
z/OS

Language Environment
Writing Interlanguage
Communication Applications
Version 2 Release 1

SA38-0684-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 267.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1991, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this document xi

How to send your comments to IBM xiii
If you have a technical problem xiii

z/OS Version 2 Release 1 summary of
changes xv

Chapter 1. Getting started with
Language Environment ILC 1
The benefits of ILC under Language Environment . . 1
Writing ILC applications 1

Chapter 2. Communicating with XPLINK
applications 3
XPLINK compatibility support 3
ILC calls between XPLINK and non-XPLINK routines 3
ILC between XPLINK and non-XPLINK C 4
ILC between XPLINK and non-XPLINK C++ . . . 4
ILC between XPLINK and COBOL 5
ILC between XPLINK and PL/I 6
ILC between XPLINK and Assembler 6
ILC between XPLINK and Fortran 7
PIPI XPLINK considerations 7

Chapter 3. Communicating between C
and C++. 9
General facts about C to C++ ILC 9
Preparing for ILC. 9

Language Environment ILC support 9
Determining the main routine 9
Declaring C to C++ ILC 10
Building a reentrant C to C++ application . . . 11

Calling between C and C++ 11
Passing data between C and C++ 12

Passing data by value between C and C++ . . . 12
Passing data by reference between C and C++. . 13
Passing C++ objects 14
Supported data types passed between C and C++ 14
Using aggregates 15

Data equivalents. 15
Equivalent data types for C to C++ 15
Equivalent data types for C++ to C 17
Name scope and name space 19
Enhancing performance with packed structures
and unions 21
Using storage functions in C to C++ ILC . . . 23
Directing output in ILC applications 23
C to C++ condition handling 23

Sample C to C++ applications 24

Chapter 4. Communicating between C
and COBOL 27
General facts about C to COBOL ILC 27
Preparing for ILC 27

Language Environment ILC support 27
Migrating ILC applications 27
Compiling and linking considerations 28
Determining the main routine 28
Declaring C to COBOL ILC 29

Calling between C and COBOL. 31
Types of calls permitted 31
Performance considerations 34
Dynamic call/fetch considerations - non-DLL
modules 34
Dynamic call/fetch considerations - DLL
modules 36

Passing data between C and COBOL 36
Passing data between C and COBOL without
#pragma 37
Handling function returns between C and
COBOL. 39
Passing data between C and COBOL with
#pragma 40
Passing strings between C and COBOL 42
Using aggregates 42

Data equivalents. 42
Equivalent data types for C to COBOL 42
Equivalent data types for COBOL to C 45
Name scope of external data. 48
Name space of external data. 50

Directing output in ILC applications 50
Interspersing output when C is the main routine 51
Interspersing output when COBOL is the main
routine 51

C POSIX multithreading 51
C to COBOL condition handling 52

Enclave-terminating language constructs. . . . 52
Exception occurs in C 52
Exception occurs in COBOL 54
CEEMRCR and COBOL 56

Sample ILC applications 56

Chapter 5. Communicating between
C++ and COBOL 59
General facts about C++ to COBOL ILC 59
Preparing for ILC 59

Language Environment ILC support 59
Compiling considerations. 59
Determining the main routine 59
Declaring C++ to COBOL ILC 60
Building a reentrant C++ to COBOL application 62

Calling between C++ and COBOL 62
Passing data between C++ and COBOL 64

© Copyright IBM Corp. 1991, 2013 iii

Passing data between C++ and COBOL with
extern "C" 64
Passing data between C++ and COBOL with
extern "COBOL" 68
Passing strings between C++ and COBOL . . . 69
Using aggregates 70

Data equivalents. 70
Equivalent data types for C++ to COBOL . . . 70
Equivalent data types for COBOL to C++ . . . 73
Name scope of external data. 75
Name space of external data. 76

Directing output in ILC applications 77
Interspersing output when C++ Is the main
routine 77
Interspersing output when COBOL Is the main
program 78

C++ to COBOL condition handling 78
Enclave-terminating language constructs. . . . 78
Exception occurs in C++ 79
Exception occurs in COBOL 80
CEEMRCR and COBOL 82

Sample ILC applications 82

Chapter 6. Communicating between C
and Fortran. 85
General facts about C to Fortran ILC 85
Preparing for ILC 85

Language Environment ILC support 85
Migrating ILC applications 85
Determining the main routine 86
Declaring C to Fortran ILC 86

Calling between C and Fortran 87
Types of calls permitted 87
Dynamic call/fetch considerations 87
Invoking functions with returned values. . . . 88
Calling Fortran library routines 88

Passing data between C and Fortran 89
Supported data types between C and Fortran . . 89
Supported data types for passing by value . . . 89
Supported data types for passing function return
values 90
Passing an alternate return code from Fortran to
C 90
Passing character data 91
Mapping arrays between C and Fortran 91

Data equivalents. 91
Equivalent data types for C to Fortran 91
Equivalent data types for Fortran to C 95
External data 99

Directing output in ILC applications 99
C to Fortran condition handling 99

Enclave-terminating language constructs . . . 100
Exception occurs in C 100
Exception occurs in Fortran 102

Sample ILC applications. 103

Chapter 7. Communicating between
C++ and Fortran 107
General facts about C++ to Fortran ILC 107
Preparing for ILC 107

Language Environment ILC support. 107
Determining the main routine 107
Declaring C++ to Fortran ILC 108

Calling between C++ and Fortran 109
Types of calls permitted 109
Dynamic call/fetch considerations 109
Invoking functions with returned values . . . 109
Calling Fortran library routines 110

Passing data between C++ and Fortran 110
Supported data types between C++ and Fortran 110
Supported data types for passing by value . . 110
Supported data types for passing function
return values 111
Passing an alternate return code from Fortran to
C++ 111
Passing character data 112
Mapping arrays between C++ and Fortran . . 112

Data equivalents 112
Equivalent data types for C++ to Fortran . . . 113
Equivalent data types for Fortran to C++ . . . 116
External data 120

Directing output in ILC applications. 120
C++ to Fortran condition handling 120

Enclave-terminating language constructs . . . 121
Exception occurs in C++. 121
Exception occurs in Fortran 123

Sample ILC applications. 124

Chapter 8. Communicating between C
and PL/I 127
General facts about C to PL/I ILC 127
Preparing for C to PL/I ILC 127

Language Environment ILC support. 127
Migrating C to PL/I ILC applications 127
Determining the main routine 128
Declaring C to PL/I ILC. 128
Building a reentrant C to PL/I application . . 129

Calling between C and PL/I 129
Types of calls permitted 129
Dynamic call/fetch considerations 129

Passing data between C and PL/I 131
Passing pointers from C to PL/I 131
Passing pointers from PL/I to C 131
Receiving value parameters in C 132
Receiving reference parameters in C 132
Data types passed using C pointers (by
reference). 132
Data types passed by value. 132
Passing strings between C and PL/I. 133
Using aggregates 133

Data equivalents 133
Equivalent data types for C to PL/I 134
Equivalent data types for PL/I to C 136
Name scope of external data 139
Name space of external data 140

Using storage functions in C to PL/I ILC 141
Directing output in ILC applications. 141

Using SYSPRINT as the default stream output
file 141
Directing user-specified output to destination of
MSGFILE. 142

iv z/OS V2R1.0 Language Environment Writing ILC Applications

C POSIX multithreading. 142
C to PL/I condition handling 142

Enclave-terminating language constructs . . . 142
Exception occurs in C 143
Exception occurs in PL/I 145
Fixed-point overflow 146

Sample C to PL/I ILC applications 146

Chapter 9. Communicating between
C++ and PL/I. 149
General facts about C++ to PL/I ILC 149
Preparing for ILC 149

Language Environment ILC support. 149
Determining the main routine 149
Declaring C++ to PL/I ILC 150
Building a reentrant C++ to PL/I application 150

Calling between C++ and PL/I 151
Passing data between C++ and PL/I 151

Passing pointers from C++ to PL/I 151
Passing pointers from PL/I to C++ 151
Receiving value parameters in C++ 152
Receiving reference parameters in C++ 152
Supported data types passed using C++
pointers (by reference) 152
Supported data types passed by value 153
Passing strings between C++ and PL/I 153
Using aggregates 154

Data equivalents 154
Equivalent data types for C++ to PL/I 154
Equivalent data types for PL/I to C++ 157
Name scope of external data 159
Name space of external data 160

Using storage functions in C++ to PL/I ILC . . . 160
Directing output in ILC applications. 160

Using SYSPRINT as the default stream output
file 161
Directing user-specified output to destination of
MSGFILE. 161

C++ to PL/I condition handling 161
Enclave-terminating language constructs . . . 162
Exception occurs in C++. 162
Exception occurs in PL/I 164
Fixed-point overflow 166

Sample C++ to PL/I ILC applications 166

Chapter 10. Communicating between
COBOL and Fortran 169
General facts about COBOL to Fortran ILC . . . 169
Preparing for ILC 169

Language Environment ILC support. 169
Migrating ILC applications 169
Determining the main routine 170
Declaring COBOL to Fortran ILC 170

Calling between COBOL and Fortran 170
Types of calls permitted 170
Dynamic call/fetch considerations 171
Calling functions 171

Passing data between COBOL and Fortran . . . 172
Passing character data 172
Mapping arrays 172

Data equivalents 172
Equivalent data types for COBOL to Fortran 173
Equivalent data types for Fortran to COBOL 175
External data 178

Directing output in ILC applications. 178
COBOL to Fortran condition handling 179

Enclave-terminating language constructs . . . 179
Exception occurs in COBOL 180
Exception occurs in Fortran 181
GOTO out-of-block and move resume cursor 182

Sample ILC applications. 183

Chapter 11. Communicating between
COBOL and PL/I 185
General facts about COBOL to PL/I ILC 185
Preparing for ILC 185

Language Environment ILC support. 185
Migrating ILC applications 185
Determining the main routine 186
Multitasking with PL/I and COBOL. 186
Declaring COBOL to PL/I ILC 186
Building a reentrant COBOL to PL/I application 187

Calling between COBOL and PL/I 187
Types of calls permitted 187
Dynamic call/fetch considerations 188

Passing data between COBOL and PL/I 188
Supported data types between COBOL and
PL/I 189
Using aggregates 190

Data equivalents 192
Equivalent data types for COBOL to PL/I . . . 192
Equivalent data types for PL/I to COBOL . . . 193
Data type equivalents when TRUNC(BIN) is
specified 195
Name scope of external data 195
Name space of external data 196

Sharing data. 197
Sharing files between COBOL and PL/I . . . 197
File sharing under PL/I multitasking 198

Directing output in ILC applications. 198
COBOL to PL/I condition handling 198

Multitasking ILC consideration 199
Enclave-terminating language constructs . . . 199
Exception occurs in COBOL 199
Exception occurs in PL/I 201
GOTO out-of-block and move resume cursor 203

Sample PL/I to COBOL applications 203

Chapter 12. Communicating between
Fortran and PL/I 207
General facts about Fortran to PL/I ILC 207
Preparing for ILC 207

Language Environment ILC support. 207
Migrating ILC applications 208
Determining the main routine 208
Declaring Fortran to PL/I ILC. 208
Building a reentrant Fortran to PL/I application 209

Calling between Fortran and PL/I 209
Types of calls permitted 209
Dynamic call/fetch considerations 209

Contents v

Passing data between Fortran and PL/I 211
Supported data types between Fortran and PL/I 211
Passing character data 211
Using aggregates 211

Data equivalents 211
Equivalent data types for Fortran to PL/I . . . 211
Equivalent data types for PL/I to Fortran . . . 214
External data 217

Directing output from ILC applications. 217
Running Fortran routines in the PL/I multitasking
facility. 217

Reentrancy in a multitasking application . . . 217
Common blocks in a PL/I multitasking
application 218
Data-in-virtual data objects in PL/I multitasking
applications 218
Files and print units in a multitasking
application 218

Fortran to PL/I condition handling 218
PL/I Multitasking ILC considerations 219
Enclave-terminating language constructs . . . 219
Exception occurs in Fortran 219
Exception occurs in PL/I 221

Sample ILC applications. 223

Chapter 13. Communicating between
multiple HLLs 225
Supported data types across HLLs 225
External data 225
Thread management 226
Condition handling 226

Enclave-terminating constructs 227
C, COBOL, and PL/I scenario: exception occurs
in C 227

Sample N-Way ILC applications 230

Chapter 14. Communicating between
assembler and HLLs 233
Calling between assembler and an HLL 233

Using the CEEFETCH macro 233
Using the CEERELES macro 233
Using the CEELOAD macro 233
Passing arguments between HLL and assembler
routines 234
Canceling or releasing assembler 236

Calling COBOL from assembler 236
AMODE considerations 236
Canceling COBOL programs 237

Non-Language Environment-conforming assembler
invoking an HLL main routine 237
Language Environment-conforming assembler
invoking an HLL main routine 238
Assembler main routine calling HLL subroutines
for better performance 238

Chapter 15. ILC under CICS 241
Language pairs supported in ILC under CICS . . 241

Enclaves 241
Enclave boundary 241
Program mask conventions 242
C/C++ and COBOL 242
z/OS XL C/C++ and PL/I 242
COBOL and PL/I 243
Assembler 244
Link-editing ILC applications under CICS . . . 244

CICS ILC application 244

Appendix A. Condition-handling
responses 249

Appendix B. Using nested enclaves 251
Understanding the basics 251

COBOL considerations 251
PL/I considerations 251

Determining the behavior of child enclaves . . . 252
Creating child enclaves using EXEC CICS LINK
or EXEC CICS XCTL 252
Creating child enclaves by calling a second
main without an RB crossing 253
Creating child enclaves using SVC LINK or
CMSCALL 253
Creating child enclaves using the C system()
function 256
Creating child enclaves that contain a PL/I
fetchable main 257

Other nested enclave considerations 258
What the enclave returns from CEE3PRM . . . 258
Finding the return and reason code from the
enclave 260
Assembler user exit 260
Message file 260
AMODE considerations 261

Appendix C. Accessibility 263
Accessibility features 263
Using assistive technologies 263
Keyboard navigation of the user interface 263
Dotted decimal syntax diagrams 263

Notices 267
Policy for unsupported hardware. 268
Minimum supported hardware 269
Programming interface information 269
Trademarks 269

Index 271

vi z/OS V2R1.0 Language Environment Writing ILC Applications

Figures

1. Common header file (common.h) 22
2. Common header file in C 22
3. Common header file in C++ 23
4. C++main routine. 24
5. Csubroutine 25
6. C fetching a COBOL program 35
7. Name scope of external variables for C fetch 49
8. Name scope of external variables for COBOL

dynamic call 49
9. Name space of external data for COBOL static

call to COBOL 50
10. Name space of external data in COBOL static

call to COBOL 50
11. Stack contents when the exception occurs in C 53
12. Stack contents when the COBOL exception

occurs 55
13. Dynamic call from C to COBOL program 57
14. Static call from COBOL to C routine 58
15. Statically called C routine 58
16. Name space of external data for COBOL static

call to COBOL 76
17. Name space of external data in COBOL static

call to C++ 77
18. Stack contents when the C/C++ exception

occurs 79
19. Stack contents when the exception occurs in

COBOL 81
20. Static call from C++ to COBOL program 83
21. Static call from COBOL to C++ routine 84
22. Stack contents when the exception occurs in

C 101
23. Stack contents when the exception occurs 102
24. Stack contents when the exception occurs in

C++. 122
25. Stack contents when the exception occurs in

Fortran. 123
26. C fetching a PL/I routine 130
27. PL/I fetching a C routine 131
28. Name scope of external variables for PL/I or

C fetch. 140
29. Name space of external data in PL/I static

call to C 140
30. Stack contents when the exception occurs in

C 143
31. Stack contents when the PL/I exception

occurs 145
32. Stack contents when the exception occurs in

C++. 163

33. Stack contents when the exception occurs in
PL/I 165

34. Stack contents when the exception occurs 180
35. Stack contents when the exception occurs in

Fortran. 181
36. Fortranprogram that dynamically calls

COBOL program 183
37. COBOLProgram dynamically called by

Fortran program 183
38. Name scope of external variables for COBOL

dynamic call 195
39. Name scope of external variables for PL/I

fetch 196
40. Name space of external data for COBOL

static call to COBOL 196
41. Name space of external data in COBOL static

call to PL/I 197
42. Stack contents when the exception occurs in

COBOL 200
43. Stack contents when the exception occurs in

PL/I 202
44. Stack contents when the exception occurs in

Fortran. 220
45. Stack contents when the exception occurs in

PL/I 221
46. Fortran routine that calls a PL/I routine 223
47. PL/I routine called by Fortran 223
48. Stack contents when the exception occurs in

C 228
49. PL/I main routine of ILC application 230
50. C routine called by PL/I in a 3-way ILC

application 231
51. COBOL program called by C in a 3-way ILC

application 232
52. Parameter passing by reference 235
53. Parameter passing by content 235
54. Parameter passing by value 235
55. Parameter passing returning R 236
56. Language Environment-conforming assembler

routine calling COBOL routine 239
57. COBOL routine called from Language

Environment-conforming assembler 240
58. COBOL CICS main program that calls C and

PL/I subroutines 245
59. PL/I routine called by COBOL CICS main

program 246
60. C routine called by COBOL CICS main

program 247

© Copyright IBM Corp. 1991, 2013 vii

viii z/OS V2R1.0 Language Environment Writing ILC Applications

Tables

1. Supported languages for Language
Environment ILC 9

2. Determining the entry point 9
3. Calls permitted for C to C++ ILC 11
4. Supported languages for Language

Environment ILC 27
5. How C and COBOL main routines are

determined. 29
6. Determining the entry point 29
7. Support for calls from COBOL to C with

#pragma linkage(...,COBOL) 31
8. Support for calls from COBOL to C without

#pragma linkage(...,COBOL) 32
9. Support for calls from C to COBOL 33

10. Supported data types passed by value (direct)
without #pragma. 38

11. Supported data types passed between C and
COBOL by reference (Indirect) and from
COBOL to C either by value (indirect) or by
reference (indirect) without #pragma 38

12. Supported data types passed by value
(Indirect) with #pragma 41

13. Supported data types passed by reference
(indirect) with #pragma 41

14. Supported languages for Language
Environment ILC 59

15. How C++ and COBOL main routines are
determined. 60

16. Determining the entry point 60
17. Support for calls from COBOL to C++ . . . 62
18. Support for calls from C++ to COBOL . . . 63
19. Supported data types passed by value (direct)

with extern "C" 66
20. Supported data types passed by value

(indirect) or by reference (indirect) with extern
"C" 67

21. Supported data types passed by value
(indirect) with extern "COBOL" 68

22. Supported data types passed by reference
(indirect) with extern "COBOL" 69

23. Supported languages for Language
Environment ILC 85

24. Determining the entry point 86
25. Calls permitted for C and Fortran ILC . . . 87
26. Supported data types passed by reference 89
27. Supported data types for passing by value

from C to Fortran 89
28. Supported data types for passing as function

return values from C to Fortran 90
29. Supported languages for Language

Environment ILC 107
30. Determining the entry point 108
31. Calls permitted for C++ and Fortran ILC 109
32. Supported data types passed by reference 110
33. Supported data types for passing by value

from C++ to Fortran 110

34. Supported data types for passing as function
return values from C++ to Fortran 111

35. Supported languages for Language
Environment ILC 127

36. Determining the entry point 128
37. Calls permitted for C and PL/I 129
38. Supported data types between C and PL/I

using C pointers (by reference). 132
39. Supported data types between C and PL/I

without using C pointers (by value) 133
40. Supported languages for Language

Environment ILC 149
41. Determining the entry point 150
42. Calls permitted for C++ and PL/I ILC 151
43. Supported data types between C++ and PL/I

using C++ pointers (by reference) 152
44. Supported data types between C++ and PL/I

by value 153
45. Supported languages for Language

Environment ILC 169
46. How COBOL and Fortran main routines are

determined 170
47. Determining the entry point 170
48. Calls permitted for COBOL and Fortran ILC 170
49. Supported data types between COBOL and

Fortran. 172
50. Supported languages for Language

Environment ILC support 185
51. Determining the entry point 186
52. Calls permitted for COBOL and PL/I 188
53. Supported data types between COBOL and

PL/I 189
54. Equivalent data types between PL/I and

COBOL when TRUNC(BIN) compiler option
specified 195

55. Supported languages for Language
Environment ILC support 207

56. Determining the entry point 208
57. Calls permitted for Fortran and PL/I 209
58. Supported data types between Fortran and

PL/I 211
59. Data types common to all supported HLLs 225
60. What occurs when non-Language

Environment-conforming assembler invokes
an HLL main routine 237

61. What occurs when Language
Environment-conforming assembler invokes
an HLL main routine 238

62. Language Environmentdefault responses to
unhandled conditions 249

63. Cconditions and default system actions 249
64. Handling conditions in child enclaves 254
65. Unhandled condition behavior in a C, C++,

or assembler child enclave, under MVS . . . 254
66. Unhandled condition behavior in a C or

assembler child enclave, under CMS 255

© Copyright IBM Corp. 1991, 2013 ix

67. Unhandled condition behavior in a COBOL
child enclave, under MVS 255

68. Unhandled condition behavior in a Fortran or
PL/I child enclave, under MVS 255

69. Unhandled condition behavior in a
system()-created child enclave, under MVS. . 256

70. Unhandled condition behavior in a child
enclave that contains a PL/I fetchable main,
under MVS 257

71. Determining the command-line equivalent 258
72. Determining the order of runtime options and

program arguments 259

x z/OS V2R1.0 Language Environment Writing ILC Applications

About this document

This document supports z/OS (5650-ZOS).

IBM® z/OS Language Environment (also called Language Environment) provides
common services and language-specific routines in a single runtime environment
for C, C++, COBOL, Fortran (z/OS only; no support for z/OS UNIX System
Services or CICS®), PL/I, and assembler applications. It offers consistent and
predictable results for language applications, independent of the language in which
they are written.

Language Environment is the prerequisite runtime environment for applications
generated with the following IBM compiler products:
v z/OS XL C/C++ (feature of z/OS)
v z/OS® C/C++
v OS/390® C/C++
v C/C++ for MVS/ESA
v C/C++ for z/VM®

v XL C/C++ for z/VM
v AD/Cycle C/370™

v VisualAge for Java, Enterprise Edition for OS/390
v Enterprise COBOL for z/OS
v Enterprise COBOL for z/OS and OS/390
v COBOL for OS/390 & VM
v COBOL for MVS & VM (formerly COBOL/370)
v Enterprise PL/I for z/OS
v Enterprise PL/I for z/OS and OS/390
v VisualAge® PL/I
v PL/I for MVS & VM (formerly PL/I MVS™ & VM)
v VS FORTRAN and FORTRAN IV (in compatibility mode)

Although not all compilers listed are currently supported, Language Environment®

supports the compiled objects that they created.

Language Environment supports, but is not required for, an interactive debug tool
for debugging applications in your native z/OS environment.

Debug Tool is also available as a standalone product. Debug Tool Utilities and
Advanced Functions is also available. For more information, see
http://www.ibm.com/software/awdtools/debugtool/.

Language Environment supports, but is not required for, VS FORTRAN Version 2
compiled code (z/OS only).

Language Environmentconsists of the common execution library (CEL) and the
run-time libraries for C/C++, COBOL, Fortran, and PL/I.

For more information about VisualAge for Java, Enterprise Edition for OS/390,
program number 5655-JAV, see the product documentation.

This document is written for application programmers and developers to create
and run interlanguage communication (ILC) applications under the z/OS IBM
Language Environment product.

© Copyright IBM Corp. 1991, 2013 xi

http://www.ibm.com/software/awdtools/debugtool/

Language Environment improves ILC between conforming high-level languages
(HLLs) because it creates one common runtime environment and it defines data
types and constructs that are equivalent across languages.

For application programming, you will need to use this book, z/OS Language
Environment Programming Guide, and z/OS Language Environment Programming
Reference.You will also need to use the programming guides of the HLLs you are
programming with.

This document is organized into pair-wise chapters that discuss ILC between two
languages. There is also a chapter that discusses applications developed in more
than two languages (Chapter 13, “Communicating between multiple HLLs,” on
page 225). ILC with assembler is discussed in Chapter 14, “Communicating
between assembler and HLLs,” on page 233 and ILC under CICS is discussed in
Chapter 15, “ILC under CICS,” on page 241.

xii z/OS V2R1.0 Language Environment Writing ILC Applications

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 Language Environment Writing ILC Applications
SA38-0684-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1991, 2013 xiii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xiv z/OS V2R1.0 Language Environment Writing ILC Applications

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1991, 2013 xv

xvi z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 1. Getting started with Language Environment ILC

Interlanguage communication (ILC) applications are applications built of two or
more high-level languages (HLLs) and frequently assembler. ILC applications run
outside of the realm of a single language's environment, which creates special
conditions, such as how the languages' data maps across load module boundaries,
how conditions are handled, or how data can be called and received by each
language.

This book helps you create ILC applications using Language Environment-
conforming compilers. Most of the book is organized into "pairwise" chapters,
which compare how each language handles different aspects of ILC, such as
calling, data, reentrance, condition handling, and storage.

If your application contains more than two languages, you should read the section
for each pair of languages first. For example, if your application consists of a C
main routine that calls a COBOL subroutine, and the C main later calls a PL/I
subroutine, read the chapters on C to COBOL and C to PL/I ILC. Then read
Chapter 13, “Communicating between multiple HLLs,” on page 225 for additional
information about developing multiple-language applications. If you have ILC with
assembler or under CICS, see Chapter 14, “Communicating between assembler and
HLLs,” on page 233 and Chapter 15, “ILC under CICS,” on page 241.

The benefits of ILC under Language Environment
Performance improves under the single runtime environment. Language
Environment ILC applications run in one environment, giving you cooperative ILC
support for running mixed-language applications, without the overhead of
multiple libraries and library initialization.

The environment is tailored to HLLs at initialization. When you run your ILC
applications in Language Environment, the initialization process establishes the
Language Environment environment, tailored to the set of HLLs in the main load
module. ILC applications follow the Language Environment program model,
making program execution consistent and predictable.

Coordinated cleanup is performed at termination. Language Environment
terminates in an orderly manner. Resources obtained during the execution of the
application are released, regardless of the mix of programming languages in the
application.

Cooperative condition handling provides consistency. All languages participating
in the ILC application handle conditions cooperatively, making exception and
condition handling consistent and predicable.

All ILC applications can reside above the line. Applications can be linked
AMODE(31) RMODE(ANY) to reside above the 16M line in storage.

Writing ILC applications
Here are the steps you need to follow to develop an ILC application:
1. Decide which languages to use.

© Copyright IBM Corp. 1991, 2013 1

Your application code will need to follow the rules in the compiler
programming guides and the z/OS Language Environment Programming Guide.
Use the pairwise language chapters to identify what levels of HLLs you should
be using.

2. Make sure all your ILC applications are Language Environment-conforming.
Each chapter gives the basics of what you need to do to get your ILC
applications to be Language Environment-conforming (adhering to Language
Environment's common interface). For detailed information about migration,
see the language migration guides.

3. Decide which language will have the main routine.
Language Environment allows only one routine to be the main routine in an
enclave. Each chapter describes how to determine the main routine in an ILC
application. If you are using a multiple language application, see Chapter 13,
“Communicating between multiple HLLs,” on page 225 to determine how to
designate a main routine.

4. Learn how to declare and use data across HLLs.
Each chapter describes how to use data in an ILC application.

5. Learn how to mix HLL and Language Environment operations. Each HLL has a
unique way of using storage, return codes, and performing condition handling.
Each chapter describes how to mix these HLL-specific constructs.

2 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 2. Communicating with XPLINK applications

This chapter describes compatibility between AMODE 31 XPLINK and
non-XPLINK programs.

Extra Performance Linkage (XPLINK) offers enhanced linkage between programs,
potentially increasing performance significantly when frequent calls are made
between small programs. The main focus of XPLINK is to improve speed and
efficiency of subroutine calls, through a downward-growing stack, and by passing
parameters in registers. Secondary objectives include reducing the function
footprint and removing restrictions on function pointers for C and C++ functions
compiled with XPLINK. For more information, see z/OS Language Environment
Programming Guide.

XPLINK applications are supported under the IMS™ environment.

XPLINK compatibility support
XPLINK Compatibility Support is defined as the ability for routines (functions)
compiled with NOXPLINK (these may be non-XPLINK C or C++, COBOL, PL/I,
or OS Linkage Assembler) to "transparently" call routines that are compiled with
XPLINK, and vice versa.

This transparent compatibility is provided at the Program Object (or Load Module,
for compatibility with prelinker-built executables) boundary. That is, a Program
Object (or Load Module) containing a caller of one linkage type (XPLINK or
NOXPLINK) may call a routine compiled with the opposite linkage type as long as
the called routine resides in a different Program Object (or Load Module). Program
Objects can reside in either a PDSE or the HFS, while Load Modules must reside in
a PDS.

The main "call linkage" supporting XPLINK Compatibility is the DLL call
mechanism, but C's fetch() and Language Environment's CEEFETCH assembler
macro are also supported.

The following are not supported for XPLINK in z/OS:
v COBOL dynamic call of an XPLINK function
v PL/I fetch
v Language Environment's CEELOAD assembler macro (traditional LOAD/BALR)

There are other environments that are not supported in an XPLINK environment
(the XPLINK(ON) runtime option is in effect), such as AMODE-24 applications.
Full details of supported environments are in z/OS Language Environment
Programming Guide.

ILC calls between XPLINK and non-XPLINK routines
For calls made across a Program Object boundary (such as calls to a DLL or a C
fetch()ed function), Language Environment will insert the necessary glue code to
perform a transition from XPLINK to non-XPLINK, or vice versa. This glue code
must perform the following tasks:

© Copyright IBM Corp. 1991, 2013 3

v Switch between the downward-growing stack that XPLINK routines use and the
upward-growing stack of non-XPLINK routines.

v Switch between XPLINK and non-XPLINK register conventions.
v Convert between XPLINK and non-XPLINK parameter list and return value

formats.

The details of the differences between these different linkage types are documented
in z/OS Language Environment Vendor Interfaces.

Because of the extra overhead added by the glue code for calls between XPLINK
and non-XPLINK routines, an application's overall performance can be affected if
the number of calls between XPLINK and non-XPLINK routines is high.
Applications that will benefit the most from being recompiled XPLINK are those
that make many calls to small functions, all of which have been recompiled
XPLINK. C++ applications are typically coded to this model. You should also try to
minimize calls made between XPLINK and non-XPLINK routines, even if this
means not compiling C or C++ routines that have a high interaction with
non-XPLINK routines as XPLINK. For more details on selecting candidate
applications for XPLINK, see z/OS Language Environment Programming Guide.

ILC between XPLINK and non-XPLINK C
The parameter list format passed by non-XPLINK C is identical to one built in the
argument area of an XPLINK caller, except that in the XPLINK case certain
parameters may be passed in registers. The argument list may contain addresses of
arguments passed indirectly (by reference) or values of arguments passed directly
(by value). The end of the parameter list is not marked by the high order bit of the
last parameter being turned on. Since the end of the argument list is not identified
the programmer must ensure that the callee only accesses as many parameters as
the caller had arguments.

When an XPLINK function calls a non-XPLINK C function, glue code will use the
information encoded at the call site to determine which registers contain
parameters. These parameters will be stored in the argument area to construct a
complete, contiguous parameter list. When the non-XPLINK C program is given
control, register 1 will point to this complete parameter list. Upon return, the
returned value is transferred from C to XPLINK conventions by the glue code,
again using information encoded at the call site.

When a non-XPLINK C function calls an XPLINK function, glue code will use the
interface-mapping flags in the PPA1 of the XPLINK callee to determine which
registers should contain parameters. These registers will be loaded from the
parameter list, and the rest of the parameter list will be copied into the argument
area of the "caller" (in this case, a transitional stack frame). Upon return, the
returned value is transferred from XPLINK to C conventions by the glue code,
again using information in the interface-mapping flags.

ILC between XPLINK and non-XPLINK C++
The parameter list format passed by FASTLINK C++ is identical to that built in the
argument area of an XPLINK caller. In both the FASTLINK and XPLINK cases,
some parameters may be passed in registers, although the rules differ about which
registers get loaded and when. In the FASTLINK case, any remaining parameters
not passed in registers are passed in an argument area at a fixed location in the
callee's stack frame. In the XPLINK case, remaining parameters are passed in an
argument area at a fixed location in the caller's stack frame.

4 z/OS V2R1.0 Language Environment Writing ILC Applications

ILC between XPLINK and COBOL
The only way a COBOL routine can call an XPLINK-compiled routine is if the
caller is compiled with the Enterprise COBOL for z/OS or COBOL for OS/390 &
VM compiler with the DLL compiler option, and the target of the call is in a
separate DLL, or vice versa.

COBOL Dynamic Call to XPLINK is not supported.

Since XPLINK compatibility is only provided to Language Environment-
conforming languages, OS/VS COBOL programs and VS COBOL II programs are
not supported in an XPLINK(ON) environment.

The COBOL reusable environment support (the RTEREUS runtime option or the
callable interfaces ILBOSTP0 and IGZERRE) cannot be used in an XPLINK(ON)
environment.

COBOL ILC with an XPLINK function in a separate DLL can employ either of two
parameter passing techniques:
v The "pragmaless" style, where the COBOL programmer explicitly specifies

syntax indicating that arguments are to be passed BY VALUE, and uses
RETURNING syntax to access C function results.
RETURNING values and BY VALUE arguments are implemented using
pre-XPLINK C linkage conventions, and are designed to enable pragma-less ILC
with C or with C++ using EXTERN C. This technique also works with XPLINK.
In this case, the glue code will load the necessary XPLINK parameter registers
when called from a COBOL function, or store them into the argument area when
calling a COBOL function.

v The #pragma linkage(..., COBOL) style, where the COBOL programmer specifies
normal BY REFERENCE argument conventions, the C functions specify normal
C by-value conventions, and the XL C/C++ compiler introduces code to
accommodate both.
An XPLINK program can identify a called function as using a COBOL-style
parameter list (R1 => list of addresses, with the High Order Bit (HOB) of the last
parameter turned on):
#pragma linkage(called_rtn,COBOL)

In this case the XPLINK compiler generates a list of addresses to the actual
parameters. The only difference is that XPLINK loads up to the first three of
these addresses into registers 1, 2, and 3. When the glue code receives control
from the XPLINK caller to swap the stack before giving control to the called
COBOL function, it also creates a complete by-reference parameter list and set
register 1 with the address of this parameter list.
An XPLINK function can also specify that it receives COBOL-style parameters as
input:
#pragma linkage(this_rtn,COBOL)

Processing via glue code is similar – when the XPLINK function receives control,
the first three parameter addresses have been loaded into the parameter
registers.

Chapter 2. Communicating with XPLINK applications 5

ILC between XPLINK and PL/I
The only way a PL/I program can call an XPLINK-compiled routine is if the caller
is compiled with the EnterprisePL/I for z/OS compiler with the DLL compiler
option and the target of the call is in a separate DLL, or vice versa.

PL/I FETCH of an XPLINK program object is not supported.

PL/I Multitasking is not supported in an XPLINK environment.

The processing of ILC calls between PL/I and XPLINK will be very similar to
COBOL.
v PL/I parameter list is either pragma-less (by using the BYVALUE PROCEDURE

attribute) or specified in the XPLINK program using #pragma linkage(...,PLI).
v Calls from XPLINK to PL/I through glue code will establish an environment

conforming to PL/I linkage conventions before giving the PL/I function control.
v Calls from PL/I to XPLINK through glue code will convert from PL/I linkage

conventions to XPLINK conventions.

ILC between XPLINK and Assembler
The processing of ILC calls between Language Environment-conforming assembler
and XPLINK will be identical to COBOL and PL/I.

Since the assembler programmer has direct control over the format of the
parameter list, it can be constructed as either a "C-style" parameter list, or as an OS
linkage parameter list. In the latter case, the XPLINK program must specify
#pragma linkage(...,OS) at its interface with the assembler program.

The format of an OS linkage parameter list, as defined by an XPLINK function, is
that the address of the first parameter will be passed in register 1, the address of
the second parameter will be passed in register 2, the address of the third
parameter will be passed in register 3, and any remaining parameters will be
passed by placing their address in the caller's argument area. The high-order bit of
the last parameter will be turned on. Note that this is different from the expected
"R1 points to a list of addresses", but has better performance characteristics and
allows the glue routine to issue the instruction STM R1,R3 to build a complete OS
linkage parameter list. It can then set R1 to the address of this list for a call to an
OS linkage routine.

There are three flavors of OS linkage that can be used by an XPLINK program:
v OS_UPSTACK

In general, parts compiled XPLINK cannot be combined with parts compiled
NOXPLINK in the same program object. One exception to this rule is OS linkage
routines that are defined in an XPLINK-compiled caller as OS_UPSTACK. In this
case, the XPLINK compiler will generate a call to glue code that performs a
transition from the XPLINK caller to the OS linkage callee. The callee will get
control with OS linkage conventions (parameter list and registers) and running
on a Language Environment-conforming upward-growing stack.
From XPLINK C code, specified as one of:
– #pragma linkage(function_name,OS_UPSTACK)

– #pragma linkage(function_name,OS) with the OSCALL(UPSTACK) compiler
option

From XPLINK C++ code, specified as one of:

6 z/OS V2R1.0 Language Environment Writing ILC Applications

– extern "OS_UPSTACK" function_prototype

– extern "OS" function_prototype with the OSCALL(UPSTACK) compiler
option (this is the default)

v OS_NOSTACK

The other exception allowing XPLINK and NOXPLINK parts in the same
program object is that XPLINK-compiled routines can call OS linkage routines
defined as OS_NOSTACK. In this case, the XPLINK compiler will generate an
OS linkage style call (parameter list and registers) directly to the callee. There is
no intervening glue code to provide a stack swap. Instead, a 72-byte savearea is
provided. This provides much better performance characteristics over
OS_UPSTACK calls when the called routine does not require an Language
Environment-conforming stack.
From XPLINK C code, specified as one of:
– #pragma linkage(function_name,OS_NOSTACK)

– #pragma linkage(function_name,OS) with the OSCALL(NOSTACK) compiler
option (this is the default)

From XPLINK C++ code, specified as one of:
– extern "OS_NOSTACK" function_prototype

– extern "OS" function_prototype with the OSCALL(NOSTACK) compiler
option

v OS_DOWNSTACK

This defines calls between XPLINK-compiled routines that pass an OS linkage
"by reference" parameter list. XPLINK calling conventions are used.
From XPLINK C code, specified as one of:
– #pragma linkage(function_name,OS_DOWNSTACK)

– #pragma linkage(function_name,OS) with the OSCALL(DOWNSTACK)
compiler option

From XPLINK C++ code, specified as one of:
– extern "OS_DOWNSTACK" function_prototype

– extern "OS" function_prototype with the OSCALL(DOWNSTACK) compiler
option

ILC between XPLINK and Fortran
XPLINK compatibility with Fortran is not supported.

PIPI XPLINK considerations
Language Environment Version 1 Release 3 adds support to the preinitialization
services (PIPI) to support programs that have been compiled XPLINK. Specifically,
it allows programs and subroutines that have been compiled XPLINK to be
defined in the PIPI table. For more details, refer to the z/OS Language Environment
Programming Guide.

Chapter 2. Communicating with XPLINK applications 7

8 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 3. Communicating between C and C++

This topic describes Language Environment's support for C and C++ ILC
applications. If you are running a C to C++ ILC application under CICS you
should also consult Chapter 15, “ILC under CICS,” on page 241.

General facts about C to C++ ILC
C++ is reentrant by default. To create a reentrant C to C++ application, compile the
C program with the RENT compiler option. (See “Building a reentrant C to C++
application” on page 11.)

If theC code was not compiled with RENT, the C++ code must contain special
directives so it can use global variables defined in the C or C++ program. This
information can be found in “Data equivalents” on page 15.

Preparing for ILC
This section describes the topics you should consider before writing a C to C++
ILC application. For help in determining how different versions of C and C++
work together, refer to z/OS Language Environment Runtime Application Migration
Guide.

Language Environment ILC support
Table 1. Supported languages for Language Environment ILC

HLL pair C C++

C–C++ v C/370 Version 2
v AD/Cycle C/370 Version 1
v C/C++ for MVS/ESA
v z/OS XL C/C++ compilers

v C/C++ for MVS/ESA
v z/OS XL C/C++ compilers

Determining the main routine
In C and C++ the main routine is the function called main(). In a C to C++ ILC
application only one main() function is allowed. Multiple main() functions will
result in errors. Recursive calls to the main() function are not supported in C++.

An entry point is defined for each supported HLL. Table 2 identifies the desired
entry point. The table assumes that your code has been compiled using the
Language Environment-conforming compilers.

See z/OS XL C/C++ Runtime Library Reference for the description of the
requirements for fetching C++.

Table 2. Determining the entry point

HLL Main entry point Fetched entry point

C CEESTART CEESTART or routine name, if
#pragma linkage(,fetchable) is
not used.

C++ CEESTART CEESTART or routine name, if
#pragma linkage(,fetchable) is
not used.

© Copyright IBM Corp. 1991, 2013 9

Declaring C to C++ ILC
If a C function invokes a C++ function or a C++ function invokes a C function, all
entry declarations are contained solely within the C++ source. No special
declaration is required in the C code.

For C to C++ ILC, the C++ extern "C" linkage specification lets the C++ compiler
generate parameter lists for C or accept parameter lists from C.

The extern "C" linkage specification has the following format:

extern "C" {declaration}

declaration is a valid C++ prototype of the C function(s) being called by C++, or the
C++ routine being called by C. The braces { } are not required if only one
declaration is specified.

If your C or C++ application is compiled with XPLINK or LP64 (which implies
AMODE 64 XPLINK), the linkage and parameter passing mechanisms for C and
C++ are identical. If you link to a C function from a C++ program, you should still
specify extern "C" to avoid name mangling.

Declaration for C calling C++

C function C++ function

#include <stdio.h>

void CPLUSF (int parm);
int CPLUSF2 (int parm);

int main() {
int x,y;

x=3;
y=CPLUSF2(x);
printf("x = %d, y = %d\n",x,y);

CPLUSF(x);

}

#include <stdio.h>
#include <stdlib.h>
extern "C" {

void CPLUSF (int parm);
int CPLUSF2 (int parm);

}

void CPLUSF (int parm) {

}

int CPLUSF2 (int parm) {
int myint;
myint=parm;
return (myint);

}

10 z/OS V2R1.0 Language Environment Writing ILC Applications

Declaration for C++ calling C

C++ function C function

#include <stdio.h>
#include <stdlib.h>
extern "C" {

void CFUNC (int parm);
int CFUNC2 (int parm);

}

int main() {
int x,y;

x=3;
y=CFUNC2(x);
printf("x = %d, y = %d\n",x,y);

CFUNC(x);

}

#include <stdio.h>

void CFUNC (int parm) {

}

int CFUNC2 (int parm) {
int myint;
myint=parm2;
return (myint);

}

Building a reentrant C to C++ application
The XL C++ compiler creates reentrant code by default. However, to create a
reentrant C to C++ ILC application, you need to follow the following process:
1. Compile your C++ code.
2. Compile your C code with the RENT, LONGNAME, and DLL parameters.

(LONGNAME and DLL are not required but make the prelinking and linking
process simpler.)

3. Prelink all C++ and C text decks together using the Language Environment
prelinker.
The Prelink step can be eliminated when the target library for the executable
module is either the HFS or a PDSE and the DFSMS Binder is used to link all
C++ and C text decks together.

4. Link the text deck created by the prelinker to create your module.

See z/OS Language Environment Programming Guide for more information about
reentrant applications.

Calling between C and C++
Table 3 describes the types of calls between C and C++ that Language Environment
allows:

Table 3. Calls permitted for C to C++ ILC

Direction of call Static calls
Dynamic calls using
DLLs Fetch/fetchep

C to C++ Yes Yes Yes

C++ to C Yes Yes Yes

Chapter 3. Communicating between C and C++ 11

Table 3. Calls permitted for C to C++ ILC (continued)

Direction of call Static calls
Dynamic calls using
DLLs Fetch/fetchep

Note:

1. The fetch() function can be used to fetch modules, compiled DLL, or modules containing C++
routines, but exported data will not be available.

2. Any of the C or C++ functions can be compiled with the XPLINK option, with the single restriction
that you cannot mix XPLINK and non-XPLINK in the same module (that is, XPLINK and
non-XPLINK C or C++ cannot be statically bound together).

As of C/C++ for MVS/ESA V3, the compiler provides support for dynamic load libraries (DLLs) which
can be used to dynamically access C or C++ functions or data. For more information about DLLs, see
z/OS XL C++ Programming Guide.

Passing data between C and C++
There are two ways to pass data with C and C++: by value and by reference. By
value means that a temporary copy of the argument is passed to the called
function or procedure. By reference means that the address of the argument is
passed.

Passing data by value between C and C++
In general, value parameters are passed and received by C++ in the same manner
as under C; a non-pointer or reference variable is passed in the parameter list. Any
change that happens to a value parameter in the called function does not affect the
variable in the caller, as in the following example, where an integer is passed by
value from C++ to C:

Sample C++ usage C subroutine

#include <stdio.h>
extern "C" int cfunc(int);

main() {
int result, y;

y=5;
result=cfunc(y); /* by value */

if (y==5 && result==6)
printf("It worked!\n");

}

#include <stdio.h>

cfunc(int newval)
{

++newval;
return newval;

}

Similarly, to pass an int by value from C to C++:

Sample C usage C++ subroutine

#include <stdio.h>

int cppfunc(int);
main() {
int result, y;

y=5;
result=cppfunc(y); /* by value */

if (y==5 && result==6)
printf("It worked!\n");
}

#include <stdio.h>

extern "C" {
int cppfunc(int);
}

int cppfunc(int newval)
{
++newval;
return newval;
}

12 z/OS V2R1.0 Language Environment Writing ILC Applications

Passing data by reference between C and C++
In C, you can pass data by reference by passing a pointer to the item or passing
the address of the item. In C++, you can pass a pointer, the address of the item, or
a reference variable.

A pointer passed from C to C++ may be received as a pointer or as a reference
variable, as in the following example:

Sample C usage C++ subroutine

#include <stdio.h>

main() {
int result, y;
int *x;

y=5;
x= &y;

result=cppfunc(x);
/* by reference */

if (y==6)
printf("It worked!\n");

}

#include <stdio.h>

extern "C" {
int cppfunc(int *);

}

cppfunc(int *newval)
{ // receive into pointer

++(*newval);
return *newval;

}

Sample C usage C++ subroutine

#include <stdio.h>

main() {
int result, y;
int *x;

y=5;
x= &y;

result=cppfunc(x);
/* by reference */

if (y==6)
printf("It worked!\n");

}

#include <stdio.h>

extern "C" {
int cppfunc(int&);

}

cppfunc(int&; newval)
{ // receive into reference variable

++newval;
return newval;

}

A pointer, or the address of a variable, passed from C++ to C must be received as
a pointer, as in the following example:

Sample C++ usage C subroutine

#include <stdio.h>
extern "C" {

int cfunc(int *);
}

main() {
int result, y;
int *x;

y=5;
x= &y;

result=cfunc(x); /* by reference */
if (y==6)

printf("It worked!\n");
}

#include <stdio.h>

cfunc(int *newval)
{ // receive into pointer

++(newval);
return(*newval);

}

Similarly, a reference variable passed from C++ to C must be received as a pointer,
as in the following example:

Chapter 3. Communicating between C and C++ 13

Sample C++ usage C subroutine

#include <stdio.h>
extern "C" {

int cfunc(int *);
}

main() {
int result, y=5;
int& x=y;

result=cfunc(x); /* by reference */
if (y==6)
printf("It worked!\n");

}

#include <stdio.h>

cfunc(int *newval)
{ // receive into pointer

++(*newval);
return *newval;

}

Passing C++ objects
Objects can pass freely between C and C++ if the layout of the object in C and
C++ is identical. In the following example, cobj (C) and cxxobj (C++) are identical:
struct cobj {

int age;
char* name;

}

class cxxobj {
public:

int age;
char* name;

}

A C++ structure is just a class declared with the keyword struct; its members and
base classes are public by default. Therefore, a C++ class is the same as a C++
structure if all data is public. A union is a class declared with the keyword union;
its members are public by default and holds only one member at a time. In C, a
structure is a simple variant of the C++ class.

If a C++ class using features not available to C (for example, virtual functions,
virtual base class, private and protected data, or static data members) is passed to
C, the results are undefined.

Supported data types passed between C and C++

C data type Equivalent C++ data type

char char

signed char signed char

unsigned char unsigned char

short, signed short, short int, or signed short int short, signed short, short int, or signed short int

unsigned short, or unsigned short int unsigned short, or unsigned short int

int, signed, signed int int, signed, signed int

unsigned, or unsigned int unsigned, or unsigned int

long, signed long, long int, or signed long int long, signed long, long int, or signed long int

unsigned long, or unsigned long int unsigned long, or unsigned long int

float float

double double

long double long double

struct struct, some classes

union union

14 z/OS V2R1.0 Language Environment Writing ILC Applications

C data type Equivalent C++ data type

enum enum

array array

pointers to above types, pointers to void pointers to above types, reference variables of
above types, or pointers to void

pointers to functions pointers to functions

types created by typedef types created by typedef

Note:

1. C functions invoked from C++ or C++ functions invoked from C must be
declared as extern "C" in the C++ source.

2. Packed decimal is not supported by C++. If you need to use packed decimal
data, declare and modify it in C code using C functions.

3. If C++ classes, using features that are not available in C (see “Passing C++
objects” on page 14 for examples), are passed to C, the results are undefined.

Using aggregates
C structures and unions may map differently than C++ structures, classes, and
unions. The C and C++ AGGREGATE compiler options provide a layout of
aggregates to help you perform the mapping.

Data equivalents
This section shows how C and C++ data types correspond to each other.

Equivalent data types for C to C++
The following examples illustrate how C and C++ routines within a single ILC
application might code the same data types.

Signed one-byte character data

Sample C usage C++ subroutine

#include <stdio.h>

int cplusf(signed char mc);

int main()
{

int rc;

signed char myc=’c’;

rc=cplusf(myc); /* by value */
printf("myc=%c rc=%d\n",myc,rc);

}

#include <stdio.h>
#include <stdlib.h>

extern "C" int cplusf(signed char myc);

int cplusf(signed char myc)
{

myc=’d’;
printf("myc=%c, rc=%d\n",myc,myc);

return((int)myc);
}

Chapter 3. Communicating between C and C++ 15

Sample C usage C++ subroutine

#include <stdio.h>

int cplusf(signed char *mc);

int main()
{

int rc;

signed char myc=’c’;

rc=cplusf(&myc);
/* by reference */
printf("myc=%c rc=%d\n",myc,rc);

}

#include <stdio.h>
#include <stdlib.h>

extern "C" int cplusf(signed char&; myc);

int cplusf(signed char&; myc)
{

myc=’d’;
printf("myc=%c, rc=%d\n",myc,myc);

return((int)myc);
}

32-bit unsigned binary integer

Sample C usage C++ subroutine

#include <stdio.h>

int cplusf(unsigned int mi);

int main()
{

int rc;

unsigned int myi=32;

rc=cplusf(myi);
/* by value */

printf("myi=%u rc=%d\n",myi,rc);

}

#include <stdio.h>
#include <stdlib.h>

extern "C" int cplusf(unsigned int myi);

int cplusf(unsigned int myi)
{

myi=33;
printf("myi=%u, rc=%d\n",myi,myi);

return((int)myi);
}

Sample C usage C++ subroutine

#include <stdio.h>

int cplusf(unsigned int *mi);

int main()
{

int rc;

unsigned int myi=32;

rc=cplusf(&myi);
/* by reference */

printf("myi=%u rc=%d\n",myi,rc);

}

#include <stdio.h>
#include <stdlib.h>

extern "C" int cplusf(unsigned int *myi);

int cplusf(unsigned int *myi)
{

*myi=33;
printf("myi=%u, rc=%d\n",*myi,*myi);

return((int)*myi);
}

16 z/OS V2R1.0 Language Environment Writing ILC Applications

Structures and typedefs

Sample C usage C++ subroutine

#include <stdio.h>

typedef struct {
int x;
float y;

} coord;

double cplusf(coord *mycoord);

int main()
{

double rc;

coord xyval, *xy;

xyval.x=2;
xyval.y=4;

xy=&xyval;
rc=cplusf(xy);

/* by reference */
printf("xyval.x=%d xyval.y=%f

rc=%lf\n",xyval.x,xyval.y,rc);

}

#include <stdio.h>
#include <stdlib.h>

typedef struct {
int x;
float y;

} coord;

extern "C" double cplusf(coord&; mycoord);

double cplusf(coord&; xy)
{

double rc;

xy.x=4;
xy.y=10;
rc=xy.x * xy.y;
printf("xy.x=%d, xy.y=%f, rc=%lf\n",

xy.x,xy.y,rc);

return(rc);
}

Function pointers

Sample C usage C++ subroutine

#include <stdio.h>

typedef int(FUNC) (int);

void cplusf (FUNC *myfnc);

int myfunc(int value)
{

int rc;
rc= printf("The given value

was %d\n", value);
return(rc);

}

int main()
{

int rc;

rc = myfunc(3);
printf("rc=%d\n",rc);

cplusf(myfunc);

}

#include <stdio.h>
#include <stdlib.h>

extern "C" {
typedef int(FUNC) (int);
void cplusf (FUNC *myfnc);

}

void cplusf(FUNC *myfunc)
{

int rc;

rc=myfunc(3);
printf("rc=%d\n",rc);

}

Equivalent data types for C++ to C
The following examples illustrate how C++ and C routines within a single ILC
application might code the same data types.

Chapter 3. Communicating between C and C++ 17

16-bit signed binary integer

Sample C++ usage C subroutine

#include <stdio.h>
#include <stdlib.h>

extern "C" int cfunc(short int msi);

int main()
{

int rc;

short mysi = 2;

rc=cfunc(mysi); /* by value */
printf("mysi=%hd rc=%d\n",mysi,rc);

}

#include <stdio.h>
#include <stdlib.h>

int cfunc(short mysi);

int cfunc(short int mysi)
{

mysi=5;
printf("mysi=%hd, rc=%d\n",mysi,mysi);

return((int)mysi);
}

Sample C++ usage C subroutine

#include <stdio.h>
#include <stdlib.h>

extern "C" int cfunc(short int *msi);

int main()
{

int rc;

short mysi = 2;
short *pmysi;

pmysi=&mysi;
rc=cfunc(pmysi);

/* by reference */
printf("mysi=%hd rc=%d\n",mysi,rc);

}

#include <stdio.h>
#include <stdlib.h>

int cfunc(short *mysi);

int cfunc(short int *mysi)
{

*mysi=5;
printf("mysi=%hd, rc=%d\n",*mysi,*mysi);
return((int)*mysi);

}

Short floating-point number

Sample C++ usage C subroutine

#include <stdio.h>

extern "C" int cfunc(float mf);

int main()
{

int rc;

float myf=32;

rc=cfunc(myf);
/* by value */

printf("myf=%f rc=%d\n",myf,rc);

}

#include <stdio.h>
#include <stdlib.h>

int cfunc(float myf);

int cfunc(float myf)
{

myf=33;
printf("myf=%f, rc=%d\n",myf,33);

return(33);
}

18 z/OS V2R1.0 Language Environment Writing ILC Applications

Sample C++ usage C subroutine

#include <stdio.h>

extern "C" int cfunc(float *mf);

int main()
{

int rc;

float myf=32;

rc=cfunc(&myf);
/* by reference */

printf("myf=%f rc=%d\n",myf,rc);

}

#include <stdio.h>
#include <stdlib.h>

int cfunc(float *myf);

int cfunc(float *myf)
{

*myf=33;
printf("myf=%u, rc=%f\n",*myf,*myf);

return(33);
}

Pointer to character

Sample C++ usage C subroutine

#include <stdio.h>

extern "C" void cfunc(char * stuff);

int main()
{

char *mystuff="fun fun";

cfunc(mystuff);
/* by reference */

printf("mystuff is %s\n",mystuff);

}

#include <stdio.h>
#include <stdlib.h>

void cfunc(char *stuff);

void cfunc(char *stuff)
{

*(stuff+1)=’U’;
printf("stuff is %s\n",stuff);

}

Function pointers

Sample C++ usage C subroutine

#include <stdio.h>

extern "C" {
typedef int(FUNC) (int);
int myfunc(int value);
void cfunc (FUNC *myfnc);

}

int myfunc(int value)
{

int rc;
rc= printf("The given value

was %d\n", value);
return(rc);

}

int main()
{

int rc;

rc = myfunc(3);
printf("rc=%d\n",rc);

cfunc(myfunc);

}

#include <stdio.h>
#include <stdlib.h>

typedef int(FUNC) (int);
void cfunc (FUNC *myfnc);

void cfunc(FUNC *myfunc)
{

int rc;

rc=myfunc(3);
printf("rc=%d\n",rc);

}

Name scope and name space
In programming languages, the name scope is defined as the portion of an
application within which a particular declaration applies or is known. Name space

Chapter 3. Communicating between C and C++ 19

is defined as the portion of a load module within which a particular declaration
applies or is known. These two concepts determine whether a particular
declaration in one language will map to a reference in another language.

In C, the name space is determined by compiler options or specific compiler
directives. Programs compiled with NORENT place variable declarations in
CSECTs. Programs compiled with RENT refer to a writable static area that contains
static, external, and string literal variables. For more information about the writable
static area, see z/OS XL C/C++ Programming Guide.

The XL C++ compiler acts as if everything was compiled with RENT.

The two techniques for creating an executable program are:
v When the executable program is to be stored in a PDSE or HFS, use the binder

to combine the output from the XL C/C++ compiler.
v When the executable program is to be stored in a PDS, use the Language

Environment Prelinker Utility to combine the output from the XL C/C++
compiler and pass the prelinker output to the binder.

To map data in C to C++ ILC, there are 3 major cases:
1. C compiled with the RENT option statically bound to C++

C++ and C storage areas that result from compiling with RENT are mapped
together at prelink time or at bind time when the Prelinker is not used and the
output from the binder goes to the HFS or to a member in a PDSE. The name
scope is the module boundary and external data will map to each other. The
LONGNAME compiler option or the #pragma map preprocessor directive may
be required to allow mixed-case, or long named external references, to resolve.

2. C compiled without the RENT option statically bound to C++

C++ storage is placed in a different location than C NORENT storage.
Therefore, by default, C++ will not look for NORENT C storage in the right
place unless you give the XL C++ compiler the #pragma
variable(varname,norent) directive.

Sample C usage C++ subroutine

#include <stdio.h>

float mynum = 2;
main() {

int result, y;
int *x;

y=5;
x=&y;

result = cppfunc(x);
/* by reference */

if (y==6 && mynum==3)
printf("It worked!\n");

}

#include <stdio.h>

#pragma variable(mynum,norent)
extern float mynum;
extern "C" {

int extern cppfunc(int *);
}

cppfunc(int *newval)
{ // receive into pointer

*newval = *newval + 1;
mynum = mynum + 1;
return *newval;

}

Alternatively, you can specify to the XL C++ compiler that a specific variable is
RENT by specifying #pragma variable(varname,rent) in C.

20 z/OS V2R1.0 Language Environment Writing ILC Applications

Sample C usage C++ subroutine

#include <stdio.h>
#pragma variable(mynum,rent)

float mynum = 2;
main() {

int result, y;
int *x;

y=5;
x=&y;

result = cppfunc(x);
/* by reference */

if (y==6 && mynum==3)
printf("It worked!\n");

}

#include <stdio.h>

extern float mynum;
extern "C" {

int extern cppfunc(int *);
}

cppfunc(int *newval)
{ // receive into pointer

*newval = *newval + 1;
mynum = mynum+ 1;
return *newval;

}

3. A C to C++ DLL application

A DLL application can access any declaration in its own module as well as
referencing, implicitly or explicitly, any declaration from another DLL in the
same enclave. For further information about what DLLs are and how to use
them, see z/OS XL C/C++ Programming Guide.

Enhancing performance with packed structures and unions
Data elements of a structure or union are stored in memory on an address
boundary specific for that data type. For example, a double value is stored in
memory on a doubleword (8-byte) boundary. Gaps can be left in memory between
elements of a structure to align elements on their natural boundaries. You can
reduce the padding of bytes within a structure by packing that structure with the
_Packed qualifier in C or by using the #pragma pack(packed) directive in C++ prior
to the structure declaration.

The memory saved using packed structures might affect runtime performance.
Most CPUs access data much more efficiently if it is aligned on appropriate
boundaries. With packed structures, members are generally not aligned on
appropriate (halfword, fullword, or doubleword) boundaries; the result is that
member-accessing operations (. and ->) might be slower. The _Packed qualifier in
C and #pragma pack(packed) in C++ have the same alignment rules for the same
structures or unions. _Packed affects the definition, and #pragma pack(packed)
affects the declaration.

Example of packed structures
In the following C example, fredc is a packed structure with its members, a,b,c,
aligned on 1-byte boundaries.
struct ss{

int a;
char b;
double c;

};

_Packed struct ss fredc;

In the following C++ example, fredcplus is a packed structure with its members,
a,b,c, aligned on 1-byte boundaries.
#pragma pack(packed)

struct ss{
int a;
char b;

Chapter 3. Communicating between C and C++ 21

double c;
};

struct ss fredcplus;

Both fredc and fredcplus have the same storage mapping.

Calling packed structures and unions
Packed and unpacked objects can have different memory layouts. You can use ILC
calls with arguments that are packed structures by using the #pragma pack(packed)
support in C++.

#ifdef __cplusplus /* if compiled with C++ compiler */
#ifndef _Packed /* define _Packed */

#define _Packed
#endif

#pragma pack(packed) /* 1-byte alignment is used */
#endif

struct ss {
int i;
char j;
int k;

};

typedef _Packed struct ss packss;

#ifdef __cplusplus /* if compiled with C++ compiler */
#pragma pack(reset) /* reset alignment rule */

#endif

Figure 1. Common header file (common.h)

#include "common.h" /* include common header file */

void callcxx(packss);

main() {
packss packed;

packed.i = 10;
packed.j = ’a’;
packed.k = 33;

callcxx(packed);
}

Figure 2. Common header file in C

22 z/OS V2R1.0 Language Environment Writing ILC Applications

For more information about #pragma pack(packed) or on _Packed structures, see
z/OS XL C++ Language Reference.

Using storage functions in C to C++ ILC
Use the following guidelines if you mix HLL storage constructs:
v If the storage was allocated using Language Environment services, free it using

Language Environment services.
v If the storage was allocated using C functions such as malloc(), calloc, or

realloc(), free it using free();
v If the storage was allocated using the C++ new keyword then it must be deleted

with delete.
v If your program requires that storage be allocated in one language and deleted

in another, use the Language Environment services.

Directing output in ILC applications
When writing output to a standard stream from a C to C++ ILC application, both
the C and C++ code should use the C I/O functions such as printf and puts,
which allow the output to be written in the expected order. If your C++ program is
directing output to cout (the default), you may get output in an unexpected order.
See z/OS XL C/C++ Programming Guide chapter on IOSTREAMS for further
information.

There is no restriction on passing file pointers from C to C++; a file opened using
fopen in a C program may be closed by using fclose in a C++ program, and vice
versa.

C to C++ condition handling
C++ exception handling uses throw()/try()/catch(), whereas C uses
signal()/raise() or sigaction()/kill(). Mixing C and C++ exception handling

/ /
/ /
/ /byte 0
/ / without #pragma pack(packed), the value of k
/ / will be unpredictable because the memory layout is
/ / different from the original structure

54

ki j

9

/ / with #pragma pack(packed) specified
/ / before the structure declaration,
/ / the following output and memory layout is expected:
/ / i = 10, j = a, k = 33
/ /

padding ki j/ /
/ /
/ /byte 0 4 5

cout <<"i" =" << packed->i << "j=" << packed->j << "k="
<< packed->k;

}

#include <iostream.h> / / include iostream header file
#include <common.h> / / include common header file

extern "C" {
void callcxx(packss);

}

void callcxx (packs *packplus) {

8 12

Figure 3. Common header file in C++

Chapter 3. Communicating between C and C++ 23

in a C to C++ ILC module will result in undefined behavior. If you use only the C
exception handling model, a C++ routine can register a signal handler via signal
to handle exceptions (software/hardware) raised by either a C or C++ routine.
However, the behavior of running destructors for static/automatic objects is
undefined.

If you use only the C++ exception handling model, only C++ routines will be able
to catch()/handle() thrown objects. C routines do not have try()/catch()/
throw() abilities nor can they use signal() to register a handler for thrown objects.
A C++ routine cannot register a handler via signal() to catch thrown objects; it
must use catch() clauses. C routines will ignore thrown objects.

Sample C to C++ applications

/* Module/File Name: EDCCXC */
/***/
/* CPROGRAM, compile with rent and longname */
/***/
#include <stdio.h>
#include <stdlib.h>

typedef struct {
int length;
int width;

} rectngl;

extern void printrec(rectngl r);
extern void change_width(rectngl* r , int w);

int CFUNC(rectngl *mine)
{
int rc;

printrec(*mine);
change_width(mine, 5);

#ifdef debug
printrec(*mine);

#endif

printrec(*mine);

if (mine->width !=5)
return(1);

else
return(0);

}

Figure 4. C++main routine

24 z/OS V2R1.0 Language Environment Writing ILC Applications

/* Module/File Name: EDCCXCX */
/***/
/* CXXPROG - prelink with CPROG */
/***/
#include <stdio.h>
#include <stdlib.h>

#include "verify.h"

class rectangle {
public:
int length;
int width;

rectangle(int l, int w) { length = l; width = w; }
void show()
{ printf("Length: %d Width: %d\n",length,width); }
void set_width(int size) { width=size; }
void set_length(int size) { length=size; }

};

extern "C" {
int CFUNC(rectangle *small);
void printrec(rectangle r) { r.show();};
void change_width(rectangle* r, int nw) { r->set_width(nw);};

};

int main()
{
int rc;

rectangle myrec(10,2);

rc=CFUNC(&myrec);

if (rc == 1)
fail(__FILE__,__LINE__);

else
check(__FILE__);

}

Figure 5. Csubroutine

Chapter 3. Communicating between C and C++ 25

26 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 4. Communicating between C and COBOL

This topic describes Language Environment's support for C and COBOL ILC
applications. If you are running a C to COBOL ILC application under CICS, you
should also consult Chapter 15, “ILC under CICS,” on page 241.

General facts about C to COBOL ILC
v With Enterprise COBOL for z/OS, COBOL for OS/390 & VM, or COBOL for

MVS & VM, the #pragma linkage directive is not required for most calls between
C and COBOL routines (although it can still be used). See “Calling between C
and COBOL” on page 31 for the cases that require it. With COBOL/370 and VS
COBOL II, #pragma linkage is required in the C routines.

v A C to COBOL application can be constructed to be reentrant.
v Language Environment does not support the automatic passing of return codes

between C and COBOL routines in an ILC application.
v There is no ILC support between AMODE 31 and AMODE 64 applications.

COBOL does not support AMODE 64.
v ILC is not supported in the C multitasking facility environment.

Preparing for ILC
This section describes topics you might want to consider before writing an
application that uses ILC. For help in determining how different versions of HLLs
work together, refer to the migration guides for the HLLs you plan to use.

Language Environment ILC support
Language Environment provides ILC support between the following combinations
of C and COBOL:

Table 4. Supported languages for Language Environment ILC

HLL pair C (31–bit mode only) COBOL

C to COBOL v C/370 Version 1 Release 2
v C/370 Version 2 Release 1
v IBM C/C++ for MVS/ESA
v z/OS XL C/C++ Compilers

v VS COBOL II Version 1
Release 3 and later

v COBOL/370 Release 1
v COBOL for MVS & VM

Release 2
v COBOL for OS/390 & VM
v Enterprise COBOL for z/OS

Note: C refers to both the pre-Language Environment-conforming and Language Environment-
conforming versions of C. COBOL refers to VS COBOL II, COBOL/370, COBOL for MVS & VM,
COBOL for OS/390 & VM, and Enterprise COBOL for z/OS.

Language Environmentdoes not support ILC between OS/VS COBOL and C. See Chapter 15, “ILC
under CICS,” on page 241 for the allowable ILC on CICS.

Migrating ILC applications

Relinking
ILC applications that contain load modules with pre-Language
Environment-conforming C routines or VS COBOL II programs must be relinked,
either under Language Environment or with the migration tool provided in C/370

© Copyright IBM Corp. 1991, 2013 27

Version 2 Release 2. You should relink using the migration tool if your application
will be used under both C/370 Version 2 Release 2 and Language Environment.

When you relink under Language Environment, explicitly include the following:
v The @@C2CBL and @@CBL2C routines. @@C2CBL is called when a C routine

calls a COBOL program. @@CBL2C is called (in C) when a C routine is
designated as linkage COBOL.

v IGZEBST or IGZENRI, depending on whether the COBOL program was
compiled with RES or NORES, respectively.

Recompiling
You do not need to recompile an existing ILC application with a Language
Environment-conforming compiler, but you can do so in order to take advantage of
Language Environment's condition handling behavior.

Compiling and linking considerations

Compiling
If the C library is installed above the 16M line, compile your COBOL program
using the RENT compiler option.

Linking
When link-editing ILC application load modules, there are different considerations
for the main load module (the load module that contains the main routine) and for
a load module that is fetched or dynamically called.

For the main load module, you should present your main routine to the linkage
editor first in order to avoid an incorrectly chosen entry point. See “Determining
the main routine” for information about how to identify the main routine.

For load modules that will be fetched or dynamically called, the entry point of the
load module must be as follows:
v When C is the called routine and it does not specify any #pragma linkage, then

the routine name must be the entry point.
v When C is the called routine and it specifies #pragma linkage(...,COBOL), then

the routine name must be the entry point.
v When C is the called routine and it specifies #pragma linkage(,fetchable), then

CEESTART or the routine name must be the entry point.
v When COBOL is the called routine, the program name must be the entry point.

To specify the entry point of a load module, use the binder's ENTRY control
statement.

