode value is mapped to the MQMD Persistence field as

follows:

v JMS value PERSISTENT is equivalent to MQPER_PERSISTENT

v JMS value NON_PERSISTENT is equivalent to

MQPER_NOT_PERSISTENT

If the MQQueue persistence property is not set to

JMSC.MQJMS_PER_QDEF, the delivery mode value is also encoded in the

MQRFH2.

JMSExpiration to/from MQMD Expiry, MQRFH2

JMSExpiration stores the time to expire (the sum of the current time and

the time to live), whereas MQMD stores the time to live. Also,

JMSExpiration is in milliseconds, but MQMD.expiry is in centiseconds.

Mapping JMS messages

390 Using Java

v If the send() method sets an unlimited time to live, MQMD Expiry is set

to MQEI_UNLIMITED, and no JMSExpiration is encoded in the

MQRFH2.

v If the send() method sets a time to live that is less than 214748364.7

seconds (about 7 years), the time to live is stored in MQMD. Expiry, and

the expiration time (in milliseconds), are encoded as an i8 value in the

MQRFH2.

v If the send() method sets a time to live greater than 214748364.7 seconds,

MQMD.Expiry is set to MQEI_UNLIMITED. The true expiration time in

milliseconds is encoded as an i8 value in the MQRFH2.

JMSPriority to MQMD Priority

Directly map JMSPriority value (0-9) onto MQMD priority value (0-9). If

JMSPriority is set to a non-default value, the priority level is also encoded

in the MQRFH2.

JMSMessageID from MQMD MessageID

All messages sent from JMS have unique message identifiers assigned by

WebSphere MQ. The value assigned is returned in the MQMD messageId

field after the MQPUT call, and is passed back to the application in the

JMSMessageID field. The WebSphere MQ messageId is a 24-byte binary

value, whereas the JMSMessageID is a string. The JMSMessageID is

composed of the binary messageId value converted to a sequence of 48

hexadecimal characters, prefixed with the characters ID:. JMS provides a

hint that can be set to disable the production of message identifiers. This

hint is ignored, and a unique identifier is assigned in all cases. Any value

that is set into the JMSMessageId field before a send() is overwritten.

JMSTimestamp to MQRFH2

During a send, the JMSTimestamp field is set according to the JVM’s clock.

This value is set into the MQRFH2. Any value that is set into the

JMSTimestamp field before a send() is overwritten. See also the

JMS_IBM_PutDate and JMS_IBM_PutTime properties.

JMSType to MQRFH2

This string is set into the MQRFH2 mcd.Type field. If it is in URI format, it

can also affect mcd.Set and mcd.Fmt fields. See also Appendix C,

“Connecting to other products,” on page 639.

JMSCorrelationID to MQMD CorrelId, MQRFH2

The JMSCorrelationID can hold one of the following:

A provider specific message ID

This is a message identifier from a message previously sent or

received, and so should be a string of 48 hexadecimal digits that

are prefixed with ID:. The prefix is removed, the remaining

characters are converted into binary, and then they are set into the

MQMD CorrelId field. No CorrelId value is encoded in the

MQRFH2.

A provider-native byte[] value

The value is copied into the MQMD CorrelId field - padded with

nulls, or truncated to 24 bytes if necessary. No CorrelId value is

encoded in the MQRFH2.

An application-specific string

The value is copied into the MQRFH2. The first 24 bytes of the

string, in UTF8 format, are written into the MQMD CorrelID.

Mapping JMS messages

Chapter 13. JMS messages 391

Mapping JMS property fields

These notes refer to the mapping of JMS property fields in WebSphere MQ

messages:

JMSXUserID from MQMD UserIdentifier

JMSXUserID is set on return from send call.

JMSXAppID from MQMD PutApplName

JSMXAppID is set on return from send call.

JMSXGroupID to MQRFH2 (point-to-point)

For point-to-point messages, the JMSXGroupID is copied into the MQMD

GroupID field. If the JMSXGroupID starts with the prefix ID:, it is

converted into binary. Otherwise, it is encoded as a UTF8 string. The value

is padded or truncated if necessary to a length of 24 bytes. The

MQMF_MSG_IN_GROUP flag is set.

JMSXGroupID to MQRFH2 (publish/subscribe)

For publish/subscribe messages, the JMSXGroupID is copied into the

MQRFH2 as a string.

JMSXGroupSeq MQMD MsgSeqNumber (point-to-point)

For point-to-point messages, the JMSXGroupSeq is copied into the MQMD

MsgSeqNumber field. The MQMF_MSG_IN_GROUP flag is set.

JMSXGroupSeq MQMD MsgSeqNumber (publish/subscribe)

For publish/subscribe messages, the JMSXGroupSeq is copied into the

MQRFH2 as an i4.

Mapping JMS provider-specific fields

The following notes refer to the mapping of JMS Provider specific fields into

WebSphere MQ messages:

JMS_IBM_Report_<name> to MQMD Report

A JMS application can set the MQMD Report options, using the following

JMS_IBM_Report_XXX properties. The single MQMD is mapped to several

JMS_IBM_Report_XXX properties. The application must set the value of

these properties to the standard WebSphere MQ MQRO_ constants

(included in com.ibm.mq.MQC). So, for example, to request COD with full

Data, the application must set JMS_IBM_Report_COD to the value

MQC.MQRO_COD_WITH_FULL_DATA.

JMS_IBM_Report_Exception

MQRO_EXCEPTION or

MQRO_EXCEPTION_WITH_DATA or

MQRO_EXCEPTION_WITH_FULL_DATA

JMS_IBM_Report_Expiration

MQRO_EXPIRATION or

MQRO_EXPIRATION_WITH_DATA or

MQRO_EXPIRATION_WITH_FULL_DATA

JMS_IBM_Report_COA

MQRO_COA or

MQRO_COA_WITH_DATA or

MQRO_COA_WITH_FULL_DATA

JMS_IBM_Report_COD

MQRO_COD or

MQRO_COD_WITH_DATA or

MQRO_COD_WITH_FULL_DATA

Mapping JMS messages

392 Using Java

JMS_IBM_Report_PAN

MQRO_PAN

JMS_IBM_Report_NAN

MQRO_NAN

JMS_IBM_Report_Pass_Msg_ID

MQRO_PASS_MSG_ID

JMS_IBM_Report_Pass_Correl_ID

MQRO_PASS_CORREL_ID

JMS_IBM_Report_Discard_Msg

MQRO_DISCARD_MSG

JMS_IBM_MsgType to MQMD MsgType

Value maps directly onto MQMD MsgType. If the application has not set

an explicit value of JMS_IBM_MsgType, a default value is used. This

default value is determined as follows:

v If JMSReplyTo is set to a WebSphere MQ queue destination, MSGType is

set to the value MQMT_REQUEST

v If JMSReplyTo is not set, or is set to anything other than a WebSphere

MQ queue destination, MsgType is set to the value

MQMT_DATAGRAM

JMS_IBM_Feedback to MQMD Feedback

Value maps directly onto MQMD Feedback.

JMS_IBM_Format to MQMD Format

Value maps directly onto MQMD Format.

JMS_IBM_Encoding to MQMD Encoding

If set, this property overrides the numeric encoding of the Destination

Queue or Topic.

JMS_IBM_Character_Set to MQMD CodedCharacterSetId

If set, this property overrides the coded character set property of the

Destination Queue or Topic.

JMS_IBM_PutDate from MQMD PutDate

The value of this property is set, during send, directly from the PutDate

field in the MQMD. Any value that is set into the JMS_IBM_PutDate

property before a send is overwritten. This field is a String of eight

characters, in the WebSphere MQ Date format of YYYYMMDD. This

property can be used in conjunction with the JMS_IBM_PutTime property

to determine the time the message was put according to the queue

manager.

JMS_IBM_PutTime from MQMD PutTime

The value of this property is set, during send, directly from the PutTime

field in the MQMD. Any value that is set into the JMS_IBM_PutTime

property before a send is overwritten. This field is a String of eight

characters, in the WebSphere MQ Time format of HHMMSSTH. This

property can be used in conjunction with the JMS_IBM_PutDate property

to determine the time the message was put according to the queue

manager.

JMS_IBM_Last_Msg_In_Group to MQMD MsgFlags

For point-to-point messaging, this boolean value maps to the

MQMF_LAST_MSG_IN_GROUP flag in the MQMD MsgFlags field. It is

normally used in conjunction with the JMSXGroupID and JMSXGroupSeq

Mapping JMS messages

Chapter 13. JMS messages 393

properties to indicate to a legacy WebSphere MQ application that this is

the last message in a group. This property is ignored for publish/subscribe

messaging.

Mapping WebSphere MQ fields onto JMS fields (incoming

messages)

Table 26 shows how JMS header fields and Table 27 shows how JMS property

fields are mapped into MQMD/MQRFH2 fields at send() or publish() time.

Table 28 shows how JMS provider specific properties are mapped.

 Table 26. Incoming message JMS header field mapping

JMS header field name MQMD field retrieved from MQRFH2 field

retrieved from

JMSDestination jms.Dst

JMSDeliveryMode Persistence1 jms.Dlv1

JMSExpiration jms.Exp

JMSPriority Priority

JMSMessageID MessageID

JMSTimestamp

 PutDate1

PutTime1

jms.Tms1

JMSCorrelationID CorrelId1 jms.Cid1

JMSReplyTo

 ReplyToQ1

ReplyToQMgr1

jms.Rto1

JMSType mcd.Type, mcd.Set,

mcd.Fmt

JMSRedelivered BackoutCount

Note:

1. For properties that can have values retrieved from the MQRFH2 or the MQMD, if both

are available, the setting in the MQRFH2 is used.

 Table 27. Incoming message property mapping

JMS property name MQMD field retrieved from MQRFH2 field

retrieved from

JMSXUserID UserIdentifier

JMSXAppID PutApplName

JMSXDeliveryCount BackoutCount

JMSXGroupID GroupId1 jms.Gid1

JMSXGroupSeq MsgSeqNumber1 jms.Seq1

Note:

1. For properties that can have values retrieved from the MQRFH2 or the MQMD, if both

are available, the setting in the MQRFH2 is used.

 Table 28. Incoming message provider specific JMS property mapping

JMS property name MQMD field retrieved from MQRFH2 field

retrieved from

JMS_IBM_Report_Exception Report

Mapping JMS messages

394 Using Java

Table 28. Incoming message provider specific JMS property mapping (continued)

JMS property name MQMD field retrieved from MQRFH2 field

retrieved from

JMS_IBM_Report_Expiration Report

JMS_IBM_Report_COA Report

JMS_IBM_Report_COD Report

JMS_IBM_Report_PAN Report

JMS_IBM_Report_NAN Report

JMS_IBM_Report_ Pass_Msg_ID Report

JMS_IBM_Report_Pass_Correl_ID Report

JMS_IBM_Report_Discard_Msg Report

JMS_IBM_MsgType MsgType

JMS_IBM_Feedback Feedback

JMS_IBM_Format Format

JMS_IBM_PutApplType PutApplType

JMS_IBM_Encoding

1 Encoding

JMS_IBM_Character_Set

1 CodedCharacterSetId

JMS_IBM_PutDate PutDate

JMS_IBM_PutTime PutTime

JMS_IBM_Last_Msg_In_Group MsgFlags

1. Only set if the incoming message is a Bytes Message.

Mapping JMS to a native WebSphere MQ application

This section describes what happens if you send a message from a JMS client

application to a traditional WebSphere MQ application with no knowledge of

MQRFH2 headers. Figure 3 on page 396 shows the mapping.

The administrator indicates that the JMS client is communicating with such an

application by setting the WebSphere MQ destination’s TargetClient value to

JMSC.MQJMS_CLIENT_NONJMS_MQ. This indicates that no MQRFH2 field is to

be produced. Note that if this is not done, the receiving application must be able to

handle the MQRFH2 field.

The mapping from JMS to MQMD targeted at a native WebSphere MQ application

is the same as mapping from JMS to MQMD targeted at a true JMS client. If JMS

receives a WebSphere MQ message with the MQMD format field set to other than

MQFMT_RFH2, data is being received from a non-JMS application. If the format is

MQFMT_STRING, the message is received as a JMS text message. Otherwise, it is

received as a JMS bytes message. Because there is no MQRFH2, only those JMS

properties that are transmitted in the MQMD can be restored.

If a WebSphere MQ JMS application receives a message that does not have an

MQRFH2 header, the TARGCLIENT property of the Queue or Topic object derived

from the JMSReplyTo header field of the message, by default, is set to MQ. This

means that a reply message sent to the queue or topic also does not have an

MQRFH2 header. You can switch off this behavior of including an MQRFH2

Mapping JMS messages

Chapter 13. JMS messages 395

header in a reply message only if the original message has an MQRFH2 header by

setting the TARGCLIENTMATCHING property of the connection factory to NO.

Message body

This section discusses the encoding of the message body itself. The encoding

depends on the type of JMS message:

ObjectMessage

is an object serialized by the Java Runtime in the normal way.

TextMessage

is an encoded string. For an outgoing message, the string is encoded in the

character set given by the destination object. This defaults to UTF8

encoding (the UTF8 encoding starts with the first character of the message;

there is no length field at the start). It is, however, possible to specify any

other character set supported by WebSphere MQ Java. Such character sets

are used mainly when you send a message to a non-JMS application.

 If the character set is a double-byte set (including UTF16), the destination

object’s integer encoding specification determines the order of the bytes.

 An incoming message is interpreted using the character set and encoding

that are specified in the message itself. These specifications are in the last

WebSphere MQ header (or MQMD if there are no headers). For JMS

messages, the last header is usually the MQRFH2.

BytesMessage

is, by default, a sequence of bytes as defined by the JMS 1.0.2 specification

and associated Java documentation.

 For an outgoing message that was assembled by the application itself, the

destination object’s encoding property can be used to override the

encodings of integer and floating point fields contained in the message. For

example, you can request that floating point values are stored in S/390®

rather than IEEE format).

 An incoming message is interpreted using the numeric encoding specified

in the message itself. This specification is in the rightmost WebSphere MQ

header (or MQMD if there are no headers). For JMS messages, the

rightmost header is usually the MQRFH2.

 If a BytesMessage is received, and is re-sent without modification, its body

is transmitted byte for byte, as it was received. The destination object’s

encoding property has no effect on the body. The only string-like entity

that can be sent explicitly in a BytesMessage is a UTF8 string. This is

Mapping Mapping

Mapping Mapping

Copying Copying

WebSphere MQ
Message

Traditional WebSphere MQ Application

Data

MQMD

JMS Message

JMS Client

Header

Data

Properties

JMS Client

JMS Message

Header

Data

Properties

Figure 3. How JMS messages are transformed to WebSphere MQ messages (no MQRFH2

header)

Mapping JMS messages

396 Using Java

encoded in Java UTF8 format, and starts with a 2-byte length field. The

destination object’s character set property has no effect on the encoding of

an outgoing BytesMessage. The character set value in an incoming

WebSphere MQ message has no effect on the interpretation of that message

as a JMS BytesMessage.

 Non-Java applications are unlikely to recognize the Java UTF8 encoding.

Therefore, for a JMS application to send a BytesMessage that contains text

data, the application itself must convert its strings to byte arrays, and write

these byte arrays into the BytesMessage.

MapMessage

is a string containing XML name/type/value triplets encoded as:

<map>

 <elt name="elementname1" dt="datatype1">value1</elt>

 <elt name="elementname2" dt="datatype2">value2</elt>

 ...

</map>

where datatype is one of the data types listed in Table 19 on page 387. The

default data type is string, and so the attribute dt="string" is omitted for

string elements.

 Previous versions of the WebSphere MQ JMS client encoded the body of a

map message in the following format:

<map>

 <elementname1 dt="datatype1">value1</elementname1>

 <elementname2 dt="datatype2">value2</elementname2>

 ...

</map>

The current version and Version 5.3 of the WebSphere MQ JMS client can

interpret either format, but versions of the WebSphere MQ JMS client

earlier than Version 5.3 cannot interpret the current format. If an

application must be able to receive map messages encoded in the current

format, the application must use the current version or Version 5.3 of the

WebSphere MQ JMS client.

 If an application needs to send map messages to another application that is

using a WebSphere MQ JMS client earlier than Version 5.3, the sending

application must call the connection factory method

setMapNameStyle(JMSC.MAP_NAME_STYLE_COMPATIBLE) to specify that the

map messages are sent in the previous format, which can be interpreted by

any WebSphere MQ JMS client. By default, all map messages are sent in

the current format.

 The character set used to encode or interpret the XML string that forms the

body of a map message is determined according to the rules that apply to

a text message.

StreamMessage

is like a map message, but without element names:

<stream>

 <elt dt="datatype1">value1</elt>

 <elt dt="datatype2">value2</elt>

 ...

</stream>

Mapping JMS messages

Chapter 13. JMS messages 397

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

where datatype is one of the data types listed in Table 19 on page 387. The

default data type is string, and so the attribute dt="string" is omitted for

string elements.

 The character set used to encode or interpret the XML string that makes up

the StreamMessage body is determined following the rules that apply to a

TextMessage.

The MQRFH2.format field is set as follows:

MQFMT_NONE

for ObjectMessage, BytesMessage, or messages with no body.

MQFMT_STRING

for TextMessage, StreamMessage, or MapMessage.

Mapping JMS messages

398 Using Java

Chapter 14. WebSphere MQ JMS Application Server Facilities

WebSphere MQ JMS supports the Application Server Facilities (ASF) that are

specified in the Java Message Service Specification, Version 1.1 (see Sun’s Java Web

site at http://java.sun.com). This specification identifies three roles within this

programming model:

v The JMS provider supplies ConnectionConsumer and advanced Session

functionality.

v The application server supplies ServerSessionPool and ServerSession

functionality.

v The client application uses the functionality that the JMS provider and

application server supply.

This chapter does not apply if you use a direct connection to a broker.

The following sections contain details about how WebSphere MQ JMS implements

ASF:

v “ASF classes and functions” describes how WebSphere MQ JMS implements the

ConnectionConsumer class and advanced functionality in the Session class.

v “Application server sample code” on page 406 describes the sample

ServerSessionPool and ServerSession code that is supplied with WebSphere MQ

JMS.

v “Examples of ASF use” on page 409 describes supplied ASF samples and

examples of ASF use from the perspective of a client application.

ASF classes and functions

WebSphere MQ JMS implements the ConnectionConsumer class and advanced

functionality in the Session class. For details, see:

v “MQQueueConnection” on page 526

v “MQSession” on page 533

v “MQTopicConnection” on page 546

ConnectionConsumer

The JMS specification enables an application server to integrate closely with a JMS

implementation by using the ConnectionConsumer interface. This feature provides

concurrent processing of messages. Typically, an application server creates a pool

of threads, and the JMS implementation makes messages available to these threads.

A JMS-aware application server (such as WebSphere Application Server) can use

this feature to provide high-level messaging functionality, such as message driven

beans.

Normal applications do not use the ConnectionConsumer, but expert JMS clients

might use it. For such clients, the ConnectionConsumer provides a

high-performance method to deliver messages concurrently to a pool of threads.

When a message arrives on a queue or a topic, JMS selects a thread from the pool

and delivers a batch of messages to it. To do this, JMS runs an associated

MessageListener’s onMessage() method.

© Copyright IBM Corp. 1997, 2007 399

|

You can achieve the same effect by constructing multiple Session and

MessageConsumer objects, each with a registered MessageListener. However, the

ConnectionConsumer provides better performance, less use of resources, and

greater flexibility. In particular, fewer Session objects are required.

To help you develop applications that use ConnectionConsumers, WebSphere MQ

JMS provides a fully-functioning example implementation of a pool. You can use

this implementation without any changes, or adapt it to suit the specific needs of

the application.

Planning an application

This section tells you how to plan an application including:

v “General principles for point-to-point messaging”

v “General principles for publish/subscribe messaging” on page 401

v “Handling poison messages” on page 402

v “Removing messages from the queue” on page 403

General principles for point-to-point messaging

When an application creates a ConnectionConsumer from a QueueConnection

object, it specifies a JMS queue object and a selector string. The

ConnectionConsumer then begins to provide messages to sessions in the associated

ServerSessionPool. Messages arrive on the queue, and if they match the selector,

they are delivered to sessions in the associated ServerSessionPool.

In WebSphere MQ terms, the queue object refers to either a QLOCAL or a QALIAS

on the local queue manager. If it is a QALIAS, that QALIAS must refer to a

QLOCAL. The fully-resolved WebSphere MQ QLOCAL is known as the underlying

QLOCAL. A ConnectionConsumer is said to be active if it is not closed and its

parent QueueConnection is started.

It is possible for multiple ConnectionConsumers, each with different selectors, to

run against the same underlying QLOCAL. To maintain performance, unwanted

messages must not accumulate on the queue. Unwanted messages are those for

which no active ConnectionConsumer has a matching selector. You can set the

QueueConnectionFactory so that these unwanted messages are removed from the

queue (for details, see “Removing messages from the queue” on page 403). You can

set this behavior in one of two ways:

v Use the JMS administration tool to set the QueueConnectionFactory to

MRET(NO).

v In your program, use:

MQQueueConnectionFactory.setMessageRetention(JMSC.MQJMS_MRET_NO)

If you do not change this setting, the default is to retain such unwanted messages

on the queue.

It is possible that ConnectionConsumers that target the same underlying QLOCAL

could be created from multiple QueueConnection objects. However, for

performance reasons, we recommend that multiple JVMs do not create

ConnectionConsumers against the same underlying QLOCAL.

When you set up the WebSphere MQ queue manager, consider the following

points:

v The underlying QLOCAL must be enabled for shared input. To do this, use the

following MQSC command:

ASF classes and functions

400 Using Java

ALTER QLOCAL(your.qlocal.name) SHARE GET(ENABLED)

v Your queue manager must have an enabled dead-letter queue. If a

ConnectionConsumer experiences a problem when it puts a message on the

dead-letter queue, message delivery from the underlying QLOCAL stops. To

define a dead-letter queue, use:

ALTER QMGR DEADQ(your.dead.letter.queue.name)

v The user that runs the ConnectionConsumer must have authority to perform

MQOPEN with MQOO_SAVE_ALL_CONTEXT and

MQOO_PASS_ALL_CONTEXT. For details, see the WebSphere MQ

documentation for your specific platform.

v If unwanted messages are left on the queue, they degrade the system

performance. Therefore, plan your message selectors so that between them, the

ConnectionConsumers will remove all messages from the queue.

For details about MQSC commands, see the WebSphere MQ Script (MQSC)

Command Reference.

General principles for publish/subscribe messaging

When an application creates a ConnectionConsumer from a TopicConnection

object, it specifies a Topic object and a selector string. The ConnectionConsumer

then begins to receive messages that match the selector on that Topic.

Alternatively, an application can create a durable ConnectionConsumer that is

associated with a specific name. This ConnectionConsumer receives messages that

have been published on the Topic since the durable ConnectionConsumer was last

active. It receives all such messages that match the selector on the Topic.

For non-durable subscriptions, a separate queue is used for ConnectionConsumer

subscriptions. The CCSUB configurable option on the TopicConnectionFactory

specifies the queue to use. Normally, the CCSUB specifies a single queue for use

by all ConnectionConsumers that use the same TopicConnectionFactory. However,

it is possible to make each ConnectionConsumer generate a temporary queue by

specifying a queue name prefix followed by an asterisk (*). For information about

how to form a valid prefix, see “Configuring nondurable message consumers” on

page 362.

For durable subscriptions, the CCDSUB property of the Topic specifies the queue

to use. Again, this can be a queue that already exists or a queue name prefix

followed by an asterisk (*). If you specify a queue that already exists, all durable

ConnectionConsumers that subscribe to the Topic use this queue. If you specify a

queue name prefix followed by an asterisk (*), a queue is generated the first time

that a durable ConnectionConsumer is created with a given name. This queue is

reused later when a durable ConnectionConsumer is created with the same name.

For information about how to form a valid prefix, see “Configuring durable topic

subscribers” on page 362.

When you set up the WebSphere MQ queue manager, consider the following

points:

v Your queue manager must have an enabled dead-letter queue. If a

ConnectionConsumer experiences a problem when it puts a message on the

dead-letter queue, message delivery from the underlying QLOCAL stops. To

define a dead-letter queue, use:

ALTER QMGR DEADQ(your.dead.letter.queue.name)

ASF classes and functions

Chapter 14. WebSphere MQ JMS Application Server Facilities 401

v The user that runs the ConnectionConsumer must have authority to perform

MQOPEN with MQOO_SAVE_ALL_CONTEXT and

MQOO_PASS_ALL_CONTEXT. For details, see the WebSphere MQ

documentation for your platform.

v You can optimize performance for an individual ConnectionConsumer by

creating a separate, dedicated, queue for it. This is at the cost of extra resource

usage.

Handling poison messages

Sometimes, a badly-formatted message arrives on a queue. Such a message might

make the receiving application fail and back out the receipt of the message. In this

situation, such a message might be received, then returned to the queue,

repeatedly. These messages are known as poison messages. The

ConnectionConsumer must be able to detect poison messages and reroute them to

an alternative destination.

When an application uses ConnectionConsumers, the circumstances in which a

message is backed out depend on the session that the application server provides:

v When the session is non-transacted, with AUTO_ACKNOWLEDGE or

DUPS_OK_ACKNOWLEDGE, a message is backed out only after a system error,

or if the application terminates unexpectedly.

v When the session is non-transacted with CLIENT_ACKNOWLEDGE,

unacknowledged messages can be backed out by the application server calling

Session.recover().

Typically, the client implementation of MessageListener or the application server

calls Message.acknowledge(). Message.acknowledge() acknowledges all messages

delivered on the session so far.

v When the session is transacted, unacknowledged messages can be backed out by

the application server calling Session.rollback().

v If the application server supplies an XASession, messages are committed or

backed out depending on a distributed transaction. The application server takes

responsibility for completing the transaction.

The WebSphere MQ queue manager keeps a record of the number of times that

each message has been backed out. When this number reaches a configurable

threshold, the ConnectionConsumer requeues the message on a named requeue

queue. If this requeue fails for any reason, the message is removed from the queue

and either requeued to the dead-letter queue, or discarded. See “Removing

messages from the queue” on page 403 for more details.

The threshold and the name of the requeue queue are attributes of the WebSphere

MQ local queue. The names of the attributes are BackoutThreshold and

BackoutRequeueQName. For point-to-point messaging, this is the underlying local

queue. For publish/subscribe messaging, this is the CCSUB queue defined on the

TopicConnectionFactory, or the CCDSUB queue defined on the Topic. To set the

BackoutThreshold and BackoutRequeueQName attributes, issue the following MQSC

command:

ALTER QLOCAL(your.queue.name) BOTHRESH(threshold) BOQUEUE(your.requeue.queue.name)

For publish/subscribe messaging, if your system creates a dynamic queue for each

subscription, these settings are obtained from the WebSphere MQ JMS model

queue. To alter these settings, you can use:

ALTER QMODEL(SYSTEM.JMS.MODEL.QUEUE) BOTHRESH(threshold) BOQUEUE(your.requeue.queue.name)

ASF classes and functions

402 Using Java

|

|
|
|

|

If the threshold is zero, poison message handling is disabled, and poison messages

remain on the input queue. Otherwise, when the backout count reaches the

threshold, the message is sent to the named requeue queue. If the backout count

reaches the threshold, but the message cannot go to the requeue queue, the

message is sent to the dead-letter queue or discarded. This situation occurs if the

requeue queue is not defined, or if the ConnectionConsumer cannot send the

message to the requeue queue. See “Removing messages from the queue” for

further details.

The embedded JMS provider in WebSphere Application Server, Version 5.0 and

Version 5.1 handles poison messages in a way that is different to that just

described for WebSphere MQ JMS. For information about how the embedded JMS

provider handles poison messages, see the relevant WebSphere Application Server

information center.

Removing messages from the queue

When an application uses ConnectionConsumers, JMS might need to remove

messages from the queue in a number of situations:

Badly formatted message

A message might arrive that JMS cannot parse.

Poison message

A message might reach the backout threshold, but the

ConnectionConsumer fails to requeue it on the backout queue.

No interested ConnectionConsumer

For point-to-point messaging, when the QueueConnectionFactory is set so

that it does not retain unwanted messages, a message arrives that is

unwanted by any of the ConnectionConsumers.

In these situations, the ConnectionConsumer attempts to remove the message from

the queue. The disposition options in the report field of the message’s MQMD set

the exact behavior. These options are:

MQRO_DEAD_LETTER_Q

The message is requeued to the queue manager’s dead-letter queue. This is

the default.

MQRO_DISCARD_MSG

The message is discarded.

The ConnectionConsumer also generates a report message, and this also depends

on the report field of the message’s MQMD. This message is sent to the message’s

ReplyToQ on the ReplyToQmgr. If there is an error while the report message is

being sent, the message is sent to the dead-letter queue instead. The exception

report options in the report field of the message’s MQMD set details of the report

message. These options are:

MQRO_EXCEPTION

A report message is generated that contains the MQMD of the original

message. It does not contain any message body data.

MQRO_EXCEPTION_WITH_DATA

A report message is generated that contains the MQMD, any MQ headers,

and 100 bytes of body data.

MQRO_EXCEPTION_WITH_FULL_DATA

A report message is generated that contains all data from the original

message.

ASF classes and functions

Chapter 14. WebSphere MQ JMS Application Server Facilities 403

|
|
|
|
|

default

No report message is generated.

When report messages are generated, the following options are honored:

v MQRO_NEW_MSG_ID

v MQRO_PASS_MSG_ID

v MQRO_COPY_MSG_ID_TO_CORREL_ID

v MQRO_PASS_CORREL_ID

If a ConnectionConsumer cannot follow the disposition options or exception report

options in the message’s MQMD, its action depends on the persistence of the

message. If the message is non-persistent, the message is discarded and no report

message is generated. If the message is persistent, delivery of all messages from

the QLOCAL stops.

It is important to define a dead-letter queue, and to check it regularly to ensure

that no problems occur. Particularly, ensure that the dead-letter queue does not

reach its maximum depth, and that its maximum message size is large enough for

all messages.

When a message is requeued to the dead-letter queue, it is preceded by a

WebSphere MQ dead-letter header (MQDLH). See the WebSphere MQ Application

Programming Reference for details about the format of the MQDLH. You can identify

messages that a ConnectionConsumer has placed on the dead-letter queue, or

report messages that a ConnectionConsumer has generated, by the following fields:

v PutApplType is MQAT_JAVA (0x1C)

v PutApplName is “MQ JMS ConnectionConsumer”

These fields are in the MQDLH of messages on the dead-letter queue, and the

MQMD of report messages. The feedback field of the MQMD, and the Reason field

of the MQDLH, contain a code describing the error. For details about these codes,

see “Error handling.” Other fields are as described in the WebSphere MQ Application

Programming Reference.

Error handling

This section covers various aspects of error handling, including “Recovering from

error conditions” and “Reason and feedback codes” on page 405.

Recovering from error conditions

If a ConnectionConsumer experiences a serious error, message delivery to all

ConnectionConsumers with an interest in the same QLOCAL stops. Typically, this

occurs if the ConnectionConsumer cannot requeue a message to the dead-letter

queue, or it experiences an error when reading messages from the QLOCAL.

When this occurs, any ExceptionListener that is registered with the affected

Connection is notified.

You can use these to identify the cause of the problem. In some cases, the system

administrator must intervene to resolve the problem.

There are two ways in which an application can recover from these error

conditions:

ASF classes and functions

404 Using Java

v Call close() on all affected ConnectionConsumers. The application can create

new ConnectionConsumers only after all affected ConnectionConsumers are

closed and any system problems are resolved.

v Call stop() on all affected Connections. Once all Connections are stopped and

any system problems are resolved, the application should be able to start() all

Connections successfully.

Reason and feedback codes

To determine the cause of an error, you can use:

v The feedback code in any report messages

v The reason code in the MQDLH of any messages in the dead-letter queue

ConnectionConsumers generate the following reason codes.

MQRC_BACKOUT_THRESHOLD_REACHED (0x93A; 2362)

Cause The message has reached the Backout Threshold defined on the

QLOCAL, but no Backout Queue is defined.

 On platforms where you cannot define the Backout Queue, the

message has reached the JMS-defined backout threshold of 20.

Action

If this is not wanted, define the Backout Queue for the relevant

QLOCAL. Also look for the cause of the multiple backouts.

MQRC_MSG_NOT_MATCHED (0x93B; 2363)

Cause In point-to-point messaging, there is a message that does not

match any of the selectors for the ConnectionConsumers

monitoring the queue. To maintain performance, the message is

requeued to the dead-letter queue.

Action

To avoid this situation, ensure that ConnectionConsumers using

the queue provide a set of selectors that deal with all messages, or

set the QueueConnectionFactory to retain messages.

 Alternatively, investigate the source of the message.

MQRC_JMS_FORMAT_ERROR (0x93C; 2364)

Cause JMS cannot interpret the message on the queue.

Action

Investigate the origin of the message. JMS usually delivers

messages of an unexpected format as a BytesMessage or

TextMessage. Occasionally, this fails if the message is very badly

formatted.

 Other codes that appear in these fields are caused by a failed attempt to requeue

the message to a Backout Queue. In this situation, the code describes the reason

that the requeue failed. To diagnose the cause of these errors, refer to the

WebSphere MQ Application Programming Reference.

If the report message cannot be put on the ReplyToQ, it is put on the dead-letter

queue. In this situation, the feedback field of the MQMD is filled in as described

above. The reason field in the MQDLH explains why the report message could not

be placed on the ReplyToQ.

ASF classes and functions

Chapter 14. WebSphere MQ JMS Application Server Facilities 405

Application server sample code

Figure 4 summarizes the principles of ServerSessionPool and ServerSession

functionality.

1. The ConnectionConsumers get message references from the queue.

2. Each ConnectionConsumer selects specific message references.

3. The ConnectionConsumer buffer holds the selected message references.

4. The ConnectionConsumer requests one or more ServerSessions from the

ServerSessionPool.

5. ServerSessions are allocated from the ServerSessionPool.

6. The ConnectionConsumer assigns message references to the ServerSessions and

starts the ServerSession threads running.

A B C D E

ConnectionConsumer

A B C D E

ConnectionConsumer

A B C D E

ConnectionConsumer

A B C D E F G

Message queue

1

2

3

4

A B SSt

JMS Session

C D E SSu

JMS Session

ServerSessionPool

SSa

Server sessions

5

5

8

8

7

6

Figure 4. ServerSessionPool and ServerSession functionality

Application server sample code

406 Using Java

7. Each ServerSession retrieves its referenced messages from the queue. It passes

them to the onMessage method from the MessageListener that is associated with

the JMS Session.

8. After it completes its processing, the ServerSession is returned to the pool.

Normally, the application server supplies ServerSessionPool and ServerSession

functionality. However, WebSphere MQ JMS is supplied with a simple

implementation of these interfaces, with program source. These samples are stored

in a subdirectory of the WebSphere MQ Java samples directory. The subdirectory is

called jms\asf on Windows and jms/asf on the other platforms. To determine the

WebSphere MQ Java samples directory for your platform, see Table 3 on page 8.

These samples enable you to use the WebSphere MQ JMS ASF in a standalone

environment (that is, you do not need a suitable application server). Also, they

provide examples of how to implement these interfaces and take advantage of the

WebSphere MQ JMS ASF. These examples are intended to aid both WebSphere MQ

JMS users, and vendors of other application servers.

MyServerSession.java

This class implements the javax.jms.ServerSession interface. It associates a thread

with a JMS session. Instances of this class are pooled by a ServerSessionPool (see

“MyServerSessionPool.java”). As a ServerSession, it must implement the following

two methods:

v getSession(), which returns the JMS Session associated with this ServerSession

v start(), which starts this ServerSession’s thread and results in the JMS Session’s

run() method being invoked

MyServerSession also implements the Runnable interface. Therefore, the creation of

the ServerSession’s thread can be based on this class, and does not need a separate

class.

The class uses a wait()-notify() mechanism that is based on the values of two

boolean flags, ready and quit. This mechanism means that the ServerSession

creates and starts its associated thread during its construction. However, it does

not automatically execute the body of the run() method. The body of the run()

method is executed only when the ready flag is set to true by the start() method.

The ASF calls the start() method when it is necessary to deliver messages to the

associated JMS session.

For delivery, the run() method of the JMS session is called. The WebSphere MQ

JMS ASF will have already loaded the run() method with messages.

After delivery completes, the ready flag is reset to false, and the owning

ServerSessionPool is notified that delivery is complete. The ServerSession then

remains in a wait state until either the start() method is called again, or the

close() method is invoked and ends this ServerSession’s thread.

MyServerSessionPool.java

This class implements the javax.jms.ServerSessionPool interface, creating and

controlling access to a pool of ServerSessions.

In this implementation, the pool consists of a static array of ServerSession objects

that are created during the construction of the pool. The following four parameters

are passed into the constructor:

Application server sample code

Chapter 14. WebSphere MQ JMS Application Server Facilities 407

v javax.jms.Connection connection

The connection used to create JMS sessions.

v int capacity

The size of the array of MyServerSession objects.

v int ackMode

The required acknowledge mode of the JMS sessions.

v MessageListenerFactory mlf

The MesssageListenerFactory that creates the message listener that is supplied to

the JMS sessions. See “MessageListenerFactory.java.”

The pool’s constructor uses these parameters to create an array of MyServerSession

objects. The supplied connection is used to create JMS sessions of the given

acknowledge mode and correct domain (QueueSessions for point-to-point and

TopicSessions for publish/subscribe). The sessions are supplied with a message

listener. Finally, the ServerSession objects, based on the JMS sessions, are created.

This sample implementation is a static model. That is, all the ServerSessions in the

pool are created when the pool is created, and after this the pool cannot grow or

shrink. This approach is just for simplicity. It is possible for a ServerSessionPool to

use a sophisticated algorithm to create ServerSessions dynamically, as needed.

MyServerSessionPool keeps a record of which ServerSessions are currently in use

by maintaining an array of boolean values called inUse. These booleans are all

initialized to false. When the getServerSession method is invoked and requests a

ServerSession from the pool, the inUse array is searched for the first false value.

When one is found, the boolean is set to true and the corresponding ServerSession

is returned. If there are no false values in the inUse array, the getServerSession

method must wait() until notification occurs.

Notification occurs in either of the following circumstances:

v The pool’s close() method is called, indicating that the pool must be shut

down.

v A ServerSession that is currently in use completes its workload and calls the

serverSessionFinished method. The serverSessionFinished method returns the

ServerSession to the pool, and sets the corresponding inUse flag to false. The

ServerSession then becomes eligible for reuse.

MessageListenerFactory.java

In this sample, a message listener factory object is associated with each

ServerSessionPool instance. The MessageListenerFactory class represents a very

simple interface that is used to obtain an instance of a class that implements the

javax.jms.MessageListener interface. The class contains a single method:

 javax.jms.MessageListener createMessageListener();

An implementation of this interface is supplied when the ServerSessionPool is

constructed. This object is used to create message listeners for the individual JMS

sessions that back up the ServerSessions in the pool. This architecture means that

each separate implementation of the MessageListenerFactory interface must have

its own ServerSessionPool.

WebSphere MQ JMS includes a sample MessageListenerFactory implementation,

which is discussed in “CountingMessageListenerFactory.java” on page 410.

Application server sample code

408 Using Java

Examples of ASF use

A set of classes, supplied with WebSphere MQ, use the WebSphere MQ JMS

application server facilities described in “ASF classes and functions” on page 399

within the sample standalone application server environment described in

“Application server sample code” on page 406. These classes are stored in a

subdirectory of the WebSphere MQ Java samples directory. The subdirectory is

called jms\asf on Windows and jms/asf on the other platforms. To determine the

WebSphere MQ Java samples directory for your platform, see Table 3 on page 8.

These samples provide examples of ASF use from the perspective of a client

application:

v A simple point-to-point example uses:

– ASFClient1.java

– Load1.java

– CountingMessageListenerFactory.java
v A more complex point-to-point example uses:

– ASFClient2.java

– Load2.java

– CountingMessageListenerFactory.java

– LoggingMessageListenerFactory.java
v A simple publish/subscribe example uses:

– ASFClient3.java

– TopicLoad.java

– CountingMessageListenerFactory.java
v A more complex publish/subscribe example uses:

– ASFClient4.java

– TopicLoad.java

– CountingMessageListenerFactory.java

– LoggingMessageListenerFactory.java
v A publish/subscribe example using a durable ConnectionConsumer uses:

– ASFClient5.java

– TopicLoad.java

The following sections describe each class in turn.

Load1.java

This class is a generic JMS application that loads a given queue with a number of

messages, then terminates. It can either retrieve the required administered objects

from a JNDI namespace, or create them explicitly, using the WebSphere MQ JMS

classes that implement these interfaces. The administered objects that are required

are a QueueConnectionFactory and a queue. You can use the command line

options to set the number of messages with which to load the queue, and the sleep

time between individual message puts.

This application has two versions of the command line syntax.

For use with JNDI, the syntax is:

Examples of ASF use

Chapter 14. WebSphere MQ JMS Application Server Facilities 409

java -Djava.library.path=library_path

 Load1 [-icf jndiICF] [-url jndiURL] [-qcfLookup qcfLookup]

 [-qLookup qLookup] [-sleep sleepTime] [-msgs numMsgs]

where library_path is the path to the WebSphere MQ Java libraries (see “The

WebSphere MQ Java libraries” on page 10).

For use without JNDI, the syntax is:

java -Djava.library.path=library_path

 Load1 -nojndi [-qmgr qMgrName] [-q qName]

 [-sleep sleepTime] [-msgs numMsgs]

Table 29 describes the parameters and gives their defaults.

 Table 29. Load1 parameters and defaults

Parameter Meaning Default

jndiICF Initial context factory class used

for JNDI

com.sun.jndi.ldap.LdapCtxFactory

jndiURL Provider URL used for JNDI ldap://localhost/o=ibm,c=us

qcfLookup JNDI lookup key used for

QueueConnectionFactory

cn=qcf

qLookup JNDI lookup key used for Queue cn=q

qMgrName Name of queue manager to

connect to

″″ (use the default queue manager)

qName Name of queue to load SYSTEM.DEFAULT.LOCAL.QUEUE

sleepTime Time (in milliseconds) to pause

between message puts

0 (no pause)

numMsgs Number of messages to put 1000

If there are any errors, an error message is displayed and the application

terminates.

You can use this application to simulate message load on a WebSphere MQ queue.

In turn, this message load can trigger the ASF-enabled applications described in

the following sections. The messages put to the queue are simple JMS TextMessage

objects. These objects do not contain user-defined message properties, which could

be useful to make use of different message listeners. The source code is supplied so

that you can modify this load application if necessary.

CountingMessageListenerFactory.java

This file contains definitions for two classes:

v CountingMessageListener

v CountingMessageListenerFactory

CountingMessageListener is a very simple implementation of the

javax.jms.MessageListener interface. It keeps a record of the number of times its

onMessage method has been invoked, but does nothing with the messages it is

passed.

CountingMessageListenerFactory is the factory class for CountingMessageListener.

It is an implementation of the MessageListenerFactory interface described in

“MessageListenerFactory.java” on page 408. This factory keeps a record of all the

Examples of ASF use

410 Using Java

message listeners that it produces. It also includes a method, printStats(), which

displays usage statistics for each of these listeners.

ASFClient1.java

This application acts as a client of the WebSphere MQ JMS ASF. It sets up a single

ConnectionConsumer to consume the messages in a single WebSphere MQ queue.

It displays throughput statistics for each message listener that is used, and

terminates after one minute.

The application can either retrieve the required administered objects from a JNDI

namespace, or create them explicitly, using the WebSphere MQ JMS classes that

implement these interfaces. The administered objects that are required are a

QueueConnectionFactory and a queue.

This application has two versions of the command line syntax:

For use with JNDI, the syntax is:

java -Djava.library.path=library_path

 ASFClient1 [-icf jndiICF] [-url jndiURL] [-qcfLookup qcfLookup]

 [-qLookup qLookup] [-poolSize poolSize] [-batchSize batchSize]

where library_path is the path to the WebSphere MQ Java libraries (see “The

WebSphere MQ Java libraries” on page 10).

For use without JNDI, the syntax is:

java -Djava.library.path=library_path

 ASFClient1 -nojndi [-qmgr qMgrName] [-q qName]

 [-poolSize poolSize] [-batchSize batchSize]

Table 30 describes the parameters and gives their defaults.

 Table 30. ASFClient1 parameters and defaults

Parameter Meaning Default

jndiICF Initial context factory class used

for JNDI

com.sun.jndi.ldap.LdapCtxFactory

jndiURL Provider URL used for JNDI ldap://localhost/o=ibm,c=us

qcfLookup JNDI lookup key used for

QueueConnectionFactory

cn=qcf

qLookup JNDI lookup key used for Queue cn=q

qMgrName Name of queue manager to

connect to

″″ (use the default queue manager)

qName Name of queue to consume from SYSTEM.DEFAULT.LOCAL.QUEUE

poolSize The number of ServerSessions

created in the ServerSessionPool

being used

5

batchSize The maximum number of message

that can be assigned to a

ServerSession at a time

10

The application obtains a QueueConnection from the QueueConnectionFactory.

A ServerSessionPool, in the form of a MyServerSessionPool, is constructed using:

v The QueueConnection that was created previously

Examples of ASF use

Chapter 14. WebSphere MQ JMS Application Server Facilities 411

v The required poolSize

v An acknowledge mode, AUTO_ACKNOWLEDGE

v An instance of a CountingMessageListenerFactory, as described in

“CountingMessageListenerFactory.java” on page 410

The connection’s createConnectionConsumer method is invoked, passing in:

v The queue that was obtained earlier

v A null message selector (indicating that all messages should be accepted)

v The ServerSessionPool that was just created

v The batchSize that is required

The consumption of messages is then started by invoking the connection’s start()

method.

The client application displays throughput statistics for each message listener that

is used, displaying statistics every 10 seconds. After one minute, the connection is

closed, the server session pool is stopped, and the application terminates.

Load2.java

This class is a JMS application that loads a given queue with a number of

messages, then terminates, in a similar way to Load1.java. The command line

syntax is also similar to that for Load1.java (substitute Load2 for Load1 in the

syntax). For details, see “Load1.java” on page 409.

The difference is that each message contains a user property called value, which

takes a randomly selected integer value between 0 and 100. This property means

that you can apply message selectors to the messages. Consequently, the messages

can be shared between the two consumers that are created in the client application

described in “ASFClient2.java.”

LoggingMessageListenerFactory.java

This file contains definitions for two classes:

v LoggingMessageListener

v LoggingMessageListenerFactory

LoggingMessageListener is an implementation of the javax.jms.MessageListener

interface. It takes the messages that are passed to it and writes an entry to the log

file. The default log file is ./ASFClient2.log. You can inspect this file and check

the messages that are sent to the connection consumer that is using this message

listener.

LoggingMessageListenerFactory is the factory class for LoggingMessageListener. It

is an implementation of the MessageListenerFactory interface described in

“MessageListenerFactory.java” on page 408.

ASFClient2.java

ASFClient2.java is a slightly more complicated client application than

ASFClient1.java. It creates two ConnectionConsumers that feed off the same queue,

but that apply different message selectors. The application uses a

CountingMessageListenerFactory for one consumer, and a

LoggingMessageListenerFactory for the other. Use of two different message listener

factories means that each consumer must have its own server session pool.

Examples of ASF use

412 Using Java

The application displays statistics that relate to one ConnectionConsumer on

screen, and writes statistics that relate to the other ConnectionConsumer to a log

file.

The command line syntax is similar to that for “ASFClient1.java” on page 411

(substitute ASFClient2 for ASFClient1 in the syntax). Each of the two server session

pools contains the number of ServerSessions set by the poolSize parameter.

There should be an uneven distribution of messages. The messages loaded onto the

source queue by Load2 contain a user property, where the value is between 0 and

100, evenly and randomly distributed. The message selector value>75 is applied to

highConnectionConsumer, and the message selector value≤75 is applied to

normalConnectionConsumer. The highConnectionConsumer’s messages

(approximately 25% of the total load) are sent to a LoggingMessageListener. The

normalConnectionConsumer’s messages (approximately 75% of the total load) are

sent to a CountingMessageListener.

When the client application runs, statistics that relate to the

normalConnectionConsumer, and its associated CountingMessageListenerFactories,

are printed to screen every 10 seconds. Statistics that relate to the

highConnectionConsumer, and its associated LoggingMessageListenerFactories, are

written to the log file.

You can inspect the screen and the log file to see the real destination of the

messages. Add the totals for each of the CountingMessageListeners. As long as the

client application does not terminate before all the messages are consumed, this

accounts for approximately 75% of the load. The number of log file entries

accounts for the remainder of the load. (If the client application terminates before

all the messages are consumed, you can increase the application timeout.)

TopicLoad.java

This class is a JMS application that is a publish/subscribe version of the Load2

queue loader described in “Load2.java” on page 412. It publishes the required

number of messages under the given topic, then terminates. Each message contains

a user property called value, which takes a randomly selected integer value

between 0 and 100.

To use this application, ensure that the broker is running and that the required

setup is complete. For details, see “Additional setup for publish/subscribe mode”

on page 23.

This application has two versions of the command line syntax.

For use with JNDI, the syntax is:

java -Djava.library.path=library_path

 TopicLoad [-icf jndiICF] [-url jndiURL] [-tcfLookup tcfLookup]

 [-tLookup tLookup] [-sleep sleepTime] [-msgs numMsgs]

where library_path is the path to the WebSphere MQ Java libraries (see “The

WebSphere MQ Java libraries” on page 10).

For use without JNDI, the syntax is:

java -Djava.library.path=library_path

 TopicLoad -nojndi [-qmgr qMgrName] [-t tName]

 [-sleep sleepTime] [-msgs numMsgs]

Examples of ASF use

Chapter 14. WebSphere MQ JMS Application Server Facilities 413

Table 31 describes the parameters and gives their defaults.

 Table 31. TopicLoad parameters and defaults

Parameter Meaning Default

jndiICF Initial context factory class used

for JNDI

com.sun.jndi.ldap.LdapCtxFactory

jndiURL Provider URL used for JNDI ldap://localhost/o=ibm,c=us

tcfLookup JNDI lookup key used for

TopicConnectionFactory

cn=tcf

tLookup JNDI lookup key used for Topic cn=t

qMgrName Name of queue manager to

connect to, and broker queue

manager to publish messages to

″″ (use the default queue manager)

tName Name of topic to publish to MQJMS/ASF/TopicLoad

sleepTime Time (in milliseconds) to pause

between message puts

0 (no pause)

numMsgs Number of messages to put 200

If there are any errors, an error message is displayed and the application

terminates.

ASFClient3.java

ASFClient3.java is a client application that is a publish/subscribe version of

“ASFClient1.java” on page 411. It sets up a single ConnectionConsumer to

consume the messages published on a single Topic. It displays throughput statistics

for each message listener that is used, and terminates after one minute.

This application has two versions of the command line syntax.

For use with JNDI, the syntax is:

java -Djava.library.path=library_path

 ASFClient3 [-icf jndiICF] [-url jndiURL] [-tcfLookup tcfLookup]

 [-tLookup tLookup] [-poolsize poolSize] [-batchsize batchSize]

where library_path is the path to the WebSphere MQ Java libraries (see “The

WebSphere MQ Java libraries” on page 10).

For use without JNDI, the syntax is:

java -Djava.library.path=library_path

 ASFClient3 -nojndi [-qmgr qMgrName] [-t tName]

 [-poolsize poolSize] [-batchsize batchSize]

Table 32 describes the parameters and gives their defaults.

 Table 32. ASFClient3 parameters and defaults

Parameter Meaning Default

jndiICF Initial context factory class used

for JNDI

com.sun.jndi.ldap.LdapCtxFactory

jndiURL Provider URL used for JNDI ldap://localhost/o=ibm,c=us

tcfLookup JNDI lookup key used for

TopicConnectionFactory

cn=tcf

Examples of ASF use

414 Using Java

Table 32. ASFClient3 parameters and defaults (continued)

Parameter Meaning Default

tLookup JNDI lookup key used for Topic cn=t

qMgrName Name of queue manager to

connect to, and broker queue

manager to publish messages to

″″ (use the default queue manager)

tName Name of topic to consume from MQJMS/ASF/TopicLoad

poolSize The number of ServerSessions

created in the ServerSessionPool

being used

5

batchSize The maximum number of message

that can be assigned to a

ServerSession at a time

10

Like ASFClient1, the client application displays throughput statistics for each

message listener that is used, displaying statistics every 10 seconds. After one

minute, the connection is closed, the server session pool is stopped, and the

application terminates.

ASFClient4.java

ASFClient4.java is a more complex publish/subscribe client application. It creates

three ConnectionConsumers that all feed off the same topic, but each one applies

different message selectors.

The first two consumers use high and normal message selectors, in the same way as

described for the application “ASFClient2.java” on page 412. The third consumer

does not use any message selector. The application uses two

CountingMessageListenerFactories for the two selector-based consumers, and a

LoggingMessageListenerFactory for the third consumer. Because the application

uses different message listener factories, each consumer must have its own server

session pool.

The application displays statistics that relate to the two selector-based consumers

on screen. It writes statistics that relate to the third ConnectionConsumer to a log

file.

The command line syntax is similar to that for “ASFClient3.java” on page 414

(substitute ASFClient4 for ASFClient3 in the syntax). Each of the three server

session pools contains the number of ServerSessions set by the poolSize parameter.

When the client application runs, statistics that relate to the

normalConnectionConsumer and the highConnectionConsumer, and their

associated CountingMessageListenerFactories, are printed to screen every 10

seconds. Statistics that relate to the third ConnectionConsumer, and its associated

LoggingMessageListenerFactories, are written to the log file.

You can inspect the screen and the log file to see the real destination of the

messages. Add the totals for each of the CountingMessageListeners and inspect the

number of log file entries.

The distribution of messages is different from the distribution obtained by a

point-to-point version of the same application (ASFClient2.java). This is because, in

the publish/subscribe domain, each consumer of a topic obtains its own copy of

Examples of ASF use

Chapter 14. WebSphere MQ JMS Application Server Facilities 415

each message published on that topic. In this application, for a given topic load,

the high and normal consumers receive approximately 25% and 75% of the load,

respectively. The third consumer still receives 100% of the load. Therefore, the total

number of messages received is greater than 100% of the load originally published

on the topic.

ASFClient5.java

This sample exercises the durable publish/subscribe ConnectionConsumer

functionality in WebSphere MQ JMS.

You invoke it with the same command-line options as the ASFClient4 sample, and,

as with the other samples, the TopicLoad sample application can be used to trigger

the consumer that is created. For details of TopicLoad, see “TopicLoad.java” on

page 413.

When invoked, ASFClient5 displays a menu of three options:

 1. Create/reactivate a durable ConnectionConsumer

 2. Unsubscribe a durable ConnectionConsumer

 X. Exit

If you choose option 1, and this is the first time this sample has been run, a new

durable ConnectionConsumer is created using the given name. It then displays one

minute’s worth of throughput statistics, rather like the other samples, before

closing the connection and terminating.

Having created a durable consumer, messages published on the topic in question

continues to arrive at the consumer’s destination even though the consumer is

inactive.

This can be confirmed by running ASFClient5 again, and selecting option 1. This

reactivates the named durable consumer, and the statistics displayed show that any

relevant messages published during the period of inactivity were subsequently

delivered to the consumer.

If you run ASFClient5 again and select option 2, this unsubscribes the named

durable ConnectionConsumer and discards any outstanding messages delivered to

it. Do this to ensure that the broker does not continue to deliver unwanted

messages.

Examples of ASF use

416 Using Java

Part 5. WebSphere MQ JMS API reference

Chapter 15. Package com.ibm.jms 421

JMSBytesMessage 422

Methods 423

JMSMapMessage 431

Methods 431

JMSMessage 439

Methods 441

JMSObjectMessage 456

Methods 456

JMSStreamMessage 458

Methods 459

JMSTextMessage 466

Methods 466

Chapter 16. Package com.ibm.mq.jms 469

Cleanup 470

Constructors 470

Methods 470

MQConnection 474

Methods 474

MQConnectionFactory 478

Constructors 478

Methods 478

MQConnectionMetaData 505

Constructors 505

Methods 505

MQDestination 507

Methods 507

MQJMSLevel 512

Constructors 512

MQMessageConsumer 513

Methods 513

MQMessageProducer 516

Methods 516

MQQueue 522

Constructors 522

Methods 523

MQQueueBrowser 524

Methods 524

MQQueueConnection 526

Methods 526

MQQueueConnectionFactory 527

Constructors 527

Methods 527

MQQueueEnumeration 528

Methods 528

MQQueueReceiver 529

Methods 529

MQQueueSender 530

Methods 530

MQQueueSession 531

Methods 531

MQSession 533

Methods 533

MQTemporaryQueue 541

Methods 541

MQTemporaryTopic 542

Methods 542

MQTopic 543

Methods 543

MQTopicConnection 546

Methods 546

MQTopicConnectionFactory 547

Constructors 547

Methods 547

MQTopicPublisher 548

Methods 548

MQTopicSession 550

Methods 550

MQTopicSubscriber 552

Methods 552

MQXAConnection 553

Methods 553

MQXAConnectionFactory 554

Constructors 554

Methods 554

MQXAQueueConnection 556

Methods 556

MQXAQueueConnectionFactory 557

Constructors 557

Methods 557

MQXAQueueSession 559

Constructors 559

Methods 559

MQXASession 560

Methods 560

MQXATopicConnection 562

Methods 562

MQXATopicConnectionFactory 563

Constructors 563

Methods 563

MQXATopicSession 565

Methods 565

JMSC 566

Fields 566

BrokerCommandFailedException 577

Methods 577

FieldNameException 578

FieldTypeException 579

IntErrorException 580

ISSLException 581

JMSInvalidParameterException 582

JMSListenerSetException 583

JMSMessageQueueOverflowException 584

JMSNotActiveException 585

JMSNotSupportedException 586

JMSParameterIsNullException 587

MulticastHeartbeatTimeoutException 588

MulticastPacketLossException 589

NoBrokerResponseException 590

SyntaxException 591

© Copyright IBM Corp. 1997, 2007 417

Chapter 17. Package com.ibm.mq.jms.services 593

MQJMS_Messages 594

Fields 594

418 Using Java

Introduction

This part documents the WebSphere MQ JMS application programming interface.