Determining the main routine
In Language Environment, only one routine can be the main routine; no other
routine in the enclave can use syntax that indicates it is main. If you write the
main routine in C, you must use language syntax to identify the routine as the
main routine. If you use COBOL as the first program in the enclave that is to gain
control, the program is effectively designated main by being the first to run.

In C, the same routine can serve as both the main routine and subroutines if
recursively called. In such a case, the new invocation of the routine is not
considered a second main routine within the enclave, but a subroutine. With a VS

28 z/OS V2R1.0 Language Environment Writing ILC Applications

COBOL II or COBOL/370 single enclave, a recursively called main program is not
permitted; Enterprise COBOL for z/OS, COBOL for OS/390 & VM and COBOL for
MVS & VM support recursion.

Table 5 describes how C and COBOL identify the main routine.

Table 5. How C and COBOL main routines are determined

Language When determined Explanation

C Compilation Determined in the C source file by declaring a C function
named main. The same routine can be used both as a main
and subroutine if it is recursively called.

COBOL Run time Determined dynamically. If it is the first program to run, it
is a main program. COBOL for MVS & VM, COBOL for
OS/390 & VM, and Enterprise COBOL for z/OS support
recursion, but the main program cannot be called
recursively within a single enclave in VS COBOL II or
COBOL/370.

An entry point is defined for each supported HLL. Table 6 identifies the desired
entry point. The table assumes that your code was compiled using the Language
Environment-conforming compilers.

Table 6. Determining the entry point

HLL Main entry point
Fetched or dynamically called
entry point

C CEESTART CEESTART or routine name if
#pragma linkage(,fetchable) is
used. In all other cases, the
routine name.

COBOL Name of the first object program
to get control in the object
module

Program name

Note: Specify ENTRY statement on link for the function name when not going
through prelinker. Use #pragma map to remap a name and use the remapped name
on ENTRY statement when prelinking.

C and COBOL routines that make up an ILC application are executed together in a
single run unit (the equivalent of a Language Environment enclave). However,
unlike in earlier versions of COBOL (VS COBOL II and OS/VS COBOL), the first
COBOL program in a run unit is no longer necessarily considered the main
program. If the first COBOL program is not the first program in the enclave to run,
it is considered a subroutine in the Language Environment enclave.

Declaring C to COBOL ILC
No special linkage declaration is required for ILC between C and Enterprise
COBOL for z/OS, COBOL for OS/390 & VM, or COBOL for MVS & VM. However,
for COBOL/370 and VS COBOL II, a C #pragma linkage directive is required for
both static and dynamic calls. The C #pragma linkage directive can still be used
with Enterprise COBOL for z/OS, COBOL for OS/390 & VM, and COBOL for
MVS & VM, but it is no longer required, as these levels of the COBOL products
support direct use of C-style linkage conventions via language constructs such as
BY VALUE arguments and function RETURNING values. Further, with the support
of DLL linkage conventions in the Enterprise COBOL for z/OS and COBOL for
OS/390 & VM products, COBOL applications may directly interoperate with
reentrant C modules that are linked as DLLs.

Chapter 4. Communicating between C and COBOL 29

When a #pragma linkage directive is required, all entry declarations are made in
the C code, both in the case where C calls COBOL and vice versa. The C #pragma
linkage directive lets the C compiler generate parameter lists for COBOL or accept
them from COBOL. It also ensures that writable static pointers are passed correctly
for reentrant C modules and, for calls from pre-Language Environment-conforming
COBOL, verifies that Language Environment has been properly established.

The #pragma linkage directive has the following format:
#pragma linkage(function_name, COBOL)

function_name can be up to eight characters (Enterprise COBOL for z/OS, COBOL
for OS/390 & VM, and COBOL for MVS & VM allow 160 characters).
function_name is either the COBOL program being called by C, or the C routine
being called by COBOL.

Note: When declaring without #pragma linkage the reference to COBOL is for
Enterprise COBOL for z/OS, COBOL for OS/390 & VM, and COBOL for MVS &
VM. When declaring with #pragma linkage the reference to COBOL is for
Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM,
COBOL/370, and VS COBOL II.

Declaring C to COBOL ILC without #pragma linkage

Declaration for C calling COBOL:

C function COBOL program

void COBRTN(int);
COBRTN(x); /* x by value */

01 X PIC S9(9) BINARY.
PROCEDURE DIVISION USING BY VALUE X.

Declaration for COBOL calling C:

COBOL program C function

01 X PIC S9(9) BINARY.
CALL "CENTRY" USING BY VALUE X.

void CENTRY(int x) {
}

Declaring C to COBOL ILC with #pragma linkage

Declaration for C calling COBOL:

C function COBOL program

#pragma linkage(CBLRTN,COBOL)
void CBLRTN(int p1);
CBLRTN(p1);

01 P1 PIC S9(9) USAGE IS BINARY
PROCEDURE DIVISION USING P1.

Declaration for COBOL calling C:

COBOL program C function

01 P1 PIC S9(9) USAGE IS BINARY
CALL ’CFUNC’ USING BY CONTENT P1.

#pragma linkage(CFUNC,COBOL)
void CFUNC(int p1) {
}

30 z/OS V2R1.0 Language Environment Writing ILC Applications

Calling between C and COBOL
This section describes the types of calls permitted between C and COBOL, and
considerations when using dynamic calls and fetch.

Types of calls permitted
The following tables describe the types of calls that are supported between C and
COBOL when running with Language Environment.
v Table 7 shows which calls are supported from COBOL programs to C routines

that use #pragma linkage(...,COBOL).
v Table 8 on page 32 shows which calls are supported from COBOL programs to C

routines that do not use #pragma linkage(...,COBOL).
v Table 9 on page 33 shows which calls are supported from C routines to COBOL

programs.

Table 7. Support for calls from COBOL to C with #pragma linkage(...,COBOL)

Caller Call type

Target

Non-reentrant C
or naturally
reentrant C

Reentrant C that
does not export

functions or
variables

Reentrant C that
exports functions

or variables

VS COBOL II (1) static Yes
Yes with

restrictions (2)
Yes with

restrictions (2)

COBOL/370 (1) static Yes Yes Yes

COBOL (5) compiled
with NODLL

static Yes Yes Yes

VS COBOL II (1) dynamic Yes (3) Yes (3) No

COBOL/370 (1) dynamic Yes (3) Yes (3) No

COBOL (5) compiled
with NODLL

dynamic Yes (3) Yes (3) No

COBOL (6) compiled
with DLL

CALL "literal" to a
function within

the module
Yes Yes Yes

COBOL (6) compiled
with DLL

CALL "literal" to a
function exported

from a DLL
No No Yes (4)

COBOL (6) compiled
with DLL

CALL identifier to
a function

exported from a
DLL

No No Yes (4)

Chapter 4. Communicating between C and COBOL 31

Table 7. Support for calls from COBOL to C with #pragma linkage(...,COBOL) (continued)

Caller Call type

Target

Non-reentrant C
or naturally
reentrant C

Reentrant C that
does not export

functions or
variables

Reentrant C that
exports functions

or variables

Note:

1. When the caller is VS COBOL II or COBOL/370, all calls must be to void functions.

2. Static calls are supported from VS COBOL II to reentrant C in the following cases:
v The call is done in the main load module.
v The call is done in a load module whose entry point is a Language Environment-conforming

program or routine that was called using COBOL dynamic call.
v The call is done in a load module whose entry point is not a Language Environment-conforming

program or routine that was called using COBOL dynamic call, and there are no C routines in the
main load module, and no reentrant C routines have been previously called in any other load
module.

v The call is done in a module that was called using C fetch.

3. Dynamically called load modules cannot contain any DLL routines that export functions or
variables.

4. In this case, the C code can also be compiled with the XPLINK option. The XPLINK option implies
the DLL option — all XPLINK compiled code is automatically DLL-enabled. The XPLINK C code
must reside in a separate module from the COBOL caller.

5. COBOL for MVS & VM, COBOL for OS/390 & VM, or Enterprise COBOL for z/OS.

6. COBOL for OS/390 & VM or Enterprise COBOL for z/OS

Table 8. Support for calls from COBOL to C without #pragma linkage(...,COBOL)

Caller Call type

Target

Non-reentrant C
or naturally
reentrant C

Reentrant C that
does not export

functions or
variables

Reentrant C that
exports functions

or variables

VS COBOL II (1) static No No No

COBOL/370 (1) static No No No

COBOL (5) compiled
with NODLL

static Yes
Yes with

restrictions (2)
Yes with

restrictions (2)

VS COBOL II (1) dynamic No No No

COBOL/370 (1) dynamic No No No

COBOL (5) compiled
with NODLL

dynamic Yes (3) Yes (3) No

COBOL (6) compiled
with DLL

CALL "literal" to a
function within

the module
Yes Yes Yes

COBOL (6) compiled
with DLL

CALL "literal" to a
function exported

from a DLL
No No Yes (4)

COBOL (6) compiled
with DLL

CALL identifier to
a function

exported from a
DLL

No No Yes (4)

32 z/OS V2R1.0 Language Environment Writing ILC Applications

Table 8. Support for calls from COBOL to C without #pragma linkage(...,COBOL) (continued)

Caller Call type

Target

Non-reentrant C
or naturally
reentrant C

Reentrant C that
does not export

functions or
variables

Reentrant C that
exports functions

or variables

Note:

1. For VS COBOL II or COBOL/370, #pragma linkage(...,COBOL) is required.

2. Static calls are supported for calls from COBOL for MVS & VM, COBOL for OS/390 & VM, or
Enterprise COBOL for z/OS compiled with NODLL to reentrant C that exports functions or
variables in the following cases:
v The call is done in the main load module.
v The call is done in a DLL that was called using DLL linkage.

3. Dynamically called load modules cannot contain any DLL routines that export functions or
variables.

4. In this case, the C code can also be compiled with the XPLINK option. The XPLINK option implies
the DLL option — all XPLINK compiled code is automatically DLL-enabled. The XPLINK C code
must reside in a separate module from the COBOL caller.

5. COBOL for MVS & VM, COBOL for OS/390 & VM, or Enterprise COBOL for z/OS.

6. COBOL for OS/390 & VM or Enterprise COBOL for z/OS

Table 9. Support for calls from C to COBOL

Caller Call type

Target

VS COBOL II or
COBOL/370

COBOL (3)
compiled with

NODLL

COBOL (4)
compiled with

DLL

C with #pragma
linkage(...,COBOL) and
compiled with NODLL

static Yes (1) Yes Yes

C without #pragma
linkage(...,COBOL) and
compiled with NODLL

static No Yes Yes

C with #pragma
linkage(...,COBOL) and
compiled with NODLL

fetch Yes (1, 2) Yes (2) No

C without #pragma
linkage(...,COBOL) and
compiled with NODLL

fetch No Yes (2) No

C with #pragma
linkage(...,COBOL) and
compiled with DLL

static Yes (1) Yes Yes

C without #pragma
linkage(...,COBOL) and
compiled with DLL

static No Yes Yes

C with #pragma
linkage(...,COBOL) and
compiled DLL

fetch Yes (1,2) Yes (2) No

C without #pragma
linkage(...,COBOL) and
compiled DLL

fetch No Yes (2) No

C with #pragma
linkage(...,COBOL) and
compiled DLL

dynamic (called
function is

exported from a
DLL)

No No Yes

C without #pragma
linkage(...,COBOL) and
compiled with DLL

dynamic (called
function is

exported from a
DLL)

No No Yes

Chapter 4. Communicating between C and COBOL 33

Table 9. Support for calls from C to COBOL (continued)

Caller Call type

Target

VS COBOL II or
COBOL/370

COBOL (3)
compiled with

NODLL

COBOL (4)
compiled with

DLL

C with #pragma
linkage(...,COBOL) and
compiled with
XPLINK

static No No No

C without #pragma
linkage(...,COBOL) and
compiled with
XPLINK

static No No No

C with #pragma
linkage(...,COBOL) and
compiled with
XPLINK

fetch No Yes (2) No

C without #pragma
linkage(...,COBOL) and
compiled with
XPLINK

fetch No Yes (2) No

C with #pragma
linkage(...,COBOL) and
compiled with
XPLINK

dynamic (called
function is

exported from a
DLL)

No No Yes

C without #pragma
linkage(...,COBOL) and
compiled with
XPLINK

dynamic (called
function is

exported from a
DLL)

No No Yes

Note:

1. When the target of the call is VS COBOL II or COBOL/370, the called COBOL program must be
declared as a void function.

2. Fetched COBOL load modules cannot contain any DLL routines that export functions or variables.

3. COBOL for MVS & VM, COBOL for OS/390 & VM, or Enterprise COBOL for z/OS.

4. COBOL for OS/390 & VM or Enterprise COBOL for z/OS.

Performance considerations
The performance of COBOL calling C is best when #pragma linkage(...,COBOL) is
not used.

Dynamic call/fetch considerations - non-DLL modules
Both C and COBOL provide language constructs that support the dynamic loading,
execution, and deletion of user-written routines. The C fetch() library function
dynamically loads a load module that you specify into main storage. The module
can be invoked later from a C application (see z/OS XL C/C++ Programming Guide
for more information about fetch()). In COBOL, you can use the dynamic CALL
statement to dynamically load a load module into main storage. For more
information about the CALL statement, see the appropriate version of the
programming guide in the Enterprise COBOL for z/OS library
(http://www-01.ibm.com/support/docview.wss?uid=swg27036733).

Both C and COBOL support multiple-level fetches or dynamic calls (for example,
Routine 1 fetches Routine 2, which in turn fetches Routine 3, and so on).

User-written condition handlers registered using CEEHDLR can be fetched, but
must be written in the same language as the fetching language.

34 z/OS V2R1.0 Language Environment Writing ILC Applications

http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www-01.ibm.com/support/docview.wss?uid=swg27036733

C fetching C with COBOL statically linked
ILC between C and COBOL is supported within both a fetching C load module
and a fetched C load module.

C fetching COBOL
You can use the C fetch() function to fetch a COBOL program and invoke it later
using a function pointer. The declaration of a COBOL fetched program within a C
routine is shown in Figure 6. The figure indicates C fetching either an Enterprise
COBOL for z/OS or COBOL for OS/390 & VM program or a COBOL for MVS &
VM program. If COBOL/370 or VS COBOL II were used, the C #pragma linkage
directive would be used, as #pragma linkage(CBL_FUNC, COBOL).

You can use the C release() function to release a COBOL program that was
explicitly loaded by fetch(). A COBOL CANCEL cannot be issued against any
routine dynamically loaded using the C fetch() function.

COBOL dynamically calling COBOL with C statically linked
ILC between COBOL and C is supported within both a dynamically calling
COBOL load module and a dynamically called COBOL load module.

Restriction: COBOL cannot dynamically call a C function that has been compiled
XPLINK.

COBOL dynamically calling non-Language Environment
conforming assembler with C statically linked
COBOL can dynamically call non-Language Environment conforming assembler
which then calls a statically linked C routine provided the C routine is
non-reentrant or naturally reentrant (no writable static). The C routine must have
the #pragma linkage(...,COBOL) directive coded.

Note: If C has not yet been initialized, calling a reentrant C routine will work. The
C routine must have the #pragma linkage(...,COBOL) directive coded. Due to the
difficulty of the user ensuring that C has not yet been initialized, IBM recommends
the use of one of the methods described in this section.

A preferable method would be to have COBOL dynamically call the C routine
directly. You can also have COBOL dynamically call Language Environment
conforming assembler, which then calls a statically linked C routine. In these cases,
there would be no reentrancy restrictions.

Cancel considerations
A COBOL program can use the CANCEL statement to cancel a load module that
contains C.

typedef void CBL_FUNC();
.
.
.

CBL_FUNC *fetch_ptr;
fetch_ptr = (CBL_FUNC*) fetch("COBEP"); /* fetch the routine */
fetch_ptr(args); /* call COBEP */

Figure 6. C fetching a COBOL program

Chapter 4. Communicating between C and COBOL 35

COBOL dynamically calling C
A COBOL program can dynamically CALL a C routine.

Dynamic call/fetch considerations - DLL modules
A DLL module differs from a regular load module in that the original source code
was compiled using the DLL option of the XL C or COBOL compiler, and then
uses the prelinker or binder facilities to import or export symbols.

Restriction: The DLL approach versus the COBOL dynamic call/C fetch approach
are two different mechanisms for achieving the goal of structuring the application
as multiple, separate modules. The two approaches do not mix, however. One or
the other should be chosen. See the appropriate version of the programming guide
in the Enterprise COBOL for z/OS library (http://www-01.ibm.com/support/
docview.wss?uid=swg27036733), which explains this in some detail and gives some
trade-offs between the DLL approach and the dynamic call approach. See also z/OS
Language Environment Programming Guide or z/OS XL C/C++ Programming Guide.

Passing data between C and COBOL
In VS COBOL II and COBOL/370, you can pass parameters two ways:

By reference (indirect)
COBOL BY REFERENCE

By value (indirect)
COBOL BY CONTENT

In Enterprise COBOL for z/OS, COBOL for OS/390 & VM, and COBOL for MVS
& VM, you can pass parameters three ways:

By reference (indirect)
COBOL BY REFERENCE

By value (indirect)
COBOL BY CONTENT

By value (direct)
COBOL BY VALUE

Under Language Environment, the term by value means that a temporary copy of
the argument is passed to the called function or procedure. Any changes to the
parameter made by the called routine will not alter the original parameter passed
by the calling routine. Under Language Environment, the term by reference means
that the actual address of the argument is passed. Any changes to the parameter
made by the called routine can alter the original parameter passed by the calling
routine.

Further, the term direct means that the argument is passed in the parameter list.
The term indirect means that a pointer to the argument is passed in the parameter
list.

There are two ways to pass data between C and COBOL: one way uses #pragma
linkage in the C routine; the other does not. Both methods are discussed
separately.

36 z/OS V2R1.0 Language Environment Writing ILC Applications

http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www-01.ibm.com/support/docview.wss?uid=swg27036733

Passing data between C and COBOL without #pragma

Note: The reference to COBOL, in the sections explaining the use of COBOL
without #pragma, applies only to Enterprise COBOL for z/OS, COBOL for OS/390
& VM, and COBOL for MVS & VM.

When data is passed between C and COBOL without #pragma linkage (COBOL),
the standard language linkages are used with no extra level of indirection
introduced.

Passing data by value between C and COBOL
Copies of variables can be passed between C and COBOL. On return, the actual
value of the variable remains unchanged, regardless of how it may have been
modified in the called routine.

Passing by value (direct): To pass data by value (direct) from C to COBOL, the
variables are passed by C as arguments on a function call and received by COBOL
as BY VALUE parameters. Conversely, to pass data by value (direct) from COBOL
to C, the variables are passed by COBOL as BY VALUE arguments and received by
C as function parameters. In all cases, the variable must be declared in C and
COBOL with compatible base data types. For example, if a C function called
FROMCOB is to receive a parameter passed by value (direct) of type int, the
function prototype declaration would look like this:
void FROMCOB(int)

Passing by value (indirect): Data cannot be passed from C to COBOL; however,
data can be passed by value (indirect) from COBOL to C. In this case, the variable
is passed as a BY CONTENT argument and received by C as a pointer to the given
type. For example, if a C function called FROMCOB is to receive a parameter
passed by value (indirect) of type int, the function prototype declaration would
look like this:
void FROMCOB(int *)

The C function must dereference the pointer to access the actual value. If the value
of the pointer is modified by the C function, as opposed to modifying the value
that the pointer points to, the results on return to COBOL are unpredictable. Thus,
passing values by value (indirect) from COBOL to C should be used with caution,
and only in cases where the exact behavior of the C function is known.

Table 10 on page 38 shows the supported data types for passing by value (direct)
and Table 11 on page 38 shows the supported data types for passing by value
(indirect).

Passing data by reference (indirect) between C and COBOL
A parameter can be passed by reference (indirect) between C and COBOL. By
reference (indirect) means that the actual address of the argument is passed to the
called function or procedure; any changes to the parameter made by the called
routine can alter the original parameter passed by the calling routine.

To pass data by reference (indirect) from C to COBOL, the variables are passed by
C as function arguments, which are pointers to a given type or the address of a
given variable, and received by COBOL as BY REFERENCE parameters.
Conversely, to pass data by reference (indirect) from COBOL to C, the variables are
passed by COBOL as BY REFERENCE arguments and received by the C function
as pointers to a given type.

Chapter 4. Communicating between C and COBOL 37

The C function must dereference the pointer to access the actual value. If the value
of the pointer is modified by the C function, as opposed to modifying the value
that the pointer points to, the results on return to COBOL are unpredictable. Thus,
passing values by reference (indirect) from COBOL to C should be used with
caution, and only in cases where the exact behavior of the C function is known.

Table 11 shows the supported data types for passing by reference (indirect).

Supported data types passed by value (direct) between C and
COBOL
Table 10 identifies the data types that can be passed by value (direct) as parameters
between C and COBOL applications.

Table 10. Supported data types passed by value (direct) without #pragma

C COBOL (by value)

char PIC X, PIC A

signed short int PIC S9(4) USAGE IS BINARY

unsigned short int PIC 9(4) USAGE IS BINARY

signed int, signed long int PIC S9(9) USAGE IS BINARY

unsigned int PIC 9(9) USAGE IS BINARY, LENGTH OF

unsigned long int PIC 9(9) USAGE IS BINARY

float COMP-1

double COMP-2

pointer to... POINTER, ADDRESS OF

If the COBOL program receives int parameters from the C calling function that
might have a value that is larger than that declared as the maximum size by the
COBOL picture clause, the COBOL program must either be compiled with the
TRUNC(BIN) compiler option or each binary data item that receives int
parameters from C must be declared as USAGE IS COMP-5. Taking these actions
will guarantee that truncation of high-order digits does not occur. For more
information about the TRUNC(BIN) compiler option or about using COMP-5 data
items, see the appropriate version of the programming guide in the Enterprise
COBOL for z/OS library (http://www-01.ibm.com/support/
docview.wss?uid=swg27036733).

Supported data types passed between C and COBOL by
reference (indirect) and from COBOL to C either by value
(indirect) or by reference (indirect)
Table 11 identifies the data types that can be passed between C and COBOL by
Reference (Indirect) and from COBOL to C either by Value (Indirect) or by
Reference (Indirect).

Table 11. Supported data types passed between C and COBOL by reference (Indirect) and
from COBOL to C either by value (indirect) or by reference (indirect) without #pragma

C (Pointer to...) COBOL (by content/by reference)

char PIC X, PIC A

signed short int PIC S9(4) USAGE IS BINARY

unsigned short int PIC 9(4) USAGE IS BINARY

signed int, signed long int PIC S9(9) USAGE IS BINARY

unsigned int PIC 9(9) USAGE IS BINARY, LENGTH OF

unsigned long int PIC 9(9) USAGE IS BINARY

38 z/OS V2R1.0 Language Environment Writing ILC Applications

http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www-01.ibm.com/support/docview.wss?uid=swg27036733

Table 11. Supported data types passed between C and COBOL by reference (Indirect) and
from COBOL to C either by value (indirect) or by reference (indirect) without
#pragma (continued)

C (Pointer to...) COBOL (by content/by reference)

float COMP-1

double COMP-2

pointer to... POINTER, ADDRESS OF

decimal USAGE IS PACKED-DECIMAL

struct Groups

type array[n] Tables (OCCURS n TIMES)

Note:

1. You must specify a size for type array.
2. If the COBOL program receives int parameters from the C calling function that

might have a value that is larger than that declared as the maximum size by
the COBOL picture clause, the COBOL program must either be compiled with
the TRUNC(BIN) compiler option or each binary data item that receives int
parameters from C must be declared as USAGE IS COMP-5. Taking these
actions will guarantee that truncation of high-order digits does not occur. For
more information about the TRUNC(BIN) compiler option or about using
COMP-5 data items, see the appropriate version of the programming guide in
the Enterprise COBOL for z/OS library (http://www-01.ibm.com/support/
docview.wss?uid=swg27036733).

3. COBOL turns on the high-order bit of the address of the last parameter when it
is passed by reference. This can cause problems in the C program if it is using
the address (since it will be treated as a negative number). If a C program does
need to use the address of the last parameter, one of the following techniques
can be used to bypass this problem:
v If the COBOL program is an Enterprise COBOL program, instead of passing

the parameter by reference, pass the address of the item by value. For
example, use a call statement that looks like the following code:
CALL "C" using by value address of C-PARM1

by value address of C-PARM2

v If the COBOL program is not Enterprise COBOL, code needs to be added to
mask out the high-order bit in the C routine. The sample code shows how to
do this:

#include <stdio.h>
#include <string.h>
void A1CC01BA(char* myString)
{

myString = (char*)((int)myString & 0x7fffffff);
printf("My String: %s \n", myString);
return;

}

Handling function returns between C and COBOL
In COBOL, values can be returned to COBOL programs as COBOL returning
variables from C functions using standard C function returns. This is the
recommended approach for passing modified values back from a C function to a
COBOL program.

Note: When a COBOL program calls a void C function, the RETURN-CODE
special register contents will be unpredictable upon return from the call.

Chapter 4. Communicating between C and COBOL 39

http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www-01.ibm.com/support/docview.wss?uid=swg27036733

The following examples illustrate how to declare data types for using function
returns in C to COBOL applications.

Declaration for C calling COBOL

Sample C usage COBOL subroutine

#include <stdio.h>
void cobrtn (int);

int main()
{

int x,y;
x=1;
y=cobrtn(x); /* x by value */
printf("y=%i.",y);

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 A PIC S9(9) USAGE IS BINARY.
01 B PIC S9(9) USAGE IS BINARY.

PROCEDURE DIVISION USING BY VALUE A
RETURNING B.

COMPUTE B = A + 1
GOBACK.

END PROGRAM COBRTN.

Declaration for COBOL calling C

COBOL program C function

LINKAGE SECTION.
01 P1 PIC S9(9) USAGE IS BINARY
01 P2 PIC S9(9) USAGE IS BINARY
CALL ’CFUNC’ USING BY VALUE P1

RETURNING P2.

int CFUNC(int p1){
int p2;
p2=p1;
return p2;

}

Passing data between C and COBOL with #pragma

Note:

The reference to COBOL with #pragma applies to VS COBOL II, COBOL/370,
COBOL for MVS & VM, COBOL for OS/390 & VM, and Enterprise COBOL for
z/OS.

When data is passed between C and COBOL with #pragma linkage (COBOL), the C
compiler generates the appropriate addressing code which introduces an extra
level of indirection on the C side for non-pointer types. Pointers, however, are
passed directly, meaning that for COBOL to receive a pointer to a C data type, C
must pass a pointer to a pointer to the C data type. Conversely, if COBOL returns
a pointer to a data type, C receives a pointer to a pointer to the data type.

Passing data by value (indirect) between C and COBOL
Copies of variables can be passed between C and COBOL routines. On return, the
actual value of the variables remains unchanged regardless of how it may have
been modified in the called routine.

Value arguments can be passed BY CONTENT from COBOL programs and
received as C function parameters when declared with the appropriate base type.
Conversely, C function arguments can be passed by value from C functions and
received as COBOL parameters. The C compiler generates the appropriate
addressing code required to access the parameter values; you can write your C
function, which interoperates with COBOL, as if it were in a C-only environment.
It can be moved to a C-only environment simply by removing the #pragma linkage

40 z/OS V2R1.0 Language Environment Writing ILC Applications

directive. For example, if a C function called FROMCOB is to receive a parameter
passed BY CONTENT of type int, the function prototype declaration would look
like this:
void FROMCOB(int)

Table 12 shows the supported data types for passing by value (indirect).

Supported data types passed by value (indirect) between C and
COBOL
Table 12 identifies the data types that can be passed by value (indirect) as
parameters between C and COBOL.

Table 12. Supported data types passed by value (Indirect) with #pragma

C COBOL

signed int, signed long int PIC S9(9) USAGE IS BINARY

double COMP-2

pointer to... POINTER, ADDRESS OF

struct Groups

type array[n] Tables (OCCURS n TIMES)

Passing data by reference (indirect) between C and COBOL
A parameter can be passed by reference (indirect) between C and COBOL, which
means the actual address of the argument is passed to the called function or
procedure; any changes to the parameter made by the called routine can alter the
original parameter passed by the calling routine.

To pass data by reference (indirect) from C to COBOL, the variables are passed by
C as function arguments, which are pointers to a given type or the address of a
given variable, and received as COBOL parameters. Conversely, to pass data by
reference (indirect) from COBOL to C, the variables are passed from COBOL as BY
REFERENCE arguments and received by a C function as pointers to a given type.
For example, if a C function called FROMCOB is to receive a parameter passed by
reference (indirect) of type int, the function prototype declaration would look like
this:
void FROMCOB(int *)

The C function must dereference the pointer to access the actual value. If the value
of the pointer is modified by the C function, as opposed to modifying the value
that the pointer points to, the results on return to COBOL are unpredictable.
Therefore, passing values by reference (indirect) from COBOL to C should be used
with caution, and only in cases where the exact behavior of the C function is
known.

Table 13 shows the supported data types for passing by reference (indirect).

Supported data types passed by reference (indirect) between C
and COBOL
Table 13 identifies the data types that can be passed by reference (indirect) between
C and COBOL.

Table 13. Supported data types passed by reference (indirect) with #pragma

C COBOL

signed short int PIC S9(4) USAGE IS BINARY

signed int, signed long int PIC S9(9) USAGE IS BINARY

Chapter 4. Communicating between C and COBOL 41

Table 13. Supported data types passed by reference (indirect) with #pragma (continued)

C COBOL

float COMP-1

double COMP-2

pointer to... POINTER, ADDRESS OF

decimal USAGE IS PACKED-DECIMAL

struct Groups

type array[n] Tables (OCCURS n TIMES)

Passing strings between C and COBOL
C and COBOL have different string data types:

C strings
Logically unbounded length and are terminated by a NULL (the last byte
of the string contains X'00')

COBOL PIC X(n)
Fixed-length string of characters of length n

You can pass strings between COBOL and C routines, but you must match what
the routine interface demands with what is physically passed. Enterprise COBOL
for z/OS, COBOL for OS/390 & VM, and COBOL for MVS & VM both have
strings like previous COBOLs, as well as null-terminated literal strings like C.

Refer to “Sample ILC applications” on page 56 to see how string data is passed
between C and COBOL.

Using aggregates
Aggregates (arrays, strings, or structures) are mapped differently by C and COBOL
and are not automatically mapped. You must completely declare every byte in the
structure to ensure that the layouts of structures passed between the two languages
map to one another correctly. The XL C compile-time option AGGREGATE and the
COBOL compiler option MAP provide a layout of structures to help you perform
the mapping.

Data equivalents
This section describes how C and COBOL data types correspond to each other.

Equivalent data types for C to COBOL
The following examples illustrate how C and COBOL routines within a single ILC
application might code the same data types.

Note: In the declarations that follow, examples showing the use of COBOL without
#pragma apply only to Enterprise COBOL for z/OS, COBOL for OS/390 & VM,
and COBOL for MVS & VM. The examples showing COBOL with #pragma apply
to Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS &
VM, COBOL/370, and VS COBOL II.

42 z/OS V2R1.0 Language Environment Writing ILC Applications

One-byte character data without #pragma

Sample C usage COBOL subroutine

#include <stdio.h>
void cobrtn (char);

int main()
{

char x;
x=’a’;
cobrtn(x); /* x by value */

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC X.
PROCEDURE DIVISION USING BY VALUE X.

DISPLAY X.
GOBACK.

END PROGRAM COBRTN.

One-byte character data with #pragma

Sample C usage COBOL subroutine

#pragma linkage (cobrtn,COBOL)
#include <stdio.h>
void cobrtn (char*);

int main()
{

char x;
x=’a’;
cobrtn(&x); /* x by reference */

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC X.
PROCEDURE DIVISION USING X.

DISPLAY X
GOBACK.

END PROGRAM COBRTN.

16-bit signed binary Integer without #pragma

Sample C usage COBOL subroutine

#include <stdio.h>
void cobrtn (short int);

int main()
{

short int x;
x=5;
cobrtn(x); /* x by value */

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC S9(4) BINARY.
PROCEDURE DIVISION USING BY VALUE X.

DISPLAY X.
GOBACK.

END PROGRAM COBRTN.

16-bit signed binary integer with #pragma

Sample C usage COBOL subroutine

#pragma linkage(cobrtn,COBOL)
#include <stdio.h>
void cobrtn (short int*);

int main()
{

short int x;
x=5;
cobrtn(&x); /* x by reference */

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC S9(4) BINARY.
PROCEDURE DIVISON USING X.

DISPLAY X
GOBACK.

END PROGRAM COBRTN.

Chapter 4. Communicating between C and COBOL 43

32-bit signed binary integer without #pragma

Sample C usage COBOL subroutine

#include <stdio.h>
void cobrtn (int);

int main()
{

int x;
x=5;
cobrtn(x); /* x by value */

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC S9(9) BINARY.
PROCEDURE DIVISION USING BY VALUE X.

DISPLAY X.
GOBACK.

END PROGRAM COBRTN.

32-bit signed binary integer with #pragma

Sample C usage COBOL subroutine

#pragma linkage(cobrtn,COBOL)
#include <stdio.h>
void cobrtn (int, int*);

int main()
{

int x,y;
x=5;
y=6;
cobrtn(x,&y); /* x by value */

} /* y by reference */

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC S9(9) BINARY.
01 Y PIC S9(9) BINARY.
PROCEDURE DIVISION USING X Y.

DISPLAY X Y
GOBACK.

END PROGRAM COBRTN.

Long floating-point number without #pragma

Sample C usage COBOL subroutine

#include <stdio.h>
void cobrtn (double);

int main()
{

double x;
x=3.14159265;
cobrtn(x); /* x by value */

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X COMP-2.
PROCEDURE DIVISION USING BY VALUE X

DISPLAY Y.
GOBACK.

END PROGRAM COBRTN.

Long floating-point number with #pragma

Sample C usage COBOL subroutine

#pragma linkage(cobrtn,COBOL)
#include <stdio.h>
void cobrtn (double, double*);

int main()
{

double x,y;
x=3.14159265;
y=4.14159265;
cobrtn(x,&y); /* x by value */

} /* y by reference */

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X COMP-2.
01 Y COMP-2.
PROCEDURE DIVISION USING X Y.

DISPLAY X Y
GOBACK.

END PROGRAM COBRTN.

44 z/OS V2R1.0 Language Environment Writing ILC Applications

Structure with #pragma

Sample C usage COBOL subroutine

#pragma linkage (cobrtn,COBOL)
#include <stdio.h>
struct stype {

int s1;
int s2;};

void cobrtn (struct stype,
struct stype*);

int main()
{

struct stype struc1, struc2;
struc1.s1=1;
struc1.s2=2;
struc2.s1=3;
struc2.s2=4;
cobrtn(struc1,&struc2);

/* struc1 by value */
} /* struc2 by reference */

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 STRUC1.

05 S11 PIC S9(9) BINARY.
05 S12 PIC S9(9) BINARY.

01 STRUC2.
05 S21 PIC S9(9) BINARY.
05 S22 PIC S9(9) BINARY.

PROCEDURE DIVISION USING STRUC1 STRUC2.
DISPLAY S11 S12 S21 S22
GOBACK.

END PROGRAM COBRTN.

Array with #pragma

Sample C usage COBOL subroutine

#pragma linkage(cobrtn,COBOL)
#include <stdio.h>
void cobrtn (int array[2]);

int main()
{

int array[2];
array[0]=1;
array[1]=2;
cobrtn(array);

/* array by reference */
}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 ARRAY.

05 ELE PIC S9(9) BINARY OCCURS 2.
PROCEDURE DIVISION USING ARRAY.

DISPLAY ELE(1) ELE(2)
GOBACK.

END PROGRAM COBRTN.

Fixed-length decimal data with #pragma

Sample C usage COBOL subroutine

#pragma linkage(cobrtn,COBOL)
#include <stdio.h>
#include <decimal.h>
void cobrtn (decimal(5,2)*);

int main()
{

decimal(5,2) x;
x=123.45d;
cobrtn(&x); /* x by reference */

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC 999V99 COMP-3.
PROCEDURE DIVISION USING X.

DISPLAY X
GOBACK.

END PROGRAM COBRTN.

Equivalent data types for COBOL to C
The following examples illustrate how COBOL to C routines within a single ILC
application might code the same data types.

Note: In the declarations that follow, examples showing the use of COBOL without
#pragma apply only to Enterprise COBOL for z/OS, COBOL for OS/390 & VM,
and COBOL for MVS & VM. The examples showing COBOL with #pragma apply
to Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS &
VM, COBOL/370, and VS COBOL II.

Chapter 4. Communicating between C and COBOL 45

32-bit signed binary integer without #pragma

Sample COBOL usage C function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X PIC S9(9) BINARY.
01 Y PIC S9(9) BINARY.
PROCEDURE DIVISION.

MOVE 1 TO X.
* X BY VALUE ***

CALL "CENTRY" USING BY VALUE X
RETURNING Y.

GOBACK.
END PROGRAM COBRTN.

#include <stdio.h>

int centry(int x)
{

int y=2;
printf("%d %d \n",x,y);
return y;

}

32-bit signed binary integer with #pragma

Sample COBOL usage C function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X PIC S9(9) BINARY.
01 Y PIC S9(9) BINARY.
PROCEDURE DIVISION.

MOVE 1 TO X.
MOVE 2 TO Y.

* X BY VALUE, Y BY REFERENCE ***
CALL "CENTRY" USING BY CONTENT X

BY REFERENCE Y.
GOBACK.

END PROGRAM COBRTN.

#pragma linkage (centry,COBOL)
#include <stdio.h>

void centry (int x, int *y)
{

printf("%d %d \n",x,*y);
return;

}

Long floating-point number without #pragma

Sample COBOL usage C function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X COMP-2.
01 Y COMP-2.
PROCEDURE DIVISION.

MOVE 3.14159265 TO X.
* X BY VALUE ***

CALL "CENTRY" USING BY VALUE X
RETURNING Y.

GOBACK.
END PROGRAM COBRTN.

#include <stdio.h>

double centry (double x)
{

double y=4.14159265;
printf("%f %f \n",x,y);
return y;

}

46 z/OS V2R1.0 Language Environment Writing ILC Applications

Long floating-point number with #pragma

Sample COBOL usage C function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X COMP-2.
01 Y COMP-2.
PROCEDURE DIVISION.

MOVE 3.14159265 TO X.
MOVE 4.14159265 TO Y.

* X BY VALUE, Y BY REFERENCE ***
CALL "CENTRY" USING BY CONTENT X

BY REFERENCE Y.
GOBACK.

END PROGRAM COBRTN.

#pragma linkage (centry,COBOL)
#include <stdio.h>

void centry (double x, double *y)
{
printf("%f %f \n",x,*y);
return;
}

Structure without #pragma

Sample COBOL usage C function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
O1 STRUC1.

05 S11 PIC S9(9) BINARY.
05 S12 PIC S9(9) BINARY.

PROCEDURE DIVISION.
CALL "CENTRY" RETURNING STRUC1.
GOBACK.

END PROGRAM COBRTN.

#include <stdio.h>
struct stype {

int s1;
int s2; };

struct stype centry()
{

struct stype struc2;
struc2.s1=3;
struc2.s2=4;
return struc2;

}

Structure with #pragma

Sample COBOL usage C function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 STRUC1.

05 S11 PIC S9(9) BINARY VALUE 1.
05 S12 PIC S9(9) BINARY VALUE 2.

01 STRUC2.
05 S21 PIC S9(9) BINARY VALUE 3.
05 S22 PIC S9(9) BINARY VALUE 4.

PROCEDURE DIVISION.
* STRUC1 BY VALUE**
* STRUC2 BY REFERENCE ***

CALL "CENTRY" USING BY CONTENT STRUC1
BY REFERENCE STRUC2.

GOBACK.
END PROGRAM COBRTN.

#pragma linkage(centry,COBOL)
#include <stdio.h>
struct stype {

int s1;
int s2; };

void centry (struct stype struc1,
struct stype *struc2)

{
printf("%d %d %d %d \n",struc1.s1,

struc1.s2,struc2->s1,struc2->s2);
return;

}

Chapter 4. Communicating between C and COBOL 47

Fixed-length decimal data without #pragma

Sample COBOL usage C function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X PIC 999V99 COMP-3.
PROCEDURE DIVISION.

CALL "CENTRY" RETURNING X.
GOBACK.

END PROGRAM COBRTN.

#include <stdio.h>
#include <decimal.h>

decimal(5,2) centry()
{

decimal(5,2) x=123.45;
printf("%D(5,2)\n",x);
return x;

}

Fixed-length decimal data with #pragma

Sample COBOL usage C function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X PIC 999V99 COMP-3.
PROCEDURE DIVISION.

MOVE 123.45 TO X.
* X BY REFERENCE ***

CALL "CENTRY" USING X.
GOBACK.

END PROGRAM COBRTN.

#pragma linkage (centry,COBOL)
#include <stdio.h>
#include <decimal.h>

void centry (decimal(5,2) x)
{

printf("%D(5,2)\n",x);
return;

}

Name scope of external data
In programming languages, the name scope is defined as the portion of an
application within which a particular declaration applies or is known. The name
scope of external data differs between C and COBOL. The scope of external data
under C is the load module; under COBOL, it is the enclave (or run unit). Figure 7
on page 49 and Figure 8 on page 49 illustrate these differences.

Because the name scope for C and COBOL is different, external variables do not
map between C and COBOL; external variables with the same name are considered
separate between C and COBOL.

If your application relies on the separation of external data, do not give the data
the same name in both languages within a single application. If you give the data
in each load module a different name, you can change the language mix in the
application later, and your application still behaves as you expect it to.

DLL considerations
In DLL code, external variables are mapped across the load module boundary.
DLLs are shared at the enclave level. Therefore, a single copy of a DLL applies to
all modules in an enclave, regardless of whether the DLL is loaded implicitly
(through a reference to a function or variable) or explicitly (through dllload()).
See z/OS Language Environment Programming Guide for information about building
and managing DLL code in your applications.

COBOL data declared with the EXTERNAL attribute are independent of DLL
support. These data items are managed by the COBOL runtime, and are accessible
by name from any COBOL program in the run-unit that declares them, regardless
of whether the programs are in DLLs or not.

48 z/OS V2R1.0 Language Environment Writing ILC Applications

In particular, the facilities for exporting and importing external variables from
DLLs implemented in z/OS C/C++ do not apply to COBOL external data. Hence
C/C++ external data and COBOL external data are always in separate name
spaces, regardless of DLL considerations.

For C/C++, non-DLL applications have external data which is only shared within
the load module.

However, for DLL applications, C/C++ external data is now (optionally) accessible
to all C/C++ routines in the enclave.

Name scope of external data in a C application

In Figure 7, external data declared in C Routine 1 maps to that declared in C
Routine 2 in the same load module. When a fetch to C Routine 3 in another load
module is made, the external data does not map, because the name scope of
external data in C is the load module.

Name scope of external data in a COBOL run unit

In Figure 8, Routines 1, 2, and 3 comprise a COBOL run unit. External data
declared in COBOL Program 1 maps to that declared in COBOL Program 2 in the
same load module. When a dynamic CALL to COBOL Program 3 in another load
module is made, the external data still maps, because the name scope of external
data in COBOL is the enclave.

C Routine 1 C Routine 2 C Routine 3

Fetch

X

X

X

Load Load Module

Storage Storage

Module

Figure 7. Name scope of external variables for C fetch

COBOL Program 1 COBOL Program 2 COBOL Program 3

Dynamic CALL

X

X

X

Load Module Load Module

Storage

Figure 8. Name scope of external variables for COBOL dynamic call

Chapter 4. Communicating between C and COBOL 49

Name space of external data
In programming languages, the name space is defined as the portion of a load
module within which a particular declaration applies or is known. Like the name
scope, the name space of external data differs between C and COBOL.

Figure 9 and Figure 10 illustrate that within the same load module, the name space
of COBOL programs is the same. However, the name spaces of a COBOL program
and a C routine within the same load module are not the same. If you give
external data the same name in both languages, an incompatibility in external data
mapping can occur.

Directing output in ILC applications
C and COBOL do not share files, except the Language Environment message file
(the ddname specified in the Language Environment MSGFILE runtime option).
You must manage all other files to ensure that no conflicts arise. Performing I/O
operations on the same ddname might cause abnormal termination.

Under C, runtime messages and other related output are directed to the default
MSGFILE ddname. stderr output is also by default directed to the MSGFILE
ddname. stdout is not by default directed to the MSGFILE ddname, but can be
redirected to do so. Also, output from printf can be interspersed with output from
the COBOL DISPLAY statement and output from Language Environment by
redirecting stdout to stderr (for example, passing 1>&2 as a command-line
parameter).

COBOL PGM 1 COBOL PGM 2

X
X

Load Mod

Storage

Figure 9. Name space of external data for COBOL static call to COBOL

Storage

COBOL PGM 1 C RTN 2

X
X

Load Mod

Storage

Figure 10. Name space of external data in COBOL static call to COBOL

50 z/OS V2R1.0 Language Environment Writing ILC Applications

For more information about how to redirect C output, see z/OS XL C/C++
Programming Guide.

Under COBOL, runtime messages and other related output are directed to the
MSGFILE ddname. Output from COBOL DISPLAY UPON SYSOUT is directed to
the default MSGFILE ddname only when the OUTDD compiler option ddname
matches the MSGFILE ddname; this applies to Enterprise COBOL for z/OS,
COBOL for OS/390 & VM, COBOL for MVS & VM, COBOL/370, and VS COBOL
II.

Interspersing output when C is the main routine
To intersperse output from C and COBOL when the main routine is in C, compile
your COBOL program with the default OUTDD (OUTDD=SYSOUT) if you are
using the default MSGFILE ddname. If you have overridden the default MSGFILE
ddname, you must compile your COBOL program using an OUTDD that specifies
the same name as the MSGFILE. You must redirect stdout to stderr for the main
C routine.

Interspersing output when COBOL is the main routine
To intersperse output from C and COBOL when the main program is in COBOL,
compile your COBOL program with the default OUTDD (OUTDD=SYSOUT). In
the C routine, redirect stdout to stderr by placing the line stdout=stderr in your
program. If you have overridden the default MSGFILE ddname, you must compile
your COBOL program using an OUTDD ddname that specifies the same name as
the MSGFILE.

C POSIX multithreading
COBOL programs can run in more than one thread as long as all of the COBOL
programs used in the enclave are enabled for multithreading.

A COBOL program is enabled for multithreading when it is compiled with the
Enterprise COBOL for z/OS compiler using the THREAD compiler option.

A COBOL program is not enabled for multithreading when it is compiled with any
of the following compilers:
v Enterprise COBOL for z/OS (with the NOTHREAD compiler option)
v COBOL for OS/390 & VM
v COBOL for MVS & VM
v COBOL/370
v VS COBOL II

POSIX-conforming C/C++ applications can communicate with COBOL programs
enabled for multithreading on one or more threads.

POSIX-conforming C/C++ applications can communicate with COBOL programs
not enabled for multithreading; however, there are limitations in the support:
v COBOL can only be used in one thread.
v When COBOL is run in a thread that is not the initial process thread (IPT), there

is no support to dynamically call a program that contains C/C++ writeable
static.

Chapter 4. Communicating between C and COBOL 51

v When COBOL is run in a thread that is not the initial thread and the thread
terminates, COBOL frees the resources it acquired except for any DLLs it loaded.
The freeing of resources includes deleting any load modules it loaded for
dynamic call processing.

POSIX-conforming C/370 applications can communicate with assembler routines
on any thread when the assembler routines use the CEEENTRY/CEETERM macros
or the EDCPRLG/EDCEPIL macros provided by C/C++.

C to COBOL condition handling
This section provides two scenarios of condition handling behavior in a C to
COBOL ILC application. If an exception occurs in a C routine, the set of possible
actions is as described in “Exception occurs in C.” If an exception occurs in a
COBOL program, the set of possible actions is as described in “Exception occurs in
COBOL” on page 54.

Keep in mind that some conditions can be handled only by the HLL of the routine
in which the exception occurred. For example, in a COBOL program, a statement
can have a clause that adds condition handling to a verb, such as the ON SIZE
ERROR clause of a COBOL DIVIDE verb (which includes the logical equivalent of
a divide-by-zero condition). This type of condition is handled completely within
COBOL.

For a detailed description of Language Environment condition handling, see z/OS
Language Environment Programming Guide.

Enclave-terminating language constructs
Enclaves can be terminated for reasons other than an unhandled condition of
severity 2 or greater. In Language Environment ILC, you can issue an HLL
language construct to terminate a C to COBOL enclave from either a COBOL or C
routine.

C

Examples of C language constructs that terminate the enclave are: kill(), abort(),
raise(SIGTERM), raise(SIGABND), and exit(). When you use a C language
construct to terminate an enclave, the T_I_S (Termination Imminent Due to STOP)
condition is raised. After T_I_S has been processed and all user code has been
removed from the stack, the C atexit list is honored.

COBOL

Examples of C language constructs that terminate the enclave are: kill(), abort(),
raise(SIGTERM), raise(SIGABND), and exit(). When you use a C language
construct to terminate an enclave, the T_I_S (Termination Imminent Due to STOP)
condition is raised. After T_I_S has been processed and all user code has been
removed from the stack, the C atexit list is honored.

Exception occurs in C
In this scenario, a COBOL main program invokes a C subroutine and an exception
occurs in the C subroutine. Refer to Figure 11 on page 53 throughout the following
discussion.

52 z/OS V2R1.0 Language Environment Writing ILC Applications

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. In the enablement step, C determines whether the exception in the C routine

should be enabled and treated as a condition. If any of the following are true,
the exception is ignored, and processing continues at the next sequential
instruction after which the exception occurred:
v You specified SIG_IGN for the exception in a call to signal().

Note: The system or user abend corresponding to the signal(SIGABND) or
the Language Environment message 3250 is not ignored. The enclave is
terminated.

v The exception is one of those listed as masked in Table 63 on page 249, and
you have not enabled it using the CEE3SPM callable service.

v You did not specify any action, but the default action for the condition is
SIG_IGN (see Table 63 on page 249).

v You are running under CICS and a CICS handler is pending.

If you did none of these things, the condition is enabled and processed as a
condition.

2. If a user-written condition handler has been registered using CEEHDLR on the
C stack frame, it is given control. If it issues a resume, with or without moving
the resume cursor, the condition handling step ends. Processing continues in
the routine to which the resume cursor points.
In this example, there is not a user-written condition handler registered for the
condition, so the condition is percolated.

3. The global error table is now examined for signal handlers that have been
registered for the condition.
If there is a signal handler registered for the condition, it is given control. If it
issues a resume or a call to longjmp(), the condition handling step ends.

Lang. Env. defaults

C defaults

COBOL semantics

COBOL main pgm

C semantics

C subroutine
Exception
occurs here

Figure 11. Stack contents when the exception occurs in C

Chapter 4. Communicating between C and COBOL 53

Processing resumes in the routine to which the resume cursor points. You must
be careful when issuing a longjmp() in an application that contains a COBOL
program; see “CEEMRCR and COBOL” on page 56 for details.
In this example no C signal handler is registered for the condition, so the
condition is percolated.

4. The condition is still unhandled. If C does not recognize the condition, or if the
C default action (listed in Table 63 on page 249) is to terminate, the condition is
percolated.

5. If a user-written condition handler has been registered using CEEHDLR on the
COBOL stack frame, it is given control. If it issues a resume, with or without
moving the resume cursor, the condition handling step ends. Processing
continues in the routine to which the resume cursor points. You must be careful
when moving the resume cursor in an application that contains a COBOL
program; see “CEEMRCR and COBOL” on page 56 for details.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

6. If the condition is of severity 0 or 1, the Language Environment default actions
take place, as described in Table 62 on page 249.

7. If the condition is of severity 2 or above, Language Environment default action
is to promote the condition to T_I_U (Termination Imminent due to an
Unhandled condition) and redrive the stack. Condition handling now enters the
termination imminent step.

8. If, on the second pass of the stack, no condition handler moves the resume
cursor and issues a resume, Language Environment terminates the thread.

Exception occurs in COBOL
In this scenario, a C main routine invokes a COBOL subroutine and an exception
occurs in the COBOL subroutine. Refer to Figure 12 on page 55 throughout the
following discussion.

54 z/OS V2R1.0 Language Environment Writing ILC Applications

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. In the enablement step, COBOL determines if the exception should be ignored

or handled as a condition.
v If the exception is to be ignored, control is returned to the next sequential

instruction after where the exception occurred.
v If the exception is to be enabled and processed as a condition, the condition

handling step takes place.
2. If a user-written condition handler has been registered using CEEHDLR on the

COBOL stack frame, it is given control. If it issues a resume, with or without
moving the resume cursor, the condition handling step ends. Processing
continues in the routine to which the resume cursor points.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated. You must be careful when moving the
resume cursor in an application that contains a COBOL program; see
CEEMRCR and COBOL for details.

3. If a user-written condition handler has been registered for the condition (as
specified in the global error table) using CEEHDLR on the C stack frame, it is
given control. If it issues a resume, with or without moving the resume cursor,
the condition handling step ends. Processing continues in the routine to which
the resume cursor points.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

4. If a C signal handler has been registered for the condition, it is given control. If
it moves the resume cursor or issues a call to longjmp(), the condition handling
step ends. Processing resumes in the routine to which the resume cursor points.
You must be careful when moving the resume cursor in an application that
contains a COBOL program; see “CEEMRCR and COBOL” on page 56 for
details.

Lang. Env. defaults

COBOL defaults

C semantics

C main rtn

COBOL semantics

COBOL subroutine
Exception
occurs here

Figure 12. Stack contents when the COBOL exception occurs

Chapter 4. Communicating between C and COBOL 55

In this example, no C signal handler is registered for the condition, so the
condition is percolated.

5. If the condition has a Facility_ID of IGZ, the condition is COBOL-specific. The
COBOL default actions for the condition take place. If COBOL does not
recognize the condition, condition handling continues.

6. If the condition is of severity 0 or 1, Language Environment default actions
take place, as described in Table 62 on page 249.

7. If the condition is of severity 2 or above, Language Environment default action
is to promote the condition to T_I_U (Termination Imminent due to an
Unhandled condition) and redrive the stack. Condition handling now enters the
termination imminent step.

8. If, on the second pass of the stack, no condition handler moves the resume
cursor and issues a resume, Language Environment terminates the thread.

CEEMRCR and COBOL
When you make a call to CEEMRCR to move the resume cursor, or issue a call to
longjmp(), and a COBOL routine is removed from the stack, the COBOL routine
can be re-entered via another call path.

If the terminated routine is one of the following, the routine remains active. If the
COBOL program does not specify RECURSIVE in the PROGRAM-ID, a recursion
error is raised if you attempt to enter the routine again.
v A VS COBOL II, COBOL/370, COBOL for MVS & VM, or COBOL for OS/390 &

VM program compiled with the CMPR2 option
v A VS COBOL II program that does not contain nested programs and is compiled

with the NOCMPR2 compiler option
v A COBOL/370, COBOL for MVS & VM, or COBOL for OS/390 & VM program

compiled with the NOCMPR2 option that does not use the combination of the
INITIAL attribute, nested routines, and file processing in the same compilation
unit.

v An Enterprise COBOL for z/OS program that does not use the combination of
the INITIAL attribute, nested routines, and file processing in the same
compilation unit.

In addition, if the routine is a COBOL routine with the INITIAL attribute and
containing files, the files are closed. (COBOL supports VSAM and QSAM files and
these files are closed.)

Sample ILC applications
Figure 13 on page 57, Figure 14 on page 58, and Figure 15 on page 58 contain an
example of an ILC application. The C C1 routine dynamically calls the COBOL
CBL1 program. CBL1 statically calls C routine C2.

56 z/OS V2R1.0 Language Environment Writing ILC Applications

/*Module/File Name: EDCCCB */
/***/
/* Illustration of Interlanguage Communication between C/MVS */
/* and COBOL. All parameters passed by reference. */
/* */
/* C1 ==========> CBL1 ---------> C2 */
/* dynamic static */
/* call call */
/***/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef void CBLrtn();
#pragma linkage(CBLrtn,COBOL)
CBLrtn *rtn_ptr;

/********************* C1 routine example *************************/

main()
{
signed short int short_int = 2;
signed long int long_int = 4;
double floatpt = 8.0;
char string[80];

fprintf(stderr,"main STARTED\n");
rtn_ptr = (CBLrtn *) fetch("CBL1"); /* get the address of CBL1 */

if (rtn_ptr == 0) /* check result of fetch */
printf("fetch failed\n");

else /* call to CBL1 */

rtn_ptr (short_int, long_int, floatpt, string);

fprintf(stderr,"main ENDED\n");
} /* end of main */

Figure 13. Dynamic call from C to COBOL program

Chapter 4. Communicating between C and COBOL 57

CBL LIB,QUOTE
*Module/File Name: IGZTILCC

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL1.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 var1 PIC S9(9) BINARY VALUE 5.
01 msg-string PIC X(80).

LINKAGE SECTION.
77 int2 PIC S9(4) BINARY.
77 int4 PIC S9(9) BINARY.
77 float COMP-2.
77 char-string PIC X(80).

PROCEDURE DIVISION USING int2 int4
float char-string.

DISPLAY "CBL1 STARTED".

IF (int2 NOT = 2) THEN
DISPLAY "INT2 NOT = 2".

IF (int4 NOT = 4) THEN
DISPLAY "INT4 NOT = 4".

IF (float NOT = 8.0) THEN
DISPLAY "FLOAT NOT = 8".

**
* Place null-character-terminated string in parameter *
**

STRING "PASSED CHARACTER STRING",
LOW-VALUE
DELIMITED BY SIZE INTO msg-string

**
* Make a static CALL to a C routine *
**

CALL "C2" USING var1, msg-string.

DISPLAY "CBL1 ENDED".
GOBACK.

Figure 14. Static call from COBOL to C routine

/*Module/File Name: EDCCCB2 */

/* C2 routine example */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#pragma linkage(C2,cobol)
void C2(int*, char*);

void C2(int* num, char* strng)
{
printf(stderr,"num is %d, string

is %s\n",*num, strng);
} /* end of main */

Figure 15. Statically called C routine

58 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 5. Communicating between C++ and COBOL

This topic describes Language Environment's support for C++ to COBOL ILC
applications. If you are running a C++ to COBOL ILC application under CICS, you
should also consult Chapter 15, “ILC under CICS,” on page 241.

General facts about C++ to COBOL ILC
v Enterprise COBOL for z/OS, COBOL for OS/390 & VM, and COBOL for MVS &

VM can use the C-style linkage and non-void function return values to pass and
receive parameters by value.

v Language Environment does not support the passing of return codes between
C++ and COBOL routines in an ILC application.

v There is no ILC support between AMODE 31 and AMODE 64 applications.
COBOL does not support AMODE 64.

Preparing for ILC
This section describes topics you need to consider before writing a C++ to COBOL
ILC application. For help in determining how different versions of HLLs work
together, refer to the migration guides for the HLLs you plan to use.

Language Environment ILC support
Language Environment provides ILC support between the following combinations
of C++ and COBOL:

Table 14. Supported languages for Language Environment ILC

HLL pair C++ COBOL

C++ to COBOL v IBM C/C++ for MVS/ESA
v z/OS XL C/C++ Compilers

v VS COBOL II Version 1
Release 3 and later

v COBOL/370 Release 1
v COBOL for MVS & VM

Release 2
v COBOL for OS/390 & VM
v Enterprise COBOL for z/OS

Note: The considerations for ILC support described in the table apply to all versions of C++ and
COBOL listed, except where otherwise noted. COBOL refers to VS COBOL II, COBOL/370, COBOL for
MVS & VM, COBOL for OS/390 & VM, and Enterprise COBOL for z/OS.

Compiling considerations
If the C++ library is installed above the 16M line, compile your COBOL program
using the RENT compiler option.

Determining the main routine
In Language Environment, only one routine can be the main routine; no other
routine in the enclave can use syntax that indicates it is main. If you write the
main routine in C++, you must use language syntax to identify the routine as the
main routine. If you use COBOL as the first program in the enclave that is to gain
control, the program is effectively designated main by being the first to run.

Table 15 on page 60 describes how C++ and COBOL identify the main routine.

© Copyright IBM Corp. 1991, 2013 59

Table 15. How C++ and COBOL main routines are determined

Language When determined Explanation

C++ Compile time Determined in the C++ source file by declaring a C++
function named main.

COBOL Run time Determined dynamically. If it is the first program to run, it
is a main program.

An entry point is defined for each supported HLL. Table 16 identifies the desired
entry point. The table assumes that your code has been compiled using the
Language Environment-conforming compilers.

Table 16. Determining the entry point

HLL Main entry point Fetched entry point

C++ CEESTART Entry point specified as #pragma
fetchable, or explicitly named
during link-edit

COBOL Name of the first object program
to get control in the object
module

Program name

COBOL and C++ routines that make up an ILC application are executed together
in a single run unit (the equivalent of a Language Environment enclave). However,
unlike in earlier versions of COBOL (VS COBOL II and OS/VS COBOL), the first
COBOL program in a run unit is no longer necessarily considered the main
routine. If the first COBOL program is not the first routine in the enclave to run, it
is considered a subroutine in the Language Environment enclave.

Declaring C++ to COBOL ILC
If a C++ function invokes a COBOL program or a COBOL program invokes a C++
function, all entry declarations are contained solely within the C++ source. No
special declaration is required within the COBOL program.

Declarations for extern "C" linkage
With either Enterprise COBOL for z/OS, COBOL for OS/390 & VM, or COBOL for
MVS & VM, you can pass and receive parameters using “C-style” linkage and
non-void function return values. To use this new function, you must include in
your C++ code an extern "C" linkage specification instead of the extern "COBOL"
linkage specification.

The extern "C" linkage specification has the following format:
extern "C" {declaration}

where declaration is a valid C++ prototype of the COBOL program being called by
C++, or the C++ routine being called by COBOL

Note: The reference to COBOL in the following declarations applies only to
Enterprise COBOL for z/OS, COBOL for OS/390 & VM, and COBOL for MVS &
VM.

60 z/OS V2R1.0 Language Environment Writing ILC Applications

Declaration for C++ calling COBOL (extern "C"):

C++ function COBOL program

extern "C" {
void CBLRTN(double p2);
}

main() {
double myval = 5;

CBLRTN(myval);
printf("myval=%f\n",myval);

}

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X COMP-2.
PROCEDURE DIVISION USING BY VALUE X.

DISPLAY X
GOBACK.

END PROGRAM CBLRTN.

Declaration for COBOL calling C++ (extern "C"):

COBOL program C++ function

ID DIVISION.
PROGRAM-ID. COBPROG.
WORKING-STORAGE SECTION.
01 P1 PIC S9(9) USAGE IS BINARY.
PROCEDURE DIVISION.
CALL ’CPLUSF’ USING BY VALUE P1.
GOBACK.

extern "C" {
void CPLUSF(int p1);

}
void CPLUSF(int parm) {

printf("parm=%d\n");
}

Declarations for extern "COBOL" linkage
For C++ to COBOL ILC, the C++ extern "COBOL" linkage specification lets the XL
C++ compiler generate parameter lists for or accept them from COBOL.

The extern "COBOL" linkage specification has the following format:
extern "COBOL" { declaration }

declaration is a valid C++ prototype of the COBOL program being called by C++, or
the C++ routine being called by COBOL.

Note: The reference to COBOL in the following declarations applies to Enterprise
COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM,
COBOL/370, and VS COBOL II.

Declaration for C++ calling COBOL (extern "COBOL"):

C++ function COBOL program

extern "COBOL" {
void CBLRTN(double p2);

}

main() {
double myval = 5;

CBLRTN(myval);
printf("myval=%f\n",myval);

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X COMP-2.
PROCEDURE DIVISION USING BY REFERENCE X.

DISPLAY X
GOBACK.

END PROGRAM COBRTN.

Chapter 5. Communicating between C++ and COBOL 61

Declaration for COBOL calling C++ (extern "COBOL"):

COBOL program C++ function

ID DIVISION.
PROGRAM-ID. COBPROG.
WORKING-STORAGE SECTION.
01 P1 PIC S9(9) USAGE IS BINARY.
PROCEDURE DIVISION.
CALL ’CPLUSF’ USING BY REFERENCE P1.
GOBACK.

extern "COBOL" {
void CPLUSF(int p1);

}
void CPLUSF(int parm) {

printf("parm=%d\n");
}

Building a reentrant C++ to COBOL application
By default, the XL C++ compiler generates object modules with constructed
reentrancy. Therefore, linking a C++ to COBOL application is a two-step process:
1. Prelink all C++ and COBOL text decks together using the prelinker.
2. Link the text deck generated by the prelinker to create your module.

Calling between C++ and COBOL
The following tables describe the types of calls that are supported between C++
and COBOL when running with Language Environment.
v Table 17 shows which calls are supported from COBOL programs to C++

routines.
v Table 18 on page 63 shows which calls are supported from C++ routines to

COBOL programs.

Within a given enclave containing ILC between COBOL and C++, the application
may be structured in one of the following ways:
v As a single statically-bound load module.
v As a DLL application, with multiple DLL load modules, each containing

DLL-enabled COBOL and C++ routines.
v As an application using multiple load modules and using COBOL dynamic

CALLs. In this case, all instances of C++ ILC must be statically-bound within the
main load module. The only exception would be if extern "COBOL" or extern
"C" is specified for all C++ functions called by COBOL that are in dynamically
called load modules that do not contain any DLL routines that export functions
or variables.

v As an application using multiple load modules and using fetch.

Table 17. Support for calls from COBOL to C++

Caller Call type

Target

C++ with extern
"COBOL"

C++ with extern
"C"

C++ without
extern

VS COBOL II (1) static
Yes with

restrictions (2)
No No

COBOL/370 (1) static Yes No No

COBOL (5) compiled
with NODLL

static Yes Yes No

VS COBOL II (1) dynamic No No No

COBOL/370 (1) dynamic No No No

COBOL (5) compiled
with NODLL

dynamic Yes (3) Yes (3) No

62 z/OS V2R1.0 Language Environment Writing ILC Applications

Table 17. Support for calls from COBOL to C++ (continued)

Caller Call type

Target

C++ with extern
"COBOL"

C++ with extern
"C"

C++ without
extern

COBOL (6) compiled
with DLL

CALL "literal" to a
function within

the module
Yes Yes No

COBOL (6) compiled
with DLL

CALL "literal" to a
function exported

from a DLL
Yes (4) Yes (4) No

COBOL (6) compiled
with DLL

CALL identifier to
a function

exported from a
DLL

Yes (4) Yes (4) No

Note:

1. When the caller is VS COBOL II or COBOL/370, all calls must be to void functions.

2. Static calls are supported from VS COBOL II to C++ with extern "COBOL" in the following cases:

v The call is done in the main load module.

v The call is done in a load module whose entry point is a Language Environment-conforming
program or routine that was called using COBOL dynamic call.

v The call is done in a module that was called using fetch.

v The call is done in a DLL that was called using DLL linkage.

3. Dynamically called load modules cannot contain any DLL routines that export functions or
variables. Use the binder DYNAM(NO) control statement to prevent marking the load module as a
DLL.

The XL C/C++ compiler may mark certain internal symbols as exported, resulting in the C++
executable being a DLL. To prevent the XL C++ compiler from doing this, use the
NOEXPORT(NOSYS) compiler option.

4. In this case, the C++ code can also be compiled with the XPLINK option. The XPLINK C++ code
must reside in a separate module from the COBOL caller.

5. COBOL for MVS & VM, COBOL for OS/390 & VM, or Enterprise COBOL for z/OS

6. COBOL for OS/390 & VM or Enterprise COBOL for z/OS

Table 18. Support for calls from C++ to COBOL

Caller Call type

Target

VS COBOL II or
COBOL/370

COBOL (4)
compiled with

NODLL

COBOL (5)
compiled with

DLL

C++ with extern
"COBOL"

function is within
the module

Yes (1) Yes Yes

C++ with extern "C"
function is within

the module
No Yes Yes

C++ without extern
function is within

the module
No Yes No

C++ with extern
"COBOL"

fetch Yes (1, 2) Yes (2, 3) No

C++ with extern "C" fetch No Yes (2, 3) No

C++ without extern fetch No No No

C++ with extern
"COBOL"

function is
exported from a

DLL
No No Yes (3)

C++ with extern "C"
function is

exported from a
DLL

No No Yes (3)

Chapter 5. Communicating between C++ and COBOL 63

Table 18. Support for calls from C++ to COBOL (continued)

Caller Call type

Target

VS COBOL II or
COBOL/370

COBOL (4)
compiled with

NODLL

COBOL (5)
compiled with

DLL

C++ without extern
function is

exported from a
DLL

No No No

Note:

1. When the target of the call is VS COBOL II or COBOL/370, the called COBOL program must be
declared as a void function.

2. Fetched load modules cannot contain any DLL routines that export functions or variables.

3. In this case, the C++ code can also be compiled with the XPLINK option. The XPLINK C++ code
must reside in a separate module from the COBOL caller.

4. COBOL for MVS & VM, COBOL for OS/390 & VM, or Enterprise COBOL for z/OS

5. COBOL for OS/390 & VM or Enterprise COBOL for z/OS

Passing data between C++ and COBOL
In VS COBOL II and COBOL/370, you can pass parameters two ways:
By reference (indirect)

COBOL BY REFERENCE
By value (indirect)

COBOL BY CONTENT

In Enterprise COBOL for z/OS, COBOL for OS/390 & VM, and COBOL for MVS
& VM, you can pass parameters three ways:
By reference (indirect)

COBOL BY REFERENCE
By value (indirect)

COBOL BY CONTENT
By value (direct)

COBOL BY VALUE

Under Language Environment, the term by value means that a temporary copy of
the argument is passed to the called function or procedure. Any changes to the
parameter made by the called routine will not alter the original parameter passed
by the calling routine. Under Language Environment, the term by reference means
that the actual address of the argument is passed. Any changes to the parameter
made by the called routine can alter the original parameter passed by the calling
routine.

Further, the term direct means that the argument is passed in the parameter list.
The term indirect means that a pointer to the argument is passed in the parameter
list.

There are two ways to pass data between C++ and COBOL; one way uses extern
"C" in the C linkage, and the other uses extern "COBOL". Both methods are
discussed separately in the following sections.

Passing data between C++ and COBOL with extern "C"

Note: The reference to COBOL with extern "C" applies only to Enterprise COBOL
for z/OS, COBOL for OS/390 & VM, and COBOL for MVS & VM.

64 z/OS V2R1.0 Language Environment Writing ILC Applications

Passing data by value between C++ and COBOL
Copies of variables can be passed between C++ and COBOL. On return, the actual
value of the variable remains unchanged, regardless of how it may have been
modified in the called routine.

To pass data by value (direct) from C++ to COBOL, the variables are passed by
C++ as arguments on a function call and received by COBOL as BY VALUE
parameters. Conversely, to pass data by value (direct) from COBOL to C++, the
variables are passed by COBOL as BY VALUE arguments and received by C++ as
function parameters. In all cases, the variable must be declared in C++ and COBOL
with compatible base data types. For example, if a C++ function called FROMCOB
is to receive a parameter passed by value (direct) of type int, the function
prototype declaration would look like this:
void FROMCOB(int)

Data can also be passed by value (indirect) from COBOL to C++. In this case, the
variable is passed as a BY CONTENT argument and received by C++ as a pointer
to the given type. For example, if a C++ function called FROMCOB is to receive a
parameter passed by value (indirect) of type int, the function prototype declaration
would look like this:
void FROMCOB(int *)

The C++ function must dereference the pointer to access the actual value. If the
value of the pointer is modified by the C++ function, as opposed to modifying the
value that the pointer points to, the results on return to COBOL are unpredictable.
Thus, passing values by value (indirect) from COBOL to C++ should be used with
caution, and only in cases where the exact behavior of the C++ function is known.

Table 19 on page 66 shows the supported data types for passing by value (direct)
and Table 20 on page 67 shows the supported data types for passing by value
(indirect).

Passing data by reference (indirect) between C++ and COBOL
A parameter can be passed by reference (indirect) between C++ and COBOL. By
reference (indirect) means that the actual address of the argument is passed to the
called function or procedure; any changes to the parameter made by the called
routine can alter the original parameter passed by the calling routine.

To pass data by reference (indirect) from C++ to COBOL, the variables are passed
by C++ as function arguments, which are pointers to a given type or the address of
a given variable, and received by COBOL as BY REFERENCE parameters.
Conversely, to pass data by reference (indirect) from COBOL to C++, the variables
are passed by COBOL as BY REFERENCE arguments and received by C++
function as pointers to a given type.

The C++ function must dereference the pointer to access the actual value. If the
value of the pointer is modified by the C++ function, as opposed to modifying the
value that the pointer points to, the results on return to COBOL are unpredictable.
Thus, passing values by reference (indirect) from COBOL to C++ should be used
with caution, and only in cases where the exact behavior of the C++ function is
known.

Table 20 on page 67 shows the supported data types for passing by reference
(indirect).

Chapter 5. Communicating between C++ and COBOL 65

Handling function returns between C++ and COBOL
In COBOL, values can be returned to COBOL programs as COBOL returning
variables from C++ functions using standard C++ function returns. This is the
recommended approach for passing modified values back from a C++ function to a
COBOL procedure.

Note: In the declarations that follow, COBOL refers to Enterprise COBOL for
z/OS, COBOL for OS/390 & VM, and COBOL for MVS & VM.

The following examples illustrate how to declare data types for using function
returns in C++ to COBOL ILC applications.

Declaration for COBOL calling C++:

COBOL program C++ function

LINKAGE SECTION.
01 P1 PIC S9(9) USAGE IS BINARY.
01 P2 PIC S9(9) USAGE IS BINARY.
CALL ’CFUNC’ USING BY VALUE P1

RETURNING P2.

int CFUNC(int p1){
int p2;
p2=p1;
return p2;

}

Declaration for C++ calling COBOL:

Sample C usage COBOL subroutine

#include <stdio.h>
extern "C" {void cobrtn (int);};

int main()
{

int x,y;
x=1;
y=cobrtn(x); /* x by value */
printf("y=%i.",y);

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 A PIC S9(9) USAGE IS BINARY.
01 B PIC S9(9) USAGE IS BINARY.

PROCEDURE DIVISION USING BY VALUE A
RETURNING B.

COMPUTE B = A + 1
GOBACK.

END PROGRAM COBRTN.

Supported data types passed by value (direct) between C++ and
COBOL
Table 19 identifies the data types that can be passed by value (direct) as parameters
between C++ and COBOL applications.

Table 19. Supported data types passed by value (direct) with extern "C"

C++ COBOL (by value)

char PIC X, PIC A

signed short int PIC S9(4) USAGE IS BINARY

unsigned short int PIC 9(4) USAGE IS BINARY

signed int, signed long int PIC S9(9) USAGE IS BINARY

unsigned int PIC 9(9) USAGE IS BINARY, LENGTH OF

unsigned long int PIC 9(9) USAGE IS BINARY

float COMP-1

double COMP-2

pointer to... POINTER, ADDRESS OF

Note:

66 z/OS V2R1.0 Language Environment Writing ILC Applications

1. If the COBOL program receives int parameters from the C calling function that
might have a value that is larger than that declared as the maximum size by
the COBOL picture clause, the COBOL program must either be compiled with
the TRUNC(BIN) compiler option or each binary data item that receives int
parameters from C must be declared as USAGE IS COMP-5. Taking these
actions will guarantee that truncation of high-order digits does not occur. For
more information about the TRUNC(BIN) compiler option or about using
COMP-5 data items, see the appropriate version of the programming guide in
the Enterprise COBOL for z/OS library (http://www-01.ibm.com/support/
docview.wss?uid=swg27036733).

Supported data types passed by value (indirect) or by reference
(indirect) between C++ and COBOL
Table 20 identifies the data types that can be passed by value (indirect) or by
reference (indirect) between C++ and COBOL applications.

Table 20. Supported data types passed by value (indirect) or by reference (indirect) with
extern "C"

C++ (Pointer to...) COBOL (by content/by reference)

char PIC X, PIC A

signed short int PIC S9(4) USAGE IS BINARY

unsigned short int PIC 9(4) USAGE IS BINARY

signed int, signed log int PIC S9(9) USAGE IS BINARY

unsigned int PIC 9(9) USAGE IS BINARY, LENGTH OF

unsigned long int PIC 9(9) USAGE IS BINARY

float COMP-1

double COMP-2

pointer to... POINTER, ADDRESS OF

struct Groups

type array[n] Tables (OCCURS n TIMES)

Note:

1. You must specify a size for type array.
2. If the COBOL program receives int parameters from the C calling function that

might have a value that is larger than that declared as the maximum size by
the COBOL picture clause, the COBOL program must either be compiled with
the TRUNC(BIN) compiler option or each binary data item that receives int
parameters from C must be declared as USAGE IS COMP-5. Taking these
actions will guarantee that truncation of high-order digits does not occur. For
more information about the TRUNC(BIN) compiler option or about using
COMP-5 data items, see the appropriate version of the programming guide in
the Enterprise COBOL for z/OS library (http://www-01.ibm.com/support/
docview.wss?uid=swg27036733).

3. COBOL always turns on the high-order bit of the address of the last parameter.
This can cause problems in the C++ program if it is using the address (since it
will be treated as a negative number). If a C++ program does need to use the
address of the last parameter, one of the following techniques can be used to
bypass this problem:
v If the COBOL program is an Enterprise COBOL program, instead of passing

the parameter by reference, pass the address of the item by value. For
example, use a call statement that looks like this:

Chapter 5. Communicating between C++ and COBOL 67

http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www-01.ibm.com/support/docview.wss?uid=swg27036733

CALL "C" using by value address of C-PARM1
by value address of C-PARM2

v If the COBOL program is not Enterprise COBOL, code must be added to
mask out the high-order bit in the C++ routine. The sample code shows how
to do this:

#include <stdio.h>
#include <string.h>
void A1CC01B1(char* myString)
{

myString = (char*)((int)myString & 0x7fffffff);
printf("My String: %s \n", myString);
return;

}

Passing data between C++ and COBOL with extern "COBOL"

Note: The reference to COBOL with extern "COBOL", applies to VS COBOL II,
COBOL/370, COBOL for MVS & VM, COBOL for OS/390 & VM, and Enterprise
COBOL for z/OS.

When data is passed between XL C++ and COBOL with extern "COBOL", the C++
compiler generates the appropriate addressing code which introduces an extra
level of indirection on the C++ side for non-pointer types. Pointers, however, are
passed directly; meaning that for COBOL to receive a pointer to a C++ data type,
C++ must pass a pointer to a pointer to the C++ data type. Conversely, if COBOL
returns a pointer to a data type, C++ receives a pointer to a pointer to the data
type.

Passing data by value (indirect) between C++ and COBOL
Copies of variable can be passed between C++ and COBOL routines. On return,
the actual value of the variable remains unchanged regardless of how it may have
been modified in the called routine.

Value arguments can be passed BY CONTENT from COBOL programs and
received as C++ function parameters when declared with the appropriate base
type. Conversely, C++ function arguments can be passed by value (indirect) from
C++ functions and received as COBOL parameters. The C++ compiler generates
the appropriate addressing code required to access the parameter values; you can
write your C++ function, which is interoperable with COBOL, as if it were in a
C++-only environment. It can be moved to a C++-only environment simply by
removing the extern "COBOL". For example, if a C++ function called FROMCOB is
to receive a parameter passed BY CONTENT of type int, the function prototype
declaration would look like this:
void FROMCOB(int)

Table 21 shows the supported data types for passing by value (indirect).

Supported data types passed by value (indirect) between C++
and COBOL
Table 21 identifies the data types that can be passed by value (indirect) as
parameters between C++ and COBOL.

Table 21. Supported data types passed by value (indirect) with extern "COBOL"

C++ COBOL

Signed int, signed long int PIC S9(9) USAGE IS BINARY

Double COMP-2

68 z/OS V2R1.0 Language Environment Writing ILC Applications

Table 21. Supported data types passed by value (indirect) with extern "COBOL" (continued)

C++ COBOL

Pointer to... POINTER, ADDRESS OF

Sruct Groups

Type array[n] Tables (OCCURS n TIMES)

Passing data by reference (indirect) between C++ and COBOL
A parameter can be passed by reference (indirect) between C++ and COBOL,
which means the actual address of the argument is passed to the called function or
procedure; any changes to the parameter made by the called routine can alter the
original parameter passed by the calling routine.

To pass data by reference (indirect) from C++ to COBOL, the variables are passed
by C++ as function arguments, which are pointers to a given type or the address of
a given variable, and received as COBOL parameters. Conversely, to pass data by
reference (indirect) from COBOL to C++, the variables are passed from COBOL as
BY REFERENCE arguments and received by a C++ function as pointers to a given
type. For example, if a C++ function called FROMCOB is to receive a parameter
passed by reference (indirect) of type int, the function prototype declaration would
look like this:
void FROMCOB(int *)

The C++ function must dereference the pointer to access the actual value. If the
value of the pointer is modified by the C++ function, as opposed to modifying the
value that the pointer points to, the results on return to COBOL are unpredictable.
Therefore, passing values by reference (indirect) from COBOL to C++ should be
used with caution, and only in cases where the exact behavior of the C++ function
is known.

Table 22 shows the supported data types for passing by reference (indirect).

Supported data types passed by reference (indirect) between
C++and COBOL
Table 22 identifies the data types that can be passed by reference (indirect) between
C++ and COBOL.

Table 22. Supported data types passed by reference (indirect) with extern "COBOL"

C++ COBOL

Signed short int PIC S9(4) USAGE IS BINARY

Signed int, signed long int PIC S9(9) USAGE IS BINARY

Float COMP-1

Double COMP-2

Pointer to... POINTER, ADDRESS OF

Struct Groups

Type array[n] Tables (OCCURS n TIMES)

Passing strings between C++ and COBOL
C++ and COBOL have different string data types:

C++ strings
Logically unbounded length and are terminated by a NULL (the last byte
of the string contains X'00')

Chapter 5. Communicating between C++ and COBOL 69

COBOL PIC X(n)
Fixed-length string of characters of length n

You can pass strings between COBOL and C++ routines, but you must match what
the routine interface demands with what is physically passed.

Enterprise COBOL for z/OS, COBOL for OS/390 & VM, and COBOL for MVS &
VM have strings like previous COBOLs, as well as null-terminated literal strings
like C++.

Refer to “Sample ILC applications” on page 82 to see how string data is passed
between C++ and COBOL.

Using aggregates
Aggregates (arrays, strings, or structures) are mapped differently by C++ and
COBOL and are not automatically mapped. You must completely declare every
byte in the structure to ensure that the layouts of structures passed between the
two languages map to one another correctly. The XL C++ compile-time option
AGGREGATE and the COBOL compiler option MAP provide a layout of structures
to help you perform the mapping.

In C++, a structure is simply a class declared with the struct keyword; its
members and base classes are public by default. A C++ class is the same as a C++
structure if the only data is public. If a C++ class that uses features unavailable to
COBOL (such as virtual functions, virtual base classes, private data, protected data,
static data members, or inheritance) is passed to a COBOL program, the results are
undefined.

Data equivalents
This section shows how C++ and COBOL data types correspond to each other.

Equivalent data types for C++ to COBOL
This section uses language samples to describe data type equivalencies in C++ to
COBOL applications.

Note: In the declarations that follow, examples showing the use of extern "C"
apply only to Enterprise COBOL for z/OS, COBOL for OS/390 & VM, and COBOL
for MVS & VM. The examples showing extern "COBOL" apply to Enterprise
COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM,
COBOL/370, and VS COBOL II.

Signed one-byte character data with extern "C"

Sample C++ usage COBOL subroutune

#include <stdio.h>
#include <stdlib.h>
extern "C" {void COBRTN (char);}

int main()
{

char x;
x=’a’;
COBRTN(x); /* x by value */
exit(0);

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC X.
PROCEDURE DIVISION USING BY VALUE X.

DISPLAY X.
GOBACK.

END PROGRAM COBRTN.

70 z/OS V2R1.0 Language Environment Writing ILC Applications

Signed one-byte character data with extern "COBOL"

Sample C++ usage COBOL subroutine

#include <stdio.h>
#include <stdlib.h>
extern "COBOL" {void COBRTN (char*);}

int main()
{
char x;
x=’a’;

COBRTN(&x); /* x by reference */
exit(0);
}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC X.
PROCEDURE DIVISION USING X.

DISPLAY X
GOBACK.

END PROGRAM COBRTN.

16-bit signed binary integer with extern "C"

Sample C++ usage COBOL subroutine

#include <stdio.h>
#include <stdlib.h>
extern "C" {void COBRTN

(short int);}

int main()
{

short int x;
x=5;
COBRTN(x); /* x by value */
exit(0);

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC S9(4) BINARY.
PROCEDURE DIVISION USING BY VALUE X.

DISPLAY X.
GOBACK.

END PROGRAM COBRTN.

16-bit signed binary integer with extern "COBOL"

Sample C++ usage COBOL subroutine

#include <stdio.h>
#include <stdlib.h>
extern "COBOL" {void COBRTN
(short int*);}

int main()
{

short int x;
x=5;
COBRTN(&x); /* x by reference */
exit(0);

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC S9(4) BINARY.
PROCEDURE DIVISION USING X.

DISPLAY X
GOBACK.

END PROGRAM COBRTN.

32-bit signed binary integer with extern "C"

Sample C++ usage COBOL subroutine

#include <stdio.h>
#include <stdlib.h>
extern "C" {void COBRTN (int);}

int main()
{

int x;
x=5;
COBRTN(x); /* x by value */
exit(0);

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC S9(9) BINARY.
PROCEDURE DIVISION USING BY VALUE X.

DISPLAY X.
GOBACK.

END PROGRAM COBRTN.

Chapter 5. Communicating between C++ and COBOL 71

32-bit signed binary integer with extern "COBOL"

Sample C++ usage COBOL subroutine

#include <stdio.h>
#include <stdlib.h>
extern "COBOL" {void COBRTN (int, int*);}

int main()
{

int x,y;
x=5;
y=6;
COBRTN(x,&y); /* x by value */

/* y by reference */
exit(0);

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X PIC S9(9) BINARY.
01 Y PIC S9(9) BINARY.
PROCEDURE DIVISION USING X Y.

DISPLAY X Y
GOBACK.

END PROGRAM COBRTN.

Long floating-point number with extern "C"

Sample C++ usage COBOL subroutine

#include <stdio.h>
#include <stdlib.h>
extern "C" {void COBRTN

(double);}

int main()
{

double x;
x=3.14159265;
COBRTN(x); /* x by value */
exit(0);

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X COMP-2.
PROCEDURE DIVISION USING BY VALUE X.

DISPLAY X.
GOBACK.

END PROGRAM COBRTN.

Long floating-point with extern "COBOL"

Sample C++ usage COBOL subroutine

#include <stdio.h>
#include <stdlib.h>
extern "COBOL" {void COBRTN

(double, double*);}

int main()
{

double x,y;
x=3.14159265;
y=4.14159265;
COBRTN(x,&y); /* x by value */

/* y by reference */
exit(0);

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 X COMP-2.
01 Y COMP-2.
PROCEDURE DIVISION USING X Y.

DISPLAY X Y
GOBACK.

END PROGRAM COBRTN.

72 z/OS V2R1.0 Language Environment Writing ILC Applications

Structure with extern "COBOL"

Sample C++ usage COBOL subroutine

#include <stdio.h>
#include <stdlib.h>
struct stype {

int s1;
int s2;};

extern "COBOL" {void COBRTN
(struct stype,struct stype*);}

int main()
{

struct stype struc1,struc2;
struc1.s1=1;
struc1.s2=2;
struc2.s1=3;
struc2.s2=4;
COBRTN(struc1,&struc2);

/* struc1 by value */
/* struc2 by reference */

exit(0);
}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 STRUC1.

05 S11 PIC S9(9) BINARY.
05 S12 PIC S9(9) BINARY.

01 STRUC2.
05 S21 PIC S9(9) BINARY.
05 S22 PIC S9(9) BINARY.

PROCEDURE DIVISION USING STRUC1 STRUC2.
DISPLAY S11 S12 S21 S22
GOBACK.

END PROGRAM COBRTN.

Array with extern "COBOL"

Sample C++ usage COBOL subroutine

#include <stdio.h>
#include <stdlib.h>
extern "COBOL" {void COBRTN

(int array[2]);}

int main()
{

int array=[2];
array[0]=1;
array[1]=2;
COBRTN(array);

/* array by reference */
exit(0);

}

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 ARRAY.

05 ELE PIC S9(9) BINARY OCCURS 2.
PROCEDURE DIVISION USING ARRAY.

DISPLAY ELE(1) ELE(2)
GOBACK.

END PROGRAM COBRTN.

Equivalent data types for COBOL to C++
This section uses language samples to describe data type equivalencies in COBOL
to C++ applications.

Note: In the declarations that follow, examples showing the use of extern "C"
apply only to Enterprise COBOL for z/OS, COBOL for OS/390 & VM, and COBOL
for MVS & VM. The examples showing extern "COBOL" apply to Enterprise
COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM,
COBOL/370, and VS COBOL II.

Chapter 5. Communicating between C++ and COBOL 73

32-bit signed binary integer with extern "C"

Sample COBOL usage C++ function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X PIC S9(9) BINARY.
01 Y PIC S9(9) BINARY.
PROCEDURE DIVISION.

MOVE 1 TO X.
* X BY VALUE ***

CALL "CENTRY" USING BY VALUE X
RETURNING Y.

GOBACK.
END PROGRAM COBRTN.

#include <stdio.h>
extern "C" {int CENTRY (int x);}

int CENTRY(int x)
{

int y=2;
printf("%d %d \n",x,y);
return y;

}

32-bit signed binary integer with extern "COBOL"

Sample COBOL usage C++ function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X PIC S9(9) BINARY.
01 Y PIC S9(9) BINARY.
PROCEDURE DIVISION.

MOVE 1 TO X.
MOVE 2 TO Y.

* X BY VALUE, Y BY REFERENCE ***
CALL "CENTRY" USING BY CONTENT X

BY REFERENCE Y.
GOBACK.

END PROGRAM COBRTN.

#include <stdio.h>
extern "COBOL" {void CENTRY (int x, int *y);}

void CENTRY(int x, int *y)
{

printf("%d %d \n",x,*y);
return;

}

Long floating-point number with extern "C"

Sample COBOL usage C++ function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X COMP-2.
01 Y COMP-2.
PROCEDURE DIVISION.

MOVE 3.14159265 TO X.
* X BY VALUE ***

CALL "CENTRY" USING BY VALUE X
RETURNING Y.

GOBACK.
END PROGRAM COBRTN.

#include <stdio.h>
extern "C" {double CENTRY

(double x);}

double CENTRY(double x)
{

double y=4.14159265;
printf("%f %f \n",x,y);
return y;

}

74 z/OS V2R1.0 Language Environment Writing ILC Applications

Long floating-point number with extern "COBOL"

Sample COBOL usage C++ function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X COMP-2.
01 Y COMP-2.
PROCEDURE DIVISION.

MOVE 3.14159265 TO X.
MOVE 4.14159265 TO Y.

* X BY VALUE, Y BY REFERENCE ***
CALL "CENTRY" USING BY CONTENT X

BY REFERENCE Y.
GOBACK.

END PROGRAM COBRTN.

#include <stdio.h>
extern "COBOL" {void CENTRY

(double x, double *y);}

void CENTRY(double x, double *y)
{

printf("%f %f \n",x,*y);
return;

}

Structure with extern "C"

Sample COBOL usage C++ function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 STRUC1.

O5 S11 PIC S9(9) BINARY.
05 S12 PIC S9(9) BINARY.

PROCEDURE DIVISION.
CALL "CENTRY" RETURNING STRUC1.
GOBACK.

END PROGRAM COBRTN.

#include <stdio.h>
struct stype {

int S1;
int S2; } struc1;

extern "C" {struct stype CENTRY()

struct stype CENTRY()
}

struc1.s1=1;
struc1.s2=2;
printf("%d %d \n",struc1.s1,

struc1.s2);
return struc1;

}

Structure with extern "COBOL"

Sample COBOL usage C++ function

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRTN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 STRUC1.

05 S11 PIC S9(9) BINARY VALUE 1.
05 S12 PIC S9(9) BINARY VALUE 2.

01 STRUC2.
05 S21 PIC S9(9) BINARY VALUE 3.
05 S22 PIC S9(9) BINARY VALUE 4.

PROCEDURE DIVISION.
* STRUC1 BY VALUE STRUC2 BY REFERENCE ***

CALL "CENTRY"
USING BY CONTENT STRUC1

BY REFERENCE STRUC2.
GOBACK.

END PROGRAM COBRTN.

#include <stdio.h>
struct stype {

int S1;
int S2; };

extern "COBOL" {void CENTRY
(struct stype struc1,
struct stype *struc2);}

void CENTRY(struct stype struc1,
struct stype *struc2)

{
printf("%d %d %d %d \n",struc1.s1,

struc1.s2,struc2->s1,struc2->s2);
return;
}

Name scope of external data
In programming languages, the name scope is defined as the portion of an
application within which a particular declaration applies or is known. The name
scope of external data differs between C++ and COBOL. The scope of external data
under C++ is the load module; under COBOL, it is the enclave (or run unit).
Figure 7 on page 49 and Figure 8 on page 49 illustrate these differences.

Chapter 5. Communicating between C++ and COBOL 75

Because the name scope for C++ and COBOL is different, external variable
mapping between C++ and COBOL routines is not supported. External variables
with the same name are considered separate between C++ and COBOL.

If your application relies on the separation of external data, do not give the data
the same name in both languages within a single application. If you give the data
in each load module a different name you can change the language mix in the
application later, and your application still behaves as you expect it to.

DLL considerations
In DLL code, external variables are mapped across the load module boundary.
DLLs are shared at the enclave level. Therefore, a single copy of a DLL applies to
all modules in an enclave, regardless of whether the DLL is loaded implicitly
(through a reference to a function or variable) or explicitly (through dllload()).
See z/OS Language Environment Programming Guide for information about building
and managing DLL code in your applications.

COBOL data declared with the EXTERNAL attribute are independent of DLL
support. These data items are managed by the COBOL runtime, and are accessible
by name from any COBOL program in the run-unit that declares them, regardless
of whether the programs are in DLLs or not.

In particular, the facilities for exporting and importing external variables from
DLLs implemented in OS/390 C/C++, do not apply to COBOL external data.
Hence C/C++ external data and COBOL external data are always in separate name
spaces, regardless of DLL considerations.

For C/C++, non-DLL applications have external data which is only shared within
the load module.

However, for DLL applications, C/C++ external data is now (optionally) accessible
to all C/C++ routines in the enclave.

Name space of external data
In programming languages, the name space is defined as the portion of a load
module within which a particular declaration applies or is known. Like the name
scope, the name space of external data differs between C++ and COBOL.

COBOL PGM 1 COBOL PGM 2

X
X

Load Mod

Storage

Figure 16. Name space of external data for COBOL static call to COBOL

76 z/OS V2R1.0 Language Environment Writing ILC Applications

Figure 16 on page 76 and Figure 17 illustrate that within the same load module, the
name space of COBOL programs is the same. However, the name spaces of a
COBOL program and a C++ routine within the same load module are not the
same. If you give external data the same name in both languages, an
incompatibility in external data mapping can occur.

Directing output in ILC applications
C++ and COBOL do not share files, except the Language Environment message file
(the ddname specified in the Language Environment MSGFILE runtime option).
You must manage all other files to ensure that no conflicts arise. Performing I/O
operations on the same ddname might cause abnormal termination.

Under C++, runtime messages and other related output are directed to the default
MSGFILE ddname. stderr output is also by default directed to the MSGFILE
ddname. stdout is not by default directed to the MSGFILE ddname, but can be
redirected to do so. Also, output from printf can be interspersed with output from
the COBOL DISPLAY statement and output from Language Environment by
redirecting stdout to stderr (for example, passing 1>&2 as a command-line
parameter).

For information about redirecting C++ output, see z/OS XL C/C++ Programming
Guide.

If you are using the C++ iostreams class, cout is directed to the same place as
stdout, and cerr/clog are directed to the same place as stderr.

Under COBOL, runtime messages and other related output are directed to the
MSGFILE ddname. Output from COBOL DISPLAY UPON SYSOUT is directed to
the default MSGFILE ddname only when the OUTDD compiler option ddname
matches the MSGFILE ddname; this applies to Enterprise COBOL for z/OS,
COBOL for OS/390 & VM, COBOL for MVS & VM, COBOL/370, and VS COBOL
II.

Interspersing output when C++ Is the main routine
To intersperse output from C++ and COBOL when the main routine is coded in
C++, compile your COBOL program using the default OUTDD (OUTDD=SYSOUT)
if you are using the default MSGFILE ddname. If you have overridden the default

Storage

COBOL PGM 1 C++ RTN 2

X
X

Load Mod

Storage

Figure 17. Name space of external data in COBOL static call to C++

Chapter 5. Communicating between C++ and COBOL 77

MSGFILE ddname, you must compile your COBOL program using an OUTDD
that specifies the same name as the MSGFILE. You must redirect stdout to stderr
when C++ is the main routine.

Interspersing output when COBOL Is the main program
To intersperse output from C++ and COBOL when the main routine is coded in
COBOL, compile your COBOL program using the default OUTDD
(OUTDD=SYSOUT). In your C++ routine, add a line stdout = stderr. If you have
overridden the default MSGFILE ddname, you must compile your COBOL
program using an OUTDD ddname that specifies the same name as the MSGFILE.

C++ to COBOL condition handling
This section provides two scenarios of condition handling behavior in a C++ to
COBOL ILC application. If an exception occurs in a C++ routine, the set of possible
actions is as described in “Exception occurs in C++” on page 79. If an exception
occurs in a COBOL program, the set of possible actions is as described in
“Exception occurs in COBOL” on page 80.

Keep in mind that some conditions can be handled only by the HLL of the routine
in which the exception occurred. For example, in a COBOL program, a statement
can have a clause that adds condition handling to a verb, such as the ON SIZE
clause of a COBOL DIVIDE verb (which includes the logical equivalent of a
divide-by-zero condition). This condition is handled completely within COBOL.

C++ exception handling constructs try()/throw()/catch() cannot be used with
Language Environment and COBOL condition handling. If you use C exception
handling constructs (signal()/raise()) in your C++ routine, condition handling
will proceed as described in this section. Otherwise, you will get undefined
behavior in your programs if you mix the C++ constructs with the C constructs.
For a detailed description of Language Environment condition handling, see z/OS
Language Environment Programming Guide.

Enclave-terminating language constructs
Enclaves can be terminated for reasons other than an unhandled condition of
severity 2 or greater. In Language Environment ILC, you can issue an HLL
language construct to terminate a C++ to COBOL enclave from either a C++ or
COBOL routine.

C language constructs available under C++
Among the C language constructs that terminate an enclave are abort(), exit(),
raise(SIGABRT), and raise(SIGTERM). Destructors are run at library termination.

If you call abort(), raise(SIGABRT), or exit(), the T_I_S (Termination Imminent
Due to STOP) condition is raised. After T_I_S has been processed and all user code
has been removed from the stack, the C atexit list is honored.

COBOL language constructs
The COBOL language constructs that cause the enclave to terminate are:
v STOP RUN

COBOL's STOP RUN is equivalent to the C++ exit() function. If you code a
COBOL STOP RUN statement, the T_I_S (Termination Imminent Due to STOP)
condition is raised. After T_I_S has been processed and all user code has been
removed from the stack, the C++ atexit list is honored.

78 z/OS V2R1.0 Language Environment Writing ILC Applications

v Call to ILBOABN0 or CEE3ABD
Calling ILBOABN0 or CEE3ABD causes T_I_U to be signaled. Condition
handlers are given a chance to handle the abend. If the abend remains
unhandled, normal Language Environment termination activities occur. For
example, the C++ atexit list is honored and the Language Environment
assembler user exit gains control.
User-written condition handlers written in COBOL must be compiled with
Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM
or COBOL/370.

Exception occurs in C++
In this scenario, a COBOL main program invokes a C++ subroutine and an
exception occurs in the C++ subroutine. Refer to Figure 18 throughout the
following discussion.

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. In the enablement step, C++ determines whether the exception in the C++

routine should be enabled and treated as a condition. If any of the following
are true, the exception is ignored, and processing continues at the next
sequential instruction after where the exception occurred:
v You specified SIG_IGN for the exception in a call to signal().

Note: The system or user abend corresponding to the signal(SIGABND) or
the Language Environment message 3250 is not ignored. The enclave is
terminated.

v The exception is one of those listed as masked in Table 63 on page 249, and
you have not enabled it using the CEE3SPM callable service.

v You did not specify any action, but the default action for the condition is
SIG_IGN (see Table 63 on page 249).

Lang. Env. defaults

C++ defaults

COBOL semantics

COBOL main pgm

C++ semantics

C++ subroutine
Exception
occurs here

Figure 18. Stack contents when the C/C++ exception occurs

Chapter 5. Communicating between C++ and COBOL 79

v You are running under CICS and a CICS handler is pending.

If you did none of these things, the condition is enabled and processed as a
condition.

2. If a user-written condition handler was registered using CEEHDLR on the C++
stack frame, it is given control. If it issues a resume, with or without moving
the resume cursor, the condition handling step ends. Processing continues in
the routine to which the resume cursor points. You must be careful when
moving the resume cursor in an application that contains a COBOL program;
see “CEEMRCR and COBOL” on page 82 for details.
In this example, there is not a user-written condition handler registered for the
condition, so the condition is percolated.

3. The global error table is now examined for signal handlers that was registered
for the condition.
If there is a signal handler registered for the condition, it is given control. If it
issues a resume or a call to longjmp(), the condition handling step ends.
Processing resumes in the routine to which the resume cursor points. You must
be careful when issuing a longjmp() in an application that contains a COBOL
program; see “CEEMRCR and COBOL” on page 82 for details.
In this example, no C signal handler is registered for the condition, so the
condition is percolated.

4. The condition is still unhandled. If C++ does not recognize the condition, or if
the C++ default action (listed in Table 63 on page 249) is to terminate, the
condition is percolated.

5. If a user-written condition handler was registered using CEEHDLR on the
COBOL stack frame, it is given control. If it issues a resume, with or without
moving the resume cursor, the condition handling step ends. Processing
continues in the routine to which the resume cursor points.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

6. If the condition is of severity 0 or 1, the Language Environment default actions
take place, as described in Table 62 on page 249.

7. If the condition is of severity 2 or above, Language Environment default action
is to promote the condition to T_I_U (Termination Imminent due to an
Unhandled condition) and redrive the stack. Condition handling now enters the
termination imminent step.

8. If, on the next pass of the stack, no condition handler moves the resume cursor
and issues a resume, Language Environment terminates the thread.

Exception occurs in COBOL
In this scenario, a C++ main routine invokes a COBOL subroutine and an
exception occurs in the COBOL subroutine. Refer to Figure 19 on page 81
throughout the following discussion.

80 z/OS V2R1.0 Language Environment Writing ILC Applications

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. In the enablement step, COBOL determines if the exception should be ignored

or handled as a condition.
v If the exception is to be ignored, control is returned to the next sequential

instruction after where the exception occurred.
v If the exception is to be enabled and processed as a condition, the condition

handling step takes place.
2. If a user-written condition handler was registered using CEEHDLR on the

COBOL stack frame, it is given control. If it issues a resume, with or without
moving the resume cursor, the condition handling step ends. Processing
continues in the routine to which the resume cursor points. Note that you must
be careful when moving the resume cursor in an application that contains a
COBOL program. See “CEEMRCR and COBOL” on page 82 for details.
In this example no user-written condition handler is registered for the
condition, so the condition is percolated.

3. If a user-written condition handler was registered for the condition using
CEEHDLR on the C++ stack frame, it is given control. If it issues a resume,
with or without moving the resume cursor, the condition handling step ends.
Processing continues in the routine to which the resume cursor points.
In this example no user-written condition handler is registered for the
condition, so the condition is percolated.

4. If a C signal handler was registered for the condition, it is given control. If it
moves the resume cursor or issues a call to longjmp(), the condition handling
step ends. Processing resumes in the routine to which the resume cursor points.
In this example, no C signal handler is registered for the condition, so the
condition is percolated.

Lang. Env. defaults

COBOL defaults

C++ semantics

C++ main routine

COBOL semantics

COBOL subroutine
Exception
occurs here

Figure 19. Stack contents when the exception occurs in COBOL

Chapter 5. Communicating between C++ and COBOL 81

5. If the condition has a Facility_ID of IGZ, the condition is COBOL-specific. The
COBOL default actions for the condition take place. If COBOL does not
recognize the condition, condition handling continues.

6. If the condition is of severity 0 or 1, Language Environment default actions
take place, as described in Table 62 on page 249.

7. If the condition is of severity 2 or higher, Language Environment default action
is to promote the condition to T_I_U (Termination Imminent due to an
Unhandled condition) and redrive the stack. Condition handling now enters the
termination imminent step.

8. If on the second pass of the stack no condition handler moves the resume
cursor and issues a resume, Language Environment terminates the thread.

CEEMRCR and COBOL
When you make a call to CEEMRCR to move the resume cursor, or issue a call to
longjmp(), and a COBOL program is removed from the stack, the COBOL program
can be re-entered via another call path. (This will not work for VS COBOL II
programs.)

If the COBOL program does not specify RECURSIVE in the PROGRAM-ID, a
recursion error is raised if you attempt to enter the routine again.
v A VS COBOL II, COBOL/370, COBOL for MVS & VM, or COBOL for OS/390 &

VM program compiled with the CMPR2 option
v A VS COBOL II program compiled with the NOCMPR2 option (which does not

use nested routines)
v A COBOL/370, COBOL for MVS & VM, or COBOL for OS/390 & VM program

compiled with the NOCMPR2 option that does not use the combination of the
INITIAL attribute, nested routines, and file processing in the same compilation
unit.

v An Enterprise COBOL for z/OS program that does not use the combination of
the INITIAL attribute, nested routines, and file processing in the same
compilation unit.

In addition, if the routine is a COBOL routine with the INITIAL attribute and
containing files, the files are closed. (COBOL supports VSAM and QSAM files and
these files are closed.)

Sample ILC applications
Figure 20 on page 83 and Figure 21 on page 84 contain an example of an ILC
application. The C++ routine CPP1 statically calls the COBOL CBL1 program.
CBL1 statically CALLs C++ routine CPP2.

82 z/OS V2R1.0 Language Environment Writing ILC Applications

/* Module/File Name: EDCXCB */
/**/
/* Illustration of Interlanguage Communication between C++ */
/* and COBOL. All parameters passed by reference. */
/* */
/* CPP1 ---------> CBL1 ---------> CPP2 */
/* static static */
/* call call */
/**/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

extern "COBOL" {
void CBL1(short *, long, float, char *);
void CPP2(int& num, char * newstring);

}

/********************* CPP1 routine example ***********************/

int main()
{

signed short int short_int = 2;
signed long int long_int = 4;
double floatpt = 8.0;
char string[80];

CBL1(&short_int, long_int, floatpt, string);

fprintf(stderr,"main ENDED\n");
}

void CPP2(int& num, char* newstring)
{

fprintf(stderr,"num is %d, newstring is %s\n",num,newstring);
fprintf(stderr,"CPP2 ended\n");

}

Figure 20. Static call from C++ to COBOL program

Chapter 5. Communicating between C++ and COBOL 83

* CBL LIB,QUOTE
*Module/File Name: IGZTXCB
****************** CBL1 routine example ********************

IDENTIFICATION DIVISION.
PROGRAM-ID. CBL1.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 var1 PIC S9(9) BINARY VALUE 5.
01 msg-string PIC X(80).

LINKAGE SECTION.
77 int2 PIC S9(4) BINARY.
77 int4 PIC S9(9) BINARY.
77 float COMP-2.
77 char-string PIC X(80).

PROCEDURE DIVISION USING int2 int4 float char-string.

DISPLAY "CBL1 STARTED".

IF (int2 NOT = 2) THEN
DISPLAY "INT2 NOT = 2".

IF (int4 NOT = 4) THEN
DISPLAY "INT4 NOT = 4".

IF (float NOT = 8.0) THEN
DISPLAY "FLOAT NOT = 8".

* Place null-character-terminated string in parameter
STRING "PASSED CHARACTER STRING", X’00’ LOW-VALUE

DELIMITED BY SIZE INTO msg-string

* MAKE A STATIC CALL TO C FUNCTION
CALL "CPP2" USING var1, msg-string.

DISPLAY "CBL1 ENDED".
GOBACK.

Figure 21. Static call from COBOL to C++ routine

84 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 6. Communicating between C and Fortran

This topic describes Language Environment's support for C to Fortran ILC
applications.

General facts about C to Fortran ILC
v A load module consisting of object code compiled with any Fortran compiler

link-edited with object code compiled in another language is not reentrant,
regardless of whether the Fortran routine was compiled with the RENT compiler
option.

v Return codes cannot be passed from a C routine to the Fortran routine that
invoked it.

v Fortran routines cannot operate under CICS.
v Support for Fortran on VM is not provided by Language Environment.
v Several C and Fortran library routines have identical names. You must resolve

name conflicts before link-editing your C to Fortran ILC applications. See z/OS
Language Environment Programming Guide for link-editing information.

v Fortran routines cannot operate in an XPLINK environment, so ILC with C
routines compiled XPLINK is not supported.

v There is no ILC support between AMODE 31 and AMODE 64 applications.
Fortran does not support AMODE 64.

Preparing for ILC
This section describe topics you might want to consider before writing an ILC
application. To determine how different versions of HLLs work together, refer to
the migration guides for the HLLs you plan to use.

Language Environment ILC support
Language Environment provides ILC support between the following combinations
of C and Fortran:

Table 23. Supported languages for Language Environment ILC

HLL pair C Fortran

C to Fortran v C/370 Version 1 Release 2
v C/370 Version 2 Release 1
v AD/Cycle C/370 Version 1
v IBM C/C++ for MVS/ESA
v z/OS XL C/C++ compilers

v FORTRAN IV G1
v FORTRAN IV H Extended
v VS FORTRAN Version 1, except modules compiled with

Release 2.0 or earlier and that either pass character arguments
to, or receive character arguments from, subprograms.

v VS FORTRAN Version 2, except modules compiled with
Releases 5 or 6 and whose source contained any parallel
language constructs or parallel callable services, or were
compiled with either of the compiler options PARALLEL or
EC.

Note: Dynamic calls from Fortran are available in VS FORTRAN Version 2 Release 6 only.

Migrating ILC applications
All C to Fortran ILC applications need to be relinked before running. See z/OS
Language Environment Programming Guide for information about how to relink
applications to run with Language Environment. You can find other helpful

© Copyright IBM Corp. 1991, 2013 85

migration information, especially concerning runtime option compatibility, in z/OS
Language Environment Runtime Application Migration Guide.

Determining the main routine
In Language Environment, only one routine can be the main routine; no other
routine in the enclave can use syntax that indicates it is main.

A C function is designated as a main routine because its function definition gives
its name as main. The entry point into the load module is CEESTART. In C, the
same routine can serve as both the main routine and subroutine if it is recursively
called. In such a case, the new invocation of the routine is not considered a second
main routine within the enclave, but a subroutine.

A Fortran routine is designated as a main routine with a PROGRAM statement,
which indicates the name of the main routine. A main routine can also be
designated by the absence of PROGRAM, SUBROUTINE, or FUNCTION
statements, in which case the name of the main routine is the default value MAIN
(or MAIN# for VS FORTRAN Version 2 Releases 5 and 6). The name of the main
routine is the entry point into the load module.

An entry point is defined for each supported HLL. Table 24 identifies the main and
fetched entry points for each language. The table assumes that your code was
compiled using the Language Environment-conforming compilers.

Table 24. Determining the entry point

HLL Main entry point Fetched entry point

C CEESTART CEESTART or routine name, if #pragma
linkage(,fetchable) is not used.

Fortran Name on the PROGRAM statement. In
the absence of PROGRAM,
SUBROUTINE, or FUNCTION
statements, the default value is MAIN (or
MAIN# in VS FORTRAN Version 2
Releases 5 and 6).

Subprogram name

Declaring C to Fortran ILC
A #pragma linkage directive is required for C to call Fortran and for Fortran to call
C. All entry declarations are made in the C code; no special declaration is required
in the Fortran routine. The directive allows the C routine to pass arguments and
return values to and from the Fortran routine using an internal argument list
compatible with Fortran.

The #pragma linkage directive has the following format:
#pragma linkage(identifier, FORTRAN[, RETURNCODE])

identifier is either the name of the Fortran routine (a function or subroutine), a C
function, or, for dynamic calls, the name of a typedef that refers to a Fortran
routine.

RETURNCODE is optional and applies only to a called Fortran routine: it specifies
that identifier is a Fortran routine that returns an alternate return code to the C
routine.

86 z/OS V2R1.0 Language Environment Writing ILC Applications

Example of declaration for C calling Fortran
The following example shows a partial C routine that calls a Fortran function. The
calling C routine contains the #pragma linkage directive for the Fortran function
FORTFCN, the function prototype for the Fortran function, and a static call to the
Fortran function.

C function Fortran function

#pragma linkage (fortfcn, FORTRAN)...
double fortfcn(int, double [100]);...
int index;
double list[100];
double value;...
value=fortfcn(index, list);

FUNCTION FORTFCN (INDEX, LIST) RESULT (VALUE)
INTEGER*4 INDEX
REAL*8 LIST(0:99)
REAL*8 VALUE...
VALUE=LIST(INDEX)
END

Example of declaration for Fortran calling C
The following example shows a partial Fortran routine that calls a C function. The
called C routine contains the #pragma linkage directive for the C function CFCN
and the function definition for the C function.

Fortran Routine C Routine

INTEGER*4 INDEX
REAL*8 LIST(0:99)
REAL*8 VALUE
REAL*8 CFCN...
VALUE=CFCN(INDEX, LIST)

#pragma linkage (cfcn, FORTRAN)...
double cfcn(int *index, double list [])
{...
}

Calling between C and Fortran
This section describes the types of calls permitted between C and Fortran, and
considerations when using dynamic calls and fetch.

Types of calls permitted
Table 25 describes the types of calls between C and Fortran that Language
Environment allows:

Table 25. Calls permitted for C and Fortran ILC

ILC direction Static calls Dynamic calls

C to Fortran Yes Yes

Fortran to C Yes Yes

Note: Dynamic call refers to C fetching a Fortran routine or Fortran dynamically calling a C routine.

Dynamic call/fetch considerations
This section describes the dynamic calling/fetching mechanisms supported
between C and Fortran.

C fetching Fortran
In C, dynamic calls are made by invoking the fetch() function and then later
invoking the fetched routine with the returned fetch pointer. The fetched routine
can either be a C or Fortran routine: the C routine can then fetch or statically call a

Chapter 6. Communicating between C and Fortran 87

Fortran routine; the Fortran routine can then statically call a C routine. (If the
statically linked C routine is within a dynamically loaded module with a Fortran
entry point, the C routine must be either nonreentrant or naturally reentrant.) In
the fetched load module, a routine can dynamically call other C or Fortran
routines, regardless of whether the routines are reentrant.

A C routine that fetches a Fortran routine cannot contain a fork() function.
Although you cannot run an application with fork(), you can run with
POSIX(ON). For a full description of running under POSIX, see z/OS Language
Environment Programming Guide.

Restriction: When a C routine fetches a Fortran routine, the dynamically loaded
module can contain only routines written in those languages that already exist in a
previous load module. (The routine in the previous load module need not be
called; it only needs to be present.) For a Fortran routine to be recognized, ensure
that at least one of the following is present in a previous load module:
v A Fortran main program
v A Fortran routine that causes one or more Fortran runtime library routines to be

link-edited into the load module. If the Fortran routine contains either an I/O
statement, a mathematical function reference, or a call to any Fortran callable
service (such as CPUTIME), then a library routine is included, and this
requirement is satisfied.

v The Fortran signature CSECT, CEESG007. Use the following linkage editor
statement to include CEESG007 if neither of the two previous conditions is true:
INCLUDE SYSLIB(CEESG007)

Fortran dynamically calling C
Dynamic calls are made in Fortran by specifying the name of the routine to be
loaded with the DYNAMIC compiler option, and then using the same name in a
CALL statement. The dynamically called routine can be either C or Fortran, and it
can in turn statically call either a C or Fortran routine. (If the statically linked C
routine is within a dynamically loaded module with a Fortran entry point, the C
routine must be either nonreentrant or naturally reentrant.) In the dynamically
loaded module, a routine can dynamically call other C or Fortran routines,
regardless of whether the routines are reentrant.

Neither a C nor a Fortran routine can delete a dynamically loaded routine that was
dynamically loaded in a Fortran routine.

Invoking functions with returned values
Both C and Fortran can invoke the other language as a function that returns a
value: in C, this would be a function that returns something other than void; in
Fortran, a function is a routine that begins with a FUNCTION statement. Only
certain data types, however, can be used as function return values. See Table 28 on
page 90 for a list of the supported data types that can be used as function return
values.

Calling Fortran library routines
You can statically call a Fortran library routine, such as CPUTIME, from C.
However, you cannot dynamically call a Fortran library routine from C.

88 z/OS V2R1.0 Language Environment Writing ILC Applications

Passing data between C and Fortran
This section describes the data types that can be passed between C and Fortran. In
the C-to-Fortran passing direction, most of the data types can be passed by
reference only; several can also be passed by value. In the Fortran-to-C passing
direction, however, the only passing method allowed is by reference.

Under Language Environment, the term by value means that a temporary copy of
the argument is passed to the called function or procedure. Any changes to the
parameter made by the called routine will not alter the original parameter passed
by the calling routine. Under Language Environment, the term by reference means
that the actual address of the argument is passed. Any changes to the parameter
made by the called routine can alter the original parameter passed by the calling
routine.

This section also includes information about passing an alternate return code from
Fortran to C.

Supported data types between C and Fortran
Table 26 lists the data types that can be passed between C and Fortran by
reference.

Table 26. Supported data types passed by reference

C Fortran

signed short int INTEGER*2

signed int, signed long int INTEGER*4

float REAL*4

double REAL*8

long double REAL*16

signed char INTEGER*1

unsigned char UNSIGNED*1 or CHARACTER*1

char[n] CHARACTER*n

Address of supported data types and aggregates

Examples:
Address of an integer
(...int**...)

Address of an array of integers
(...int(**)[8]...)

POINTER (X,Y)
INTEGER*4 Y

POINTER (X,Y)
INTEGER*4 Y(8)

Supported data types for passing by value
Table 27 lists the data types that can be passed from C to Fortran by value.

Table 27. Supported data types for passing by value from C to Fortran

C Fortran

signed int, signed long int INTEGER*4

double REAL*8

long double REAL*16

Chapter 6. Communicating between C and Fortran 89

Supported data types for passing function return values
Table 28 lists the data types that can be passed as function return values from a C
function to a Fortran routine.

Table 28. Supported data types for passing as function return values from C to Fortran

C Fortran

signed short int INTEGER*2

signed int, signed long int INTEGER*4

float REAL*4

double REAL*8

long double REAL*16

signed char INTEGER*1

unsigned char UNSIGNED*1

Passing an alternate return code from Fortran to C
You can pass an alternate return code to a C routine from a Fortran subroutine by
specifying the called Fortran subroutine in the #pragma linkage directive. The
Fortran subroutine will produce an alternate return code when alternate returns
are specified as dummy arguments on the SUBROUTINE statement.

In an all-Fortran application, the alternate returns provide a way to return to a
point in the calling program other than to the point immediately following the
CALL statement. The following example illustrates how a Fortran routine would
call a Fortran subroutine to use an alternate return:
CALL FSUB (ARG1, *22, ARG2, *66)

In this example, *22 and *66 specify two labels (22 and 66) to which control can be
passed rather than to the point following the CALL statement. The corresponding
subroutine would be coded as follows:
SUBROUTINE FSUB (DARG1, DARG2, *, *)

When the FSUB subroutine executes the following RETURN statement, control
would pass to the calling program at the second alternate return, at label 66.
RETURN 2

There is no alternate return point feature in C. However, if you specify the
RETURNCODE suboption on the #pragma linkage directive in your C routine, you
can use the fortrc() function to get the alternate return code from the RETURN
statement in the Fortran subroutine. The fortrc() function reference applies to the
call to Fortran immediately preceding it; you must not have any C code between
the Fortran subroutine and the fortrc() function reference.

In the following example, the C routine calls the subroutine FSUB, whose
SUBROUTINE and RETURN statements are shown above. The fortrc() function
returns an alternate return code of 2.
#includes <stdlib.h>
#pragma linkage (fsub, FORTRAN, RETURNCODE)
void fsub (float, float);
int rc:...
fsub(1.0,2.0);

90 z/OS V2R1.0 Language Environment Writing ILC Applications

rc=fortrc();...

The RETURNCODE suboption is optional. It indicates to the C compiler that fsub
is a Fortran routine returning an alternate return code. You cannot pass return code
values from a called C function to a calling Fortran routine.

Passing character data
Character data can be received by a Fortran routine only when the routine that
receives the data declares the data to be of fixed length. Therefore, the Fortran
form CHARACTER*(*) cannot be used by a Fortran routine to receive character
data. An array of characters can be processed in a C routine only when the Fortran
routine or the C routine produces the terminating null character.

Mapping arrays between C and Fortran
Arrays can be passed between C and Fortran routines when the array passed has
its elements in contiguous storage locations. In addition, in a called Fortran
routine, the declaration of the array must indicate a constant number of elements
along each dimension.

In C, arrays of more than one dimension are arranged in storage in row major
order, while in Fortran they are arranged in column major order. You need to
reference the corresponding element of the other language by reversing the order
of the subscripts. For example, in an array of floating point integers, the C
declaration would be float [10][20] while the Fortran declaration would be
REAL*4(20,10).

Another difference in using arrays is that unless specified otherwise, the lower
bound (the lowest subscript value) of a Fortran array is 1. In C, the lowest
subscript value is always 0, so you must adjust either the declared lower bound in
the Fortran routine or the subscript you are using when you reference the value in
C or Fortran.

For example, the following two arrays have the same storage mapping:
C float da[10][20];
Fortran

REAL*4 DA(20,10)

The following two elements also represent the same storage:
C da[4][8]
Fortran

DA(9,5)

Data equivalents
This section describes how C and Fortran data types correspond to each other.

Equivalent data types for C to Fortran
The following examples illustrate how C and Fortran routines within a single ILC
application might code the same data types. The examples might be clearer to you
if you first read “Passing data between C and Fortran” on page 89, which
describes how a C routine can receive parameters that are passed by value and by
reference.

Chapter 6. Communicating between C and Fortran 91

16-bit signed binary integer

Sample C usage (by Reference) Fortran subroutine

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
void cfort(short int *);
main()
{

short int x;
x=5;
cfort(&x);
printf

("Updated value in C: %d\n", x);
}

SUBROUTINE CFORT (ARG)
INTEGER*2 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
ARG = ARG + 1
END

Note: Because short int is an example of a parameter which must be passed
using an C explicit pointer, you cannot code cfort(x), passing x by value.

32-bit signed binary integer

Sample C usage (by Value) Fortran function

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
int cfort(int);
main()
{

int x, y;
x=5;
y = cfort(x);
printf

("Value returned to C: %d\n", y);
}

FUNCTION CFORT (ARG)
INTEGER*4 CFORT
INTEGER*4 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

Sample C usage (by Reference) Fortran function

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
int cfort(int *);
main()
{

int x, y;
x=5;
y = cfort(&x);
printf

("Value returned to C: %d\n", y);
}

FUNCTION CFORT (ARG)
INTEGER*4 CFORT
INTEGER*4 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

Short floating-point number

Sample C usage (by Reference) Fortran function

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
float cfort(float *);
main()
{

float x, y;
x=5.0F;
y = cfort(&x);
printf

("Value returned to C: %f\n", y);
}

FUNCTION CFORT (ARG)
REAL*4 CFORT
REAL*4 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

92 z/OS V2R1.0 Language Environment Writing ILC Applications

Long floating-point number

Sample C usage (by Value) Fortran function

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
double cfort(double);
main()
{

double x, y;
x=12.5;
y=cfort(x);
printf

("Value returned to C: %f\n", y);
}

FUNCTION CFORT (ARG)
REAL*8 CFORT
REAL*8 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

Sample C usage (by Reference) Fortran function

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
double cfort(double *);
main()
{

double x, y;
x=12.5;
y=cfort(&x);
printf

("Value returned to C: %f\n", y);
}

FUNCTION CFORT (ARG)
REAL*8 CFORT
REAL*8 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

Extended floating-point number

Sample C usage (by Value) Fortran function

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
long double cfort(long double);
main()
{

long double x, y;
x=12.1L;
y=cfort(x);
printf

("Value returned to C: %Lf\n", y);
}

FUNCTION CFORT (ARG)
REAL*16 CFORT
REAL*16 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

Sample C usage (by Reference) Fortran function

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
long double cfort(long double *);
main()
{

long double x, y;
x=12.1L;
y=cfort(&x);
printf

("Value returned to C: %Lf\n", y);
}

FUNCTION CFORT (ARG)
REAL*16 CFORT
REAL*16 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

Chapter 6. Communicating between C and Fortran 93

Signed one-byte character data

Sample C usage (by Reference) Fortran subroutine

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
void cfort(signed char *);
main()
{
signed char x, y;

x=-5;
cfort(&x);
printf

("Updated value in C: %d\n", x);
}

SUBROUTINE CFORT (ARG)
INTEGER*1 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
ARG = ARG - 1
END

Unsigned one-byte character data

Sample C usage (by Reference) Fortran subroutine

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
void cfort(unsigned char *,

unsigned char *);
main()
{

unsigned char x, y;
x=’a’;
cfort(&x,&y);
printf

("Value returned to C: %c\n", y);
}

SUBROUTINE CFORT (ARG1, ARG2)
CHARACTER*1 ARG1, ARG2
PRINT *, ’FORTRAN ARG1 VALUE: ’, ARG1
ARG2 = ARG1
END

Fixed-length character data

Sample C usage Fortran subroutine

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
void cfort(char [10], char [10]);
main()
{

char x[10] = "1234567890";
char y[10];
cfort(x,y);
printf

("Value returned to C: %10.10s\n", y);
}

SUBROUTINE CFORT (ARG1, ARG2)
CHARACTER*10 ARG1, ARG2
PRINT *, ’FORTRAN ARG1 VALUE: ’, ARG1
ARG2 = ARG1
END

94 z/OS V2R1.0 Language Environment Writing ILC Applications

Array

Sample C usage Fortran subroutine

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
void cfort(float[]);
main()
{

float matrix[3] = {0.0F,1.0F,2.0F};
cfort(matrix);
printf

("Updated values in C: %f %f %f\n",
matrix[0], matrix[1], matrix[2]);

}

SUBROUTINE CFORT (ARG)
REAL*4 ARG(3)
PRINT *, ’FORTRAN ARG VALUES:’, ARG
DO J = 1, 3

ARG(J) = ARG(J) + 1.0
ENDDO
END

Address of an integer

Sample C usage Fortran subroutine

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
void cfort (int **);
main()
{

int i, *temp;
i=5;
temp=&i;
cfort(&temp);
printf

("Updated integer value in C: %d\n", i);
}

SUBROUTINE CFORT (ARG)
POINTER*4 (ARG, Y)
INTEGER*4 Y
PRINT *,
1 ’FORTRAN INTEGER ARG VALUE:’, Y
Y = Y + 1
END

Address of an array

Sample C usage Fortran subroutine

#pragma linkage (cfort,FORTRAN)
#include <stdio.h>
void cfort(int(**)[]);
main()
{

int matrix[3] = {0,1,2};
int (*temp)[] = &matrix;
cfort(&temp);
printf

("Updated values in C: %d %d %d\n",
matrix[0], matrix[1],
matrix[2]);

}

SUBROUTINE CFORT (ARG)
POINTER*4 (ARG, Y)
INTEGER*4 Y(3)
PRINT *,
1 ’FORTRAN ARRAY ARG VALUES:’, Y
DO J = 1, 3

Y(J) = Y(J) + 1
ENDDO
END

Equivalent data types for Fortran to C
The following examples illustrate how C and Fortran routines within a single ILC
application might code the same data types. The examples might be clearer to you
if you first read “Passing data between C and Fortran” on page 89, which
describes how a C routine can receive parameters that are passed by value and by
reference.

Chapter 6. Communicating between C and Fortran 95

16-bit signed binary integer

Sample Fortran usage C function (by Reference)

INTEGER*2 X
X = 5
CALL CENTRY(X)
PRINT *,
1 ’UPDATED VALUE IN FORTRAN:’, X
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
void centry(short int *x)
{

printf("C int arg value: %d\n",*x);
*x += 1;

}

32-bit signed binary integer

Sample Fortran usage (by Value) C function (by Value)

INTEGER*4 X, Y, CENTRY
X = 5
Y = CENTRY((X))
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
int centry(int x)
{

printf("C arg value: %d\n",x);
return(x);

}

Sample Fortran usage C function (by Reference)

INTEGER*4 X, Y, CENTRY
X = 5
Y = CENTRY(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
int centry(int *x)
{

printf("C int arg value: %d\n",*x);
return(*x);

}

Short floating-point number

Sample Fortran usage C function (by Reference)

REAL*4 X, Y, CENTRY
X = 5.0
Y = CENTRY(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
float centry(float *x)
{

printf("C float arg value: %f\n",*x);
return(*x);

}

Long floating-point number

Sample Fortran usage (by Value) C function (by Value)

REAL*8 X, Y, CENTRY
X = 12.5D0
Y = CENTRY((X))
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
double centry(double x)
{

printf("C arg value: %f\n",x);
return(x);

}

96 z/OS V2R1.0 Language Environment Writing ILC Applications

Sample Fortran usage C function (by Reference)

REAL*8 X, Y, CENTRY
X = 5.0D0
Y = CENTRY(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
double centry(double *x)
{

printf
("C double arg value: %f\n",*x);

return(*x);
}

Extended floating-point number

Sample Fortran usage (by Value) C function (by Value)

REAL*16 X, Y, CENTRY
X = 12.1Q0
Y = CENTRY((X))
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
long double centry(long double x)
{

printf("C arg value: %Lf\n",x);
return(x);

}

Sample Fortran usage C function (by Reference)

REAL*16 X, Y, CENTRY
X = 5.0Q0
Y = CENTRY(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
long double centry(long double *x)
{

printf
("C long double arg value:
%Lf\n", *x);

return(*x);
}

Signed one-byte character data

Sample Fortran usage C function (by Reference)

INTEGER*1 X
X = -5
CALL CENTRY(X)
PRINT *,
1 ’UPDATED VALUE IN FORTRAN:’, X
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
void centry(signed char *x)
{

printf("C char arg value: %d\n",*x);
*x -= 1;

}

Unsigned one-byte character data

Sample Fortran usage C function (by Reference)

CHARACTER*1 X, Y
X = ’A’
CALL CENTRY(X, Y)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN: ’, Y
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
void centry

(unsigned char *x, unsigned char *y)
{

printf("C char arg value: %c\n",*x);
*y = *x;

}

Chapter 6. Communicating between C and Fortran 97

Fixed-length character data

Sample Fortran usage C function (by Reference)

CHARACTER*10 X, Y
X = ’1234567890’
CALL CENTRY(X, Y)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN: ’, Y
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
#include <string.h>
void centry(char x[10], char y[10])
{

printf
("C char array arg: %10.10s\n",x);
memcpy(y, x, 10);

}

Array

Sample Fortran usage C function

REAL*4 MATRIX(3) / 1.0, 2.0, 3.0 /
CALL CENTRY(MATRIX)
PRINT *,
1 ’UPDATED VALUES IN FORTRAN:’, MATRIX
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
void centry(float x[3])
{

int index;
printf
("C arg values: %f %f %f\n",
x[0], x[1], x[2]);
for (index = 0; index <= 2; index++)
x[index] -= 1.0F;

}

Address of an integer

Sample Fortran usage C function

POINTER*4 (P, I)
INTEGER*4 I, J
P = LOC(J)
I = 5
CALL CENTRY(P)
PRINT *,
1 ’UPDATED VALUE IN FORTRAN:’, I
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
void centry(int **x)
{

printf("C int arg value: %d\n",**x);
**x += 1;

}

Address of an array

Sample Fortran usage C function

POINTER*4 (P, I)
INTEGER*4 I(3)
INTEGER*4 J(3) / 1, 2, 3 /
P = LOC(J)
CALL CENTRY (P)
PRINT *,
1 ’UPDATED VALUES IN FORTRAN:’, I
END

#pragma linkage (centry,FORTRAN)
#include <stdio.h>
void centry(int (**x)[3])
{

int index;
printf

("C int array arg values: %d %d %d\n",
(**x)[0], (**x)[1], (**x)[2]);

for (index = 0; index <= 2; index++)
(**x)[index] -= 1;

}

98 z/OS V2R1.0 Language Environment Writing ILC Applications

External data
External data in a C routine can be shared with a common block of the same name
in a Fortran routine in the same load module under the following conditions:
v The C static data is declared outside of any functions
v The C external data is NORENT, either from compiling the source file as

NORENT, or by marking the variable as NORENT with #pragma variable(xxxx,
NORENT).

v The Fortran static common blocks are either used only with one load module in
an application or they are declared as private common blocks. A private
common block is not shared across load modules and must by created in any of
the following ways:
– Specified or implied by the PC compiler option
– Referenced by Fortran object code produced by the VS FORTRAN Version 2

Release 4 compiler or earlier
– In an application that executes with the PC runtime option.

Directing output in ILC applications
Language Environment does not provide support to coordinate the use of C and
Fortran files. Routines written in Fortran and C do share the Language
Environment message file, however (the ddname specified in the Language
Environment MSGFILE runtime option). You must manage all other files to ensure
that no conflicts arise. For example, performing output operations on the same
ddname is likely to cause unpredictable results.

Under C, runtime messages and other related output are directed to the default
MSGFILE ddname. stderr output is also by default directed to the MSGFILE
ddname. stdout is not by default directed to the MSGFILE ddname, but can be
redirected to do so. Also, output from printf can be interspersed with output from
the Fortran PRINT statement and output from Language Environment by
redirecting stdout to stderr (for example, passing 1>&2 as a command-line
parameter).

For more information about how to redirect C output, see z/OS XL C/C++
Programming Guide.

Fortran runtime messages, output written to the print unit, and other output (such
as output from the SDUMP callable service) are directed to the file specified by the
MSGFILE runtime option. To direct this output to the file with the ddname
FTnnF001 (where nn is the two-digit error message unit number), specify the
runtime option MSGFILE(FTnnF001). If the print unit is different than the error
message unit (if the PRTUNIT and the ERRUNIT runtime options have different
values), output from a PRINT statement won't be directed to the Language
Environment message file.

C to Fortran condition handling
This section provides two scenarios of condition handling behavior in a C to
Fortran ILC application. If an exception occurs in a C routine, the set of possible
actions is as described in “Exception occurs in C” on page 100. If an exception
occurs in a Fortran program, the set of possible actions is as described in
“Exception occurs in Fortran” on page 102.

Some conditions can be handled only by the HLL of the routine in which the
exception occurred. For example, when an ERR or IOSTAT specifier is present on a

Chapter 6. Communicating between C and Fortran 99

Fortran I/O statement and an error is detected while executing that statement, the
Fortran semantics take precedence over Language Environment condition
handling. In this case, control returns immediately to the Fortran program and no
condition is signaled to Language Environment.

See z/OS Language Environment Programming Guide for a detailed description of
Language Environment condition handling. For information about Fortran
condition handling semantics, see VS FORTRAN Version 2 Language and Library
Reference.

Enclave-terminating language constructs
Enclaves can be terminated for reasons other than an unhandled condition of
severity 2 or greater. HLL constructs that cause the termination of a single
language enclave also cause the termination of a C to Fortran enclave. In Language
Environment ILC, you can issue the language construct to terminate the enclave
from a C or Fortran routine.

C
Examples of C language constructs that terminate the enclave are: kill(), abort(),
raise(SIGTERM), raise(SIGABND), and exit(). When you use a C language
construct to terminate an enclave, the T_I_S (Termination Imminent Due to STOP)
condition is raised. After T_I_S has been processed and all user code has been
removed from the stack, the C atexit list is honored.

Fortran
The Fortran language constructs that cause the enclave to terminate are:
v A STOP statement
v An END statement in the main routine
v A call to EXIT or SYSRCX
v A call to DUMP or CDUMP

All of the constructs listed above except the END statement cause the T_I_S
(Termination Imminent due to STOP) condition to be signaled.

Exception occurs in C
This scenario describes the behavior of an application that contains a C and
Fortran routine. In this scenario, a Fortran main routine invokes a C subroutine. An
exception occurs in the C subroutine.

100 z/OS V2R1.0 Language Environment Writing ILC Applications

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. In the enablement step, C determines whether the exception in the C routine

should be enabled and treated as a condition. If any of the following are true,
the exception is ignored, and processing continues at the next sequential
instruction after where the exception occurred:
v You specified SIG_IGN for the exception in a call to signal().

Note: The system or user abend corresponding to the signal(SIGABND) or
the Language Environment message 3250 is not ignored. The enclave is
terminated.

v The exception is one of those listed as masked in Table 63 on page 249, and
you have not enabled it using the CEE3SPM callable service.

v You did not specify any action, but the default action for the condition is
SIG_IGN (see Table 63 on page 249).

If you did none of these things, the condition is enabled and processed as a
condition.

2. If a user-written condition handler has been registered using CEEHDLR on the
C stack frame, it is given control. If it issues a resume, with or without moving
the resume cursor, the condition handling step ends. Processing continues in
the routine to which the resume cursor points.
In this example, there is not a user-written condition handler registered for the
condition, so the condition is percolated.

3. The C global error table is now examined for signal handlers that have been
registered for the condition.
If there is a signal handler registered for the condition, it is given control. If it
issues a resume or a call to longjmp(), the condition handling step ends.
Processing resumes in the routine to which the resume cursor points.

Fortran defaults

Lang. Env. defaults

C defaults

Fortran semantics

Fortran main rtn

C semantics

C subroutine
Exception
occurs here

Figure 22. Stack contents when the exception occurs in C

Chapter 6. Communicating between C and Fortran 101

In this example no C signal handler is registered for the condition, so the
condition is percolated.

4. The condition is still unhandled. If C does not recognize the condition, or if the
C default action (listed in Table 63 on page 249) is to terminate, the condition is
percolated.

5. There is no user-written condition handler on the Fortran stack frame (because
CEEHDLR cannot be called from a Fortran routine), and the condition is
percolated.

6. If the condition is of severity 0 or 1, the Language Environment default actions
take place, as described in Table 62 on page 249.

7. If the condition is of severity 2 or above, Language Environment default action
is to promote the condition to T_I_U (Termination Imminent due to an
Unhandled condition) and redrive the stack. Condition handling now enters the
termination imminent step.

8. If, on the second pass of the stack, no condition handler moves the resume
cursor and issues a resume, Language Environment terminates the thread.

Exception occurs in Fortran
This scenario describes the behavior of an application that contains a Fortran and a
C routine. In this scenario, a C main routine invokes a Fortran subroutine. An
exception occurs in the Fortran subroutine. Refer to Figure 23 throughout the
following discussion.

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. If an I/O error is detected on a Fortran I/O statement that contains an ERR or

IOSTAT specifier, Fortran semantics take precedence. The exception is not
signaled to the Language Environment condition handler.

2. In the enablement step, Fortran treats all exceptions as conditions. Processing
continues with the condition handling step.

C defaults

Lang. Env. defaults

Fortran defaults

C semantics

C main routine

Fortran semantics

Fortran subroutine
Exception
occurs here

Figure 23. Stack contents when the exception occurs

102 z/OS V2R1.0 Language Environment Writing ILC Applications

3. There is no user-written condition handler on the Fortran stack frame (because
CEEHDLR cannot be called from a Fortran routine), and the condition is
percolated.

4. If a user-written condition handler has been registered for the condition (as
specified in the global error table) using CEEHDLR on the C stack frame, it is
given control. If it issues a resume, with or without moving the resume cursor,
the condition handling step ends. Processing continues in the routine to which
the resume cursor points.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

5. If a C signal handler has been registered for the condition, it is given control. If
it moves the resume cursor or issues a call to longjmp(), the condition handling
step ends. Processing resumes in the routine to which the resume cursor points.
In this example, no C signal handler is registered for the condition, so the
condition is percolated.