The same information is provided in the file mqjmsapi.jar, which contains the

HTML pages generated by the Javadoc tool.

Part 5. WebSphere MQ JMS API reference 419

420 Using Java

Chapter 15. Package com.ibm.jms

This package comprises a set of classes and interfaces which are relevant to JMS

messages.

© Copyright IBM Corp. 1997, 2007 421

JMSBytesMessage

public class JMSBytesMessage

extends JMSMessage

implements BytesMessage

java.lang.Object

 |

 +----com.ibm.jms.JMSMessage

 |

 +----com.ibm.jms.JMSBytesMessage

JMSBytesMessage is used to send a message containing a stream of uninterpreted

bytes. The receiver of the message supplies the interpretation of the bytes.

Its methods are based largely on those found in java.io.DataInputStream and

java.io.DataOutputStream.

This message type is for client encoding of existing message formats. If possible,

use one of the other self-defining message types instead.

Although JMS allows the use of message properties with byte messages, it is

typically not done since the inclusion of properties affects the format.

The primitive types can be written explicitly using methods for each type; this is

the recommended method. They can also be written generically as objects. For

example, a call to BytesMessage.writeInt(6) is equivalent to

BytesMessage.writeObject(new Integer(6)). Both forms are provided because the

explicit form is convenient for static programming and the object form is needed

when types are not known at compile time.

When the message is first created, and when clearBody() is called, the body of the

message is in write-only mode. After the first call to the reset method has been

made, the message is in read-only mode. When a message has been sent, the

provider always calls reset to read its content. Likewise, when a message has been

received, the provider calls reset so that the message is in read-only mode for the

client.

If clearBody is called on a message in read-only mode, the message body is cleared

and the message is in write-only mode.

If a client attempts to read a message in write-only mode, a

MessageNotReadableException is thrown.

If a client attempts to write a message in read-only mode, a

MessageNotWriteableException is thrown.

JMSBytesMessage can be used by a JMS application to read or write a message

that is sent to or from a non-Java application. As this non-Java application might

be hosted on a platform with different integer or floating point encoding

conventions, JMSBytesMessage class includes routines to represent its numeric data

types in a number of different ways.

The only character set supported by JMSBytesMessage is the Java version of

UTF-8. This includes a two-byte length prefix, and is limited to strings less than

65536 bytes in long. Applications wanting to send a string in different character set

have a choice of two methods:

JMSBytesMessage

422 Using Java

1. Send the message as a JMSTextMessage - if it is entirely made up of strings.

2. Convert the String to a byte array and then write it into JMSBytesMessage

using the writeBytes() method.

The type of numeric encoding to be used can be set by the transport code when

importing or exporting the message as a byte array. The type of encoding is

specified using an int, which is effectively the sum of two separate enums, as

defined by the ENC_* fields. This follows the convention laid down by WebSphere

MQ in the MQMD.encoding field. For convenience, the constants defined here take

precisely the same values as their MQENC counterparts defined in

com.ibm.mq.MQC.

Methods

clearBody

public void clearBody() throws JMSException;

Clears out the message body. All other parts of the message are left untouched.

Exceptions

v JMSException - if an internal error occurs.

getBodyLength

public long getBodyLength() throws JMSException,

 MessageNotReadableException;

Gets the number of bytes of the message body when the message is in read-only

mode. The value returned can be used to allocate a byte array. The value returned

is the entire length of the message body, regardless of where the pointer for

reading the message is currently located.

Returns

v number of bytes in the message

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

– MQJMS_EXCEPTION_RESOURCE_ALLOCATION

readBoolean

public boolean readBoolean() throws JMSException;

Reads a boolean from the bytes message.

Returns

v the boolean value read.

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

– MQJMS_EXCEPTION_MESSAGE_EOF

readByte

public byte readByte() throws JMSException;

Reads a signed 8-bit value from the bytes message.

JMSBytesMessage

Chapter 15. Package com.ibm.jms 423

Returns

v the next byte from the bytes message as a signed 8-bit byte.

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

– MQJMS_EXCEPTION_MESSAGE_EOF

readBytes

public int readBytes(byte[] value) throws JMSException;

Reads a byte array from the bytes message. If there are sufficient bytes remaining

in the stream the entire buffer is filled. If not, the buffer is partially filled.

Parameters

v value - the buffer into which the data is read.

Returns

v the total number of bytes read into the buffer, or -1 if there is no more

data because the end of the stream has been reached.

Exceptions

v JMSException - with reason

MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

v MessageEOFException - if end of message stream has been reached

readBytes

public int readBytes(byte[] value, int length) throws JMSException;

Reads a portion of the bytes message.

Parameters

v value - the buffer into which the data is read.

v length - the number of bytes to read.

Returns

v the total number of bytes read into the buffer, or -1 if there is no more

data because the end of the stream has been reached.

Exceptions

v JMSException - with reason

MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

v IndexOutOfBoundsException - if length is inconsistent with value.

v MessageEOFException - if end of message stream has been reached

readChar

public char readChar() throws JMSException;

Reads a Unicode character value from the bytes message.

Returns

v the next two bytes from the bytes message as a Unicode character.

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

JMSBytesMessage

424 Using Java

– MQJMS_EXCEPTION_MESSAGE_EOF

readDouble

public double readDouble() throws JMSException;

Reads a double from the bytes message.

Returns

v the next eight bytes from the bytes message, interpreted as a double.

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_FORMAT

– MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

– MQJMS_EXCEPTION_MESSAGE_EOF

readFloat

public float readFloat() throws JMSException;

Reads a float from the bytes message.

Returns

v the next four bytes from the bytes message, interpreted as a float.

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

– MQJMS_EXCEPTION_MESSAGE_EOF

– MQJMS_EXCEPTION_UNEXPECTED_ERROR

– MQJMS_EXCEPTION_MESSAGE_FORMAT

readInt

public int readInt() throws JMSException;

Reads a signed 32-bit integer from the bytes message.

Returns

v the next four bytes from the bytes message, interpreted as an int.

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

– MQJMS_EXCEPTION_MESSAGE_EOF
v IOException - if an I/O error has occurred.

readLong

public long readLong() throws JMSException;

Reads a signed 64-bit integer from the bytes message.

Returns

v the next eight bytes from the bytes message, interpreted as a long.

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

JMSBytesMessage

Chapter 15. Package com.ibm.jms 425

– MQJMS_EXCEPTION_MESSAGE_EOF
v IOException - if an I/O error has occurred.

readShort

public short readShort() throws JMSException;

Reads a signed 16-bit number from the bytes message.

Returns

v the next two bytes from the bytes message, interpreted as a signed 16-bit

number.

Exceptions

v MessageEOFException - if end of message stream

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

– MQJMS_EXCEPTION_MESSAGE_EOF
v IOException - if an I/O error has occurred.

readUnsignedByte

public int readUnsignedByte() throws JMSException;

Reads an unsigned 8-bit number from the bytes message.

Returns

v the next byte from the bytes message, interpreted as an unsigned 8-bit

number.

Exceptions

v MessageEOFException - if end of message stream

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

– MQJMS_EXCEPTION_MESSAGE_EOF
v IOException - if an I/O error has occurred.

readUnsignedShort

public int readUnsignedShort() throws JMSException;

Reads an unsigned 16-bit number from the bytes message.

Returns

v the next two bytes from the bytes message, interpreted as an unsigned

16-bit integer.

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

– MQJMS_EXCEPTION_MESSAGE_EOF
v IOException - if an I/O error has occurred.

readUTF

public String readUTF() throws JMSException;

Reads a string that has been encoded using a modified UTF-8 format from the

bytes message.

JMSBytesMessage

426 Using Java

For more information on the UTF-8 format, see ″File System Safe UCS Transformation

Format (FSS_UFT)″, X/Open Preliminary Specification, X/Open Company Ltd.,

Document Number: P316. This information also appears in ISO/IEC 10646, Annex

P.

Returns

v a Unicode string from the bytes message.

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_READABLE

– MQJMS_EXCEPTION_MESSAGE_EOF

– MQJMS_EXCEPTION_MESSAGE_FORMAT
v IOException - if an I/O error has occurred.

reset

public void reset() throws JMSException;

Puts the message in read-only mode, and repositions the stream of bytes to the

beginning.

Exceptions

v JMSException - if JMS fails to reset the message due to some internal

JMS error.

v MessageFormatException - if message has an invalid format

toString

public String toString();

Returns a String containing a formatted version of the Message.

Returns

v java.lang.String

writeBoolean

public void writeBoolean(boolean value) throws JMSException;

Writes a boolean to the bytes message as a 1-byte value. The value true is written

out as the value (byte)1; the value false is written out as the value (byte)0.

Parameters

v value - the boolean value to be written.

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_WRITABLE

– MQJMS_EXCEPTION_RESOURCE_ALLOCATION

writeByte

public void writeByte(byte value) throws JMSException;

Writes a byte to the bytes message as a 1-byte value.

Parameters

v value - the byte value to be written.

Exceptions

JMSBytesMessage

Chapter 15. Package com.ibm.jms 427

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_WRITABLE

– MQJMS_EXCEPTION_RESOURCE_ALLOCATION

writeBytes

public void writeBytes(byte[] value) throws JMSException;

Writes a byte array to the bytes message.

Parameters

v value - the byte array to be written.

Exceptions

v JMSException - with reason

– MQJMS_EXCEPTION_MESSAGE_NOT_WRITABLE

– MQJMS_EXCEPTION_RESOURCE_ALLOCATION

writeBytes

public void writeBytes(byte[] value, int offset, int length)

 throws JMSException;

Writes a portion of a byte array to the bytes message.

Parameters

v value - the byte array value to be written.

v offset - the initial offset within the byte array.

v length - the number of bytes to use.

Exceptions

v JMSException - with reason

– MQJMS_EXCEPTION_MESSAGE_NOT_WRITABLE

– MQJMS_EXCEPTION_RESOURCE_ALLOCATION

writeChar

public void writeChar(char value) throws JMSException;

Writes a char to the bytes message as a 2-byte value, high byte first.

Parameters

v value - the char value to be written.

Exceptions

v JMSException - with reason

– MQJMS_EXCEPTION_MESSAGE_NOT_WRITABLE

– MQJMS_EXCEPTION_RESOURCE_ALLOCATION

writeDouble

public void writeDouble(double value) throws JMSException;

Converts the double argument to a long using the doubleToLongBits() method in

class Double, and then writes that long value to the stream message as an 8-byte

quantity, high byte first.

Parameters

v value - the double value to be written.

JMSBytesMessage

428 Using Java

Exceptions

v JMSException - with reason

– MQJMS_EXCEPTION_MESSAGE_NOT_WRITABLE

– MQJMS_EXCEPTION_RESOURCE_ALLOCATION

writeFloat

public void writeFloat(float value) throws JMSException;

Converts the float argument to an int using the floatToIntBits() method in class

Float , and then writes that int value to the stream message as a 4-byte quantity,

high byte first.

Parameters

v value - the float value to be written.

Exceptions

v JMSException - with reason

– MQJMS_EXCEPTION_MESSAGE_NOT_WRITABLE

– MQJMS_EXCEPTION_RESOURCE_ALLOCATION

writeInt

public void writeInt(int value) throws JMSException;

Writes an int to the bytes message as four bytes, high byte first.

Parameters

v value - the int to be written.

Exceptions

v JMSException - with reason

– MQJMS_EXCEPTION_MESSAGE_NOT_WRITABLE

– MQJMS_EXCEPTION_RESOURCE_ALLOCATION

writeLong

public void writeLong(long value) throws JMSException;

Writes a long to the bytes message as eight bytes, high byte first.

Parameters

v value - the long to be written.

Exceptions

v JMSException - with reason

– MQJMS_EXCEPTION_MESSAGE_NOT_WRITABLE

– MQJMS_EXCEPTION_RESOURCE_ALLOCATION

writeObject

public void writeObject(Object value) throws JMSException;

Writes a Java object to the bytes message.

Note that this method only works for the ’objectified’ primitive object types

(Integer, Double, Long...), Strings and byte arrays.

Parameters

v value - the Java object to be written.

JMSBytesMessage

Chapter 15. Package com.ibm.jms 429

Exceptions

v JMSException - with reason

– MQJMS_EXCEPTION_MESSAGE_NOT_WRITABLE

– MQJMS_EXCEPTION_RESOURCE_ALLOCATION

– MQJMS_EXCEPTION_MESSAGE_FORMAT

writeShort

public void writeShort(short value) throws JMSException;

Writes a short to the bytes message as two bytes, high byte first.

Parameters

v value - the short to be written.

Exceptions

v JMSException - with reason

– MQJMS_EXCEPTION_MESSAGE_NOT_WRITABLE

– MQJMS_EXCEPTION_RESOURCE_ALLOCATION

writeUTF

public void writeUTF(String value) throws JMSException;

Write a string to the bytes message using UTF-8 encoding in a

machine-independent manner.

For more information on the UTF-8 format, see ″File System Safe UCS Transformation

Format (FSS_UFT)″, X/Open Preliminary Specification, X/Open Company Ltd.,

Document Number: P316. This information also appears in ISO/IEC 10646, Annex

P.

Parameters

v value - the String value to be written.

Exceptions

v JMSException - with reason

– MQJMS_EXCEPTION_MESSAGE_NOT_WRITABLE

– MQJMS_EXCEPTION_RESOURCE_ALLOCATION

JMSBytesMessage

430 Using Java

JMSMapMessage

public class JMSMapMessage

extends JMSMessage

implements MapMessage

java.lang.Object

 |

 +----com.ibm.jms.JMSMessage

 |

 +----com.ibm.jms.JMSMapMessage

JMSMapMessage is used to send a set of name/type/value triplets (see “Message

body” on page 396 for details). The entries can be accessed sequentially or

randomly by name. The order of the entries is undefined. It adds a map message

body.

The primitive types can be read or written explicitly using methods for each type.

They can also be read or written generically as objects. For example, the call

MapMessage.setInt(″foo″, 6) is equivalent to MapMessage.setObject(″foo″, new

Integer(6)). Both forms are provided because the explicit form is convenient for

static programming and the object form is needed when types are not known at

compile time.

When a client receives a MapMessage it is in read-only mode. If a client attempts

to write to the message at this point a MessageNotWriteableException is thrown. If

clearBody() is called the message can then be both read from and written to.

Map messages support the following conversion table. The marked cases are

supported and the unmarked cases throw a JMSException. The String to primitive

conversions might throw a runtime exception if the primitives valueOf() method

does not accept it as a valid String representation of the primitive.

A value written as the row type can be read as the column type.

 boolean byte short char int long float double String byte[]

 --

 boolean X X

 byte X X X X X

 short X X X X

 char X X

 int X X X

 long X X

 float X X X

 double X X

 String X X X X X X X X X

 byte[] X

 --

Methods

clearBody

public void clearBody() throws JMSException;

Clears the message body. All other parts of the message are left untouched.

Exceptions

v JMSException - if there is an internal JMS error.

JMSMapMessage

Chapter 15. Package com.ibm.jms 431

getBoolean

public boolean getBoolean(String name) throws JMSException;

Gets the boolean value of the named key.

Parameters

v name - the name of the key

Returns

v the boolean value.

Exceptions

v JMSException - if JMS fails to read the message due to an internal error.

v MessageFormatException - if this type conversion is not valid.

getByte

public byte getByte(String name) throws JMSException;

Gets the byte value of the named key.

Parameters

v name - the name of the key

Returns

v the byte value.

Exceptions

v JMSException - if JMS fails to read the message due to an internal error.

v MessageFormatException - if this type conversion is not valid.

getBytes

public byte[] getBytes(String name) throws JMSException;

Gets the byte array value of the named key.

Parameters

v name - the name of the key

Returns

v the byte array.

Exceptions

v JMSException - if JMS fails to read the message due to an internal error.

v MessageFormatException - if this type conversion is not valid.

getChar

public char getChar(String name) throws JMSException;

Gets the Unicode char value of the named key.

Parameters

v name - the name of the boolean key

Returns

v the char.

Exceptions

v JMSException - if JMS fails to read the message due to an internal error.

JMSMapMessage

432 Using Java

v MessageFormatException - if this type conversion is not valid.

getDouble

public double getDouble(String name) throws JMSException;

Gets the double value of the named key.

Parameters

v name - the name of the key

Returns

v the double value.

Exceptions

v JMSException - if JMS fails to read the message due to an internal error.

v MessageFormatException - if this type conversion is not valid.

getFloat

public float getFloat(String name) throws JMSException;

Gets the float value of the named key.

Parameters

v name - the name of the key

Returns

v the float value.

Exceptions

v JMSException - if JMS fails to read the message due to an internal error.

v MessageFormatException - if this type conversion is not valid.

getInt

public int getInt(String name) throws JMSException;

Gets the integer value of the named key.

Parameters

v name - the name of the key

Returns

v the integer value.

Exceptions

v JMSException - if JMS fails to read the message due to an internal error.

v MessageFormatException - if this type conversion is not valid.

getLong

public long getLong(String name) throws JMSException;

Gets the long value of the named key.

Parameters

v name - the name of the key

Returns

v the long value.

Exceptions

JMSMapMessage

Chapter 15. Package com.ibm.jms 433

v JMSException - if JMS fails to read the message due to an internal error.

v MessageFormatException - if this type conversion is not valid.

getMapNames

public Enumeration getMapNames() throws JMSException;

Gets an Enumeration of all the MapMessage’s names.

Returns

v an enumeration of all the names in this MapMessage.

Exceptions

v JMSException - if JMS fails to read message due to an internal error.

getObject

public Object getObject(String name) throws JMSException;

Gets the Java object with the given name.

This method can be used to return, as a class instance, an object that had been

stored in the Map with the equivalent setObject() method call, or its equivalent

primitive setter method.

Parameters

v name - the name of the Java object

Returns

v a class which represents the object referred to by the given name. If

there is no item by this name, a null value is returned.

Exceptions

v JMSException - if JMS fails to read message due to an internal error.

getShort

public short getShort(String name) throws JMSException;

Gets the short value of the named key.

Parameters

v name - the name of the key

Returns

v the short value.

Exceptions

v JMSException - if JMS fails to read the message due to an internal error.

v MessageFormatException - if this type conversion is not valid.

getString

public String getString(String name) throws JMSException;

Gets the String value of the named key.

Parameters

v name - the name of the key

Returns

v the String value.

JMSMapMessage

434 Using Java

Exceptions

v JMSException - if JMS fails to read the message due to an internal error.

v MessageFormatException - if this type conversion is not valid.

itemExists

public boolean itemExists(String name) throws JMSException;

Checks whether an item exists in this MapMessage.

Parameters

v name - the name of the item to test

Returns

v trueif the item does exist.

Exceptions

v JMSException - if a JMS error occurs.

setBoolean

public void setBoolean(String name, boolean value) throws JMSException;

Sets a boolean value with the given name in the map.

Parameters

v name - the name of the boolean

v value - the boolean value to set in the map.

Exceptions

v JMSException - if JMS fails to write the message due to an internal error.

v MessageNotWriteableException - if the message in read-only mode.

setByte

public void setByte(String name, byte value) throws JMSException;

Sets a byte value with the given name in the map.

Parameters

v name - the name of the byte

v value - the byte value to set in the map.

Exceptions

v JMSException - if JMS fails to write the message due to an internal error.

v MessageNotWriteableException - if the message in read-only mode.

setBytes

public void setBytes(String name, byte[] value) throws JMSException;

Sets a byte array with the given name in the map.

Parameters

v name - the name of the array

v value - the byte array to set in the map.

Exceptions

v JMSException - if JMS fails to write the message due to an internal error.

v MessageNotWriteableException - if the message in read-only mode.

JMSMapMessage

Chapter 15. Package com.ibm.jms 435

setBytes

public void setBytes(String name, byte[] value, int offset, int length)

 throws JMSException;

Sets a portion of a byte array in the map with the given name.

Parameters

v name - the name of the byte array

v value - the byte array to set in the Map.

v offset - the initial offset within the byte array.

v length - the number of bytes to use.

Exceptions

v JMSException - if JMS fails to write the message due to an internal error.

v MessageNotWriteableException - if the message in read-only mode.

setChar

public void setChar(String name, char value) throws JMSException;

Sets a Unicode character with the given name in the map.

Parameters

v name - the name of the character

v value - the value to set in the Map.

Exceptions

v JMSException - if JMS fails to write the message due to an internal error.

v MessageNotWriteableException - if the message in read-only mode.

setDouble

public void setDouble(String name, double value) throws JMSException;

Sets a double value with the given name in the map.

Parameters

v name - the name of the double

v value - the value to set in the Map.

Exceptions

v JMSException - if JMS fails to write the message due to an internal error.

v MessageNotWriteableException - if the message is in read-only mode.

setFloat

public void setFloat(String name, float value) throws JMSException;

Sets a floating point variable with the given name in the map.

Parameters

v name - the name of the float

v value - the value to set in the map.

Exceptions

v JMSException - if JMS fails to write the message due to an internal error.

v MessageNotWriteableException - if the message in read-only mode.

JMSMapMessage

436 Using Java

setInt

public void setInt(String name, int value) throws JMSException;

Sets an integer with the given name in the map.

Parameters

v name - the name of the integer

v value - the value to set in the Map.

Exceptions

v JMSException - if JMS fails to write the message due to an internal error.

v MessageNotWriteableException - if the message in read-only mode.

setLong

public void setLong(String name, long value) throws JMSException;

Sets a long with the given name in the map.

Parameters

v name - the name of the long

v value - the value to set in the Map.

Exceptions

v JMSException - if JMS fails to write the message due to an internal error.

v MessageNotWriteableException - if the message in read-only mode.

setObject

public void setObject(String name, Object value) throws JMSException;

Sets a Java object with the given name in the map.

This method only works for the ’objectified’ primitive object types (Integer, Double,

Long...), String, and byte arrays.

Parameters

v name - the name of the object

v value - the value to set in the Map.

Exceptions

v JMSException - if JMS fails to write the message due to an internal error.

v MessageNotWriteableException - if the message in read-only mode.

setShort

public void setShort(String name, short value) throws JMSException;

Sets a short value with the given name in the map.

Parameters

v name - the name of the short

v value - the short value to set in the map.

Exceptions

v JMSException - if JMS fails to write the message due to an internal error.

v MessageNotWriteableException - if the message in read-only mode.

JMSMapMessage

Chapter 15. Package com.ibm.jms 437

setString

public void setString(String name, String value) throws JMSException;

Sets a String value with the given name in the map.

Parameters

v name - the name of the String

v value - the String value to set in the Map.

Exceptions

v JMSException - if JMS fails to write the message due to an internal error.

v MessageNotWriteableException - if the message in read-only mode.

toString

public String toString();

Creates a String which contains a formatted version of the Message.

Returns

v the formatted version of the Message.

JMSMapMessage

438 Using Java

JMSMessage

public abstract class JMSMessage

extends Object

implements MessageSerializable

java.lang.Object

 |

 +----com.ibm.jms.JMSMessage

The Message interface is the root interface of all JMS messages. It defines the JMS

header and the acknowledge() method used for all messages. The header contains

fields used for message routing and identification. The payload contains the

application data being sent.

JMS Messages are composed of the following parts:

v Header - All messages support the same set of header fields. Header fields

contain values used by both clients and providers to identify and route

messages.

v Properties - Each message contains a built-in facility for supporting

application-defined property values. Properties provide an efficient mechanism

for supporting application defined message filtering.

v Body - JMS defines several types of message body which cover the majority of

messaging styles currently in use.

JMS defines five types of message body:

v Stream - a stream of Java primitive values. It is filled and read sequentially.

v Map - a set of name-value pairs where names are Strings and values are Java

primitive types. The entries can be accessed sequentially or randomly by name.

The order of the entries is undefined.

v Text - a message containing a java.util.StringBuffer. The inclusion of this message

type allows XML to represent content of all kinds, including the content of JMS

messages.

v Object - a message that contains a serializable Java object

v Bytes - a stream of uninterpreted bytes. This message type is for literally

encoding a body to match an existing message format. In many cases, it will be

possible to use one of the other, easier to use, body types instead. Although JMS

allows the use of message properties with byte messages, it is typically not done

since the inclusion of properties might affect the format.

The JMSCorrelationID header field is used to link one message with another. It

typically links a reply message with its requesting message.

JMSCorrelationID can hold either a provider-specific message ID, an

application-specific String, or a provider-specific byte[] value.

A Message contains a built-in facility for supporting application-defined property

values. In effect, this provides a mechanism for adding application-specific header

fields to a message.

Properties allow an application, via message selectors, to have a JMS provider

select and filter messages on its behalf using application-specific criteria.

Property names must obey the rules for the selector identifier of a message.

JMSMessage

Chapter 15. Package com.ibm.jms 439

Property values can be boolean, byte, short, int, long, float, double, and String.

Property values are set prior to sending a message. When a client receives a

message, its properties are in read-only mode. If a client attempts to set properties

at this point, a MessageNotWriteableException is thrown. If clearProperties() is

called, the properties can then be both read from and written to.

A property value might duplicate a value in a message’s body or it might not.

Although JMS does not define a policy for what should or should not be made a

property, JMS handles data in a message’s body more efficiently than data in a

message’s properties. For best performance, only use message properties when you

need to customize a message’s header. The primary reason for doing this is to

support customized message selection.

Message properties support the following conversion table. The marked cases are

supported. The unmarked cases throw a JMSException. The String to primitive

conversions might throw a runtime exception if the primitives valueOf() method

does not accept it as a valid String representation of the primitive.

A value written as the row type can be read as the column type.

 boolean byte short int long float double String

 boolean X X

 byte X X X X X

 short X X X X

 int X X X

 long X X

 float X X X

 double X X

 String X X X X X X X X

In addition to the type-specific set and get methods for properties, JMS provides

the setObjectProperty() and getObjectProperty() methods. These support the same

set of property types using the ’objectified’ primitive values. Their purpose is to

allow the property type to be decided at execution time rather than at compile

time. They support the same property value conversions.

The setObjectProperty() method accepts values of class Boolean, Byte, Short,

Integer, Long, Float, Double and String. An attempt to use any other class throws a

JMSException.

The getObjectProperty() method only returns values of class Boolean, Byte, Short,

Integer, Long, Float, Double and String.

The order of property values is not defined. To iterate through a message’s

property values, use getPropertyNames() to retrieve a property name Enumeration

and then use the various property getter methods to retrieve their values.

A message’s properties are deleted by the clearProperties() method. This leaves the

message with an empty set of properties.

Getting a property value for a name which has not been set returns a null value.

Only the getStringProperty() and getObjectProperty() methods can return a null

value. The other property get methods throw a java.lang.NullPointerException if

they are used to get a nonexistent property.

JMSMessage

440 Using Java

JMS reserves the `JMSX’ property name prefix for JMS defined properties. The full

set of these properties is defined in the Java Message Service specification. The

String[] ConnectionMetaData.getJMSXPropertyNames() method returns the names

of the JMSX properties supported by a connection.

JMSX properties can be referenced in message selectors whether or not they are

supported by a connection. They are treated like any other absent property.

JSMX properties `set by provider on send’ are available to both the producer and

the consumers of the message. JSMX properties `set by provider on receive’ are

only available to the consumers.

JMSXGroupID and JMSXGroupSeq are simply standard properties that clients can

use if they want to group messages. All providers must support them. Unless

specifically noted, the values and semantics of the JMSX properties are undefined.

JMS reserves the `JMS_’ property name prefix.

If an application tries to set a message property with a name that commences JMS,

but the name is not one of the names in the following list, WebSphere MQ JMS

throws an exception:

v JMSXGroupID

v JMSXGroupSeq

v JMS_IBM_Format

v JMS_IBM_MsgType

v JMS_IBM_Feedback

v JMS_IBM_PutApplType

v JMS_IBM_Report_Exception

v JMS_IBM_Report_Expiration

v JMS_IBM_Report_COA

v JMS_IBM_Report_COD

v JMS_IBM_Report_PAN

v JMS_IBM_Report_NAN

v JMS_IBM_Report_Pass_Msg_ID

v JMS_IBM_Report_Pass_Correl_ID

v JMS_IBM_Report_Discard_Msg

v JMS_IBM_Last_Msg_In_Group

v JMS_IBM_PutDate

v JMS_IBM_PutTime

Methods

acknowledge

public void acknowledge() throws JMSException;

Acknowledges this and all previous messages received. Calling this method also

acknowledges all other messages received by the session that received this

message.

Exceptions

v JMSException - with the following reasons;

JMSMessage

Chapter 15. Package com.ibm.jms 441

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

– MQJMS_E_SESSION_IS_TRANSACTED

– MQJMS_E_SESSION_CLOSED

– MQJMS_EXCEPTION_MQ_NULL_QMGR

– MQJMS_EXCEPTION_MQ_QM_COMMIT_FAILED

clearProperties

public void clearProperties() throws JMSException;

Clears a message’s properties.

Exceptions

v JMSException - if an internal error occurs.

getBooleanProperty

public boolean getBooleanProperty(String name) throws JMSException;

Gets the boolean property value with the given name.

Parameters

v name - the name of the boolean property.

Returns

v the boolean property value with the given name.

Exceptions

v MessageFormatException - if this type conversion is invalid.

v JMSException - with reasons

– MQJMS_EXCEPTION_NULL_PROPERTY_NAME

– MQJMS_E_INTERNAL_ERROR
v NullPointerException - if name is null.

getByteProperty

public byte getByteProperty(String name) throws JMSException;

Gets the byte property value with the given name.

Parameters

v name - the name of the byte property.

Returns

v the byte property value with the given name.

Exceptions

v MessageFormatException - if this type conversion is not valid.

v JMSException - with reasons

– MQJMS_EXCEPTION_NULL_PROPERTY_NAME

– MQJMS_E_INTERNAL_ERROR
v NullPointerException - if name is null.

getDoubleProperty

public double getDoubleProperty(String name) throws JMSException;

Gets the double property value with the given name.

Parameters

v name - the name of the double property.

JMSMessage

442 Using Java

Returns

v the double property value with the given name.

Exceptions

v MessageFormatException - if this type conversion is not valid.

v JMSException - with reasons

– MQJMS_EXCEPTION_NULL_PROPERTY_NAME

– MQJMS_E_INTERNAL_ERROR
v NullPointerException - if name is null.

getFloatProperty

public float getFloatProperty(String name) throws JMSException;

Gets the float property value with the given name.

Parameters

v name - the name of the float property.

Returns

v the float property value with the given name.

Exceptions

v MessageFormatException - if this type conversion is not valid.

v JMSException - with reasons

– MQJMS_EXCEPTION_NULL_PROPERTY_NAME

– MQJMS_E_INTERNAL_ERROR
v NullPointerException - if name is null.

getIntProperty

public int getIntProperty(String name) throws JMSException;

Gets the integer property value with the given name.

Parameters

v name - the name of the integer property

Returns

v the integer property value with the given name.

Exceptions

v MessageFormatException - if this type conversion is not valid.

v JMSException - with reasons

– MQJMS_EXCEPTION_NULL_PROPERTY_NAME

– MQJMS_E_INTERNAL_ERROR
v NullPointerException - if name is null.

getJMSCorrelationID

public String getJMSCorrelationID() throws JMSException;

Gets the correlation ID for the message.

This method is used to return correlation ID values that are either provider-specific

message IDs or application-specific Strings.

Returns

JMSMessage

Chapter 15. Package com.ibm.jms 443

v the correlation ID of a message as a String.

Exceptions

v JMSException - with reason MQJMS_E_NO_UTF8

getJMSCorrelationIDAsBytes

public byte[] getJMSCorrelationIDAsBytes() throws JMSException;

Gets the correlation ID as an array of bytes for the message.

The use of a byte[] value for JMSCorrelationID is not portable.

Returns

v the correlation ID of a message as an array of bytes.

Exceptions

v JMSException - if an internal error occurs.

getJMSDeliveryMode

public int getJMSDeliveryMode() throws JMSException;

Gets the delivery mode for this message.

Returns

v the delivery mode of this message.

Exceptions

v JMSException - if an internal error occurs.

getJMSDestination

public Destination getJMSDestination() throws JMSException;

Gets the destination for this message.

The destination field contains the destination to which the message is being sent.

When a message is sent, this value is ignored. After completion of the send

method it holds the destination specified by the send.

When a message is received, its destination value must be equivalent to the value

assigned when it was sent.

Returns

v the destination of this message.

Exceptions

v JMSException - with reason

MQJMS_EXCEPTION_INVALID_DESTINATION

getJMSExpiration

public long getJMSExpiration() throws JMSException;

Gets the message’s expiration value.

When a message is sent, expiration is left unassigned. After completion of the send

method, it holds the expiration time of the message. This is the time-to-live value

specified by the client added to the time (GMT) when the message was sent.

JMSMessage

444 Using Java

If the time-to-live is specified as zero, expiration is set to zero which indicates the

message does not expire.

When a message’s expiration time is reached, a provider will discard it. JMS does

not define any form of notification of message expiration.

Clients should not receive messages that have expired, although JMS does not

guarantee that this will not happen.

Returns

v the time (GMT) when the message expires.

Exceptions

v JMSException - if an internal error occurs.

getJMSMessageID

public String getJMSMessageID() throws JMSException;

Gets the message ID.

The messageID header field contains a value that uniquely identifies each message

sent by a provider.

When a message is sent, messageID can be ignored. When the send() method

returns, it contains a provider-assigned value.

A JMSMessageID is a String value which functions as a unique key for identifying

messages in a historical repository. The exact scope of uniqueness is provider

defined. It must at least cover all messages for a specific installation of a provider

where an installation is some connected set of message routers.

All JMSMessageID values must start with the prefix `ID:’. Uniqueness of message

ID values across different providers is not required.

There is an overhead in creating a message ID and it also increases a message’s

size. Some JMS providers can optimize this overhead if they are given a hint that

the message ID is not used by an application. JMS message Producers provide a

hint to disable the message ID. When a client sets a Producer to disable the

message ID it indicates they are saying that they do not depend on the value of

the message ID for the messages it produces. These messages must either have

message ID set to null or, if the hint is ignored, the messageID must be set to its

normal unique value.

Returns

v the message ID.

Exceptions

v JMSException - if an internal error occurs.

getJMSPriority

public int getJMSPriority() throws JMSException;

Gets the message priority.

JMS defines ten levels of priority with 0 as the lowest and 9 as the highest. In

addition, clients should consider priorities 0-4 as gradations of normal priority and

priorities 5-9 as gradations of expedited priority.

JMSMessage

Chapter 15. Package com.ibm.jms 445

JMS does not require that a provider strictly implement priority ordering of

messages; however, it must do its best to deliver expedited messages ahead of

normal messages.

Returns

v the default message priority

Exceptions

v JMSException - if an internal error occurs.

getJMSRedelivered

public boolean getJMSRedelivered() throws JMSException;

Gets an indication of whether this message is being re-delivered.

If a client receives a message with the re-delivered indicator set, it is likely, but not

guaranteed, that this message was delivered to the client earlier but the client did

not acknowledge its receipt at that earlier time.

Returns

v true if this message is being re-delivered, or false if not.

Exceptions

v JMSException - if an internal error occurs.

getJMSReplyTo

public Destination getJMSReplyTo() throws JMSException;

Gets the destination to which a reply to this message can be sent.

Returns

v where to send a response to this message

Exceptions

v JMSException - with reason

MQJMS_EXCEPTION_INVALID_DESTINATION

getJMSTimestamp

public long getJMSTimestamp() throws JMSException;

Gets the message timestamp.

The JMSTimestamp header field contains the time a message was handed to a

provider to be sent. It is not the time the message was actually transmitted because

that might occur later due to transactions or other client-side queueing of

messages.

When a message is sent, JMSTimestamp is ignored. When the send method returns,

it contains a time somewhere between the call and the return. It is in the format of

a normal Java millisecond time value.

Returns

v the message timestamp

Exceptions

v JMSException - if an internal error occurs.

JMSMessage

446 Using Java

getJMSType

public String getJMSType() throws JMSException;

Gets the message type.

Returns

v the message type

Exceptions

v JMSException - if an internal error occurs.

getLongProperty

public long getLongProperty(String name) throws JMSException;

Gets the long property value with the given name.

Parameters

v name - the name of the long property

Returns

v the long property value with the given name.

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_NULL_PROPERTY_NAME

– MQJMS_E_INTERNAL_ERROR
v NullPointerException - if name is null

getObjectProperty

public Object getObjectProperty(String name) throws JMSException;

Gets the Java object property value with the given name.

This method can be used to return, in objectified format, an object that had been

stored as a property in the Message with the equivalent setObject() method call, or

its equivalent primitive setter method.

Parameters

v name - the name of the Java object property.

Returns

v the Java object property value with the given name in objectified format

(that is, if it set as an int , then an Integer is returned). If there is no

property with this name, a null value is returned.

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_NULL_PROPERTY_NAME

– MQJMS_E_INTERNAL_ERROR
v NullPointerException - if name is null

getPropertyNames

public Enumeration getPropertyNames() throws JMSException;

Gets an Enumeration of all the property names.

Returns

JMSMessage

Chapter 15. Package com.ibm.jms 447

v an Enumeration of all the property names.

Exceptions

v JMSException - if an internal error occurs

getShortProperty

public short getShortProperty(String name) throws JMSException;

Gets the short property value with the given name.

Parameters

v name - the name of the short property.

Returns

v the short property value with the given name.

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_NULL_PROPERTY_NAME

– MQJMS_E_INTERNAL_ERROR

getStringProperty

public String getStringProperty(String name) throws JMSException;

Gets the String property value with the given name.

Parameters

v name - the name of the String property to retrieve.

Returns

v the String property value with the given name.

Exceptions

v JMSException - with reason

– MQJMS_EXCEPTION_NULL_PROPERTY_NAME

– MQJMS_E_INTERNAL_ERROR

propertyExists

public boolean propertyExists(String name) throws JMSException;

Indicates whether a named property exists in the message properties Hashtable.

Parameters

v name - the name of the property to test.

Returns

v true if the property exists, false if it does not.

Exceptions

v JMSException - with reason

MQJMS_EXCEPTION_NULL_PROPERTY_NAME.

setBooleanProperty

public void setBooleanProperty(String name, boolean value)

 throws JMSException;

Sets a boolean property value with the given name in the message.

JMSMessage

448 Using Java

Parameters

v name - the name of the boolean property.

v value - the boolean property value to set in the Message.

Exceptions

v MessageNotWriteableException - if properties are marked read-only

v JMSException - with reasons

– MQJMS_E_BAD_PROPERTY_NAME

setByteProperty

public void setByteProperty(String name, byte value) throws JMSException;

Sets a byte property value with the given name in the message.

Parameters

v name - the name of the byte property.

v value - the byte property value to set in the Message.

Exceptions

v MessageNotWriteableException - if properties are marked read-only

v JMSException - with reasons

– MQJMS_E_BAD_PROPERTY_NAME

setDoubleProperty

public void setDoubleProperty(String name, double value)

 throws JMSException;

Sets a double property value with the given name in the message.

Parameters

v name - the name of the double property.

v value - the double property value to set in the Message.

Exceptions

v MessageNotWriteableException - if properties are marked read-only

v JMSException - with reasons

– MQJMS_E_BAD_PROPERTY_NAME

setFloatProperty

public void setFloatProperty(String name, float value)

 throws JMSException;

Sets a float property value with the given name in the message.

Parameters

v name - the name of the float property.

v value - the float property value to set in the Message.

Exceptions

v MessageNotWriteableException - if properties are marked read-only

v JMSException - with reasons

– MQJMS_E_BAD_PROPERTY_NAME

JMSMessage

Chapter 15. Package com.ibm.jms 449

setIntProperty

public void setIntProperty(String name, int value) throws JMSException;

Sets an integer property value with the given name in the message.

Parameters

v name - the name of the integer property.

v value - the integer property value to set in the Message.

Exceptions

v MessageNotWriteableException - if properties are marked read-only

v JMSException - with reasons

– MQJMS_E_BAD_PROPERTY_NAME

setJMSCorrelationID

public void setJMSCorrelationID(String correlationID) throws JMSException;

Sets the correlation ID for the message.

A client can use the JMSCorrelationID header field to link one message with

another. A typical use is to link a response message with its request message.

JMSCorrelationID can hold one of the following:

v A provider-specific message ID

v An application-specific String

v A provider-native byte[] value.

Since each message sent by a JMS provider is assigned a message ID, it is

convenient to link messages using their message IDs. All message ID values must

start with the ’ID:’ prefix.

In some cases, an application (made up of several clients) needs to use an

application-specific value for linking messages. For example, an application might

use JMSCorrelationID to hold a value referencing some external information.

Application-specified values must not start with the ’ID:’ prefix; this is reserved for

provider-generated message ID values.

If a provider supports the native concept of correlation ID, a JMS client might need

to assign specific JMSCorrelationID values to match those expected by non-JMS

clients. A byte[] value is used for this purpose. JMS providers without native

correlation ID values are not required to support byte[] values. The use of a byte[]

value for JMSCorrelationID is not portable.

Parameters

v correlationID - the message ID of a message being referred to.

Exceptions

v JMSException - with reasons

– MQJMS_E_NO_UTF8

– MQJMS_E_INVALID_HEX_STRING.

setJMSCorrelationIDAsBytes

public void setJMSCorrelationIDAsBytes(byte[] correlID)

 throws JMSException;

JMSMessage

450 Using Java

Sets the correlation ID as an array of bytes for the message.

If a provider supports the native concept of correlation id, a JMS client might need

to assign specific JMSCorrelationID values to match those expected by non-JMS

clients. JMS providers without native correlation ID values are not required to

support this (and the corresponding get) method and the corresponding get

method Their implementation might throw

java.lang.UnsupportedOperationException.

A client can use this call to set the correlationID either to a messageID from a

previous message, or to an application-specific string. Application-specific strings

must not start with the characters ’ID:’.

The use of a byte[] value for JMSCorrelationID is not portable.

Parameters

v correlID - the correlation ID value as an array of bytes.

Exceptions

v JMSException - if an internal error occurs

v IndexOutOfBoundsException - if copying would cause access to data

outside array bounds.

v ArrayStoreException - if an element in the source array cannot be stored

into the destination array because of a type mismatch.

v NullPointerException - if either source or destination is null.

setJMSDeliveryMode

public void setJMSDeliveryMode(int deliveryMode) throws JMSException;

Sets the delivery mode for this message.

Any value set using this method is ignored when the message is sent, but this

method can be used to change the value in a received message.

To alter the delivery mode when a message is sent, use the setDeliveryMode()

method on the QueueSender or TopicPublisher (this method is inherited from

MessageProducer).

Parameters

v deliveryMode - the delivery mode for this message.

Exceptions

v JMSException - if an internal error occurs.

setJMSDestination

public void setJMSDestination(Destination destination)

 throws JMSException;

Sets the destination for this message.

Any value set using this method is ignored when the message is sent, but this

method can be used to change the value in a received message.

Parameters

v destination - the destination for this message.

Exceptions

JMSMessage

Chapter 15. Package com.ibm.jms 451

v JMSException - if an internal error occurs.

setJMSExpiration

public void setJMSExpiration(long expiration) throws JMSException;

Sets the message’s expiration value.

Any value set using this method is ignored when the message is sent, but this

method can be used to change the value in a received message.

Parameters

v expiration - the message’s expiration time.

Exceptions

v JMSException - if an internal error occurs.

setJMSMessageID

public void setJMSMessageID(String id) throws JMSException;

Sets the message ID.

Any value set using this method is ignored when the message is sent, but this

method can be used to change the value in a received message.

Because a message ID set by this method is ignored when a message is sent, an

application cannot specify the message ID of an outgoing message. As a

consequence, an application cannot receive a message and then forward the same

message, or send a different message, with the same message ID as that of the

message it has received. The behavior of WebSphere MQ classes for Java differs in

this respect. An application using WebSphere MQ classes for Java can specify the

message ID of an outgoing message.

Parameters

v id - the ID of the message.

Exceptions

v JMSException - if an internal error occurs.

setJMSPriority

public void setJMSPriority(int priority) throws JMSException;

Sets the priority for this message.

Providers set this field when a message is sent. This operation can be used to

change the value of a message that has been received.

JMS defines a ten levels of priority with 0 as the lowest and 9 as the highest. In

addition, clients must consider priorities 0-4 as gradations of normal priority, and

priorities 5-9 as gradations of expedited priority.

Parameters

v priority - the priority of this message

Exceptions

v JMSException - if an internal error occurs.

JMSMessage

452 Using Java

|
|
|
|
|
|
|

setJMSRedelivered

public void setJMSRedelivered(boolean redelivered) throws JMSException;

Sets a boolean to indicate whether this message is being re-delivered.

This field is set at the time the message is delivered. This operation can be used to

change the value of a message that has been received.

Parameters

v re-delivered - an indication of whether this message is being

re-delivered.

Exceptions

v JMSException - if an internal error occurs.

setJMSReplyTo

public void setJMSReplyTo(Destination replyTo) throws JMSException;

Sets the destination to which a reply to this message can be sent.

The replyTo header field contains the destination where a reply to the current

message can be sent. If it is null, no reply is expected. The destination can be either

a Queue or a Topic.

Messages with a null replyTo value are called JMS datagrams. Datagrams might

contain a notification of some change in the sender (i.e. they signal a sender event)

or they might just contain some data the sender thinks is of interest.

Messages with a replyTo value are typically expecting a response. A response is

optional: it is up to the client to decide. These messages are called JMS requests. A

message sent in response to a request is called a reply.

In some cases a client might wish to match a request it sent earlier with a reply it

has just received. This can be done using the correlationID.

Parameters

v replyTo - where to send a response to this message

Exceptions

v JMSException - if an internal error occurs.

setJMSTimestamp

public void setJMSTimestamp(long timestamp) throws JMSException;

Sets the message timestamp.

Providers set this field when a message is sent. This operation can be used to

change the value of a message that has been received.

Parameters

v timestamp - the timestamp for this message.

Exceptions

v JMSException - if an internal error occurs.

JMSMessage

Chapter 15. Package com.ibm.jms 453

setJMSType

public void setJMSType(String type) throws JMSException;

Sets the message type.

Some JMS providers use a message repository that contains the definition of

messages sent by applications. The type header field contains the name of a

message’s definition.

JMS does not define a standard message definition repository nor does it define a

naming policy for the definitions it contains. JMS clients should use symbolic

values for types that can be configured at installation time which correspond to the

values defined in the current provider’s message repository.

JMS clients should assign a value whether the application makes use of it or not.

This insures that it is properly set for those providers that require it.

Parameters

v type - the class of message

Exceptions

v JMSException - with reason MQJMS_EXCEPTION_BAD_VALUE.

setLongProperty

public void setLongProperty(String name, long value) throws JMSException;

Sets a long property value with the given name in the message.

Parameters

v name - the name of the long property.

v value - the long property value to set in the Message.

Exceptions

v MessageNotWriteableException - if properties are marked read-only

v JMSException - with reason MQJMS_E_BAD_PROPERTY_NAME

setObjectProperty

public void setObjectProperty(String name, Object value)

 throws JMSException;

Sets a Java object property value with the given name into the message.

This method only works for the ’objectified’ primitive object types (Integer, Double,

Long...) and for Strings.

Parameters

v name - the name of the Java object property.

v value - the Java object property value to set in the Message.

Exceptions

v MessageNotWriteableException - if properties are marked read-only

v MessageFormatException - if the class of the object is not Number or

String

v JMSException - with reason MQJMS_E_BAD_PROPERTY_NAME

JMSMessage

454 Using Java

setShortProperty

public void setShortProperty(String name, short value)

 throws JMSException;

Sets a short property value with the given name in the message.

Parameters

v name - the name of the short property.

v value - the short property value to set in the Message.

Exceptions

v MessageNotWriteableException - if properties are marked read-only

v JMSException - with reason MQJMS_E_BAD_PROPERTY_NAME

setStringProperty

public void setStringProperty(String name, String value)

 throws JMSException;

Sets a String property value with the given name in the message.

Parameters

v name - the name of the String property.

v value - the String property value to set in the Message.

Exceptions

v MessageNotWriteableException - if properties are marked read-only

v JMSException - with reason MQJMS_E_BAD_PROPERTY_NAME

toString

public String toString();

Gets a String containing a formatted version of the Message header.

Returns

v the String version of the message header.

JMSMessage

Chapter 15. Package com.ibm.jms 455

JMSObjectMessage

public class JMSObjectMessage

extends JMSMessage

implements ObjectMessage

java.lang.Object

 |

 +----com.ibm.jms.JMSMessage

 |

 +----com.ibm.jms.JMSObjectMessage

An ObjectMessage is used to send a message that contains a serializable Java

Object. It inherits from JMSMessage and adds a body containing a single

serializable Java Object.

If more than one Java object must be sent, one of the collection classes can be used.

When a client receives an ObjectMessage , it is in read-only mode. If a client

attempts to write to the message at this point, a MessageNotWriteableException is

thrown. If clearBody() is called, the message can then be both read from and

written to.

Methods

clearBody

public void clearBody() throws JMSException;

Clears the message body. No other part of the message is changed.

Exceptions

v JMSException - if the action fails to due to some internal JMS error.

getObject

public Serializable getObject() throws JMSException;

Get the Serializable Object containing this message’s data. The default value is

null.

Returns

v the Serializable Object containing this message’s data

Exceptions

v JMSException - with reason MQJMS_E_DESERIALISE_FAILED

v InvalidClassException - if something is wrong with a class used by

serialization.

setObject

public void setObject(Serializable object) throws JMSException;

Sets the Serializable object containing this message’s data.

Parameters

v object - the message’s data

Exceptions

v JMSException - with reasons

– MQJMS_EXCEPTION_MESSAGE_NOT_WRITABLE

JMSObjectMessage

456 Using Java

– MQJMS_E_SERIALISE_FAILED
v MessageFormatException - if object serialization fails

toString

public String toString();

This method returns a String containing a formatted version of the Message.

Returns

v the formatted version.

JMSObjectMessage

Chapter 15. Package com.ibm.jms 457

JMSStreamMessage

public class JMSStreamMessage

extends JMSMessage

implements StreamMessage

java.lang.Object

 |

 +----com.ibm.jms.JMSMessage

 |

 +----com.ibm.jms.JMSStreamMessage

A StreamMessage is used to send a stream of Java primitives. It is filled and read

sequentially. It inherits from JMSMessage and adds a stream message body. Its

methods are based largely on those found in java.io.DataInputStream and

java.io.DataOutputStream.

The primitive types can be read or written explicitly using methods for each type.

They can also be read or written generically as objects. For example, a call to

StreamMessage.writeInt(6) is equivalent to StreamMessage.writeObject(new

Integer(6)). Both forms are provided because the explicit form is convenient for

static programming and the object form is needed when types are not known at

compile time.

When the message is first created, and when clearBody() is called, the body of the

message is in write-only mode. After the first call to the reset() method has been

made, the message body is in read-only mode. When a message has been sent the

provider always calls the reset() method to read its content. Likewise, when a

message has been received, the provider calls reset() so that the message body is in

read-only mode for the client.

If clearBody() is called on a message in read-only mode, the message body is

cleared and the message body is in write-only mode.

If a client attempts to read a message in write-only mode, a

MessageNotReadableException is thrown.

If a client attempts to write a message in read-only mode, a

MessageNotWriteableException is thrown.

Stream messages support the following conversion table. The marked cases are

supported and the unmarked cases throw a JMSException. The String to primitive

conversions throw a runtime exception if the primitives valueOf() method does not

accept it as a valid String representation of the primitive.

A value written as the row type can be read as the column type.

 boolean byte short char int long float double String byte[]

 --

 boolean X X

 byte X X X X X

 short X X X X

 char X X

 int X X X

 long X X

 float X X X

 double X X

 String X X X X X X X X

 byte[] X

 --

JMSStreamMessage

458 Using Java

Attempting to read a null value as a Java primitive type is treated as calling the

primitive’s corresponding valueOf(String) conversion method with a null value.

Because char does not support a String conversion, attempting to read a null value

as a char throws a NullPointerException.

Methods

clearBody

public void clearBody() throws JMSException;

Clears the message body. All other parts of the message are left untouched.

Exceptions

v JMSException - if the action fails to due to an internal JMS error.

readBoolean

public boolean readBoolean() throws JMSException;

Reads a boolean from the stream message.

Returns

v the boolean value read.

Exceptions

v JMSException - if JMS fails to read the message due to an internal JMS

error.

v MessageEOFException - if an end of message stream.

v MessageFormatException - if this type conversion is not valid.

v MessageNotReadableException - if the message is in write-only mode.

readByte

public byte readByte() throws JMSException;

Reads a byte value from the stream message.

Returns

v the next byte from the stream message as a 8-bit byte.

Exceptions

v JMSException - if JMS fails to read the message due to an internal JMS

error.

v MessageEOFException - if an end of message stream.

v MessageFormatException - if this type conversion is not valid.

v MessageNotReadableException - if the message is in write-only mode.

readBytes

public int readBytes(byte[] value) throws JMSException;

Reads a byte array field from the stream message into the specified byte[] object

(the read buffer).

To read the field value, readBytes() should be successively called until it returns a

value less than the length of the read buffer. The values of the bytes in the buffer

following the last byte read are undefined.

JMSStreamMessage

Chapter 15. Package com.ibm.jms 459

If readBytes() returns a value equal to the length of the buffer, a subsequent

readBytes() call must be made. If there are no more bytes to be read this call will

return -1.

If the bytes array field value is null, readBytes() returns -1.

If the bytes array field value is empty, readBytes() returns 0.

After the first readBytes() call on a byte[] field value has been made, the full value

of the field must be read before the next field can be read. An attempt to read the

next field before that has been done will throw a MessageFormatException.

Parameters

v value - the buffer into which the data is read.

Returns

v the total number of bytes read into the buffer, or -1 if there is no more

data because the end of the byte field has been reached.

Exceptions

v JMSException - if JMS fails to read the message due to an internal JMS

error.

v MessageEOFException - if an end of message stream.

v MessageFormatException - if this type conversion is not valid.

v MessageNotReadableException - if the message is in write-only mode.

readChar

public char readChar() throws JMSException;

Reads a Unicode character value from the stream message.

Returns

v a Unicode character from the stream message.

Exceptions

v JMSException - if JMS fails to read the message due to an internal JMS

error.

v MessageEOFException - if an end of message stream.

v MessageFormatException - if this type conversion is not valid.

v MessageNotReadableException - if the message is in write-only mode.

readDouble

public double readDouble() throws JMSException;

Reads a double from the stream message.

Returns

v a double value from the stream message.

Exceptions

v JMSException - if JMS fails to read the message due to an internal JMS

error.

v MessageEOFException - if an end of message stream.

v MessageFormatException - if this type conversion is not valid.

v MessageNotReadableException - if the message is in write-only mode.

JMSStreamMessage

460 Using Java

readFloat

public float readFloat() throws JMSException;

Reads a float from the stream message.

Returns

v a float value from the stream message.

Exceptions

v JMSException - if JMS fails to read the message due to an internal JMS

error.

v MessageEOFException - if an end of message stream.

v MessageFormatException - if this type conversion is not valid.

v MessageNotReadableException - if the message is in write-only mode.

readInt

public int readInt() throws JMSException;

Reads a 32-bit integer from the stream message.

Returns

v a 32-bit integer value from the stream message, interpreted as an int.

Exceptions

v JMSException - if JMS fails to read the message due to an internal JMS

error.

v MessageEOFException - if an end of message stream.

v MessageFormatException - if this type conversion is not valid.

v MessageNotReadableException - if the message is in write-only mode.

readLong

public long readLong() throws JMSException;

Reads a 64-bit integer from the stream message.

Returns

v a 64-bit integer value from the stream message, interpreted as a long.

Exceptions

v JMSException - if JMS fails to read the message due to an internal JMS

error.

v MessageEOFException - if an end of message stream.

v MessageFormatException - if this type conversion is not valid.

v MessageNotReadableException - if the message is in write-only mode.

readObject

public Object readObject() throws JMSException;

Reads a Java object from the stream message.

This method can be used to return in ’objectified’ format, an object that had been

written to the stream with the equivalent writeObject() method call, or its

equivalent primitive write() method.