6. If the condition is of severity 0 or 1, Language Environment default actions
take place, as described in Table 62 on page 249.

7. If the condition is of severity 2 or above, Language Environment default action
is to promote the condition to T_I_U (Termination Imminent due to an
Unhandled condition) and redrive the stack. Condition handling now enters the
termination imminent step.

8. If on the second pass of the stack no condition handler moves the resume
cursor and issues a resume, Language Environment terminates the thread.

Sample ILC applications
Fortran main program that calls a C++ function:
@PROCESS LIST

PROGRAM CEFOR2C
* Module/File Name: AFHCFOR

* FUNCTION : Interlanguage communications call to a *
* a C program. *
* *
* This example illustrates an interlanguage call from *
* a Fortran main program to a C function. *
* The parameters passed across the call from Fortran *
* to C have the following declarations: *
* *
* Fortran INTEGER*2 to C short as pointer *
* Fortran INTEGER*4 to C int *
* Fortran REAL*4 to C float *
* Fortran REAL*8 to C double *
* Fortran CHARACTER*23 to C as pointer to pointer to CHAR *

* DECLARATIONS OF VARIABLES FOR THE CALL TO C *

INTEGER*4 J
EXTERNAL CECFFOR
INTEGER*4 CECFFOR
INTEGER*2 FOR_SHORT / 15 /
INTEGER*4 FOR_INT / 31 /
REAL*4 FOR_FLOAT / 53.99999 /
REAL*8 FOR_DOUBLE / 3.14159265358979312D0 /
POINTER*4 (FOR_POINTER, CHAR_POINTEE)
CHARACTER*23 CHARSTRING /’PASSED CHARACTER STRING’/
CHARACTER*23 CHAR_POINTEE

**

Chapter 6. Communicating between C and Fortran 103

* PROCESS STARTS HERE *
**

PRINT *, ’*********************************’
PRINT *, ’FORTRAN CALLING C EXAMPLE STARTED’
PRINT *, ’*********************************’
FOR_POINTER = LOC(CHARSTRING)
PRINT *, ’CALLING C FUNCTION’
J = CECFFOR(LOC(FOR_SHORT), FOR_INT, FOR_FLOAT,
1 FOR_DOUBLE, LOC(FOR_POINTER))
PRINT *, ’RETURNED FROM C FUNCTION’
IF (J /= 999) THEN

PRINT *, ’ERROR IN RETURN CODE FROM C’
ENDIF
PRINT *, ’*******************************’
PRINT *, ’FORTRAN CALLING C EXAMPLE ENDED’
PRINT *, ’*******************************’
END /*Module/File Name: EDCCFOR */

Cfunction invoked by a Fortran program:
#pragma linkage (CECFFOR,FORTRAN)
#include <stdio.h>
#include <string.h>
#include <math.h>

/**
* This is an example of a C function invoked by a Fortran *
* program. *
* CECFFOR is called from Fortran program CEFOR2C with the *
* following list of arguments: *
* Fortran INTEGER*2 to C short as pointer *
* Fortran INTEGER*4 to C int *
* Fortran REAL*4 to C float *
* Fortran REAL*8 to C double *
* Fortran CHARACTER*23 to C as pointer to pointer to char *
**/
int CECFFOR (short **c_short,

int *c_int,
float *c_float,
double *c_double,
char *** c_character_string
)

{
int ret=999; /* Fortran program expects 999 returned */
fprintf(stderr,"CECFFOR STARTED\n");

/***
* Compare each passed argument against the C value. *
* Issue an error message for any incorrectly passed *
* parameter. *
***/

if (**c_short != 15)
{

fprintf(stderr,"**c_short not = 15\n");
--ret;

}
if (*c_int != 31)
{

fprintf(stderr,"*c_int not = 31\n");
--ret;

}
if (fabs(53.99999 - *c_float) > 1.0E-5F)
{

fprintf(stderr,
"fabs(53.99999 - *c_float) > 1.0E-5F, %f\n", *c_float);

--ret;
}
if (fabs(3.14159265358979312 - *c_double) > 1.0E-13)

104 z/OS V2R1.0 Language Environment Writing ILC Applications

{
fprintf(stderr,

"fabs(3.14159265358979312 - *c_double) > 1.0E-13\n");
--ret;

}
if (memcmp(**c_character_string,"PASSED CHARACTER STRING",23)

!= 0)
{

fprintf(stderr,"**c_character_string not %s\n",
"\"PASSED CHARACTER STRING\"");
--ret;

} /***
* Fortran program will check for a correct return code. *
***/

fprintf(stderr,"CECFFOR ENDED\n");
return(ret);

}

Chapter 6. Communicating between C and Fortran 105

106 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 7. Communicating between C++ and Fortran

This topic describes Language Environment's support for C++ and Fortran ILC
applications.

General facts about C++ to Fortran ILC
v A load module consisting of object code compiled with any Fortran compiler

link-edited with object code compiled in another language is not reentrant,
regardless of whether the Fortran routine was compiled with the RENT compiler
option.

v Return codes cannot be passed from a C++ routine to the Fortran routine that
invoked it.

v Fortran routines cannot operate under CICS.
v Support for Fortran on VM is not provided by Language Environment.
v Several C++ and Fortran library routines have identical names; you will need to

resolve name conflicts before link-editing your C++ to Fortran applications. See
z/OS Language Environment Programming Guide for link-editing information.

v C++ is supported on MVS only.
v Fortran routines cannot operate in an XPLINK environment, so ILC with C

routines compiled XPLINK is not supported.
v There is no ILC support between AMODE 31 and AMODE 64 applications.

Fortran does not support AMODE 64.

Preparing for ILC
This section describe topics you might want to consider before writing an ILC
application. To determine how different versions of HLLs work together, refer to
the migration guides for the HLLs you plan to use.

Language Environment ILC support
Language Environment provides ILC support between the following combinations
of C++ and Fortran:

Table 29. Supported languages for Language Environment ILC

HLL pair C++ Fortran

C++ to Fortran
v IBM C/C++ for MVS/ESA

v z/OS XL C/C++ compilers

v FORTRAN IV G1
v FORTRAN IV H Extended
v VS FORTRAN Version 1, except modules compiled with

Release 2.0 or earlier and that either pass character arguments
to, or receive character arguments from, subprograms.

v VS FORTRAN Version 2, except modules compiled with
Releases 5 or 6 and whose source contained any parallel
language constructs or parallel callable services, or were
compiled with either of the compiler options PARALLEL or
EC.

Determining the main routine
In Language Environment, only one routine can be the main routine; no other
routine in the enclave can use syntax that indicates it is main.

© Copyright IBM Corp. 1991, 2013 107

A C++ function is designated as a main routine because its function definition
gives its name as main. The entry point into the load module is CEESTART. In
C++, the same routine can serve as both the main routine and subroutine if it is
recursively called. In such a case, the new invocation of the routine is not
considered a second main routine within the enclave, but a subroutine.

A Fortran routine is designated as a main routine with a PROGRAM statement,
which indicates the name of the main routine. A main routine can also be
designated by the absence of PROGRAM, SUBROUTINE, or FUNCTION
statements, in which case the name of the main routine is the default value MAIN
(or MAIN# for VS FORTRAN Version 2 Releases 5 and 6).

An entry point is defined for each supported HLL. Table 30 identifies the main and
fetched entry point for each language. The table assumes that your code was
compiled using the Language Environment-conforming compilers.

Table 30. Determining the entry point

HLL Main entry point Fetched entry point

C++ CEESTART Not supported

Fortran Name on the PROGRAM statement. In
the absence of PROGRAM,
SUBROUTINE, or FUNCTION
statements, the default value MAIN (or
MAIN# in VS FORTRAN Version 2
Releases 5 and 6) is used.

Subprogram name

Declaring C++ to Fortran ILC
An extern linkage specification is required for C++ to call Fortran and for Fortran
to call C++. All entry declarations are made in the C++ code; no special declaration
is required in the Fortran routine. The specification allows the C++ routine to pass
arguments and return values to and from the Fortran routine using an internal
argument list compatible with Fortran.

The extern linkage specification has the following format:
extern "FORTRAN" {declaration}

declaration is a valid C++ prototype of the Fortran program being called by C++, or
the C++ routine being called by Fortran.

Example of declaration for C++ calling Fortran
The following example shows a partial C++ routine that calls a Fortran function.
The calling C++ routine contains the extern "FORTRAN" linkage specification for the
Fortran function FORTFCN, the function prototype for the Fortran function, and a
static call to the Fortran function.

C++ routine Fortran function

extern "FORTRAN"
{double fortfcn(int, double *);}...

double fortfcn(int, double [100]);...
int index;
double list[100];
double value;...
value=fortfcn(index, list);

FUNCTION FORTFCN
(INDEX, LIST) RESULT (VALUE)

INTEGER*4 INDEX
REAL*8 LIST(0:99)
REAL*8 VALUE...
VALUE=LIST(INDEX)
END

108 z/OS V2R1.0 Language Environment Writing ILC Applications

Example of declaration for Fortran calling C++
The following example shows a partial Fortran routine that calls a C++ function.
The called C++ function contains the extern "FORTRAN" linkage specification for the
C++ function CFCN and the function definition for the C++ function.

Fortran routine C++ function

INTEGER*4 INDEX
REAL*8 LIST(0:99)
REAL*8 VALUE
REAL*8 CFCN...
VALUE=CFCN(INDEX, LIST)

extern "FORTRAN"
{double cfcn(int *, double *);}...

double cfcn(int *index, double list [])
{...
return list[*index];
}

Calling between C++ and Fortran
This section describes the types of calls permitted between C++ and Fortran, and
considerations when using dynamic calls and fetch.

Types of calls permitted
Table 31 describes the types of calls between C++ and Fortran that Language
Environment allows:

Table 31. Calls permitted for C++ and Fortran ILC

ILC direction Static calls Dynamic calls Fetch

C++ to Fortran Yes N/A C++ does not support
fetch()

Fortran to C++ Yes Yes N/A

Dynamic call/fetch considerations
All of the rules described here for dynamic call and fetch assume that compiled
code conforms to the list of supported products in Chapter 7, “Communicating
between C++ and Fortran,” on page 107.

Fortran dynamically calling C++
Dynamic calls are made in Fortran by specifying the name of the routine to be
loaded with the DYNAMIC compiler option, and then using the same name in a
CALL statement. The dynamically called routine can be either C++ or Fortran, and
it can in turn statically call either a C++ or Fortran routine. (If the statically linked
C++ routine is within a dynamically loaded module with a Fortran entry point, the
C++ routine must be either nonreentrant or naturally reentrant.) In the dynamically
loaded module, a routine can dynamically call other C++ or Fortran routines,
regardless of whether the routines are reentrant.

Neither a C++ nor a Fortran routine can delete a dynamically loaded routine that
was dynamically loaded in a Fortran routine.

Invoking functions with returned values
Both C++ and Fortran can invoke the other language as a function that returns a
value: in C++, this would be a function that returns something other than void; in
Fortran, the equivalent of a function is a routine that begins with a FUNCTION

Chapter 7. Communicating between C++ and Fortran 109

statement. Only certain data types, however, can be used as function return values.
See Table 34 on page 111 for a list of the supported data types that can be used as
function return values.

Calling Fortran library routines
You can statically call a Fortran library routine, such as CPUTIME, from C++.
However, you cannot dynamically call a Fortran library routine from C++.

Passing data between C++ and Fortran
This section describes the data types that can be passed between C++ and Fortran.
In the C++-to-Fortran passing direction, most of the data types can be passed by
reference only; several can be passed by value. In the Fortran-to-C++ passing
direction, however, the only passing method allowed is by reference.

Under Language Environment, the term by value means that a temporary copy of
the argument is passed to the called function or procedure. Any changes to the
parameter made by the called routine will not alter the original parameter passed
by the calling routine. Under Language Environment, the term by reference means
that the actual address of the argument is passed. Any changes to the parameter
made by the called routine can alter the original parameter passed by the calling
routine.

Supported data types between C++ and Fortran
Table 32 lists the data types that can be passed between C++ and Fortran by
reference.

Table 32. Supported data types passed by reference

C++ Fortran

signed short int INTEGER*2

signed int, signed long int INTEGER*4

float REAL*4

double REAL*8

long double REAL*16

signed char INTEGER*1

unsigned char UNSIGNED*1 or CHARACTER*1

char[n] CHARACTER*n

Address of supported data types and aggregates

Examples:
Address of an integer
(...int**...)

Address of an array of integers
(...int(**)[8]...)

POINTER (X,Y)
INTEGER*4 Y

POINTER (X,Y)
INTEGER*4 Y(8)

Supported data types for passing by value
Table 33 lists the data types that can be passed from C++ to Fortran by value.

Table 33. Supported data types for passing by value from C++ to Fortran

C++ Fortran

signed int, signed long int INTEGER*4

double REAL*8

110 z/OS V2R1.0 Language Environment Writing ILC Applications

Table 33. Supported data types for passing by value from C++ to Fortran (continued)

C++ Fortran

long double REAL*16

Supported data types for passing function return values
Table 34 lists the data types that can be passed as function return values from a
C++ function to a Fortran routine.

Table 34. Supported data types for passing as function return values from C++ to Fortran

C++ Fortran

signed short int INTEGER*2

signed int, signed long int INTEGER*4

float REAL*4

double REAL*8

long double REAL*16

signed char INTEGER*1

unsigned char UNSIGNED*1

Passing an alternate return code from Fortran to C++
You can pass an alternate return code to a C++ routine from a Fortran subroutine
by specifying the called Fortran subroutine in the extern "FORTRAN" linkage
specification. The Fortran subroutine produces an alternate return code when
alternate returns are specified as dummy arguments on the SUBROUTINE
statement.

In an all-Fortran application, the alternate returns provide a way to return to a
point in the calling program other than to the point immediately following the
CALL statement. The following example illustrates how a Fortran routine would
call a Fortran subroutine to use an alternate return:
CALL FSUB (ARG1, *22, ARG2, *66)

In this example, *22 and *66 specify two labels (22 and 66) to which control can be
passed rather than to the point following the CALL statement. The corresponding
subroutine would be coded as follows:
SUBROUTINE FSUB (DARG1, DARG2, *, *)

When the FSUB subroutine executes the following RETURN statement, control
would pass to the calling program at the second alternate return, at label 66.
RETURN 2

In C++, you can use the fortrc() function and extern "FORTRAN" linkage
specification to get the alternate return code from the Fortran RETURN statement
of the Fortran call immediately preceding it. You must not have any other C++
code between the Fortran routine call and fortrc(), otherwise the result is
undefined.

In the following example, the C++ routine calls the subroutine FSUB, whose
SUBROUTINE and RETURN statements are shown above. The fortrc() function
returns an alternate return code of 2.

Chapter 7. Communicating between C++ and Fortran 111

extern "FORTRAN" {void fsub (float, float);}
#includes <stdlib.h>
int rc:...
fsub(1.0,2.0);
rc=fortrc();...

You cannot pass return code values from a called C++ function to a calling Fortran
routine.

Passing character data
Character data can be received by a Fortran routine only when the routine that
receives the data declares the data to be of fixed length. Therefore, the Fortran
form CHARACTER*(*) cannot be used by a Fortran routine to receive character
data. An array of characters can be processed in a C++ routine only when the
Fortran routine or the C++ routine produces the terminating null character.

Mapping arrays between C++ and Fortran
Arrays can be passed between C++ and Fortran routines when the array passed
has its elements in contiguous storage locations. In addition, in a called Fortran
routine, the declaration of the array must indicate a constant number of elements
along each dimension.

In C++, arrays of more than one dimension are arranged in storage in row major
order, while in Fortran they are arranged in column major order. You need to
reference the corresponding element of the other language by reversing the order
of the subscripts. For example in an array of floating point integers, the C++
declaration would be float [10] while the Fortran declaration would be
REAL*4(20,10).

Another difference in using arrays is that unless specified otherwise, the lower
bound (the lowest subscript value) of a Fortran array is 1. In C++, the lowest
subscript value is always 0, so you must adjust either the declared lower bound in
the Fortran routine or the subscript you are using when you reference the value in
C or Fortran.

For example, the following two arrays have the same storage mapping:

C++ float da[10][20];

Fortran
REAL*4 DA(20,10)

The following two elements also represent the same storage:

C++ da[4][8]

Fortran
DA(9,5)

Data equivalents
This section describes how C++ and Fortran data types correspond to each other.

112 z/OS V2R1.0 Language Environment Writing ILC Applications

Equivalent data types for C++ to Fortran
The following examples illustrate how C++ and Fortran routines within a single
ILC application might code the same data types. The examples might be clearer to
you if you first read “Passing data between C++ and Fortran” on page 110, which
describes how a C++ routine can receive parameters that are passed by value and
by reference.

16-bit signed binary integer

Sample C++ usage (by Reference) Fortran subroutine

extern "FORTRAN"
{ void cfort(short int &);; }
#include <stdio.h>
main()
{

short int x;
x=5;
cfort(x);
printf ("Updated value in C: %d\n", x);

}

SUBROUTINE CFORT (ARG)
INTEGER*2 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
ARG = ARG + 1
END

Note: Because short int is an example of a parameter which must be passed
using a C++ explicit pointer, you cannot code cfort(x), passing x by value.

32-bit signed binary integer

Sample C++ usage (by Value) Fortran function

extern "FORTRAN"
{ int cfort(int); }
#include <stdio.h>
main()
{

int x, y;
x=5;
y = cfort(x);
printf ("Value returned to C: %d\n", y);

}

FUNCTION CFORT (ARG)
INTEGER*4 CFORT
INTEGER*4 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

Sample C++ usage (by Reference) Fortran function

extern "FORTRAN"
{ int cfort(int &); }
#include <stdio.h>
main()
{

int x, y;
x=5;
y = cfort(x);
printf ("Value returned to C: %d\n", y);

}

FUNCTION CFORT (ARG)
INTEGER*4 CFORT
INTEGER*4 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

Chapter 7. Communicating between C++ and Fortran 113

Short floating-point number

Sample C++ usage (by Reference) Fortran function

extern "FORTRAN"
{ float cfort(float &); }
#include <stdio.h>
main()
{

float x, y;
x=5.0F;
y = cfort(x);
printf

("Value returned to C: %f\n", y);
}

FUNCTION CFORT (ARG)
REAL*4 CFORT
REAL*4 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

Long floating-point number

Sample C++ usage (by Value) Fortran function

extern "FORTRAN"
{ double cfort(double); }
#include <stdio.h>
main()
{

double x, y;
x=12.5;
y=cfort(x);
printf

("Value returned to C: %f\n", y);
}

FUNCTION CFORT (ARG)
REAL*8 CFORT
REAL*8 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

Sample C++ usage (by Reference) Fortran function

extern "FORTRAN"
{ double cfort(double &);; }
#include <stdio.h>
main()
{

double x, y;
x=12.5;
y=cfort(x);
printf

("Value returned to C: %f\n", y);
}

FUNCTION CFORT (ARG)
REAL*8 CFORT
REAL*8 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

Extended floating-point number

Sample C++ usage (by Value) Fortran function

extern "FORTRAN"
{ long double cfort(long double); }
#include <stdio.h>
main()
{

long double x, y;
x=12.1L;
y=cfort(x);
printf

("Value returned to C: %Lf\n", y);
}

FUNCTION CFORT (ARG)
REAL*16 CFORT
REAL*16 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

114 z/OS V2R1.0 Language Environment Writing ILC Applications

Sample C++ usage (by Reference) Fortran function

extern "FORTRAN"
{ long double cfort(long double &);; }
#include <stdio.h>
main()
{

long double x, y;
x=12.1L;
y=cfort(x);
printf

("Value returned to C: %Lf\n", y);
}

FUNCTION CFORT (ARG)
REAL*16 CFORT
REAL*16 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
CFORT = ARG
END

Signed one-byte character data

Sample. C++ usage (by Reference) Fortran subroutine

extern "FORTRAN"
{ void cfort(signed char &);; }
#include <stdio.h>
main()
{

signed char x, y;
x=-5;
cfort(x);
printf

("Updated value in C: %d\n", x);
}

SUBROUTINE CFORT (ARG)
INTEGER*1 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
ARG = ARG - 1
END

Unsigned one-byte character data

Sample C++ usage (by Reference) Fortran subroutine

extern "FORTRAN"
{ void cfort(unsigned char &,

unsigned char &); }
#include <stdio.h>
main()
{

unsigned char x, y;
x=’a’;
cfort(x,y);
printf

("Value returned to C: %c\n", y);
}

SUBROUTINE CFORT (ARG1, ARG2)
CHARACTER*1 ARG1, ARG2
PRINT *, ’FORTRAN ARG1 VALUE: ’, ARG1
ARG2 = ARG1
END

Fixed-length character data

Sample C++ usage Fortran subroutine

extern "FORTRAN"
{ void cfort(char [10], char [10]); }
#include <stdio.h>
main()
{

char x[10] = "1234567890";
char y[10];
cfort(x,y);
printf

("Value returned to C: %10.10s\n", y);
}

SUBROUTINE CFORT (ARG1, ARG2)
CHARACTER*10 ARG1, ARG2
PRINT *, ’FORTRAN ARG1 VALUE: ’, ARG1
ARG2 = ARG1
END

Chapter 7. Communicating between C++ and Fortran 115

Array

Sample C++ usage Fortran subroutine

extern "FORTRAN"
{ void cfort(float[]); }
#include <stdio.h>
main()
{

float matrix[3] = {0.0F,1.0F,2.0F};
cfort(matrix);
printf

("Updated values in C: %f %f %f\n",
matrix[0], matrix[1], matrix[2]);

}

SUBROUTINE CFORT (ARG)
REAL*4 ARG(3)
PRINT *, ’FORTRAN ARG VALUES:’, ARG
DO J = 1, 3

ARG(J) = ARG(J) + 1.0
ENDDO
END

Address of an integer

Sample C++ usage Fortran subroutine

extern "FORTRAN"
{ void cfort (int *&);; }
#include <stdio.h>
main()
{

int i, *temp;
i=5;
temp=&i;
cfort(temp);
printf

("Updated integer value in C: %d\n", i);
}

SUBROUTINE CFORT (ARG)
POINTER*4 (ARG, Y)
INTEGER*4 Y
PRINT *,
1 ’FORTRAN INTEGER ARG VALUE:’, Y
Y = Y + 1
END

Address of an array

Sample C++ usage Fortran subroutine

extern "FORTRAN"
{ void cfort(int(**)[]); }
#include <stdio.h>
main()
{

int matrix[3] = {0,1,2};
int (*temp)[] = &matrix;
cfort(&temp);
printf

("Updated values in C: %d %d %d\n",
matrix[0], matrix[1], matrix[2]);

}

SUBROUTINE CFORT (ARG)
POINTER*4 (ARG, Y)
INTEGER*4 Y(3)
PRINT *,
1 ’FORTRAN ARRAY ARG VALUES:’, Y
DO J = 1, 3

Y(J) = Y(J) + 1
ENDDO
END

Equivalent data types for Fortran to C++
The following examples illustrate how C++ and Fortran routines within a single
ILC application might code the same data types. The examples might be clearer to
you if you first read “Passing data between C++ and Fortran” on page 110, which
describes how a C++ routine can receive parameters that are passed by value and
by reference.

116 z/OS V2R1.0 Language Environment Writing ILC Applications

16-bit signed binary integer

Sample Fortran usage C++ function (by Reference)

INTEGER*2 X
X = 5
CALL CENTRY(X)
PRINT *,
1 ’UPDATED VALUE IN FORTRAN:’, X
END

extern "FORTRAN"
{ void centry(short int &); }
#include <stdio.h>
void centry(short int &x)
{

printf("C int arg value: %d\n",x);
x += 1;

}

32-bit signed binary integer

Sample Fortran usage (by Value) C++ function (by Value)

INTEGER*4 X, Y, CENTRY
X = 5
Y = CENTRY((X))
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

extern "FORTRAN"
{ int centry(int); }
#include <stdio.h>
int centry(int x)
{

printf("C arg value: %d\n",x);
return(x);

}

Sample Fortran usage C++ function (by Reference)

INTEGER*4 X, Y, CENTRY
X = 5
Y = CENTRY(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

extern "FORTRAN"
{ int centry(int &); }
#include <stdio.h>
int centry(int &x)
{

printf("C int arg value: %d\n",x);
return(x);

}

Short floating-point number

Sample Fortran usage C++ function (by Reference)

REAL*4 X, Y, CENTRY
X = 5.0
Y = CENTRY(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

extern "FORTRAN"
{ float centry(float &); }
#include <stdio.h>
float centry(float &x)
{

printf("C float arg value: %f\n",x);
return(x);

}

Long floating-point number

Sample Fortran usage (by Value) C++ function (by Value)

REAL*8 X, Y, CENTRY
X = 12.5D0
Y = CENTRY((X))
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

extern "FORTRAN"
{ double centry(double); }
#include <stdio.h>
double centry(double x)
{

printf("C arg value: %f\n",x);
return(x);

}

Chapter 7. Communicating between C++ and Fortran 117

Sample Fortran usage C++ function (by Reference)

REAL*8 X, Y, CENTRY
X = 5.0D0
Y = CENTRY(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

extern "FORTRAN"
{ double centry(double &); }
#include <stdio.h>
double centry(double &x)
{

printf("C double arg value: %f\n",x);
return(*x);

}

Extended floating-point number

Sample Fortran usage (by Value) C++ function (by Value)

REAL*16 X, Y, CENTRY
X = 12.1Q0
Y = CENTRY((X))
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

extern "FORTRAN"
{ long double centry(long double); }
#include <stdio.h>
long double centry(long double x)
{

printf("C arg value: %Lf\n",x);
return(x);

}

Sample Fortran usage C++ function (by Reference)

REAL*16 X, Y, CENTRY
X = 5.0Q0
Y = CENTRY(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

extern "FORTRAN"
{ long double centry(long double &); }
#include
long double centry(long double &x)
{
printf

("C long double arg value:
%Lf\n", x);

return(x);
}

Signed one-byte character data

Sample Fortran usage C++ function (by Reference)

INTEGER*1 X
X = -5
CALL CENTRY(X)
PRINT *,
1 ’UPDATED VALUE IN FORTRAN:’, X
END

extern "FORTRAN"
{ void centry(signed char &); }
#include <stdio.h>
void centry(signed char &x)
{

printf("C char arg value: %d\n",x);
x -= 1;

}

Unsigned one-byte character data

Sample Fortran usage C++ function (by Reference)

CHARACTER*1 X, Y
X = ’A’
CALL CENTRY(X, Y)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN: ’, Y
END

extern "FORTRAN"
{ void centry
(unsigned char *, unsigned char &); }
#include <stdio.h>
void centry

(unsigned char &x; unsigned char &y)
{

printf("C char arg value: %c\n",x);
y = x;

}

118 z/OS V2R1.0 Language Environment Writing ILC Applications

Fixed-length character data

Sample Fortran usage C++ function (by Reference)

CHARACTER*10 X, Y
X = ’1234567890’
CALL CENTRY(X, Y)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN: ’, Y
END

extern "FORTRAN"
{ void centry(char [10],
char [10]); }
#include <stdio.h>
#include <string.h>
void centry(char x[10],

char y[10])
{

printf
("C char array arg: %10.10s\n",x);

memcpy(y, x, 10);
}

Array

Sample Fortran usage C++ function

REAL*4 MATRIX(3) / 1.0, 2.0, 3.0 /
CALL CENTRY(MATRIX)
PRINT *,
1 ’UPDATED VALUES IN FORTRAN:’, MATRIX
END

extern "FORTRAN"
{ void centry(float [3]); }
#include <stdio.h>
void centry(float x[3])
{

int index;
printf

("C arg values: %f %f %f\n",
x[0], x[1], x[2]);

for (index = 0; index <= 2; index++)
x[index] -= 1.0F;

}

Address of an integer

Sample Fortran usage C++ function

POINTER*4 (P, I)
INTEGER*4 I, J
P = LOC(J)
I = 5
CALL CENTRY(P)
PRINT *,
1 ’UPDATED VALUE IN FORTRAN:’, I
END

extern "FORTRAN"
{ void centry(int **); }
#include <stdio.h>
void centry(int **x)
{

printf("C int arg value: %d\n",**x);
**x += 1;

}

Address of an array

Sample Fortran usage C++ function

POINTER*4 (P, I)
INTEGER*4 I(3)
INTEGER*4 J(3) / 1, 2, 3 /
P = LOC(J)
CALL CENTRY (P)
PRINT *,
1 ’UPDATED VALUES IN FORTRAN:’, I
END

extern "FORTRAN"
{ void centry(int (**)[3]); }
#include <stdio.h>
void centry(int (**x)[3])
{

int index;
printf

("C int array arg values:
%d %d %d\n",
(**x)[0], (**x)[1], (**x)[2]);

for (index = 0; index <= 2; index++)
(**x)[index] -= 1;

}

Chapter 7. Communicating between C++ and Fortran 119

External data
External data in a C++ routine can be shared with a common block of the same
name in a Fortranroutine in the same load module under the following conditions:
v The C++ static data is declared outside of any functions
v The C++ external data is declared NORENT by using #pragma variable(var,

NORENT). Otherwise, C++ variables are always RENT.
v The Fortran static common blocks are either used only with one load module in

an application or they are declared as private common blocks. A private
common block is not shared across load modules and must by created in any of
the following ways:
– Specified or implied by the PC compiler option
– Referenced by Fortran object code produced by the VS FORTRAN Version 2

Release 4 compiler or earlier
– In an application that executes with the PC runtime option

Directing output in ILC applications
Language Environment does not provide support to coordinate the use of most
C++ and Fortran files; however they can share the Language Environment message
file which is the ddname specified in the Language Environment MSGFILE runtime
option. You must manage all other files to ensure that no conflicts arise. For
example, performing output operations on the same ddname is likely to cause
unpredictable results.

Under C++, runtime messages and other related output are directed to the default
MSGFILE ddname. stderr output is also by default directed to the MSGFILE
ddname. stdout is not, by default, directed to the MSGFILE ddname, but can be
redirected to do so. Also, output from printf can be interspersed with output from
the Fortran PRINT statement and output from Language Environment by
redirecting stdout to stderr (for example, passing 1>&2 as a command-line
parameter).

For more information about how to redirect C++ output, see z/OS XL C/C++
Programming Guide.

Fortran runtime messages, output written to the print unit, and other output (such
as output from the SDUMP callable service) are directed to the file specified by the
MSGFILE runtime option. To direct this output to the file with the ddname
FTnnF001, (where nn is the two-digit error message unit number), specify the
runtime option MSGFILE(FTnnF001). If the print unit is different than the error
message unit (if the PRTUNIT and the ERRUNIT runtime options have different
values), output from a PRINT statement won't be directed to the Language
Environment message file.

C++ to Fortran condition handling
This section provides two scenarios of condition handling behavior in a C to
Fortran ILC application. If an exception occurs in a C routine, the set of possible
actions is as described in “Exception occurs in C” on page 100. If an exception
occurs in a Fortran program, the set of possible actions is as described in
“Exception occurs in Fortran” on page 102.

Some conditions can be handled only by the HLL of the routine in which the
exception occurred. For example, when an ERR or IOSTAT specifier is present on a
Fortran I/O statement and an error is detected while executing that statement, the

120 z/OS V2R1.0 Language Environment Writing ILC Applications

Fortran semantics take precedence over Language Environment condition
handling. In this case, control returns immediately to the Fortran program and no
condition is signaled to Language Environment.

C++ exception handling constructs try()/throw()/catch() cannot be used with
Language Environment and Fortran condition handling. If you use C exception
handling constructs (signal()/raise()) in your C++ routine, condition handling
will proceed as described in this section. Otherwise, you will get undefined
behavior in your programs if you mix the C++ constructs with the C constructs.

See z/OS Language Environment Programming Guide for a detailed description of
Language Environment condition handling. For information about Fortran
condition handling semantics, see VS FORTRAN Version 2 Language and Library
Reference.

Enclave-terminating language constructs
Enclaves can be terminated for reasons other than an unhandled condition of
severity 2 or greater. HLL constructs that cause the termination of a single
language enclave also cause the termination of a C to Fortran enclave. In Language
Environment ILC, you can issue the language construct to terminate the enclave
from a C++ or Fortran routine.

C language constructs available under C++
Among the C language constructs that terminate an enclave are abort(), exit(),
raise(SIGABND), and raise(SIGTERM). When you use a C language construct to
terminate an enclave, the T_I_S (Termination Imminent Due to STOP) condition is
raised. After T_I_S has been processed and all user code has been removed from
the stack, the C atexit list is honored.

Fortran
The Fortran language constructs that cause the enclave to terminate are:
v A STOP statement
v An END statement in the main routine
v A call to EXIT or SYSRCX
v A call to DUMP or CDUMP

All of the constructs listed above except the END statement cause the T_I_S
(Termination Imminent due to STOP) condition to be signaled.

Exception occurs in C++
This scenario describes the behavior of an application that contains a C++ and
Fortran routine. In this scenario, a Fortran main routine invokes a C++ subroutine.
An exception occurs in the C++ subroutine. Refer to Figure 24 on page 122
throughout the following discussion.

Chapter 7. Communicating between C++ and Fortran 121

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. In the enablement step, C++ determines whether the exception in the C++

routine should be enabled and treated as a condition. If any of the following
are true, the exception is ignored, and processing continues at the next
sequential instruction after where the exception occurred:
v You specified SIG_IGN for the exception in a call to signal().

Note: The system or user abend corresponding to the signal(SIGABND) or
the Language Environment message 3250 is not ignored. The enclave is
terminated.

v The exception is one of those listed as masked in Table 63 on page 249, and
you have not enabled it using the CEE3SPM callable service.

v You did not specify any action, but the default action for the condition is
SIG_IGN (see Table 63 on page 249).

If you did none of these things, the condition is enabled and processed as a
condition.

2. If a user-written condition handler has been registered using CEEHDLR on the
C++ stack frame, it is given control. If it issues a resume, with or without
moving the resume cursor, the condition handling step ends. Processing
continues in the routine to which the resume cursor points.
In this example, there is not a user-written condition handler registered for the
condition, so the condition is percolated.

3. The C global error table is now examined for signal handlers that have been
registered for the condition.
If there is a signal handler registered for the condition, it is given control. If it
issues a resume or a call to longjmp(), the condition handling step ends.
Processing resumes in the routine to which the resume cursor points.

Fortran defaults

Lang. Env. defaults

C++ defaults

Fortran semantics

Fortran main rtn

C++ semantics

C++ subroutine
Exception
occurs here

Figure 24. Stack contents when the exception occurs in C++

122 z/OS V2R1.0 Language Environment Writing ILC Applications

In this example no C++ signal handler is registered for the condition, so the
condition is percolated.

4. The condition is still unhandled. If C++ does not recognize the condition, or if
the C++ default action (listed in Table 63 on page 249) is to terminate, the
condition is percolated.

5. There is no user-written condition handler on the Fortran stack frame (because
CEEHDLR cannot be called from a Fortran routine), and the condition is
percolated.

6. If the condition is of severity 0 or 1, the Language Environment default actions
take place, as described in Table 62 on page 249.

7. If the condition is of severity 2 or above, Language Environment default action
is to promote the condition to T_I_U (Termination Imminent due to an
Unhandled condition) and redrive the stack. Condition handling now enters the
termination imminent step.

8. If, on the second pass of the stack, no condition handler moves the resume
cursor and issues a resume, Language Environment terminates the thread.

Exception occurs in Fortran
This scenario describes the behavior of an application that contains a Fortran and a
C++ routine. In this scenario, a C++ main routine invokes a Fortran subroutine. An
exception occurs in the Fortran subroutine. Refer to Figure 25 throughout the
following discussion.

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. If an I/O error is detected on a Fortran I/O statement that contains an ERR or

IOSTAT specifier, Fortran semantics take precedence. The exception is not
signaled to the Language Environment condition handler.

2. In the enablement step, Fortran treats all exceptions as conditions. Processing
continues with the condition handling step.

C++ defaults

Lang. Env. defaults

Fortran defaults

C++ semantics

C++ main routine

Fortran semantics

Fortran subroutine
Exception
occurs here

Figure 25. Stack contents when the exception occurs in Fortran

Chapter 7. Communicating between C++ and Fortran 123

3. There is no user-written condition handler on the Fortran stack frame (because
CEEHDLR cannot be called from a Fortran routine), and the condition is
percolated.

4. If a user-written condition handler has been registered for the condition (as
specified in the C global error table) using CEEHDLR on the C++ stack frame,
it is given control. If it issues a resume, with or without moving the resume
cursor, the condition handling step ends. Processing continues in the routine to
which the resume cursor points.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

5. If a C signal handler has been registered for the condition, it is given control. If
it moves the resume cursor or issues a call to longjmp(), the condition handling
step ends. Processing resumes in the routine to which the resume cursor points.
In this example, no C signal handler is registered for the condition, so the
condition is percolated.

6. If the condition is of severity 0 or 1, Language Environment default actions
take place, as described in Table 62 on page 249.

7. If the condition is of severity 2 or above, Language Environment default action
is to promote the condition to T_I_U (Termination Imminent due to an
Unhandled condition) and redrive the stack. Condition handling now enters the
termination imminent step.

8. If on the second pass of the stack no condition handler moves the resume
cursor and issues a resume, Language Environment terminates the thread.

Sample ILC applications
@PROCESS LIST

PROGRAM CEFO2CP
* Module/File Name: AFHCPFOR

* FUNCTION : Interlanguage communications call to *
* a C++ program. *
* *
* This example illustrates an interlanguage call from *
* a Fortran main program to a C++ function. *
* The parameters passed across the call from Fortran *
* to C++ have the following declarations: *
* *
* Fortran INTEGER*2 to C++ short as pointer *
* Fortran INTEGER*4 to C++ int *
* Fortran REAL*4 to C++ float *
* Fortran REAL*8 to C++ double *
* Fortran CHARACTER*23 to C++ as char *

* DECLARATIONS OF VARIABLES FOR THE CALL TO C++ *

INTEGER*4 J
EXTERNAL CECFFOR
INTEGER*4 CECFFOR
INTEGER*2 FOR_SHORT / 15 /
INTEGER*4 FOR_INT / 31 /
REAL*4 FOR_FLOAT / 53.99999 /
REAL*8 FOR_DOUBLE / 3.14159265358979312D0 /
CHARACTER*23 CHARSTRING /’PASSED CHARACTER STRING’/

* PROCESS STARTS HERE *

PRINT *, ’***’
PRINT *, ’FORTRAN CALLING C++ EXAMPLE STARTED’ *

124 z/OS V2R1.0 Language Environment Writing ILC Applications

PRINT *, ’***’
FOR_POINTER = LOC(CHARSTRING)
PRINT *, ’CALLING C++ DUNCTION’
J = CECFFOR(FOR_SHORT, FOR_INT, FOR_FLOAT,
1 FOR_DOUBLE, CHARSTRING)
PRINT *, ’RETURNED FROM C++ FUNCTION’
IF (J /= 999) THEN

PRINT *, ’ERROR IN RETURN CODE FROM C++’
ENDIF
PRINT *, ’***************************************’
PRINT *, ’FORTRAN CALLING C++ EXAMPLE ENDED’ *
PRINT *, ’***************************************’
END

/*Module/File Name: EDCCPFOR */

extern "FORTRAN"
{ int CECFFOR (short &, int &, float &, double &, char *) }

#include <stdio.h>
#include <string.h>
#include <math.h>
/***
* This is an example of a C++ function invoked by a *
* Fortran program. *
* CECFFOR is called from Fortran program CEFOR2CP with the *
* following list of arguments: *
* Fortran INTEGER*2 to C short *
* Fortran INTEGER*4 to C int *
* Fortran REAL*4 to C float *
* Fortran REAL*8 to C double *
* Fortran CHARACTER* 23 to C char *
***/
int CECFFOR (short & c_short,

int & c_int,
float & c_float,
double & c_double,
char * c_character_string
)

{
int ret=999; /* Fortran program expects 999 returned */
fprintf(stderr,"CECFFOR STARTED\n");

/***
* Compare each passed argument against the C value. *
* Issue an error message for any incorrectly passed *
* parameter. *
***/

if (c_short != 15)
{

fprintf(stderr,"c_short not = 15\n");
--ret;

}

if (c_int != 31)
{

fprintf(stderr,"c_int not = 31\n");
--ret;

}

if (fabs(53.99999 - c_float) > 1.0E-5F)
{

fprintf(stderr,
"fabs(53.99999 - c_float) > 1.0E-5F, %f\n", c_float);

--ret;
}

if (fabs(3.14159265358979312 - c_double) > 1.0E-13)
{

fprintf(stderr,

Chapter 7. Communicating between C++ and Fortran 125

"fabs(3.14159265358979312 - c_double) > 1.0E-13,
%f.14\n",c_double);

--ret;
} if (memcmp(c_character_string,"PASSED CHARACTER STRING",23)

!= 0)

{
fprintf(stderr,"c_character_string not %s\n",
"\"PASSED CHARACTER STRING\"");
--ret;

}
/**
* Fortran program will check for a correct return code. *
**/

fprintf(stderr,"CECFFOR ENDED\n");
return(ret);

}

126 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 8. Communicating between C and PL/I

This topic describes Language Environment's support for C and PL/I ILC
applications. If you are running a C to PL/I ILC application under CICS, you
should also consult Chapter 15, “ILC under CICS,” on page 241.

General facts about C to PL/I ILC
v ILC between C and Enterprise PL/I for z/OS is discussed in the IBM Enterprise

PL/I for z/OS library (http://www.ibm.com/support/
docview.wss?uid=swg27036735).

v PL/I routines can run in non-Initial Process Threads (non-IPTs) created by the C
routines in z/OS UNIX-conforming C to PL/I applications.

v PL/I Multitasking Facility (MTF) does not support C.
v With Enterprise PL/I for z/OS, a C program that is fetched from a PL/I main

must be compiled with the most recent C compiler. If another version of C is
desired, specify OPTIONS(ASM).

v Language Environment does not support passing return codes between PL/I
and C routines in an ILC application.

v A C NULL is X'00000000'; a PL/I NULL is X'FF000000'; a PL/I SYSNULL is
X'00000000'. Comparisons against a NULL value and other uses of the NULL
value must therefore be done with care.

v There is no ILC support between AMODE 31 and AMODE 64 applications. PL/I
does not support AMODE 64.

Preparing for C to PL/I ILC
This section describes topics you might want to consider before writing an
application that uses ILC. For help in determining how different versions of HLLs
work together, refer to the migration guides for the HLLs you plan to use.

Language Environment ILC support
Table 35. Supported languages for Language Environment ILC

HLL pair C PL/I

C–PL/I v C/370 Version 1
v C/370 Version 2
v AD/Cycle C/370 Version 1
v IBM C/C++ for MVS/ESA
v z/OS XL C/C++ compilers

v OS PL/I Version 2 Release 2
or later

v Enterprise PL/I for z/OS
v PL/I for MVS & VM

Note: In this chapter, C refers to both the pre-Language Environment- and Language
Environment-conforming versions of C. PL/I refers to OS PL/I, Enterprise PL/I for z/OS, and PL/I for
MVS & VM.

Migrating C to PL/I ILC applications
Language Environment allows you to run ILC applications that were compiled
under previous versions of C and PL/I. In general, you do not need to relink or
recompile an existing C to PL/I ILC application in Language Environment.

© Copyright IBM Corp. 1991, 2013 127

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Determining the main routine
In Language Environment, only one routine can be the main routine. If a PL/I
routine is identified as a main routine in an ILC application using PROC
OPTIONS(MAIN) and a C main function does not exist, the PL/I main routine is
the first to gain control. If a C main function exists, but no PL/I main routine is
identified in the ILC application, the C main function gains control first.

If both a PL/I main routine identified by PROC OPTIONS(MAIN) and a C main
function exist in the same ILC application, this is a user error. However, the error
is not detected by Language Environment.

An entry point is defined for each supported HLL. Table 36 identifies the desired
entry point. The table assumes that your code was compiled using the Language
Environment-conforming compilers.

Table 36. Determining the entry point

HLL Main entry point Fetched entry point

C CEESTART CEESTART or routine name if
#pragma linkage(,fetchable) is
not used.

PL/I CEESTART CEESTART if
OPTIONS(FETCHABLE) is used,
or routine name.

When link-editing a PL/I module that is fetched, the name of the routine that is
being fetched must be the entry point of the load module, unless the FETCHABLE
option is specified on the PROCEDURE statement in the PL/I routine. When
link-editing a C module that is fetched, the name of the routine being fetched must
be the entry point of the load module, unless #pragma linkage (,fetchable) is
specified in the C routine. You cannot have more than one entry point in an ILC
application with #pragma linkage (,fetchable) or PL/I FETCHABLE option on
the PROCEDURE statement. This error is not detected by Language Environment,
but can cause unpredictable results.

Declaring C to PL/I ILC
Declaring a C entry point in a PL/I routine has the same syntax as declaring
another PL/I entry point. A C routine can be replaced by a PL/I routine without
altering the PL/I code that calls the routine. Likewise, if a C routine calls a PL/I
routine, the PL/I procedure contains no explicit declaration indicating control is
being passed from the C routine. The declaration is contained within the C routine.

In C, you must declare that the C entry point receives control from a PL/I routine.
This declaration is in the form of a pragma. The body of the C function is the same
as if the routine were called from another C function. Calling a PL/I routine and
being called by a PL/I routine are handled by the same #pragma preprocessor
directive. No special linkage declaration is required for ILC between C and
Enterprise PL/I for z/OS.

128 z/OS V2R1.0 Language Environment Writing ILC Applications

Declaration for C calling PL/I

C function PL/I routine

#pragma linkage(PLIFUNC, PLI)
double PLIFUNC(double); / C prototype /

int main()
{

double val,result;

val=6.2
result=PLIFUNC(val);
printf("val=%f\n",val result);

}

PLIFUNC: Proc(arg) options(reentrant)
returns(float binary(53));

Dcl arg float binary(53);

Return (34.0);
End;

Declaration for PL/I calling C

PL/I Routine C function

PLIPROG: Proc options(main, reentrant);
Dcl cfunc external entry

returns(fixed bin(31));
Dcl arg fixed bin(31);
Dcl a fixed bin(31);
Arg = 10;
A = cfunc(arg);
End;

#pragma linkage(CFUNC, PLI)
int CFUNC(int parm) {

return (5);
}

Building a reentrant C to PL/I application
A PL/I to C application can be constructed to be reentrant. Compile all PL/I
routines in an ILC application by using the REENTRANT option of the OPTIONS
attribute of the PROCEDURE statement. Compile all your C routines with RENT.

Calling between C and PL/I
This section describes the types of calls permitted between C and PL/I as well as
dynamic call/fetch considerations.

Types of calls permitted
Table 37 describes the types of calls between C and PL/I that Language
Environment allows:

Table 37. Calls permitted for C and PL/I

ILC direction Static calls
Dynamic calls using
DLLs Fetch/Call Comments

C to PL/I Yes Yes (1) Yes

PL/I to C Yes Yes (1) Yes C must be non-reentrant
or naturally reentrant.

Note: Enterprise PL/I for z/OS supports calls to a C DLL, and also allows calls
from C to a PL/I DLL. In this case, the C code could also optionally be compiled
with the XPLINK option.

Dynamic call/fetch considerations
Both PL/I and C can specify only one fetchable entry point for an entire load
module. In general, target routines need to be recompiled with a Language

Chapter 8. Communicating between C and PL/I 129

Environment-conforming compiler. C fetching PL/I is the only exception. If a PL/I
routine is resident in the main load module, the target routine does not need to be
recompiled.

If a load module is introduced as a result of the PL/I FETCH statement or the C
fetch() function and the load module contains any ILC or the fetching and
fetched routines are written in different languages, then the load module cannot be
deleted using a corresponding PL/I RELEASE statement or the C release()
function.

PL/I fetch cannot be used to load a C function that was compiled with the
XPLINK option.

User-written condition handlers registered using CEEHDLR can be fetched, but
must be written in the same language as the fetching language.

C fetching PL/I
The C fetch() function supports fetching a PL/I routine and subsequent
invocation using a function pointer. The fetched PL/I routine can make additional
calls (either static or dynamic) to other C routines. When a C routine issues the
fetch to a load module having a PL/I entry point with statically linked C routines,
the C routines might have constructed reentrancy.

When a PL/I routine is dynamically introduced into the enclave as a result of a
fetch, the fetch restrictions described in the IBM Enterprise PL/I for z/OS library
(http://www.ibm.com/support/docview.wss?uid=swg27036735) apply. Enterprise
PL/I for z/OS has lifted some of the fetch restrictions. For more information, see
the IBM Enterprise PL/I for z/OS library (http://www.ibm.com/support/
docview.wss?uid=swg27036735).

If a PL/I procedure is to be dynamically loaded, you must specify one of the
following:
v The routine name as the entry point when you link-edit it as described in the

IBM Enterprise PL/I for z/OS library (http://www.ibm.com/support/
docview.wss?uid=swg27036735).

v OPTIONS(FETCHABLE) on the PROCEDURE statement and recompile.

The declaration of a PL/I fetched routine within a C routine is shown in Figure 26.

PL/I fetching C
A PL/I routine can fetch a C function or another PL/I routine that is statically
linked to a C function. Any C routine that is either directly or indirectly fetched by
PL/I must be either naturally reentrant or be non-reentrant (that is, it cannot have
constructed reentrancy via the RENT option and the prelinker).

typedef int PLIFUNC();
#pragma linkage (PLIFUNC, PLI)

.

.

.

PLIFUNC *fetch_ptr;
fetch_ptr = (PLIFUNC*) fetch("PLIENT"); /* fetch the routine */
fetch_ptr(args); /* call PLIENT */

Figure 26. C fetching a PL/I routine

130 z/OS V2R1.0 Language Environment Writing ILC Applications

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

The declaration of a C fetched routine within a PL/I routine is shown in Figure 27.

Passing data between C and PL/I
There are two sets of data types that you can pass between C and PL/I routines:
data types passed by reference using C explicit pointers in the routine, and data
types passed by value without using C explicit pointers.

When a parameter is passed by reference, the parameter itself is passed. A copy of
the parameter is not made. Any changes to the parameter made by the called
routine can alter the original parameter passed by the calling routine. When a
parameter is passed by value, a copy of the parameter is passed. Any changes to
the parameter made by the called routine cannot alter the original parameter
passed by the calling routine.

Passing pointers from C to PL/I
Pointers can be passed and returned between C and PL/I routines. Because the C
#pragma linkage(PLI) specifies that pointers, unlike other parameters, are passed
directly, there is one level of indirection less on the PL/I side.

In order for PL/I to receive a pointer to a PL/I data type, C must pass a pointer to
a pointer to the C data type. Conversely, if PL/I returns a pointer to a data type, C
receives a pointer to a pointer to the data type.

Structures, arrays, and strings should be passed between C and PL/I only by using
pointers.

The non-address bits in all fullword pointers declared in PL/I source code must
always be zero. If they are not, results are unpredictable.

Passing pointers from PL/I to C
Pointers to various data objects can be passed from PL/I and accepted by a
function written in C.

Because the C #pragma linkage(PLI) specifies that pointers, unlike other
parameters, are passed directly, an extra level of indirection is added when passing
a pointer value from PL/I to C. If PL/I passes or returns a pointer to a type, C
receives a pointer to a pointer to the type.

PL/I parameters that require a locator or descriptor should not be passed directly.
This includes parameters that are structures, arrays, or strings. These parameters
can be passed indirectly from PL/I by using a pointer to the associated data. For
more information about data descriptors, see the IBM Enterprise PL/I for z/OS
library (http://www.ibm.com/support/docview.wss?uid=swg27036735).

DCL CENTRY EXTERNAL ENTRY; /* declare C entry point */
.
.
.

FETCH CENTRY; /* fetch the routine */
CALL CENTRY(args); /* call routine */

Figure 27. PL/I fetching a C routine

Chapter 8. Communicating between C and PL/I 131

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

The non-address bits in all fullword pointers declared in PL/I source code must
always be zero. If they are not, results are unpredictable.

Receiving value parameters in C
If you enclose in parentheses the argument you pass from a PL/I routine to a C
routine, the argument is passed by value. C should receive the parameter as the
equivalent C type. The XL C compiler generates the appropriate addressing code
required to access the parameter values.

You can write your PL/I-callable function as if it were in a C-only environment;
you can move it to a C-only environment by removing the #pragma directive.

Receiving reference parameters in C
If you do not enclose in parentheses the argument you pass from a PL/Iroutine to
a C routine, the argument is passed by reference. C should receive the parameter
as a pointer to the equivalent C type.

For example, if a C function named FROMPLI is called from PL/Iwith an integer
argument, the C prototype declaration should be:
int FROMPLI(int *);

A parameter passed from PL/I by reference is received and used by C as a value
parameter provided that its value is not altered. If the value of such a parameter is
altered, the effect on the original PL/I variable is undefined.

Data types passed using C pointers (by reference)
Table 38 identifies the data types that can be passed as parameters between C and
PL/I applications with the use of explicit pointers, or by reference, under C.
Conversely, reference parameters passed by PL/I to C are received as pointers to
the equivalent data type.

Table 38. Supported data types between C and PL/I using C pointers (by reference)

C PL/I

signed short int REAL FIXED BINARY(15,0)

signed int REAL FIXED BINARY(31,0)

signed long int REAL FIXED BINARY(31,0)

float FLOAT BINARY(21) FLOAT DECIMAL(06)

FLOAT BINARY (21) is the preferred equivalent for float.

double FLOAT BINARY(53) FLOAT DECIMAL(16)

FLOAT BINARY (53) is the preferred equivalent for double.

long double FLOAT BINARY(109) FLOAT DECIMAL(33)

FLOAT BINARY (109) is the preferred equivalent for long double.

pointer to. . . POINTER

decimal(n,p) FIXED DECIMAL(n,p)

Note: Data storage alignment must match.

Data types passed by value
Table 39 on page 133 identifies the data types that can be passed as parameters
between C and PL/I applications without the use of explicit C pointers. Parameters
that are not pointers are passed by value.

132 z/OS V2R1.0 Language Environment Writing ILC Applications

In order for a C routine to pass a parameter without using a pointer, the argument
should be passed, and the PL/I routine should receive the parameter as the
equivalent PL/I data type.

Table 39. Supported data types between C and PL/I without using C pointers (by value)

C PL/I

signed int REAL FIXED BINARY(31,0)

signed long int REAL FIXED BINARY(31,0)

double FLOAT DECIMAL(16)

double FLOAT BINARY(53)

long double FLOAT DECIMAL(33)

long double FLOAT BINARY(109)

decimal(n,p) FIXED DECIMAL(n,p)

Note: The preferred PL/I data declarations for the C double and long double data types are FLOAT
BINARY(53) and FLOAT BINARY(109), respectively. Data storage alignment must match.

Passing strings between C and PL/I
C and PL/I have different string data types:

C strings
Logically unbounded length and are terminated by a NULL (the last byte
of the string contains X'00').

PL/I CHAR(n) VARYING
A halfword-prefixed string of characters with a maximum length n
characters. The current length is held in the halfword prefix.

PL/I CHAR(n) VARYINGZ
A null-terminated string of characters with a maximum length of n
characters.

PL/I CHAR(n)
A fixed-length string of characters of length n. There is no halfword prefix
indicating the length.

You can pass strings between C and PL/I routines, but you must match what the
routine interface demands with what is physically passed.

Using aggregates
Aggregates (arrays, strings, or structures) are mapped differently by C and PL/I
and are not automatically mapped. Be sure to completely declare every byte in the
aggregate so there are no open fields. Doing so helps ensure that the layouts of
aggregates passed between the two languages map to one another correctly. The C
and PL/I AGGREGATE compile-time options provide a layout of aggregates to
help you perform the mapping.

For more information about PL/I structure mapping, see the appropriate language
reference and programming guide.

Data equivalents
This section describes how C and PL/I data types correspond to each other.

Chapter 8. Communicating between C and PL/I 133

Equivalent data types for C to PL/I
The following examples illustrate how C and PL/I routines within a single ILC
application might code the same data types. The examples might be clearer to you
if you first read “Passing data between C and PL/I” on page 131, which describes
how a C routine can receive parameters that are passed by value and by reference.

16-bit signed binary integer

Sample C usage PL/I subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
short int cpli(short int*);
main() {

short int x, y;
x=5;
y = cpli(&x); /* by reference */

}

CPLI: PROC(ARG) RETURNS (FIXED BIN(15));
DCL ARG FIXED BIN (15);...
RETURN (ARG);
END;

Note: Because short int is an example of a parameter which must be passed
using a C explicit pointer, you cannot code y = cpli(x), passing x by value.

32-bit signed binary integer

Sample C usage PL/I subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
int extern cpli(int);
main() {

int x, y;
x=5;
y = cpli(x); /* by value */

}

CPLI: PROC(ARG) RETURNS (FIXED BIN(31));
DCL ARG FIXED BIN (31);...
RETURN (ARG);
END;

Sample C usage PL/I subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
int extern cpli(int *);
main() {

int x, y;
x=5;
y = cpli(&x); /* by reference */

}

CPLI: PROC(ARG) RETURNS (FIXED BIN(31));
DCL ARG FIXED BIN (31);...
RETURN (ARG);
END;

Long floating-point number

Sample C Usage PL/I subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
main()
{

void cpli(double);
double x, y;
x=12.5;
cpli(x); /* by value */

}

CPLI: PROC(ARG)
RETURNS (FLOAT BINARY(53));

DCL ARG FLOAT BINARY(53);...
RETURN (34.0);
END;

134 z/OS V2R1.0 Language Environment Writing ILC Applications

Sample C usage PL/I subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
main()
{

void double cpli(double*);
double x;
x=12.5;
cpli(&x); /* by reference */

}

CPLI: PROC(ARG);
DCL ARG FLOAT BINARY(53);...
END;

Extended floating-point number

Sample C usage PL/I subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
main()
{

long double cpli(long double);
long double x, y;
x=12.1;
y=cpli(x); /* by value */

}

CPLI: PROC(ARG) RETURNS (FLOAT BIN(109));
DCL ARG FLOAT BIN(109);...
RETURN (ARG);
END;

Sample C usage PL/I subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
main()
{

long double cpli(long double*);
long double x, y;
x=12.01.../* many digits */;
y=cpli(&x); /* by reference */

}

CPLI: PROC(ARG)
RETURNS (FLOAT BIN(109));
DCL ARG FLOAT BIN(109);...
RETURN (ARG);
END;

Pointer to an Integer

Sample C usage PL/I subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
main()
{

int i, *temp;
void cpli (int **);
i = 5;
temp=&i;
cpli(&temp);

}

CPLI: PROC (ARG);
DCL ARG POINTER;
DCL ART FIXED BIN(31,0) BASED (ARG);...
END;

Chapter 8. Communicating between C and PL/I 135

Pointer to an array

Sample C usage PL/I subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
main()
{

int matrix[5];
int *temp([] = &matrix);
int i;
void cpli(int(**)[]);
for(i=0;i<5;i++);

matrix[i] = i;
cpli(&temp);

}

CPLI: PROC (ARG);
DCL ARG POINTER;
DCL I FIXED BIN(31)
DCL ART(5) FIXED BIN(31,0) BASED(ARG);...
END;

Pointer to a structure

Sample C usage PL/I subroutine

#pragma linkage (cpli,PLI)
#include <stdio.h>
main()
{

struct date {
int day;
int month;
int year } today;

struct date *temp = &today;
void cpli(struct date **);
int i;

cpli (&temp);
}

CPLI: PROC (ARG);
DCL ARG POINTER;
DCL 1 TODAY BASED (ARG),

2 DAY FIXED BIN(31),
2 MONTH FIXED BIN(31),
2 YEAR FIXED BIN(31);...

END;

Fixed-length decimal data

Sample C usage PL/I subroutine

#pragma linkage (pdec, PLI)
#include <stdio.h>
#include <decimal.h>
decimal(5,2) gpd;
main() {

decimal(5,2) pd1;
printf("Packed decimal text\n");
pd1 = 52d;
pdec(pd1);
if (gpd ! = 57d)

{
printf("Fixed decimal error\n");
printf("Expect: 57\n");
printf("Result: %D(5,2)\n",gpd);

}
printf("Value: %D(5,2)\n:, gpd);
printf("Finished test\n");

}

PDEC: PROC (X);
DCL X FIXED DEC(5,2);
DCL GPD FIXED DEC(5,2) EXTERNAL;
X = X+5;
GPD = X;
END;

Equivalent data types for PL/I to C
The following examples illustrate how C and PL/I routines within a single ILC
application might code the same data types. The examples might be clearer to you
if you first read “Passing data between C and PL/I” on page 131, which describes
how a C routine can receive parameters that are passed by value and by reference.

136 z/OS V2R1.0 Language Environment Writing ILC Applications

32-bit signed binary integer

Sample PL/I usage C function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY

RETURNS (FIXED BIN(31));
DCL X FIXED BIN(31);
DCL Y FIXED BIN(31);
X = 5;
/* BY VALUE */
Y=CENTRY((X));

END MY_PROG;

#pragma linkage (centry,PLI)
#include <stdio.h>
int centry(int x)
{

printf("x is %d\n",x);
return(x);

}

Sample PL/I usage C function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY

RETURNS (FIXED BIN(31));
DCL X FIXED BIN(31);
DCL Y FIXED BIN(31);
X = 5;
/* BY REFERENCE */
Y=CENTRY(X);

END MY_PROG;

#pragma linkage (centry,PLI)
#include <stdio.h>
int centry(int *x)
{

printf("*x is %d\n",x);
return(*x);

}

Long floating-point number

Sample PL/I usage C function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY

RETURNS (FLOAT DEC(16));
DCL X FLOAT DEC(16);
DCL Y FLOAT DEC(16);
X = 3.14159265;
/* BY VALUE */
Y=CENTRY((X));

END MY_PROG;

#pragma linkage (centry,PLI)
#include <stdio.h>
double centry(double x)
{

printf("x is %f\n",x);
return(x);

}

Sample PL/I usage C function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY

RETURNS (FLOAT DEC(16));
DCL X FLOAT DEC(16);
DCL Y FLOAT DEC(16);
X = 3.14159265;
/* BY REFERENCE */
Y=CENTRY(X);

END MY_PROG;

#pragma linkage (centry,PLI)
#include <stdio.h>
double centry(double *x)
{

printf("*x is %f\n",x);
return(*x);

}

Chapter 8. Communicating between C and PL/I 137

Extended floating-point number

Sample PL/I usage C function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY

RETURNS (FLOAT DEC(33));
DCL X FLOAT DEC(33);
DCL Y FLOAT DEC(33);
X = 12.5;
/* BY VALUE */
Y=CENTRY((X));

END MY_PROG;

#pragma linkage (centry,PLI)
#include <stdio.h>
long double centry(long double x)
{

printf("x is %Lf\n",x);
return(x);

}

Sample PL/I usage C function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY

RETURNS (FLOAT DEC(33));
DCL X FLOAT DEC(33);
DCL Y FLOAT DEC(33);
X = 12.5;
/* BY REFERENCE */
Y=CENTRY(X);

END MY_PROG;

#pragma linkage (centry,PLI)
#include <stdio.h>
long double centry(long double *x)
{

printf("*x is %Lf\n",x);
return(*x);

}

Pointer to an integer

Sample PL/I usage C function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY;
DCL I FIXED BIN(31);
DCL P POINTER;
P = ADDR(I);
I = 5;
CALL CENTRY (P);

END MY_PROG;

#pragma linkage (centry,PLI)
#include <stdio.h>
void centry(int **x)
{

printf("Value is %d\n",**x);
}

Pointer to an array

Sample PL/I usage C function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY;
DCL I(5) FIXED BIN(31,0);
DCL J FIXED BIN(31);
DCL P POINTER;
P = ADDR(I);
DO J = 1 TO 5;

I(J) = J;
END;
CALL CENTRY (P);

END MY_PROG;

#pragma linkage (centry,PLI)
#include <stdio.h>
void centry(int **x)
{

printf("Value is %d\n",**x);
}

138 z/OS V2R1.0 Language Environment Writing ILC Applications

Pointer to a structure

Sample PL/I usage C function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY;
DCL 1 TODAY,

2 DAY FIXED BIN(31),
2 MONTH FIXED BIN(31),
2 YEAR FIXED BIN(31);

DCL P POINTER;
P = ADDR(TODAY);
CALL CENTRY (P);

END MY_PROG;

#pragma linkage (centry,PLI)
#include <stdio.h>
struct date {

int day;
int month;
int year; };

void centry(struct date **x)
{

printf("Day is %d\n",(*x)->day);
}

Fixed-length decimal data

Sample PL/I usage C function

PLIPROG: PROC OPTIONS(MAIN, REENTRANT);
DCL CFUNC EXTERNAL ENTRY

(FIXED DEC(5,0));
DCL ARG FIXED DEC(5,0);
DCL A FIXED DEC(5);
ARG = 10;
A = CFUNC(ARG);

END;

#include <decimal.h>
#pragma linkage (CFUNC,PLI)

void CFUNC(decimal(5,0));

void CFUNC(decimal(5,0) parm) {

if (parm==10d)
printf("Value is good\n");

prinf("The parm is %D(5,0)\n",parm);
}

Name scope of external data
In programming languages, the name scope is defined as the portion of an
application within which a particular declaration applies or is known. The name
scope of static external data for PL/I and static variables defined outside of any
function for C is the load module. If your application contains PL/I procedures
and non-reentrant C routines, PL/I's external data maps to C's external data only
within a load module. After you cross a load module boundary, external data does
not map. In addition, the external data does not map if any C function in the
application is compiled with the XL C RENT compile-time option.

Figure 28 on page 140 illustrates the name scope of external variables in a PL/I to
C enclave, if the C function is non-reentrant. The routine can be a PL/I procedure
or C routine. If Routine 3 is a PL/I procedure, however, it cannot have any
variables with the EXTERNAL attribute; therefore, the name scope of Routine 3 in
the figure refers only to C routines.

Chapter 8. Communicating between C and PL/I 139

In Figure 28, external data declared in Routine 1 maps to that declared in Routine 2
in the same load module. If the fetch is made to a C Routine 3 in another load
module is made, the external data does not map, because the name scope of
external data in C is the load module. If the fetch is made to a PL/I Routine 3, the
routine is not allowed to have any variables declared with the EXTERNAL
attribute.

When the name scopes of PL/I and C are the same, do not give external data the
same name in a PL/I to C application if you cross a load module boundary.

DLL considerations
In DLL code, external variables are mapped across the load module boundary.
DLLs are shared at the enclave level. Therefore, a single copy of a DLL applies to
all modules in an enclave, regardless of whether the DLL is loaded implicitly
(through a reference to a function or variable) or explicitly (through dllload()).
See z/OS Language Environment Programming Guide for information about building
and managing DLL code in your applications.

Name space of external data
In programming languages, the name space is defined as the portion of a load
module within which a particular declaration applies or is known. Within the same
load module, the name space of external data under both PL/I and C is the same.
Therefore, PL/I's and C's external data map to each other, provided that the C
routine is non-reentrant or naturally reentrant.

Routine 1 Routine 2 Routine 3

Fetch

X
X

Load Load Module

Storage Storage

Module

Figure 28. Name scope of external variables for PL/I or C fetch

PL/I PROC 1 C Routine 2

X
X

Load Mod

Storage

Figure 29. Name space of external data in PL/I static call to C

140 z/OS V2R1.0 Language Environment Writing ILC Applications

Figure 29 on page 140 illustrates that within the same load module, the name
spaces of PL/I and C routines are the same. Therefore you can give external data
the same name in a PL/I to C application, if no load module boundary is crossed.

Using storage functions in C to PL/I ILC
Use the following guidelines when you mix HLL storage constructs and Language
Environment storage services:

Storage allocated using the PL/I ALLOCATE statement that:
v Is within a PL/I AREA, or
v Is of the storage class CONTROLLED, or
v Has the REFER option

must be released by the PL/I FREE statement. Storage with these characteristics
cannot be released by the Language Environment callable service CEEFRST or by
an HLL construct such as the C free() function.

Storage allocated as a result of the PL/I ALLOCATE statement that is of the
storage class BASED can be released by CEEFRST or an HLL construct such as the
C free() function if the structure:
v Is completely declared,
v Requires no pad bytes to be added automatically by the compiler, and
v Does not contain the REFER option

Directing output in ILC applications
Under Language Environment, PL/I runtime output such as runtime messages and
ON condition SNAP output is directed to the destination specified in the Language
Environment runtime option MSGFILE. The PL/I user-specified output, such as
the output of the PUT SKIP LIST statement, remains directed to the PL/I STREAM
PRINT file SYSPRINT. You can still have runtime and user-specified output
directed to the same destination, as under OS PL/I, by specifying
MSGFILE(SYSPRINT). Seethe IBM Enterprise PL/I for z/OS library
(http://www.ibm.com/support/docview.wss?uid=swg27036735). for details about
using the MSGFILE(SYSPRINT) option.

Under Language Environment, C runtime output such as runtime messages is
directed to the destination specified in the Language Environment runtime option
MSGFILE. stderr output is also directed to the destination of the MSGFILE option.
Normally, stdout output is not directed to the destination of the MSGFILE option.
You can redirect stdout output to the destination of the MSGFILE option by
passing arguments 1>&2 to a C main routine, where 1>&2 associates stdout with
stderr, or by placing stdout=stderr in your program. For information about
redirecting C output, see z/OS XL C/C++ Programming Guide.

Using SYSPRINT as the default stream output file
SYSPRINT serves as the default stream output file for PL/I and C. In the absence
of one language, the other uses SYSPRINT without any problem. If both languages
are used in an application, C yields to PL/I's use of SYSPRINT by redirecting the
C stream output to other destinations. However, in the following two cases, the
redirection of C's stream output is not possible and the results can be
unpredictable:

Chapter 8. Communicating between C and PL/I 141

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

1. The main load module does not have a PL/I PUT statement and C uses
SYSPRINT for its stream output in the main load module. Later, a fetched
subroutine load module contains a PL/I PUT statement that PL/I starts to use
SYSPRINT for its stream output.

2. When Language Environment preinitialization services are used for a
subroutine environment, C uses SYSPRINT for its stream output in the first
CEEPIPI(call_sub,...) then PL/I users SYSPRINT for its PUT statement in the
second CEEPIPI(call_sub).

Directing user-specified output to destination of MSGFILE
You can direct PL/I and C user-specified output to the same destination as the
runtime output by specifying MSGFILE(SYSPRINT). In this case, PL/I and C
manage their own I/O buffers, line counters, and so on, for their own
user-specified output. Therefore, MSGFILE(SYSPRINT) must be used carefully
because PL/I output from the PUT statement, C output from printf, and runtime
output can be interspersed with one another.

C POSIX multithreading
POSIX-conforming C applications can communicate with PL/I routines in any
thread created by C routines. POSIX-conforming C applications can communicate
with assembler routines on any thread when the assembler routines use the
CEEENTRY/CEETERM macros provided by Language Environment or the
EDCPRLG/EDCEPIL macros provided by C/370. If a fork() command is issued,
the target of the fork() must be another C routine.

C to PL/I condition handling
This section offers two scenarios of condition handling behavior in a C to PL/I ILC
application. If an exception occurs in a C routine, the set of possible actions is as
described in “Exception occurs in C” on page 143. If an exception occurs in a PL/I
routine, the set of possible actions is as described in “Exception occurs in PL/I” on
page 145.

Keep in mind that if there is a PL/I routine currently active on the stack, PL/I
language semantics can be applied to handle conditions that occur in non-PL/I
routines within an ILC application. For example, PL/I semantics apply to
Language Environment hardware conditions that map directly to PL/I conditions
such as ZERODIVIDE, even if they occur in a non-PL/I routine. Also, PL/I treats
any unknown condition of severity 2 or greater as the ERROR condition. In a case
in which a C-specific condition of severity 2 or greater is passed to a PL/I stack
frame, an ERROR ON-unit can handle it on the first pass of the stack.

See z/OS Language Environment Programming Guide for a detailed description of
Language Environment condition handling.

Enclave-terminating language constructs
Enclaves might be terminated due to reasons other than an unhandled condition of
severity 2 or greater. The language constructs that cause a single language
application to be terminated also cause a C to PL/I application to be terminated.

C
Typical C language constructs that cause the application to terminate are:

142 z/OS V2R1.0 Language Environment Writing ILC Applications

v The abort(), raise(SIGTERM), raise(SIGABRT), kill(), pthread_kill(), and
exit() function calls.
If you call abort(), raise(SIGABRT), or exit(), the T_I_S (Termination Imminent
Due to STOP) condition is raised. After T_I_S has been processed and all user
code has been removed from the stack, the C atexit list is honored.

PL/I
The PL/I language constructs that cause the application to terminate are:
v A STOP statement, or an EXIT statement

If you code a STOP or EXIT statement, the T_I_S (Termination Imminent Due to
STOP) condition is raised. After T_I_S has been processed and after all user code
has been removed from the stack, the C atexit list is honored.

v A call to PLIDUMP with the S or E option
If you call PLIDUMP with the S or E option, neither termination imminent
condition is raised, and the C atexit list is not honored before the enclave is
terminated. See z/OS Language Environment Debugging Guide for syntax of the
PLIDUMP service.

Exception occurs in C
This scenario describes the behavior of an application that contains a C and a PL/I
routine. Refer to Figure 30 throughout the following discussion. In this scenario, a
PL/I main routine invokes a C subroutine. An exception occurs in the C
subroutine.

The actions taken are the following:
1. In the enablement step, it is determined whether the exception in the C routine

should be enabled and treated as a condition. If any of the following are true,
the exception is ignored, and processing continues at the next sequential
instruction after where the exception occurred:
v You specified SIG_IGN for the exception in a call to signal().

PL/I defaults

Lang. Env. defaults

C defaults

PL/I semantics

PL/I main rtn

C semantics

C subroutine
Exception
occurs here

Figure 30. Stack contents when the exception occurs in C

Chapter 8. Communicating between C and PL/I 143

Note: The system or user abend corresponding to the signal(SIGABND) or
the Language Environment message 3250 is not ignored. The enclave is
terminated.

v The exception is one of those listed as masked in Table 63 on page 249, and
you have not enabled it using the CEE3SPM callable service.

v You did not specify any action, but the default action for the condition is
SIG_IGN (see Table 63 on page 249).

v You are running under CICS and a CICS handler is pending.

If you did none of these things, the condition is enabled and processed as a
condition.

2. If a user-written condition handler has been registered on the stack frame using
CEEHDLR, it is given control.
If it issues a resume, the condition handling step ends. Processing continues in
the routine to which the resume cursor points.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

3. If a C signal handler has been registered for the condition on the C stack frame,
it is given control. If it successfully issues a resume or a call to longjmp(), the
condition handling step ends. Processing resumes in the routine to which the
resume cursor points.
In this case, there is not a C signal handler registered for the condition.

4. The condition is still unhandled. If C does not recognize the condition, or if the
C default action (listed in Table 63 on page 249) is to terminate, the condition is
percolated.

5. If a user-written condition handler has been registered on the PL/I stack frame
using CEEHDLR, it is given control. If it issues a resume, the condition
handling step ends. Processing continues in the routine at the point where the
resume cursor points. In this example, no user-written condition handler is
registered for the condition, so the condition is percolated.

6. If an ON-unit has been established for the condition being processed on the
PL/I stack frame, it is given control. If it issues a GOTO out-of-block, the
condition handling step ends. Execution resumes at the label of the GOTO. In
this example, no ON-unit is established for the condition, so the condition is
percolated.

7. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then the

Language Environment default actions take place, as described in Table 62 on
page 249. Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, the condition is promoted, and another pass is made of
the stack to look for ERROR ON-units or user-written condition handlers. If
an ERROR ON-unit or user-written condition handler is found, it is invoked.

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out of block or similar construct
– No ERROR ON-unit or user-written condition handler is found

then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination

144 z/OS V2R1.0 Language Environment Writing ILC Applications

imminent step. Because T_I_U maps to the PL/I FINISH condition, a FINISH
ON-unit or user-written condition handler is run if the stack frame in which
it is established is reached.

v If no condition handler moves the resume cursor and issued a resume,
Language Environment terminates the thread.

Exception occurs in PL/I
This scenario describes the behavior of an application that contains a PL/I and a C
routine. Refer to Figure 31 throughout the following discussion. In this example, a
C main routine invokes a PL/I subroutine. An exception occurs in the PL/I
subroutine.

The actions taken are the following:
1. In the enablement step, PL/I determines if the exception that occurred should

be handled as a condition according to the PL/I rules of enablement.
v If the exception is to be ignored, control is returned to the next sequential

instruction after where the exception occurred.
v If the exception is to be enabled and processed as a condition, the condition

handling step takes place.
2. If a user-written condition handler has been registered on the PL/I stack frame

using CEEHDLR, it is given control. If it issues a resume, the condition
handling step ends. Processing continues in the routine at the point where the
resume cursor points. In this example, no user-written condition handler is
registered for the condition, so the condition is percolated.

3. If an ON-unit has been established for the condition being processed on the
PL/I stack frame, it is given control. If it issues a GOTO out-of-block, the
condition handling step ends. Execution resumes at the label of the GOTO. In
this example, no ON-unit is established for the condition, so the condition is
percolated.

PL/I defaults

Lang. Env. defaults

C semantics

C main rtn

PL/I semantics

PL/I subroutine
Exception
occurs here

Figure 31. Stack contents when the PL/I exception occurs

Chapter 8. Communicating between C and PL/I 145

4. If a user-written condition handler has been registered using CEEHDLR on the
C stack frame, it is given control. If it issues a resume, the condition handling
step ends. Processing continues in the routine to which the resume cursor
points.

Note: There are special considerations for resuming from some IBM conditions
of severity 2 or greater. See the chapter on coding a user-written condition
handler in z/OS Language Environment Programming Guide for more information.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

5. If a C signal handler has been registered for the condition, it is given control. If
it successfully issues a resume or a call to longjmp(), the condition handling
step ends. Processing resumes in the routine to which the resume cursor points.
In this example no C signal handler is registered for the condition, so the
condition is percolated.

6. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then the

Language Environment default actions take place, as described in Table 62 on
page 249. Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, the condition is promoted, and another pass of the stack is
made to look for ERROR ON-units or user-written condition handlers. If an
ERROR ON-unit or user-written condition handler is found, it is invoked.

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out of block or similar construct
– No ERROR ON-unit or user-written condition handler is found

then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination
imminent step. Because T_I_U maps to the PL/I FINISH condition, a FINISH
ON-unit is run if the stack frame in which it is established is reached.

v If no condition handler moves the resume cursor and issues a resume,
Language Environment terminates the thread.

Fixed-point overflow
The XL C compiler assumes that fixed-point overflow exceptions will be handled
by S/390® hardware, while the PL/I compiler assumes the runtime library will
process these exceptions. Therefore, if a C to PL/I ILC application incurs a
fixed-point overflow, Language Environment will try to handle this exception in
the runtime library. This will result in increased CPU utilization compared to an
application using only C.

Sample C to PL/I ILC applications
PL/I main routine calling a C subroutine:
*PROCESS LC(101),OPT(0),S,MAP,LIST,STMT,A(F),AG;

CEPLI2C: PROC OPTIONS(MAIN);
/*Module/File Name: IBMCPL */
/***/
/* FUNCTION : Interlanguage communications call to *
/* a C program. *
/* This example illustrates an interlanguage call from *

146 z/OS V2R1.0 Language Environment Writing ILC Applications

/* a PL/I main program to a C subroutine. *
/* The parameters passed across the call from PL/I to *
/* C have the following declarations: *
/* *
/* PL/I fixed bin(15,0) to C short as pointer to BIN *
/* PL/I fixed bin(31,0) to C int *
/* PL/I float bin(53) to C double *
/* PL/I float bin(109) to C long double *
/* PL/I characters to C as pointer to pointer to CHAR *
/***/
/***/
/* DECLARES FOR THE CALL TO C *
/***/

DCL ADDR BUILTIN;
DCL J FIXED BIN(31,0);
DCL CECFPLI EXTERNAL ENTRY RETURNS(FIXED BIN(31,0));
DCL PL1_SHORT FIXED BIN(15,0) INIT(15);
DCL PL1_INT FIXED BIN(31,0) INIT(31);
DCL PL1_DOUBLE FLOAT BIN(53) INIT (53.99999);
DCL PL1_LONG_DOUBLE FLOAT BIN(109) INIT(3.14151617);
DCL PL1_POINTER PTR;
DCL CHARSTRING CHAR(23) INIT(’PASSED CHARACTER STRING’);

/**/
/* PROCESS STARTS HERE *
/**/

PUT SKIP LIST (’**********************************’);
PUT SKIP LIST (’PL/I CALLING C/370 EXAMPLE STARTED’);
PUT SKIP LIST (’**********************************’);
PL1_POINTER = ADDR(CHARSTRING);
PUT SKIP LIST (’Calling C/370 subroutine’);
J = CECFPLI(ADDR(PL1_SHORT), PL1_INT, PL1_DOUBLE,

PL1_LONG_DOUBLE, ADDR(PL1_POINTER));
PUT SKIP LIST (’Returned from C/370 subroutine’);
IF (J ¬= 999) THEN

PUT SKIP LIST (’Error in return code from C/370’);
PUT SKIP LIST (’**********************************’);
PUT SKIP LIST (’PL/I CALLING C/370 EXAMPLE ENDED ’);
PUT SKIP LIST (’**********************************’);

END CEPLI2C;

C routine called by PL/I main routine
/*Module/File Name: EDCCPL */
#pragma linkage (CECFPLI,PLI)
#include <stdio.h>
#include <string.h>
/**
*This is an example of a C program invoked by a PL/I program. *
*CECFPLI is called from PL/I program CEPLI2C with the following *
*list of arguments: *
* PL/I fixed bin(15,0) to C short as pointer to BIN *
* PL/I fixed bin(31,0) to C int *
* PL/I float bin(53) to C double *
* PL/I float bin(109) to C long double *
* PL/I characters to C as pointer to pointer to CHAR *
**/
int CECFPLI (short **c_short,

int *c_int,
double *c_double,
long double *c_long_double,
char *** c_character_string
)

{
int ret=999; /* pli is expecting 999 returned */
fprintf(stderr,"CECFPLI STARTED\n");

/**

Chapter 8. Communicating between C and PL/I 147

* Compare each passed argument against the C value. *
* Issue an error message for any incorrectly passed parameter. *
**/

if (**c_short != 15)
{

fprintf(stderr,"**c_short not = 15\n");
--ret;

}
if (*c_int != 31)
{

fprintf(stderr,"*c_int not = 31\n");
--ret;

}
if ((53.99999 - *c_double) >1.0E-14)
{

fprintf(stderr,
"53.99999 - *c_double not >1.0E-14\n");

--ret;
}
if ((3.14151617 - *c_long_double) >1.0E-16)
{

fprintf(stderr,
"3.14151617 - *c_long_double not >1.0E-16\n");

--ret;
}
if (memcmp(**c_character_string,"PASSED CHARACTER STRING",23)

!= 0)
{

fprintf(stderr,"**c_character_string not %s\n",
"\"PASSED CHARACTER STRING\"");
--ret;

}
/**
* PL/I will check for a correct return code. *
**/

fprintf(stderr,"CECFPLI ENDED\n");
return(ret);

}

148 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 9. Communicating between C++ and PL/I

This topic describes Language Environment's support for C++ and PL/I ILC
applications. If you are running a C++ to PL/I ILC application under CICS, you
should also consult Chapter 15, “ILC under CICS,” on page 241.

General facts about C++ to PL/I ILC
v ILC between C++ and Enterprise PL/I for z/OS is discussed in the IBM

Enterprise PL/I for z/OS library (http://www.ibm.com/support/
docview.wss?uid=swg27036735).

v Language Environment does not support passing return codes between PL/I
and C++ routines in an ILC application.

v PL/I Multitasking Facility (MTF) does not support C++.
v A C++ NULL is X'00000000'; a PL/I NULL is X'FF000000'; a PL/I SYSNULL is

X'00000000'. Comparisons against a NULL value and other uses of the NULL
value must therefore be done with care.

v There is no ILC support between AMODE 31 and AMODE 64 applications. PL/I
does not support AMODE 64.

Preparing for ILC
This section describes topics you might want to consider before writing an
application that uses ILC. For help in determining how different versions of HLLs
work together, refer to the migration guides for the HLLs you plan to use.

Language Environment ILC support
Language Environment supports ILC between the following combinations of C++
and PL/I:

Table 40. Supported languages for Language Environment ILC

HLL pair C++ PL/I

C++–PL/I
v IBM C++ for MVS/ESA

v z/OS XL C/C++ compilers

v PL/I for MVS & VM

v Enterprise PL/I for z/OS

Determining the main routine
In Language Environment, only one routine can be the main routine. If a PL/I
routine is identified as a main routine in an ILC application by PROC
OPTIONS(MAIN), and a C++ main function does not exist, the PL/I main routine
is the first to gain control. If a C++ main function exists, but no PL/I main routine
is identified in the ILC application, the C++ main function gains control first.

If both a PL/I main routine identified by PROC OPTIONS(MAIN) and a C++ main
function exist in the same ILC application, this is a user error. However, the error
is not detected by Language Environment.

An entry point is defined for each supported HLL. Table 41 on page 150 identifies
the desired entry point. The table assumes that your code has been compiled using
the Language Environment-conforming compilers.

© Copyright IBM Corp. 1991, 2013 149

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Table 41. Determining the entry point

HLL Main entry point Fetched entry point

C++ CEESTART Not supported

PL/I CEESTART CEESTART or routine name, if
OPTIONS(FETCHABLE) is used.

Declaring C++ to PL/I ILC
Declaring a C++ entry point in a PL/I routine has the same syntax as declaring
another PL/I entry point. A C++ routine can be replaced by a PL/I routine without
altering the PL/I code that calls the routine. Likewise, if a C++ routine calls a PL/I
routine, the PL/I procedure contains no explicit declaration indicating control is
being passed from the C++ routine. The declaration is contained within the C++
routine.

In C++, you must declare that the C++ entry point receives control from a PL/I
routine. This declaration is in the form of an extern "PLI" linkage specification.
The body of the C++ function is the same as if the routine were called from
another C++ function. Calling a PL/I routine and being called by a PL/I routine
are handled by the same extern "PLI" linkage specification.

Declaration for C++ calling PL/I

C++ function PL/I Routine

extern "PLI" {
double PLIFUNC(double);

/ C++ prototype /
}

int main() {
double val,result;

val=7.1;
result=PLIFUNC(val);
printf("val=%f, result=%f\n",

val,result);
}

PLIFUNC: Proc(arg) options(reentrant)
returns(float binary(53));

Dcl arg float binary(53);
Return (34.0);
End;

Declaration for PL/I calling C++

PL/I function C++ Routine

PLIPROG: Proc options(main, reentrant);
Dcl CXXFUNC external entry

returns(fixed bin(31));
Dcl arg fixed bin(31);
Dcl a fixed bin(31);
Arg = 10;
A = CXXFUNC(arg);
End;

extern "PLI" {
int CXXFNC(int parm) {

}

int CXXFNC(int parm) {

return(5);
}

Building a reentrant C++ to PL/I application
The XL C++ compiler creates reentrant code by default. To create a reentrant C++
to PL/I application, follow this process:
1. Compile the C++ routines.
2. (Optional) Compile all PL/I routines in the ILC application using the

REENTRANT option of the OPTIONS attribute of the PROCEDURE statement.

150 z/OS V2R1.0 Language Environment Writing ILC Applications

3. Run the generated C++ and PL/I object code through the Language
Environment prelinker to generate a single text deck.

4. Run the text deck provided by the prelinker through the linkage editor to
produce a load module.

Note: A reentrant C++ to PL/I application has different semantics than a
non-reentrant one.

Calling between C++ and PL/I
Table 42 describes the types of calls between C++ and PL/I that Language
Environment allows:

Table 42. Calls permitted for C++ and PL/I ILC

ILC direction Static calls
Dynamic calls using
DLLs Fetch/Calls

C++ to PL/I Yes Yes (1) C++ does not support
fetch() for PL/I

PL/I to C++ Yes Yes (1) No

Note: Enterprise PL/I for z/OS supports calls to a C++ DLL, and also allows calls
from C++ to a PL/I DLL. In this case, the C++ code could also optionally be
compiled with the XPLINK option.

Passing data between C++ and PL/I
There are two sets of data types that you can pass between C++ and PL/I routines:
data types passed by reference using C++ explicit pointers explicitly in the routine,
and data types passed by value without using C++ explicit pointers.

By reference means the parameter itself is passed. A copy of the parameter is not
made. Any changes to the parameter made by the called routine can alter the
original parameter passed by the calling routine. By value means a copy of the
parameter is passed. Any changes to the parameter made by the called routine
cannot alter the original parameter passed by the calling routine.

Passing pointers from C++ to PL/I
Pointers can be passed and returned between C++ and PL/I routines. Because the
C++ extern "PLI" linkage specifies that pointers, unlike other parameters, are
passed directly, there is one level of indirection less on the PL/I side.

In order for PL/I to receive a pointer to a PL/I data type, C++ must pass a pointer
to a pointer to the C++ data type. Conversely, if PL/I returns a pointer to a data
type, C++ receives a pointer to a pointer to the data type.

Structures, arrays, and strings should be passed between C++ and PL/I only by
using pointers.

The non-address bits in all fullword pointers declared in PL/I source code should
always be zero. If they are not, results are unpredictable.

Passing pointers from PL/I to C++
Pointers to various data objects can be passed from PL/I and accepted by a
function written in C++.

Chapter 9. Communicating between C++ and PL/I 151

An extra level of indirection is added when passing a pointer value from PL/I to
C++, because the C++ extern "PLI" linkage specification passes pointers directly. If
PL/I passes or returns a pointer to a type, C++ receives a pointer to a pointer to
the type.

PL/I parameters that require a locator or descriptor should not be passed directly.
This includes parameters that are structures, arrays, or strings. These parameters
can be passed indirectly from PL/I by using a pointer to the associated data. For
more information about data descriptors, see the IBM Enterprise PL/I for z/OS
library (http://www.ibm.com/support/docview.wss?uid=swg27036735).

The non-address bits in all fullword pointers declared in PL/I source code should
always be zero. If they are not, results are unpredictable.

Receiving value parameters in C++
If you enclose in parentheses the argument you pass from a PL/I routine to a C++
routine, the argument is passed by value. C++ should receive the parameter as the
equivalent C++ type. The XL C++ compiler generates the appropriate addressing
code required to access the parameter values.

You can write your PL/I-callable function as if it were in a C++-only environment;
you can move it to a C++-only environment simply by removing the extern "PLI"
linkage specification.

Receiving reference parameters in C++
If a parameter is not enclosed in parentheses a PL/I routine will pass it by
reference to a C++ routine. C++ should then receive the parameter as a pointer to
the equivalent C++ type.

For example, if a C++ function named FROMPLI is to receive a parameter having the
type int, the function prototype declaration looks like this:
int FROMPLI(int *i);
or
int FROMPLI(int &i);

A parameter passed from PL/I by reference may be received and used by C++ as a
value parameter provided that its value is not altered. If the value of such a
parameter is altered, the effect on the original PL/I variable is undefined.

Supported data types passed using C++ pointers (by
reference)

Table 43 identifies the data types that can be passed as parameters between C++
and PL/I applications with the use of explicit pointers under C++. Parameters that
are pointers are passed by reference to PL/I. Conversely, reference parameters
passed by PL/I to C++ are received as pointers to the equivalent data type or as a
C++ reference variable such as int& i.

Anything that is passed with a pointer can be passed with a reference variable; the
effect is the same. Reference variables are generally easier to use.

Table 43. Supported data types between C++ and PL/I using C++ pointers (by reference)

C++ PL/I

signed short int REAL FIXED BINARY(15,0)

signed int REAL FIXED BINARY(31,0)

152 z/OS V2R1.0 Language Environment Writing ILC Applications

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Table 43. Supported data types between C++ and PL/I using C++ pointers (by
reference) (continued)

C++ PL/I

signed long int REAL FIXED BINARY(31,0)

float FLOAT DECIMAL(06)

FLOAT BINARY (21) is the preferred equivalent for float.

double FLOAT DECIMAL(16)

FLOAT BINARY (53) is the preferred equivalent for double.

long double FLOAT DECIMAL(33)

FLOAT BINARY (109) is the preferred equivalent for long double.

pointer to . . . POINTER

Note: Data storage alignment must match.

Supported data types passed by value
Table 44 identifies the data types that can be passed by value (without using a C++
pointer) between C++ and PL/I applications.

In order for a C++ routine to pass a parameter without using a pointer, the
argument should be passed, and the PL/I routine should receive the parameter as
the equivalent PL/I data type.

Table 44. Supported data types between C++ and PL/I by value

C++ PL/I

signed int REAL FIXED BINARY(31,0)

signed long int REAL FIXED BINARY(31,0)

double FLOAT DECIMAL(16)

double FLOAT BINARY(53)

long double FLOAT DECIMAL(33)

long double FLOAT BINARY(109)

Note: The preferred PL/I data declarations for the C double and long double data types are FLOAT
BINARY(53) and FLOAT BINARY(109), respectively. Data storage alignment must match.

Passing strings between C++ and PL/I
C++ and PL/I have different string data types:

C++ strings
Logically unbounded length and are terminated by a NULL (the last byte
of the string contains X'00').

PL/I CHAR(n) VARYING
A halfword-prefixed string of characters with a maximum length n
characters. The current length is held in the halfword prefix.

PL/I CHAR(n)
A fixed-length string of characters of length n. There is no halfword prefix
indicating the length.

You can pass strings between C++ and PL/I routines, but you must match what
the routine interface demands with what is physically passed.

Chapter 9. Communicating between C++ and PL/I 153

Using aggregates
Aggregates (arrays, strings, or structures) are mapped differently by C++ and PL/I
and are not automatically mapped. Be sure to completely declare every byte in the
aggregate so there are no open fields. Doing so helps ensure that the layouts of
aggregates passed between the two languages map to one another correctly. The
C++ and PL/I AGGREGATE compiler time options provide a layout of aggregates
to help you perform the mapping.

In C++, a structure is a class declared with the struct keyword; its members and
base classes are public by default. A C++ class is the same as a C++ structure if the
only data is public. If a C++ class that uses features unavailable to PL/I (such as
virtual functions, virtual base classes, private data, protected data, static data
members, or inheritance) is passed to PL/I, the results are undefined.

For more information about PL/I structure mapping, see the IBM Enterprise PL/I
for z/OS library (http://www.ibm.com/support/docview.wss?uid=swg27036735).

Data equivalents
This section describes how C++ and PL/I data types correspond to each other.

Equivalent data types for C++ to PL/I
The following examples illustrate how C++ and PL/I routines within a single ILC
application might code the same data types.

16-bit signed binary integer

Sample C++ usage PL/I subroutine

#include <stdio.h>

extern "PLI" {
short int cpli(short int *);

}

main() {
short int x, y;
x=5;
y = cpli(&x); /* by reference */

}

CPLI: PROC(ARG) RETURNS (FIXED BIN(15));
DCL ARG FIXED BIN (15);...
RETURN (ARG);
END;

Note: Because short int is an example of a parameter which must be passed
using an C++ explicit pointer, you cannot code y = cpli(x), passing x by value.

32-bit signed binary integer

Sample C++ usage PL/I subroutine

#include <stdio.h>

extern "PLI" {
int cpli(int);

}

main() {
int x, y;
x=5;
y = cpli(x); /* by value */

}

CPLI: PROC(ARG) RETURNS (FIXED BIN(31));
DCL ARG FIXED BIN (31);...
RETURN (ARG);
END;

154 z/OS V2R1.0 Language Environment Writing ILC Applications

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Sample C++ usage PL/I subroutine

#include <stdio.h>

extern "PLI" {
int cpli(int *);

}

main() {
int x, y;
x=5;
y = cpli(&x); /* by reference */

}

CPLI: PROC(ARG) RETURNS (FIXED BIN(31));
DCL ARG FIXED BIN (31);...
RETURN (ARG);
END;

Long floating-point number

Sample C++ usage PL/I subroutine

#include <stdio.h>

extern "PLI" {
double cpli(double);

}

main()
{

double x, y;
x=12.5;
cpli(x); /* by value */

}

CPLI: PROC(ARG)
RETURNS (FLOAT BINARY(53));

DCL ARG FLOAT BINARY(53);...
RETURN (ARG);
END;

Sample C++ usage PL/I subroutine

#include <stdio.h>

extern "PLI" {
void double cpli(double *);

}

main()
{

double x;
x=12.5;
cpli(&x); /* by reference */

}

CPLI: PROC(ARG);
DCL ARG FLOAT BINARY(53);...
END;

Extended floating-point number

Sample C++ usage PL/I subroutine

#include <stdio.h>

extern "PLI" {
long double cpli(long double);

}

main()
{

long double x, y;
x=12.1
y=cpli(x); /* by value */

}

CPLI: PROC(ARG) RETURNS (FLOAT BIN(109));
DCL ARG FLOAT BIN(109);...
RETURN (ARG);
END;

Chapter 9. Communicating between C++ and PL/I 155

Sample C++ usage PL/I subroutine

#include <stdio.h>

extern "PLI" {
long double cpli(long double*);

}

main()
{

long double x, y;
x=12.1
y=cpli(&x); /* by reference */

}

CPLI: PROC(ARG)
RETURNS (FLOAT BIN(109));
DCL ARG FLOAT BIN(109);...
RETURN (ARG);
END;

Pointer to an integer

Sample C++ usage PL/I subroutine

#include <stdio.h>

extern "PLI" {
void cpli (int **);

}

main()
{

int i, *temp;
i = 5;
temp=&i;
cpli(&temp);

}

CPLI: PROC (ARG);
DCL ARG POINTER;
DCL ART FIXED BIN(31,0)

BASED (ARG);...
END;

Pointer to an array

Sample C++ usage PL/I subroutine

#include <stdio.h>

extern "PLI" {
int (*temp[] = &matrix);

}

main()
{

int matrix[5]
int i;
void cpli(int(**)[]);
for(i=0;i<5;i++);

matrix[i] = i;
cpli(&temp);

}

CPLI: PROC (ARG);
DCL ARG POINTER;
DCL I FIXED BIN(31)
DCL ART(5) FIXED BIN(31,0)
BASED (ARG);...
END;

156 z/OS V2R1.0 Language Environment Writing ILC Applications

Pointer to a structure

Sample C++ usage PL/I subroutine

#include <stdio.h>

struct date {
int day;
int month;
int year } today;

extern "PLI" {
void cpli(struct date **);

}

main()
{

struct date *temp = &today;
int i;
cpli (&temp);

}

CPLI: PROC (ARG);
DCL ARG POINTER;
DCL 1 TODAY BASED (ARG),

2 DAY FIXED BIN(31),
2 MONTH FIXED BIN(31),
2 YEAR FIXED BIN(31);...

END;

Equivalent data types for PL/I to C++
This section contains examples that illustrate how C++ and PL/I routines within a
single ILC application might code the same data types.

32-bit signed binary integer

Sample PL/I usage C++ function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY

RETURNS (FIXED BIN(31));
DCL X FIXED BIN(31);
DCL Y FIXED BIN(31);
X = 5;
/* BY VALUE */
Y=CENTRY((X));

END MY_PROG;

#include <stdio.h>

extern "PLI" {
int centry(int x)

}

int centry(int x)
{

printf("x is %d/n",x);
return(x);

}

Sample PL/I usage C++ function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY

RETURNS (FIXED BIN(31));
DCL X FIXED BIN(31);
DCL Y FIXED BIN(31);
X = 5;
/* BY REFERENCE */
Y=CENTRY(X);

END MY_PROG;

#include <stdio.h>

extern "PLI" {
int centry(int *x)

}

int centry(int *x)
{

printf("x is %d\n",x);
return(*x);

}

Chapter 9. Communicating between C++ and PL/I 157

Long floating-point number

Sample PL/I usage C++ function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY

RETURNS (FLOAT DEC(16));
DCL X FLOAT DEC(16);
DCL Y FLOAT DEC(16);
X = 3.14159265;
/* BY VALUE */
Y=CENTRY((X));

END MY_PROG;

#include <stdio.h>

extern "PLI" {
double centry(double x)

}

double centry(double x)
{

printf("x is %f\n",x);
return(x);

}

Sample PL/I usage C++ function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY

RETURNS (FLOAT DEC(16));
DCL X FLOAT DEC(16);
DCL Y FLOAT DEC(16);
X = 3.14159265;
/* BY REFERENCE */
Y=CENTRY(X);

END MY_PROG;

#include <stdio.h>

extern "PLI" {
double centry(double *x)
}

double centry(double *x)
{
printf("x is %f\n",x);
return(*x);
}

Extended floating-point number

Sample PL/I usage C++ function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY

RETURNS (FLOAT DEC(33));
DCL X FLOAT DEC(33);
DCL Y FLOAT DEC(33);
X = 12.5;
/* BY VALUE */
Y=CENTRY((X));

END MY_PROG;

#include <stdio.h>

extern "PLI" {
long double centry(long double x);

}

long double centry(long double x)
{

printf("x is %Lf\n",x);
return(x);

}

Sample PL/I usage C++ function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY

RETURNS (FLOAT DEC(33));
DCL X FLOAT DEC(33);
DCL Y FLOAT DEC(33);
X = 12.5;
/* BY REFERENCE */
Y=CENTRY(X);

END MY_PROG;

#include <stdio.h>

extern "PLI" {
long double centry(long double *x)

}

printf("x is %Lf\n",x);
return(*x);

}

158 z/OS V2R1.0 Language Environment Writing ILC Applications

Pointer to an integer

Sample PL/I usage C++ function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY;
DCL I FIXED BIN(31);
DCL P POINTER;
P = ADDR(I);
I = 5;
CALL CENTRY (P);

END MY_PROG;

#include <stdio.h>

extern "PLI" {
void centry(int **x)

}

void centry(int **x)
{

printf("Value is %d\n",x);
}

Pointer to an array

Sample PL/I usage C++ function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY;
DCL I(5) FIXED BIN(31,0);
DCL J FIXED BIN(31);
DCL P POINTER;
P = ADDR(I);
DO J = 1 TO 5;

I(J) = J;
END;
CALL CENTRY (P);

END MY_PROG;

#include <stdio.h>

extern "PLI" {
void centry(**x);

}

void centry(**x)
{

/* ... */
}

Pointer to a structure

Sample PL/I usage C++ function

MY_PROG: PROC OPTIONS(MAIN);
DCL CENTRY EXTERNAL ENTRY;
DCL 1 TODAY,

2 DAY FIXED BIN(31),
2 MONTH FIXED BIN(31),
2 YEAR FIXED BIN(31);

DCL P POINTER;
P = ADDR(TODAY);
CALL CENTRY (P);

END MY_PROG;

struct date {
int day;
int month;
int year; };

extern "PLI" {
void centry (struct date **x);

}

void centry(struct date **x)
{

printf("Day is %d\n",(x)->day);
}

Name scope of external data
In programming languages, the name scope is defined as the portion of an
application within which a particular declaration applies or is known. The name
scope of static external data for PL/I and static variables defined outside of any
function for C++ is the load module.

Because C++ is reentrant, PL/I and C++ external data do not map by default.
However, you can map specific variable by using the pragma variable directive to
specify that a C++ variable is NORENT.

DLL considerations
In DLL code, external variables are mapped across the load module boundary.
DLLs are shared at the enclave level. Therefore, a single copy of a DLL applies to
all modules in an enclave, regardless of whether the DLL is loaded implicitly

Chapter 9. Communicating between C++ and PL/I 159

(through a reference to a function or variable) or explicitly (through dllload()).
See z/OS XL C++ Programming Guide for information about building and managing
DLL code in your applications.

Name space of external data
In programming languages, the name space is defined as the portion of a load
module within which a particular declaration applies or is known. With statically
linked C++ to PL/I ILC, PL/I external data is not accessible from C++ and C++
external data is not accessible from PL/I unless the #pragma variable directive is
used to specify that the specific variable is NORENT.

Using storage functions in C++ to PL/I ILC
Use the following guidelines when mixing HLL storage constructs and Language
Environment storage services.

The C++ new and delete statements should not be mixed with the C malloc() and
free() statements. Storage allocated with new can be deallocated only with delete
and vice versa.

Storage allocated using the PL/I ALLOCATE statement that:
v Is within a PL/I AREA, or
v Is of the storage class CONTROLLED, or
v Has the REFER option

must be released by the PL/I FREE statement. Storage with these characteristics
cannot be released by the Language Environment callable service CEEFRST or by
an HLL construct such as the C++ free() function.

Storage allocated as a result of the PL/I ALLOCATE statement that is of the
storage class BASED can be released by CEEFRST or an HLL construct such as the
C++ free() function if the structure:
v Is completely declared,
v Requires no pad bytes to be added automatically by the compiler, and
v Does not contain the REFER option

Directing output in ILC applications
Under Language Environment, PL/I runtime output such as runtime messages and
ON condition SNAP output is directed to the destination specified in the Language
Environment runtime option MSGFILE. The PL/I user-specified output, such as
the output of the PUT SKIP LIST statement remains directed to the PL/I STREAM
PRINT file, SYSPRINT. You can still have the runtime output and the
user-specified output directed to the same destination, like under OS PL/I, by
specifying MSGFILE(SYSPRINT). See the IBM Enterprise PL/I for z/OS library
(http://www.ibm.com/support/docview.wss?uid=swg27036735) for details of
using the MSGFILE(SYSPRINT) option.

Under Language Environment, C++ runtime output such as runtime messages is
directed to the destination specified in the Language Environment runtime option
MSGFILE. stderr output is also directed to the destination of the MSGFILE option.
Normally, stdout output is not directed to the destination of the MSGFILE option.
You can redirect stdout output to the destination of the MSGFILE option by
passing arguments 1>&2 to a C++ main routine, where 1>&2 associates stdout with

160 z/OS V2R1.0 Language Environment Writing ILC Applications

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

stderr, or by placing stdout=stderr in your program. For information about
redirecting C++ output, see z/OS XL C/C++ Programming Guide.

Using SYSPRINT as the default stream output file
SYSPRINT serves as the default stream output file for PL/I and C++. In the
absence of one language, the other uses SYSPRINT without any problem. If both
languages are used in an application, C++ yields to PL/I's use of SYSPRINT by
redirecting the C++ stream output to other destinations. However, in the following
two cases, the redirection of C++'s stream output is not possible and the results
can be unpredictable:
1. The main load module does not have a PL/I PUT statement and C++ uses

SYSPRINT for its stream output in the main load module. Later, a fetched
subroutine load module contains a PL/I PUT statement that PL/I starts to use
SYSPRINT for its stream output.

2. When Language Environment preinitialization services are used for a
subroutine environment, C++ uses SYSPRINT for its stream output in the first
CEEPIPI(call_sub,...) then PL/I users SYSPRINT for its PUT statement in the
second CEEPIPI(call_sub).

Directing user-specified output to destination of MSGFILE
You can direct PL/I and C++ user-specified output to the same destination as the
runtime output by specifying MSGFILE(SYSPRINT). In this case, PL/I and C++
manage their own I/O buffers, line counters, etc., for their own user-specified
output. Therefore, MSGFILE(SYSPRINT) must be used carefully because PL/I
output from the PUT statement, C++ output from printf, and runtime output can
be interspersed with one another.

C++ to PL/I condition handling
This section offers two scenarios of condition handling behavior in a C++ to PL/I
ILC application. If an exception occurs in a C++ routine, the set of possible actions
is as described in “Exception occurs in C++” on page 162. If an exception occurs in
a PL/I routine, the set of possible actions is as described in “Exception occurs in
PL/I” on page 164.

Keep in mind that if there is a PL/I routine currently active on the stack, PL/I
language semantics can be applied to handle conditions that occur in non-PL/I
routines within an ILC application. For example, PL/I semantics apply to
Language Environment hardware conditions that map directly to PL/I conditions
such as ZERODIVIDE, even if they occur in a non-PL/I routine. Also, PL/I treats
any unknown condition of severity 2 or greater as the ERROR condition. In a case
in which a C-specific condition of severity 2 or greater is passed to a PL/I stack
frame, an ERROR ON-unit can handle it on the first pass of the stack.

C++ exception handling constructs try/throw/catch cannot be used with Language
Environment and PL/I condition handling. If you use C exception handling
constructs (signal/raise) in your C++ routine, condition handling will proceed as
described in this section. Otherwise, you will get undefined behavior in your
programs if you mix the C constructs with the C++ constructs.

For a detailed description of Language Environment condition handling, see z/OS
Language Environment Programming Guide.

Chapter 9. Communicating between C++ and PL/I 161

Enclave-terminating language constructs
Enclaves might be terminated due to reasons other than an unhandled condition of
severity 2 or greater. The language constructs that cause a single language
application to be terminated also cause a C++ to PL/I application to be terminated.
Those language constructs of interest are listed in the following sections.

C language constructs available under C++
Among the C language constructs that cause an application to terminate are:
v The abort(), raise(SIGABRT), and exit() function calls.

If you call abort(), raise(SIGABRT), or exit(), the T_I_S (Termination Imminent
Due to STOP) condition is raised. After T_I_S has been processed and all user
code has been removed from the stack, the C++ atexit list is honored.

PL/I
The PL/I language constructs that cause the application to terminate are:
v A STOP statement, or an EXIT statement

If you code a STOP or EXIT statement, the T_I_S (Termination Imminent Due to
STOP) condition is raised. After T_I_S has been processed and after all user code
has been removed from the stack, the C atexit list is honored.

v A call to PLIDUMP with the S or E option
If you call PLIDUMP with the S or E option, neither termination imminent
condition is raised, and the C++ atexit list is not honored before the enclave is
terminated. See z/OS Language Environment Debugging Guide for syntax of the
PLIDUMP service.

Exception occurs in C++
This scenario describes the behavior of an application that contains a C++ and a
PL/I routine. Refer to Figure 32 on page 163 throughout the following discussion.
In this scenario, a PL/I main routine invokes a C++ subroutine. An exception
occurs in the C++ subroutine.

162 z/OS V2R1.0 Language Environment Writing ILC Applications

The actions taken are the following:
1. In the enablement step, it is determined whether the exception in the C++

routine should be enabled and treated as a condition. If any of the following
are true, the exception is ignored, and processing continues at the next
sequential instruction after where the exception occurred:
v You specified SIG_IGN for the exception in a call to signal().

Note: The system or user abend corresponding to the signal(SIGABND) or
the Language Environment message 3250 is not ignored. The enclave is
terminated.

v The exception is one of those listed as masked in Table 63 on page 249, and
you have not enabled it using the CEE3SPM callable service.

v You did not specify any action, but the default action for the condition is
SIG_IGN (see Table 63 on page 249).

v You are running under CICS and a CICS handler is pending.

If you did none of these things, the condition is enabled and processed as a
condition.

2. If a user-written condition handler has been registered on the stack frame using
CEEHDLR, it is given control.
If it issues a resume, the condition handling step ends. Processing continues in
the routine to which the resume cursor points.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

3. If a C signal handler has been registered for the condition on the C++ stack
frame, it is given control. If it successfully issues a resume or a call to
longjmp(), the condition handling step ends. Processing resumes in the routine
to which the resume cursor points.
In this case, there is not a C signal handler registered for the condition.

PL/I defaults

Lang. Env. defaults

C++ defaults

PL/I semantics

PL/I main rtn

C++ semantics

C++ subroutine
Exception
occurs here

Figure 32. Stack contents when the exception occurs in C++

Chapter 9. Communicating between C++ and PL/I 163

4. The condition is still unhandled. If C++ does not recognize the condition, or if
the C++ default action (listed in Table 63 on page 249) is to terminate, the
condition is percolated.

5. Is a user-written condition handler has been registered on the PL/I stack frame
using CEEHDLR, it is given control. If it issues a resume, the condition
handling step ends. Processing continues in the routine at the point where the
resume cursor points. In this example, no user-written condition handler is
registered for the condition, so the condition is percolated.

6. If an ON-unit has been established for the condition being processed on the
PL/I stack frame, it is given control. If it issues a GOTO out-of-block, the
condition handling step ends. Execution resumes at the label of the GOTO. In
this example, no ON-unit is established for the condition, so the condition is
percolated.

7. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then the

Language Environment default actions take place, as described in Table 62 on
page 249. Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, the condition is promoted, and another pass is made of
the stack to look for ERROR ON-units or user-written condition handlers. If
an ERROR ON-unit or user-written condition handler is found, it is invoked.

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out of block or similar construct
– No ERROR ON-unit or user-written condition handler is found

then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination
imminent step. Because T_I_U maps to the PL/I FINISH condition, a FINISH
ON-unit or user-written condition handler is run if the stack frame in which
it is established is reached.

v If no condition handler moves the resume cursor and issued a resume,
Language Environment terminates the thread.

Exception occurs in PL/I
This scenario describes the behavior of an application that contains a PL/I and a
C++ routine. Refer to Figure 33 on page 165 throughout the following discussion.
In this example, a C++ main routine invokes a PL/I subroutine. An exception
occurs in the PL/I subroutine.

164 z/OS V2R1.0 Language Environment Writing ILC Applications

The actions taken are the following:
1. In the enablement step, PL/I determines if the exception that occurred should

be handled as a condition according to the PL/I rules of enablement.
v If the exception is to be ignored, control is returned to the next sequential

instruction after where the exception occurred.
v If the exception is to be enabled and processed as a condition, the condition

handling step, described below, takes place.
2. Is a user-written condition handler has been registered on the PL/I stack frame

using CEEHDLR, it is given control. If it issues a resume, the condition
handling step ends. Processing continues in the routine at the point where the
resume cursor points. In this example, no user-written condition handler is
registered for the condition, so the condition is percolated.

3. If an ON-unit has been established for the condition being processed on the
PL/I stack frame, it is given control. If it issues a GOTO out-of-block, the
condition handling step ends. Execution resumes at the label of the GOTO. In
this example, no ON-unit is established for the condition, so the condition is
percolated.

4. If a user-written condition handler has been registered using CEEHDLR on the
C++ stack frame, it is given control. If it issues a resume, the condition
handling step ends. Processing continues in the routine to which the resume
cursor points.

Note: There are special considerations for resuming from some IBM conditions
of severity 2 or greater; see the chapter on coding user-written condition
handlers in z/OS Language Environment Programming Guide.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

5. If a C signal handler has been registered for the condition, it is given control. If
it successfully issues a resume or a call to longjmp(), the condition handling
step ends. Processing resumes in the routine to which the resume cursor points.

PL/I defaults

Lang. Env. defaults

C++ semantics

C++ main routine

PL/I semantics

PL/I subroutine
Exception
occurs here

Figure 33. Stack contents when the exception occurs in PL/I

Chapter 9. Communicating between C++ and PL/I 165

In this example no C signal handler is registered for the condition, so the
condition is percolated.

6. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then the

Language Environment default actions take place, as described in Table 62 on
page 249. Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, the condition is promoted, and another pass of the stack is
made to look for ERROR ON-units or user-written condition handlers. If an
ERROR ON-unit or user-written condition handler is found, it is invoked.

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out of block or similar construct
– No ERROR ON-unit or user-written condition handler is found

then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination
imminent step. Because T_I_U maps to the PL/I FINISH condition, a FINISH
ON-unit is run if the stack frame in which it is established is reached.

v If no condition handler moves the resume cursor and issues a resume,
Language Environment terminates the thread.

Fixed-point overflow
The XL C++ compiler assumes that fixed-point overflow exceptions will be
handled by S/390 hardware, while the PL/I compiler assumes that the runtime
library will process these exceptions. Therefore, if a C++ to PL/I ILC application
incurs a fixed-point overflow, Language Environment will try to handle this
exception in the runtime library. This will result in increased CPU utilization
compared to an application using only C++.

Sample C++ to PL/I ILC applications
PL/I main routine calling a C++ subroutine

/*COMPILATION UNIT: IBMPCX */
/**Process lc(101),opt(0),s,map,list,stmt,a(f),ag;*/
CEPLI2C: PROC OPTIONS(MAIN);
/***/
/* FUNCTION : Interlanguage communications call to *
/* a C++ program. *
/* *
/* This example illustrates an interlanguage call from *
/* a PL/I main program to a C++ subroutine. *
/* The parameters passed across the call from PL/I to *
/* C++ have the following declarations: *
/* *
/* PL/I fixed bin(15,0) to C++ short as pointer to BIN *
/* PL/I fixed bin(31,0) to C++ int *
/* PL/I float bin(53) to C++ double *
/* PL/I float bin(109) to C++ long double *
/* PL/I characters to C++ as pointer to pointer to CHAR *
/***/
/***/
/* DECLARES FOR THE CALL TO C++ *
/***/

DCL ADDR BUILTIN;
DCL J FIXED BIN(31,0);
DCL CECFPLI EXTERNAL ENTRY RETURNS(FIXED BIN(31,0));

166 z/OS V2R1.0 Language Environment Writing ILC Applications

DCL PL1_SHORT FIXED BIN(15,0) INIT(15);
DCL PL1_INT FIXED BIN(31,0) INIT(31);
DCL PL1_DOUBLE FLOAT BIN(53) INIT (53.99999);
DCL PL1_LONG_DOUBLE FLOAT BIN(109) INIT(3.14151617);
DCL PL1_POINTER PTR;
DCL CHARSTRING CHAR(23) INIT(’PASSED CHARACTER STRING’);

/**/
/* PROCESS STARTS HERE *
/**/

PUT SKIP LIST (’**********************************’);
PUT SKIP LIST (’PL/I CALLING C++ EXAMPLE STARTED’);
PUT SKIP LIST (’**********************************’);
PL1_POINTER = ADDR(CHARSTRING);
PUT SKIP LIST (’Calling C/370 subroutine’);
J = CECFPLI(ADDR(PL1_SHORT), PL1_INT, PL1_DOUBLE,

PL1_LONG_DOUBLE, ADDR(PL1_POINTER));
PUT SKIP LIST (’Returned from C/370 subroutine’);
IF (J ¬= 999) THEN

PUT SKIP LIST (’Error in return code from C/370’);
PUT SKIP LIST (’**********************************’);
PUT SKIP LIST (’PL/I CALLING C++ EXAMPLE ENDED ’);
PUT SKIP LIST (’**********************************’);

END CEPLI2C;

C++ routine called by PL/I main routine
/*COMPILATION UNIT: EDCPCX */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
extern "PLI" int CECFPLI(short **c_short, int *c_int, double *c_double,

long double *c_long_double, char ***c_character_string);
/**
*This is an example of a C++ program invoked by a PL/I program. *
*CECFPLI is called from PL/I program CEPLI2C with the following *
*list of arguments: *
* *
* PL/I fixed bin(15,0) to C/C++ short as pointer to BIN *
* PL/I fixed bin(31,0) to C/C++ int *
* PL/I float bin(53) to C/C++ double *
* PL/I float bin(109) to C/C++ long double *
* PL/I characters to C/C++ as pointer to pointer to CHAR *
* *
* This example is using C++ as a better C. It is illustrating the *
* minimum number of changes required. *
**/
int CECFPLI (short **c_short,

int *c_int,
double *c_double,
long double *c_long_double,
char *** c_character_string
)

{
int ret=999; /* pli is expecting 999 returned */

fprintf(stderr,"CECFPLI STARTED\n");
/**
* Compare each passed argument against the C++ value. *
* Issue an error message for any incorrectly passed parameter. *
**/

if (**c_short != 15)
{

fprintf(stderr,"**c_short not = 15\n");
--ret;

}

if (*c_int != 31)

Chapter 9. Communicating between C++ and PL/I 167

{
fprintf(stderr,"*c_int not = 31\n");
--ret;

}

if ((53.99999 - *c_double) >1.0E-14)
{

fprintf(stderr,
"53.99999 - *c_double not >1.0E-14\n");

--ret;
}

if ((3.14151617 - *c_long_double) >1.0E-16)
{

fprintf(stderr,
"3.14151617 - *c_long_double not >1.0E-16\n");

--ret;
}

if (memcmp(**c_character_string,"PASSED CHARACTER STRING",23)
!= 0)

{
fprintf(stderr,"**c_character_string not %s\n",
"\"PASSED CHARACTER STRING\"");
--ret;

}
/***
* PL/I will check for a correct return code. *
***/

fprintf(stderr,"CECFPLI ENDED\n");
return(ret);

}

168 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 10. Communicating between COBOL and Fortran

This topic describes Language Environment's support for COBOL and Fortran ILC
applications.

General facts about COBOL to Fortran ILC
v A load module consisting of object code compiled with any Fortran compiler

link-edited with object code compiled in another language is not reentrant,
regardless of whether the Fortran routine was compiled with the RENT compiler
option.

v Language Environment does not support passing return codes between COBOL
routines and Fortran routines.

v Fortran routines cannot operate under CICS.

Preparing for ILC
This section describe topics you might want to consider before writing an ILC
application. To determine how different versions of HLLs work together, refer to
the migration guides for the HLLs you plan to use.

Language Environment ILC support
Language Environment provides ILC support between the following combinations
of COBOL and Fortran:

Table 45. Supported languages for Language Environment ILC

HLL pair COBOL Fortran

COBOL to Fortran v VS COBOL II Version 1
Release 3 (static calls only)

v COBOL/370
v COBOL for MVS & VM
v COBOL for OS/390 & VM
v Enterprise COBOL for z/OS

v FORTRAN IV G1
v FORTRAN IV H Extended
v VS FORTRAN Version 1, except modules compiled with

Release 2.0 or earlier and that either pass character arguments
to, or receive character arguments from, subprograms.

v VS FORTRAN Version 2, except modules compiled with
Releases 5 or 6 and whose source contained any parallel
language constructs or parallel callable services, or were
compiled with either of the compiler options PARALLEL or
EC.

Note: Dynamic calls from Fortran are only available from VS FORTRAN Version 2 Release 6.

Migrating ILC applications
All COBOL to Fortran ILC applications require a relink except those containing
OS/VS COBOL or VS COBOL II programs that were compiled with the NORES
compiler option. If an OS/VS COBOL program is relinked, it cannot call or be
called by a Fortran routine; the OS/VS COBOL program would need to be
upgraded.

Fortran provides a migration tool that replaces old library modules with Language
Environment ones. For more information about Fortran's library module
replacement tool, see z/OS Language Environment Programming Guide.

© Copyright IBM Corp. 1991, 2013 169

Determining the main routine
In Language Environment, only one routine can be the main routine; no other
routine in the enclave can use syntax that indicates it is main.

A COBOL program is designated as main if it is the first program to run in an
enclave. A Fortran routine is designated as a main routine with a PROGRAM
statement, which indicates the name of the main routine. A main routine can also
be designated when there are no PROGRAM, SUBROUTINE, or FUNCTION
statements, in which case the name of the main routine is the default value of MAIN
(or MAIN# for VS FORTRAN Version 2 Releases 5 and 6). The name of the main
routine is the entry point into the load module.

Table 46 describes how COBOL and Fortran identify the main routine.

Table 46. How COBOL and Fortran main routines are determined

Language When determined Explanation

COBOL Run time Determined dynamically. If it is the first program to run, it
is a main program.

Fortran Compilation Determined in the Fortran source by the name on the
PROGRAM statement.

An entry point is defined for each supported HLL. Table 47 identifies the main and
fetched entry point for each language. The table assumes that your code has been
compiled using the Language Environment-conforming compilers.

Table 47. Determining the entry point

HLL Main entry point Fetched entry point

COBOL Name of the first object program to get
control in the object module

Program name

Fortran Name on the PROGRAM statement, or
MAIN (or MAIN# for VS FORTRAN
Version 2 Releases 5 and 6), if no
PROGRAM, SUBROUTINE, or
FUNCTION statements are used

Subprogram name

Declaring COBOL to Fortran ILC
There are no special declarations needed in either COBOL or Fortran to use ILC
between them.

Calling between COBOL and Fortran
This section describes the types of calls permitted between COBOL and Fortran,
and considerations when using dynamic calls and fetch.

Types of calls permitted
Table 48 describes the types of calls between COBOL and Fortran that Language
Environment allows:

Table 48. Calls permitted for COBOL and Fortran ILC

ILC direction Static calls Dynamic calls

COBOL to Fortran Yes Yes

Fortran to COBOL Yes Yes

170 z/OS V2R1.0 Language Environment Writing ILC Applications

Dynamic call/fetch considerations
This section describes the considerations for using dynamic calls and fetch in
COBOL to Fortran ILC.

COBOL dynamically calling Fortran
Dynamic calls are made in COBOL by either a CALL statement with an identifier
whose value is the called routine name, or a CALL statement with a literal in a
routine that is compiled with the DYNAM compiler option. The dynamically called
routine can be a Fortran routine that can statically call another COBOL program.
Or it can be a COBOL program that statically calls a Fortran routine. A routine in
the dynamically loaded module can then dynamically call other COBOL or Fortran
routines.

You cannot use a COBOL CANCEL statement to delete a dynamically called
Fortran routine.

Restriction: When a COBOL program dynamically calls a Fortran routine, the
dynamically loaded module can contain only routines written in those languages
that already exist in a previous load module. (The routine in the previous load
module need not be called; it only needs to be present.) For a Fortran routine to be
recognized, ensure that at least one of the following is present in a previous load
module:
v A Fortran main program
v A Fortran routine that causes one or more Fortran runtime library routines to be

link-edited into the load module. If the Fortran routine contains either an I/O
statement, a mathematical function reference, or a call to any Fortran callable
service (such as CPUTIME), then a library routine is included, and this
requirement is satisfied.

v The Fortran signature CSECT, CEESG007. Use the following linkage editor
statement to include CEESG007 if neither of the two previous conditions is true:
INCLUDE SYSLIB (CEESG007)

Fortran dynamically calling COBOL
Dynamic calls are made in Fortran by specifying the name of the routine to be
loaded with the DYNAMIC compiler option, and then using the same name in a
CALL statement. The dynamically called routine can be either COBOL or Fortran,
and it can in turn statically call either a COBOL or Fortran routine. In the
dynamically loaded module, a routine can dynamically call other COBOL or
Fortran routines.

Neither a COBOL routine nor a Fortran routine can delete a dynamically loaded
routine that was dynamically loaded in a Fortran routine.

Calling functions
Only a Fortran subroutine subprogram can be invoked from a COBOL program. A
Fortran routine written as a function subprogram cannot be invoked from a
COBOL program. Similarly, only Fortran CALL statements can be used to invoke a
COBOL program. A COBOL program cannot be invoked with a function reference
by a Fortran routine.

Chapter 10. Communicating between COBOL and Fortran 171

Passing data between COBOL and Fortran
Table 49 lists the data types that can be passed between COBOL and Fortran by
reference.

Table 49. Supported data types between COBOL and Fortran

COBOL Fortran

PIC S9(4) USAGE IS COMPUTATIONAL

or

PIC S9(4) USAGE IS BINARY

INTEGER*2

PIC S9(9) USAGE IS COMPUTATIONAL

or

PIC S9(9) USAGE IS BINARY

INTEGER*4

PIC S9(18) USAGE IS COMPUTATIONAL

or

PIC S9(18) USAGE IS BINARY

INTEGER*8

USAGE IS COMPUTATIONAL-1 REAL*4

USAGE IS COMPUTATIONAL -2 REAL*8

PIC X(n) USAGE IS DISPLAY CHARACTER*n

USAGE IS POINTER POINTER

Passing character data
Character data can be received by a Fortran routine only when the routine that
receives the data declares the data to be of fixed length. Therefore, the following
form cannot be used by a Fortran routine to receive character data:
CHARACTER*(*)

In addition, the occurs depending on clause cannot be specified in the COBOL
declaration of the character data that is passed to the Fortran routine.

Mapping arrays
The COBOL equivalent of a Fortran array of one of the data types listed in Table 49
is a fixed-length table that includes one or more occurs clauses. A COBOL
fixed-length table and Fortran array can be passed between COBOL and Fortran
routines only if the number of repeating elements is a constant value and the
elements are in contiguous storage locations. COBOL tables containing the occurs
depending on clause and Fortran assumed-shape or assumed-size arrays cannot,
therefore, be passed between COBOL and Fortran routines.

In COBOL, tables of more than one dimension are arranged in row major order,
while in Fortran, arrays of more than one dimension are arranged in column major
order. You can correspond elements of a Fortran array to a COBOL table simply by
reversing the order of the subscripts.

Data equivalents
This section describes how COBOL and Fortran data types correspond to each
other.

172 z/OS V2R1.0 Language Environment Writing ILC Applications

Equivalent data types for COBOL to Fortran
The following examples illustrate how COBOL and Fortran routines within a single
ILC application might code the same data types.

16-bit signed binary integer

Sample COBOL usage Fortran subroutine

IDENTIFICATION DIVISION.
PROGRAM-ID. CBFC16I.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X PIC S9(4) USAGE IS BINARY.
PROCEDURE DIVISION.

MOVE 5 TO X.
CALL "CBFF16I" USING X.
DISPLAY "UPDATED VALUE IN COBOL: ", X.
GOBACK.

END PROGRAM CBFC16I.

SUBROUTINE CBFF16I(ARG)
INTEGER*2 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
ARG = ARG + 1
END

32-bit signed binary integer

Sample COBOL usage Fortran subroutine

IDENTIFICATION DIVISION.
PROGRAM-ID. CBFC32I.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X PIC S9(9) USAGE IS BINARY.
PROCEDURE DIVISION.

MOVE 5 TO X.
CALL "CBFF32I" USING X.
DISPLAY "UPDATED VALUE IN COBOL: ", X.
GOBACK.

END PROGRAM CBFC32I.

SUBROUTINE CBFF32I (ARG)
INTEGER*4 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
ARG = ARG + 1
END

64-bit signed binary integer

Sample COBOL usage Fortran subroutine

IDENTIFICATION DIVISION.
PROGRAM-ID. CBFC64I.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X PIC S9(18) USAGE IS BINARY.
PROCEDURE DIVISION.

MOVE 5 TO X.
CALL "CBFF64I" USING X.
DISPLAY "UPDATED VALUE IN COBOL: ", X.
GOBACK.

END PROGRAM CBFC64I.

SUBROUTINE CBFF64I (ARG)
INTEGER*8 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
ARG = ARG + 1
END

Chapter 10. Communicating between COBOL and Fortran 173

Short floating-point number

Sample COBOL usage Fortran subroutine

IDENTIFICATION DIVISION.
PROGRAM-ID. CBFCSFP.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X USAGE IS COMPUTATIONAL-1.
PROCEDURE DIVISION.

MOVE 5.0E0 TO X.
CALL "CBFFSFP" USING X.
DISPLAY "UPDATED VALUE IN COBOL: ", X.
GOBACK.

END PROGRAM CBFCSFP.

SUBROUTINE CBFFSFP (ARG)
REAL*4 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
ARG = ARG + 1.0E0
END

Long floating-point number

Sample COBOL usage Fortran subroutine

IDENTIFICATION DIVISION.
PROGRAM-ID. CBFCLFP.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X USAGE IS COMPUTATIONAL-2.
PROCEDURE DIVISION.

MOVE 5.0E0 TO X.
CALL "CBFFLFP" USING X.
DISPLAY "UPDATED VALUE IN COBOL: ", X.
GOBACK.

END PROGRAM CBFCLFP.

SUBROUTINE CBFFLFP (ARG)
REAL*8 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
ARG = ARG + 1.0D0
END

Fixed-length character data

Sample COBOL usage Fortran subroutine

IDENTIFICATION DIVISION.
PROGRAM-ID. CBFCFLC.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X PIC X(10) USAGE IS DISPLAY.
1 Y PIC X(10) USAGE IS DISPLAY.
PROCEDURE DIVISION.

MOVE "1234567890" TO X.
CALL "CBFFFLC" USING X, Y.
DISPLAY "VALUE RETURNED TO COBOL: ", Y.
GOBACK.

END PROGRAM CBFCFLC.

SUBROUTINE CBFFFLC (ARG1, ARG2)
CHARACTER*10 ARG1, ARG2
PRINT *, ’FORTRAN ARG1 VALUE: ’, ARG1
ARG2 = ARG1
END

174 z/OS V2R1.0 Language Environment Writing ILC Applications

Array

Sample COBOL usage Fortran subroutine

IDENTIFICATION DIVISION.
PROGRAM-ID. CBFCAF.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X.

2 MATRIX OCCURS 3 TIMES
USAGE IS COMPUTATIONAL-1.

PROCEDURE DIVISION.
MOVE 0.0E0 TO MATRIX(1).
MOVE 1.0E0 TO MATRIX(2).
MOVE 2.0E0 TO MATRIX(3).
CALL "CBFFAF" USING X.
DISPLAY "UPDATED VALUES IN COBOL: ",

MATRIX(1), MATRIX(2), MATRIX(3).
GOBACK.

END PROGRAM CBFCAF.

SUBROUTINE CBFFAF (ARG)
REAL*4 ARG(3)
PRINT *, ’FORTRAN ARG VALUES:’, ARG
DO J = 1, 3

ARG(J) = ARG(J) + 1.0
ENDDO
END

Address of an array

Sample COBOL usage Fortran subroutine

IDENTIFICATION DIVISION.
PROGRAM-ID. CBFCAOA.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X.

2 X1 OCCURS 3 TIMES
PIC S9(9)
USAGE IS BINARY.

1 P USAGE IS POINTER.
PROCEDURE DIVISION.

MOVE 0 TO X1(1).
MOVE 1 TO X1(2).
MOVE 2 TO X1(3).
CALL "GETADDR" USING X, P.
CALL "CBFFAOA" USING P.
DISPLAY "UPDATED VALUES IN COBOL: ",

X1(1), " ", X1(2), " ", X1(3).
GOBACK.

IDENTIFICATION DIVISION.
PROGRAM-ID. GETADDR.
DATA DIVISION.
LINKAGE SECTION.
1 X.

2 X1 OCCURS 3 TIMES
PIC S9(9)
USAGE IS BINARY.

1 P USAGE IS POINTER.
PROCEDURE DIVISION USING X, P.

SET P TO ADDRESS OF X.
EXIT PROGRAM.

END PROGRAM GETADDR.
END PROGRAM CBFCAOA.

SUBROUTINE CBFFAOA (ARG)
POINTER*4 (ARG, Y)
INTEGER*4 Y(3)
PRINT *,
1 ’FORTRAN ARRAY ARG VALUES:’, Y
DO J = 1, 3

Y(J) = Y(J) + 1
ENDDO
END

Equivalent data types for Fortran to COBOL
The following examples illustrate how COBOL and Fortran routines within a single
ILC application might code the same data types.

Chapter 10. Communicating between COBOL and Fortran 175

16-bit signed binary integer

Sample Fortran usage COBOL subroutine

INTEGER*2 X
X = 5
CALL FCBC16I(X)
PRINT *,
1 ’UPDATED VALUE IN FORTRAN:’, X
END

IDENTIFICATION DIVISION.
PROGRAM-ID. FCBC16I.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
1 X PIC S9(4) USAGE IS BINARY.
PROCEDURE DIVISION USING X.

DISPLAY "COBOL ARG VALUE: ", X.
ADD 1 TO X.
EXIT PROGRAM.

END PROGRAM FCBC16I.

32-bit signed binary integer

Sample Fortran usage COBOL subroutine

INTEGER*4 X
X = 5
CALL FCBC32I(X)
PRINT *,
1 ’UPDATED VALUE IN FORTRAN:’, X
END

IDENTIFICATION DIVISION.
PROGRAM-ID. FCBC32I.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
1 X PIC S9(9) USAGE IS BINARY.
PROCEDURE DIVISION USING X.

DISPLAY "COBOL ARG VALUE: ", X.
ADD 1 TO X.
EXIT PROGRAM.

END PROGRAM FCBC32I.

64-bit signed binary integer

Sample Fortran usage COBOL subroutine

INTEGER*8 X
X = 5
CALL FCBC64I(X)
PRINT *,
1 ’UPDATED VALUE IN FORTRAN:’, X
END

IDENTIFICATION DIVISION.
PROGRAM-ID. FCBC64I.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
1 X PIC S9(18) USAGE IS BINARY.
PROCEDURE DIVISION USING X.

DISPLAY "COBOL ARG VALUE: ", X.
ADD 1 TO X.
EXIT PROGRAM.

END PROGRAM FCBC64I.

Short floating-point number

Sample Fortran usage COBOL subroutine

REAL*4 X
X = 5.0
CALL FCBCSFP(X)
PRINT *,
1 ’UPDATED VALUE IN FORTRAN:’, X
END

IDENTIFICATION DIVISION.
PROGRAM-ID. FCBCSFP.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
1 X USAGE IS COMPUTATIONAL-1.
PROCEDURE DIVISION USING X.

DISPLAY "COBOL ARG VALUE: ", X.
ADD 1.0E0 TO X.
EXIT PROGRAM.

END PROGRAM FCBCSFP.

176 z/OS V2R1.0 Language Environment Writing ILC Applications

Long floating-point number

Sample Fortran usage COBOL subroutine

REAL*8 X
X = 5.0D0
CALL FCBCLFP(X)
PRINT *,
1 ’UPDATED VALUE IN FORTRAN:’, X
END

IDENTIFICATION DIVISION.
PROGRAM-ID. FCBCLFP.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
1 X USAGE IS COMPUTATIONAL-2.
PROCEDURE DIVISION USING X.

DISPLAY "COBOL ARG VALUE: ", X.
ADD 1.0E0 TO X.
EXIT PROGRAM.

END PROGRAM FCBCLFP.

Fixed-length character data

Sample Fortran usage COBOL subroutine

CHARACTER*10 X, Y
X = ’1234567890’
CALL FCBCFLC(X, Y)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN: ’, Y
END

IDENTIFICATION DIVISION.
PROGRAM-ID. FCBCFLC.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
1 X PIC X(10) USAGE IS DISPLAY.
1 Y PIC X(10) USAGE IS DISPLAY.
PROCEDURE DIVISION USING X, Y.

DISPLAY "COBOL ARG VALUE: ", X.
MOVE X TO Y.
EXIT PROGRAM.

END PROGRAM FCBCFLC.

Array

Sample Fortran usage COBOL subroutine

REAL*4 MATRIX(3) / 1.0, 2.0, 3.0 /
CALL FCBCAF(MATRIX)
PRINT *,
1 ’UPDATED VALUES IN FORTRAN:’, MATRIX
END

IDENTIFICATION DIVISION.
PROGRAM-ID. FCBCAF.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 IX PIC S9(9)

USAGE IS BINARY.
LINKAGE SECTION.
1 X.

2 MATRIX OCCURS 3 TIMES
USAGE IS COMPUTATIONAL-1.

PROCEDURE DIVISION USING X.
DISPLAY "COBOL ARG VALUES: ",

MATRIX(1), MATRIX(2), MATRIX(3).
PERFORM VARYING IX

FROM 1 BY 1
UNTIL IX > 3

SUBTRACT 1.0E0 FROM MATRIX(IX)
END-PERFORM
EXIT PROGRAM.

END PROGRAM FCBCAF.

Chapter 10. Communicating between COBOL and Fortran 177

Address of an array

Sample Fortran usage COBOL subroutine

POINTER*4 (P, I)
INTEGER*4 I(3)
INTEGER*4 J(3) / 1, 2, 3 /
P = LOC(J)
CALL FCBCAOA (P)
PRINT *,
1 ’UPDATED VALUES IN FORTRAN:’, I
END

IDENTIFICATION DIVISION.
PROGRAM-ID. FCBCAOA.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 IX PIC S9(9)

USAGE IS BINARY.
LINKAGE SECTION.
1 X USAGE IS POINTER.
1 Y.

2 M PIC S9(9)
USAGE IS BINARY
OCCURS 3 TIMES.

PROCEDURE DIVISION USING X.
SET ADDRESS OF Y TO X.
DISPLAY "COBOL ARG VALUES: ",

M(1), " ", M(2), " ", M(3).
PERFORM VARYING IX

FROM 1 BY 1
UNTIL IX > 3

SUBTRACT 1 FROM M(IX)
END-PERFORM.
EXIT PROGRAM.

END PROGRAM FCBCAOA.

External data
External data in Fortran and COBOL (common block in Fortran and data specified
by the EXTERNAL clause in COBOL) cannot be shared among routines.