Returns

v a Java object from the stream message, in ’objectified’ format.

JMSStreamMessage

Chapter 15. Package com.ibm.jms 461

Exceptions

v JMSException - if JMS fails to read the message due to an internal JMS

error.

v MessageEOFException - if an end of message stream.

v MessageNotReadableException - if the message is in write-only mode.

readShort

public short readShort() throws JMSException;

Reads a 16-bit integer from the stream message.

Returns

v a 16-bit integer from the stream message.

Exceptions

v JMSException - if JMS fails to read the message due to an internal JMS

error.

v MessageEOFException - if an end of message stream.

v MessageFormatException - if this type conversion is not valid.

v MessageNotReadableException - if the message is in write-only mode.

readString

public String readString() throws JMSException;

Reads in a String from the stream message.

Returns

v a Unicode string from the stream message.

Exceptions

v JMSException - if JMS fails to read the message due to an internal JMS

error.

v MessageEOFException - if an end of message stream.

v MessageFormatException - if this type conversion is not valid.

v MessageNotReadableException - if the message is in write-only mode.

reset

public void reset() throws JMSException;

Puts the message in read-only mode, and repositions the stream to the beginning.

Exceptions

v JMSException - if JMS fails to reset the message due to an internal JMS

error.

v MessageFormatException - if the message’s format is not valid

toString

public String toString();

Gets a String containing a formatted version of the Message.

Returns

v the String version of the message.

JMSStreamMessage

462 Using Java

writeBoolean

public void writeBoolean(boolean value) throws JMSException;

Writes a boolean to the stream message. The value true is written as the value

(byte)1; the value false is written as the value (byte)0.

Parameters

v value - the boolean value to be written.

Exceptions

v JMSException - if JMS fails to write the boolean to the message due to

an internal JMS error.

v MessageNotWriteableException - if the message is in read-only mode.

writeByte

public void writeByte(byte value) throws JMSException;

Writes a byte to the stream message.

Parameters

v value - the byte value to be written.

Exceptions

v JMSException - if JMS fails to write the byte to the message due to an

internal JMS error.

v MessageNotWriteableException - if the message is in read-only mode.

writeBytes

public void writeBytes(byte[] value) throws JMSException;

Writes a byte array to the stream message.

Parameters

v value - the byte array to be written.

Exceptions

v JMSException - if JMS fails to write the byte array to the message due to

an internal JMS error.

v MessageNotWriteableException - if the message is in read-only mode.

writeBytes

public void writeBytes(byte[] value, int offset, int length)

 throws JMSException;

Writes a portion of a byte array to the stream message.

Parameters

v value - the byte array value to be written.

v offset - the initial offset within the byte array.

v length - the number of bytes to use.

Exceptions

v JMSException - if JMS fails to write the byte array portion to the

message due to an internal JMS error.

v MessageNotWriteableException - if the message is in read-only mode.

JMSStreamMessage

Chapter 15. Package com.ibm.jms 463

writeChar

public void writeChar(char value) throws JMSException;

Writes a char to the stream message.

Parameters

v value - the char value to be written.

Exceptions

v JMSException - if JMS fails to write the char to the message due to an

internal JMS error.

v MessageNotWriteableException - if the message is in read-only mode.

writeDouble

public void writeDouble(double value) throws JMSException;

Writes a double to the stream message.

Parameters

v value - the double value to be written.

Exceptions

v JMSException - if JMS fails to write the double to the message due to an

internal JMS error.

v MessageNotWriteableException - if the message is in read-only mode.

writeFloat

public void writeFloat(float value) throws JMSException;

Writes a float to the stream message.

Parameters

v value - the float value to be written.

Exceptions

v JMSException - if JMS fails to write the float to the message due to an

internal JMS error.

v MessageNotWriteableException - if the message is in read-only mode.

writeInt

public void writeInt(int value) throws JMSException;

Writes an int to the stream message.

Parameters

v value - the int to be written.

Exceptions

v JMSException - if JMS fails to write the int to the message due to an

internal JMS error.

v MessageNotWriteableException - if the message is in read-only mode.

writeLong

public void writeLong(long value) throws JMSException;

Writes a long to the stream message.

Parameters

JMSStreamMessage

464 Using Java

v value - the long to be written.

Exceptions

v JMSException - if JMS fails to write the long to the message due to an

internal JMS error.

v MessageNotWriteableException - if the message is in read-only mode.

writeObject

public void writeObject(Object value) throws JMSException;

Writes a Java object to the stream message.

This method only works for the ’objectified’ primitive object types (Integer, Double,

Long...), Strings and byte arrays.

Parameters

v value - the Java object to be written.

Exceptions

v JMSException - if JMS fails to write the object to the message due to an

internal JMS error.

v MessageNotWriteableException - if the message is in read-only mode.

v MessageFormatException - if the object is not valid

writeShort

public void writeShort(short value) throws JMSException;

Write a short to the stream message.

Parameters

v value - the short to be written.

Exceptions

v JMSException - if JMS fails to write the short to the message due to an

internal JMS error.

v MessageNotWriteableException - if the message is in read-only mode.

writeString

public void writeString(String value) throws JMSException;

Writes a String to the stream message.

Parameters

v value - the String value to be written.

Exceptions

v JMSException - if JMS fails to write the String to the message due to an

internal JMS error.

v MessageNotWriteableException - if the message is in read-only mode.

JMSStreamMessage

Chapter 15. Package com.ibm.jms 465

JMSTextMessage

public class JMSTextMessage

extends JMSMessage

implements TextMessage

java.lang.Object

 |

 +----com.ibm.jms.JMSMessage

 |

 +----com.ibm.jms.JMSTextMessage

A TextMessage is used to send a message containing a java.lang.String. It inherits

from JMSMessage and adds a text body.

When a client receives a TextMessage, it is in read-only mode. If a client attempts

to write to the message at this point, a MessageNotWriteableException is thrown. If

clearBody() is called, the message can then be both read from and written to.

Methods

clearBody

public void clearBody() throws JMSException;

Clears out the message body. No other part of the message is changed.

Exceptions

v JMSException - if an internal error occurs

getText

public String getText() throws JMSException;

Gets the String containing this message’s data. The default value is null.

Returns

v the message data in String form.

Exceptions

v JMSException - IllegalStateException with reason

MQJMS_E_BAD_CCSID.

setText

public void setText(String messageText) throws JMSException;

Sets the String containing this message’s data.

Parameters

v messageText - the String containing the message’s data

Exceptions

v JMSException - if an internal error occurs.

v javax.jms.MessageNotWriteableException - if the message is in read-only

mode.

toString

public String toString();

Returns a String containing a formatted version of the Message.

JMSTextMessage

466 Using Java

Returns

v the message formatted as a String.

JMSTextMessage

Chapter 15. Package com.ibm.jms 467

JMSTextMessage

468 Using Java

Chapter 16. Package com.ibm.mq.jms

WebSphere MQ classes for Java Message Service consist of a number of Java

classes and interfaces that are based on the Sun javax.jms package of interfaces and

classes. Write your clients using the Sun interfaces and classes that are described in

detail in the following sections. The names of the WebSphere MQ objects that

implement the Sun interfaces and classes have a prefix of MQ (unless stated

otherwise in the object description). The descriptions include details about any

deviations of the WebSphere MQ objects from the standard JMS definitions. This is

one of two packages which contain the WebSphere MQ classes for Java Message

Service that implement the Sun interfaces. The other package is com.ibm.jms. You

do not usually use the implementation classes directly; you program to the JMS

interfaces. Many of the interfaces do not apply when running a publish/subscribe

application on a direct connection to the IBM WebSphere MQ Event Broker. Where

the names of implementation classes are listed, provider-specific methods are

documented.

© Copyright IBM Corp. 1997, 2007 469

Cleanup

public class Cleanup

extends MQConnectionFactory

implements Runnable

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnectionFactory

 |

 +----com.ibm.mq.jms.Cleanup

Cleanup contains utilities for dealing with nondurable subscriptions which are

broken, by using the SUBSTATE(BROKER) option. The class is not applicable if

you use a direct connection to a broker.

Constructors

Cleanup

public Cleanup();

Default constructor.

Cleanup

public Cleanup(MQConnectionFactory mqcf) throws JMSException;

Constructor that imports property values.

Parameters

v mqcf - the topic connection factory that provides the values.

Methods

cleanup

public void cleanup() throws JMSException;

Runs Cleanup once.

Exceptions

v IllegalStateException - if CleanupLevel is

JMSC.MQJMS_CLEANUP_NONE.

getCleanupInterval

public long getCleanupInterval();

Gets the cleanup interval.

Returns

v the cleanup interval.

getCleanupLevel

public int getCleanupLevel();

Gets the cleanup level.

Returns

v the cleanup level.

Cleanup

470 Using Java

getExceptionListener

public ExceptionListener getExceptionListener();

Gets the ExceptionListener.

Returns

v the exception listener.

isRunning

public boolean isRunning();

Indicates whether run() is currently active.

Returns

v true if active; false otherwise.

main

public static void main(String[] args)

 throws UnsupportedEncodingException;

Invokes the utility directly from a command line. You can use this if you use the

broker-based subscription store. Syntax for bindings attach:

Cleanup [-m] [-r] [SAFE | STRONG | FORCE | NONDUR]

[-t] Syntax for client attach:

Cleanup -client [-m] -host [-port] [-channel] [-r] [SAFE | STRONG |

FORCE | NONDUR] [-t]

qmgr the name of the queue manager.

hostname

the name of the host which is running the queue manager.

port the port on which the queue manager is listening.

channel

the name of the channel.

interval

the interval between executions of cleanup, in minutes. If not set, cleanup

is performed once.

-t enables tracing, to the mqjms.trc file.

SAFE | STRONG | FORCE | NONDUR

sets type of clean up. See setCleanupLevel().

run

public void run();

Runs Cleanup. It runs in the background at intervals, as determined by

setCleanupLevel() and setCleanupInterval(). If the field set by setCleanupInterval()

is zero, Cleanup runs once and returns. Otherwise Cleanup runs regularly at the

time in milliseconds set by setCleanupInterval(). CleanupInterval must be zero

with JMSC.MQJMS_CLEANUP_FORCE or JMSC.MQJMS_CLEANUP_NONDUR

set, and CleanupLevel cannot be MQJMS_CLEANUP_NONE. In these cases the

method fails with an IllegalStateException. Any exceptions generated are routed to

the ExceptionListener.

Cleanup

Chapter 16. Package com.ibm.mq.jms 471

setCleanupInterval

public void setCleanupInterval(long interval) throws JMSException;

Sets the cleanup interval.

Parameters

v interval - the cleanup interval in milliseconds.

Exceptions

v JMSException - if interval is either null or invalid.

setCleanupLevel

public void setCleanupLevel(int level) throws JMSException;

Sets the cleanup level.

Parameters

v level - the cleanup level. The following values are accepted:

– JMSC.MQJMS_CLEANUP_NONE

– JMSC.MQJMS_CLEANUP_SAFE - default

– JMSC.MQJMS_CLEANUP_STRONG

– JMSC.MQJMS_CLEANUP_FORCE

– JMSC.MQJMS_CLEANUP_NONDUR

Exceptions

v JMSException - if level is not supported or if an illegal state is

encountered.

setExceptionListener

public void setExceptionListener(ExceptionListener el);

Sets the ExceptionListener. If set, the ExceptionListener receives any exceptions

caused while run() is running. Cleanup terminates shortly after issuing the

exception to the ExceptionListener.

Parameters

v el - the exception listener.

setPassword

public void setPassword(String newPassword);

Sets the durable connection password

Parameters

v newPassword - the new password.

setUserID

public void setUserID(String newuserID);

Sets the durable connection user ID.

Parameters

v newuserID - the new user ID.

stop

public void stop();

Cleanup

472 Using Java

Stops any running cleanup thread. Returns when run() has finished. Does nothing

if run() is not running.

Cleanup

Chapter 16. Package com.ibm.mq.jms 473

MQConnection

public class MQConnection

extends Object

implements Connection

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnection

A JMS MQConnection is a client’s active connection to its JMS provider.

Methods

close

public void close() throws JMSException;

Moves the connection into the closed state.

Exceptions

v JMSException -

createConnectionConsumer

public ConnectionConsumer createConnectionConsumer(Destination destination,

 String messageSelector,

 ServerSessionPool sessionPool,

 int maxMessages)

 throws JMSException;

Creates a connection consumer for this connection. This facility is only used by

advanced JMS clients.

Parameters

v destination - the destination to access

v messageSelector - only messages with properties matching the message

selector expression are delivered. A value of null or an empty string

indicates that there is no message selector for the message consumer.

v sessionPool - the server session pool to associate with this connection

consumer

v maxMessages - the maximum number of messages that can be assigned

to a server session at one time

Returns

v the connection consumer.

Exceptions

v JMSException - if the Connection object fails to create a connection

consumer due to some internal error or invalid arguments for

sessionPool and messageSelector.

v InvalidDestinationException - if an invalid destination is specified.

v InvalidSelectorException - if the message selector is invalid.

createDurableConnectionConsumer

public ConnectionConsumer

createDurableConnectionConsumer(Topic topic,

 String name,

MQConnection

474 Using Java

String messageSelector,

 ServerSessionPool sessionPool,

 int maxMessageCount) throws JMSException;

Creates a durable connection consumer for this connection. This is facility is only

used by advanced JMS clients.

Parameters

v topic - the topic to be accessed.

v name - the name of the durable subscription.

v messageSelector - delivers only those messages with properties that

match the message selector expression. A value of null or an empty

string indicates that there is no message selector for the message

consumer.

v sessionPool - the server session pool to associate with this connection

consumer.

v maxMessageCount - the maximum number of messages that can be

assigned to a server session at one time.

Returns

v the connection consumer.

Exceptions

v JMSException - if JMS Connection fails to create a durable connection

consumer due to some internal error or invalid arguments for

sessionPool and message selector.

v InvalidSelectorException - if the message selector is invalid.

createSession

public Session createSession(boolean transacted, int acknowledgeMode)

 throws JMSException;

Creates a Session object.

Parameters

v transacted - true indicates that the session is transacted.

v acknowledgeMode - indicates whether the consumer or the client

acknowledges any messages it receives. Possible values are:

– Session.AUTO_ACKNOWLEDGE

– Session.CLIENT_ACKNOWLEDGE

– Session.DUPS_OK_ACKNOWLEDGE

See the JMS specification for details of these values. acknowledgeMode

is ignored if the session is transacted.

Returns

v a newly created session.

Exceptions

v JMSException - if the Connection object fails to create a session due to

some internal error or lack of support for the specific transaction and

acknowledgement mode.

MQConnection

Chapter 16. Package com.ibm.mq.jms 475

getClientID

public String getClientID() throws JMSException;

Gets the client ID for this connection.

Returns

v the unique client identifier.

Exceptions

v JMSException - if JMS implementation fails to return the client ID for

this Connection due to an internal error.

getExceptionListener

public ExceptionListener getExceptionListener() throws JMSException;

Gets the exception listener for this connection. A connection’s ExceptionListener

receives a JMSException if there is an unrecoverable problem with the connection

to WebSphere MQ.

Returns

v the exception listener.

Exceptions

v JMSException -

getMetaData

public ConnectionMetaData getMetaData() throws JMSException;

Gets the meta-data for this connection.

Returns

v the connection meta data.

Exceptions

v JMSException - general exception if JMS implementation fails to get the

Connection meta-data for this Connection.

setClientID

public void setClientID(String clientID) throws JMSException;

Sets the client ID for this connection.

Parameters

v clientID - the unique client identifier.

Exceptions

v JMSException - general exception if JMS implementation fails to set the

client ID for this Connection due to an internal error.

v InvalidClientIDException - if JMS client specifies an invalid or duplicate

client ID.

setExceptionListener

public void setExceptionListener(ExceptionListener listener)

 throws JMSException;

Sets an exception listener for this connection. A connection’s ExceptionListener

receives a JMSException if there is an unrecoverable problem with the connection

to WebSphere MQ.

MQConnection

476 Using Java

Parameters

v listener - the exception listener.

Exceptions

v JMSException -

start

public void start() throws JMSException;

Start or restart delivering incoming messages.

Exceptions

v JMSException -

stop

public void stop() throws JMSException;

Temporarily stops a connection’s delivery of incoming messages. It can be restarted

with the start() method. When it is stopped, it inhibits delivery to all its message

consumers. Synchronous receives are blocked, and messages are not delivered to

message listeners. Stopping a session has no affect on its ability to send messages.

Stopping a session that is already stopped has no effect.

Exceptions

v JMSException - if the JMS implementation fails to stop the message

delivery because of an internal error.

MQConnection

Chapter 16. Package com.ibm.mq.jms 477

MQConnectionFactory

public class MQConnectionFactory

extends Object

implements ConnectionFactoryReferenceableSerializable

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnectionFactory

MQConnectionFactory is the WebSphere MQ implementation of ConnectionFactory.

A ConnectionFactory encapsulates a set of connection configuration parameters

that has been defined by an administrator. A client uses it to create a Connection

with a JMS provider.

Constructors

MQConnectionFactory

public MQConnectionFactory();

This is the default constructor. It will create an MQConnectionFactory with all

properties set to their default values.

Methods

createConnection

public Connection createConnection() throws JMSException;

Creates a connection with the default user identity. The connection is created in

stopped mode. No messages are delivered until Connection.start() is explicitly

called.

Returns

v a newly created connection.

Exceptions

v JMSException - if the JMS provider fails to create the connection due to

some internal error.

v JMSSecurityException - if client authentication fails due to an invalid

user name or password.

createConnection

public Connection createConnection(String userName, String password)

 throws JMSException;

Creates a connection with the specified user identity. The connection is created in

stopped mode. No messages are delivered until Connection.start() is explicitly

called.

Parameters

v userName - the caller’s user name.

v password - the caller’s password.

Returns

v a newly created connection.

Exceptions

MQConnectionFactory

478 Using Java

v JMSException - if the JMS provider fails to create the connection due to

some internal error.

v JMSSecurityException - if client authentication fails due to an invalid

user name or password.

getBrokerCCSubQueue

public String getBrokerCCSubQueue() throws JMSException;

Gets the broker’s queue name for nondurable connection consumers.

Returns

v the name of the queue.

Exceptions

v JMSException - if an internal error occurs.

getBrokerControlQueue

public String getBrokerControlQueue() throws JMSException;

Gets the broker’s control queue name.

Returns

v the name of the control queue.

Exceptions

v JMSException - if an internal error occurs.

getBrokerPubQueue

public String getBrokerPubQueue() throws JMSException;

Gets the broker’s publish queue name.

Returns

v the name of the queue.

Exceptions

v JMSException - if an internal error occurs.

getBrokerQueueManager

public String getBrokerQueueManager() throws JMSException;

Gets the name of the broker’s queue manager.

Returns

v the name of the queue manager.

Exceptions

v JMSException - if an internal error occurs.

getBrokerSubQueue

public String getBrokerSubQueue() throws JMSException;

Gets the broker’s queue name for nondurable subscribers.

Returns

v the name of the queue.

Exceptions

v JMSException - if an internal error occurs.

MQConnectionFactory

Chapter 16. Package com.ibm.mq.jms 479

getBrokerVersion

public int getBrokerVersion() throws JMSException;

Gets the version number of the broker.

Returns

v the version number.

Exceptions

v JMSException - if an internal error occurs.

getCCDTURL

public URL getCCDTURL();

Gets the URL for the client channel definition table.

Returns

v the address of the client channel definition table.

getCCSID

public int getCCSID();

Gets the character set of the queue manager.

Returns

v the CCSID.

getChannel

public String getChannel();

Gets the name of the channel that was used.

Returns

v the name of the channel.

getCleanupInterval

public long getCleanupInterval() throws JMSException;

Gets the clean up interval.

Returns

v the clean up interval (milliseconds).

Exceptions

v JMSException - if an internal error occurs.

getCleanupLevel

public int getCleanupLevel() throws JMSException;

Gets the clean up level.

Returns

v the clean up level.

Exceptions

v JMSException - if an internal error occurs.

MQConnectionFactory

480 Using Java

getClientId

public String getClientId();

Deprecated

use the getClientID() method instead.

Returns

v the client ID.

getClientID

public String getClientID();

Gets the client ID.

Returns

v the client ID for all connections made using this factory.

Note that this method always throws an IllegalStateException when you

make a direct connection to a broker.

getCloneSupport

public int getCloneSupport() throws JMSException;

Indicates whether cloning is supported.

Returns

v supported values are:

– JMSC.MQJMS_CLONE_ENABLED

– JMSC.MQJMS_CLONE_DISABLED

Exceptions

v JMSException - if an internal error occurs.

getConnTag

public byte[] getConnTag();

Gets the value of the queue manager connection tag. It is used by the queue

manager to serialize access to the affected resources. This tag is only used when

connecting to a z/OS queue manager. On other platforms it will have the value

MQCT_NONE - its default value.

Returns

v the String value of the queue manager connection tag.

getDescription

public String getDescription();

Gets the description.

Returns

v the object description.

getDirectAuth

public int getDirectAuth() throws JMSException;

Gets the type of direct authentication that is required.

MQConnectionFactory

Chapter 16. Package com.ibm.mq.jms 481

Returns

v one of the following:

– JMSC.MQJMS_DIRECTAUTH_BASIC

– JMSC.MQJMS_DIRECTAUTH_CERTIFICATE

Exceptions

v JMSException - if an internal error occurs.

getFailIfQuiesce

public int getFailIfQuiesce();

Indicates the default behavior of applications accessing a quiescing queue manager.

Returns

v possible values are:

– JMSC.MQJMS_FIQ_YES (default)

– JMSC.MQJMS_FIQ_NO

getHdrCompList

public Collection getHdrCompList();

Gets the list of header compression techniques which has been set.

Returns

v The Collection that holds the header compression techniques. If not set,

this collection has a value of null

getHostName

public String getHostName();

Gets the name of the host. This only applies for client connections or direct

TCP/IP connections to WebSphere MQ.

Returns

v the name of the host.

getLocalAddress

public String getLocalAddress();

Gets the local address.

Returns

v the local address.

getMapNameStyle

public boolean getMapNameStyle();

Allows compatibility style to be used for MapMessage element names.

Returns

v possible values are:

– JMSC.MAP_NAME_STYLE_STANDARD

– JMSC.MAP_NAME_STYLE_COMPATIBLE

MQConnectionFactory

482 Using Java

getMessageRetention

public int getMessageRetention() throws JMSException;

Indicates what happens to unwanted messages.

Returns

v possible values are:

– JMSC.MQJMS_MRET_YES

– JMSC.MQJMS_MRET_NO

Exceptions

v JMSException - if an internal error occurs.

getMessageSelection

public int getMessageSelection() throws JMSException;

Indicates whether the client or the broker performs message selection.

Returns

v possible values are:

– JMSC.MQJMS_MSEL_CLIENT

– JMSC.MQJMS_MSEL_BROKER

Exceptions

v JMSException - if an internal error occurs.

getMQConnectionOptions

public int getMQConnectionOptions();

Gets the connection options.

Returns

v the connection options set for the queue manager

getMsgBatchSize

public int getMsgBatchSize();

Gets the message batch size.

Returns

v the maximum number of messages to be taken at once when using

asynchronous delivery.

getMsgCompList

public Collection getMsgCompList();

Gets the list of message compression techniques that have been set.

Returns

v the Collection holding the message compression techniques. If not set,

this collection has a value of null

getMulticast

public int getMulticast() throws JMSException;

Gets the value of the multicast attribute.

MQConnectionFactory

Chapter 16. Package com.ibm.mq.jms 483

Returns

v the following values are possible:

– JMSC.MQJMS_MULTICAST_DISABLED

– JMSC.MQJMS_MULTICAST_NOT_RELIABLE

– JMSC.MQJMS_MULTICAST_RELIABLE

– JMSC.MQJMS_MULTICAST_ENABLED

Exceptions

v JMSException - if an internal error occurs.

getOptimisticPublication

public boolean getOptimisticPublication() throws JMSException;

Indicates whether transactional publish/subscribe MessageProducers should return

immediately from a send/publish call rather than wait until the message has

completed delivery. If false, failure to deliver the message will only be reported

when the message is committed.

Returns

v the indicator

Exceptions

v JMSException -

getOutcomeNotification

public boolean getOutcomeNotification() throws JMSException;

Indicates whether the publish/subscribe MessageConsumers are informed of the

outcome of acknowledge or commit calls after receiving messages.

Returns

v true if MessageConsumers are informed or false if not.

getPollingInterval

public int getPollingInterval();

Gets the interval between scans of all receivers during asynchronous message

delivery.

Returns

v the interval in milliseconds.

getPort

public int getPort();

Gets the port number. Applies to client connections or direct TCP/IP connection to

a broker.

Returns

v the port number.

getProcessDuration

public int getProcessDuration() throws JMSException;

Indicates how promptly received messages are processed. While this alone does

not make any difference, quickly processing messages is a prerequisite for viewing

uncommitted messages.

MQConnectionFactory

484 Using Java

Returns

v the process duration (milliseconds).

getProxyHostName

public String getProxyHostName() throws JMSException;

Gets the proxy host name.

Returns

v the host name of the proxy server when establishing a direct connection,

or null if no proxy server is used.

Exceptions

v JMSException - if an internal error occurs.

getProxyPort

public int getProxyPort() throws JMSException;

Gets the port number of the proxy server.

Returns

v the port number of the proxy server.

Exceptions

v JMSException - if an internal error occurs.

getPubAckInterval

public int getPubAckInterval() throws JMSException;

Gets the number of messages that can be published before requiring

acknowledgement from the broker.

Returns

v the acknowledgement interval.

Exceptions

v JMSException - if an internal error occurs.

getQueueManager

public String getQueueManager();

Gets the name of the queue manager.

Returns

v the name.

getReceiveExit

public String getReceiveExit();

Gets the description of the receive exit.

Returns

v either the name of the class or a String in the form library(entryPoint)

where ’library’ is the name of the module where the code resides and

’entryPoint’ is the entry point.

MQConnectionFactory

Chapter 16. Package com.ibm.mq.jms 485

getReceiveExitInit

public String getReceiveExitInit();

Gets the initialization string for the receive exit.

Returns

v the initialization string.

getReceiveIsolation

public int getReceiveIsolation() throws JMSException;

Indicates whether calls by MessageConsumers are isolated from other operations.

Returns

v one of these values:

– JMSC.MQJMS_RCVISOL_COMMITTED

– JMSC.MQJMS_RCVISOL_UNCOMMITTED

– JMSC.MQJMS_RCVISOL_DEFAULT

Exceptions

v JMSException -

getReference

public Reference getReference() throws NamingException;

Creates a reference for this queue connection factory.

Returns

v the new Reference object.

Exceptions

v NamingException - if there is a naming problem.

getRescanInterval

public int getRescanInterval();

Gets the interval between browse scans of a queue. The scan looks for messages

that have not been returned by the previous browse scan.

Returns

v the interval in milliseconds.

getSecurityExit

public String getSecurityExit();

Gets the description of the security exit.

Returns

v either the name of the class or a String in the form library(entryPoint)

where ’library’ is the name of the module where the code resides and

’entryPoint’ is the entry point.

getSecurityExitInit

public String getSecurityExitInit();

Gets the initialization string for the security exit.

Returns

MQConnectionFactory

486 Using Java

v the initialization string.

getSendExit

public String getSendExit();

Gets the description of the send exit.

Returns

v either the name of the class or a String in the form library(entryPoint)

where ’library’ is the name of the module where the code resides and

’entryPoint’ is the entry point.

getSendExitInit

public String getSendExitInit();

Gets the initialization string for the send exit.

Returns

v the initialization string.

getSparseSubscriptions

public boolean getSparseSubscriptions() throws JMSException;

Gets the sparse subscriptions attribute. A sparse subscription is one that receives

infrequent matching messages. If the attribute is true the application must be able

to open the consumer queue for browsing messages.

Returns

v true if sparse subscriptions are selected.

Exceptions

v JMSException - if an internal error occurs.

getSSLCertStores

public Collection getSSLCertStores() throws JMSException;

Gets the collection of CertStore objects.

Returns

v the list of CertStore objects as a Collection. This works whether

setSSLCertStores() was used to set a collection of CertStore objects or a

String specifying such a list.

Exceptions

v JMSException - if an unsupported type or bad value is encountered.

getSSLCertStoresAsString

public String getSSLCertStoresAsString() throws JMSException;

Gets the collection of CertStore objects as a String.

Returns

v the list of CertStore objects representing the LDAP CRLs as a String if

setSSLCertStores() set it as a String in the first place.

Exceptions

v JMSException - if the CertStore objects were provided as a Collection.

MQConnectionFactory

Chapter 16. Package com.ibm.mq.jms 487

getSSLCipherSuite

public String getSSLCipherSuite();

Gets the CipherSuite used for SSL encryption.

Returns

v the CipherSuite String.

getSSLFipsRequired

public boolean getSSLFipsRequired();

Indicates whether sslFips (FIPS) is required.

Returns

v the value.

getSSLPeerName

public String getSSLPeerName();

Gets the distinguished name pattern used to validate the queue manager.

Returns

v the distinguished name pattern.

getSSLResetCount

public int getSSLResetCount();

Gets the SSL reset count.

Returns

v the reset count.

getSSLSocketFactory

public Object getSSLSocketFactory();

Gets the SSLSocketFactory used with SSL encryption.

Returns

v the SSLSocketFactory.

getStatusRefreshInterval

public int getStatusRefreshInterval() throws JMSException;

Gets the status refresh interval.

Returns

v the time between transactions to refresh publish/subscribe status

(milliseconds).

Exceptions

v JMSException - if an internal error occurs.

getSubscriptionStore

public int getSubscriptionStore() throws JMSException;

Gets the SUBSTORE property.

Returns

MQConnectionFactory

488 Using Java

v an integer which represents a valid values of the SUBSTORE property:

– JMSC.MQJMS_SUBSTORE_QUEUE

– JMSC.MQJMS_SUBSTORE_BROKER

– JMSC.MQJMS_SUBSTORE_MIGRATE

Exceptions

v JMSException - if an internal error occurs.

getSyncpointAllGets

public boolean getSyncpointAllGets();

Indicates how syncpoint is used for GET operations.

Returns

v true if all message GETs are done under syncpoint. Otherwise GETs for

non-transacted sessions using

javax.jms.Session.AUTO_ACKNOWLEDGE or

javax.jms.Session.DUPS_OK_ACKNOWLEDGE acknowledge modes can

do GETs outside syncpoint.

getTargetClientMatching

public boolean getTargetClientMatching();

is target client matching enabled.

Returns

v whether target client matching is enabled.

getTemporaryModel

public String getTemporaryModel() throws JMSException;

Gets the name of a model queue for creating temporary destinations.

Returns

v the name of the model queue. If it refers to a permanent dynamic model

queue then you must call the MQTemporaryQueue.delete() method to

destroy the queue after use.

Exceptions

v JMSException - is here only to satisfy inheritance.

getTempQPrefix

public String getTempQPrefix() throws JMSException;

Gets the prefix used to form the name of a WebSphere MQ dynamic queue.

Returns

v the prefix.

Exceptions

v JMSException - is here only to satisfy inheritance.

getTransportType

public int getTransportType();

Gets the transport type.

Returns

MQConnectionFactory

Chapter 16. Package com.ibm.mq.jms 489

v the transport type. Valid types are:

– JMSC.MQJMS_TP_BINDINGS_MQ

– JMSC.MQJMS_TP_CLIENT_MQ_TCPIP

– JMSC.MQJMS_TP_MQJD

– JMSC.MQJMS_TP_DIRECT_TCPIP

– JMSC.MQJMS_TP_DIRECT_HTTP

getUseConnectionPooling

public boolean getUseConnectionPooling();

Indicates whether connection pooling has been selected.

Returns

v true means that JMS has enabled connection pooling for the lifetime of

any connections created by this object.

getVersion

public int getVersion();

Gets the version number.

Returns

v the version number of the class.

setBrokerCCSubQueue

public void setBrokerCCSubQueue(String queueName) throws JMSException;

Sets the name of the broker nondurable connection consumer subscriber queue.

Parameters

v queueName - the name of queue.

Exceptions

v JMSException - if queueName is either null or invalid.

setBrokerControlQueue

public void setBrokerControlQueue(String queueName) throws JMSException;

Sets the name of the broker control queue.

Parameters

v queueName - the name of the broker control queue.

Exceptions

v JMSException - if the name is either null or invalid.

setBrokerPubQueue

public void setBrokerPubQueue(String queueName) throws JMSException;

Sets the name of the broker’s publish queue. Note that if this is a user-defined

queue, the broker must already be aware of this queue before connecting to the

broker.

Parameters

v queueName - the name of the publish queue.

Exceptions

MQConnectionFactory

490 Using Java

v JMSException - if queueName is either null or invalid.

setBrokerQueueManager

public void setBrokerQueueManager(String queueManagerName)

 throws JMSException;

Sets the name of the broker’s queue manager.

Parameters

v queueManagerName - the name of the queue manager.

Exceptions

v JMSException - if queueManagerName is either null or invalid.

setBrokerSubQueue

public void setBrokerSubQueue(String queueName) throws JMSException;

Gets the name of the broker nondurable subscriber queue.

Parameters

v queueName - the name of the queue.

Exceptions

v JMSException - if queueName is either null or invalid.

setBrokerVersion

public void setBrokerVersion(int version) throws JMSException;

Sets the version of the broker.

Parameters

v version - possible values are:

– JMSC.MQJMS_BROKER_V1

– JMSC.MQJMS_BROKER_V2

Exceptions

v JMSException - if version is invalid.

setCCDTURL

public void setCCDTURL(URL url);

Sets the URL for the client channel definition table.

Parameters

v url - the address of the client channel definition table.

setCCSID

public void setCCSID(int ccsid) throws JMSException;

Sets the character set to be used when connecting to the queue manager.

Parameters

v ccsid - the CCSID. The default value (819) is suitable in most situations.

Exceptions

v JMSException - if the value of ccsid is not permitted.

MQConnectionFactory

Chapter 16. Package com.ibm.mq.jms 491

setChannel

public void setChannel(String channelName) throws JMSException;

Sets the name of the channel - applies to clients only.

Parameters

v channelName - the name of the channel.

Exceptions

v JMSException - if channelName is either null or too long.

setCleanupInterval

public void setCleanupInterval(long interval) throws JMSException;

Sets the clean up interval.

Parameters

v interval - the clean up interval (milliseconds).

Exceptions

v JMSException - if interval is either null or too long.

setCleanupLevel

public void setCleanupLevel(int level) throws JMSException;

Sets the clean up level.

Parameters

v level - permitted levels are:

– JMSC.MQJMS_CLEANUP_AS_PROPERTY

– JMSC.MQJMS_CLEANUP_NONE

– JMSC.MQJMS_CLEANUP_SAFE

– JMSC.MQJMS_CLEANUP_STRONG

– JMSC.MQJMS_CLEANUP_NONDUR

– JMSC.MQJMS_CLEANUP_FORCE

Exceptions

v JMSException - if level is not as listed above.

setClientId

public void setClientId(String id);

Deprecated

Use the setClientID() method instead.

Parameters

v id - the client ID.

setClientID

public void setClientID(String id);

Sets the client ID.

Note that this method always throws an IllegalStateException when you make a

direct connection to a broker.

MQConnectionFactory

492 Using Java

Parameters

v id - the client ID.

setCloneSupport

public void setCloneSupport(int type) throws JMSException;

Selects whether cloning is supported.

Parameters

v type - supported values are:

– JMSC.MQJMS_CLONE_ENABLED

– JMSC.MQJMS_CLONE_DISABLED

Exceptions

v JMSException - if type is not one of the above.

setConnTag

public void setConnTag(byte[] cTag);

Sets the value of the queue manager connection tag. It is used by the queue

manager to serialize access to the affected resources. This tag is only used when

connecting to a z/OS queue manager. On other platforms it must have the value

MQCT_NONE - its default value.

Parameters

v cTag - the connection tag. The value is truncated if it is longer than 128

bytes.

setDescription

public void setDescription(String desc);

Sets the description.

Parameters

v desc - the description.

setDirectAuth

public void setDirectAuth(int authority) throws JMSException;

Sets the type of direct authentication that is required.

Parameters

v authority - one of the following:

– JMSC.MQJMS_DIRECTAUTH_BASIC

– JMSC.MQJMS_DIRECTAUTH_CERTIFICATE

Exceptions

v JMSException - if authority is neither of the above.

setFailIfQuiesce

public void setFailIfQuiesce(int fiq) throws JMSException;

Sets the default behavior of applications accessing a quiescing queue manager.

Parameters

v fiq - acceptable values are:

– JMSC.MQJMS_FIQ_YES (default)

MQConnectionFactory

Chapter 16. Package com.ibm.mq.jms 493

– JMSC.MQJMS_FIQ_NO

Exceptions

v JMSException - if fiq is neither of the above.

setHdrCompList

public void setHdrCompList(Collection compList) throws JMSException;

Sets the list of header compression techniques.

Parameters

v compList - The Collection of header compression techniques to set. The

first item in the list to match the server list becomes the current header

compression technique.

setHostName

public void setHostName(String hostname);

Sets the name of the host. This only applies for client connections or direct TCP/IP

connections to WebSphere MQ.

Parameters

v hostname - the name of the host.

setLocalAddress

public void setLocalAddress(String address) throws JMSException;

Sets the local address.

Parameters

v address - the local address to be used. The format of a local address is

[ip-addr][(low-port[,high-port])]. Here are some examples:

9.20.4.98

The channel binds to address 9.20.4.98 locally.

9.20.4.98(1000)

The channel binds to address 9.20.4.98 locally and uses port

1000.

9.20.4.98(1000,2000)

The channel binds to address 9.20.4.98 locally and uses a port in

the range 1000 to 2000.

(1000) The channel binds to port 1000 locally.

(1000,2000)

The channel binds to a port in the range 1000 to 2000 locally.
You can specify a host name instead of an IP address.

Specify a range of ports to allow for connections that are required

internally as well as those explicitly used by an application. The number

of ports required depends on the application and the facilities it uses.

Typically, this is the number of sessions the application uses plus three

or four additional ports. If an application is having difficulty making

connections, increase the number of ports in the range.

Note that connection pooling has an effect on how quickly a port can be

reused. In JMS, connection pooling is switched on by default and it

might be some minutes before a port can be reused Connection errors

might occur in the meantime.

MQConnectionFactory

494 Using Java

For direct connections, the local address determines which of the local

network interfaces is used for multicast connections. When specifying a

local address for a direct connection, do not include a port number. A

port number is not valid for multicast and, if specified, causes a failure

at connect time.

Exceptions

v JMSException - if the format of the local address is incorrect.

setMapNameStyle

public void setMapNameStyle(boolean style);

Allows compatibility style to be used for MapMessage element names.

Parameters

v style - possible values are:

– JMSC.MAP_NAME_STYLE_STANDARD

– JMSC.MAP_NAME_STYLE_COMPATIBLE

setMessageRetention

public void setMessageRetention(int mRet) throws JMSException;

Sets what happens to unwanted messages.

Parameters

v mRet - possible values are:

– JMSC.MQJMS_MRET_YES

– JMSC.MQJMS_MRET_NO

Exceptions

v JMSException - if mRet is not one of the above.

setMessageSelection

public void setMessageSelection(int selection) throws JMSException;

Sets whether the client or the broker performs message selection.

Parameters

v selection - possible values are:

– JMSC.MQJMS_MSEL_CLIENT

– JMSC.MQJMS_MSEL_BROKER

Exceptions

v JMSException - if selection is not one of the above.

setMQConnectionOptions

public void setMQConnectionOptions(int cTagOpt) throws JMSException;

Sets the connection options for a queue manager. This method checks that the

options are valid for JMS.

Parameters

v cTagOpt - an int representing the connection options. Only one of the

four options relating to connection tags and any of the four options

relating to binding type can be set. The only default option set is

JMSC.MQCNO_STANDARD_BINDING.

MQConnectionFactory

Chapter 16. Package com.ibm.mq.jms 495

Exceptions

v JMSException - if an option or a combination of set options is invalid.

setMsgBatchSize

public void setMsgBatchSize(int size) throws JMSException;

Sets the message batch size.

Parameters

v size - the maximum number of messages to be taken at once when using

asynchronous delivery.

Exceptions

v JMSException -

setMsgCompList

public void setMsgCompList(Collection compList) throws JMSException;

Sets the list of message compression techniques.

Parameters

v compList - the Collection of message compression techniques to set. The

first item in the list to match the server list becomes the current message

compression technique.

Exceptions

v JMSException -

setMulticast

public void setMulticast(int multicast) throws JMSException;

Sets the value of the multicast attribute.

Parameters

v multicast - the following values are possible:

– JMSC.MQJMS_MULTICAST_DISABLED

– JMSC.MQJMS_MULTICAST_NOT_RELIABLE

– JMSC.MQJMS_MULTICAST_RELIABLE

– JMSC.MQJMS_MULTICAST_ENABLED

Exceptions

v JMSException - if multicast does not belong to the above.

setOptimisticPublication

public void setOptimisticPublication(boolean newVal) throws JMSException;

Determines whether the publish/subscribe MessageProducers can return

immediately from a send/publish call rather than wait until the message has

completed delivery. If false, failure to deliver the message will only be reported

when the message is committed.

Parameters

v newVal - true requires the MessageProducer to wait until the message

has completed delivery, false allows the send() or publish() method to

return more promptly . This is particularly useful if a MessageConsumer

might be receiving uncommitted messages, however it does mean that

MQConnectionFactory

496 Using Java

the MessageProducer will not be informed of a delivery failure until it

attempts to commit its sent messages..

Exceptions

v JMSException -

setOutcomeNotification

public void setOutcomeNotification(boolean newVal) throws JMSException;

Determines whether publish/subscribe MessageConsumers are informed of the

outcome of acknowledge or commit calls after receiving messages.

Parameters

v newVal - true if MessageConsumers are to be informed, false if not.

setPollingInterval

public void setPollingInterval(int interval) throws JMSException;

Sets the interval between scans of all receivers during asynchronous message

delivery.

Parameters

v interval - the interval in milliseconds.

Exceptions

v JMSException -

setPort

public void setPort(int port) throws JMSException;

Sets the port for a client connection.

Parameters

v port - the new value to use.

Exceptions

v JMSException - if port is not a permitted value.

setProcessDuration

public void setProcessDuration(int newVal) throws JMSException;

Sets how promptly received messages are processed. While this alone does not

make any difference, quickly processing messages is a prerequisite for viewing

uncommitted messages.

Parameters

v newVal - the process duration (milliseconds).

setProxyHostName

public void setProxyHostName(String hostName) throws JMSException;

Sets the proxy host name.

Parameters

v hostName - the host name of the proxy server when establishing a direct

connection, or null if no proxy server is used.

Exceptions

v JMSException - if an internal error occurs.

MQConnectionFactory

Chapter 16. Package com.ibm.mq.jms 497

setProxyPort

public void setProxyPort(int proxyPort) throws JMSException;

Sets the proxy port attribute.

Parameters

v proxyPort - the port number of the proxy server when establishing a

direct connection.

Exceptions

v JMSException - if an internal error occurs.

setPubAckInterval

public void setPubAckInterval(int interval) throws JMSException;

Sets the number of messages that can be published before requiring

acknowledgement from the broker. Applications do not normally alter this value,

and must not rely on this acknowledgement.

Parameters

v interval - the number of messages to use as an interval. The default is

25.

Exceptions

v JMSException - if an internal error occurs.

setQueueManager

public void setQueueManager(String queueManagerName) throws JMSException;

Sets the name of the queue manager.

Parameters

v queueManagerName - the queue manager which is used when selecting

a channel definition. This can be in of the following forms:

– ″qMgrName″, where the actual name of the required queue manager

is passed in. The channel must connect to a queue manager of this

name.

– ″*qMgrName″, where ″*″ followed by the actual name of the required

queue manager is passed in. The channel definition that is used must

specify this queue manager name. This full name is passed onto the

queue manager during a connect, but the queue manager that is

ultimately connected to may not have the same name as specified

here after the ”*”.

– ″*″ or ″″ or a name which consists entirely of blanks is used. The

actual queue manager name is disregarded when a channel definition

is being selected.

Exceptions

v JMSException - if queueManagerName is either null or too long.

setReceiveExit

public void setReceiveExit(String receiveExit);

Sets the receive exit. When writing exits for use with WebSphere MQ Java, each

object must also have a constructor that takes a single string argument. When

WebSphere MQ creates an instance of the exit, it will pass any initialization data

into the exit using this constructor.

MQConnectionFactory

498 Using Java

Parameters

v receiveExit - either the name of the class or a String in the form

library(entryPoint) where ’library’ is the name of the module where the

code resides and ’entryPoint’ is the entry point.

setReceiveExitInit

public void setReceiveExitInit(String data);

Sets the initialization string for the receive exit.

Parameters

v data - the initialization string.

setReceiveIsolation

public void setReceiveIsolation(int newVal) throws JMSException;

Sets whether calls by MessageConsumers are isolated from other operations.

Parameters

v newVal - one of these values:

– JMSC.MQJMS_RCVISOL_COMMITTED

– JMSC.MQJMS_RCVISOL_UNCOMMITTED

– JMSC.MQJMS_RCVISOL_DEFAULT

Exceptions

v JMSException -

setRescanInterval

public void setRescanInterval(int interval) throws JMSException;

Sets the interval between browsing a queue. The scan looks for messages that were

not returned by the previous scan.

Parameters

v interval - the interval in milliseconds.

setSecurityExit

public void setSecurityExit(String securityExit);

Sets the security exit. When writing exits for use with WebSphere MQ Java, each

object must also have a constructor that takes a single string argument. When

WebSphere MQ creates an instance of the exit, it will pass any initialization data

into the exit using this constructor.

Parameters

v securityExit - either the name of the class or a String in the form

library(entryPoint) where ’library’ is the name of the module where the

code resides and ’entryPoint’ is the entry point.

setSecurityExitInit

public void setSecurityExitInit(String data);

Sets the initialization string for the security exit.

Parameters

v data - the initialization string.

MQConnectionFactory

Chapter 16. Package com.ibm.mq.jms 499

setSendExit

public void setSendExit(String sendExit);

Sets the send exit. When writing exits for use with WebSphere MQ Java, each

object must also have a constructor that takes a single string argument. When

WebSphere MQ creates an instance of the exit, it will pass any initialization data

into the exit using this constructor.

Parameters

v sendExit - either the name of the class or a String in the form

library(entryPoint) where ’library’ is the name of the module where the

code resides and ’entryPoint’ is the entry point.

setSendExitInit

public void setSendExitInit(String data);

Gets the description of the send exit.

Parameters

v data - either the name of the class or a String in the form

library(entryPoint) where ’library’ is the name of the module where the

code resides and ’entryPoint’ is the entry point.

setSparseSubscriptions

public void setSparseSubscriptions(boolean sparse) throws JMSException;

Sets whether sparse subscriptions are selected. A sparse subscription is one that

receives infrequent matching messages.

Parameters

v sparse - true indicates that sparse subscriptions are selected. This might

be required if an application using sparse subscriptions fails to receive

messages because of log overflow. If you set the attribute to true, the

application must be able to open the consumer queue for browsing

messages. The default value of this attribute is false.

Exceptions

v JMSException - if an internal error occurs.

setSSLCertStores

public void setSSLCertStores(Collection stores);

Provides a collection of CertStore objects used for certificate revocation list (CRL)

checking. The certificate provided by the queue manager is checked against one of

the CertStore objects contained within the collection; if the certificate is found, the

connection attempt fails. At connect-time, each CertStore in the collection is tried in

turn until one is successfully used to verify the queue manager’s certificate. This

property is ignored if sslCipherSuite is null. Use of this property requires Java 2

v1.4. If CertStore objects are specified using this method the MQConnectionFactory

cannot be bound into a JNDI namespace. Attempting to do so will result in an

exception being thrown.

You must make sure that your Java Software Development Kit (SDK) is compatible

with the CRL to use CertStore successfully with a CRL hosted on an LDAP server.

Some SDKs require that the CRL conforms to RFC 2587, which defines a schema

for LDAP v2. Most LDAP v3 servers use RFC 2256 instead.

Parameters

MQConnectionFactory

500 Using Java

v stores - the CRL - a list of CertStore objects which contain certificates

that have been revoked. Null (the default) means that no checking of the

queue manager’s certificate is performed.

setSSLCertStores

public void setSSLCertStores(String stores) throws JMSException;

Specifies a list of LDAP servers used for certificate revocation list (CRL) checking.

It allows the user to specify the URIs of LDAP CertStore objects as a String, which

is converted internally to the Collection form as required by the CertStore checking

routines. This method is provided to support storing the CertStore list via

JMSAdmin. Each LDAP server is tried in turn until one is successfully used to

verify the queue manager’s certificate.

Parameters

v stores - this String must consist of a sequence of space-delimited LDAP

URIs of the form ldap://host[:port]. If no port is specified, the LDAP

default of 389 is assumed. If set to null (the default), no checking of the

queue manager’s certificate is performed.

Exceptions

v JMSException - if the ConnectionFactory supplied list of LDAP URIs is

not valid.

setSSLCipherSuite

public void setSSLCipherSuite(String cipherSuite);

Sets the CipherSuite used for SSL encryption. Set this to the CipherSuite matching

the CipherSpec set on the SVRCONN channel.

Parameters

v cipherSuite - the CipherSuite used for SSL encryption. If set to null (the

default), no SSL encryption is performed.

setSSLFipsRequired

public void setSSLFipsRequired(boolean required);

Sets whether sslFips (FIPS) is required.

Parameters

v required - true indicates FIPS is required.

setSSLPeerName

public void setSSLPeerName(String peerName) throws JMSException;

Sets a distinguished name (DN) pattern. If sslCipherSuite is set, this pattern can

ensure that the correct queue manager is used. The connection attempt fails if the

distinguished name provided by the queue manager does not match this pattern.

Parameters

v peerName - the DN pattern. If set to null (the default), no checking of

the queue manager’s DN pattern is performed. This property is ignored

if sslCipherSuite is null.

Exceptions

v JMSException - if the supplied pattern is not valid.

MQConnectionFactory

Chapter 16. Package com.ibm.mq.jms 501

setSSLResetCount

public void setSSLResetCount(int bytes) throws JMSException;

Sets the SSL reset count.

Parameters

v bytes - the reset count. This must be an integer, with a value between 0

(disabled) and 999,999,999.

Exceptions

v JMSException - if bytes is not within the valid range.

setSSLSocketFactory

public void setSSLSocketFactory(Object sf);

Sets the SSLSocketFactory for use with SSL encryption. Use this to customize all

aspects of SSL encryption. Refer to your JSSE provider’s documentation for more

information on constructing and customizing SSLSocketFactory instances. If a

custom SSLSocketFactory is specified, the MQConnectionFactory cannot be bound

into a JNDI namespace. Attempting to do so results in an exception.

Parameters

v sf - the SSLSocketFactory object. If set to null (default), the JSSE default

SSLSocketFactory is used when SSL encryption is requested. This

property is ignored if sslCipherSuite is null.

setStatusRefreshInterval

public void setStatusRefreshInterval(int interval) throws JMSException;

Sets the status refresh interval.

Parameters

v interval - the time between transactions to refresh publish/subscribe

status (milliseconds).

Exceptions

v JMSException - if an internal error occurs.

setSubscriptionStore

public void setSubscriptionStore(int flag) throws JMSException;

Sets the SUBSTORE property.

Parameters

v flag - an integer which represents a valid values of the SUBSTORE

property:

– JMSC.MQJMS_SUBSTORE_QUEUE

– JMSC.MQJMS_SUBSTORE_BROKER

– JMSC.MQJMS_SUBSTORE_MIGRATE

Exceptions

v JMSException - if flag is not one of the above.

setSyncpointAllGets

public void setSyncpointAllGets(boolean flag);

MQConnectionFactory

502 Using Java

Chooses whether to do all GET operations within a syncpoint. The default setting

for this property is false.

Parameters

v flag - true means that all GETs are to be done under syncpoint. The

default is false which allows GET operations that are not under

transaction management to perform more quickly.

setTargetClientMatching

public void setTargetClientMatching(boolean matchClient);

Enable or disable target client matching. If this is set to true, then only MQMD

messages (those from a non-JMS application) containing a replyTo will have a JMS

replyTo Destination constructed with targetClient set to

JMSC.MQJMS_CLIENT_NONJMS_MQ. This ensures that the reply can be

understood by the originator.

If this field is set to false, then replies will always contain an RFH2 header, even

though the receiver might not understand the reply.

Note that this applies only to point-to-point destinations. This field is set to true by

default.

setTemporaryModel

public void setTemporaryModel(String queueName) throws JMSException;

Sets the name of a model queue for creating temporary destinations.

Parameters

v queueName - the name of the model queue. If it refers to a permanent

dynamic model queue then you must call the

MQTemporaryQueue.delete() method to destroy the queue after use.

Exceptions

v JMSException - if queueName is either null or too long.

setTempQPrefix

public void setTempQPrefix(String newTempQPrefix) throws JMSException;

Sets the prefix to be used to form the name of a WebSphere MQ dynamic queue.

Parameters

v newTempQPrefix - the prefix to be used to form the name of a

WebSphere MQ dynamic queue. This must end with the ’*’ character.

Exceptions

v JMSException - if the string is null, empty, greater than 33 characters in

length, or consists solely of a single asterisk (*).

setTransportType

public void setTransportType(int type) throws JMSException;

Sets the transport type.

Parameters

v type - the transport type. Valid types are:

– JMSC.MQJMS_TP_BINDINGS_MQ

MQConnectionFactory

Chapter 16. Package com.ibm.mq.jms 503

– JMSC.MQJMS_TP_CLIENT_MQ_TCPIP

– JMSC.MQJMS_TP_MQJD

– JMSC.MQJMS_TP_DIRECT_TCPIP

– JMSC.MQJMS_TP_DIRECT_HTTP

Exceptions

v JMSException - if the transport is not one of the above.

setUseConnectionPooling

public void setUseConnectionPooling(boolean usePooling);

Chooses whether to use connection pooling. If you set this to true, JMS enables

connection pooling for the lifetime of any connections created through the

ConnectionFactory. This also affects connections created with usePooling set to

false; to disable connection pooling throughout a JVM, ensure that all

ConnectionFactories used within the JVM have usePooling set to false.

Parameters

v usePooling - true selects connection pooling. The default, and

recommended, value is true. You can disable connection pooling if, for

example, your applications run in an environment that performs its own

pooling.

MQConnectionFactory

504 Using Java

MQConnectionMetaData

public class MQConnectionMetaData

extends Object

implements ConnectionMetaData

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnectionMetaData

MQConnectionMetaData provides information that describes the connection.

Constructors

MQConnectionMetaData

public MQConnectionMetaData();

Constructor which uses bindings connection.

MQConnectionMetaData

public MQConnectionMetaData(int conntype);

Constructor which permits a choice of connection types.

Parameters

v conntype - connection type. Valid types are:

– JMSC.MQJMS_TP_BINDINGS_MQ

– JMSC.MQJMS_TP_CLIENT_MQ_TCPIP

– JMSC.MQJMS_TP_DIRECT_TCPIP

– JMSC.MQJMS_TP_MQJD

– JMSC.MQJMS_TP_DIRECT_HTTP

Methods

getJMSMajorVersion

public int getJMSMajorVersion();

Gets the JMS major version number.

Returns

v the JMS major version number.

getJMSMinorVersion

public int getJMSMinorVersion();

Gets the JMS minor version number.

Returns

v the JMS minor version number.

getJMSProviderName

public String getJMSProviderName();

Gets the JMS provider name.

Returns

MQConnectionMetaData

Chapter 16. Package com.ibm.mq.jms 505

v the JMS provider name.

getJMSVersion

public String getJMSVersion();

Gets the JMS API version.

Returns

v JMS_MAJOR.JMS_MINOR the JMS API version.

getJMSXPropertyNames

public Enumeration getJMSXPropertyNames() throws JMSException;

Gets an enumeration of the JMSX property names.

Returns

v an enumeration of the JMSX property names.

getProviderMajorVersion

public int getProviderMajorVersion();

Gets the JMS provider major version number.

Returns

v the JMS provider major version number.

getProviderMinorVersion

public int getProviderMinorVersion();

Gets the JMS provider minor version number.

Returns

v the JMS provider minor version number.

getProviderVersion

public String getProviderVersion();

Gets the JMS provider version.

Returns

v the JMS provider version.

toString

public String toString();

Returns a string representation of the object.

Returns

v a string representation of the object.

MQConnectionMetaData

506 Using Java

MQDestination

public abstract class MQDestination

extends Object

implements DestinationJMSDestinationSerializable

java.lang.Object

 |

 +----com.ibm.mq.jms.MQDestination

An MQDestination object encapsulates a provider-specific address.

Methods

equals

public boolean equals(Object obj);

Test for equality.

getCCSID

public int getCCSID();

Gets the number of the character set that is used by this destination.

Returns

v the CCSID. See MQMD.characterSet.

getDescription

public String getDescription();

Gets the description of the destination.

Returns

v the description.

getEncoding

public int getEncoding();

Gets the encoding that is used for this destination.