Directing output in ILC applications
COBOL and Fortran do not share files, except the Language Environment message
file (the ddname specified in the Language Environment MSGFILE runtime
option). You must manage all other files to ensure that no conflicts arise.
Performing I/O operations on the same ddname might cause abnormal
termination. If directed to the Language Environment message file, output from
both COBOL and Fortran programs will be interspersed in the file.

Under COBOL, runtime messages and other related output are directed to the
Language Environment message file. For COBOL programs, output from the
DISPLAY UPON SYSOUT statement is also directed to the Language Environment
message file if the ddname name in the MGSFILE runtime option matches that in
the OUTDD compiler option. (The IBM-supplied default value for OUTDD is
SYSOUT.)

Fortran runtime messages, output written to the print unit, and other output (such
as output from the SDUMP callable service) are directed to the file specified by the
MSGFILE runtime option. To direct this output to the file with the ddname
FTnnF001, (where nn is the two-digit error message unit number), specify the
runtime option MSGFILE(FTnnF001). If the print unit is different than the error
message unit (if the PRTUNIT and the ERRUNIT runtime options have different
values), output from a PRINT statement won't be directed to the Language
Environment message file.

178 z/OS V2R1.0 Language Environment Writing ILC Applications

COBOL to Fortran condition handling
This section provides two scenarios of condition handling behavior in a COBOL to
Fortran ILC application. If an exception occurs in a COBOL routine, the set of
possible actions is as described in “Exception occurs in COBOL” on page 180. If an
exception occurs in a Fortran program, the set of possible actions is as described in
“Exception occurs in Fortran” on page 181.

Keep in mind that some conditions can be handled only by the HLL of the routine
in which the exception occurred. Two examples are:
v In a COBOL program, if a statement has a condition handling clause added to a

verb (such as ON EXCEPTION), the condition is handled within COBOL. For
example, the ON SIZE clause of a COBOL DIVIDE verb (which includes the
logical equivalent of the zero divide condition) is handled completely within
COBOL.

v When the Fortran ERR or IOSTAT specifier is present on a Fortran I/O
statement, and an error is detected while executing that statement, the Fortran
language semantics take precedence over Language Environment condition
handling. Control returns immediately to the Fortran routine and no condition is
signaled to Language Environment.

See z/OS Language Environment Programming Guide for a detailed description of
Language Environment condition handling. For information about Fortran
condition handling semantics, see VS FORTRAN Version 2 Language and Library
Reference.

Enclave-terminating language constructs
Enclaves can be terminated for reasons other than an unhandled condition of
severity 2 or greater. HLL constructs that cause the termination of a single
language enclave also cause the termination of a COBOL to Fortran enclave. In
Language Environment ILC, you can issue the language construct to terminate the
enclave from a COBOL or Fortran routine.

COBOL
The COBOL language constructs that cause the enclave to terminate are:
v STOP RUN

COBOL's STOP RUN is equivalent to the Fortran stop statement. If you code a
COBOL STOP RUN statement, the T_I_S (Termination Imminent Due to STOP)
condition is raised.

v Call to ILBOABN0 or CEE3ABD
Calling ILBOABN0 or CEE3ABD causes T_I_U to be signaled. Condition
handlers are given a chance to handle the abend. If the abend remains
unhandled, normal Language Environment termination activities occur. For
example, the Fortran stop statement is honored and the Language Environment
assembler user exit gains control.
User-written condition handlers written in COBOL must be compiled with
Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS &
VM, or COBOL/370.

Fortran
The Fortran language constructs that cause the enclave to terminate are:
v A STOP statement
v An END statement in the main routine
v A call to EXIT or SYSRCX

Chapter 10. Communicating between COBOL and Fortran 179

v A call to DUMP or CDUMP

Except for executing the END statement in a main program all of the constructs
listed above cause the T_I_S (termination imminent due to stop) condition to be
signaled.

Exception occurs in COBOL
This scenario describes the behavior of an application that contains a COBOL and
a Fortran routine. Refer to Figure 34 throughout the following discussion. In this
scenario, a Fortran main routine invokes a COBOL subroutine. An exception occurs
in the COBOL subroutine.

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. In the enablement step, COBOL determines whether the exception that

occurred should be handled as a condition.
v If the exception is to be ignored, control is returned to the next sequential

instruction after where the exception occurred.
v If the exception is to be enabled and processed as a condition, the condition

handling step, described below, takes place.
2. If a user-written condition handler has been registered using CEEHDLR on the

COBOL stack frame, it is given control. If it issues a resume, the condition
handling step ends. Processing continues in the routine to which the resume
cursor points.
Two areas to watch out for here are resuming from an IBM condition of
severity 2 or greater (see the chapter on coding a user-written condition
handler in z/OS Language Environment Programming Guide) and moving the
resume cursor in an application that contains a COBOL program (see “GOTO
out-of-block and move resume cursor” on page 182).

Fortran defaults

Lang. Env. defaults

COBOL defaults

Fortran semantics

Fortran main rtn

COBOL semantics

COBOL subroutine
Exception
occurs here

Figure 34. Stack contents when the exception occurs

180 z/OS V2R1.0 Language Environment Writing ILC Applications

In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

3. If the condition has a Facility_ID of IGZ, the condition is COBOL-specific. The
COBOL default actions occur. If COBOL doesn't recognize the condition,
condition handling continues.

4. There is no user-written condition handler on the Fortran stack frame (because
CEEHDLR cannot be called from a Fortran routine), and the condition is
percolated.

5. If the condition is of severity 0 or 1, Language Environment default actions
take place, as described in Table 62 on page 249.

6. If the condition is of severity 2 or above, Language Environment default action
is to promote the condition to T_I_U (Termination Imminent due to an
Unhandled condition) and redrive the stack. Condition handling now enters the
termination imminent step.

7. If on the second pass of the stack no condition handler moves the resume
cursor and issues a resume, Language Environment terminates the thread.

Exception occurs in Fortran
This scenario describes the behavior of an application that contains a Fortran and a
COBOL routine. Refer to Figure 35 throughout the following discussion. In this
scenario, a COBOL main routine invokes a Fortran subroutine. An exception occurs
in the Fortran subroutine.

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. If an I/O error is detected on a Fortran I/O statement that contains an ERR or

IOSTAT specifier, Fortran semantics take precedence. The exception is not
signaled to the Language Environment condition handler.

COBOL defaults

Lang. Env. defaults

Fortran defaults

COBOL semantics

COBOL main pgm

Fortran semantics

Fortran subroutine
Exception
occurs here

Figure 35. Stack contents when the exception occurs in Fortran

Chapter 10. Communicating between COBOL and Fortran 181

2. In the enablement step, Fortran treats all exceptions as conditions. Processing
continues with the condition handling step, described below.

3. There is no user-written condition handler on the Fortran stack frame (because
CEEHDLR cannot be called from a Fortran routine), and the condition is
percolated.

4. If a user-written condition handler registered using CEEHDLR is present on the
COBOL stack frame, it is given control. (User-written condition handlers
written in COBOL must be compiled with COBOL/370 or COBOL for MVS &
VM.) If it successfully issues a resume, with or without moving the resume
cursor, the condition handling step ends. Processing continues in the routine to
which the resume cursor points. Note that you must be careful when moving
the resume cursor in an application that contains a COBOL program. See
“GOTO out-of-block and move resume cursor” for details.
In this example, there is not a user-written condition handler registered for the
condition, so the condition is percolated.

5. If the condition is of severity 0 or 1, Language Environment default actions
take place, as described in Table 62 on page 249.

6. If the condition is of severity 2 or above, Language Environment default action
is to promote the condition to T_I_U (Termination Imminent due to an
Unhandled condition) and redrive the stack. Condition handling now enters the
termination imminent step.

7. If on the second pass of the stack no condition handler moves the resume
cursor and issues a resume, Language Environment terminates the thread.

GOTO out-of-block and move resume cursor
When a GOTO out-of-block or a call to CEEMRCR causes a routine to be removed
from the stack, a “non-return style” termination of the routine occurs. Multiple
routines can be terminated by a non-return style termination independent of the
number of ILC boundaries that are crossed. If one of the routines that is
terminated by the non-return style is a COBOL program, the COBOL program can
be re-entered via another call path.

If the terminated program is one of the following, the program is not deactivated.
If the COBOL program does not specify RECURSIVE in the PROGRAM-ID, a
recursion error is raised if you attempt to enter the routine again.
v A COBOL for OS/390 & VM, COBOL for MVS & VM, COBOL/370, or a VS

COBOL II program compiled with the CMPR2 option
v A VS COBOL II program that is compiled with the NOCMPR2 option and

contains nested programs
v A COBOL for OS/390 & VM, COBOL for MVS & VM, or COBOL/370 program

that is compiled with the NOCMPR2 option and has the combination of the
INITIAL attribute, nested programs, and file processing in the same compilation
unit.

v An Enterprise COBOL for z/OS program that does not use the combination of
the INITIAL attribute, nested routines, and file processing in the same
compilation unit.

In addition, if the program is an Enterprise COBOL for z/OS, COBOL for OS/390
& VM, COBOL for MVS & VM, COBOL/370, or a VS COBOL II program with the
INITIAL attribute and if it contains files, the files are closed. (COBOL supports
VSAM and QSAM files, and these files are closed.)

182 z/OS V2R1.0 Language Environment Writing ILC Applications

Sample ILC applications

@PROCESS LIST DYNAMIC(CBLFFOR)
PROGRAM FOR2CB

* Module/File Name: AFHCBFOR */
**
* Illustration of Interlanguage Communication *
* bewteen Fortran and COBOL. This Fortran *
* program makes a dynamic call to the COBOL *
* routine named CBLFFOR. *
**
*

INTEGER*2 INT_2 / 2 /
INTEGER*4 INT_4 / 4 /
REAL*8 REAL_8 / 8.0D0 /
CHARACTER*23 CHAR_23 / ’ ’ /

PRINT *, ’FOR2CB STARTED’

CALL CBLFFOR (INT_2, INT_4, REAL_8, CHAR_23)
IF (CHAR_23 /= ’PASSED CHARACTER STRING’) THEN

PRINT *, ’CHAR_23 NOT SET PROPERLY’
ENDIF

PRINT *, ’FOR2CB STARTED’
END

Figure 36. Fortranprogram that dynamically calls COBOL program

CBL LIB,QUOTE
*Module/File Name: IGZTCBFO

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLFFOR

DATA DIVISION.

LINKAGE SECTION.
77 int2 PIC S9(4) BINARY.
77 int4 PIC S9(9) BINARY.
77 float COMP-2.
77 char-string PIC X(23).

PROCEDURE DIVISION USING int2 int4 float char-string.

DISPLAY "CBLFFOR STARTED".

IF (int2 NOT = 2) THEN
DISPLAY "INT2 NOT = 2".

IF (int4 NOT = 4) THEN
DISPLAY "INT4 NOT = 4".

IF (float NOT = 8.0) THEN
DISPLAY "FLOAT NOT = 8".

MOVE "PASSED CHARACTER STRING" TO char-string.

DISPLAY "CBLFFOR ENDED".
GOBACK.

Figure 37. COBOLProgram dynamically called by Fortran program

Chapter 10. Communicating between COBOL and Fortran 183

184 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 11. Communicating between COBOL and PL/I

This topic describes Language Environment's support for COBOL and PL/I ILC
applications. If you are running a COBOL to PL/I ILC application under CICS,
you should also consult Chapter 15, “ILC under CICS,” on page 241.

General facts about COBOL to PL/I ILC
v A COBOL program cannot be called as a function.
v The halfword prefix for PL/I varying strings is exposed, so you need to code the

COBOL group data item with a halfword in front of the character string.
v PL/I supports access to COBOL files via the COBOL option of the

ENVIRONMENT attribute.
v See “Using storage functions in C to PL/I ILC” on page 141 for information

about how to use PL/I's storage facilities with Language Environment storage
services.

v Language Environment supports the passing of return codes between COBOL
and PL/I routines within an ILC application.

Preparing for ILC
This section describes topics you might want to consider before writing an
application that uses ILC between COBOL and PL/I. For help in determining how
different versions of HLLs work together, refer to the migration guides for the
HLLs you plan to use.

Language Environment ILC support
Language Environment supports ILC between the following combinations of
COBOL and PL/I:

Table 50. Supported languages for Language Environment ILC support

HLL pair COBOL PL/I

COBOL to PL/I v VS COBOL II Release 3 or later
v COBOL/370 Release 1
v COBOL for MVS & VM

Release 2
v COBOL for OS/390 & VM
v Enterprise COBOL for z/OS

v OS PL/I Version 1 Release 3 or
later

v OS PL/I Version 2
v PL/I for MVS & VM or later
v Enterprise PL/I for z/OS

Note: Language Environment does not support ILC between OS/VS COBOL Releases 2.3 or 2.4 and
PL/I. It also does not support ILC between COBOL and OS PL/I Version 1 Release 1 or 2.

Migrating ILC applications
You need to relink pre-Language Environment-conforming ILC applications in
order to get Language Environment's ILC support.

If you link your VS COBOL II to OS PL/I ILC applications to the migration tool
provided by OS PL/I Version 2 Release 3, you do not need to relink your
applications to the Language Environment library routines. This migration tool also
supports multitasking applications that contain COBOL. For more information

© Copyright IBM Corp. 1991, 2013 185

about this migration tool, refer to the IBM Enterprise PL/I for z/OS library
(http://www.ibm.com/support/docview.wss?uid=swg27036735). The PTF numbers
for the PL/I migration tool are:
v On MVS, UN76954 and UN76955

You don't need to recompile an existing ILC application unless the COBOL
programs were compiled with OS/VS COBOL or the PL/I routines were compiled
with OS PL/I Version 1 Release 1 or 2. In these cases, you must upgrade the
source and compile with a newer version of the compilers.

Determining the main routine
In Language Environment, only one routine can be the main routine. The main
routine should be presented to the linkage editor first. Because all potential main
routines nominate the entry point through the END record, the correct entry point
is chosen. If the main routine is not presented first, the entry point must be
specified with a link-edit control card.

An entry point is defined for each supported HLL. Table 51 identifies the desired
entry point. The table assumes that your code has been compiled using the
Language Environment-conforming compilers.

Table 51. Determining the entry point

HLL Main entry point Fetched entry point

COBOL Name of the first object program
to get control in the object
module

Program name

PL/I CEESTART CEESTART or routine name, if
OPTIONS(FETCHABLE) is used.

Multitasking with PL/I and COBOL
In a multitasking ILC application, the main program, or target program of a CALL
statement that creates a subtask, must be PL/I. Subsequent programs invoked from
the first program can be COBOL.

COBOL programs can run in more than one PL/I subtask when all the COBOL
programs in the application are Enterprise COBOL programs compiled with the
THREAD compiler option. If one or more of the COBOL programs is not
Enterprise COBOL compiled with the THREAD compiler option, then when a
COBOL program has been invoked in a task (either the main task or a subtask), no
other COBOL program can execute in any other task until the task used to invoke
the COBOL program ends.

To run Enterprise COBOL for z/OS programs compiled THREAD in a PL/I
multitasking application:
1. The COBOL program load modules must be link-edited RENT.
2. If a COBOL program is going to be FETCHed in a subtask, it must be

FETCHed in the main task first (even though it may not be called in the main
task).

Declaring COBOL to PL/I ILC
If a PL/I routine invokes a COBOL program or a COBOL program invokes a PL/I
routine, you must specify entry declarations in the PL/I source code. No special
declaration is required within the COBOL program.

186 z/OS V2R1.0 Language Environment Writing ILC Applications

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

When invoking a COBOL program from PL/I, you identify the COBOL entry point
by using the OPTIONS attribute in the declaration of the entry in the calling PL/I
routine. By specifying OPTIONS(COBOL) when calling a COBOL program, you
request that the PL/I compiler generate a parameter list for the COBOL program
in the style COBOL accepts.

In a PL/I routine that calls a COBOL program, the declaration of the COBOL entry
point looks like the following:
DCL COBOLEP ENTRY OPTIONS(COBOL);

The entry points in a PL/I routine invoked from a COBOL program must be
identified by the appropriate options in the corresponding PL/I PROCEDURE or
ENTRY statement, as illustrated here:
PLIEP: PROCEDURE (parms) OPTIONS(COBOL);

parms specifies parameters that are passed from the calling COBOL program.
OPTIONS(COBOL) specifies that the entry point can be invoked only by a COBOL
program.

For more information about the COBOL option, see the IBM Enterprise PL/I for
z/OS library (http://www.ibm.com/support/docview.wss?uid=swg27036735).

In addition to the COBOL option, other options suppress remapping of data
aggregates. These are described in “Using aggregates” on page 190.

Only data types common to both languages can be passed or received.

Building a reentrant COBOL to PL/I application

PL/I and COBOL reentrancy
In Language Environment, the reentrancy schemes are maintained at their current
support for either COBOL and PL/I. However, ILC applications in which PL/I
calls COBOL are now reentrant (assuming that all COBOL and PL/I routines in the
application are reentrant).

PL/I reentrancy
You should use PROC OPTIONS(REENTRANT) for all external procedures in a
multitasking environment.

Reentrancy for PL/I multitasking applications
COBOL programs running in a PL/I multitasking application should be compiled
with the RENT compiler option. COBOL programs compiled with the NORENT
compiler option will run in an ILC application; however, once a COBOL NORENT
program has run in one task, the same program cannot be used in another task.

Calling between COBOL and PL/I
This section describes the types of calls that are permitted between COBOL and
PL/I as well as dynamic call/fetch considerations.

Types of calls permitted
Table 52 on page 188 describes the types of calls between COBOL and PL/I that
Language Environment allows:

Chapter 11. Communicating between COBOL and PL/I 187

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Table 52. Calls permitted for COBOL and PL/I

ILC direction Static calls Dynamic calls Fetch/calls

COBOL to PL/I Yes Yes N/A

PL/I to COBOL Yes N/A Yes

Dynamic call/fetch considerations
This section describes the call/fetch differences between COBOL to PL/I dynamic
CALLs and PL/I to COBOL fetches.

COBOL dynamically calling PL/I
Dynamically loaded modules that contain ILC cannot be released by using the
COBOL CANCEL verb. The dynamically load module is instead released by
Language Environment termination processing.

A COBOL program can dynamically CALL a PL/I routine; COBOL programs
cannot dynamically CALL PL/I routines that were compiled by compilers previous
to Language Environment-conforming version. Fetched PL/I routines must adhere
to the restrictions listed in the IBM Enterprise PL/I for z/OS library
(http://www.ibm.com/support/docview.wss?uid=swg27036735). Enterprise PL/I
for z/OS has lifted some of the fetching restrictions. See the IBM Enterprise PL/I
for z/OS library (http://www.ibm.com/support/docview.wss?uid=swg27036735)
for more information.

If a PL/I procedure is to be dynamically loaded, you must do either of the
following:
v Specify OPTIONS(COBOL) on the PROC statement of the program that you

compile and use the routine name as the entry point when you link-edit it.
v Specify OPTIONS(COBOL FETCHABLE) on the PROC statement of the program

that you compile.

In multitasking ILC applications, once a COBOL program is called by PL/I, it can
dynamically CALL a PL/I subroutine by using the COBOL CALL identifier
statement or the DYNAM compiler option.

PL/I fetching COBOL
PL/I routines can call Language Environment-conforming COBOL programs only.
ILC between PL/I and COBOL/370, COBOL for MVS & VM, COBOL for OS/390
& VM, or Enterprise COBOL for z/OS is supported within the fetched load
module.

When using PL/I for MVS & VM or earlier, you cannot use the PL/I RELEASE
statement to release a COBOL program that was explicitly loaded by FETCH. A
COBOL CANCEL statement cannot be issued against any routine dynamically
loaded using the PL/I FETCH statement.

When using Enterprise PL/I, the fetch and release of a COBOL program and
COBOL CANCEL of a program that was dynamically loaded using the PL/I
FETCH statement is supported.

Passing data between COBOL and PL/I
This section lists the data types that are supported between COBOL and PL/I. It
also includes information about mapping aggregates across the two languages.

188 z/OS V2R1.0 Language Environment Writing ILC Applications

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

Supported data types between COBOL and PL/I
The data types supported between COBOL and PL/I are listed in Table 53.

Table 53. Supported data types between COBOL and PL/I

COBOL PL/I

PIC S9(4) USAGE IS BINARY REAL FIXED BINARY(15,0)

PIC S9(9) USAGE IS BINARY REAL FIXED BINARY(31,0)

PIC S9(18) USAGE IS BINARY REAL FIXED BINARY(63,0)

PIC 9(4) USAGE IS BINARY REAL FIXED BINARY(16,0) UNSIGNED

PIC 9(9) USAGE IS BINARY REAL FIXED BINARY(32,0) UNSIGNED

PIC 9(18) USAGE IS BINARY REAL FIXED BINARY(64,0) UNSIGNED

COMP-1 REAL FLOAT DECIMAL(6)

COMP-2 REAL FLOAT DECIMAL(16)

PIC S9(n) USAGE IS PACKED-DECIMAL FIXED DECIMAL(n)

PIC S9(n) USAGE IS COMPUTATIONAL-3 FIXED DECIMAL(n)

PIC X(n) USAGE IS DISPLAY CHARACTER(n)

PIC G(n) USAGE IS DISPLAY-1 GRAPHIC(n)

PIC N(n) USAGE IS DISPLAY-1 GRAPHIC(n)

PIC N(n) USAGE IS NATIONAL WIDECHAR(n)

PIC X(n) CHAR(n)

PIC 9(n) USAGE IS DISPLAY PICTURE '(n)9'

groups aggregates

numeric edited numeric character

POINTER POINTER

FUNCTION-POINTER POINTER or LIMITED ENTRY

01 PLISTRING.
02 LEN PIC 9(4) BINARY.
02 CHAR PIC X OCCURS 1 TO n

DEPENDING ON LEN.

PLISTRING CHAR(n) VARYING

If you use binary data that contains more significant digits than is specified in the
COBOL PICTURE clause, you must either use USAGE IS COMP-5 instead of
USAGE IS BINARY, or you must use the compiler option TRUNC(BIN) to
guarantee that truncation of high-order digits does not occur.

COBOL PIC N(n) without a USAGE clause maps to PL/I GRAPHIC(n) when the
NSYMBOL(DBCS) compiler option is in effect. COBOL PIC N(n) without a USAGE
clause maps to PL/I WIDECHAR(n) when the NSYMBOL(NATIONAL) compiler
option is in effect.

For PL/I double-word binary support (REAL FIXED BINARY(63) or REAL FIXED
BINARY(64) UNSIGNED), you must use the LIMITS(FIXEDBIN(31,63)) or the
LIMITS(FIXEDBIN(63)) compiler option.

For PL/I 31-digit decimal support, you must use the LIMITS(FIXEDDEC(15,31)) or
the LIMITS(FIXEDDEC(31)) compiler option. For COBOL 31-digit decimal support,
you must use the ARITHS(EXTEND) compiler option.

Chapter 11. Communicating between COBOL and PL/I 189

PL/I program control data is used to control the execution of your routine. It
consists of the area, entry, event, file, label, and locator data types. Program control
data can be passed through a COBOL program to a PL/I routine.

COBOL represents the NULL pointer value as X'00000000'. PL/I represents the
NULL pointer value as either X'00000000' using the SYSNULL built-in function or
as X'FF000000' using the NULL built-in function. You are responsible for managing
the different NULL values when passing pointers between COBOL and PL/I.

You must ensure that the physical layout of the data matches when passing data
by pointers between PL/I and COBOL. This particularly applies when passing
aggregates/groups and strings.

The non-address bits in all fullword pointers declared in PL/I source code should
always be zero. If they are not, results are unpredictable.

Using aggregates
PL/I and COBOL map structures differently. In PL/I, the alignment of parameters
is determined by the use of the ALIGNED and UNALIGNED attributes. For best
results, all parameters passed between PL/I and COBOL routines should be
declared using the ALIGNED attribute. The equivalent specification in COBOL is
the SYNCHRONIZED clause. See the appropriate language reference and
programming guide for details about the ALIGNED attribute.

COBOL and PL/I alignment requirements

COBOL alignment: COBOL structures are mapped as follows. Working from the
beginning, each item is aligned to its required boundary in the order in which it is
declared. The structure starts on a doubleword boundary.

If you specify the SYNCHRONIZED phrase, then BINARY and floating-point data
items are aligned on halfword, fullword, doubleword boundaries, depending on
their length. If SYNCHRONIZED is not specified, then all data items are aligned
on a byte boundary only.

PL/I alignment: PL/I structures are mapped by a method that minimizes the
unused bytes in the structure. Simply put, the method used is to first align items
in pairs, moving the item with the lesser alignment requirement as close as
possible to the item with the greater alignment requirement. The method is
described in full in the IBM Enterprise PL/I for z/OS library (http://
www.ibm.com/support/docview.wss?uid=swg27036735).

Examples of alignment: Consider, for example, a structure consisting of a single
character and a fullword fixed binary item. The fullword fixed binary item has a
fullword alignment requirement; the character has a byte alignment requirement.
In PL/I, ALIGNED is the default, and the structure is declared as follows:
DCL 1 A,

2 B CHAR(1),
2 C FIXED BINARY(31,0);

and is held like this:

190 z/OS V2R1.0 Language Environment Writing ILC Applications

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

(byte markers)

fullword boundary

CB

In COBOL, using SYNCHRONIZED, the structure would be declared as follows:
01 A SYNCHRONIZED.

02 B PIC X DISPLAY.
02 C PIC S9(9) BINARY.

and is held like this:

fullword boundary

C

(byte markers)

doubleword boundary

3 bytesB

In COBOL, without SYNCHRONIZED, the structure would be declared as follows:
01 A.

02 B PIC X.
02 C PIC S9(9) USAGE BINARY.

and is held like this:

doubleword boundary

(byte markers)

fullword boundary

CB

Mapping aggregates
When passing aggregates between COBOL and PL/I, you should ensure that the
storage layout matches in each HLL. Also, be sure to completely declare every byte
in the aggregate so that there are no open fields.

HLL facilities provide listings of the aggregate elements to help you perform the
mapping. The COBOL MAP compiler option and PL/I AGGREGATE compiler
option provide a layout of aggregates.

Arrays in PL/I map to tables (OCCURS clause) in COBOL.

The options in the entry declaration that inhibit or restrict the remapping of data
aggregates in PL/I are listed as follows:

NOMAP
Specifies that a dummy argument is not created by PL/I. The aggregate is
passed by reference to the invoked routine.

Chapter 11. Communicating between COBOL and PL/I 191

NOMAPIN
Specifies that if a dummy argument is created by PL/I, it is not initialized with
the values of the aggregate.

NOMAPOUT
Specifies that if a dummy argument is created by PL/I, its values are not
assigned by the aggregate upon return to the invoking routine.

ARGn
Applies to the NOMAP, NOMAPIN, and NOMAPOUT options. It specifies
arguments to which these options apply. If ARGn is omitted, a specified option
applies to all arguments.

Data equivalents
This section describes how PL/I and COBOL data types correspond to each other.

Equivalent data types for COBOL to PL/I
The following examples illustrate how COBOL and PL/I routines within a single
ILC application might code the same data types.

16-bit signed binary integer

Sample COBOL usage PL/I procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. CSFB15.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X PIC S9(4) USAGE IS BINARY.
PROCEDURE DIVISION.

MOVE 16 to X.
CALL "PTFB15" USING X.
GOBACK.

END PROGRAM CSFB15.

PTFB15: Proc(X) Options(COBOL);
Dcl SYSPRINT file;
Dcl X Fixed Binary(15,0);

Put Skip List(X);
End;

32-bit signed binary integer

Sample COBOL usage PL/I procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. CSFB31.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X PIC S9(9) USAGE IS BINARY.
PROCEDURE DIVISION.

MOVE 5 to X.
CALL "PTFB31" USING X.
GOBACK.

END PROGRAM CSFB31.

PTFB31: Proc (X) Options(COBOL);
Dcl SYSPRINT file;
Dcl X Fixed Binary(31);

Put Skip List(X);
End;

192 z/OS V2R1.0 Language Environment Writing ILC Applications

Short floating-point number

Sample COBOL usage PL/I procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. CSFTD6.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X USAGE IS COMPUTATIONAL-1.
PROCEDURE DIVISION.

MOVE 16 TO X.
CALL "PTFTD6" USING X.
GOBACK.

END PROGRAM CSFTD6.

PTFTD6: Proc (X) Options(COBOL);
Dcl SYSPRINT file;
Dcl X Float Decimal(6);

Put Skip List(X);
End;

Long floating-point number

Sample COBOL usage PL/I procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. CSFTD16.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 X USAGE IS COMPUTATIONAL-2.
PROCEDURE DIVISION.

MOVE 0 TO X.
CALL "PTFTD16" USING X.
GOBACK.

END PROGRAM CSFTD16.

PTFTD16: Proc (X) Options(COBOL);
Dcl SYSPRINT file;
Dcl X Float Decimal(16);

Put Skip List(X);
End;

Equivalent data types for PL/I to COBOL
The following examples illustrate how COBOL and PL/I routines within a single
ILC application might code the same data types.

16-bit signed binary integer

Sample PL/I usage COBOL subroutine

PSFB15: Proc Options(Main);
Dcl SYSPRINT file;
Dcl X Fixed Binary(15,0);
Dcl CTFB15 external entry

Options(COBOL);
X=1;

Call CTFB15(X);
End;

IDENTIFICATION DIVISION.
PROGRAM-ID. CTFB15.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
1 X PIC S9(4) USAGE IS BINARY.
PROCEDURE DIVISION USING X.

DISPLAY X.
GOBACK.

END PROGRAM CTFB15.

Chapter 11. Communicating between COBOL and PL/I 193

32-bit signed binary integer

Sample PL/I usage COBOL subroutine

PSFB31: Proc Options(Main);
Dcl SYSPRINT file;
Dcl X Fixed Binary(31);
Dcl CTFB31 external entry

Options(COBOL);
X=1;

Call CTFB31(X);
End;

IDENTIFICATION DIVISION.
PROGRAM-ID. CTFB31.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
1 X PIC S9(9) USAGE IS BINARY.
PROCEDURE DIVISION USING X.

DISPLAY X.
GOBACK.

END PROGRAM CTFB31.

Short floating-point number

Sample PL/I usage COBOL subroutine

PSFTD6: Proc Options(Main);
Dcl SYSPRINT file;
Dcl X Float Decimal(6);
Dcl CTFTD6 external entry

Options(COBOL);
X=1;

Call CTFTD6(X);
End;

IDENTIFICATION DIVISION.
PROGRAM-ID. CTFTD6.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
1 X USAGE IS COMP-1.
PROCEDURE DIVISION USING X.

DISPLAY X.
GOBACK.

END PROGRAM CTFTD6.

Long floating-point number

Sample PL/I usage COBOL subroutine

PSFTD16: Proc Options(Main);
Dcl SYSPRINT file;
Dcl X Float Decimal(16);
Dcl CTFTD16 external entry

Options(COBOL);
X=1;

Call CTFTD16(X);
End;

IDENTIFICATION DIVISION.
PROGRAM-ID. CTFTD16.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
1 X USAGE IS COMP-2.

PROCEDURE DIVISION USING X.
DISPLAY X.
GOBACK.

END PROGRAM CTFTD16.

Fixed-length character data

Sample PL/I usage COBOL subroutine

PSFSTR: Proc Options(Main);
Dcl SYSPRINT file;
Dcl Str Char(80);
Dcl CTFSTR external entry

Options(COBOL);
Str = ’Test PL/I-COBOL message.’;

Call CTFSTR(Str);
End;

IDENTIFICATION DIVISION.
PROGRAM-ID. CTFSTR.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
01 STR PIC X(80).
PROCEDURE DIVISION USING STR.

DISPLAY STR.
GOBACK.

END PROGRAM CTFSTR.

194 z/OS V2R1.0 Language Environment Writing ILC Applications

Data type equivalents when TRUNC(BIN) is specified
If you specify the COBOL compiler option TRUNC(BIN), the following data types
are equivalent between PL/I and COBOL:

Table 54. Equivalent data types between PL/I and COBOL when TRUNC(BIN) compiler
option specified

PL/I COBOL

REAL FIXED BINARY(31,0) PIC S9(9) USAGE IS BINARY
PIC S9(8) USAGE IS BINARY
PIC S9(7) USAGE IS BINARY
PIC S9(6) USAGE IS BINARY
PIC S9(5) USAGE IS BINARY

REAL FIXED BINARY(15,0) PIC S9(4) USAGE IS BINARY
PIC S9(3) USAGE IS BINARY
PIC S9(2) USAGE IS BINARY
PIC S9(1) USAGE IS BINARY

Name scope of external data
In programming languages, the name scope is defined as the portion of an
application within which a particular declaration applies or is known.

The name scope of external data under COBOL is the enclave. Under PL/I, it is the
load module. Figure 38 and Figure 39 on page 196 illustrate these differences.

Due to the difference in name scope for COBOL and PL/I, PL/I external data and
COBOL EXTERNAL data (both reentrant and non-reentrant) do not map to each
other, regardless of whether you attempt to share the data within the same load
module or across different load modules. External variables with the same name
are considered separate between COBOL and PL/I.

If your application relies on the separation of external data, however, do not give
the data the same name in both languages within a single application. By giving
the data in each load module a different name, you can change the language mix
in the application later, and your application will still behave as you expect it to.

In Figure 38, COBOL Programs 1, 2, and 3 comprise a COBOL run unit (a
Language Environment enclave). EXTERNAL data declared in COBOL Program 1
maps to that declared in COBOL Program 2 in the same load module. When a
dynamic call to COBOL Program 3 in another load module is made, the
EXTERNAL data still maps, because the name scope of EXTERNAL data in

COBOL Program 1 COBOL Program 2 COBOL Program 3

Dynamic Call

X

X

X

Load Module Load Module

Storage

Figure 38. Name scope of external variables for COBOL dynamic call

Chapter 11. Communicating between COBOL and PL/I 195

COBOL is the enclave.

The name scope of external data in PL/I is the load module. In Figure 39, external
data declared in PL/I Procedure 1 maps to that declared in PL/I Procedure 2 in
the same load module. The fetched PL/I Procedure 3 in another load module
cannot have any external data in it.

Name space of external data
In programming languages, the name space is defined as the portion of a load
module within which a particular declaration applies or is known. Figure 40 and
Figure 41 on page 197 illustrates that, like the name scope, the name space of
external data differs between PL/I and COBOL.

PL/I Procedure 1 PL/I Procedure 2 PL/I Procedure 3

Fetch/
Call

X
X

Load Module Load Module

Storage

Figure 39. Name scope of external variables for PL/I fetch

COBOL Program 1 COBOL Program 2

X
X

Load Mod

Storage

Figure 40. Name space of external data for COBOL static call to COBOL

196 z/OS V2R1.0 Language Environment Writing ILC Applications

Figure 40 on page 196 and Figure 41 illustrate that within the same load module,
the name space of COBOL programs is the same. However, the name spaces of a
COBOL program and a PL/I procedure within the same load module are not the
same. If you give external data the same name in both languages, an
incompatibility in external data mapping can occur in the future.

External data in multitasking applications
External data defined by a COBOL program persists until the enclave terminates.
The external data, then, defined in a COBOL subtask, persists even if the subtask
terminates; therefore, the same external data can be used by COBOL program in
more than one task.

The following example illustrates how you might use external data in a
multitasking ILC application:
1. COBOL PGMA is called in subtask 1. COBOL PGMA defines external PIC X

data item as EXT1. PGMA sets EXT1 to 'Z'.
2. Subtask 1 terminates.
3. COBOL PGMB is called in subtask 2. PGMB has the same external data item

EXT1. The value of EXT1 is 'Z', or the value that was set by PGMA in subtask
1.

Sharing data
This section describes how to share files between COBOL and PL/I, both in a
standard environment, and under PL/I multitasking.

Sharing files between COBOL and PL/I
By specifying the COBOL option in the PL/I ENVIRONMENT attributes in a file
declaration, files can be shared between COBOL and PL/I. However, if structures
are used in a file, mapping can be different, as described in “Using aggregates” on
page 190. When structures are in a file and you don't know whether the mapping
is the same, both COBOL and PL/I structures are mapped. Then the object module
transfers the data between structures immediately after reading the data for input
and immediately before writing the data for output.

During compilation, the compiler examines the record variable to see if there are
any structures. If there are no structures, no further action is taken. If there are
structures, the compiler tests to see if the mapping of the structure(s) is the same in
PL/I and COBOL. If the mapping is the same, no action is required. If the

Storage

COBOL Program 1 PL/I Procedure 2

X
X

Load Module

Storage

Figure 41. Name space of external data in COBOL static call to PL/I

Chapter 11. Communicating between COBOL and PL/I 197

compiler cannot determine that the mapping is the same, or if the structure is
adjustable, both structures will be mapped.

When the compiler reformats the data, and when a record I/O statement involving
a file with the COBOL option is executed, the following actions take place:

INPUT
The data is read into a structure that has been mapped using the COBOL
mapping algorithm and assigned to a PL/I mapped structure.

OUTPUT
Before the output takes place, the data in the PL/I structure is assigned to
a structure mapped for COBOL. The output to the file then takes place
from the second structure.

File sharing under PL/I multitasking
Files can be opened by COBOL programs that are running in the main task or in a
subtask. However, when the task terminates, all open files, external and
non-external, defined in COBOL programs within the task, are closed.

Directing output in ILC applications
Under COBOL, runtime messages and other related output are directed to the
MSGFILE ddname. The output from DISPLAY goes to the MSGFILE ddname only
when the OUTDD compiler option ddname matches the MSGFILE ddname.
Output from the COBOL DISPLAY UPON SYSOUT statement is also directed to
the default MSGFILE ddname. If you want to intersperse output from COBOL and
PL/I, you must compile your COBOL program using OUTDD(SYSPRINT) to
override the default OUTDD.

Under PL/I, runtime messages and other related output (such as ON condition
SNAP output) are directed to the file specified in the Language Environment
MSGFILE runtime option, instead of to the PL/I SYSPRINT STREAM PRINT file.
User-specified output is still directed to the PL/I SYSPRINT STREAM PRINT file.
To direct this output to the Language Environment MSGFILE file, specify the
runtime option MSGFILE(SYSPRINT).

COBOL to PL/I condition handling
This section offers two scenarios of condition handling behavior in a COBOL to
PL/I ILC application. If an exception occurs in a COBOL program, the set of
possible actions is as described in “Exception occurs in COBOL” on page 199. If an
exception occurs in a PL/I routine, the set of possible actions is as described in
“Exception occurs in PL/I” on page 201.

If a PL/I routine is currently active on the stack, PL/I language semantics can be
applied to handle conditions that occur in non-PL/I routines within an ILC
application. For example, PL/I semantics apply to Language Environment
hardware conditions that map directly to PL/I conditions such as ZERODIVIDE,
even if they occur in a non-PL/I routine. Also, PL/I treats any unknown condition
of severity 2 or greater as the ERROR condition. In a case in which a
COBOL-specific condition of severity 2 or greater is passed to a PL/I stack frame,
an ERROR ON-unit can handle it on the first pass of the stack.

However, some conditions can be handled only by the HLL of the routine in which
the exception occurred. Two examples are:

198 z/OS V2R1.0 Language Environment Writing ILC Applications

v Conditions raised using the PL/I statement SIGNAL are PL/I-specific conditions
and can be handled only by PL/I.

v In a COBOL program, if a statement has a condition handling clause added to a
verb (such as ON EXCEPTION), the condition is handled within COBOL. For
example, the ON SIZE clause of a COBOL DIVIDE verb (which includes the
logical equivalent of zero divide condition) is handled completely within
COBOL.

Multitasking ILC consideration
User-written condition handlers registered with the CEEHDLR callable service are
not supported in PL/I multitasking applications.

For a detailed description of Language Environment condition handling, see z/OS
Language Environment Programming Guide.

Enclave-terminating language constructs
Enclaves might be terminated due to reasons other than an unhandled condition of
severity 2 or greater. In Language Environment ILC, you can issue an HLL
language construct to terminate a COBOL to PL/I enclave from either COBOL or
PL/I.

COBOL
The COBOL language constructs that cause the enclave to terminate are:
v A STOP RUN

COBOL's STOP RUN is equivalent to the PL/I STOP statement. If you code a
COBOL STOP RUN statement, the T_I_S (Termination Imminent Due to STOP)
condition is raised.

v A call to ILBOABN0 or CEE3ABD
Calling ILBOABN0 or CEE3ABD causes T_I_U to be signaled. Condition
handlers are given a chance to handle the abend. If the abend remains
unhandled, normal Language Environment termination activities occur. For
example, the Language Environment assembler user exit gains control.
User-written condition handlers written in COBOL must be compiled with
Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS &
VM, or COBOL/370.

PL/I
The PL/I language constructs that cause the enclave to terminate are:
v A STOP or an EXIT statement

If you code a STOP or EXIT statement, the T_I_S (Termination Imminent Due to
STOP) condition is raised.

v A call to PLIDUMP with the S or E option
If you call PLIDUMP with the S or E option, neither termination imminent
condition is raised before the enclave is terminated. See z/OS Language
Environment Debugging Guide for syntax of the PLIDUMP service.

Exception occurs in COBOL
This scenario describes the behavior of an application that contains a COBOL and
a PL/I routine. Refer to Figure 42 on page 200 throughout the following discussion.
In this scenario, a PL/I main routine invokes a COBOL subroutine. An exception
occurs in the COBOL subroutine.

Chapter 11. Communicating between COBOL and PL/I 199

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. In the enablement step, COBOL determines whether the exception that

occurred should be handled as a condition.
v If the exception is to be ignored, control is returned to the next sequential

instruction after where the exception occurred.
v If the exception is to be enabled and processed as a condition, the condition

handling step takes place.
2. If a user-written condition handler has been registered using CEEHDLR on the

COBOL stack frame, it is given control.
If it issues a resume, the condition handling step ends. Processing continues in
the routine to which the resume cursor points.
Two areas to watch out for here are resuming from an IBM condition of
severity 2 or greater (see the information about coding a user-written condition
handler in z/OS Language Environment Programming Guide) and moving the
resume cursor in an application that contains a COBOL program (see “GOTO
out-of-block and move resume cursor” on page 203).
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

3. Is a user-written condition handler has been registered on the PL/I stack frame
using CEEHDLR, it is given control. If it issues a resume, the condition
handling step ends. Processing continues in the routine at the point where the
resume cursor points. In this example, no user-written condition handler is
registered for the condition, so the condition is percolated.

4. If an ON-unit has been established for the condition being processed on the
PL/I stack frame, it is given control. If it issues a GOTO out-of-block, the
condition handling step ends. Execution resumes at the label of the GOTO. In
this example, no ON-unit is established for the condition, so the condition is
percolated.

PL/I defaults

Lang. Env. defaults

COBOL defaults

PL/I semantics

PL/I main rtn

COBOL semantics

COBOL subroutine
Exception
occurs here

Figure 42. Stack contents when the exception occurs in COBOL

200 z/OS V2R1.0 Language Environment Writing ILC Applications

5. After all stack frames have been visited, and if the condition is COBOL-specific
(with a facility ID of IGZ), the COBOL default action occurs. Otherwise, the
Language Environment default actions take place.

6. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then the

Language Environment default actions take place, as described in Table 62 on
page 249. Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, The condition is promoted, and another pass of the stack
is made to look for ERROR ON-units or user-written condition handlers. If
an ERROR ON-unit or user-written condition handler is found, it is invoked.

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out of block or similar construct
– No ERROR ON-unit or user-written condition handler is found

then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination
imminent step. Because T_I_U maps to the PL/I FINISH condition, both
FINISH ON-units and user-written condition handlers can be run if the stack
frames in which they are established is reached.

v If no condition handler moves the resume cursor and issues a resume,
Language Environment terminates the thread.

Exception occurs in PL/I
This scenario describes the behavior of an application that contains a PL/I and a
COBOL routine. Refer to Figure 43 on page 202 throughout the following
discussion. In this scenario, a COBOL main program invokes a PL/I subroutine.
An exception occurs in the PL/I subroutine.

Chapter 11. Communicating between COBOL and PL/I 201

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. In the enablement step, PL/I determines if the exception that occurred should

be handled as a condition according to the PL/I rules of enablement.
v If the exception is to be ignored, control is returned to the next sequential

instruction after where the exception occurred.
v If the exception is to be enabled and processed as a condition, the condition

handling step takes place.
2. Is a user-written condition handler has been registered on the PL/I stack frame

using CEEHDLR, it is given control. If it issues a resume, the condition
handling step ends. Processing continues in the routine at the point where the
resume cursor points. In this example, no user-written condition handler is
registered for the condition, so the condition is percolated.

3. If an ON-unit has been established for the condition being processed on the
PL/I stack frame, it is given control. If it issues a GOTO out-of-block, the
condition handling step ends. Execution resumes at the label of the GOTO. In
this example, no ON-unit is established for the condition, so the condition is
percolated.

4. If a user-written condition handler registered using CEEHDLR is present on the
COBOL stack frame, it is given control. (User-written condition handlers
written in COBOL must be compiled with COBOL/370, COBOL for MVS &
VM, COBOL for OS/390 & VM, or Enterprise COBOL for z/OS.) If it
successfully issues a resume, with or without moving the resume cursor, the
condition handling step ends. Processing continues in the routine to which the
resume cursor points. Note that you must be careful when moving the resume
cursor in an application that contains a COBOL program. See “GOTO
out-of-block and move resume cursor” on page 203 for details.
In this example, there is not a user-written condition handler registered for the
condition, so the condition is percolated.

COBOL defaults

Lang. Env. defaults

PL/I defaults

COBOL semantics

COBOL main pgm

PL/I semantics

PL/I subroutine
Exception
occurs here

Figure 43. Stack contents when the exception occurs in PL/I

202 z/OS V2R1.0 Language Environment Writing ILC Applications

5. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then the

Language Environment default actions take place, as described in Table 62 on
page 249. Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, The condition is promoted, and another pass is made of
the stack to look for ERROR ON-units or user-written condition handlers. If
an ERROR ON-unit or user-written condition handler is found, it is invoked.

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out-of-block or similar construct
– No ERROR ON-unit or user-written condition handler is found

then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination
imminent step. Because T_I_U maps to the PL/I FINISH condition, both
FINISH ON-units and user-written condition handlers can be run if the stack
frames in which they are established are reached.

v If no condition handler moves the resume cursor and issued a resume,
Language Environment terminates the thread.

GOTO out-of-block and move resume cursor
When a GOTO out-of-block or a call to CEEMRCR causes a routine to be removed
from the stack, a “non-return style” termination of the routine occurs. Multiple
routines can be terminated by a non-return style termination independent of the
number of ILC boundaries that are crossed. If one of the routines that is
terminated by the non-return style is a COBOL program, the COBOL program can
be reentered via another call path.

If the terminated program is one of the following, the program is not deactivated.
If the COBOL program does not specify RECURSIVE in the PROGRAM-ID, a
recursion error is raised if you attempt to enter the routine again.
v A COBOL for OS/390 & VM, COBOL for MVS & VM, COBOL/370, or a VS

COBOL II program compiled with the CMPR2 option
v A VS COBOL II program that is compiled with the NOCMPR2 option and

contains nested programs
v A COBOL for OS/390 & VM, COBOL for MVS & VM, or COBOL/370 program

that is compiled with the NOCMPR2 option and has the combination of the
INITIAL attribute, nested programs, and file processing in the same compilation
unit.

v A Enterprise COBOL for z/OS program that does not use the combination of the
INITIAL attribute, nested routines, and file processing in the same compilation
unit.

In addition, if the program is a COBOL program with the INITIAL attribute and if
it contains files, the files are closed. (COBOL supports VSAM and QSAM files, and
these files are closed.)

Sample PL/I to COBOL applications
PL/I routine calling COBOL subroutine

Chapter 11. Communicating between COBOL and PL/I 203

*PROCESS MACRO;
PL1CBL: PROC OPTIONS(MAIN);
/*Module/File Name: IBMPCB
/***/
/* FUNCTION : Interlanguage communications call to a *
/* a COBOL program. *
/* *
/* This example illustrates an interlanguage call from *
/* a PL/I main program to a COBOL subroutine. *
/* The parameters passed across the call from PL/I to *
/* COBOL have the following characteristics: *
/* *
/* Data Type PL/I Attributes COBOL Data Description *
/* ---------------- -------------------- ---------------------- *
/* Halfword Integer REAL FIXED BIN(15,0) PIC S9999 USAGE COMP *
/* Fullword Integer REAL FIXED BIN(31,0) PIC S9(9) USAGE COMP *
/* Packed Decimal REAL FIXED DEC(m,n) PIC S9(m-n).9(n) COMP-3 *
/* Short Floating REAL FLOAT DEC(6) USAGE COMP-1 *
/* or REAL FLOAT BIN(21) *
/* Long Floating REAL FLOAT DEC(16) USAGE COMP-2 *
/* or REAL FLOAT BIN(53) *
/* Character string CHARACTER(n) PIC X(n) USAGE DISPLAY *
/* DBCS string GRAPHIC(n) PIC G(n) USAGE DISPLAY-1 *
/* *
/* Note 1: in COBOL, the usages COMPUTATIONAL-1 and COMP-1 *
/* are equivalent. *
/* Note 2: in COBOL, the usages COMPUTATIONAL-2 and COMP-2 *
/* are equivalent. *
/* Note 3: in COBOL, the usages FIXED-DECIMAL, COMP-3, and *
/* COMPUTATIONAL-3 are all equivalent. *
/* Note 4: in COBOL, the usages COMP, COMPUTATIONAL, COMP-4, *
/* COMPUTATIONAL-4, and BINARY are all equivalent. *
/* Note 5: character strings passed must NOT have the VARYING *
/* attribute in PL/I (both SBCS and DBCS). *
/* Note 6: in COBOL, the reserved word USAGE is optional. *
/* Note 7: in PL/I, the attributes BIN and BINARY are equivalent. *
/* Note 8: in PL/I, the attributes DEC and DECIMAL are equivalent. *
/* Note 9: in PL/I, attributes CHAR and CHARACTER are equivalent. *
/* *
/***/

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

/**/
/* DECLARE ENTRY FOR THE CALL TO COBOL */
/**/
DCL PL1CBSB EXTERNAL ENTRY(

/*1*/ FIXED BINARY(15,0),
/*2*/ FIXED BINARY(31,0),
/*3*/ FIXED DECIMAL(5,3),
/*4*/ FLOAT DECIMAL(6),
/*5*/ FLOAT DECIMAL(16),
/*6*/ CHARACTER(23),
/*7*/ GRAPHIC(2))

OPTIONS(COBOL);

/**/
/* Declare parameters: */
/**/
DCL PLI_INT2 FIXED BINARY(15,0) INIT(15);
DCL PLI_INT4 FIXED BINARY(31,0) INIT(31);
DCL PLI_PD53 FIXED DECIMAL(5,3) INIT(-12.345);
DCL PLI_FLOAT4 FLOAT DECIMAL(6) INIT(53.99999);
DCL PLI_FLOAT8 FLOAT DECIMAL(16) INIT(3.14151617);
DCL PLI_CHAR23 CHARACTER(23) INIT(’PASSED CHARACTER STRING’);
DCL PLI_DBCS GRAPHIC(2) INIT(’40404040’GX);

/**/
/* PROCESS STARTS HERE */
/**/
PUT SKIP LIST(’***’);
PUT SKIP LIST(’PL/I Calling COBOL example is now in motion’);
PUT SKIP LIST(’***’);
PUT SKIP;
CALL PL1CBSB(PLI_INT2, PLI_INT4, PLI_PD53,

PLI_FLOAT4, PLI_FLOAT8, PLI_CHAR23, PLI_DBCS);
PUT SKIP LIST(’PL/I calling COBOL subroutine example ended’);

END PL1CBL;

204 z/OS V2R1.0 Language Environment Writing ILC Applications

COBOL program called by a PL/I main
CBL LIB,QUOTE,NODYNAM

* *
* IBM Language Environment for MVS & VM *
* *
* Licensed Materials - Property of IBM *
* *
* 5645-001 5688-198 *
* (C) Copyright IBM Corp. 1991, 1998 *
* All Rights Reserved *
* *
* US Government Users Restricted Rights - Use, *
* duplication or disclosure restricted by GSA *
* ADP Schedule Contract with IBM Corp. *
* *

*Module/File Name: IGZTPCB
**
** PL1CBSB - COBOL language subroutine invoked by the ***
** PL/I program PL1CBL. ***
** ***
** This is an example of a COBOL subroutine that is called ***
** from a PL/I main program. See the calling PL/I program ***
** for a table of the PL/I data formats and corresponding ***
** COBOL data formats. The arguments received are compared ***
** to their expected values, and any discrepancies reported. ***
** ***
**
IDENTIFICATION DIVISION.
PROGRAM-ID. PL1CBSB.
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.
77 COBOL-INT2 PIC S9999 BINARY VALUE 15.
77 COBOL-INT4 PIC S9(9) BINARY VALUE 31.
77 COBOL-PD53 PIC S9(2)V9(3) COMP-3 VALUE -12.345.
77 COBOL-FLOAT4 COMP-1 VALUE 53.99999E0.
77 COBOL-FLOAT8 COMP-2 VALUE 3.14151617E0.
77 COBOL-CHAR23 PIC X(23) DISPLAY

VALUE "PASSED CHARACTER STRING".
77 COBOL-DBCS PIC G(2) DISPLAY-1 VALUE SPACES.
77 FLOAT8-DIFF COMP-2.
LINKAGE SECTION.
01 INT2-ARG PIC S9999 BINARY.
01 INT4-ARG PIC S9(9) BINARY.
01 PD53-ARG PIC S9(2)V9(3) COMP-3.
01 FLOAT4-ARG COMP-1.
01 FLOAT8-ARG COMP-2.
01 CHAR23-ARG PIC X(23) DISPLAY.
01 DBCS-ARG PIC G(2) DISPLAY-1.
**

PROCEDURE DIVISION USING INT2-ARG, INT4-ARG, PD53-ARG,
FLOAT4-ARG, FLOAT8-ARG,
CHAR23-ARG, DBCS-ARG.

0001-ENTRY-FROM-PL1.
DISPLAY "***************************************".
DISPLAY "COBOL PROGRAM ENTERED FROM PL/I PROGRAM".
DISPLAY "***************************************".

**
** Compare passed arguments to initialized values. **
**

IF (INT2-ARG NOT = COBOL-INT2) THEN
DISPLAY "Error passing PL/I FIXED BIN(15,0) to COBOL:"
DISPLAY "Actual argument value is " INT2-ARG
DISPLAY "Expected value is " COBOL-INT2

END-IF.

IF (INT4-ARG NOT = COBOL-INT4) THEN
DISPLAY "Error passing PL/I FIXED BIN(31,0) to COBOL:"
DISPLAY "Actual argument value is " INT4-ARG
DISPLAY "Expected value is " COBOL-INT4

END-IF.

IF (PD53-ARG NOT = COBOL-PD53) THEN
DISPLAY "Error passing PL/I FIXED DEC(5,3) to COBOL:"
DISPLAY "Actual argument value is " PD53-ARG

Chapter 11. Communicating between COBOL and PL/I 205

DISPLAY "Expected value is " COBOL-PD53
END-IF.

IF (FLOAT4-ARG NOT = COBOL-FLOAT4) THEN
**
* Calculate absolute difference between short float value *
**

COMPUTE FLOAT8-DIFF = COBOL-FLOAT4 - FLOAT4-ARG
IF (FLOAT8-DIFF < 0) THEN

COMPUTE FLOAT8-DIFF = - FLOAT8-DIFF
END-IF
IF (FLOAT8-DIFF > .00001E0) THEN

DISPLAY "Error passing PL/I FLOAT DEC(6) to COBOL:"
ELSE

DISPLAY "Warning: slight difference found when "
"passing PL/I FLOAT DEC(6) to COBOL:"

END-IF
DISPLAY "Actual argument value is " FLOAT4-ARG
DISPLAY "Expected value is " COBOL-FLOAT4

END-IF.

IF (FLOAT8-ARG NOT = COBOL-FLOAT8) THEN
**

* Calculate absolute difference between long float values *
**

COMPUTE FLOAT8-DIFF = COBOL-FLOAT8 - FLOAT8-ARG
IF (FLOAT8-DIFF < 0) THEN

COMPUTE FLOAT8-DIFF = - FLOAT8-DIFF
END-IF
IF (FLOAT8-DIFF > .000000001E0) THEN

DISPLAY "Error passing PL/I FLOAT DEC(16) to COBOL:"
ELSE

DISPLAY "Warning: slight difference found when "
"passing PL/I FLOAT DEC(16) to COBOL:"

END-IF
DISPLAY "Actual argument value is " FLOAT8-ARG
DISPLAY "Expected value is " COBOL-FLOAT8

END-IF.

IF (CHAR23-ARG NOT = COBOL-CHAR23) THEN
DISPLAY "Error passing PL/I CHAR(23) to COBOL:"
DISPLAY "Actual argument value is ’" CHAR23-ARG "’"
DISPLAY "Expected value is ’" COBOL-CHAR23 "’"

END-IF.

IF (DBCS-ARG NOT = COBOL-DBCS) THEN
DISPLAY "Error passing PL/I GRAPHIC(23) to COBOL:"
DISPLAY "Actual argument value is ’" DBCS-ARG "’"
DISPLAY "Expected value is ’" COBOL-DBCS "’"

END-IF.

GOBACK.

206 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 12. Communicating between Fortran and PL/I

This topic describes Language Environment's support for Fortran and PL/I
applications.

General facts about Fortran to PL/I ILC
v Fortran object code link-edited with that of another HLL produces a

non-reentrant load module, regardless of whether the Fortran routine was
compiled with the RENT compiler option. See “Building a reentrant Fortran to
PL/I application” on page 209 for more information about reentrancy.

v Language Environment does not support passing return codes between Fortran
routines and PL/I routines.

v Fortran routines cannot operate under CICS.
v Support for Fortran on VM is not provided by Language Environment.
v In PL/I multitasking applications, once a Fortran routine is called in a task, no

other task can call a Fortran routine until the calling task terminates.

Preparing for ILC
This section describes topics you might want to consider before writing an
application that uses ILC between Fortran and PL/I. For help in determining how
different versions of HLLs work together, refer to the migration guides for the
HLLs you plan to use.

Language Environment ILC support
Language Environment supports ILC between the following combinations of
Fortran and PL/I:

Table 55. Supported languages for Language Environment ILC support

HLL pair Fortran PL/I

Fortran- to-PL/I static calls v FORTRAN IV G1
v FORTRAN IV H Extended
v VS FORTRAN Version 1, except

modules compiled with Release 2.0 or
earlier and that either pass character
arguments to, or receive character
arguments from, subprograms.

v VS FORTRAN Version 2, except
modules compiled with Releases 5 or 6
and whose source contained any
parallel language constructs or parallel
callable services, or were compiled with
either of the compiler options
PARALLEL or EC.

v OS PL/I Version 1 Releases 3.0 through
5.1

v OS PL/I Version 2
v PL/I for MVS & VM
v Enterprise PL/I for z/OS

PL/I-to-Fortran dynamic calls See the preceding list above for Fortran
support.

v OS PL/I Version 1 Releases 3.0 through
5.1

v OS PL/I Version 2

v PL/I for MVS & VM

v Enterprise PL/I for z/OS

© Copyright IBM Corp. 1991, 2013 207

Table 55. Supported languages for Language Environment ILC support (continued)

HLL pair Fortran PL/I

Fortran-to-PL/I dynamic calls VS FORTRAN Version 2 Release 6, with
the exceptions listed above

v OS PL/I Version 2, Release 2 or later

v PL/I for MVS & VM

v Enterprise PL/I for z/OS

Migrating ILC applications
You need to relink Fortran to PL/I ILC applications in order to get Language
Environment's ILC support.

Both Fortran and PL/I provide migration tools that replace old library modules
with Language Environment ones. For more information about Fortran's library
module replacement tool, see z/OS Language Environment Programming Guide. For
more information about the PL/I migration tool, see the IBM Enterprise PL/I for
z/OS library (http://www.ibm.com/support/docview.wss?uid=swg27036735).

Determining the main routine
In Language Environment, only one routine can be the main routine. The main
routine should be presented to the linkage editor first.

A Fortran routine is designated as a main routine with a PROGRAM statement,
which indicates the name of the main routine. A Fortran routine can also be
designated as a main routine in the absence of the PROGRAM, SUBROUTINE, and
FUNCTION statements, in which case the name of the main routine has a default
value of MAIN (or MAIN# for VS FORTRAN Version 2 Releases 5 and 6).

A PL/I routine is designated as a main routine with the OPTIONS(MAIN) option
on the PROCEDURE statement.

An entry point is defined for each supported HLL. Table 56 identifies the desired
entry point. The table assumes that your code was compiled using the Language
Environment-conforming compilers.

Table 56. Determining the entry point

HLL Main entry point Fetched entry point

Fortran Name on the PROGRAM
statement or MAIN (or MAIN# for
VS FORTRAN Version 2 Releases
5 and 6).

Name on a SUBROUTINE or
FUNCTION statement

PL/I CEESTART CEESTART or routine name, if
OPTIONS(FETCHABLE) is used.

Declaring Fortran to PL/I ILC
You must specify entry declarations in PL/I source code when a PL/I routine
invokes a Fortran routine and when a Fortran routine invokes a PL/I routine. The
special declarations cause the PL/I compiler to generate an internal argument list
that the Fortran routine accepts. No special declaration is required within the
Fortran program.

In the PL/I routine that invokes Fortran, identify the entry point as Fortran in the
OPTIONS attribute. The following example illustrates a PL/I routine that identifies
a Fortran entry point FORTEP.

208 z/OS V2R1.0 Language Environment Writing ILC Applications

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

DCL FORTEP ENTRY OPTIONS(FORTRAN);

In the PL/I routine called by Fortran, declare the entry point in the OPTIONS
attribute in the PROCEDURE or ENTRY statement. The following illustrates a PL/I
routine FORTPLI that will be called by Fortran:
FORTPLI: PROCEDURE (parms) OPTIONS(FORTRAN);

parms specifies the parameters that are passed from the Fortran routine. In
previous PL/I compilers, the OPTIONS attribute also needed the INTER keyword
to control condition handling between Fortran and PL/I. The INTER keyword is
ignored under Language Environment.

Invoking functions
Functions can also be declared as described above. A procedure written in PL/I as
a function can be invoked through a function reference in a Fortran routine.
Similarly, a routine written in Fortran as a function subprogram can be invoked
through a function reference in a PL/I routine.

Character data cannot be used as function return values in functions invoked by
either Fortran or PL/I in a Fortran to PL/I ILC application. However, character
data can be used as arguments for either functions or subroutines. See “Passing
data between Fortran and PL/I” on page 211 for information about character data
in Fortran to PL/I ILC.

Building a reentrant Fortran to PL/I application
Fortran object code link-edited with that of another HLL produces a non-reentrant
load module, regardless of whether the Fortran routine was compiled with the
RENT compiler option. If you need to call a Fortran routine from a reentrant
routine written in another language, link-edit the Fortran routine into a separate
load module and invoke it with a dynamic call from another language.

Calling between Fortran and PL/I
This section describes the types of calls permitted in Fortran to PL/I ILC
applications and considerations when using dynamic call/fetch mechanisms.

Types of calls permitted
Table 57 describes the types of calls between Fortran and PL/I that Language
Environment allows:

Table 57. Calls permitted for Fortran and PL/I

ILC direction Static calls Dynamic calls Fetch/Calls

Fortran to PL/I Yes Yes N/A

PL/I to Fortran Yes N/A Yes

See Table 55 on page 207 for exceptions to ILC support.

Dynamic call/fetch considerations
This section describes how to perform dynamic calls in Fortran to PL/I ILC
applications.

Fortran Dynamically calling PL/I
For Fortran to dynamically call a PL/I routine, the Fortran routine uses the same
name in a CALL statement or function reference as is specified on the DYNAMIC

Chapter 12. Communicating between Fortran and PL/I 209

compiler option. In the Fortran routine, the dynamically called PL/I routine
(FORTPLI in the following example), would be declared as follows:
@PROCESS DYNAMIC(FORTPLI)

In the PL/I routine, the Fortran calling routine is declared the same as for a
Fortran-to-PL/I static call, as follows:
FORTPLI: PROCEDURE (...) OPTIONS(FORTRAN);

The dynamically called routine, whether Fortran or PL/I, can statically call another
Fortran or PL/I routine.

The dynamically called routine, whether Fortran or PL/I, can dynamically call
another Fortran or PL/I routine. However, only two of the dynamically loaded
modules can contain PL/I routines (including the load module dynamically loaded
by the operating system or subsystem).

There is no Fortran facility to delete a dynamically loaded routine.

PL/I Dynamically calling Fortran
For PL/I to dynamically call a Fortran routine, the PL/I routine must declare the
Fortran entry point, such as in the following example:
DCL FORTEP ENTRY OPTION(FORTRAN);

PL/I could then dynamically call the Fortran routine with the following code:
FETCH FORTEP;
CALL FORTEP (...);

The dynamically called routine, whether Fortran or PL/I, can statically call another
Fortran or PL/I routine. However, the dynamically called Fortran routine cannot
contain a PL/I routine in the dynamically loaded module unless there was also a
PL/I routine in a previously executed load module.

The dynamically called routine, whether Fortran or PL/I, can dynamically call
another Fortran or PL/I routine. However, only two of the dynamically loaded
modules can contain PL/I routines (including the load module dynamically loaded
by the operating system or subsystem).

You cannot use the PL/I RELEASE statement to release a Fortran program.

Restriction: When a PL/I routine fetches a Fortran routine, the dynamically
loaded module can contain only routines written in those languages that already
exist in a previous load module. (The routine in the previous load module need
not be called; it only needs to be present.) For a Fortran routine to be recognized,
ensure that at least one of the following is present in a previous load module:
v A Fortran main program
v A Fortran routine that causes one or more Fortran runtime library routines to be

link-edited into the load module. If the Fortran routine contains either an I/O
statement, a mathematical function reference, or a call to any Fortran callable
service (such as CPUTIME), then a library routine is included, and this
requirement is satisfied.

v The Fortran signature CSECT, CEESG007. Use the following linkage editor
statement to include CEESG007 if neither of the two previous conditions is true:
INCLUDE SYSLIB(CEESG007)

210 z/OS V2R1.0 Language Environment Writing ILC Applications

Passing data between Fortran and PL/I
This section describes the data types that are compatible between Fortran and
PL/I. It also includes information about how to map aggregates across the two
languages.

Supported data types between Fortran and PL/I
The data types supported between Fortran and PL/I are listed in Table 58.

Table 58. Supported data types between Fortran and PL/I

Fortran PL/I

INTEGER*2 REAL FIXED BINARY(15,0)

INTEGER*4 REAL FIXED BINARY(31,0)

REAL*4 REAL FLOAT DEC(6,0)

REAL*8 REAL FLOAT DEC(16,0)

REAL*16 REAL FLOAT DEC(33,0)

COMPLEX*8 COMPLEX FLOAT DEC(6,0)

COMPLEX*16 COMPLEX FLOAT DEC(16,0)

COMPLEX*32 COMPLEX FLOAT DEC(33,0)

CHARACTER*n CHARACTER(n)

POINTER POINTER

Passing character data
Character data can be received by a Fortran or PL/I routine only when the routine
that receives the data declares the data as fixed length. Therefore, the Fortran form
CHARACTER*(*) and the PL/I form CHARACTER(*) cannot be used to receive
character data. The VARYING attribute cannot be specified in the PL/I declaration
of character data.

Using aggregates
An array can be passed between Fortran and PL/I routines only when the array
has its elements in contiguous storage locations and when the called routine
specifies a constant number of elements along each dimension. In Fortran, arrays
of more than one dimension are arranged in storage in column major order; in
PL/I they are in row major order. Unless you specifically override remapping with
the PL/I attributes NOMAP, NOMAPIN, or NOMAPOUT (for overriding
remapping in both called and calling Fortran routines), a temporary remapped
array is created for the called routine. When an array is remapped, an element can
be referenced in both Fortran and PL/I with subscripts in the same order.

Structures are not supported in Fortran to PL/I ILC.

Data equivalents
This section describes how Fortran and PL/I data types correspond to each other.

Equivalent data types for Fortran to PL/I
The following examples illustrate how PL/I and Fortran routines within a single
ILC application might code the same data types.

Chapter 12. Communicating between Fortran and PL/I 211

16-bit signed binary integer

Sample Fortran usage PL/I function

INTEGER*2 X, Y, F2PP16I
X = 5
Y = F2PP16I(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

F2PP16I: PROC (X) OPTIONS(FORTRAN)
RETURNS(FIXED BIN(15));

DCL X FIXED BIN(15);
PUT SKIP

LIST(’PL/I ARG VALUE:’, X);
RETURN (X);

END F2PP16I;

32-bit signed binary integer

Sample Fortran usage PL/I Function

INTEGER*4 X, Y, F2PP32I
X = 5
Y = F2PP32I(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

F2PP32I: PROC (X) OPTIONS(FORTRAN)
RETURNS(FIXED BIN(31));

DCL X FIXED BIN(31);
PUT SKIP

LIST(’PL/I ARG VALUE:’, X);
RETURN (X);

END F2PP32I;

Short floating-point number

Sample Fortran usage PL/I Function

REAL*4 X, Y, F2PPSFP
X = 5.0
Y = F2PPSFP(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

F2PPSFP: PROC (X) OPTIONS(FORTRAN)
RETURNS(FLOAT DEC(6));

DCL X FLOAT DEC(6);
PUT SKIP

LIST(’PL/I ARG VALUE:’, X);
RETURN (X);

END F2PPSFP;

Long floating-point number

Sample Fortran usage PL/I Function

REAL*8 X, Y, F2PPLFP
X = 12.5D0
Y = F2PPLFP(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

F2PPLFP: PROC (X) OPTIONS(FORTRAN)
RETURNS(FLOAT DEC(16));

DCL X FLOAT DEC(16);
PUT SKIP

LIST(’PL/I ARG VALUE:’, X);
RETURN (X);

END F2PPLFP;

Extended floating-point number

Sample Fortran usage PL/I function

REAL*16 X, Y, F2PPEFP
X = 12.1Q0
Y = F2PPEFP(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

F2PPEFP: PROC (X) OPTIONS(FORTRAN)
RETURNS(FLOAT DEC(33));

DCL X FLOAT DEC(33);
PUT SKIP

LIST(’PL/I ARG VALUE:’, X);
RETURN (X);

END F2PPEFP;

212 z/OS V2R1.0 Language Environment Writing ILC Applications

Complex: two adjacent short floating-point numbers

Sample Fortran usage PL/I function

COMPLEX*8 X, Y, F2PPSCP
X = (5.0, 15.0)
Y = F2PPSCP(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

F2PPSCP: PROC (X) OPTIONS(FORTRAN)
RETURNS(COMPLEX FLOAT DEC(6));

DCL X COMPLEX FLOAT DEC(6);
PUT SKIP

LIST(’PL/I ARG VALUE:’, X);
RETURN (X);

END F2PPSCP;

Complex: two adjacent long floating-point numbers

Sample Fortran usage PL/I function

COMPLEX*16 X, Y, F2PPLCP
X = (5.0D0, 15.0D0)
Y = F2PPLCP(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

F2PPLCP: PROC (X) OPTIONS(FORTRAN)
RETURNS(COMPLEX FLOAT DEC(16));

DCL X COMPLEX FLOAT DEC(16);
PUT SKIP

LIST(’PL/I ARG VALUE:’, X);
RETURN (X);

END F2PPLCP;

Complex: two adjacent extended floating-point numbers

Sample Fortran usage PL/I function

COMPLEX*32 X, Y, F2PPECP
X = (5.0Q0, 15.0Q0)
Y = F2PPECP(X)
PRINT *,
1 ’VALUE RETURNED TO FORTRAN:’, Y
END

F2PPECP: PROC (X) OPTIONS(FORTRAN)
RETURNS(COMPLEX FLOAT DEC(33));

DCL X COMPLEX FLOAT DEC(33);
PUT SKIP

LIST(’PL/I ARG VALUE:’, X);
RETURN (X);

END F2PPECP;

Fixed-length character data

Sample Fortran usage PL/I subroutine

X = ’1234567890’
CALL F2PPFLC(X, Y)
1 ’VALUE RETURNED TO FORTRAN: ’, Y
END

F2PPFLC: PROC (X, Y) OPTIONS(FORTRAN);
DCL X CHARACTER(10);
DCL Y CHARACTER(10);
PUT SKIP

LIST(’PL/I ARG VALUE:’, X);
Y = X;
RETURN;

END F2PPFLC;

Array

Sample Fortran usage PL/I subroutine

REAL*4 MATRIX(3) / 1.0, 2.0, 3.0 /
CALL F2PPAF(MATRIX)
PRINT *,
1 ’UPDATED VALUES IN FORTRAN:’, MATRIX
END

F2PPAF: PROC (X) OPTIONS(FORTRAN);
DCL X(3) FLOAT DEC(6);
DCL IX FIXED BIN(31);
PUT SKIP

LIST(’PL/I ARG VALUE:’, X);
DO IX = 1 TO 3 BY 1;

X(IX) = X(IX) - 1.0E0;
END;
RETURN;

END F2PPAF;

Chapter 12. Communicating between Fortran and PL/I 213

Address of an array

Sample Fortran usage PL/I subroutine

POINTER*4 (P, I)
INTEGER*4 I(3)
INTEGER*4 J(3) / 1, 2, 3 /
P = LOC(J)
CALL F2PPAOA (P)
PRINT *,
1 ’UPDATED VALUES IN FORTRAN:’, I
END

F2PPAOA: PROC (X) OPTIONS(FORTRAN);
DCL X POINTER;
DCL Y(3) FIXED BIN(31) BASED(X);
PUT SKIP

LIST(’PL/I ARG VALUES:’, Y);
DO IX = 1 TO 3 BY 1;

Y(IX) = Y(IX) - 1;
END;
RETURN;

END F2PPAOA;

Equivalent data types for PL/I to Fortran
The following examples illustrate how PL/I and Fortran routines within a single
ILC application might code the same data types.

16-bit signed binary integer

Sample PL/I usage Fortran Function

P2FP16I: PROC OPTIONS(MAIN);
DCL PLFF16I ENTRY OPTIONS(FORTRAN)

RETURNS(FIXED BIN(15));
DCL X FIXED BIN(15);
DCL Y FIXED BIN(15);
X = 5;
Y = P2FF16I(X);
PUT SKIP

LIST(’Value Returned to PL/I:’, Y);
END P2FP16I;

FUNCTION P2FF16I (ARG)
P2FF16I = ARG
END

32-bit signed binary integer

Sample PL/I usage Fortran function

P2FP32I: PROC OPTIONS(MAIN);
DCL P2FF32I ENTRY OPTIONS(FORTRAN)

RETURNS(FIXED BIN(31));
DCL X FIXED BIN(31);
DCL Y FIXED BIN(31);
X = 5;
Y = P2FF32I(X);
PUT SKIP

LIST(’VALUE RETURNED TO PL/I:’, Y);
END P2FP32I;

FUNCTION P2FF32I (ARG)
INTEGER*4 P2FF32I
INTEGER*4 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
P2FF32I = ARG
END

Short floating-point number

Sample PL/I usage Fortran Function

P2FPSFP: PROC OPTIONS(MAIN);
DCL P2FFSFP ENTRY OPTIONS(FORTRAN)

RETURNS(FLOAT DEC(6));
DCL X FLOAT DEC(6);
DCL Y FLOAT DEC(6);
X = 5.0E0;
Y = P2FFSFP(X);
PUT SKIP

LIST(’VALUE RETURNED TO PL/I:’, Y);
END P2FPSFP;

FUNCTION P2FFSFP (ARG)
REAL*4 P2FFSFP
REAL*4 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
P2FFSFP = ARG
END

214 z/OS V2R1.0 Language Environment Writing ILC Applications

Long floating-point number

Sample PL/I usage Fortran Function

P2FPLFP: PROC OPTIONS(MAIN);
DCL P2FFLFP ENTRY OPTIONS(FORTRAN)

RETURNS(FLOAT DEC(16));
DCL X FLOAT DEC(16);
DCL Y FLOAT DEC(16);
X = 5.000000000000000E0;
Y = P2FFLFP(X);
PUT SKIP

LIST(’VALUE RETURNED TO PL/I:’, Y);
END P2FPLFP;

FUNCTION P2FFLFP (ARG)
REAL*8 P2FFLFP
REAL*8 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
P2FFLFP = ARG
END

Extended floating-point number

Sample PL/I usage Fortran Function

P2FPEFP: PROC OPTIONS(MAIN);
DCL P2FFEFP ENTRY OPTIONS(FORTRAN)

RETURNS(FLOAT DEC(33));
DCL X FLOAT DEC(33);
DCL Y FLOAT DEC(33);
X = 5.00000000000000000000000E0;
Y = P2FFEFP(X);
PUT SKIP

LIST(’VALUE RETURNED TO PL/I:’, Y);
END P2FPEFP;

FUNCTION P2FFEFP (ARG)
REAL*16 P2FFEFP
REAL*16 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
P2FFEFP = ARG
END

Complex: two adjacent short floating-point numbers

Sample PL/I usage Fortran Function

P2FPSCP: PROC OPTIONS(MAIN);
DCL P2FFSCP ENTRY OPTIONS(FORTRAN)

RETURNS(COMPLEX FLOAT DEC(6));
DCL X COMPLEX FLOAT DEC(6);
DCL Y COMPLEX FLOAT DEC(6);
X = 5.0E0 + 15.0E0I;
Y = P2FFSCP(X);
PUT SKIP

LIST(’VALUE RETURNED TO PL/I:’, Y);
END P2FPSCP;

FUNCTION P2FFSCP (ARG)
COMPLEX*8 P2FFSCP
COMPLEX*8 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
P2FFSCP = ARG
END

Complex: two adjacent long floating-point numbers

Sample PL/I usage Fortran Function

P2FPLCP: PROC OPTIONS(MAIN);
DCL P2FFLCP ENTRY OPTIONS(FORTRAN)

RETURNS(COMPLEX FLOAT DEC(16));
DCL X COMPLEX FLOAT DEC(16);
DCL Y COMPLEX FLOAT DEC(16);
X = 5.000000000000000E0

+ 15.00000000000000E0I;
Y = P2FFLCP(X);
PUT SKIP

LIST(’VALUE RETURNED TO PL/I:’, Y);
END P2FPLCP;

FUNCTION P2FFLCP (ARG)
COMPLEX*16 P2FFLCP
COMPLEX*16 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
P2FFLCP = ARG
END

Chapter 12. Communicating between Fortran and PL/I 215

Complex: two adjacent extended floating-point numbers

Sample PL/I usage Fortran Function

P2FPECP: PROC OPTIONS(MAIN);
DCL P2FFECP ENTRY OPTIONS(FORTRAN)

RETURNS(COMPLEX FLOAT DEC(33));
DCL X COMPLEX FLOAT DEC(33);
DCL Y COMPLEX FLOAT DEC(33);
X = 5.0000000000000000000E0

+ 15.000000000000000000E0I;
Y = P2FFECP(X);
PUT SKIP

LIST(’VALUE RETURNED TO PL/I:’, Y);
END P2FPECP;

FUNCTION P2FFECP (ARG)
COMPLEX*32 P2FFECP
COMPLEX*32 ARG
PRINT *, ’FORTRAN ARG VALUE:’, ARG
P2FFECP = ARG
END

Fixed-length character data

Sample PL/I usage Fortran subroutine

P2FPFLC: PROC OPTIONS(MAIN);
DCL P2FFFLC ENTRY OPTIONS(FORTRAN);
DCL X CHARACTER(10);
DCL Y CHARACTER(10);
X = ’1234567890’;
CALL P2FFFLC(X, Y);
PUT SKIP

LIST(’VALUE RETURNED TO PL/I:’, Y);
END P2FPFLC;

SUBROUTINE P2FFFLC (ARG1, ARG2)
CHARACTER*10 ARG1, ARG2
PRINT *, ’FORTRAN ARG1 VALUE: ’, ARG1
ARG2 = ARG1
END

Array

Sample PL/I usage Fortran subroutine

P2FPAF: PROC OPTIONS(MAIN);
DCL P2FFAF ENTRY OPTIONS(FORTRAN);
DCL X(3) FLOAT DEC(6);
X(1) = 0E0;
X(2) = 1E0;
X(3) = 2E0;
CALL P2FFAF(X);
PUT SKIP

LIST(’UPDATED VALUES IN PL/I:’, X);
END P2FPAF;

SUBROUTINE P2FFAF (ARG)
REAL*4 ARG(3)
PRINT *, ’FORTRAN ARG VALUES:’, ARG
DO J = 1, 3

ARG(J) = ARG(J) + 1.0
ENDDO
END

Address of an array

Sample PL/I usage Fortran subroutine

P2FPAOA: PROC OPTIONS(MAIN);
DCL P2FFAOA ENTRY OPTIONS(FORTRAN);
DCL X(3) FIXED BIN(31);
DCL Y(3) FIXED BIN(31) BASED(P);
P = ADDR(X);
Y(1) = 0;
Y(2) = 1;
Y(3) = 2;
CALL P2FFAOA(P);
PUT SKIP

LIST(’UPDATED VALUES IN PL/I:’, Y);
END P2FPAOA;

SUBROUTINE P2FFAOA (ARG)
POINTER*4 (ARG, Y)
INTEGER*4 Y(3)
PRINT *,
1 ’FORTRAN ARRAY ARG VALUES:’, Y
DO J = 1, 3
Y(J) = Y(J) + 1
ENDDO
END

216 z/OS V2R1.0 Language Environment Writing ILC Applications

External data
Fortran static common blocks and PL/I static external data of the same name can
be shared among routines in a load module under the following conditions:
v The Fortran static common blocks are either used only with one load module in

an application or they are declared as private common blocks. A private
common block is not shared across load modules and is created in any of the
following ways:
– Specified or implied by the PC compiler option
– Referenced by Fortran object code produced by the VS FORTRAN Version 2

Release 4 compiler or earlier
– In an application that executes with the PC runtime option.

Directing output from ILC applications
Fortran runtime messages, output written to the print unit, and other output (such
as output from the SDUMP callable service) are directed to the file specified by the
MSGFILE runtime option. To direct this output to the file with the ddname
FTnnF001 (where nn is the two-digit error message unit number), specify the
runtime option MSGFILE(FTnnF001). If the print unit is different from the error
message unit (if the PRTUNIT and the ERRUNIT runtime options have different
values), output from a PRINT statement will not be directed to the Language
Environment message file.

PL/I runtime messages and other related output (such as ON condition SNAP
output) are directed to the file specified in the MSGFILE runtime option instead of
to the PL/I SYSPRINT STREAM PRINT file. User-written output is still directed to
the PL/I SYSPRINT STREAM PRINT file; to direct user-written output to the
Language Environment message file, specify the MSGFILE(SYSPRINT) runtime
option.

Running Fortran routines in the PL/I multitasking facility
This section describes different considerations and restrictions of running Fortran
in the PL/I Multitasking Facility.

In a PL/I multitasking ILC application, Fortran routines can be executed in either
the main task or in a subtask. If a Fortran routine was invoked in a task (either
main task or subtask), no other Fortran routine can execute in any other task until
the task used to invoke the Fortran routine ends. Therefore, in a multitasking
environment, you cannot invoke a Fortran routine in a subtask if a Fortran routine
has already been invoked in the main task.

Reentrancy in a multitasking application
You need to be careful about calling the routine in a different enclave or in a PL/I
subtask, because any load module containing a Fortran routine is non-reentrant.
The following restrictions apply:
v Once a Fortran routine in a load module has been invoked, no Fortran routine in

the same copy of the load module can be invoked from a different task, even
after the first task ends.

v If there are Fortran routines in a load module, then no Fortran routine in the
same copy of that load module can be used in an enclave other than in the first
enclave in which a Fortran routine is called.

Chapter 12. Communicating between Fortran and PL/I 217

Common blocks in a PL/I multitasking application
In a PL/I multitasking application, Fortran dynamic common blocks are always
maintained for the whole enclave, even though subtasks that use them can start
and end.

Fortran static common blocks persist only as long as the load module that contains
them is in storage. When a load module is loaded from within a subtask, Fortran
common blocks persist only within that subtask because the load module is
deleted when the task ends. If, in a later subtask, the same load module is loaded,
a fresh copy is loaded with fresh contents of the common block.

If, however, the load module is loaded in the main task (with the FETCH
statement), and is also specified in a CALL statement to run a subtask, the load
module (and the Fortran common blocks) is retained in storage after the subtask
ends. The same copy of the load module can be used in another CALL statement
to create another subtask, with the same contents of the common block. The
following code illustrates this method:
FETCH ABC;
CALL ABC (...) TASK;

Data-in-virtual data objects in PL/I multitasking applications
You can use data objects that are accessed by the data-in-virtual (DIV) callable
services in different subtasks. If you want to use the same data object or a different
data object in different subtasks, you need to establish their use in the DIVINF or
DIVINV callable services. Otherwise, at the end of each subtask, the data object is
terminated.

Files and print units in a multitasking application
Fortran routines running in either the main task or a subtask can open files.
However, when the task terminates, all the open files except the Language
Environment message file are automatically closed.

If the standard print unit is the same unit number as the error message unit, it is
in effect the Language Environment message file, and will stay open when the task
terminates. If the standard print unit is different from the error message unit, the
print unit will close, along with other Fortran files, at task termination. The unit
numbers are set with the PRTUNIT and ERRUNIT runtime options.

Fortran to PL/I condition handling
This section offers two scenarios of condition handling behavior in a Fortran to
PL/I ILC application. If an exception occurs in a Fortran program, the set of
possible actions is as described in “Exception occurs in Fortran” on page 219. If an
exception occurs in a PL/I routine, the set of possible actions is as described in
“Exception occurs in PL/I” on page 221.

Some conditions can be handled only by the HLL of the routine in which the
exception occurred. For example, when ERR and IOSTAT specifiers are present on
a Fortran I/O statement and an error is detected while executing that statement,
Fortran condition handling semantics take precedence over Language Environment
condition handling. Control returns immediately to the Fortran program and no
condition is signaled to Language Environment.

218 z/OS V2R1.0 Language Environment Writing ILC Applications

If there is a PL/I routine currently active on the stack, PL/I language semantics
can be applied to handle conditions that occur in non-PL/I routines within an ILC
application. For example, PL/I semantics apply to Language Environment
hardware conditions that map directly to PL/I conditions such as ZERODIVIDE,
even if they occur in a non-PL/I routine. Also, PL/I treats any unknown condition
of severity 2 or greater as the ERROR condition. In a case in which a
Fortran-specific condition of severity 2 or greater is passed to a PL/I stack frame,
an ERROR ON-unit can handle it on the first pass of the stack.

PL/I Multitasking ILC considerations
User-written condition handlers registered with the CEEHDLR callable service are
not supported in PL/I multitasking applications.

When a Fortran enclave-terminating construct, such as a STOP statement, is
executed from a Fortran routine in a PL/I subtask, the entire enclave is terminated.

See z/OS Language Environment Programming Guide for a detailed description of
Language Environment condition handling. For information about Fortran
condition handling semantics, see VS FORTRAN Version 2 Programming Guide for
CMS and MVS.

Enclave-terminating language constructs
Enclaves can be terminated due to reasons other than an unhandled condition of
severity 2 or greater. In Language Environment ILC, you can issue an HLL
language construct to terminate a Fortran to PL/I enclave from either a Fortran or
PL/I routine.

Fortran
The Fortran language constructs that cause the enclave to terminate are:
v A STOP statement
v An END statement in the main routine
v A call to EXIT or SYSRCX
v A call to DUMP or CDUMP

PL/I
The PL/I language constructs that cause the enclave to terminate are:
v A STOP or EXIT statement

If you code a STOP or EXIT statement, the T_I_S (Termination Imminent Due to
STOP) condition is raised.

v An END or RETURN statement in the main routine
v A call to PLIDUMP with the S or E option

If you call PLIDUMP with the S or E option, neither termination imminent
condition is raised before the enclave is terminated. See z/OS Language
Environment Debugging Guide for syntax of the PLIDUMP service.

Exception occurs in Fortran
This scenario describes the behavior of an application that contains a Fortran and a
PL/I routine. Refer to Figure 44 on page 220 throughout the following discussion.
In this scenario, a PL/I main routine invokes a Fortran subroutine. An exception
occurs in the Fortran subroutine.

Chapter 12. Communicating between Fortran and PL/I 219

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. If an I/O error is detected on a Fortran I/O statement that contains an ERR or

IOSTAT specifier, Fortran semantics take precedence. The exception is not
signaled to the Language Environment condition handler.

2. In the enablement step, Fortran treats all exceptions as conditions. Processing
continues with the condition handling step.

3. There is no user-written condition handler on the Fortran stack frame (because
CEEHDLR cannot be called from a Fortran routine), and the condition is
percolated.

4. If a user-written condition handler has been registered on the PL/I stack frame
using CEEHDLR, it is given control. If it issues a resume, the condition
handling step ends. Processing continues in the routine at the point where the
resume cursor points.
In this example, no user-written condition handler is registered for the
condition, so the condition is percolated.

5. If an ON-unit has been established for the condition being processed on the
PL/I stack frame, it is given control. If it issues a GOTO out-of-block, the
condition handling step ends. Execution resumes at the label of the GOTO. In
this example, no ON-unit is established for the condition, so the condition is
percolated.

6. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then the

Language Environment default actions take place, as described in Table 62 on
page 249. Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, The condition is promoted, and another pass of the stack
is made to look for ERROR ON-units or user-written condition handlers. If
an ERROR ON-unit or user-written condition handler is found, it is invoked.

PL/I defaults

Lang. Env. defaults

Fortran defaults

PL/I semantics

PL/I main rtn

Fortran semantics

Fortran subroutine
Exception
occurs here

Figure 44. Stack contents when the exception occurs in Fortran

220 z/OS V2R1.0 Language Environment Writing ILC Applications

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out of block or similar construct
– No ERROR ON-unit or user-written condition handler is found

then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination
imminent step. Because T_I_U maps to the PL/I FINISH condition, both
FINISH ON-units and user-written condition handlers can be run if the stack
frames in which they are established is reached.

v If no condition handler moves the resume cursor and issues a resume,
Language Environment terminates the thread.

Exception occurs in PL/I
This scenario describes the behavior of an application that contains a PL/I and a
Fortran routine. Refer to Figure 45 throughout the following discussion. In this
scenario, a Fortran main routine invokes a PL/I subroutine. An exception occurs in
the PL/I subroutine.

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. In the enablement step, PL/I determines if the exception that occurred should

be handled as a condition according to the PL/I rules of enablement.
v If the exception is to be ignored, control is returned to the next sequential

instruction after where the exception occurred.
v If the exception is to be enabled and processed as a condition, the condition

handling step takes place.
2. If a user-written condition handler has been registered on the PL/I stack frame

using CEEHDLR, it is given control. If it issues a resume, the condition
handling step ends. Processing continues in the routine at the point where the

Fortran defaults

Lang. Env. defaults

PL/I defaults

Fortran semantics

Fortran main rtn

PL/I semantics

PL/I subroutine
Exception
occurs here

Figure 45. Stack contents when the exception occurs in PL/I

Chapter 12. Communicating between Fortran and PL/I 221

resume cursor points. In this example, no user-written condition handler is
registered for the condition, so the condition is percolated.

3. If an ON-unit has been established for the condition being processed on the
PL/I stack frame, it is given control. If it issues a GOTO out-of-block, the
condition handling step ends. Execution resumes at the label of the GOTO. In
this example, no ON-unit is established for the condition, so the condition is
percolated.

4. This is no user-written condition handler on the Fortran stack frame (because
CEEHDLR cannot be called from a Fortran routine), and the condition is
percolated.

5. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then the

Language Environment default actions take place, as described in Table 62 on
page 249. Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, The condition is promoted, and another pass is made of
the stack to look for ERROR ON-units or user-written condition handlers. If
an ERROR ON-unit or user-written condition handler is found, it is invoked.

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out of block or similar construct
– No ERROR ON-unit or user-written condition handler is found

then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination
imminent step. Because T_I_U maps to the PL/I FINISH condition, both
FINISH ON-units and user-written condition handlers can be run if the stack
frames in which they are established are reached.

v If no condition handler moves the resume cursor and issued a resume,
Language Environment terminates the thread.

222 z/OS V2R1.0 Language Environment Writing ILC Applications

Sample ILC applications

@PROCESS LIST
PROGRAM FOR2PLI

* Module/File Name: AFHPLFOR */
**
* Illustration of Interlanguage Communication *
* between Fortran and PL/I. *
**
*

INTEGER*2 INT_2 / 2 /
INTEGER*4 INT_4 / 4 /
REAL*8 PI / 3.14159265358979312D0 /
CHARACTER*23 CHAR_23 / ’ ’ /

PRINT *, ’FOR2PLI STARTED’

CALL PLIFFOR (INT_2, INT_4, PI, CHAR_23)
IF (CHAR_23 /= ’PASSED CHARACTER STRING’) THEN

PRINT *, ’CHAR_23 NOT SET PROPERLY’
ENDIF

PRINT *, ’FOR2PLI ENDED’
END

Figure 46. Fortran routine that calls a PL/I routine

PLIFFOR: PROCEDURE (INT_2, INT_4, REAL_8, CHAR_STRING)
OPTIONS(FORTRAN);

/* Module/File Name: IBMPLFOR */

DCL ABS BUILTIN;
DCL INT_2 FIXED BIN(15,0);
DCL INT_4 FIXED BIN(31,0);
DCL REAL_8 FLOAT BIN(53);
DCL CHAR_STRING CHAR(23);

DCL PI FLOAT BIN(53)
INIT (3.141592653589793E0);

PUT SKIP LIST (’PLIFFOR STARTED’);

IF (INT_2 ¬= 2) THEN
PUT SKIP LIST (’INT_2 NOT 2’);

IF (INT_4 ¬= 4) THEN
PUT SKIP LIST (’INT_4 NOT 4’);

IF (ABS(REAL_8 - PI) > 1.0E13) THEN
PUT SKIP LIST (’REAL_8 NOT PI’);

CHAR_STRING = ’PASSED CHARACTER STRING’;

PUT SKIP LIST (’PLIFFOR ENDED’);

END PLIFFOR;

Figure 47. PL/I routine called by Fortran

Chapter 12. Communicating between Fortran and PL/I 223

224 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 13. Communicating between multiple HLLs

This section describes considerations for writing ILC applications comprised of
three or more languages. One approach to writing an n-way ILC application is to
treat it as several pairwise ILC groupings within a single application. For any call
between routines written in two different HLLs, you must, at a minimum, adhere
to the restrictions described for that pair, as documented in the pairwise ILC
descriptions.

The considerations in this section apply to any combination of supported
languages within an ILC application. These common considerations are
summarized here to provide a convenient overview of writing an n-way ILC
application. For specific details, refer to the appropriate pairwise considerations
described previously.

If you are running any ILC application under CICS, you should also consult
Chapter 15, “ILC under CICS,” on page 241.

Supported data types across HLLs
Table 59 lists those data types that are common across all supported HLLs when
passed without using a pointer. There are, in addition to those listed in this table,
additional data types supported across specific ILC pairs; these are listed in the
applicable pairwise ILC descriptions.

Table 59. Data types common to all supported HLLs

C C++ COBOL PL/I

signed long int signed long int PIC S9(9) USAGE IS BINARY Real Fixed Bin(31,0)

double double COMP-2 Real Float Dec(16)

External data
The following list describes how external data maps across the languages, as well
as how mapping is restricted:

C to C++
External variables map if: 1) C has constructed reentrancy, or 2) C++ uses
#pragma variable(...,norent) to make the specific variable non-reentrant.

C to COBOL
C and COBOL static external variables do not map to each other.

C to PL/I
If C is non-reentrant, then C and PL/I static external variables map by
name. If the C routine has constructed reentrancy, the C and PL/I static
external variables will map if the C routine uses #pragma
variable(...,norent) to make the specific variable non-reentrant.

C++ to COBOL
C++ and COBOL static external variables do not map to each other.

C++ to PL/I
External variables map if C++ uses #pragma variable(...,norent) to make
specific variable non-reentrant.

© Copyright IBM Corp. 1991, 2013 225

COBOL to PL/I
COBOL and PL/I static external variables do not map to each other.

Thread management
POSIX-conforming C/C++ applications can communicate with Enterprise COBOL
for z/OS programs compiled THREAD on any thread.

POSIX-conforming C/C++ applications can communicate with the following
COBOL programs on only one thread:
v Enterprise COBOL for z/OS (compiled NOTHREAD)
v COBOL for OS/390 & VM
v COBOL for MVS & VM
v COBOL/370
v VS COBOL II

POSIX-conforming C/370 applications can communicate with assembler routines
on any thread when the assembler routines use the CEEENTRY/CEETERM macros
or the EDCPRLG/EDCEPIL macros provided by C/C++.

OS/390-conforming C applications can communicate with PL/I on any thread
created by C routines. PL/I routines, however, must follow the rules described in
z/OS Language Environment Programming Guide.

If an asynchronous signal is being delivered to a thread, the thread is interrupted
for the signal only when the execution is:
v In a user C routine,
v Just prior to a return to a C routine
v In an Enterprise COBOL for z/OS program compiled with the THREAD option
v Just prior to return to Enterprise COBOL for z/OS program compiled with the

THREAD option, or
v Just prior to an invocation of a Language Environment library from a user

routine

C routines or COBOL routines compiled with the THREAD compiler option may
need to protect against asynchronous signals based on the application logic
including the possible use of the POSIX signal-blocking function that is available.
For all other routines, it does not have to be concerned about being interrupted
during its execution for an asynchronous signal.

Condition handling
This section describes what happens during Language Environment condition
handling and enclave termination.

C++ exception handling constructs try/throw/catch cannot be used with Language
Environment and HLL condition handling. If you use C exception handling
constructs (signal/raise) in your C++ routine, condition handling will proceed as
described in this section and in the other C chapters. Otherwise, you will get
undefined behavior in your programs if you mix the C constructs with the C++
constructs.

See z/OS Language Environment Programming Guide for a detailed description of
Language Environment condition handling.

226 z/OS V2R1.0 Language Environment Writing ILC Applications

Enclave-terminating constructs
Enclave termination can occur due to reasons other than an unhandled condition
of severity 2, 3, or 4. These include:
v A language STOP-like construct such as a C abort(), raise(SIGABRT), exit()

function call, COBOL STOP RUN, or PL/ISTOP or EXIT statement.
When one of these statements is encountered, the T_I_S (Termination Imminent
Due to STOP) condition is signaled.

v A return from the main routine
v A Language Environment-initiated abend
v A user-requested abend (call to CEE3ABD or ILBOABN0)

You can call CEE3ABD to request an abend either with or without clean-up. If
the abend is issued without clean-up, T_I_U (Termination Imminent due to an
Unhandled condition) is not raised. See z/OS Language Environment Programming
Reference for more information about the CEE3ABD callable service.
If you call CEE3ABD and request an abend with clean-up, or you call
ILBOABN0 from a COBOL program, T_I_U is signaled. Condition handlers are
given a chance to handle the abend. If the abend remains unhandled, normal
Language Environment termination activities occur. For example, the C atexit
list is honored if a C routine is present on the stack, and the Language
Environmentassembler user exit gains control.

C, COBOL, and PL/I scenario: exception occurs in C
This scenario describes the behavior of an application that contains C, COBOL, and
PL/I. Refer to Figure 48 on page 228 throughout the following discussion.

Chapter 13. Communicating between multiple HLLs 227

In this example, X.COBOL invokes Y.PLI, which invokes Z.C. A condition is raised
in Z.C. The stack contains what is shown in Figure 48. No user-written condition
handlers have been registered using CEEHDLR for any stack frame, and no PL/I
ON-units have been established.

The actions taken follow the three Language Environment condition handling
steps: enablement, condition, and termination imminent.
1. In the enablement step, it is determined whether the exception in the C routine

should be enabled and treated as a condition. If any of the following are true,
the exception is ignored, and processing continues at the next sequential
instruction after where the exception occurred:
v You specified SIG_IGN for the exception in a call to signal().

However, the system or user abend represented by the Language
Environment message 3250 and the signal(SIGABND) is not ignored. The
enclave is terminated.

v The exception is one of those listed as masked in Table 63 on page 249.
v You do not specify any action, but the default action for the condition is

SIG_IGN (see Table 63 on page 249).
v You are running under CICS and a CICS handler is pending.

If you do none of these things, the condition is enabled and processed as a
condition.

C defaults

COBOL semantics

X.COBOL main pgm

COBOL defaults

LE defaults

PL/I defaults

PL/I semantics

Y.PLI subroutine

C semantics

Z.C subroutine
Exception
occurs here

Figure 48. Stack contents when the exception occurs in C

228 z/OS V2R1.0 Language Environment Writing ILC Applications

2. If a user-written condition handler is registered using CEEHDLR on the Z.C
stack frame, it receives control. If it issues a resume, the condition handling
step ends. Processing continues in the routine to which the resume cursor
points.
In this example, there is no user-written condition handler registered, so the
condition is percolated.

3. If a C signal handler has been registered for the condition on the Z.C stack
frame, it is given control. If it issues a resume or a call to longjmp(), the
condition handling step ends. Processing resumes in the routine to which the
resume cursor points.
In this example, no signal handler is registered, so the condition is percolated.

4. The condition is still unhandled. If C does not recognize the condition, or if the
C default action (listed in Table 63 on page 249) is to terminate, the condition is
percolated.

5. No user-written condition handlers can be registered using CEEHDLR on the
Y.PLI stack frame, because they cannot be written in PL/I. If an ON-unit that
corresponds to the condition being processed exists on the Y.PLI stack frame,
however, it is given control. If it issues a GOTO out of block, the condition
handling step ends. Execution resumes at the label of the GOTO.
In this example, no ON-unit has been established for the condition on the Y.PLI
stack frame, so the condition is percolated.

6. If a user-written condition handler has been registered using CEEHDLR on the
X.COBOL stack frame, it is given control. (User-written condition handlers
written in COBOL must be compiled with COBOL/370, COBOL for MVS &
VM, or COBOL for OS/390 & VM.) If it issues a resume, with or without
moving the resume cursor, the condition handling step ends. Processing
continues in the routine to which the resume cursor points.

7. What happens next depends on whether the condition is promotable to the
PL/I ERROR condition. The following can happen:
v If the condition is not promotable to the PL/I ERROR condition, then

Language Environment default actions take place, as described in Table 62 on
page 249. Condition handling ends.

v If the PL/I default action for the condition is to promote it to the PL/I
ERROR condition, the condition is promoted, and another pass of the stack is
made to look for ERROR ON-units or user-written condition handlers. If an
ERROR ON-unit or user-written condition handler is found, it is invoked.

v If either of the following occurs:
– An ERROR ON-unit or user-written condition handler is found, but it

does not issue a GOTO out of block or similar construct
– No ERROR ON-unit or user-written condition handler is found

then the ERROR condition is promoted to T_I_U (Termination Imminent due
to an Unhandled condition). Condition handling now enters the termination
imminent step. Because T_I_U maps to the PL/I FINISH condition, a FINISH
ON-unit or user-written condition handler is run if the stack frame in which
it is established is reached.

v If no condition handler moves the resume cursor and issues a resume,
Language Environment terminates the thread.

User handlers that you register using CEEHDLR must be written in the same
language you are using to do the registration.

Chapter 13. Communicating between multiple HLLs 229

Sample N-Way ILC applications

*Process lc(101),s,map,list,stmt,a(f),ag;
NWAYILC: PROC OPTIONS(MAIN);
/*Module/File Name: IBMNWAY
/***/
/* FUNCTION : Interlanguage communications call to a *
/* C program which in turn calls a *
/* COBOL program. *
/* *
/* Our example illustrates a 3-way interlanguage call from *
/* a PL/I main program to a C program and from C to *
/* a COBOL subroutine. PL/I initializes an array to zeros. *
/* PL/I passes the array and an empty character string to *
/* C program NWAY2C. NWAY2C fills the numeric array with *
/* random numbers and a C character array with lowercase *
/* letters. A COBOL program, NWAY2CB, is called to convert*
/* the characters to uppercase. The random numbers array *
/* and the string of uppercase characters are returned *
/* to PL/I main program and printed. *
/***/
/***/
/* DECLARES FOR THE CALL TO C *
/***/
DCL J FIXED BIN(31,0);
DCL NWAY2C EXTERNAL ENTRY RETURNS(FIXED BIN(31,0));
DCL RANDS(6) FIXED BIN(31,0);
DCL STRING CHAR(80) INIT(’Initial String Value’);
DCL ADDR BUILTIN;
RANDS = 0;

PUT SKIP LIST(’NWAYILC STARTED’);
/**/
/*Pass array and an empty string to C. */
/**/
J = NWAY2C(ADDR(RANDS), ADDR(STRING));
PUT SKIP LIST (’Returned from C and COBOL subroutines’);
IF (J = 999) THEN DO;
PUT EDIT (STRING) (SKIP(1) , A(80));
PUT EDIT ((RANDS(I) DO I = 1 TO HBOUND(RANDS,1)))

(SKIP(1) , F(10));
END;
ELSE DO;

PUT SKIP LIST(’BAD RETURN CODE FROM C’);
END;
PUT SKIP LIST(’NWAYILC ENDED’);
END NWAYILC;

Figure 49. PL/I main routine of ILC application

230 z/OS V2R1.0 Language Environment Writing ILC Applications

/*Module/File Name: EDCNWAY */
/**
* NWAY2C is invoked by a PL/I program. The PL/I program passes *
* an array of zeros and an UNINITIALIZED character string. *
* NWAY2C fills the array with random numbers. It fills the *
* character string with lowercase letters, calls a COBOL *
* subroutine to convert them to uppercase (NWAY2CB), and returns *
* to PL/I. The by reference parameters are modified. *
**/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <leawi.h>
#ifdef __cplusplus

extern "PLI" int NWAY2C (int *c_array 6 , char *chrptr 80);
extern "COBOL" void NWAY2CB(char *);

#else
#pragma linkage (NWAY2C,PLI)
#pragma linkage (NWAY2CB,COBOL)
void NWAY2CB(char *);

#endif
int NWAY2C (int *c_array 6 , char *chrptr 80)
{
int *pRns ;
char *pChr ;
char string 80 = "the random numbers are";
int i, ret=999;
fprintf(stderr,"NWAY2C STARTED\n");
/**/
/* Check chrptr from PLI to verify we got what expected *
/**/
if(strncmp(*chrptr, "Initial String Value", 20))
{

fprintf(stderr,
"NWAY2C: chrptr not what expected.\n \"%s\"\n", *chrptr);

--ret;
}
/**/
/*Fill numeric array parameter with random numbers. *
/*Adjust for possible array element size difference. *
/**/
pRns = *c_array;
for (i=0; i < 6; ++i)
{

pRns i = rand() ;
fprintf(stderr,"pRns %d = %d\n",i,pRns i);

}
/**/
/* Call COBOL to change lowercase characters to upper. *
/**/
NWAY2CB(*chrptr);
if(strncmp(*chrptr, "INITIAL STRING VALUE", 20))
{

fprintf(stderr,
"NWAY2C: string not what expected.\n \"%s\"\n", *chrptr);

--ret;
}
fprintf(stderr,"NWAY2C ENDED\n");
return(ret);
}

Figure 50. C routine called by PL/I in a 3-way ILC application

Chapter 13. Communicating between multiple HLLs 231

CBL QUOTE
*Module/File Name: IGZTNWAY

** NWAY2CB is called and passed an 80-character *
* lowercase character string by reference. *
* The string is converted to uppercase and *
* control returns to the caller. *

ID DIVISION.
PROGRAM-ID. NWAY2CB.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
77 STRING-VAL PIC X(80).
PROCEDURE DIVISION USING STRING-VAL.

DISPLAY "NWAY2CB STARTED".
MOVE FUNCTION UPPER-CASE (STRING-VAL)

TO STRING-VAL.
DISPLAY "NWAY2CB ENDED".

GOBACK.

Figure 51. COBOL program called by C in a 3-way ILC application

232 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 14. Communicating between assembler and HLLs

This chapter describes Language Environment's support for assembler–HLL ILC
applications. For more information about using assembler under Language
Environment, see z/OS Language Environment Programming Guide.

Calling between assembler and an HLL
Language Environment-conforming assembler routines can be dynamically
called/fetched from any Language Environment-conforming HLL. In addition,
Language Environment-conforming assembler routines can dynamically load
another routine by using the Language Environment CEEFETCH macro or
CEELOAD macro. Using CEEFETCH to load the routine allows the routine to be
deleted using CEERELES.

Note: CEEFETCH/CEERELES and CEELOAD should not be used for DLLs.

Using the CEEFETCH macro
CEEFETCH dynamically loads a routine and is preferred over CEELOAD for
loading routines. However, it does not create a nested enclave. CEEFETCH is the
only supported method for loading a routine that was created using the DFSMS
Binder when omitting the use of the Language Environment Prelinker Utility. The
Language Environment Prelinker Utility function is provided in the DFSMS Binder
eliminating the requirement for the prelink step to create the routine.

System services should not be used to delete modules loaded with CEEFETCH;
instead, the CEERELES macro should be used to delete routines loaded with
CEEFETCH. During thread (if SCOPE=THREAD) or enclave (if
SCOPE=ENCLAVE) termination, Language Environment deletes modules loaded
by CEEFETCH.

If CEEFETCH completes successfully, the address of the loaded routine is found in
R15. The routine can then be invoked using BALR 14,15 (or BASSM 14,15). The
syntax of CEEFETCH is described in z/OS Language Environment Programming
Guide.

CEEFETCH can be used to dynamically load a routine that has been compiled
XPLINK, as long as the entry point has been defined using #pragma linkage (...,
fetchable).

Using the CEERELES macro
CEERELES dynamically deletes a Language Environment-conforming routine. The
syntax of CEERELES is described in z/OS Language Environment Programming Guide.

Using the CEELOAD macro
CEELOAD is used to dynamically load a Language Environment-conforming
routine. It does not create a nested enclave, so the target of CEELOAD must be a
subroutine.

Some restrictions apply when using CEELOAD to call, fetch, or dynamic load:

© Copyright IBM Corp. 1991, 2013 233

v You cannot fetch or dynamically call a routine that has been fetched by or
dynamically called by another language, or has been dynamically loaded by
CEELOAD.

v You cannot dynamically load a routine with CEELOAD that has already been
dynamically loaded by CEELOAD, or has been fetched or dynamically called by
another language.

v You cannot dynamically load a routine with CEELOAD that has been compiled
XPLINK.

v The loading of a DFSMS program object with Deferred Load Classes is not
supported by CEELOAD.

The syntax of CEELOAD is described in z/OS Language Environment Programming
Guide.

While CEELOAD supports dynamic loading, in order to provide for loading and
deleting a module, the CEEFETCH and CEERELES macros should be used.

Passing arguments between HLL and assembler routines
Arguments are passed between HLL and assembler routines in a list of addresses.
Each address in a parameter list occupies a fullword in storage. The last fullword
in the list must have its high-order bit turned on for the last parameter address to
be recognized. Each address in a parameter list is either the address of a data item
or the address of a control block that describes a data item.

POSIX
With POSIX(ON), calls to assembler can occur on any thread as long as the
assembler routines use:
v The CEEENTRY/CEETERM macros provided by Language Environment, or
v The EDCPRLG/EDCEPIL macros provided by C/370

C and C++
To facilitate calls between assembler and C or C++, include the following directives
in your C or C++ code:

In C #pragma linkage(,OS)

In C++
extern "OS"

Using either of these directives will result in the compiler generating code that
uses the OS linkage convention. In this case, register 1 will contain the address of a
list of addresses of the actual arguments. The last address in this list has its high
order bit set. For more information, refer to the descriptions of these directives in
z/OS XL C/C++ Language Reference.

COBOL
For COBOL to use z/OS parameter passing, use the USING BY REFERENCE
phrase for CALL and PROCEDURE DIVISION statements:
77 X PIC S9(9) BINARY VALUE 32767.
77 Y PIC X(4) VALUE ’PRM2’.
77 Z POINTER.

SET Z TO ADDRESS OF Y.
CALL ’SUB1’ USING BY REFERENCE X,Y,Z

234 z/OS V2R1.0 Language Environment Writing ILC Applications

To pass a pointer to a copy of the parameters in COBOL, use the USING BY
CONTENT phrase.
77 X PIC S9(9) BINARY VALUE 32767.
77 Y PIC X(4) VALUE ’PRM2’.
77 Z POINTER.

SET Z TO ADDRESS OF Y.
CALL ’SUB1’ USING BY CONTENT X,Y,Z

To pass a parameter value directly in the parameter list in COBOL, as C does, use
the USING BY VALUE phrase.
77 X PIC S9(9) BINARY VALUE 32767.
77 Y PIC X(4) VALUE ’PRM2’.
77 z POINTER.

SET Z TO ADDRESS OF Y.
CALL ’SUB1’ USING BY VALUE X,Y,Z

To pass and/or receive a function value in COBOL, as C does, use the
RETURNING phrase. The returned function value is accessed using register 15, so
the COBOL RETURN-CODE special register cannot be used.
77 X PIC S9(9) BINARY VALUE 32767.
77 Y PIC X(4) VALUE ’PRM2’.
77 R PIC S9(9) BINARY

SET Z TO ADDRESS of Y.
CALL ’SUB1’ USING BY VLUE X,Y RETURNING R

R1 X

Y

Z

00007FFF

098FB0C4

PRM2

ADDR(X)

ADDR(Y)

ADDR(Z)

Figure 52. Parameter passing by reference

R1
copy of X

copy of Y

copy of Z

00007FFF

098FB0C4

PRM2

ADDR(copy X)

ADDR(copy Y)

ADDR(copy Z)

Figure 53. Parameter passing by content

R1 value of X

value of Y

value of Z

00007FFF

PRM2

098FB0C4

Figure 54. Parameter passing by value

Chapter 14. Communicating between assembler and HLLs 235

PL/I
For an assembler program to call PL/I, specify OPTIONS(ASM) on the PROC
statement of the PL/I routine to be called. For PL/I to call an assembler program,
your PL/I program should have an ENTRY declaration for the assembler routine it
calls, and OPTIONS(ASM) should usually be specified on the ENTRY declaration.

How the parameters are passed should match. Generally, assembler routines pass
and receive parameters using a list of addresses. This corresponds to passing
parameters BYADDR in PL/I. For details on how to pass parameters in PL/I, see
the IBM Enterprise PL/I for z/OS library (http://www.ibm.com/support/
docview.wss?uid=swg27036735).

Fortran
Assembler programs that initialized the Fortran runtime environment to call
Fortran subroutines may need to be restructured to initialize Language
Environment.

Canceling or releasing assembler
An assembler routine must be released using the same language that fetched it. An
ILC module which has been loaded using CEELOAD cannot be deleted. An ILC
module which has been fetched using CEEFETCH can be released using
CEERELES. COBOL, C, C++, and PL/I can only CANCEL or release the assembler
routine if there is no ILC with PL/I and Fortran in the target load modules.

Calling COBOL from assembler

AMODE considerations
When a called COBOL program returns control to a calling assembler program, the
AMODE won't be reset to the AMODE of the calling program. Upon return to the
calling assembler program, the AMODE will be the same as when the COBOL
program was invoked. Therefore, when an assembler program calls a COBOL
program that has a different AMODE, the calling program must save its own
AMODE before calling. When control returns from the COBOL program, the
calling assembler program must then restore its own AMODE.

The following instruction sequence illustrates the previous discussion:
LA 2,RESET SAVE BRANCH ADDRESS AND CURRENT
BSM 2,0 AMODE IN REGISTER 2
BASSM 14,15 CALL COBOL PROGRAM
BSM 0,2 BRANCH AND RESTORE AMODE FROM REG. 2

RESET DS OH

R1 value of X

value of Y

00007FFF

PRM2

R15 R

Figure 55. Parameter passing returning R

236 z/OS V2R1.0 Language Environment Writing ILC Applications

http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735

If an assembler program that is AMODE 31 calls a COBOL program that is
AMODE 24, the assembler program must also be RMODE 24 in order for COBOL
to return to the assembler program. If the assembler program is AMODE ANY, in
this case, an abend may result from the COBOL program as a result of branching
to an invalid address since R14 will contain a 31–bit address from the assembler
program's save area, but COBOL will return to the assembler program in AMODE
24.

When you have an application with COBOL subprograms, some of the COBOL
subprograms can be AMODE(31) and some can be AMODE(24). If your application
consists of only COBOL programs and you are only using static and dynamic calls,
each COBOL subprogram will always be entered in the proper AMODE. For
example, if you are using a COBOL dynamic call from an AMODE(31) COBOL
program to an AMODE(24) COBOL program, automatic AMODE switching is
done.

However, if you are using assembler programs along with other HLL programs
that call COBOL subprograms, you must ensure that when a COBOL subprogram
is called more than once in an enclave, it is entered in the same AMODE each time
it is called.

Canceling COBOL programs
Any COBOL subprograms compiled with the RENT compiler option that have
been loaded by assembler routines must not be deleted by assembler routines.
(This restriction does not apply to COBOL main programs loaded and deleted by
assembler drivers.)

A COBOL program that has been fetched using CEEFETCH can be deleted using
CEERELES.

Non-Language Environment-conforming assembler invoking an HLL
main routine

When a C, C++, COBOL, or PL/I main routine is called from a non-Language
Environment-conforming assembler program, the actions in Table 60 take place.

Table 60. What occurs when non-Language Environment-conforming assembler invokes an HLL main routine

Type of assembler invocation Language Environment is not up Language Environment is up

EXEC CICS LINK and EXEC CICS
XCTL

Initial enclave is created. Nested enclave is created.

The COBOL program could be a main in this case.

EXEC CICS LOAD and BALR This is not supported. This is not supported.

LINK Initial enclave is created. Nested enclave is created.

The COBOL program could be a main in this case.

LOAD and BALR Initial enclave is created. CEE393 is signaled. You cannot LOAD and BALR a
main routine under Language Environment.

However, in COBOL, this is supported because the
COBOL program would be a subroutine, not a main.

Chapter 14. Communicating between assembler and HLLs 237

Language Environment-conforming assembler invoking an HLL main
routine

When a C, C++, or PL/I main routine is called from Language
Environment-conforming assembler, the actions in Table 61 take place.

Note: Unlike C, C++, and PL/I, COBOL has no mechanism to statically declare a
program “main”; rather, a "main" program is determined dynamically when a
COBOL program is the first program in an enclave. Therefore, it is meaningful to
call a COBOL "main", only in the context of creating a new enclave in which a
COBOL program is the first to run. Only parts of the following tables apply to a
COBOL main.

Table 61. What occurs when Language Environment-conforming assembler invokes an HLL main routine

Type of assembler invocation Language Environment is up

CEELOAD macro CEE393 is signaled. CEELOAD cannot load a main routine.

CEEFETCH macro Nested enclave is not created.

The COBOL program could be a main in this case.

EXEC CICS LINK and EXEC CICS XCTL Nested enclave is created.

The COBOL program could be a main in this case.

EXEC CICS LOAD and BALR This is not supported.

LINK Nested enclave is created.

The COBOL program could be a main in this case.

LOAD and BALR CEE393 is signaled. You cannot LOAD and BALR a main routine
under Language Environment.

This is supported in COBOL because the COBOL program would
be a subroutine, not a main.

Note: See z/OS Language Environment Programming Guide for information about nested enclaves.

Assembler main routine calling HLL subroutines for better
performance

To improve performance of a C, C++, COBOL, or PL/I routine called repeatedly
from assembler, use a Language Environment-conforming assembler routine,
because the Language Environment environment is maintained across calls. If the
assembler routine is not Language Environment-conforming, the Language
Environment environment is initialized and terminated at every call. To improve
the performance for an assembler routine that is not Language
Environment-conforming, use preinitialization services. (See z/OS Language
Environment Programming Guide for information about using preinitialization
services.)

The call can be either a static call (the HLL routine is linked with the assembler
routine) or a dynamic load (using the CEELOAD or the CEEFETCH macro). The
assembler routine is a main routine and the called HLL program is a subroutine.

For example, see Figure 56 on page 239, which demonstrates a Language
Environment-conforming assembler routine statically calling a COBOL program.

238 z/OS V2R1.0 Language Environment Writing ILC Applications

*COMPILATION UNIT: LEASMCB
* ===
* Bring up the LE/370 environment
* ===
CEE2COB CEEENTRY PPA=MAINPPA,AUTO=WORKSIZE

USING WORKAREA,13
*
* Call the COBOL program
*

CALL ASMCOB,(X,Y) Invoke COBOL subroutine
*
* Call the CEEMOUT service
*

CALL CEEMOUT,(MESSAGE,DESTCODE,FC) Dispatch message
CLC FC(8),CEE000 Was MOUT successful?
BE GOOD Yes.. skip error logic
LH 2,MSGNO No.. Get message number
ABEND (2),DUMP LIGHTS OUT!

*
* Terminate the LE/370 environment
*
GOOD CEETERM RC=0 Terminate with return code zero
*
* ---
*
* Data Constants and Static Variables
*
Y DC PL3’+200’ 2nd parm to COBOL program (input)
MESSAGE DS 0H
MSGLEN DC Y(MSGEND-MSGTEXT)
MSGTEXT DC C’AFTER CALL TO COBOL: X=’
X DS ZL6 1st parm for COBOL program (output)
MSGEND EQU *
DESTCODE DC F’2’ Directs message to MSGFILE
CEE000 DC 3F’0’ Success condition token
FC DS 0F 12-byte feedback/condition code
SEV DS H severity
MSGNO DS H message number
CSC DS X flags - case/sev/control
CASE EQU X’C0’ 11..... case (1 or 2)
SEVER EQU X’38’ ..111.. severity (0 thru 4)
CNTRL EQU X’03’11 control (1=IBM FACID, 0=USER)
FACID DS CL3 facility ID
ISI DS F index into ISI block
*
MAINPPA CEEPPA Constants describing the code block
* ==
* Workarea
* ==
WORKAREA DSECT

CEEDSA , Mapping of the Dynamic Save Area
CEECAA , Mapping of the Common Anchor Area
CEEEDB , Mapping of the Enclave Data Block

*
END CEE2COB

Figure 56. Language Environment-conforming assembler routine calling COBOL routine

Chapter 14. Communicating between assembler and HLLs 239

*Module/File Name: IGZTASM
IDENTIFICATION DIVISION.
PROGRAM-ID. ASMCOB.

*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

*
LINKAGE SECTION.
01 X PIC +9(5).
01 Y PIC S9(5) COMP-3.

*
PROCEDURE DIVISION USING X Y.

COMPUTE X = Y + 1.
*

GOBACK.

Figure 57. COBOL routine called from Language Environment-conforming assembler

240 z/OS V2R1.0 Language Environment Writing ILC Applications

Chapter 15. ILC under CICS

In general, Language Environment provides the same ILC support for applications
running under CICS as for those running in a non-CICS environment. If there is
any ILC within a run unit under CICS, each compile unit must be compiled with a
Language Environment-conforming compiler.

If you are using ILC in CICS DL/I applications, EXEC CICS DLI and CALL
xxxTDLI can only be used in programs with the same language as the main
program. CEETDLI is not supported on CICS.

XPLINK-compiled functions cannot run under CICS Transaction Server prior to
CICS TS 3.1.

Fortran cannot run under CICS.

Language pairs supported in ILC under CICS
To understand what support Language Environment offers your ILC application,
see the description for the specific language pair, and the applicable ILC chapter. If
your ILC application involves multiple HLLs, see Chapter 13, “Communicating
between multiple HLLs,” on page 225.

Note: The term ILC refers to the ILC that occurs within a Language Environment
enclave.

Enclaves
A key feature of the program management model is the enclave, which consists of
one or more load modules, each containing one or more separately compiled,
bound routines. A load module can include HLL routines, assembler routines, and
Language Environment routines.

By definition, the scope of a language statement is that portion of code in which it
has semantic effect. The enclave defines the scope of the language semantics for its
component routines.

Enclave boundary
The enclave defines the scope of the definition of the main routine and
subroutines. The enclave boundary defines whether a routine is a main routine or
a subroutine. The first routine to run in the enclave is known as the main routine
in Language Environment. All others are designated subroutines of the main
routine. The first routine invoked in the enclave must be capable of being
designated main according to the rules of the language of the routine. All other
routines invoked in the enclave must be capable of being a subroutine according to
the rules of the languages of the routines.

If a routine is capable of being invoked as either a main or subroutine, and
recursive invocations are allowed according to the rules of the language, the
routine can be invoked multiple times within the enclave. The first of these
invocations could be as a main routine and the others as subroutines.

© Copyright IBM Corp. 1991, 2013 241

Program mask conventions
The maskable program exceptions are enabled for all member languages
represented in the root or main load module during Language Environment
initialization. Each member language informs Language Environment of its
program mask requirements, and Language Environment ORs all of the
requirements together and sets the program mask during initialization. During
termination, the program mask is reset by Language Environment to its value
upon entry to Language Environment initialization.

When running an ILC application, the subroutines might involve multiple HLLs.
The characteristics of these HLLs, such as program mask attributes, will be shared
across the enclave.

Language Environment neither saves nor restores the program mask setting across
calls to Language Environment services or calls within the Language Environment
environment.

The runtime option XUFLOW indicates the initial setting of the mask for exponent
underflow. You can alter this setting by using the callable service CEE3SPM.

In summary, the initial setting of the program mask is determined by the
requirements of the members within the main load module and by the setting of
the XUFLOW runtime option.

While the enclave is running, the program mask is influenced by the callable
service, CEE3SPM, and by members' requirements that are newly added as a result
of a dynamic call or fetch.

C/C++ and COBOL
Language Environment supports ILC between routines written in C/C++ and
COBOL under CICS as follows:
v Calls supported as documented in the sections "Calling between C++ and

COBOL" and "Calling between C and COBOL" with the exception that there is
no support for ILC calls to or from routines written in pre-Language
Environment-conforming versions of C or COBOL.

v There is no support for ILC calls to or from routines written in pre-Language
Environment-conforming versions of C or COBOL.

All components of your C/C++ to COBOL ILC application must be reentrant.

If there is any ILC with a run unit under CICS, each compile unit must be
compiled with a Language Environment-conforming compiler.

For more information about ILC between C/C++ and COBOL, see Chapter 4,
“Communicating between C and COBOL,” on page 27 and "Communicating
between C++ and COBOL" on page 53.

z/OS XL C/C++ and PL/I
Language Environment supports ILC between routines written in z/OS XL C/C++
and PL/I for MVS & VM or Enterprise PL/I for z/OS under CICS as follows:
v z/OS XL C/C++ routines can statically call PL/I routines.
v PL/I routines can statically call z/OS XL C/C++ routines.

242 z/OS V2R1.0 Language Environment Writing ILC Applications

v z/OS XL C/C++ routines can fetch() PL/I routines that have
OPTIONS(FETCHABLE) specified.

v PL/I routines can FETCH only those z/OS XL C/C++ routines that have not
been run through the CICS translator. A PL/I routine cannot dynamically call an
z/OS XL C/C++ routine that has been translated because the CICS translator
introduces writable static data elements that are not capable of being initialized
when the dynamic call is made.
In addition, during the FETCH of z/OS XL C/C++ from PL/I, the static
read/write pointer is not swapped.

v z/OS XL C/C++ routines calling PL/I routines must pass the EIB and
COMMAREA as the first two parameters if the called routine contains any EXEC
CICS commands.

v There is no support under CICS for ILC calls to or from routines written in
pre-Language Environment-conforming versions of C or PL/I.

All components of your z/OS XL C/C++ to PL/I ILC application must be
reentrant.

If there is any ILC with a run unit under CICS, each compile unit must be
compiled with a Language Environment-conforming compiler.

For more information about ILC between PL/I and C, see Chapter 8,
“Communicating between C and PL/I,” on page 127.

COBOL and PL/I
Language Environment supports ILC between routines compiled with Enterprise
COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS & VM,
COBOL/370, or PL/I for MVS & VM or Enterprise PL/I for z/OS under CICS as
follows:
v Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS &

VM, and COBOL/370 programs can statically call PL/I routines.
v PL/I routines can statically call Enterprise COBOL for z/OS, COBOL for OS/390

& VM, COBOL for MVS & VM, and COBOL/370 programs.
v Enterprise COBOL for z/OS, COBOL for OS/390 & VM, COBOL for MVS &

VM, and COBOL/370 programs can dynamically CALL PL/I routines that have
OPTIONS(FETCHABLE) specified.

v PL/I routines can FETCH Enterprise COBOL for z/OS, COBOL for OS/390 &
VM, COBOL for MVS & VM, and COBOL/370 programs.

v COBOL routines calling PL/I routines must pass EIB and COMMAREA as the
first two parameters if the called routine contains any EXEC CICS commands.

v PL/I routines calling Enterprise COBOL for z/OS, COBOL for OS/390 & VM,
COBOL for MVS & VM, or COBOL/370 programs must pass the EIB and
COMMAREA as the first two parameters if the called program contains any
EXEC CICS commands.

For more information about ILC between COBOL and PL/I, see Chapter 11,
“Communicating between COBOL and PL/I,” on page 185.

If there is any ILC with a run unit under CICS, each compile unit must be
compiled with a Language Environment-conforming compiler.

Chapter 15. ILC under CICS 243

Assembler
There is no support for Language Environment-conforming assembler main
routines under CICS prior to z/OS V1R4, or prior to CICS Transaction Server for
z/OS Version 3.1.

COBOL considerations
Static and dynamic calls are allowed in VS COBOL II, COBOL/370, COBOL for
MVS & VM, COBOL for OS/390 & VM, and Enterprise COBOL for z/OS to but
not from routines written in non-Language Environment-conforming assembler
routines.

Calls are allowed from Language Environment-conforming assembler subprograms
to COBOL/370, COBOL for MVS & VM, COBOL for OS/390 & VM, and
Enterprise COBOL for z/OS.

Calls are allowed from COBOL/370, COBOL for MVS & VM, COBOL for OS/390
& VM, and Enterprise COBOL for z/OS to Language Environment-conforming
assembler routines.

Calls are allowed from VS COBOL II programs to Language Environment-
conforming assembler routines if the NAB=NO option is used on the CEEENTRY
macro.

PL/I considerations
PL/I routines can statically call assembler routines declared with
OPTIONS(ASSEMBLER). When you declare a routine with
OPTIONS(ASSEMBLER), arguments are passed according to standard linking
conventions.

Called assembler subroutines can invoke CICS services if they were passed the
appropriate CICS control blocks.

See the CICS documentation for information about the use of CICS commands in
an assembler language subroutine.

Link-editing ILC applications under CICS
You must link ILC applications with the CICS stub, DFHELII, in order to get ILC
support under Language Environment.

ILC applications in which C/C++ is one of the participating languages must be
link-edited AMODE(31).

CICS ILC application
The following examples illustrate how you can use ILC under CICS. A COBOL
main program, COBCICS, dynamically CALLs a PL/I routine, PLICICS, which
does the following:
v Writes a message to the operator
v Establishes a ZERODIVIDE ON-unit
v Generates a divide-by-zero
v Writes another message to the operator
v Returns to the COBOL main program

244 z/OS V2R1.0 Language Environment Writing ILC Applications

COBCICS then calls CUCICS, a statically linked C routine, and passes a message
character string and a length field to the subroutine. This routine then calls the
Language Environment service CEEMOUT to write the message to the CESE
transient data queue.

CBL XOPTS(COBOL2),LIB,APOST
*Module/File Name: IGZTCICS
**
* TRANSACTION: COBC. *
* FUNCTION: *
* *
* A CICS COBOL main dynamically calls a PL/I *
* subroutine, and statically calls a C *
* subroutine. COBCICS passes a message to *
* the C subroutine to output to the *
* transient data queue. *
* *
**
IDENTIFICATION DIVISION.
PROGRAM-ID. COBCICS.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 STARTMSG PIC X(16) VALUE ’STARTING COBCICS’.
77 DTVAL PIC X(14) VALUE ’ENDING COBCICS’.
77 RUNNING PIC X(80) VALUE ’STARTING CUCICS’.
77 RUNLENGTH PIC S9(4) BINARY VALUE 15.
77 PLISUBR PIC X(8) VALUE ’PLISUBR’.

PROCEDURE DIVISION.

EXEC CICS SEND FROM(STARTMSG) ERASE END-EXEC.
CALL PLISUBR USING DFHEIBLK DFHCOMMAREA.
CALL ’CUCICS’ USING RUNLENGTH RUNNING.

EXEC CICS SEND FROM(DTVAL) ERASE END-EXEC.

EXEC CICS RETURN END-EXEC.

Figure 58. COBOL CICS main program that calls C and PL/I subroutines

Chapter 15. ILC under CICS 245

/*module/file name: ibmcics */
/***/
/** *
/** function: *
/** *
/** plicics is a pl/i cics subroutine that is *
/** called from a cobol main program, cobcics. *
/** plicics writes a startup message to the *
/** terminal operator and establishes a *
/** zerodivide on-unit. a zerodivide is *
/** generated and the zerodivide on-unit is *
/** called to notify the terminal operator. the *
/** zerodivide performs a normal return to the *
/** program and the control returns to cobol. *
/** *
/***/

plicics : procedure(dfheiptr) options(fetchable);

dcl running char(20) init (’plicics entered’) ;
dcl msg char(30);

msg = ’plicics entered’;
exec cics send from(msg) length(15) erase;
on zdiv begin;

msg = ’inside of zdiv on unit’;
put skip list(msg);
exec cics send from(msg) length(30) erase;

end;
a = 10;
a = a/0;

end plicics;

Figure 59. PL/I routine called by COBOL CICS main program

246 z/OS V2R1.0 Language Environment Writing ILC Applications

/*Module/File Name: EDCCICS */
/***/
/** */
/**Function: CEEMOUT: write message to transient data queue. */
/* */
/* This example illustrates a C CICS subroutine that is */
/* statically linked to a COBOL main routine, COBCICS. COBCICS */
/* passes a message character string and a length field to the */
/* subroutine. This routine then calls the CEEMOUT service */
/* to write the message to the transient data queue, CESE. */
/* */
/***/
#ifndef __cplusplus
#pragma linkage(CUCICS,COBOL)
#else
extern "COBOL" void CUCICS(unsigned short *len, char (* running) 80);
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <leawi.h>
#include <ceeedcct.h>

_VSTRING message;
_INT4 dest;
_CHAR80 msgarea;
_FEEDBACK fc;
/* */
/* mainline. */
/* */
void CUCICS(unsigned short *len, char (* running) 80)
{

/* Send a message to the CICS terminal operator. */
char * startmsg = "CUCICS STARTED\n";
unsigned short I1;
I1 = strlen(startmsg);
EXEC CICS SEND FROM(startmsg) LENGTH(I1) ERASE;

/* set output area to nulls */
memset(message.string,’\0’,sizeof(_CHAR80));
if (*len >= sizeof(_CHAR80))

*len = sizeof(_CHAR80)-1 ;

/* copy message to output area */
memcpy(message.string, running,(unsigned int) *len);

message.length = (unsigned int) *len;
dest = 2;
/***
* Call CEEMOUT to place copy of operator message in *
* transient data queue CESE. *

CEEMOUT(&message,&dest,&fc);

if (_FBCHECK (fc , CEE000) != 0) {
/* put the message if CEEMOUT failed */
dest = 2;
CEEMSG(&fc,&dest,NULL);
exit(2999);

}
}

Figure 60. C routine called by COBOL CICS main program

Chapter 15. ILC under CICS 247

248 z/OS V2R1.0 Language Environment Writing ILC Applications

Appendix A. Condition-handling responses

Table 62 and Table 63 list condition-handling responses, as referenced in the
condition handling sections of the pairwise chapters.

Table 62. Language Environmentdefault responses to unhandled conditions. Language Environment's default
responses to unhandled conditions fall into one of two types, depending on whether the condition was signaled using
CEESGL and an fc parameter, or it came from any other source.

Severity of condition
Condition signaled by user in
a call to CEESGL with an fc Condition came from any other source

0 (Informative message) Return CEE069 condition token,
and resume processing at the
next sequential instruction.

See the fc table for CEESGL
(z/OS Language Environment
Programming Reference) for a
description of the CEE069
condition token.

Resume without issuing message.

1 (Warning message) Return CEE069 condition token,
and resume processing at the
next sequential instruction.

If the condition occurred in a stack frame associated with a
COBOL program, resume and issue the message. If the
condition occurred in a stack frame associated with a
non-COBOL program, resume without issuing message.

2 (Program terminated in error) Return CEE069 condition token,
and resume processing at the
next sequential instruction.

Promote condition to T_I_U, redrive the stack, then terminate
the thread if the condition remains unhandled. Message issued
if TERMTHDACT(MSG) is specified.

3 (Program terminated in severe
error)

Return CEE069 condition token,
and resume processing at the
next sequential instruction.

Promote condition to T_I_U, redrive the stack, then terminate
the thread if the condition remains unhandled. Message issued
if TERMTHDACT(MSG) is specified.

4 (Program terminated in
critical error)

Promote condition to T_I_U,
redrive the stack, then
terminate the thread if the
condition remains unhandled.
Message issued if
TERMTHDACT(MSG) is
specified.

Promote condition to T_I_U, redrive the stack, then terminate
the thread if the condition remains unhandled. Message issued
if TERMTHDACT(MSG) is specified.

Table 63 contains default C language error handling semantics.

Table 63. Cconditions and default system actions

C Condition Origin Default action

SIGILL Execute exception operation
exception privileged operation

raise(SIGILL)

Abnormal termination
(return code=3000)

SIGSEGV Addressing exception
protection exception
specification exception
raise(SIGSEGV)

Abnormal termination
(return code=3000)

© Copyright IBM Corp. 1991, 2013 249

Table 63. Cconditions and default system actions (continued)

C Condition Origin Default action

SIGFPE Data exception
decimal divide
exponent overflow
fixed point divide
floating point divide
raise(SIGFPE)

Abnormal termination
(return code=3000)

SIGABRT abort() function
raise(SIGABRT)

Abnormal termination
(return code=2000)

SIGABND Abend the function Abnormal termination
(return code=3000)

SIGTERM Termination request
raise(SIGTERM)

Abnormal termination
(return code = 3000)

SIGINT Attention condition Abnormal termination
(return code = 3000)

SIGIOERR I/O errors Ignore the condition

SIGUSR1 User-defined condition Abnormal termination
(return code=3000)

SIGUSR2 User-defined condition Abnormal termination
(return code=3000)

Masked Exponent overflow
fixed-point underflow
significance

These exceptions are disabled.
They are ignored during the
condition handling process,
even if you try to enable them
using the CEE3SPM callable
service.

250 z/OS V2R1.0 Language Environment Writing ILC Applications

Appendix B. Using nested enclaves

An enclave is a logical runtime structure that supports the execution of a collection
of routines.

z/OS Language Environment explicitly supports the execution of a single enclave
within a Language Environment process. However, by using the system services
and language constructs described in this chapter, you can create an additional, or
nested, enclave and initiate its execution within the same process.

The enclave that issues a call to system services or language constructs to create a
nested enclave is called the parent enclave. The nested enclave that is created is
called the child enclave. The child must be a main routine; a link to a subroutine by
commands and language constructs is not supported under Language
Environment.

If a process contains nested enclaves, none or only one enclave can be running
with POSIX(ON).

Understanding the basics
In Language Environment, you can use the following methods to create a child
enclave:
v Under CICS, the EXEC CICS LINK and EXEC CICS XCTL commands
v Under z/OS, the SVC LINK command
v Under z/OS, the C system() function (see z/OS Language Environment

Programming Guide for more information about system())
v Under z/OS, the PL/I FETCH and CALL to any of the following PL/I routines

with PROC OPTIONS(MAIN) specified:
– Enterprise PL/I for z/OS
– PL/I for MVS & VM
– OS PL/I Version 2
– OS PL/I Version 1 Release 5.1
– Relinked OS PL/I Version 1 Release 3.0–5.1
Such a routine, called a fetchable main in this book, can only be introduced by a
FETCH and CALL from a PL/I routine.
The routine performing the FETCH and CALL must be compiled with the PL/I
for MVS & VM or Enterprise PL/I compiler or be a relinked OS PL/I routine.