Returns

v the encoding. See MQMD.encoding.

getExpiry

public long getExpiry();

Gets the value of the expiry for this destination.

Returns

v the expiry time (milliseconds).

getFailIfQuiesce

public int getFailIfQuiesce();

Gets the status of the failIfQuiesce property of this destination.

Returns

v possible values are:

MQDestination

Chapter 16. Package com.ibm.mq.jms 507

– JMSC.MQJMS_FIQ_YES - default

– JMSC.MQJMS_FIQ_NO

getPersistence

public int getPersistence();

Gets the value of the persistence of all messages sent to this destination.

Returns

v the value of persistence. See MQMD.persistence

getPriority

public int getPriority();

Gets the override priority value.

Returns

v the new priority. Possible values are:

– JMSC.MQJMS_PRI_APP

– JMSC.MQJMS_PRI_QDEF

– An integer between 0 and 9, inclusive.

-

getProperty

public String getProperty(String name);

Gets the named, user-defined property from the MQDestination URI.

Parameters

v name - The name of the property.

Returns

v the value of the named property or null if this property has not been

defined.

getStringFromDestination

public String getStringFromDestination();

Takes a JMS Destination object and produces a transport-dependent string that

encapsulates the properties of the destination.

Returns

v String - String version of the destination.

getTargetClient

public int getTargetClient();

Gets the JMS compliance indicator flag.

Returns

v possible values are:

– JMSC.MQJMS_CLIENT_JMS_COMPLIANT

– JMSC.MQJMS_CLIENT_NONJMS_MQ

MQDestination

508 Using Java

setCCSID

public void setCCSID(int ccsid) throws JMSException;

Sets the number of the character set that is used by this destination.

Parameters

v ccsid - the CCSID. See MQMD.characterSet .

Exceptions

v JMSException - if ccsid is invalid.

setDescription

public void setDescription(String description);

Sets a description of the destination.

Parameters

v description - the description for the destination.

setEncoding

public void setEncoding(int encoding) throws JMSException;

Sets the encoding to be used for numeric fields in messages sent to this

destination.

Parameters

v encoding - the encoding. See MQMD.encoding .

Exceptions

v JMSException - if encoding is not valid.

setExpiry

public void setExpiry(long expiry) throws JMSException;

Sets the expiry of all messages sent to this destination.

Parameters

v expiry - the expiry time (milliseconds).

Exceptions

v JMSException - if expiry is not valid.

setFailIfQuiesce

public void setFailIfQuiesce(int fiq) throws JMSException;

Sets the behavior of applications accessing a quiescing queue manager with this

destination.

Parameters

v fiq - possible values are:

– JMSC.MQJMS_FIQ_YES - default

– JMSC.MQJMS_FIQ_NO

Exceptions

v JMSException - if fiq is not one of the above.

MQDestination

Chapter 16. Package com.ibm.mq.jms 509

setPersistence

public void setPersistence(int persistence) throws JMSException;

Overrides the persistence of all messages sent to this destination.

Parameters

v persistence - the value of persistence. See MQMD.persistence

Exceptions

v JMSException - if persistence is invalid.

setPriority

public void setPriority(int priority) throws JMSException;

Overrides the priority of all messages sent to this destination.

Parameters

v priority - the new priority. Possible values are:

– JMSC.MQJMS_PRI_APP

– JMSC.MQJMS_PRI_QDEF

– An integer between 0 and 9, inclusive.

Exceptions

v JMSException - if the value is invalid

setProperty

public void setProperty(String name, String value);

Sets an arbitrary, user-defined property. This property is added to the URI string

that is returned by calling getStringFromDestination() Names and values for such

properties must conform to the following rules:

Names can contain any character, but ’=’, ’’ characters will be escaped using

standard URI syntax (that is, %3d, %25 and %26 respectively) when they are added

to the Destination URI string.Names beginning with the characters ’ibm’ are

reserved for IBM internal use only.The names of existing MQDestination properties

(for example, priority, CCSID or brokerVersion) are also reserved.Values can

contain any character but ’’ characters will be escaped using standard URI syntax

when they are added to the Destination URI string.

Destination URI strings that cannot be decoded due to syntax errors will result in a

JMSException with reason MQJMS_EXCEPTION_INVALID_DESTINATION being

thrown.

Names and Values added using the setProperty() method must not have any ’=’, ’’

characters replaced by escape sequences as this will be done they are added to the

Destination URI string.If this method is used on a 1.3.1 JDK or lower, the Names

and Values added will not be escaped and will be added to the Destination URI as

they are. This can cause unpredictable results if the Names or Values contain

unescaped ’=’, ’’ characters. For example, they might result in a JMSException

being thrown or they might cause additional erroneous properties to be defined in

the MQDestination object.

Parameters

v name - The name of the property.

v value - The value of the property.

MQDestination

510 Using Java

setTargetClient

public void setTargetClient(int targetClient) throws JMSException;

Sets a flag indicating whether the remote application supports JMS.

Parameters

v targetClient - the value of the flag. Possible values are:

– JMSC.MQJMS_CLIENT_JMS_COMPLIANT

– JMSC.MQJMS_CLIENT_NONJMS_MQ

Exceptions

v JMSException - if the value is invalid

MQDestination

Chapter 16. Package com.ibm.mq.jms 511

MQJMSLevel

public class MQJMSLevel

extends MQJavaLevel

java.lang.Object

 |

 +----com.ibm.mq.MQJavaLevel

 |

 +----com.ibm.mq.jms.MQJMSLevel

Displays information about the currently installed version of WebSphere MQ

Classes for Java Message Service.

Add this class to the CLASSPATH, and run it using the command java

com.ibm.mq.jms.MQJMSLevel. You can modify the output with the following

parameters:

-b - basic format (no titles)

-f n - fields to display

where n is one, or a combination of, the following digits:: 1 - Name 2 - Version 4 -

CMVC level 8 - BuildType

You can add these numbers together (for example, ’3’ displays both the Name and

Version fields). If -f is not specified, the default is to display all fields.

Constructors

MQJMSLevel

public MQJMSLevel();

MQJMSLevel

512 Using Java

MQMessageConsumer

public class MQMessageConsumer

extends Object

implements MessageConsumer

java.lang.Object

 |

 +----com.ibm.mq.jms.MQMessageConsumer

MQMessageConsumer is the parent interface for all message consumers. A client

uses a message consumer to receive messages from a Destination .

Methods

close

public void close() throws JMSException;

Closes the message consumer. Because a provider can allocate some resources

outside the Java Virtual Machine on behalf of a MessageConsumer , clients must

close them when they are not needed. You cannot rely on garbage collection to

reclaim these resources eventually because this might not occur soon enough. This

call blocks until a receive() or active message listener has completed.

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_EXCEPTION_MQ_Q_CLOSE_FAILED or

– MQJMS_PS_SUB_Q_DELETE_FAILED

getDestination

public Destination getDestination() throws JMSException;

Gets the message destination.

Returns

v the destination - either queue or topic.

Exceptions

v JMSException - with reason MQJMS_MESSAGECONSUMER_CLOSED

getMessageListener

public MessageListener getMessageListener() throws JMSException;

Gets the message consumer’s MessageListener.

Returns

v the listener for the message consumer, or null if a listener is not set.

Exceptions

v JMSException - with reason MQJMS_MESSAGECONSUMER_CLOSED

getMessageSelector

public String getMessageSelector() throws JMSException;

Gets this message consumer’s message selector expression.

Returns

v this message consumer’s message selector.

MQMessageConsumer

Chapter 16. Package com.ibm.mq.jms 513

Exceptions

v JMSException - with reason MQJMS_MESSAGECONSUMER_CLOSED

getNoLocal

public boolean getNoLocal() throws JMSException;

Indicates whether locally published messages are inhibited.

Returns

v true means that locally published messages are inhibited.

Exceptions

v JMSException - with reason MQJMS_MESSAGECONSUMER_CLOSED

receive

public Message receive() throws JMSException;

Receives the next message produced for this message consumer.

This call blocks indefinitely until a message is produced or until this message

consumer is closed.

If this receive() is done within a transaction, the consumer retains the message

until the transaction commits.

Returns

v the next message produced for this message consumer, or null if this

message consumer is concurrently closed

Exceptions

v JMSException - if the JMS provider fails to receive the next message due

to an internal error.

receive

public Message receive(long timeout) throws JMSException;

Receives the next message that arrives within the specified timeout interval.

This call blocks until a message arrives, the timeout expires, or this message

consumer is closed. A timeout of zero never expires, and the call blocks

indefinitely.

Parameters

v timeout - the timeout value (milliseconds)

Returns

v the next message produced for this message consumer, or null if the

timeout expires, or this message consumer is concurrently closed

Exceptions

v JMSException - if the JMS provider fails to receive the next message due

to an internal error.

receiveNoWait

public Message receiveNoWait() throws JMSException;

Receives the next message if one is immediately available.

MQMessageConsumer

514 Using Java

Returns

v the next message produced for this message consumer, or null if one is

not available

Exceptions

v JMSException - if the JMS provider fails to receive the next message due

to an internal error.

setMessageListener

public void setMessageListener(MessageListener listener)

 throws JMSException;

Sets the message consumer’s MessageListener.

Parameters

v listener - the messages are delivered to this listener.

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_QRECEIVER_CLOSED

– MQJMS_E_SESSION_ASYNC

– MQJMS_MESSAGECONSUMER_CLOSED

– MQJMS_SUBSCRIBER_CLOSED
v java.lang.SecurityException -

MQMessageConsumer

Chapter 16. Package com.ibm.mq.jms 515

MQMessageProducer

public class MQMessageProducer

extends Object

implements MessageProducer

java.lang.Object

 |

 +----com.ibm.mq.jms.MQMessageProducer

A client uses an MQMessageProducer to send messages to a destination.

Methods

close

public void close() throws JMSException;

Closes the message producer. Because a provider can allocate some resources

outside the JVM on behalf of a MessageProducer, clients must close them when

they are not needed. You cannot rely on garbage collection to reclaim these

resources because this might not occur soon enough.

Exceptions

v JMSException - with reason

MQJMS_EXCEPTION_MQ_Q_CLOSE_FAILED

getDeliveryMode

public int getDeliveryMode() throws JMSException;

Gets the producer’s default delivery mode.

Returns

v the message delivery mode for this message producer.

Exceptions

v JMSException - with reason MQJMS_MESSAGEPRODUCER_CLOSED

getDestination

public Destination getDestination() throws JMSException;

Gets the destination associated with the message producer.

Returns

v the message destination.

Exceptions

v JMSException - with reasons MQJMS_E_INTERNAL_ERROR

getDisableMessageID

public boolean getDisableMessageID() throws JMSException;

Indicates whether message IDs are disabled.

Returns

v true if message IDs are disabled.

Exceptions

v JMSException - with reason MQJMS_MESSAGEPRODUCER_CLOSED

MQMessageProducer

516 Using Java

getDisableMessageTimestamp

public boolean getDisableMessageTimestamp() throws JMSException;

Indicates whether message timestamps are disabled.

Returns

v true indicates that timestamps are disabled.

Exceptions

v JMSException - with reason MQJMS_MESSAGEPRODUCER_CLOSED

getPriority

public int getPriority() throws JMSException;

Gets the producer’s default priority.

Returns

v the message priority for this message producer.

Exceptions

v JMSException - with reason MQJMS_MESSAGEPRODUCER_CLOSED

getTimeToLive

public long getTimeToLive() throws JMSException;

Gets the default length of time that a produced message will be retained by the

message system.

Returns

v the length of time from its dispatch that a message is retained by default

(milliseconds).

Exceptions

v JMSException - with reason MQJMS_MESSAGEPRODUCER_CLOSED

send

public void send(Destination destination, Message message)

 throws JMSException;

Sends a message to a destination if you are using a message producer for which no

destination was specified when the message producer was created. The method

uses the message producer’s default delivery mode, default priority, and default

message lifetime. Typically, you specify a destination when you create a message

producer but, if you do not, you must specify a destination every time you send a

message.

Parameters

v destination - the message destination.

v message - the message to send.

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_PUBLISHER_CLOSED

– MQJMS_E_IDENT_PRO_INVALID_OP

– MQJMS_EXCEPTION_MQ_NULL_Q

– MQJMS_EXCEPTION_MQ_Q_OPEN_FAILED

– MQJMS_E_SESSION_ASYNC

MQMessageProducer

Chapter 16. Package com.ibm.mq.jms 517

– MQJMS_PS_PUBLISH_MSG_FAILED

– MQJMS_EXCEPTION_INVALID_DESTINATION

– MQJMS_EXCEPTION_BAD_VALUE

– MQJMS_E_UNKNOWN_TARGET_CLIENT

– MQJMS_PS_PUBLISH_MSG_BUILD

– MQJMS_EXCEPTION_MSG_CREATE_ERROR

– MQJMS_ERR_QSENDER_CLOSED

– MQJMS_E_SESSION_CLOSED

– MQJMS_E_UNIDENT_PRO_INVALID_OP

– MQJMS_EXCEPTION_MQ_Q_CLOSE_FAILED

– MQRC_Q_TYPE_ERROR

– MQJMS_E_INTERNAL_ERROR

– MQJMS_EXCEPTION_PUT_MSG_FAILED

– MQJMS_MESSAGEPRODUCER_CLOSED

send

public void send(Destination destination, Message message,

 int deliveryMode, int priority, long timeToLive)

 throws JMSException;

Sends a message to a destination if you are using a message producer for which no

destination was specified when the message producer was created. The method

specifies a delivery mode, a priority, and message lifetime. Typically, you specify a

destination when you create a message producer but, if do not, you must specify a

destination every time you send a message.

Parameters

v destination - the destination to which to send the message.

v message - the message to send.

v deliveryMode - the delivery mode to use

v priority - the priority for the message

v timeToLive - the lifetime of the message in milliseconds

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_PUBLISHER_CLOSED

– MQJMS_E_IDENT_PRO_INVALID_OP

– MQJMS_EXCEPTION_MQ_NULL_Q

– MQJMS_EXCEPTION_MQ_Q_OPEN_FAILED

– MQJMS_E_SESSION_ASYNC

– MQJMS_PS_PUBLISH_MSG_FAILED

– MQJMS_EXCEPTION_INVALID_DESTINATION

– MQJMS_EXCEPTION_BAD_VALUE

– MQJMS_E_UNKNOWN_TARGET_CLIENT

– MQJMS_PS_PUBLISH_MSG_BUILD

– MQJMS_EXCEPTION_MSG_CREATE_ERROR

– MQJMS_ERR_QSENDER_CLOSED

– MQJMS_E_SESSION_CLOSED

– MQJMS_E_UNIDENT_PRO_INVALID_OP

MQMessageProducer

518 Using Java

– MQJMS_EXCEPTION_MQ_Q_CLOSE_FAILED

– MQRC_Q_TYPE_ERROR

– MQJMS_EXCEPTION_BAD_VALUE

– MQJMS_E_INTERNAL_ERROR

– MQJMS_EXCEPTION_PUT_MSG_FAILED

send

public void send(Message message) throws JMSException;

Sends a message. Uses the message producer’s default delivery mode, default

priority, and default time to live.

Parameters

v message - the message to be sent.

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_PS_TOPIC_NULL

– MQJMS_E_TMPT_DELETED

– MQJMS_EXCEPTION_BAD_VALUE

– MQJMS_PUBLISHER_CLOSED

– MQJMS_E_UNIDENT_PRO_INVALID_OP

– MQJMS_EXCEPTION_MQ_NULL_Q

– MQJMS_E_SESSION_ASYNC

– MQJMS_PS_PUBLISH_MSG_FAILED

– MQJMS_ERR_QSENDER_CLOSED

– MQJMS_E_SESSION_CLOSED

– MQJMS_E_UNKNOWN_TARGET_CLIENT

– MQJMS_PS_PUBLISH_MSG_BUILD

– MQJMS_EXCEPTION_MSG_CREATE_ERROR

– MQJMS_UTIL_PS_NO_BROKER

– MQJMS_E_11_SERVICES_NOT_SETUP

– MQJMS_E_INTERNAL_ERROR

– MQJMS_EXCEPTION_PUT_MSG_FAILED

– MQJMS_MESSAGEPRODUCER_CLOSED
v java.lang.UnsupportedOperationException - if a client uses this method

with a message producer for which no destination was specified when it

was created.

send

public void send(Message message, int deliveryMode, int priority,

 long timeToLive) throws JMSException;

Sends a message specifying a delivery mode, a priority, and the lifetime of the

message.

Parameters

v message - the message to send.

v deliveryMode - the delivery mode to use.

v priority - the priority for the message

v timeToLive - the lifetime of the message in milliseconds.

MQMessageProducer

Chapter 16. Package com.ibm.mq.jms 519

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_PS_TOPIC_NULL

– MQJMS_E_TMPT_DELETED

– MQJMS_EXCEPTION_BAD_VALUE

– MQJMS_PUBLISHER_CLOSED

– MQJMS_E_UNIDENT_PRO_INVALID_OP

– MQJMS_EXCEPTION_MQ_NULL_Q

– MQJMS_E_SESSION_ASYNC

– MQJMS_PS_PUBLISH_MSG_FAILED

– MQJMS_ERR_QSENDER_CLOSED

– MQJMS_E_SESSION_CLOSED

– MQJMS_E_UNKNOWN_TARGET_CLIENT

– MQJMS_PS_PUBLISH_MSG_BUILD

– MQJMS_EXCEPTION_MSG_CREATE_ERROR

– MQJMS_UTIL_PS_NO_BROKER

– MQJMS_E_11_SERVICES_NOT_SETUP

– MQJMS_E_INTERNAL_ERROR

– MQJMS_EXCEPTION_PUT_MSG_FAILED

setDeliveryMode

public void setDeliveryMode(int deliveryMode) throws JMSException;

Sets the producer’s default delivery mode.

Parameters

v deliveryMode - the message delivery mode for this message producer.

Possible values are:

– DeliveryMode.NON_PERSISTENT

– DeliveryMode.PERSISTENT, the default

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_MESSAGEPRODUCER_CLOSED

– MQJMS_EXCEPTION_BAD_VALUE

setDisableMessageID

public void setDisableMessageID(boolean value) throws JMSException;

Sets whether message IDs are disabled.

Note: This method is ignored in the WebSphere MQ classes for Java Message

Service implementation.

Parameters

v value - true if message IDs are disabled. Message IDs are enabled by

default.

Exceptions

v JMSException - with reason MQJMS_MESSAGEPRODUCER_CLOSED

MQMessageProducer

520 Using Java

setDisableMessageTimestamp

public void setDisableMessageTimestamp(boolean value) throws JMSException;

Sets whether message timestamps are disabled. They are enabled by default.

Note: This method is ignored in the WebSphere MQ classes for Java Message

Service implementation.

Parameters

v value - true indicates that timestamps are disabled.

Exceptions

v JMSException - with reason MQJMS_MESSAGEPRODUCER_CLOSED

setPriority

public void setPriority(int priority) throws JMSException;

Sets the producer’s default priority.

Parameters

v priority - the message priority for this message producer. Values can be

between 0 and 9, inclusive. The default is 4.

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_MESSAGEPRODUCER_CLOSED

– MQJMS_EXCEPTION_BAD_VALUE

setTimeToLive

public void setTimeToLive(long timeToLive) throws JMSException;

Sets the default length of time that the message system retains a produced

message.

Note that this method throws a JMSException if set to other than 0 when you

make a direct connection to a broker.

Parameters

v timeToLive - the length of time from its dispatch that a message is

retained by default (milliseconds). The default is zero which means

unlimited time.

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_MESSAGEPRODUCER_CLOSED

– MQJMS_EXCEPTION_BAD_VALUE

MQMessageProducer

Chapter 16. Package com.ibm.mq.jms 521

MQQueue

public class MQQueue

extends MQDestination

implements QueueReferenceableSerializable

java.lang.Object

 |

 +----com.ibm.mq.jms.MQDestination

 |

 +----com.ibm.mq.jms.MQQueue

An MQQueue object encapsulates a provider-specific queue name. It is the way

that a client specifies the identity of a queue to JMS methods.

Constructors

MQQueue

public MQQueue(String queueName) throws JMSException;

Creates a new MQQueue object.

Parameters

v queueName - is one of:

– the name of a base WebSphere MQ queue - assumes default queue

manager

– a uniform resource identifier (URI). This form allows you to specify

remote queues (queues on a queue manager other than the one to

which you are connected). It also allows you to set the other

properties contained in the object. The URI is in the form:

queue://qmgrName/queueName [name-value pairs]

Where: qmgrName is the name of the queue manager on which the

queue resides. queueName is the name of the queue [name-value

pairs] is an optional list of name-value pairs that sets the remaining

Queue properties. If the name of the queue manager is omitted the

queue manager to which the owning QueueConnection is connected

is used.

Exceptions

v JMSException - if the queue or queue manager names are invalid.

MQQueue

public MQQueue(String queueManagerName, String queueName)

 throws JMSException;

Creates a new MQQueue object.

Parameters

v queueManagerName - the name of the queue manager

v queueName - the name of the queue

Exceptions

v JMSException - if the either name is invalid.

MQQueue

522 Using Java

Methods

getQueueName

public String getQueueName();

Gets the name of this queue. Clients that depend upon the name are not portable.

Returns

v a string in the form of a URI that can be used in the creation methods to

reconstruct this object. The URI is in the form:

queue://qmgrName/queueName [name-value pairs]

Where: qmgrName is the name of the queue manager on which the queue

resides. queueName is the name of the queue [name-value pairs] is an

optional list of name-value pairs that sets some Queue properties.

Exceptions

v JMSException - if JMS implementation for queue fails to return the

queue name because of an internal error.

toString

public String toString();

Gets a version of the queue name.

Returns

v the provider specific identity values for this queue.

MQQueue

Chapter 16. Package com.ibm.mq.jms 523

MQQueueBrowser

public class MQQueueBrowser

extends Object

implements QueueBrowser

java.lang.Object

 |

 +----com.ibm.mq.jms.MQQueueBrowser

A client uses an MQQueueBrowser to look at messages on a queue without

removing them.

Note that the WebSphere MQ class MQQueueEnumeration is used to hold the

browse cursor.

Methods

close

public void close() throws JMSException;

Closes all open queues left in enumerated objects. Because a provider can allocate

some resources outside the JVM on behalf of an MQQueueBrowser, clients must

close them when they are not needed. You cannot rely on garbage collection to

reclaim these resources eventually, because this might not occur soon enough.

Exceptions

v JMSException - if JMS fails to close this browser because of a JMS error.

getEnumeration

public Enumeration getEnumeration() throws JMSException;

Gets an enumeration for browsing the current queue messages in the order that

they are received.

Note that if the browser is created for a nonexistent queue, this is not detected

until the first call to getEnumeration().

Returns

v an enumeration for browsing the messages.

Exceptions

v JMSException - if JMS fails to get the enumeration for this browser

because of a JMS error.

getMessageSelector

public String getMessageSelector() throws JMSException;

Gets the queue browser’s message selector expression.

Returns

v this queue browser’s message selector

Exceptions

v JMSException - if JMS fails to get the message selector for this browser

due to some JMS error.

MQQueueBrowser

524 Using Java

getQueue

public Queue getQueue() throws JMSException;

Gets the queue associated with this queue browser.

Returns

v the queue

Exceptions

v JMSException - if JMS fails to get the queue associated with this browser

due to some JMS error.

MQQueueBrowser

Chapter 16. Package com.ibm.mq.jms 525

MQQueueConnection

public class MQQueueConnection

extends MQConnection

implements QueueConnection

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnection

 |

 +----com.ibm.mq.jms.MQQueueConnection

An MQueueConnection is an active connection to a JMS point-to-point provider. A

client uses an MQQueueConnection to create one or more MQQueueSessions for

producing and consuming messages.

Methods

close

public void close() throws JMSException;

Closes this connection and release its resources.

Exceptions

v JMSException -

createQueueSession

public QueueSession createQueueSession(boolean transacted,

 int acknowledgeMode)

 throws JMSException;

Creates an MQQueueSession object.

Parameters

v transacted - indicates whether the session is transacted

v acknowledgeMode - indicates whether the consumer or the client will

acknowledge any messages it receives; ignored if the session is

transacted. Legal values are Session.AUTO_ACKNOWLEDGE,

Session.CLIENT_ACKNOWLEDGE, and

Session.DUPS_OK_ACKNOWLEDGE.

Returns

v a newly created queue session.

Exceptions

v JMSException - if JMS Provider fails to create an MQQueueSession due

to an internal error.

MQQueueConnection

526 Using Java

MQQueueConnectionFactory

public class MQQueueConnectionFactory

extends MQConnectionFactory

implements QueueConnectionFactoryReferenceableSerializable

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnectionFactory

 |

 +----com.ibm.mq.jms.MQQueueConnectionFactory

A client uses an MQQueueConnectionFactory to create QueueConnections with a

JMS point-to-point provider.

Constructors

MQQueueConnectionFactory

public MQQueueConnectionFactory();

This is the default constructor.

Methods

createQueueConnection

public QueueConnection createQueueConnection() throws JMSException;

Creates a queue connection with default user identity.

Returns

v a newly created queue connection.

Exceptions

v JMSException - if JMS Provider fails to create Queue Connection due to

some internal error. required resources for a Queue Connection.

v JMSSecurityException - if client authentication fails due to invalid user

name or password.

createQueueConnection

public QueueConnection createQueueConnection(String userName,

 String password)

 throws JMSException;

Creates a queue connection with specified user identity.

Parameters

v userName - the caller’s user name

v password - the caller’s password

Returns

v a newly created queue connection.

Exceptions

v JMSException - if JMS Provider fails to create an MQQueueConnection

due to an internal error.

v JMSSecurityException - if client authentication fails due to an invalid

user name or password.

MQQueueConnectionFactory

Chapter 16. Package com.ibm.mq.jms 527

MQQueueEnumeration

public class MQQueueEnumeration

extends Object

implements Enumeration

java.lang.Object

 |

 +----com.ibm.mq.jms.MQQueueEnumeration

MQQueueEnumeration enumerates messages on a queue. This class is not defined

in the JMS specification; it is created by calling the getEnumeration() method of

MQQueueBrowser. The class contains a browse cursor. The queue is closed once

the cursor has moved off the end of the queue. There is no way to reset an

instance of this class; it acts as a one-shot mechanism.

Methods

hasMoreElements

public boolean hasMoreElements();

Indicates whether another message can be returned.

Returns

v trueif another message can be returned.

nextElement

public Object nextElement() throws NoSuchElementException;

Gets the current message. Always returns a message if hasMoreElements() returns

true. It is possible for the returned message to pass its expiry date between the

hasMoreElements() and the nextElement() calls.

Returns

v the current message.

Exceptions

v NoSuchElementException -

MQQueueEnumeration

528 Using Java

MQQueueReceiver

public class MQQueueReceiver

extends MQMessageConsumer

implements QueueReceiver

java.lang.Object

 |

 +----com.ibm.mq.jms.MQMessageConsumer

 |

 +----com.ibm.mq.jms.MQQueueReceiver

A client uses an MQQueueReceiver to receive messages that have been delivered to

a queue.

Methods

close

public void close() throws JMSException;

Close the receiver. Releases underlying resources associated with this receiver.

Exceptions

v JMSException - if underlying WebSphere MQ calls fail.

getQueue

public Queue getQueue() throws JMSException;

Gets the queue associated with this queue receiver.

MQQueueReceiver

Chapter 16. Package com.ibm.mq.jms 529

MQQueueSender

public class MQQueueSender

extends MQMessageProducer

implements QueueSender

java.lang.Object

 |

 +----com.ibm.mq.jms.MQMessageProducer

 |

 +----com.ibm.mq.jms.MQQueueSender

A client uses an MQQueueSender to send messages to a queue. A QueueSender is

normally associated with a particular queue. However, it is possible to create an

unidentified QueueSender that is not associated with any given queue.

Methods

close

public void close() throws JMSException;

Close the sender. Releases underlying resources associated with this receiver.

Exceptions

v JMSException - if an underlying WebSphere MQ calls fail.

getQueue

public Queue getQueue() throws JMSException;

Gets the Queue associated with this sender.

MQQueueSender

530 Using Java

MQQueueSession

public class MQQueueSession

extends MQSession

implements QueueSession

java.lang.Object

 |

 +----com.ibm.mq.jms.MQSession

 |

 +----com.ibm.mq.jms.MQQueueSession

An MQQueueSession provides methods to create MQQueueReceivers,

MQQueueSenders, MQQueueBrowsers, and MQTemporaryQueues.

Methods

commit

public void commit() throws JMSException;

Commits all messages done in this transaction and releases any locks currently

held.

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_E_SESSION_CLOSED

– MQJMS_E_SESSION_NOT_TRANSACTED

– MQJMS_EXCEPTION_MQ_NULL_QMGR

– MQJMS_EXCEPTION_TRANSACTION_ROLLED_BACK

– MQJMS_EXCEPTION_MQ_QM_COMMIT_FAILED

createReceiver

public QueueReceiver createReceiver(Queue queue) throws JMSException;

Creates a QueueReceiver object to receive messages from the specified queue.

Exceptions

v JMSException -

createReceiver

public QueueReceiver createReceiver(Queue queue, String messageSelector)

 throws JMSException;

Creates an MQQueueReceiver object to receive messages from the specified queue

and message selector.

Exceptions

v JMSException -

createSender

public QueueSender createSender(Queue queue) throws JMSException;

Creates a QueueSender object to send messages to the specified queue.

Exceptions

v JMSException -

MQQueueSession

Chapter 16. Package com.ibm.mq.jms 531

createTemporaryQueue

public TemporaryQueue createTemporaryQueue() throws JMSException;

Creates a JMS temporary queue. The temporary queue remains until the

connection ends or the queue is explicitly deleted, whichever is the sooner.

Returns

v TemporaryQueue

Exceptions

v JMSException - IllegalStateException with one of the following reasons:

– MQJMS_E_SESSION_CLOSED

– MQJMS_E_NULL_CONNECTION

– MQJMS_E_TMPQ_FAILED

recover

public void recover() throws JMSException;

Restarts message delivery from the oldest unacknowledged message. Analogous to

rollback(), but for the non-transacted case.

rollback

public void rollback() throws JMSException;

Rolls back any messages done in this transaction and releases any locks currently

held.

Exceptions

v JMSException - if JMS implementation fails to roll back the transaction

due to some internal error.

MQQueueSession

532 Using Java

MQSession

public class MQSession

extends Object

implements SessionJMSAcknowledgePointJMSDestinationFactory

java.lang.Object

 |

 +----com.ibm.mq.jms.MQSession

A JMS session is a single-threaded context for producing and consuming messages.

Methods

close

public void close() throws JMSException;

Closes the session.

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_EXCEPTION_BAD_STATE_TRANSITION

– MQJMS_E_CLOSE_FAILED

– MQJMS_EXCEPTION_QMDISC_FAILED

commit

public void commit() throws JMSException;

Commits all messages done in this transaction and releases any locks currently

held. This always throws a JMSException when you have a direct connection to a

broker.

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_E_SESSION_CLOSED

– MQJMS_E_SESSION_NOT_TRANSACTED

– MQJMS_EXCEPTION_MQ_NULL_QMGR

– MQJMS_EXCEPTION_TRANSACTION_ROLLED_BACK

– MQJMS_EXCEPTION_MQ_QM_COMMIT_FAILED

createBrowser

public QueueBrowser createBrowser(Queue queue) throws JMSException;

Creates a QueueBrowser object to peek at the messages on the specified queue.

Parameters

v queue - the queue to access.

Returns

v QueueBrowser - a newly created QueueBrowser.

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_E_SESSION_CLOSED

– MQJMS_EXCEPTION_INVALID_DESTINATION

MQSession

Chapter 16. Package com.ibm.mq.jms 533

– MQJMS_E_NON_LOCAL_RXQ

createBrowser

public QueueBrowser createBrowser(Queue queue, String messageSelector)

 throws JMSException;

Creates a QueueBrowser object to peek at the messages on the specified queue

using a message selector.

Parameters

v queue - the queue to access

v messageSelector - only messages with properties matching the message

selector expression are delivered. A value of null or an empty string

indicates that there is no message selector for the message consumer.

Returns

v QueueBrowser - a newly create QueueBrowser

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_E_SESSION_CLOSED

– MQJMS_EXCEPTION_INVALID_DESTINATION

– MQJMS_E_NON_LOCAL_RXQ

createBytesMessage

public BytesMessage createBytesMessage() throws JMSException;

Creates a BytesMessage object.

Returns

v BytesMessage

Exceptions

v JMSException - if JMS fails due to some internal JMS error.

v JMSException - with reason MQJMS_E_SESSION_CLOSED .

createConsumer

public MessageConsumer createConsumer(Destination destination)

 throws JMSException;

Creates a MessageConsumer for the specified Destination. Since Queue and Topic

both inherit from Destination, they can be used in the destination parameter to

create a MessageConsumer.

Parameters

v destination - the Destination to access.

Returns

v MessageConsumer

Exceptions

v JMSException - if the command fails due to some internal JMS error.

createConsumer

public MessageConsumer createConsumer(Destination destination,

 String messageSelector)

 throws JMSException;

MQSession

534 Using Java

Creates a MessageConsumer for the specified destination, using a message selector.

Parameters

v destination - the Destination to access.

v messageSelector - the message selector

Returns

v MessageConsumer

Exceptions

v JMSException - if the command fails due to some internal JMS error.

createConsumer

public MessageConsumer createConsumer(Destination destination,

 String messageSelector,

 boolean noLocal)

 throws JMSException;

Creates MessageConsumer for the specified Destination, using a message selector.

Parameters

v destination - the Destination to access.

v messageSelector - the message selector

v noLocal - when the destination is a topic, true inhibits the delivery of

messages published by its own connection. The behavior for NoLocal is

ignored if the destination is a queue.

Returns

v MessageConsumer

Exceptions

v JMSException - if the command fails due to some internal JMS error.

createDurableSubscriber

public TopicSubscriber createDurableSubscriber(Topic topic, String name)

 throws JMSException;

Creates a durable Subscriber to the specified topic.

Parameters

v topic - the topic to subscribe to

v name - the name used to identify this subscription.

Returns

v TopicSubscriber

Exceptions

v IllegalStateException - if the session has been closed.

v InvalidDestinationException - if the topic specified is not valid.

v JMSException - if the Session fails to create a subscriber due to an

internal error.

createDurableSubscriber

public TopicSubscriber createDurableSubscriber(Topic topic, String name,

 String selector,

 boolean noLocal)

 throws JMSException;

MQSession

Chapter 16. Package com.ibm.mq.jms 535

Creates a durable Subscriber to the specified topic.

Parameters

v topic - the topic to subscribe to

v name - the name used to identify this subscription.

v selector - only messages with properties matching the message selector

expression are delivered. This value may be null.

v noLocal - trueinhibits the delivery of messages published by its own

connection.

Exceptions

v IllegalStateException - if the session has been closed.

v InvalidDestinationException - if the topic specified is not valid.

v JMSException - if the Session fails to create a subscriber due to an

internal error.

createMapMessage

public MapMessage createMapMessage() throws JMSException;

Creates a MapMessage. A MapMessage is used to send a self-defining set of

name-value pairs where names are Strings and values are Java primitive types.

Returns

v MapMessage

Exceptions

v JMSException - with reason MQJMS_E_SESSION_CLOSED

createMessage

public Message createMessage() throws JMSException;

Creates a Message. The Message interface is the root interface of all JMS messages.

It holds all the standard message header information. It can be sent when a

message containing only header information is sufficient.

Returns

v Message

Exceptions

v JMSException - with reason MQJMS_E_SESSION_CLOSED .

createObjectMessage

public ObjectMessage createObjectMessage() throws JMSException;

Creates an ObjectMessage. An ObjectMessage is used to send a message that

contains a serializable Java object.

Returns

v ObjectMessage

Exceptions

v IllegalStateException - with reason MQJMS_E_SESSION_CLOSED .

createObjectMessage

public ObjectMessage createObjectMessage(Serializable object)

 throws JMSException;

MQSession

536 Using Java

Creates an initialized ObjectMessage. An ObjectMessage is used to send a message

that containing a serializable Java object.

Parameters

v object - the object to use to initialize this message.

Returns

v ObjectMessage

Exceptions

v IllegalStateException - with reason MQJMS_E_SESSION_CLOSED .

createProducer

public MessageProducer createProducer(Destination destination)

 throws JMSException;

Creates a MessageProducer to send messages to the specified destination.

Parameters

v destination - the Destination to send to, or null if this is a producer

which does not have a specified destination.

Exceptions

v JMSException - with reason MQJMS_EXCEPTION_MQ_NULL_QMGR

v JMSException - with reason

MQJMS_EXCEPTION_MQ_Q_OPEN_FAILED

v InvalidDestinationException - If the topic specified is not valid.

v JMSException - if the Session fails to create a producer because of an

internal error.

createQueue

public Queue createQueue(String queueName) throws JMSException;

Creates a Queue object given a queue name.

Parameters

v queueName - the name of this Queue

Returns

v a Queue with the given name

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_E_SESSION_CLOSED.

– MQJMS_EXCEPTION_INVALID_DESTINATION

createStreamMessage

public StreamMessage createStreamMessage() throws JMSException;

Creates a StreamMessage object. A StreamMessage is used to send a self-defining

stream of Java primitives.

Returns

v StreamMessage

Exceptions

v JMSException - IllegalStateException with reason

MQJMS_E_SESSION_CLOSED.

MQSession

Chapter 16. Package com.ibm.mq.jms 537

createTemporaryQueue

public TemporaryQueue createTemporaryQueue() throws JMSException;

Creates a JMS temporary queue. The temporary queue remains until the

connection ends or the queue is explicitly deleted, whichever is the sooner.

Returns

v TemporaryQueue

Exceptions

v JMSException - IllegalStateException with one of the following reasons:

– MQJMS_E_SESSION_CLOSED

– MQJMS_E_NULL_CONNECTION

– MQJMS_E_TMPQ_FAILED

createTemporaryTopic

public TemporaryTopic createTemporaryTopic() throws JMSException;

Creates a temporary topic. The temporary topic remains until the connection ends

or the topic is explicitly deleted, whichever is the sooner.

Returns

v a temporary topic.

Exceptions

v JMSException - if the Session fails to create a temporary topic due to an

internal error.

v IllegalStateException - if the Session object has been closed.

createTextMessage

public TextMessage createTextMessage() throws JMSException;

Creates a TextMessage. A TextMessage is used to send a message containing a

StringBuffer.

Returns

v TextMessage

Exceptions

v JMSException - IllegalStateException with reason

MQJMS_E_SESSION_CLOSED.

createTextMessage

public TextMessage createTextMessage(String string) throws JMSException;

Creates an initialized TextMessage.

Parameters

v string - the string used to initialize this message.

Returns

v TextMessage

Exceptions

v JMSException - IllegalStateException with key

MQJMS_E_SESSION_CLOSED.

MQSession

538 Using Java

createTopic

public Topic createTopic(String topicName) throws JMSException;

Creates a Topic given a Topic name.

Parameters

v topicName - the name of this topic

Returns

v a Topic with the given name.

Exceptions

v JMSException - if a Session fails to create a Topic due to an internal

error.

v IllegalStateException - if the Session object has been closed.

getAcknowledgeMode

public int getAcknowledgeMode() throws JMSException;

Gets the acknowledgement mode of the session. The acknowledgement mode is set

at the time that the session is created. If the session is transacted, the

acknowledgement mode is ignored.

Returns

v the current acknowledgement mode for the session if the session is not

transacted. Otherwise returns SESSION_TRANSACTED.

getMessageListener

public MessageListener getMessageListener() throws JMSException;

Gets the session’s distinguished message listener.

Returns

v MessageListener

Exceptions

v JMSException - with reason MQJMS_E_SESSION_CLOSED .

getTransacted

public boolean getTransacted() throws JMSException;

Indicates whether the session is in transacted mode. Always returns false when

you have a direct connection to a broker.

Returns

v true if in transacted mode

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_E_SESSION_CLOSED

– MQJMS_E_INTERNAL_ERROR

recover

public void recover() throws JMSException;

MQSession

Chapter 16. Package com.ibm.mq.jms 539

Stops message delivery in this session and restarts message delivery with the

oldest unacknowledged message. This always throws a JMSException when you

have a direct connection to a broker.

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_E_SESSION_CLOSED

– MQJMS_E_SESSION_IS_TRANSACTED

– MQJMS_EXCEPTION_MQ_NULL_QMGR

– MQJMS_E_RECOVER_BO_FAILED

rollback

public void rollback() throws JMSException;

Rolls back any messages processed in this transaction and releases any locks

currently held. This always throws a JMSException when you have a direct

connection to a broker.

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_E_SESSION_CLOSED

– MQJMS_E_SESSION_NOT_TRANSACTED

– MQJMS_EXCEPTION_MQ_NULL_QMGR

– MQJMS_E_ROLLBACK_FAILED

setMessageListener

public void setMessageListener(MessageListener listener)

 throws JMSException;

Sets the session’s distinguished message listener.

Parameters

v listener -

Exceptions

v JMSException - with one of the following reasons:

– MQJMS_E_SESSION_CLOSED

– MQJMS_E_SESSION_ASYNC

unsubscribe

public void unsubscribe(String name) throws JMSException;

Unsubscribes a durable subscription that has been created by a client.

For a direct connection to WebSphere MQ Event Broker, WebSphere Business

Integration Event Broker, or WebSphere Business Integration Message Broker, this

method throws a JMSException.

Exceptions

v JMSException - if the Session fails to unsubscribe to the durable

subscription due to an internal error.

MQSession

540 Using Java

MQTemporaryQueue

public class MQTemporaryQueue

extends MQQueue

implements TemporaryQueue

java.lang.Object

 |

 +----com.ibm.mq.jms.MQDestination

 |

 +----com.ibm.mq.jms.MQQueue

 |

 +----com.ibm.mq.jms.MQTemporaryQueue

An MQTemporaryQueue object is a unique Queue object created for the duration

of a Connection.

Methods

delete

public void delete() throws JMSException;

Deletes this temporary queue.

Exceptions

v JMSException - if the queue is in use, or if the command fails due to

some internal error.

MQTemporaryQueue

Chapter 16. Package com.ibm.mq.jms 541

MQTemporaryTopic

public class MQTemporaryTopic

extends MQTopic

implements TemporaryTopic

java.lang.Object

 |

 +----com.ibm.mq.jms.MQDestination

 |

 +----com.ibm.mq.jms.MQTopic

 |

 +----com.ibm.mq.jms.MQTemporaryTopic

An MQTemporaryTopic object is a unique Topic object created for the duration of a

Connection.

Methods

delete

public void delete() throws JMSException;

Deletes this temporary topic. If there are existing subscribers still using it, then a

JMSException is thrown.

Exceptions

v JMSException - if JMS implementation fails to delete a Temporary topic

due to some internal error.

MQTemporaryTopic

542 Using Java

MQTopic

public class MQTopic

extends MQDestination

implements TopicReferenceableSerializableTopic

java.lang.Object

 |

 +----com.ibm.mq.jms.MQDestination

 |

 +----com.ibm.mq.jms.MQTopic

An MQTopic object encapsulates a provider-specific topic name.

Methods

getBrokerCCDurSubQueue

public String getBrokerCCDurSubQueue();

Gets the brokerCCDurSubQueue attribute

Returns

v the broker’s queue name for durable connection consumers

getBrokerDurSubQueue

public String getBrokerDurSubQueue();

Gets the brokerDurSubQueue attribute

Returns

v the broker’s queue name for durable subscribers

getBrokerPubQueue

public String getBrokerPubQueue();

Gets the broker’s publish queue name

Returns

v the broker’s publish queue name

getBrokerPubQueueManager

public String getBrokerPubQueueManager();

Gets the brokerQueueManager attribute

Returns

v the broker’s publish queue manager’s name

getBrokerVersion

public int getBrokerVersion();

Gets the broker version.

Returns

v the version number.

MQTopic

Chapter 16. Package com.ibm.mq.jms 543

getTopicName

public String getTopicName();

Gets the name of this Topic.

Clients that depend upon the name, are not portable.

Returns

v the Topic name

isTemporary

public boolean isTemporary();

Returns

v whether the topic is a temporary topic.

setBrokerCCDurSubQueue

public void setBrokerCCDurSubQueue(String name) throws JMSException;

Sets the name of the subscriber queue for consumers, using a durable connection

to the broker.

Parameters

v name - the name of the queue.

Exceptions

v JMSException - if name is either null or not valid.

setBrokerDurSubQueue

public void setBrokerDurSubQueue(String x) throws JMSException;

Sets the brokerDurSubQueue attribute

Parameters

v x - the name of the broker durable subscriber queue

Exceptions

v JMSException -

setBrokerPubQueue

public void setBrokerPubQueue(String brokerPubQueue) throws JMSException;

Set method for broker publish queue attribute

Parameters

v brokerPubQueue - the name of the broker publish queue

Exceptions

v JMSException -

setBrokerPubQueueManager

public void setBrokerPubQueueManager(String brokerPubQueueManager)

 throws JMSException;

Sets the broker’s queue manager

Parameters

v brokerPubQueueManager - the name of the broker’s queue manager to

publish on

MQTopic

544 Using Java

Exceptions

v JMSException - if the command failed due to an internal error

setBrokerVersion

public void setBrokerVersion(int brkver) throws JMSException;

Sets the broker version.

Parameters

v brkver - the version number. Valid numbers are:

– JMSC.MQJMS_BROKER_V1

– JMSC.MQJMS_BROKER_V2

Exceptions

v JMSException - if brkver is neither of the above.

toString

public String toString();

Returns a string representation of the Topic object.

Returns

v the specific identity values for this Topic.

MQTopic

Chapter 16. Package com.ibm.mq.jms 545

MQTopicConnection

public class MQTopicConnection

extends MQConnection

implements TopicConnection

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnection

 |

 +----com.ibm.mq.jms.MQTopicConnection

An MQTopicConnection object is an active connection to a publish/subscribe JMS

provider.

Methods

createTopicSession

public TopicSession createTopicSession(boolean transacted,

 int acknowledgeMode)

 throws JMSException;

Creates a TopicSession object.

Parameters

v transacted - if true, throws a JMSException on a direct connection to a

broker.

v acknowledgeMode - indicates whether the consumer or the client will

acknowledge any messages it receives; ignored if the session is

transacted. Legal values are Session.AUTO_ACKNOWLEDGE,

Session.CLIENT_ACKNOWLEDGE, and

Session.DUPS_OK_ACKNOWLEDGE.

Returns

v session - a newly created topic session

Exceptions

v JMSException - if the MQTopicConnection failed to create a session due

to an internal error or if a transacted session was requested when using

a direct connection to a broker.

MQTopicConnection

546 Using Java

MQTopicConnectionFactory

public class MQTopicConnectionFactory

extends MQConnectionFactory

implements TopicConnectionFactoryReferenceableSerializable

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnectionFactory

 |

 +----com.ibm.mq.jms.MQTopicConnectionFactory

A client uses an MQTopicConnectionFactory object to create TopicConnection

objects with a publish/subscribe JMS provider.

Constructors

MQTopicConnectionFactory

public MQTopicConnectionFactory();

Creates an instance of a TopicConnectionFactory

Methods

createTopicConnection

public TopicConnection createTopicConnection() throws JMSException;

Creates a topic connection with default user identity.

Returns

v a newly created queue connection.

Exceptions

v JMSException - if JMS Provider fails to create Topic Connection due to

some internal error. required resources for a Topic Connection.

v JMSSecurityException - if client authentication fails due to invalid user

name or password.

createTopicConnection

public TopicConnection createTopicConnection(String userName,

 String password)

 throws JMSException;

Creates a topic connection with specified user identity.

Parameters

v userName - the caller’s user name

v password - the caller’s password

Returns

v a newly created topic connection.

Exceptions

v JMSException - if JMS Provider fails to create Topic Connection due to

some internal error.

v JMSSecurityException - if client authentication fails due to invalid user

name or password.

MQTopicConnectionFactory

Chapter 16. Package com.ibm.mq.jms 547

MQTopicPublisher

public class MQTopicPublisher

extends MQMessageProducer

implements TopicPublisher

java.lang.Object

 |

 +----com.ibm.mq.jms.MQMessageProducer

 |

 +----com.ibm.mq.jms.MQTopicPublisher

A client uses an MQTopicPublisher object to publish messages on a topic. An

MQTopicPublisher object is the publish subscribe form of a message producer.

Methods

getTopic

public Topic getTopic() throws JMSException;

Gets the topic associated with this publisher.

Returns

v this publisher’s topic

Exceptions

v JMSException - if JMS fails to get topic for this topic subscriber due to

some internal error.

publish

public void publish(Message message) throws JMSException;

Publishes a message to the topic. Uses the TopicPublisher’s default delivery mode,

priority, and time to live.

Parameters

v message - the message to publish

Exceptions

v JMSException - if producer fails to publish the message due to an

internal error.

publish

public void publish(Message message, int deliveryMode, int priority,

 long timeToLive) throws JMSException;

Publishes a message to the topic, specifying delivery mode, priority, and time to

live.

Parameters

v message - the message to publish

v deliveryMode - the delivery mode to use

v priority - the priority for this message

v timeToLive - the message’s lifetime (in milliseconds)

Exceptions

v JMSException - if producer fails to publish the message due to an

internal error.

MQTopicPublisher

548 Using Java

publish

public void publish(Topic topic, Message message) throws JMSException;

Publishes a message to a topic for an unidentified message producer. Uses the

TopicPublisher’s default delivery mode, priority, and time to live.

Parameters

v topic - the topic to publish this message to

v message - the message to publish

Exceptions

v JMSException - if producer fails to publish the message due to an

internal error.

publish

public void publish(Topic topic, Message message, int deliveryMode,

 int priority, long timeToLive)

 throws JMSException;

Publishes a message to a topic for an unidentified message producer, specifying

delivery mode, priority and time to live.

Parameters

v topic - the topic to publish this message to

v message - the message to publish

v deliveryMode - the delivery mode to use

v priority - the priority for this message

v timeToLive - the message’s lifetime (in milliseconds)

Exceptions

v JMSException - if producer fails to publish the message due to an

internal error.

MQTopicPublisher

Chapter 16. Package com.ibm.mq.jms 549

MQTopicSession

public class MQTopicSession

extends MQSession

implements TopicSession

java.lang.Object

 |

 +----com.ibm.mq.jms.MQSession

 |

 +----com.ibm.mq.jms.MQTopicSession

An MQTopicSession object provides methods for creating MQTopicPublisher,

MQTopicSubscriber, and MQTemporaryTopic objects.

Methods

createPublisher

public TopicPublisher createPublisher(Topic topic) throws JMSException;

Creates a publisher for the specified topic.

Parameters

v topic - the Topic on which messages are to be published.

Exceptions

v JMSException - if a Session fails to create a publisher due to an internal

error.

createSubscriber

public TopicSubscriber createSubscriber(Topic topic) throws JMSException;

Creates a nondurable Subscriber to the specified topic.

Parameters

v topic - the topic to subscribe to

Exceptions

v JMSException - if a session fails to create a subscriber due to some JMS

error.

v InvalidDestinationException - if invalid Topic specified.

createSubscriber

public TopicSubscriber createSubscriber(Topic topic, String selector,

 boolean noLocal)

 throws JMSException;

Creates a nondurable Subscriber to the specified topic.

Parameters

v topic - the topic to subscribe to

v selector - only messages with properties matching the message selector

expression are delivered. This value may be null.

v noLocal - if set, inhibits the delivery of messages published by its own

connection.

Exceptions

MQTopicSession

550 Using Java

v JMSException - if a session fails to create a subscriber due to some JMS

error or invalid selector.

v InvalidDestinationException - if invalid Topic specified.

v InvalidSelectorException - if the message selector is invalid.

createTemporaryTopic

public TemporaryTopic createTemporaryTopic() throws JMSException;

Creates a TemporaryTopic object. Its lifetime will be that of the

MQTopicConnection unless it is deleted earlier.

Returns

v a temporary topic

Exceptions

v JMSException - if the session fails to create a temporary topic due to

some internal error.

createTopic

public Topic createTopic(String topicName) throws JMSException;

Creates a topic identity given a Topic name.

Parameters

v topicName - the name of this Topic

Returns

v a Topic with the given name

Exceptions

v JMSException - if the session fails to create a topic due to some internal

error.

MQTopicSession

Chapter 16. Package com.ibm.mq.jms 551

MQTopicSubscriber

public class MQTopicSubscriber

extends MQMessageConsumer

implements TopicSubscriber

java.lang.Object

 |

 +----com.ibm.mq.jms.MQMessageConsumer

 |

 +----com.ibm.mq.jms.MQTopicSubscriber

A client uses an MQTopicSubscriber object to receive messages that have been

published to a topic.

Methods

close

public void close() throws JMSException;

Closes the subscriber and releases underlying resources associated with this

subscriber.

Exceptions

v JMSException - if the underlying MQ calls fail.

getTopic

public Topic getTopic() throws JMSException;

Gets the topic associated with this subscriber.

Returns

v this subscriber’s topic

Exceptions

v JMSException - if JMS fails to get topic for this topic subscriber due to

some internal error.

MQTopicSubscriber

552 Using Java

MQXAConnection

public class MQXAConnection

extends MQConnection

implements XAConnection

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnection

 |

 +----com.ibm.mq.jms.MQXAConnection

The XAConnection interface extends the capability of Connection by providing an

XASession.

Methods

createXASession

public XASession createXASession() throws JMSException;

Creates an XASession.

Returns

v the XASession

Exceptions

v JMSException - if JMS Connection fails to create an XA topic session due

to some internal error.

MQXAConnection

Chapter 16. Package com.ibm.mq.jms 553

MQXAConnectionFactory

public class MQXAConnectionFactory

extends MQConnectionFactory

implements XAConnectionFactory

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnectionFactory

 |

 +----com.ibm.mq.jms.MQXAConnectionFactory

The MQXAConnectionFactory interface is an implementation of

XAConnectionFactory interface.

WebSphere MQ JMS exposes its JTS support in the XAConnectionFactory ,

XAConnection, and XASession classes. These classes are provided for use in a J2EE

application server environment.

WebSphere Application Server Version 5 uses these classes to create and manage a

pool of XAConnection and XASession objects. A JMS application does not need to

use these classes directly if it is running in this environment.

A JMS application might need to use the XAConnectionFactory class if it is

running in a WebSphere Application Server environment with a version of

WebSphere Application Server before Version 5.

Constructors

MQXAConnectionFactory

public MQXAConnectionFactory();

Default constructor.

Methods

createXAConnection

public XAConnection createXAConnection() throws JMSException;

Creates an XA connection with the default user identity. The connection is created

in stopped mode. No messages are delivered until the XAConnection.start method

is called explicitly.

Returns

v a newly created XA connection.

Exceptions

v JMSException - if JMS Provider fails to create XAConnection due to

some internal error.

v JMSSecurityException - if client authentication fails due to invalid user

name or password.

createXAConnection

public XAConnection createXAConnection(String userName, String password)

 throws JMSException;

MQXAConnectionFactory

554 Using Java

Creates an XA connection with the specified user identity. The connection is

created in stopped mode. No messages are delivered until the XAConnection.start()

method is called explicitly.

Parameters

v userName - the user name of the caller.

v password - the password of the caller.

Returns

v a newly created XA connection.

Exceptions

v JMSException - if JMS fails to create an XA connection because of an

internal JMS error.

v JMSSecurityException - if client authentication fails because the user

name or password is not valid.

MQXAConnectionFactory

Chapter 16. Package com.ibm.mq.jms 555

MQXAQueueConnection

public class MQXAQueueConnection

extends MQQueueConnection

implements XAQueueConnection

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnection

 |

 +----com.ibm.mq.jms.MQQueueConnection

 |

 +----com.ibm.mq.jms.MQXAQueueConnection

XAQueueConnection provides the same create options as MQQueueConnection.

The only difference is that, by definition, an XAConnection is transacted.

Methods

createXAQueueSession

public XAQueueSession createXAQueueSession() throws JMSException;

Creates an XAQueueSession.

Returns

v the XAQueueSession.

Exceptions

v JMSException - if JMS Connection fails to create a XA Queue session due

to some internal error.

MQXAQueueConnection

556 Using Java

MQXAQueueConnectionFactory

public class MQXAQueueConnectionFactory

extends MQQueueConnectionFactory

implements XAQueueConnectionFactory

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnectionFactory

 |

 +----com.ibm.mq.jms.MQQueueConnectionFactory

 |

 +----com.ibm.mq.jms.MQXAQueueConnectionFactory

An XAQueueConnectionFactory provides the same create options as an

MQQueueConnectionFactory.

Constructors

MQXAQueueConnectionFactory

public MQXAQueueConnectionFactory();

Default constructor.

Methods

createXAQueueConnection

public XAQueueConnection createXAQueueConnection() throws JMSException;

Creates an XA Queue connection with default user identity.

Returns

v a newly created XA Queue connection.

Exceptions

v JMSException - if JMS Provider fails to create an XA queue connection

due to an internal error.

v JMSSecurityException - if client authentication fails due to invalid user

name or password.

createXAQueueConnection

public XAQueueConnection createXAQueueConnection(String userName,

 String password)

 throws JMSException;

Creates an XA Queue connection with specified user identity.