If the target routine of any of these commands is not written in a Language
Environment-conforming HLL or Language Environment-conforming assembler, no
nested enclave is created.

COBOL considerations
In a non-CICS environment, OS/VS COBOL routines are supported in a single
enclave only.

PL/I considerations
PL/I MTF is supported in the initial enclave only. If PL/I MTF is found in a nested
enclave, Language Environment diagnoses it as an error. If a PL/I MTF application

© Copyright IBM Corp. 1991, 2013 251

contains nested enclaves, the initial enclave must contain a single task. Violation of
this rule is not diagnosed and is likely to cause unpredictable results.

Determining the behavior of child enclaves
If you want to create a child enclave, you need to consider the following factors:
v The language of the main routine in the child enclave
v The sources from which each type of child enclave gets runtime options
v The default condition handling behavior of each type of child enclave
v The setting of the TRAP runtime option in the parent and the child enclave

All of these interrelated factors affect the behavior, particularly the condition
handling, of the created enclave. The sections that follow describe how the child
enclaves created by each method (EXEC CICS LINK, EXEC CICS XCTL, SVC
LINK, CMSCALL, C system() function, and PL/I FETCH and CALL of a fetchable
main) will behave.

Creating child enclaves using EXEC CICS LINK or EXEC CICS
XCTL

If your C, C++, COBOL, or PL/I application uses EXEC CICS commands, you
must also link-edit the EXEC CICS interface stub, DFHELII, with your application.
To be link-edited with your application, DFHELII must be available in the link-edit
SYSLIB concatenation.

How runtime options affect child enclaves
The child enclave gets its runtime options from one of the sources discussed in
z/OS Language Environment Programming Guide. The runtime options are completely
independent of the creating enclave, and can be set on an enclave-by-enclave basis.

Some of the methods for setting runtime options might slow down your
transaction. Follow these suggestions to improve performance:
v If you need to specify options in CEEUOPT, specify only those options that are

different from system defaults.
v Before putting transactions into production, request a storage report (using the

RPTSTG runtime option) to minimize the number of GETMAINs and
FREEMAINs required by the transactions.

v Ensure that VS COBOL II transactions are not link-edited with IGZETUN, which
is no longer supported and which causes an informational message to be logged.
Logging this message for every transaction inhibits system performance.

How conditions arising in child enclaves are handled
This section describes the default condition handling for child enclaves created by
EXEC CICS LINK or EXEC CICS XCTL.

Condition handling varies depending on the source of the condition, and whether
or not an EXEC CICS HANDLE ABEND is active:
v If a Language Environment or CEEBXITA-initiated (generated by setting the

CEEAUE_ABND field of CEEBXITA) abend occurs, the CICS thread is
terminated. This occurs even if a CICS HANDLE ABEND is active, because
CICS HANDLE ABEND does not gain control in the event of a Language
Environment abend.

v If a software condition of severity 2 or greater occurs, Language Environment
condition handling takes place. If the condition remains unhandled, the problem

252 z/OS V2R1.0 Language Environment Writing ILC Applications

is not percolated to the parent enclave. The CICS thread is terminated with an
abend. These actions take place even if a CICS HANDLE ABEND is active,
because CICS HANDLE ABEND does not gain control in the event of a
Language Environment software condition.

v If a user abend or program check occurs, the following actions take place:
– If no EXEC CICS HANDLE ABEND is active, and TRAP(ON) is set in the

child enclave, Language Environment condition handling takes place. If the
abend or program check remains unhandled, the problem is not propagated
to the parent enclave. The CICS thread is terminated with an abend.

– An active EXEC CICS HANDLE ABEND overrides the setting of TRAP. The
action defined by the EXEC CICS HANDLE ABEND takes place.

Creating child enclaves by calling a second main without an
RB crossing

The behavior of a child enclave created by an calling a second main program is
determined by the language of its main routine: C, C++, COBOL, Fortran, PL/I, or
Language Environment-conforming assembler (generated by use of the CEEENTRY
and associated macros).

How runtime options affect child enclaves
Runtime options are processed in the normal manner for enclaves created because
of a call to a second main. That is, programmer defaults present in the load
module are merged, options in the command-line equivalent are also processed, as
are options passed by the assembler user exit if present.

How conditions arising in child enclaves are handled
The command-line equivalent is determined in the same manner as for a SVC
LINK for both VM and MVS.

Creating child enclaves using SVC LINK or CMSCALL
The behavior of a child enclave created by an SVC LINK or CMSCALL is
determined by the language of its main routine: C, C++, COBOL, Fortran, PL/I, or
Language Environment-conforming assembler (generated by use of the CEEENTRY
and associated macros).

MVS considerations: When issuing a LINK to a routine, the high-order bit must
be set on for the last word of the parameter list. To do this, set VL=1 on the LINK
assembler macro.

How runtime options affect child enclaves
Child enclaves created by an SVC LINK or CMSCALL get runtime options
differently, depending on the language that the main routine of the child enclave is
written in.

Child enclave has a C, C++, Fortran, PL/I, or Language Environment-conforming
assembler main routine: If the main routine of the child enclave is written in C,
C++, Fortran, PL/I, or in Language Environment-conforming assembler, the child
enclave gets its runtime options through a merge from the usual sources.
Therefore, you can set runtime options on an enclave-by-enclave basis. However,
you cannot pass command-line parameters to nested enclaves.

Appendix B. Using nested enclaves 253

Child enclave has a COBOL main routine: If the main routine of the child
enclave is written in COBOL, the child enclave inherits the runtime options of the
creating enclave. Therefore, you cannot set runtime options on an
enclave-by-enclave basis.

How conditions arising in child enclaves are handled
If a Language Environment or CEEBXITA-initiated (generated by setting the
CEEAUE_ABND field of CEEBXITA) abend occurs in a child enclave created by
SVC LINK or CMSCALL, regardless of the language of its main, the entire process
is terminated.

Condition handling in child enclaves created by SVC LINK or CMSCALL varies,
depending on the language of the child's main routine, the setting of the TRAP
runtime option in the parent and child enclaves, the type of condition, and
whether the routine is running under MVS. Refer to one of the following tables to
see what happens when a condition remains unhandled in a child enclave.

Table 64. Handling conditions in child enclaves

If the child enclave was created by: See:

An SVC LINK under MVS and has a C, C++, or
Language Environment-conforming assembler
main routine

Table 65

An SVC LINK or CMSCALL under CMS and has a
C or Language Environment-conforming assembler
main routine

Table 66 on page 255

An SVC LINK under MVS and has a COBOL main
program

Table 67 on page 255

An SVC LINK under MVS and has a Fortran or
PL/I main routine

Table 68 on page 255

You should always run your applications with TRAP(ON) or your results might be
unpredictable.

Child enclave has a C, C++, or Language Environment-conforming assembler
main routine:

Table 65. Unhandled condition behavior in a C, C++, or assembler child enclave, under MVS

Parent enclave
TRAP(ON) Child
enclave TRAP(ON)

Parent enclave
TRAP(ON) Child
enclave
TRAP(OFF)

Parent enclave
TRAP(OFF) Child
enclave TRAP(ON)

Parent enclave
TRAP(OFF) Child
enclave
TRAP(OFF)

Unhandled
condition severity
0 or 1

Resume child
enclave

Resume child
enclave

Resume child
enclave

Resume child
enclave

Unhandled
condition severity
2 or above

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and
ignore condition

Non-Language
Environment abend

Resume parent
enclave, and ignore
condition

Process terminated
with original abend
code

Resume parent
enclave, and ignore
condition

Process terminated
with original
abend code

Program check Resume parent
enclave, and ignore
condition

Process terminated
with abend U4036,
Reason Code=2

Resume parent
enclave, and ignore
condition

Process terminated
with abend S0Cx

254 z/OS V2R1.0 Language Environment Writing ILC Applications

Table 66. Unhandled condition behavior in a C or assembler child enclave, under CMS

Parent enclave
TRAP(ON) Child
enclave TRAP(ON)

Parent enclave
TRAP(ON) Child
enclave
TRAP(OFF)

Parent enclave
TRAP(OFF) Child
enclave TRAP(ON)

Parent enclave
TRAP(OFF) Child
enclave
TRAP(OFF)

Unhandled
condition severity
0 or 1

Resume child
enclave

Resume child
enclave

Resume child
enclave

Resume child
enclave

Unhandled
condition severity
2 or above

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and
ignore condition

Non-Language
Environment abend

Process terminated
with original abend
code

Process terminated
with original abend
code

Process terminated
with original abend
code

Process terminated
with original
abend code

Program check Resume parent
enclave, and ignore
condition

Process terminated
with abend U4036,
Reason Code=2

Resume parent
enclave, and ignore
condition

Process terminated
with CMS message

Child enclave has a COBOL main routine: Child enclaves created by SVC LINK
or CMSCALL that have a COBOL main program inherit the runtime options of the
parent enclave that created them. Therefore, the TRAP setting of the parent and
child enclaves is always the same.

Table 67. Unhandled condition behavior in a COBOL child enclave, under MVS

Parent enclave TRAP(ON) Child
enclave TRAP(ON)

Parent enclave TRAP(OFF)
Child enclave TRAP(OFF)

Unhandled condition severity 0
or 1

Resume child enclave Resume child enclave

Unhandled condition severity 2
or above

Signal CEE391 (Severity=1,
Message Number=3361) in parent
enclave

Process terminated with abend
U4094 RC=40

Non-Language Environment
abend

Signal CEE391 in parent enclave Process terminated with original
abend code

Program check Signal CEE391 in parent enclave Process terminated with abend
S0Cx

Child enclave has a Fortran or PL/I main routine:

Table 68. Unhandled condition behavior in a Fortran or PL/I child enclave, under MVS

Parent enclave
TRAP(ON) Child
enclave TRAP(ON)

Parent enclave
TRAP(ON) Child
enclave
TRAP(OFF)

Parent enclave
TRAP(OFF) Child
enclave TRAP(ON)

Parent enclave
TRAP(OFF) Child
enclave
TRAP(OFF)

Unhandled
condition severity
0 or 1

Resume child
enclave

Resume child
enclave

Resume child
enclave

Resume child
enclave

Unhandled
condition severity
2 or above

Signal CEE391
(Severity=1,
Message
Number=3361) in
parent enclave

Signal CEE391 in
parent enclave

Process terminated
with abend U4094
RC=40

Process terminated
with abend U4094
RC=40

Non-Language
Environment abend

Signal CEE391 in
parent enclave

Process terminated
with original abend
code

Process terminated
with abend U4094,
Reason Code=40

Process terminated
with original
abend code

Program check Signal CEE391 in
parent enclave

Process terminated
with abend U4036,
Reason Code=2

Process terminated
with abend U4094
RC=40

Process terminated
with abend S0Cx

Appendix B. Using nested enclaves 255

Creating child enclaves using the C system() function
Child enclaves created by the C system() function get runtime options through a
merge from the usual sources (see z/OS Language Environment Programming Guide
for more information). Therefore, you can set runtime options on an
enclave-by-enclave basis. See z/OS XL C/C++ Runtime Library Reference for
information about the system() function when running with POSIX(ON).

Under MVS, when you perform a system() function to a COBOL program, in the
form:
system("PGM=program_name,PARM=’...’")

the runtime options specified in the PARM= portion of the system() function are
ignored. However, runtime options are merged from other valid sources.

z/OS UNIX considerations
In order to create a nested enclave under z/OS UNIX, you must either:
v Be running with POSIX(OFF) and issue system(), or
v Be running with POSIX(ON) and have set the environment variables to signal

that you want to establish a nested enclave. You can use the __POSIX_SYSTEM
environment variable to cause a system() to establish a nested enclave instead of
performing a fork()/exec(). __POSIX_SYSTEM can be set to NO, No, or no.

In a multiple enclave environment, the first enclave must be running with
POSIX(ON) and all other nested enclaves must be running with POSIX(OFF).

How conditions arising in child enclaves are handled
If a Language Environment- or CEEBXITA-initiated (generated by setting the
CEEAUE_ABND field of CEEBXITA) abend occurs in a child enclave created by a
call to system(), the entire process is terminated.

Depending on what the settings of the TRAP runtime option are in the parent and
child enclave, the following might cause the child enclave to terminate:
v Unhandled user abend
v Unhandled program check

TRAP(ON | OFF) effects for enclaves created by system()
Table 69. Unhandled condition behavior in a system()-created child enclave, under MVS

Parent enclave
TRAP(ON) Child
enclave TRAP(ON)

Parent enclave
TRAP(ON) Child
enclave
TRAP(OFF)

Parent enclave
TRAP(OFF) Child
enclave TRAP(ON)

Parent enclave
TRAP(OFF) child
enclave
TRAP(OFF)

Unhandled
condition severity
0 or 1

Resume child
enclave

Resume child
enclave

Resume child
enclave

Resume child
enclave

Unhandled
condition severity
2 or above

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and
ignore condition

Non-Language
Environment abend

Resume parent
enclave, and ignore
condition

Process terminated
with original abend
code

Resume parent
enclave, and ignore
condition

Process terminated
with original
abend code

Program check Resume parent
enclave, and ignore
condition

Process terminated
with abend U4036,
Reason Code=2

Resume parent
enclave, and ignore
condition

Process terminated
with abend S0Cx

256 z/OS V2R1.0 Language Environment Writing ILC Applications

Creating child enclaves that contain a PL/I fetchable main
Under VM, the target load module can only be a member of a LOADLIB or be in a
saved segment or relocatable load module. The target load module cannot be on a
text deck or be a member of a TXTLIB.

Additional fetch and call considerations of PL/I fetchable mains are discussed in
“Special fetch and call considerations.”

How runtime options affect child enclaves
Child enclaves created when you issue a FETCH and CALL of a fetchable main get
runtime options through a merge from the usual sources. Therefore, you can set
runtime options on an enclave-by-enclave basis.

How conditions arising in child enclaves are handled
If a Language Environment or CEEBXITA-initiated (generated by setting the
CEEAUE_ABND field of CEEBXITA) abend occurs in a child enclave that contains
a fetchable main, the entire process is terminated.

Depending on what the settings of the TRAP runtime option are in the parent and
child enclave, the following might cause the child enclave to terminate:
v Unhandled user abend
v Unhandled program check

Table 70. Unhandled condition behavior in a child enclave that contains a PL/I fetchable
main, under MVS

Parent enclave
TRAP(ON) Child
enclave TRAP(ON)

Parent enclave
TRAP(ON) Child
enclave
TRAP(OFF)

Parent enclave
TRAP(OFF) Child
enclave TRAP(ON)

Parent enclave
TRAP(OFF) child
enclave
TRAP(OFF)

Unhandled
condition severity
0 or 1

Resume child
enclave

Resume child
enclave

Resume child
enclave

Resume child
enclave

Unhandled
condition severity
2 or above

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and ignore
condition

Resume parent
enclave, and
ignore condition

Non-Language
Environment abend

Resume parent
enclave, and ignore
condition

Process terminated
with original abend
code

Resume parent
enclave, and ignore
condition

Process terminated
with original
abend code

Program check Resume parent
enclave, and ignore
condition

Process terminated
with abend U4036,
Reason code=2

Resume parent
enclave, and ignore
condition

Process terminated
with abend S0Cx

Special fetch and call considerations
Do not recursively fetch and call the fetchable main from within the child enclave;
results are unpredictable if you do.

The load module that is the target of the FETCH and CALL is reentrant if all
routines in the load module are reentrant.

Language Environment relies on the underlying operating system for the
management of load module attributes. In general, multiple calls of the same load
module are supported for load modules that are reentrant, nonreentrant but
serially reusable, or nonreentrant and non-serially reusable.
v Reentrant

It is recommended that your target load module be reentrant.
v Nonreentrant but serially reusable

Appendix B. Using nested enclaves 257

You should ensure that the main procedure of a nonreentrant but serially
reusable load module is self-initializing. Results are unpredictable otherwise.

v Nonreentrant and non-serially reusable
If a nonreentrant and non-serially reusable load module is called multiple times,
each new call brings in a fresh copy of the load module. That is, there are two
copies of the load module in storage: one from FETCH and one from CALL.
Even though there are two copies of the load module in storage, you need only
one PL/I RELEASE statement because upon return from the created enclave the
load module loaded by CALL is deleted by the operating system. You need only
release the load module loaded by FETCH.

Other nested enclave considerations
The following sections contain other information you might need to know when
creating nested enclaves. The topics include:
v The string that CEE3PRM returns for each type of child enclave (see z/OS

Language Environment Programming Reference for more information about the
CEE3PRM callable service)

v The return and reason codes that are returned on termination of the child
enclave

v How the assembler user exit handles nested enclaves
v Whether or not the message file is closed on return from a child enclave
v z/OS UNIX considerations
v AMODE considerations

What the enclave returns from CEE3PRM
CEE3PRM returns to the calling routine the user parameter string that was
specified at program invocation. Only program arguments are returned.

See Table 71 to determine whether a user parameter string was passed to your
routine, and where the user parameter string is found. This depends on the
method you used to create the child enclave, the language of the routine in the
child enclave, and the PLIST, TARGET, or SYSTEM setting of the main routine in
the child enclave. If a user parameter string was passed to your routine, the user
parameter string is extracted from the command-line equivalent for your routine
(shown in Table 72 on page 259) and returned to you.

Note: Under CICS, CEE3PRM always returns a blank string.

Table 71. Determining the command-line equivalent

Language Option Suboption system() on MVS SVC LINK on MVS
Fetch/call of a PL/I
main

C #pragma
runopts(PLIST)

HOST, CMS, MVS PARM =, or the
parameter string
from the command
string passed to
system()

Halfword
length-prefixed
string pointed to by
R1

Not allowed

CICS,IMS,OS, or
TSO

Not available Not available Not allowed

258 z/OS V2R1.0 Language Environment Writing ILC Applications

Table 71. Determining the command-line equivalent (continued)

Language Option Suboption system() on MVS SVC LINK on MVS
Fetch/call of a PL/I
main

C++ PLIST and TARGET
compiler options

Default PARM =, or the
parameter string
from the command
string passed to
system()

Halfword
length-prefixed
string pointed to by
R1

Not allowed

PLIST(OS) and/or
TARGET(IMS)

Not available Not available Not allowed

COBOL Null Null Not allowed

Fortran PARM =, or the
parameter string
from the command
string passed to
system()

Halfword
length-prefixed
string pointed to by
R1

Not allowed

PL/I SYSTEM compiler
option

MVS PARM = or the
parameter string
from the command
string passed to
system()

Halfword
length-prefixed
string pointed to by
R1

User parameters
passed through
CALL

CMS Abend 4093-16 Abend 4093-16 User parameters
passed through
CALL

CICS, CMSTPL,
IMS, TSO

Not available Not available SYSTEM(CICS) not
supported. Others
not available.

Language
Environment-
conforming
assembler

CEENTRY PLIST= HOST, CMS, MVS PARM = or the
parameter string
from the command
string passed to
system()

Halfword
length-prefixed
string pointed to by
R1

Not allowed

CICS, IMS, OS, or
TSO

Not available Not available Not allowed

If Table 71 on page 258 indicates that a parameter string was passed to your
routine at invocation, the string is extracted from the command-line equivalent
listed in the right-hand column of Table 77. The command-line equivalent depends
on the language of your routine and the runtime options specified for it.

Table 72. Determining the order of runtime options and program arguments

Language of routine Runtime options in effect?
Order of runtime options and
program arguments

C #pragma runopts(EXECOPS) runtime options / user parms

#pragma runopts(NOEXECOPS) entire string is user parms

C++ Compiled with EXECOPS (default) runtime options / user parms

Compiled with NOEXECOPS entire string is user parms

COBOL CBLOPTS(ON) runtime options / user parms

CBLOPTS(OFF) user parms / runtime options

Fortran runtime options / user parms

Appendix B. Using nested enclaves 259

Table 72. Determining the order of runtime options and program arguments (continued)

Language of routine Runtime options in effect?
Order of runtime options and
program arguments

PL/I Neither PROC
OPTIONS(NOEXECOPS) nor
SYSTEM(CICS | IMS | TSO) is
specified.

runtime options / user parms

Either PROC
OPTIONS(NOEXECOPS) is
specified, or NOEXECOPS is not
specified but SYSTEM (CICS |
IMS | TSO) is.

entire string is user parms

Language Environment-
conforming assembler

CEENTRY EXECOPS=ON runtime options / user parms

CEENTRY EXECOPS=OFF entire string is user parms

Finding the return and reason code from the enclave
The following list tells where to look for the return and reason codes that are
returned to the parent enclave when a child enclaves terminates:
v EXEC CICS LINK or EXEC CICS XCTL

If the CICS thread was not terminated, the return code is placed in the optional
RESP2 field of EXEC CICS LINK or EXEC CICS XCTL. The reason code is
discarded.

v SVC LINK or CMSCALL to a child enclave with a main routine written in any
Language Environment-conforming language
If the process was not terminated, the return code is reported in R15. The reason
code is discarded.

v C's system() function
Under MVS, if the target command or program of system() cannot be started,
“-1” is returned as the function value of system(). Otherwise, the return code of
the child enclave is reported as the function value of system(), and the reason
code is discarded. (See z/OS XL C/C++ Programming Guide for more information
about the system() function.)

v FETCH and CALL of a fetchable main
Normally, the enclave return code and reason code are discarded when control
returns to a parent enclave from a child enclave. However, in the parent enclave,
you can specify the OPTIONS(ASSEMBLER RETCODE) option of the entry
constant for the main procedure of the child enclave. This causes the enclave
return code of the child enclave to be saved in R15 as the PL/I return code. You
can then interrogate that value by using the PLIRETV built-in function in the
parent enclave.

Assembler user exit
An assembler user exit (CEEBXITA) is driven for enclave initialization and enclave
termination regardless of whether the enclave is the first enclave created in the
process or a nested enclave. The assembler user exit differentiates between first
and nested enclave initialization.

Message file
Under MVS, the message file is not closed when control returns from a child
enclave.

260 z/OS V2R1.0 Language Environment Writing ILC Applications

AMODE considerations
ALL31 should have the same setting for all enclaves within a process. You cannot
invoke a nested enclave that requires ALL31(OFF) from an enclave running with
ALL31(ON).

Appendix B. Using nested enclaves 261

262 z/OS V2R1.0 Language Environment Writing ILC Applications

Appendix C. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1991, 2013 263

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

264 z/OS V2R1.0 Language Environment Writing ILC Applications

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix C. Accessibility 265

266 z/OS V2R1.0 Language Environment Writing ILC Applications

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1991, 2013 267

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

268 z/OS V2R1.0 Language Environment Writing ILC Applications

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of Language Environment in
z/OS.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Notices 269

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

270 z/OS V2R1.0 Language Environment Writing ILC Applications

Index

Special characters
@@c2cbl routine, using in relinking C to

COBOL routines 28
@@cbl2c routine, using in relinking C to

COBOL routines 28
#pragma linkage

required for C to Fortran ILC 86
required for COBOL to Fortran

ILC 170
required for COBOL/370 and

earlier 29

Numerics
16-bit signed binary integer

C++to C equivalents 18
C++to COBOL equivalents 71
C++to Fortran equivalents 113
C++to PL/I equivalents 154
COBOLto Fortran equivalents 173
COBOLto PL/I equivalents 192
Cto COBOL equivalents 43
Cto Fortran equivalents 92
Cto PL/I equivalents 134
Fortranto C equivalents 96
Fortranto C++ equivalents 117
Fortranto COBOL equivalents 176
Fortranto PL/I equivalents 212
PL/Ito COBOL equivalents 193
PL/Ito Fortran equivalents 214

32-bit signed binary integer
C++to COBOL equivalents 71
C++to Fortran equivalents 113
C++to PL/I equivalents 154
COBOLto C equivalents 46
COBOLto C++ equivalents 74
COBOLto Fortran equivalents 173
COBOLto PL/I equivalents 192
Cto COBOL equivalents 44
Cto Fortran equivalents 92
Cto PL/I equivalents 134
Fortranto C equivalents 96
Fortranto C++ equivalents 117
Fortranto COBOL equivalents 176
Fortranto PL/I equivalents 212
PL/Ito C equivalents 137
PL/Ito C++ equivalents 157
PL/Ito COBOL equivalents 194
PL/Ito Fortran equivalents 214

32-bit unsigned binary integer
C to C++ equivalents 16

64-bit signed binary integer
COBOLto Fortran equivalents 173
Fortranto COBOL equivalents 176

A
accessibility 263

contact IBM 263
features 263

address of an array data type
C++to Fortran equivalents 116
COBOLto Fortran equivalents 175
Cto Fortran equivalents 95
PL/Ito Fortran equivalents 216

address of an integer data type
C++to Fortran equivalents 116
Cto Fortran equivalents 95

aggregate
mapped between C and C++ 15
mapped between C and COBOL 42
mapped between C and PL/I 133
mapped between C++ and

COBOL 70
mapped between C++ and PL/I 154
mapped between COBOL and

PL/I 190
mapped between Fortran and

PL/I 211
AGGREGATE compile-time option

in C to COBOL ILC 42
AGGREGATE compiler option

in C to C++ ILC 15
AMODE

considerations, calling COBOL 236
where ILC applications can reside,

summary 1
array

C to COBOL equivalents 45
C to Fortran equivalents 95
C++ to COBOL equivalents 73
C++ to Fortran equivalents 116, 119
COBOL to Fortran equivalents 175,

177
Fortran to C equivalents 98
how mapped between Fortran and

PL/I 211
PL/I to Fortran equivalents 213, 216

assembler
and POSIX support 142
ILC with HLLs 233
routine, cancelling 236

assistive technologies 263

B
by reference

passing between C and C++ 13
passing between C and COBOL 36
passing between C and Fortran 89
passing between C and PL/I 131
passing between C++ and

COBOL 64
passing between C++ and

Fortran 110
passing between C++ and PL/I 151

by value
passing between C and C++ 12
passing between C and COBOL 36
passing between C and Fortran 89
passing between C and PL/I 131

by value (continued)
passing between C++ and

COBOL 64
passing between C++ and

Fortran 110
passing between C++ and PL/I 151

C
C

data types in common with all
HLLs 225

C to C++ ILC
building reentrant application 11
calling between 11
condition handling 23
data declarations 10
data equivalents for C to C++

calls 15
data equivalents for C++ to C

calls 17
determining main routine 9
directing output 23
passing data 12
storage functions 23

C to COBOL ILC
calling 31
compiling, linking, loading

considerations 28
condition handling 52
data declaration for function returns,

C and COBOL 40
data declarations 29
data equivalents for C to COBOL

calls 42
data equivalents for COBOL to C

calls 45
determining main routine 28
directing output 50
dynamic call/fetch 34
level of support 27
migrating 27
passing data 36
passing strings 42
sample application 56

C to Fortran ILC
calling 87
condition handling 99
data declarations 86
data equivalents for C to Fortran

calls 91
data equivalents for Fortran to C

calls 95
determining main routine 86
directing output 99
dynamic call/fetch 87
level of support 85
migrating 85
passing data 89
sample application 103

© Copyright IBM Corp. 1991, 2013 271

C to PL/I ILC
calling 129
condition handling 142
data declarations 128
data equivalents for C to PL/I

calls 134
data equivalents for PL/I to C

calls 136
determining main routine 128
directing output 141
fixed-point overflow 146
migrating 127
passing data 131
passing data by value 132
sample application 146
storage function comparison 141
support for products 127

C++
data types in common with all

HLLs 225
C++ to COBOL ILC

calling 62
condition handling 78
data declaration for function returns,

C++ to COBOL 66
data declarations 60

extern "C" linkage
specification 60

extern "COBOL" linkage 61
data equivalents for C++ to COBOL

calls 70
data equivalents for COBOL to C++

calls 73
determining the main routine 60
directing output 77
linking 62
passing 66
sample C++ to COBOL

application 82
C++ to Fortran ILC

calling 109
condition handling 120
data declarations 108
data equivalents for C++ to Fortran

calls 113
data equivalents for Fortran to C++

calls 116
determining main routine 107
directing output 120
dynamic call/fetch 109
level of support 107
passing data 110
sample application 124

C++ to PL/I ILC
aggregates mapping 154
calling 151
condition handling 161
data declarations 150
determining main routine 149
directing output 160
fixed-point overflow 166
name scope 159
passing data 151
reentrancy 150
sample application 166
storage comparison 160

calling
between C and C++ 11
between C and COBOL 31
between C and Fortran 87
between C and PL/I 129
between C++ and COBOL 62
between C++ and Fortran 109
between C++ and PL/I 151
between COBOL and Fortran 170
between COBOL and PL/I 187
between Fortran and PL/I 209

character data, fixed-length
C++to Fortran equivalents 115
COBOLto Fortran equivalents 174
Cto Fortran equivalents 94
Fortranto C equivalents 98
Fortranto C++ equivalents 119
Fortranto COBOL equivalents 177
Fortranto PL/I equivalents 213
PL/Ito COBOL equivalents 194
PL/Ito Fortran equivalents 216

character data, one-byte
Cto COBOL equivalent 43

character data, signed one-byte
C++to COBOL equivalents 70
C++to Fortran equivalents 115
Cto Fortran equivalents 94
Fortranto C equivalents 97
Fortranto C++ equivalents 118

character data, unsigned one-byte
C++to Fortran equivalents 115
Cto Fortran equivalents 94
Fortranto C equivalents 97
Fortranto C++ equivalents 118

CICS
ILC under 241

COBOL
data types in common with all

HLLs 225
program, cancelling 237

COBOL BY CONTENT
passing in C to COBOL 36
passing in C++ to COBOL 64

COBOL BY REFERENCE
passing in C to COBOL 36
passing in C++ to COBOL 64

COBOL BY VALUE
passing in C to COBOL 36
passing in C++ to COBOL 64

COBOL to C ILC
calling 31
compiling, linking, loading

considerations 28
condition handling 52
data declaration for function returns,

C and COBOL 40
data declarations 29
data equivalents for C to COBOL

calls 42
data equivalents for COBOL to C

calls 45
determining main routine 28
directing output 50
dynamic call/fetch 34
level of support 27
migrating 27
passing data 36

COBOL to C ILC (continued)
passing strings 42
sample application 56

COBOL to C++ ILC
calling 62
condition handling 78
data declaration for function returns,

C++ to COBOL 66
data declarations 60

extern "C" linkage
specification 60

extern "COBOL" linkage 61
data equivalents for C++ to COBOL

calls 70
data equivalents for COBOL to C++

calls 73
determining the main routine 60
directing output 77
linking 62
passing 66
sample C++ to COBOL

application 82
COBOL to Fortran ILC

calling 170
condition handling 179
data declarations 170
data equivalents for COBOL to

Fortran calls 173
data equivalents for Fortran to

COBOL calls 175
determining main routine 170
directing output 178
dynamic call/fetch 171
level of support 169
migrating 169
sample application 183

COBOL to PL/I ILC
calling 187
condition handling 198
data declarations 186
data equivalents for COBOL to PL/I

calls 192
data equivalents for PL/I to COBOL

calls 193
determining the main routine 186
directing output 198
dynamic call/fetch

considerations 188
external data in multitasking

applications 197
level of product support 185
migrating 185
multitasking 186
passing data 188
reentrancy 187
sample application 203

compiling
considerations for C++ to COBOL

ILC 59
for C to COBOL ILC 28

condition handling
in C to C++ ILC 23
in C to COBOL ILC 52
in C to Fortran ILC 99
in C to PL/I ILC 142
in C++ to COBOL ILC 78
in C++ to Fortran ILC 120

272 z/OS V2R1.0 Language Environment Writing ILC Applications

condition handling (continued)
in C++ to PL/I ILC 161
in COBOL to Fortran ILC 179
in COBOL to PL/I ILC 198
in Fortran to PL/I ILC 218
in multiple HLL ILC 226

D
data

equivalents for C to C++ calls 15
equivalents for C to COBOL calls 42
equivalents for C to Fortran calls 91
equivalents for C to PL/I calls 134
equivalents for C++ to C calls 17
equivalents for C++ to COBOL

calls 70
equivalents for C++ to Fortran

calls 113
equivalents for C++ to PL/I calls 154
equivalents for COBOL to C calls 45
equivalents for COBOL to C++

calls 73
equivalents for COBOL to Fortran

calls 173
equivalents for COBOL to PL/I

calls 192
equivalents for Fortran to C calls 95
equivalents for Fortran to C++

calls 116
equivalents for Fortran to COBOL

calls 175
equivalents for Fortran to PL/I

calls 211
equivalents for PL/I to C calls 136
equivalents for PL/I to C++ calls 157
equivalents for PL/I to COBOL

calls 193
equivalents for PL/I to Fortran

calls 214
external

in C to COBOL ILC 48
in C to PL/I ILC 139
in C++ to COBOL ILC 75
in COBOL to PL/I ILC 195

passing 65
Cpointers between C and

PL/I 132
passing by value between C and

PL/I 132
passing by value between C++ and

COBOL 65
data declarations

for C to C++ ILC 10
for C to COBOL ILC 29
for C to Fortran ILC 86
for C to PL/I ILC 128
for C++ to COBOL ILC 60
for C++ to Fortran ILC 108
for C++ to PL/I ILC 150
for COBOL to Fortran ILC 170
for COBOL to PL/I ILC 186
for Fortran to PL/I ILC 208
for function returns in C and

COBOL 40
for function returns in C++ to

COBOL 66

data sharing between COBOL and
PL/I 197

data types
overview of common data types 225
passed by reference between C and

COBOL 38
passed by reference between C++ and

COBOL 67
passed by value between C and

COBOL 38
passed by value between C++ and

COBOL 66
passing between C and C++ 12
passing between C++ and PL/I 151
supported between COBOL and

PL/I 188
supported between Fortran and

PL/I 211
decimal data, fixed-length

COBOLto C equivalents 48
DLL

in C to C++ ILC 11
mapping data in C to C++ ILC 21

dynamic call/fetch
between C and COBOL 34
between C and Fortran 87
between C and PL/I 129
between C++ and Fortran 109
between COBOL and COBOL 188
between COBOL and Fortran 171
between Fortran and PL/I 209
C to PL/I ILC

dynamic call/fetch
considerations 129

PL/I to C ILC
dynamic call/fetch

considerations 129

E
EDCSTART CSECT, using to relink C to

COBOL routines 28
entry point

declaring in C to PL/I 128
examples

C to C++ ILC 24
C to COBOL ILC 56
C to Fortran ILC 103
C to PL/I ILC 146
C++ to COBOL ILC 82
C++ to Fortran ILC 124
C++ to PL/I ILC 166
COBOL to Fortran ILC 183
COBOL to PL/I ILC 203
Fortran to PL/I ILC 223
multiple HLL ILC 230

exception handling 23
in C to C++ ILC 23

extended floating-point number
C++to Fortran equivalents 114
C++to PL/I equivalents 155
Cto Fortran equivalents 93
Cto PL/I equivalents 135
Fortranto C equivalents 97
Fortranto C++ equivalents 118
Fortranto PL/I equivalents 212
PL/Ito C equivalents 138

extended floating-point number
(continued)

PL/Ito C++ equivalents 158
PL/Ito Fortran equivalents 215

extended floating-point numbers,
adjacent

Fortran to PL/I equivalents 213
PL/I to Fortran equivalents 216

extern "C"
in C to C++ ILC 10

extern "COBOL" linkage 61
extern "PLI"

in C++ to PL/I ILC 150
external data

in C to COBOL ILC 48
in C to PL/I ILC 139
in C++ to COBOL ILC 75
in COBOL to PL/I ILC 195
in multiple HLL ILC 225
name scope in C++ to PL/I ILC 159

F
fetch

between C and COBOL 34
between C and Fortran 87
between C and PL/I 129
between C++ and Fortran 109
between COBOL and COBOL 188
between COBOL and Fortran 171
between Fortran and PL/I 209
name scope in C to COBOL ILC 48
name scope in C to PL/I ILC 139

fixed-length character data
C++to Fortran equivalents 115
COBOLto Fortran equivalents 174
Cto Fortran equivalents 94
Fortranto C equivalents 98
Fortranto C++ equivalents 119
Fortranto COBOL equivalents 177
Fortranto PL/I equivalents 213
PL/Ito COBOL equivalents 194
PL/Ito Fortran equivalents 216

fixed-length decimal data
COBOLto C equivalents 48
Cto COBOL equivalents 45
Cto PL/I equivalents 136
PL/Ito C equivalents 139

fixed-point overflow
in C to PL/I ILC 146
in C++ to PL/I ILC 166

floating-point number, extended
C++to Fortran equivalents 114
C++to PL/I equivalents 155
Cto Fortran equivalents 93
Cto PL/I equivalents 135
Fortranto C equivalents 97
Fortranto C++ equivalents 118
Fortranto PL/I equivalents 212
PL/Ito C equivalents 138
PL/Ito C++ equivalents 158
PL/Ito Fortran equivalents 215

floating-point number, long
C++to COBOL equivalents 72
C++to Fortran equivalents 114
C++to PL/I equivalents 155
COBOLto C equivalents 46

Index 273

floating-point number, long (continued)
COBOLto C++ equivalents 74
COBOLto Fortran equivalents 174
COBOLto PL/I equivalents 193
Cto COBOL equivalents 44
Cto Fortran equivalents 93
Cto PL/I equivalents 134
Fortranto C equivalents 96
Fortranto C++ equivalents 117
Fortranto COBOL equivalents 177
Fortranto PL/I equivalents 212
PL/Ito C equivalents 137
PL/Ito C++ equivalents 158
PL/Ito COBOL equivalents 194
PL/Ito Fortran equivalents 215

floating-point number, short
C++to C equivalents 18
C++to Fortran equivalents 114
COBOLto Fortran equivalents 174
COBOLto PL/I equivalents 193
Cto Fortran equivalents 92
Fortranto C equivalents 96
Fortranto C++ equivalents 117
Fortranto COBOL equivalents 176
Fortranto PL/I equivalents 212
PL/Ito COBOL equivalents 194
PL/Ito Fortran equivalents 214

floating-point numbers, adjacent
Fortranto PL/I equivalents 213

floating-point numbers, extended
adjacent

Fortran to PL/I equivalents 213
PL/I to Fortran equivalents 216

floating-point numbers, long adjacent
Fortran to PL/I equivalents 213
PL/I to Fortran equivalents 215

floating-point numbers, short complex
PL/I to Fortran equivalents 215

Fortran to C ILC
calling 87
condition handling 99
data declarations 86
data equivalents for C to Fortran

calls 91
data equivalents for Fortran to C

calls 95
determining main routine 86
directing output 99
dynamic call/fetch 87
level of support 85
migrating 85
passing data 89
sample application 103

Fortran to C++ ILC
calling 109
condition handling 120
data declarations 108
data equivalents for C++ to Fortran

calls 113
data equivalents for Fortran to C++

calls 116
determining main routine 107
directing output 120
dynamic call/fetch 109
level of support 107
passing data 110
sample application 124

Fortran to COBOL ILC
calling 170
condition handling 179
data declarations 170
data equivalents for COBOL to

Fortran calls 173
data equivalents for Fortran to

COBOL calls 175
determining main routine 170
directing output 178
dynamic call/fetch 171
level of support 169
migrating 169
sample application 183

Fortran to PL/I ILC
calling 209
condition handling 218
data declarations 208
data equivalents for Fortran to PL/I

calls 211
data equivalents for PL/I to Fortran

calls 214
determining the main routine 208
directing output 217
dynamic call/fetch

considerations 209
level of product support 207
migrating 208
passing data 211
reentrancy 209
sample application 223

function pointer
C to C++ equivalents 17
C++ to C equivalents 19

function returns
between C and COBOL 39
between C++ and COBOL 66

H
heap storage

comparison in C to PL/I ILC 141

I
IGZERRE 5
ILC (interlanguage communication)

benefits of 1
overview 1, 3

K
keyboard

navigation 263
PF keys 263
shortcut keys 263

L
Language Environment-conforming 2
linking

C to COBOL ILC 28
long floating-point number

C++to COBOL equivalents 72
C++to Fortran equivalents 114

long floating-point number (continued)
C++to PL/I equivalents 155
COBOLto C equivalents 46
COBOLto C++ equivalents 74
COBOLto Fortran equivalents 174
COBOLto PL/I equivalents 193
Cto COBOL equivalents 44
Cto Fortran equivalents 93
Cto PL/I equivalents 134
Fortranto C equivalents 96
Fortranto C++ equivalents 117
Fortranto COBOL equivalents 177
Fortranto PL/I equivalents 212
PL/Ito C equivalents 137
PL/Ito C++ equivalents 158
PL/Ito COBOL equivalents 194
PL/Ito Fortran equivalents 215

long floating-point numbers, adjacent
Fortran to PL/I equivalents 213

long floating-point numbers, long
adjacent

PL/I to Fortran equivalents 215

M
main routine

determining in C to C++ ILC 9
determining in C to COBOL ILC 28
determining in C to Fortran ILC 86
determining in C to PL/I ILC 128
determining in C++ to COBOL

ILC 59
determining in C++ to Fortran

ILC 107
determining in COBOL to Fortran

ILC 170
determining in COBOL to PL/I

ILC 186
determining in Fortran to PL/I

ILC 208
MAP compiler option

used in mapping aggregates 42
message

directing message file in C to COBOL
ILC 50

directing message file in C to Fortran
ILC 99

directing message file in C to PL/I
ILC 141

directing message file in C++ to
Fortran ILC 120

directing message file in C++ to PL/I
ILC 160

directing message file in COBOL to
Fortran ILC 178

migrating
C to COBOL ILC 27
C to Fortran ILC 85
C to PL/I ILC 127
COBOL to Fortran ILC 169
COBOL to PL/I ILC 185
Fortran to PL/I ILC 208

MSGFILE ddname
directing output to default in C to

PL/I ILC 142
directing output to default in C++ to

PL/I ILC 161

274 z/OS V2R1.0 Language Environment Writing ILC Applications

multitasking
and external data in COBOL to PL/I

ILC 197
COBOL to PL/I restriction 185
PL/I ILC restriction 127

multithreading
overview for POSIX applications 142
POSIX support in C to COBOL 51

N
name scope and name space

of external data in C to COBOL
ILC 48

of external data in C to PL/I ILC 139
of external data in C++ to COBOL

ILC 75
of external data in C++ to PL/I

ILC 159
of external data in COBOL to PL/I

ILC 195
navigation

keyboard 263
non-void function return values, using

with extern "C" 60
NORENT/RENT COBOL programs,

relinking for ILC with C 28
Notices 267
NULL pointer in COBOL 190
NULL, how compares between C and

PL/I 127

O
objects

passing between C and C++ 14
passing C++ objects 14

OCCURS, use in mapping aggregates in
COBOL to PL/I ILC 191

one-byte character data
C to COBOL equivalent 43
C to Fortran equivalents 94
Fortran to C equivalents 97

one-byte character data, signed
C++to Fortran equivalents 115
Fortranto C++ equivalents 118

one-byte character data, unsigned
C++to Fortran equivalents 115
Fortranto C++ equivalents 118

output
directing in C to C++ ILC 23
directing in C to COBOL ILC 50
directing in C to Fortran ILC 99
directing in C to PL/I ILC 141
directing in C++ to COBOL ILC 77
directing in C++ to Fortran ILC 120
directing in C++ to PL/I ILC 160
directing in COBOL to Fortran

ILC 178
directing in COBOL to PL/I 198
directing in Fortran to PL/I 217

P
packed structures

in C to C++ ILC 21

parameter
passing C++ to COBOL 65
value, receiving in C 132

PL/I
data types in common with all

HLLs 225
PL/I to C ILC

calling 129
condition handling 142
data declarations 128
data equivalents for C to PL/I

calls 134
data equivalents for PL/I to C

calls 136
determining main routine 128
directing output 141
fixed-point overflow 146
migrating 127
passing data 131
passing data by value 132
sample application 146
storage function comparison 141
support for products 127

PL/I to C++ ILC
aggregates mapping 154
calling 151
condition handling 161
data declarations 150
determining main routine 149
directing output 160
fixed-point overflow 166
name scope 159
passing data 151
reentrancy 150
sample application 166
storage comparison 160

PL/I to COBOL ILC
calling 187
condition handling 198
data declarations 186
data equivalents for COBOL to PL/I

calls 192
data equivalents for PL/I to COBOL

calls 193
determining the main routine 186
directing output 198
dynamic call/fetch

considerations 188
external data in multitasking

applications 197
level of product support 185
migrating 185
multitasking 186
passing data 188
reentrancy 187
sample application 203

PL/I to Fortran ILC
calling 209
condition handling 218
data declarations 208
data equivalents for Fortran to PL/I

calls 211
data equivalents for PL/I to Fortran

calls 214
determining the main routine 208
directing output 217

PL/I to Fortran ILC (continued)
dynamic call/fetch

considerations 209
level of product support 207
migrating 208
passing data 211
reentrancy 209
sample application 223

pointer
function, C to C++ equivalents 17
function, C++ to C equivalents 19
passing between C and PL/I 131
passing between C++ and PL/I 151
passing data using C pointers in C to

PL/I ILC 132
using in C to C++ ILC 13

pointer to a structure data type
C++to PL/I equivalents 157
Cto PL/I equivalents 136
PL/Ito C equivalents 139
PL/Ito C++ equivalents 159

pointer to an array data type
C++to Fortran equivalents 116
C++to PL/I equivalents 156
COBOLto Fortran equivalents 175
Cto Fortran equivalents 95
Cto PL/I equivalents 136
Fortranto C equivalents 98
Fortranto C++ equivalents 119
Fortranto COBOL equivalents 178
Fortranto PL/I equivalents 214
PL/Ito C equivalents 138
PL/Ito C++ equivalents 159
PL/Ito Fortran equivalents 216

pointer to an integer data type
C++to Fortran equivalents 116
C++to PL/I equivalents 156
Cto Fortran equivalents 95
Cto PL/I equivalents 135
Fortranto C equivalents 98
Fortranto C++ equivalents 119
PL/Ito C equivalents 138
PL/Ito C++ equivalents 159

pointer to character data type
C++to C equivalents 19

POSIX
C to PL/I ILC only on initial

thread 127
in C to COBOL ILC 51
overview of support 142

pragma linkage
required for C++ to Fortran ILC 108

prelinker
in building reentrant C++ to COBOL

modules 62
products supported 59

R
reentrancy

and linking C++ to COBOL
modules 62

for C to C++ ILC 11
in C to PL/I ILC 129
in C++ to PL/I ILC 150
in COBOL to PL/I ILC 187
in Fortran to PL/I ILC 209

Index 275

reference parameter
receiving in C++ 152

RENT/NORENT COBOL programs,
relinking for ILC with C 28

return code
COBOL to PL/I passing

restriction 185
restriction on passing between PL/I

and C 127
routine, main

determining in C to C++ ILC 9
determining in C to COBOL ILC 28
determining in C to Fortran ILC 86
determining in C to PL/I ILC 128
determining in C++ to COBOL

ILC 59
determining in C++ to Fortran

ILC 107
determining in C++ to PL/I ILC 149
determining in COBOL to Fortran

ILC 170
determining in COBOL to PL/I

ILC 186
determining in Fortran to PL/I

ILC 208

S
sending comments to IBM xiii
short floating-point number

C++to C equivalents 18
C++to Fortran equivalents 114
COBOLto Fortran equivalents 174
COBOLto PL/I equivalents 193
Cto Fortran equivalents 92
Fortranto C equivalents 96
Fortranto C++ equivalents 117
Fortranto COBOL equivalents 176
Fortranto PL/I equivalents 212
PL/Ito COBOL equivalents 194
PL/Ito Fortran equivalents 214

short floating-point numbers, adjacent
Fortran to PL/I equivalents 213
PL/I to Fortran equivalents 215

shortcut keys 263
signed binary integer, 16-bit

C++to COBOL equivalents 71
C++to Fortran equivalents 113
C++to PL/I equivalents 154
COBOLto Fortran equivalents 173
COBOLto PL/I equivalents 192
Cto COBOL equivalents 43
Cto Fortran equivalents 92
Cto PL/I equivalents 134
PL/Ito COBOL equivalents 193
PL/Ito Fortran equivalents 214

signed binary integer, 32-bit
C++to COBOL equivalents 71
C++to Fortran equivalents 113
C++to PL/I equivalents 154
COBOLto C equivalents 46
COBOLto C++ equivalents 74
COBOLto PL/I equivalents 192
Cto COBOL equivalents 44
Cto PL/I equivalents 134
PL/Ito C equivalents 137
PL/Ito C++ equivalents 157

signed binary integer, 32-bit (continued)
PL/Ito COBOL equivalents 194

signed one-byte character data
C++to COBOL equivalents 70
C++to Fortran equivalents 115
Cto C++ equivalents 15
Cto Fortran equivalents 94
Fortranto C equivalents 97
Fortranto C++ equivalents 118

signed, 16-bit binary integer
C++to C equivalents 18

storage
in C to C++ ILC 23
in C to PL/I ILC 141
in C++ to PL/I ILC 160

string
passing between C and COBOL 42
passing between C and PL/I 133
passing between C++ and

COBOL 69
passing between C++ and PL/I 153
restriction on passing between

COBOL and PL/I 190
structure

C to C++ equivalents 17
C to COBOL equivalents 45
C++ to COBOL equivalents 73
COBOL to C equivalents 47
COBOL to C++ equivalents 75
how mapped between COBOL and

PL/I 190
Summary of changes xv
SYSPRINT file

in C to PL/I ILC 141
in C++ to PL/I ILC 160

T
thread management

in multiple HLL ILC 226
TRUNC(BIN) compiler option

and data types in COBOL to PL/I
ILC 195

effect on passing C++ and
COBOL 66

effect on passing data between
between C++ and COBOL 67

effect on passing data between C and
COBOL 38, 39, 67

typedef
C to C++ equivalents 17

U
unsigned one-byte character data

C++to Fortran equivalents 115
Cto Fortran equivalents 94
Fortranto C equivalents 97
Fortranto C++ equivalents 118

unsigned, 32-bit binary integer 16
user interface

ISPF 263
TSO/E 263

V
value parameters

receiving in C 132
receiving in C++ 152

value, by
passing between C++ and

COBOL 65

276 z/OS V2R1.0 Language Environment Writing ILC Applications

����

Product Number: 5650-ZOS

Printed in USA

SA38-0684-00

	Contents
	Figures
	Tables
	About this document
	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Getting started with Language Environment ILC
	The benefits of ILC under Language Environment
	Writing ILC applications

	Chapter 2. Communicating with XPLINK applications
	XPLINK compatibility support
	ILC calls between XPLINK and non-XPLINK routines
	ILC between XPLINK and non-XPLINK C
	ILC between XPLINK and non-XPLINK C++
	ILC between XPLINK and COBOL
	ILC between XPLINK and PL/I
	ILC between XPLINK and Assembler
	ILC between XPLINK and Fortran
	PIPI XPLINK considerations

	Chapter 3. Communicating between C and C++
	General facts about C to C++ ILC
	Preparing for ILC
	Language Environment ILC support
	Determining the main routine
	Declaring C to C++ ILC
	Declaration for C calling C++
	Declaration for C++ calling C

	Building a reentrant C to C++ application

	Calling between C and C++
	Passing data between C and C++
	Passing data by value between C and C++
	Passing data by reference between C and C++
	Passing C++ objects
	Supported data types passed between C and C++
	Using aggregates

	Data equivalents
	Equivalent data types for C to C++
	Signed one-byte character data
	32-bit unsigned binary integer
	Structures and typedefs
	Function pointers

	Equivalent data types for C++ to C
	16-bit signed binary integer
	Short floating-point number
	Pointer to character
	Function pointers

	Name scope and name space
	Enhancing performance with packed structures and unions
	Example of packed structures
	Calling packed structures and unions

	Using storage functions in C to C++ ILC
	Directing output in ILC applications
	C to C++ condition handling
	Sample C to C++ applications

	Chapter 4. Communicating between C and COBOL
	General facts about C to COBOL ILC
	Preparing for ILC
	Language Environment ILC support
	Migrating ILC applications
	Relinking
	Recompiling

	Compiling and linking considerations
	Compiling
	Linking

	Determining the main routine
	Declaring C to COBOL ILC
	Declaring C to COBOL ILC without #pragma linkage
	Declaring C to COBOL ILC with #pragma linkage

	Calling between C and COBOL
	Types of calls permitted
	Performance considerations
	Dynamic call/fetch considerations - non-DLL modules
	C fetching C with COBOL statically linked
	C fetching COBOL
	COBOL dynamically calling COBOL with C statically linked
	COBOL dynamically calling non-Language Environment conforming assembler with C statically linked
	Cancel considerations
	COBOL dynamically calling C

	Dynamic call/fetch considerations - DLL modules

	Passing data between C and COBOL
	Passing data between C and COBOL without #pragma
	Passing data by value between C and COBOL
	Passing data by reference (indirect) between C and COBOL
	Supported data types passed by value (direct) between C and COBOL
	Supported data types passed between C and COBOL by reference (indirect) and from COBOL to C either by value (indirect) or by

	Handling function returns between C and COBOL
	Declaration for C calling COBOL
	Declaration for COBOL calling C

	Passing data between C and COBOL with #pragma
	Passing data by value (indirect) between C and COBOL
	Supported data types passed by value (indirect) between C and COBOL
	Passing data by reference (indirect) between C and COBOL
	Supported data types passed by reference (indirect) between C and COBOL

	Passing strings between C and COBOL
	Using aggregates

	Data equivalents
	Equivalent data types for C to COBOL
	One-byte character data without #pragma
	One-byte character data with #pragma
	16-bit signed binary Integer without #pragma
	16-bit signed binary integer with #pragma
	32-bit signed binary integer without #pragma
	32-bit signed binary integer with #pragma
	Long floating-point number without #pragma
	Long floating-point number with #pragma
	Structure with #pragma
	Array with #pragma
	Fixed-length decimal data with #pragma

	Equivalent data types for COBOL to C
	32-bit signed binary integer without #pragma
	32-bit signed binary integer with #pragma
	Long floating-point number without #pragma
	Long floating-point number with #pragma
	Structure without #pragma
	Structure with #pragma
	Fixed-length decimal data without #pragma
	Fixed-length decimal data with #pragma

	Name scope of external data
	DLL considerations
	Name scope of external data in a C application
	Name scope of external data in a COBOL run unit

	Name space of external data

	Directing output in ILC applications
	Interspersing output when C is the main routine
	Interspersing output when COBOL is the main routine

	C POSIX multithreading
	C to COBOL condition handling
	Enclave-terminating language constructs
	Exception occurs in C
	Exception occurs in COBOL
	CEEMRCR and COBOL

	Sample ILC applications

	Chapter 5. Communicating between C++ and COBOL
	General facts about C++ to COBOL ILC
	Preparing for ILC
	Language Environment ILC support
	Compiling considerations
	Determining the main routine
	Declaring C++ to COBOL ILC
	Declarations for extern "C" linkage
	Declarations for extern "COBOL" linkage

	Building a reentrant C++ to COBOL application

	Calling between C++ and COBOL
	Passing data between C++ and COBOL
	Passing data between C++ and COBOL with extern "C"
	Passing data by value between C++ and COBOL
	Passing data by reference (indirect) between C++ and COBOL
	Handling function returns between C++ and COBOL
	Supported data types passed by value (direct) between C++ and COBOL
	Supported data types passed by value (indirect) or by reference (indirect) between C++ and COBOL

	Passing data between C++ and COBOL with extern "COBOL"
	Passing data by value (indirect) between C++ and COBOL
	Supported data types passed by value (indirect) between C++ and COBOL
	Passing data by reference (indirect) between C++ and COBOL
	Supported data types passed by reference (indirect) between C++and COBOL

	Passing strings between C++ and COBOL
	Using aggregates

	Data equivalents
	Equivalent data types for C++ to COBOL
	Signed one-byte character data with extern "C"
	Signed one-byte character data with extern "COBOL"
	16-bit signed binary integer with extern "C"
	16-bit signed binary integer with extern "COBOL"
	32-bit signed binary integer with extern "C"
	32-bit signed binary integer with extern "COBOL"
	Long floating-point number with extern "C"
	Long floating-point with extern "COBOL"
	Structure with extern "COBOL"
	Array with extern "COBOL"

	Equivalent data types for COBOL to C++
	32-bit signed binary integer with extern "C"
	32-bit signed binary integer with extern "COBOL"
	Long floating-point number with extern "C"
	Long floating-point number with extern "COBOL"
	Structure with extern "C"
	Structure with extern "COBOL"

	Name scope of external data
	DLL considerations

	Name space of external data

	Directing output in ILC applications
	Interspersing output when C++ Is the main routine
	Interspersing output when COBOL Is the main program

	C++ to COBOL condition handling
	Enclave-terminating language constructs
	C language constructs available under C++
	COBOL language constructs

	Exception occurs in C++
	Exception occurs in COBOL
	CEEMRCR and COBOL

	Sample ILC applications

	Chapter 6. Communicating between C and Fortran
	General facts about C to Fortran ILC
	Preparing for ILC
	Language Environment ILC support
	Migrating ILC applications
	Determining the main routine
	Declaring C to Fortran ILC
	Example of declaration for C calling Fortran
	Example of declaration for Fortran calling C

	Calling between C and Fortran
	Types of calls permitted
	Dynamic call/fetch considerations
	C fetching Fortran
	Fortran dynamically calling C

	Invoking functions with returned values
	Calling Fortran library routines

	Passing data between C and Fortran
	Supported data types between C and Fortran
	Supported data types for passing by value
	Supported data types for passing function return values
	Passing an alternate return code from Fortran to C
	Passing character data
	Mapping arrays between C and Fortran

	Data equivalents
	Equivalent data types for C to Fortran
	16-bit signed binary integer
	32-bit signed binary integer
	Short floating-point number
	Long floating-point number
	Extended floating-point number
	Signed one-byte character data
	Unsigned one-byte character data
	Fixed-length character data
	Array
	Address of an integer
	Address of an array

	Equivalent data types for Fortran to C
	16-bit signed binary integer
	32-bit signed binary integer
	Short floating-point number
	Long floating-point number
	Extended floating-point number
	Signed one-byte character data
	Unsigned one-byte character data
	Fixed-length character data
	Array
	Address of an integer
	Address of an array

	External data

	Directing output in ILC applications
	C to Fortran condition handling
	Enclave-terminating language constructs
	C
	Fortran

	Exception occurs in C
	Exception occurs in Fortran

	Sample ILC applications

	Chapter 7. Communicating between C++ and Fortran
	General facts about C++ to Fortran ILC
	Preparing for ILC
	Language Environment ILC support
	Determining the main routine
	Declaring C++ to Fortran ILC
	Example of declaration for C++ calling Fortran
	Example of declaration for Fortran calling C++

	Calling between C++ and Fortran
	Types of calls permitted
	Dynamic call/fetch considerations
	Fortran dynamically calling C++

	Invoking functions with returned values
	Calling Fortran library routines

	Passing data between C++ and Fortran
	Supported data types between C++ and Fortran
	Supported data types for passing by value
	Supported data types for passing function return values
	Passing an alternate return code from Fortran to C++
	Passing character data
	Mapping arrays between C++ and Fortran

	Data equivalents
	Equivalent data types for C++ to Fortran
	16-bit signed binary integer
	32-bit signed binary integer
	Short floating-point number
	Long floating-point number
	Extended floating-point number
	Signed one-byte character data
	Unsigned one-byte character data
	Fixed-length character data
	Array
	Address of an integer
	Address of an array

	Equivalent data types for Fortran to C++
	16-bit signed binary integer
	32-bit signed binary integer
	Short floating-point number
	Long floating-point number
	Extended floating-point number
	Signed one-byte character data
	Unsigned one-byte character data
	Fixed-length character data
	Array
	Address of an integer
	Address of an array

	External data

	Directing output in ILC applications
	C++ to Fortran condition handling
	Enclave-terminating language constructs
	C language constructs available under C++
	Fortran

	Exception occurs in C++
	Exception occurs in Fortran

	Sample ILC applications

	Chapter 8. Communicating between C and PL/I
	General facts about C to PL/I ILC
	Preparing for C to PL/I ILC
	Language Environment ILC support
	Migrating C to PL/I ILC applications
	Determining the main routine
	Declaring C to PL/I ILC
	Declaration for C calling PL/I
	Declaration for PL/I calling C

	Building a reentrant C to PL/I application

	Calling between C and PL/I
	Types of calls permitted
	Dynamic call/fetch considerations
	C fetching PL/I
	PL/I fetching C

	Passing data between C and PL/I
	Passing pointers from C to PL/I
	Passing pointers from PL/I to C
	Receiving value parameters in C
	Receiving reference parameters in C
	Data types passed using C pointers (by reference)
	Data types passed by value
	Passing strings between C and PL/I
	Using aggregates

	Data equivalents
	Equivalent data types for C to PL/I
	16-bit signed binary integer
	32-bit signed binary integer
	Long floating-point number
	Extended floating-point number
	Pointer to an Integer
	Pointer to an array
	Pointer to a structure
	Fixed-length decimal data

	Equivalent data types for PL/I to C
	32-bit signed binary integer
	Long floating-point number
	Extended floating-point number
	Pointer to an integer
	Pointer to an array
	Pointer to a structure
	Fixed-length decimal data

	Name scope of external data
	DLL considerations

	Name space of external data

	Using storage functions in C to PL/I ILC
	Directing output in ILC applications
	Using SYSPRINT as the default stream output file
	Directing user-specified output to destination of MSGFILE

	C POSIX multithreading
	C to PL/I condition handling
	Enclave-terminating language constructs
	C
	PL/I

	Exception occurs in C
	Exception occurs in PL/I
	Fixed-point overflow

	Sample C to PL/I ILC applications

	Chapter 9. Communicating between C++ and PL/I
	General facts about C++ to PL/I ILC
	Preparing for ILC
	Language Environment ILC support
	Determining the main routine
	Declaring C++ to PL/I ILC
	Declaration for C++ calling PL/I
	Declaration for PL/I calling C++

	Building a reentrant C++ to PL/I application

	Calling between C++ and PL/I
	Passing data between C++ and PL/I
	Passing pointers from C++ to PL/I
	Passing pointers from PL/I to C++
	Receiving value parameters in C++
	Receiving reference parameters in C++
	Supported data types passed using C++ pointers (by reference)
	Supported data types passed by value
	Passing strings between C++ and PL/I
	Using aggregates

	Data equivalents
	Equivalent data types for C++ to PL/I
	16-bit signed binary integer
	32-bit signed binary integer
	Long floating-point number
	Extended floating-point number
	Pointer to an integer
	Pointer to an array
	Pointer to a structure

	Equivalent data types for PL/I to C++
	32-bit signed binary integer
	Long floating-point number
	Extended floating-point number
	Pointer to an integer
	Pointer to an array
	Pointer to a structure

	Name scope of external data
	DLL considerations

	Name space of external data

	Using storage functions in C++ to PL/I ILC
	Directing output in ILC applications
	Using SYSPRINT as the default stream output file
	Directing user-specified output to destination of MSGFILE

	C++ to PL/I condition handling
	Enclave-terminating language constructs
	C language constructs available under C++
	PL/I

	Exception occurs in C++
	Exception occurs in PL/I
	Fixed-point overflow

	Sample C++ to PL/I ILC applications

	Chapter 10. Communicating between COBOL and Fortran
	General facts about COBOL to Fortran ILC
	Preparing for ILC
	Language Environment ILC support
	Migrating ILC applications
	Determining the main routine
	Declaring COBOL to Fortran ILC

	Calling between COBOL and Fortran
	Types of calls permitted
	Dynamic call/fetch considerations
	COBOL dynamically calling Fortran
	Fortran dynamically calling COBOL

	Calling functions

	Passing data between COBOL and Fortran
	Passing character data
	Mapping arrays

	Data equivalents
	Equivalent data types for COBOL to Fortran
	16-bit signed binary integer
	32-bit signed binary integer
	64-bit signed binary integer
	Short floating-point number
	Long floating-point number
	Fixed-length character data
	Array
	Address of an array

	Equivalent data types for Fortran to COBOL
	16-bit signed binary integer
	32-bit signed binary integer
	64-bit signed binary integer
	Short floating-point number
	Long floating-point number
	Fixed-length character data
	Array
	Address of an array

	External data

	Directing output in ILC applications
	COBOL to Fortran condition handling
	Enclave-terminating language constructs
	COBOL
	Fortran

	Exception occurs in COBOL
	Exception occurs in Fortran
	GOTO out-of-block and move resume cursor

	Sample ILC applications

	Chapter 11. Communicating between COBOL and PL/I
	General facts about COBOL to PL/I ILC
	Preparing for ILC
	Language Environment ILC support
	Migrating ILC applications
	Determining the main routine
	Multitasking with PL/I and COBOL
	Declaring COBOL to PL/I ILC
	Building a reentrant COBOL to PL/I application
	PL/I and COBOL reentrancy
	PL/I reentrancy
	Reentrancy for PL/I multitasking applications

	Calling between COBOL and PL/I
	Types of calls permitted
	Dynamic call/fetch considerations
	COBOL dynamically calling PL/I
	PL/I fetching COBOL

	Passing data between COBOL and PL/I
	Supported data types between COBOL and PL/I
	Using aggregates
	COBOL and PL/I alignment requirements
	Mapping aggregates

	Data equivalents
	Equivalent data types for COBOL to PL/I
	16-bit signed binary integer
	32-bit signed binary integer
	Short floating-point number
	Long floating-point number

	Equivalent data types for PL/I to COBOL
	16-bit signed binary integer
	32-bit signed binary integer
	Short floating-point number
	Long floating-point number
	Fixed-length character data

	Data type equivalents when TRUNC(BIN) is specified
	Name scope of external data
	Name space of external data
	External data in multitasking applications

	Sharing data
	Sharing files between COBOL and PL/I
	File sharing under PL/I multitasking

	Directing output in ILC applications
	COBOL to PL/I condition handling
	Multitasking ILC consideration
	Enclave-terminating language constructs
	COBOL
	PL/I

	Exception occurs in COBOL
	Exception occurs in PL/I
	GOTO out-of-block and move resume cursor

	Sample PL/I to COBOL applications

	Chapter 12. Communicating between Fortran and PL/I
	General facts about Fortran to PL/I ILC
	Preparing for ILC
	Language Environment ILC support
	Migrating ILC applications
	Determining the main routine
	Declaring Fortran to PL/I ILC
	Invoking functions

	Building a reentrant Fortran to PL/I application

	Calling between Fortran and PL/I
	Types of calls permitted
	Dynamic call/fetch considerations
	Fortran Dynamically calling PL/I
	PL/I Dynamically calling Fortran

	Passing data between Fortran and PL/I
	Supported data types between Fortran and PL/I
	Passing character data
	Using aggregates

	Data equivalents
	Equivalent data types for Fortran to PL/I
	16-bit signed binary integer
	32-bit signed binary integer
	Short floating-point number
	Long floating-point number
	Extended floating-point number
	Complex: two adjacent short floating-point numbers
	Complex: two adjacent long floating-point numbers
	Complex: two adjacent extended floating-point numbers
	Fixed-length character data
	Array
	Address of an array

	Equivalent data types for PL/I to Fortran
	16-bit signed binary integer
	32-bit signed binary integer
	Short floating-point number
	Long floating-point number
	Extended floating-point number
	Complex: two adjacent short floating-point numbers
	Complex: two adjacent long floating-point numbers
	Complex: two adjacent extended floating-point numbers
	Fixed-length character data
	Array
	Address of an array

	External data

	Directing output from ILC applications
	Running Fortran routines in the PL/I multitasking facility
	Reentrancy in a multitasking application
	Common blocks in a PL/I multitasking application
	Data-in-virtual data objects in PL/I multitasking applications
	Files and print units in a multitasking application

	Fortran to PL/I condition handling
	PL/I Multitasking ILC considerations
	Enclave-terminating language constructs
	Fortran
	PL/I

	Exception occurs in Fortran
	Exception occurs in PL/I

	Sample ILC applications

	Chapter 13. Communicating between multiple HLLs
	Supported data types across HLLs
	External data
	Thread management
	Condition handling
	Enclave-terminating constructs
	C, COBOL, and PL/I scenario: exception occurs in C

	Sample N-Way ILC applications

	Chapter 14. Communicating between assembler and HLLs
	Calling between assembler and an HLL
	Using the CEEFETCH macro
	Using the CEERELES macro
	Using the CEELOAD macro
	Passing arguments between HLL and assembler routines
	POSIX
	C and C++
	COBOL
	PL/I
	Fortran

	Canceling or releasing assembler

	Calling COBOL from assembler
	AMODE considerations
	Canceling COBOL programs

	Non-Language Environment-conforming assembler invoking an HLL main routine
	Language Environment-conforming assembler invoking an HLL main routine
	Assembler main routine calling HLL subroutines for better performance

	Chapter 15. ILC under CICS
	Language pairs supported in ILC under CICS
	Enclaves
	Enclave boundary
	Program mask conventions
	C/C++ and COBOL
	z/OS XL C/C++ and PL/I
	COBOL and PL/I
	Assembler
	COBOL considerations
	PL/I considerations

	Link-editing ILC applications under CICS

	CICS ILC application

	Appendix A. Condition-handling responses
	Appendix B. Using nested enclaves
	Understanding the basics
	COBOL considerations
	PL/I considerations

	Determining the behavior of child enclaves
	Creating child enclaves using EXEC CICS LINK or EXEC CICS XCTL
	How runtime options affect child enclaves
	How conditions arising in child enclaves are handled

	Creating child enclaves by calling a second main without an RB crossing
	How runtime options affect child enclaves
	How conditions arising in child enclaves are handled

	Creating child enclaves using SVC LINK or CMSCALL
	How runtime options affect child enclaves
	How conditions arising in child enclaves are handled

	Creating child enclaves using the C system() function
	z/OS UNIX considerations
	How conditions arising in child enclaves are handled
	TRAP(ON | OFF) effects for enclaves created by system()

	Creating child enclaves that contain a PL/I fetchable main
	How runtime options affect child enclaves
	How conditions arising in child enclaves are handled
	Special fetch and call considerations

	Other nested enclave considerations
	What the enclave returns from CEE3PRM
	Finding the return and reason code from the enclave
	Assembler user exit
	Message file
	AMODE considerations

	Appendix C. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