Parameters

v userName - the caller’s user name

v password - the caller’s password

Returns

v a newly created XA Queue connection.

Exceptions

v JMSException - if JMS Provider fails to create an XA queue connection

due to an internal error.

MQXAQueueConnectionFactory

Chapter 16. Package com.ibm.mq.jms 557

v JMSSecurityException - if client authentication fails due to invalid user

name or password.

MQXAQueueConnectionFactory

558 Using Java

MQXAQueueSession

public class MQXAQueueSession

extends MQXASession

implements XAQueueSession

java.lang.Object

 |

 +----com.ibm.mq.jms.MQSession

 |

 +----com.ibm.mq.jms.MQXASession

 |

 +----com.ibm.mq.jms.MQXAQueueSession

An XAQueueSession provides an MQQueueSession which can be used to create

MQQueueReceivers, MQQueueSenders and MQQueueBrowsers.

Constructors

MQXAQueueSession

public MQXAQueueSession(MQConnection connection, MQQueueSession session,

 MQXAResource resource)

 throws JMSException;

Constructor which extends an MQXASession object.

Parameters

v connection - the connection.

v session - the input session.

v resource - the XA resources.

Exceptions

v JMSException - if the constructor fails.

Methods

getQueueSession

public QueueSession getQueueSession() throws JMSException;

Gets the Queue session associated with this XAQueueSession.

Returns

v the Queue session object.

Exceptions

v JMSException - never.

MQXAQueueSession

Chapter 16. Package com.ibm.mq.jms 559

MQXASession

public class MQXASession

extends MQSession

implements XASession

java.lang.Object

 |

 +----com.ibm.mq.jms.MQSession

 |

 +----com.ibm.mq.jms.MQXASession

WebSphere MQ JMS exposes its JTS support in the XAConnectionFactory ,

XAConnection, and XASession classes. These classes are provided for use in a J2EE

application server environment.

WebSphere Application Server Version 5 uses these classes to create and manage a

pool of XAConnection and XASession objects. A JMS application does not need to

use these classes directly if it is running in this environment.

A JMS application might need to use the XASession class if it is running in a

WebSphere Application Server environment with a version of WebSphere

Application Server before Version 5.

Methods

close

public void close() throws JMSException;

Closes the session.

Exceptions

v JMSException - if the command failed due to an internal error.

commit

public void commit() throws JMSException;

Not to be called in this context.

Exceptions

v TransactionInProgressException - always.

getSession

public Session getSession() throws JMSException;

Gets the session associated with this XASession.

Returns

v the session object.

Exceptions

v JMSException - never

getTransacted

public boolean getTransacted() throws JMSException;

Indicates that XA sessions are always transacted.

MQXASession

560 Using Java

Returns

v true; always in transacted mode.

Exceptions

v JMSException, - for reasons of inheritance.

getXAResource

public XAResource getXAResource();

Gets the XA resource.

Returns

v the XAResource

recover

public void recover() throws JMSException;

Not to be called in this context.

Exceptions

v IllegalStateException - always.

rollback

public void rollback() throws JMSException;

Not to be called in this context.

Exceptions

v TransactionInProgressException - always.

MQXASession

Chapter 16. Package com.ibm.mq.jms 561

MQXATopicConnection

public class MQXATopicConnection

extends MQTopicConnection

implements XATopicConnection

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnection

 |

 +----com.ibm.mq.jms.MQTopicConnection

 |

 +----com.ibm.mq.jms.MQXATopicConnection

An XATopicConnection provides the same creation options as MQTopicConnection.

The only difference is that an XAConnection is transacted.

Methods

createXATopicSession

public XATopicSession createXATopicSession() throws JMSException;

Creates an XATopicSession.

Returns

v the XATopicSession.

Exceptions

v JMSException - if JMS Connection fails to create a XA topic session due

to some internal error.

MQXATopicConnection

562 Using Java

MQXATopicConnectionFactory

public class MQXATopicConnectionFactory

extends MQTopicConnectionFactory

implements XATopicConnectionFactory

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnectionFactory

 |

 +----com.ibm.mq.jms.MQTopicConnectionFactory

 |

 +----com.ibm.mq.jms.MQXATopicConnectionFactory

An MQXATopicConnectionFactory provides the same creation options as

MQTopicConnectionFactory.

Constructors

MQXATopicConnectionFactory

public MQXATopicConnectionFactory();

Default constructor.

Methods

createXATopicConnection

public XATopicConnection createXATopicConnection() throws JMSException;

Creates an XA topic connection with the default user identity.

Returns

v a newly created XA topic connection.

Exceptions

v JMSException - if JMS Provider fails to create XA topic connection due

to some internal error.

v JMSSecurityException - if client authentication fails due to invalid user

name or password.

createXATopicConnection

public XATopicConnection createXATopicConnection(String userName,

 String password)

 throws JMSException;

Creates an XA topic connection using the specified user identity. The connection is

created in stopped mode. No messages are delivered until the Connection.start()

method is called explicitly.

Parameters

v userName - the user name of the caller

v password - the password of the caller

Returns

v A newly-created XA topic connection.

Exceptions

MQXATopicConnectionFactory

Chapter 16. Package com.ibm.mq.jms 563

v JMSException - if the JMS provider fails to create an XA topic connection

because of an internal error.

v JMSSecurityException - if client authentication fails because a user name

or password is not valid.

MQXATopicConnectionFactory

564 Using Java

MQXATopicSession

public class MQXATopicSession

extends MQXASession

implements XATopicSession

java.lang.Object

 |

 +----com.ibm.mq.jms.MQSession

 |

 +----com.ibm.mq.jms.MQXASession

 |

 +----com.ibm.mq.jms.MQXATopicSession

An MQXATopicSession provides an MQTopicSession, which you can use to create

MQTopicSubscribers and MQTopicPublishers.

The XAResource that corresponds to the TopicSession can be obtained by calling

the getXAResource() method, which is inherited from XASession.

Methods

getTopicSession

public TopicSession getTopicSession() throws JMSException;

Gets the topic session associated with this XATopicSession.

Returns

v the topic session object.

Exceptions

v JMSException - never

MQXATopicSession

Chapter 16. Package com.ibm.mq.jms 565

JMSC

public interface JMSC

com.ibm.mq.jms.JMSC

Contains all constants used in the WebSphere MQ Java Message Service product.

Fields

CC_DEF_D_SHARED_QUEUE

public final static java.lang.String

Default name for the JMS ConnectionConsumer durable subscriber queue. This can

be altered using MQTopic.setBrokerCCDurSubQueue(String) .

CC_DEF_ND_SHARED_QUEUE

public final static java.lang.String

Default name for the JMS ConnectionConsumer nondurable subscriber queue. This

can be altered using MQTopic.setBrokerCCSubQueue(String) .

MAP_NAME_STYLE_COMPATIBLE

public final static boolean

This parameter can be passed to MQConnectionFactory.setMapNameStyle(boolean)

to indicate that the legacy com.ibm.jms.JMSMapMessage element naming format

will be used. This is only needed if Map messages are being sent to WebSphere

MQ JMS Clients older than version 5.3.

MAP_NAME_STYLE_STANDARD

public final static boolean

This parameter may be passed to

MQConnectionFactory.setMapNameStyle(boolean) to indicate that the standard

com.ibm.jms.JMSMapMessage element naming format will be used. This is the

default.

MQCNO_FASTPATH_BINDING

public final static int

This parameter can be passed to

MQConnectionFactory.setMQConnectionOptions(int) to indicate that the

application and the local queue manager agent must be part of the same unit of

execution.

MQCNO_ISOLATED_BINDING

public final static int

This parameter can be passed to

MQConnectionFactory.setMQConnectionOptions(int) to indicate that the

application and the local queue manager agent must run in separate units of

execution and no resources will be shared.

MQCNO_RESTRICT_CONN_TAG_Q_MGR

public final static int

JMSC

566 Using Java

This parameter can be passed to

MQConnectionFactory.setMQConnectionOptions(int) to indicate that connection tag

use is restricted within the queue manager. This connection option is supported on

z/OS only.

MQCNO_RESTRICT_CONN_TAG_QSG

public final static int

This parameter can be passed to

MQConnectionFactory.setMQConnectionOptions(int) to indicate that connection tag

use is restricted within the queue-sharing group. This connection option is

supported on z/OS only.

MQCNO_SERIALIZE_CONN_TAG_Q_MGR

public final static int

This parameter can be passed to

MQConnectionFactory.setMQConnectionOptions(int) to indicate that connection tag

use is serialized within the queue manager. This connection option is supported on

z/OS only.

MQCNO_SERIALIZE_CONN_TAG_QSG

public final static int

This parameter can be passed to

MQConnectionFactory.setMQConnectionOptions(int) to indicate that connection tag

use is serialized within the queue-sharing group. This connection option is

supported on z/OS only.

MQCNO_SHARED_BINDING

public final static int

This parameter can be passed to

MQConnectionFactory.setMQConnectionOptions(int) to indicate that the

application and the local queue manager agent must run in separate units of

execution, with some resources shared between the application and the local queue

manager agent.

MQCNO_STANDARD_BINDING

public final static int

This parameter can be passed to

MQConnectionFactory.setMQConnectionOptions(int) to indicate that the

application and the local queue manager agent must run in separate units of

execution.

MQJMS_BROKER_V1

public final static int

This parameter can be passed to MQConnectionFactory.setBrokerVersion(int) to

indicate that the broker will use RFH1 headers. This is required when using the

WebSphere MQ Publish/Subscribe broker or when using a broker of WebSphere

MQ Integrator, WebSphere MQ Event Broker, WebSphere Business Integration

Event Broker or WebSphere Business Integration Message Broker in compatibility

mode.

JMSC

Chapter 16. Package com.ibm.mq.jms 567

MQJMS_BROKER_V2

public final static int

This parameter can be passed to MQConnection.setBrokerVersion(int) to indicate

that the broker will use RFH2 headers. This is available when using a broker of

WebSphere MQ Integrator, WebSphere MQ Event Broker, WebSphere Business

Integration Event Broker or WebSphere Business Integration Message Broker in

native mode.

MQJMS_CLEANUP_AS_PROPERTY

public final static int

This parameter can be passed to MQConnectionFactory.setCleanupLevel(int) to

indicate that the style of cleanup to use is determined by the system property

com.ibm.mq.jms.cleanup, which is queried at JVM startup. This property can be set

on the Java command line using the -D option, to NONE, SAFE, or STRONG.

Any other value will cause an exception to be thrown. If not set, the property

defaults to SAFE. This allows easy JVM-wide changes to the cleanup level without

updating every TopicConnectionFactory used by the system.

MQJMS_CLEANUP_FORCE

public final static int

This parameter can be passed to MQConnectionFactory.setCleanupLevel(int) to use

forced cleanup. This option behaves like JMSC.MQJMS_CLEANUP_STRONG

except that, instead of leaving messages that cannot be processed on

SYSTEM.JMS.REPORT.QUEUE , all messages are removed even if an error is

encountered during processing.

MQJMS_CLEANUP_NONDUR

public final static int

This parameter can be passed to MQConnectionFactory.setCleanupLevel(int) to use

nondurable cleanup. This option behaves like JMSC.MQJMS_CLEANUP_FORCE.

After clearing the SYSTEM.JMS.REPORT.QUEUE, it attempts to remove any

remaining unconsumed messages sent to nondurable subscribers. If the queue

manager’s command server is running on any queue beginning SYSTEM.JMS.ND.*

, messages are cleared and the queue itself might be deleted. Otherwise, only

SYSTEM.JMS.ND.SUBSCRIBER.QUEUE and

SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE are cleared of messages.

MQJMS_CLEANUP_NONE

public final static int

This parameter can be passed to MQConnectionFactory.setCleanupLevel(int) to

disable cleanup. In this mode, no cleanup is performed, and no cleanup

Publish/subscribe thread exists. Additionally, if the application is using the single

queue approach, unconsumed messages can be left on the queue. This option can

be useful if the application is distant from the queue manager, and especially if it

only publishes rather than subscribes.

MQJMS_CLEANUP_SAFE

public final static int

This parameter can be passed to MQConnectionFactory.setCleanupLevel(int) to use

safe cleanup. The cleanup thread tries to remove unconsumed subscription

JMSC

568 Using Java

messages or temporary queues for failed subscriptions. This mode of cleanup does

not interfere with the operation of other JMS applications.

MQJMS_CLEANUP_STRONG

public final static int

This parameter can be passed to MQConnectionFactory.setCleanupLevel(int) to use

strong cleanup. The cleanup thread performs as JMSC.MQJMS_CLEANUP_SAFE,

but also clears the SYSTEM.JMS.REPORT.QUEUE of any unrecognized messages.

This mode of cleanup can interfere with the operation of JMS applications running

with later versions of WebSphere MQ JMS. If multiple JMS applications are using

the same queue manager, but using different versions of WebSphere MQ JMS, only

clients using the most recent version of WebSphere MQ JMS should use this

option.

MQJMS_CLIENT_JMS_COMPLIANT

public final static int

This parameter can be passed to MQDestination.setTargetClient(int) to indicate that

messages will be sent to a client running the WebSphere MQ JMS client. This is the

default value.

MQJMS_CLIENT_NONJMS_MQ

public final static int

This parameter can be passed to MQDestination.setTargetClient(int) to indicate that

messages will be sent to a non-JMS WebSphere MQ client.

MQJMS_COMPHDR_NONE

public final static int

This parameter can be passed in a Vector to

MQConnectionFactory.setHdrCompList(Collection) to indicate that no message

header compression will be used. This is the default value.

MQJMS_COMPHDR_SYSTEM

public final static int

This parameter can be passed in a Vector to

MQConnectionFactory.setHdrCompList(Collection) to indicate that RLE message

header compression will be used.

MQJMS_COMPMSG_NONE

public final static int

This parameter can be passed in a Vector to

MQConnectionFactory.setMsgCompList(Collection) to indicate that no message

data compression will be used. This is the default value.

MQJMS_COMPMSG_RLE

public final static int

This parameter can be passed in a Vector to

MQConnectionFactory.setMsgCompList(Collection) to indicate that message data

compression is to be performed using run-length encoding (RLE) compression.

JMSC

Chapter 16. Package com.ibm.mq.jms 569

MQJMS_COMPMSG_ZLIBFAST

public final static int

This parameter can be passed in a Vector to

MQConnectionFactory.setMsgCompList(Collection) to indicate that message data

compression is to be performed using ZLIB encoding and with speed of

compression taking priority over degree of compression.

MQJMS_COMPMSG_ZLIBHIGH

public final static int

This parameter can be passed in a Vector to

MQConnectionFactory.setMsgCompList(Collection) to indicate that message data

compression is to be performed using ZLIB encoding and with degree of

compression taking priority over speed of compression.

MQJMS_DIRECTAUTH_BASIC

public final static int

This parameter can be passed to MQConnectionFactory.setDirectAuth(int) to

indicate either no authentication or basic user name and password authentication

will be used.

MQJMS_DIRECTAUTH_CERTIFICATE

public final static int

This parameter can be passed to MQConnectionFactory.setDirectAuth(int) to

indicate public key certificate authentication will be used.

MQJMS_EXP_APP

public final static int

This parameter can be passed to MQDestination.setExpiry(long) to indicate that the

message expiry time is set to the value supplied by the application. This is the

default behavior.

MQJMS_EXP_UNLIMITED

public final static int

This parameter can be passed to MQDestination.setExpiry(long) to indicate that the

message expiry time is set to unlimited.

MQJMS_FIQ_NO

public final static int

This parameter can be passed to MQConnectionFactory.setFailIfQuiesce(int) to

indicate applications accessing a quiescing queue manager will not fail.

MQJMS_FIQ_YES

public final static int

This parameter can be passed to MQConnectionFactory.setFailIfQuiesce(int) to

indicate applications accessing a quiescing queue manager will fail. This is the

default value.

JMSC

570 Using Java

MQJMS_MRET_NO

public final static int

This parameter can be passed to MQConnectionFactory.setMessageRetention(int) to

indicate that unwanted messages will be dealt with according to their disposition

options.

MQJMS_MRET_YES

public final static int

This parameter can be passed to MQConnectionFactory.setMessageRetention(int) to

indicate that unwanted messages will remain on the input queue. This is the

default value for message retention.

MQJMS_MSEL_BROKER

public final static int

This parameter can be passed to MQConnectionFactory.setMessageSelection(int) to

indicate that the broker will perform message selection.

MQJMS_MSEL_CLIENT

public final static int

This parameter can be passed to MQConnectionFactory.setMessageSelection(int) to

indicate that the client will perform message selection. This is the default value for

message selection.

MQJMS_MULTICAST_AS_CF

public final static int

This parameter can be passed to MQConnectionFactory.setMulticast(int) to indicate

that multicast usage on the Topic will be determined by the setting on

MQConnectionFactory.

MQJMS_MULTICAST_DISABLED

public final static int

This parameter can be passed to MQConnectionFactory.setMulticast(int) to disable

multicast.

MQJMS_MULTICAST_ENABLED

public final static int

This parameter can be passed to MQConnectionFactory.setMulticast(int) to enable

multicast, if available.

MQJMS_MULTICAST_NOT_RELIABLE

public final static int

This parameter can be passed to MQConnectionFactory.setMulticast(int) to enable

multicast but not to use reliable delivery. This value is used to enable multicast for

legacy applications.

MQJMS_MULTICAST_RELIABLE

public final static int

JMSC

Chapter 16. Package com.ibm.mq.jms 571

This parameter can be passed to MQConnectionFactory.setMulticast(int) to enable

multicast with reliable delivery only.

MQJMS_PER_APP

public final static int

This parameter can be passed to MQDestination.setPersistence(int) to indicate that

the persistence is set to the value supplied by the application. This is the default

behavior.

MQJMS_PER_NON

public final static int

This parameter can be passed to MQDestination.setPersistence(int) to indicate that

the persistence for all messages is set to

javax.jms.DeliveryMode.NON_PERSISTENT.

MQJMS_PER_NPHIGH

public final static int

This parameter can be passed to MQDestination.setPersistence(int) to indicate that

messages will use NPMCLASS(HIGH) persistence if it is available on the queue. If

it is not available, messages will be sent using

javax.jms.DeliveryMode.PERSISTENT persistence. See WebSphere MQ System

Administration Guide for more information about NPMCLASS(HIGH).

MQJMS_PER_PER

public final static int

This parameter can be passed to MQDestination.setPersistence(int) to indicate that

the persistence for all messages is set to javax.jms.DeliveryMode.PERSISTENT.

MQJMS_PER_QDEF

public final static int

This parameter can be passed to MQDestination.setPersistence(int) to indicate that

the persistence is taken from the queue definition.

MQJMS_PRI_APP

public final static int

This parameter can be passed to MQDestination.setPriority(int) to indicate that the

priority is set to the value supplied by the application. This is the default behavior.

MQJMS_PRI_QDEF

public final static int

This parameter can be passed to MQDestination.setPriority(int) to indicate that the

priority is taken from the queue definition.

MQJMS_PROCESSING_SHORT

public final static int

This parameter can be passed to MQConnectionFactory.setProcessDuration(int) to

indicate that the processing of a MessageConsumers messages is guaranteed to be

completed promptly. This value must be used if using the

JMSC

572 Using Java

MQJMS_RCVISOL_UNCOMMITTED paramter with the

MQConnectionFactory.setReceiveIsolation(int) method.

MQJMS_PROCESSING_UNKNOWN

public final static int

This parameter can be passed to MQConnectionFactory.setProcessDuration(int) to

indicate that the processing of a MessageConsumers messages will take an

unknown amount of time.

MQJMS_RCVISOL_COMMITTED

public final static int

This parameter can be passed to MQConnectionFactory.setReceiveIsolation(int) to

indicate that publish/subscribe MessageConsumers can only attempt to receive

messages that have been committed by their publisher.

MQJMS_RCVISOL_DEFAULT

public final static int

The default value for the receive isolation property - currently maps to

MQJMS_RCVISOL_COMMITTED

MQJMS_RCVISOL_UNCOMMITTED

public final static int

This parameter can be passed to MQConnectionFactory.setReceiveIsolation(int) to

indicate that publish/subscribe MessageConsumers are willing to see messages

that have not yet been committed by their publisher. Using this value might cause

a subscribing application’s commit() method or acknowledge() call to fail if a

message’s original publish is backed out.

MQJMS_SUBSTORE_BROKER

public final static int

This parameter can be passed to MQConnectionFactory.setSubscriptionStore(int) to

use the Broker subscription store to hold details of subscriptions.

MQJMS_SUBSTORE_MIGRATE

public final static int

This parameter can be passed to MQConnectionFactory.setSubscriptionStore(int) to

use the Migrate subscription to hold details of subscriptions.

MQJMS_SUBSTORE_QUEUE

public final static int

This parameter can be passed to MQConnectionFactory.setSubscriptionStore(int) to

use the Queue subscription store to hold details of subscriptions.

MQJMS_TP_BINDINGS_MQ

public final static int

This parameter can be passed to MQConnectionFactory.setTransportType(int) to

indicate that the application will connect to the queue manager in bindings mode.

JMSC

Chapter 16. Package com.ibm.mq.jms 573

MQJMS_TP_CLIENT_MQ_TCPIP

public final static int

This parameter can be passed to MQConnectionFactory.setTransportType(int) to

indicate that the application will connect to the queue manager in (client TCP/IP)

mode.

MQJMS_TP_DIRECT_HTTP

public final static int

This parameter can be passed to MQConnectionFactory.setTransportType(int) to

indicate that the application will connect to a broker in DirectHTTP mode. See the

broker documentation for more details of this connection mode.

MQJMS_TP_DIRECT_TCPIP

public final static int

This parameter can be passed to MQConnectionFactory.setTransportType(int) to

indicate that the application will connect to a broker in DirectIP mode. See the

broker documentation for more details of this connection mode.

MQRCCF_ALREADY_JOINED

public final static int

This reason code is returned by a broker to indicate that the identity already has

an entry for this subscription. A Join registration option was specified but the

subscriber identity was already a member of the subscription’s identity set. See

WebSphere MQ Publish/Subscribe User’s Guide for more information on this error

code.

MQRCCF_DUPLICATE_IDENTITY

public final static int

This reason code is returned by a broker to indicate that the publisher or

subscriber identity is already assigned to another user ID. A given identity can

only be assigned to one user ID at a time. See WebSphere MQ Publish/Subscribe

User’s Guide for more information on this error code.

MQRCCF_DUPLICATE_SUBSCRIPTION

public final static int

This reason code is returned by a broker to indicate that a matching subscription

already exists. See WebSphere MQ Publish/Subscribe User’s Guide for more

information on this error code.

MQRCCF_NOT_AUTHORIZED

public final static int

This reason code is returned by a broker to indicate that the subscriber has

insufficient authority. To receive publications a subscriber application needs both

browse authority for the stream queue that it is subscribing to, and put authority

for the queue that publications are to be sent to. Subscriptions are rejected if the

subscriber does not have both authorities. See WebSphere MQ Publish/Subscribe

User’s Guide for more information on this error code.

JMSC

574 Using Java

MQRCCF_NOT_REGISTERED

public final static int

This reason code is returned by a broker to indicate that the subscriber or

publisher is not registered. See WebSphere MQ Publish/Subscribe User’s Guide for

more information on this error code.

MQRCCF_REG_OPTIONS_ERROR

public final static int

This reason code is returned by a broker to indicate that incorrect registration

options have been supplied. See WebSphere MQ Publish/Subscribe User’s Guide for

more information on this error code.

MQRCCF_SUB_IDENTITY_ERROR

public final static int

This reason code is returned by a broker to indicate that the subscription identity

parameter is in error. Either the supplied value exceeds the maximum length

allowed or the subscription identity is not currently a member of the subscription’s

identity set and a Join registration option was not specified. See WebSphere MQ

Publish/Subscribe User’s Guide for more information on this error code.

MQRCCF_SUB_NAME_ERROR

public final static int

This reason code is returned by a broker to indicate that the subscription name

parameter is in the wrong. Either the subscription name is of an invalid format or

a matching subscription already exists with no subscription name. See WebSphere

MQ Publish/Subscribe User’s Guide for more information on this error code.

MQRCCF_SUBSCRIPTION_IN_USE

public final static int

This reason code is returned by a broker to indicate that the subscription is in use.

An attempt to modify or deregister a subscription was attempted by a member of

the identity set when they were not the only member of this set. See WebSphere

MQ Publish/Subscribe User’s Guide for more information on this error code.

MQRCCF_SUBSCRIPTION_LOCKED

public final static int

This reason code is returned by a broker to indicate that the subscription is

currently exclusively locked by another identity. See WebSphere MQ

Publish/Subscribe User’s Guide for more information on this error code.

MQRCCF_TOPIC_ERROR

public final static int

This reason code is returned by a broker to indicate that the topic name has an

invalid length or contains invalid characters. Note that wildcard topic names are

not allowed for Register Publisher and Publish commands. See WebSphere MQ

Publish/Subscribe User’s Guide for more information on this error code.

PS_CONTROL_QUEUE

public final static java.lang.String

JMSC

Chapter 16. Package com.ibm.mq.jms 575

Default name for the broker control queue. This can be changed using

MQConnectionFactory.setBrokerControlQueue(String).

PS_DEF_D_SHARED_QUEUE

public final static java.lang.String

Default name for the JMS durable subscriber queue. This can be altered using

MTopic.setBrokerDurSubQueue(String).

PS_DEF_ND_SHARED_QUEUE

public final static java.lang.String

Default name for the JMS nondurable subscriber queue. This can be altered using

MQConnectionFactory.steBrokerSubQueue(String).

PS_DEFAULT_STREAM_QUEUE

public final static java.lang.String

Default name for the broker publication queue. This can be changed using

MQConnectionFactory.setBrokerPubQueue(String).

JMSC

576 Using Java

BrokerCommandFailedException

public class BrokerCommandFailedException

extends JMSException

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----javax.jms.JMSException

 |

 +----com.ibm.mq.jms.BrokerCommandFailedException

The broker has sent a response message which indicates that the command failed.

Methods

getReason

public int getReason();

Gets the exception reason code.

Returns

v the reason code

BrokerCommandFailedException

Chapter 16. Package com.ibm.mq.jms 577

FieldNameException

public class FieldNameException

extends Exception

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----com.ibm.mq.jms.FieldNameException

This exception is thrown when there is a problem with a field name encountered

within an SQL expression.

FieldNameException

578 Using Java

FieldTypeException

public class FieldTypeException

extends Exception

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----com.ibm.mq.jms.FieldTypeException

This exception is thrown when there is a problem with the type of a field

encountered within an SQL expression.

FieldTypeException

Chapter 16. Package com.ibm.mq.jms 579

IntErrorException

public class IntErrorException

extends JMSException

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----javax.jms.JMSException

 |

 +----com.ibm.mq.jms.IntErrorException

This exception is thrown when there is an internal problem with one of the JMS

classes.

IntErrorException

580 Using Java

ISSLException

public class ISSLException

extends Exception

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----com.ibm.mq.jms.ISSLException

Indicates an SSL exception.

ISSLException

Chapter 16. Package com.ibm.mq.jms 581

JMSInvalidParameterException

public class JMSInvalidParameterException

extends JMSException

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----javax.jms.JMSException

 |

 +----com.ibm.mq.jms.JMSInvalidParameterException

Indicates that an invalid parameter was passed on a method call.

JMSInvalidParameterException

582 Using Java

JMSListenerSetException

public class JMSListenerSetException

extends JMSException

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----javax.jms.JMSException

 |

 +----com.ibm.mq.jms.JMSListenerSetException

JMSListenerSetException indicates that a MessageListener is set.

MessageConsumer.receive() cannot be called if a MessageListener is set. A

MessageListener cannot be set on both MessageConsumer and Session.

JMSListenerSetException

Chapter 16. Package com.ibm.mq.jms 583

JMSMessageQueueOverflowException

public class JMSMessageQueueOverflowException

extends JMSException

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----javax.jms.JMSException

 |

 +----com.ibm.mq.jms.JMSMessageQueueOverflowException

Indicates that a MessageQueue overflow has occurred.

JMSMessageQueueOverflowException

584 Using Java

JMSNotActiveException

public class JMSNotActiveException

extends JMSException

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----javax.jms.JMSException

 |

 +----com.ibm.mq.jms.JMSNotActiveException

JMSNotActiveException is thrown if a resource has been closed.

JMSNotActiveException

Chapter 16. Package com.ibm.mq.jms 585

JMSNotSupportedException

public class JMSNotSupportedException

extends JMSException

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----javax.jms.JMSException

 |

 +----com.ibm.mq.jms.JMSNotSupportedException

JMSNotSupportedException is thrown by methods not currently supported, for

example, the application server facilities when using a direct connection to a

broker..

JMSNotSupportedException

586 Using Java

JMSParameterIsNullException

public class JMSParameterIsNullException

extends JMSException

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----javax.jms.JMSException

 |

 +----com.ibm.mq.jms.JMSParameterIsNullException

Indicates that the value of a method parameter is null. In the case of String

parameters, the value might have been the empty String.

JMSParameterIsNullException

Chapter 16. Package com.ibm.mq.jms 587

MulticastHeartbeatTimeoutException

public class MulticastHeartbeatTimeoutException

extends JMSException

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----javax.jms.JMSException

 |

 +----com.ibm.mq.jms.MulticastHeartbeatTimeoutException

A MulticastHeartbeatTimeoutException indicates that the multicast connection

timed out, which has resulted in the client being disconnected. This might indicate

network problems or that the broker is no longer running. If the network load is

high, then it might be necessary to increase the broker heartbeat timeout value to

avoid heartbeat timeouts. See your Broker documentation for details of how to do

this.

MulticastHeartbeatTimeoutException

588 Using Java

MulticastPacketLossException

public class MulticastPacketLossException

extends JMSException

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----javax.jms.JMSException

 |

 +----com.ibm.mq.jms.MulticastPacketLossException

A MulticastPacketLossException is thrown if a multicast receiver detects lost

messages, and the messages cannot be retransmitted because they have been

purged from the brokers’s buffer. This exception is only thrown if the multicast

connection is of type JMSC.MQJMS_MULTICAST_RELIABLE .

If the message is no longer in the brokers transmission buffer, then it might be

necessary to increase the Broker Minimal History Size, or the Broker History

Cleaning Time, or both, to give the client more time to request retransmission of

lost messages. See the Broker documentation for details of how to do this.

MulticastPacketLossException

Chapter 16. Package com.ibm.mq.jms 589

NoBrokerResponseException

public class NoBrokerResponseException

extends JMSException

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----javax.jms.JMSException

 |

 +----com.ibm.mq.jms.NoBrokerResponseException

Indicates that a response was requested for a broker command, but none was

received within the timeout interval.

NoBrokerResponseException

590 Using Java

SyntaxException

public class SyntaxException

extends Exception

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----com.ibm.mq.jms.SyntaxException

Indicates that there is a syntax error in an SQL expression.

SyntaxException

Chapter 16. Package com.ibm.mq.jms 591

592 Using Java

Chapter 17. Package com.ibm.mq.jms.services

This package provides services which are used by the com.ibm.mq.jms package.

© Copyright IBM Corp. 1997, 2007 593

MQJMS_Messages

public final class MQJMS_Messages

extends Object

java.lang.Object

 |

 +----com.ibm.mq.jms.services.MQJMS_Messages

Defines the most common exceptions that can be generated by WebSphere MQ

JMS. It does not include all messages that can be written to a trace file. If you

receive an exception message not in this list (except in a trace file), or if the cause

seems to be an error in WebSphere MQ JMS, contact your IBM service

representative.

A JMSException might have an embedded exception that contains a WebSphere

MQ reason code. For an explanation of each WebSphere MQ reason code, see the

WebSphere MQ Messages and WebSphere MQ z/OS Messages and Codes books.

Reading variables in a message: Some messages display text or numbers that vary

according to the circumstances giving rise to the message; these are known as

message variables. Message variables are indicated by the use of numbers in

braces; for example, {0}, {1}, and so on.

Fields

MQJMS_ADMIN_BIND_FAIL

public final static java.lang.String

Unable to bind object.

Explanation: Administration service bind or copy or move operation failed.

User Response: Check that you have correctly set up your JNDI provider.

MQJMS_ADMIN_BND_NONADMIN

public final static java.lang.String

Binding non-administerable or not found.

Explanation: From JMSAdmin, an object was specified on the command line that

either does not exist, or is not an object that JMSAdmin can administer.

User Response: Specify a valid object on the JMSAdmin command line.

MQJMS_ADMIN_CLASH_CLIENT

public final static java.lang.String

Clash of the client properties.

Explanation: Client properties specified for a bindings connection are not

compatible.

User Response: Ensure the ConnectionFactory properties are correct.

MQJMS_ADMIN_CLASH_EXITINIT

public final static java.lang.String

ExitInit string supplied without Exit string.

Explanation: ExitInit string supplied but Exit is not set.

User Response: Set appropriate exit, or unset ExitInit string.

MQJMS_Messages

594 Using Java

MQJMS_ADMIN_CNT_OPEN_CFG

public final static java.lang.String

Cannot open configuration file.

Explanation: Configuration file might not exist.

User Response: Check that the MQ_JAVA_INSTALL_PATH environment variable

exists and that it specifies the installation directory of the base Java classes.

MQJMS_ADMIN_CONF_MISSING

public final static java.lang.String

Missing configuration properties.

Explanation: The Provider URL or InitialContextFactory are undefined

User Response: Ensure that these parameters are defined. See “Using the

WebSphere MQ JMS administration tool” for JMSAdmin and JNDI information.

MQJMS_ADMIN_CONVERT_CIPHER

public final static java.lang.String

Matching CipherSpec {0} to CipherSuite {1} not possible.

Explanation: The supplied CipherSpec did not match to a known CipherSuite

User Response: Check the supplied CipherSpec is supported and retry.

MQJMS_ADMIN_CTX_NOT_EMPTY

public final static java.lang.String

Context is not empty.

Explanation: Error deleting Context due to context not being empty.

User Response: Remove context contents before trying to delete.

MQJMS_ADMIN_CTX_NOTFND

public final static java.lang.String

Context not found.

Explanation: Could not find a context to match the name given.

User Response: Ensure the correct context name is specified.

MQJMS_ADMIN_CTX_NOTFNDU

public final static java.lang.String

Context not found or cannot be deleted.

Explanation: The specified child context could not be deleted.

User Response: Ensure the correct context name was specified.

MQJMS_ADMIN_ERROR

public final static java.lang.String

Error.

Explanation: An internal error has occurred.

User Response: Contact your system administrator.

MQJMS_ADMIN_ICF_NOT_FOUND

public final static java.lang.String

Class specified by INITIAL_CONTEXT_FACTORY not found in CLASSPATH.

User Response: Check the class name or add the class to the CLASSPATH.

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 595

MQJMS_ADMIN_INV_PROP

public final static java.lang.String

Parameter {1} for method {0} was not valid.

Explanation: The parameter {1} supplied to method {0} was incorrectly specified.

User Response: Correct the parameter supplied to {0} and retry.

MQJMS_ADMIN_INV_PROP_CTX

public final static java.lang.String

The property was not valid in this context.

Explanation: JMSAdmin object value is not valid in the current context.

User Response:Check the property being specified.

MQJMS_ADMIN_INV_PROP_VAL

public final static java.lang.String

Value {1} for property {0} was not valid.

Explanation: The value supplied for parameter {0} is not valid.

User Response: Correct the value supplied and retry.

MQJMS_ADMIN_INVALID_AUTH_TYPE

public final static java.lang.String

The authentication type supplied was not valid - used none.

Explanation: The Admin Service JNDI initialization parameters contained an

authorization scheme which was not valid, so noneis used as the value instead.

MQJMS_ADMIN_INVALID_NAME

public final static java.lang.String

A name was supplied that was not valid.

Explanation: JMSAdmin error. The name supplied when trying to delete a context

was invalid.

User Response: Check and correct the name supplied.

MQJMS_ADMIN_JNDI_INITFAIL

public final static java.lang.String

JNDI initialization failed.

User Response: Check your JNDI settings and service for additional information

on the cause of this problem run with the -v argument.

MQJMS_ADMIN_LEXERR

public final static java.lang.String

Lexical error.

User Response:Contact your IBM representitive.

MQJMS_ADMIN_MV_SEMIFAIL

public final static java.lang.String

Unable to complete MOVE; a COPY has been done instead.

Explanation: The object was copied, but the original object could not be deleted.

User Response:Delete the original object manually.

MQJMS_Messages

596 Using Java

MQJMS_ADMIN_NEW_CTX_FAIL

public final static java.lang.String

Unable to create context.

Explanation: Administration service failed.

User Response: Check LDAP and JNDI settings.

MQJMS_ADMIN_NON_MQJMS

public final static java.lang.String

Object is not a WebSphere MQ JMS administered object.

User Response:Ensure you only attempt to administer WebSphere MQ JMS objects

through the JMSAdmin tool.

MQJMS_ADMIN_OBJ_INACTIVE

public final static java.lang.String

Object is inactive, so cannot perform directory operations.

Explanation: The JNDI service is inactive.

User Response:Contact your system administrator.

MQJMS_ADMIN_OBJTYPE_MISMATCH

public final static java.lang.String

Expected and actual object types do not match.

Explanation: Requested and retrieved objects are of different types.

User Response: Check that you have specified the correct object type.

MQJMS_ADMIN_PROP_UNK

public final static java.lang.String

Unknown parameter: {0}.

Explanation: The parameter {0} is unknown.

User Response: Check the parameter to be set and retry.

MQJMS_ADMIN_PROPVAL_NULL

public final static java.lang.String

Parameter {0} is null.

Explanation: A null value was supplied when a non-null Object was expected.

User Response: Check that the supplied parameter for {0} has been correctly

instantiated and retry.

MQJMS_ADMIN_SYN_ERR

public final static java.lang.String

Syntax error.

Explanation: The command syntax was not valid.

User Response: Check the command given and retry.

MQJMS_ADMIN_VAL_OBJ_FAIL

public final static java.lang.String

Unable to create a valid object.

Explanation: Consistency check failed.

User Response: Check the parameters supplied or contact your IBM representative.

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 597

MQJMS_ADMIN_WS_INST

public final static java.lang.String

Unable to create a WebSphere MQ specific class. The WebSphere MQ classes might

not have been installed or added to the CLASSPATH.

User Response: Check your WebSphere Application Server installation and

CLASSPATH variable.

MQJMS_CLIENTID_FIXED

public final static java.lang.String

Client ID cannot be set after connection has been used.

Explanation: The Client ID of a connection can be set only once, and only before

the connection is used.

User Response: Set the clientID before using the connection.

MQJMS_CLIENTID_NO_RESET

public final static java.lang.String

Resetting the Client ID is not allowed.

Explanation: The Client ID of a connection can be set only once, and only before

the connection is used.

User Response: Set the Client ID before using the connection.

MQJMS_DIR_IMB_BADSOCKNAME

public final static java.lang.String

The socket family name: {0} is not valid.

Explanation: A socket family name given to an instance of IMBSocketFactory was

not valid. {0} shows the bad name.

User Response: Contact your IBM representative.

MQJMS_DIR_IMB_NOCLASS

public final static java.lang.String

An exception occurred while attempting to load socket factory class {0},

exception:.{1}

Explanation: Either a ClassNotFoundException, an InstantiationException or an

IllegalAccessException occurred while trying to load a particular IMBSocketFactory.

{1} gives the name of the exception.

User Response: Contact your IBM representative.

MQJMS_DIR_JMS_BADID

public final static java.lang.String

The specified JMSMessageID, {0}, is not valid.

Explanation: Incorrect syntax was used to specify a message ID in

Message.setJMSMessageID(). The correct syntax is ID:[0-9]+.

User Response: Check parameters.

MQJMS_DIR_JMS_BADNUM

public final static java.lang.String

Exception {1} occurred when initializing parameter {0}.

Explanation: {0} identifies the parameter that failed to initialize and {1}, the caught

MQJMS_Messages

598 Using Java

exception.

User Response: Contact your IBM representative.

MQJMS_DIR_JMS_BDTOPIMPL

public final static java.lang.String

The {0} implementation of Topic is not supported.

Explanation: The Topic instance passed to a TopicPublisher or TopicSession

method has an unsupported run-time implementation. {0} gives the class name of

the unsupported implementation.

User Response:Check the Topic used and retry.

MQJMS_DIR_JMS_CLOSED

public final static java.lang.String

Operation not permitted on an entity that is closed.

Explanation: An operation was requested on a closed publisher, session, or

connection.

User Response: Ensure that the publisher, session, or connection is open before

trying this operation.

MQJMS_DIR_JMS_FMTINT

public final static java.lang.String

An attempt was made to read from a Stream message before a previous read has

completed.

Explanation: Internal error.

User Response: Contact your IBM representative.

MQJMS_DIR_JMS_INVPRI

public final static java.lang.String

A JMSPriority level of {0} is outside the range specified in JMS.

Explanation: {0} gives the value that is in error.

User Response:Check the value specified and retry.

MQJMS_DIR_JMS_KILLMON

public final static java.lang.String

The client-side connection monitor is terminating.

User Response: Restart the connection.

MQJMS_DIR_JMS_LSTACT

public final static java.lang.String

Attempted to synchronously receive on a MessageConsumer for which a listener is

active.

Explanation: MessageConsumer.receive() was called but a message listener is

already active on the connection. This is not allowed under the JMS specification.

MQJMS_DIR_JMS_NEXCLIS

public final static java.lang.String

No ExceptionListener was set.

User Response: Create an ExceptionListener.

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 599

MQJMS_DIR_JMS_NOMORE

public final static java.lang.String

No more client parameter changes allowed.

Explanation: Internal error. An attempt was made to set a SessionConfig parameter

when no more changes are allowed.

User Response: Contact your IBM representative.

MQJMS_DIR_JMS_NOTHDPOOL

public final static java.lang.String

An exception occurred while attempting to load thread pooling support; {0}.

Explanation: An exception occurred while attempting to load thread pooling

support in the JMS client. {0} gives details of the exception.

User Response: Contact your IBM representative.

MQJMS_DIR_JMS_PBIOERR

public final static java.lang.String

An IOException occurred while publishing; {0}.

Explanation: An IOException occurred while publishing a message. {0} gives

details of the exception.

User Response: See “Writing WebSphere MQ JMS publish/subscribe applications”

for more information.

MQJMS_DIR_JMS_PBNOWLD

public final static java.lang.String

Topic {0} contains a wildcard, which is invalid for publishing.

Explanation: The Topic specified to a TopicPublisher method contained a wildcard.

Wildcards are not allowed in Topics when publishing messages. The failing Topic

is given by {0}.

User Response:Check the Topic specified and retry.

MQJMS_DIR_JMS_RUNKEXC

public final static java.lang.String

An exception occurred during synchronous receive; {0}.

Explanation: Internal error. {0} gives details of the exception.

User Response: Restart connection.

MQJMS_DIR_JMS_TCFLERR

public final static java.lang.String

An exception occurred while creating the TopicConnection; {0}.

Explanation: {0} gives details of the exception.

User Response: Contact your IBM representative.

MQJMS_DIR_JMS_TCSTSTP

public final static java.lang.String

An IOException occurred when starting or stopping delivery on the connection;

{0}.

Explanation: {0} gives details of the exception.

User Response: Restart the connection.

MQJMS_Messages

600 Using Java

MQJMS_DIR_JMS_THDEXC

public final static java.lang.String

An exception occurred while initializing a thread pool instance; {0}.

Explanation: A SocketThreadPoolException occurred while initializing a thread

pool instance in the JMS client. {0} gives details of the exception.

User Response: Contact your IBM representative.

MQJMS_DIR_JMS_TMPVIO

public final static java.lang.String

Wrong use of temporary topic with the current connection.

Explanation: Attempted to use a temporary topic not created on the current

connection.

User Response: Check the TemporaryTopic and retry.

MQJMS_DIR_JMS_TSBADMTC

public final static java.lang.String

While creating a TopicSubscriber attempting to add the subscription to the

matching engine resulted in exception: {0}.

Explanation: {0} gives details of the exception.

User Response: Check the Exception given and retry.

MQJMS_DIR_JMS_TSIOERR

public final static java.lang.String

An IOException occurred while subscribing; {0}.

Explanation: An IOException occurred while subscribing. {0} gives details of the

exception.

User Response: See “Writing WebSphere MQ JMS publish/subscribe applications”

for more information.

MQJMS_DIR_MIN_ACK_NOT_SUPPORTED

public final static java.lang.String

Client Acknowledge is not supported for transport type DIRECT.

Explanation: Client Acknowledge mode was requested when creating a session.

This is not supported with a DirectIP transport type.

User Response: Change either the transport type or acknowledge mode requested.

MQJMS_DIR_MIN_AUTHREJ

public final static java.lang.String

Minimal client connection rejected because of authentication failure.

User Response: Check authentication details.

MQJMS_DIR_MIN_BADBRKMSG

public final static java.lang.String

The broker sent a message during authentication which was not valid.

User Response: Check authentication details and retry.

MQJMS_DIR_MIN_BADFIELD

public final static java.lang.String

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 601

The value of field {0} is not valid.

Explanation: {0} shows the value used.

User Response: Check the value and retry.

MQJMS_DIR_MIN_BADMSG

public final static java.lang.String

Connector.send() was called with a message value that is not valid.

User Response: See “Writing WebSphere MQ base Java programs” for more

information.

MQJMS_DIR_MIN_BADTOP

public final static java.lang.String

A specified topic was malformed, topic; {0}.

Explanation: {0} gives the name of the malformed topic.

User Response: Check the topic and retry.

MQJMS_DIR_MIN_BRKERR

public final static java.lang.String

The broker indicated an error on the minimal client connection.

User Response: Refer to JMS or broker documentation. Contact your IBM

representative.

MQJMS_DIR_MIN_EOF

public final static java.lang.String

End of file (EOF) was encountered while receiving data in the minimal client.

User Response: Contact your IBM representative.

MQJMS_DIR_MIN_EXP_NOT_SUPPORTED

public final static java.lang.String

A Topic Expiry greater than zero not supported for transport type DIRECT.

Explanation: An Expiry time that is not valid was specified when using DirectIP

transport.

User Response:Check the topic expiry and retry.

MQJMS_DIR_MIN_INTERR

public final static java.lang.String

An unexpected internal error occurred in the minimal client.

Explanation: Internal problem.

User Response: Contact your IBM representative.

MQJMS_DIR_MIN_NOQOP

public final static java.lang.String

No QOP available in the minimal client.

Explanation: Indicates that QOP is not implemented in the current version of the

minimal client.

User Response: Contact your IBM representative.

MQJMS_DIR_MIN_NOSUB

public final static java.lang.String

MQJMS_Messages

602 Using Java

Unauthorized subscription to topic {0}.

Explanation: Attempted to create a subscription to a Topic that is not authorized

for the client. {0} shows the Topic.

User Response:Check the topic used and retry.

MQJMS_DIR_MIN_NOTBYTES

public final static java.lang.String

A Byte message operation was requested on something that is not a Byte message.

Explanation: The wrong message type was found.

User Response: Check message type before performing type specific operations.

MQJMS_DIR_MIN_NOTMAP

public final static java.lang.String

A Map message operation was requested on something that is not a Map message.

Explanation: The wrong message type was found.

User Response: Check message type before performing type specific operations.

MQJMS_DIR_MIN_NOTSTREAM

public final static java.lang.String

A Stream message operation was requested on something that is not a Stream

message.

Explanation: The wrong message type was found.

User Response: Check message type before performing type specific operations.

MQJMS_DIR_MIN_NOTTEXT

public final static java.lang.String

A Text message operation was requested on something that is not a Text message.

Explanation: The wrong message type was found.

User Response: Check message type before performing type specific operations.

MQJMS_DIR_MIN_NOXASUP

public final static java.lang.String

Transport type DIRECT within a transaction is not supported.

Explanation: The application attempted to use a transactional method. This is not

supported with a DirectIP transport type.

MQJMS_DIR_MIN_PER_NOT_SUPPORTED

public final static java.lang.String

Persistent messages not supported for transport type DIRECT.

Explanation: A DeliveryMode that is not valid was specified when using DirectIP

transport.

User Response:Check DeliveryMode and retry.

MQJMS_DIR_MIN_SECLDERR

public final static java.lang.String

An exception occurred while loading the minimal client security implementation.

User Response: Contact your IBM representative.

MQJMS_DIR_MIN_TTL_NOT_SUPPORTED

public final static java.lang.String

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 603

Time to Live greater than zero not supported for transport type DIRECT.

Explanation: A time to live that is not valid was specified when using DirectIP

transport.

User Response: Check Time to Live and retry.

MQJMS_DIR_MIN_UNVPRO

public final static java.lang.String

The broker requested an unavailable protocol during authentication.

User Response:

MQJMS_DIR_MIN_UNXEXC

public final static java.lang.String

An unexpected exception in minimal client; {0}.

Explanation: An unusual or unexpected exception occurred at the minimal client.

{0} gives more details.

User Response: Contact your IBM representative.

MQJMS_DIR_MTCH_BDESC

public final static java.lang.String

The escape sequence was used to terminate the pattern; {0}.

Explanation: This might indicate a syntax error in your Selector.

User Response: Check your selector and retry.

MQJMS_DIR_MTCH_BDESCL

public final static java.lang.String

The escape sequence {0} passed to the pattern tool is longer than one character.

Explanation: This might indicate a syntax error in your Selector.

User Response: Check your selector and retry.

MQJMS_DIR_MTCH_BDMSG

public final static java.lang.String

An exception occurred while attempting to access a field of a message; {0}.

Explanation: A corrupt message format was discovered. Internal error.

User Response: Contact your IBM representative.

MQJMS_DIR_MTCH_BDSEP

public final static java.lang.String

The Topic segment separator {0} appears in an incorrect position.

Explanation: A subscription Topic separator was used incorrectly. {0} shows the

bad separator.

User Response: Check your Topic definitions and retry.

MQJMS_DIR_MTCH_BDWLD

public final static java.lang.String

An incorrect use of the Topic wildcard character {0} was detected.

Explanation: The failed Topic is given by parameter {0}.

User Response: Check your Topic definitions and retry.

MQJMS_DIR_MTCH_ECNMIN

public final static java.lang.String

MQJMS_Messages

604 Using Java

An EvalCache get or put operation specified an invalid ID.

Explanation: Internal Error. The MinValue of an EvalCache could not be increased,

although the operation expected it to be.

User Response: Contact your IBM representative.

MQJMS_DIR_MTCH_NULCH

public final static java.lang.String

An attempt was made to remove an object with a Topic {0} from the matching

engine, but it did not have a cache entry: {1}.

Explanation: Internal error. An attempt was made to remove an object from a null

tree in the matching engine. {0} gives the Topic and {1} gives the cache entry.

User Response: Contact your IBM representative.

MQJMS_DIR_MTCH_NULRM

public final static java.lang.String

An attempt was made to remove an object with Topic {0} from an empty matching

engine: {1}.

Explanation: Internal error. An attempt was made to remove an object from a null

tree in the matching engine. {0} gives the Topic and {1} gives the MatchTarget.

User Response: Contact your IBM representative.

MQJMS_DIR_MTCH_PSTPER

public final static java.lang.String

An exception occurred while parsing a subscription selector; {0}.

Explanation: A TypeCheckException occurred while loading or invoking the match

parser. This might indicate a syntax error in your Selector.

User Response: Check your selector and retry.

MQJMS_DIR_MTCH_TOMNY

public final static java.lang.String

Too many content attributes were specified.

Explanation: Internal Error. Too many non-topic attributes were specified.

User Response: Contact your IBM representative.

MQJMS_DIR_MTCH_UNKEXC

public final static java.lang.String

An unexpected exception occurred in the matching engine: {0}.

User Response: Contact your IBM representative.

MQJMS_DIR_MTCH_UNXTYP

public final static java.lang.String

A message field was expected to contain a value of type {0} but contained one of

type {1}.

Explanation: This might indicate a syntax error in your Selector.

User Response: Check your selector and retry.

MQJMS_E_11_INVALID_CROSS_DOMAIN

public final static java.lang.String

Attribute for a domain specific object was not valid.

Explanation: A JMS application attempted to set an attribute of a domain specific

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 605

object, but the attribute is valid only for the other messaging domain.

User Response: Make sure that the JMS object types used by your application are

relevant for the required messaging domain. If your application uses both

messaging domains, consider using domain independent objects throughout the

application.

MQJMS_E_11_INVALID_DOMAIN_SPECIFIC

public final static java.lang.String

Operation for a domain specific object was not valid.

Explanation: A JMS application attempted to perform an operation on domain

specific object, but the operation is valid only for the other messaging domain.

User Response: Make sure that the JMS objects used by your application are

relevant for the required messaging domain. If your application uses both

messaging domains, consider using domain independent objects throughout the

application.

MQJMS_E_11_SERVICES_NOT_SETUP

public final static java.lang.String

The required queues or publish/subscribe services are not set up: {0}.

Explanation: The required WebSphere MQ setup for the messaging domain is not

complete.

User Response: For the point-to-point messaging, make sure that you have started

the queue manager and, if your JMS application is connecting as a client

application, make sure that you have started a listener for the correct port. For

publish/subscribe messaging, make sure that you have done the post installation

setup.

MQJMS_E_BAD_CCSID

public final static java.lang.String

The character set {0} is not supported.

Explanation: An attempt was made to send or receive a map message, stream

message or text message whose body is encoded using a character set not

supported by the JVM. In the case of text messages, this exception might be

thrown when the body of the message is first queried, rather than at receive time.

User Response: Only encode a message using a character set known to be

available to the receiving application.

MQJMS_E_BAD_DEST_STR

public final static java.lang.String

Failed to reconstitute destination from {0}.

Explanation: A message has been received which contains destination information

in the RFH2 header which is not valid.

User Response: Ensure that any messages being sent by non-JMS applications have

correctly formatted destination information. In the case of RFH2 headers, pay

special attention to the Rto(reply to) and Dst(destination) elements of the XML

portion of the header. Valid destination strings must start either queueor topic.

MQJMS_E_BAD_ELEMENT_NAME

public final static java.lang.String

Message element name: {0} is not valid.

Explanation: Attempted to set a message property using either a property name

MQJMS_Messages

606 Using Java

which is not valid, or the name of a property which cannot have its value set.

User Response: Ensure that the property name specified conforms to the JMS

specification. If the property name supplied is that of a JMS property, or a vendor

specific extension, ensure that this property name can be set.

MQJMS_E_BAD_EXIT_CLASS

public final static java.lang.String

Failed to create instance of exit class {0}.

User Response: Check that the supplied String matches the fully-qualified name of

the exit class, and that the exit implements the correct interface.

MQJMS_E_BAD_PROPERTY_NAME

public final static java.lang.String

Invalid message property name: {0}.

Explanation: Attempted to set a property that either does not have a valid

property name, or cannot be set.

User Response: Ensure that the property name used is a valid property name in

accordance with the JMS specification. If the property name refers to a JMS or

provider-specific extension property, ensure that this property can be set.

MQJMS_E_BAD_RFH2

public final static java.lang.String

The MQRFH2 header has an incorrect format.

Explanation: Received a message with a badly formed RFH2 header.

User Response: Ensure that any non-JMS applications building messages with

RFH2 headers create well-formed RFH2 headers.

MQJMS_E_BAD_TIMEOUT

public final static java.lang.String

Timeout not valid for WebSphere MQ.

Explanation: An attempt was made to invoke the receive method on either a

QueueReceiver or TopicSubscriber, specifying a long timeout value that is not

valid.

User Response: Ensure the timeout value specified is not negative and not greater

than the value of Integer.MAX_VALUE.

MQJMS_E_BAD_TYPE

public final static java.lang.String

The property or element in the message has an incompatible datatype {0}.

Explanation: Attempted to retrieve a property from a JMS message using a

accessor method which specifies an incompatible type. For example, attempting to

retrieve an integer property using the getBooleanProperty() method.

User Response: Use an accessor method defined by the JMS specification as being

able to retrieve property values of the required type.

MQJMS_E_BATCH_SIZE

public final static java.lang.String

Incorrect message batch size (must be greater than zero).

Explanation: An incorrect batch size parameter was passed to

createConnectionConsumer() or createDurableConnectionConsumer().

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 607

User Response: Set a batch size greater than zero. In a J2EE application server, this

might represent an error in the application server. Refer to your application

server’s documentation.

MQJMS_E_BROKER_MESSAGE_CONTENT

public final static java.lang.String

The broker control message content: {0} is not valid.

Explanation: {0} explains further.

User Response: Check the broker documentation for message content information.

MQJMS_E_BROWSE_MSG_FAILED

public final static java.lang.String

Failed to browse message.

Explanation: No message was available for browsing, possibly because there was

no message on the Queue.

User Response: Check the linked WebSphere MQ Exception reason and completion

codes. Check that a message is available for browsing.

MQJMS_E_BYTE_TO_STRING

public final static java.lang.String

The JMS client attempted to convert a byte array to a String.

Explanation: Attempted to receive a byte array from a stream message using the

readString() method.

User Response: Either use the appropriate method to receive the data, or format

the data placed into the stream message correctly.

MQJMS_E_CC_MIXED_DOMAIN

public final static java.lang.String

Mixed-domain consumers acting on the same input is forbidden.

Explanation: A point-to-point ConnectionConsumer is using the subscriber queue

of a publish/subscribe ConnectionConsumer.

User Response: Do not attempt to access subscriber queues using the

point-to-point ConnectionConsumer facilities of JMS. Check your

TopicConnectionFactory and Topic objects to make sure they are not using a

QLOCAL intended for use by point-to-point applications as a subscriber queue.

MQJMS_E_CLEANUP_NONE_REQUESTED

public final static java.lang.String

Cleanup level of NONE requested.

Explanation: Cleanup requested while cleanupLevel set to NONE.

User Response: Set cleanupLevel property to an appropriate value.

MQJMS_E_CLEANUP_REP_BAD_LEVEL

public final static java.lang.String

Level for repeating Cleanup is not valid.

User Response: Set cleanupLevel property to an appropriate value.

MQJMS_E_CLOSE_FAILED

public final static java.lang.String

MQJMS_Messages

608 Using Java

Close failed because of {0}.

Explanation: Internal Error. {0} indicates the reason for the error.

User Response: Contact your IBM representative.

MQJMS_E_CONN_DEST_MISMATCH

public final static java.lang.String

Connection and Destination mismatch.

Explanation: An operation was requested, but the Destination class is incompatible

with the Connection class. Topics cannot be used with QueueConnections and

Queues cannot be used with TopicConnections.

User Response: Supply a suitable Destination. If this error represents an internal

error condition in JMS contact your IBM representative.

MQJMS_E_DELIVERY_MODE_INVALID

public final static java.lang.String

The delivery mode was not valid.

Explanation: Either the value for the delivery mode of a message producer was

incorrectly specified, or the mode value was specified incorrectly when publishing

a message.

User Response: Check to ensure that the value specified is a valid enumeration for

delivery mode.

MQJMS_E_DESERIALISE_FAILED

public final static java.lang.String

Unable to deserialize an object.

Explanation: Deserialization of an ObjectMessage failed.

User Response: Ensure that the ObjectMessage being received contains valid data.

Ensure that the class files representing object data contained within the

ObjectMessage are present on the machine deserializing the ObjectMessage. If the

object contained within the ObjectMessage references other objects, ensure that

these class files are also present.

MQJMS_E_DISCARD_FAILED

public final static java.lang.String

Error while discarding message.

Explanation: JMS encountered an error while discarding a message, or while

generating an exception report for a message to be discarded.

User Response: Use the linked exception to determine the cause of this error.

MQJMS_E_DLH_READ_FAILED

public final static java.lang.String

Error reading dead letter header.

Explanation: JMS attempted to interpret a message with a dead letter header, but

encountered a problem.

User Response: Use the linked exception to determine the cause of this error.

MQJMS_E_DLH_WRITE_FAILED

public final static java.lang.String

Error writing dead letter header.

Explanation: JMS attempted to requeue a message to the dead letter queue, but

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 609

failed to construct a dead letter header.

User Response: Use the linked exception to determine the cause of this error.

MQJMS_E_DLQ_FAILED

public final static java.lang.String

Unable to write a message to dead letter queue.

Explanation: JMS attempted to requeue a message to the dead letter queue, but

failed.

User Response: Use the linked exception to determine the cause of this error. If

there is no linked exception, check that the queue manager has a defined a dead

letter queue. Once JMS has sent a message to the dead letter queue, the reason

code stored in the message’s dead letter header can be used to determine why the

message was sent there.

MQJMS_E_EXCP_LSTNR_FAILED

public final static java.lang.String

ExceptionListener threw exception: {0}.

User Response: Check linked exceptions for further information.

MQJMS_E_IDENT_PRO_INVALID_OP

public final static java.lang.String

The operation is not valid for the identified producer.

Explanation: The QueueSender.send() method has been used on an identified

QueueSender, which contradicts the JMS specification.

User Response: For further information see the MQQueueSender class.

MQJMS_E_INTERNAL_ERROR

public final static java.lang.String

An internal error has occurred. Contact your system administrator. Detail: {0}.

User Response: Check the linked WebSphere MQ exception reason and completion

code for more information.

MQJMS_E_INVALID_ESCAPE

public final static java.lang.String

An incorrect XML escape sequence detected {0}.

Explanation: An XML escape sequence was encountered which is not valid in the

RFH2 header of a received message.

User Response: Ensure that only valid XML escape sequences are placed into any

RFH2 headers built by non-JMS applications.

MQJMS_E_INVALID_HEX_STRING

public final static java.lang.String

String is not a valid hexadecimal number - {0}.

Explanation: Either an attempt was made to specify a group ID or correlation ID

which starts with the prefix ID but is not followed by a well-formed hexadecimal

value, or an attempt was made to receive a message which contains an RFH2

property of type bin.hex that does not have a well-formed hexadecimal value.

User Response: Ensure that a valid hexadecimal value always follows the ID prefix

when setting group ID or correlation ID values. Ensure that any RFH2 headers

generated by non-JMS applications are well-formed.

MQJMS_Messages

610 Using Java

MQJMS_E_INVALID_MAP_MESSAGE

public final static java.lang.String

The map message has an incorrect format.

Explanation: A map message was received, but its RFH2 header information is

badly formatted.

User Response: Ensure any non-JMS applications are building well-formed RFH2

header information for inclusion in map messages.

MQJMS_E_INVALID_MESSAGE

public final static java.lang.String

Cannot transmit JMS messages which are not WebSphere MQ messages.

Explanation: Wrong message type used. This might be an internal problem.

User Response: Check the message type. Contact your IBM representative if there

appears to be an internal error.

MQJMS_E_INVALID_SESSION

public final static java.lang.String

Session object not valid.

Explanation: The JMS ConnectionConsumer feature attempted to deliver a batch of

messages to a Session. However, the Session contained in the ServerSession object

returned by the ServerSessionPool was not a WebSphere MQ JMS Session.

User Response: This is an error in the ServerSessionPool. If you have supplied a

ServerSessionPool, check its behavior. In a J2EE application server, this might

represent an error in the application server; in which case, refer to your application

server’s documentation.

MQJMS_E_INVALID_STREAM_MESSAGE

public final static java.lang.String

The stream message has an incorrect format.

Explanation: A stream message was received, but its RFH2 header information is

badly formatted.

User Response: Ensure that any non-JMS applications are building well-formed

RFH2 header information for inclusion in stream messages.

MQJMS_E_INVALID_SURROGATE

public final static java.lang.String

An incorrect UTF-16 surrogate character detected {0}.

Explanation: A UTF-16 surrogate character was encountered which is not valid as

part of a topic name or RFH2 property.

User Response: Ensure that, when specifying UTF-16, topic names or RFH2

properties are well-formed.

MQJMS_E_JNDI_GENERAL_ERROR

public final static java.lang.String

JNDI failed due to {0}.

Explanation: {0} gives further information.

User Response: Check settings for LDAP, JNDI, and in the JMSAdmin.config file.

MQJMS_E_LOG_ERROR

public final static java.lang.String

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 611

Failed to log error.

Explanation: Log settings might be incorrect. See the linked LogException.

User Response: Check that the log settings are correct.

MQJMS_E_MSG_LSTNR_FAILED

public final static java.lang.String

MessageListener threw: {0}.

Explanation: When performing asynchronous delivery, the onMessage() method of

the application’s MessageListener failed with a Throwable. WebSphere MQ JMS

tries to redeliver or requeue the message.

User Response: Do not throw Throwable objects from the onMessage() method of

a MessageListener.

MQJMS_E_MULTICAST_HEARTBEAT_TIMEOUT

public final static java.lang.String

Multicast connection disconnected due to timeout.

Explanation: No heartbeat packet was received when expected. There has probably

been a transmitter failure or a network failure.

User Response: Check for network problems and check the broker is still running.

If the network load is high, consider increasing the heartbeat interval.

MQJMS_E_MULTICAST_LOST_MESSAGES

public final static java.lang.String

Lost {0} messages in reliable multicast mode.

Explanation: A MulticastPacketLossException is thrown if a multicast receiver

detects lost messages, and the messages cannot be retransmitted because they have

been purged from the brokers’s buffer.

User Response: Increase the Broker Minimal History Size and/or Broker History

Cleaning Time to give the client more time to request retransmission of lost

messages. See the Broker documentation for details of how to do this.

MQJMS_E_MULTICAST_NOT_AVAILABLE

public final static java.lang.String

Multicast connection cannot be established.

Explanation: Multicast is enabled, but a multicast connection could not be

established and the application specified that fallback to unicast is disallowed.

User Response: Check the connection parameters and check that the broker is still

running.

MQJMS_E_MULTICAST_PORT_INVALID

public final static java.lang.String

Cannot connect with a specific local port for multicast.

Explanation: A port number was specified. This is not valid for multicast.

User Response: Check the String supplied to

com.ibm.mq.jms.MQConnectionFactory.setLocalAddress(String) is valid for

multicast.

MQJMS_E_NO_BORQ

public final static java.lang.String

MQJMS_Messages

612 Using Java

No Backout-Requeue queue defined.

Explanation: JMS encountered a message which has been backed out more than

the queue’s Backout Threshold, but the queue does not have a Backout-Requeue

queue defined.

User Response: Define a Backout-Requeue queue for the queue, or set the Backout

Threshold to zero to disable poison message handling. Investigate the repeated

backouts.

MQJMS_E_NO_MSG_LISTENER

public final static java.lang.String

No message listener.

Explanation: The message listener has stopped or was never started.

User Response: Restart the message listener and retry.

MQJMS_E_NO_SESSION

public final static java.lang.String

Message has no session associated with it.

Explanation: An attempt was made to acknowledge a message on a session which

is not in an open state.

User Response: Ensure that the session associated with the message has been

correctly opened. Check that the session has not been closed.

MQJMS_E_NO_STR_CONSTRUCTOR

public final static java.lang.String

There is no constructor with a String argument.

Explanation: User exits must provide a constructor that takes a single String. No

such constructor was found in the specified exit.

User Response: Ensure that the user exit provides a suitable constructor.

MQJMS_E_NO_UTF8

public final static java.lang.String

Fatal error - UTF-8 not supported.

Explanation: The Java runtime environment you are using does not support the

UTF-8 character encoding. JMS requires support for this encoding to perform some

operations.

User Response: Consult the documentation and or provider of your Java runtime

environment to determine how to obtain support for the UTF-8 character encoding.

MQJMS_E_NO_XARESOURCE

public final static java.lang.String

Failed to obtain XAResource.

Explanation: JMS failed to create an XA Queue resource due to an error.

User Response: See the linked XAException for more information.

MQJMS_E_NON_LOCAL_RXQ

public final static java.lang.String

Non-local WebSphere MQ queue not valid for receiving or browsing.

Explanation: An attempt was made to perform an inappropriate operation on a

non-local queue.

User Response: Check the queue properties.

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 613

MQJMS_E_NOT_ALLOWED_WITH_XA

public final static java.lang.String

Operation for an XA transacted session was not valid.

Explanation: The acknowledgement mode for a transacted session was not valid.

Acknowledge and Recover are not valid operations in transacted sessions.

MQJMS_E_NOT_IMPLEMENTED

public final static java.lang.String

Not implemented.

Explanation: The function requested is not implemented. This can be thrown by

message acknowledgement, if the session or acknowledgement parameters are not

valid or are incorrect.

MQJMS_E_NULL_CONNECTION

public final static java.lang.String

No valid connection available.

Explanation: The queue is busy, there are network problems, or a connection has

not been defined for the object.

User Response: Create a valid connection for this operation.

MQJMS_E_NULL_MESSAGE

public final static java.lang.String

Unable to process a null message.

Explanation: Internal error in WebSphere MQ JMS.

User Response: Contact your IBM representative.

MQJMS_E_NULL_POOL

public final static java.lang.String

Null ServerSessionPool has been provided.

Explanation: The ServerSessionPool specified on createConnectionConsumer() or

createDurableConnectionConsumer() was null.

User Response: Set an appropriate ServerSessionPool. In a J2EE application server,

this might represent an error in the application server. Refer to your application

server’s documentation.

MQJMS_E_QMGR_NAME_INQUIRE_FAILED

public final static java.lang.String

The queue manager name could not be queried.

Explanation: In createConnectionConsumer() or

createDurableConnectionConsumer(), JMS was unable to determine the name of

the queue manager.

User Response: Check your queue manager error logs for problems which might

cause this. If there are no other error conditions, contact your IBM representative.

MQJMS_E_QUEUE_NOT_LOCAL_OR_ALIAS

public final static java.lang.String

Specified WebSphere MQ Queue is neither a QLOCAL nor a QALIAS queue.

Explanation: createConnectionConsumer() was called, but a queue of the wrong

type was specified. Only QALIAS and QLOCAL queues can be used with the

MQJMS_Messages

614 Using Java

ConnectionConsumer feature.

User Response: Specify a queue of the correct type.

MQJMS_E_READING_MSG

public final static java.lang.String

Exception occurred reading message body: {0}.

Explanation: JMS encountered an exception while reading data from a message.

The message being read is likely to be a response message from the

publish/subscribe broker.

User Response: Use the linked exception to determine the cause of this error.

MQJMS_E_RECOVER_BO_FAILED

public final static java.lang.String

Failed to recover: unacknowledged messages might not get redelivered.

Explanation: The system was unable to recover from a failure.

User Response: Check the linked exception to determine why the call to recover

failed.

MQJMS_E_REDIRECT_FAILED

public final static java.lang.String

Failed to redirect message.

Explanation: When performing asynchronous delivery, WebSphere MQ JMS

attempted to redirect the message to the backout queue. No backout queue was

defined.

User Response: Ensure that the backout queue is defined. Also, investigate why

WebSphere MQ JMS was attempting to redirect the message. It might do so in

response to a failing MessageListener implementation.

MQJMS_E_REQUEUE_FAILED

public final static java.lang.String

Message requeue failed.

Explanation: JMS found an error when requeuing a message which has been

backed out more than the queue’s Backout Threshold.

User Response: Use the linked exception to determine the cause of this error.

Investigate the repeated backouts.

MQJMS_E_RESOURCE_BUNDLE_NOT_FOUND

public final static java.lang.String

Failed to locate the resource bundle.

Explanation: The resource bundle is either not present or not in the application’s

CLASSPATH.

User Response: Check that the CLASSPATH includes the location of property files.

MQJMS_E_RFH_CONTENTS_ERROR

public final static java.lang.String

RFH content was unrecognized or not valid.

Explanation: JMS expected to find an RFH message header, but found it to be

missing, malformed or lacking required data.

User Response: Investigate the source of the message. If this represents an internal

error condition in JMS, contact your IBM representative.

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 615

MQJMS_E_RFH_READ_FAILED

public final static java.lang.String

Error reading RFH.

Explanation: JMS encountered an error while parsing an RFH message header.

User Response: Use the linked exception to determine the cause of this error.

MQJMS_E_RFH_WRITE_FAILED

public final static java.lang.String

Error writing RFH.

Explanation: JMS attempted to construct an RFH message header, but encountered

an error.

User Response: Use the linked exception to determine the cause of this error.

MQJMS_E_ROLLBACK_FAILED

public final static java.lang.String

Failed to roll back.

Explanation: The system was unable to roll back to a safe state.

User Response: Check the linked WebSphere MQ Exception reason and completion

codes for further information.

MQJMS_E_S390_DOUBLE_TOO_BIG

public final static java.lang.String

Number outside of range for double precision z/OS Float {0}.

Explanation: This is a z/OS specific error.

MQJMS_E_SECURITY_CREDS_INVALID

public final static java.lang.String

Security credentials cannot be specified when using WebSphere MQ bindings.

Explanation: The RRS queue does not support a client connection, and bindings

connections do not support the specification of security credentials.

User Response: Ensure that you do not try to specify security credentials when

using a bindings connection.

MQJMS_E_SERIALISE_FAILED

public final static java.lang.String

Unable to serialize an object.

Explanation: An attempt has been made to serialize an ObjectMessage which

contains a non-serializable object.

User Response: Ensure that ObjectMessages only contain serializable objects. If the

object placed inside an ObjectMessage references other objects, these must also be

serializable.

MQJMS_E_SESSION_ASYNC

public final static java.lang.String

Operation cannot be performed while the session is using asynchronous delivery.

Explanation: You cannot perform the requested operation while the session is

actively using asynchronous delivery mode.

MQJMS_Messages

616 Using Java

MQJMS_E_SESSION_CLOSED

public final static java.lang.String

Session closed.

Explanation: The session was closed. It either timed out, or it was closed explicitly,

or it was closed because the connection or the queue manager was closed.

User Response: Restart the session, and check all required resources are available.

MQJMS_E_SESSION_IS_TRANSACTED

public final static java.lang.String

The operation is not valid for a transacted session.

Explanation: The acknowledgement mode is not valid for a transacted session.

Acknowledge and Recover are not valid operations in transacted sessions.

MQJMS_E_SESSION_NOT_TRANSACTED

public final static java.lang.String

The operation is not valid for a non-transacted session.

Explanation: Commit is not allowed on a session that is not transacted.

User Response: Check the linked IllegalStateException for more information.

MQJMS_E_START_FAILED

public final static java.lang.String

Start failed because of {0}.

Explanation: {0} indicates why the session failed to start.

User Response: Contact your IBM representative.

MQJMS_E_SYSTEM_PROPERTY_NOT_FOUND

public final static java.lang.String

Failed to find the system property {0}.

Explanation: The system property specified in {0} does not exist or was not found

in the application’s CLASSPATH.

User Response: Check the CLASSPATH settings and the product installation.

MQJMS_E_TMPQ_CLOSED

public final static java.lang.String

Temporary queue already closed or deleted.

Explanation: Temporary queue no longer exists or is equal to null.

User Response: Check to see that the queue has been created, and that the session

is still available.

MQJMS_E_TMPQ_DEL_FAILED

public final static java.lang.String

Failed to delete temporary queue.

Explanation: The temporary queue might be persistent or busy.

User Response: See the linked exception for more details. Wait if the queue is

busy, or delete the queue manually if it is persistent.

MQJMS_E_TMPQ_DEL_STATIC

public final static java.lang.String

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 617

Cannot delete a static queue.

Explanation: Attempted to delete a queue of type static, where a temporary queue

was expected.

User Response: Check the expected queue type for deletion.

MQJMS_E_TMPQ_FAILED

public final static java.lang.String

Failed to create a temporary queue from {0}.

Explanation: Creation of temporary queue failed.

User Response: See linked exception for more information. Check that the

TemporaryModel parameter against the QueueConnectionFactory is set to a valid

model queue.

MQJMS_E_TMPQ_INUSE

public final static java.lang.String

Temporary queue in use.

Explanation: Another program is using the queue.

User Response: Wait for the temporary queue to become free or create another.

MQJMS_E_TMPT_DELETED

public final static java.lang.String

TemporaryTopic already deleted.

Explanation: TemporaryTopic no longer exists or is equal to null.

User Response: Check that the queue has been created, and that the session is still

available.

MQJMS_E_TMPT_IN_USE

public final static java.lang.String

TemporaryTopic in use.

Explanation: Something else is currently using the topic.

User Response: Wait until the topic is free or create another topic. Ensure

subscribers deregister when finished.

MQJMS_E_TMPT_OUTOFSCOPE

public final static java.lang.String

TemporaryTopic out of scope.

Explanation: The current connection ID does not match the connection that created

the temporary topic.

User Response: Check that the topic has been created under this connection.

MQJMS_E_TRACE_FILE_NOT_FOUND

public final static java.lang.String

The trace file does not exist.

Explanation: Trace settings might be incorrect.

User Response: Check trace settings and trace file existence.

MQJMS_E_TRACE_STREAM_ERROR

public final static java.lang.String

MQJMS_Messages

618 Using Java

Failed to connect to Trace stream.

Explanation: Trace settings might be incorrect.

User Response: Check Trace settings and retry.

MQJMS_E_UNIDENT_PRO_INVALID_OP

public final static java.lang.String

Operation not valid for unidentified producer.

Explanation: An attempt was made to send a message from an unidentified

MessageProducer without specifying a Destination to send the message to.

User Response: Ensure that either an identified producer is used (that is, a

Destination was supplied when the producer was created), or specify a Destination

when the send method is invoked.

MQJMS_E_UNKNOWN_TARGET_CLIENT

public final static java.lang.String

Unknown value of target client: {0}.

Explanation: The value for the targetClient property set by the application for this

destination is not recognized by WebSphere MQ JMS.

User Response: Check targetClient property and retry.

MQJMS_E_UNKNOWN_TRANSPORT

public final static java.lang.String

Unknown value of transportType: {0}.

Explanation: The value given for transportType was not valid. {0} shows the

incorrect value.

User Response: Check transport type and retry.

MQJMS_E_UNREC_BROKER_MESSAGE

public final static java.lang.String

Unrecognized message from publish / subscribe broker.

Explanation: The message received from the broker was not of a recognized or

supported format.

User Response: Check that the broker you are using is supported and refer to

broker documentation for settings.

MQJMS_E_UNSUPPORTED_TYPE

public final static java.lang.String

Unsupported property or element datatype {0}.

Explanation: This error is caused by one of the following:

1. Attempting to set a property of a JMS message using an object which is not one

of the supported types.

2. Attempting to set or receive a message whose RFH2 contains an element

representing a property which does not have a valid type associated with it.

User Response: Ensure that when setting message properties, you use a valid JMS

object type. If this exception occurs when receiving a message containing an RFH2

header sent by a non-JMS application, ensure that the RFH2 header is well-formed.

MQJMS_ERR_QSENDER_CLOSED

public final static java.lang.String

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 619

QueueSender is closed.

User Response: Open or reopen the queue sender if required.

MQJMS_EXC_ENLIST_FAILED

public final static java.lang.String

Enlist failed.

Explanation: JTSXA.enlist() threw an exception that was caught by JMS.

User Response: Check the linked exception, reason and completion codes for more

information. Contact your IBM representative.

MQJMS_EXCEPTION_AUTHENTICATION_FAILED

public final static java.lang.String

The security authentication supplied for MQQueueManager was not valid.

Explanation: Bad user name, or password, or both. In bindings mode, a supplied

user ID does not match the logged in user ID.

User Response: Check that the user IDs used by WebSphere MQ are all assigned

to the relevant groups and given appropriate user permissions.

MQJMS_EXCEPTION_BAD_STATE_TRANSITION

public final static java.lang.String

Unhandled state transition from {0} to {1}.

Explanation: The state transition is not valid, see log for more information.

User Response: Check the linked WebSphere MQ exception reason and completion

code.

MQJMS_EXCEPTION_BAD_VALUE

public final static java.lang.String

The value for {0}:{1} is not valid.

Explanation: The value {1} for property {0} is not correct.

User Response: Check the linked WebSphere MQ exception reason and completion

code.

MQJMS_EXCEPTION_CONNECTION_CLOSED

public final static java.lang.String

Connection closed.

Explanation: An operation such as start() or stop() has been called on a connection

that is already closed.

User Response: Ensure that the connection is open before performing any

operation.

MQJMS_EXCEPTION_GET_MSG_FAILED

public final static java.lang.String

Failed to get message from an MQQueue object.

Explanation: JMS attempted to perform an MQGET; however WebSphere MQ

reported an error.

User Response: Use the linked exception to determine the cause of this error.

MQJMS_EXCEPTION_ILLEGAL_STATE

public final static java.lang.String

MQJMS_Messages

620 Using Java

Method {0} has been invoked at an illegal or inappropriate time, or the provider is

not in an appropriate state for the requested operation.

Explanation: The normal reason for this exception is that the SSL certificate stores

have not been defined. {0} identifies the method that has caused the problem.

MQJMS_EXCEPTION_INVALID_CLIENTID

public final static java.lang.String

JMS client attempted to set a client ID on a connection

Explanation: An application attempted to set the client ID property of a valid

connection to null, or attempted to set the clientID property of an invalid

connection.

User Response: The clientID property on a connection can only be set once, only

to a non-null value, and only before the connection is used. Ensure that the

connection is valid and that the clientID value is not null.

MQJMS_EXCEPTION_INVALID_DESTINATION

public final static java.lang.String

Destination not understood or no longer valid.

Explanation: The queue or topic might have become unavailable, the application

might be using an incorrect connection for the queue or topic, or the supplied

destination is not of the correct type for this method.

User Response: Check that WebSphere MQ is still running and the queue manager

is available. Check that the right connection is being used for your queue or topic.

MQJMS_EXCEPTION_INVALID_SELECTOR

public final static java.lang.String

JMS Client has given JMS provider a message selector with incorrect syntax.

Explanation: The message selector string is empty or contains a value which is

incorrect or has the wrong syntax.

User Response: Check the linked WebSphere MQ exception reason and completion

codes for more information.

MQJMS_EXCEPTION_MESSAGE_EOF

public final static java.lang.String

Unexpected end of stream has been reached when a StreamMessage or

BytesMessage is being read.

Explanation: The byte stream being read is shorter than the buffer supplied. This

can also be caused by receiving a corrupt StreamMessage or BytesMessage.

User Response: Check the length of buffer supplied. Check system event logs for

more information.

MQJMS_EXCEPTION_MESSAGE_FORMAT

public final static java.lang.String

JMS Client attempts to use a data type not supported by a message or attempts to

read data in the wrong type.

Explanation: Wrong data types used to read message property types.

User Response: Check that the message received and the properties to be read are

of the type expected.

MQJMS_EXCEPTION_MQ_NULL_Q

public final static java.lang.String

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 621

MQQueue reference is null.

Explanation: JMS attempted to perform some operation on a null MQQueue object.

User Response: Check your system setup, and that all required queue names have

been specified. If this represents an internal error condition in JMS, contact your

IBM representative.

MQJMS_EXCEPTION_MQ_NULL_QMGR

public final static java.lang.String

MQQueueManager reference is null.

Explanation: JMS attempted to perform an operation on a null MQQueueManager

object.

User Response: Check that the relevant object has not been closed. If this

represents an internal error condition in JMS, contact your IBM representative.

MQJMS_EXCEPTION_MQ_Q_CLOSE_FAILED

public final static java.lang.String

Failed to close WebSphere MQ queue.

Explanation: JMS attempted to close a WebSphere MQ queue, but encountered an

error. The queue might already be closed, or another thread might be performing

an MQGET while close() is called.

User Response: Use the linked exception to determine the cause of this error. You

might be able to perform the close() later.

MQJMS_EXCEPTION_MQ_Q_INQUIRE_FAILED

public final static java.lang.String

Failed to inquire an MQQueue object depth.

Explanation: WebSphere MQ JMS is unable to determine how many messages are

on the queue.

User Response: Check that the queue and queue manager are available.

MQJMS_EXCEPTION_MQ_Q_OPEN_FAILED

public final static java.lang.String

Failed to open an MQQueue object.

Explanation: JMS attempted to perform an MQOPEN, but WebSphere MQ

reported an error.

User Response: Use the linked exception to determine the cause of this error.

Check that the specified queue and queue manager are defined correctly.

MQJMS_EXCEPTION_MQ_QM_COMMIT_FAILED

public final static java.lang.String

MQQueueManager.commit() failed.

Explanation: JMS attempted to perform an MQCMIT, but WebSphere MQ reported

an error.

User Response: Use the linked exception to determine the cause of this error.

MQJMS_EXCEPTION_MQ_UNKNOWN_DEFTYPE

public final static java.lang.String

Unknown value for an MQQueue object definitionType: {0}.

Explanation: Unable to delete the temporary queue because the definitionType is

MQJMS_Messages

622 Using Java

not valid.

User Response: Check the setting of the definitionType.

MQJMS_EXCEPTION_MSG_CREATE_ERROR

public final static java.lang.String

Failed to create JMS message.

Explanation: The wrong message type or properties were specified when creating a

base message.

User Response: Check the linked WebSphere MQ exception Reason and

Completion code for more information.

MQJMS_EXCEPTION_NULL_ELEMENT_NAME

public final static java.lang.String

Element name is null.

Explanation: A null name string was passed to one of the get value by name

methods of MapMessage.

User Response: Ensure that all name strings being used to retrieve values are not

null.

MQJMS_EXCEPTION_NULL_PROPERTY_NAME

public final static java.lang.String

Property name is null.

Explanation: The itemExists() method of MapMessage was invoked with a null

item name, or a null name string was used as an argument to a method which

retrieves property values by name from a JMS message.

User Response: Ensure that the name strings indicated do not have null values.

MQJMS_EXCEPTION_PUT_MSG_FAILED

public final static java.lang.String

Failed to send message to an MQQueue object.

Explanation: JMS attempted to perform an MQPUT, but WebSphere MQ reported

an error.

User Response: Use the linked exception to determine the cause of this error.

MQJMS_EXCEPTION_QMDISC_FAILED

public final static java.lang.String

Failed to disconnect queue manager.

Explanation: JMS encountered an error while attempting to disconnect.

User Response: Use the linked exception to determine the cause of this error.

MQJMS_EXCEPTION_QMGR_FAILED

public final static java.lang.String

Failed to create an MQQueueManager for {0}.

Explanation: JMS was unable to connect to a queue manager. {0} gives the name of

the queue manager.

User Response: Use the linked exception to determine the cause of this error.

Check the queue manager is running and. If using client attach, check that the

listener is running and the channel, port and hostname are set correctly. If no

queue manager name has been specified, check that the default queue manager has

been defined.

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 623

MQJMS_EXCEPTION_RESOURCE_ALLOCATION

public final static java.lang.String

JMS Provider is unable to allocate the resources required for a method.

Explanation: Machine resources might be overloaded, the linked exception might

give further information.

User Response: Check system resources and load.

MQJMS_EXCEPTION_SOME_PROBLEM

public final static java.lang.String

WebSphere MQ problem: {0}.

Explanation: JMS encountered a problem with WebSphere MQ. {0} describes the

problem.

User Response: Use the included text and linked exception to determine the cause

of this error.

MQJMS_EXCEPTION_TRANSACTION_IN_PROGRESS

public final static java.lang.String

Operation cannot be performed while a transaction is in progress.

User Response: Wait for the current transaction to complete. See the linked

WebSphere MQ exception for further information.

MQJMS_EXCEPTION_TRANSACTION_ROLLED_BACK

public final static java.lang.String

Call to Session.commit() resulted in a rollback of the current transaction.

Explanation: The transaction failed and was rolled back to a safe state. See the

linked exception for more information.

MQJMS_EXCEPTION_UNEXPECTED_ERROR

public final static java.lang.String

An internal error has occurred. Contact your system administrator.

Explanation: Internal Error.

User Response: Contact your IBM representative.

MQJMS_EXCEPTION_UNKNOWN_ACK_MODE

public final static java.lang.String

Unknown acknowledgement mode {0}.

Explanation: Incorrect or no parameter {0} set for acknowledgement mode on the

session.

User Response: See the JMS specification for the possible values for the

acknowledgement mode.

MQJMS_EXCEPTION_XACLOSE_FAILED

public final static java.lang.String

XACLOSE failed.

Explanation: See linked XAException for more details.

MQJMS_LOCAL_XA_CLASH

public final static java.lang.String

MQJMS_Messages

624 Using Java

Local transactions not allowed with XA sessions.

Explanation: A call pertaining to a local transaction was made on a session

involved with XA-coordinated transactions

User Response: This typically represents an error in an application server. Consult

your application server’s documentation and any error logs.

MQJMS_MESSAGECONSUMER_CLOSED

public final static java.lang.String

Message Consumer is closed.

Explanation: Either or both of the session and connection are closed.

User Response:Check to ensure that the session and connection are both available.

MQJMS_MESSAGEPRODUCER_CLOSED

public final static java.lang.String

Message Producer is closed.

Explanation: Either or both of the session and connection are closed.

User Response: Check to ensure that the session and connection are both available.

MQJMS_MSEL_AND_BVER_INCOMPATIBLE

public final static java.lang.String

Broker message selection is only valid when using WebSphere MQ Integrator

broker.

Explanation: Broker version and message selection are not consistent.

User Response: Ensure the broker version has been set in the ConnectionFactory.

Use the method ConnectionFactory.setBrokerVersion(JMSC.MQJMS_BROKER_V2)

for a broker of WebSphere MQ Integrator, WebSphere MQ Event Broker,

WebSphere Business Integration Event Broker, or WebSphere Business Integration

Message Broker.

MQJMS_PS_COMMAND_MSG_BUILD

public final static java.lang.String

Failed to build command {0}.

Explanation: Broker message command parameters incorrect.

User Response: Check linked exception for cause.

MQJMS_PS_COMMAND_MSG_FAILED

public final static java.lang.String

Failed to publish command to WebSphere MQ queue.

Explanation: Invalid command, queue unavailable or broker errors.

User Response: Check linked exception reason and completion codes for more

information.

MQJMS_PS_GENERAL_ERROR

public final static java.lang.String

Publish/Subscribe failed due to {0}.

Explanation: General error: {0} shows the reason.

User Response: Check the linked exception reason and completion codes for more

information. It is possible that the broker and queue manager versions are

incompatible.

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 625

MQJMS_PS_INCORRECT_SUBSTORE

public final static java.lang.String

Incorrect subscription store type.

Explanation: Subscription store changed within TopicConnection.

User Response: Contact your IBM representative.

MQJMS_PS_INVALID_SUBQ_PREFIX

public final static java.lang.String

Subscriber queue prefix was not valid: {0}.

Explanation: The name specified is not valid. It must begin with SYSTEM.JMS.D

for durable subscriptions or SYSTEM.JMS.ND for nondurable subscriptions. The

name specified must end with an asterisk (’*’).

MQJMS_PS_NULL_CLIENTID

public final static java.lang.String

The use of an uninitialized client ID is not possible.

Explanation: The client ID in the connection has not been set.

User Response: Set the clientID before attempting to perform any operation.

MQJMS_PS_NULL_NAME

public final static java.lang.String

The use of a null name is not possible.

Explanation: Durable connection consumers must be named.

User Response: Check for null values.

MQJMS_PS_PUBLISH_MSG_BUILD

public final static java.lang.String

Failed to build publish message.

Explanation: Unable to build the base message for the broker.

User Response: See the linked exception for further details. Check settings and

parameters are all correct.

MQJMS_PS_PUBLISH_MSG_FAILED

public final static java.lang.String

Failed to publish message to WebSphere MQ queue.

Explanation: See linked exception for more information.

User Response: Check settings and parameters are all correct.

MQJMS_PS_STORE_ADMIN_ENTRY

public final static java.lang.String

Failed to store administration entry.

Explanation: An add to the admin or status queue failed due to duplication or

some other error. See linked exception for more information.

User Response: Check for duplicates and retry.

MQJMS_PS_SUB_ACTIVE

public final static java.lang.String

MQJMS_Messages

626 Using Java

Subscription has an active TopicSubscriber.

Explanation: Can be caused by a problem opening a queue or if a subscription

already exists on the JVM. If running in WebSphere Application Server there can

be other causes. See linked exception, if set, for more information.

User Response: Check settings.

MQJMS_PS_SUB_Q_DELETE_FAILED

public final static java.lang.String

Failed to delete subscriber queue {0}.

Explanation: {0} gives the queue name. See linked exception for more information.

User Response: See “Writing WebSphere MQ JMS publish/subscribe applications”

for more information.

MQJMS_PS_SUB_Q_OPEN_FAILED

public final static java.lang.String

Failed to open subscriber queue {0}.

User Response: See linked exception for more information.

MQJMS_PS_SUBQ_REQUEUE

public final static java.lang.String

Durable re-subscribe must use same subscriber queue; specified: {0}, original: {1}.

Explanation: {0} and {1} show the differing queue names. Unable to get a

subscription due to wrong queue manager or queue.

User Response: Check settings.

MQJMS_PS_SUBSTORE_NOT_SUPPORTED

public final static java.lang.String

Subscription store type not supported by queue manager.

Explanation: Deferred messages not supported by queue manager or broker is to

low a version.

User Response: Possible incompatibility between queue manager version and

broker. Specify a different type of subscription store or upgrade the queue manager

or broker.

MQJMS_PS_TOPIC_NULL

public final static java.lang.String

Topic reference is null.

Explanation: Topic supplied to a publisher is null.

User Response: Use non-null values.

MQJMS_PS_UNKNOWN_DS

public final static java.lang.String

Unknown durable subscription {0}.

Explanation: Unable to locate the given subscription. For example, during an

unsubscribe request.

User Response: Check the subscriber name specified and retry.

MQJMS_PS_WRONG_SUBSCRIPTION_TYPE

public final static java.lang.String

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 627

Incorrect subscription type for this subscription store.

Explanation: TopicSubscriber was created with a different SUBSTORE setting than

current TopicConnection.

User Response: Ensure TopicSubscribers are only used during the lifetime of their

parent TopicConnection.

MQJMS_PUBLISHER_CLOSED

public final static java.lang.String

TopicPublisher is closed.

User Response: Open or reopen the topic publisher if required.

MQJMS_QRECEIVER_CLOSED

public final static java.lang.String

QueueReceiver is closed.

User Response: Open or reopen the receiver.

MQJMS_SUBSCRIBER_CLOSED

public final static java.lang.String

TopicSubscriber is closed.

User Response: Open or reopen the TopicSubscriber.

MQJMS_UTIL_PS_NO_BRK_Q

public final static java.lang.String

Unable to access the broker control queue on the queue manager.

User Response: Check that the control queue exists. The default name is

SYSTEM.BROKER.CONTROL.QUEUE.

MQJMS_UTIL_PS_NO_BROKER

public final static java.lang.String

No broker response.

Explanation: Possible causes are: Broker is not running. You are using a

BrokerVersion of v2 in your TopicConnectionFactory with the WebSphere MQ

Publish/Subscribe broker, which does not support this. The Broker has rejected the

publication or subscription and placed it on the SYSTEM.DEAD.LETTER.QUEUE

User Response: Ensure that your broker is running. Check the system event log for

broker error messages. Check that the broker supports the BrokerVersion you are

using. Check the SYSTEM.DEAD.LETTER.QUEUE for rejected messages.

MQJMS_UTIL_PS_NO_MSG

public final static java.lang.String

The broker appears to be running, but the message did not arrive.

Explanation: Generated by the installation verification test when the subscriber

fails to receive the published message.

User Response: Check that you have set up the broker correctly. Check system

event logs for broker error messages. Check the SYSTEM.DEAD.LETTER.QUEUE

for messages rejected by the broker.

MQJMS_UTIL_PS_NO_QM

public final static java.lang.String

MQJMS_Messages

628 Using Java

Unable to connect to queue manager.

Explanation: Generated by the installation verification test.

User Response: Check that the queue manager is running and that its name is

specified correctly in the IVTTest parameters.

MQJMS_Messages

Chapter 17. Package com.ibm.mq.jms.services 629

630 Using Java

Part 6. Appendixes

© Copyright IBM Corp. 1997, 2007 631

632 Using Java

Appendix A. Mapping between administration tool properties

and programmable properties

WebSphere MQ classes for Java Message Service provides facilities to set and query

the properties of administered objects either using the WebSphere MQ JMS

administration tool or in an application. Table 33 lists the name of each property, as

used in the administration tool, and the set method that is used to set the value of

the property in an application. The table also shows the mapping between

symbolic property values used in the tool and their programmable equivalents.

 Table 33. Comparison of representations of property values within the administration tool and within applications

Property Set method Tool property

values

Program property values

BROKERCCDSUBQ setBrokerCCDurSubQueue

BROKERCCSUBQ setBrokerCCSubQueue

BROKERCONQ setBrokerControlQueue

BROKERDURSUBQ setBrokerDurSubQueue

BROKERPUBQ setBrokerPubQueue

BROKERPUBQMGR setBrokerPubQueueManager

BROKERQMGR setBrokerQueueManager

BROKERSUBQ setBrokerSubQueue

BROKERVER setBrokerVersion V1

V2

JMSC.MQJMS_BROKER_V1

JMSC.MQJMS_BROKER_V2

CCDTURL setCCDTURL

CCSID setCCSID

CHANNEL setChannel

CLEANUP setCleanupLevel NONE

SAFE

STRONG

ASPROP

JMSC.MQJMS_CLEANUP_

 NONE

JMSC.MQJMS_CLEANUP_

 SAFE

JMSC.MQJMS_CLEANUP_

 STRONG

JMSC.MQJMS_CLEANUP_AS_

 PROPERTY

CLEANUPINT setCleanupInterval

CLIENTID setClientId

CLONESUPP setCloneSupport DISABLED

ENABLED

JMSC.MQJMS_CLONE_

 DISABLED

JMSC.MQJMS_CLONE_

 ENABLED

COMPHDR setHdrCompList NONE

SYSTEM

JMSC.MQJMS_COMPHDR_

 NONE

JMSC.MQJMS_COMPHDR_

 SYSTEM

© Copyright IBM Corp. 1997, 2007 633

Table 33. Comparison of representations of property values within the administration tool and within

applications (continued)

Property Set method Tool property

values

Program property values

COMPMSG setMsgCompList NONE

RLE

ZLIBFAST

ZLIBHIGH

JMSC.MQJMS_COMPMSG_

 NONE

JMSC.MQJMS_COMPMSG_RLE

JMSC.MQJMS_COMPMSG_

 ZLIBFAST

JMSC.MQJMS_COMPMSG_

 ZLIBHIGH

CONNOPT setMQConnectionOptions STANDARD

SHARED

ISOLATED

FASTPATH

SERIALQM

SERIALQSG

RESTRICTQM

RESTRICTQSG

JMSC.MQCNO_STANDARD_

 BINDING

JMSC.MQCNO_SHARED_

 BINDING

JMSC.MQCNO_ISOLATED_

 BINDING

JMSC.MQCNO_FASTPATH_

 BINDING

JMSC.MQCNO_SERIALIZE_

 CONN_TAG_Q_MGR

JMSC.MQCNO_SERIALIZE_

 CONN_TAG_QSG

JMSC.MQCNO_RESTRICT_

 CONN_TAG_Q_MGR

JMSC.MQCNO_RESTRICT_

 CONN_TAG_QSG

CONNTAG setConnTag

DESCRIPTION setDescription

DIRECTAUTH setDirectAuth BASIC

CERTIFICATE

AJMSC.MQJMS_

 DIRECTAUTH_BASIC

JMSC.MQJMS_DIRECTAUTH_

 CERTIFICATE

ENCODING setEncoding

EXPIRY setExpiry APP

UNLIM

JMSC.MQJMS_EXP_APP

JMSC.MQJMS_EXP_

 UNLIMITED

FAILIFQUIESCE setFailIfQuiesce YES

NO

JMSC.MQJMS_FIQ_YES

JMSC.MQJMS_FIQ_NO

HOSTNAME setHostName

LOCALADDRESS setLocalAddress

MAPNAMESTYLE setMapNameStyle STANDARD

COMPATIBLE

JMSC.MAP_NAME_STYLE_

 STANDARD

JMSC.MAP_NAME_STYLE_

 COMPATIBLE

MAXBUFFSIZE setMaxBufferSize

MSGBATCHSZ setMsgBatchSize

MSGRETENTION setMessageRetention YES

NO

JMSC.MQJMS_MRET_YES

JMSC.MQJMS_MRET_NO

MSGSELECTION setMessageSelection CLIENT

BROKER

JMSC.MQJMS_MSEL_CLIENT

JMSC.MQJMS_MSEL_BROKER

Mapping property values

634 Using Java

|||
|
|

|
|
|
|

Table 33. Comparison of representations of property values within the administration tool and within

applications (continued)

Property Set method Tool property

values

Program property values

MULTICAST setMulticast DISABLED

ASCF

ENABLED

RELIABLE

NOTR

JMSC.MQJMS_MULTICAST_

 DISABLED

JMSC.MQJMS_MULTICAST_

 AS_CF

JMSC.MQJMS_MULTICAST_

 ENABLED

JMSC.MQJMS_MULTICAST_

 RELIABLE

JMSC.MQJMS_MULTICAST_

 NOT_RELIABLE

OPTIMISTICPUBLICATION setOptimisticPublication NO

YES

false

true

OUTCOMENOTIFICATION setOutcomeNotification YES

NO

true

false

PERSISTENCE setPersistence APP

QDEF

PERS

NON

HIGH

JMSC.MQJMS_PER_APP

JMSC.MQJMS_PER_QDEF

JMSC.MQJMS_PER_PER

JMSC.MQJMS_PER_NON

JMSC.MQJMS_PER_NPHIGH

POLLINGINT setPollingInterval

PORT setPort

PRIORITY setPriority APP

QDEF

JMSC.MQJMS_PRI_APP

JMSC.MQJMS_PRI_QDEF

PROCESSDURATION setProcessDuration UNKNOWN

SHORT

JMSC.MQJMS_PROCESSING_

 UNKNOWN

JMSC.MQJMS_PROCESSING_

 SHORT

PROXYHOSTNAME setProxyHostName

PROXYPORT setProxyPort

PUBACKINT setPubAckInterval

QMANAGER setQueueManager

RECEIVEISOLATION setReceiveIsolation COMMITED

UNCOMMITTED

JMSC.MQJMS_RCVISOL_

 COMMITTED

JMSC.MQJMS_RCVISOL_

 UNCOMMITTED

RECEXIT setReceiveExit

RECEXITINIT setReceiveExitInit

RESCANINT setRescanInterval

SECEXIT setSecurityExit

SECEXITINIT setSecurityExitInit

SENDEXIT setSendExit

SENDEXITINIT setSendExitInit

SPARSESUBS setSparseSubscriptions YES

NO

true

false

SSLCIPHERSUITE setSSLCipherSuite

Mapping property values

Appendix A. Mapping between administration tool properties and programmable properties 635

Table 33. Comparison of representations of property values within the administration tool and within

applications (continued)

Property Set method Tool property

values

Program property values

SSLCRL setSSLCertStores

SSLFIPSREQUIRED setSSLFipsRequired NO

YES

false

true

SSLPEERNAME setSSLPeerName

SSLRESETCOUNT setSSLResetCount

STATREFRESHINT setStatusRefreshInterval

SUBSTORE setSubscriptionStore MIGRATE

QUEUE

BROKER

JMSC.MQJMS_SUBSTORE_

 MIGRATE

JMSC.MQJMS_SUBSTORE_

 QUEUE

JMSC.MQJMS_SUBSTORE_

 BROKER

SYNCPOINTALLGETS setSyncpointAllGets

TARGCLIENT setTargetClient JMS

MQ

JMSC.MQJMS_CLIENT_JMS_

 COMPLIANT

JMSC.MQJMS_CLIENT_

 NONJMS_MQ

TARGCLIENTMATCHING setTargClientMatching YES

NO

true

false

TEMPMODEL setTemporaryModel

TEMPQPREFIX setTempQPrefix

TRANSPORT setTransportType BIND

CLIENT

DIRECT

DIRECTHTTP

JMSC.MQJMS_TP_BINDINGS_

 MQ

JMSC.MQJMS_TP_CLIENT_

 MQ_TCPIP

JMSC.MQJMS_TP_DIRECT_

 TCPIP

JMSC.MQJMS_TP_DIRECT_

 HTTP

USECONNPOOLING setUseConnectionPooling

Mapping property values

636 Using Java

||||

Appendix B. Scripts provided with WebSphere MQ classes for

Java Message Service

The following files are provided in the bin directory of your WebSphere MQ JMS

installation. These scripts are provided to assist with common tasks that need to be

performed while installing or using WebSphere MQ JMS. Table 34 lists the scripts

and their uses.

 Table 34. Utilities supplied with WebSphere MQ classes for Java Message Service

Utility Use

Cleanup1 Runs the subscription cleanup utility as described in

“Manual cleanup” on page 346, or the consumer cleanup

utility as described in “Manual cleanup” on page 369..

DefaultConfiguration Runs the default configuration application on

non-Windows systems as described in “JMS Postcard

configuration” on page 20.

formatLog1 Converts binary log files to plain text as described in

“Logging” on page 34.

IVTRun1

IVTTidy1

IVTSetup1

Runs the point-to-point installation verification test

program as described in “Running the point-to-point IVT”

on page 26.

JMSAdmin1 Runs the administration tool as described in Chapter 5,

“Using the WebSphere MQ JMS administration tool,” on

page 35.

JMSAdmin.config Configuration file for the administration tool as described

in “Configuration” on page 36.

postcard1 Starts the JMS Postcard application as described in “JMS

Postcard” on page 17.

PSIVTRun1 Runs the publish/subscribe installation verification test

program as described in “The publish/subscribe

installation verification test” on page 30.

PSReportDump.class Views broker report messages as described in “Handling

broker reports” on page 347. For information specific to

JMS 1.1, see “Handling broker reports” on page 371.

setjmsenv Sets the environment variables on a UNIX system as

described in “Environment variables” on page 8.

Note:

1. On Windows, the file name has the extension .bat .

© Copyright IBM Corp. 1997, 2007 637

Scripts provided with WebSphere MQ JMS

638 Using Java

Appendix C. Connecting to other products

This section covers:

v How to configure a publish/subscribe broker for a connection from WebSphere

MQ JMS in “Setting up a publish/subscribe broker”

v How to use WebSphere MQ Integrator V2 to route or transform messages sent to

or from a JMS client in “Transformation and routing with WebSphere MQ

Integrator V2” on page 641

v How to configure WebSphere MQ JMS for a direct connection to WebSphere

Business Integration Event Broker, Version 5.0 or WebSphere Business Integration

Message Broker, Version 5.0 in “Configuring WebSphere MQ JMS for a direct

connection to WebSphere Business Integration Event Broker, Version 5.0 or later

and WebSphere Business Integration Message Broker, Version 5.0 or later” on

page 642.

Setting up a publish/subscribe broker

You can use WebSphere MQ Integrator Version 2, WebSphere MQ Event Broker

Version 2.1, WebSphere Business Integration Event Broker, Version 5.0, or

WebSphere Business Integration Message Broker, Version 5.0 as the

publish/subscribe broker for WebSphere MQ JMS. You can link to each of these

brokers across a connection to base WebSphere MQ, or you can connect directly to

WebSphere MQ Event Broker, WebSphere Business Integration Event Broker, or

WebSphere Business Integration Message Broker over TCP/IP. Each method

requires some setup activities:

Linking across WebSphere MQ

v Base WebSphere MQ

First, create a broker publication queue. This is a WebSphere MQ queue

on the broker queue manager; it is used to submit publications to the

broker. You can choose your own name for this queue, but it must match

the queue name in your TopicConnectionFactory’s BROKERPUBQ

property. By default, a TopicConnectionFactory’s BROKERPUBQ

property is set to the value SYSTEM.BROKER.DEFAULT.STREAM so,

unless you want to configure a different name in the

TopicConnectionFactory, name the

queueSYSTEM.BROKER.DEFAULT.STREAM.

v WebSphere MQ Integrator V2

The next step is to set up a message flow within an execution group for

the broker. The purpose of this message flow is to read messages from

the broker publication queue. (If you want, you can set up multiple

publication queues; each needs its own TopicConnectionFactory and

message flow.)

The basic message flow consists of an MQInput node (configured to read

from the SYSTEM.BROKER.DEFAULT.STREAM queue) whose output is

connected to the input of a Publication (or MQOutput) node.

The message flow diagram therefore looks similar to the following:

© Copyright IBM Corp. 1997, 2007 639

When this message flow is deployed and the broker is started, from the

JMS application’s perspective the WebSphere MQ Integrator V2 broker

behaves like an WebSphere MQ Publish/Subscribe broker. The current

subscription state can be viewed using the WebSphere MQ Integrator

Control Center.

Note:

1. No modifications are required to WebSphere MQ classes for

Java Message Service.

2. WebSphere MQ Publish/Subscribe and WebSphere MQ

Integrator V2 brokers cannot coexist on the same queue

manager.

3. Details of the WebSphere MQ Integrator V2 installation and

setup procedure are described in the WebSphere MQ Integrator

for Windows NT Version 2.0 Installation Guide.

Direct connection to WebSphere MQ Event Broker, Version 2.1 over TCP/IP

For this, set up a message flow within an execution group on WebSphere

MQ Event Broker. This message flow is to read messages from the TCP/IP

socket on which the broker is listening.

 The basic message flow consists of a JMSIPOptimised flow set to listen on

the port configured for direct connections. By default, this port is 1506.

Note: WebSphere MQ Event Broker can be configured to listen for both

direct connections across TCP/IP from WebSphere MQ JMS and

connections made across TCP/IP through WebSphere MQ. In this

case, the two listeners must be configured on different ports. The

default port for a WebSphere MQ connection is 1414.

Direct connection to WebSphere Business Integration Event Broker, Version 5.0

or WebSphere Business Integration Message Broker, Version 5.0

To configure a WebSphere Business Integration Event Broker or WebSphere

Business Integration Message Broker broker for a direct connection from

WebSphere MQ JMS, create a message flow to read messages from the

TCP/IP port on which the broker is listening and publish the messages.

You can do this in either of the following ways:

v You can create a message flow that contains a Real-timeOptimizedFlow

message processing node.

v You can create a message flow that contains a Real-timeInput message

processing node and a Publication message processing node.

You must configure the Real-timeOptimizedFlow or Real-timeInput node to

listen on the port used for direct connections. By default, the port number

for direct connections is 1506.

Figure 5. WebSphere MQ Integrator message flow

Setting up a publish/subscribe broker

640 Using Java

Transformation and routing with WebSphere MQ Integrator V2

You can use WebSphere MQ Integrator V2 to route or transform messages that are

created by a JMS client application, and to send or publish messages to a JMS

client.

The WebSphere MQ JMS implementation uses the mcd folder of the MQRFH2 to

carry information about the message, as described in “The MQRFH2 header” on

page 384. By default, the Message Domain (Msd) property is used to identify

whether the message is a text, bytes, stream, map, or object message. This value is

set depending on the type of the JMS message.

If the application calls setJMSType, it can set the mcd type field to a value of its

choosing. This type field can be read by the WebSphere MQ Integrator message

flow, and a receiving JMS application can use the getJMSType method to retrieve

its value. This applies to all kinds of JMS message.

When a JMS application creates a text or bytes message, the application can set

mcd folder fields explicitly by calling the setJMSType method and passing in a

string argument in a special URI format as follows:

mcd://domain/[set]/[type][?format=fmt]

This URI form allows an application to set the mcd to a domain that is not one of

the standard jms_xxxx values; for example, to domain mrm. It also allows the

application to set any or all of the mcd set, type, and format fields.

The string argument to setJMSType is interpreted as follows:

1. If the string does not appear to be in the special URI format (it does not start

with mcd://), the string is added to the mcd folder as the type field.

2. If the string starts with mcd://, conforms to the URI format, and the message is

a Text or Bytes message, the URI string is split into its constituent parts. The

domain part overrides the jms_text or jms_bytes value that would otherwise

have been generated, and the remaining parts (if present) are used to set the

set, type, and format fields in the mcd. Note that set, type, and format are all

optional.

3. If the string starts with mcd:// and the message is a Map, Stream, or Object

message, the setJMSType call throws an exception. So you cannot override the

domain, or provide a set or format for these classes of message, but you can

provide a type.

When a WebSphere MQ message is received with an Msd domain other than one

of the standard jms_xxxx values, it is instantiated as a JMS text or bytes message

and a URI-style JMSType is assigned to it. If the format field of the RFH2 is

MQFMT_STRING, it becomes a TextMessage; otherwise it becomes a

BytesMessage. The receiving application can read this using the getJMSType

method.

WebSphere MQ Integrator V2

Appendix C. Connecting to other products 641

Configuring WebSphere MQ JMS for a direct connection to WebSphere

Business Integration Event Broker, Version 5.0 or later and WebSphere

Business Integration Message Broker, Version 5.0 or later

A WebSphere MQ JMS client can connect directly to a WebSphere Business

Integration Event Broker or WebSphere Business Integration Message Broker broker

over TCP/IP. The available function is comparable to that provided for a direct

connection to a WebSphere MQ Event Broker, Version 2.1 broker, but with the

following additions:

v Secure Sockets Layer (SSL) authentication

v Multicast

v HTTP tunnelling

v Connect via proxy

For detailed information about this additional function, see the WebSphere

Business Integration Event Broker or WebSphere Business Integration Message

Broker Information Center. The following sections explain how to configure a

WebSphere MQ JMS client in order to use this function.

Secure Sockets Layer (SSL) authentication

You can use SSL authentication when a WebSphere MQ JMS client connects

directly to a WebSphere Business Integration Event Broker or WebSphere Business

Integration Message Broker broker. Only SSL authentication is supported for this

type of connection. SSL cannot be used to encrypt or decrypt message data that

flows between the WebSphere MQ JMS client and the broker or to perform

integrity checks on the data.

Note the difference between this situation and that when a WebSphere MQ JMS

client connects to a WebSphere MQ queue manager. In the latter case, the

WebSphere MQ SSL support can be used to encrypt and decrypt message data that

flows between the client and the queue manager and to perform integrity checks

on the data, as well as providing authentication.

If you want to protect message data on a direct connection to a broker, you can use

function in the broker instead. You can assign a quality of protection (QoP) value

to each topic whose associated messages you want to protect. This allows you to

select a different level of message protection for each topic.

If client authentication is required, a WebSphere MQ JMS client can use the same

digital certificate for connecting directly to a broker as it does for connecting to a

WebSphere MQ queue manager.

You can configure a WebSphere MQ JMS client to use SSL authentication in either

of the following ways:

v In a WebSphere MQ JMS application, use the setDirectAuth() method of an

MQConnectionFactory or MQTopicConnectionFactory object to set the direct

authentication attribute to JMSC.MQJMS_DIRECTAUTH_CERTIFICATE.

v Use the WebSphere MQ JMS administration tool to set the DIRECTAUTH

property to CERTIFICATE.

Note:

WebSphere Business Integration brokers

642 Using Java

1. If the TRANSPORT property is set to DIRECT, then it is the

DIRECTAUTH property, not the SSLCIPHERSUITE property, that

determines whether SSL authentication is used.

2. If the DIRECTAUTH property is set to CERTIFICATE, the

SSLPEERNAME and SSLCRL properties are used to perform the same

checks as those performed when a WebSphere MQ JMS client connects to

a WebSphere MQ queue manager using the WebSphere MQ SSL support.

3. The Java Secure Socket Extension (JSSE) keystore and truststore

configurations determine which client certificate is used for

authentication, and whether a server certificate is trusted, in the same

way that they do when a WebSphere MQ JMS client connects to a

WebSphere MQ queue manager using the WebSphere MQ SSL support.

Multicast

You can configure a WebSphere MQ JMS client multicast connection to a broker in

either of the following ways:

v In a WebSphere MQ JMS application, use the setMulticast() method of an

MQConnectionFactory, MQTopicConnectionFactory, or MQTopic object to set the

multicast attribute.

v Use the WebSphere MQ JMS administration tool to set the MULTICAST

property.

The TRANSPORT property must be set to DIRECT before the MULTICAST

property has any effect.

WebSphere MQ includes support for subscribing to multicast-enabled topics using

a direct connection to a broker where the multicast protocol defined on the broker

is set to PGM/IP or UDP-encapsulated PGM. When PGM/IP is used, the client

requires a native library to be present on the system path. It is installed into the

directory specified by MQ_JAVA_LIB_PATH

This library has different names on different platforms, as follows:

v AIX - libPgmIpLayer.so (32-bit only)

v HP-UX 11i v1- libPgmIpLayer.sl (32-bit only)

v Linux (x86 platform) - libPgmIpLayer.so

v Linux (zSeries platform) - libPgmIpLayer.so (32-bit only)

v Solaris SPARC - libPgmIpLayer.so (32-bit only)

v Windows - PgmIpLayer.dll

v z/OS - libPgmIpLayer.so

PGM/IP can be used only on the platforms listed above. An error message,

MQJMS_DIR_PGM_LIB_NOT_FOUND, is thrown if the library is not present or

can not be found.

HTTP tunnelling

A WebSphere MQ JMS client can connect to a broker using HTTP tunnelling. HTTP

tunnelling is suitable for applets because the Java 2 Security Manager normally

rejects any attempt by an applet to connect directly to the broker. Using HTTP

tunnelling, which exploits the built in support in Web browsers, a WebSphere MQ

JMS client can connect to the broker using the HTTP protocol as though connecting

to a Web site.

WebSphere Business Integration brokers

Appendix C. Connecting to other products 643

You can configure a WebSphere MQ JMS client to use HTTP tunnelling in either of

the following ways:

v In a WebSphere MQ JMS application, use the setTransportType() method of an

MQConnectionFactory object to set the transport type attribute to

JMSC.MQJMS_TP_DIRECT_HTTP.

v Use the WebSphere MQ JMS administration tool to set the TRANSPORT

property to DIRECTHTTP.

SSL authentication cannot be used with HTTP tunnelling.

Connect via proxy

A WebSphere MQ JMS client can connect to a broker through a proxy server. The

client connects directly to the proxy server and uses the Internet protocol defined

in RFC 2817 to ask the proxy server to forward the connection request to the

broker. This option does not work for applets because the Java 2 Security Manager

normally rejects any attempt by an applet to connect directly to a proxy server.

You can configure a WebSphere MQ JMS client to connect to a broker through a

proxy server in either of the following ways:

v In a WebSphere MQ JMS application, use the setProxyHostName() and

setProxyPort() methods of an MQConnectionFactory or

MQTopicConnectionFactory object to set the proxy host name and proxy port

attributes.

v Use the WebSphere MQ JMS administration tool to set the PROXYHOSTNAME

and PROXYPORT properties.

If the TRANSPORT property is set to DIRECT, the type of connection to the broker

depends on the PROXYHOSTNAME property according to the following rules:

v If the PROXYHOSTNAME property is set to the empty string, the WebSphere

MQ JMS client connects directly to the broker using the HOSTNAME and PORT

properties to locate the broker.

v If the PROXYHOSTNAME property is set to a value other than the empty string,

the WebSphere MQ JMS client connects to the broker through the proxy server

identified by the PROXYHOSTNAME and PROXYPORT properties.

WebSphere Business Integration brokers

644 Using Java

Appendix D. SSL CipherSpecs and CipherSuites

Table 35 lists the CipherSpecs supported by WebSphere MQ and their equivalent

CipherSuites. The table also indicates whether a WebSphere MQ Java application

can establish a connection to a queue manager if a CipherSpec is specified at the

server end of the MQI channel and the equivalent CipherSuite is specified at the

client end.

For each combination of CipherSpec and CipherSuite, whether a WebSphere MQ

base Java application can connect to a queue manager depends on the value of the

sslFipsRequired field in the MQEnvironment class, or on the value of the

environment property MQC.SSL_FIPS_REQUIRED_PROPERTY. Similarly, whether

a WebSphere MQ JMS application can connect to a queue manager depends on the

value of the SSLFIPSREQUIRED property of the ConnectionFactory object.

At the server end of an MQI channel, the name of a CipherSpec can be specified as

the value of the SSLCIPH parameter on a DEFINE CHANNEL

CHLTYPE(SVRCONN) command. At the client end of an MQI channel, the name

of a CipherSuite can be specified in the following ways:

v A WebSphere MQ base Java application can set the sslCipherSuite field in the

MQEnvironment class, or set the environment property

MQC.SSL_CIPHER_SUITE_PROPERTY.

v A WebSphere MQ JMS application can call the setSSLCipherSuite() method of a

ConnectionFactory object.

v Using the WebSphere MQ JMS administration tool, you can set the

SSLCIPHERSUITE property of a ConnectionFactory object.

 Table 35. CipherSpecs supported by WebSphere MQ and their equivalent CipherSuites

CipherSpec Equivalent CipherSuite Connection

possible if

SFIPS1 is

set to NO?

Connection

possible if

SFIPS1 is

set to YES?

NULL_MD5 SSL_RSA_WITH_NULL_MD5 Yes No

NULL_SHA SSL_RSA_WITH_NULL_SHA Yes No

RC4_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC4_40_MD5 Yes No

RC4_MD5_US SSL_RSA_WITH_RC4_128_MD5 Yes No

RC4_SHA_US SSL_RSA_WITH_RC4_128_SHA Yes No

RC2_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 Yes No

DES_SHA_EXPORT SSL_RSA_WITH_DES_CBC_SHA Yes No

RC4_56_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_RC4_56_SHA No No

DES_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA No No

TRIPLE_DES_SHA_US SSL_RSA_WITH_3DES_EDE_CBC_SHA Yes No

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA No Yes

TLS_RSA_WITH_AES_256_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA No Yes

AES_SHA_US2

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA No Yes

TLS_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA No Yes

© Copyright IBM Corp. 1997, 2007 645

Table 35. CipherSpecs supported by WebSphere MQ and their equivalent CipherSuites (continued)

CipherSpec Equivalent CipherSuite Connection

possible if

SFIPS1 is

set to NO?

Connection

possible if

SFIPS1 is

set to YES?

FIPS_WITH_DES_CBC_SHA SSL_RSA_FIPS_WITH_DES_CBC_SHA Yes No

FIPS_WITH_3DES_EDE_CBC_SHA SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA Yes No

Notes:

1. When using the WebSphere MQ JMS administration tool, SFIPS is the

short name of the ConnectionFactory property SSLFIPSREQUIRED. In a

WebSphere MQ base Java application, setting the sslFipsRequired field

in the MQEnvironment class to false is equivalent to setting

SSLFIPSREQUIRED to NO, and setting the sslFipsRequired field to true

is equivalent to setting SSLFIPSREQUIRED to YES. Alternatively, a

WebSphere MQ base Java application can set the environment property

MQC.SSL_FIPS_REQUIRED_PROPERTY.

2. This CipherSpec has no equivalent CipherSuite.

SSL CipherSpecs and CipherSuites

646 Using Java

Appendix E. Support for OSGi

OSGi provides a general purpose, secure, and managed Java framework, which

supports the deployment of applications that come in the form of bundles. OSGi

compliant devices can download and install bundles, and remove them when they

are no longer required. The framework manages the installation and update of

bundles in a dynamic and scalable fashion.

WebSphere MQ Java includes the following three OSGi bundles. The bundles are

in the java/lib/OSGI subdirectory of your WebSphere MQ installation, or the

Java\lib\OSGI folder on Windows. version is the WebSphere MQ version number,

for example 6.0.2.0.

com.ibm.mq.osgi.client_version.jar

Provides versions of WebSphere MQ base Java and WebSphere MQ JMS

that are able to communicate with WebSphere MQ using a TCP/IP

connection

com.ibm.mq.osgi.directip_version.jar

Contains JAR files to allow the client bundle,

com.ibm.mq.osgi.client_version.jar, to create a direct connection to a broker

com.ibm.mq.osgi.prereq_version.jar

Contains prerequisite JAR files required by the client bundle

These bundles have been written to the OSGi Release 4 specification. They do not

work in an OSGi Release 3 environment.

You must set your system path or library path correctly so that the OSGi runtime

environment can find any required DLL files or shared libraries.

If you use the OSGi bundles for WebSphere MQ Java, temporary topics do not

work. In addition, channel exit classes written in Java are not supported because of

an inherent problem in loading classes in a multiple class loader environment such

as OSGi. A user bundle can be aware of the WebSphere MQ Java bundles, but the

WebSphere MQ Java bundles are not aware of any user bundle. As a result, the

class loader used in a WebSphere MQ Java bundle cannot load a channel exit class

that is in a user bundle.

For more information about OSGi, see the OSGi Alliance Web site at

http://www.osgi.org.

© Copyright IBM Corp. 1997, 2007 647

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|
|

http://www.osgi.org

648 Using Java

Appendix F. The WebSphere MQ resource adapter

The J2EE Connector Architecture (JCA) provides a standard way of connecting

applications running in a J2EE environment to an Enterprise Information System

(EIS) such as WebSphere MQ or DB2. The WebSphere MQ resource adapter

implements the JCA 1.5 interfaces, and allows JMS applications and message

driven beans (MDBs), running in an application server, to access the resources of a

WebSphere MQ queue manager. The resource adapter supports both the

point-to-point domain and the publish/subscribe domain.

The WebSphere MQ resource adapter supports two types of communication

between an application and a queue manager:

Outbound communication

An application starts a connection to a queue manager, and then sends JMS

messages to JMS destinations and receives JMS messages from JMS

destinations in a synchronous manner.

Inbound communication

A JMS message arriving at a JMS destination is delivered to an MDB,

which processes the message asynchronously.

The WebSphere MQ resource adapter is supported on all WebSphere MQ Version

6.0 platforms except z/OS. You can install it on any application server that is

certified as compliant with the J2EE 1.4 specification. Using the resource adapter,

an application can connect to a WebSphere MQ Version 6.0 queue manager in

either client mode or bindings mode, or to a WebSphere MQ Version 5.3 queue

manager in client mode only.

This appendix contains the following sections:

v “Other required documentation”

v “Installation of the WebSphere MQ resource adapter” on page 650

v “Configuration of the WebSphere MQ resource adapter” on page 651

v “The installation verification test (IVT) program” on page 667

v “Limitations of the WebSphere MQ resource adapter” on page 671

v “Problem determination” on page 671

v “The WebSphere MQ resource adapter error and warning messages” on page

674

Other required documentation

Every application server provides its own set of administration interfaces. Some

application servers provide graphical user interfaces to define JCA resources, but

others require the administrator to write XML deployment plans. It is therefore

beyond the scope of this documentation to provide information about how to

configure the WebSphere MQ resource adapter for each application server. This

documentation focuses only on what you need to configure, and you must refer to

your application server’s own documentation for information about how to

configure a JCA resource adapter.

To understand this documentation, you must be familiar with JMS and WebSphere

MQ JMS, as described in the chapters from Chapter 10, “Writing WebSphere MQ

© Copyright IBM Corp. 1997, 2007 649

|

|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

JMS applications,” on page 313 through to Chapter 14, “WebSphere MQ JMS

Application Server Facilities,” on page 399. Many of the properties used to

configure the WebSphere MQ resource adapter are equivalent to properties of

WebSphere MQ JMS objects and have the same function.

Installation of the WebSphere MQ resource adapter

The WebSphere MQ resource adapter is supplied as a resource archive (RAR) file

called wmq.jmsra.rar. This file is installed with WebSphere MQ Java in the

directory shown in Table 36.

 Table 36. The directory containing wmq.jmsra.rar for each platform

Platform Directory

AIX /usr/mqm/java/lib/jca

HP-UX, Linux, and Solaris /opt/mqm/java/lib/jca

i5/OS /QIBM/ProdData/mqm/java/lib/jca

Windows install_dir\Java\lib\jca

Note: install_dir is the directory where you installed the WebSphere MQ server or

WebSphere MQ client. The default directory is C:\Program Files\IBM\WebSphere MQ, but

you might have chosen a different directory.

The RAR file contains the following Java archive (JAR) files:

v com.ibm.mq.jar, which contains WebSphere MQ base Java

v com.ibm.mqjms.jar, which contains WebSphere MQ JMS

v mqconnector.jar, which contains the WebSphere MQ implementation of the JCA

interfaces

v dhbcore.jar, which is an additional library required by WebSphere MQ JMS

You must install the WebSphere MQ resource adapter RAR file in your application

server, but the way you do this depends on the application server. See the

documentation for your application server for information about how to install a

resource adapter RAR file.

For non-transacted client connections, no other files are required. For bindings

connections, WebSphere MQ Java must be installed. On UNIX systems, you must

also ensure that the Java Native Interface (JNI) libraries are in the system path. See

Table 6 on page 10 for the location of the WebSphere MQ Java libraries, which

include the JNI libraries. On Windows, the WebSphere MQ Java libraries are added

to the system path automatically during installation of WebSphere MQ Java.

Distributed transactions are supported by default in bindings mode but, in client

mode, they are supported only in the following cases:

v If you are using WebSphere Application Server, Version 6.0

v For any other application server, if the extended transactional client JAR file,

com.ibm.mqetclient.jar, is in the class path

Table 37 on page 651 summarizes the support for non-transacted and transacted

connections. For an explanation of client and bindings modes, see “Connection

options” on page 3.

Other required documentation

650 Using Java

|
|
|
|

|
|

|
|
|

||

||

||

||

||

||

|
|
|
|
|

|

|

|
|

|

|
|
|
|

|
|
|
|
|
|

|
|

|

|
|

|
|
|

Table 37. Support for non-transacted and transacted connections

Type of connection Non-transacted connections Transacted connections

Client mode Supported by default Supported if you are using

WebSphere Application Server,

Version 6.0 or if

com.ibm.mqetclient.jar is in the

class path

Bindings mode Supported if the JNI libraries are

in the system path

Supported if the JNI libraries are

in the system path

The WebSphere MQ resource adapter and the version of WebSphere MQ Java used

by the resource adapter must be at the same release level.

WebSphere Application Server, Version 6.0 and the

WebSphere MQ resource adapter

WebSphere Application Server, Version 6.0 contains a version of WebSphere MQ

Java that provides all the function of the WebSphere MQ resource adapter. A

WebSphere MQ JMS application running in WebSphere Application Server, Version

6.0 does not therefore need the WebSphere MQ resource adapter in order to access

the resources of a WebSphere MQ queue manager.

However, if you do use the WebSphere MQ resource adapter instead, you must set

the WebSphere Application Server environment variable MQ_INSTALL_ROOT to

the fully qualified path name of the directory where you installed WebSphere MQ.

An application running in WebSphere Application Server then uses the version of

WebSphere MQ JMS that is supplied with WebSphere MQ and is compatible with

the WebSphere MQ resource adapter. For example, on HP-UX, Linux, or Solaris,

the value of MQ_INSTALL_ROOT must be /opt/mqm instead of the default value

${WAS_LIBS_DIR}/WMQ.

Configuration of the WebSphere MQ resource adapter

To configure the WebSphere MQ resource adapter, define JCA resources in the

following categories:

v The properties of the ResourceAdapter object, which represent the global

properties of the resource adapter, such as the level of diagnostic tracing. These

properties are described in “Configuration of the ResourceAdapter object” on

page 652.

v The properties of an ActivationSpec object, which determine how an MDB is

activated for inbound communication. These properties are described in

“Configuration for inbound communication” on page 655.

v The properties of a ConnectionFactory object, which the application server uses

to create a JMS ConnectionFactory object for outbound communication. These

properties are described in “Configuration for outbound communication” on

page 661.

v The properties of an administered object, which the application server uses to

create a JMS Queue object or JMS Topic object for outbound communication.

These properties are also described in “Configuration for outbound

communication” on page 661.

The WebSphere MQ resource adapter RAR file contains a file called

META-INF/ra.xml, which contains a deployment descriptor for the resource

Installation

Appendix F. The WebSphere MQ resource adapter 651

||

|||

|||
|
|
|
|

||
|
|
|
|

|
|

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

adapter. This deployment descriptor is defined by the XML schema at

http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd and contains information

about the resource adapter and the services that it provides. An application server

might also require a deployment plan for the resource adapter. This deployment

plan is specific to the application server. For example, WebSphere Application

Server Community Edition requires a deployment plan called geronimo-ra.xml.

If you are using Secure Sockets Layer (SSL), you must specify the locations of the

key store file and trust store file as JVM system properties, as in the following

example:

java ... -Djavax.net.ssl.keyStore=key_store_location

 -Djavax.net.ssl.trustStore=trust_store_location

 -Djavax.net.ssl.keyStorePassword=key_store_password

These properties cannot be properties of an ActivationSpec or ConnectionFactory

object, and you cannot specify more than one key store for an application server.

The properties apply to the whole JVM, and might therefore affect the application

server if other applications, running in the application server, are using SSL

connections. The application server might also reset these properties to different

values. For more information about using SSL with WebSphere MQ JMS, see

“Using Secure Sockets Layer (SSL)” on page 373.

An installation verification test (IVT) program is supplied with the WebSphere MQ

resource adapter, but you must configure the resource adapter before you can run

the program. For information about what you need to configure in order to run the

IVT program, see “The installation verification test (IVT) program” on page 667.

Configuration of the ResourceAdapter object

The ResourceAdapter object encapsulates the global properties of the WebSphere

MQ resource adapter. The object has two sets of properties:

v Properties associated with diagnostic tracing

v Properties associated with the connection pool managed by the resource adapter

The way you define these properties depends on the administration interfaces

provided by your application server.

Table 38 lists the properties of the ResourceAdapter object that are associated with

diagnostic tracing.

 Table 38. Properties of the ResourceAdapter object that are associated with diagnostic

tracing

Name of property Type Default value Description

traceEnabled String false A flag to enable or disable diagnostic tracing.

If the value is false, tracing is turned off. If

the value is true, a trace is sent to the

location specified by the traceDestination

property.

traceDestination String wmq_jca.trc The location to where a diagnostic trace is

sent. If the value is System.err, the trace is

directed to the system error stream instead of

a file. Similarly, if the value is System.out, the

trace is directed to the system output stream.

Configuration

652 Using Java

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|

|

|

|
|

|
|

||
|

||||

||||
|
|
|
|

||||
|
|
|
|

http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd

Table 38. Properties of the ResourceAdapter object that are associated with diagnostic

tracing (continued)

Name of property Type Default value Description

traceLevel String 3 The level of detail in a diagnostic trace. The

value can be in the range 0, which produces

no trace, to 10, which provides the most

detail. See Table 39 for a description of each

level.

timestampsEnabled String true A flag to enable or disable time stamps in a

diagnostic trace. If the value is true, time

stamps are added. If the value is false, time

stamps are not added.

An application server might add time stamps

to a stream automatically. In this case, set the

value of the property to false to avoid the

duplication of time stamps.

logWriterEnabled String true A flag to enable or disable the sending of a

diagnostic trace to a LogWriter object

provided by the application server. If the

value is true, the trace is sent to a LogWriter

object instead of the location specified by the

traceDestination property. If the value is false,

any LogWriter object provided by the

application server is not used.

Table 39 describes the levels of detail for diagnostic tracing.

 Table 39. The levels of detail for diagnostic tracing

Level

number Level of detail

0 No trace.

1 The trace contains error messages.

3 The trace contains error and warning messages.

6 The trace contains error, warning, and information messages.

8 The trace contains error, warning, and information messages, and entry and exit

information for methods.

9 The trace contains error, warning, and information messages, entry and exit

information for methods, and diagnostic data.

10 The trace contains all trace information.

Note: Any level that is not included in this table is equivalent to the next lowest level. For

example, specifying a trace level of 4 is equivalent to specifying a trace level of 3.

However, the levels that are not included might be used in future releases of the

WebSphere MQ resource adapter, so it is better to avoid using these levels.

If diagnostic tracing is turned off, error and warning messages are written to the

system error stream. If diagnostic tracing is turned on, error messages are written

to the system error stream and to the trace destination, but warning messages are

written only to the trace destination. However, the trace contains warning

messages only if the trace level is 3 or higher.

The resource adapter manages an internal connection pool of JMS connections that

are used to deliver messages to MDBs. Table 40 on page 654 lists the properties of

the ResourceAdapter object that are associated with the connection pool.

Configuration

Appendix F. The WebSphere MQ resource adapter 653

|
|

||||

||||
|
|
|
|

||||
|
|
|

|
|
|
|

||||
|
|
|
|
|
|
|
|
|

||

|
||

||

||

||

||

||
|

||
|

||

|
|
|
|
|

|
|
|
|
|

|
|
|

Table 40. Properties of the ResourceAdapter object that are associated with the connection

pool

Name of property Type Default value Description

maxConnections String 10 The maximum number of connections

to a WebSphere MQ queue manager.

connectionConcurrency String 5 The maximum number of MDBs that

can be supplied by each connection.

reconnectionRetryCount String 5 The maximum number of attempts

made by the resource adapter to

reconnect to a WebSphere MQ queue

manager if a connection fails.

reconnectionRetryInterval String 300 000 The time, in milliseconds, that the

resource adapter waits before making

another attempt to reconnect to a

WebSphere MQ queue manager.

When an MDB is deployed in the application server, the resource adapter attempts

to use an existing JMS connection from the connection pool. Each connection can

supply more than one MDB up to the maximum specified by the

connectionConcurrency property. If there are no connections in the pool, or if all

the connections are fully utilized, a new connection is created provided the

maximum number of connections specified by the maxConnections property is not

exceeded. The maximum number of MDBs that can be deployed is therefore equal

to the product of the maxConnections and connectionConcurrency properties,

which is 50 by default. If the number of deployed MDBs reaches the maximum,

any attempt to deploy another MDB fails. If an MDB is stopped, its connection can

be used by another MDB.

If MDBs are likely to receive a high volume of messages, you might need to reduce

the value of the connectionConcurrency property. If you need to limit the number

of connections, because of restrictions imposed by a firewall for example, you

might need to increase the value of the connectionConcurrency property. In

general, if many MDBs are to be deployed, increase the value of the

maxConnections property.

The reconnectionRetryCount and reconnectionRetryInterval properties govern the

behavior of the resource adapter when connections to a WebSphere MQ queue

manager fail, because of a network failure for example. When a connection fails,

the resource adapter suspends the delivery of messages to all MDBs supplied by

that connection for an interval specified by the reconnectionRetryInterval property.

The resource adapter then attempts to reconnect to the queue manager. If the

attempt fails, the resource adapter makes further attempts to reconnect at intervals

specified by the reconnectionRetryInterval property until the limit imposed by the

reconnectionRetryCount property is reached. If all attempts fail, delivery is stopped

permanently until the MDBs are restarted manually.

In general, the ResourceAdapter object requires no administration. However, to

enable diagnostic tracing on a UNIX system for example, you can set the following

properties:

traceEnabled: true

traceDestination: /tmp/wmq_jca.trace

traceLevel: 10

Configuration

654 Using Java

||
|

||||

||||
|

||||
|

||||
|
|
|

||||
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

These properties have no effect if the resource adapter has not been started, which

is the case, for example, when applications using WebSphere MQ resources are

running only in the client container. In this situation, you can set the properties for

diagnostic tracing as Java Virtual Machine (JVM) system properties. You can do

this by using the -D flag on the java command, as in the following example:

java ... -DtraceEnabled=true -DtraceDestination=System.err -DtraceLevel=6

You do not need to define all the properties of the ResourceAdapter object. Any

properties left unspecified take their default values. In a managed environment, it

is better not to mix the two ways of specifying properties. If you do mix them, the

JVM system properties take precedence over the properties of the ResourceAdapter

object.

Configuration for inbound communication

To configure inbound communication, define the properties of one or more

ActivationSpec objects. The properties of an ActivationSpec object determine how

an MDB receives JMS messages from a WebSphere MQ queue. The transactional

behavior of the MDB is defined in its deployment descriptor.

An ActivationSpec object has two sets of properties:

v Properties that are used to create a JMS connection to a WebSphere MQ queue

manager

v Properties that are used to create a JMS connection consumer that delivers

messages asynchronously as they arrive on a specified queue

The way in which you define the properties of an ActivationSpec object depends

on the administration interfaces provided by your application server.

Table 41 lists the properties of an ActivationSpec object that are used to create a

JMS connection to a WebSphere MQ queue manager.

 Table 41. Properties of an ActivationSpec object that are used to create a JMS connection

Name of property Type Valid values (default value in bold) Description

brokerCCDurSubQueue String v SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

v A queue name

The name of the queue from

which a connection consumer

receives durable subscription

messages

brokerCCSubQueue String v SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

v A queue name

The name of the queue from

which a connection consumer

receives nondurable

subscription messages

brokerControlQueue String v SYSTEM.BROKER.CONTROL.QUEUE

v A queue name

The name of the broker control

queue

brokerQueueManager String v ″″ (empty string)

v A queue manager name

The name of the queue

manager on which the broker is

running

brokerSubQueue String v SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

v A queue name

The name of the queue from

which a nondurable message

consumer receives messages

brokerVersion String v 1

v 2

The version of the broker being

used

Configuration

Appendix F. The WebSphere MQ resource adapter 655

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|

|

|
|

|
|

|
|

|
|

||

||||

|||
|
|
|
|
|

|||
|
|
|
|
|

|||
|
|
|

|||
|
|
|
|

|||
|
|
|
|

|||
|
|
|

Table 41. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

ccdtURL String v null

v A uniform resource locator (URL)

A URL that identifies the name

and location of the file

containing the client channel

definition table and specifies

how the file can be accessed

CCSID String v 819

v A coded character set identifier supported by

the Java virtual machine (JVM)

The coded character set

identifier for a connection

channel String v SYSTEM.DEF.SVRCONN

v The name of an MQI channel

The name of the MQI channel

to use

cleanupInterval int v 3 600 000

v A positive integer

The interval, in milliseconds,

between background runs of

the publish/subscribe cleanup

utility

cleanupLevel String v SAFE

v NONE

v STRONG

v FORCE

v NONDUR

The cleanup level for a broker

based subscription store

clientID String v null

v A client identifier

The client identifier for a

connection

failIfQuiesce boolean v true

v false

Whether calls to certain

methods fail if the queue

manager is in a quiescing state

hostName String v localhost

v A host name

v An IP address

The host name or IP address of

the system on which the queue

manager resides

localAddress String v null

v A string in the format:

[host_name][(low_port[,high_port])]

where host_name is a host name or IP

address, low_port and high_port are TCP port

numbers, and brackets denote an optional

component

For a connection to a queue

manager, this property specifies

either or both of the following:

v The local network interface

to be used

v The local port, or range of

local ports, to be used

messageSelection String v CLIENT

v BROKER

Determines whether message

selection is done by WebSphere

MQ JMS or by the broker.

Message selection by the broker

is not supported when

brokerVersion has the value 1.

password String v null

v A password

The default password to use

when creating a connection to

the queue manager

port int v 1414

v A TCP port number

The port on which the queue

manager listens

queueManager String v ″″ (empty string)

v A queue manager name

The name of the queue

manager to connect to

Configuration

656 Using Java

|

||||

|||
|
|
|
|
|
|

|||
|
|

|
|

|||
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|

|
|

|||
|
|
|

|||
|
|
|
|

|||
|
|

|
|
|

|||
|

|

|
|
|
|

|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|

|||
|
|
|

|||
|
|
|

Table 41. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

receiveExit String v null

v A string comprising one or more items

separated by commas, where each item is the

fully qualified name of a class that

implements the WebSphere MQ base Java

interface, MQReceiveExit

Identifies a channel receive exit

program, or a sequence of

receive exit programs to be run

in succession

receiveExitInit String v null

v A string comprising one or more items of

user data separated by commas

The user data that is passed to

channel receive exit programs

when they are called

securityExit String v null

v The fully qualified name of a class that

implements the WebSphere MQ base Java

interface, MQSecurityExit

Identifies a channel security

exit program

securityExitInit String v null

v A string of user data

The user data that is passed to

a channel security exit program

when it is called

sendExit String v null

v A string comprising one or more items

separated by commas, where each item is the

fully qualified name of a class that

implements the WebSphere MQ base Java

interface, MQSendExit

Identifies a channel send exit

program, or a sequence of send

exit programs to be run in

succession

sendExitInit String v null

v A string comprising one or more items of

user data separated by commas

The user data that is passed to

channel send exit programs

when they are called

sslCertStores String v null

v A string of one or more LDAP URLs

separated by blanks. Each LDAP URL has the

format:

ldap://host_name[:port]

where host_name is a host name or IP

address, port is a TCP port number, and

brackets denote an optional component.

The Lightweight Directory

Access Protocol (LDAP) servers

that hold certificate revocation

lists (CRLs) for use on an SSL

connection

sslCipherSuite String v null

v The name of a CipherSuite

The CipherSuite to use for an

SSL connection

sslFipsRequired1 boolean v false

v true

Whether an SSL connection

must use a CipherSuite that is

supported by the IBM Java JSSE

FIPS provider (IBMJSSEFIPS)

sslPeerName String v null

v A template for distinguished names

For an SSL connection, a

template that is used to check

the distinguished name in the

digital certificate provided by

the queue manager

sslResetCount int v 0

v An integer in the range 0 to 999 999 999

The total number bytes sent

and received by an SSL

connection before the secret

keys used by SSL are

renegotiated

Configuration

Appendix F. The WebSphere MQ resource adapter 657

|

||||

|||
|
|
|
|
|

|
|
|
|

|||
|
|

|
|
|

|||
|
|
|

|
|

|||
|
|
|
|

|||
|
|
|
|
|

|
|
|
|

|||
|
|

|
|
|

|||
|
|
|

|

|
|
|

|
|
|
|
|

|||
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|
|
|

|||
|
|
|
|
|
|

Table 41. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

subscriptionStore String v MIGRATE

v QUEUE

v BROKER

Determines where WebSphere

MQ JMS stores persistent data

about active subscriptions

transportType String v CLIENT

v BINDINGS

Whether a connection to a

queue manager uses client

mode or bindings mode

username String v null

v A user name

The default user name to use

when creating a connection to a

queue manager

Note:

1. For important information about using the sslFipsRequired property, see “Limitations of the WebSphere MQ

resource adapter” on page 671.

Table 42 lists the properties of an ActivationSpec object that are used to create a

JMS connection consumer.

 Table 42. Properties of an ActivationSpec object that are used to create a JMS connection consumer

Name of property Type Valid values (default value in bold) Description

destination String A destination name The destination from which to receive

messages. The useJNDI property determines

how the value of this property is

interpreted.

destinationType String v javax.jms.Queue

v javax.jms.Topic

The type of destination, a queue or a topic

maxMessages int v 1

v A positive integer

The maximum number of messages that can

be assigned to a server session at one time

maxPoolSize int v 10

v A positive integer

The maximum number of server sessions in

the server session pool used by the

connection consumer

messageSelector String v null

v An SQL92 message selector

expression

A message selector expression specifying

which messages are to be delivered

poolTimeout int v 300 000

v A positive integer

The period of time, in milliseconds, that an

unused server session is held open in the

server session pool before being closed due

to inactivity

startTimeout int v 10 000

v A positive integer

The period of time, in milliseconds, within

which delivery of a message to an MDB

must start after the work to deliver the

message has been scheduled. If this period

of time elapses, the message is rolled back

onto the queue.

subscriptionDurability String v NonDurable - A nondurable

subscription is used to deliver

messages to an MDB subscribing

to the topic.

v Durable - A durable subscription

is used to deliver messages to an

MDB subscribing to the topic.

Whether a durable or nondurable

subscription is used to deliver messages to

an MDB subscribing to the topic

Configuration

658 Using Java

|

||||

|||
|
|

|
|
|

|||
|
|
|
|

|||
|
|
|
|

|

|
|
|

|
|

||

||||

||||
|
|
|

|||
|
|

|||
|
|
|

|||
|
|
|
|

|||
|
|

|
|

|||
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|

|
|
|

Table 42. Properties of an ActivationSpec object that are used to create a JMS connection consumer (continued)

Name of property Type Valid values (default value in bold) Description

subscriptionName String v ″″ (empty string)

v A subscription name

The name of the durable subscription

useJNDI boolean v false - The property called

destination is interpreted as the

name of a WebSphere MQ queue

or a topic.

v true - The property called

destination is interpreted as the

name of a javax.jms.Queue object

or javax.jms.Topic object in the

application server’s JNDI

namespace.

Determines how the value of the property

called destination is interpreted

The ActivationSpec properties called destination and destinationType must be

defined explicitly. All the other properties are optional.

An ActivationSpec object can have conflicting properties. For example, you can

specify SSL properties for a connection in bindings mode. In this case, the behavior

is determined by the transport type and the messaging domain, which is either

point-to-point or publish/subscribe as determined by the destinationType property.

Any properties that are not applicable to the specified transport type or messaging

domain are ignored.

If you define a property that requires other properties to be defined, but you do

not define these other properties, the ActivationSpec object throws an

InvalidPropertyException exception when its validate() method is called during the

deployment of an MDB. The exception is reported to the administrator of the

application server in a manner that depends on the application server. For

example, if you set the subscriptionDurability property to Durable, indicating that

you want use durable subscriptions, you must also define the subscriptionName

property.

If the properties called ccdtURL and channel are both defined, an

InvalidPropertyException exception is thrown. However, if you define the ccdtURL

property only, leaving the property called channel with its default value of

SYSTEM.DEF.SVRCONN, no exception is thrown, and the client channel definition

table identified by the ccdtURL property is used to start a JMS connection.

Most of the properties of an ActivationSpec object are equivalent to properties of

WebSphere MQ JMS objects or parameters of WebSphere MQ JMS methods.

However, three tuning properties, and one usability property, have no equivalents

in WebSphere MQ JMS:

startTimeout

The time, in milliseconds, that the work manager of the application server

waits for resources to become available after the resource adapter

schedules a Work object to deliver a message to an MDB. If this period of

time elapses before delivery of the message starts, the Work object times

out, the message is rolled back onto the queue, and the resource adapter

can then make another attempt to deliver the message. A warning is

written to diagnostic trace, if enabled, but this does not otherwise affect the

process of delivering messages. You might expect this condition to occur

only at times when the application server is experiencing a very high load.

Configuration

Appendix F. The WebSphere MQ resource adapter 659

|

||||

|||
|
|

|||
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

If the condition occurs regularly, consider increasing the value of this

property to give the work manager longer to schedule message delivery.

maxPoolSize

The maximum number of server sessions in the server session pool used

by a connection consumer. The connection consumer uses a server session

to deliver a message to an MDB. A larger pool size allows more messages

to be delivered concurrently in high volume situations, but uses more

resources of the application server. If many MDBs are to be deployed,

consider making the pool size smaller in order to maintain the load on the

application server at a manageable level. Note that each connection

consumer uses its own server session pool, so that this property does not

define the total number of server sessions available to all connection

consumers.

poolTimeout

The period of time, in milliseconds, that an unused server session is held

open in the server session pool before being closed due to inactivity. A

transient increase in the message workload causes additional server

sessions to be created in order to distribute the load but, after the message

workload returns to normal, the additional server sessions remain in the

pool and are not used.

 Every time a server session is used, it is marked with a timestamp.

Periodically a scavenger thread checks that each server session has been

used within the period specified by this property. If a server session has

not been used, it is closed and removed from the server session pool. A

server session might not be closed immediately after the specified period

has elapsed, this property represents the minimum period of inactivity

before removal.

useJNDI

For a description of this property, see Table 42 on page 658.

To deploy an MDB, first define the properties of an ActivationSpec object,

specifying the properties that the MDB requires. The following example is a typical

set of properties that you might define explicitly:

channel: SYSTEM.DEF.SVRCONN

destination: SYSTEM.DEFAULT.LOCAL.QUEUE

destinationType: javax.jms.Queue

hostName: 192.168.0.42

messageSelector: color=’red’

port: 1414

queueManager: ExampleQM

transportType: CLIENT

The application server uses the properties to create an ActivationSpec object, which

is then associated with an MDB. The properties of the ActivationSpec object

determine how messages are delivered to the MDB. Deployment of the MDB fails

if the MDB requires distributed transactions but the resource adapter does not

support distributed transactions. For information about how to install the resource

adapter so that distributed transactions are supported, see “Installation of the

WebSphere MQ resource adapter” on page 650.

If more than one MDB is receiving messages from the same destination, then a

message sent in the point-to-point domain is received by only one MDB, even if

other MDBs are eligible to receive the message. In particular, if two MDBs are

using different message selectors, and an incoming message matches both message

selectors, only one of the MDBs receives the message. The MDB chosen to receive a

Configuration

660 Using Java

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

message is undefined, and you cannot rely on a specific MDB receiving the

message. Messages sent in the publish/subscribe domain are received by all

eligible MDBs.

Poison messages

In some circumstances, a message delivered to an MDB might be rolled back onto

a WebSphere MQ queue. This can happen, for example, if a message is delivered

within a unit of work that is subsequently rolled back. A message that is rolled

back is generally delivered again, but a badly formatted message might repeatedly

cause an MDB to fail and therefore cannot be delivered. Such a message is called a

poison message. You can configure WebSphere MQ so that WebSphere MQ JMS

automatically transfers a poison message to another queue for further investigation

or discards the message. For information about how to configure WebSphere MQ

in this way, see “Handling poison messages” on page 402.

Configuration for outbound communication

When using outbound communication, an application running in an application

server starts a connection to a queue manager, and then sends messages to its

queues and receives messages from its queues in a synchronous manner. For

example, the following servlet method, doGet(), uses outbound communication:

protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

...

// Look up ConnectionFactory and Queue objects from the JNDI namespace

 InitialContext ic = new InitialContext();

 ConnectionFactory cf = (javax.jms.ConnectionFactory) ic.lookup("myCF");

 Queue q = (javax.jms.Queue) ic.lookup("myQueue");

// Create and start a connection

 Connection c = cf.createConnection();

 c.start();

// Create a session and message producer

 Session s = c.createSession(false, Session.AUTO_ACKNOWLEDGE);

 MessageProducer pr = s.createProducer(q);

// Create and send a message

 Message m = s.createTextMessage("Hello, World!");

 pr.send(m);

// Create a message consumer and receive the message just sent

 MessageConsumer co = s.createConsumer(q);

 Message mr = co.receive(5000);

// Close the connection

 c.close();

}

When the servlet receives an HTTP GET request, it retrieves a ConnectionFactory

object and a Queue object from the JNDI namespace, and uses the objects to send a

message to a WebSphere MQ queue. The servlet then receives the message that it

has just sent.

Configuration

Appendix F. The WebSphere MQ resource adapter 661

|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

To configure outbound communication, define JCA resources in the following

categories:

v The properties of a ConnectionFactory object, which the application server uses

to create a JMS ConnectionFactory object.

v The properties of an administered object, which the application server uses to

create a JMS Queue object or JMS Topic object.

The way you define these properties depends on the administration interfaces

provided by your application server. ConnectionFactory, Queue, and Topic objects

created by the application server are bound into a JNDI namespace from where

they can be retrieved by an application.

Typically, you define one ConnectionFactory object for each queue manager that

applications might need to connect to, one Queue object for each queue that

applications might need to access in the point-to-point domain, and one Topic

object for each topic that applications might want to publish or subscribe to. A

ConnectionFactory object can be domain independent. Alternatively, it can be

domain specific, a QueueConnectionFactory object for the point-to-point domain or

a TopicConnectionFactory object for the publish/subscribe domain.

Table 43 lists the properties of a ConnectionFactory object.

 Table 43. Properties of a ConnectionFactory object

Name of property Type Valid values (default value in bold) Description

brokerCCSubQueue String v SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

v A queue name

The name of the queue from

which a connection consumer

receives nondurable subscription

messages

brokerControlQueue String v SYSTEM.BROKER.CONTROL.QUEUE

v A queue name

The name of the broker control

queue

brokerPubQueue String v SYSTEM.BROKER.DEFAULT.STREAM

v A queue name

The name of the queue where

published messages are sent (the

stream queue)

brokerQueueManager String v ″″ (empty string)

v A queue manager name

The name of the queue manager

on which the broker is running

brokerSubQueue String v SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

v A queue name

The name of the queue from

which a nondurable message

consumer receives messages

brokerVersion String v 1

v 2

The version of the broker being

used

ccdtURL String v null

v A uniform resource locator (URL)

A URL that identifies the name

and location of the file containing

the client channel definition table

and specifies how the file can be

accessed

CCSID String v 819

v A coded character set identifier supported by

the Java virtual machine (JVM)

The coded character set identifier

for a connection

channel String v SYSTEM.DEF.SVRCONN

v The name of an MQI channel

The name of the MQI channel to

use

cleanupInterval int v 3 600 000

v A positive integer

The interval, in milliseconds,

between background runs of the

publish/subscribe cleanup utility

Configuration

662 Using Java

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|

||

||||

|||
|
|
|
|
|

|||
|
|
|

|||
|
|
|
|

|||
|
|
|

|||
|
|
|
|

|||
|
|
|

|||
|
|
|
|
|
|

|||
|
|

|
|

|||
|
|
|

|||
|
|
|
|

Table 43. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

cleanupLevel String v SAFE

v NONE

v STRONG

v FORCE

v NONDUR

The cleanup level for a broker

based subscription store

clientID String v null

v A client identifier

The client identifier for a

connection

failIfQuiesce boolean v true

v false

Whether calls to certain methods

fail if the queue manager is in a

quiescing state

hostName String v localhost

v A host name

v An IP address

The host name or IP address of

the system on which the queue

manager resides

localAddress String v null

v A string in the format:

[host_name][(low_port[,high_port])]

where host_name is a host name or IP

address, low_port and high_port are TCP port

numbers, and brackets denote an optional

component

For a connection to a queue

manager, this property specifies

either or both of the following:

v The local network interface to

be used

v The local port, or range of local

ports, to be used

messageSelection String v CLIENT

v BROKER

Determines whether message

selection is done by WebSphere

MQ JMS or by the broker.

Message selection by the broker is

not supported when

brokerVersion has the value 1.

password String v null

v A password

The default password to use

when creating a connection to the

queue manager

port int v 1414

v A TCP port number

The port on which the queue

manager listens

pubAckInterval int v 25

v A positive integer

The number of messages

published by a publisher before

WebSphere MQ JMS requests an

acknowledgement from the

broker.

queueManager String v ″″ (empty string)

v A queue manager name

The name of the queue manager

to connect to

receiveExit String v null

v A string comprising one or more items

separated by commas, where each item is the

fully qualified name of a class that

implements the WebSphere MQ base Java

interface, MQReceiveExit

Identifies a channel receive exit

program, or a sequence of receive

exit programs to be run in

succession

receiveExitInit String v null

v A string comprising one or more items of

user data separated by commas

The user data that is passed to

channel receive exit programs

when they are called

securityExit String v null

v The fully qualified name of a class that

implements the WebSphere MQ base Java

interface, MQSecurityExit

Identifies a channel security exit

program

Configuration

Appendix F. The WebSphere MQ resource adapter 663

|

||||

|||
|
|
|
|

|
|

|||
|
|
|

|||
|
|
|
|

|||
|
|

|
|
|

|||
|

|

|
|
|
|

|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|

|||
|
|
|

|||
|
|
|
|
|
|

|||
|
|
|

|||
|
|
|
|
|

|
|
|
|

|||
|
|

|
|
|

|||
|
|
|

|
|

Table 43. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

securityExitInit String v null

v A string of user data

The user data that is passed to a

channel security exit program

when it is called

sendExit String v null

v A string comprising one or more items

separated by commas, where each item is the

fully qualified name of a class that

implements the WebSphere MQ base Java

interface, MQSendExit

Identifies a channel send exit

program, or a sequence of send

exit programs to be run in

succession

sendExitInit String v null

v A string comprising one or more items of

user data separated by commas

The user data that is passed to

channel send exit programs when

they are called

sslCertStores String v null

v A string of one or more LDAP URLs

separated by blanks. Each LDAP URL has the

format:

ldap://host_name[:port]

where host_name is a host name or IP

address, port is a TCP port number, and

brackets denote an optional component.

The Lightweight Directory Access

Protocol (LDAP) servers that hold

certificate revocation lists (CRLs)

for use on an SSL connection

sslCipherSuite String v null

v The name of a CipherSuite

The CipherSuite to use for an SSL

connection

sslFipsRequired1 boolean v false

v true

Whether an SSL connection must

use a CipherSuite that is

supported by the IBM Java JSSE

FIPS provider (IBMJSSEFIPS)

sslPeerName String v null

v A template for distinguished names

For an SSL connection, a template

that is used to check the

distinguished name in the digital

certificate provided by the queue

manager

sslResetCount int v 0

v An integer in the range 0 to 999 999 999

The total number bytes sent and

received by an SSL connection

before the secret keys used by

SSL are renegotiated

subscriptionStore String v MIGRATE

v QUEUE

v BROKER

Determines where WebSphere

MQ JMS stores persistent data

about active subscriptions

targetClientMatching boolean v true

v false

Whether a reply message, sent to

the queue identified by the

JMSReplyTo header field of an

incoming message, has an

MQRFH2 header only if the

incoming message has an

MQRFH2 header

Configuration

664 Using Java

|

||||

|||
|
|
|
|

|||
|
|
|
|
|

|
|
|
|

|||
|
|

|
|
|

|||
|
|
|

|

|
|
|

|
|
|
|

|||
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|
|
|

|||
|
|
|
|
|

|||
|
|

|
|
|

|||
|
|
|
|
|
|
|
|

Table 43. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

tempQPrefix String v ″″ (empty string)

v A prefix that can be used to form the name

of a WebSphere MQ dynamic queue. The

rules for forming the prefix are the same as

those for forming the contents of the

DynamicQName field in a WebSphere MQ object

descriptor, structure MQOD, but the last non

blank character must be an asterisk (*). If the

value of the property is the empty string,

WebSphere MQ JMS uses the value AMQ.*

when creating a dynamic queue.

The prefix that is used to form

the name of a WebSphere MQ

dynamic queue.

transportType String v CLIENT

v BINDINGS

Whether a connection to a queue

manager uses client mode or

bindings mode

username String v null

v A user name

The default user name to use

when creating a connection to a

queue manager

Note:

1. For important information about using the sslFipsRequired property, see “Limitations of the WebSphere MQ

resource adapter” on page 671.

The following example shows a typical set of properties of a ConnectionFactory

object:

channel: SYSTEM.DEF.SVRCONN

hostName: 192.168.0.42

port: 1414

queueManager: ExampleQM

transportType: CLIENT

Table 44 lists the properties that are common to a Queue object and a Topic object.

 Table 44. Properties that are common to a Queue object and a Topic object

Name of property Type Valid values (default value in bold) Description

CCSID String v 1208

v A coded character set identifier supported by

the Java virtual machine (JVM)

The coded character set identifier

for the destination

encoding String v NATIVE

v A string of three characters:

– The first character specifies the representation

of binary integers:

- N denotes normal encoding.

- R denotes reverse encoding.
– The second character specifies the

representation of packed decimal integers:

- N denotes normal encoding.

- R denotes reverse encoding.
– The third character specifies the

representation of floating point numbers:

- N denotes standard IEEE encoding.

- R denotes reverse IEEE encoding.

- 3 denotes zSeries encoding.

NATIVE is equivalent to the string NNN.

The representation of binary

integers, packed decimal integers,

and floating point numbers for

the destination.

Configuration

Appendix F. The WebSphere MQ resource adapter 665

|

||||

|||
|
|
|
|
|
|
|
|
|
|

|
|
|

|||
|
|
|
|

|||
|
|
|
|

|

|
|
|

|
|

|
|
|
|
|

|

||

||||

|||
|
|

|
|

|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

Table 44. Properties that are common to a Queue object and a Topic object (continued)

Name of property Type Valid values (default value in bold) Description

expiry String v APP - The expiry time of a message is

determined by the message producer.

v UNLIM - A message never expires.

v A positive integer representing the expiry time

of a message in milliseconds.

The expiry time of a message sent

to the destination

failIfQuiesce String v true

v false

Whether an attempt to access the

destination fails if the queue

manager is in a quiescing state

persistence String v APP - The persistence of a message is

determined by the message producer.

v QDEF - The persistence of a message is

determined by the DefPersistence attribute of

the WebSphere MQ queue.

v PERS - A message is persistent.

v NON - A message is nonpersistent.

v HIGH - The persistence of a message is

determined by the NonPersistentMessageClass

attribute of the WebSphere MQ queue according

to the explanation in “JMS persistent messages”

on page 365.

The persistence of a message sent

to the destination

priority String v APP - The priority of a message is determined

by the message producer.

v QDEF - The priority of a message is determined

by the DefPriority attribute of the WebSphere

MQ queue.

v An integer in the range 0, lowest priority, to 9,

highest priority.

The priority of a message sent to

the destination

targetClient String v JMS - The target of a message is a JMS

application.

v MQ - The target of a message is a non-JMS

WebSphere MQ application.

Whether the target of a message

sent to the destination is a JMS

application. A message whose

target is a JMS application

contains an MQRFH2 header.

Table 45 lists the properties that are specific to a Queue object.

 Table 45. Properties that are specific to a Queue object

Name of property Type Valid values (default value in bold) Description

baseQueueManagerName String v ″″ (empty string)

v A queue manager name

The name of the queue manager that

owns the underlying WebSphere MQ

queue

baseQueueName String v ″″ (empty string)

v A queue name

The name of the underlying WebSphere

MQ queue

Table 46 lists the properties that are specific to a Topic object.

 Table 46. Properties that are specific to a Topic object

Name of property Type Valid values (default value in bold) Description

baseTopicName String v ″″ (empty string)

v A topic name

The name of the underlying

topic

Configuration

666 Using Java

|

||||

|||
|
|
|
|

|
|

|||
|
|
|
|

|||
|
|
|
|
|
|
|
|
|
|
|

|
|

|||
|
|
|
|
|
|

|
|

|||
|
|
|

|
|
|
|
|
|

|

||

||||

|||
|
|
|
|

|||
|
|
|
|

|

||

||||

|||
|
|
|

Table 46. Properties that are specific to a Topic object (continued)

Name of property Type Valid values (default value in bold) Description

brokerCCDurSubQueue String v SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

v A queue name

The name of the queue from

which a connection consumer

receives durable subscription

messages

brokerDurSubQueue String v SYSTEM.JMS.D.SUBSCRIBER.QUEUE

v A queue name

The name of the queue from

which a durable topic

subscriber receives messages

brokerPubQueue String v Not set

v A queue name

The name of the queue where

published messages are sent

(the stream queue). The value

of this property overrides the

value of the brokerPubQueue

property of the

ConnectionFactory object.

However, if you do not set the

value of this property, the value

of the brokerPubQueue

property of the

ConnectionFactory object is

used instead.

brokerPubQueueManager String v ″″ (empty string)

v A queue manager name

The name of the queue

manager that owns the queue

where messages published on

the topic are sent

brokerVersion String v Not set

v 1

v 2

The version of the broker being

used. The value of this property

overrides the value of the

brokerVersion property of the

ConnectionFactory object.

However, if you do not set the

value of this property, the value

of the brokerVersion property

of the ConnectionFactory object

is used instead.

The following example shows a set of properties of a Queue object:

expiry: UNLIM

persistence: QDEF

baseQueueManagerName: ExampleQM

baseQueueName: SYSTEM.DEFAULT.LOCAL.QUEUE

The following example shows a set of properties of a Topic object:

expiry: UNLIM

persistence: NON

baseTopicName: myTestTopic

The installation verification test (IVT) program

The installation verification test (IVT) program is supplied as an enterprise archive

(EAR) file called wmq.jmsra.ivt.ear. This file is installed with WebSphere MQ Java

in the same directory as the WebSphere MQ resource adapter RAR file,

wmq.jmsra.rar. For information about where these files are installed, see

“Installation of the WebSphere MQ resource adapter” on page 650.

Configuration

Appendix F. The WebSphere MQ resource adapter 667

|

||||

|||
|
|
|
|
|

|||
|
|
|
|

|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||
|
|
|
|
|

|||
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|

|
|

|
|
|
|
|

You must deploy the IVT program on your application server. The IVT program

runs as a servlet and tests that a message can be sent to, and received from, a

WebSphere MQ JMS Queue or Topic object. Optionally, you can use the IVT

program to verify that the WebSphere MQ resource adapter has been correctly

configured to support distributed transactions.

Before you can run the IVT program, you must define the properties of a

ConnectionFactory object and a Queue or Topic object as JCA resources, and ensure

that your application server creates JMS objects from these definitions and binds

them into a JNDI namespace. You can choose the properties of the objects, but the

following set of properties is a simple example:

ConnectionFactory object

channel: SYSTEM.DEF.SVRCONN

hostName: 192.168.0.42

port: 1414

queueManager: ExampleQM

transportType: CLIENT

Queue object

baseQueueManagerName: ExampleQM

baseQueueName: SYSTEM.DEFAULT.LOCAL.QUEUE

By default, the IVT program expects a ConnectionFactory object to be bound in the

JNDI namespace with the name IVTCF and a Queue object to be bound with the

name IVTQueue. You can use different names, and you can use a Topic object

instead of a Queue object as a destination. But if you do, you must enter the

names of the objects on the initial page of the IVT program.

After you have deployed the IVT program, and the application server has created

the JMS objects and bound them into the JNDI namespace, you can start the IVT

program by entering a URL in the following format into your Web browser:

http://app_server_host:port/WMQ_IVT/

where app_server_host is the IP address or host name of the system on which your

application server is running, and port is the number of the TCP port on which the

application server is listening. Here is an example:

http://localhost:9080/WMQ_IVT/

Figure 6 on page 669 shows the initial page of the IVT program.

The installation verification test (IVT) program

668 Using Java

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|

|
|
|

|

|
|

On the initial page, the Connection Factory field already contains the name IVTCF

and the Destination field already contains the name IVTQueue. If you want to run

the IVT program using a ConnnectionFactory object and a Queue or Topic object

that are bound in the JNDI namespace with different names, you must enter the

JNDI names of the objects into these fields, replacing the existing contents.

If you want to verify that the WebSphere MQ resource adapter can support

distributed transactions, select the Transactional Test check box.

The Transactional EJB Name field specifies the JNDI name of the enterprise Java

bean (EJB) to be used for the transactional test. By default, the IVT program

expects the EJB to be bound with the name ejb/ejbs/WMQ_TransactedIVT, and

this name is the initial value of the field. However, application servers use different

naming conventions, and this name might not match the JNDI name used by your

application server. The IVT program attempts to use some common variations of

the default name but, if none of these variations are valid, the IVT program fails

with a javax.naming.NameNotFoundException exception. If this happens, you

must set this field to the JNDI name used by your application server, replacing the

existing contents of the field. To help you work out the JNDI name used by your

application server, the file ejb-jar.xml contains the following definition for the EJB:

<display-name>WMQ_TransactedIVT</display-name>

<enterprise-beans>

 <session id="WMQ_TransactedIVT">

 <ejb-name>WMQ_TransactedIVT</ejb-name>

 <home>ejbs.WMQ_TransactedIVTHome</home>

 <remote>ejbs.WMQ_TransactedIVT</remote>

 <ejb-class>ejbs.WMQ_TransactedIVTBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 </session>

</enterprise-beans>

To run the test, click Run IVT. Figure 7 on page 670 shows the page that is

displayed if the IVT is successful.

Figure 6. The initial page of the IVT program

The installation verification test (IVT) program

Appendix F. The WebSphere MQ resource adapter 669

|

||
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

If the IVT fails, a page similar to that shown in Figure 8 on page 671 is displayed.

To obtain further information about the cause of the failure, click View Stack

Trace.

Figure 7. Page showing the results of a successful IVT

The installation verification test (IVT) program

670 Using Java

|

||
|
|
|
|
|
|

Limitations of the WebSphere MQ resource adapter

The WebSphere MQ resource adapter has the following limitations:

v The WebSphere MQ resource adapter is supported on all WebSphere MQ

Version 6.0 platforms, except z/OS.

v The WebSphere MQ resource adapter does not support direct connections to a

broker. It supports only connections to a WebSphere MQ queue manager in

client or bindings mode.

v The WebSphere MQ resource adapter does not support channel exit programs

that are written in languages other than Java.

v While an application server is running, the value of the sslFipsRequired property

must be true for all JCA resources or false for all JCA resources. This is a

requirement even if the JCA resources are not used concurrently. If the

sslFipsRequired property has different values for different JCA resources,

WebSphere MQ issues the reason code

MQRC_UNSUPPORTED_CIPHER_SUITE, even if an SSL connection is not being

used.

v You cannot specify more than one key store for an application server. If

connections are made to more than one queue manager, all the connections must

use the same key store.

Problem determination

When using the WebSphere MQ resource adapter, most errors cause exceptions to

be thrown, and these exceptions are reported to the user in a manner that depends

on the application server. The resource adapter makes extensive use of linked

exceptions to report problems. Typically, the first exception in a chain is a high

Figure 8. Page showing the results of an IVT that failed

Limitations

Appendix F. The WebSphere MQ resource adapter 671

|

||
|
||
|

|

|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

level description of the error, and subsequent exceptions in the chain provide the

more detailed information that is required to diagnose the problem.

For example, if the IVT program fails to obtain a connection to a WebSphere MQ

queue manager, the following exception might be thrown:

javax.jms.JMSException: MQJCA0001: An exception occurred in the JMS layer.

 See the linked exception for details.

Linked to this exception is a second exception:

javax.jms.JMSException: MQJMS2005: failed to create an MQQueueManager for

 ’localhost:ExampleQM’

This exception is thrown by WebSphere MQ JMS and has a further linked

exception:

com.ibm.mq.MQException: MQJE001: An MQException occurred: Completion Code 2,

 Reason 2059

This final exception indicates the source of the problem. Reason code 2059 is

MQRC_Q_MGR_NOT_AVAILABLE, which indicates that the queue manager

specified in the definition of the ConnectionFactory object might not have been

started.

If the information provided by exceptions is not sufficient to diagnose a problem,

you might need to request a diagnostic trace. For information about how to enable

diagnostic tracing, see “Configuration of the WebSphere MQ resource adapter” on

page 651.

Configuration problems commonly occur in the following areas:

v “Problems in deploying the resource adapter”

v “Problems in deploying MDBs”

v “Problems in creating connections for outbound communication” on page 673

Problems in deploying the resource adapter

Failures in deploying the resource adapter are generally caused by not configuring

JCA resources correctly. For example, a property of the ResourceAdapter object

might not be specified correctly, or the deployment plan required by the

application server might not be written correctly. Failures might also occur when

the application server attempts to create objects from the definitions of JCA

resources and bind the objects into the JNDI namespace, but certain properties are

not specified correctly or the format of a resource definition is incorrect.

The resource adapter can also fail to deploy because it loaded incorrect versions of

JCA or WebSphere MQ JMS classes from JAR files in the class path. This kind of

failure can commonly occur on a system where WebSphere MQ is already

installed. On such a system, the application server might find existing copies of the

WebSphere MQ Java JAR files and load classes from them in preference to the

classes supplied in the WebSphere MQ resource adapter RAR file. If the extended

transactional client JAR file, com.ibm.mqetclient.jar, cannot be loaded when the

resource adapter is deployed, a warning is written to the diagnostic trace, if

enabled, but this does not cause deployment to fail.

Problems in deploying MDBs

Failures might occur when the application server attempts to start message

delivery to an MDB. This kind of failure is typically caused by an error in the

Problem determination

672 Using Java

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|
|
|

|
|
|
|

|

|

|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|

definition of the associated ActivationSpec object, or because the resources

referenced in the definition are not available. For example, the queue manager

might not be running, or a specified queue might not exist.

An ActivationSpec object attempts to validate its properties when the MDB is

deployed, and deployment fails if the ActivationSpec object has any properties that

are mutually exclusive or does not have all the required properties. However, not

all problems associated with the properties of the ActivationSpec object can be

detected at this time.

Deployment might also fail if an MDB is transacted and the connection is in client

mode, but distributed transactions are not available because the extended

transactional client JAR file, com.ibm.mqetclient.jar, is not in the class path.

Failures to start message delivery are reported to the user in a manner that

depends on the application server. Typically, these failures are reported in the logs

and diagnostic trace of the application server. If enabled, the diagnostic trace of the

WebSphere MQ resource adapter also records these failures.

Problems in creating connections for outbound

communication

Failures in outbound communication commonly occur when an application

attempts to look up and use a ConnectionFactory object in a JNDI namespace. A

JNDI exception is thrown if the ConnectionFactory object cannot be found in the

namespace. A ConnectionFactory object might not be found for the following

reasons:

v The application specified an incorrect name for the ConnectionFactory object.

v The application server was not able to create the ConnectionFactory object and

bind it into the namespace. In this case, the startup logs of the application server

usually contain information about the failure.

If the application successfully retrieves the ConnectionFactory object from the JNDI

namespace, an exception might still be thrown when the application calls the

ConnectionFactory.createConnection() method. An exception in this context

indicates that it is not possible to create a connection to a WebSphere MQ queue

manager. Here are some common reasons why an exception might be thrown:

v The queue manager is not available, or cannot be found using the properties of

the ConnectionFactory object. For example, the queue manager is not running,

or the specified host name, IP address, or port number of the queue manager is

incorrect.

v The user is not authorized to connect to the queue manager. For a client

connection, if the createConnection() call does not specify a user name, and the

application server supplies no user identity information, the JVM process ID is

passed to the queue manager as the user name. For the connection to succeed,

this process ID must be a valid user name in the system on which the queue

manager is running.

v The application is a transacted EJB and therefore the connection must be

transacted, but distributed transactions are not available because the extended

transactional client JAR file, com.ibm.mqetclient.jar, is not in the class path.

v The ConnectionFactory object has a property called ccdtURL and a property

called channel. These properties are mutually exclusive.

v On an SSL connection, the SSL related properties, or the SSL related attributes in

the server connection channel definition, have not been specified correctly.

Problem determination

Appendix F. The WebSphere MQ resource adapter 673

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

v The sslFipsRequired property has different values for different JCA resources.

For more information about this limitation, see “Limitations of the WebSphere

MQ resource adapter” on page 671.

The WebSphere MQ resource adapter error and warning messages

Each WebSphere MQ resource adapter error or warning message has an associated

message ID with one of the following formats:

MQJCA0nnn

A generic error message

MQJCA1nnn

An error message that applies to the resource adapter or outbound

communication

MQJCA2nnn

An error message that applies to inbound communication

MQJCA4nnn

A warning message

where nnn is three digits.

Error messages are returned to applications and written to the application server’s

logs. They are also written to the diagnostic trace of the WebSphere MQ resource

adapter, provided diagnostic tracing is turned on.

Warning messages are not returned to applications, but are written to the

application server’s logs and to the diagnostic trace, provided diagnostic tracing is

turned on and the trace level is 3 or higher. For information about the properties

that control diagnostic tracing, see “Configuration of the ResourceAdapter object”

on page 652.

WebSphere MQ resource adapter error messages

Table 47 describes the WebSphere MQ resource adapter error messages.

 Table 47. WebSphere MQ resource adapter error messages

Message ID Message Explanation Action

MQJCA0000 An unknown error occurred. The resource adapter failed to

map an internal reason code to

an error message.

This is an internal error. A

linked exception or diagnostic

trace might provide additional

information.

MQJCA0001 An exception occurred in the

JMS layer. See the linked

exception for details.

A call to WebSphere MQ JMS

caused an exception to be

thrown.

See the linked exception for

details of the failure.

MQJCA0002 An exception occurred in the

WebSphere MQ layer. See the

linked exception for details.

A call to WebSphere MQ base

Java caused an exception to be

thrown.

See the linked exception for

details of the failure.

Problem determination

674 Using Java

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|

|
|
|

|
|
|
|
|

|

|

||

||||

|||
|
|

|
|
|
|

||
|
|

|
|
|

|
|

||
|
|

|
|
|

|
|

Table 47. WebSphere MQ resource adapter error messages (continued)

Message ID Message Explanation Action

MQJCA0003 A JNDI naming exception was

thrown. See the linked exception

for details.

An attempt to look up a JMS

destination in the JNDI

namespace failed. Either the

namespace cannot be accessed,

or a destination with the

supplied name is not bound in

the namespace. This exception

occurs only if the value of the

useJNDI property is true.

See the linked exception for

details of the failure. Check that

the JNDI namespace is available,

that a destination with the

correct name is bound in the

JNDI namespace, and that the

value of the property called

destination is correctly defined.

MQJCA1001 The MDB cannot be deployed.

Inbound messaging is

unavailable.

An attempt was made to deploy

a MessageEndpoint object when

inbound messaging was not

available.

Find the earlier exception that

indicates why inbound

messaging is not available. Use

the information to enable

inbound messaging.

MQJCA1002 Unknown ActivationSpec

implementation supplied to the

resource adapter.

The application server attempted

to use the WebSphere MQ

resource adapter to deploy an

ActivationSpec object that is not

a WebSphere MQ ActivationSpec

object.

This is an application server

error. For information about how

to diagnose and correct the error,

see the documentation for the

application server.

MQJCA1003 The message endpoint has no

onMessage() method.

Deployment failed.

The application server attempted

to use the WebSphere MQ

resource adapter to deploy a

message endpoint that does not

implement the JMS

MessageListener interface.

This is an application server

error. For information about how

to diagnose and correct the error,

see the documentation for the

application server.

MQJCA1004 Distributed transactions are

unavailable.

An attempt was made to use

distributed transactions in an

environment where they are not

available.

Make sure that the WebSphere

MQ extended transactional client

is installed if required, or use a

bindings connection.

MQJCA1005 The JCA classes cannot be

loaded. Deployment failed.

The JCA classes were not found

in the class path.

Make sure that the application

server can find the necessary

JCA JAR files in the class path.

MQJCA1006 An incorrect version of the JCA

classes was found. Deployment

failed.

The JCA classes were found in

the class path but were not the

correct version.

This error can occur if the

application server finds

connector.jar in the class path.

This JAR file is required by

WebSphere MQ Java in a J2SE

environment, but is not required

in a J2EE 1.4 environment.

MQJCA1007 The WebSphere MQ Java classes

cannot be loaded. Deployment

failed.

The WebSphere MQ Java classes

were not found in the class path.

These classes are included in the

RAR file of the WebSphere MQ

resource adapter. Make sure that

the application server can find

the classes.

MQJCA1008 An incorrect version of the

WebSphere MQ Java classes was

found. Deployment failed.

The WebSphere MQ Java classes

were found in the class path but

were not the correct version.

This error can occur if the

application server finds an

earlier version of the WebSphere

MQ Java classes in the class

path. The error can also occur if

you do not configure WebSphere

Application Server to use the

correct version of the WebSphere

MQ Java classes.

Error and warning messages

Appendix F. The WebSphere MQ resource adapter 675

|

||||

||
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

||
|
|

|
|
|
|

|
|
|
|
|

||
|
|

|
|
|
|
|
|

|
|
|
|
|

||
|
|

|
|
|
|
|
|

|
|
|
|
|

||
|
|
|
|
|

|
|
|
|

||
|
|
|
|
|
|

||
|
|

|
|
|

|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|
|

||
|
|

|
|
|

|
|
|
|
|
|
|
|
|

Table 47. WebSphere MQ resource adapter error messages (continued)

Message ID Message Explanation Action

MQJCA1011 Failed to allocate a JMS

connection.

An internal error caused an

attempt to allocate a connection

to fail.

See the linked exception for

details of the failure.

MQJCA1012 Failed to create a JMS connection

factory.

A JCA

ManagedConnectionFactory

object was not able to create a

WebSphere MQ JMS

ConnectionFactory object.

Check the properties of the

ConnectionFactory object.

MQJCA1013 Failed to obtain an XAResource

object.

An attempt to access the

XAResource object of an

XASession object failed.

This is an internal error. A

linked exception or diagnostic

trace might provide additional

information.

MQJCA1014 Transaction begin failed. An attempt to begin a

transaction failed.

This is an internal error. A

linked exception or diagnostic

trace might provide additional

information.

MQJCA1015 Transaction commit failed. An attempt to commit a

transaction failed.

This is an internal error. A

linked exception or diagnostic

trace might provide additional

information.

MQJCA1016 Transaction rollback failed. An attempt to roll back a

transaction failed.

This is an internal error. A

linked exception or diagnostic

trace might provide additional

information.

MQJCA1018 Only one session per connection

allowed.

The application attempted to

create more than one JMS

session on the same JMS

connection. This exception

occurs only if the application is

running in a managed

environment.

Modify the application so that it

creates only one JMS session on

a JMS connection.

MQJCA1019 Connection closed. The application attempted to use

a JMS connection after it had

closed the connection.

Modify the application so that it

closes the JMS connection only

after it has finished using the

connection.

MQJCA1020 Session closed. The application attempted to use

a JMS session after it had closed

the session.

Modify the application so that it

closes the JMS session only after

it has finished using the session.

MQJCA1021 Message producer closed. The application attempted to use

a JMS message producer after it

had closed the message

producer.

Modify the application so that it

closes the JMS message producer

only after it has finished using

the message producer.

MQJCA1022 Message consumer closed. The application attempted to use

a JMS message consumer after it

had closed the message

consumer.

Modify the application so that it

closes the JMS message

consumer only after it has

finished using the message

consumer.

MQJCA1023 Failed to allocate a JMS session. An attempt to create a JMS

session failed.

This is an internal error. A

linked exception or diagnostic

trace might provide additional

information.

Error and warning messages

676 Using Java

|

||||

||
|
|
|
|

|
|

||
|
|
|
|
|
|

|
|

||
|
|
|
|

|
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|
|

||
|
|
|
|
|
|
|
|

|
|
|

|||
|
|

|
|
|
|

|||
|
|

|
|
|

|||
|
|
|

|
|
|
|

|||
|
|
|

|
|
|
|
|

|||
|
|
|
|
|

Table 47. WebSphere MQ resource adapter error messages (continued)

Message ID Message Explanation Action

MQJCA1024 Session must not have a message

listener.

An application attempted to set

a message listener for a JMS

session. This exception occurs

only if the application is running

in a managed environment.

Modify the application so that it

does use a message listener.

MQJCA1025 Message consumer must not

have a message listener.

An application attempted to set

a message listener for a JMS

message consumer. This

exception occurs only if the

application is running in a

managed environment.

Modify the application so that it

does use a message listener.

MQJCA1026 An operation on a domain

specific object was not valid.

A JMS application attempted to

perform an operation on a

domain specific object, but the

operation is valid only on cross

domain objects or in the other

messaging domain.

Make sure that the JMS objects

used by your application are

relevant to the required

messaging domain.

MQJCA1027 Only channel exits written in

Java are supported.

A securityExit, sendExit, or

receiveExit property referred to a

channel exit program that is not

written in Java.

Make sure that the definitions of

all securityExit, sendExit, and

receiveExit properties refer to

channel exit programs written

only in Java.

MQJCA1028 Re-authentication is not

supported.

The application server attempted

to re-authenticate a JMS

connection, but the WebSphere

MQ resource adapter does not

support re-authentication.

In the supplied ra.xml file, the

property called

reauthentication-support has the

value false. Make sure that you

have not changed the value of

this property. If the property still

has the value false, then this

error is an application server

error.

MQJCA2001 Value of the following

ActivationSpec property is not

valid: {0}

A property of an ActivationSpec

object has a value that is not

valid.

Supply a valid value for the

property.

MQJCA2002 destination property must be

defined.

The ActivationSpec property

called destination is not defined.

Define the property called

destination.

MQJCA2003 destinationType property must

be javax.jms.Queue or

javax.jms.Topic.

The destinationType property of

an ActivationSpec object has a

value that is not valid.

Set the value of the

destinationType property to

javax.jms.Queue or

javax.jms.Topic.

MQJCA2004 subscriptionName property must

be defined for a durable

subscription.

An attempt was made to use a

durable subscription, but the

subscriptionName property is

not defined.

Define the subscriptionName

property.

MQJCA2005 destinationType property must

be javax.jms.Topic for durable

subscriptions.

An attempt was made to use

durable subscriptions, but the

value of the destinationType

property is javax.jms.Queue.

Set the value of the

destinationType property to

javax.jms.Topic.

MQJCA2006 brokerCCDurSubQueue property

must be defined for durable

subscriptions.

An attempt was made to use

durable subscriptions, but the

brokerCCDurSubQueue property

is not defined.

Define the

brokerCCDurSubQueue

property.

Error and warning messages

Appendix F. The WebSphere MQ resource adapter 677

|

||||

||
|
|
|
|
|
|

|
|

||
|
|
|
|
|
|
|

|
|

||
|
|
|
|
|
|
|

|
|
|
|

||
|
|
|
|
|

|
|
|
|
|

||
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

||
|
|

|
|
|

|
|

||
|
|
|
|
|

||
|
|

|
|
|

|
|
|
|

||
|
|

|
|
|
|

|
|

||
|
|

|
|
|
|

|
|
|

||
|
|

|
|
|
|

|
|
|

|

WebSphere MQ resource adapter warning messages

Table 48 describes the WebSphere MQ resource adapter warning messages.

 Table 48. WebSphere MQ resource adapter warning messages

Message ID Message Explanation Action

MQJCA4000 An unknown warning occurred. The resource adapter failed to

map an internal reason code to a

warning message.

This is an internal error.

MQJCA4001 Unknown exception message ID:

{0}

The exception builder was asked

to build an exception but does

not understand the requested

type.

This is an internal error.

MQJCA4002 Failed to find

javax.jms.MessageListener class.

Inbound messaging unavailable.

Check the class path.

The javax.jms.MessageListener

class was not found in the class

path. Inbound messaging is not

available, although outbound

messaging might still work.

A problem with the class path

has prevented inbound

messaging from starting. Check

the class path.

MQJCA4003 A recoverable exception occurred

in the JMS layer. See the linked

exception for details.

A call to a JMS method threw an

exception, but this failure does

not directly affect the operation

of the resource adapter.

Investigate the cause of the error.

The exception might indicate

configuration problems, or more

serious issues with the resource

adapter or WebSphere MQ

queue manager.

MQJCA4004 Message delivery to an MDB

failed. See the linked exception

for details.

An attempt to deliver a message

to a Message Endpoint failed.

The message has been rolled

back onto the queue.

You can ignore a single warning

if a subsequent attempt to

deliver the message is successful.

Repeated warnings might

indicate problems with the

resource adapter or the

WebSphere MQ queue manager,

or that a corrupt message is on

the queue.

MQJCA4005 Distributed transactions are not

available in client mode.

The extended transactional client

JAR file, com.ibm.mqetclient.jar,

was not be found in the class

path.

If the extended transactional

client is not required, no action

is necessary.

MQJCA4011 An exception was thrown by

ManagedConnection.destroy().

An exception was thrown while

a managed connection was

closing.

The error does not affect the

operation of the resource adapter

because the managed connection

was no longer being used.

However, the error might

indicate configuration problems,

or more serious issues with the

resource adapter or WebSphere

MQ queue manager.

MQJCA4013 A connection to a queue

manager failed. Check the queue

manager error logs for details.

A connection to a WebSphere

MQ queue manager was broken.

If the reconnectionRetryCount

property is not zero, the resource

adapter attempts to reconnect to

the queue manager. Until the

connection is restarted, the

delivery of messages to any

MDBs supplied by the

connection is suspended.

Error and warning messages

678 Using Java

|

|

||

||||

|||
|
|

|

||
|
|
|
|
|

|

||
|
|
|

|
|
|
|
|

|
|
|
|

||
|
|

|
|
|
|

|
|
|
|
|
|

||
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

||
|
|
|
|
|

|
|
|

||
|
|
|
|

|
|
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|
|
|
|
|

Table 48. WebSphere MQ resource adapter warning messages (continued)

Message ID Message Explanation Action

MQJCA4014 Failed to reconnect one or more

MDBs after a connection failure.

The connection supplying one or

more MDBs failed, and the

resource adapter was not able to

reconnect within the number of

attempts specified by the

reconnectionRetryCount

property.

Make sure that the WebSphere

MQ queue manager is running,

and that any other required

components such as a listener

are also running. Examine the

application server logs to

determine which MDBs have

failed and restart the MDBs

manually.

Error and warning messages

Appendix F. The WebSphere MQ resource adapter 679

|

||||

||
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Error and warning messages

680 Using Java

Appendix G. Notices

This information was developed for products and services offered in the United

States. IBM may not offer the products, services, or features discussed in this

information in other countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

v IBM Director of Licensing

v IBM Corporation

v North Castle Drive

v Armonk, NY 10504-1785

v U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

v IBM World Trade Asia Corporation

v Licensing

v 2-31 Roppongi 3-chome, Minato-ku

v Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1997, 2007 681

|

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

v IBM United Kingdom Laboratories,

v Mail Point 151,

v Hursley Park,

v Winchester,

v Hampshire,

v England

v SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

 AIX CICS CICS/VSE

DB2 Everyplace i5/OS

IBM IMS iSeries

Language Environment Lotus Notes MQSeries

MVS MVS/ESA OS/2

OS/390 OS/400 POWER

S/390 System/370 System/390

WebSphere z/OS zSeries

Notices

682 Using Java

Java and all Java based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Windows and Windows NT are trademarks of Microsoft Corporation in the United

States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices

Appendix G. Notices 683

684 Using Java

Index

A
accessibility 22

JMS Postcard 22

accessing queues and processes 73

administered objects 314

administering JMS objects 39

administration
commands 38

verbs 38

administration tool
configuration file 36

configuring 36

overview 35

properties 36

property mapping 633

starting 35

advantages of Java interface 65

application example 68

Application Server Facilities 399

classes and functions 399

poison messages 402

sample client applications 409

sample code 406

applications
closing 322

JMS 1.1, writing 349

JMS publish/subscribe, writing 327

JMS, writing 313

running 95

unexpected termination 344

ASF (Application Server Facilities) 399

ASFClient1.java 411

ASFClient2.java 412

ASFClient3.java 414

ASFClient4.java 415

ASFClient5.java 416

asynchronous message delivery 322

using JMS 1.1 366

B
behavior in different environments 101

benefits of JMS 3

bindings
connection 4

connection, programming 67

example application 68

verifying 14

bindings transport, choosing 316

body, message 379

broker reports 347

BROKERCCDSUBQ object property 401,

633

BROKERCCDURSUBQ object

property 42

BROKERCCSUBQ object property 42,

401, 633

BROKERCONQ object property 42, 633

BROKERDURSUBQ object property 42,

633

BROKERPUBQ object property 42, 633

BROKERPUBQMGR object property 42,

633

BROKERQMGR object property 42, 633

BROKERSUBQ object property 42, 633

BROKERVER object property 42, 633

building a connection 314

using JMS 1.1 350

bundles, OSGi 647

bytes message 379

BytesMessage
type 320

C
CCDTURL object property 42, 633

CCSID object property 42, 633

certificate revocation list (CRL) 91

CHANGE (administration verb) 38

channel compression
using WebSphere MQ base Java 80

using WebSphere MQ JMS 354

channel exits
not written in Java

using with WebSphere MQ

JMS 372

with WebSphere MQ base Java 79

using
with WebSphere MQ base Java 77

with WebSphere MQ JMS 372

using a sequence
with WebSphere MQ base Java 79

with WebSphere MQ JMS 372

with SSL 77

written in Java 77

CHANNEL object property 42, 633

choosing transport 316

CICS Transaction Server
running applications 12

CipherSpecs supported by WebSphere

MQ 645

CipherSuites 645

CL3Export.jar 7

CL3Nonexport.jar 7

classes, Application Server Facilities 399

classes, core 97

restrictions and variations 98, 102

classes, JMS 417

classes, WebSphere MQ classes for

Java 103

classpath
settings 8

CLEANUP object property 42, 633

cleanup utility
consumer 367

subscriber 344

CLEANUPINT object property 42, 633

client channel definition table
using WebSphere MQ base Java 70

using WebSphere MQ JMS 351

client channel definition table (continued)
using with WebSphere MQ

Explorer 72

client properties 57

client transport, choosing 316

CLIENTID object property 42, 633

clients
configuring queue manager 13

connection 4

programming 67

verifying 14

CLONESUPP object property 42, 633

closing
applications 322

JMS resources in publish/subscribe

mode 333

resources 322

resources using JMS 1.1 370

com.ibm.mq.jar 7

com.ibm.mqjms.jar 7

combinations, valid, of objects and

properties 50

commands, administration 38

COMPHDR object property 42, 633

COMPMSG object property 42, 633

configuration file, for administration

tool 36

configuring
environment variables 8

for publish/subscribe 23

Java 2 Security Manager 11

JTA/JDBC coordination
other platforms 87

Windows 87

queue manager for clients 13

the administration tool 36

unsupported

InitialContextFactory 37

WebSphere MQ resource adapter
inbound communication 655

introduction 651

outbound communication 661

ResourceAdapter object 652

your classpath 8

connecting to a publish/subscribe

broker 639

connecting to a queue manager 70

connecting to WebSphere Business

Integration Event Broker
configuring a client for a multicast

connection 643

configuring a client for connection

through a proxy server 644

configuring a client for HTTP

tunnelling 643

configuring a client for SSL

authentication 642

configuring the broker for a direct

connection 640

© Copyright IBM Corp. 1997, 2007 685

connecting to WebSphere Business

Integration Message Broker
configuring a client for a multicast

connection 643

configuring a client for connection

through a proxy server 644

configuring a client for HTTP

tunnelling 643

configuring a client for SSL

authentication 642

configuring the broker for a direct

connection 640

connecting to WebSphere MQ Event

Broker 639

connecting to WebSphere MQ Integrator

V2 639

connection
building 314

building using JMS 1.1 350

creating 315

interface 313

options 3

starting 315

WebSphere MQ, losing 344

connection pooling 81

example 82

connection type, defining 67

ConnectionConsumer class 399

connector.jar 7

CONNOPT object property 42, 633

CONNTAG object property 42, 633

consumer cleanup utility 367

converting the log file 35

COPY (administration verb) 38

core classes 97

restrictions and variations 98, 102

createQueueSession method 317

createReceiver method 321

createSender method 317

creating
a connection 315

factories at runtime 315

JMS objects 41

Topics at runtime 337

D
default connection pool 81

multiple components 83

DEFINE (administration verb) 38

defining connection type 67

defining transport 316

DELETE (administration verb) 38

dependencies, property 57

DESCRIPTION object property 42, 633

destinations 355

dhbcore.jar 7

differences due to environment 101

DIRECTAUTH object property 42, 633

directories, installation 8

disconnecting from a queue manager 70

DISPLAY (administration verb) 38

disposition options, message 403

distribution lists
platform dependency 100

durable subscribers 338

E
ENCODING object property 42, 58, 633

END (administration verb) 38

environment dependencies 97

functions not with all platforms 100

distribution lists 100

MQGetMessageOptions fields 100

MQMD fields 101

MQPutMessageOptions fields 101

MQQueueManager begin()

method 100

MQQueueManager

constructor 100

restrictions and variations 98

MQGMO_* values 98

MQPMO_* values 99

MQPMRF_* values 98

MQRO_* values 99

z/OS 99

environment differences 101

environment variables 8

error
conditions when creating an

object 60

conditions when using an object 61

handling 75

logging 34

recovery, IVT 29

recovery, PSIVT 33

runtime, handling 323

runtime, handling using JMS 1.1 370

error messages
WebSphere MQ base Java 16

WebSphere MQ resource adapter 674

example application 68

exception listener 323

exception report options, message 403

exceptions
JMS 323

JMS 1.1 370

WebSphere MQ 323

exit string properties 58

EXPIRY object property 42, 633

extra function provided over WebSphere

MQ Java 3

F
factories, creating at runtime 315

FAILIFQUIESCE object property 42, 633

formatLog utility 35, 637

fscontext.jar 7

function, extra provided over WebSphere

MQ Java 3

functions, Application Server

Facilities 399

G
getting started 3

H
handling

errors 75

handling (continued)
JMS runtime errors 323

messages 74

runtime errors using JMS 1.1 370

headers, message 379

HOSTNAME object property 42, 633

I
import statements 331

INITIAL_CONTEXT_FACTORY

property 36, 37

inquire and set 76

installation
directories 8

Installation Verification Test program

for publish/subscribe (PSIVT) 30

IVT error recovery 29

PSIVT error recovery 33

verifying 17

installation verification test (IVT)

program
WebSphere MQ JMS

point-to-point 26

WebSphere MQ resource adapter 667

installing
WebSphere MQ classes for Java 7

WebSphere MQ classes for Java

Message Service 7

WebSphere MQ resource adapter 650

interface, programming 65

interfaces
JMS 313, 417

WebSphere MQ 313

introduction
for programmers 65

WebSphere MQ classes for Java 3

WebSphere MQ classes for Java

Message Service 3

IVT (installation verification test

program)
WebSphere MQ resource adapter 667

IVT (installation verification test)

program
WebSphere MQ JMS

point-to-point 26

IVTRun utility 27, 29, 32, 637

IVTSetup utility 28, 637

IVTTidy utility 29, 637

J
J2EE Connector Architecture (JCA)

WebSphere MQ base Java 82

WebSphere MQ resource adapter 649

JAAS (Java Authentication and

Authorization Service) 82

jar files 7

Java 2 Platform, Enterprise Edition

(J2EE) 82

Java 2 Security Manager, running

applications under 11

Java Authentication and Authorization

Service (JAAS) 82

686 Using Java

Java classes
See classes, WebSphere MQ classes for

Java

Java interface, advantages 65

JCA (J2EE Connector Architecture)
WebSphere MQ base Java 82

WebSphere MQ resource adapter 649

JDBC coordination 87

JMS
administered objects 314

applications, writing 313

benefits 3

classes 417

exception listener 323

exceptions 323

interfaces 313, 417

introduction 3

mapping of fields at send or

publish 390

mapping with MQMD 387

message types 320

messages 379

persistent 365

model 313

objects for publish/subscribe 331

objects, administering 39

objects, creating 41

objects, properties 42

persistent messages 365

publish/subscribe applications,

writing 327

resources, closing in

publish/subscribe mode 333

JMS 1.1
applications, writing 349

exceptions 370

model 349

JMS Postcard
accessibility 22

changing appearance 22

changing browser for help 22

default configuration 20

font and color settings 22

how it works 21

interoperability with other Postcard

applications 22

receiving messages 21

sending a postcard 18

sending messages 21

sign-on 18

advanced options 18

starting 17

tidying up after use 22

using with one queue manager 19

using with two queue managers 19

jms.jar 7

JMSAdmin configuration file 36, 37

JMSAdmin utility 35, 637

JMSAdmin.config file 35

JMSCorrelationID header field 379

JNDI
retrieving 314

security considerations 37

jndi.jar 7

JSSE
for SSL support 90, 323, 373

JSSE (continued)
making changes to the keystore or

truststore
using WebSphere MQ base

Java 94

using WebSphere MQ JMS 377

JTA/JDBC coordination
configuring

other platforms 87

Windows 87

introduction 87

known problems 89

limitations 89

switch library 87

using 88

jta.jar 7

K
keystore, making changes

using WebSphere MQ base Java 94

using WebSphere MQ JMS 377

L
LDAP naming considerations 41

LDAP server 28

ldap.jar 7

libraries, WebSphere MQ Java 10

listener, JMS exception 323

Load1.java 409

Load2.java 412

local publications, suppressing 339

LOCALADDRESS object property 42,

633

log file
converting 35

logging errors 34

M
manipulating subcontexts 39

map message 379

MapMessage
type 320

MAPNAMESTYLE object property 42,

633

mapping properties between admin. tool

and programs 633

MAXBUFFSIZE object property 42, 633

mcd folder 641

message
body 379

delivery, asynchronous 322

delivery, asynchronous using JMS

1.1 366

error
WebSphere MQ base Java 16

WebSphere MQ resource

adapter 674

handling 74

headers 379

message body 396

properties 379

selectors 321, 379

selectors and SQL 380

message (continued)
selectors in publish/subscribe

mode 338

types 320, 379

MessageConsumer interface 313

MessageListenerFactory.java 408

MessageProducer interface 313

MessageProducer object 317

messages
JMS 379

mapping between JMS and

WebSphere MQ 383

persistent, JMS 365

poison
Application Server Facilities 402

WebSphere MQ resource

adapter 661

publishing 333

receiving 321

receiving in publish/subscribe

mode 333

receiving using JMS 1.1 358

selecting 321, 379

sending 317

sending using JMS 1.1 357

model
JMS 313

JMS 1.1 349

MOVE (administration verb) 38

MQCNO_FASTPATH_BINDING
variations by environment 99

MQConnectionConsumer class 399

MQEnvironment 67, 69

MQGetMessageOptions fields
platform dependency 100

MQGMO_* values
variations by environment 98

MQIVP
listing 15

sample application 14

tracing 16

mqjmsapi.jar 8

MQMD (MQSeries Message

Descriptor) 383

MQMD fields
platform dependency 101

MQMessage 74

MQPMO_* values
variations by environment 99

MQPMRF_* values
variations by environment 98

MQPutMessageOptions fields
platform dependency 101

MQQueue 74

for verification 28

MQQueueConnectionFactory
for verification 28

object 314

MQQueueManager 73

MQQueueManager begin() method
platform dependency 100

MQQueueManager constructor
platform dependency 100

MQRFH2 header 384

mcd folder of the 641

MQRO_* values
variations by environment 99

Index 687

MQSession class 399

MQTopicConnectionFactory
object 314

MSGBATCHSZ object property 42, 633

MSGRETENTION object property 42,

633

MSGSELECTION object property 42,

633

MULTICAST object property 42, 633

multithreaded programs 76

MyServerSession.java 407

MyServerSessionPool.java 407

N
NAME_PREFIX property 37

NAME_READABILITY_MARKER

property 37

names, of Topics 335

naming considerations, LDAP 41

non-durable subscribers 338

O
object creation, error conditions 60

object use, error conditions 61

ObjectMessage
type 320

objects
administered 314

JMS, administering 39

JMS, creating 41

JMS, properties 42

message 379

retrieving from JNDI 314

objects and properties, valid

combinations 50

obtaining a session 317

using JMS 1.1 355

operations on queue managers 69

OPTIMISTICPUBLICATION object

property 42, 633

options
connection 3

subscribers 338

OSGi support 647

OUTCOMENOTIFICATION object

property 42, 633

overview 3

P
PERSISTENCE object property 42, 633

persistent messages, JMS 365

platform differences 101

point-to-point installation verification 26

poison messages
Application Server Facilities 402

WebSphere MQ resource adapter 661

POLLINGINT object property 42, 633

PORT object property 42, 633

ports, specifying a range for client

connections
WebSphere MQ base Java 72

WebSphere MQ JMS 316

WebSphere MQ JMS 1.1 353

postcard.ini 22

postcard.jar 7

prerequisite software 5

PRIORITY object property 42, 633

problems, solving
WebSphere MQ base Java 15

WebSphere MQ JMS
general 33

publish/subscribe 343

WebSphere MQ resource adapter 671

PROCESSDURATION object

property 42, 633

processes, accessing 73

programmers, introduction 65

programming
bindings connection 67

client connections 67

connections 67

multithreaded 76

tracing 95

writing 67

programming interface 65

programs
JMS 1.1, writing 349

JMS publish/subscribe, writing 327

JMS, writing 313

running 95

tracing 33

properties
client 57

dependencies 57

for a direct connection to a broker 58

for Secure Sockets Layer 59

mapping between admin. tool and

programs 633

message 379

of exit strings 58

of JMS objects 42

queue, setting 318

WebSphere MQ resource adapter
ActivationSpec object 655

ConnectionFactory object 662

Queue or Topic object 665

ResourceAdapter object 652

properties and objects, valid

combinations 50

PROVIDER_PASSWORD property 37

PROVIDER_URL property 36

PROVIDER_USERDN property 37

providerutil.jar 7

PROXYHOSTNAME object property 42,

633

PROXYPORT object property 42, 633

PSIVT (Installation Verification Test

program) 30

PSIVTRun utility 30, 637

PSReportDump application 347

PUBACKINT object property 42, 633

publications (publish/subscribe), local

suppressing 339

publish/subscribe
installation verification test program

(PSIVT) 30

setup for 23

publish/subscribe broker, connecting

to 639

publishing messages 333

Q
QMANAGER object property 42, 633

Queue
object 314

queue manager
configuring for clients 13

connecting to 70

disconnecting from 70

operations on 69

QUEUE object property 42, 633

queue properties
setting 318

setting with set methods 319

queues, accessing 73

R
range of ports, specifying for client

connections
WebSphere MQ base Java 72

WebSphere MQ JMS 316

WebSphere MQ JMS 1.1 353

RECEIVEISOLATION object

property 42, 633

receiving
messages 321

messages in publish/subscribe

mode 333

messages using JMS 1.1 358

RECEXIT object property 42, 633

RECEXITINIT object property 42, 633

report options, message 403

reports, broker 347

RESCANINT object property 42, 633

resource adapter, WebSphere MQ 649

resources
closing 322

closing using JMS 1.1 370

restrictions and variations
to core classes 102

retrieving objects from JNDI 314

rmm.jar 7

runjms utility 637

running
applications under CICS Transaction

Server 12

IVT program
WebSphere MQ JMS

point-to-point 26

WebSphere MQ resource

adapter 667

the PSIVT 30

WebSphere MQ classes for Java

programs 95

runtime
creating factories 315

creating Topics 337

errors, handling 323

errors, handling using JMS 1.1 370

S
sample application

bindings mode 68

publish/subscribe 329

tracing 16

688 Using Java

sample application (continued)
using Application Server

Facilities 409

using to verify 14

sample code
ServerSession 406

ServerSessionPool 406

scripts provided with WebSphere MQ

classes for Java Message Service 637

SECEXIT object property 42, 633

SECEXITINIT object property 42, 633

Secure Sockets Layer 77, 323

certificate revocation list (CRL) 91

CipherSpecs 90

CipherSpecs supported by WebSphere

MQ 645

CipherSuites 90, 645

distinguished names (DN) 91

enabling 90

handled by JSSE 90, 323, 373

introduction 90, 323, 373

properties 59

SSLCERTSTORES 325, 375

SSLCIPHERSUITE 324, 374

SSLFIPSREQUIRED 374

SSLPEERNAME 324, 375

SSLRESETCOUNT 376

renegotiating the secret key 93

sslCertStores field 93

sslCipherSuite field 90

sslFipsRequired field 91

sslPeerName field 91

sslResetCount field 93

sslSocketFactory field 94

using JMS 1.1 373

with channel exits 77

security considerations, JNDI 37

Security policy definition file, editing 11

SECURITY_AUTHENTICATION

property 36, 37

selecting a subset of messages 321, 379

selectors
message 321, 379

message in publish/subscribe

mode 338

message, and SQL 380

SENDEXIT object property 42, 633

SENDEXITINIT object property 42, 633

sending
messages 317

messages using JMS 1.1 357

ServerSession sample code 406

ServerSessionPool sample code 406

session
obtaining 317

obtaining using JMS 1.1 355

Session class 399

Session interface 313

set and inquire 76

set methods
using to set queue properties 319

setjmsenv utility 10, 637

setJMSType method 641

setting
queue properties 318

queue properties with set

methods 319

shutting down applications 322

software, prerequisites 5

solving problems
WebSphere MQ base Java 15

WebSphere MQ JMS
general 33

publish/subscribe 343

WebSphere MQ resource adapter 671

SPARSESUBS object property 42, 633

SQL for message selectors 380

SSL 77

sslCertStores field 93

SSLCERTSTORES object property 325,

375

sslCipherSuite field 90

SSLCIPHERSUITE object property 42,

59, 324, 374, 633

SSLCRL object property 42, 59, 633

sslFipsRequired field 91

SSLFIPSREQUIRED object property 42,

59, 374, 633

sslPeerName field 91

SSLPEERNAME object property 42, 59,

324, 375, 633

sslResetCount field 93

SSLRESETCOUNT object property 42,

60, 376, 633

sslSocketFactory field 94

starting a connection 315

starting the administration tool 35

STATREFRESHINT object property 42,

633

stream message 379

StreamMessage
type 320

subcontexts, manipulating 39

subscriber cleanup utility 344

subscriber options 338

subscriptions, receiving 333

subset of messages, selecting 321, 379

SUBSTORE object property 42, 633

Sun Web site 3

suppressing local publications 339

switch library for JTA/JDBC

coordination 87

SYNCPOINTALLGETS object

property 42, 633

T
TARGCLIENT object property 42, 633

TARGCLIENTMATCHING object

property 42, 633

TCP/IP
client verifying 14

connection, programming 67

TEMPMODEL object property 42, 633

TEMPQPREFIX object property 42, 633

termination, unexpected 344

testing WebSphere MQ classes for Java

programs 95

text message 379

TextMessage
type 320

tokens, connection pooling 81

Topic
interface 331

Topic (continued)
names 335

names, wildcards 335

object 314

TOPIC object property 42

TopicConnection 331

TopicConnectionFactory 331

TopicLoad.java 413

TopicPublisher 333

TopicSession 331

TopicSubscriber 333

tracing
programs 95

the sample application 16

WebSphere MQ for Java Message

Service 33

WebSphere MQ resource adapter 652

TRANSPORT object property 42, 633

transport, choosing 316

truststore, making changes
using WebSphere MQ base Java 94

using WebSphere MQ JMS 377

types of JMS message 320, 379

typical classpath settings 8

U
unexpected application termination 344

uniform resource identifier (URI) for

queue properties 318

URI for queue properties 318

USE_INITIAL_DIR_CONTEXT

property 37

USECONNPOOLING object

property 633

USECONPOOLING object property 42

using
WebSphere MQ base Java 13

utilities provided with WebSphere MQ

classes for Java Message Service 637

V
valid combinations of objects and

properties 50

verbs, WebSphere MQ supported 65

verification
with JNDI (point-to-point) 28

with JNDI (publish/subscribe) 32

without JNDI (point-to-point) 27

without JNDI (publish/subscribe) 30

verifying
TCP/IP clients 14

with the sample application 14

your installation 17

versions of software required 5

VisiBroker
using 3

W
warning messages, WebSphere MQ

resource adapter 678

WebSphere Application Server, V6.0 651

Index 689

WebSphere Business Integration Event

Broker, connecting to
configuring a client for a multicast

connection 643

configuring a client for connection

through a proxy server 644

configuring a client for HTTP

tunnelling 643

configuring a client for SSL

authentication 642

configuring the broker for a direct

connection 640

WebSphere Business Integration Message

Broker, connecting to
configuring a client for a multicast

connection 643

configuring a client for connection

through a proxy server 644

configuring a client for HTTP

tunnelling 643

configuring a client for SSL

authentication 642

configuring the broker for a direct

connection 640

WebSphere MQ
connection, losing 344

exceptions 323

interfaces 313

messages 383

WebSphere MQ classes for Java

classes 103

WebSphere MQ Event Broker
connecting as publish/subscribe

broker 639

WebSphere MQ Integrator V2
connecting as publish/subscribe

broker 639

transforming and routing

messages 641

WebSphere MQ Message Descriptor

(MQMD) 383

mapping with JMS 387

WebSphere MQ Publish/Subscribe 23

WebSphere MQ resource adapter
configuration

inbound communication 655

introduction 651

outbound communication 661

ResourceAdapter object 652

error and warning messages 674

installation 650

installation verification test (IVT)

program 667

introduction 649

limitations 671

other required documentation 649

poison messages 661

problem determination
creating connections for outbound

communication 673

deploying message driven beans

(MDBs) 672

deploying the resource

adapter 672

introduction 671

properties
ActivationSpec object 655

WebSphere MQ resource adapter

(continued)
properties (continued)

ConnectionFactory object 662

Queue or Topic object 665

ResourceAdapter object 652

tracing, diagnostic 652

WebSphere Application Server, V6.0,

using with 651

WebSphere MQ supported verbs 65

wildcards in topic names 335

writing
channel exits in Java 77

JMS 1.1 applications 349

JMS applications 313

JMS publish/subscribe

applications 327

programs 67

Z
z/OS

differences with 99

690 Using Java

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the

methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on

the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which

the information is presented.

To make comments about the functions of IBM products or systems, talk to your

IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate, without incurring

any obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

SO21 2JN

United Kingdom

v By fax:

– From outside the U.K., after your international access code use 44-1962-816151

– From within the U.K., use 01962-816151
v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink™: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1997, 2007 691

692 Using Java

����

SC34-6591-02

Sp
in
e
in
fo
rm
at
io
n:

�
�

�

W
eb

Sp
he

re

M

Q

U
si

ng

Ja

va

Ve
rs

io
n

6.
0

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Terms used in this book

	Summary of changes
	Changes for this edition (SC34-6591-02)
	Changes for the previous edition (SC34-6591-01)

	Part 1. Guidance for users
	Chapter 1. Getting started
	What are WebSphere MQ classes for Java?
	What are WebSphere MQ classes for Java Message Service?
	Connection options
	Client connection
	Bindings connection

	Prerequisites

	Chapter 2. Installation and configuration
	What is installed
	Installation directories
	Environment variables
	The WebSphere MQ Java libraries
	STEPLIB configuration on z/OS

	Running WebSphere MQ Java applications under the Java 2 Security Manager
	Running WebSphere MQ base Java applications under CICS Transaction Server

	Chapter 3. Using WebSphere MQ classes for Java (WebSphere MQ base Java)
	Configuring your queue manager to accept client connections
	TCP/IP client

	Verifying with the sample application
	Solving WebSphere MQ base Java problems
	Tracing the sample application
	Error messages

	Chapter 4. Using WebSphere MQ classes for Java Message Service (WebSphere MQ JMS)
	JMS Postcard
	Setting up JMS Postcard
	Starting
	Sign-on
	Sending a postcard
	JMS Postcard configuration
	How JMS Postcard works

	Post installation setup
	Additional setup for publish/subscribe mode
	Queues that require authorization for non-privileged users

	Running the point-to-point IVT
	Point-to-point verification without JNDI
	Point-to-point verification with JNDI
	IVT error recovery

	The publish/subscribe installation verification test
	Publish/subscribe verification without JNDI
	Publish/subscribe verification with JNDI
	PSIVT error recovery

	Solving problems
	Tracing programs
	Logging

	Chapter 5. Using the WebSphere MQ JMS administration tool
	Invoking the administration tool
	Configuration
	Using an unlisted InitialContextFactory
	Security

	Administration commands
	Manipulating subcontexts
	Administering JMS objects
	Object types
	Verbs used with JMS objects
	Creating objects
	Properties
	Property dependencies
	The ENCODING property
	SSL properties
	Sample error conditions

	Part 2. Programming with WebSphere MQ base Java
	Chapter 6. Introduction for programmers
	Why should I use the Java interface?
	The WebSphere MQ classes for Java interface

	Chapter 7. Writing WebSphere MQ base Java applications
	Connection differences
	Client connections
	Bindings mode
	Defining which connection to use

	Example application
	Operations on queue managers
	Setting up the WebSphere MQ environment
	Connecting to a queue manager
	Using a client channel definition table
	Specifying a range of ports for client connections

	Accessing queues and processes
	Handling messages
	Handling errors
	Getting and setting attribute values
	Multithreaded programs
	Using channel exits
	Using channel exits not written in Java
	Using a sequence of channel send or receive exits

	Channel compression
	Connection pooling
	Controlling the default connection pool
	The default connection pool and multiple components
	Supplying a different connection pool
	Supplying your own ConnectionManager

	JTA/JDBC coordination using WebSphere MQ base Java
	Configuring JTA/JDBC coordination
	Using JTA/JDBC coordination
	Known problems and limitations with JTA/JDBC coordination

	Secure Sockets Layer (SSL) support
	Enabling SSL
	Using the distinguished name of the queue manager
	Using certificate revocation lists
	Renegotiating the secret key used for encryption
	Supplying a customized SSLSocketFactory
	Making changes to the JSSE keystore or truststore
	Error handling when using SSL

	Running WebSphere MQ base Java applications
	Tracing WebSphere MQ base Java programs

	Chapter 8. Environment-dependent behavior
	Core details
	Restrictions and variations for core classes
	MQGMO_* values
	MQPMRF_* values
	MQPMO_* values
	MQCNO_FASTPATH_BINDING
	MQRO_* values
	Miscellaneous differences with z/OS

	Features outside the core
	MQQueueManager constructor option
	MQQueueManager.begin() method
	MQGetMessageOptions fields
	Distribution lists
	MQPutMessageOptions fields
	MQMD fields

	Restrictions under CICS Transaction Server

	Part 3. WebSphere MQ base Java API reference
	Chapter 9. Package com.ibm.mq
	MQChannelDefinition
	Fields

	MQChannelExit
	Fields
	Methods

	MQConnectionSecurityParameters
	Methods

	MQDistributionList
	Constructors
	Methods

	MQDistributionListItem
	Constructors
	Fields
	Methods

	MQEnvironment
	Fields
	Methods

	MQExitChain
	Constructors
	Methods

	MQExternalReceiveExit
	Constructors
	Methods

	MQExternalSecurityExit
	Constructors
	Methods

	MQExternalSendExit
	Constructors
	Methods

	MQExternalUserExit
	Methods

	MQGetMessageOptions
	Constructors
	Fields
	Methods

	MQJavaLevel
	MQManagedObject
	Fields
	Methods

	MQMD
	Fields
	Methods

	MQMessage
	Constructors
	Methods

	MQPoolToken
	Constructors

	MQProcess
	Constructors
	Methods

	MQPutMessageOptions
	Constructors
	Fields
	Methods

	MQQueue
	Constructors
	Methods

	MQQueueManager
	Constructors
	Fields
	Methods

	MQReceiveExitChain
	Constructors
	Methods

	MQSendExitChain
	Constructors
	Methods

	MQSimpleConnectionManager
	Constructors
	Fields
	Methods

	MQC
	Fields

	MQReceiveExit
	Methods

	MQSecurityExit
	Methods

	MQSendExit
	Methods

	MQException
	Constructors
	Fields
	Methods

	Part 4. Programming with WebSphere MQ JMS
	Chapter 10. Writing WebSphere MQ JMS applications
	The JMS model
	Building a connection
	Retrieving the factory from JNDI
	Using the factory to create a connection
	Creating factories at runtime
	Choosing client or bindings transport
	Specifying a range of ports for client connections

	Obtaining a session
	Sending a message
	Setting properties with the set method
	Message types

	Receiving a message
	Message selectors
	Asynchronous delivery

	Closing down
	Java Virtual Machine hangs at shutdown

	Handling errors
	Exception listener

	Using Secure Sockets Layer (SSL)
	SSL administrative properties

	Chapter 11. Writing WebSphere MQ JMS publish/subscribe applications
	Introduction
	Getting started with WebSphere MQ JMS and publish/subscribe
	Choosing a broker
	Setting up the broker to run WebSphere MQ JMS

	Writing a simple publish/subscribe application connecting through WebSphere MQ
	Import required packages
	Obtain or create JMS objects
	Publish messages
	Receive subscriptions
	Close down unwanted resources
	TopicConnectionFactory administered objects
	Topic administered objects

	Using topics
	Topic names
	Creating topics at runtime

	Subscriber options
	Creating non-durable subscribers
	Creating durable subscribers
	Using message selectors
	Suppressing local publications
	Combining the subscriber options
	Configuring the base subscriber queue
	Subscription stores

	Solving publish/subscribe problems
	Incomplete publish/subscribe close down
	Subscriber cleanup utility
	Manual cleanup
	Cleanup from within a program
	Handling broker reports
	Other considerations

	Chapter 12. Writing WebSphere MQ JMS 1.1 applications
	The JMS 1.1 model
	Building a connection
	Retrieving a connection factory from JNDI
	Creating a connection factory at runtime
	Using a connection factory to create a connection
	Starting a connection
	Using a client channel definition table
	Specifying a range of ports for client connections
	Channel compression

	Obtaining a session
	Destinations
	Sending a message
	Message types

	Receiving a message
	Creating durable topic subscribers
	Message selectors
	Suppressing local publications
	Configuring the consumer queue
	Subscription stores

	JMS persistent messages
	Asynchronous delivery
	Consumer cleanup utility for the publish/subscribe domain
	Manual cleanup
	Cleanup from within a program

	Closing down
	Java Virtual Machine hangs at shutdown

	Handling errors
	Exception listener
	Handling broker reports
	Other considerations

	Using channel exits
	Using Secure Sockets Layer (SSL)
	SSL administrative properties

	Chapter 13. JMS messages
	Message selectors
	Mapping JMS messages onto WebSphere MQ messages
	The MQRFH2 header
	JMS fields and properties with corresponding MQMD fields
	Mapping JMS fields onto WebSphere MQ fields (outgoing messages)
	Mapping WebSphere MQ fields onto JMS fields (incoming messages)
	Mapping JMS to a native WebSphere MQ application
	Message body

	Chapter 14. WebSphere MQ JMS Application Server Facilities
	ASF classes and functions
	ConnectionConsumer
	Planning an application
	Error handling

	Application server sample code
	MyServerSession.java
	MyServerSessionPool.java
	MessageListenerFactory.java

	Examples of ASF use
	Load1.java
	CountingMessageListenerFactory.java
	ASFClient1.java
	Load2.java
	LoggingMessageListenerFactory.java
	ASFClient2.java
	TopicLoad.java
	ASFClient3.java
	ASFClient4.java
	ASFClient5.java

	Part 5. WebSphere MQ JMS API reference
	Chapter 15. Package com.ibm.jms
	JMSBytesMessage
	Methods

	JMSMapMessage
	Methods

	JMSMessage
	Methods

	JMSObjectMessage
	Methods

	JMSStreamMessage
	Methods

	JMSTextMessage
	Methods

	Chapter 16. Package com.ibm.mq.jms
	Cleanup
	Constructors
	Methods

	MQConnection
	Methods

	MQConnectionFactory
	Constructors
	Methods

	MQConnectionMetaData
	Constructors
	Methods

	MQDestination
	Methods

	MQJMSLevel
	Constructors

	MQMessageConsumer
	Methods

	MQMessageProducer
	Methods

	MQQueue
	Constructors
	Methods

	MQQueueBrowser
	Methods

	MQQueueConnection
	Methods

	MQQueueConnectionFactory
	Constructors
	Methods

	MQQueueEnumeration
	Methods

	MQQueueReceiver
	Methods

	MQQueueSender
	Methods

	MQQueueSession
	Methods

	MQSession
	Methods

	MQTemporaryQueue
	Methods

	MQTemporaryTopic
	Methods

	MQTopic
	Methods

	MQTopicConnection
	Methods

	MQTopicConnectionFactory
	Constructors
	Methods

	MQTopicPublisher
	Methods

	MQTopicSession
	Methods

	MQTopicSubscriber
	Methods

	MQXAConnection
	Methods

	MQXAConnectionFactory
	Constructors
	Methods

	MQXAQueueConnection
	Methods

	MQXAQueueConnectionFactory
	Constructors
	Methods

	MQXAQueueSession
	Constructors
	Methods

	MQXASession
	Methods

	MQXATopicConnection
	Methods

	MQXATopicConnectionFactory
	Constructors
	Methods

	MQXATopicSession
	Methods

	JMSC
	Fields

	BrokerCommandFailedException
	Methods

	FieldNameException
	FieldTypeException
	IntErrorException
	ISSLException
	JMSInvalidParameterException
	JMSListenerSetException
	JMSMessageQueueOverflowException
	JMSNotActiveException
	JMSNotSupportedException
	JMSParameterIsNullException
	MulticastHeartbeatTimeoutException
	MulticastPacketLossException
	NoBrokerResponseException
	SyntaxException

	Chapter 17. Package com.ibm.mq.jms.services
	MQJMS_Messages
	Fields

	Part 6. Appendixes
	Appendix A. Mapping between administration tool properties and programmable properties
	Appendix B. Scripts provided with WebSphere MQ classes for Java Message Service
	Appendix C. Connecting to other products
	Setting up a publish/subscribe broker
	Transformation and routing with WebSphere MQ Integrator V2
	Configuring WebSphere MQ JMS for a direct connection to WebSphere Business Integration Event Broker, Version 5.0 or later and WebSphere Business Integration Message Broker, Version 5.0 or later
	Secure Sockets Layer (SSL) authentication
	Multicast
	HTTP tunnelling
	Connect via proxy

	Appendix D. SSL CipherSpecs and CipherSuites
	Appendix E. Support for OSGi
	Appendix F. The WebSphere MQ resource adapter
	Other required documentation
	Installation of the WebSphere MQ resource adapter
	WebSphere Application Server, Version 6.0 and the WebSphere MQ resource adapter

	Configuration of the WebSphere MQ resource adapter
	Configuration of the ResourceAdapter object
	Configuration for inbound communication
	Configuration for outbound communication

	The installation verification test (IVT) program
	Limitations of the WebSphere MQ resource adapter
	Problem determination
	Problems in deploying the resource adapter
	Problems in deploying MDBs
	Problems in creating connections for outbound communication

	The WebSphere MQ resource adapter error and warning messages
	WebSphere MQ resource adapter error messages
	WebSphere MQ resource adapter warning messages

	Appendix G. Notices
	Trademarks

	Index
	Sending your comments to IBM

